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Abstract

The goal of this thesis is to describe methods and give examples of

embedding a ring in a skew field.

In many parts of Algebra, for instance in Ring Theory, an attempt
is made to study and classify the basic building blocks involved with
the hope that the more complex structures can then be reconstructed
from these fundamental blocks in some manner—for example the
Wedderburn—Artin theorem. From this point of view the construc-
tion of a new skew field (also called a division ring) is a worthwhile
endeavour since the skew fields are the basic building blocks in Ring

Theory.

At the end of chapter I, we shall present a family of free algebras of
rank two over a given skew field with countably many non-isomorphic
fields of fractions. The idea of this example is due to Fisher [Fis71],

but the proof presented here is original (cf. section 1.6 on page 46).

In chapter III, we prove a sort of Cramer’s rule for non-commutative



Abstrac?

rings due to Cohn [Coh71a]. We also prove lemmalll.2.3, on page 127,
which is original. It will give us the exact relation between the uni-
versal Z-inverting ring and the X-rational closure. As an application
of Cramer’s rule and this lemma we shall show how to construct epic

R-fields from their singular kernels.

The embedding of a “suitavle” ring in a division ring will provide a
way of constructing a skew field; most often, a skew field constructed
to embed a ring in it will not be finite dimensional over its center.
What is meant by & “5xidefi-" ring is the subject matter of this

work.
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Terminology, notations and

conventions

For any term used in this thesis without explicit definition, the reader is referred
to Hungerford [Hun89}, Jacobson [Jac89], Lang [Lan93] or any graduate algebra
book at the same level as any of these three books.

All rings occurring are associative, but not necessarily commutative (in
fact, the problems considered reduce to trivialities in the commutative case,
cf. page 21). Every ring has a unit-element, denoted by 1, which is inherited
by subrings, preserved by homomorphisms, and acts as the identity operator on
modules.

We note that in a ring 1 = 0 is possible; it happens precisely when the
ring is triviai, i.e. a ring with a single element. A ring is said to be entire or
an integral domain if 1 # 0 and the product of non-zero elements is non—
zero. In any ring R, the set of non-zero elements is denoted by R* or by
R*, but this notation is mostly used for integral domains, where R* is closed
under multiplication. If R* is a group under multiplication, R is called a field
or division ring. Occasionally the prefix “skew” is used, to emphasize that
our fields need not be commutative, which means that we must qualify the
commutative fields. By an embedding of a ring R in a skew field X we mean

an injective ring homomorphism R — K. An element u in a ring or monoid



Terminology, notations and conventions

is invertible or a unit if it has an inverse u™! satisfying uu=! = u~lu = 1.
Such an inverse is unique if it exisis at all. The units of a ring (or monoid)
R form a group, denoted by #(R). The ring of all n x n matrices over R is
written My, (R) or R,. The set of all square matrices over R is denoted by
M(R). Instead of U(R,) we write GL,(R). An element u of a ring is called a
left zero—divisor if u # 0 and uv = 0 for some v # 0; if u is neither 0 ncr a
left zero—divisor, it is called right regular. Corresponding definitions hold with
ieft and right interchanged. A left or right zero—divisor is called a zero—divisor
and an element that is neither 0 nor a zero—divisor is called regular. Over a
field a square matrix which is a zero—divisor or 0 is also called singular.

Let A be a commutative ring; by an A-algebra we understand a ring R
which is an A-module such that the multiplication is bilinear. Sometimes we
will want a non—-commutative coefficient ring A; this means that our ring R is
an A-bimodule such that z(yz) = (zy)z for any z, y, z in R or A; this will be
called an A-ring. To rephrase the definitions, an A-ring is a ring R with a
homomorphism o +— a.1 of A into R, while an A-algebra is a ring R with a
homomorphism of A into the centre of R. Moreover, the use of the term A-
algebra means that A4 is commutative. Frequently our coefficient ring will be a
skew field, usually written K or k.

Let R be an A-ring. A family (u;) of elements of R is right linearly
dependent over A or right A-dependent if there exist A; € A almost all (i.e.
all but a finite number) but not all zero, such that §_ u;A; = 0. Otherwise (u;)
is right A-independent. Corresponding definitions hold with left instead of
right. If such a family is left and right linearly independent (dependent) we call
it linearly A-independent (A-dependent). Occasionally we speak of a set being
linearly dependent or independent; this is to be understood as a family indexed
by itself.

As usual, N, Z, Q, R, C H stand for the natural numbers, integers, rational

numbers, real numbers, complex numbers and the rational quaternions, respec-
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tively. card(I) or |I| denotes the cardinal number of a set I. If T C S, the
~vmplement of T in S is written S\T or, sometimes, S — T'.

We shall adopt the convention of \;vritting functions on the left of their ar-
gument, hence the composition of two functions A i» B 2 C is written g o f.

All theorems, propositions, lemmas, corollaries, definitions and remarks are
numbered consecutively in each seciion. The end (or absence) of a proof is
indicated by g.

Lastly, references to the bibliography are by the first three letters of the
author’s name and the last two digits of the year of publication; thus for instance,

Dubrovin {[Dub94j refers to a paper of Dubrovin published in 1994.



Introduction

In chapter I we shall give the basic definitions of ring and monoid of fractions
and will present the general embedding problem for monoids and rings. We
shall mention, briefly, the commutative case as a motivation for finding Ore’s
condition of embeddability [Ore31]. Originally, Ore treated the particular case
of integral domains (cf. corollary 1.3.12 on page 28), but these conditions can
be re-adapted to obtain the embeddability of any monoid (or even a semigroup)
into a group with a prescribed “normal form”(see theorem 1.2.5, page 8).

Then, we shall apply Ore’s method to skew polynomial rings and shall de-
scribe their field of fractions. We shall give several examples of skew polynomial
rings where we shall apply the results of the previous sections.

At the end of chapter I, we shall present a family of free algebras of
rank tweo over a given skew field with countably many non-isomorphic
ﬁelds of fractions. The idea of this example is due to Fisher [Fis71],
but the proof presented here is original (cf. section 1.6 on page 46).

In chapter II we shall present two famous einbedding theorems: the Malcev—
Neumann and Cohn embedding theorems.

The investigation of geometries, principally by Hilbert [Hil30], with certain
incidence and order properties, but lacking others (satisfying “Desargues” but
not “Papus”) led to the study of totally (fully) ordered division ring. The first

example of a centrally infinite division rings was Hilbert’s Twisted Laurent se-
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ries (see page 45, and also proposition 11.2.10 in page 74). The prok. m of
constructing more general types of ordered division rings was begun by Mo-
ufang [Mou37], who embedded the group algebra of the free metabelian group
of two generators into a division ring and showed that this division ring can be
ordered.

Malcev—Neumann’s [Mal48, Neud49a] construction of formal power series di-
vision rings is also related to Hilbert’s example (loc. cit.), with additional mo-
tivation coming from the earlier work of Hahn [Hah07] on the embedding of
ordered abrlian groups into groups of Laurent series.

The main idea of forming Malcev—Neumann formal power series is that one
can combine Hilbert’s Twisted Laurent series with the usual group ring con-
struction, even with twisted group rings, to get a much bigger class of division
rings.

As an application of the Malcev—Neumann embedding we shall embed the
free k—algebra over a set X into a division ring, where k is a skew field. Com-
paring this embedding to the Moufang embedding (loc. cit.) we get another
example of a ring with non-isomorphic fields of fractions. As a second applica-
tion, we shall exhibit an example of a non-Ore ring which can still be embedded
in a skew field, showing that the Ore conditions are not necessary to embed a
ring in a skew field.

It has been shown by Tamari [Tam53] that the universal enveloping algebra
of every finite dimensional Lie algebra has the right common muitiple condi-
tion, hence it is embeddable in a skew field (cf. corollary 1.3.12, on page 28).
Cohn [Coh61] proved that the universal enveloping algebra of any Lie algebra
can be embedded in a skew field. In order to achieve this result, we shall present
two theorems due to Cohn [Coh61]: an embeddix: taeorem for a certain class
of inverse limit semigroups (theorem 11.5.1, page 88) and an embedding theo-
rem for valuated rings satisfying some extra condition (theorem I1.6.1, page 92).

Following Cohn, we shall reformulate theorem I1.6.1 in a suitable way for the
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application we shall give in the last section of chapter II: the proof that every
Birkhoff-Witt algebra is embeddable in a skew field. We zhall use this to show
that the universal enveloping algebra of any Lie algebra (not necessarily finite )
dimensional) is embeddable in a skew field; and also to give another proof of the
fact that the free algebra k(X) (k a commutative field, X a set) is embeddable

in a skew field.

In chapter III we shall see a general method [Coh71a, Coh72a, Coh72b,
Coh85] of embedding rings in skew fields due to Cohn. This technique is quite
general in that it provides a criterion for arbitrary rings to be so embeddable,
and also can be used to describe the homomorphisms of rings into skew fields.
For a commutative ring such homomorphisms can be completely described in
terms of the set of its prime ideals, and in the course of this chapter we shall
see that the same description applies to quite general rings.

Let R be a ring. Our basic problem will be to study the possible ways of
embedding R into a skew field. Of course there may be no such embedding, and
it is more natural to treat the wider problem of finding homomorphisms of R
into a skew field.

As we see in corollary 1.3.12, page 28, in the Ore case, once we have an
R*—inverting homomorphism, we have achieved the embedding in a field (we
even have a unique field of fractions with a prescribed normal form). Assume
that K is the field of fractions of an Ore domain R. Then, every element u of

K can be written as a~'b (e, b € R). Thus, u is obtained by solving
(%) au—b=0.

But in general, if we have an R*-inverting homomorphism, we do not necessarily
get an embedding in a field; after adjoining the inverses of all non—zero elements
of R, there may still be elements without inverses, e.g. ab~Yc+de~! f (recall that

now we don’t have the right multiple condition to “shuffle elements around”),



Introduction

so we need to perform repeated inversions.

Thus for a non-commutative ring R the R*-inverting homomorphisms are
not very good approximations to homomorphisms into a skew field. Following
Cohn, we shall remedy this defect by inverting, instead of elements, a set of
square matrices over R (possibly of different orders) and we shall be able to
manage with a single inversion if we replace a in (*) by a matrix. Since our aim
is to construct skew fields, we shall confine ourselves to square matrices, the
only ones that can be inverted over a field (since any field has invariant basis
number).

For a commutative ring this gives nothing new, since we can invert any square
matrix A simply by adjoining an inverse of det A (the determinant of A). But
over a non—commutative ring, although a determinant can be defined, it lacks
the properties required to achieve an analogous situation to the commutative
case, so we expect the inverse of a matrix to give something new. We shall
characterize the homomorphisms from R to skew fields by means of the “prime
matrix ideal” of R, to be defined in chapter II1.

We shall be interested in R-rings that are skew fields, called R-fields. We
single out a particular class of R-fields, the epic R-fields, and shall introduce a
category having epic R-fields for objects and as morphisms certain equivalence
classes of local homomorphisnis called specializations. In order to construct epic
R-fields we introducs the concepts of singular kernel and universal Z-inverting
ring Ry (here X is a set of square matrices over R, possibly of different orders).
To form the universal X-inverting ring Ry, essentially means to adjoin to R the
entries of the inverses of the matrices of ¥ in the most general way possible.

A basic step in the construction of an epic R-field is the description of its
elements as components of the solution vector of a matrix equation. Towards
this end we shall introduce the E-rational closure of R with respect to a ring
homomorphism from R to another ring. Then we prove a sort of Cramer’s rule

for non—commutative rings. We also prove lemma I11.2.3, on page 127,
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which is original. It will give us the exact relation between the uni-
versal Y—inverting ring and the L-rational closure. As an application
of Cramer’s rule and this lemma we shall show how to construct epic
R-fields from their singular kernels.

From the above discussion, we know that any epic R—field may be described
entirely in terms of matrices over R; we shall also see how to express specializa-
tions in terms of the sets of matrices inverted over R: there is a specialization
between two epic R-fields iff there is an inclusion relation between their singular
kernels. This will give us an equivalence between the category of epic R—fields
and specializations and the category whose objects are singular kernels of epic
R—fields with inclusion mappings as morphisms.

At this stage, we would like to know when a collection of matrices is a
singular kernel, just as we can tell when a collection of elements of R is a prime
ideal. In fact we shall be able to characterize singular kernels in much the same
way as kernels of R-fields in the commutative case are characterized as prime
ideals. To this end we introduce some operations on the set of matrices over R
and the notion of a matrix ideal. This corresponds to the concept of an ideal
in a commutative ring. Then, we shall define the analogue of a prime ideal:
the prime matrix ideal, which has properties corresponding closely to those of
prime ideals. Prime matrix ideals can be used to describe homomorphisms of
general rings into skew fields, just as prime ideals do in the commutative case.

The crux of chapter IIl is the following

characterization of prime mairiz ideals: prime matriz ideals are the sets of

square matrices over R which become singular under a homomorphism into soine
skew field.

This characterization of prime matrix ideals will be applied to derive criteria
for a general ring to be embeddable in a field, or to have a universal field of
fractions.

An alternative approach to the method of universal localization was given
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by Gerasimov [Ger79, Ger82]. Gerasimov put emphasis in studying homomor-
phisms of rings into rings (not necessarily skew fields) and characterized all such
mappings. His work led to a localization theorem for n—firs. This theorem was
proved independently by Malcolmson [Mal84)], who simplified some of the proofs
of this chapter, cf. [Mal78, Mal80, Mal82, Mal84].

We also mention that Schofield [Sch85] generalized Cohn’s method of em-
bedding rings into skew fields and studied finite dimensional representations of

a ring over a skew field.

Lastly, in chapter IV, we shall give an outline, without proofs, of
Dubrovin’s partial solution [Dub94] to the following problem of Malcev: the
embedding of the group ring of a left orderable group into a skew field. We
remark that Dubrovin needed some extra condition on the left orderable group

to obtain the embedding.



CHAPTER 1

The General Embedding
Problem

In this chapter we shall give the basic definitions of ring and monoid of fractions
and will present the general embedding problem for monoids and rings, as de-
fined by P. M. Cohn (cf. e.g. [Coh85]). Let S be a monoid. Let T C S, T # 0.
The general embedding problem for monoids can be stated as: When does there
exist a monoid of fractions of S with denominator set T' or better, when does
there exist a universal T-inverting monoid of fractions of S with denominator
set T? (see page 5); similarly for a ring (see page 21).

We shall see, briefly, the commutative case as a motivation for finding Ore’s
condition of embeddability [Ore31]. His method gives necessary and sufficient
conditions for the embeddability of a ring into a field of fractions with a pre-
scribed “normal form” (see page 8). Originally, Ore treated the particular case
of integral donains (cf. corollary 1.3.12 on page 28), but these conditions can
be re-adapted to get the embeddability of any monoid (or even a semigroup)
into a group with a prescribed “normal form” (see theorem 1.2.5, page 8).

Then, we shall apply Ore’s method to skew polynomial rings and shall de-
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scribe their field of fractions. We shall give several examples of skew polynomial
rings where we shall apply the results of the previous sections. The last of
these examples will give an informal introduction to the topological methods of
embedding to be describe in chapter II.

Lastly, we present a family of free algebras of rank two over a given skew
field with countably many non-isomorphic fields of fractions. The idea of this
example is due to Fisher [Fis71], but the proof presented here is original (cf.

section 1.6 on page 46).

I.1 Fractions

Let S be a set. By an operation on S we mean a function S xS — S. By a
semigroup we mean an ordered pair (S, .) where S is a set and “.” is an asso-
ciative operation. Since it is possible to adjoin, formally, a 1 to any semigroup,
there’s no loss of generality in working with a monoid (a semigroup with 1)
instead of considering a semigroup.

By U(S) we denote the units of a monoid S.

Definition I.1.1 (T-inverting monoid homomorphism) Let S and S’ be
monoids and T . S, T # 0. A monotd homomorphism f: S — S’ is said to be
T—inverting if f(T) CU(S').

Definition 1.1.2 (monoid and group of fractions) Let S and S be
monoids and T C S, T # 0. Let f: S — S’ be a T-inverting monoid ho-
momorphism. Let U be the submonoid of S’ generated by f(S) and f(T) ! :=
{f@)~' :t € T}. If f is an embedding (i.c., f is injective), then the pair U, )
is called a monoid of fractions of S with denominator set T. When T = S,

we call such a pair a group of fractions of S.

Definition I.1.3 (Universal T-inverting monoid and universal group)

Let S be a monoid and T C S, T # 0. By a Universal T—inverting monoid
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of S with denominator set T we understand a pair (Sr, A) consisting of a monoid
St and a T-inverting monoid homomorphism A: S — Sr with the following
universal properly: given any monoid S' and any T-inverting homomorphism
f: 8 — S, there exists a unique monoid homomorphism f: Sy — S' such that
f=fo) WhenT =S, then St is a group, writlen G(S) and called the uni-
versal group of S.

S—A .5

N

N

SI

The existence and uniqueness of {Sr, A) will be established in remark 1.1.5

(see page 4), but first we give an element-wise characterization of Sz.

Proposition I.1.4 Let S be a monoid and T C S, T # 0. Let (Sr,]) be a
universal T~inverting monoid of S. Let U be the submonoid of St generated by
AS)UMT)™ 2. Then, U = Sr.

Proof. Since A(S) C U, we can define a: S — U by a(s) = A(s), foralls € S,
i.e., ar is the corestriction of A to . Note that « is 2 monoid homomorphism,

since A is, and « is T-inverting, since U contains A(T")~!, by definition of U.

S—A g, sz o
Ys- a
| & H
(44 H H

A Ol"j O éI:idsT::iO&
v
St Sr
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Consider the T-inverting homomorphism a: S — U. By the universal property
of (St, A), there exists a unique monoid homomorphism &: Sy — U such that
@ = &oA. Let i: U — Sr be the inclusion map. (Tonsider the T-inverting
homomorphism A: S — Sr. By the universal property of (Sr, A), there exists
a unique monoid homomorphism I: S7 — Sy, such that A = 7 o A. Since the
identity function on Sr, id/s, : St — Sr, verifies the same conditions as I
does, we have that I = id/s,, from the uniqueness of I. It follows simirlarly
that io& = I = id/s,. Similarly, @ o = id/y and hence both & and i are

isomorphisms. g

Remark I.1.5 (St,A) may be constructed by considering a monoid presen-
tation of S, in lerms of generators and defining relations. For each t € T,
adjoin, formally, an element t' (not belonging to T'), with additional relation
it' =t't = 1. Define A: S — Sr, by assigning to each element in S the corre-
sponding element in the presentation. Then, A(t) is invertible, the inverse being
t'. Given a T-inverting monoid homomorphism f: S — S', where S’ is another
monoid, define f: Sr — S’ by mapping A(s) to f(s) and s’ to f(s)™! (s € S),
which ezists in S’ by assumption. Any relation in St must be a consequence of
relations in S and relations ezpressing that s' is the inverse of A(s). Since all
these relations still hold in S', so f is well defined and it is clearly a homomor-
phism, by construction. It is unique because ils values are prescribed on A(S)

and M(S)™!, which generate Sy by proposition I.1.4.

Proposition I.1.6 Let S,5',5” be monoids. Let T C S, T # 0 and T’ C
S, T" # 0. Then, for any monoid homomorphism f: S — S', such that
J(T) C T' and any T’ -inverting monoid homomorphism g: S' — S”, there

ezists a uniqgue monoid homomorphism F: Sp — S, such that FoA=go f.
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Proof. Let (S7,)) be the universal T-inverting monoid on S. Consider
gof:5—5". Since f(T) C T', by assumption, and since g(T’) C U(S")
(because g is T'~inverting), then g o f(T') C U(S"), i.e., g o f is T-inverting, so,
by the universal property of {St, ), there exists a unique monoid homomor-
phism F: St — S’ such that the above diagram commute. Any other monoid
homomorphism from Sz — S’ that makes the above diagram commute must
be equal to F because go f is T-inverting and by the uniqueness in the universal

property of (St,A). g

I.2 The general embedding problem for monoids

Let S be a monoid. Let T C S, T'# 0. The general embedding problem
for monoids can be stated as: When does there exist a monoid of fractions of S
with denominator set T', or better, when does there exist a universal T-inverting

monoid of fractions of S with denominator set 7°?.

Definition I.2.1 {Cancellative subset of a monoid) Let S be a monoid.
LetT C S, T # 0. We say that T is a cancellative subset of S when the

Jollowing condition holds:

(1.2) Vs, s' €S, t€T: if st =s't or ts =ts', then s = 5’
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In this case, we also say that S admits cancellation by T. When T = S, we

call S a cancellation monoid.

Proposition 1.2.2 Let S be a monoid, TC S, T # 0. Let (U, f) be a monoid
of fractions of S with denominator set T. A necessary condilion for f to be

injeclive is that T be a cancellative subset of S.

Proof. If st = s't (the case ts = ts’ is similar and we omit it) then:

A(st) = A(s't),
A(S)A(R) = A(S)HA®R),

Cancelling with A(f)~!, we get:

A(s) = A(D)

s = S

since we assume that A is injective. So, (1.2) holds. g

We shall see a case where the general embedding problem can always be
solved, namely, when we localize by an Ore set (see definition 1.2.4, page 8). In
this case, a monoid of fractions is easy to construct and has a nice “normal form”,
in fact, it is unique up to monoid isomorphism (see proposition 1.2.7, page 15).
But before introducing Ore’s conditions, let us look at the commutative, where
a monoid of fractions exists if and only if we localize by a cancellative subset,
i.e., condition (I.2) is not only necessary, but also sufficient to solve the general

embedding problem for a commutative monoid.

Proposition 1.2.3 (Localization for a commutative monoid) Let S be a
commutative monoid. Let T C S, T # 0. Assume that S admils cancellation
by T. Then, there ezists a monoid U and a monoid homomorphism A: S — U,

such that (U, ) is a monoid of fractions of S with denominator set T.
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Proof. Conasider the Cartesian product A := S x T. Define a mapping

(1.3) GAXA — A

((51,t1),(52,t2)) > (s1,81).(s2,12) := (5152, 1112).

Consider the relation “~” on A given by
(14) (s1,t1) ~ (52,12) — 5112 = 521

The relation “~” is, clearly, reflexive and symmetric. We show it is transitive.
If (sl,tl) ~ (82,t2) and (s:,tz) ~ (33, ta) then, by (1.4), s1ta = s2t; and sol3 =
83t2. SO,

s1tatz = solytla

Satat; = satst;.
Then, since S is commutative and admits cancellation by T,
s1ta = 3l

Hence, (s1,t1) ~ (s3,t3). Then, “~” is an equivalence relation on A. We
now show that “~” is compatible with the composition law (1.3) on A. As-
sume, (s5;,1;) ~ (s2,12) and (83,23) ~ (s4,14). We prove that (s1,%;).(s3,¢3) ~
(s2,12)-(54,4)- Since, 8112 = sat; and ssty = s4t3, by assumption, then
s1t253ts = 521843, 80, 5183taly = 5284l1l3 —— (5153, L1t3) ~ (5254,8284) —
(51,t1).(53,t3) ~ (82,12).(54,%4). Hence,“~” is compatible with (I1.3). We may
form the quotient monoid A/ ~. Denote by [(s, )] the equivalence class of (s,1).
Define U := (A/ ~ ,.) where “.” is the induced composition on A/ ~ by (1.3).
Since S is commutative, then, U is also commutative. Define A: S — U by

8+ [(s,1)]). Then, A is injective (since, [(s1,1)] = [(s2,1)] — 51 = s2) and is,
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clearly, a homomorphism. We show (U, A) is a monoid of fractions of S with de-
nominator set 7. Note that [(¢,1)]~! = [(1,¢)], since (¢, 1).(1,¢) = (¢,¢) ~ (1,1),
so A is T-inverting. From {[(s,?)] = [(s, 1)].[(1, )], it follows that U is generated
by A(S) and AM(T)~1. So, (U, ) is a monoid of fractions of S with denominator
set T. By, proposition 1.2.7, uniqueness of the monoid of fractions for a right
Ore set, (see page 15), it will follow that any monoid of fractions is isomorphic

to St. &

Let S be a monoid. Let T C S and T # 0. Let (Sr,\) be the universai
T-inverting monoid of S with demominator set .. Assume that A is injective
(hence, (St,]) is a monoid of fractions). Then we can identify S = A(S).
Assume that every element of S:;: can be written in the “normal form”
st™! (s € S, t € T). In this case, we write St = ST~!. Hence, in particular,
ift €T, s €S, then t~!s must have this form, say t~1s = sltl'l, for some
ty € T, sy € S and we find st; = ts;. We combine this condition with the

necessary condition 1.2 in the following definition.

Definition I.2.4 (Ore’s conditions for a monoid) Let S be a monoid. Let

T be a submonoid of S. We say that T is a right Ore set in S if and only if

(1.5) Vs, 6 €S, teT: ifst=2storts=1s, thens=s

(1.6) Vs€S, teT: sTNtS #£40.

Theorem 1.2.5 (Ore’s embedding for a monoid) Let S be a monoid. Let
T be a Tight Ore set in S. Let (St,A) be the universal T-inverting monoid of
S. Then, (St, ) is @ monoid of fractions and every element of St has the form

st™! (s € S, t € T). Conversely, when Sy = ST~} and ) is an embedding, then
T is a right Ore set in S.

Proof.
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Let A := S x T. Define a relation “~” on A by
(I.7) (31,11) ~ (52,t2) — Juy,us € S:tua =tau; € T, s1us = sau;.

fissume that (s;,%1) ~ (52,22). Then, by (1.7), there exist u;,us € S, such that,

(1.8) tius = Loy €T
(Ig) SiUuz = Saujz.
Clatm:
(1.10) If3s,68 €5S: tis=ts’ €T

then s1s5 = sa25'

Indeed, by (I.6), there exists 5§ € S, £ € T, such that,

(1.11) (tiuz2)s = (t1s)i

(1.12) (t2u1)s = (128°)t, us'ng (1.8) and (1.10)
(1.13) u3 = si, by cancuiling t; in (1.11)

(1.14) 1§ = s't, by casicelling t; in (1.12)

Now, consider s; st,

s1st = sjuss, by multiplying with s; in (1.13)
s1u28 = s2uy§, by (1.9)
sou1s = sps't, by (1.14)

So, sy1st = sp5't, hence, ;5 = 525’ and the claim holds.
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We show that “~” is transitive. Assume that (s;,%;) ~ (s2,12) and (s2,22) ~
(s3,1t3). Then, by definition of “~” (see (1.7)), there exist uy,u2,v2,v3 € S, such
that,

Sju2 = S2uz
(1.15) tiua = tau1 €T
Savz = Savuz
(1.16) taovs = tava€T.

Since tou; € T, then by (1.6),

(1.17) (t2u1)S NitavaT # 0,
so, there exist s' € S, ' € T, such that,

(1.18) tauys’ = tavat'.

Note that since tzv3 € T, by (1.16), then tovust’ € T, since ' € T and T is a
monoid; so, by (1.18),

(I.19) tauys’ €T.
Consider t1u,s’,

(1.20) tiuzs’ = tou;s’, by multiplying with s' in (1.15)
tauys’ = tavgt!, by (1.18)

tovat’ = tg‘vztl.‘ by (I.IG),
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then, tjuzs’ = tgvst’ € T, by (1.19) and (1.20). So, by the above claim,
S1u28" = savat’,

and, hence, (51,%1) ~ (s3,%3), by definition of “~”.

.. “~” is an equivalence relation on A.

We define a multiplication on A as follows: given (s1,%1), (s2,12) € A, we
can find, by (1.6), u; € T, u; € S, such that

(1.21) t1u2 = Saujy.
Now, define
(1.22) (s1,t1).(52,t2) := (s51u2,22u1);

since tou; € T, this defines an element of A.
First, note that (I.22) does not depend on the particular u; and u, chosen.

Indeed, if v} € T, u5 € S are such that
(123) tlu'2 = 820'1,
then, by (1.6), there exist z € T, z' € S, such that,

(1.24) wz = uyjz’ € T, since uy,z €T,
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whence
(1.25) touyz = tauyz', by multiplying (1.24) with t,
sz = spujz’, by multiplying (1.24) with s,
tiugx = tyusz’, replacing with (1.21) and (1.23)
uz = ubz', cancelling t,
(1.26) syuzz = s ubz’, mulliplying by s;.

Hence, from (I1.26) and (1.25)
(1.27) (s1uz,t2u1) = (syuh, tau)).

So, the definition (1.22) does not depend on the particular u; and u, chosen.
Let us use the suggestive notation s/t := (s, ).
We show that “~” is compatible with the composition law (1.22). Let s;/
t) = 51/t and s2/tz = sh/t;. By (1.6), there exist u,u’, such that,

(1.28) thiu=tju' €T,
whence, by the above claim,

(1.29) s1u = sju’;
next, there exist v,v' € T and ¢, ¢’ € S, such that,

(1.30) s2v = tuc

(1.31) shv' = Hu'c.
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Then, by definition of “.”,

(1.32) sy fti.szfta = sjucftav

(1.33) si/ty.sh/th, = sy’ [th.
By (1.6), there exist z,z’, such that,
(1.34) vz =thv'z’ € T,

then, by the above claim,

s2vz = shHv'z’;
whence
(1.35) tiucz = tju'd'z’, by (1.30) and (1.31)
cx = c'z', by (1.28)
(1.36) sijucz = syu'c’z’, by (1.29).
Then, by (1.36) and (1.34)
siucftav = sju'c /th,
hence, by (1.32) and (1.33),
s1fti.s2fta = s\/t}.s5/t5,

and this shows that “~” is compatible with «.”.
Now, we are going to write s/t to mean the equivalence class of (s,t) in A.
Define St := A/ ~ with the induced operation by “.”. Let s, /t1, s2/t2, 53/
t3 € Sr; by (1.6),let d € S,v € T, be such that s,y =t)dandlet e € S,w e T,
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such that s3w = tyve, then

(31/11.52/t2).33/t3 = sld/tz‘v.s;;/ta
= sydeftaw
s1/t1(s2/ta.s3/ta) = s1/t1.(sz2veftaw)
= slde/taw,

“

whence, is associative.

Note that s/t . 1/1 = 1/1 . s/t = s/t, so, 1/1 is the unity; and for all
teT, 1/t .t/1=t/1.1/t=1/1, so0,t/1 is invertible, for all t € T.

Define a mapping A : S — Sr given by s ~s s/1. It is routine to check
that it is a T-inverting monoid homomorphism, and it is injective because if
s1/1 ~ s2/1, then, by (1.7), syuz = spu;, for some u; = us € T, whence
s) = sz, by (1.5).

Given a T-inverting monoid homomorphism f: S — S’, where S’ is another
monoid, define f: S — S’ by mapping A(s) to f(s) and A(2)™! to f(2)~?
(t € T,s € S), which exists in S’ by assumption. Any --lation in S7 is a
consequence of relations in S and relations expressing that 1/t is the inverse of
A(t) = t/1. Since all these relations still hold in S’ (since f is T-inverting), f
is well defined and it is clearly a homomorphism, by construction. It is unique
because its values are prescribed on A(S) and A{S)~!, which generate Sy since
St = ST-! (because s/t = s/1.1/t. So, (Sr,]) is the universal T-inverting
monoid on S.

Conversely, when S is embedded in Sz, then by proposition 1.2.2, (1.5) holds,
and since S = ST, then (1.6) holds, hence, T is a right Ore set on S. g

We note that any finite set of elements of Sr may be brought to a “com-

mon denominator”, which is a right multiple of the denominators of the given
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elements. We formalize this claim in the following:

Lemma 1.2.6 (Common denominator lemma for a monoid) Let S be a
monoid, T C S,T # 0. Assume that T is a right Ore sel. Let \: S — St be
the universal T-inverting monoid homomorphism. Let x,, ... ,z, € Sy, where
zi=sit; s €5, €eT,1<i<n.

Then, there existt € T (“a common denominetor”) and s} € S,1 < i < n,

such that, z; = sit™1,1 < i< n.

Proof. By induction on n. By theorem 1.2.5, ) is injective and Sy = ST~1.
Assume n = 2. Let z,,22 € Sz. Then, z; = sltfl and zo = sgtgl. By (1.6),

assume
tiug = tau;, whereus €T,u; € S;

hence t :=t uz = tou; € T and z; = s uz(* u2)~1, z2 = sau;(t2u;)~ 1. Hence,
the case n = 2 holds.

When we have n > 2 elements z,,...,z,, we first bring z3 ... ,z, to a
common denominator ¢’ and then bring z;, ¢’ to a common denominator t.
Then, t is the desired common denominatro of z;,... ,z,, and a right multiple

of the original denominators. g

Proposition 1.2.7 (Uniqueness of the monoid of fractions) Let S be a
monoid and T be a right Ore set on S. Then, any monoid of fractions of S

with denominator set T is monoid—isomorphic to Sp.

Proof. Let (Sr,)) be the universal T—inverting monoid on S. Let S’ be a
monoid of fractions of S with denominator set T', with T—inverting homomor-
phism f: S — §’. By the universal property of (St, )), there exists a (unique)

monoid homomorphism f : Sy — &', such that,
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Ss—A .5
&U
o

We know that f is a monoid homomorphism. We show that f is an iso-

morphism. First, we check injectivity. Let ¢;,c2 € St, then, by lemma [.2.6,

assume
(1.37) c; = a;b7 1, ¢ = axb™?,
whete b € T,a; € S. Since, A is injective (because T is right Ore, see theo-

rem 1.2.5, page 8), we identify A(s) = s,Vs € S. So, we assume that § C Sr.
Assume

(1.38) f(er) = f(e2)-
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Thenl,

fla) = f(av)
= f(a)f(6=1)F(b)
= flab™")f(b)
= flc)f(®)
= f(c2)f(b), by (1.38)
= flazb71)f(b)
= fla2)f(b=")f(b)
= f (a2)
= f(a2)-

Since f is injective (because S’ is a monoid of fractions), then
a) = az,

hence, by (1.37),

€31 = C3,

f is injective.

Since f is injective, we identify f(s) = s5,Vs € S. So, we assume that
S C S'. Since f is injective and our homomorphisms preserve 1, we can identify
the inverse of ¢t in St with the inverse of t in S’.

To check that f is surjective, recall that by definition of monoid of fractions

(see definition 1.1.2, page 2), S’ is generated, as a monoid, by f(S) and F(T)!.

1Recall that all our homomorphisms preserve 1.
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So, let s’ € §’, then we can write
n
s’ = Hz;, where z; € f(S) or z; € f(T)™.
i=1

If z; € f(S), assumc z; = f(s;), for some s; € S.
If z; € f(T)~?!, assume z; = ;~!, for some ;7! € f(T)~! (= MT)"!, by

above comment).

Define z := H:;l ri, where either ri = s;, if z;: € f(S) or r; = t;‘l, ifz; €
f(T)~}. Then, '

flz) = f(H i)

= [If@)

i=1

n
= H:c,-, by definition of r;,

i=1
.. f is surjective. g

The following corollary will be used in the proof of theorem II.5.1, (see
page 88) where we shall extend Ore’s embedding theorem for monoids (theo-

rem 1.2.5, page 8) to the inverse limit of semigroups.

Corollary 1.2.8 Let S be a cancellation semigroup, i.e. the following condition
holds:

(1.39) Vs, s', t€S: if st=storts=1ts", then s=s'.
Moreover, assume that S satisfies the right multiple condition

(1.40) sSNtS#0 foralls,teS.
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Then, S has a unique group of right quotients, i.e. there exists a unigue group
G such that S is a subsemigroup of G and every element of G has the form st~
(s, t € S); thus

G=55""1.

Moreover, any semigroup homomorphism ¢ of S into a group H can be extended

to a unique homomorphism ¢ of G into H.

Proof. As we pointed out at the beginning of section 1.1, S can be embedded
in a monoid. So, without loss of generality, we can assume that S is a monoid.
Now, the existence of a group G of right quotients follows by putting S =T in
theorem 1.2.5 (see page 8) and the fact that a monoid for which every element
has an inverse is a group. The uniqueness of G follows from proposition 1.2.7.
The “moreover” part follows from proposition 1.1.6 (see page 4) for T = S,
S'"=S"=H, g=1idy, f = ¢ and noting that any semigroup homormorphism

from S into a group is S-inverting. g

I.3 The general embedding problem for rings

We can apply the definitions and constructions given so far to a ring, more
specifically, to the multiplicative monoid of a ring. To avoid a total collapse, we
shall consider subsets T of R* as denominator sets, where R* are the non—zero
elements of R, since we don’t want to invert 0 and get the zero-ring. Given a

ring R, we denote by U(R) the units of R.

Definition 1.3.1 (T-inverting ring homomorphism) Let R and R’ be
rings and T C R*, T # 0. A ring homomorphism f: R — R' is said to
be T—inverting if f(T) CU(R).

Definition 1.3.2 (Ring of fractions) Let R and R’ be ringsand T C R, T #
0. Let f: R ~ R' be a T'—tnverting ring homomorphism. Let K be the subring
of R' generated by f(R) and f(T) ! := {f(t)"! :t € T}. If f is an embedding



I.3. The general embedding problem for rings 20

(i-e., f is injective), then the pair (K, f) is called a ring of fractions of R

with denominator set T.

Definition I.3.3 (Universal T-inverting ring) Let R be a ring and T C
R, T #0. By a Universal T-inverting ring of R with denominator set T we
understand a ring Ry with a T-inverting ring homomorphism A: R — Ry with
the following universal property: given any ring R' and any T-inverting homo-
morphism f: R — R', there ezists a unique ring homomorphism f: Rr — R’
such that f = fo A.

(1.41) N f

The existence and uniqueness of (Rr, ) is established similarly as in the

monoid case (using proposition 1.3.4 below, c.f. remark 1.1.5, page 4) and will

be omitted.

Proposition 1.3.4 Let R be a ring and T C R, T # 0. Let (Rr,)) be a
universal T'-inverting ring of R. Let U be the subring of Ry generated by
ARYUXMT)=Y. Then, U = Ry.

Proof. The proof of this proposition is completely similar to that given in the

monoid case in proposition 1.1.4 (see page 3) and will be omitted. g

The ring Ry constructed above, together with the canonical homornorphism
A: R — Ry is also called the localization of R at the set T. To study Ry

we shall do some simplifying assumptions in theorem 1.3.8 (see page 23) due to
O. Ore [Ore31].
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Definition 1.3.5 (R—ring) Let R be e ring. Then a ring L ts an R-ring if

there erists a ring homomorphism R — L.

For fixed R, the R-rings form a category having as morphisms the ring

homomorphisms L — L’ such that the triangle shown is commutative.

R

N

L L

Since our main interest is to embed rings in fields, we shall not develop the
general theory of rings of fractions further (for an encyclopedic study see [Str75})

and we shall restrict our attention to fields of fractions, which we now define.

Definition 1.3.6 (Field of fractions of a ring) Lef R be a ring. By a field
of fractions of R we understand a field K together with an embedding R N K
such that K is generated as a field by A(R).

Let R be a ring. The general embedding problem for rings can be
stated as: When does there exist a field of fractions of R, or better, when does
there exist a universal epic field of fractions of R? (for the definition of universal
epic field of fractions of a ring see page 118).

For the sake of completeness, we shall mention, without proof, the well
known commutative case first. The proof can be found in any standard algebra
book (cf. [Hun89), page 142). Actually, the following proposition will follow

from Ore’s embedding theorem for rings 1.3.8, (see page 23).
Proposition L1.3.7 Let R be a commutalive ring.

Ezistence A field of fractions (K, A) exists if and only if R is an integral do-

main
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Uniqueness When a field of fractions exists, il is unrque up o isomorphisms,
A ;
i.e., given any fields of fractions of R, R <> K, R P Ko, there ezists a

ring isomorphism ®: K, — Ko snch that

K-

“Normal form” FEach element of the ring of fractions can be wrilten in the
form aft := at™?, where a, 0 £t € R and aft = o'/t iff at't" = a'tt",
for somet”" € T. g

The normal form referred above is really a normal form only in those rings
where there is a canonical representative of each equivalence class, such as Z or
K[z} (K a commutative field) and more general, in UFD’s.

In theorem 1.2.5, on page 8, we constructed the universal monoid of fraction
St, where S is 2 monoid and T is a right Ore set. This construction can be
car.ied out for a ring as well. But for the result to be of use, we must have a
means of comparing expressions in Ry and these will require further hypotheses
to be imposed (Ore’s conditions for a ring). This will be done in theorem 1.3.8
below.

For a general treatment it is not enough to invert elements, it is
necessary to invert matrices rather than just elements. This program
will be carried out in chapter IIIL.

As we outlined in the monoid case, Ore’s fruitful idea is to look at the case
where all the elements of Ry can be written as simple fractions (A(a))(A(¢))~!,
a € R, t € T. If this is to be possible, we must in particular be able to express
(M2)~1)(A(a)) in this form: (A(2)~}(A(a)) = (M(a1))(A(21))~!, hence, we obtain

Alaty) = Aa;t)
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and this provides a clue to the condition needed. Of course, if every element is
to be expressed as a fraction with denominator from the set T', we must also

assume 7" to be multiplicative and to contain 1, i.e. to be a monoid.

Theorem 1.3.8 (Ore’s theorem for a ring) Let R be a ring. Let T be a

multiplicative monoid of R such that

0.1

{1.42) aTNtR#@ forallac R, teT.

(1.43)
Joreacha €R,t€T, if ta=0, then at’ =0 for some t' € T.

Then, the elements of the universal T—inverting ring Ry can be constructed as

fractions aft, where
(1.44) a/t = @' [/t' «— au = a'v’ and tu=t'u’ € T, for some u, v' € R.
Moreover, the kernel of the natural homomorphism \: R — Rr is
ker A = {a€ R/at =0 for some t€ T}.

The proof of the above theorem will be given after we introduce some defi-
nitions and prove the common denominator lemma for rings.

Condition (I1.42) ie called the right Ore condition for rings. A multiplica-
tive submonoid T of R satisfying (1.42) is called a right Ore set of a ring; if T
also satisfies (1.43), it is called right reversible or also a right denominator
set for a ring. By theorem 1.3.8, such a set allows the construction of right

fractions a/t = (A(a))(A(t)~!). They must be carefully distinguished from left
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fractions (A(t)~1)(\(a)) due to the lack of commutativity. By symmetry we
have the notion of a (reversible) left Ore set for a ring, which allows us to
construct all the elements of Ry as left fractions.

The following property of fractions is very useful.

Lemma 1.3.9 (Common denominator lemma for a ring) Let R be a ring
with e reversible right Ore set T and universal T-inverting ring Rr. Then, any

finite set in Ry can be brought to a common denominator.

Proof: We shall use induction on the number of elements. Let a;/t; € Rr be
given, i =1, ..., n. For n = 1 there is nothing to prove; so by induction we
may assume these fractions to be in the form a)/t;, a2/t, ..., t,/t. By (1.42)
there exist t € T", ¢ € R such that tc = #;¢t = u € T, hen e the fractions can be

written a;t/u, azc/u, ..., a,cfu.g

Proof of theorem 1.3.8: We define a relation on A := R x T by writting

(1.45)

(a,t) ~ (a’',t') —— there ezist u, ' € R such that au = a’v’, tu =t'u’ € T.

We claim that this is an equivalence relation (this is similar to the proof of
theorem 1.2.5, see page 8, but here we shall give a shorter proof because we
can use the addition of R). Clearly, it is reflexive and symmetric. To prove
transitivity, let (a,t) ~ (a’,t') ~ (a”,t"); say au = @'/, tu = t'v’ € T, a'v =
a"v', t'v =t""v' € T. By (1.42), there exist z € T', z' € R such that t'v'z = t'vz’,
hence t'v’z € T (since T is multiplicative closed) and moreover, t/(u'z—v2') = 0,
therefore by (1.43), there exists w € T such that u'zw = vz’w. Now, we have
auzw = a'u'zw = a'vz'w = a"v'2'w, tuzw = t'u'zw = t'vz’w = t"v 2w, and
this lies in T because t’u’z € T and t € T". Thus, (¢, t) ~ (a”,t").

We then have an equivalence on R x T'.
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Assume that (ai1,%1) ~ (az,t2). Then, there exist u;, u2 € R, such that,

(1.46) tiua = tu3 €T
(1.47) auz = au.

Claim:
(1.48) If3a,d €R: tia=ta’ €T

then a;ja = aza’

Indeed, there exists @ € R, { € T, such that,

(1.49) (tiuz)a = (tia)t

(1.50) (tzu1)é@ = (t2a')t, by replacing with (1.46) and (1.48)
(1.51) usd = at, by cancelling t, in (1.49)

(1.52) w@ = a't, by cancelling t; in (1.50)

Now, consider a;at,

ajat = u2a, by multiplying with a, in (I.51)
aju2@ = axu1a, by replacing with (1.47)
axu1@ = aqa't, by replacing with (1.52)

So, ajal = asa'l, hence, aja = aza’' and the claim holds.

Let us write a/t for the class containing (a,t) and call @ the numerator
and ¢ the denominator of this expression. We note that (1.44) now holds by
definition, and it may be interpreted as saying that two fractions are equal if and

only if when they are brought to a common denominator, their numerators agree.
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It follows from (1.42) that any two expressions can be brougbt to a common
denominator (see also the common denominator lemma for rings, lemma 1.3.9,

page 24). For this reason, we can define the addition of fractions by the rule
(1.53) aft+ b/t := (a+b)/t.

We check that this sum is well defined, i.e., that the expression on the right
depends only on a/t, b/t and not on a, b, t. For this, assume a/t = a’/
t’ and b/t = ¥’ /t'. Then, there exist z, y € R such that tx = t'y. Hence, by the

claim proved above, we have az = a’y and bz = b'y, thus,

(a+b)z = (a+b)y

tzr = t'y.

So, (a + b)/t = (a’ + ¥’)/t’. This justifies the definition of addition. Since two
fractions can be reduced to the same denominator, we see that the addition is
associative and commutative, that 0/1 is the zero element, and that the additive
inverse of a/t is (—a)/t.

Since definition (I.45) of the equivalence relation is the same as defini-
tion (1.7) (see page 9) of the equivalence relation defined in the proof of the-
orem 1.2.5, Ore’s embedding for a monoid (see page 8), we can apply theo-
rem 1.2.5 to the multiplicative monoid of R, and then, we have a well defined
associative product compatible with “~” as follows (see (1.22), page 11): given

(a1,t1),(a2,t2) € A, we can find, u; € T, us € R, such that
(1.54) tius = asu;.

Now, define

(1.55) (a1,t1).(az,t2) := (a1u2,tou;).
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Define Rt := A/ ~ with the induced operations “4+” and “.” .

Note that a/t . 1/1 = 1/1 . a/t = a/ft, so, 1/1 is the unity; and for all
teT, 1/t.t/1=1t/1.1/t=1/1,so, /1 is invertible, for all t € T.

On the other hand, a/t = (a/1).(1/t) = (a/1)-(t/1)~}, hence to verify the

distributive law, it is sufficient to verify the equations

(e/1).(6/t+¥'/t) = (a/1).(b/t) +(e/1).('/1),
&/t +¥'/t).(af1) = (b/t)-(a/1)+ (¥'/t).(a/1),

which follow from tke definition of “4” and “.”. Thus, R is a ring and Ry =
RT~}. Define a mapping A: R — Ry given by a — a/1. It is routine to check
that it is a T-inverting ring homomorphism.

Given a T-inverting ring homomorphism f: R — R’, where R’ is another
ring, define f: Ry — R’ by mapping Aa) to f(a) and A(t)~! to f(t)~! (t €
T, a € L), which exists in R’ by assumption. Any relation in Ry is a consequence
of relations in R and relations expressing that 1/t is the inverse of A(1) = t/1.
Since all these relations still hold in R’ (since f is T-inverting), f is well defined
and it is clearly a homomorphism, by construction. It is unique because its
values are prescribed on A(R) and A(R)™!, which generate Ry since Ry = RT .
So, (Rr, A) is the universal T-inverting ring on R.

Finally, ker A consists of all a/1 = 0/1, i.e., by (1.44), all a such that at =0,
forsomet € T. g

An important case is that where T lies in the centre of R, in particular, if R

is commutative. Then, (1.42) and (1.43) are automatic and we have:

Corollary 1.3.10 Let R be a ring and T any multiplicative submonoid of R
that lies in the centre of R. Then, T is a reversible Ore set and the universal

T-inverting ring Rr consists of all fractions aft (a € R), where

aft=a'[t! — a'[t' =td'. g
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The condition of theorem 1.3.8 (see page 23) simplify slightly when T consists
entirely of regular elements (recall that an element of a ring is regular if it is
not a right or left zero divisor, and also, a subset of a ring R is regular if its

elements are regular). The (1.43) is superfluous and ker A = 0, so, A is injective.

We state this as

Corollary 1.3.11 (Ore’s embedding for a ring) Let R be a ring and T be
e multiplicative right Ore subset of regular elements. Then, the natural homo-

morphisi: A: R —+ By is injective. g

The subset T of all regular elements in R is always a multiplicative sub-
monoid of R and satisfies (I.43). When it satisfies (I.42), we can form Rr; this
is called the total (classical) quotient ring. Generally, one understands by
a quotient ring a ring in which every regular element is a unit.

Finally, we note the special case of integral don.ains which was the
original case treated by Ore. Writing R* = R/0, we have

Corollary 1.3.12 (Ore’s embedding for integral domains) Let R be an

integral domain such that
(1.56) aRNOBR#O0, for all a, b € R*.

Then, R* is a regular Ore set, K = Rpx is a skew field and the natural mapping
A: R — K is an embedding. Conversely, if R is an integral domain with an
embedding in a skew field whose elements all have the form ab~',(a € R, b €
R*), then (1.56) holds. g

The skew field K occurring here is an instance of a field of fractions (see
definition 1.3.6, page 21) of R. An integral domain satisfying (1.56) is called
a right Ore domain; left Ore domain are defined similarly and an Ore

domain is a domain which is left and right Ore.
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Given a ring R and a subset A C R, by Zr(A) we mean the centralizer of
Ain R, ie. the set of all elements of R that cominute with every element of A.
It is an interesting observation made by Goldie that the Ore condition is a

consequence of the Noetherian condition.

Lemma 1.3.13 Lel R be an integral domain. Let a,b € R* such that aRNbR =
0 (RaNRb=0). Then, the elements b, ab, a®b, a3b, ... are right (left) linearly
independent over R. In particular, they are linearly independent over the centre

of R or over any subring k of R, such that k C Zr({a® b}ienuio})-

Proof. We give the proof for the right version, the left one being similar.
Suppose not, assume Y a’be; = 0, for some ¢; € R, and let ¢, be the first non-
zero coefficient. We can cancel a¥ and obtain the relation bc, + abcy41 + ...+

a Ybe, =0, i.e.
a(bcv+1+...+a 1"%¢,) = —be, £ 0,

and this contradicts the assumption aRNbR = 0. The proof for the left version

is similar. g

Proposition 1.3.14 Any integral domain is either a right (left) Ore domain or
it contains free right (left) ideals of infinite rank. In particular, any right (left)
Noetherian domasin is right (left) Ore.

Proof. We shall prove the right version of this proposition, the left one being
similar. Let R be an integral domain and suppose that R is not right Ore. Then,
there exist a,b € R* such that aRN bR = 0; now, the conclusion follows from

lemma 1.3.13 above. g

It is important to observe that the field of fractions of a right Ore domain
is essentially unique. Because without Ore’s conditions this result need not
hold, indeed, we shall see in section 1.6 a family of rings with countably many

non-isomorphic fields of fractions.
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Let us first note that the construction is functorial. Thus, given a map
between pairs f: (R, T) — (R’,T”), i.e. 3 homomorphism f: R — R’ such that
J(T) C T', then we have the commutative diagram

R—2+ Ry
f 5
R —— R

and by the universal property of Ry there is a unique map f, : Rr — R,
such that the resulting square commutes. In particular, if f is an isomorphism,
so is f;.

So far R, R’ have been quite general; suppose now that R is a right Ore
domain and K is any field of fractions of R, thus we have an embedding f :
R K. If T = R*, we have a homomorphism f, : R+ — K, which we claim is
injective. For, ifat=! € Ker f, then 0 = fi(at~!) = f(a)f(t)~!, hence f(a) = 0,
and so a = 0, because f is injective. It follows that f, is an embedding; the
image is a field containing R and hence equal to K, because K was a field of

fractions. Thus, f; is an isomorphism and we have

Proposition 1.3.15 The field of fractions of a right Ore domain is unique up

to isomorphism. g

This result is of particular interest because it ceases to hold for more general
rings; we shall see examples of rings having several non-isomorphic fields of

fractions (see section 1.6, page 46).

If Risaring and T a right Ore set in R, then any T-inverting homomorphism
f: R — S extends in a unique fashion to a homomorphism of Ry into R, by
the universal property of Ry (see definition 1.3.3, page 20). But actually, we

can get an extension property, under a certain condition, for R~subrings of Ry.
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Proposition 1.3.16 Let f: R — S be an injective homomorphism. If T is a
right Ore sel in R, such that f(T) is regular (i.e., no element of f(T) is a right

or left zero divisor), and R’ is an R-subring of Ry such that
(1.57) acRb(a€ER, beT)— f(a) € S.f(b),

then, f extends to a unique homomorphism f': R' — S and f' is again injective.

Proof: Let r € R/, writer = ab~1, a € R, b € T (since T isright Ore), soa = rb
and, hence, by (1.57), f(a) = sf(b), for some s € S. We define f'(r) := s and
note that if instead of @, b we had used au, bu, where bu € T, then, f(au) =
sf(bu) with the same s. Indeed, assume f(au) = s'f(bu), for some s' € S;
since f(T') is regular and bu € T, then f(bu) is cancellable, so

fla) = sf(®)
f(@)f(u) = sf(5)f(u)
flav) = sf(bu)
sf(bu) = sf(bu)

s = s.

So, any expression r = au(bu)~! leads to the same value of f/(r). Since any
two expressions of r can be brought to a common denominator, they lead to
the same value of f/(r), so f’ is well defined. The homomorphism property

follows as in the proof of theorem 1.3.8, page 23, and injectivity as in the proof

of proposition 1.2.7, page 15. g

1.4 Skew polynomial rings?

2Als0 called twisted polynomial rings or differential polynomial rings.
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In commutative ring theory the polynomial ring R[z] in an indeterminate z
plays a basic role. The corresponding concept for general rings is the ring freely
generated by an indeterminate z over R, i.e., the tensor ring Ra< x>, where
A is the prime subring of R, that is, the subring of R generated by 1 (thus
Ra< x> is the R-ring generated by z with defining relations az = za for all
a € A). The elements of R4 < r > are not like the usual polynomials, but to
simplify matters, we shall consider those rings whose elements can be written in
the form of polynomials. Thus, for a given ring R we consider a ring P whose

elements can be written uniquely in the form
(1.58) f=as+zay+...+z"a,, where a; € R.

As usual we define the degree of f as the highest power of £ which occurs with

non-zero coeifcicnt, so
(1.59) d(f) := maz{i:a; # 0}, if f #0, and set d(0) = —co.
We shall characterize the ring P under the assumption that the degree has
the usual properties:
D.1 d(f) >0 for f #0, d(0) = —oc.
D.2 d(f - g) < maz{d(f), d(9)},

D.3 d(fg) = d(f) + d(g)-

An integer-valued function d on a ring satisfying D.1-3 is called a degree
function (essentially this means that —d is a valuation, for the definition of a
valuation, see page 44 ). Leaving aside the trivial case R = 0, we see from D.3
that P is an integral domain and moreover, for any a € R, ax has degree 1, so

there exist a®, a’ such that

(1.60) ar = ra® +a’.
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When 6 = 0 (1.60) is called the Hilbert’s twist.

By the uniqueness of the form (1.58), the elements a®, a® are uniquely
determined by @, and a® = 0 iff a = 0. By (1.60), we have (a+b)z = z(a+b)*+
(a+b)°, az + bz = za™ + a® + zb™ + b°, hence on comparing the right-hand

sides we find
(1.61) (a+b)* = a® +b%, (a+b)° =a® + 8%,

so, a and § are additive mappings of R into itself. Next, we have (ab)z =

z(ab)® + (ab)®, a(bz) = a(zb* + b%) = (za® + a®)b™ + ab®, hence
(1.62) (ab)® = a*b*, (ab)® = a®b> + ab®.

Finally, .z = z.1 = 2.1* 4+ 1%, so

(1.63) 1°=1, 1°*=o0.

The first equation in (I.61), (1.62) and (1.63) shows that « is a ring homo-
morphism, and by the remark following (I1.60) it is injective. The remaining
equations now show § to be an a—derivation.

We next observe that the commutation rule (1.60), with the uniqueness
of (1.58) is enough to Getermine the multiplication in P. For by the distributive
law we need only know z™a.z"b and by (1.60) the effect of moving a past a
factor z is

£maz™b = 2™ ez 1p 4 z™abz" 1.

Now an induction on n allows us to write z™az™b as a polynomial in z. Thus,
P is completely determined when a, 6 are given. We shall call P a skew
polynomial ringin z over R relative to the endomorphism o and a—derivation

6, and write P = R|[z;a,§]. Thus, we have proved the first part of
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Theorem 1.4.1 (Characterization of skew polynomial rings) Let P be a
ring whose elements can be ezpressed uniquely as polynomials in = with coeffi-
cienis in an non-irivial ring R, as in (1.58), with a degree function defined
by (1.59), and satisfying the commutation rule (I.60). Then, R is an integral
domain, a is en injective endomorphism, 6 is an a—derivation and P = R[z; a, 6]
ts the skew polynomial ring in z over R, relative to o and 6. Conversely, given
an inlegral domain R with an injective endomorphism a and an a-derivation

6, there ezists a skew polynomial ring R[z; a, 8].

Proof. It only remains to prove the converse. Consider the set RN of all
sequences (a;) = (ao, a1, ...), 6; € R, as a right R-module. Besides the right

multiplication by R we have the additive group endomorphism

(1.64) z : (a;) — (al + a2_,), where a_, = 0.

Clearly, R acts faithfully on RN by right multiplication, so we may identify R
with its image in £ = Endg(RN). Let P be the subring of E generated by R
and x; we claim that P is the required skew polynomial ring. To verify (1.60),
we check that the endomorphism az and za® + a’® agree on each component of

any sequence of RN; we have

(1.65) (ci)az = (cia)z

(1.66) = ((cia)’ +(ci-10)”
(1.67) = (cfa® + cia® + ¢ ,a%)
(1.68) (ci)(za® +a®) = (rfa® + {0 + c;a%).

Hence, ar = za® + a’ in P, and (1.69) holds. It fullows that every element of

P can be written as a polynomial (I1.58), and this expression is unique, for we
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have

(1,0,0,...)(ac + za; + ...+ z"a,) = (a0,41,..- ,@n,0,...),

so distinct polynomials represent diflerent elements of P. Finally it is clear that
d(f) defined as in (I.59) is a degree function, because R is an integral domain,
(1.60) holds and a is injective. So, P is indeed a skew polynomial ring. g

It is important to observe that the construction of the skew polynomial ring
is not left-right symmetric, and besides R[z;e, 6] we can also introduce the left
skew polynomial ring, in which the coeflicients are written on the left. The
commutation rule (1.60) then has to be replaced by

(1.69) za = a®z +d°.

In general the left and right skew polymomial rings are distinct, but when a is
an automorphism of R there is no need to distinguish between them as propo-

sition 1.4.3 below shows. But, first, we need the following

Lemma 1.4.2 Let K be a field, possibly skew, with an injective endomorphism
« and an a-derivation §. Let A= K[x;a, 8] be a skew polynomial ring over K.
Leta: K — K be a non-surjective endomorphism. Letc € K, c € K. Then,
Ax N Azc = 0. In particular, A is not a left Ore domain.

Proof. Suppose not, then for some f, g € A*,
(1.70) fz=gzec.

Comparing degrees in (I.70) we see that deg f = deg g = n, say. Let f =
z"a+ ..., g = z"b+ ..., then by comparing highest terms in (1.70) we find

a® = b%c, hence ¢ = (b='a)*, and this contradicts the choice of c. g

Proposition 1.4.3 Let K be an integral domain with an injective endomor-

phism a and an a-derivation §.
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If « is an automorphism of K, then the ring A = K[z;a, 8] is a left skew
polynomial ring.

If, in addition, K is a skew field, then the converse holds, i.e. if A =
Klz; a,8] is a left skew polynomial ring, where K is a skew field, then a is an
automorphism of K.

Proof. If « is an automorphism of K, with inverse 8 say, then on replacing a

by a? we can write (1.60) (see page 32) as a’z = za + d?, i.e.
za = d’z — d??,

which is of the form (1.69). So, the ring A is a left skew polynomial ring.

Now, suppose that K is a field and assume that « is not an automorphism,
then it is not surjective (since K is a field and our homomorphisms preserve 1)
and so there exists ¢ € K, ¢ € K°. Then, by lemmaI.4.2 above, Az N Azc = 0.
So, A is not a left Ore domain. Hence, by the left version of proposition 1.3.14

(see page 29), A is not left Noetherian, so, it can not be left principal. g

Corollary 1.4.4 Let K be a skew field with an injective endomorphism a and
an a—derivation §. The ring A = K[z, a, 8] is a left skew polynomial ring if and

only if a is an automorphism of K. g

The Hilbert basis theorem extends to skew polynomial rings relative to an

automorphism. The proof is essentially the same as in the commutative case.

Theorem 1.4.5 (Hilbert basis theorem for skew polynomial rings) Le¢
R be a right Noetherian domain, a an automorphism and é an a-derivation of
R. Then, the skew polynomial ring A = R[r;a,$] is again a right Noetherian

domain.

Proof. By proposition 1.4.3, we can consider A as a left skew polynomial ring,

i.e. with coefficients on the left. If A is not right Noetherian, let a be a right
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ideal which is not finitely generated. Let f; € a be a non—zero polynomial of
least degree; given fi, ..., fi € a, we take fi41 € a\ 3°F_, f: A of least degree.
Since a is not finitely generated, we thus obtain an infinite sequence fi, fo, ...;
let f; have degree n; and leading coefficient a;, then n; < n, < .... We claim
that a; R C a; R+a2R C ... is an infinite ascending chain, which will contradict
the fact that R is right Noetherian. For an equation az41 = 3_r_, a:b: (b; € R)

would mean that

k
9:=fen1 =D _SH2MHTM €A\ Y fid,

=1
but g has lower degree than fi4;, which is a contradiction. g

In the construction of skew polynomial rings it was necessary to start from
an integral domain because we insisted on a degree function; this is not essential,
but it is the case mostly used in applications. Frequently the coefficient ring
will even be a field, possibly skew. In that case the skew polynomial ring is a
principal right ideal domain; this follows, as in the commutative case, using the

division algorithm (see proposition 1.4.7 below).

Proposition 1.4.6 (Division algorithm for skew polynomial rings) Let
R be an integral domain with an injective ring endomorphism o and
a-derivation 6. Let A= R[z;a,8]. Assume f, g € A, where the leading coeffi-

cient of g is @ unit in R. Then, there exisl unique q, r € A such that

f=gq+r, where degr < deg g.

Proof. First, we show existence. Let m be the degree of f and n the degree of
g. If m < n then we take ¢ =0 and r = /.

I m > n, then we use induction on m. If m = 0, then n = 0, so we can take
g=g"'f,and r = 0. If m > 1, let z2™a, z"b be the respective leading terms
of f, g. Note that z™a = z"b(b~'2™ "a). Let h = f — gb~'z™ "a. Since
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deg h < m, we can write, by iuduction, kh = gq’ + r, for some ¢’, r € A, with
r=0ordeg r <n = degg. So, f = h+gb~12™ "a = (gq'+r)+gb 1z™ "a=
9(¢' + b7 z™""e) +r.

We now show uniqueness. If gg 4+ r = g§ + 7, where

a71) deg r < deg g,
deg 7 < deg g,

then

(1.72) r—7=g(a-q).

By D.2 (see page 32), we have

deg (r — ¥) < max {deg r, deg 7}

and by (1.71)

max {deg r, deg 7} < deg g.

So,
() deg (r ~7) < deg g.

From (1.72) and the degree formula (1.59) (see page 32) we have deg (r — 7) =
deg (9 —q)+ deg g. If r— 7 # 0, then deg (r — 7) > deg g, contradicting ().
So, r—7=0.

Since the principal coefficient of g is a unit in R, then, in particular g # 0,

and since A is a domain (by theorem 1.4.1, see page 33), it follows from (I1.72)
that § —g¢=0.g
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Proposition 1.4.7 Any skew polynomial ring K{z;a,d] over a field K is a

principal right ideal domain.

Proof. Let a be a non—zero right ideal of K. Let f be a monic polynomial of
least degree in a. Then, every non—zero g € a can be written as ¢ = fq + r,
where deg r < deg f, by proposition 1.4.6. Since r = g — fgq € q, it follows that
r=0and so g € fR. Then, a= fR. So, K is a principal right ideal domain. g

In particular, for a skew field K, the skew polynomial ring K{z;a,¥] is
right Noetherian (because it is right principal), and hence it is right Ore, by
proposition: 1.3.14 (see page 29), so we can form its skew field of fractions.
This is denoted K(z;e,6); its elements are fractions fg—!, where f, g are
polvanomials (I.58) with coeflicients in K.

Let R, A, B be any rings, a: R — A, f: R — B two homomorphisms and
M an (A, B)-bimodule. Then an (a,B)—derivation from R to M is a map
6: R — M which is additive and satisfies

(1.73) 6(zy) = a(2)é(y) + 6(z)B(v)-

In particular, if A = R and o« = 1, we speak of » (~ight) B—derivation.
Putting £ = y = 1 in (I.73) and observing that a(1) = 3(1) = 1, we see that

any (o, $)—derivation satisfies
(1.74) §(1)=0.

It is easily verified that ker § is a subring of R called the ring of constants
(with respect to §). Moreover, any element of ker § which is invertible in R is

also invertible in ker 8, as follows by the formula (itself easily checked):

(1.75) §(z71) = —a(z"1).8(z).B(=z7Y).
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A M\
With any (A, B)-bimodule M we can associate the ring (0 B) consist-

ing of all matrices

(a :‘) (ece A,be B,me M),
0

with the usual matrix addition and multiplicaiion.

Given mapsa: R — A, f: R — B, §: R — .M, we can define a map from

A M
R to ( ) by the rule
B

z 21\
(176) - (a( ) &(x) )
0 B(z)

and it is easily checked that this is a ring homomorphism iff «, 8 are homo-
morphisms and §é is an (a, B)-derivation. This alternative method of defining

derivations is often useful, for instance, in the following

Theorem 1.4.8 Let R, A, B be rings, T a maultiplicative subset of R* and
M an (A, B)-bimodule. Then, any T-inverting homomorphism o : R — A
extends to a unique homomorpkism o': Ry — A, and given T-inverting homo-
morphisms a: R — A, B: R — B, any (a, B)-derivation 6: R — M ertends
to an {o’, f’')-derivation of Ry into M.

Proof. The existénce and uniqueness of o’ follows because Ry is universal |~

A M
inverting. Now, é defines a homomorphism (1.76) from R to ) , which
0 B

is T—inverting and therefore extends to a homomorphism of Ry:

. o'(z) &(z)
x 0 p) .
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It follows that &’ is an (a’, §')—derivation. g

Proposition 1.4.9 Any skew polynomial ring over a right Ore domain is again
right Ore.

Proof. Let R be a right Ore domain and K its field of fractions. If « is an
injective endomorphism of R and § an a—derivation, they can be extended to

K, by theorem 1.4.8, and we have the inclusions
R[z;a,8] C K[z;a,8] C K(z;a,$).

Any element © € K(z;a,8) has the form fg~!, where f, ¢ € Klz;a,$].
By lemma 1.3.9 (see page 24), we can bring the finite set of coefficients of
f, g to a common denominator, say f = fic™!, g = gic”!, where f;, g1 €
R[z;, 8], and c € R*. Now u = fic Y (g1c™)~! = fig7?, so every element of
K(z; «,8) can be written as a right fraction of elements of R[z;a, §], and hence

the latter is right Ore, by corollary 1.3.12 (see page 28). g

I.5 Examples of Skew polynomial rings

We shall see some ‘examples of skew polynomial rings. When the derivation is

0, we write R[z;a] in place of R[z;a, 0].

Example 1: a =1, § = 0. We obtain the ordinary polynomial ring R[z] in a

central indeterminate (although R does not need to be commutative).

Example 2: The complex—skew polynomial rix-mg {Jz; —] is the ring of

polynomials with complex coefficients and commutation rule
az = za@, where @ is the complex conjugate of a.

The centre of this ring is the ring R{z?] of all real polynomials in z2, and

Tz; —]/(x2+1) is the division algebra of real quaternions (cf. [Lam91], page 25).
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More generally, let k be a field of characteristic not 2 with a quadratic extension
K = k(+/b); this has an automorphism a given by (z + yVb)* = z — y/b. For
any a € k%, K[z;a]/(z® — a) is the quaternion algebra (a, b; k).

Example 3: Let K be any commutative ring and denote by A;[K] the K-
algebra generated by u, v over K with the relation

(L.77) uw—vu=1

This ring is called the Weyl algebra on u, v over K. It may also be defined
(cf. [Lam91], page 7) as the skew polynomial ring R[v;1,'}, where R = K[u]
and ’/ denotes differentiation with respect to u. We observe that when K is a
Noetherian domain, then so is A;[K] because A;[K] is a twisted polynomial
ring over K[y} (cf. [Lam91], page 8).

From (1.77), we obtain by induction on n,

n~1
3

u"v - vu” = nu

hence u™v".v — v.u™V"® = mu™"1v" = G(u™v")/Ou. A similar formula holds

for commutation by u and by linearity it follows that for any f € A;[K],

(1.78) fv—vf:?—i, uf—fu:%%.
From these formulae it is easy to show that for a field £ of characteristic 0,
Ak} is a simple ring. For, if a is a non-zero ideal in A,[k], pick an element
f(u,v) # 0 in a of least possible degree in u. Then 8f/8u = fv — vf € q, but
this has lower u-degree and so must be 0. Hence f = f(v) is a polynomial in
v alone. If its v—degree is taken minimal, then df/dv = uf — fu = 0 and so
J = c € k. Thus a contains a non—zero element of k£ and so must be the whole
ring, i.e. A;[k] is simple, as claimed.

We observe that A,;[k] is an example of a simple Noetherian domain, not a
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field. For a field k of finite characteristic p, A;[k] is no longer simple, since it
has centre k[u?, v?)].

Example 4: The translationring k < z, ylzy = y(z+1) > may be described as
R = Aly; o], where A is the polynomial ring k[z] with the shift automorphism

oz —zx+1.

Example 5:

Let k be a field of prime characteristic p and F: a — aP the Frobenius
endomorphism. Then k{z; F] is a skew polynomial ring whose field of fractions
k(z; F) has an inner automorphism inducing F', namely conjugation by z.

More generally, if k is any field, even skew, with an endomorphism a,
then k(z;a) is an extension with an inner automorphism inducing « on k, be-
cause (1.60) now reads az = xa®. Similarly, if § is an a—derivation, then k{z; «, 6]
is a ring with an inner a—derivation inducing &, as we see by writting (I.60) in
the form

a® = ax — za®.
Example 6:

Let K be a commutative field with automorphism & of order n, and consider
the skew field of fractions E = K(z; ). If k is the fixed field of a, the F = k(z")
is contained in the centre of E, as may be checked (cf. [Lam91], page 250).
Moreover, K(z") is a commutative subfield, a Galois extension of F of degree
n, and provided that K contains a primitive n-th root of 1, the structure of E

is given by the equations
az’ =z"a°i, forallae K,i=0,1, ..., n—1.

It follows that k(z™) is the precise centre of E and E is of dimension n?

over its centre, in fact a crossed product3. (Let R be a ring and G be a group.

3For an introduction to crossed products, see, for instance, [MR87], 1.5.1
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Let S be a ring containing R and containing a set of units G := {g: g € G}
isomorphic as a set to G such that: i) S is free as right R-module with G as a
basis and I = 1s; and ii) for all gy, g2 € G, §, R = Rg, and §,9.R = §igzR.
Then S is called a crossed product of R by G, written R * G).

Example 7:

Let R be an integral domain with an automorphism a. In the skew poly-
nomial ring R[z; a] the powers of z form an Ore set, and the ring of fractions
consists of all polynomials 37 z'a;, involving negative as well as positive pow-
ers of z. Such an expression is called a skew Laurent polynomial and the
resulting ring may be written R[z,z~!;qa].

For each polynomial f of the form (1.58) we can also define its order o f)

as the lowest power of £ occurring with a non—zero coefficient:

o(f) = min{i| a; # 0}, o(0) = oo.
This function has the properties of a valuation on P:
O.1 o(f) >0 for f € P, o(0) = oo,
0.2 o(f — g) = min{o(f), o(g)},
0.3 o(fg) = o(f) + o(g).

Taking first the case § = 0, we can form the ring R[[z; a]] of formal power

series over R as the set of all infinite series
(1.79) f=ao+za +z%a+...,

with component—wise addition and with multiplication based on the com-
mutation rule az = za®. There is of course no question of convergence here; we

regard (I.79) as a series in a purely formal sense. We can describe f equally well
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as an infinite sequence (a;) = (@o, a1, .-.), with addition (a;) + (4:) = (a; + b;)

and with multiplication
(1.80) (a:)-(b;) = (c&), whereer = Y ag’ ;b;.

Alternatively, we can regard R[[z;«]] as the completion of the skew polyno-
mial ring R[z;a] with respect to the powers of the ideal generated by i; these
powers define a topology called the x—adic topology.

Let R be a ring and a an automorphism of R. The powers of z form an
Ore set in R[[z; a]] and by taking fractions we obtain the ring R((z;a)) of all

formal Laurent series or skew (or twisted) Laurent series

(1.81) i a; =z Ta_,+...+z la_;+ag+za; +z2as +....

-
This is again a ring, with the same multiplication (I.80); here the restriction
to finitely many negative powers is necessary to ensure that the multiplication
rule (1.80) makes sense. This is also the reason for taking a to be an automor-
phism, since now j may take negative values in (1.80).

Let us now consider a skew polynomial ring R[z; a, §], where § may be non—
zero, but « is still an automorphism, and ask whether a power series ring can be
formed. If we attempt to define the multiplication of power series by means of
the commutation formula (1.60), we shall find that (apart from a more compli-
cated form for the coefficients of the product), the product ¢f, where ¢ € R, can
not always be expressed as a power series, because there will in general be contri-
butions to the coefficient of a given power z” from each term cz™ay,, (n > r) and
so we may have infinitely many such terms to consider. In terms of the z—adic
topology we can express this by saying that left multiplication by ¢ € R is not
continuous; this follows from (1.60), because when a® # 0, we have o(az) < o(z).

One way to overcome this difficulty is to introduce y = z~! and rewrite (1.60)
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in terms of y. We find

ya = a®y +ya’y
=a%y+a* P +ya¥ = .,

hence by induction we obtain

(1.82) ya = a%y+a**y® + a""”y3 +....

With the help of this commutation formula we can multiply power series in
y and even Laurcnt series. We observe that in passing from z to y = z—! we
have also had to change the side on which the coefficients are put; of course
this is immaterial as long as « is an automorphism. To be precise, from any
skew polynomial ring R[z;a, §] we can form a skew power series ring in z~1!,
with coefficients on the left; in order to define Laurent series in z—! we need to

assume that o is an automorphism.

1.6 Examples ofrings with countably many non—

isomorphic fields of fractions

Proposition L1.6.1 Let R be an inlegral domain. Let z, y € R be suck that
zRNyR =0 or RzNRy = 0. Let k be a subring of R such that k C Zr(x) and
k C Zr(y). Then, the algebra generated by = and y over k is free.

Proof. Assume that zRNyR = 0 (if Rz N Ry = 0 the proof is similar and will
be omitted). Suppose that the algebra generated by z and y over k is not free,
so assume that there exists a non-trivial relation between z and y. Without

loss of generality, we can assume that such a non—triviat relation looks like

(1.83) a+za+yb=0, where a, b€ Rand a € k;
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indeed, because R is a domain, such a relation, being non-trivial, can not consist
of just one monomial either in x or in y with a coefficient in k equated to zero.
After some cancellation, if necessary, we may assume that the two monomials
in the non-trivial relation do not begin both either with z or with y. Passing
the coefficients in & to the right of z and y, we get (1.83). Since we are assuming
that (I.83) is non-trivial, we may assume that a or b are not zero. Say b # 0,
then on multiplying (I.83) on the right by = we have az + zaz + ybz = 0, i.e.,
ybz = z(—a — az) € zRN yR and ybz # 0, contradiction, which shows that z

and y are free over k. g

Corollary 1.6.2 Let R be an integral domain. Let z, y € R be such that
ZRNyR =0 or RzN Ry = 0. Let k be a subring of R such that k C Zg(z)
and k C Zr(y). Then, the k—algebra generated by {z'y}ieN is a free k-module

of countable rank.

Proof. Assume that zRNyR = 0 (if RN Ry = 0 the proof is similar and will be
omitted). By proposition 1.6.1 above, z and y are free over k. By lemma1.3.13
(see page 29), {z'y}ien generates a free k—module. g

Corollary I.€ 3 Let R be an integral domain with centre Z. Then, R is either

a left and right Ore domain or it contains a free Z-module of countable rank.

Proof. Assume that R is not right Ore (if R is not it%:. Jte the proof is similar
and will be omitted). Hence, there exist z, y € R* such that zZRNyR = 0.
By proposition 1.6.1 above, we know that the Z-algebra generated by z and y
is frée. By the above corollary 1.6.2, R contains a free Z-module of countable

rank. g

Let k be a skew field. Consider the usual polynomial ring k[t] where ¢ is
a central indeterminate (see example 1, page 41). Since k is a skew field,

it is right Noetherian, and hence, k[t] is right Noetherian by theorem 1.4.5 (see
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page 36), so by proposition 1.3.14 (see page 29) it is right Ore. Then, we can
consider its field of fractions, which we denote by k(t). Let n € N,n > 1. Let
an: k(t) — k(t) be a non-surjective endomorphism of k(t) defined by t s ¢*,
in particular, note that ¢ is not in the image of ,, and that a,, fixes any element
of k.

Let Ry := k(t)[z; an). By theorem 1.4.1 (see page 33) the skew polynomial
ring R, is an integral domain. Since ¢ does not belong to the image of ap,
then by lemma 1.4.2 (see page 35) R,z N R,zt = 0. Note that &k C Zg_(t)
because ¢ is a central indeterminate over k and that k C Zp_(z) because an
fixes any element of k and for all @ € R,, az = za®*~, (by definition of skew
polynomial ring, see (1.60), page 32; recall that the a,—derivation is zero in
this application), then by proposition 1.6.1, the k-subalgebra of R, generated
by {z, zt} is a free k~algebra. Also, we note that by corollary 1.6.2, the k-
subalgebra of £, generated by {z* rt};en is a free k-module of countable rank.
Since k(t) is a skew field, by proposition 1.4.9 (see page 41) R, is right Ore, so
by corollary 1.3.12 (see page 28), it can be embedded in a field of fractions F,,
say. This provides, for each n € N, n > 1, an embedding of the free k-algebra
with free generators {z, zt}, which we shall denote by k< {z, =t} >.

We now show that all these fields of fractions F,,, n € N, n > 1, are
different. (for the concept of field of fractions see definition 1.3.6, page 21). By
“different” we mean non—isomorphic as k< {z, zt} >-rings (cf. definition 1.2.5
of R-ring and the definition of the category of ?-rings on page 21), i.e., a ring—
isomorphism between F, and F,,, m # n, that fixes point-wise k< {z, zt} >
can not exist. (Actually, the fields of fractions F,,, n € N, a2 > 1, are not
isomorphic as k< {z, xt} >-fields, but to see this we need to introduce the
category of epic k< {z, zt} >-fields and specializations which will be done in

chapter III). Indeed, first note that in F,, n € N,

t=taez"! = zt"rL.
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Now, assume that ¢: F, — F,;;, n < m, is a k< {z, zt} >-ring isomorphism.

Since ¢ and z are fixed by ¢ then
otz =t = ¢(t) = $(zt"z7 ) = ¢(z)¢(t)"P(z)"! = zt"z?,
so zt™z~! = zt"z~! in F,, hence
=1,

where s = mm — n. This contradicts the fact that ¢ is an indeterminate over k. g
So, this provides examples of rings with countably many non-isomorphic

fields of fractions.



CHAPTER 11

The Malcev—Neumann and

Cohn embeddings

The investigation of geometries, principally by Hilbert [Hil30], with certain inci-
dence and order properties, but lacking others (satisfying “Desargues” but not
“Papus”) led to the study of totally (fully) ordered division rings. The first ex-
ample of a centrally infinite division ring was Hilbert’s Twisted Laurent series
(see page 45, and also proposition 11.2.10 in page 74). The problem of construct-
ing more general types of ordered division rings was begun by Moufang [Mou37],
who embedded the group algebra of the free metabelian group of two generators
into a division ring and showed that this division ring can be ordered.

Malcev [Mal48]-Neumanr: [Neu49a)’s construction of formal power series di-
vision rings (formal Laurent series division rings as a particular case when the
group is (Z, +)) is also related to Hilbert’s example (loc. cit.), with additional
motivation coming from the earlier work of Hahn [Hah07] on the embedding
of ordered abelian groups into groups of Laurent series. The Malcev—-Neumann
embedding was put in a general algebraic setting by Higman [Hig52] and years
later, Cohn [Coh65] simplified Higman’s proof.

50
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The main idea of forming Malcev—Neumann formal power series is that one
can combine Hilbert’s Twisted Laurent series with the usual group ring ~on-
struction, even with twisted group rings tc get a much bigger class of division
rings. In Hilbert’s example, the non—commutativity of the product arises from

the twist. F- " {ixicev—Neurmann construction, the non—commutativity of the

product ari. = . the use of possibly non—commutative (ordered) groups and
from the action of the group over the ring. In the case when only commutative
(ordered) groups are used and the Hiibert twist is taken to be trivial, the idea
of the construction goes back to Hahn (loc. cit.).

As an application of the Malcev—Neumana embedding we shall embed the
free k-algebra over a set X into a division ring, where k is a skew field. Com-
paring this embedding to the Moufang embedding (loc. cit.) we get another
example of a ring with non~isomorphic fields of fractions. As a second applica-
tion, we shall exhibit an example of 2 non—Ore ring which can still be embedded
in a skew field, showing that the Ore conditions are not necessary to embed a
ring in a skew field.

It has been shown by Tamari [Tam53] that the universal enveloping algebra
of every finile dimensional Lie algebra has the right common multiple condition,
hence it is embeddable in a skew field. Cohn [Coh61] proved that the universal
enveloping algebra of any Lie algebra can be embedded in a skew field.

We shall give all the background material (section I11.4) to prove two theo-
rems, due to Cohn [Coh61}], an embedding theorem for a certain class of inverse
limit semigroups (theorem 11.5.1, page 88) and an embedding theorem for val-
uated rings satisfying some extra condition (theorem I1.6.1, page 92).

Following Cohn, we shall reformulate theorem I1.6.1 in a suitable way for the
application we shall give in the last section of this chapter: the proof that every
Birkhoff-Witt algebra is embeddable in a skew field. We shall use this to show
that the universal enveloping algebra of any Lie algebra (not necessarily finite

dimensional) is embeddable in a skew field; and also to give another proof of the
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fact that the free algebra &£{X) (k a commutative field, X a set) is embeddable
in a skew feld.

Last. year, Lizhiman [Lic94] simplifies Cohn’s proof and gave new methods
of embedding.

II.1 Ordered groups

Certair axiomatic questions in geometry led to the study of ordered division
rings (cf. introduction to chapter 1I) and these in turn to the study of ordered
division groups: every ordered group can be embedded in (the multiplicative
group of) an ordered division ring (cf. [Neud9a, Neud9b]).

It will be convenient to collect at the beginning of this section the fundamen-
tal concepts and terminology we shall need about ordered sets and (left, right)
ordered groups. Then, we shall give necessary and sufficient conditions due to
Levi, F. W. [Lev4?2] and generalized by Neumann, B. H. [Neud9b} for a group to
be ordered. The general criterion is an unwieldy tool, but it can be specialized
to see that every torsion—free abelian group can be ordered (Levi, loc. cit.), and
even that every free group can be ordered [Bir48], see also [Fuc63].

If a binary relation < is defined on a set A with the properties

P1. (reflexivity) a< a
foralla, b, ce AS p2. (antisymmetry) a < b, 6 < aonly ifa=b

P3. (transitivity) a < b, b<conlyifa<c

then (4, <) is ~alled a partially ordered set (abbreviated: p. o. set or poset)
and < is called a partial order on A. The dual of (4, <) is the partial order
set (A, >) where a > biff & < a. In this context, by the dual assertion we shall
mean that the signs < and > are to be interchanged throughout. As usual, one

may write $ > afora < b,and a < b (or b > @) to mean that a < band a # b. If
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neither a < b nor b < a, then a and b are called incomparable, and we write:
allb. It may happen that a relation < satisfies only P1. and P3.; in this case
we say < is a preorder or a quasiorder. A partial order on A induces in the
natural way a partial order on any subset B of A; namely, for a, b € B define
a<bin (B,<)iff a < b in (A, <) in the original partially ordered set (A, <).
This induced partial order of B will be denoted by the same symbol <.

Let (A4, <), (A, <) (the use of the same symbol < will cause no confusion)
be two p. o. sets. A mapping a ++ a’ from A into A’ is called isotone or an
order-homomorphism if it is order preserving in the sense that a < b
only if @’ < b'. A mapping as above which is a bijection and isotone in both
directions is said to be an order—isomorphism of (4, <) onto (4’,<) and
then A and A’ are called order-isomorphic. If a bijective mapping between
(A, <) and (A’,<) reverses order (i.e. a < b iff a’ > V'), then it is a dual
order isomorphism. As usual, if it is clear from the context that we mean
an order-homomorphism the word “order” will be omitted. Assume that two
partial orders <; and < are defined on the same set A. Then, <5 is an order
extension of <, if for all a, b € A, a <; bonly if a <2 b. (A, <) has the
trivial order if for all a, § € 4, a < b only if a = &. The order relation <
is called a full (linear, total) order or simply an order on A and (4,<) a
fully ordered set (etc.) (f. o. set (etc.)) or a loset or a chain, if in addition
to P1.-P3. also

P4.foralla, be A, eithera<bora=bora>b

holds. The subsets of a {. o. set are again f. o. sets under the induced partial
order. A f. o. set (W, <) is said to be well-ordered if every non—void subset
V of W contains a smallest element, i.c. an element u € V such that ©u < v
for every v e V.

An ordered group (o. group) is a triple (G, ., <) such that



II.1. Ordered groups 54

G1. (G, .) is a group
G2. (G, <) is an ordered set

G3. foralla, b, c€ G, a < bonly if ca < ¢b and ac < be.

A triple (G, ., <) is said to be a left ordered (1. o. group) if, in addition to
G1.-G2. also

GL. foralla, b, c€G, a<bonlyifeca<cb

holds. Similarly, we define a right ordered (r. o. group) if, in addition to
G1.-G2. also

GR. foralla, b, c€G, a <bonlyifac<be

holds. Given a (left) ordered group (G, ., <), as usual, we shall make the follow-
ing abuse of language: we shall say that a {(left) order on G is given.

In a o. group G an element a is called positive (integral) if a > 1, and
negative if @ < 1. If the group operation is written additively and 0 denotes
the neutral element, then positivity has the usual meaning a > 0. The set
P = G* of positive elements of G is said to be the positive cone (or the
integral part) of G. This concept is a natural tool for studying orders in a
group. Unfortunately, a complete survey of it is beyond the scope of this thesis.
So, we shall limit ourselves to the essential properties of this concept. The same
comment goes for (left) ordered groups.

Note that an order < in an ordered group (G, ., <) is already uniquely de-

termined by the corresponding positive cone P, for

Proposition I1.1.1 A subset P of a group G is the positive cone of some order

of G iff it satisfies the following three conditions:

PC1. G = P]] P7'[I{1}, where || denotes the coproduct in the category of

sets, i.e. “disjoint union”,
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PC2. PPCP,

PCS8. gPg~ Y C P forcllge G.

Proof. Assume that G is an o. group. Let z, y € P, and let 2z € G. Then,
1 < z,1 < yonlyif, by G3., £ < zy and by transitivity of <, we get 1 < zy and,
similarly, we have 1 = 2711z < z~1lzz. Thus zy and z—1zz are both contained
in P. So, PC2. and PC3. hold. Now, if g € G and g < 1, then, on multiplying
by ¢g~! and by G3. again, we get 1 = g~'g < g~ 1,50 g~! > 1 and PCL1. aleo
holds.

Conversely, suppose P C G satisfies PC1.—PC3., and define £ < y to mean
yz~1 € P. Now, if £ < y and y < z, then zy~!, yz~! € P so that PC2 yields
2z7) = (zy~')(yz~!) € P and z < z, so < is transitive, and, readily < is an
order relation. Moreover, if z, y € G, then by PCL1., precisely one of the three
possibilities yz—! € P, yz=! = 1 or zy~! = (yz~!)~! € P. So, we either have
z<y,ory<zorz=y, and then < is a linear order in G.

Suppose that z < y and z € G. Then, yz~! € £,s0 (yz)(zz)" ' =yz~' € P
and by PC3. we have(zy)(zz)™* = z(yz~1)z~! € P. Hence, zz < yz and
zz < zy; thus G is an o. group. Finally, because y1"! = ye Pifl1 <y, Pis

the positive cone for G in this ordering. g
Observe that PC1.-2. says that P is a normal subsemigroup of G.

Note that any (right) ordered group (G, . , <) is always torsion—
free. For,ifg> 1,then 1 <g<g?®<...andifg< 1l,then1>g>g%2> ...,
so g" is never equal to 1. However, there exist non—abelian torsion-free groups
which can not be ordered. Before giving an example, first note that any group
extension of a torsion—free group by a torsion—free group must be torsion—free, in
other words, if we have a short exact sequence of groups — K — G —Q — 0
where K and Q are torsion—free then G must also be torsion—free. Indeed,
assume that a group G has a quotient Q = G/K, where Q and K are torsion—

free, then if g € G and ¢" = 1, n € N, then (gK)" = ¢"K = K and since Q is
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torsion—free, then gi = K, so g € K, hence, since K is torsion—free, g = 1, so
G is torsion—free.

Now, let G = (z, y|yzy™! = z7!), then it is readily seen that G is an
extension of Z (= (z)) by Z (=2 (y)) so it is torsion—free. But G can not be
ordered since the positive cone of any total ordering on G has to contain either
z or z=! (by PC1), and hence both of them (by PC3 and since yzy~! = z~1),
which is impossible (by PC1). For abelian groups, the situation is much better:
we shall show later (see theorem I1.1.7, page 63) that an abelian group G can
be ordered iff G is torsion—free.

It turns out that, for zero-divisor considerations, ordered group assumptions
are unnecessarily stringent. A weaker condition is that of right ordered groups

for which now we shall characterize their positive cones.

Proposition I1.1.2 A subset P of a group G is the positive cone of some right

order of G iff il satisfies the following two conditions:

RPC1. G= Pl P~ ']]{1}, where || denotes the coproduct in the category of

sels, i.e. “disjoint union”,

RPC2. PPC P,

Proof. This proof is similar to that of proposition I1.1.1 above. If G is a
r. o. group, then RPC1 holds because < is a linear order. Moreover, if z, y € P,
thel<y,1<zonlyifl <y, y<zysothat 1< zy.

Conversely, if P satisfies RPC1-2. then < is a linear order on G. Finally,
ifz <yand z € G, the yz! € P so that (yz)(zz)"! =yr~' € P and zz < yz. g

Theorem IL1.3 Let k be a domain and (G,.,<) be an ordered group. Then,

R = kG has only trivial units and is a domain.
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Proof. Consider a product o8 where

a=ai1+...+amgm, 1 <...< gm, a6 #0(1 <i<m),

B=bihi+...4+bnh,, by <...<Bhm, b #0 (lSiSn).

We have g1h;1 < gihj, with equality iff { = 7 = 1. Thus, the “smallest” group
element appearing in af is g1k, (with non-zero coefficient @,4:), and similarly
the “largest” one is g;nh, (with non-zero coefficient a,;by,). In particular, a8 #
0,and if af = Ba =1, we must have m =n =1,s0 a = a;9;, # = by h;, with
aiby = bi1e;1 = 1in k and g1h; = 1 in G. This proves that R is a domain, and

that R has only trivial units. g

Lemma IL1.4 Let S and T be two non—-empty sets with T finite, and let F be
a given far.dy of funclions from subsets of S to T satisfying the following two

conditions.

t. IfACS, f: A— T and B C A, then fg € F, where fp denotes the

restriction of f to B.

#i. For each finite subset A C S there exists a function f: A — T such that
JeF.

Then, there exists a function g: S — T such that (ga: A — T) € F for all
finite subsets A C S.

Proof. First, to clarify matters, let’s put the properties of F in words: F is a
family of functions from S into T such that it contains all the restrictions of its
elements and such that every finite subset of S is mapped to T by at least one
function in F.

Let £ be the family of all those functions (f: A — T) € F, where A is a
finite subset of S and such that for all finite subsets B D A of S there exists a
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function (g: B — T) € F with g4 = f. In words, £ is the family of functions
of F with finite domain and which can be finitely extended by elements of F.

We first check that £ # @ by showing that the empty function §: 0 — T
(i-e. the empty set) belongs to £. Being the empty set a finite set included in S,
and since the empty function is the unique function that maps the empty set to
any set, then by #i. applied to the empty set, the empty function belongs to F.
Let B D 0 be a finite subset of §. By ii. applied to B, there exists a function
(9: B — T) € F. Since gy = @, then, by definition of £, the empty function
belongs to £. So, € # 0.

Let H be the family of all functions f: D — T, where D C S and for all
finite sets A C D we have f4 € £. In words, H is the family of functions with
domains included in S into T such that every finite restriction belongs to £, i.e.
(see the definition of £ above) every finite restriction of any of its elements is
finitely extendible by elements of F. We check that H # @ by showing that the
empty function belongs to {. We know that @ C S. Since the only subset of 0
is itself; fo =0 and @ € £, then 0 € H. So, H # 0 as well.

K(f:D—T), (g: E— T) € M, then we define f < g iff D C E and
gp = f. Then, by a routine argument (which will be omitted), < defines an
order relation on H. We check that (7, <) is an inductive set. Let (C,<) be
a chain in (X,<). Let F: U — T, where U = |J{A|(f: A — T) € C} and
forall (f: A — T) € C, Fa = f. Being (C,<) a chain, then by a routine
arg:xment (which will be omitted) F is well defined and is an upper bound for
(€. <).

We show that F' € H. To see this, we just need to check that every finite
restriction of F' belongs to £. So, let X C U, X finite. We show that Fx € £.
Note that since (C, <) is a chain in (X, <), then, in particular, the domains of
the functions of C form a chain ordered by inclusion. Since X is finite, there
must exists a set A such that (f: A — T) € ¢ and X C A (the proof of this
last claim is routine and will be omitted). Since f € C C H; by definition, ¢
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contains all the finite restrictions of its elements so fx € £ and by definition of
F,Fq = f, then Fx = fx € €. So, F € M.

Being H an inductive set, then, by Zorn’s lemma, H contains a maximal
element, say, g: E — T.

We now show that E = S which will proved the lemma. Suppose not,
assume that £ # S and choose s € S — E. Then, F := E U {s} properly
contains E, and because T is finite, g extends to finitely many functions (g, :
F—T), (92:F —>T), ..., (gn: F — T), where n = card (T"). Note that
gi € H, for all 1 < i < n, because if that were not the case, then g would not be
maximal in (#, <). Thus, by definition of H, for all 1 < # < n, there exist finite
subsets A; C F with ((g:)a,: A; — T) € £ and hence by definition of £, for all
1 < 1 < n, there exist finite subsets of S, call them B;, such that B; D A; and
(gi)a,: Ai — T does not extend to a function of F with domain B;.

Let A :=UJ;_,(F N A;) and B := {s} U, B;. Observe that A and B are
subsets of S. Then, A and B are finite, since each A; and B; is finite and i runs
from 1 up to n, where n is the finite cardinal of T (note that here is where we
make essential use of the finiteness of T'). Also, A C E and A C B, by definition
of A. Thus, since ¢ € H, ga: A — T € &, and hence, there exist a function
of F that extends g4 to the finite set B, say, f: B — T, fa = ga4. Note that
by definition of A, by definition of F' and since for all i, A; C F then for all i,
A; C AU {s}. Now, s € B and since {gi(s)}?., = T by the way the g; where
constructed, then since f(s) € T, f(s) must be equal g;(s), for some i. Hence
for this particular 7, we have fa, = (gi)a; because A; C AU {s}, f(s) = gi(5)
and fq4 = ga. Moreover, B; C B and since f € F, then by i. applied to B,
we have that (fp, : Bi — T) € F. But (g:)a; = fa, = (fB.)a,, so for this
particular ¢ we got an extension of g; to an element fp, € F, contradiction. So,
E=S.

Therefore, (9: S — T) € H, so by definition of #, for all finite A C S,
(ga:A—T)eEECF. g
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Let G be a group. If z;, z2, ..., z, € G, let us define S(x3, X2, «- -5 Xn)
to be the subsemigroup of G generated by these elements, and similarly we

let S€(x1, x2, «.., Xn) to be the normral subsemigroup of G which they

generate. In words, S(x;, z2, ..., z,) consists of all finite products of the
form z;,, i, ..., zi; with j > 1 and S%(z1, z32, ..., Zn) consists of
all finite products of the form z{!, z¥Z, ..., zfj with j > 1, where for all

z, g € G, =9 :=gzg~!.

Lemma I1.1.5 Let G be a group.

i. G is an r. o. group iff for all non-identity elements z;,, zi,, ..., z;, € G
there ezist suitable signs e; = %1 such that 1 ¢ S(=7*, =52, ..., z5).

ii. G is an o. group iff for all non-identity elements z;,, z;,, ..., =i, € G
there ezist suitable signs e; = %1 such that 1 ¢ S®(z*, =5, ..., z5°).

Proof. We shall consider the proof for ., writting the similar remarks for

i. between parenthesis; essentially, one needs to change S(z*, z5?, ..., z5*
by S¢ (=5, z%2, ..., z5») throughout.
Let G be an (right) ordered group with positive cone P and z;,, zi,, ..., zi,

be non-identity eilements of G. Then, by PCL1., see page 54 (by RPCL., see
page 56), we can choose signs €; so that 1 < z;'. Then, with this choice,
being the positive cone a normal subsemigroup S¢(z${*, z52, ..., z&) C P (in
the case of r. o. group P is a subsemigroup by RPC2, and this is enough for
P D S(z7', z3%, ..., z5*)), and hence, by PC1. 1¢ S%(z5, z52, ..., z5°),
(by RPC1. 1 ¢ S(=%*, =52, ..., z5)).

Now, we show the converse. Let S = G — {1}, let T be the finite set
T = {1,~1}, and consider the family F of all functions f : D — T from
finite subsets D of S to T that satisfy the following condition, namely, if D =

{zi,, ®i;, ..., z; }, then

(f:D—-T)eFiff1¢sC
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(=], fED L 2= (1 ¢ (=D, 23D 2{==)y). By assump-
tion, the family F satisfies the conditions of lemma I1.1.4, page 57, namely, it
contains the restrictions of its elements and every finite subset of S is mapped
to T by at least one function of . Hence, by that lemma, we conclude that
there exists a function g : § -+ T such that for all finite subsets A C S,
(9a: A — T) € F, where g4 notes the restriction of g to A. Let P := {z €
S|g(z) = 1}. We show that P defines a cone for G. Note, first, that if z € S
then g(z) and g(z)~! must have opposite signs. Indeed, if this were not the case,
then we would have 1 = (1-129(=)1)(1~}(z~1)9(="1)1) € G (29(=), (z=1)9G""))
(1 = 29 (2=1)9="Y) € §(29(=), (x~1)9(=""))) contradicting the properties of
g. This shows that P~! = {z € S|g(z) = —1} and, hence, G = P[] P! [[{1},
where ] denotes the coproduct in the category of sets, i.e. “disjoint union”.
Finally, let 2,y € P and let z € SS(z, y) = S¢(z7®), W) (z € S(z, y) =
S(z9(®), y?¥)). Then, z # 1. Moreover, we must have z € P; otherwise
9(z) = —1 and 1 € 271S%(z, y) C SC(z, y, z71) = SC(29(), ), 29(2))
(1 € z718%(z, y) C S%(z, y, z71) = SO (29, y9&), 29())), which con-
tradicts the fact that § € F. This shows that P is a normal subsemigroup
(a semigroup) of G' and proposition I1.1.1, see page 54 (proposition 11.1.2, see
page 56) yields the result. g

The following are observations whose proofs will be omitted since they are

routine to check, which wiil be used in the proof of the next lemma.

Observation 1: Suppose that A and B are ordered groups. Then, the
group A x B becomes an ordered group by way of lexicographical ordering. By
induction, it follows that every finite direct product of o. groups is an o. group

(similarly for r. o. groups).

Observation 2: Let G be a group with subgroups H, and H, then G/
H\,NH; is embedded in G/H1xG/H3 by mapping g+ HiNH2 — (9+H,, g+H>).

By induction, this result can be extended to any finite number of subgroups H;
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of G (similarly for r. o. groups).

Observation 3: If G is an o. group or an r. o. group, then so is every
subgroup of G with the induced order.

On the other hand, it is clear that this property is not iuherited by quo-
tients groups. Consider any free group G, by a resuit to be proved below (see
theorem I1.1.8), G is ordered, but moding out any relaticn of the form g™ = 1
for some g € G, n € N, since G/(g") has torsion it can not be ordered (see

page 55).
Lemma II.1.6 Let G be a group.

t. If all finitely generated subgroups of G are o. groups (r. o. groups) then G is

an o. group (r. o. group).

2. If G has a family of normal subgroups H, such that(\, H, = (1) and such
that each quotient G/H, is an o. group (r. o. group) then G is an o. group
(r. o. group).

Proof. We consider only the case of 0. groups, the results for r. 0. groups being
similar.

Now, suppose by way of contradiction that G is not an ordered group. Then,
by lemma II.1.5 above, there exist non-identity elements z,, z3, ..., z, € G
such that 1 € SC(z{!, z5%, ..., z&") for all 27 choices of the signs &; = =%1.

Hence, the finitely generated subgroup H := (z;, z2, ..., z,) of G has
elements x1, z2, ..., Z, such that 1 € S¥ (25!, z5°, ..., z5*) for all choices
of the signs, so, by lemma I1.1.5 above, H can not be ordered, contradicting the
assumption of i., so (%.) holds.

We now show #i.. Because (), H, = (1), there exists a finite intersection
H=H,n...NH, with z; € H for all i. If an over-bar denotes the homo-
morphism G — G/H = G, then the foregoing shows that 7 # 1 , but since 1 €

SC (]!, =5%, ..., z&») for all 2" choices of sign, then 1 € SE(E‘I‘, T2, ..., T5)



II.1. Ordered groups 63

for all choices of sign, hence G can not be ordered by lemma I1.1.5. But, by
observation 2 above, G = G/H is contained isomorphically in the finite direct
product [I;_, G/H,;, and the latter is an o. group by assamption in ii. and

observation 1, but this contradicts observation 3. So, #i. holds. g

In view of theorem I1.1.3 (see page 56), it is of interesi to know more examples

of ordered groups.
Theorem I1.1.7 An abelian group G can be (right) ordercd iff it is torsion—free.

Proof. If G is (right) ordered then it must be torsion free (see page 55).
Conversely, assumie that the abelian group G is torsion-free. Let H be a finitely
generated suhgroup of G. Being H a finitely generated torsion—free abelian
group then it is isomorphic to a finite direct product of copies of Z. Being Z an
(right) o. group, then, by observation 1 above, H can be (right) ordered. Hence,
by lemma I1.1.6, G can be (right) ordered. g

Theorem IL.1.8 Any frec grovy can be ordered.

Proof. Let G be a free gronp. We shall construct a positive coue on G. By
the Magnus-Witt theorem (see Magnus, Karras and Solitar [MKS76], Sec 5.7;
or Huppert and Blackburn [HB82], pp. 380-383) for the lower central series!
of G,G D GY) 5G? 5GP 5 ..., we have that ﬂneNG(") = {1}, and each
G(™) /G("+1) is free abelian (in particular they are torsion—free abelian). Hence,
by theorem I1.1.7, for all n € N, G(®)/5(n+1) can be ordered. Let P, be a
positive cone in G(") /G(7+1) defining on it the structure of an ordered abelian
group. Now let P be the susbset of G consisting of all elements g # 1 with the
property that, if n is the (unique) integer such that g € G®I\G("+1) then the
coset gG("+1) belongs to P,. We have that G is the disjoint union of {1}, P
and P~!. We also have that, for any z € G, 27! Pz C P, for, if g € G 15 such

1G(Y) := [G, G] (the comniutator group) and for all n € N, G(n+1) .= {7, G(")
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that g € GPN\G™*1) and gG"*+Y) € P,, then z-1gz € GPN\G+!) and
79z = g.9g7 127 gz € ¢.[G, G| = gGI"HY),

so z-1gzG(™+1) € P,. To complete the proof that P is a positive cone on G, it
only remains to show that P.P C P. Let g, h be elements in P, with

g€ G(ﬂ)\g(ni-l)’ he G(m)\G(mH), and
gG*tll e p.. RGI™t) ¢ P,

To show that gh € P, we may assume that m > n. If m > n, then h € G™) C
G™+1); in this case gh € G"\G(™*1) and

ghG+D) = gGn+D) ¢ P

so by definition gh € P. i m = n, then gG{**+1), RG("+1) € P, show that
ghG»+1) € P,; in particular, gh € G"N\G(**1), so again gh € P. g

i1.2 The Malcev—Neumann construction

There is an important generalization of the power series method, to which we
now turn. Let G be a group and consider the group algebra kG over a commu-
tative field k. When is kG embeddable in a skew field?. Clearly, a necessary
condition is that it should be entire, and for this it is necessary for G to be

torsion free. For if u € G is of order n, then
(u—1D)E* ' +u" 24 . . +u+1)=0.

In the abelian case this condition on G is also sufficient. For if G is torsion

free abelian, it can be totally crdered (c.f. theorem 11.1.7, page 63). When G
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is ordered then, by theorem I1.1.3 (see page56), kG is a domain, and being a

commutative ring, it is embeddable in a field, hence we have

Theorem I1.2.1 Let G be an abelian group, then the group algebra kG (over
any commutative field k) is embeddable in a field iff G is torsion free. g

In the non—commutative case little is known; it is not even known whether kG
is entire for any torsion free G. But Farkas and Snider [FS76] have proved that
this is the case when G is polycyclic (i.e. soluble with maximum condition on
subgroups); since kG is noetherian in this case, it is then embeddable in a field.
Also, Lewin and Lewin [LL77] have shown that for any torsion free group G
with a single defining relatica the grou,: algebra kG can be einbedded in a skew
field.

It has long been known that theorem I1.2.1 can be generalized to non—abelian
groups which are ordered. In that case we can form a kind of power series ring
k((G)) which _urns out to be a skew field.

In order to present the Malcev-Neumann construction we shall need the

following characterization of well ordered subsets of a totally ordered set.

Lemma IL.2.2 Let (G, <) be a totally ordered sel. For any subset S C G, the

Jollowing are equivalent:
(1) S is well ordered.

(2) S satisfies DCC? (i.e. any sequence s, > s2 > 53 > ... in S is eventually

constant: there ezists j € N such that for alln €N, n > 3, 5, = 5;).

(3) Any sequence {s1, s2, 83, ...} in S contains a subsequence
{5n,» Snas Sns, .-.} (where ny < ny < nz < ...) such that sp, < s,, <
Sy <.t

2descending chain condition (on sequences).
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Proof. (3) only if (2): let

(*) $1 25228532 ...
in S. By (3), there exist a subsequence s;, < sp, < Spy, < ... such that
n; < nz2 < n3 < .... Then, we claim that for all » > n;, s, = s,,, proving (2).

Indeed, if » > n; then by (*) s,, > s,. If 55, > s,, take any n; > n in the
subsequence, since n; < n; then s,;, < s,,,50 sp, > s, and n; > n contradicting

(*). So, sp = sp,.

(2) cnly if (1): suppose S is not well ordered. Then, there exist a non—empty
subset T of S such that T does not have a least element. Being T non-empty,
let ¢t; € T; since T fails to have a least element, then there must exist to € T
such that ¢; > 5, since T fails to have a least element, then there must exist

ta € T such that {; > i3, ..., contradicting (2). So, (1) holds.

(1) only if (3): Let {si, s2, s3, ...} be a sequence in a well ordered subset
S of G. Take n; such that s,, = min {s; : i > 1}. Then, take n, > n; so that
Sp, = min {s; :i > n;},..., etc. This produces a non-decreasing subsequence

Sn; € Spy < Sny < ..., as desired. So, (3) holds. g

Lemma I1.2.3 Let S, T be well ordered subsets of a totally ordered set (G, <).

(1) SUT is well ordered.

(2) If (G, <) is an ordered group, then U :=S . T={st:s€ S, t €T} is also
well ordered. Moreover, for any u € U, there erist only a finite number of

ordered pairs (s,t) (s €S, t € T) such that u = st.

Proof. (1) Let A be a non-empty subset of SUT. If SNA =0then ACT,
so, A has a least element since T is well ordered. Similarly, if 7N A = @. So,
assume SN A # 0 # TN A. Note that SN A is a non—empty subset of the well

ordered set S, so it has a least element. Similarly, TN A has a least element. It
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is routine to check (the proof will be omitted) that min {min SN A, min TN A}
is the least element of A. So, (1) holds.

(2) Assume that U is not well ordered. By lemma I1.2.2 above, there would
exist a strictly decreasing sequence sit; > safa > --- where s; € Sand t; € T.
After replacing {si, s2, ...} by a subsequence, we may assume, since S is well
ordered, that 5; < s3 < 853 < ---. If ¢; < t;4; for some i, we would have
sit; < sit1ti < siyi1tiyy, contradiction. Thus we must have t; >t > 83 > ---.
But this contradicts the fact that T is well ordered. So, U must be well ordered.

To see the “moreover” part, suppose by way of contradiction that there is
a u € U such that there exist an infinite set & := {(s5,t) € S x T : st = u}.
Choose a countable subset of U like N := {(si, ;) €U :i € Nand forall i, j €
N, i#j (si,t) # (55,t)} HS:={{s; € S:i€Nand (s5,4,) € N} is
finite, since t; = s; lu then 7 := {t; € T :i €N and (s;, t;) € N'} will be finite
as well, contradicting the fact that A is infinite. So, we may assume that S is
infinite. Since S is well ordered and infinite, we may assume, replacing S by
& subsequence if necessary, that the elements ¢§ S verify 5, < 82 < s3 < ---.
If t; < ;41 for some i, we would have u = s;t; < si3a1ti < sipitiys = u,
contradiction. Thus we must have £; > t2 > 23 > ---. But this contradicts the

fact that T is well ordered. So, such a u can not exist. g

We ai  ‘ow ready to present the general Malcev—Neumann construction of
formal a pc  r series ring. For this end, we fix a base ring R and an ordered
group (G, <). We assume that G is multiplicatively written, and write P =
{z € G : z > 1} for the positive cone of the ordering on G. Furthermore, we
fix a group homomorphisri w from G to Aui(R), the group of automorphisms
of the ring R; the image of g € G under w will be denoted by wy.
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As a set, the Malcev—Neumann ring A = R((G, w)) consists of certain for-

mal, but not necessarily finite, sums

a= E agg (“formal power series”)
9€G

where the a,’s are elements of R. By a formal power series a = 2 geG %99
we mean a function a: G — R defined for all ¢ € G by a(g) = a4. For each
such «, we define the support of a by supp(a) := {g € G : ag # 0}.

Now we define

(1) A= R(G,w)) = {a =3 ayg: supp(a) C G is well ordered} .

In A, we ‘4 and multiply elements according to the following formal rules:

(H-2) Z agg + Z ﬂgg = Z(ag + ﬂg)g;
g9€G 9€G g€G
(11.3) (Z agg) : (Z ﬁhh) =3 (X awws (B0) u,
g4€G heG u€EG

where the lust sum is over all (g, k) such that gh = u. Since we agree, as usual,
that 2 sum with iufinitely many sums equal to zeros is equal to zero, we may

restrict ¢ and /& rtespectiveiy io supp(a), supp(B), and these supports are well

ordered sets in G, the last sum (I1.3) is finite by I11.2.3. Alsc. since

supp(a + B) C supp(a) U supp(B),

supp(af) C supp(a).supp(B),

the supports on the LHS are both well ordered by (II.2.3). Therefore, addition
and maltiplication are well-defined in A. Having made this observation, it is

straightforward to check (the proof will be omitted) that (A4, +, .) is a ring.
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The subring of A consisting of all finite sums a = Y a,g (i.e. sums of finite
support) is called the twisted group ring R *+ G which we denote R[G, w].
As usual, we shall identify R with the subring R.1 C A, and identify G with
the subgroup 1.G of invertible elements in A. If w happens to be the trivial
homomorphism, the resulting untwisted ring of formal power series will
be denoted R((G)).

The idea of multiplying two “series” a and f by (I1.3) stems from the dis-
tributive law and the twist law g.r = wy(r)g, where r € R and ¢ € G. In the
special case when G is an infinite cyclic group {z™ : n € Z} ordered by the pos-
itive cone P = {z" : n > 0}, the homomorphism w : G — Aut(R) is specified
by a single automorphism ¢ = wg. In this case, the twist law boils down to

z.r = o(r)z (for r € K}, and

o0
B By oy = {Z aiz': a;€ER, ne Z}

is just the Hilbert’s twisted Laurent series ring R((z,0)) (see page 45),
noting that well ordered subsets of Z are just non—-empty subsets which are
bounded below.

In the ordered group (G, P), we shall now classify the elements of P accord-
ing to their “archimedean” character. Let 5,2 € P. If s < t for all n € N,
we call s infinitely smaller than ¢ and write s < ¢t or ¢t 3> s. We also call ¢
infinitely larger than s. We say that two elements s and ¢ in P are rc™--tively
archim:-fzan (written s ~ t) if s < t™ and t < s” for some m, n € N. It is
routine to check (the proof will be omitted) that “~” is an equivalence relation
on P. The equivalence class of s € P will be denoted by |s], which is called
the archimedean class of 5. Given two archimedean classes [r] and [s], we
define [r] < [s] if ¥ < s for all n € N. It is routine to check (the proof will
be omitted) that “<” is well defined (independently of the choice of the class

representatives), and gives a total ordering on the set of all the archimedean
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classes of G. As usual, we define [r] < [s] to mean either [r] < [s] or [r] = [s].

Lemma X1.2.4 The archimedean class of a product is the class of the greatest

factor, i.e., for any elemerts s1,--- ,s5, € P, we always have

[s1 -+ 8al = [maz{ss, .. ,sa ]

Proof. If, say s; = maz{s),...,5,}, then s;---5, < s? and s; < s7---5,

(since all s; > 1). This shows that s; ~ 51 ---s,, and so [s; --- 53] = ;. ¢
The following lemma is the crux of the Malcev-Neumann embedding.

Lemma I1.2.5 Let S be a well ordered subset of P in the ordered group (G, P).
Let S® = {s1---5n: si € P} forn>1, and let S® =,,,S™ C P. Then

(1) 8°° is well ordered.

(2) Any» € & lies in only finitely many S™ ’s.

Proof. £i) Assume that S® is not well ordered. Then, by lemma 11.2.2
(see page 65), there exists a strictly decreasing sequence w1 > u2 > --- in
S§%°, say u; = 8;15i2---Sin,, where s;; € S. We claim that the sequence of
archimedean classes [u;] > (up] > .- is eventually constant. To see this,
let s; = maz{si1,...,sin;} = 7. By lemma 1124, [4;] = [si] so we have
[s1] > [s2] > ---. Since {s1, 52, ---} C S has a smallest element, say Siy, the
sequence {s;] > [s2] > --- must stabilize after iy terms, as claimed.

Let U := min{[u;] : i > 1} = [si,]. A different choice of a strictly decreasing
sequence in $°°, say u} > u5 > .-, would lead to another archimedean class
U’. Since any such class is the ciass of an element in S, we may assume thay
our initial u; > uz > - .- has been chosen such that U is as small as possible.
After discarding a finite number of u;’s, we may assume that U = [u;] = [3;] for
all i > 1.
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Consider the set U := {s € S : [s] = U}, it is non—empty since s,, belongs
to it. Since ¥ C S, it has a least element, say sy. Since [sy] = [u1], there exists
an integer m > 1 such that u; < s7?. We may further assume that the sequence
(subject to all foregoing restrictions) has been so choosen that the m we took
above is 2s small as possible. We represent each u; in one of the following four

forms: )

5
Vs S;s

s;w;

| visiw;

where v;, w; € S°°. Only a finite number of the u;’s can be of the first type, for
otherwise we would have a strictly decreasing sequence in S, contradicting the
fact that S is well ordered. Therefore, there must exist a sequence of the u;’s
of one of the other three types, say, the fourth type. (The other two types are
similar). After passing to a subsequence, we may assume that u; = v;s;w; for
alli. Let B={v; : i>1}, C={w;:i>1}andlet D={s;: i> 1} C S.
If B and C are both well ordered, then by applying two times lemma I1.2.3
(see page 66), BDC is also well ordered, and u; > u3 > --- in BDC gives a
contradiction. Thus, we may assume, say, B is not well ordered. After replacing
the v;’s by a subsequence, we may therefore assume that vy > v2 > ... in B C
S5°. We have seen earlier that V := min{[v;] : i > 1} exists, and, since v; < u;
(because s;w; > 1), we have V < U. By the minimal choice of U, we get V = U
(and hence sy = sy). As before, we may assume that [v1] = [v2] = ---. From
visy < 151 < visiwy = uy < s7}, we see that m > 2 (for otherwise v; < 1).
But then cancellation of sy shows that v, < s',}"l = sP . s0o vy < sP7Y, this

contradicts the minimal choice of m.

(2) Assume that there is a counterexample to (2). Since S is well or-

dered by (1), there exists a least counterexample v € S®. For 1 < i < oo,
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write ¥ = §{18i2---5in, Wwhere 2 < n; < nz < ---, and sij € S. Since
o = 8i1 . (Si2 - - - $in;) € S.5%, and both S and S*™ are well ordered, (I1.2.3) the
“moreover” part shows that there is an element v € G such that s;3---si, = v
for infinitely many #’s. Then, this v lies in infinitely many S™’s, but since s;; > 1
(for all i), we have, by multiplying with (Siz - - Sin,), u > v. This contradicts

the choice of u as the least counterexample. g

Note that by lemma (I1.2.3) and induction, we know that ez S™ (n > 1)

is well ordered.

Corollary I1.2.6 Let a € 3 g9 € A= R((G, w)) be such that S := supp(a)

lies in P. Then for ¢ny ag, a;, --- € R, the sum

7=ao+ala+c-.za2+---€A.

Proof. Since supp(a™) C S", each g € G can lie in supp(a™) only for finitely
many n’s, according to lemma I1.2.5 part (2). Therefore, the sum v = ag +
aia + aza? + - - - is well defined. Furthermore, supp(7y) is well ordered since it
lies in
fpulJs* = {13us>.
n>1

Therefore, y € A. §

The reason we are interested in R((G, w)) in this section is given in the
next theorem. Observe that in this result, no additional assumption on the

homomorphism w: G — Aut(R) is needed.

Theorem II.2.7 Assume R is a division ring, (G, <) an ordered group. We
assume that G is multiplicatively written, and write P = {z € G : z > 1} for the
postlive cone of the ordering on G. Furthermore, we fir a group homomorphism
w from G to Aut(R), the group of automorphisms of the division ring R.

Then A = R((G, w)) is also a division ring.
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Proof. Consider a non-zero element 8 = ) 8,9 € A. Let go be the least
element in supp(B). Then, 8;! .8 .95 ! = 1— o where a € A has supp(a) C P.
By corollary 11.2.6,

r=1+a+a’+-..

is a well-defined element of A, and a routine formal check (which will be omitted)
shows that v is an inverse of 1 — a. Therefore, 1 — & is a unit in A, and so

B8 = Byo(1 — a)go is also a unit in A. g

Corollary I1.2.8 Let R be any division ring, and (G, <) and w be as in the
theorem. Then, the twisted group ring R[G, w] can be embedded in a division

ring, namely R((G, w)). 3

Let I be any non-empty set and {z; : i € I} be a set of independent indeter-
minates each of which commutes with R. The free ring R(z; : i € I) generated
by {z:} over R is a subring of the group ring R[G], where G is the free group
generated by {z;}. Since by theorem I1.1.8 (see page 63) any free group can be
ordered, we have the following consequence of corollary I11.2.8 by taking w to be

the trivial homomorphism.

Corollary I1.2.9 For any division ring R, the free ring
R(z; : i € I and z; commutes with R)
can be embedded in a division ring. g

It is then clear that k(X), the free k~algebra on a set X over a commutative
field k, can be embedded in kF, the group algebra of th= free group on X, and
since kF' is embedded in the formal power series division ring k((F)), we have an
embedding of £(X) in a skew field. If instead of the free group F we take the free
metabelian group G, i.e. the group defined by the law ((u, #), ((w, z)) = 1,

where (z, y) = 7'y~ !zy, by Moufang’s theorem [Mou37], we can still embed
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&(X) in kG, at least when card(X) = 2. Moreover, G can again be ordered
(c.f. [Mon37]), so we have another embedding of k{X) in a division ring, and

these two embeddings of k(X) in k((F)) and k((G)) are distinct, c.f. Moufang
(loc. cit.).

Let us now consider Hilbert’s example (see page 45 and page 69). Let k be a
commutative field, and ¢ be a fixed automorphism of k. We write D = k((z, o))
for the ring of formal Laurent series fo’_:n a;z’, where n € Z and a; € %, with
multiplication defined by the twist equation za = o(a)z (for all ¢ € k). By
comment made in page 69 and theorem I1.2.7 we know D is a division ring.
The following proposition computes the center Z(D) of D and determines, in

particular, when D is centrally finite.

Proposition I1.2.10 For D = k((z, 0)) as above, let kg C k be the fized field
ofo; ie. ko={ack: o(a)=a}. Then

ko tf o has infinile order,

Z(D) =
ko((z®)) if o has finile order s.

In particular, the divis'-= ring D is centrally finite iff o has finite order.

Proof. Consider asuiies y = Y o @iz’ € Z(D), and let j be an index such that
a; # 0. For any scalar a € k, we have (3" a;z')a = a(3_ a,£¥), so, comparing

the coefficients for z/, we get a;07(a) = aaj; hence ¢’ (a) = a.

Case 1. o has infinite order. In this case, the above argument shows
that a; # O is only possible for j = 0. Hence f = ag. Since we also have
apz = zag = o(ap)z, it follows that o(ag) = ao; i-e., ap € ko. Conversely, any
ao € ko clearly commutes with any power series, so Z(D) = kq. Since dim;,D
is clearly infinite (indeew, {z' : i € N} is linearly independent over ko), D is

not centrally finite in this case.
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Case 2. o has finite order s. The firsi. paragraph of the proof shows that
if a; # 0 in a series f = 3°72 a;z* € Z(D), then 07 = 1;, so s divides j. But
we also have fz = zf, which shows that each o; € ko. thus f € ko((z*)) (the
ordinary Laurent series field in z* over ko). { nversely, it is easy to verify that
any monomial az®s with ¢ € ko commutes with any series in D, so Z(D) =
ko((z*)). Let F = ko((2*)) and K = k((z*)). Since z* commutes with all
elements of k, K is again the ordinary Laurent scries field in z* over k. We
have dimpK = dimg,k = s by Galois theory (actually, by Artin’s theorem,
see [Hun89), page 252), and, since

1

D=K.1¢K.z®---®K.z*"",

the dimension of D as a left K-vector space is also s. By the transitivity formula
for dimensions, it follows that dimzp)D = dimpD = s%. In particular, D is a

centrally finite division ring. g

The following corollary follows from the argument in the proof of Case 1 in

proposition I1.2.10.

Corollary I1.2.11 If R is a field, (G, <) is a nontrivial ordered group, w: G —
Aut(R) is an injectivc homomorphism and A := R((G, w)), then

Z(A)=RC :={r e R: wyr)=r for all g € G},

and the divisiz: ring A is centrally infinite. g

I1.2 Examples of non-left Ore rings embeddable

in fields

We have as a corollary of theorem 11.2.7 (see page 72) that the group ring of a

free group can be embedded in an ordered division ring. We now show that the
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Ore criterion (see theorem 1.3.8, page 23) does not apply to the group ring of a
free group of, let us say, two generators.

Let F be the free group generated by two elements a, b; for the purpose of
this section it need not be ordered (however, c.f. thesrem 11.1.8, page 63). We

use the “length” of an element of F': if

i ay €Z, o, =1, ... .0,
g= Haa"bﬁ" € F, where v )

v=0 Bo€ZL, By 4%, v=0,...,n—1,
then
Mg) = 2 lawi + 1]
is called the length of g. The unit element has zero length by definition. Let
X and Y be subsets of F, by XY we denote the subset of F' of all products

zy, ¢ € X, y € Y; and the element = and the subset {z} C F will not be
distinguished.

Lemma YI.3.1 Let X and Y be subsets of F, not both empty, and let

(11-4) (XUXa)—(XNXa)CYUYSH,
(11.5) (YUYH) —(YNYb)C X U Xa.

Then, X orY is infinite.

Proof. We may assume X finite but not empty. Then X U Xa is also finite and

not empty. Let g be an element in X U Xa of maximal length, and consider the

elements

(IL.6) g1:=ga, gz=ga ',

As g liesin X orin Xa, g, lies in Xa, or ¢» lies in X: in any case one of the two

lies in X U Xa. Hence A(g1) < A(9) or A(g2) < A(g). However, definition (I7.6)
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~}
~]

shows that A(g;) = A(g) = 1, the negative sign applying only when the last
generator of g is cancelled by the a*!. Hence, g must end in a (positive or

negative) power of a.

Also either A(g;) = A(g) +1 or A(g2) = A(g)+1, so that either g; or g does
not lie in X U Xa by the maximality of the length of g. Hence, g can not lie in
both X and Xa, and we see that

g € (XUXa)—(XnNXa);

thus by (I1.6) also g € Y UYb.

Therefore, any element of maximal length in XU Xa ends in a*! and also lies
in Y UYb. The symmetry of the assumptions then shows that such an element
can not be of maximal length in Y UY'}, because it does not end in *!; and
no longer element can be of maximal length in Y U Y} because it could not lie
in X U Xa; Y UYb has no element of maximal length, but is not empty either.
Therefore Y U Y is infinite, and so then is Y. g

Theorem 11.3.2 Let K be a ring, F the free group of two free generators a, b,
and K F the group ring of F over K. Then, the elements

(IL.7) a:=14+a;, B:=1+b

have no common (nontrivial) left multiple in KF.

Proof. Assume that
(I1.8)
E=Z?=1kifis n€N1 kieK, fie F,
Ea = nf = (, where A= Z;."=l kjgi, meN, kj € K, g; € F arnd

C= E;:l k'hla IGN, ki€ K, h; € F,

are elements of the group ring KF. We may here assume that all coefficients
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are non—-zero. Dencte by

X = {fi}?:lr Y= {gJ }_;'n:.-la Z = {hl};=1°
Then, by (11.7) and (11.8) we clearly have

(XUuXae)-(XNXa)CZCXUXa

and also
(YuYb)—(YNYbCZcCYuYs.

Hence, lemma 11.3.1 applies; and as X and Y are finite, they must be empty.
Then £ = 1= 0 and then ¢ = 0, so the only common left multiple of & and 8
is trivial. This proves the theorem and shows that the Ore criterion does not

apply to the group ring (over any coefficient ring) of the free group. g

II.4 Complete topological groups

Since in the proof of Cohn’s embedding theorem (see section II.6, page 91)
we shall make essential use of the concept and basic properties of a complete
topological group which is regular, it will be convenient to present at this point
the definitions and theorems we shall need. For complete expositions of this
subject see Bourbaki [Bou74], Higgins [Hig74], Husain [Hus66], Warner [War89]

A topology 7 on a group G is a group topology, and G, furnished with 7,
is a topological group if

TG 1 (z,y) — zyis a continuous map from G x G, furnished with the Cartesian
product topology defined by 7, to G;

TG 2 z++ z~! is a continuous map from G to G.

A topological group morphism f: G — H, where G, H are topological

groups is a continuous group homomorphism.
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Any subgroup H of a topological group G is a topological group wizh re-
spect to the induced topology and the inclusion j: H <= G is 2 morphism of
topological groups.

A basic principle. Let G be a topological group and let g be a fixed element
of G. The constant map z +— g and the identity map z — z are continuous
mags from G to G, sc they induce a continuous map z — (g, z) from G to
G x G. Composing this with the continuous multiplication G x G — G we get
a continuous map [y : z +— gz from G to G, called left multiplication (or left
translation) by g. This map has inverse [;-: which is also continuous, so i,
is a homeomorphism G — G (i.e. a topological isomorphism; but it is not a
topological group isomorphism). Similarly, all right translations ry: z + zg are
homeomorphisms G — G. Moreover, the conjugations maps = + gzg—! are
topological group isomorphisms (routine verification). As a consequence G must
be a homogeneous space, that is, given a, b € G there is a homeomorphism
G — G sending a to b (Ip5-1 or r4-1; will do). Thus, G looks topologically
the same at all points. We can noss use translations to transfer topological
information from one point to another in any topological group, and this basic
method is used in almost every proof in the subject.

If f1 and f, are functions respectively from sets S; to T} and from S> to 1o,
we denote by j. x f the function (s1, s2) — (f(s1), f2(s2)) from S; x S to
T, xT>.

The following theorem gives a useful alternative criterion for a topology on

a group to be a group topology.
Theorem I1.4.1 A topology T on a group G is a group topology iff

TG 3 (z,y) — zy~? is continuous from G x G, furnished with the Cartesian
product topology defined by 7, to G.

Proof. Let m, j and g be respectively the functions of (TG 1), (TG2) and (T'G3),
and let i;: G — G x G be the continuous function defined by i (y) := (1, y) for



I1.4. Complete topolagical groups 80

all y € G. The condition is necessary, since ¢ = m o (idg x j), and sufficient,

since j = qoiy; and m = go (idg % j). g

If A and B are subsets of a group G, we write AB for {zy € G : z €
A,y € B} and A~! for {z~1: z € A}. Also, if a € G, we write aB and Ba
respectively for {a}B and B{a} and cali them the left and right translate of
B by a. Finally, we shall sometimes write A™ for A...A (n times).

A set F of subsets of a set Eisafilteron Eif E € F, @ & F, the intersection
of any two members of F again belongs to F, and any subset of E containing a
member of F also belongs to F. In a topological space E a neighbourhood of
a point c¢ is any subset of E containing an open set U such that ¢ € U/; the set
of all neighbourhcods of ¢ is thus a filter on E. Similarly, a neighbourhood
of a subset C of E is any subset of £ containing an open set U such that
C C U, and the set of all neighbourhioods of C is also a filter on E. A set B
of subsets of E is a filter base on E if the set of all subsets F' of E for which
there exists B € B such that B C F is a filter, called the filter generated
by B. Thus, B is a filter base iff B # 0,0 ¢ B, and the intersection of two
members of B contains a member of B. Consequently, a filter base on E is also
a filter base on any set containing E. In a topological space E, a fundamental
system of neighbourhoods of ¢ € F is any filter base generating the filter of
neighbourhoods of ¢; i.e. a fundamental system of neighbourhoods of ¢ € E is
a set F of neighbourhoods of ¢ such that every neighbourhood of ¢ contains a
member of F.

Let G be a topological group, and let V be the filter of neighbourhoods of 1.
Since the left and right translations by an element ¢ € G are homeomorphisms,
then (cf. the basic principle above) aV and Va are both the filter of neigh-
bourhoods of a (where aV := {aV : V € V} and Va = {Va : V € V}). Since
(z, y) — zy is continuous at (1, 1) and since the functions j: z + z~! and
Ty :  — aza~!, both from G — G, are homeomorphisms, V has the following

properties:
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TGN 1 For each V €V there exists U € V such that UU C V.

TGN 2 f V € V, then V-1 g V.
TGN 3 If V € V, then for each e € G, aVa™! € V.

These properties characterize the filter of neighbourhoods of 1 in a topological

group in the following sense:

Theorem I1.4.2 Let G be a group. IfV is a filter on G satisfying (TGN 1),
(TGN 2) and (TGN 3), then there is a unique group topology on G for which V
is the filter of neighbourhoods of 1.

Proof. If 7 is such a topology, then, since a set is open iff it is a neighbourhood

of each of its points, and since I, is a homeomorphism for each a € G, a subset

O of G is open for 7 iff
(*) for each a € O there exists V € V such that aV C O.

Thus, there is at most one group topology on G for which V is the filter of
neighbourhoods of 1.

It remains to show that the set 7 of all the sets O satisfying () is a group
topology for which V is the filter of neighbourhoods of 1. Clearly, Ger,0€ 1,
and the union of a family of members of = belongs to 7. Let Oy, O, € 7; if
a € O1 N 02, there exist Vi, V2 € V such that aV; C O; and aVo C O3, so
VinVz € Vanda(VinVz) =aVinaVa C O, NO,. Thus, 7isa topology on G.

To show that V 1s the filter of reighbourhoods of 1 for 7, let V € V. We
shall first show that 1 € V. By (TGN 1) there exists U € V such that UU C Vv,
and by (TGN 2), U~! € V; hence UNU~! € V, so there exists z € U N U-1.
Then both z and z~! belong to U,so 1 = zz~! € UU C V. To show that V is
a neighbourhood of 1, let O = {a € G : there exists U € V such that alU C V}.
As 1V =V, 1 € O, and as each U € V contains 1, O C V. Therefore we need
only show that O € 7. Let a € O. Then there exists U € V such that al/ C V.
By (TGN 1) there exists W € V such that WW C U. Then aW C O, for if
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weE W, awW C aWW C aU C V, so aw € O. Therefore O € 7 since O
satisfies (). Conversely, if V is a neighbourhood of 1, there exists O € 7 such
that 1 € 0 C V, so by (*), there exists U € Vsuch that U =1U Cc O C V,
whence V € V.

Finally, we need to verify that if a, b € G, then (z, y) + zy~! is continuous
at (a, b), that is, for each U € V there exists V € V such that if z € aV and
y € bB, then zy~! € ab™'U. By (TGN 3), b~1Ub € V, and by (TGN 1) there
exists W € V such that WW C b~Ub. Let V := WnW-1. By (TGN 2),
VeV. Let x €aV and y € V. Then, ¢ = av and y = bw where v, w € V.
Hence w~leV C W, so

zy! = avw b € aWWO™! C a(b7 Ub)b! = ab™'U. g

Coroliary I1.4.3 Let G be a group. If B is a fundamental system of neigh-
bourhoods of 1 for a group topology on G, then the following conditions hold:

TGB 1 For euch V € B there ezists U € B such that UU C V..
TGB 2 If V € B, then there ezists U € B such that U C V1.
TGB 3 IfV € B, then for each a € G there exists U € B such that U C aVa~!.

Conversely, if B is a filter base on G satisfying (TGB 1), (TGB 2) and (TGB
8), then there is a unique group topology on G for which B is a fundamental
system of neighbourhoods of 1. g

Thus, to define a group topology on a group G, it suffices to specify a
filter base B satisfying (TGB 1), (TGB 2) and (TGB 3) as a fundamental
system of neighbourhoods of 1. Thus any collection of subgroups of G containing
all conjugates of its members and all finite intersections of its members (in
particular any chain of normal subgroups of G), defines a topological group
structure on G. For example, if B is a filter base of normal subgroups of G, then

B is a fundamental system of neighbourhoods of 1 for a group topology on G.
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A subset A of a group G, denoted multiplicatively (additively) is symmetric
if A"l =A (-A = A).

Theorem I1.4.4 Let G be a topological group, lel V be a fundamental system
of neighbourhoods of 1, and let A C G.

(1) If O is an open subset of G, then AO and OA are open; hence Jor any
neighbourhood V of 1, AV and V A are neighbourhoods of A.

(2) The symmelric open neighbourhoods of 1 form a fundamental system of

neighbourhoods of 1.

(3) A=N{AV :V € V} =N{VA : V € V}; in particular, MI=nv:ve
V}.

(4) The closed symmetric neighbourhoods of 1 form a fundamental system of

neighbourhoods of 1.

Proof. (1) For each a € A, ¢O and Oa are open, since left and right mul-
tiplication by a are homeomorphisms. So as A0 = |M{aC : a € A} and
OA =J{Oa :a € A}, AO and OA are also open.

(2) If O is an open neighbourhood of 1, then so is O~1, since g +— g~ ! (where
g € G) is a homeomorphism, so 0N O~! is a symmetric open neighbourhood of
1 contained in O.

(3) Let b€ A4, and let V € V. By (TGN 2), bV -} and V~1b are neighbour-
hoods of b, so there exist z € bV-'NA and y € V-1bNA. Thus, b€ zV C AV
and b € Vy C VA. Conversely, let b € N{AV : V € V}. Then for any U € V,
there exists V € V such that V C U~!, so as b = av for some a € A, veV,
a = bv~! € bU. Thus every neighbourhood of b intersects A non-vacuously, so
b€ A. Similarly, \{{VA:V eV} = 4.

(4) If U is a neighbourhood of 1, there exists a neighbourhood V of 1 such
that VV C U, and by (3), V € VV C U. Thus every neighbourhood of 1
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contains a closed neighbourhcod of 1. If U is a closed neighbourhood of 1,so0is

U~1,s0 UNU™! is a closed symmetric neighbourhood of 1 contained in U. g

A topological space E-is regular if E is Hausdorff and for each b € E the
closed neighbourhoods of b form a fundamental system of neighbourhoods of b
(i-e. given any neighbourhood of a point of E there’s always a closed neighbour-
hood contained in it). In this case, we also call the topology of E a regular
topology.

We shall now introduce uniformity concepts that arise naturally from the
topology of a topological group.

Let E be a topological space, B a filter base on E. The filter base B con-
verges to ¢ € E if the filter generated by B converges to ¢, that is, if every
neighbourhood of ¢ contains a member of B. If E is Hausdorff, B converges
to at most one point of E, for if U and V are disjoint neighbourhoods of two
points of E, the filter generated by B can not contain both U and V since then
it would contain the empty set U N V.

Let G be a topological group, denoted multiplicatively. If V is a neighbour-
hood of 1, a subset F of G is V—small if F~1F C V and FF-! Cc V. A filter
(base) on G is a Cauchy filter (base) if for every neighbourhood V of 1 it
contains a V-small set. A subset E of a topological group G is complete if
every Cauchy filter on E converges to a point of E.

In the proof of Cohn’s embedding we shall need to extend a certain mapping
0 from a dense subset of a topological space to the whole topological space, so

we require the following

Theorem I1.4.5 (Extension by continuity) Let X be a topoleyical space,
A a dense subset of X, 0: A — Y a mapping of A into a regular space Y. A

sufficient condition for 8 to extend® to a continuous mapping0: X — Y is that,

3 Actually, this condition is also necessary end the extension is unigue, but we shall not
need these facts, see Bourbaki [Bou74], Ch. I
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for each z € X, 0(y) tends to a limit in Y when y tends to z while remaining
in A.

Proof. Define 8(z) = limy—.., yea 6{v) for each z € X; 6(z) is a well-defined
element of Y, since Y is Hausdurfl. We have to show that 8 is continuous at
each point z € X. Let then V' be a closed neighbourhood of §(z) in ¥'; then by
hypothesis there is an open neighbourhood V of z in X such that (VNnA) C V.
Since V is a neighbourhood of each of its points, we have
o(z) = y—or!;ré]VnA e(y)

for each z € V, and from this it follows that #(z) € (VN A) C V/, since V’
is closed. The result now follow: Trour; <lis ket that the closed neighbourhoods
of 6(z) form a fundamental system of neigki:ourhoods of 8(z) it. ¥, ceiize ¥ is

regular. g

The mapping 0 is said to be obtained by extending 6 by continuity to
X.

In section I1.6 we shall need the fact that certain group topology be regular in
order to be able to extend certain mapping by continuity. This will be achieved

by checking condition (2) of the following

Theorem I1.4.6 Let G be a topological group. The following statements are

equivalent:

(1) {1} is closed.

(2) {1} is the intersection of all neighbourhoods of 1.
(3) G is Hausdorff.

(4) G is regular®.

4 Note that, following Bourbhki, we asked the Hausdorff property for a space to be regular,

some authors don’t ask this ertra condition, and then, for them every topological group is
regular.
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Proof. (1) and (2) are equivalent by (3) of theorem 11.4.4, and (3) and (4) are
equivalent by (4) of theorem 11.4.4. Clearly (3) only if (1). To finish the proof
of the theorem is enough to show that (2) only if (3). Assume (2), and let a
and b be distinct points of G. Then 1 # a~1b, so there is a neighbourhood U
of 1 such that a=b ¢ U. Let V be a symmetric neighbourhood of 1 such that
VV Cc U. Then aV and bV are disjoint neighbourhoods of a and b respectively,

for if av = bw where v, w € W, then a~1b = vw™! € VV C U, a contradiction. g

Finally, as the last background material to prove Cohn’s embedding the-
orem (see section I1.6, page 91) we need a definition of fields which uses as
little as possible of the additive properties. This will be accomplished in the
following well known technical result which will be quoted without proof (cf.
Cohn [Coh61], Dauns [Dau70], Dicker [Dic68}, and Rabinow [Rab37]), where we
shall describe a set of axioms for skew fields in terms of multiplication and the

operation z +— 1 — z.

Lemma I1.4.7 Let G be a multiplicative group and G, the subset Gy := {z €
G : =z # 1}. Also, let {0} be any singleton disjoint with G. A necessary and
sufficient condition for addition to be definable on G U {0} so that G U {0}
becomes a skew field with the original group operation of G as multiplication,
supplemented with 0z = 0 = z0 (z € G), and O as the neutral element for this
addition is that there exisls an element ¢ € G and a function 8: G; — G which

Jor any =. 1. € G salisfy the following:

() O(yzy™') = yb(z)y~?
() 0%(z) ==
(ii3) 8(z~!) = ef(z)z 1
(iv) 8(zy™") = 0(0(2)8(y) ") 8(v™Y), =z=#y.
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If there do exist such an e and @, then

(1L.9) o(z) =1~z
(11.10) e=—1.g

Essentially, what the above lemmasays is that given any multiplicative group
{G, .) and an extra element 0 (not in G)), as soon as you have a mapping 6 from
G1 := G —{1} to G and an element e € G satisfying conditions (i)-(iv), you can
define an addition + on GU {0} so that (GU {0}, +, .) becomes a skew field. If
this is the case, we have the additional information that @ turns out to be the
mapping z ++ 1—z and e = —1. In the proof of Cohn’s embedding, G will be an
inverse limit of certain groups (to be constructed with an embedding theorem
for semigroups, section I1.5) and 0 will be the zero element of a suitable ring
R to be embedded in a skew field. We shall be able to find an element e € G
and a function @ satisfying the conditions of the above lemma, so G U {0} will
become a skew field. It will turn out that R*, the multiplicative semigroup of
R will be embedded in G and the additive group of R will be a subgroup of the
additive group of G U {0}.

II.5 An embedding theorem for a class of inverse
limit semigroups

The proof of Cohn’s embedding theorem (see section I1.6, page 91) will proceed
by embedding R*, the multiplicative semigroup of a “suitable” ring R, in a
group constructed as an inverse limit. So, in this section, we shall prove an
embedding theorem for semigroups.

We begin with a semigroup S (come again, which in the application we
have in mind will be the multiplicative semigroup of a ring). Recall that a

congruence relation in S is an equivalence relation such that a = a’ and
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b=V only if ab = a'¥’. If S is the quotient set determined by = then S is a
semigroup relative to the composition @b = ab, where @ denotes the equivalence
class of the element a € S. We call S the quotient semigroup determined by
=in S.

Suppose that for each n € N we have a group G,, and that for each pairn <m

we have a group homomorphism 7 : Gm — G, satisfying the coherence

conditions:
(i) each ¢ : Giy — G, is the identity,
(ii) if I < n < m then ¢} o ¢7 = ¢}.

We then call {Gm, ¢’ }mg<n, m,neN a projective or inverse system of groups
directed by N. The subgroup®

G := {z = (Zn)nen € H Gn: ¢ (tm) =2zn, forall n <min N}
neN

of the product® I1.en Gn is called the projective or inverse limit of the

inverse system {Gm, ¢7'}m<n, m, neN.

Theorem I1.5.1 Let S be a maultiplicative semigroup. For each n € N let =,

be a congruence relation in S. Assume that the following conditions hold:
(i) f m>n (m, n €N) then, a = b (a, b €S) only ifa=, b;
(i) ifa=, b for alln €N then a = b;

(iti) for each n € N the quotient semigroup S, = (5/ =p) determined by =,
in S satisfies the cancellation laws end has the right common multiple

property.

5For a complete introduction to limits in any category cf., for instance, Eilenberg and
Steenrod {ES52], Herrlich and Strecker [HS73] or Mac Lane [ML71]; one sees that in the
category of groups inverse limits always exist, i.e. G is indeed a group which has a certain
universal property.

SProduct in the category of groups.
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Then S may be embedded in a group G; moreover, there is a group lopology
defined on G, which is regular, such that G becomes a complete topological group
and SS~! is dense in G.

Proof. Let a € S. The first condition shows that if [a],, denotes the equiv-
alence class of a relative to =, and m > n then [a)m ~ [a], is a semi-
group homomorphism ¢ from Sy, into S,,. By corollary 1.2.8 (page 18), the
third condition shows that S,, can be embedded in a group Gy, of right quo-
tients, i.e. Gm = SnS;! and that ¢ can be extendeii to a unique homo-
morphism of Gy to Gy, which we denote again by ¢. By direct verification
we see that each ¢73 : Gm — U is the identity, and if I < n < m then
7 ody = ¢". Since the coherence conditions hold, we can form the inverse limit
group G := {z = (Zn)pen € [1en Gn : 62(Zm) = za, forall n < m in N} of
the inverse system {Gp,, ¢:;n}m5n.m,n€N- We have the canonical homomor-
phism fy, : @ — [a],, of S onto S,, which can be considered as a homomorphism
of S into G, (since Sy, is embedded in G,). Let m, n € N, by definition of on

and 6,, we also have that
(*) : én 00m =0, ifm>n.

This shows that we have a homomorphism 8 of S into G such that for all m € N,
Tm ol = 6,,, where“_;f,,, is the projection of the inverse limit G onto G,,. It
follows from condition (ii) that 6 is an embedding of S into the group G. Thus,
any semigroup satisfying conditions (i)-(iii) can be embedded in a group.

Note that the kernels {ker 7m}men form a filter base of normal subgroups
of G, i.e. {ker *m}men is non—empty, @ ¢ {ker xm }men, and the intersection of
two members of it contains a member of it (actually, if m > n then kerw,, C
ker m,, by condition (*) and since every group homomorphism sends 1 to 1).
Hence, by corollary 11.4.3 (page 82, see also the paragraph following it), G

becomes a topological group if the normal subgroups K, := ker mp, (m € N)
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are taken as a neighbourhood base at 1. Being G the inverse limit of the family
{Gm, ¥ }m<n.m, nen, G is complete in the topology thus defined.
Also, since

n ker xy, = {1}

meN
then it follows that condition (2) of theorem II1.4.6 (page 85) holds, i.e. {1} is
the intersection of all neighbourhoods of 1, hence this topology is regular.
Finally, we sh.w that SS~! is dense in G. Let = (zm)men € G- Since
Gm = SmS7;! then z,;, = [a]a[b);;}, for some a, b € S. Note that G/Kp, = Gm,
so zKm = ab~'K,,, that is z = ab~! (mod K,,). Therefore, SS~! is dense in

G &

Remark I1.5.2 Let =,, and K,, be as in the proof of theorem I1.5.1. Note that
forallab e S,

a=n, biffa=b(mod K,;,). &

It follows that for alla,b,c,d €S

ab™! = ed" ' (mod Kn) iff

there exist z, y € S such that axr =, cy and bz =, dy,

indeed, if ab™! = cd~'(mod K.;) then a5 'K, = ced 'K in G/Km. So,
aK,, = c(d"*b)K,,. But since G/Km = Gm and G = SmS;;! we have
(70 = [Ylmz);! for some y,z € S. Hence, aKyy = cyz" 'Ky —
azKnm = cyKm — az =, cy. Also, since b='dK, = a~'cKn we have
azKm = cyKm — 2y 'Ky, = a" 1cKpm — 2y 1 K = 67Ky — bz K =
dyK oy, hence bx =, dy.

Conversely, if there erist x,y € S such that ax =, cy and bz =, dy, then
we obtain a='cKm = zy ' K = b~'dK,n, hence b~ 'dK,, = a~'cKm, and then
ab~ 'K, =cd 'Kmn. g



H.6. Cohn’s embedding theorem 91

I1.6 Cohn’s embedding theorem

Sup; = that the multiplicative semigroup R* of a non-commutative integral
domain R can be embedded in a group G. Bokut [Bok69], Bowtell [Bow67]
and Klein [Kle67] gave examples of rings R for which an embedding R* «— G
is possible, but such that for any embedding of R* into any group G whatever,
addition cannot be extended to all of G U {0} in order to obtain an embedding
of R into a division ring, answering in the negative a question raised by Mal-
cev [Mal37] who asked if a ring R such that R* is embeddable in a group must
be embeddable in a field.

In this section we shall see that under certain appropriate additional hy-
potheses on an integral domain R with a valuation into the integers,
Cohn [Coh61] embeds R* — G U {0}, where (G, .) is a certain inverse limit
group, introduces a group topology on G, then defines an addition + on the
subset R*R*~! which happens to be dense in G, and then finally extends ad-
dition to all of G, so that (G, +, .) becomes a skew—field and R a subring of
it.

A ring R is said to be valuated? if a function v(z) is defined on R taking

the integers or +co as values, such that
Valv(iz)=ocoiff z =0,

V.2 v(zy) = v(z) + v(y),

V.3 v(z — y) > min{v(z), v(y)}.

The function v is alsu called a valuation on R. From V.1 and V.2 it follows
that R has no zero-divisors (we don’t consider 0 a zero divisor), so that R* is a

cancellation semigroup, and from V.3 one deduces® as in the case of valuations

7For a survey in valuation theory, cf. Schilling [Sch50] or, Zariski and Samuel [Zseq).
8See footnote 7 on page 91.
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on fields that
(IL.11) v(—z) = v(z),

and

(IL.12) v(z % y) = min{v(z), v(y)} unless v(z) = v(y).

With these definitions we are ready to state

Theorem I1.6.1 (Cohn’s embedding theorem) Let R be a valuated ring
such thet for any a, b € R* the function f: R* x R* — ZU {+o0}, defined by

f(z, y) == v(az — by) — v(ax)

is unbounded above. Then R can be embedded in a skew field.

Before giving the proof, let’s discuss the essential details of the argument. So,
let R be a ring with a valuation v satisfying the condition in the theorem. Being
R valuated, it is an integral domain, so the set R* of non-zero elements is a
semigroup relative to the multiplication defined in R. For each n € N we shall
define a congruence relation =, in R* by the rule a =, b iff v(a —b) - v(a) > n.
We shall show that the set of congruences {=n}nen satisfy conditions (i)-(iii)
of the semigroup embedding theorem I1.5.1 (page 88) and then it will follow
that R* can be embedded in the manner indicated in that theorem in a group
G.

It will remain to define an addition in K := G U {0} (where 0 is the zero
element of R) so that K with this addition and the multiplication in K, which
is the multiplication in G supplemented by 0z = 0 = z0 (z € K), is a division
ring containing R as a subring. To achieve this we shall define a mapping 6

in G1 := {z € G : z # 1} and an element e € G which in the end turn out
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to be the mapping z + 1 — r and e = —1. The connection between addition,
and the mapping 6 and e is given by the characterization of skew fields given i
lemma I1.4.7 (page 86).

In order to define # and e for the group G constructed from R* we shall
proceed as follows. Welet U; = {ab~': a,b€ R*, a # b} and define a mapping
6 from U, to G by 8(ab™!) = (b—a)b~1. Of course, we shall have to check that
this rnapping is single value. Next, we shall show that if @ and b are any two
elements in R* then (—a)a~! = (—b)b~!. We shall take this element (—a)a~!
which is independent of a to be the element e. We shall see that this mapping
B can be extended (using continuity and the density of U, in G)) to a mapping
@ in G;, which together with e, will satisfy condition (i1)-(iv) of lemma I11.4.7
(page 86). This will give us a division ring structure in K such that R is a
subring of K and the theorem will be proved.

Now we are ready to present the

Proof of Cohn’s embedding theorem II.6.1. Since R is a valuated ring,
it must be an integral domain, as we already observed. In order to be able to

apply the semigroup embedding theorem 11.5.1 (p- 88) we define, for each n € N,

a relation =, in R* by putting

(11.13) a =, biff v(a— b) — v(a) > n.

If a =, b, n € N then v(a — ) > v(a) and hence, by (I1.12),
v(b) = v(a — (a - b)) = v(a),

i.e.

(I1.14) a =, b (n € N) only if v(a) = v(b).

It is clear that the relation =, is reflexive and by (11.14) it is also symmetric. We
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now show transitivity. Assume a =, b, b =, c, then by (I1.14) v(a) = v(b) = v(c)
and

v(a — ¢) > min{v(a — b), v(b — c)} > n + v(a),

whence a =, c. So, each =, is an equivalence relation in R*.

We now show that =, is a congruence in R* and that conditions (i)-(iii) of
theorem I1.5.1 hold. Of these (i) follows immediately from the definitions. To
prove (ii), let @ # b, then v(a — &) # oo; hence we can choose k € N so that
k > v(a — b) — v(a) and for this k, a %, b, so (ii) holds. We now show (iii), we
take a, b € R*; then

v(a) = v(b) iff v(ac) = v(bc) iff v(ca) = v(cb):
further we have

v(ac — bc) — v(ac) = v((a — b)c) — v(ac)
= v(a — ) + v(c) — v(c) — v(a)
= v(a — b) — v(a),

and similarly v(ca — ¢b) — v(ca) = v(a — b) — v(a). It follows that
a =, biff ac =, be iff ca =, cb,

and this shows that R*/ =,, is a cancellation semigroup. We now check the
right multiple condition for R*/ =,: given @, b € R* and n € N, there exist
z, y € R* such that

v(az —by) —v(az) > n

and hence ex =, by. So, (iii) holds.
Since all the hypotheses of theorem I1.5.1 are satisfied, R* may be embedded

in a regular complete topological group G such that R*R*~! is dense in G.
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As in the proof of theorem I1.5.1, let K, := ker An, Wwhere 7, : G — G, is
the projection onto the n-th factor G, the group of right quotients of R*/ =,,.
By remark 11.5.2 (p. 90),

(11.15) ab~! = ed~! (mod K,,)
holds iff there exist z, y € R* such that
(11.16) az =, cy, bz =,, dy.

If this condition is satisfied, then v(a) —v(b) = v(c) — v(d), so that the valuation
may be extended to R*R*~! by putting

(11.17) v(eb™1) = n(a) — v(b).

By (I.14), (II.15), (I1.16), v is constant on the cosets of K, in G, for every
n € N, and it may therefore be extended in a natural way to a function defined
on the whole of G and taking integers values. Like v, this function is again a
homomeorphism (into the additive group of the integers) and we may, without
ambiguity, denote this function on G again by v.

Write
Gi:={z€G:z#1}, U .= {ab~' e R'R‘"l};

note that since R*R*~! is dense in G, then U; is dense in G;. Now we define a

mapping @ from U, to G, by

(11.18) 6(ab~1) = (b—a)b~!.
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Of course we have to show that 6 is single-value: if
ab™! =cd™! (a,b,c,de R*),

then 6~'d = a~!c and there exist z,y;' € R*R*~! such that z,y;! — b~1d.
Thus v(bzy, — dyn) — v(bz,) — oo; this may be written

v((bzn — dyn)z;") — v(b) — oo,
or since v(b) is constant,
(IL.19) v((bzn — dyn)z;1) — oo.
Similarly, since z,y;! — b~ 1d = a—l¢, we have
(11.20) v((azn — cyn)z;!) — .

By (ILI.19) and (I1.20), o([(b — a)zn — (d — c)ynlz;!) — oo, whence (b —
a)zny, ' — d —c. Multiplying both sides by d~! and observing that Tay;! —

b-1, we obtain
(b—a)p~! = lim (b— a)z,y;'d™ ! = (d—c)d~>.
n—c0

This shows 6 to be single~value on U;. In order to extend § by continuity to

we require the following lemma.

Lemma I1.6.2 If u € G; and (un)nen) is any sequence of elements of Uy

converging to u, then lim,,__,  0(u,) ezists.

Proof of lemma IL.6.2. To establish the convergence of {8(un))nen it is

enough to show that (8(un))nen is a Cauchy sequence; writting

Up = an b (an, b7 € RY),
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we have to show that for any r € N there exists ng € N such that
(I1.21) (b — am)b)! = (b — @, )bt (mod K,) for m, n > ng.
Since a,b;1 — u, we have

(11.22) v(anb;') = v(u) =: h say, for n > n;.

On the other hand, u # 1 and so there exist k, n, € N such that a,b;! #
1(mod K;) for n > na, i.e. an # b, (modK;), whence

(I1.23) v((bn — an)a;') < k for n > ns.
Now take a fixed r, put s := maz{r + k,r + k + h} and choose n3 so that
(11.24) amb;;! = a by (mod K,) for m. n > nj.

We assert that (I1.21) holds for ng := maz{n,, nz, n3}. For, by (11.24), there
exist z, y € R* such that

(11.25) amT = a,y(mod K,),
(11.26) bmz = by (mod K,),.

These congruences may be written

(11.27) v((amz — any)(@mz)™! > s,
(11.28) V((bnz — bny)(bmz)™! > 5.

By (11.22), v(bma,,') = —h, so that (I1.28) may be written as

(11.29) ((bmzx — bpy)(amz)™ ! > s— h.
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Using (I1.27), (11.29),and (I1.23) we now find

¥([(bm — am)z — (bn — an)y)[(bm — am)=]"?)

=v(bnZ — amz — by + any) — v((bm — am)z)

= v((amZ — any)(amz) ™! = (b — bay)(@mz) ™) + v(amz) — v((bm — am)z)
2 min{v((amz — any)(amz) "), vY(bmz = buy)(amz)"")} — v((bm — am)ar!)

>min{s, s—h} —k =r;

hence

(11.30) (bm — am)z = (bn — an)y (mod K,).

Now k& > 0; hence s > r + k > r and so we deduce from (I1.26)
(11.31) bmz = b,y (mod K, ).

The congruences (11.30) and (I1.31) hold for any mn > ng; taken together they
provide (I1.21) and the proof of the lemma is completed.

Thus ¢ is a mapping from a dense subset U; of G; into G; such that
lim, _,, 0(u,) exists whenever u, — u. Since G is regular, then by theo-
rem I1.4.5 (p. 84) we may extend 6 to a continuous mapping of G, into itself;
such an extension will be denoted again by 4.

Now, we shali define an element e € G. Let a € R* and consider the element
(—a)a~! of G. If b is any other element of R* and n € N, then there exist
z, y € R* such that

(I1.32) v(az — by) — v(az) > n;
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hence
(IL.33) v((~a)z — (=b)y) — v((—a)z) > n
and we conclude that

(11.34) (—a)a~! = (—b)b~! (modK,), for all n € N,

in other words,

(—a)a™? = (~b)b~! =: ¢, say.

We complete the proof of the theorem by showing that G satisfies the conditions
of lemma I1.4.7 (page 86), with the 8 and e just defined.
(1) If ab~! € U; and c € R*, then

(11.35) 6(cab™'c™!) = O(ca(eb)™!) = (cb ~ ca)(eb)~?!
(11.36) =¢(b—a)blc! = ¢(ab"1)g(c?).

Thus we have
(11.37) Oczc™?) = ch(z)c™?

for all z € U; and ¢ € R*; by continuity, (I1.37) holds for ¢ € R* and any
z € G1. Replacing x by ¢™!zc in (I1.37) we obtain 6(z) = cf(c1zc)c™!, i.e.

(I1.38) O(c lzc)=c"'6(z)c (c€ R,z € Gh).
Combining (I1.37) and (11.38) we have

8(ab~'z(ab™!)"!) = ab~'8(z)(ab"!)"! (z € Gy, a, be RY),
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and hence, again by continuity,
O(yzy~ ') = y8(z)y~! (z€G),yeQ).
(ii) Let ab~! € Uy, then a # b and 6(ab~!) = (b — a)b~!, hence
6%(ab=!) = 6((b — a)b™!) = ab— 1.

Thus, (ii) holds on U;, and by continuity on G;.

(iii) Similarly, we have

6(ba=1).ab~1(8(ab~1))~! = (a — b)a"lab~1b(b — a)~!
= (~(-a)b—a) = c;

hence 8(z~')z0(z)~! = e for any z € G,i.e. (iii) holds.

(iv) We first note that for any ¢ € R*, the set cR*R* ! := {cab~! : @, b €
R*} is dense in G. For, given u € G and n € N, there exist a, b € R* such that
u=ab~! (mod K,). If z and y are chosen in R* to satisfy az = cy (mod K,)
then ab~! = cy(bz)~! (modK,) and hence

u=cy(bz)~! (modK,)

with cy(bz)~! € cR*R*"!. Similarly R*R* ¢! := {ab~1c"' : a,b € R*} is
dense in G. Now let z, y € G (z # y). We can find a sequence (c,d;!) in U,
which converges to y and elements a,,, b, € R* such that a, # enba, an # dnb,
and an(dnbn)~! — z. If we put (an(dnbn)~! = z, and cnd;! = y,, then

(zn¥;! = an(cnbn)~! and by direct verification we get

a(a:ny;;l) = 0[0(311)0(%:)-1]-0(1/;1):
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Asn — o0, £, — z, and y,, — y, hence

lim 0(zn)8(yn)"1 #1,

and we obtain
8(zy™') = 6[6(=)0(y)~'1.0(v").

So, condition (iv) holds.

Thus all conditions of lemma 11.4.7 (page 86) are satisfied; hence we obtain
a skew field K := G U 0 whose multiplicative group is G, where 0 is the zero
element of R. Then R, as multiplicative semigroup, is a subsemigroup of K.

Let us denote the subtraction in K by z By for the moment. By lemma I1.4.7,

we have

1Bz =6(z) (z#£0,1).

In particular, if £ := ab~! € Uy, then

18ab™! = (ab~!) = (b —a)b'.
Multiplying both sides by b on the right, we find
(11.39) bBa=5b-a.

If a = b, then the two sides of (I1.39) are 0; for & = 0 they reduce to —a, by
definition of e, while for a = 0 they both reduce to b. Thus (11.39) holds for all

a, b € R. Hence the additive group of R is a subgroup of the additive group of
K,ie. Ris asubring of K. g

We shall now introduce some machinery and reformulate the hypothesis
of theorem I1.6.1 (page 92) in order to rewrite it in a suitable way for the
applications we shall present.

Let R be a filtered ring, by this we mean a ring with a filtration, i.e. a
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ring with a descending series

2R 2R 2R 2.

of submodules such that

(1R.=0; |J =R, and RnRu C Rnyn (m, n € Z).

nez nez

Then, we can define a function v on R by putting

(11.40) v(z) = sup{n:z € R,};

v satisfies the properties V.1, V.3 of valuations, while V.2 is replaced by
V2 u(zy) = v(z) + v(y}.

Thus, we have a pseudo—valuation on R. Conversely, any ring R with a

pseudo—valuation v may be filtered by the submodules
(11.41) R, :={z € R : v(z) > n}.

Now, with a filtered ring R there is associated a graded ring G(R), an associ-

ated graded ring® of R, whose additive group is the direct sum

€D (Ra/Rn41)

ned

and whose multiplication is induced by that of R. By direct verification, we
have that the function v(z) defined on a filtered ring R by (11.40) is a valuation
iff the graded ring G(R) has no zero-divisors. In this case the hypothesis of

9Cf. Zariski and Samuel [ZS60}.
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theorem I1.6.1 (page 92) may be reformulated as follows.

Theorem I1.6.3 Let R be a ring with a valuation v; then the following three

conditions are equivalent:

(i) For any a, b € R* there exist z, y € R* such that
v(az — by) > v(az),
(it) for any a, b € R*, the function
(I1.42) (=, y) = v(az — by) — v(ax)

is unbounded above,

(iii) the graded ring G(R) associaled with R satisfies the Ore conditions.

Proof. We note that (i) is a special case of (ii); (i) also follows from (iii), for if
a,b € R* and @, b are the corresponding elements <f G(R), then by (iii) there
exist z, y € R* such that

az — by = 0,

i.e. v{az — by) > v(az). To complete the proof it remains to show that (i) only
if (ii) and (iii).

(i) only if (ii). Let a, ¥ € R* and suppose that the function f(z, y) given
by (I1.42) is bounded; let z, y € R* be such that f(z, y) has its maximum value.
If ¢ = az — by, then ¢ # 0, because v(c) — v(az) is finite. By (i), there exist
u, v € R* such that v(cu — bv) > v(cu), i.e.

v(azu — b(yu + v)) > v(azu — byu).
If follows that

v(azu — v(yu + v)) — v(azu) > v(azu — byu) — v(aru) = v(az — by) — v(az);
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thus

J(zu, yu +v) > f(z, y),

which contradicts the definition of z, y. (i) only if (iii). Let a, b € G(R), say

@ =ak41 + ---+ agyy,

b=l +---+biys,

where a;, b; € R;/R;iy1 and ai41, akqr, biy1, biy, are all different from zero.
When r+s < 2, the result holds by hypothesis, so we may assume that r+s > 2
and use induction on r + s; further we may assume that r < s, without loss of
generality. By hypothesis there exist homogeneous elements z, y € G(R) which

are not zero and satisfy

A1 = b1y 1y.

The elements a;4 1z is again homogeneous and belongs to Ry /R4 say; since
r < s, the only degrees for which ar — by can have non-zero terms are m +
1,...,m+ s — 1. By the induction hypothesis az — by and a have a non-zero

common right multiple, say
(az —by)u = av #£ 0;

hence a(zu — v) = byu, and this is not zero because b, y, u € G(R)". Thus (iii)
holds. g

We can now rewrite theorem I1.6.1 (page 92) as follows:

Theorem IL6.4 If R is a fillered ring such that the associated graded ring
G(R) satisfies the Ore conditions, then R can be embedded in a skew field.

Proof. For when R is as stated, G(R) has no zero—divisors, and therefore the
filtration on R leads to a valuation; now we reach the conclusion by applying

first theorem I1.6.3 and then theorem 11.6.1. g
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I1.7 Birkhoff-Witt algebras

An associative algebra A over a commutative field F is said to be a Birkhoff-
Witt algebras (BW-—algebra for short) if it has a filtration

0=A_1CACAC...

such that the associated graded algebra @52_1 {An/Apn_1) is isomorphic—as
graded algebra-to a polynomial ring in a2 number of indeterminates over F. A
polynomial ring, being commutative, clearly satisfies the right Ore conditions,
hence by theorem 11.6.4, every BW-algebra can be embt~?ded in a skew field.
We need only put

R,:=A_, (AL1=4A_2=---=0)

to reach agreement with the notation used in section I1.6.

For all the background material required in what remains of this section, see,
for instance, Bourbaki {Bou75] or Jacobson [Jac62]. Let A be a BW-algebra over
F; then Ap = F, as F-algebras and if e is the element of Ag which corresponds
to the unit-element of F under this isomorphism, while uy (A €A)is a set of
elements of A; whose residue—class mod Ay form a basis of A, /Ao, then A is

generated by the elements e and uy (A € A) with the relations

(11.43) e2=e,

(I1.44) eu) = u) + ae,

(11.45) uxe = uy + Bie,

(I1.46) UAU, — U Uy = Z-y}'\“u., + €xge,

where ay, A, Tus €xu € F. If we multiply (11.44) by e on the left and use (11.43)
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we obtain

eu) = eu) + a)e,

hence a) = 0 and similarly #x = 0. Thus e is the unit—element of A and will
henceforth be denoted by 1. Now (I1.46) shows that mod Ao, A; admits the

operation
(11.47) [z, ¥l = zy — yz;

thus (I1.47) may be used to define a bilinear multiplication en the space A;/Aq.
By direct verification (which will be omitted) one sees that the resulting linear
algebra is a Lie algebra’® with basis ux (A € A) and structure constants 7},,.
We denote this Lie algebra by L and on L define a bilinear form b(., .) by putting

b(tl)“ u,,) =€x8-

If follows from (I11.46) and the linear independence of u) and e that b is an

alternating form, i.e.

bz,z) =0 (z€lL).
If we denote the multiplication in L by [zy], we can rewrite (I11.46) as
(11.48) zy—yz = [zyl + b(z, y)1 (=, 3 <L),
and using this relation to express the Jacobi—identity in L we find that
(11.49) b([zy), z) + b([yz], =) + b([2z],y) = O.

An alternating bilinear form will be called a 2—cocycle if it satisfies (11.49).
Thus any BW-algebra A leads to a Lie algebra L with a 2—cocycle alternating

19Cf, Jacobson [Jac62).
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bilinear form b defined on it, and A is completely determined by L and b.

Conversely, let L be any Lie algebra over F with a 2—cocycle alternating
bilinear form b defined on it. Then the associative algebra with unit—element
1 which is generated by the elements of L with the relations (I1.48) is a BW~
algebra which in turn leads to L with b as its 2—cocycle form. For the special
case b = 0 this is the classic Poincare-Birkhoff~Witt theorem!!, the proof
in the general case is entirely analogous, cf. Jacobson or Bourbaki (loc. cit.).

We shall denote the BW-algebra for a given Lie algebra L with a 2~cocycle
form b by A(L;b). As special cases we note:

1. The enveloping algebra of a Lie algebra L, namely, A(L;0).

2. The free associative algebra K, say, over F on z,, ..., z, as free set of
generators. X may be regarded as a Lie algebra, using the operation (I11.47), and
if L is the Lie algebra (in this sense) generated by z;, ..., z, then K = A(L;0).
Taken together with theorem 11.6.4 (page 104), this provides, yet, another proof
of the fact that K may be embedded in a skew field.

13Cf. Birkhoff [Bir37] and Witt [Wit37).



CHAPTER 111

A general method of
embedding

In this chapter we shall see a general method [Coh71a, Coh72a, Coh72b, Coh85]
of embedding rings in skew fields due to Cohn. This technique is quite general
in that it provides a criterion for arbitrary rings to be so embeddable, and also
can be used to describe the homomorphisms of rings into skew fields. For a
commutative ring such homomorphisms can be completely described in terms
of the set of its prime ideals, and in the course of this chapter we shall see that
the same description applies to non—commutative rings.

Let R be a ring. Our basic problem will be to study the possible ways of
embedding R into a skew field. Of course there may be no such embedding, and
it is more natural to treat the wider problem of finding hemomorphisms of R
into a skew field. Even this problem may have no solution, e.g. if R = K, is a
matrix ring over a skew field, where n > 1, then R is simple (since K is), so any
homomorphism f of R into a field must be injective (f can not be zero, because
S(1) = 1 # 0), and this is impossible because R has zero—divisors.

As a possible step towards the solution we may take a subset T° of R and

108
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consider T-inverting homomorphisms, as we did in chapter I (where we were
“protected” under the Ore conditions). As we saw in corollary 1.3.12, page 28,
in the Ore case, once we have an R*-inverting homomorphistn, we have achieved
the embedding in a field (we even have a unique field of fractions with a pre-
scribed normal form). Assume that K is the field of fractions of an Ore domain
R. Then, every element u of K can be written as a~1b (a, b € R). Thus, u is

obtained by solving
(I1L.1) au—b=0.

But in general, if we have an R*-inverting homomorphism, we do not necessarily
get an embedding into a skew field; after adjoining the inverses of all non-zero
elements of R, there may still be elements without inverses, e.g.ab ictde-!f
(recall that now we don’t have the right multiple condition to “shuffie elements
around”), so we need to perform repeated inversions.

Thus, for a non-commutative ring R the R*-inverting homomorphisms are
not very good approximations to homomorphisms into a skew field. Following
Cohn, we shall remedy this defect by inverting, instead of elements, a set of
square matrices over R (possibly of different orders) and we shall be able to
manage with a single inversion (“to invert them all in one step”) if we replace
a in (III.1) by a matrix. Since our aim is to construct skew fields, we shall
confine ourselves to square matrices, the only ones that can be i.:verted over a
field (since any field has invariant basis number).

For a commutativering this gives nothing new, since we can invert any square
matrix A simply by adjoining an inverse of det A (the determinant of A). But
over a non—commutative ring, although a determinant can be defined, it lacks
the properties required to achieve an analogous situation to the commutative
case, so we expect the inverse of a matrix to give something new. We shall
see that this new ingredient will lead us to the solution of our problem: we

want to characterize the homomorphisms from R to skew fields by means of
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“structure” defined over R (this structure will be the prime matrix ideal of R,
to be defined below). Then constructing such stru:ture on R will be “equivalent”
to constructing a homomorphism to a skew field.

Here we shall regard skew field extensions as irrelevant, so that a homomor-
phism to a skew field composed with an inclusion map into a larger skew field is
the same (for our purposes) as the original homomorphism (for instance, think
on Z, the integers, which is embedded in Q, R, C and H; we shall be particularly
interested in the “epic” Z—fields Q that is generated as a field by Z).

For example, if R is a commutative ring, a homomorphism from R to an
“epic” field K is determined by the kernel p, a prime ideal in R. K must be
commutative because being “epic”, it is generated as a field by (the commutative
ring) R. Then K and the homomorphism may be constructed from the prime
ideal in two different ways: forming the factor ring 2/p (an integral domain since
p is prime) and then K is obtained as the field of fractions of R/p; or forming
the localization R,, this is a local ring and its residue class field is isomorphic
to K. The former method does not seem to generalize to the non—commutative
case, but we shall see that the latter does.

We shall be interested in R-rings that are skew fields, called R-fields. We
shall single out a particular class of R-fields, the epic R-fields, and shall in-
troduce a category having epic R-fields for objects and as morphisms certain
equivalence classes of local homomorphisms called specializations (the justifica-
tion for looking at the epic R-fields and not all the R-fields will become clear
later, cf. page 129). In order to construct epic R-fields we shall introduce the
concepts of singular kernel and universal £-inverting ring Rg (here T is a set
of square matrices over R, possibly of different orders). To form the universal
T-inverting ring Ryx, essentially means to adjoin to R the entries of the inverses
of the matrices of  in the most general way possible.

A basic step in the construction of an epic R—field is the description of its

elements as components of the solution vector of a matrix equation. Towards
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this end we shall introduce the X-rational closure of R with respect to a ring
homomorphismfrom R to another ring. When £ happens to be “multiplicative”,
we shall give a characterization of the T-rational closure of R, which is at the
basis of all further development. Then we prove a sort of Cramer’s rule for non—
commutative rings. We also prove lemma I11.2.3, on page 127, which is original.
It will give us the exact relation between the universal Z-inverting ring and the
Y-rational closure. As an application of Cramer’s rule and this lemma we shall
show how to construct epic R—fields from their singular kernels. It will turn out
that when X consists of all square matrices over R which become invertible over
an epic R—field X, then Rg will be a local ring with residue—class field K; and
conversely, if X is such that Rg is a local ring, then its residue class field will
be an epic R-field. (cf. page 129).

From the above discussion, we shall have known that any epic R-field may
be described entirely in terms of matrices over R; we shall also see how to
express specializations in terms of the sets of matrices inverted over R: there
is a specialization between two epic R-fields iff there is an inclusion relation
between their singular kernels. This will give us an equivalence between the
category of epic R-fields and specializations and the category whose objects are
singular kernels of epic R—~fields with inclusion mappings as morphisis..-.

At this stage, we would like to know when a collection of matrices is a
singular kernel, just as we can tell when a collection of elements of R is a prime
ideal. In fact we shall be able to characterize singular kernels in much the same
way as kernels of R-fields in the commutative case are characterized as prime
ideals. To this end we introduce some operations on the set of matrices over R
and the notion of a matrix ideal. This corresponds to the concept of an ideal
in a commutative ring. Then, we shall define the analogue of a prime ideal:
the prime matrix ideal, which has properties corresponding closely to those of
prime ideals. Prime matrix ideals can be used to describe homomorphisms

of general rings into skew fields, just as prime ideals do in the commutative
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case. Given a homomorphism of R into an epic field K, we may apply this
homomorphism to matrices over R (i.e. with entries in R) by applying the
homomorphism to each entry. Then the prime matrix ideal of R determined by
this homomorphism consists of those square matrices over R whose images under
the homomorphism are singular over K. This collection of matrices actually
determines the homomorphism (up to isomorphism). Always keep in mind the
analogy with the commutative case: for a commutative ring R, the prime ideals
are the set of elements of R which become 0 under a homomorphism into some

field. Thus, the crux of this chapter is the following

characterization of prime matrir ideals: prime matriz ideals are the sets of

square matrices over R which become singular under a homomorphism into some
skew field.

This characterization of prime matrix ideals will be applied to derive criteria
for a general ring to be embeddable in a field, or to have a universal field of
fractions.

These results may be used to show that every “seiz jiir” has a universal field

of fractions. In particular, since
e free algebras over a commutative field,
e group algebras of free groups over a commutative field,
o free products of skew fields over a common subfield

are semifirs, they will be embeddable in skew fields.

An alternative approach to the method of universal localization was given
by Gerasimov [Ger79, Ger82]. Gerasimov put emphasis in studying homomor-
phisms of rings into rings (not necessarily skew fields) and characterized all such
mappings. His work lead to a localization theorem for n—firs. This theorem was
proved independently by Malcolmson [Mal84], who simplified some of the proofs
of this chapter, cf. [Mal78, Mal80, Mal82, Mal84].
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We also mention that Schofield [Sch85] generalized Cohn’s method of em-
bedding rings into skew fields and studied finite dimensional representations of a
ring over a skew field. An alternative view of this is that he classified all possible
homomorphisms from a ring to simple artinian rings. In this set up, it can be
said that such a study was carried out, in the case of one dimensional represen-

tations which are simply homomorphisms to skew fields, by Cohn, Gerasimov

and Malcolmson.

II1.1 The category of epic R—fields and special-
izations

Given a ring R, by an R-ring we understand a ring L with a ring homomor-
phism R — L called the canonical homomorphism of L.

For fixed R, the R-rings form a category (the comma category! of R over the
category of rings) in which the morphisms, called R-ring homomorphisms

are the ring-homomorphisms L — L’ such that the triangle shown is cornmu-

tative. g R
L

— I/
An R-ring that is a field is called an R~field. Of course for some rings R there
will be no R-fields at all, e.g. R = 0 (recall that in a field 1 # 0), or for a less

trivial example, any simple ring with zero~divisors, say a matrix ring R over a
skew field. For any map R — K must be injective and this is impossible when
K is a field. Even entire rings R without R-fields exist, e.g. if R is any ring
without invariant basis number (cf. [Coh66]); R may be choosen entire and any

R-ring is again without invariant basis number and so can not be a field.

1Cft., for instance, Herrlich and Strecker [HS73] or Mac Lane [ML71)
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We shall be interested in epic R—fields, i.e. R-fields that are generated as
fields by the image of R (Q is an epic Z—field, and IR and C are Z-fields that
are not epic; Zp, p a prime in Z, is an epic Z-field). '

Recall that a ring homomorphism f : B — S is epic in the category of
rings if it is right cancellable, i.e. given two ring homomorphisms «, 8 from
S — T (T aring), if of = Bf then o = B. The following fact justifies why
we call them “epic” R-fields: if K is an epic R—field then the canonical
map R — K is epic in the category of rings. Indeed, let K be an epic
R-field with canonical homomorphism px : R — K. Assume given two ring
homomorphisms a, # from K — T (T a ring), and that apx = Bug. Then, «
and ﬁ agree on the image ux (R), but since K is an epic field, it is generated, as
a field, by ux(R), hence, being a and B ring homomorphisms, they must agree
in the whole of K. g

If K is an epic R—field for which the canonical map R — K is injective, K
is called a field of fractions of R, cf. definition 1.3.6, page 21 (Q is a field of
fractions for Z, Z, is not a field of fractions for Z. Actually, being Z Ore, Q is
the unique field of fractions of Z, cf. proposition 1.3.15, page 30).

Our goal, now, is to make the epic R—fields (for a given ring R) the objects
of a category, so we must find the “appropriate” morphisms. The only R-ring
homomorphism between epic R-fields is an isomorphism. For any homomor-
phism between fields must be injective (because the kernel is a proper ideal of
a field), and in this case the image will be a field containing the image of R,
hence we have a surjection (because L was epic), and so an isomorphism. This
shows the need to consider more general maps.

Given any R-ring A, by an R—subring of A we mean a subring Ag of A
which contains the image of R under the canonical homomorphism of A. So,
Ag is also an R-ring. By a local R—subring we mean an R-subring 49 which
is a local ring, i.e. the non-units of Ao form an ideal of Ao.

To obtain a workable notion of morphism let us define a local homomor-
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phism between any R-rings A, B as a R-ring homomorphism f: A — B
whose domain Ap is an R-subring of A and which maps non-units to non—
units.

If B is a field, this means that the non—units in A form an ideal, namely
ker f, hence Ag is then a local ring, i.e. a ring Ag in which the non-units
form an ideal, say m; the quotient ring Ag/m is then a field (since the non-zero
elements in it already had a unit in Ap), called the residue—class field of Aq.

Note, in particular, that a local homomorpbism between R-fields K, L is an
R-ring homomorphism f: Ko — L whose domain Kj is a R—subring of K such
that any element of Ko not in the kernel of f has an inverse in Ky (because the
only non-unit of a field is zero), in other words, a local homomorphism between
R-fields “kills” (sends to zero) every non-unit of its domair which is a local
R-subring of the source R-field. By what has been said, Kj is a local ring with
residue class field Ky/ker f = Imf; so Imf is a subfield of L containing the
image of f under the canonical homomorphism of L, and hence, if L is epic,

equal ta L. Thus,
(I11.2) Ko/ker f = Imf = L, if L is epic.

Therefore, any local homomorphism to an epic R-field is surjective.
Now, let’s agree when we shall consider two local homomorphisms “equal”.
Twe local homomorphism from an R-field K to another one, L, are equivalent
if they agree on a subring K¢ of K and the common restriction to Ky is again
a local homomorphism, this simply means that Kp is an R—subring of K such
that every element of Ky not in the kernel of the common restriction has an
inverse in K. This is easily verified to be an equivalence relation in the set of
all local homomorphisms between R-fields; now a specialization between two
epic R-fields K and L is defined as an equivalence class of local homomorphisms

from K to L.

The R-fields and specializations form a category Fg, say. Here it is only
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necessary to check that the composition of maps is defined:

R
HBK HL M
|
K L M

given specializations f: K — L, g: L — M, (keep in mind that f and
g are not functions, they are equivalence classes of local homomorphism; but
without fear of confusion, we shall denote by f and g a representative of the
equivalence classes f and g, respectively) let Ko, Lo be the domains of f and g,
respectively, and put K; = {z € Ky : f(z) € Lo}, fi := f|K). We assert that
g9f1: K1 — M is alocal homomorphism and so defines a specialization (namely,
its equivalence class). To see this, let us denote the canonical mapping R — K
by pg; then we have fux = pr, hence ug(R) C K, so that K, is an R-ring.
Moreover, if z € K; and gfi(z) # 0, then f(z) = fi(z) # 0, so z~! € Ko and
f(z~1) = f(z)~* € Lo, hence z—! € K. This shows that gf, defines in fact a
specialization.

At first sight it looks as if there may be several specializations between a
given pair of epic R-fields. For example, let R := k[z, y] be the commutative
polynomial ring over a skew field, K := k(z, y) its field of fractions with the
natural embedding and L := k with the homomorphism R — L given by z — 0,
y — 0. We obtain a specialization from K to L by defining a homomorphism
a: k[z,y] — L in which a(z) = a(y) = 0. Let Ky be the localization of
k[z, y] at the maximal ideal (z, y), then  can be extended in a natural way
to Ko. We observe that there are local homomorphisms from K to L that
are defined on larger local subrings than K, (for instance, we can “specialize”
rational functions ¢(z,y) so that z/y takes on a specified value in k), but all
agree on Ky, so that there is just one specialization from K to L.

In fact this is a general property:
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‘Lemma IT1.1.1 Between any two epic R—fields can be at most one specializa-
tion.

Proof.
R

N\

K - - L

Assume, given any two epic R-fields, K and L, with a specialization a: K — L.
Being K an epic field, ux must be epic in the category of rings (cf. page 114),
and hence so is any corestriction of pug. Then, the result follows from the com-
mutativity of the above triangle. Indeed, let #: K — L be another specializa-
tion. By definition of specialization, we have that dom(a) N dom(8) D px(R)
and then, the corestriction R —» dom(a) N dom(B) must be epic, and since
Bopk =pr and eopx = py, then B = a, i.e. f and « agree on their common

restriction, so as specializations they are equal. g

Let £r be the full subcategory of Fr whose objects are the epic R-fields.

An initial object in &g is called a universal epic R—field.

R

c
X e

Explicitly, a universal epic R-field is an epic R—field U such that for any epic
R-field K there is a unique specialization U — K. Clearly a universal R-field,
if it exists at all, is unique up to isomorphism.

In general aring R need not have a universal epic R-field (e.g. a commutative
ring has a universal epic R—field iff its nil radical is prime [Hun89], page 379
and we shall obtain a condition for general rings later on, cf. corollary I11.3.2,

page 133). Suppose that R has a universal epic R—field U; then R has a field
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of fractions iff U is a field of fractions, as a glance at the above triangle shows.
In that case we call U the universal epic field of fractions. An example of
G. M. Bergman (cf. [Coh72a], page 37) shows that the existence of a universal
epic R-field and of a field of fractions are quite independent: neither entails the
other.

Let us give some examples to illustrate these definitions and to see how the
category £gr of epic R-fields look like in particular cases.

1. Let R be a (left or right) Noetherian ring. Any epic R-field is obtained
as a field of fractions of R/a for a suitable ideal a. But R/a is again Noetherian
and an integral domain, as a subring of a field, and hence (by proposition 1.3.14,
page 29) it is left or right Ore domain and the field of fractions of R/a is unique
up to isomorphisms (cf. proposition 1.3.15, page 30). Let us call an ideal a
completely prime or strongly prime if R/a is an integral domain; what has
been said shows that the category of £, for a left or right Noetherian ring, is
isomorphic to the category whose objects are the completely prime ideals of R,
with inclusions maps as morphisms.

2. Let R be a commuiative ring. Then, every epic R-field is also com-
mutative. The epic R-fields correspond precisely to the prime ideals of R.
Thus, given any epic R-field K, the kernel of the canonical homomorphism
#k : R — K is a prime ideal, and conversely, if p is a prime ideal of R, then
the mapping R — F(R/p) (where F(A) denotes the field of fractions of A, A
a commutative integral domain) gives us an epic R-field. The category £g of
epic R—fields is isomorphic to the category whose objects are the prime ideals
of R, with inclusions maps as morphisms. There is a universal R-field iff there
is a least prime ideal, i.e. the nii radical is prime, and when this is 0 (i.e. when
R is a commutative integral domain), we have a universal field of fractions. A
similar correspondence exists in the general case, and will be described later
cf. page 130, once we have identified the objects to be used in place of prime

ideals (namely, “prime matrix ideals” and recall that the crux of this chapter
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is to characterize prime matrix ideals as the sets of square matrices over R
which become “singular” under a homomorphism into some skew field, i.e. the
“singular kernels”).

To find what we need, let us consider a gen=ral epic R-field K with canonical
homomorphism px : R — K. Writting ker ux = p, we have the following

commutative diagram.

R R,
|
Rfp K

When R is commutative, then so is K (being generated by a homomorphic
image of R) and p is a prime ideal of R which determines K up to isomorphism.
We can construct K in two ways. Firstly, we can form R/p, an integral domain
(because p is prime), and now K is obtained as the field of fractions of R/p.
Secondly, instead of putting the elements of p equal to zero, we can make the
elements outside p invertible, by forming the localization Ry. This is a local
ring and its residue—class field is isomorphic to K. In the general case p is no
longer sufficient to determine K, since as we saw in section 1.6, page 46, there
are rings with several non-isomorphic field of fractions.

Thus to describe an epic R-field we need more than the elements which
map to zero, we need the matrices which become “singular”. Here we use the
fact that for any square matrix A over a field K {even skew) the following four
conditions are equivalent (cf. [Hun89], page 342):

A has no left or right inverse,
A is a left or right zero-divisor.

A matrix A over a skew field with these properties is called singular.

Let us use the following notation: given a ring homomorphism f: R — S
and a matrix A with entries in R (we shall say, as usual, A is “over R” ), then
J(A) will denote the matrix over S each of whose entries is obtained by applying

the homomorphism f to the correspording entry of A.



HIL1. The category of epic R—fields and specializations 120

Let ¥ be a set of square matrices over a ring R, possibly of different orders.
A homomorphism f: R — S, S a ring, is said to be 2 E—inverting homo-
morphism if every matrix in £ is mapped by f (applied to each entry of the
matrix) to an invertible matrix in S.

Our aim will be to study the epic R-field K by means of the set of all
square matrices over R which become invertible over K under the canonical
homomorphism of K; before we can do so, we need the important remark that
for any set ¥ of square matrices over R, there always exists a universal X—
inverting homomorphism: by this term we understand a homomorphism ) :
R — Ry, into some ring Ry which is Z-inverting and such that any X-inverting
homomorphism f can be factored uniquely by 1, ie. given any f: R — S
such that f(X) consists of invertible matrices, there is a unique } *nomorphism

f: Rg — S such that the accompanying triangle commutes.

The ring Ry is clearly determined up to isomorphism by these conditions; it is
called the universal —inverting ring or also a universal localization of
R.

Such a ring always exists (for any choice of R and ¥, even if the matrices of
¥ are not square, but since we are interested in homomorphisms into skew fields,
we shall restrict our attention to square matrices, cf. Gerasimov [Ger79, Ger82)
for a more general situation) and it may be constructed as follows. For each
m X m matrix A = (a;;) in ¥ we take a set of m? symbols, arranged as an
m X m matrix A’ = (a};) and take a ring presentation of Ry consisting of all

the elements of R, as well as all the a;-,- as generators, and as defining relations
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take all the relations holding in R, together with the relations, in matrix form,
(I11.3) AA =A'A=1 foreach A € X.

The ma.ppiné taking each element of R to the corresponding element of Ry is
clearly a homomorphism A: R — Ry, which is Z-inverting , by construction.
If f: R — S is any Z-inverting homomorphism, we define a homomorphism
f:Rg — S by putting f(z) = f(z) for all £ € R and for any matrix A € ¥
defining f on A(A4)~1 by putting f(A(4)~}) = J(A)™1. This gives a well defined
homomorphism f , because any relation in Ry is a consequence of the defining
relations in R and the relations II1.3, and all these relations also hold in S.

Of course the canonical homomorphism A: R — Rg need not be injective
(because there may be identifications between the elements of R in Ry due to
the extra relations (I11.3)) and may, in fact, be zero (for instance, if R = 0 or
if 0 € X). However, from the commutative triangle above we already see that
if there is a T-inverting homomorphism f which is injective, then A must be

injective. We surn up these results in

Theorem IIL.1.2 Let R be any ring and ¥ be a set of square matrices over
R. Then there is a universal localization Rs, unique up to tsomorphism, with a

untversal X -inverting homomorphism
(I1L.4) AR — Ry.

Moreover, A is injective iff R can be embedded in a ring over which all the

matrices of ¥ have inverses. g

Let us now consider, for an epic R-field K, in place of p = ker MK, the set P
of all square matrices over R (of all orders) which map to singular matrices over
K under the canonical homomorphism of K. This set P is called the singular

kernel of ux and is written Ker px (note the capital letter in “K er”). Al
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though there is no obvious construction for R/P, “the ring obtained by putting
the matrices in P equal to zero” (so onc of the methods for constructing field
of fractions in the commutative case is not at our disposal in the general case),
we can still define a localization since we now have the universal T-inverting
ring Ry at hands, where ¥ wiil be the set of all square matrices over R which
become invertible over K; or what is the same, the complement of P in the set
M(R) of all square matrices over R.

We define a localization Rp (analogous as R, in the commutative case)
as the universal X-inverting ring Ry, where X is the complement of P in the
set M(R) of all square mairices over R. By abuse of language, although we
are localizing at the set of square matrices over R which become invertible
over K, we sometimes say that we localize at (its complement in M(R)) the
set of matrices over R which become singular over K, exactly as we do in the
commutative case.

We can now describe the construction of an epic R—field in terms of its
singular kernel. Let K be an epic R-field, P its singular kernel and ¥ the
complement of P in the set of all square matrices over R. Thus, we repeat that
X consists of all square matrices over R which become invertible over K. Then,
we claim that the universal T-inverting ring Ry is a local ring, with residue-
class field K. We shall soon see a proof of this claim (cf. page 129), but we
note that this does not solve our problem yet. For we would like to know when
a collection of square matrice: = - R is a singular kernel, just as we can tell

when a collection of elements oi' ... is a prime ideal.

ITI.2 The construction of epic R—fields from their
singular kernels

A basic step in the construction of an R-field is the description of its elements

as components of the solution vector of a matrix equation.



II1.2. The construction of epic R—fields from their singular kernels 123

Given a Z-inverting homomorphism f: R — S, (S a ring) the set of all
entries of matrices f(A)~!, where A € I, is called the =-rational closure,
or simply, the rational closure if T is understood, under f of R in S.

We shall mainly be interested in the case where the S-rational closure is
a ring (actually, a subring of S). So we shall give conditions on X for this -
rational closure to be a ring; in fact these restrictions correspond to the condition
of being multiplicatively closed in the commutative case for sets of elements
(keep always in mind the analogy with the commutative case, where the set of
elements to be inverted is required to be a multiplicative set for convenience in
defining addition and multiplication; later,we shall define operations in the set
of matrices over a ring to characterize the singular kernels in a similar way as
the kernels of ring homomorphisms from commutative rings into commutative
field are characterized as prime ideals).

So we define a set T of square matrices over a ring R to be multiplicative

if it includes the 1 x 1 matrix 1 and for any A, B € £ we have

A C
€ X for all matrices C of the right size.
0

The following remark, though easy to prove, is fundamental. For any ring
homomorphism f: R — S (S a ring) the set of all matrices inverted

over S is always multiplicative, for 1 is invertible and if A, B are invertible,
A

so is , with inverse

0

A-! _—a-icB?
0 B!

Actually, any set of inverted matrices over S, containing 1, is always multiplica-

tive.

We shall characterize the rational closure.



1.2 The construction of epic R—fields from their singular kernels 124

Theorem IIL2.1 (Characterization of the rational closur~) Let R be a
ring and X a multiplicative set of square matrices over R. Given a X —inverting
homomorphism f: R — S (S a ring) the following conditions are equivalent for

any element x € S:
(a) z is an element of the S-rational closure under f of R in S,

(b) z is a component of the solution vector u of a matrizr equation

(11L5)
Au+a=0, where A € f(X), and a is a column over f(R),

(c) = is a component of the solution vector u of a matriz equation

(111.6)
Au=ce, where A € f(X), and e is a column of the identity matriz.

Moreover, the set of all these elements z,i.e. the E—rational closure under f of

R in S, is a subring of S conlatning f(R).

Proof. Keep in mind that, by definition, the E-rational closure under f of R
in S consists of the entries of the inverses of matrices in f(X). (c) states that u
is a column of A~ (A~! exists since A € f(X) and f is E-inverting), hence we
have (c) iff (a). Note that (II1.6) is a special case of (II1.5), so we also have (c)
only if (b).

To prove (b) only if (c) we note that if Au+ a = 0, then

(¢ 3)()-C)-

so when (b) holds, each component satisfies an equation of type (II1.6) (indeed,
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A
note that i € f(X) since T is multiplicative) and so (c) holds. So, all
0 1

three conditions are equivalent.

To prove that the rational closure is a ring containing f(R) we use (b): for
any ¢ € f(R) we obtain c as a solution of iu — ¢ = 0, hence f(R) is included
in the Z-rational closure under f of R in S. Now let u; be the i-th component
of the solutions of Au+ a = 0 and v; be the j-th component of the solution of

Bv +b =0, then u; — v; is the first component of the solution of

(¢ 5)=+ ()=

where C has for its j~th column the i-th column of A and the rest 0. Next u;v;

is the i~th component of the solution of

(6 2)=+()-

where D has as its j-th column a and the rest 0. This shows that the Z-rational
closure under f of R in S is closed under subtraction and multiplication, and

we have already seen that it contains 1, therefore it is a subring of S. g

Although there is no “effective” criterion for deciding when an element of
the rational closure is zero, there is a useful method, to be described in the-
orem II1.2.2 below, of recognising zero—-divisors in the rational closure (which
will be good enough for our purpose because we are interested in the case where
S is a field and then the non-zero elements are the non-zero divisors, actually,
the units of S); this will illustrate the fact that properties of the solution vector
u of Au + a = 0 (or better of its components) can be expressed in terms of A

and a.

Theorem II1.2.1 shows that every element of the rational closure can be
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obtained as some component u; of the solution vector u of a matrix equation

Au = a.

Here A is called the denominator of u;, and A;, the matrix obtained by replac-
ing the i—th column of A by a, is called the numerator of u;. This terminology

is justified by Cramer’s rule, which states that when R is commutative,

o det A;
W= T et A"

In the general case we no longer have this formula (because we do not have

determinants), but we have the following substitute, still called Cramer’s rule:

Theorem II1.2.2 (Cramer’s rule for non—commutative rings) Given a

ring S, let u; be the i-th component of the solution vector u of
(I11.7) Au+a=0,

where A is en invertible matriz over S of order n and a is a column vector
over S of order n. Write A = (a,,...,a,) where a; is the i-th column of A
and let A; be the matriz obtained by replacing the i-th column of A by a, so
A; =(ay, a2, ...,ai1,a, aiy1, - .. y8n).

Then u; is (i) a left zero-divisor, (ii) a right zero-divisor, (iii) lefl invertible
or (iv) right invertible in S if and only if A; has the corresponding property in
Mq(S) (the ring of matrices over S of order n).

Further, u; = 0 if and only if a is a right linear combination over S of the

n—1 columns of A ay, a2, ..., @ai_1, Gip1, ... ,0Gn.

Proof. We prove the result for u;, the case for u; (1 < i < n) follows similarly.
We first note that an element ¢ of any ring has any of the properties (i)-

(iv) iff any associate ucv has the corresponding property (where u, v are units).
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0
Secondly, we note that A; is associated to (u1 ) in M,(S) (where I is the
0 I

u

identity matrix of order n — 1 over S); for on writting u = i , (where ' is
u

the column vector form with the last n — 1 components of u), we have

o\ {1 o
A =Aatay=a" ) o™ :
u I 0 I u I

and here the outer factors on the right hand side of the right most equality are

units in My, (S). Finally, it is clear that u; has any one of the properties stated

. u; 0
precisely when does.
0 I

To prove the last sentence we rewrite (II1.7) as
(111.8) ajuy +aus+ --- +a,u, +a=0.

If vy = 0, (II1.8) shows that a is a right linear combination of the last n — 1

columns of A. Conversely, let vs, ..., v, € S be such that
a2+ + --- +apv, +a=0,

then (II1.7) has the solution (uy, ..., u,)T (where T notes “transposed”) and
(0, v2, ... ,v,)T, hence by uniqueness of the solution of the system of linear

equations (I11.7) (recall that A is invertible), we have u; = 0. g

Having Cramer’s rule at our disposal, we shall show how to construct epic R-

fields from their singular kernels. But first, we need a corollary of the following

lemma.

Lemma II1.2.3 Let R be a ring and and let T be a multiplicative set of square

matrices over R. Consider the universal T—-inverting ring Ry with universal
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X—inverting homomorpkism A: R — Ryg. Let T be the L-rational closure of R
in Ry under A. Then, ¥ = Ry.

Proof. It follows from theorem II1.2.1 that ¥ is a subring of Rz that contains
the image of R under ), so A(R) C I. So to have the claimed equality, being &
a subring of Ry, it is enough to check that all the elements that generates Ry
as a ring belong to T.

By construction of Ry (cf. page 120), we know that it is generated by the
elements of R and by all the entries of matrices A(4)~!, A € I; but by the
way A was constructed, A(R) = R, so, R C ¥. Finally, the set of all entries of
matrices A(A)™?, A € T belong to T by definition of S-rational closure of R in
Ry under A (cf. page 123). g

Corollary II1.2.4 Let R be a ring and an let K be an epic R—field with canon-
ical homomorphism pg: R — K. Let T be the multiplicative set of all square
matrices over R invertible over K under px . Consider the universal E—inverting
ring Ry with universal T inverting homomorphism A\: R — Ry. Let 3 be the

X-rational closure of R in Ry under A\. Then, ¥ = Rx.

Proof. This is a particular case of lemma I11.2.3. g

Now, we present the construction of epic R-fields from singular kernels. Let
K be an epic R-field, ux : R — K the canonical homomorphism and P the
singular kernel. Let ¥ be the complement of P in the set of all square matrices
over R (so T is the set of all square matrices over R invertible over K ; hence,
in particular, ¥ is multiplicative and ug is Y-inverting), and recall that by Rp
we just mean the universal T-inverting ring Rx. Let A: R — Rp (= Ry)
be the universal T-inverting homomorphism. Then, we can factor px by ),
i.e. from the universal property of Rp, there is a unique ring homomorphism

fix : Rp — K such that the following triangle commutes.
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We claim that Rp is a local ring with residue class field K. This
will follow if we show that every element not in ker jix is invertible, for then,
ker fig will be the unique maximal ideal of Rp and its residue class field is a
subfield of K containing the image of R, hence equal to K, because K was an
epic R—field. This justifies why we singled out the subcategory of epic
R-fields from the bigger category of R—fields, since the former category
can not be described by singular kernels.

By corollary I11.2.4, we have that the X-rational closure of R in Ry is equal
to Ry and, then, by theorem II1.2.1 we know that every element of Ry is a
component of the solution vector u of a matrix equation of the form A(A) u+a =

0 where A € X.

We now show that every element not in ker jig is invertible. Let
u; € Rp = Rg

be a component of the solution vector u of a matrix equation AA)u+a=0,
where A is a square matrix over R which becomes invertible over K , and define
A; as in Cramer’s rule, i.e. let A; be the matrix obtained by replacing the i-th
column of A by a. If ixc(us) # 0, then fix (u;) is invertible, hence ik o A(A4) =
px(A;) is invertible by Cramer’s rule, but this means that A; ¢ P (to make this
last claim true is the reason why we set T to be the set of all inverted matrices
over K), so A(A;) is invertible over Rp and so, again by Cramer’s rule, u; is a

unit in Rp, as claimed. g

Conversely, if X is a set of square matrices over R such that the universal
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X-inverting ring Ry is a local ring, then its residue—class field is an epic R-field.
Indeed, let T be such that Ry is a local ring, with residue class field K , say. By
composing the natural maps we get a homomorphism R —A» Ry K , and here
K is a field and an R-ring, so it is an R—field. We now show that it is epic.
Let K’ be the least subfield generated by the image of R in K. Any matrix
A in ¥ maps to an invertible matrix A,, say, in K (because, A maps A to an
invertible matrix in Rg by definition of universal Y-inverting homomorphism
and, in general, any homomorphic image of an invertible matrix is invertible, so
7 maps A(A) to an invertible matrix A;); this matrix A, is a non—zero divisor
over K’ and hence, being K’ a field, A; has an inverse in K”. TtLas, K’ contains
inverses of all matrices in  and hence contains a generating set of K, so K = K/,

1.e. K is an epic R—field. g

II1.3 The equivalence of epic R—fields and spe-
cializations with singular kernels and inclusions

The final come out of the discussion in the last part of the previous section is
that there is a bijection between epic R-fields and their singular kernels. So,
every epic R—field K has the form Ky, say, of a residue class field with respect
to the local ring Ry where ¥ is he multiplicative set of all matrices over R
inverted over K by the canonical homomorphism BK-

In this section we shall show that there is a specialization between two epic
R-fields iff there is an inclusion relation between their singular kernels. Since we
already know that between two epic R—fields there is at most one specialization
(cf. lemma II1.1.1 page 116), then, it will follow that the category of epic R—
fields and specializations is equivalent to the category whose objects are singular

kernels of epic R-fields with inclusion mappings as morphisms.

Theorem II1.3.1 Let R be any ring, K), K2 any epic R—fields, £; the set of

all matrices over R inverted in K; and R; the universal localization Ry,, with
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mazimal ideal m; (i = 1,2). Then the following are equivalent:
(a) there is a specialization a: Ky — K,

(b) £, 2 %,,

(c) there is an R-ring homomorphism f: R, — R,.

If there is a specialization from K, to K, and one Jrom Ky to K, then
K, = K, as fields.

Proof. (a) only if (b). Let p;: R — K; be the canonical homomorphism. Take
A € X3, then p2(A) has an inverse in M(K>) which is the image under o of
a matrix B, say, over K, (recall that a local homomorphism to an epic field is

surjective, cf. page 115).

R

K1 ] K2

Since a o uy = pz, then?, ua(A)a(B) =1, so a o u;(A)a(B) = I, hence
(111.9) #(A)B =1 + C, where o(C) = 0.

Thus, C € M(ker a), but ker a is the Jacobson radical of the domain of a,
since the domain of « is a local R-subring of K; with maximal ideal ker o. But
since® for any ring R, Mn(J(R)) C J(Mn(R)) (actually they are equal, cf., for
instance, Hungerford [Hun89), page 433) C belongs to the Jacobson radical of
the ring of matrices over the domain of a, hence I + C has an inverse (recall

that an element c is in the Jacobson radical of a ring iff 1 — zcy has an inverse

2We denote by I the identity matrix over the corresponding ring and of the corresponding
dimension respect to the context.

3Given a ring R, J (R) denotes the Jacobson radical of R: if the ring is clear from the
context, we simply write J for its Jacobson radical.
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for every z, y in the ring; cf. Hungerford, loc. cit.). Hence, from (II1.9) and the
fact that B is invertible (B is a matrix over a field K; which has an invertible
image under a, hence B must be invertible, as well), it follows that p1(A) is
invertible, i.e. A€ X,;.

(b) only if (c). It is clear, for when (b) holds, then A, : R — R;, the universal
Z; inverting homomorphism, is £,-inverting and so may be factored by A,.

(c) only if (a). Let =;: R; — K; be the natural homomorphism, i.e. r; —
r; +m; (recall from the previous section that K; = R;/m;). Then, the natural
homomorphism R; K 1 maps f(R;) onto f(R2)/m;. Note that the R-subring
f(R>) of R, is a local ring, since it is a homomorphic image of the local ring
R2. In terms, the R-subring f(R2)/m; of K; is local, as well.

Since m; is maximal in R;, it is a proper ideal, so it is possible to complete

the following to a commutative diagram:

Ry —f’f(Rz)‘—,rl—’f(Rz)/ml Cc K,
O

"

x2

[P T

&

indeed, we check that such a g (our candidate for a local homomorphism which
will give us the? specialization from K; to K,) is well defined, since to check
that it is a homomorphism is routine. So, let g: f(R2)/m; — K3 be defined by

ro —w f(r2) —Ee f(rs) + ms € K,
O ;
Wz Eg
)
ro+me € Ko

4Recall that between any two epic R—fields can be at most one specialization, cf.
lemma I11.1.1, page 116.
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f(r2)+ my = r2 + mz (r2 € Rz). Assume f(rz) + m; = f(s2) + m; where
T2, 52 € R;. We have to show r; 4+ my = 53 + mz. But this holds since f(r;) —
J(s2) = f(r2— s2) € my, so r2 —s» must belong to my, because if that is not the
case, r2 — s2 would be a unit in Rz (recall that R, is a local ring with maximal
ideal mz), and, hence f(r; — s2) would be a unit in R; (all our homomorphism
sends 1 to 1), contradicting the fact that m; is a proper ideal of R;. Lastly, we
note that g gives us the specialization from K; — K3; indeed, we just verify
that g is a local homomorphism. We already know that f(R2)/m, is a local R-
subring of K;. So, we need to check that it sends non-units to non-units. But
any z € f(R2)/m; which maps to a non-zero element of K, must come from an
invertible element of R,, r; say, (this last claim follows from the commutativity
of the above diagram, indeed, if r» would not be invertible, then wa(r2) = 0,
and then g{z) = 0, contradiction), and hence z itself must be invertible.

The last sentence follows from (b) and the bijection between epic R-fields
and singular kernels of the previous section. g

From the above theorem 111.3.1 we immediately obtain conditions for a uni-

versal field to exist:

Corollary II1.3.2 A ring R has a universal R—field iff the collection of singular

xernels of epic R-fields has a greatest element (im the sense of inclusion). g

II11.4 Matrix ideals

We come now again to the problem of constructing epic R-fields when they exist.
We already know that they will be of the form Rg/mg for some set  of square
matrices over R that become invertible under some homomorphism into an epic
R-field; our main problem in this section is to put the appropriate conditions
over I, but actually, for technical reasons, it will be easier to characterize their
complements (in the set of all square matrices over R), the singular kernels,

that means a set of square matrices over R which become singular under some
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homomorphism into an epic R—field, i.e. we want to characterize the singular
kernels axiomatically. In the commutative case, the singular matrices are the
matrices A such that det A (its determinant) lies in certain prime ideal, but in
the general case, we do not have a determinant function, so we have to define
the ideal operations (or something analogous) directly for matrices. We shall see
that singular kernels show a close analogy to ideals in commutative rings, but
instead of product and sum, over R, we have to define two operations on matrices
over R: the diagonal sum (the analogous of the product in commutative ideal
theory) and the determinantal sum (the analogous of the sum in commutative
ideal theory). Also, we shall define the analogous of 0 in the commutative case,
1.e., the matrices that become singular under any homomorphism into an epic
R-field, these will be the non—full matrices.

Multiplication: as the product of two square matrices A, B (over any ring

- A O
R) we take their diagonal sum A + B := . Note that over a field
B

0
A + B is singular if and only if either A or B is.

Addition: it is more complicated, just as the addition of determinants is
not straightforward, and in fact the latter provides the clue. Let A, B be two
matrices which agree in all entries except possibly, say, in the first column:
A= (a1, az, ... ,a;), B= (4}, ayz, ... ,a,), then the determinantal sum of

A and B is defined as the matrix
AV B:=(a1+4a},az,...,a,).

Similarly, one defines determinantal sums with respect to another column or
with respect to a row. Of course it must be keep in mind that determinantal
sum need not be defined. As notation, we shall always use A ¥ B, indicating in
words the relevant column or row, when this is necessary to prevent confusion.

We observe that over a commutative ring, where determinants are defined,

one has det (A7 B) = det A+det B, whenever the determinantal sum (for any
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row or column) is defined. On the other hand, over a skew field, if A, B are
singular, then so is C, as is easily seen. Further, any ring homomorphism pre-
serves determinantal sums, therefore, if A and B both map to singular matrices
under a homomorphism into a field, then so does C.

Repeated determinantal sums need to be used with care, since the operation
is not everywhere defined and a fortiori not associative. Thus to say that Cis a
determinantal sum of matrices A, ..., A, means that we can replace any two
of Ay, ..., A, by their determinantal sum (with respect to some row or column)
and repeat this process on two matrices in the resulting set, and so on until we
are left with only one matrix, namely C.

We shall now define the analogous of 0. To motivate the definition, take an
integral domain R that is neither left or right Ore. This means that there exist
a,b,c,d#0in R such that RaNRb = 0, cRNdR = 0. It follows easily that

the matrix
a ac ad
A= (c d) =
b be bd

is a non—zero divisor in M,(R). But its image in any field has rank less than 2
and so cannot have an inverse. This suggests the following definition.

A matrix A over a ring R is said to be a full matrix if it is square, say
n x n, and not of the form A = PQ, where Pisnxr,Qisrxnandr<n. A
matrix A over a ring R is said to be a non—full matrix if it is not full, i.e. it
is of the form A = PQ, where Pisnxr,Qisr xn and r < n.

This definition is taken to mean for n = 1, that a € R is full if it is # 0. thus
any non-zeto ring with zero-divisors provides us with examples of full zero-

divisors. Furthermors, for n > 1, tak: the ring [z, y, z, t]/(zt — yz) (where k
z
is a commutative field), then the matrix v has zero determinant and so

is a zero-divisor, but it is full. g

Let R be any ring. We define a matrix pre—ideal in R as a set P of square

matrices over R satisfying the following three conditions:
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1. P includes all non—full matrices,

2. if A, B € P and their determinantal sum C (with respect to some row or

column) exists, then C € P,
3. if A € P, then A+ B € P for all square matrices B.
If further, we have
4. if A4 1P then AP,

we call P a matrix ideal. A matrix pre-ideal is said to be proper if it does
not contain the unit matrix of any size; clearly a matrix ideal is proper precisely
‘shici it F0es not contain the element 1.

“%e note the following simple consequences from the definitions. Let P be

any matrix pre-ideal. Then,

(2) Any square matrix with a zero row or column lies in P. For if A = (04’),
where 0 is a zero column and A’ is an n x (n — 1) matrix, then A = A4’(0I),
where I is the identity matrix of order n — 1, and this shows that A is not full.

Similarly for other columns or for rows.

(b) Let A € P, then the result of adding any right multiple of one column
of A (or any left multiple of a row) to another again lies in 7.
Write A = (a), a2, ldots ,a,), then

c 0
(a1+azc, a2, ...,8,)= A (az, ... ,a,) ;
0 In-l

on the right we have the determinantal sum with respect to the first column) of

A and a non—full matrix, hence the result lies in P by 1. and 2..

(c) Let A € P, then the result of interchanging any two columns (or rows)

of A and changing the sign of one of them again lies in P.
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This follows in familiar fashion from (b). Writting only the two columns in

question, we have, by repeated application of (b),

(a1, az) — (a1 + az, a2) — (a1 + a2, —a;) — (a1, —a1)

(d) Let A, B be any square matrices, say of orders m, n respectively. Then

for any n x m matrix C,

A 0 fa o
(I11.10) €P iff eP.
Cc B 0 B

For given A, B, C, let a;, ¢; be the first columns of A, C respectively, and write
A= (a,A"), C = (c:C’), then

A 0 ag A O 0 A 0
(I11.11) = v )
C B 0 C’' B a C' B
where the determinantal sum is with respect to the first column. We have
0 A 0 _ A 0 0 I O .
¢ C' B 0 1) \ea ¢’ B}’

thus the second matrix on the right of (III.11) is not full and so lies in P.
fAow (II1.11) may be rewritten

a A 0\ (4 o 0 A o
0 C' B ¢ B) \—¢;, ¢ B}’
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where the second matrix on the right is again non—full. Hence

A 0 ] ag A 0
e P iff €P.
C B 0 C B

In a similar way we can vary the other columns of C, and so prove the assertion.

An entirely analogous argument, using rows, shows that for any m x n matrix

C,
A C . A0
€ Piff cP.
0 B 0 B

(e) If P is actually a matrix ideal, then for any two square matrices A, B
of the same size, AB € P, say. Then A+ B € P by (I11.11); using (d) and (b)

several times, we obtain in turn

(=66 )99

Now, an application of 4. shows that AB € P.

(f) If A belongs to a matrix ideal P, then the result of permuting the rows
or columns of A in any way again belongs to P. For we can permute the rows

(or columns) by (c) and use (e) to get rid of the minus signs.

(g) A matrix ideal P is proper iff some square matrix does not belong to P.
Indeed, if P is proper, then 1 ¢ P, by definition. Conversely, if P is improper,
then I € P and hence by (e), A = AI € P, for any square matrix A.

Let (P,) be any family of matrix ideals, then it is clear that P := [P, is
again a matrix ideal. We can therefore speak of the “least” matrix ideal con-
taining a given set X of square matrices, namely the intersection of all matrix
ideals containing X'. This least matrix ideal containing X is also called the ma-
trix ideal generated by X. Similarly, we can define the matrix pre—ideal
generated by X. Explicitly, this is obtained by forming the determinantal
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sum of matrices X + A (X € X, A any square matrix) and of non—full matrices.
For this set is contained in any matrix pre-ideal containing X, and it satisfies

1. and 2; let us show that it also satisfies 3.. If the set contains C, the (for

suitable bracketing),

(I11.12) C=B1v---VB (Bi=X4+ A or non—full),

hence for any square matrix P,
C+P=(B+P)v - ---v(B-+ P),

with the same bracketing.

Thus the matrix pre-ideal generated by a set X consists precisely of all
determinantal sums C of the form (111.12). Now the connectica between matrix

pre-ideals and matrix ideals is given by

Proposition IIL.4.%2 Let P be any matriz pre-ideal, then the least matriz ideal

containing P is given by
(111.13) P={A: A+ I€P for some unit-matriz I}.

Proof. If P is defined by (111.13), then P D P and any matrix ideal containing
P must also contain 7, so it only remains to show that P is itself a matrix ideal.
Properties 1.-3. are clear. f A+ 1 €Pthen A+ 1+I€P,ie. A+T P
(for a unit matrix of larger order than before), and hence A € P. Thus, 4. also

holds, and the result follows. g

Corollary II1.4.2 A matriz pre-ideal generates a proper matriz ideal iff it is
ilself proper. More specifically, the matriz ideal generated by a set X is proper
iff the unit matriz I (of any size) can not be ezpressed as a determinantal sum
of non—full matrices and matrices of the form X + A, where X € X and A is

any square matriz. g



II1.5. Prime matrix ideals and their characterization as singular kernels 140

Let £ be the matrix pre—ideal generated by the empty set. Clearly this is the
least matrix pre-ideal, and it consists precisely of all determinantal sums of

non-full matrices. By the last corollary we find

Proposition II1.4.3 Let R be any ring, then R has proper matriz ideals iff no

ur ii-matriz can be wrillen as a determinantal sum of non-full maitrices. g

III.5 Prime matrix ideals and their characteri-
zation as singular kernels

In the study of homomorphisms of commutative rings into fields prime ideals
play an important role, and we shall find that in the general case there is an
analogue in the prime matrix ideals, now to be defined. It will be convenient
to begin by defining a multiplication of matrix ideals; this is an associative and
commutative operation, like the multiplication of ideals in commutative rings.
Given two matrix ideals PP;, P> in a ring R, their product, denoted by P, P>,
is defined as the matrix ideal generated by all A; + A, with 4; € P; (i =1, 2).
The product so defined is easily seen to be associative. We write P, P>P3
etc. for repeated products, and abbreviate PP, PPP, ... as P?, P3,.... From
property (f), of the previous section, it follows that the product is commutative,
and by 3., in the definition of matrix pre—ideal (see previous section), it is

contained in the intersection of the factors:
P1P2 = PP1 CP1NPa.

The following lemma is often useful in constructing products:

Lemma IIL.5.1 Let &), X, be any sets of square matrices, X the set of matri-
ces Ay + Az (A; € X;), and Py, P2, P the matriz ideals generated by Xy, Xa, X
respectively, then P = P P,.
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Proof. Clearly X C P, Pa, hence P C P1P»; to establish equality it is enough
to show that A; + A2 € P for any A; € P;. Take A; € P;, then A; + I is a
determinantal sum of matrices B, which are either non—full or diagonal sums
with a term in A; similarly A, 4 / is a determinantal sum of matrices C, which
are either non—full or diagonal sums with a term in X. Therefore A; + A, § I
is a determinantal sum of the matrices B, 4 C, which are either non—full or
a diagonal sum with a term in X. Hence A, + A, € P, and it follows that
P = P, P2 as asserted. g

A matrix ideal P is said to be prime if it is proper and
if A} B€ePthen AcPorBeP.
A matrix ideal P is said to be semiprime

ifA+ A€ P then AcP.

An alternative description of these notions is given in
Proposition IT1.5.2 Let P be a matriz ideal in a ring R; then

(i) P is prime iff P is proper and for any matriz ideals Py, P2 we have: if
PiP2CP then Py CP orP, CP,

(it) P is semiprime iff for any matriz ideal L, if L2 C P then L C P.

Proof. (i) Let P be prime and PP, C P but P; € P (i = 1, 2). Then there
exists A; € P; but A; € P. Since P is prime, A; + As € P, but 4, + A, €
P1P2 C P, a contradiction.

Conversely, assume that P satisfies the given conditions, and let A, 4+ A4, € P.
Write (A;) for the matrix ideal generated by A;, then by lemma 111.5.1, the
product (A;)(Az) is generated by A, + A, and hence (4,)(Az) C P. Therefore
(Ai) CP fori=1or 2 say i =1, and so 4, € P, showing that P is prime.
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(ii) Similarly if P is semiprime and L2 C P, let A € £, then A+ A € L2 C P,
hence A € P, and so £ C P, as claimed. Conversely, if P satisfies the given
condition, and A 4+ A € P, then (A)? is generated by A 4 A and so (A4)2 C P,
hence (4) C P, whence A € P. This shows that P is semiprime. g

By +7A we mean the diagonal sum of A with itself r times, where 4 is a

square matrix over a ring A and r € N. Let P be any matrix ideal and define
its radical as the set

ﬁ:{A:-i—'AG'PforsomerEN}.

Clearly /P D P; we assert that +/P is the least semiprime matrix ideal contain-
ing P. In the first place, any semiprime matrix ideal containing P must contain
VP for if A € /P, then +"A € P for some r; hence this holds for any r’ > r,
and taking r' = 2¥, we have that +2*4 € P. Now it follows (by induction on
k) that any semiprime matrix ideal containing P also contains A, and hence
contains vVP. Thus if we can show that VPis a semiprime matrix ideal we
shall have shown that it is the least semiprime containing P. Properties 1., 2.,
4. clearly hold; to prove 3. we note that +"(A 7 B) is a determinantal sum of
terms C) + --- 4 C, where each C; is A or B. Hence if +"A and §*B lie in
P, then +"+*~1(A v B) € P; therefore /P also satisfies 3. and so is a matrix
ideal. If A+ A € VP, say 42" A € P, then A € VP, so /P is semiprime, as
claimed. g

To relate semiprime and prime matrix ideals we first show that the familiar

method of constructing prime ideals as maximal ideals still works for matrix

ideals.

Theorem III.5.3 In any ring R, let £ be a non-emply set of square matrices
closed under diagonal sums; then any matriz ideal P which is mazimal disjoint

Jrom X is prime.

Proof. Let PP, C P but P; € P, then P; NX # 0. Take A; € P; NX, then
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A1+ A; € X, and 4, + A; € PP, C P, which is a contradiction. So we have
Pi C P for i =1 or 2. Moreover, P is proper because X # 0; this shows that P

is prime. g

Whether maximal matrix ideals as in theorem II1.5.3 exist or not, depends
on whether there are any proper matrix ideals in R. Thus let £ be any non-
empty set of square matrices closed under diagonal sums, then any matrix ideal
disjoint from ¥ must be proper. If there is one, i.e. if & is disjoint from the
least matrix ideal, then the collection C of all matrix ideals disjoint from ¥ is
non—empty. Clearly C is inductive, and hence there are maximal matrix ideals
disjoint from £, to which the theorem can be applied.

The connection between semiprime and prime matrix ideals is given in

Theorem II1.5.4 In any ring R, a matriz ideal is semiprime iff it is an inter-

section of prime matriz ideals.

Proof. Let P = (| P, where P, is prime. If A4 A € P, then A+ A € P, for
all A, hence A € P, for all A, so A € P and P is semiprime.
Conversely, let P be semiprime. It will be enough to find, for each A &P, a

prime matrix ideal P4 containing P but not A, for then

P=({Pa: A¢P}.

Let A ¢ P be given and consider the set £, of all diagonal sums of copies of
A. Since P is semiprime, £4 NP = @, and clearly T4 is non—empty and closed
under diagonal sums. Hence there is a maximal matrix ideal P4 containing P
and disjoint from £,4. By theorem IIL.5.3, P4 is prime and A ¢ P,. Hence
(NPa = P, and the result follows. g

Let R be any ring with a prime matrix ideal P, and denote by ¥ the com-
plement of P (in the set of all square matrices). We would like that Ry be a

local ring; this will follow once we know that Ry # 0. In fact we shall see that
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there is an R-field K in which the set of singular matrices is precisely P. From
the construction of epic R—fields from their singular kernels (cf. page 128), it
then follows that Ry is a local ring with residue—class field XK.

We can now state the main result of this section. It will be presented without
proof because this is long (and can be found in Cohn’s book [Coh85), chapter
7); more over a knowledge of the proofs is not necessary to apply the ' sults as

we shall do in the next section.

Theorem IIL.5.5 Let R be any ring and P a prime matriz ideal in R. Then
there erisis an R-field K such that P is the precise class of matrices mapped to

singular matrices under the canonical homomorphism R — K. g

Taken in conjunction with theorem II1.3.1 (on page 130), this result shows
that the category of R-fields and specializations is equivalent to the category of
prime matrix ideals and inclusions, in precise analogy with the prime ideals in a
commutative ring. For example, R has a universal R—field iff there is a unique

least prime matrix ideal (cf. corollary II1.3.2 on page 133).

I1i.6 General criterion for a ring to be embed-
dable and to have a universal field of frac-

tions

Of course, a ring need not have any prime matrix ideals at all (see introduction
to chapter III); to find if it has any we go back to the method of generating
matrix ideals described in section II1.4. In any ring R, denote by L the set of

all determinantal sums of non—full matrices. Thus A € £ iff

A=01V'°'VC1,
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where each C; is non—full and the right-hand side is suitable bracketed. Clearly
L is the least matrix pre-ideal in R (cf. section II1.4). Let L be the matrix
ideal generated by £ and put N = \/f, then N is proper iff £ is proper. By
theorem II1.5.4 on page 143, N is the intersection of all prime matrix ideals, so
N is proper iff R has prime matrix ideals. But the latter correspond to homo-
morphisms into fields, so we find that A is proper iff R has a homomorphism
into a field. We therefore obtain the following criterion for the existence of field

homormorphisms:

Theorem ITI.6.1 Le! R be any ring. Then there erists a homomorphism of R
tnto a field iff no unit matriz in R can be written as a determinantal sum of

non—full mairices. g
We also obtain a criterion for the invertibility of matrices:
Theorem II1.6.2 Let R be a ring and A any square matriz over R. Then

(i) there is @ homomorphism of R into a field mapping A to an invertible matriz
iff no diagonal sum 14" A can be written as a determinantal sum of non—

Jull matrices,

(ii) there is @ homomorphism of R ixio a field mapping A to a singular matriz
iff no unit matriz I can be writlen as a determinantal sum of non-full

matrices and matrices of the form A+ B (where B is any square matriz).

Proof. Both parts will follow if we prove that for any matrices P, @ there
is a homomorphism to a field mappings P to an invertible matrix and Qtoa
singular matrix iff no diagonal sum I 4" P can be written as a determinantal
sum of non-full matrices and matrices Q + B (where B is any square matrix).
For (i) we take P = A, Q = 0, and for (ii) we take P =1, Q = A.

The condition for a homomorphism of the required sort to exist is that there
should be a prime matrix ideal containing Q but no P. Let (Q) be the matrix

ideal generated by Q, then there is a prime matrix ideal containing @ but not
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Piff P ¢ \/(Q). So the required condition is that +" P & (Q) for all r, i.e. there

is no equation

(I1.14) I+ " P=C1v---vC: (C; non—full or of form Q 4 B;). g

From this theorem it is possible to obtain a criterion for the embeddability
of a ring in a field.

Corollary ITL.6.3 A ring R can be embedded in a field iff il is an integral
domain, and no non-zero scalar mairiz al can be written as a determinantal

sum of non—full matrices.

Proof. The condition is clearly necessary from theorem II1.6.2; when it holds,
then there is an R-field for which al is invertible, for each a # 0 in R. Thus R
can be embedded in a product of fields and for an integral domain this means

that R can be embedded in a field, cf. for instance, Cohn [Coh71b]. g

An alternative formulation is the following:

Corollary II1.6.4 A ring R is embeddable in a field iff no diagonal matriz with
non-zero elements on the main diagonal can be writlen as a determinantal sum

of non—full matrices.

Proof. For if ab = 0, then

G)-Coe -0 -0

and here both matrices on the right are non—fuil. Thus the condition of corol-
lary I11.6.4 is sufficient to exclude zero—divisors, and by corollary I11.6.3 is there-

fore sufficient for embeddability in a field. The converse is clear. g

We have already found the condition for the existence of a universal R-field:

it was that the radical of the least matrix ideal, the set A constructed before
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theorem I11.6.1, should be prime. Moreover, there will be a universal field of
fractions iff, further, N contains no non-zero elements of R. We shall now see
conditions for the existence of universal fields of fractions in which every full

matrix is invertible.

Theorem ITL.6.5 Let R be any ring. Then there is an R—field in which every
Sull matriz of R can be inverted (and which is therefore a universal field of
fractions) iff

(i) the diagonal sum of any full matrices is full, and

(ii) the determinantal sum of any non—full matrices (where defined) in non-

full.

Proof. For the conclusion requires that the set of non—full matrices should be
the unique least prime matrix ideal. If this is to be the case, (i) and (ii) must
hold. Conversely, when they are satisfied, then the non-full matrices form a

matrix ideal by (ii), necessarily the least, and it is prime by (i). g

The conditions of theorem III.6.5 are not easy to apply; but there is just
one case where they can be checked without difficulty, namely for semifirs, i.e.
rings in which finitely generated (left or) right ideals are free of unique rank.
Once the basic properties of semifirs have been derived, such verification takes
less than a page (cf. Cohn [Coh85]), but since we have not developed the linear

algebra for semifirs required here, we omit a detailed proof:

Theorem II1.6.6 Every semifir has a universal field of fractions, obtained as

the universal ring inverting all the full matrices. g

Finally, we mention that the following are semifirs:
e free algebras over a commutative field, (cf. [Cohd3]),

¢ group algebras of free groups over a commutative field, (cf. [Coh67]),
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o free products of skew fields over a common subfield, (cf. [Coh63)),

hence, they are embeddable in skew fields.



CHAPTER IV

Dubrovin’s partial solution

to a problem of Malcev

In this last chapter we shall quote without proof the most important result from
a paper of Dubrovin [Dub94] which led to a partial solution of a famous and
longstanding problem of A. I. Malcev on the embeddability of the group ring of
a right ordered group (over a skew field) into a division ring. In chapter II we
saw the solution of a particular case of this problem, namely when the group
was left and right ordered, by means of the Malcev-Neumann constructions of
formal power series.

Recall from page 52 that a group G is said to be left orderable if it can
be linearly ordered in such a way that if gy < g, then hg; < hgs for any
h,91,92 € G.

Problem (Malcev, A. 1.). Let F be a skew field and G be a left orderable
group. Can the group vsng FG be embedded into a skew field?.

It is well-known (cf. [Dub94]}) that it is sufficient to solve Malcev’s problem
for the group Aut(Q, <) of all order-automorphisms of the rational numbers

with their usual order. From this point of view, Dubrovin presents his partial
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solution of Malcev’s problem: theorem IV.8.1 says that, under certain extra
conditions, F'G can be embedded in a skew field in the case when G is the
universal covering group of SL(2,R).

The general solution to Malcev’s problem remains open.

IV.1 The main idea of Dubrovin’s embedding

The main idea of Dubrovin’s work is as follows. Let L be the set of all formal
series v = }_ kg9 (9 € G, ky € F) with well ordered support supp v. If G
is a linearly ordered group, then L is a skew field under the naturally defined
operations of addition and multiplication, as we saw in chapter II. But if G is
Jjust a left ordered group, L will only be a left FG-module; still one may treat
FG as a subring of the ring Q = End(Lr). Dubrovin introduces the rational
closure D of the ring FG in Q. The ring D is the main object of investigation
through out his paper. It is also introduced the notion of complexity on D.
For example, an element g € G\{1} is simpler than 1 + g which is simpler than
(1 +g)~! and so on. This relation is a refinement of the notion of depth of
elements in a universal skew field of fractions as studied by P. M. Cohn [Coh85],
chapter 7. It turns out that this complexity relation makes D a well-preordered
set and thus it is possible to prove results by transfinite induction on the com-
plexity. Starting from the group G and jumping from an element d € D to more
complex elements it can be proved that all non-zero elements in D are invert-
ible, and moreover, they possesses other nice properties such as o-linearity,
mononotonicity, fully rationality, etc. It is essential in order to be able to

show that D is indeed a skew field to watch these additional properties.
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IV.2 Automorphisms of linearly ordered sets

Through this chapter (I', < ) will be a loset (linearly ordered set), A will be
a group and V: A — Aut T will be a homomorphism. If a € A and h € T we
shall write V,(k) for the image of h under the automorphism V,: T — T.

In what follows, keep in mind the construction of the real numbers from the
rationales by means of Dedekind cuts. A subdivision I' = I'; U I'> will be called
a Dedekind cut if:

a) hy < h; for any h; € Ty and hy € Ty;

b) if T'y has not the largest element then I'; is not empty and has not a smallest

element.

The set of all Dedekind cuts of the loset I" will be called the Dedekind closure
of I and will be denoted as T.

Leta: T=TUl2and 8: T = I} UTY% be two Dedekind cuts. Then we
shall write @ < 8 or 8 > « if for every element h € T; there exists an element

h' € I'} with h < A’. The next theorem is well known from the real numbers.

Theorem YIV.2.1 The Dedekind closure T with the relation < defined above is
a linearly ordered set. The map RX: T — T which attaches to every h € T the
Dedekind cut

F:={lerTji<h}u{lel|l>h)

1s @ monolone inclusion of (I', <) into (T, <). g

Let us identify I' with the image ®(T'). Thus we shall consider T' as a subset
of the loset T and for every Dedekind cut I' = T'y U T2 there exists a unique
element o € T with A, < a < h; for every hy; € T'; and hy € I's. It follows
that every non-empty upper bounded subset S of the Dedekind closure T has

a least upper bound supS’ € T and every non—empty lower bounded subset T

has a lower bound infT €T.
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We shall need the next simple property of a Dedekind cut.

Proposition IV.2.2 Lete € T\T' and o, B € T with o < £ < B. Then there
exist hy, ho €T such that o < hy <e<hy<pB.

Proof. Let Ty :={h€T|h<e}, To:= {h€T|h>¢}. Then, T =T;UT,
is a Dedekind cut and I'; has no largest element. By definition of a Dedekind
closure, there exists an element h; € I'; with a < h;. Since as I', # 0 there

exists an element hy € T, with hs < 8. g

Let us turn to our representation V : A — Aut I" and take any elements

a € A,e € T\TI'. Then, we set

(Iv.1) Va(€) = lim V,(h).
A—Ve
herl

Definition (IV.1) is correct due to proposition 1V.2.2, and moreover, it can
be verified that V,: T — T is an automorphism.

For a given element ¢ € T the notation P, will be used throughout for the
set {a € A|V4(€) > €} and A, will be used for the set {a € A| V,(¢) =¢€}. The
notation U(P) will be used for the set of all units of a monoid (P, .).

IV.3 The universal covering group of SL(2,R) and

the module of formal series

We shall present the universal covering group of SL(2,R) as a group of order—

preserving bijections of the line R. First we denote by

t —sint b
S=<{r():= cos sin jteR 3, U= N la,beR;a>0}.
sint cost 0 a!

Note that S and U are subgroups of SI,(2,R). It is well known that any element
g € SL(2,R) can be uniquely written in the form g = r(t).u, for some r(t) € S
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and v € U.

Let I' = {z'|t € R} be a group with a multiplicative law of composition,
zt.zt’ = '+ and an an order z? < z' iff t < ¢’. The universal covering
group G of the group SL(2,R) can be described as the set of all z'u (t € R, u €

U) with the law of composition
(IV2) (z‘l ul)(z"uz) = ghit2xk+tt,,

where k € Z is such that 0 < ¢, — 27k < 27 and t € [0, 2] is such that
r(t)u = uyr(tz)uz in the group SL(2,R).

Let K be aring, I' a linearly ordered set and {My] h € T} be a set or right
K-modules indexed by I'. The set L of all power series

(1v.3) T= mu, h€T, my € M,

such that suppy = {h € | m # 0} is a well-ordered set, will be called the
module of formal series. The set L is indeed a right K-module, if addition

and multiplication is defined component-wise, which is possible, since

(IV.4)  supp(11 + 72) C supp(m) U supp(r2); supp(vk) C supp(7)

for v, 2 €L, ke K.

We define the norm v(v) of a non—zero element v in L as the minimal element
in suppy and set v(0) = co.

Any series of the form m, with m € M,,, will be called homogeneous, or
more precisely h—~homogeneous. For any non—zero series v there exists a non-
zero homogeneous summand a of 7 such that v(y ~ @) > v(y). This summand
will be denoted by v and will be called a homogeneous beginning of 7.

Let Q := EndLk. As usual, we shall call an elementof g € Q a projection

if g2 = ¢, and we shall define two special types of projections of Q as follows.
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Let A €T and v be an element in L as in (IV.3). Then the homogeneous
summand m;, of v is called the h—component v, of v. We observe that 3 #0
iff h ¢ _ppy. Now, let € be an element in (T, 0o0). Then, the e~ beginning, or
simpler a beginning, of v is the series y¢. = 3" m}, h €T, m) =m, forh<e
and m} =0, forh > ¢.

The mapping defined by ¥ — v<. will be called the e—cutting. With 8 <«
we shall denote the fact that g8 is an e-beginning of « for some € and we shall
write 8 < 7 if 8 < v but 8 # v, and say that g is a proper e—beginning of 7.
The decomposition ¥ = #++', where S is an e-beginning of 7, will be called the
e—cutting of . If € < v(7) then the equality v = 0 + v will be the e—cutting.
In the other extreme, when ¢ is greater than any element of suppy, we obtain

that ¥ = 7 + 0 is the e—cutting.

IV.4 Summable systems and o—linear, monotone
and monomial endomorphisms of the module of

formal series

Let {%| i € I} be a family (also called system) of elements in L. We say that
this family is summable or, equivalently, that the series 3" € I, converges,

if the following conditions hold:
a) |Jsupp 7i, i € I, is a well-ordered set;
b) for every h €T, the set A(k):= {i € I| (v:), # 0} is finite.

In this case we call the series ¥ € L with 94 = 3" (7;),, i € A(h), h € T, the
sum of the system {;]| i € I}.

If g € Q := EndgL and v € L, then we shall denote by g[y] the im-
age of v under ¢. An endomorphism ¢ € Q will be called o-linear if for

any summable family {y;| i € I}, the family {g[yi]| i € I} is summable and
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gl>_"7] = Y qlx%], i € 1. An endomorphism g € Q will be called monotone
if the inequality v(a) < v(B) holds for any a, B € L iff v(q[a]) < v(qlB]). An
endomorphism ¢ € @ is called monomial if for every k € T there exists jer
with ¢(M3) C M;.

Let A bea s;ubset of a ring Q. The smallest subring D of the ring Q which
contains A and is closed under the partial operation taking inverse (¢ — ¢~1)
will be called the rational closure of the set 4 in 4 and will be denoted by
Divg A or DivA.

If M, My, M, ..., M, are subsets of the ring @ then we define:

My +My+---+ M, = {Zim'l m; GMi};

i=1

MiM;... M, := {mima...mp| m; € M;,i=1,2, ... n};

M™'={m '|me MAUE@Q)}.

Therefore the rational closure DivA is the smallest subset K of the ring Q
which satisfies the following properties: a) D D Aand 1€ D,b) D+ D C D,
c) DDC D,d) D! C D.

Let A be an ordinal and let (N(A), +, 0) be the free commutative monoid
with the set {a| a is an ordinal and 0 < @ < A} as a basis and the ordinal
0 as the neutral element. Each element 4 € N(A) can be written uniquely as
the sum 0 = a; + a2 +--- + a;,, where A > oy >az> -2 an > 0. Let
T=F+Po+--+Pn,A> B > 82> -8, > 0 be another element from N(A).

We shall write 6 < 7, or 7 > 0, iff there exisi a natural number i such that
(Iv.5) ay =y, -, i =0, ity < Bigs.

Here, it is supposed that a; = 0 for J > m and B;j = 0 for j > n. In particular,
the inequality 8 > ay, + - - - + ay, for an ordinal 8 means that B > a; for all i.

The relation # < 7, as usual, means 6 < 7 or 6 = 7.
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Theorem IV.4.1 (N(A), +, 0, <) is a well-ordered monoid. g

IV.5 The complexity

Let A be a subsét of a ring Q and D be the rational closure of A4 in the ring
Q. We shall now define subsets D, of the ring D for any ordinal a by transfi-
nite induction. The base of the induction construction is the definition of the

following sets:
(Iv.6) Dg := {0}, D,:={0}u{x1}UAU(—A).

Suppose that 8 is an ordinal and all sets D, for @ < # have been defined. If B

is a limit ordinal then we define
(Iv.7) Dg := |} Da.
a<lf
If B =7+ 1 is a non~limit ordinal then the three cases will be considered.

Case 1. D, is not a subgroup of (D, +).

Then a smallest element 7 + 72 + - - - + 7, € N() exists such that D, +
D;, +---+ D,, € D, and we define

(IV-8) Dp p—y D-y U (DTI + DT? + .. + D-r'.).

Case 2. D, is a subgroup of (D, +) but it is not a subring of D.

Then a smallest 7y + 72+ - -+ 7, € N(7) exists such that D,, D, ---D, &

D., and we define

(IV.9) Dg:=Dyu( Dr, D+, ) Doy )

CEXy
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where @, denotes the group of all permutations of the symbols 1, 2,... ,n.

Case 3. D, is a subring of the ring D but D;! ¢ D,.

Then there exists a smallest ordinal 7, 7 < v for which D3 1 ¢ D, and we
define

(Iv.10) Dg := D,u D;t.

There will be an ordinal A such that D, is a subring in D and Dxl C Dap.
Then, Dy = D by the definition of rational closure and we completed the
construction of the set {D,} where a runs through all the ordinals. Thus we

obtain the strictly increasing sequence

DoC D CD2C...CDp=D.

The complexity, noted cp(d), of a given element d € D is the smallest
ordinal number « such that d € D,. If d’' € D is another element and cp(d’) <
cp(d) then we shall write d «d’ or d' > d and say that d is simpler than d’. If d

and d’ have the same complexity, we shall write d ~ d".

IV.6 Fully rational endomorphisms of the mod-

ule of formal series and conformed decom-

positions

Let K be a skew field, let M, = hK be a 1-dimensional vector space for any
h € T and let A be a group of monomial, o-linear, monotone automorphisms
of the module of formal series L. Let Q = End(Lk) and assume —1; € A. Let
D be the rational closure of A in the ring Q; an element of D will be called a

rational endomorphism. An element d € D will be called a fully rational
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endomorphism if for every & € I and every e € suppd[h] there exists a rational
endomorphism b which is simpler than d and b[h] = d[h]<.. If ¢ is an element of
T (cf. section IV .2), then we denote with A, the subgroup of A consisting of all
elements a in A with Va(€) = € and let D, := Divg A,. An endomorphismd € D
will be called right =~homogeneous if d € gD, for some g € A and it will be
called left e~homogeneous if d € D, e for some a € A. For any endomorphism
d € D an equality d = g(u + v) where g € A, u € D, and v € D will be called a
right decomposition of the endomorphism d at the point ¢ if v ad provided
v # 0 and V,(€) > ¢; similarly, an equality d = (u + v)g where g € A, u € D,
and v € D will be called a left decomposition of the endomorphism d at the
point € if u ad provided v # 0 and V,(¢) > ¢. Let d = g;(u; + v1) be a right
decomposition at the point ¢ € T and d = (u2 + v2)g2 be a left decomposition
at the point n € T. We shall say that these decompositions are conformed if

the equality
(Iv.1i) Ppg1Pe = Pygy P

holds (for the notation P, cf. page 152).

IV.7 Dubrovin’s embedding

Let G be a group with generalized cone P, i.e. P C G and
i) PPCP,

ii) PN P~! = Y := subgroup of units of P,

iii) PUP 1 =G.

Let F be a skew field, assume that the group ring FI has a field of fractions K.
Let T’ be a set of representatives of Feft cosets gl of U in G. Order T by g; < g,
iff g7 g2 € P. Consider the FG-K—-module of formal power series with well or-
dered support K{I'} := {a = Zhel‘ hkn, kn € K, supp o well ordered}. Then,
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we have FG C Q := Endg K{T'}. Let D := rato(FG) of FGin Q, i.e. D is the
smallest subring of @ that contains FG withue D, v "' ¢ Q — u~' c D
A subset I # 0 of P is a right ideal of P iff IP C I. Denote by O (I) the
left order of 1, i.e. O.(I) := {g € G| gI C I}. Denote by UO. (1) the group of
units of O.(). Lastly, consider the group ring FUO.(I).

Theorem IV.7.1 (Dubrovin’s embedding) Let G be ¢ group with general-
ized cone P, let F be a skew field, suppose that FUO.(I) has a field of fractions
K. LetT be a set of representatives of lefi cosels gUO(I) of UO (1) in G.
OrderT by g1 < g2 iff g7 g2 € P. Consider the FG-K -module of formal power

series with well ordered support

K{T}:= {a = Z hky, ky € K, supp a well ordered} .
her

Let D := rato(FG) of FG in Q. Assume further that
1) P does not contlain a minimal ideal,
2) FUO.(I) is an Ore domain, for every right ideal I of P.

Then, D = ratqFG ts a skew field. g

IV.8 Application of Dubrovin’s embedding to
give a partial solution to Malcev’s prob-

lem

Let G be the universal covering group of SL(2, R). We shall use the notation
I', U and z* introduced in the definition of the universal covering group on

page 152. Let F be any skew field. First we note! that the group U is'an Ore

tcf. [KK74]
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group because it possesses a torsion—free abelian normal subgroup

{60 en)

with a torsion—free abelian factor group U/N ~ (R>9, .); thus the group ring
FU is an order into its classical skew field of fractions, which we shall dencte
by K. Now let us consider a family of one-dimensional right K-spazes {z'K},
where z* runs over I'. Next we shall construct a module L of formal series by

using the family {!K'}. An arbitrary element from L looks like
¥ = 8k, + z%%ky + 2%%k3z + - - -

where {3 < i3 < t3 < ... is  well-ordered transfinite sequence of real numbers
and all k;’s are in K. L is a left F-space with a component-wise operation of

multiplication. Moreover, L becomes a left G-module if we set
gv = zh (ur1ky) + x‘;’(!—!gkz) + z-z;‘\uzkz) + .-,

where gz'' = ztu;, u; € UC K.
Let A be the direct product of the groups (F*, .) and G, i.e. A := {f.g|f €
F*, g € G}. We may tonsider A as a group of monomiai, o-linear, monotone

automorphisms of Ly . Let Q = End(Lk) and D = Divg A.

Thecrem IV.8.1 (Dubrovin’s partial solution to Malcev’s problem) D
is a G—zskew field, i.e. every non-zero endomorphism of D is a o -linear, fully
rational and monclone automorphism whick possesses right and left decomposi-

tions und these decomposilions are conformed. g
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