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Abstract

Over the past decade, the interplay between symmetry and topology in condensed matter
physics has not only deepened our understanding of matter by prompting a conceptual revo-
lution in classifying all phases of matter, but it has also led to tremendous progress in finding
new materials with low energy consumption and new applications such as fault-tolerant topo-
logical quantum computing and Weyltronics, to name but few.

This thesis consists of two parts and presents a theoretical study in the field of condensed
matter theory with a focus on higher-order topological superconductivity and Majorana zero
modes. The first part of this thesis is concerned with high-temperature superconductivity in
cuprates, and the last part is dedicated to the high-temperature iron-based superconductors.

In the first part, it will be shown that using a harmonic potential to confine a two di-
mensional second-order topological superconductor leads to a proliferation of Majorana cor-
ner modes. The second-order topological superconductor can be obtained by incorporating
a first-order topological insulator in proximity to a high-temperature superconductor. As a
consequence, these circumstances result in the formation of Majorana corner flat bands, which
have a fundamentally different origin from that of the conventional mechanism. Moreover,
we will investigate the superconducting pairing instability of the two-dimensional extended
Hubbard model with both Rashba and Dresselhaus spin-orbit coupling within the mean-field
level at both zero and finite temperature. We find that both first- and second-order time-
reversal symmetry-breaking topological gapped phases can be achieved under appropriate
parameters and temperature regimes due to the presence of a favored even-parity s+ id-wave
pairing even in the absence of an external magnetic field or intrinsic magnetism. Our findings
suggest new possibilities in interacting spin-orbit coupled systems by unifying both first- and
higher-order topological superconductors in a simple but realistic microscopic model.

In the last part of this thesis, the impact of second-order topology on the vortex lines
topology in iron-based superconductors in both weak and strong Zeeman field regimes will be
investigated. By incorporating a realistic assumption of inhomogeneous superconductivity,
our findings can explain the recent experimental observation of the peculiar coexistence and
evolution of topologically nontrivial and trivial vortex lines in iron-based superconductors,
and hopefully advance our understanding of these materials.
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Chapter 1

Introduction

1.1 Overview

Classifying different states of matter and the transitions between them has attracted lots of
attention in the past century. In the middle of the twentieth century, Ginzburg-Landau theory
had a great success in understanding the phase transitions in terms of symmetry groups, as
well as classifying them according to different universality classes. This theory relies on the
concept of a local order parameter and a closely related notion of spontaneous symmetry
breaking. According to Ginzburg-Landau theory, the transition from one phase to another
occurs at a critical point either as a function of temperature (classical phase transition), or as a
function of a different parameter inside the Hamiltonian at zero temperature (quantum phase
transition). These two phases have to be distinct according to their describing symmetries.
One of the phases is then called the ordered phase and the other one the disordered phase. The
order parameter, which must vanish in the disordered phase and acquires a finite value in the
ordered regime, quantifies the amount of such symmetry breaking. Although the physical
origin of classical and quantum phase transitions is different, the same phenomenological
approach could be used to understand the phase transition in both cases. In the former
case, the macroscopic order is destroyed by thermal fluctuations. However, in the later
case, the order is destroyed solely by quantum fluctuations originating from the Heisenberg
uncertainty principle. In fact, even though the order parameter is zero in the disordered
phase, its fluctuations can be non-zero. When approaching the critical point, the correlation
length of such fluctuations diverges, which implies the scale invariance of the system and can
be described by universal parameters know as critical exponents. This behavior describes the
critical properties of the system. Remarkably, the critical behavior is determined only by the
symmetries of the order parameter and the space dimension of the system, which defines the
so-called universality classes.

During the last few decades, theoretical investigations and experimental developments
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Chapter 1 2

have shown that some phase transitions are not straightforwardly related to symmetries, and
are hence situated beyond the Ginzburg-Landau paradigm. In order to understand these
phase transitions, one needs to explore the topology of the system, so the associated phase
transitions are called topological phase transitions.

In 1972, the first theoretical results indicating that the physical properties of some systems
cannot be described by the spontaneous symmetry breaking paradigm were found in the
seminal independent works by Berezinskii [1, 2], and Kosterlitz and Thouless [3] by studying
the two-dimensional XY model.

In 1879, eighteen years prior to the discovery of the electron and long before the discovery
of its spin, Edwin Hall conducted an experiment bearing his name nowadays known as the
classical Hall effect. He considered a metallic two-dimensional sample subject to an in-plane
current or electric field and a perpendicular magnetic field. The Lorentz force leads to the
displacement of moving charge carriers and hence a new in-plane electric field perpendicular
to the first one. By measuring the transversal or Hall resistivity (ρxy) of the sample, he found
that this value is directly proportional to the magnetic field.

In 1980, one hundred years after Edwin Hall’s experiment, the integer quantum Hall effect
was discovered by von Klitzing and collaborators, where a two-dimensional weakly disordered
metallic sample is subjected to a strong magnetic field at low temperature [4]. Surprisingly,
they found that ρxy is no longer proportional to the magnetic field in sharp contrast to the
classical Hall effect! Instead, there were lots of plateaus at which the longitudinal resistivity
(ρxx) is zero while between two adjacent plateaus its value is finite (see Fig. 1.1). A question
immediately arose: is this zero longitudinal resistivity at plateaus a superconductor or a
perfect conductor? Surprisingly, the answer is no, it is not even a conductor! It is actually
an insulator! The reason is that σ = 1/ρ requires a very important assumption which is the
following: in general ρ is a tensor and only when it is proportional to the unity matrix, can
it be treated as a scalar.

In the quantum Hall system and at plateaus, resistivity is a two by two off-diagonal matrix
since the diagonal components are zero i.e. ρxx = ρyy = 0, so here it cannot be treated as a
scalar. By inverting this matrix, it turns out that σxx = σyy = 0 not infinity, which means
that on a plateau there is zero conductivity, so the sample is actually an insulator as already
mentioned. By the same procedure, it can be readily found that σxx = σyy ̸= 0 between two
adjacent plateaus since ρxx = ρyy ̸= 0, so the sample is a metal in those regions. In other
words, the system turns from one insulator to a metal, then from another insulator and a
metal and so on as the magnitude of the external magnetic field is increased. These insulators
are not the same as each other topologically. The transport coefficients for the metallic states
are non-universal. However, the insulating states are very universal and independent of the
sample quality.

Because of the effect of the magnetic field, the energy of the electron is quantized, which
leads to the formation of highly degenerate Landau levels at energy En = ℏωc(n + 1/2) for
n = 0, 1, 2, .... Here, ωc = eB/m is the cyclotron frequency, B represents the magnitude of the
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Chapter 1 3

external magnetic field, and e and m are the magnitude of the charge and mass of the electron,
respectively. Two things should be noted here: First, such quantized effects are noticeable
at low temperatures when the quantum effects are dominant and the thermal energy is much
smaller than the spacing between different Landau levels. Second, each Landau level has a
finite width due to the presence of disorder in a real experimental sample.

The number of states Ns in each Landau level is given by Φ/Φ0 which is equal to the ratio
of the total magnetic flux piercing the sample to the flux quantum Φ0 = h/e (h is the Planck
constant). Therefore, Ns is the total number of flux quanta in the system. One expects that
such a system is either an insulator, when the chemical potential lies between two Landau
levels, or a metal, when the chemical potential crosses with one band. In experiments, the
value of magnetic field is usually tuned for a given value of chemical potential. As the energy
of all bands increases by increasing B, the chemical potential may be either inside the gap or
cross a band as was already mentioned. The Hall conductivity displays plateaus whose value
is quantized perfectly with an extremely high precision to

σxy =
1

ρxy
= ν

e2

h
(1.1)

where ν = N/Ns is the filling factor or the filling fraction, and N is the number of electrons.
The filling factor can take either integer or fractional values. In the first case, an integer
number of Landau levels is occupied and the observed effect corresponds to the integer quan-
tum Hall effect. In the second case, a fraction of the Landau level (usually the lowest one) is
occupied and the observed effect corresponds to the fractional quantum Hall effect [5]. The
transition between plateaus is accompanied by a peak in the ρxx, which vanishes otherwise.
It can be shown that each filled Landau level gives us one chiral edge state, so the number
of chiral edge states or the Hall conductivity is just the number of filled Landau levels or ν.
Moreover, the bigger the magnetic field, the bigger the Landau level spacing and the fewer
the number of edge modes or ν.

Close to the one-dimensional boundaries of the sample, the confinement potential bands
the otherwise flat Landau bands, so the Landau levels that are below the chemical potential
in the bulk are forced to cross it near the boundary as shown in Fig. 1.1. This leads to
two opposite group velocities along the lower and upper edges. Therefore, the boundary of
the system is a one-dimensional metal with unidirectional or so-called chiral modes. As a
consequence, there are no available states to backscatter to even in the presence of impurities,
so the boundary states may be deformed even in the presence of a rough edge or impurity
but still move in the same direction without dissipation. Furthermore, in the bulk of the
sample, the group velocity is zero because of the flatness of the Landau band, so there is
no current flowing. This suggests that although the edge of the system is a one-dimensional
metal, the bulk of the sample is an insulator. The existence of such robust boundary states
can be tracked down as stemming from the nontrivial topology of the states in the bulk.
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Figure 1.1: (Color online) (a) Hall resistivity (ρxy) [black curve and the left vertical axis] and longitudinal
resistivity (ρxx) [red curve and the right vertical axis] in the GaAs-AlGaAs heterostructure as a function of
external magnetic field at 8mK, which is adopted from Ref. [6]. (b) a schematic figure of Landau levels for a
two-dimensional system where the confining potential curves the Landau levels close to the boundaries results
in chiral edge states, (c) the chiral edge state.

It turned out that the number of edge states (ν) is equal to a topological invariant know-as
the Chern number of the bands(s) below the Fermi level [7]. In transport measurements, the
Hall current is carried by the edge states, each of which happens to contribute as e2/h to the
Hall conductance, which confirmed that the ν in Eq. 1.1 is the Chern number. The quan-
tum Hall plateaus have different Chern numbers, so they are distinct topological insulators.
Therefore, there has to be a metallic phase between them as already explained.

The discovery of the integer quantum Hall effect opened a new field in condensed matter
and beyond. The interest in the integer quantum Hall effect comes from multiple points
of views: First, with the discovery of the integer quantum Hall effect, it was found that
Ginzburg-Landau paradigm is not comprehensive. The integer quantum Hall effect is the
first example of a more general family of phenomena known as topological insulators, a key
feature of which is the appearance of symmetry-protected edge states at their boundaries due
to the existence of a nontrivial topology of the bulk bands. This general principle is called the
bulk-boundary correspondence. Second, it is described by a beautiful theory which connects
relatively modern mathematical constructs to experimentally realizable situations. Third,
there is a practical interest from metrology since the integer quantum Hall effect provides an
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Chapter 1 5

extremely precise and reproducible measure of the fundamental constant e2/h with a relative
uncertainty lower than 10−9. It is not altered by the precise geometry of the system nor by
the impurities and disorder. This universality and this invariance against perturbations are
a clue that the quantized Hall conductance may be related to a topological invariant which
was soon recognized by TKNN (Thouless, Kohmoto, Nightingale, and den Nijs) [7].

In 1988, long before the discovery of the topological insulator, the question “can one ob-
tain a nonzero Chern number without a magnetic field?” was answered by Haldane [8]. He
considered graphene, a then hypothetical two-dimensional system of carbon atoms arranged
in a hexagonal lattice. This crystal is described as two triangular sublattices, by conven-
tion called A and B. The resulting band structure has two inequivalent points or valleys in
reciprocal space called K and K ′ around which the Hamiltonian can be described to low
energies as the Dirac Hamiltonian. The Dirac points are protected by the presence of both
time-reversal (time-inversion) and parity (space-inversion) symmetries. Breaking one of these
symmetries opens a mass gap in the low-energy spectrum and converts the Dirac semimetal
to an insulator. The inversion symmetry can be broken by changing the relative energies of
the two lattices with an extra mass term in the Hamiltonian which changes the spectrum
from being fully linear, gapless, and hence massless to having a gap and effective mass m at
the K point. By time reversal symmetry, the mass will also be m at the K ′ point. This is
important from a topological perspective because when integrating the Berry curvature over
the Brillouin zone, contributions from the K and K ′ points will cancel, resulting in a trivial
insulator [9]. Haldane’s realization was that with a magnetic field that is zero on average
but respects lattice symmetry, one could break time-reversal symmetry in such a way that
the masses at K and K ′ have opposite signs. The result would be an insulator with nonzero
Chern number known as a Chern insulator. It would exhibit the quantum anomalous Hall
effect and the full quantum Hall edge states behavior would be realized without the need for
an overall magnetic field. The Haldane model is a spinless non-interacting fermionic model
defined on the honeycomb lattice in which the time-reversal symmetry is explicitly broken
due to a complex second neighbour hopping amplitude with an alternating magnetic flux
pattern threading the unit cell such that the total magnetic flux is zero.

In 2004, a renewed interest in the Haldane model came with the discovery of graphene [10]
although it was then thought that it was necessary to break time-reversal symmetry to obtain
a topological phases such as the integer quantum Hall effect or a Chern insulator. One year
later, in 2005, Kane and Mele from University of Pennsylvania proposed a realization of such
a phase in graphene which is known as the Kane-Mele model nowadays [11, 12]. This model
can be understood as two copies of the Haldane model for spinful fermions, arranged in such
a way that the Z topological invariant is reduced to a new Z2 topological invariant due to
preserving time-reversal symmetry which can be defined for space dimensions two and three.
In a time-reversal invariant system any eigenstate has a Kramers partner. The contribution
of Kramers partners in the Chern number are opposite and cancel out. This results in the
vanishing of the both total Chern number and chiral edge modes but results in the finte spin
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Chern number and the emergance of new helical edge modes. This model, proposed a time-
reversal invariant version of the integer quantum Hall effect known as the quantum spin Hall
effect. Here, the crucial ingredients appear to be a band inversion near a symmetric point of
the Brillouin zone and a strong spin-orbit coupling which effectively generate a momentum-
and spin-dependent magnetic field. Although graphene was the system for which both the
Haldane model and the Kane-Mele model were originally considered, unfortunately the spin-
orbit coupling present from carbon orbitals is much too weak to produce a significant gap
[13]. This led to a search for other systems composed of heavier elements for which spin-orbit
coupling is typically much stronger.

Combined with contemporary theory works [14–16], a breakthrough moment came at the
end of 2006 when Bernevig, Hughes and Zhang from Stanford University proposed an alter-
native realization in HgTe/(Hg, Cd)Te quantum wells with a uniform strain gradient [17, 18].
The effective model that was used to predict the effect is now known as the BHZ model, which
is a 4 × 4 Hamiltonian derived with first order perturbation theory, named after its authors.
The experimental confirmation came in the following year with an experiment conducted by
Laurens W. Molenkamp’s group at University of Würzburg [19]. Soon after, another realiza-
tion in InAs/GaSb quantum wells [20] was proposed and confirmed experimentaly [21–23].

In 2007, it was discovered by Fu, Kane and Mele [24], and Moore and Balents [25] that the
time-reversal invariant topological insulator has an equivalent version in three dimensions,
which was soon experimentally observed in Bi1−xSbx in Hasan’s group at Princeton Uni-
versity in 2008 [26] with angle-resolved photoemission spectroscopy (ARPES) measurements
and later in Bi2Te3 or Bi2Se3 [27–29]. They observed a Dirac dispersion relation of surface
electrons for energies in the bulk gap of the material. It should be noted here that in sharp
contrast there is no integer quantum Hall effect in odd spatial dimensions.

Recently, numerous new topological insulator candidates have been found using systematic
searches through a material database [30–32]. In should be noted that, nevertheless, an ideal
topological insulator would be the one with a large band gap which seems to be hard to come
by since the gap inversion is often a result of spin-orbit coupling, which is not easy to be
enhanced.

Due to the superconducting gap, a superconductor is similar to an insulator from the
energy point of view. One thing that distinguishes a superconductor from an insulator is
redundant particle-hole symmetry of the BdG Hamiltonian. In addition, the ground state of
a superconductor has a definite phase but does not have a definite number of Cooper pairs
[33]. Therefore, adding an electron to a superconductor is the same as removing an electron
or equivalently adding a hole. Studying the topology of such an “insulator” is the subject of
topological superconductivity field [34, 35]. Topological superconductivity is regarded as a
potential new and powerful platform in which to create, observe, and control excitations that
could eventually lead to real-life applications in the field of quantum electronics. Due to built-
in particle-hole redundancy, superconductors are expected under certain conditions to enter
a topological phase that have been predicted to host zero-energy Majorana bound states [36,
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37]. Majorana zero modes hold promising applications in topological quantum computation,
which is based on storing and manipulating quantum bits or qubits in global form with non-
Abelian particles such as Majorana fermions, which is intrinsically fault tolerant in contrast
to other proposals for quantum computing [38, 39]. Therefore, a huge amount of effort has
been made to find these exotic particles in various systems such as solid state and cold atom
systems in the past decade.

A milestone in the topic of topological phases was achieved by Altland and Zirnbauer
in the context of disordered systems in relation to Cartan symmetric spaces [40, 41]. They
developed a classification for a non-interacting gapped fermionic Hamiltonian according to
two basic non-spatial discrete anti-unitary symmetries that commute with the Hamiltonian:
time-reversal symmetry (T ), and particle-hole symmetry (P). The square of these symme-
tries can be either ±1 or even zero when it is broken. Therefore, they lead to 3 × 3 = 9
different symmetry classes. However, a third unitary symmetry that anticommutes with the
Hamiltonian known as chiral symmetry (S = T P) should not be forgotten. It is worth noting
that chiral symmetry is not a unitarily implemented symmetry as it anticommutes with the
Hamiltonian. The square of chiral symmetry can always be chosen to be +1. Although the
presence or absent of the chiral symmetry is determined by the behavior of time-reversal
and particle-hole symmetries, there is a very special case where S is a symmetry of the sys-
tem when both time-reversal and particle-hole symmetries are broken. This case raises the
number of symmetry classes from nine to ten. Therefore, there are ten ways to combine all
the possible symmetries of a one-particle Hamiltonian. This classification scheme is called
the periodic table of topological insulators and topological superconductors for each spatial di-
mension [42]. It turned out that there are five non-interacting distinct topological insulators
and superconductors in each spatial dimension. Nevertheless, not all of them have found
an experimental realization. This poses an ongoing challenge in condensed matter physics.
Furthermore, the road ahead is not entirely mapped, so it is still remains to have a systematic
view of topological matter in the context of interacting systems.

In 2009, Kitaev recognized the Bott periodicity is hidden in Altland and Zirnbauer’s
classification [43]. He thus was able to generalize the classification to all spatial dimensions
which is a culmination of the study of weakly interacting topological materials. Two of the
possible classes, A and AIII, belong to so called the complex classes which have a period
of two while the remaining eight classes belong to the real classes which have a period of
eight. That is, the topological invariants in spatial dimension d + 2 and d + 8 are the same
as those in dimension d for the complex and the real classes, respectively. According to this
periodicity, some interesting conclusions can be drawn. To name a few, the quantum Hall
effect (class A) can happen only in even spatial dimensions, or the topology of class AIII is
nontrivial only in odd spatial dimensions. Although different approaches were developed to
obtain this classification, the agreement of the results is not a trivial fact but it is at the core
of the bulk-boundary correspondence.

The topological phases in the Altland-Zirnbauer table are protected entirely by so-called
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generic, non-spatial symmetries that cannot be represented by unitary operators that com-
mute with the Hamiltonian. Therefore, topologically protected states appear on all surfaces
and the interfaces of the system even in the presence of weak disorder since these spatial
modifications of the system do not affect a non-spatial symmetry. But what will happen if
we consider ordinary spatial symmetries represented by unitary operators? This led to the
discovery of topological crystalline insulators which has opened the door to new topological
phases of matter whose topological nature arises from the richness and complexity of crystal
symmetries.

In 2011 Fu, in another seminal paper, presented a three-dimensional toy model with
gapless surface states protected by the combined effects of four-fold rotation (C4) and time-
reversal symmetries. This toy model manifests itself as the first example of a large class
of topological crystalline insulators [44]. In 2012, one year after this theoretical prediction,
the non-trivial surface states have been successfully observed [45–47]. Topological crystalline
insulators are susceptible to disorder, so topological features are expected to persist only
if the protecting crystal symmetry is preserved on average [48]. Moreover, not all surfaces
of a topological crystalline insulator host topological surface states, only those that do not
break the protecting crystal symmetry. For example, a topological crystalline insulator pro-
tected by a C4 rotation symmetry will have generally topological states only on the surfaces
perpendicular to the axis of rotation [44].

Topological phases of matter can be extended even to gapless phases such as gapless or
Dirac superconductors (such as d-wave superconductors) and semimetals. Whereas gapped
topological phases carry dispersing edges or surface states, gapless topological phases host dis-
persionless or flat bands on their edges or surfaces. The nodal-point and nodal-line semimetals
are two classes of semimetals of which the touching between conduction band and valance
band is a point(s) or a one-dimensional line in momentum space, respectively. A Weyl
semimetal is a three dimension nodal-point topological semimetal phase without requiring
any symmetry protection in contrast to the Dirac semimetals [49, 50]. They need to break at
least time-reversal symmetry or inversion symmetry. Weyl bulk points feature the source and
sink of Berry curvature distribution, so they always come in pairs with opposite chiralities
and are connected by surface Fermi arcs. In 2015, a Weyl semimetal was experimentally dis-
covered in Hasan’s group at Princeton University [51]. The nodal-line semimetals, however,
are distinct from both the Dirac semimetal and the Weyl semimetal, which are nodal-point
ones [52].

In 2017, a new class of topological crystalline phases, named higher-order topological
phases was theoretically predicted by Benalcazar, Bernevig, and Hughes in which the dipole
polarization vanishes while higher electric multipole moments are quantized to fractional val-
ues [53, 54]. Nowadays, this model is known as the BBH model. The word “order” in this
context gives the codimension of the gapless boundary modes, namely, an nth order topolog-
ical insulator or topological superconductor has gapless boundary modes with codimension
n. As the gapless boundary modes of all conventional topological insulators and topological
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superconductors have n = 1, they thus belong to the first-order topological phases in this
language. Therefore, conventional bulk-boundary correspondence, which states gapless topo-
logical boundary states emerge only at boundaries that are one dimension lower than the
bulk, is not valid here.

Higher-order topological phases have attracted a great deal of attention because of the
enrichment of boundary physics, the intriguing manifestation of crystalline symmetry and
band topology in the bulk and boundaries, as well as the occurrence of new possibilities for
topological phase transitions. These intriguing phases could provide new platforms for Majo-
rana zero modes and topological quantum computing and enable unprecedented topological
devices with better integration and miniaturization.

In the past two years, higher-order topological phases have been proposed in systems
without quantized multiple moments [55], and in non-periodic lattices such as amorphous [56],
and quasicrystalline [57] solids. Moreover, higher-order non-Hermitian topological phases [58,
59], higher-order Weyl semimetals [60, 61], and higher-order Floquet topological phases [62,
63] have attracted a great deal of attention and revealed many ubiquitous physical properties.

1.2 Contributions

This thesis is mainly based on the following three first-author publications:

I – Majorana Corner Flat Bands in Two-Dimensional Second-Order Topological
Superconductors,
Majid Kheirkhah, Yuki Nagai, Chun Chen, and Frank Marsiglio,
Phys. Rev. B 101, 104502 (2020).
This work has been done in collaboration with Dr. Yuki Nagai from Japan Atomic Energy
Agency and Dr. Chun Chen, a former postdoctoral scholar here in the condensed matter
theory division.

II – First- and Second-Order Topological Superconductivity and Temperature-Driven
Topological Phase Transitions in the Extended Hubbard Model with Spin-Orbit Coupling,
Majid Kheirkhah, Zhongbo Yan, Yuki Nagai, and Frank Marsiglio,
Phys. Rev. Lett. 125, 017001 (2020).
This work has been done in collaboration with Prof. Zhongbo Yan from Sun Yat-Sen
University in China and Dr. Yuki Nagai.

III – Vortex Line Topology in Iron-Based Superconductors with and without Second-Order
Topology,
Majid Kheirkhah, Zhongbo Yan, and Frank Marsiglio,
arXiv:2007.10326
This work, which is under review and has not been published yet, has been done in
collaboration with Prof. Zhongbo Yan.
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These publications are always referred as publication (I), (II), (III) throughout this thesis.

1.3 Organization of this thesis

This thesis is organized in six chapters as described below:

• Chapter 2: This chapter is a general discussion about the theoretical tools that will
be used in the rest of this thesis to study the band structure topology in non-interacting
crystalline solids. Apart from serving as a reference for subsequent chapters, the author
also felt compelled to provide his own perspective of this quickly developing exciting
field in this chapter.

• Chapter 3: In this chapter, which covers publication (I), we find that confining a
second-order topological superconductor with a harmonic potential leads to a prolif-
eration of Majorana corner modes. As a consequence, this results in the formation
of Majorana corner flat bands which have a fundamentally different origin from that
of the conventional mechanism. This is due to the fact that they arise solely from
the one-dimensional gapped boundary states of the hybrid system that become gapless
without the bulk gap closing under the increase of the trapping potential magnitude.
The Majorana corner states are found to be robust against the strength of the harmonic
trap and the transition from Majorana corner states to Majorana flat bands is merely
a smooth crossover. As a harmonic trap can potentially be realized in heterostruc-
tures, this proposal paves a way to observe these Majorana corner flat bands in an
experimental context.

• Chapter 4: In this chapter, which covers publication (II), we investigate the supercon-
ducting pairing instability of the two-dimensional extended Hubbard model with both
Rashba and Dresselhaus spin-orbit coupling within the mean-field level at both zero and
finite temperature. We find that both first- and second-order time-reversal symmetry
breaking topological gapped phases can be achieved under appropriate parameters and
temperature regimes due to the presence of a favored even-parity s+ id -wave pairing
even in the absence of an external magnetic field or intrinsic magnetism. This results in
two branches of chiral Majorana edge states on each edge or a single zero-energy Majo-
rana corner state at each corner of the sample. Interestingly, we also find that not only
does tuning the doping level lead to a direct topological phase transition between these
two distinct topological gapped phases, but also using the temperature as a highly
controllable and reversible tuning knob leads to different direct temperature-driven
topological phase transitions between gapped and gapless topological superconducting
phases. Our findings suggest new possibilities in interacting spin-orbit coupled systems
by unifying both first- and higher-order topological superconductors in a simple but
realistic microscopic model.
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• Chapter 5: In this chapter, which covers publication (III), we study the potential
impact of second-order topology on the vortex lines in iron-based superconductors in
both weak and strong Zeeman field regimes. Recently, experimental evidence of Ma-
jorana zero modes in vortices has been observed in iron-based superconductors with
band inversion near the Fermi level. It is known that iron-based superconductors with
band inversion and s±-wave pairing can give rise to second-order topological super-
conductivity, manifested by the presence of helical or chiral Majorana hinge states in
three dimensions. In the weak Zeeman field regime, we find that vortex lines far away
from the hinges are topologically nontrivial in the weakly doped regime, regardless of
whether the second-order topology is present or not. However, when the superconduc-
tor falls into the second-order topological phase and a topological vortex line is moved
close to the helical Majorana hinge states, we find that their hybridization will trivial-
ize the vortex line and transfer the Majorana zero modes to the hinges. Furthermore,
when the Zeeman field is large enough, we find that the helical Majorana hinge states
are changed into chiral Majorana hinge modes and thus a chiral second-order topo-
logical superconducting phase is realized. In this regime, the vortex lines are always
topologically trivial, no matter how far away they are from the chiral Majorana hinge
modes. By incorporating a realistic assumption of inhomogeneous superconductivity,
our findings can explain the recent experimental observation of the peculiar coexis-
tence and evolution of topologically nontrivial and trivial vortex lines in iron-based
superconductors.

• Chapter 6: Finally, this chapter summarizes the results obtained and presented in
this thesis briefly, and provides some future directions.
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Chapter 2

Topological Phases of Matter: A
Brief Review

2.1 Introduction

The main goal of this chapter is to provide a general and brief introduction to the recently
developed concept of topological phases of matter. This chapter contains no original results
and mostly serves as a reference for the methods applied in the subsequent chapters. Most
of the content of this chapter is based on several excellent sources. In particular, the author
would like to mention these well-known books [64–67] and excellent review papers [34–38, 68–
74].

2.2 Symmetry and topology

Symmetry is a powerful practical tool for solving problems and generalizing conclusions
between systems with similar symmetries, so it is a fundamental aspect for developing phys-
ical models. It brings beauty to the world around us and also simplifies its mathematical
description. In quantum mechanics, a symmetry operation is a transformation of a system
that preserve the probabilities of measurements made on the system [75]. In a Hilbert space
of quantum states, symmetry operations are represented by operators which act on state vec-
tors. While some symmetries correspond to simple transformations of space and time, others
describe more abstract internal degrees of freedom like particle spins and gauge fields. How-
ever, symmetries also constrain the possible dynamics of a system. Breaking of a symmetry
facilitates phenomena that would not be possible otherwise.

In condensed matter systems, the amount of symmetry becomes a knob that one can turn
and observe the consequences. Cooling down a drop of mercury breaks translational and
rotational symmetries and makes it a solid in the process. Cooling it down even more will
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break gauge symmetry turning it into a superconductor. In a step-like fashion, crystalline
solids allow us to try various combinations of symmetries and observe the consequences.

It has long been recognized that whenever two phases of matter have different symmetry,
they cannot be smoothly evolved into one another without hitting a phase transition. On
the other hand, such a restriction is usually absent for phases with the same symmetry. The
most familiar example is offered by the three common phases of water. While the liquid
phase has continuous rotational and translational symmetry, the solid phase only preserves
a discrete subset of them. As a consequence, the two phases are separated by a transition
line in the parameter space. On the other hand, the gaseous and the liquid phase possess
the same symmetry, and one can indeed connect the two without hitting a phase transition
simply by circumventing the critical point.

Another important phenomenon associated with symmetry breaking is the appearance
of new particles. Microscopically, phase transitions correspond to a rearrangement of the
constituent building blocks, electrons and ions in the case of condensed matter systems.
This rearrangement modifies the effective low-energy degrees of freedom, which manifest
themselves experimentally as new species of particles. In the example of water mentioned
above, breaking translational symmetry leads to the appearance of transverse phonons in the
solid phase. Note that these new particles can be very different from the constituent matter:
Although crystalline solids are composed entirely of fermionic electrons and nucleons, phonons
always come out as bosonic particles.

The notion of symmetry is deeply integrated in the mathematical framework of condensed
matter physics. According to the Wigner theorem, every symmetry of a quantum system is
expressed either as a unitary operator or as an antiunitary operator on the Hilbert space [76].
The unitary operator U is a linear map with UU † = 1 satisfying

U(a|ψ⟩ + b|ϕ⟩) = aU |ψ⟩ + bU |ϕ⟩, (2.1)

⟨Uψ|Uϕ⟩ = ⟨ψ|U †U |ϕ⟩ = ⟨ψ|ϕ⟩, (2.2)

for complex coefficients a and b. However, an antiunitary operator A is an antilinear map
where

A(a|ψ⟩ + b|ϕ⟩) = a∗A|ψ⟩ + b∗A|ϕ⟩, (2.3)

⟨Aψ|Aϕ⟩ = ⟨ψ|AA†|ϕ⟩∗ = ⟨ψ|ϕ⟩∗, (2.4)

and the Hermitian conjugate of an antiunitary operator given as

⟨ψ|Aϕ⟩ = ⟨A†ψ|ϕ⟩∗. (2.5)

The square of an antiunitary operator such as time-reversal symmetry or particle-hole sym-
metry, is only ±1 since applying such an operator twice should bring back the system to the
state before transformation differing at most by a phase factor A2 = z where |z| = 1, so

zA = A2A = AA2 = Az = z∗A,
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⇒ z = z∗ with |z| = 1, (2.6)

⇒ z = ±1

where we used Eq. 2.3 in the first line. Because of the antiunitarity of these operators, the
value of their square is unchanged upon a U(1) phase multiplication, i.e.

(eiϕA)2 = eiϕAeiϕA = eiϕe−iϕA2 = A2. (2.7)

In sharp contrast, the square of a unitary operator, such as a chiral symmetry, is a phase factor
(eiθ) which is not well defined since it depends on the choice of gauge. The usual unitary sym-
metries like crystalline symmetries (i.e. inversion, mirror, and rotation) are represented by
unitary operators that commute with the Hamiltonian, thus allowing us to block-diagonalize
the Hamiltonian into sectors of different operator eigenvalues. If Hamiltonian H is invariant
under an unitary transformation U , i.e.

[H,U ] = 0, (2.8)

then the physical observable corresponding to G, which is the generator of U and is a Her-
mitian operator such that U = eiG, is conserved since

iℏ
dG

dt
= [G,H] = 0. (2.9)

The non-spatial symmetries act differently: they either anticommute with the Hamilto-
nian, or are antiunitary such that the block-diagonalization cannot be applied. Remarkably,
they also do not lead to conversation laws. An antiunitary operator can be written as A = UK
where U is a unitary matrix and K denotes complex conjugation, which is an antiunitary
operator. In the following, we will give a brief description about time-reversal symmetry,
particle-hole symmetry, and chiral symmetry.

1. Time-reversal symmetry: Time-reversal symmetry is an antiunitary operator that
commutes with the Hamiltonian, i.e.

[H, T ] = 0, (2.10)

where T = UT K. Therefore, if |u⟩ is an eigenstate of H with energy E, then so is T |u⟩.
There is a significant and profound difference between these two states in spinless and
spinful systems which will be demonstrated in the rest of this part. This difference gives
birth to the so-called Kramers’ theorem. In spinless systems we have T 2 = +1 which
results in UT = UT

T . However, in spinful systems T 2 = −1 which results in UT = −UT
T .

Let us begin with a spinless system where T 2 = +1 and

T cj,αT −1 = cj,α, (2.11)
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in the real space. Here, cj,α refers to the fermion annihilation operator at site j and
α denotes denotes all degrees of freedom other than spin. This means that the time-
reversal operator leaves the spinless fermion operators unchanged in the real space which
is not the case in the momentum space. When a system has translation symmetry, it is
in general more convenient to deal with its Hamiltonian in the momentum space, thus
it is worthy to figure out how the fermions annihilation or creation operators transform
under the time reversal symmetry in that space. We have

T cj,αT −1 =
1√
N

∑
k

T ck,αeik·rjT −1

=
1√
N

∑
k

e−ik·rjT ck,αT −1

= cj,α =
1√
N

∑
k

e−ik·rjT c−k,αT −1,

(2.12)

indicating
T ck,αT −1 = c−k,α. (2.13)

Therefore, for a time-reversal invariant Hamiltonian we have

T HT −1 =
∑
k

T ψ†
kH(k)ψkT −1

=
∑
k

T ψ†
kT

−1T H(k)T −1T ψkT −1

=
∑
k

ψ†
−kT H(k)T −1ψ−k

=
∑
k

ψ†
kT H(−k)T −1ψk,

(2.14)

so
T H(k)T −1 = H(−k). (2.15)

where ψk is a given Bloch state. In the Brillouin zone, there are so-called time-reversal
invariant momenta which satisfy k = −k +G for reciprocal lattice vector G. There
are four time-reversal invariant momenta in two-dimensions for a square lattice whose
lattice constant is a: Γ1 = (0, 0), Γ2 = (0, π/a), Γ3 = (π/a, 0), and Γ4 = (π/a, π/a).
In one-dimension and three-dimensions there are two and eight time-reversal invariant
momenta, respectively. At these specific points

H(Γi) = H(−Γi). (2.16)
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For spinless fermions, we can always choose a representation such that T = K which
indicates that at the time-reversal invariant momenta for spinless fermions we have,

⟨u(Γi)|T u(Γi)⟩ ≠ 0. (2.17)

This means that at the time-reversal invariant momenta, |u(Γi)⟩ is not orthogonal to its
time-reversal partner. In other words, for a spinless system the presence of time-reversal
symmetry does not guarantee the existence of band degeneracy at the time-reversal
invariant momenta.

Let us now turn to the spinful case which is what we have in nature. As the spin
operator is a specific type of angular momentum operator, then

T ST −1 = −S, (2.18)

which can be understood as a π rotation about an axis. The conventional choice is
usually the y axis. Accordingly, the time-reversal operator is given by

T = e−i
πSy
ℏ K, (2.19)

where K denotes complex conjugation. Then, the square of T gives

T 2 = e−i
πSy
ℏ Ke−i

πSy
ℏ K

= e−i
πSy
ℏ ei

πS∗
y

ℏ

= e−2i
πSy
ℏ ,

(2.20)

where we used K2 = 1. For integer spin, as the eigenvalue of Sy is an integer of ℏ, we
always have T 2 = 1 similar to the spinless case. However, for half-integer spin systems

e−i
πSy
ℏ = e−i

πσy
2 =

∞∑
n=0

1

n!
(− iπσy

2
)n = −iσy, (2.21)

then
T 2 = −1, (2.22)

which is different compared with the previous cases. As we promised, this opposite sign
leads to an important impact on the band structure, which will be shown shortly. Also,
the form of time-reversal operator for half-integer spin systems is

T cj,α,σT −1 = i(σy)σ,σ′cj,α,σ′ , (2.23)

or equivalently

T cj,α,↑T −1 = cj,α,↓, (2.24)
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T cj,α,↓T −1 = − cj,α,↑. (2.25)

It can be easily shown in the momentum space that

T ck,α,σT −1 = i(σy)σ,σ′c−k,α,σ′ , (2.26)

and remarkably for both T 2 = ±1 cases, Eq. 2.15 is valid. As we have already promised,
for half-integer spin systems, the presence of time-reversal symmetry results in Kramers’
theorem since T 2 = −1. We have

⟨u|T u⟩ =
∑
n,m

u∗mUmnKun

=
∑
n,m

u∗mUmnu
∗
n

= −
∑
n,m

u∗nUnmu
∗
m

= −
∑
n,m

u∗nUnmKum = −⟨u|T u⟩,

(2.27)

where we used UT = −UT
T in the third line. The above equation indicates that ⟨u|T u⟩ =

0 in sharp contrast to Eq. 2.17. In other words, |u⟩ and T |u⟩ are always orthogonal
which is know as Kramers’ theorem. At the time-reversal invariant momenta Γi, as both
|u(Γi)⟩ and T |u(Γi)⟩ are the eigenvectors of H(Γi) for the same energy, the energy band
at those special points is always at least doubly degenerate. As this double degeneracy
is forced by the Kramers’ theorem, it is known as Kramers’ degeneracy. The Kramers’
degeneracy has a very strong impact on the band structure: if two bands are related by
time-reversal symmetry, the two bands have to cross with each other at the time-reversal
invariant momenta, so there is no gap between them.

2. Particle-hole symmetry: Particle-hole symmetry is represented by an antiunitary
operator that anticommutes with the Hamiltonian, i.e.

{H,P} = 0, (2.28)

where P = UPK and similar to the time-reversal symmetry we have P2 = ±1 since
it is an antiunitary operator. It should be noted that P2 = −1 holds only when the
spin-rotation symmetry is preserved. In momentum space, it leads to

PH(k)P−1 = −H(−k). (2.29)

Particle-hole “symmetry” is naturally a manifestation of a redundancy in all the Bo-
goliubov - de Gennes (BdG) Hamiltonians for describing quasiparticle excitations above
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the superconducting ground state at the mean field level. The general BdG Hamiltonian
in the momentum space can be written as

HBdG =

(
H0(k) ∆(k)
∆†(k) −H∗

0 (k),

)
(2.30)

under the basis (ck, c
†
−k)T. Here, H0(k) is the normal state Hamiltonian, and ∆(k) is

the superconducting pairing potential. It can be shown that PHBdG(k)P−1 = −H(−k)
for P = τxK where τx is the first Pauli matrix in the particle-hole space. Constructing
the BdG Hamiltonian thus involves introducing a redundancy in the basis namely the
hole part of the electron-hole or Nambu basis [77], which doubles the degrees of freedom.
Although this redundancy leads to a symmetric energy spectrum around zero energy,
this is not always the case in the momentum space. If the BdG Hamiltonian has the
eigenvalue E(k) whose eigenvector is (uk,vk)T , the particle-hole symmetry guarantees
that there must be an eigenvalue −E(−k) whose eigenvector is (v∗−k,u

∗
−k)T where T

denotes matrix transpose.

3. Chiral symmetry: Chiral symmetry is a unitary operator that anticommutes with
the Hamiltonian, i.e.

{H,S} = 0. (2.31)

Although the square of chiral symmetry can be taken to be any complex phase, a gauge
can be always chosen such that S2 = 1. However, this gauge choice will have no effect
on the signs of both T 2 and P2 according to Eq. 2.7. In the momentum space, chiral
symmetry leads to

SH(k)S−1 = −H(k). (2.32)

Furthermore, whenever the system has both T and P symmetry, then it also has S =
T P symmetry although S can also be present when both T and P are absent. It should
be noted that although chiral symmetry is a unitary operator, it does not commute with
the Hamiltonian as the common symmetry operators. Moreover, contrary to particle-
hole symmetry, chiral symmetry always leads to a symmetric energy spectrum around
zero energy in both real and momentum space.

A whole new chapter of condensed matter physics was opened with the experimental dis-
covery of quantum Hall effect [4]. Consequent theoretical studies [7, 78] revealed that this
phenomenon has a topological origin. Topological considerations had not been foreign to
condensed matter physics, for example they had been extensively used in the study of order
parameter defects [79]. But the quantum Hall state was different, because here topology
entered the description of the phase transition and the ordered ground state. A decade ago,
the study of topological aspects of condensed matter systems underwent a second revolution
with the theoretical proposal [11, 12, 18] and the consequent experimental discovery[19, 26] of
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Figure 2.1: (Color online) The genus g of a closed two-dimensional surface is a topological invariant which
counts the number of “holes” or “handles” in the surface.

topological insulators. These breakthrough discoveries revealed that a phase of matter with
a gap in the bulk excitation spectrum is characterized not only by its symmetry, but also by
certain topological quantities called topological invariants or topological indices. Whenever
two phases of matter differ in their topological invariants, they cannot be evolved into one
another without hitting a topological phase transition: a phase transition in which the un-
derlying topology of the system changes. In such transitions, the gap in the bulk excitation
spectrum has to temporarily close at the transition point if all the Hamiltonian’s symmetries
remain unbroken.

In mathematics, topology is the study of the properties of objects that do not change
under continuous deformation. Continuous deformation means stretching, twisting, bending
or any other transformation that does not involve abrupt changes such as tearing the object
or breaking it apart. If it is possible to continuously deform an object into another, then the
objects are topologically the same and they have the same topological invariant or topologi-
cal index; otherwise, they are topologically distinct. In Fig. 2.1, three topologically distinct
two-dimensional surfaces with different values of genus or “handles” g as a well-defined topo-
logical invariant are shown. Since these surfaces have different topological invariants, they are
topologically distinct, and they cannot convert to each other under continuous deformation.

Topology in condensed matter physics is the study of the properties of Hamiltonians with
an energy gap under continuous deformations. Here, continuous deformations are transforma-
tions that do not close the energy gap. Therefore, two gapped Hamiltonians are topologically
the same if one of them can be deformed into the other one without closing the gap and
breaking certain symmetries.

A nontrivial value of topological invariant in a system with gapped Hamiltonian has
interesting consequences at its boundaries. As an example, consider the interface between two
topologically distinct systems (each described by a Hamiltonian that is gapped in the bulk)
like the interface between an ordinary or trivial insulator with topological index zero and a
quantum hall insulator with topological index or Chern number one as in Fig. 2.2(a). Moving
from one side to the other across the interface results in changing the topological index. As
we already explained, this must close the bulk gap at the interface as in Fig. 2.2(b), so some
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Figure 2.2: (Color online) (a) Edge states in the quantum Hall effect system. A magnetic field causes electrons
to move in cyclotron orbits. Close to the interface with the ordinary insulator electrons bounce back from
the edge and effectively travel along it. (b) Schematic view of the bulk-edge correspondence: at the interface
between two materials with different topological invariants the energy gap vanishes. Therefore, there must be
a low energy state bound to this region.

states may exist in the gap but because the bulk Hamiltonian on both sides are gapped, these
metallic boundary states or edge states have to be localized at the interface [80, 81].

All these fundamental relationships between symmetry and topology in a system play a
crucial role in the field of topological phases of matter and leads to the so-called bulk-boundary
correspondence which states that there is a direct connection between the topology and the
symmetries of a given Hamiltonian and its edge states.

2.3 Tenfold ways of classifying non-interacting fermionic gapped
Hamiltonians

In this section, we review the complete topological classification of non-interacting fermionic
gapped Hamiltonians based on the spatial dimension d of the system, and based on the
presence or absence of their global symmetries, i.e. time-reversal symmetry (T ), particle-hole
symmetry (P), and chiral symmetry (S) according to the Altland and Zirnbauer symmetry
classification [40, 41, 73, 82] as summarized in Table 2.1.

Based on the presence or absence of time-reversal and particle-hole symmetries and the
sign of their square operator, there are 3 × 3 = 9 different symmetry classes. Although the
presence or absence of the chiral symmetry is determined by the time-reversal and particle-
hole symmetries, there is a very special case where S is a symmetry of the system when
both time-reversal and particle-hole symmetries are broken. This case raises the number of
symmetry classes from nine to ten. Therefore, there are ten ways to combine all the possible
symmetries of a one-particle non-interacting fermionic gapped Hamiltonian; this classification
is called the periodic table of topological insulators and topological superconductors for each
spatial dimension [42]. For example, the Hamiltonian may have no such symmetries at all
like the two-dimensional integer quantum Hall effect or Chern insulators. This Hamiltonian
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Table 2.1: The ten possible classes of single-particle non-interacting fermionic gapped Hamiltonians. They
are classified according to the presence or absence of time-reversal symmetry (T ), particle-hole symmetry
(P), and chiral symmetry (S) in spatial dimensions d = 1, 2, 3. In the third to the fifth columns 0 denotes
the absence of a symmetry and ±1 presents the value to which the associated operator squares if present.
In the last three columns Z2 denotes two kinds of topologically distinct ground states, Z indicates that the
topologically distinct ground states can be labeled by an integer, and “–” means no topological phases. The
information inside this table adapted from Ref. [73].

is said to be in class A. Class AII corresponds to the quantum spin Hall insulators or two-
dimensional topological insulators in d = 2, and three-dimensional topological insulators in
d = 3. Class BDI in d = 1, corresponds to the Su-Schrieffer-Heeger model.

Moreover, such a classification is for quadratic or non-interacting fermionc systems with
an energy gap. If there is additional symmetries such as mirror symmetry, then a class could
be further divided to several subclasses. The classification of interacting Hamiltonians is still
under progress. A non-interacting bosonic system cannot have an energy gap without the
exclusion principle, so one cannot find topological invariants for free bosons by the same for-
malism for classification gapped Hamiltonian. Although different approaches were developed
to obtain this classification such as Clifford algebra, homotopy theory, K-theory, and random
matrix theory, the agreement of the classification results is not a trivial fact but it is the core
of bulk-boundary correspondence.

All ten Altland and Zirnbauer symmetry classes can be grouped into three main categories:
the three Wigner-Dyson or standard symmetry classes, the three chiral symmetry classes,
and the four Bogoliubov-de Gennes (BdG) symmetry classes. Chiral symmetry classes can
be obtained from Wigner-Dyson symmetry classes by imposing an additional chiral symmetry
(Table 2.1). It turned out that there are five non-interacting distinct topological insulators
and superconductors in each spatial dimension. Nevertheless, not all of them have found
an experimental realization. This poses a continuous challenge to condensed matter physics.
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Therefore, the road ahead is not entirely mapped and needs further investigation.
In 2009, Kitaev recognized the Bott periodicity is hidden in Altland and Zirnbauer’s

table [43]. He thus was able to generalize the classification to all spatial dimensions which
is a culmination of the study of topological materials. Two classes A and AIII belong to so
called complex classes if they have a period of two while the remaining eight classes belong to
the real classes which have a period of eight. That is, the topological invariants in dimension
d + 2 and d + 8 are the same as those in dimension d for the complex and the real classes,
respectively. According to this periodicity, some interesting conclusions can be drawn. To
name a few, the quantum Hall effect (class A) can happen only in even spatial dimensions,
or the topology of class AIII is nontrivial only in odd spatial dimensions.

2.4 Berry Phase and charge polarization in crystalline mate-
rials

In 1984, Michael Berry in his seminal paper defined a geometric phase or a Berry phase as
a quantity that is accumulated around a closed loop as a complex vector is carried around a
path in its vector space [83]. These complex vectors can be taken to be unit vectors for the
sake of simplicity. Let us take N complex vectors |u0⟩ to |uN−1⟩ around a closed loop and
define the global product z as

z = ⟨u0|u1⟩⟨u1|u2⟩ . . . ⟨uN−1|u0⟩ = |z|eiϕ. (2.33)

Then, the geometric phase or the Berry phase is defined as,

ϕ = Im(ln z) = Im(ln
N−1∑
i=0

⟨ui|ui+1⟩), (2.34)

where Im(z) is the imaginary part of a complex number z1. As is obvious, for real vectors
we have ϕ = 0 since the global product is always a real number with no imaginary part.
Importantly, the Berry phase is independent of the phase of each |ui⟩, so it is a gauge-
invariant modulo 2π quantity. In the continuum limit, the path can be parametrized by a
real parameter 0 ⩽ λ ⩽ 1 such that |uλ=0⟩ = |uλ=1⟩ and |uλ⟩ is a smoth and differentiable
function of λ. Hence, in the continuum limit in Eq. 2.34 we will have

ln⟨uλ|uλ+dλ⟩ =ln⟨uλ|
{
|uλ⟩ + dλ

d|uλ⟩
dλ

+ . . .
}

=ln(1 + dλ⟨uλ|∂λuλ⟩ + . . . )

1Note that the sign convention is not universal in Eq. 2.34, as in the literature both ϕ = ±Im(ln z) have
been used as the definition of Berry phase.
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=dλ⟨uλ|∂λuλ⟩ + . . . , (2.35)

where ∂λ =
d

dλ
and we used ln(1 + x) ≃ x approximation. Therefore, in the continuum limit

ϕ = Im

∮
dλ ⟨uλ|∂λuλ⟩. (2.36)

Since
0 = ∂λ⟨uλ|uλ⟩ = ⟨uλ|∂λuλ⟩ + ⟨∂λuλ|uλ⟩ = 2Re(⟨uλ|∂λuλ⟩), (2.37)

the value of ⟨uλ|∂λuλ⟩ is a purely imaginary number, so Eq. 2.36 can be rewritten as the
simpler form

ϕ = −
∮
dλ ⟨uλ|i∂λ|uλ⟩, (2.38)

which is the well-known expression for the Berry phase in the continuous limit. The Berry
connection or Berry potential is defined as

A(λ) = −⟨uλ|i∂λ|uλ⟩ = Im⟨uλ|∂λ|uλ⟩, (2.39)

so

ϕ =

∮
A(λ) dλ. (2.40)

In contrast to the Berry phase which is gauge-invariant modulo 2π, the Berry connection is
not since if we do the gauge transformation

|ũλ⟩ = e−iα(λ)|uλ⟩, (2.41)

we will have

Ã(λ) = −⟨ũλ|i∂λ|ũλ⟩ = A(λ) − dα(λ)

dλ
, (2.42)

where
α(λ = 1) − α(λ = 0) = 2πn, (2.43)

since |ũλ=0⟩ = |ũλ=1⟩ for n ∈ Z. All the gauge transformations given by Eq. 2.41 can be
classified topologically according to the integer n in Eq. 2.43 which is known as the winding
number. In a two-dimensional parameter space λ = (λx, λy), the Berry connection can be
generalized to a two-dimensional vector A = (Ax, Ay) where

Ax = −⟨uλ|i∂λx |uλ⟩, (2.44)

Ay = −⟨uλ|i∂λy |uλ⟩, (2.45)
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so, the Berry phase can be written as a line integral around a closed path

ϕ =

∮
A · dλ. (2.46)

According to the Stokes’ theorem, Eq. 2.46 can be rewritten in term of the Berry curvature

Ω(λ) = ∇×A(λ), (2.47)

so

ϕ =

∫
s
Ω(λ) · ds, (2.48)

where region s is bounded by the closed path in the positive sense of circulation, so the Berry
flux through a surface is equal to the Berry phase around its boundary. The Berry curvature
similar to the Berry phase is gauge invariant.

These concepts can be even generalized to higher-dimensional parameter spaces. Accord-
ing to the Chern theorem, the Berry flux computed on any closed two-dimensional surface is
quantized to 2π times an integer. This integer is known as the Chern number of that surface.
In the context of the integer quantum Hall effect, this topological index ν (Eq. 1.1) is known
as the TKNN number or the first Chern number, which is proportional to the surface integral
of the Berry curvature over the two-dimensional Brillouin zone [7].

So far, we have explained very briefly Berry phase, Berry connection, Berry curvature, and
Berry flux for some |uλ⟩ in a generic parameter space λ = (λ1, λ2, . . . ). We now turn to the
main theme in condensed matter where the parameters are the wavevectors k, which labels
Bloch states |ψn,k⟩ of band n in the Brillouin zone. For an electron moving in the periodic
potential of ions with heavy mass in a lattice, its dynamics is governed by the following
Hamiltonian,

H(p, r) =
p2

2m
+ V (r), (2.49)

where p = ℏk, m is the mass of electron, V (r+a) = V (r), and a is the translation invariant
vector of the lattice. Then according to the Bloch theorem,

|ψn,k⟩ = eik·r|un,k(r)⟩, (2.50)

is the eigenfunction of the above Hamiltonian with energy En(k), and |un,k(r)⟩ is the so-
called cell periodic function and satisfies |un,k(r)⟩ = |un,k(r + a)⟩. Therefore, a Berry phase
associated with band n takes the form

ϕn =

∮
An(k) · dk. (2.51)

The Berry connection is
An,µ(k) = ⟨un,k|i∂µ|un,k⟩ (2.52)
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where ∂µ =
∂

∂kµ
. This can be also rewritten as

An(k) = ⟨un,k|i∇k|un,k⟩. (2.53)

Similarly, the Berry curvature is defined as

Ωn(k) = ∇k ×An(k). (2.54)

We have assumed so far that band n is non-degenerate through the whole Brillouin zone.
This is a significant restriction since the degeneracy between bands is common in crystalline
materials. When degeneracies occur, they usually introduce a nonanalytic dependence of
|ψn,k⟩ on k which is problematic for the definition of the Berry connection and Berry cur-
vature. Nevertheless, when the bands are degenerate, all these quantities are needed to be
generalized to the non-Abelian case2.

One thing that should be emphasized here is that in the presence of certain symmetries,
these quantities are forced to take certain values. The presence of inversion symmetry forces
the Berry connection (the Berry curvature) to be an odd (even) function of momentum.
Consider that a crystal has inversion symmetry, then

un,k(r) = un,−k(−r). (2.55)

Consequently,

An(k) = i⟨un,k|∇k|un,k⟩
= i⟨un,−k|∇k|un,−k⟩
= −i⟨un,−k|∇−k|un,−k⟩
= −An(−k).

(2.56)

For the Berry curvature, we have

Ωn(k) = ∇k ×An(k)

= ∇k × [−An(−k)]

= ∇−k ×An(−k)

= Ωn(−k).

(2.57)

However, the presence of time-reversal symmetry forces the Berry connection (the Berry
curvature) to be an even (odd) function of momentum. Thus an integration of the Berry
curvature over the whole Brillouin zone gives zero value for a time-reversal invariant system.
This indicates that the realization of a system with finite Chern number requires breaking

2For more comprehensive understanding, the author recommends the excellent review [74].
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time-reversal symmetry which is the case in both quantum Hall effect and Chern insulators.
Consider that a crystal has time-reversal symmetry, then

un,k(r) = u∗n,−k(r). (2.58)

Consequently,

An(k) = i⟨un,k|∇k|un,k⟩
= i⟨u∗n,−k|∇k|u∗n,−k⟩
= (un,−k)a(i∇k)ab(u

∗
n,−k)b

= (u∗n,−k)b(i∇k)∗ba(un,−k)a

= −i⟨un,−k|∇k|un,−k⟩
= i⟨un,−k|∇−k|un,−k⟩
= An(−k).

(2.59)

For the Berry curvature, we have

Ωn(k) = ∇k ×An(k)

= ∇k ×An(−k)

= −∇−k ×An(−k)

= −Ωn(−k).

(2.60)

It is clear that the presence of both time-reversal symmetry and inversion symmetry forces
Ωn(k) = 0.

The rest of this section is devoted to making a connection between Berry phase and charge
polarization in a crystalline material which is the core of the modern theory of polarization
in crystalline insulators. In an insulator, the electrons are localized around the ions. When
the charge centers of electrons are displaced away from the ions, the intrinsic polarization
is finite. In crystals, the polarization density is more useful than polarization owing to the
periodic structure in the real space. The polarization density Pρ is the sum of the electric
dipole moments within one unit cell. For a periodic lattice, however, the choice of unit cell
is not unique as shown in Fig. 2.3 as an example.

In this figure, we choose two different unit cells. In (I), the unit cell contains an electron
(blue dot) and its left ion (red dot) and

P I
ρ = −ed, (2.61)

where d is the vector from the ion to its nearest-neighbor electron on the right side. In (II),
the unit cell contains the electron and its right ion and

P II
ρ = e(a− d), (2.62)
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I II a

d
Figure 2.3: (Color online) The two dashed rectangles correspond to two different choices of unit cell. The
lattice constant is a and the distance between the ion (red dot) and the electron (blue dot) inside each unit
cell is d. In the case I, the electron is on the right side of the ion while the electron is on the left side of the
ion in case II.

where a is the vector from the electron to its nearest-neighbour electron on the right side. It is
readily seen that the two kinds of unit cells results in different polarization density indicating
that the polarization density itself is not well defined.

However, it turns out that the change of polarization density does not depend on the
choice of unit cell and thus is well defined and can readily be measured in experiments. For
instance, we consider that the charge center of the electron moves to the right δd. For the
first case, we will have

∆P I
ρ = −e(d+ δd) − (−ed) = −e δd, (2.63)

and for the second case,

∆P II
ρ = e(a− d− δd) − e(a− d) = −e δd. (2.64)

Such a key observation was made firstly by Resta in 1992 [84] based on previous works by
Berry [83] and Zak [85]. About one year later, King-Smith and Vanderbilt found that the
polarization density is closely related to the Berry phase, establishing the modern theory of
polarization in crystalline insulators [86, 87]. This theory is formulated in terms of Berry
phases, which account for the dipole moment densities in the bulk of a material. When
the dipole moment densities vary over time, electronic currents appear across the bulk of
the material where the polarization is changing. If this adiabatic evolution of the insulating
Hamiltonian is carried over closed cycles, the electronic transport is quantized [86–88]. This
quantization is given by a Chern number and in systems with charge conservation, is closely
related to the Hall conductance of a Chern insulator [7].

To show this in an intuitive way, we consider a one-dimensional insulator with N lattice
sites labeled as Rl = la. To keep the notation simple, we set a = 1 and use the Wannier
representation to define polarization. The Wannier state is a Fourier transformation of the
Bloch state,

|n,Rl⟩ =
1√
N

∑
k

e−ikRl |ψn,k⟩, (2.65)

where |ψn,k⟩ = eikx|un,k⟩. The Bloch state and Wannier state satisfy the following algebra,

⟨ψn′,k′ |ψn,k⟩ = δn,n′δk,k′ , (2.66)
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⟨n′, Rl′ |n,Rl⟩ = δn,n′δl,l′ . (2.67)

In the Wannier representation, the polarization can be defined in a natural way,

P = −e
∑
n∈occ

∑
l

⟨n,Rl|x−Rl|n,Rl⟩

= − e

N

∑
n∈occ

∑
l

∑
k,k′

⟨un,k′ |eik
′(Rl−x) 1

i

∂

∂k
(eik(x−Rl))|un,k⟩

= − e

N

∑
n∈occ

∑
l

∑
k,k′

e−i(k−k′)Rlei(k−k′)x⟨un,k′ |i
∂

∂k
|un,k⟩

= −e
∑
n∈occ

∑
k

⟨un,k|i
∂

∂k
|un,k⟩,

(2.68)

so the polarization density then is

Pρ =
P

N
= −e

∑
n∈occ

[
1

N

∑
k

⟨un,k|i
∂

∂k
|un,k⟩]

= −e
∑
n∈occ

∫ 2π

0

dk

2π
An(k)

= −e ϕ
2π
,

(2.69)

where An(k) is the Berry connection and ϕ is the associated Berry phase which is also know
as the Zak phase [85]. This fundamental connection will become clearer in the rest of this
chapter. In particular, in order to calculate the topological invariants for both two and
three-dimensional topological insulators in class AII, one needs to define a Z2 time-reversal
charge polarization [89, 90]. Also, higher multipole moments such as quadrupole moment or
octupole moment can lead to higher-order topological phases of matter.

2.5 Topological insulators

In this section, we will study the topological insulators in one, two, and three spatial dimen-
sions.

2.5.1 TIs in 1D: The SSH model

The Su-Schrieffer-Heeger (SSH) model was originally proposed to describe the electronic
structure of polyacetylene (C2H2)n as one of the first organic conductive polymers discovered
upon doping [81] . This model is a one-dimensional toy model which can realize the topological
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i = 1 i = 2

A B A Bt1 t2A B

i = N

Figure 2.4: (Color online) A schematic figure of the Su-Schrieffer-Heeger (SSH) model which is a chain
consisting of N unit cells where each unit cell, denoted by a pink rectangle, hosts two sites, one on sublattice
A (empty circles) and the other one on sublattice B (filled circles) with staggered hopping amplitude t1 (thick
lines) for intracell hopping and t2 (thin lines) for intercell hopping. Each sublattice hosts a single state.

band insulator phase. It describes spinless fermions hopping on a chain consisting of N unit
cells where each unit cell hosts two sites; one on sublattice A and the other one on sublattice
B, with staggered hopping amplitude t1 (thick lines) for intracell hopping and t2 (thin lines)
for intercell hopping as shown in Fig. 2.4. For the sake of simplicity, we take both hopping
amplitudes to be real and nonnegative i.e. t1,2 ⩾ 0. It is noteworthy that this model appeared
before the discovery of quantum Hall effect [4].

We are interested in the ground state and the low-lying excitations of the SSH model at
zero temperature and zero chemical potential (half filling) where all negative energy eigen-
states of the Hamiltonian are singly occupied due to the Pauli exclusion principle. The
dynamics of electrons are described by the following single-particle Hamiltonian since inter-
actions between electrons are neglected,

H = t1

N∑
i=1

c†i,Aci,B + t2

N−1∑
i=1

c†i+1,Aci,B + h.c., (2.70)

where c†i,α (ci,α) create (annihilate) an electron in the i-th unit cell on sublattice α ∈ {A,B}.
The long chain of the SSH model has a long bulk in the central part and two boundaries at
the two ends of the chain. We first concentrate on the bulk since in the thermodynamic limit
of N → ∞ it is much larger than the boundaries and it will determine the most important
physical properties of the model. The physics in the bulk in the thermodynamic limit should
not depend on how the edges are defined, so for simplicity we set periodic boundary conditions
and perform a Fourier transform due to the translational invariance by using

ci,α =
1√
N

∑
i

eikrick,α, (2.71)
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where k is the momentum. The corresponding Bloch Hamiltonian reads

H =
∑
k

(t1 + t2e
−ika)c†k,Ack,B + h.c.

=
∑
k

(
c†k,A c†k,B

)( 0 t1 + t2e
−ika

t1 + t2e
ika 0

)(
ck,A
ck,B

)
=
∑
k

(
c†k,A c†k,B

)
H(k)

(
ck,A
ck,B

)
,

(2.72)

where
H(k) = d(k) · σ. (2.73)

Here, σ = (σx, σy, σz) where σx,y,z are Pauli matrices acting on the sublattice indices, and
d(k) = (dx(k), dy(k), dz(k)) for

dx(k) = t1 + t2 cos ka, (2.74)

dy(k) = t2 sin ka, (2.75)

dz(k) = 0. (2.76)

The energy spectrum of this Hamiltonian is

E±(k) = ±|d(k)| = ±
√

(t1 + t2 cos ka)2 + (t2 sin ka)2

= ±
√

(t1 − t2)2 + 4t1t2 cos2
ka

2
,

(2.77)

which has intentionally been written in the second line form such that the eigenvalues of both
the undimerized (t1 = t2) and dimerized t1 ̸= t2 cases can be studied more easily. For the
sake of simplicity, we set a = 1 in the following.

We show this dispersion relation for five choices of the parameters in Fig. 2.5. For the
dimerized chain, the SSH model describes an insulator with an energy gap of 2|t1 − t2|
separating the lower (filled band) from the upper (empty band). However, for the undimerized
case, it is a conductor where there is no energy gap in the first Brillouin zone. As the gap
due to the staggering of the hopping amplitudes opens at k = ±π, the energy of occupied
states is lowered although the energy of unoccupied states is raised. Thus, the staggering
is energetically favourable which is know as the Peierls instability. Therefore, the dimerized
case occurs naturally in many solid state systems.

Moreover, as the dimerized case corresponds to two distinct dimerizations t1 − t2 < 0
and t1 − t2 > 0, it is apparent that the case t1 = t2 corresponds to the critical point of the
transition between the two different types of dimerization. According to the energy spectra,
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a) b) c) d) e)

Figure 2.5: The band structure of the SSH model at half filling (µ = 0) for different values of intracell and
intercell hopping amplitudes: a) t1 = 1, t2 = 0, b) t1 = 1, t2 = 0.5, c) t1 = t2 = 1, d) t1 = 0.5, t2 = 1, e)
t1 = 0, t2 = 1.

it is apparent that they have the same ground state energy. However, they correspond to two
distinct topological phases. To see this intuitively, we consider the two fully dimerized cases
as showed in Fig. 2.6. In both cases the SSH chain falls apart to a sequence of disconnected
dimers whose energy spectra are flat bands. It means the energy eigenvalues are independent
of the wavenumber or momentum and the group velocity is zero, which again shows that if
the chain falls apart into dimers, an electron inserted into the chain will not spread along the
chain.

• Case t2 = 0: The energy spectra become two dispersionless flat bands where E(k) =
±t1. In real space, one can see that all unit cells are decoupled while within each unit
cell, the hoping strength is finite as shown in the top row of Fig. 2.6.

• Case t1 = 0: The energy spectra again become two flat bands where E(k) = ±t2. It is
clear that this case is quite distinct from the above-mentioned case. In real space, one
can see that all unit cells are coupled while within each unit cell the hoping strength
is zero as the bottom row of Fig. 2.6 illustrates. In this case, however, the operators
associated with the two ends of the chain do not enter the Hamiltonian. Therefore,
there are four distinct edge states for a chain with the same energy.

A question may arise: Can we lift this four-fold degeneracy in second limit case? We can
lift this degeneracy by adding a term like c†1,AcN,B to the Hamiltonian. However, this is not a
physical term if the chain is long enough since it is non-local. We are only going to consider
local terms. This term becomes local in the closed chain with periodic boundary conditions.
A second way to lift the end state degeneracy is by adding an explicit local impurity for each
end. This keeps the Hamiltonian local. It turns out that the end states are not protected
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Figure 2.6: Schematic figure of two limiting cases in the SSH model. In the top row t2 = 0 corresponding to
the topologically trivial case with no edge states. In the bottom row t1 = 0 corresponding to the topologically
non-trivial case with edge states.

by a small perturbation, so the end states are not topological in that sense. Nevertheless, a
topological interpretation to the end states can be given when we consider them as protected
by a symmetry. In the following we will show that a chiral symmetry is sufficient to protect
end states i.e. the second way is not compatible with this symmetry.

Although the dispersion relation (the magnitude of vector d(k) given by Eq. 2.77) or
the band structure is useful to calculate a number of physical properties of the bulk of
the system such as group velocities, effective mass, to name but few, there is important
information about the bulk that cannot be revealed by only studying the band structure.
In this section, we will show that in addition to the magnitude of d(k) vector, its direction
contains important information. For the SSH model, as the wavenumber sweeps the entire
Brillouin zone (k = −π → π), the endpoint of the two-dimensional d(k) vector traces out
a closed circle of radius t2 on the dxdy-plane whose center is at the (t1, 0) point as given
by Eq. 2.78 and shown in Fig. 2.7 for five different values of the hopping amplitudes; in
particular, the equation governing dx(k) and dy(k), with k a parameter, is{

dx(k) − t1
}2

+ d2y(k) = t22. (2.78)

The topology of this closed circle can be characterized by an integer known as the bulk
winding number (W). This integer number counts the number of times the loop winds around
the origin of the dxdy-plane. In Fig. 2.7, we show five different closed circles corresponding
to different parameters in the Hamiltonian. In Figs. 2.7(a)(b), W = 0, in Fig. 2.7(c) the
winding number is undefined since that path crosses the origin and hence the bulk gap is
closed, and in Figs. 2.7(d)(e) W = 1. For more general two-band insulators, this path is a
closed loop due to the periodicity of the bulk momentum-space Hamiltonian.

In the following, we will show the generality of these properties and the link between the
bulk winding number and the presence or absence of edge states which is known as bulk-
boundary correspondence. In the case of the SSH model, all these properties are related to
a property of the model known as chiral symmetry. The SSH model has chiral symmetry for
S = σz which guarantees that the energy spectrum is symmetric about E = 0. If we choose
the chiral symmetry operator to be a diagonal matrix in some basis, the Hamiltonian H(k)
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a) b) c) d) e)

Figure 2.7: The path of the endpoint of the vector d(k) representing the bulk Hamiltonian on the dxdy- plane,
as the wavenumber is swept across the Brillouin zone for different values of intracell and intercell hopping
amplitudes: a) t1 = 1, t2 = 0, b) t1 = 1, t2 = 0.5, c) t1 = t2 = 1, d) t1 = 0.5, t2 = 1, e) t1 = 0, t2 = 1.

will be block off-diagonal in that basis of the form,

H(k) =

(
0 qk
q†k 0

)
, (2.79)

where qk is a matrix for more than two bands. The presence of chiral symmetry allows the
definition of winding number for SSH model in one-dimension as

W =
i

2π

∫ 2π

0
tr(q−1

k ∂kqk)dk, (2.80)

so

W =
i

2π

∫ 2π

0

dx + idy
d2x + d2y

(∂kdx − i∂kdy)dk

=
i

4π

∫ 2π

0

∂k(d2x + d2y)

d2x + d2y
dk +

1

2π

∫ 2π

0

dx∂kdy − dy∂kdx
d2x + d2y

dk

=
i

4π
ln[E2

±(k)]

⏐⏐⏐⏐k=2π

k=0

+
1

2π

∫ 2π

0

dx∂kdy − dy∂kdx
d2x + d2y

dk

= 0 +
1

2π

∫ θk=2π

θk=0
dθk

=
1

2π
(θk=2π − θk=0),

(2.81)

where E±(k) are the eigenvalues given by Eq. 2.77 and we defined dx(k) = |d(k)| cos θk and
dy(k) = |d(k)| sin θk. As both dx and dy are periodic functions of k, the value of (θk=2π−θk=0)
must be equal to 2π times an integer number. This number counts the number of times that
the two-dimensional unit vector d(k) encircles the origin. That is why this integer is dubbed
winding number.
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Now, let us go come back to the two special cases. If t2 = 0, we have H(k) = t1σx which
indicates that θk is fixed at zero i.e. θk=0 = θk=2π = 0, so W = 0. For the case t1 = 0,
however, we have

H(k) = t2(cos kσx + sin k)σy, (2.82)

so

W =
1

2π
(θk=2π − θk=0) =

1

2π
(2π − 0) = 1. (2.83)

This big difference in the winding number explains why the two cases have different boundary
physics. When t1 > t2, the topological invariant (the winding number) is zero, so the system
is topologically trivial and does not harbor zero-energy boundary modes. However, when
t1 < t2, the topological invariant is finite, so the system is topologically non-trivial.

2.5.2 TIs in 2D: Quantum spin Hall insulator

The history of the quantum spin Hall effect starts with the pursuit of a topological phase
based on a spin-orbit interaction which respects time-reversal symmetry. Electrons moving
with a component of velocity perpendicular to an electric field experience a magnetic field in
their rest frames that couples to their spins in the typical Zeeman fashion. In the laboratory
frame, this results in an energy splitting between the two spin directions proportional to
momentum. Without a magnetic field, this phase would effectively be protected by time
reversal symmetry, with topological properties distinct from quantum Hall effect.

In 2004, a renewed interest in the Haldane model came with the discovery of graphene
[10], and one year later, in 2005, Kane and Mele from University of Pennsylvania proposed
a realization of such a phase in graphene which is known as the Kane-Mele model [11, 12].
Although graphene was the system for which both the Haldane model and the Kane-Mele
model were originally considered, unfortunately the spin-orbit coupling derived from carbon
orbitals is much too weak to produce a significant gap [13]. This led to a search for other
systems composed of heavier elements for which spin-orbit coupling is typically much stronger.

Combined with contemporary theory works [14–16], a breakthrough moment came at
the end of 2006 when Bernevig, Hughes and Zhang from Stanford University proposed an
alternative realization in HgTe/(Hg,Cd)Te quantum wells with uniform strain gradient [18].
This development ultimately led to the discovery of the quantum spin Hall effect which can
be thought of as the sum of two opposite copies of the Haldane model. The effective model
that was used to predict the effect is now known as the BHZ model, named after its authors.
The experimental confirmation came in the following year with an experiment conducted
by Molenkamp’s group at University of Würzburg [19]. Soon after, another realization in
InAs/GaSb quantum wells [20] was proposed and confirmed experimentaly [21–23].

The Quantum spin Hall insulator belongs to class AII in d = 2 in the Altland-Zirnbauer
classification [see Table 2.1], so it is characterized by a Z2 topological invariant. In the
following, we will give a brief description about it. There are two distinct possibilities for
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Figure 2.8: (Color online) Two distinct possibilities for the edge states of a two-dimensional time-reversal
invariant system. The figure is adapted from [68].

the structure of edge states in a two-dimensional time-reversal invariant system, which are
represented in a band diagram as lines crossing the bulk gap as shown in Fig. 2.8. The
symmetry always requires a two-fold degeneracy as a results of Kramers’ theorem, so that
the band structure is mirror symmetric about zero momentum with the accompanying spin
flip. However, at the time-reversal invariant momenta Γa = 0 and Γb = π/a the time reversed
states are at the same momentum. Between these particular so-called Kramers partners, spin-
orbit coupling can split them apart by spin. They can recombine again in one of two ways:
either pairwise, so that the Fermi energy always intersects an even number of Kramers pairs
[Fig. 2.8 (a)], or in a sort of non-pairwise manner with an odd number of crossings [Fig. 2.8
(b)]. These two possibilities are topologically different. In the former case, we could smoothly
modify the Hamiltonian so as to push the edge states out the gap. However, in the latter
case, there will always be at least one Kramer pair at all energies in the gap, so that the
presence of edge states is a topological property.

Once again, we have two distinct classes of Hamiltonians. Just as the Chern number
classifies Hamiltonians with an integer (Z), in this case the two classes can be thought of
as either zero or one (Z2). The corresponding topological invariant ν can be defined as the
number of Kramers pairs at any given energy in the gap modulo 2. Therefore, in Fig. 2.8 (a),
we have a topologically trivial two-dimensional insulator (ν = 0) with no edge states, while
in Fig. 2.8 (b), we have a topologically non-trivial two-dimensional insulator (ν = 1) known
as the quantum spin Hall insulator or two-dimensional topological insulator.

Although in the quantum Hall effect the time-reversal symmetry is broken and there
are either clockwise or counter-clockwise metallic chiral edge states, in the quantum spin
Hall effect the time-reversal symmetry is preserved and there are both left and right moving
metallic helical edge states on each edge of the sample with opposite spins. This results in
the presence of only charge (spin) current around the sample in the former (latter) case.
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Furthermore, while backscattering is disallowed in the quantum Hall effect because the two
directions of propagation are physically separated by an insulating bulk, in the quantum
spin Hall effect each edge has two directions of propagation on top of each other. Instead,
backscattering is forbidden by spin polarization and the presence of time-reversal symmetry.

There are several ways to formulate ν using the bulk properties, as we have done for the
Chern number. However, as all those ways are somewhat more abstract, we only state the final
conclusion here to simplify the discussion. In the presence of time-reversal symmetry a Z2

charge polarization can be defined for half-integer spin systems [89] where the corresponding
Z2 index is given by

(−1)ν = δ1δ2δ3δ4, (2.84)

where

δi =

√
det[ω(Γi)]

Pf[ω(Γi)]
= ±1, (2.85)

and Γi are the four time-reversal invariant momenta in the two-dimensional Brillouin zone.
Here, ω is a unitary matrix defined by

ωmn(k) = ⟨um,−k|T |un,k⟩. (2.86)

The matrix ωmn(k) is antisymmetric at time-reversal invariant momenta allowing for the
definition of the Pfaffian. In general, Pfaffian(A) is abbreviated as Pf(A) for an antisymmetric
matrix A [91]. The determinant of such a matrix can always be expressed as

det(A) = Pf2(A). (2.87)

For a (2N + 1) × (2N + 1) antisymmetric matrix, both determinant and Pfaffian are zero.
However, for a 2N × 2N antisymmetric matrix the Pfaffian is given by,

Pf(A) =
1

2NN !

∑
σ1 ̸=···̸=σ2N

ϵσ1σ2...σ2N

N∏
i=1

Aσ2i−1,σ2i , (2.88)

where ϵσ1σ2...σ2N is an antisymmetric tensor. If the order σ1σ2 . . . σ2N is an even permutation
of (1, 2, . . . , 2N), we will have ϵσ1σ2...σ2N = 1. Otherwise, it will be equal to -1. For example,
for

A =

(
0 a
−a 0

)
, (2.89)

we have

Pf(A) =
1

211!
(ϵ12A12 + ϵ21A21) =

1

2
(A12 −A21) = a. (2.90)

The analysis of two-dimensional topological insulators can naturally be generalized to three
dimensions, which is the subject of the next section.
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Figure 2.9: Eight time-reversal invariant momenta Γi (i = 1, 2, . . . , 8) are shown with red points for a cubic
lattice in reciprocal wave vector space. There are six time-reversal invariant two-dimensional planes that map
to themselves under time-reversal transformation. Each plane can be assigned a Z2 topological invariant.

2.5.3 TIs in 3D: Strong and weak TIs

Three-dimensional topological insulators belong to class AII in d = 3 in the Altland-Zirnbauer
classification [see Table 2.1], so it is characterized again by a Z2 topological invariant. If we
now consider the surface states inside a bulk band gap of a material with time reversal sym-
metry, there now will be four points in reciprocal space with Kramers’ degeneracy. The
question, just as in the two-dimensional case, is how they connect between the various degen-
eracy points: does a line at constant energy connecting two time-reversal invariant momenta
cross through an even or odd number of surface states? To simplify the discussion again,
consider a cubic Brillouin zone as shown in Fig. 2.9. In particular, the points on the kxky
plane map to themselves under time-reversal symmetry, so this plane has a corresponding Z2

index which is given by
(−1)ν = δ1δ2δ3δ4 = z0, (2.91)

where δi is given by Eq. 2.85. Due to the symmetry of the lattice, the kxkz and kykz planes
also have their own Z2 indices y0 and x0, respectively. In addition, the planes at front, right
and top sides of the cube also map to themselves under time-reversal symmetry, so there
are three more Z2 indices x+, y+, and z+. Hence, there are six Z2 indices. However, these
numbers are not independent of each other since

x0x+ = y0y+ = z0z+ =

8∏
i=1

δi. (2.92)

Hence, due to these two relations, there are only four independent Z2 indices that char-
acterize a three-dimensional topological insulator. One can choose (z0z+, x+, y+, z+) or
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(ν0; ν1, ν2, ν3) where,

(−1)ν0 =
8∏

n=1

δi, (2.93)

(−1)ν1 = δ2δ4δ6δ8, (2.94)

(−1)ν2 = δ3δ4δ7δ8, (2.95)

(−1)ν3 = δ5δ6δ7δ8. (2.96)

The ν0 is known as the strong topological insulator index, and (ν1, ν2, ν3) are known as the
weak topological insulator indices. These indices were discovered in 2007 by Moore and
Balents, Fu and Kane independently [24, 25]. A few months later, Fu and Kane showed that
in the presence of inversion symmetry

δi =
∏

n∈occ
ζn(Γi), (2.97)

where ζn(Γi) is know as the parity eigenvalue of occupied energy band n at point Γi [90].
This formula gives a much easier way for calculating δi in an inversion symmetric system
than the one given by Eq. 2.85.

In total, there are 16 topologically distinct insulators in three dimensions. The phases
with ν0 = 1 are called strong topological insulators, whereas phases with ν0 = 0 but νi = 1
for at least one i = 1, 2, 3 are called weak topological insulators. The latter are dubbed
“weak” because the weak invariants (ν1, ν2, ν3) are not robust against translational-symmetry
breaking perturbations. One can naively stack the two-dimensional materials to form a three-
dimensional structure. In the early days, this attempt to build a three-dimensional quantum
Hall system failed. An essential reason is that there is no non-zero Chern number in odd
dimensions. The situation is different for the case of a topological insulator, where one can
actually build a weak topological insulator in this way.

The values of the Z2 invariants have important implications on the structure of the surface
states [24, 90]. The surface Brillouin zone of a three-dimensional time-reversal invariant
system is a two-dimensional surface with four inequivalent time-reversal invariant points.
Due to Kramers’ theorem, any generic band crossing of surface states at these points is a
two-dimensional Dirac point with Dirac-cone dispersion. The result is the simple surface
Hamiltonian

Hsurface = ℏvFσ · k, (2.98)

where σ refers to Pauli matrices for spin in contrast to graphene where it refers to the
sublattice space. Interestingly, there is also no spin or valley degeneracy but instead just
a single Dirac cone. A strong topological insulator has an odd number of surface Dirac
cones and its surface states form a two dimensional topological metal [24]. These exotic
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Figure 2.10: Schematic figiure of four examples of parity distributions at time-reversal invariant momenta are
shown in the first octant of the Brillouin zone. The strong (ν0) and weak (ν1, ν2, ν3) topological indices can be
calculated accordingly. The top row shows the sign of δi at the Γi. In the bottom, the band structure in kxky
plane for each case is plotted where white and black dots at the four corners represent the projected parities
i.e. the product of two parities along kz direction. The energy dispersion of a surface state between a black
dot and white dot cross the Fermi surface. The gray regions are filled and the white regions are empty and
they are separated by thick lines indicating the Fermi surface. The figure is adopted from Ref. [90].

two-dimensional metallic surface states form a unique phase which cannot be realized in a
conventional system for which the Dirac points must come in pairs [92]. In contrast, a weak
topological insulator has an even number of surface Dirac cones. These surface states have
several interesting properties arising from this spin-momentum locking. A loop around the
Dirac cone results in a π Berry phase due to the full 2π precession of the spin, similar to
graphene and the pseudospin.

In Fig. 2.10, which is adopted from Ref. [90], four examples of parity distributions at
time-reversal invariant momenta are shown in the first octant of the Brillouin zone. The
strong (ν0) and weak (ν1, ν2, ν3) topological indices can be calculated accordingly. The top
row shows the sign of δi at eight time-reversal invariant momenta Γi. In the bottom row, the
band structure in kxky plane for each case is plotted where white and black dots at the four
corners represent the projected parities i.e. the product of two parities along kz direction.
The energy dispersion of a surface state between a black dot and white dot cross the Fermi
surface. The gray regions are filled bands and the white regions are empty bands and they
are separated by thick lines indicating the Fermi surface.

In 2008, the first strong three-dimensional topological insulator was discovered by the
Hasan group at Princeton University in Bi1−xSbx by performing angle-resolved photoemis-
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sion spectroscopy to directly image the band structure [26], and later Bi2Te3 or Bi2Se3 [27–
29]. In contrast, although the stacking of two-dimensional quantum spin Hall insulators to
build a three-dimensional weak topological insulator is a promising recipe, the preparation
of weak topological insulators has so far been challenging. Nonetheless, some materials such
as Bi14Rh3I9 have recently been verified to realize a weak topological insulator [93, 94].

Recently, numerous new topological insulator candidates have been found using systematic
searches through a material database [30–32]. In should be noted that, nevertheless, an ideal
topological insulator would be the one with a large band gap which seems to be hard to come
by since the gap inversion is often a result of spin-orbit coupling, which is not easy to be
enhanced.

2.6 Topological superconductors

Due to the superconducting gap, a superconductor is similar to an insulator from the energy
point of view. One thing that distinguishes a superconductor from an insulator is redundant
paticle-hole symmetry of the BdG Hamiltonian. In addition, the ground state of a super-
conductor has a definite phase but does not have a definite number of Cooper pairs [33].
Therefore, adding an electron to a superconductor is the same as removing an electron or
equivalently adding a hole. In this section, we will study the topology of such an “insulator”
in one and two spatial dimensions.

2.6.1 Superconductivity and the BdG formalism

In 1911, three years after liquefying of helium, Onnes in Leiden observed that the electrical
resistance of various metals such as mercury disappeared completely below a critical temper-
ature [95]. This discovery initialized the fertile field of superconductivity.

In 1933, about two decades later, another hallmark of superconductivity, the perfect
diamagnetism, was found by Meissner and Ochsenfeld [96]. This distinct property of super-
conductors, which is know as the Meissner effect, makes a superconductor different from a
perfect conductor. Therefore, superconductivity is a distinct phase of matter with two key
properties: zero electrical resistance (perfect conductance), and expulsion of magnetic field
(perfect diamagnetism).

In 1935, the first piece of understanding superconductivity was provided by Fritz and
London [97]. They proposed a relation between the current density and the vector potential
inside a superconductor. This equation allows for determination of the magnetic field inside
a superconductor and leads to the introduction of the penetration length (λ). This length
describes the characteristic size over which an external magnetic field penetrates a super-
conductor and therefore the London theory serves as a theoretical framework to explain the
Meissner effect.
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In 1950, Ginzburg and Landau introduced the notion of coherence length (ξ) which can
be interpreted as the smallest scale on which superconductivity can appear [98]. Supercon-
ductivity was now equipped with two characteristic length-scales: the penetration length λ,
and the coherence length ξ. It turned out that κ = λ/ξ gives a good criterion between type
I (κ > 1

√
2) and type II (κ < 1/

√
2) superconductors.

Although an explanation of the superconductivity phenomena eluded many scientists, a
clear understanding of its microscopic mechanism arose through a big breakthrough made by
Cooper who found that two electrons on the Fermi surface inevitably form a bound state for
arbitrarily small attractive interaction [99]. He showed that the Fermi surface is unstable to
such a perturbation which will lower the energy of the system. While the electron itself is a
fermion, the two-electron bound state will behave like a boson. Bosons will undergo Bose-
Einstein condensation for sufficiently low temperature resulting in the superfluid phenomena.
A combination of this two-electron physical picture suggested that superconductors can be
explained as the superfluid of two-electron bound states which were later dubbed Cooper
pairs.

In 1957, Bardeen, Cooper, and Schrieffer proposed their microscopic scenario for su-
perconductivity [100, 101] today known as the BSC theory. Their theory stems from the
electron-phonon interaction described by Fröhlich [102] and suggested by the isotope effect
[103, 104]. Far above (below) the Fermi energy, the excitations are primarily electron-like
(hole-like) quasiparticles. Close to the Fermi energy they are coherent particle-hole mixtures
(i.e. a superposition between particle-like and hole-like states). These elementary quasipar-
ticle excitations are commonly known as Bogoliubons, with well-defined spins and momenta.

Superconductivity can be treated by two different approaches. First of these is the
GinzburgLandau theory [98] which concentrates on superconducting electrons and accounts
for the macroscopic quantum mechanics of the superconducting state. While this approach
is very successful in the prediction of vortex lattices [105] and describing the electrodynamics
of superconductors, it does not treat superconductivity at a microscopic level due to its phe-
nomenological nature [106]. Since we are interested in a microscopic treatment, this approach
is not covered in this thesis. Instead we will make use of BCS theory of superconductivity
in the rest of this thesis. This theory could, together with its extensions, account for most
experimental observations, forming a very concise and beautiful picture of superconductivity,
today known as the conventional theory of superconductivity.

Conventional superconductors are either elements or alloys, typically with critical temper-
ature below 30 K, whose properties are well understood by BCS theory. In these materials,
superconductivity is induced by the electron-phonon interaction which gives rise to an at-
tractive interaction between electrons and overcomes their repulsive Coulomb interaction.
The picture of a perfectly understood superconductivity started to fracture in 1979 with the
discovery of several materials which could not be explained with the BCS theory. The picture
completely shattered in 1986 when Bednorz and Müller observed superconductivity in the
compound La2−xBaxCuO4 with critical tempreature Tc = 35K [107]. Since then, a great
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number of materials have been found which exhibit superconductivity, either directly or in
proximity to a superconductor, that does not fit in the BCS model. These materials are
commonly called high-temperature or unconventional superconductors, and generally refer to
materials with transition temperatures higher than 30 K which cannot be described by BSC
theory.

Although many aspects of the high-temperature superconductors are similar to those in
the conventional superconductors (e.g. quasiparticle pairs and persistent currents brought
about by a net attractive electron-electron interaction), there are also many important differ-
ences. For example, conventional superconductivity arises in metals whose normal state fol-
lows Landau-Fermi liquid theory with well-defined propagating degrees of freedom (phonons).
Hence, the pairing interaction responsible for superconductivity (the electron-phonon interac-
tion) is well-known and and its role in superconductivity is fully described by BCS/Eliashberg
theory [108]. High-temperature superconductors, on the other hand, arise in charge-transfer
insulators whose low energy dynamics can be described by effective Mott insulators, where
the propagating degrees of freedom is unknown [70]. Furthermore, while conventional super-
conductors are formally defined to break only U(1) gauge symmetry, unconventional super-
conductors break additional symmetries. The additional broken symmetries give rise to a
much richer landscape of physics. For example, electrons of opposite spins and momenta are
paired with a singlet s-wave pairing symmetry in conventional superconductivity, while the
electrons can be paired with equal spins in unconventional superconductors, know as triplet
pairing symmetry. Both spin-triplet and spin-singlet superconductivity pairing symmetries
or even a mixture of them are possible in the unconventional superconductors.

As an example of unconventional superconductors, and of particular interest for this the-
sis, is the family of superconductors discovered by Bednorz and Müller. These are commonly
called cuprates due to the existence of copper-oxide (CuO2) planes in this family. Supercon-
ductivity is mainly constricted to these planes, with a suppression of propagation between
planes. The order parameter of the cuprates breaks the fourfold rotation symmetry of the
crystal lattice, and was shown around later to have an anisotropic spin-singlet d-wave pairing
symmetry [71].

A mean field approach to superconductivity is provided by the Bogoliubov-de Gennes
approach which was first introduced in order to describe the effect of inhomogeneities in
superconductors [109]. Depending on the detailed mechanism, the two electrons in a Cooper
pair can form spin-singlet (s-wave, d-wave) or spin-triplet (p-wave, f -wave) pairs. Let us
begin with the mean-field formalism for a conventional s-wave superconductor. We will see
more interesting cases later. We start with a simple metal described by the non-interacting
second-quantized Hamiltonian,

H0 =
∑
k,σ

ϵ(k)c†k,σck,σ, (2.99)

where k = (kx, ky) is a point in the first Brillouin zone, σ is spin, and c†k,σ(ck,σ) creates
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(annihilates) a quasiparticle with momentum k and spin σ. In addition,

ϵ(k) = −2t(cos kx + cos ky) − µ, (2.100)

where t is the hopping amplitude from one site to its nearest-neighbour sites of a square lattice
whose lattice constant is a, and µ is the chemical potential which defines the Fermi surface.
For the sake of simplicity, we take both a = 1 and t = 1 from now on. The many-body
ground state can be obtained by filling all the levels below the Fermi energy,

|G⟩ =
∏
k,σ

ϵ(k)<0

c†k,σ|0⟩ (2.101)

where the vacuum |0⟩ is defined by ck,σ|0⟩ = 0 for all k and σ. By using fermion anticom-
mutation relations, we can rewrite this Hamiltonian as

H0 =
1

2

∑
k,σ

ϵ(k)
{
c†k,σck,σ − ck,σc

†
k,σ

}
+

1

2

∑
k

ϵ(k)

=
1

2

∑
k,σ

{
ϵ(k)c†k,σck,σ − ϵ(−k)c−k,σc

†
−k,σ

}
+

1

2

∑
k

ϵ(k)

=
1

2

∑
k

Ψ†
kHBdG(k)Ψk +

1

2

∑
k

ϵ(k),

(2.102)

where we define the spinor ΨT
k = (ck↑ ck↓ c

†
−k↑ c

†
−k↓) and

HBdG(k) =

⎛⎜⎜⎝
ϵ(k) 0 0 0

0 ϵ(k) 0 0
0 0 −ϵ(−k) 0
0 0 0 −ϵ(−k)

⎞⎟⎟⎠ , (2.103)

and we have dropped the constant and introduced the subscript BdG, which stands for
Bogoliubov-de Gennes, to label the Bloch Hamiltonian written in this redundant formalism
because we have actually created an artificial redundancy by effectively doubling the degrees
of freedom. Although this is complicating our description of what was a simple free-fermion
problem, it will become more important when we consider superconducting pairing. Thus,
instead of having two degrees of freedom, one band and two spins, the BdG Hamiltonian has
four. We now have four energy eigenvalues of the BdG Hamiltonian, namely, two copies of
ϵ(k) and two copies of −ϵ(−k). It should be noted that only two out of the four bands give
independent quasiparticles states.

Moreover, this Hamiltonian has particle-hole “symmetry” because of this redundancy,
so we are reserved about calling this a symmetry because what we have really done is to
introduce a redundancy into our description of this non interacting metal.
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The point of this formalism is to show that the easiest way to solve for the quasiparticle
bands of a mean-field superconductor is to write the Hamiltonian in this BdG form. The
pairing potential, which we will introduce, simply couples the upper and lower blocks of the
BdG Hamiltonian we provided for the metal. We begin by studying the conventional s-wave,
singlet pairing potential of the form

HSC =
∑
k

(∆c†k↑c
†
−k↓ + ∆∗c−k↓ck↑)

=
1

2

∑
k

(∆c†k↑c
†
−k↓ − ∆c†−k↓c

†
k↑ + ∆∗c−k↓ck↑ − ∆∗ck↑c−k↓),

(2.104)

where ∆ is a complex number representing the superconducting order parameter. HSC at
mean-field level, is not invariant under arbitrary gauge transformations (ck → eiϕ(k)ck), if
we consider ∆ as a conventional gauge-invariant order parameter. This leads to a non-
conservation of charge, i.e. only the parity of the number of electrons is conserved. This
term captures the physics of two electrons or holes combining to form a Cooper pair or a
Cooper pair breaking apart into its constituents. Now, let us consider the total Hamiltonian
of the metal with a homogeneous pairing potential,

H = H0 +HSC =
1

2

∑
k

Ψ†
kHBdG(k)Ψk, (2.105)

and

HBdG(k) =

⎛⎜⎜⎝
ϵ(k) 0 0 ∆

0 ϵ(k) −∆ 0
0 −∆∗ −ϵ(−k) 0

∆∗ 0 0 −ϵ(−k)

⎞⎟⎟⎠ . (2.106)

It is worth mentioning that the choice of spinor is not unique, so we can choose different
and appropriate bases or spinors to make the problem easier in some cases. For exam-
ple, because some components of the BdG Hamiltonian are zero here, by choosing ΨT

k =

(ck↑ c
†
−k↓ ck↓ c

†
−k↑), we can get the following block-diagonal form of the BdG Hamiltonian,

HBdG(k) =

⎛⎜⎜⎝
ϵ(k) ∆ 0 0
∆∗ −ϵ(−k) 0 0
0 0 ϵ(k) −∆
0 0 −∆∗ −ϵ(−k)

⎞⎟⎟⎠ . (2.107)

Thus, each block can be considered separately which will be obviously easier than considering
a four by four matrix. Let us consider one block and find an equation for calculating the
superconducting order parameter ∆. The final result will be independent of choosing a block.
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Accordingly, we will have

H =
∑
k

(
c†k↑ c−k↓

)⎛⎝ ϵk ∆

∆∗ −ϵk

⎞⎠⎛⎝ ck↑

c†−k↓

⎞⎠ . (2.108)

where we used ϵk = ϵ(k) = ϵ(−k), assuming inversion symmetry in the real space lattice.
This BdG Hamiltonian can be diagonalized by a Bogoliubov transformation by incorporating
some unitary operator U such that

H =
∑
k

(
c†k↑ c−k↓

)
UU†

⎛⎝ ϵk ∆

∆∗ −ϵk

⎞⎠UU†

⎛⎝ ck↑

c†−k↓

⎞⎠
=
∑
k

(
c†k↑ c−k↓

)
U

⎛⎝Ek 0

0 −E−k

⎞⎠U†

⎛⎝ ck↑

c†−k↓

⎞⎠
=
∑
k

(
γ†k↑ γ−k↓

)⎛⎝Ek 0

0 −E−k

⎞⎠⎛⎝ γk↑

γ†−k↓

⎞⎠
=
∑
k,σ

Ekγ
†
kσγkσ −

∑
k

E−k,

(2.109)

where, ⎛⎝ ck↑

c†−k↓

⎞⎠ = U

⎛⎝ γk↑

γ†−k↓

⎞⎠ =

⎛⎝uk − v∗−k

vk u∗−k

⎞⎠ ⎛⎝ γk↑

γ†−k↓

⎞⎠ . (2.110)

The order parameter given by

∆ = − U

N

∑
q

⟨cq↑c−q↓⟩ = −U

N

∑
q

uqv
∗
q tanh(

βEq

2
). (2.111)

Here, U < 0 is an attractive on-site interaction in the Hubbard model, and β = 1/kBT where
T is temperature and kB is the Boltzmann constant. Diagonalizing the BdG Hamiltonian
leads to the following eigenvalue

Ek =
√
ϵ2k + |∆|2, (2.112)

with its associated eigenvector

|Ek⟩ =

⎛⎜⎝
ϵk + Ek

∆∗

1

⎞⎟⎠ , (2.113)
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which is not normalized. Let A|Ek⟩ be the normalized eigenvector, then we have

∆ = −U

N

∑
q

uqv
∗
q tanh(

βEq

2
)

= −U

N

∑
q

|A|2(ϵq + Eq

∆∗ )(1) tanh(
βEq

2
)

= − U

N

∑
q

|∆|2

(ϵq + Eq)2 + |∆|2
(
ϵq + Eq

∆∗ ) tanh(
βEq

2
)

= − U

N

∑
q

∆(ϵq + Eq)

(ϵq + Eq)2 + |∆|2
tanh(

βEq

2
)

= − U

N

∑
q

∆(ϵq + Eq)

ϵ2q + E2
q + 2ϵqEq + |∆|2

tanh(
βEq

2
)

= − U

N

∑
q

∆(ϵq + Eq)

2ϵ2q + 2ϵqEq + 2|∆|2
tanh(

βEq

2
)

= − U

N

∑
q

∆(ϵq + Eq)

2E2
q + 2ϵqEq

tanh(
βEq

2
)

= − U

N

∑
q

∆

2Eq
tanh(

βEq

2
),

(2.114)

so,

∆ = − U

N

∑
q

∆

2Eq
tanh(

βEq

2
), (2.115)

which is the famous superconductivity gap equation which can be solved self-consistently.
In Chapter 4, we will use these techniques to obtain different gap equations for a more
complicated situation where the superconductivity order parameter is a complex momentum-
dependent function in the presence of spin-orbit coupling. In that situation, the full BdG
Hamiltonian has to be considered since it cannot be rewritten as the block-diagonal form.

2.6.2 TSCs in 1D: Majorana fermions and Kitaev’s model

In 1928, Paul Dirac proposed his relativistic wave function for spin one-half fermionic particles
in his seminal paper [110]; his equation reads as

(iγµ∂µ −m)ψ = 0. (2.116)

Here, γµ denotes 4 × 4 Dirac matrices obeying the rules of Clifford algebra {γµ, γν} = 2gµν

where gµν is the Minkowski space-time metric whose signature is (-1, +1, +1, +1), m is the
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electron rest mass in the vacuum, and c = 1. Dirac found a suitable set of these matrices
given by

γ0 = σ0 ⊗ τ3, γµ=1,2,3 = iσµ ⊗ τ2, (2.117)

where the Pauli matrices σ and τ refer to the spin and charge degrees of freedom, respectively.
In the language of quantum field theory, if a given field creates a particle and annihilates its
anti-particle, the complex conjugate of that field, however, will create the anti-particle and
annihilate the particle. Therefore, for a complex field since ψ ̸= ψ∗, the particle and the anti-
particle are two distinct objects. In other words, Dirac predicted the notion of anti-particles:
for any particle satisfying the Dirac equation of motion, there exists a conjugated solution
associated with its anti-particle with the same mass but opposite charge. Dirac’s prediction
was confirmed later by the discovery of positron [111]. The relativistic fermionic particles
governed by the Dirac equation are known as Dirac fermions.

In 1937, Ettore Majorana, in his famous paper [112], found a basis where the four Dirac
matrices are purely imaginary

γ̃0 = σ2 ⊗ τ1, γ̃1 = iσ3 ⊗ τ0, (2.118)

γ̃2 = −iσ2 ⊗ τ2, γ̃3 = −iσ1 ⊗ τ0. (2.119)

This led him to the fascinating conclusion that the Dirac equation in Majorana’s represen-
tation is real (since all iγµ matrices in the Dirac equation are real for pure imaginary γ̃µ

matrices), so that it can describe the evolution of real fermionic fields. The fact that ψ can
be a real fermionic field results in the interesting fact that there are fermionic particles which
are their own anti-particles known an Majorana fermions! A Dirac fermion can always be
written as a superposition of two Majorana fermions like a complex number that can be
written by using two real numbers.

Moreover, the state of two spatially separated Majorana fermions is robust against local
perturbations, and adiabatic exchange of them changes the state up to a phase other that
0 and π due to their non-Abelian anyonic nature. Due to these two fascinating properties
of Majorana fermions, Majorana in his short life unintentionally uncovered the most pro-
found problem in quantum computing by his discovery. Owing to its non-Abelian exchange
statistics, Majorana fermions may finally act as a basic building block or qubit, the quantum
analogue of a classical bit, for topological quantum computing which is fault-tolerant [38, 39].
Nowadays, engineering systems hosting Majoranas is a very active area of research although
finding them in nature is immensely difficult. In fact, the existence of Majorana particles has
remained as elusive as Majorana himself, who disappeared without a trace during a boat trip
less than a year after he came up with his equation.

In fact, superconductivity appears to be the natural playground since it allows Bogoliubov
excitations made of electrons and holes with an inherent particle-hole symmetry in the BdG
Hamiltonian [113]. Using the Bogoliubov transformation, the Bogoliubov quasiparticle with
energy +E can be written as d† = uc† + vc, which is a superposition of an electron and a
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hole. According to the particle-hole symmetry, there has to be a Bogoliubov anti-quasiparticle
d = v∗c† + u∗c with energy −E. It is clear now that we can get Majoran fermions (d = d†)
if and only if u = v∗ which happens only at E = 0. Therefore, the zero-energy Bogoliubov
quasiparticles of a superconductor behave like Majorana fermions thanks to the particle-hole
symmetry. Moreover, if the pairing symmetry of the superconductor is spin-singlet (Cooper
pair with opposite spins), the Bogoliubov transformation does not allow d = d† even at zero-
energy, so the two electrons in the Cooper pair should possess no spin (spinless), which is
not the case in nature, or have the same spins. These kinds of superconductors are known as
spin-triplet superconductors. They are very rare in nature but they can be created effectively
by a spin-singlet superconductor subjected to spin-orbit coupling and Zeeman field.

In 2001, Alexei Kitaev introduced his famous toy model for a one-dimensional spinless
superconductor which can support Majorana zero modes [114]. The beauty of this model lies
in its simplicity. In the rest of this section we will review the basic properties of Kitaev’s
model. In particular, the intimate connection between topology and Majorana edge states
will become apparent. Kitaev’s one-dimensional tight-binding Hamiltonian in the real space
for N sites with open-boundary conditions is given by

H =
N−1∑
i=1

(−tc†ici+1 + ∆cici+1) + h.c.− µ
N∑
i=1

c†ici, (2.120)

where t is the nearest-neighbor hopping amplitude, ∆ is the superconducting pairing poten-
tial, which is taken to be a real number for the sake of simplicity, µ is the chemical potential,
and h.c. stands for Hermitian conjugate. Note that the electrons in this model are spinless,
so we have an unconventional p-wave superconducting pairing that differs from the usual
s-wave pairing where the Cooper pairs are formed by electrons with opposite spins. Taking
period boundary conditions (cN+1 = c1) and performing Fourier transformation leads to

H =
∑
k

(−2t cos k − µ)c†kck −
∑
k

(i∆ sin k c†kc
†
−k + h.c.), (2.121)

which can be rewritten as

H =
1

2

∑
k

(
c†k c−k

)
H(k)

⎛⎝ ck

c†−k

⎞⎠ , (2.122)

up to some constant term. Here,

H(k) = dy(k)τy + dz(k)τz, (2.123)

for

dy(k) = 2∆ sin k, (2.124)
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dz(k) = −2t cos k − µ, (2.125)

where τy,z are Pauli matrices acting on particle-hole space. One can check particle-hole
symmetry PH(k)P−1 = −H(−k) for P = τxK where P2 = 1. Moreover, one can also
see that the superconducting order-parameter ∆(k) = ∆ sin k is momentum dependent and
it is odd under inversion operation i.e ∆(k) = −∆(−k). The energy spectra of the BdG
Hamiltonian (2.123) is given by,

E(k) = ±
√

(2t cos k + µ)2 + 4∆2 sin2 k, (2.126)

so the energy gap is closed at µ = ±2t. As the BdG Hamiltonian only contains two Pauli
matrices, the experience from the Su-Schrieffer-Heeger (see subsection 2.5.1) tell us that the
topological nontrivial region is the |µ| < 2t region. This corresponds to the picture that the
trajectory of the end of vector d(k) = (dy(k), dz(k)) in the kykz plane will enclose the origin
when k goes across the whole Brillouin zone. However, the reason that we can use this picture
is because this Hamiltonian has an additional chiral symmetry whose operator is S = τz.

The most remarkable step made by Kitaev is decomposing the Dirac fermion operator
into two Majorana fermion operators which are self-conjugate [114],

cj =
1

2
(γ2j−1 + iγ2j), (2.127)

c†j =
1

2
(γ2j−1 − iγ2j). (2.128)

This is analogous to the decomposition of a complex number to two real numbers. The usual
fermions satisfy the anticommutation relation {ci, c†j} = δi,j . Given this, we should have

{γi, γ†j} = 2δi,j , (2.129)

which leads to {γi, γj} = 2δi,j by using of γ†i = γi. Remarkably, γ2i = 1 not zero! Using the
Majorana operators, the Hamiltonian (2.120) can be written as,

H =
i

2

N−1∑
j=1

{
(∆ + t)γ2jγ2j+1 + (∆ − t)γ2j−1γ2j+2

}
− iµ

2

N∑
j=1

γ2j−1γ2j . (2.130)

Let us focus on two limiting cases:

• ∆ = t = 0 and µ < 0: For this case, the Hamiltonian reduces to

H1 = − iµ
2

N∑
j=1

γ2j−1γ2j . (2.131)

The ground state of H1 satisfies,
cj |Ψ⟩ = 0, (2.132)

for j = 1, 2, . . . , N .
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• ∆ = t > 0 and µ = 0: For this case the Hamiltonian reduces to

H2 = it
N−1∑
j=1

γ2jγ2j+1. (2.133)

One can easily see that γ1 and γ2N do not enter in H2. In other words, the two Majorana
fermions at the boundary do not couple with other Majorana fermions in this case, so
this case is topologically non-trivial such that one zero energy state is localized at each
end of a one-dimensional model. As these zero-energy states are self-conjugate, they
are dubbed Majorana zero modes. By defining a non-local fermion

c̃ =
1

2
(γ1 + iγ2N ), (2.134)

c̃† =
1

2
(γ1 − iγ2N ), (2.135)

one can check that [H2, c̃] = [H2, c̃
†] = 0. If |Ψ0⟩ is the ground state of H2 satisfying

c̃|Ψ0⟩ = 0, then |Ψ1⟩ = c̃†|Ψ0⟩ = 0 is also the ground state of the Hamiltonian. In other
words, the ground state is doubly degenerate and the number of occupied fermions in
the two ground states differs by one. As the fermion parity (the parity of the number of
fermions) is a good quantum number, this is equivalent to saying that the two ground
states |Ψ0⟩, |Ψ1⟩ have different fermion parity; one is odd and the other one is even.
It is worth noting here that the interacting part of the Hamiltonian before mean-field
decoupling is invariant under gauge transformation ck,σ → eiθck,σ, so for all the values
of θ, it has U(1) symmetry. However, after performing mean-field decoupling, the U(1)
symmetry is broken to Z2 symmetry since θ can only take two values 0, π such that
the Hamiltonian remains unchanged. The fermion parity is defined as

Pf = (−1)
∑

k,σ n̂k,σ , (2.136)

where n̂k,σ = c†k,σck,σ is the particle number operator.

By performing Fourier transformation on the Majorana operators,

γ2j−1 =
1

N

∑
k

γ1,ke
ikj , (2.137)

γ2j =
1

N

∑
k

γ2,ke
ikj , (2.138)

and using γj = γ†j or equivalently γ†k = γ−k, the Majorana-representation of the Hamiltonian
becomes,

H =
i

4

∑
k

ψ†
kA(k)ψk, (2.139)
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where ψT
k = (γ1,−k, γ2,−k) and

A(k) =

(
0 ςk

−ς∗k 0

)
, (2.140)

where ςk = −2t cos k−µ−2i∆ sin k. A topological phase transition takes place only when the
determinant of A(k) vanishes. It is noteworthy that for more general cases, the A(k) matrix
is also off-diagonal. At two time-reversal invariant momenta k = 0, π, the matrix A(k) is
antisymmetric, so the Pfaffian can be defined. Kitaev showed that the topological invariant
is simply given by [43]

(−1)ν = sgn[Pf(A(k = 0))] sgn[Pf(A(k = π))]

= sgn(−2t− µ) sgn(2t− µ),
(2.141)

where in the second line we used Eq. 2.90. Therefore, for |µ| < 2t one has ν = 1 (topolog-
ically non-trivial), and for |µ| > 2t one has ν = 0 (topologically trivial) resulting in a Z2

classification.
To get an even better intuition, let us consider the low energy continuum Hamiltonian

briefly. Expanding the BdG Hamiltonian (2.123) around k = 0 and taking only the first-order
terms gives

Heff = −(2t+ µ)τz + 2∆kτy. (2.142)

This is precisely a Dirac Hamiltonian which is linear in momentum k with mass term m =
−2t− µ, so the boundary between topologically trivial and nontrivial phases is now encoded
in the sign of mass, and m = 0 corresponds to the critical point i.e. the topological phase
transition at which the bulk energy gap closes and the mass term switches sign. Now we
allow the mass term to vary with position x in such a way that

lim
x→±∞

m(x) = ±m, (2.143)

m(x = 0) = 0. (2.144)

Then, x = 0 corresponds to a domain wall separating two regions of space where m is negative
for (x < 0) and is positive for (x > 0). To be able to use this mass term in the Hamiltonian,
the Bloch Hamiltonian has to be rewritten in real space as

H(x) = m(x)τz − 2i∆τy∂x, (2.145)

where we substituted k → −i∂x. Solving the Schrödinger equation for zero-energy states
gives

H(x)ϕ(x) = [m(x)τz − 2i∆τy∂x]ϕ(x) = 0. (2.146)

This first-order differential equation can be solved by multiplying the equation from the left
side by τy and using τyτz = iτx and τ2y = 1, so

∂xϕ(x) =
m(x)

2∆
τxϕ(x), (2.147)
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The solution can be derived as

ϕ(x) = exp(±
∫ x

0

m(x′)

2∆
dx′)

1√
2

(
1
±1

)
. (2.148)

However, due to the fact that m(x) changes sign at x = 0, only one of the solutions will be
normalizable. If the sign of the mass term did not change, there would be no normalizable
solutions. This Majorana zero mode is localized at the interface or x = 0. This special
behavior due to the sign change of Dirac mass was first obtained by Jackiw and Rebbi in
1976 [80].

Candidate host materials for Majorana fermions are Sr2RuO4 which is a spinful p-wave
material [115], the A-phase of superfluid 3He, the fractional quantum Hall phase with filling
fraction ν = 5/2 known as the Moore-Read state [116], and zero-energy bound states in the
core of vortices in a chiral px + ipy superconductor [116–119]. While odd-parity supercon-
ductors generally provide a natural realization of topological superconductors [114, 120–123],
their scarcity in nature turns out to be a serious obstacle from an experimental point of
view. It is also possible to find them in the hybrid structure of a three-dimentional topologi-
cal insulator and conventional s-wave superconductor [124]. Fortunately, the combination of
spin-orbit coupling and Zeeman field enable the realization of effective odd-parity supercon-
ductivity on the basis of abundant even-parity superconductivity, providing a more readily
accessible route for the realization of topological superconductors [125–131]. Over the past
decade, remarkable progress along this route has been witnessed [132–140].

In the next section, we will study Majorana zero modes in the context of vortices in a two-
dimensional chiral px + ipy superconductors. This mechanism will be used for interpreting
the results of Chapter 5.

2.6.3 TSCs in 2D: Chiral px + ipy superconductors and vortex bound state

In two dimensions, the simplest realization of topological superconductor phases is the chiral
p-wave pairing with px + ipy pairing symmetry. The Hamiltonian for such a system in
momentum space is given as

H =
1

2

∑
k

ψ†
kH(k)ψk, (2.149)

for k = (kx, ky), and ψT
k = (ck, c

†
−k), where

H(k) =
∑

i=x,y,z

di(k)τi, (2.150)

with

dx(k) = 2∆ sin kx, (2.151)
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dy(k) = 2∆ sin ky, (2.152)

dz(k) = −2t(cos kx + cos ky) − µ. (2.153)

This Hamiltonian has particle-hole symmetry for P = τxK and does not have time-reversal
symmetry, so the Hamiltonian is characterized by a non-zero Chern number.

Although chiral px + ipy topological superconductors (class D), and both integer quan-
tum Hall effect and Chern insulators (class A) all break time-reversal symmetry and all are
characterized by a non-zero Chern number, class D describes superconductors and class A
describes insulators which leads to distinct chiral boundary modes. The chiral Majorana
boundary excitation for a topological superconductor is neutral since Majorana zero modes
are an equal superposition of electron (negative charge) and hole (positive charge), so the
boundary Majorana zero-modes of a topological superconductor cannot transport charge cur-
rent in sharp contrast to quantum Hall effect. However, they can transport thermal current
since there is no difference for the energy current carried by electrons and holes. Therefore,
the thermal conductivity of the edges is an experimental observable which is directly related
to the Chern number in a chiral topological superconductor.

Assume a chiral px + ipy superconductor with two different geometries: a disk with one
edge and a cylinder with two edges. For an edge of length L, the smallest difference between
two momenta along the edge is 2π/L, so the energy difference between two levels is v2π/L
where v is the velocity of dispersing chiral Majorana modes. For a disk, which has one edge,
there cannot be a single state at momentum p = 0 at energy E = 0. If such a state was there,
the spectrum would contain an odd number of states which is not possible since the number
of eigenvalues of a given BdG Hamiltonian is always an even number. One way to introduce
such a state is to have antiperiodic boundary conditions so the spectrum of the edge will be
at momentum π(2n + 1)/L for n ∈ Z. For a cylinder, however, as two edges are present,
periodic boundary conditions are allowed where the momentum is given by 2πn/L for n ∈ Z.
Therefore, it is possible to get a zero mode at p = 0 for a cylinder.

Now, let us add a single vortex inside the disk far away from the edge. What can be the
impact of this vortex on the edge? The vortex induces a phase 2π in unit of h/2e where h
is Planck’s constant and e is the charge of an electron. This implies that the antiperiodic
boundary conditions on the edge without vortex changes to periodic boundary conditions in
the presence of a vortex, so the spectrum on the edge is translated by π/L compared to the
case without the vortex, making it have an energy level at p = 0 with energy E = 0. This
would mean that the spectrum has an odd number of levels. However, this cannot be true,
so we are missing one unpaired level! Where is it? Since the only difference with the case
with no vortex is the vortex itself, we draw the conclusion that the missing level is associated
with the vortex and is a bound state in the vortex. Since it is unpaired and really bound to
the vortex, it has to rest exactly at E = 0, so spinless chiral superconductors have a single
Majorana zero mode in their vortex core. At the same time, a single Majorana zero mode
appears on the edge.
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It turns out that an even Chern number topological superconductor has no Majorana
zero modes in the vortex while an odd Chern number topological superconductor has one
Majorana zero mode in its core. This shows that vortices in a topological superconductors
are classified by a Z2 number which is Chern number mod 2.

2.7 Crystalline and higher-order topological phases

We have discussed different realizations of topological phases of matter so far. The topological
phases in the Altland-Zirnbauer table are protected entirely by so-called generic, non-spatial
symmetries that cannot be represented by unitary operators that commute with the Hamil-
tonian. Therefore, topologically protected states appear on all surfaces and the interfaces
of the system even in the presence of weak disorder since these spatial modifications of the
system do not affect a non-spatial symmetry. But what will happen if we consider ordinary
spatial symmetries represented by unitary operators? This led to the discovery of topological
crystalline insulators which has opened the door to new topological phases of matter whose
topological nature arises from the richness and complexity of crystal symmetries.

In 2011 Fu, in another seminal paper, presented a three-dimensional toy model with
gapless surface states protected by the combined effects of four-fold rotation (C4) and time-
reversal symmetries. This toy model represents the first example of a large class of topological
crystalline insulators [44]. In 2012, one year after this theoretical prediction, the non-trivial
surface states were successfully observed [45–47].

Those spatial symmetries are point-group symmetries such as inversion [141, 142], mirror
[143–145], and rotation [44], in addition to space-group symmetries such as glide planes and
screw axes or a combination of them [32, 146, 147]. These symmetries have been recently
extended to include magnetic space groups [148–150]. Moreover, all these crystal symmetries
can even enrich the topological phases in the Altland-Zirnbauer table [151]. This has been
done for several cases, such as systems with inversion symmetry or mirror symmetry. These
crystalline symmetries lead to new topological invariants such as mirror Chern number [151].

Topological crystalline insulators are susceptible to disorder, so topological features are
expected to persist only if the protecting crystal symmetry is preserved on average [48].
Moreover, not all surfaces of a topological crystalline insulator host topological surface states,
only those that do not break the protecting crystal symmetry. For example, a topological
crystalline insulator protected by a C4 rotation symmetry will have generally topological
states only on the surfaces perpendicular to the axis of rotation [44].

In 2017, a new class of topological crystalline phases, named higher-order topological
phases was theoretically predicted by Benalcazar, Bernevig, and Hughes in which the dipole
polarization vanishes while higher electric multipole moments are quantized to fractional val-
ues [53, 54]. Nowadays, this model is known as the BBH model. The word “order” in this
context gives the codimension of the gapless boundary modes, namely, an nth order topolog-

54



Chapter 2 55

ical insulator or topological superconductor has gapless boundary modes with codimension
n. As the gapless boundary modes of all conventional topological insulators and topological
superconductors have n = 1, they thus belong to the first-order topological phases in this
language. Therefore, conventional bulk-boundary correspondence, which states gapless topo-
logical boundary states emerge only at boundaries that are one dimension lower than the
bulk, is not valid here.

First-order or conventional topological phases (n = 1) host gapless edge states. Second-
order topological phases (n = 2) have gapped edge states with a fractional dipole moment, and
electric charge accumulated at the four corners of two-dimensional finite systems. Third-order
topological phases (n = 3) host gapped surface states with a fractional quadrupole moment,
gapped hinge states with a fractional dipole moment, and electric charge accumulated at
the eight corners of three-dimensional finite systems [53]. In the context of higher-order
topological superconductors, these corner and hinge modes are know as Majorana corner
states and Majorana hinge states, respectively [152–155].

Higher-order topological phases have attracted a great deal of attention because of the
enrichment of boundary physics, the intriguing manifestation of crystalline symmetry and
band topology at the bulk and boundaries, as well as the occurrence of new possibilities for
topological phase transitions. These intriguing phases could provide new platforms for Majo-
rana zero modes and topological quantum computing and enable unprecedented topological
devices with better integration and miniaturization.

In the last two years, higher-order topological phases have been proposed in systems
without quantized multiple moments [55], and in non-periodic lattices such as amorphous [56],
and quasicrystalline [57] solids. Moreover, higher-order non-Hermitian topological phases [58,
59], higher-order Weyl semimetals [60, 61], and higher-order Floquet topological phases [62,
63] have attracted a great deal of attention and revealed many ubiquitous physical properties.
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Majorana Corner Flat Bands in
Second-Order Topological
Superconductors

3.1 Introduction

In this chapter, which is based on publication (I), we will show that a two-dimensional
topological insulator in proximity to a high-temperature dx2−y2-wave superconductor can
lead to a second-order topological superconductor, which hosts Majorana corner states. In
terms of the conventional bulk-boundary correspondence, these materials are topologically
trivial since both bulk and boundary states are gapped. However, there are robust gapless
states on the “edge” of the boundary of these materials. In d-spatial dimensions, n-th order
topological insulators and superconductors have (d−n)-dimensional gapless localized modes.

It will be shown that confining this second-order topological superconductor with a har-
monic potential leads to a proliferation of Majorana corner modes. As a consequence, this
results in the formation of Majorana corner flat bands which have a fundamentally different
origin from that of the conventional mechanism. This is due to the fact that they arise solely
from the one-dimensional gapped boundary states of the hybrid system that becomes gapless
without the bulk gap closing under the increase of the trapping potential magnitude. The
Majorana corner states are found to be robust against the strength of the harmonic trap
and the transition from Majorana corner states to Majorana flat bands is merely a smooth
crossover. As a harmonic trap can potentially be realized in heterostructures, this proposal
paves a way to observe these Majorana corner flat bands in an experimental context.
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3.2 The origin of Majorana corner states

Let us introduce the Bogoliubov-de Gennes (BdG) Hamiltonian of a two-dimensional topo-
logical insulator, also known as quantum spin Hall insulator, in proximity with a d-wave
superconductor which is given by,

H =
1

2

∑
ij

ψ†
i

⎛⎜⎝ĤN
ij ∆̂ij

∆̂†
ij −ĤN∗

ij

⎞⎟⎠ψj . (3.1)

Here, ψ†
i = (c†i,a,↑, c

†
i,b,↑, c

†
i,a,↓, c

†
i,b,↓, ci,a,↑, ci,b,↑, ci,a,↓, ci,b,↓), and c†i,α,β(ci,α,β) denotes the cre-

ation (annihilation) operator of an electron at site i = (ix, iy), in orbital α ∈ (a, b), with spin
β ∈ (↑, ↓). The normal state and superconducting parts of the Hamiltonian are 4N × 4N
complex matrices for a square lattice with N sites and they are given by

ĤN
ij =mijσzs0 +Ax

ijσxsz +Ay
ijσys0 − µδijσ0s0, (3.2)

∆̂ij = − i∆ijσ0sy, (3.3)

respectively. The mass term is

mij = m0δij −
t

2
(δi,i+x̂ + δi,i−x̂ + δi,i+ŷ + δi,i−ŷ), (3.4)

where m0 is on-site orbital-dependent energy, and t is the intra-orbital nearest neighbor
hopping magnitude along the x and y directions with unit vectors x̂ and ŷ. The σx,y,z and
sx,y,z are Pauli matrices acting on orbital and spin degree of freedoms, respectively, and σ0
and s0 are 2 × 2 unit matrices. Moreover,

Ax
ij = − iλ

2
(δi,i+x̂ − δi,i−x̂), (3.5)

Ay
ij = − iλ

2
(δi,i+ŷ − δi,i−ŷ), (3.6)

are the spin-orbit coupling terms with magnitude λ. The symbol i denoting pure imaginary
number should not be confused with the site-index that generally occurs subscripted. The
chemical potential is given by µ, and the d-wave superconductivity order parameter with
dx2−y2-wave symmetry is expressed as,

∆ij =
∆d

2
(δi,i+x̂ + δi,i−x̂ − δi,i+ŷ − δi,i−ŷ). (3.7)
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The corresponding BdG Hamiltonian in momentum space for a square lattice with a unit
lattice constant can be written as

H =
1

2

∑
k

Ψ†
kHBdG(k)Ψk, (3.8)

where Ψ†
k = (c†k,a,↑, c

†
k,b,↑, c

†
k,a,↓, c

†
k,b,↓, c−k,a,↑, c−k,b,↑, c−k,a,↓, c−k,b,↓) and,

HBdG(k) = m(k)σzs0τz + λ sin kxσxszτ0 + λ sin kyσys0τz

+ ∆(k)σ0syτy − µσ0s0τz. (3.9)

Here, τx,y,z are Pauli matrices in particle-hole space, τ0 is the 2 × 2 unit matrix, and

∆(k) = ∆d(cos kx − cos ky), (3.10)

m(k) = m0 − t(cos kx + cos ky). (3.11)

It should be noted that the above Hamiltonian without d-wave pairing (the normal state
part) becomes the paradigmatic Bernevig-Hughes-Zhang (BHZ) model of two-dimensional
topological insulators [18]. The eigenvalues of this part of the Hamiltonian are given by

E(k) = ±
√
m2(k) + λ2(sin2 kx + sin2 ky) − µ. (3.12)

Hence, the insulating gap as an important quantity in our analysis in section 3.3, is given
by m(k = 0) = |m0 − 2t|. Moreover, the BdG Hamiltonian possesses both particle-hole
symmetry (P) and time-reversal symmetry (T )

PH∗
BdG(k)P−1 = −HBdG(−k), (3.13)

T H∗
BdG(k)T −1 =HBdG(−k), (3.14)

where P = σ0s0τx and T = iσ0syτ0. The intrinsic particle-hole symmetry of the BdG
Hamiltonian guarantees that the eigenstates whose eigenvalues are zero satisfy the Majorana
conditions as discussed in Appendix A. The combination of these two anti-unitary symmetries
gives rise to a unitary chiral symmetry (S),

SHBdG(k)S−1 = −HBdG(k), (3.15)

where S = −iPT .
The helical edge states of a topological insulator can be described as one-dimensional

massless Dirac fermions. These gapless edge states can be gapped out by the induced d-
wave superconductivity which introduces a Dirac mass as is shown in Fig. 3.1(a). In this
figure, the energy spectra in the cylinder geometry where the x direction is taken to be
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Figure 3.1: (Color online) (a) The edge states in a cylinder geometry where the x direction is taken to
be open while the y direction is periodic without (solid black line) and with (solid red line) the d-wave
superconductivity. The helical edge states of the two-dimensional topological insulator are gapped out by the
induced superconductivity. (b) The fourteen smallest eigenvalues of the BdG Hamiltonian in real space and
the eight zero energy Majorana corner states in red color, (c) the probability profile of the eight Majorana
zero modes which are localized at the four corners of the sample. The four boundaries of the square sample
are labelled by (I), (II), (III), and (IV) for the use in the edge theory. Common parameters are m0 = 1.5,
µ = 0, t = λ = 1, and ∆d = 0.5. In (b)(c), we used a 31× 31 square lattice with open boundary conditions.

open while the y direction is periodic without (solid black line) and with (solid red line)
the d-wave superconductivity is plotted for a given set of parameters. It illustrates that
the helical edge states of the two-dimensional topological insulator are gapped out by d-wave
pairing. In Fig. 3.1(b), the energies near zero and the probability profile of the four Majorana
Kramers pairs (eight Majorana zero modes) are shown from the diagonalization of the BdG
Hamiltonian in real space for a 31 × 31 square lattice with open boundary conditions. Due
to pairing symmetry, the sign of Dirac mass changes at adjacent one-dimensional boundaries
of the two-dimensional topological insulator. This results in the appearance of one pair of
zero energy Majorana Kramers pairs as a domain-wall excitation at each corner of the sample
known as Majorana corner states as shown in Fig. 3.1(c).

In order to enhance our intuitive understanding, we take µ = 0 and focus on the continuum
model by expanding the lattice BdG Hamiltonian (3.9) to the second-order around k = (0, 0)
point in the first Brillouin zone,

H = (m+
t

2
k2x +

t

2
k2y)σzs0τz + λ(kxσxszτ0 + kyσys0τz) − ∆d

2
(k2x − k2y)σ0syτy, (3.16)

where m = m0 − 2t < 0 is assumed to ensure that the two-dimensional insulator without
pairing is topologically nontrivial. In Fig. 3.1(c), the four boundaries of the square sample
are labelled by (I), (II), (III), and (IV) for the use in the edge theory. First, we focus on
boundary (I) of the square sample and replace kx → −i∂x, so the Hamiltonian can be written
as H = H0 +Hp where

H0(−i∂x, ky) = (m− t

2
∂2x)σzs0τz − iλσxszτ0∂x, (3.17)
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Hp(−i∂x, ky) = λkyσys0τz +
∆d

2
σ0syτy∂

2
x, (3.18)

where k2y is omitted. Here, Hp is treated as a perturbation when the pairing is relatively small
which is the case in real samples. By solving the eigenvalue equation H0ϕn(x) = Enϕn(x),
we will find the following four zero-energy solutions under the boundary condition ϕn(x =
0) = ϕn(x = ∞) = 0 where

ϕn(x) = c sin(κ1x)e−κ2xeikyy χn, (3.19)

and

|c|2 = 4|κ2(κ
2
1 + κ22)

κ21
|, (3.20)

for κ1 =
√
|2mt | − (λt )2, κ2 = λ/t and

χ1 =|σy = −1⟩ ⊗ | ↑⟩ ⊗ |τz = +1⟩, (3.21)

χ2 =|σy = +1⟩ ⊗ | ↓⟩ ⊗ |τz = +1⟩, (3.22)

χ3 =|σy = +1⟩ ⊗ | ↑⟩ ⊗ |τz = −1⟩, (3.23)

χ4 =|σy = −1⟩ ⊗ | ↓⟩ ⊗ |τz = −1⟩. (3.24)

In this basis, the matrix elements of Hp are given by,

HI
n,m(ky) =

∫ ∞

0
dx ϕ∗n(x)Hp(−i∂x, ky)ϕ∗m(x). (3.25)

Therefore, the low-energy effective Hamiltonian for boundary (I) reads as,

HI(ky) = −λkysz +MIsyτy, (3.26)

where the Dirac mass is

MI =
∆d

2

∫ ∞

0
dx ϕ∗n(x)∂2xϕ

∗
n(x) =

m

t
∆d = (

m0

t
− 2)∆d. (3.27)

Similarly, for the other three boundaries we have,

HII(kx) = λkxsz +MIIsyτy, (3.28)

HIII(ky) = λkysz +MIIIsyτy, (3.29)

HIV(kx) = −λkxsz +MIVsyτy, (3.30)

where

MII = −(
m0

t
− 2)∆d, (3.31)
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MIII = +(
m0

t
− 2)∆d, (3.32)

MIV = −(
m0

t
− 2)∆d. (3.33)

Therefore, by adding proximity-induced d-wave superconductivity, the helical gapless bound-
ary modes of the two-dimensional topological insulator become gapped such that the one-
dimensional effective systems along the vertical and horizontal boundaries have different
topological invariants or Dirac masses as we have shown. Hence, there should be gapless zero
modes at four intersections or corners of the two-dimensional topological insulator known as
Majorana corner states analogous to the Jackiw-Rebbi zero modes [80]. In a time-reversal
invariant system, Majorana corner states manifest themselves as Majorana Kramers pairs,
which are protected zero-energy modes localized at the four corners of the two-dimensional
topological insulator in proximity with a d-wave superconductor. Through this work, we set
m0 = 1.5, µ = 0, t = λ = 1, and ∆d = 0.5.

3.3 Majorana corner flat bands

Majorana corner states are robust in a two-dimensional topological insulator in proximity
with either cuprate-based or iron-based high-temperature superconductors [152]. In such a
system, modest edge imperfections do not affect the Majorana corner states while big edge
imperfections just create new corners that host their own Majorana corner states. This study
suggests that the shape of the system is important and it has some effects on the Majorana
corner states. In this section we are going to study the effects of a harmonic potential as
an example of a gradual confining potential on the Majorana corner states by adding the
following two-dimensional single particle potential

Vi = vtrap
{

(ix − icx)2 + (iy − icy)2
}
σ0s0, (3.34)

to the normal state part of the Hamiltonian (Eq. 3.2) where vtrap is the harmonic potential
magnitude, and ic = (icx, i

c
y) is the coordinate of the central site of the square lattice which

we take as the origin.
Here, there is no well-defined edge associated with a gradual confining potential and near

a Majorana corner state, there is no additional corner where additional Majorana corner
states can appear. In the limit of a harmonic potential whose magnitude is much larger than
the insulating gap, the region near the four corners of two-dimensional topological insulator
in proximity with a d-wave superconductor becomes the location for unconventional super-
conductivity. It should be pointed out that in the homogeneous system by increasing the
chemical potential there is a topological phase transition with bulk gap closing. Moreover, a
time-reversal invariant d-wave superconductor with [110] surface, has zero-energy flat disper-
sion due to a nontrivial one-dimensional winding number at a large enough chemical potential
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Figure 3.2: (Color online) Schematic figure of a two-dimensional topological insulator in proximity with a
high-temperature d-wave superconductor in the presence of two different two-dimensional harmonic potentials,
where the red paraboloid has larger potential magnitude than the yellow one. The Majorana zero modes are
shown by red and yellow points. The number of Majorana corner states (yellow points) gradually increases
as the harmonic potential magnitude increases which results in the formation of Majorana corner flat bands
(red points).

[130, 156–158]. Therefore, there might be a transition from Majorana corner states to Majo-
rana flat bands in a nonhomogeneous system with increasing harmonic potential magnitude.
The question arises: to what degree can the number of Majorana corner states be varied as
we change the magnitude of a confining potential? Will a topological phase transition occur
as the bulk gap closes, or will there be a crossover as the bulk gap continues to decrease
without closing?

We will show that in a second-order topological superconductors with a confining har-
monic potential the Majorana corner states-Majorana flat bands transition is merely a crossover:
the number of the Majorana zero modes gradually increases, as shown schematically in
Fig. 3.2, while there is no two-dimensional bulk gap closing as the harmonic potential mag-
nitude increases. We find that the increase of the number of Majorana zero modes indicates
the appearance of new Majorana states originating from the fact that only one-dimensional
gapped boundary modes become gapless without closing the bulk gap as illustrated in Fig. 3.3.
This eventually leads to a new kind of Majorana flat bands which we call Majorana corner
flat bands. It is found that two-dimensional bulk states do not become gapless with increasing
the harmonic potential magnitude in a system with open-boundary conditions, i.e., the host
system for the Majorana corner states. We show that the crossover behavior is important
for explaining the increase in the number of Majorana zero modes. In contrast, in a system
with periodic boundary conditions, the two-dimensional bulk gap is closed if the potential
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Figure 3.3: (Color online) Schematic figure of the procedure by which Majorana corner states become Majorana
corner flat bands. (Left panel) There is no harmonic potential. The system has topologically distinct one-
dimensional gapped modes on the adjacent boundaries which leads to gapless Majorana corner states at the
intersection of two different boundaries, i.e., corners. (Right panel) After including the harmonic potential,
the gapless Majorana corner states remain gapless. However, the one-dimensional gapped boundary modes
become gapless modes.

magnitude at the corners, vtrap(rc), becomes larger than the insulating gap. We confirm that,
under sharp potentials such as a circular potential, the two-dimensional bulk gap is closed in
both open-boundary conditions and periodic boundary conditions systems.

We argue that in a second-order topological superconductor, the Majorana corner states-
Majorana corner flat bands transition is actually a crossover in the open-boundary conditions
system with increasing the harmonic potential magnitude: the number of Majorana zero
modes gradually increases while there is no bulk gap closing as is illustrated in Fig. 3.4.
It can be seen that there are branches of eigenvalues whose values decrease from 0.5 with
increasing the harmonic potential magnitude although the bulk gap remains open. We find
that the proliferation of the Majorana zero modes originates from the fact that only one-
dimensional gapped boundary modes becomes gapless without the two-dimensional bulk gap
closing.

In contrast, in the system with periodic boundary conditions with an increasing harmonic
potential magnitude, the two-dimensional bulk gap is closed if the potential magnitude at
the four corners [vtrap(rc)] of the two-dimensional topological insulator becomes larger than
the insulating gap as shown in Fig. 3.5. In this case, by increasing the harmonic potential
magnitude there are no Majorana zero modes because there are no one-dimensional gapped
boundary modes to become gapless. We have verified that the same behavior persists for
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Figure 3.4: (Color online) (a) Density of states, and (b) the eigenvalues of the BdG Hamiltonian as a function
of vtrap(rc) for a 51× 51 square lattice with open-boundary conditions. The unit of all values is |m(k = 0)|.

larger systems.
To see the Majorana corner states-Majorana corner flat bands transition in more detail,

we show the real space dependence of the zero-energy local density of states in Fig. 3.6. In
the region outside the black circles of the two lower middle panels of this figure, the harmonic
potential magnitude is larger than the insulating gap locally, so Figs. 3.6(b), 3.6(e), and 3.6(h)
indicate that Majorana corner states are robust even outside this circle. Moreover, the region
outside the circles can host Majorana corner flat bands, and the additional Majorana zero
modes originate from only one-dimensional gapped boundary modes that become gapless.

3.4 Flatness and the origin of Majorana corner flat bands

It should be noted that an exact zero-energy eigenvalue cannot be obtained in the theoretical
calculations for a finite system because of finite size effects. Thus,“zero” energy has to be
defined. An eigenvalue can be considered as a zero-energy mode in such a finite system if
its magnitude is very small. Therefore, the eigenvalue Ei can be considered as a zero-energy
eigenvalue if it satisfies |Ei| ≤ ε condition for a very small ε. By using of this definition for
zero-energy modes, we show that as the harmonic trap magnitude is increased, the number
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Figure 3.5: (Color online) (a) Density of states, and (b) eigenvalues of the BdG Hamiltonian as a function of
vtrap(rc) for a 51× 51 square lattice with periodic boundary conditions. The unit of all values is |m(k = 0)|.

of zero-energy eigenvalue increases independent of the value of ε for large enough lattice. In
Fig. 3.7, the ratio between the number of eigenvalues inside the |Ei| ≤ ε interval, say Nf , and
the number of boundary states, which is proportional to the size of the lattice along the x
or y-direction, is plotted as a function of system size. This figure clearly illustrates that this
ratio is increasing in the thermodynamic limit, and a truly flat band appears by increasing
the harmonic trap magnitude if finite-size effects are suppressed.

In Fig. 3.8, we plot the density of states (DOS) for the same parameters as in Fig. 3.6.
It can be clearly seen that the number of Majorana zero modes increases without the bulk
gap closing as the harmonic potential magnitude increases in the weak potential limit. The
states that appear close to zero energy in this figure are boundary states not bulk states
according to Fig. 3.9, where the origin of Majorana corner flat bands is shown. In Fig. 3.9,
we show that Majorana corner flat bands originate from only gapped states localized at one-
dimensional boundaries. In this figure we plot the square of the wave function’s amplitude
associated with only blue points. As the harmonic potential magnitude is increased, the
energy corresponding to these one-dimensional boundary states become smaller, and they
become more localized around the corners. By increasing the harmonic potential magnitude,
more and more one-dimensional gapped modes become gapless.
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Figure 3.6: (Color online) (a,b,c) Eigenvalues of the BdG Hamiltonian, (d,e,f) contour plot of the two-
dimensional harmonic potential, and (g,h,i) zero-energy local density of states for a 51 × 51 square lattice
with open-boundary conditions in the presence of three different harmonic potential magnitudes vtrap(rc) =
0.4 (a,d,g), 1.4 (b,e,h), and 2.2 (c,f,i). Outside the two black circles vtrap(rc) > |m(k = 0)|, i.e., the harmonic
potential magnitude is larger than the insulating gap locally. Both the eigenvalues and harmonic potential
magnitude are given in units of |m(k = 0)|. The smearing factor in the Lorentzian function for plotting the
local density of states is 0.005 in units of |m(k = 0)|.

3.5 Circular potential

Let us define the circular potential as Vi = vcirc for (ix − icx)2 + (iy − icy)2 > R2 where vcirc is
the strength of the circular potential, and ic = (icx, i

c
y) is the coordinate of the central site of

a two-dimensional sample. Here, we take R = Nx/2 where Nx is the number of sites along x-
axis direction. In the circle with perimeter R the potential is zero. As shown in Figs. 3.10 and
3.11, the bulk gap closes for both open-boundary conditions and periodic boundary conditions
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Figure 3.7: (Color online) The ratio between the number of eigenvalues inside the |Ei| ≤ ε interval and Nx

as a function of the length of the boundaries of the square lattice with open-boundary conditions for three
different values of ε with vtrap(rc) = 1.1|m(k = 0)|.
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Figure 3.8: (Color online) Density of states as a function of energy in the unit of the insulating gap value
for the same parameters as the Fig. 3.6. The bulk gap remains open as the harmonic potential magnitude
increases in the weak potential limit.

for a circular potential, so there is no crossover and no Majorana corner flat bands in the
presence of a circular potential which is not similar to the case of the harmonic potential.
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Figure 3.9: (Color online) Eigenvalues of the BdG Hamiltonian and the square of the wave function’s amplitude
for different values of vtrap(rc) and for a 51× 51 square lattice with open-boundary conditions. The square of
the wave function’s amplitude is plotted only for the eigenvalues that are denoted with blue color. They are
gapped boundary states that become gapless by increasing the harmonic potential magnitude.

3.6 Discussion

Let us discuss the difference between conventional Majorana flat bands in a d-wave super-
conductor and Majorana corner flat bands in our system. In a superconductor with order
parameter symmetry dx2−y2 , it is well known that there are Andreev flat bound states, which
appear at the [110] surface. On the other hand, there is no zero-energy bound state at the
[100] and [010] surfaces [159, 160]. For this nodal superconductor, it is possible to define a
one-dimensional partial Brillouin zone by fixing the (d− 1)-dimensional momentum k|| at a
certain point [156, 159, 161, 162]. As long as the pair potential in such a partial Brillouin
zone is fully gapped, we can define the one-dimensional winding number as the topological
invariant of a nodal topological superconductor:

W(k||) =
1

2π
Im

∫
dk⊥∂k⊥ ln det(q), (3.35)

where k⊥ is the momentum in a one-dimensional Brillouin zone, and k|| is the momentum
parallel to the surface that we consider. Moreover, in Eq. (3.35), q(k) is the off-diagonal
block of the BdG Hamiltonian in the basis that diagonalizes the chiral symmetry operator
such that

det q(k) =
{
m2(k) + (∆(k) + iµ)2 + λ2 sin2 kx + λ2 sin2 ky

}2
. (3.36)
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Figure 3.10: (Color online) (a) Density of states, and (b) eigenvalues of the BdG Hamiltonian as a function
of vcirc for a 51× 51 square lattice with open-boundary conditions. The unit of all values is |m(k = 0)|.

For a finite winding number, there are |W(k||)|-fold degenerate zero-energy modes at a surface
parallel to k||. Such highly degenerate surface bound states are known as Majorana flat bands
because the energy dispersion is independent of k|| [163].

A two-dimensional homogeneous topological insulator in proximity with a d-wave super-
conductor becomes a superconductor with increasing chemical potential. This transition is
a topological phase transition with bulk gap closing since a d-wave superconductor order
parameter has line nodes. In this homogeneous system with large enough chemical poten-
tial, there are Majorana flat bands at the [110] surface because of the nontrivial value of
the winding number. The origin of these Majorana flat bands are Andreev bound states
[156]. However, here we find that in the case of Majorana corner flat bands not only is there
no two-dimensional bulk gap closing in the open-boundary conditions system with increas-
ing harmonic potential magnitude, but also the number of Majorana zero modes increases
only because of the reduction of the energy of the one-dimensional boundary gapped modes.
Also note that although Majorana corner states are exponentially localized at the corners of
the system, Majorana corner flat bands are localized close to the four corners in the weak
potential limit.

Although Majorana corner flat bands consist of many very spatially close Majorana zero
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Figure 3.11: (Color online) (a) Density of states, and (b) eigenvalues of the BdG Hamiltonian as a function
of vcirc for a 51× 51 square lattice with periodic boundary conditions. The unit of all values is |m(k = 0)|.

modes, they cannot hybridize and become gapped out. This is in contrast to the fact that
Majorana corner states hybridize and annihilate if they are brought close together. The rea-
sons for the weak hybridization can naturally be explained by the use of the one-dimensional
boundary modes, time-reversal symmetry, and the crossover behavior as follows. Without a
confining potential, the wave function of Majorana corner states and one-dimensional gapped
boundary modes are orthogonal because they are eigenvectors of the BdG Hamiltonian with
different energies. The wave functions gradually change with changing the harmonic poten-
tial magnitude and remain orthogonal since there is no bulk gap closing. Therefore, the
crossover makes the Majorana corner flat bands stable by preserving the orthogonality of
these wave functions. In addition, it is known that both Majorana flat bands in a d-wave
superconductor, and Majorana corner states in a second-order topological superconductor are
protected by time-reversal symmetry [152, 156]. In our system, in zero and strong potential
limits, the system is a second-order topological superconductor and d-wave superconductor,
respectively. Therefore, the time-reversal symmetry protects the Majorana corner flat bands
in the weak potential limit since this phenomenon is a crossover.
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3.7 Summary

It has been recently proposed that a second-order topological superconductor hosts Majo-
rana corner states localized at the four corners of a two-dimensional topological insulator
in proximity with some unconventional high-temperature superconductors. This work pro-
vides a theoretical framework to make only one-dimensional gapped boundary modes gapless
without closing the bulk gap in two-dimensional second-order topological superconductors.
Second-order topological superconductors always have (d− 1)-dimensional gapped boundary
modes and (d − 2)-dimensional gapless modes in d-spatial dimensions. Our results suggest
that increasing the gradual potential magnitude proliferates the number of Majorana corner
states by making only one-dimensional gapped boundary modes gapless without closing the
bulk gap. This finally leads to a new kind of Majorana flat band, namely Majorana corner
flat bands. In contrast to the conventional mechanism, Majorana corner flat bands cannot be
characterized by a one-dimensional winding number and only originate from one-dimensional
gapped boundary modes that become gapless without closing the bulk gap.

It also has been shown that the presence of time-reversal symmetry during the Majorana
corner states-Majorana corner flat bands crossover prevent Majorana corner states from hy-
bridizing and protect Majorana corner flat bands. There might be a topological invariant
for this particular inhomogeneous system to characterize the crossover, but finding that in
real-space is a mathematically challenging task and beyond the scope of this thesis.

In experiment, if one can observe the Majorana corner states in second-order topological
superconductors, such as a hybrid structure of topological insulator and an unconventional
superconductor or even cold atom systems, one can also observe the Majorana corner states-
Majorana corner flat bands crossover and Majorana corner flat bands by adding a gradual
confining potential such as a harmonic potential. More precisely speaking, for having a
hybrid structure of topological insulator and an unconventional superconductor, a monolayer
of WTe2 as a high-temperature topological insulator [164, 165] can be exploited in proximity
to a d-wave high-temperature cuprate superconductor. In this hybrid solid-state systems,
some potentials can be applied by using electron double-layer transistors [166–168], which
can be used to apply an electric field to the sample. Normally the potentials generated by the
electron double-layer transistor techniques have sharp edges. Nevertheless, there might be
some possibilities in the future or other advanced techniques to control the sharpness of this
trapping potential in order to approach a harmonic potential. This work might open up new
prospects for realizing Majorana zero modes and its applications in quantum computation
and information, which will be left for future investigations.
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Higher-Order Spin-Singlet
Topological Superconductivity in
Extended Hubbard Model with
Spin-Orbit Coupling

4.1 Introduction

In this chapter, which is based on publication (II), we investigate the superconducting pairing
instability of the two-dimensional extended Hubbard model with both Rashba and Dressel-
haus spin-orbit coupling within the mean-field approximation at both zero and finite temper-
ature. We find that both first- and second-order time-reversal symmetry breaking topological
gapped phases can be achieved under appropriate parameter and temperature regimes due
to the presence of a favored even-parity s+ id-wave pairing even in the absence of an exter-
nal magnetic field or intrinsic magnetism. This results in two branches of chiral Majorana
edge states on each edge or a single zero-energy Majorana corner state at each corner of the
sample. Interestingly, we also find that not only does tuning the doping level lead to a direct
topological phase transition between these two distinct topological gapped phases, but also
using the temperature as a highly controllable and reversible tuning knob leads to different
direct temperature-driven topological phase transitions between gapped and gapless topolog-
ical superconducting phases. Our findings suggest new possibilities in interacting spin-orbit
coupled systems by unifying both first- and higher-order topological superconductors in a
simple but realistic microscopic model.
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4.2 Spin-orbit coupling

Spin-orbit coupling is ubiquitous in condensed matter systems and responsible for many re-
markable phenomena [169–184]. In recent years, a surge of research interest in spin-orbit
coupling was stimulated by the discovery that spin-orbit coupling plays a critical role in
realizing various topological phases, ranging from noninteracting or weakly correlated topo-
logical insulators and topological superconductors to strongly correlated topological phases
[34, 68, 185, 186]. Among them, topological superconductors are noticeable as they harbor
Majorana modes which are believed to be a possibility for the building blocks of topological
quantum computation [36, 38, 39, 187, 188]. While odd-parity superconductors generally
provide a natural realization of topological superconductors [114, 119–123], their scarcity in
nature turns out to be a serious obstacle from an experimental point of view. Fortunately,
spin-orbit coupling enables the realization of effective odd-parity superconductivity on the
basis of abundant even-parity superconductivity, providing a more readily accessible route for
the realization of topological superconductors [124–131]. Over the past decade, remarkable
progress along this route has been witnessed [132–140].

The general three dimensional spin-orbit coupling Hamiltonian in the SI units can be
written as,

H = − eℏ
4m2c2

σ ·
{
E × (p− e

c
A)
}
, (4.1)

by an expansion in powers of v/c in the Dirac equation. Here, σ = (σx, σy, σz) are Pauli
matrices, E = (Ex, Ey, Ez) is the electric field, v is the speed of electron, and c is the speed
of light. In two dimensional solid state systems, the structure inversion asymmetry and the
bulk inversion asymmetry can give rise to the well-known Rashba and Dresselhaus spin-orbit
couplings, respectively. In real space, Rashba and Dresselhaus spin-orbit couplings for a
square lattice read as,

HR
SOC = iλR

∑
i,α,β

(c†i,αs
αβ
y ci+x̂,β − c†i,αs

αβ
x ci+ŷ,β) + H.c., (4.2)

HD
SOC = iλD

∑
i,α,β

(c†i,αs
αβ
y ci+ŷ,β − c†i,αs

αβ
x ci+x̂,β) + H.c., (4.3)

where c†i,α(ci,α) is the creation (annihilation) operator at site i with spin α = (↑, ↓). The
unit vector along the x (y) direction is represented by x̂ (ŷ), and sx,y are Pauli matrices in
spin space. The abbreviation H.c. stands for Hermitian conjugation, and the symbol i in
the beginning of both second and third lines (and elsewhere) is taken to denote the pure
imaginary number and should not be confused with the site index which generally occurs as
a subscript.
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4.3 Theoretical formalism

The two-dimensional extended Hubbard model, which provides a simple description for short-
ranged interacting systems [189], reads as

H = − t
∑
⟨i,j⟩,α

c†i,αcj,α + H.c. − µ
∑
i,α

c†i,αci,α

+ iλR
∑
i,α,β

(c†i,αs
αβ
y ci+x̂,β − c†i,αs

αβ
x ci+ŷ,β) + H.c.

+ iλD
∑
i,α,β

(c†i,αs
αβ
y ci+ŷ,β − c†i,αs

αβ
x ci+x̂,β) + H.c.

+ U
∑
i

n̂i,↑n̂i,↓ +
V

2

∑
⟨i,j⟩,α

n̂i,αn̂j,ᾱ, (4.4)

where ⟨i, j⟩ denotes summation over nearest-neighbor sites, c†i,α(ci,α) is the creation (anni-

hilation) operator at site i with spin α = (↑, ↓) , n̂i,α = c†i,αci,α, t is the nearest-neighbor
hopping amplitude, µ is the chemical potential, λR (λD) is the Rashba (Dresselhaus) spin-
orbit coupling amplitude, U is the on-site repulsive (U > 0) interaction strength, and V is
the nearest-neighbor attractive (V < 0) interaction strength. The unit vector along the x (y)
direction is represented by x̂ (ŷ), and sx,y are Pauli matrices in spin space. The abbreviation
H.c. stands for Hermitian conjugation, and the symbol i in the beginning of both second and
third lines (and elsewhere) is taken to denote the pure imaginary number and should not be
confused with the site index which generally occurs as subscripts.

Although in the presence of spin-orbit coupling, odd- and even-parity pairings can gener-
ally coexist, we restrict ourselves to even-parity pairing for the sake of clarity and simplicity.
The last line of the Hamiltonian (4.4) at the mean-field level in momentum space can be
rewritten as,

Hint =
1

N

∑
k,q

(U + V ζk−q)c†k,↑c
†
−k,↓c−q,↓cq,↑, (4.5)

where
ζk−q =

∑
δ

e−i(k−q)·δ = 2
{

cos(kx − qx) + cos(ky − qy)
}
, (4.6)

and δ represents the coordinates of the four nearest-neighbours of a given site in a square
lattice with unit lattice constant. Note that we have dropped terms corresponding to pairing
with non-zero center-of-mass momentum. Performing mean-field decoupling by considering
only the even-parity superconducting order-parameter and ignoring constant terms leads to
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the following quadratic Hamiltonian,

HMF
int =

1

2

∑
k

∆αβ(k)c†k,αc
†
−k,β + H.c., (4.7)

where the even-parity superconducting order-parameter can be written as

∆αβ(k) = i∆(k)sαβy , (4.8)

and

∆(k) = − 1

N

∑
q

{
U +

V

2
(ζk+q + ζk−q)

}
⟨cq↑c−q↓⟩. (4.9)

It is obvious that ∆(−k) = ∆(k) by using of the fact that ζk is an even function of k, i.e.
ζk = ζ−k. It can be shown that,

ζk+q + ζk−q = 8
{
ηs(k)ηs(q) + ηd(k)ηd(q)

}
, (4.10)

where

ηs(k) =
1

2
(cos kx + cos ky), (4.11)

ηd(k) =
1

2
(cos kx − cos ky). (4.12)

This leads to the following superconducting gap function,

∆(k) = ∆c
0 + ∆c

sηs(k) + ∆c
dηd(k), (4.13)

where ∆c
0, ∆c

s, and ∆c
d are momentum-independent complex numbers that represent on-site

s-, extended s-, and d-wave superconductivity, respectively. Finally, the total Hamiltonian
in the Nambu space can be written as,

H =
1

2

∑
k

Ψ†
kH(k)Ψk, (4.14)

with ΨT
k = (ck↑, ck↓, c

†
−k↓,−c

†
−k↑) and

H(k) = τz
{
ξ(k)s0 + lx(k)sx + ly(k)sy

}
+ ∆(k)τxs0, (4.15)

where τx,y,z are Pauli matrices in particle-hole space, and

ξk = −2t(cos kx + cos ky) − µ, (4.16)
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is the kinetic energy measured from the Fermi energy. The spin-orbit coupling vector given
by

l(k) = lR(k) + lD(k) = (lx(k), ly(k)), (4.17)

where

lR(k) = 2λR(sin ky,− sin kx), (4.18)

lD(k) = 2λD(sin kx,− sin ky), (4.19)

represents the Rashba and Dresselhaus spin-orbit coupling, respectively. The three pairing
amplitudes inside Eq. (4.13) satisfy the following self-consistent superconducting gap equa-
tions,

∆c
0 = − U

4N

∑
k,σ

∆(k)Fσ(k), (4.20)

∆c
s = −V

N

∑
k,σ

∆(k)ηs(k)Fσ(k), (4.21)

∆c
d = −V

N

∑
k,σ

∆(k)ηd(k)Fσ(k), (4.22)

where N denotes the number of sites, σ = ±1, and

Fσ(k) =
1

Eσ
k

tanh(
βEσ

k

2
). (4.23)

Here, β is the inverse of temperature and

Eσ
k =

√
ε2σ(k) + |∆(k)|2, (4.24)

are the two excitation spectra of the BdG Hamiltonian, where

εσ(k) = ξ(k) + σl(k), (4.25)

refers to the normal-state spectra with l(k) the magnitude of the l(k) vector.
To capture the phases of the three pairings, we define ∆c

α = ∆αe
iϕα for α ∈ {0, s, d}, with

∆α and ϕα being real numbers. Accordingly, the three complex self-consistent equations
given by Eqs. (4.20)-(4.22) can be separated into six real equations. By solving the self-
consistent equations numerically, we find that, when both s- and d-wave superconducting
order parameter are nonvanishing, their phases favor ϕs = ϕ0 and ϕd = ϕ0 ± π/2 (“±”
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are degenerate in energy). Therefore, the superconducting order parameter can be written
explicitly as

∆(k) = ∆0 + ∆sηs(k) + i∆dηd(k), (4.26)

and, accordingly, the six real self-consistent superconducting gap equations are reduced to

∆0 = − U

4N

∑
k,σ

{
∆0 + ∆sηs(k)

}
Fσ(k), (4.27)

∆s = −V

N

∑
k,σ

ηs(k)
{

∆0 + ∆sηs(k)
}
Fσ(k), (4.28)

1 = −V

N

∑
k,σ

η2d(k)Fσ(k). (4.29)

It should be noted that, when s- and d-wave pairing coexist, the last term of the BdG
Hamiltonian (4.15) should be rewritten as

{
[∆0 + ∆sηs(k)]τx −∆dηd(k)τy

}
s0. Furthermore,

the mean-field real-space Hamiltonian can be rewritten as,

H =
1

2

∑
ij

(
c†i ci

)( Aij Bij

−B∗
ij −A∗

ij

)⎛⎝cj
c†j

⎞⎠ , (4.30)

where c†i = (c†i,↑, c
†
i,↓) and ci = (ci,↑, ci,↓) for i = (ix, iy). The hermitian property of H,

and the canonical anti-commutation relation {ci, c†j} = δij imply that the 2N × 2N complex

matrix A and B satisfy A† = A and BT = −B relations, respectively, where N is the number
of sites and T stands for transpose. The components of A and B matrices are given by,

Aij = s0A
0
ij + sxA

x
ij + syA

y
ij , (4.31)

Bij = sy(i∆s
ij − ∆d

ij), (4.32)

where

A0
ij = − t(δj,i+x̂ + δj,i−x̂ + δj,i+ŷ + δj,i−ŷ) − µδij , (4.33)

Ax
ij = − iλR(δj,i+ŷ − δj,i−ŷ) − iλD(δj,i+x̂ − δj,i−x̂), (4.34)

Ay
ij = + iλR(δj,i+x̂ − δj,i−x̂) + iλD(δj,i+ŷ − δj,i−ŷ), (4.35)

∆s
ij =∆0δij +

∆s

4
(δj,i+x̂ + δj,i−x̂ + δj,i+ŷ + δj,i−ŷ), (4.36)

∆d
ij =

∆d

4
(δj,i+x̂ + δj,i−x̂ − δj,i+ŷ − δj,i−ŷ). (4.37)

Throughout this chapter, we set the hopping amplitude t = 1 as the energy unit and
{λR, U, V } = {0.3, 2,−5}, unless we clearly mention otherwise. However, they are not unique,
and different sets of parameters will yield a qualitatively similar phase diagram.
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4.4 Results

We first perform the self-consistent calculations at zero temperature. For definiteness, we
consider that only λD and µ are tunable parameters. We restrict ourselves to the positive
parameter regime and present the corresponding phase diagram in Fig. 4.1. The result reveals
the existence of three distinct types of pairing including time-reversal symmetry preserving
s- and d-wave, as well as the time-reversal symmetry breaking s+ id-wave. The s- and s+ id-
wave pairing regimes are gapped except at some critical lines and points, respectively1, while
the d-wave pairing regime corresponds to a nodal superconducting phase since it cannot open
a bulk gap. Moreover, the time-reversal symmetry preserving gapped s-wave pairing belongs
to the symmetry class DIII characterized by a Z2 invariant ν [190] and the time-reversal
symmetry preserving gapless d-wave pairing is considered as a topologically nontrivial phase,
though gapless, because it harbors topologically protected gapless Majorana modes on the
boundary2.

Let us now focus on the interesting regime with s+id-wave pairing which consists of three
time-reversal symmetry breaking topologically distinct phases, including first- and second-
order topological superconductivity and a topologically trivial superconductivity, as shown in
the blue color region of Fig. 4.1. Since the time-reversal symmetry is broken in this regime,
the system belongs to the symmetry class D characterized by the Chern number [73]. To
reveal the underlying topological property in a simple and transparent way, here we perform
a basis transformation which maps the combination of spin-orbit coupling and even-parity
s+ id-wave pairing to an effective odd-parity pairing [125].

After the transformation (see Appendix B for more details), the four-band BdG Hamil-
tonian can be decoupled into two independent parts, i.e.,

H(k) = H+(k) ⊕H−(k), (4.38)

with

H±(k) =

(
|ξk| ± l(k) ∆±(k)

∆∗
±(k) −|ξk| ∓ l(k)

)
, (4.39)

where

∆±(k) =
lx(k) ∓ ily(k)

l(k)
[∆0 + ∆sηs(k) ∓ i∆dηd(k)]. (4.40)

It is apparent that ∆±(−k) = −∆±(k), confirming the odd-parity nature. As is known, the
band topology of an odd-parity superconductor is determined by the relative configuration

1By pure s-wave pairing we mean ∆0 + ∆sηs(k) when at least one of the ∆0 or ∆s values is finite. It
should be noted that pure s-wave pairing has pairing line nodes only when |∆0/∆s| ⩽ 1.

2Here, Z2 invariant is defined as ν =
∏

i[sgn(∆i)]
mi where sgn(∆i) represents the sign of the pairing on

the i-th spin-split Fermi surface, and mi denotes the number of time-reversal invariant points within the i-th
Fermi surface.
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Figure 4.1: (Color online) Zero-temperature phase diagram for {t, λR, U, V } = {1, 0.3, 2,−5}. The phase dia-
gram contains d-wave superconductivity (red color region), s+ id-wave superconductivity (blue color region),
and s-wave superconductivity (green color region). The time-reversal symmetry breaking s + id-wave super-
conductivity phase consists of three topologically distinct phases, including first- and second-order topological
superconductor and topologically trivial superconductivity.

of the Fermi surfaces and the pairing nodes, and there exists a simple relation between
the Chern number (C) and the number of Fermi surfaces (NF ) enclosing one time-reversal
invariant point3, which is (−1)C = (−1)NF [120]. The number of Fermi surfaces of H(k)
must be even since the normal state has time-reversal symmetry, which implies that C must
be an even integer. In addition, the gapped energy spectra of H+(k) implies the absence of
a Fermi surface, which is defined as the constant-energy contour satisfying |ξk| + l(k) = 0,
while H−(k) has either zero or two Fermi surfaces, depending on the chemical potential µ. As
the absence of Fermi surfaces always implies a trivial superconductor, only the situation that
H−(k) has two Fermi surfaces is of interest. When C is a nonzero even integer, the system
corresponds to a first-order topological superconductor with C branches of Majorana chiral
edge states. However, when C = 0, the system is either a topologically trivial superconductor
or a second-order topological superconductor, depending on whether the two Fermi surfaces
of H−(k) can be continuously deformed to annihilate with each other without crossing any
removable Dirac pairing nodes (not at time-reversal invariant points) or not.

Interestingly, we notice that H−(k) takes a form similar to the toy model realizing second-
order topological superconductivity proposed in Ref. [191]. Here, there are four removable

3Another important point is that if the normal state of a superconductor does not have a Fermi surface,
the underlying topology must be trivial since such a phase can continuously transform to the limit |µ| → ∞
without the closing of either the bulk or the boundary gap.
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Dirac pairing nodes whose net sum of winding number, defined as

ω =
1

2πi

∮
∆−1

− ∂k∆−dk, (4.41)

with the closed integration contour enclosing only the interested pairing node, is zero lying
between the two Fermi surfaces, and therefore the system realizes a second-order topological
superconductor.

Another way to understand this picture is via the edge theory. To be specific, when
the four removable Dirac pairing nodes of H−(k) lie between the two Fermi surfaces, it
means that, if we neglect the d-wave pairing, the line nodes of s-wave pairing (satisfying
∆0 + ∆sηs = 0) can be chosen to lie between the two Fermi surfaces. Since without the
d-wave pairing, the full Hamiltonian restores the time-reversal symmetry, then according to
the formula ν =

∏
i[sgn(∆i)]

mi [190] we have ν = −1, indicating the realization of a first-
order time-reversal invariant topological superconductor that hosts a pair of helical Majorana
edge states. Bringing back the d-wave pairing, the helical edge states are gapped out due to
the breaking of time-reversal symmetry. However, as the d-wave pairing itself has line nodes
along the directions kx = ±ky, four Majorana zero modes will be left at the four corners
when we use open-boundary conditions in both x and y directions [154, 192].

Based on the above analysis, we find that, within the s + id-wave pairing regime, the
change of topology only takes place when the Fermi surfaces cross the removable Dirac pairing
nodes at which both ∆0 + ∆sηs = 0 and ∆dηd = 0 are simultaneously fulfilled. As for the
parameters considered, we find ∆0 ≪ ∆s,∆d; these nodes are almost fixed at the four points
Q±,± = (±π/2,±π/2). Therefore, the condition for topological phase transitions can be very
accurately described by the normal-state condition |ξQ±,± |−l(Q±,±) = 0. It is straightforward
to find that the solutions give two straight lines satisfying (see Appendix C for details)

|µ| = 2
√

2|λR ± λD|, (4.42)

which correspond to the two dashed lines in the blue color region of Fig. 4.1.
To support the above analysis, we further diagonalize the mean-field BdG Hamiltonian

in real space given in Eq. 4.30. To be specific, we fix λD = 0.6 and study the evolution of
boundary modes with µ. The results are presented in Fig. 4.2. In accordance with the phase
diagram in Fig. 4.1, we know that µc,1 ≃ 3

√
2/5 ≃ 0.85 and µc,2 ≃ 9

√
2/5 ≃ 2.55 are two

critical points in the regime with s+ id-wave pairing. Within each phase, we show one repre-
sentative configuration of Fermi surfaces and pairing nodes [Figs. 4.2(b)–4.2(e)]. Fig. 4.2(b)
shows that, within the regime 0 < µ < µc,1, the four pairing nodes at (±π/2,±π/2) are
located between the two concentric Fermi surfaces enclosing (π, π), indicating the realization
of a second-order topological superconductor [191]. To demonstrate this phase, we consider a
square sample with open-boundary conditions in both x and y directions. A diagonalization
of the real-space Hamiltonian does confirm the existence of four Majorana corner modes [see
Fig. 4.2(f)] and, therefore, the realization of a second-order topological superconductor.
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First-order

s+id-wave TSCSecond-order


s+id-wave TSC s+id-wave SC
s-wave SC

y

x

Figure 4.2: (Color online) Common parameters: {t, λR, λD, U, V } = {1, 0.3, 0.6, 2,−5} (a) The dependence of
∆0,s,d on µ at zero temperature. The dashed lines perpendicular to the µ axis correspond to phase boundaries.
The four insets (b)–(e) show four representative configurations of Fermi surfaces (black) and pairing nodes
(purple points or lines) in the four distinct phases. (b) µ = 0.3, (c) µ = 1.8, (d) µ = 3, and (e) µ = 4 [for
this value, one of the Fermi surfaces becomes a point at (π, π)]. (f) The probability density profiles of four
Majorana corner states (red points of the inset) and the eigenvalues of the BdG Hamiltonian around zero
energy in real space for a 50 × 50 square lattice with open-boundary conditions in both x and y directions.
(g)–(i) Energy spectrum for cylindrical geometry with open-boundary condition only along the x direction.
The inset of (g) shows the distribution of chiral Majorana edge states in real space.

Within the regime µc,1 < µ < µc,2, only two of the four pairing nodes at (±π/2,±π/2)
remain to be located between the two Fermi surfaces, as shown in Fig. 4.2(c). As one
pairing node takes the same winding number as its inversion partner, the transition from
the configuration in Fig. 4.2(b) to that in Fig. 4.2(c) suggests a change of Chern number
by two. In other words, a first-order topological superconductor with C = 2 is realized in
the regime µc,1 < µ < µc,2. To demonstrate this phase, we consider a cylinder geometry
with open-boundary conditions only along the x direction. The numerical result confirms
the existence of two chiral Majorana modes on each edge [see Fig. 4.2(g)] and, therefore,
the realization of a first-order topological superconductor with C = 2. Remarkably, the
above results suggest that a topological phase transition between second- and first-order
topological superconductors takes place at µc,1

4. Numerical calculations reveal the absence

4When the Fermi surface is anisotropic, it is a general feature that topologically trivial and second-order

81



Chapter 4 82

Second-order

s+id-wave TSC

First-order

s+id-wave TSC

s+id-wave SC s-wave SC

Figure 4.3: (Color online) Chemical potential dependency of ∆0,s,d at zero-temperature for {t, λR, λD, U, V } =
{1, 0.1, 0.5, 2,−5}.

of gapless boundary modes [Figs. 4.2(h) and 4.2(i)] in the regime µ > µc,2 indicating that the
Hamiltonian is trivial in topology in this regime.

Although we used some specific parameters here to show some numerical results, it does
not mean that these parameters are unique. In fact, different parameters can be chosen
and these will yield a qualitatively similar phase diagram. To demonstrate this, we use, for
example, smaller values for the spin-orbit coupling magnitudes compared to the ones above
and show the results in Fig. 4.3. The result is quite similar to the one shown in Fig. 4.2
above.

So far, we have restricted the results to the zero-temperature limit. By performing self-
consistent calculations at finite temperature, we find that, for a given configuration of Fermi
surfaces, different pairing types exhibit different temperature dependence. As a result, the
favored pairing can undergo a dramatic change at some critical temperature. To be specific,
Fig. 4.4 shows two examples whose ground states at zero temperature are second- and first-
order s + id-wave topological superconductors. From this figure, it is readily seen that the
increase of temperature leads to a change of the favored pairing from a gapped s + id-wave
topological superconductor to a d-wave gapless superconductor at a parameter-dependent
critical temperature. Since the d-wave pairing leads to the realization of a nodal or Dirac
superconductor, it indicates that the temperature itself provides a way to tune the underlying

topological s + id-wave phases are separated by an intervening first-order topological phase. This fact can
be understood by inspecting the configurations of both Fermi surfaces and pairing nodes. It is not hard to
see that when the Fermi surface is anisotropic, the four pairing nodes cannot simultaneously move outside all
Fermi surfaces.
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Figure 4.4: (Color online) Temperature-driven topological phase transitions. Here {t, λR, λD, U, V } =
{1, 0.3, 0.6, 2,−5}, and (a) µ = 0.3, (b) µ = 1.8. Tuning the temperature can change both the favored
pairing and the underlying topology.

topological properties.

4.5 Summary

In this chapter, we showed that both first- and second-order time-reversal symmetry break-
ing topological superconductivity as well as the topological phase transition between them
can emerge in the extended Hubbard model with both Rashba and Dresselhaus spin-orbit
coupling, even in the absence of an external magnetic field or magnetic order. Moreover, we
demonstrated that, with appropriate Fermi surface structure, tuning only the temperature
can result in interesting topological phase transitions in this system.

Our findings are relevant to many systems where both spin-orbit couplings and inter-
actions are tunable, including InSb [125] or InGaAs [193] quantum wells in proximity to a
high-temperature iron-based superconductor, which has an order parameter with s+ id-wave
superconducting pairing symmetry [194–196], oxide interfaces like LaAlO3/SrTiO3 [197, 198],
and cold atom systems [199].
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Vortex Line Topology in Iron-Based
Superconductors with and without
Second-Order Topology

5.1 Introduction

In this chapter, which is based on publication (III), we investigated the potential impact of
second-order topology on the vortex lines in iron-based superconductors in both weak and
strong Zeeman field regimes. Recently, experimental evidence of Majorana zero modes in
vortices has been observed in iron-based superconductors with band inversion near the Fermi
level. It is known that iron-based superconductors with band inversion and s±-wave pairing
can give rise to second-order topological superconductivity, manifested by the presence of
helical or chiral Majorana hinge states in three dimensions. In the weak Zeeman field regime,
we find that vortex lines far away from the hinges are topologically nontrivial in the weakly
doped regime, regardless of whether the second-order topology is present or not. However,
when the superconductor falls into the second-order topological phase and a topological vor-
tex line is moved close to the helical Majorana hinge states, we find that their hybridization
will trivialize the vortex line and transfer the Majorana zero modes to the hinges. Further-
more, when the Zeeman field is large enough, we find that the helical Majorana hinge states
are changed into chiral Majorana hinge modes and thus a chiral second-order topological
superconducting phase is realized. In this regime, the vortex lines are always topologically
trivial, no matter how far away they are from the chiral Majorana hinge modes. By incorpo-
rating a realistic assumption of inhomogeneous superconductivity, our findings can explain
the recent experimental observation of the peculiar coexistence and evolution of topologically
nontrivial and trivial vortex lines in iron-based superconductors.

Topological superconductors and iron-based superconductors have been two mainstreams
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of the superconducting field for more than one decade. The great interest in topological
superconductors lies in the various kinds of Majorana modes, like zero-dimensional localized
Majorana zero modes and one-dimensional propagating helical and chiral Majorana modes,
which hold promising applications in topological quantum computation [114, 124, 127, 200–
203]. For iron-based superconductors, the great interest lies in their high superconducting
transition temperature (Tc), strongly correlated nature and pairing mechanisms leading to
the emergence of unconventional pairings [204–209], such as the widely-known s±-wave pair-
ing [210, 211]. As iron-based superconductors commonly have multiple bands near the Fermi
energy, the possibility of the occurrence of band inversion with a realization of topological su-
perconductivity through the Fu-Kane mechanism [124] has attracted considerable theoretical
interest in the past few years [212–216].

Recently, several groups have experimentally observed that above Tc, band inversion
occurs between the bands near the Fermi energy in a series of iron-based superconductors,
and below Tc, the surface Dirac cones associated with the inverted band structure are gapped
by the bulk superconductivity [139, 217–223]. The Fu-Kane mechanism is thus fulfilled in
a single-material platform, unlike the various actively-studied heterostructures composed of
different pieces of materials [136–138, 224, 225]. Therefore, the observation of compelling
experimental evidence for vortex Majorana zero modes in iron-based superconductors, like
zero-bias peak with nearly quantized height and other ordered discrete peaks in the scanning
tunneling spectroscopy [139, 219–223], has generated tremendous interest [226–237]. Notably,
in these iron-based superconductors, trivial vortex lines without Majorana zero modes are
observed to coexist with topological vortex lines with Majorana zero modes [139, 219, 220,
238]. While mechanisms like pairing change induced by a Zeeman field or spatially dependent
surface states have been proposed to explain this peculiar experimental finding [219, 233, 239],
a conclusive understanding is still far from established.

Another remarkable advance in topological superconductors is the recent birth of the
concept named higher-order topological superconductors [54, 152–155, 240–270]. It is in-
teresting that several theoretical works have revealed that a combination of inverted band
structure and s±-wave pairing can also give rise to second-order topological superconductiv-
ity [152, 153, 155], which is manifested by the presence of Majorana corner modes in two
dimensions (2D) and Majorana hinge modes in three dimensions. Remarkably, experimental
evidence for the existence of Majorana hinge modes in a three dimensional iron-based super-
conductor has also been reported [271]. These previous works motivate us to study the open
question about the potential impact of second-order topology on the vortex lines in three
dimensional iron-based superconductors.

By focusing on the weakly doped regime of most interest and relevance to the experiments,
our main findings can be summarized as follows: (i) In the weak Zeeman field regime, we find
that if the second-order topology is absent, then the vortex line will bind one Majorana zero
mode at each end [see Fig. 5.1(a)], regardless of its position, resembling the situation with
conventional s-wave pairing [272]. (ii) When the second-order topology is present, a vortex
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Figure 5.1: (Color online) Schematic diagrams. (a) For a superconductor with a single band inversion, when
the chemical potential crosses the surface bands in the normal state and there are no gapless modes on the
boundary in the superconducting state, the vortex line will bind one robust Majorana zero mode at each
end, regardless of its position. (b) When the superconductor is a second-order topological superconductor
with helical Majorana hinge modes, a close-to-hinge vortex line will not bind robust Majorana zero modes at
its ends because of hybridization with the helical Majorana hinge modes. (c) When the superconductor is a
second-order topological superconductor with chiral Majorana hinge modes, the vortex line terminated at the
surfaces with Zeeman-field-dominated Dirac mass will not bind Majorana zero modes even when it is far away
from the hinges.

line far away from the hinges will also bind one Majorana zero mode at each end. However,
if topological vortex line is moved close to the hinges, it will be trivialized by hybridizing
with the helical Majorana modes [see Fig. 5.1(b)]. Because Majorana zero modes are always
created or annihilated in pairs, this Z2 nature leads to the transfer of robust Majorana zero
modes to the hinges. (iii) While the helical Majorana hinge modes are counter-intuitively
quite stable against the Zeeman field, they will become chiral Majorana hinge modes when
the Zeeman field is larger than a critical value. In this regime, Majorana zero modes are
absent in the vortex cores, no matter how far away they are from the chiral Majorana hinge
modes [see Fig. 5.1(c)]. Nevertheless, Majorana zero modes can appear on the hinges if the
number of vortex lines is odd.

5.2 Theoretical formalism

The inverted band structure of iron-based superconductors near the Fermi level can be de-
scribed by a four-band minimal model of three dimensional topological insulators [34, 68].
In combination with the s±-wave pairing, the underlying physics can be described by the
Bogoliubov-de Gennes Hamiltonian as

H =
1

2

∑
k

(
c†k, c−k

)(H0(k) ∆(k)
∆†(k) −H∗

0 (−k)

)(
ck
c†−k

)
, (5.1)
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where ck = (ck,a,↑, ck,b,↑, ck,a,↓, ck,b,↓)
T and

H0(k) = m(k)σzs0 + 2λ
∑

i=x,y,z

sin kiσxsi − µσ0s0 + σ0h · s, (5.2)

∆(k) = i∆(k)σ0sy, (5.3)

where s = (sx, sy, sz), and h = (hx, hy, hz) denotes the Zeeman field which is assumed to
be present accompanying the generation of vortex lines. The Pauli matrices σ and s act
in orbital (a, b) and spin (↑, ↓) degrees of freedom, respectively, and σ0 and s0 are the unit
matrices. Here, T stands for matrix transpose, λ denotes the strength of spin-orbit coupling, µ
is the chemical potential, H0(k) describes the normal state, and ∆(k) represents the s±-wave
pairing given by

∆(k) = ∆0 + ∆s(cos kx + cos ky), (5.4)

where for notational simplicity, the lattice constants have been set to unity throughout this
work, and ∆0 and ∆s represent on-site and extended s-wave superconducting pairing mag-
nitudes, respectively. The m(k) term characterize the band inversion as

m(k) = m0 − 2t
∑

i=x,y,z

cos ki, (5.5)

where m0 is an on-site orbital dependent energy, and t denotes the hopping amplitude. The
BdG Hamiltonian (5.1) can also be written in a more compact form,

H(k) = m(k)σzs0τz + 2λ
∑

i=x,y,z

sin kiσxsiτz − µσ0s0τz

+ σ0h · sτ0 − ∆(k)σ0s0τx,

(5.6)

with the basis ψT
k = (ck,−iσ0syc†−k) where ck = (ck,a,↑, ck,b,↑, ck,a,↓, ck,b,↓)

T. Here, the Pauli
matrices τ acts on the particle-hole degree of freedom. The eigenvalues of the BdG Hamilto-
nian for h = 0 are given by,

E(±,±)(k) = ±
√
ε2±(k) + ∆2(k), (5.7)

where

ε±(k) = µ±
√
m2(k) + 4λ2

∑
i=x,y,z

sin2 ki. (5.8)

When the equal-energy contour m(k) = 0, known as the band inversion surface, encloses
a single time-reversal invariant momentum, the normal state hosts a topological gap and a
single Dirac cone on each surface [90]. After becoming superconducting below Tc, the surface
Dirac cones are gapped by the superconductivity. For a conventional s-wave pairing, i.e.,
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Non-crossed 
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Figure 5.2: (Color online) The phase diagram consists of gapped (orange region) and gapless (blue region)
phases. We take t = 1, m0 = 2.5, λ = 0.5, and h = 0 in the absence of vortex lines. The horizontal dashed
line divides the gapped phase into two distinct topological phases. The crossed gapped phase corresponds
to a gapped second-order topological superconducting phase with the underlying band inversion surface and
pairing node surface crossing with each other. The noncrossed gapped phase corresponds to a gapped trivial
superconducting phase with the underlying band inversion surface and pairing node surface separated in the
Brillouin zone.

∆(k) = ∆0 in Eq. (5.4), it is known that its induced Dirac mass on the surfaces is uniform
if the effect of disorder is negligible. In other words, there does not exist any kind of gapless
boundary modes. However, for the s±-wave pairing given in Eq. (5.4), it has been shown
in Ref. [155] that even though the first-order topology is trivial, a nontrivial time-reversal
invariant second-order topology, which is manifested by the presence of helical Majorana
hinge modes, can be achieved in this system.

Because s±-wave pairing has nodes when |∆0| < 2|∆s|, the superconductor can be gapless
when the Fermi surface intersects with the pairing nodes. As the location of pairing nodes
is determined by ∆(k) = 0, and the location of Fermi surface is determined by ε−(k) = 0,
we can numerically determine the phase boundary which separates the gapped phase from
the gapless phase by checking when the contour for ∆(k) = 0 intersects with the contour for
ε−(k) = 0. The phase boundary is shown in Fig. 5.2.

As the energy bands of the concerned iron-based superconductors are gapped, therefore, in
this work we are interested in the gapped regime. Within the gapped regime, the phase can
be further divided as second-order topological superconductor and trivial superconductor.
At µ = 0, when the band inversion surface and pairing node surface cross, the system is
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a second-order topological superconductor with helical Majorana hinge modes. If we start
with the crossing case, it is expected that a transition from the second-order topological
superconducting phase to the trivial superconducting phase should happen. It is known
that a topological phase transition from a first-order topological phase to a trivial phase is
always associated with the closure of the bulk energy gap as long as the symmetry class does
not change. However, a topological phase transition from a second-order topological phase
to a trivial phase in general does not require the closure of the bulk energy gap; what it
requires is the closure of the energy gap of the surface states. Interestingly, for the set of
isotropic parameters considered in this work, we found that the closure of surface energy
gap coincides with the closure of the bulk energy gap, indicating that the phase boundary of
the second-order topological superconducting phase with a finite bulk gap coincides with the
gapped-gapless phase boundary. These findings establish the phase diagram in Fig. 5.2.

In this chapter, we follow the experiments and focus on the configurations presented in
Fig. 5.1, where the vortex lines are generated along the z direction. To illustrate the key
physics in a clear way, we simplify the real situation with multiple vortex lines to an ideal
situation with just a single π-flux vortex line. Such a simplification is justified in the weak-
field regime, where the vortex lines are dilute and well-separated from each other. To simulate
such a configuration, we assume that both on-site and nearest-neighbor pairings follow such
a spatial dependence,

∆0,s(r) = ∆0,s tanh(

√
x̄2 + ȳ2

ξ
)
x̄+ iȳ√
x̄2 + ȳ2

, (5.9)

where ξ denotes the superconducting coherence length, x̄ = x−xc and ȳ = y−yc, with (xc, yc)
denoting the core of the vortex in the xy plane, and (x, y) representing the coordinates of
the lattice sites for on-site pairing ∆0(r) and the coordinates of the lattice-bond centers
for nearest-neighbor pairing ∆s(r). The superconducting coherence length ξ will not be
determined through self-consistent calculations, instead we will set its value by hand since
the topological property of the vortex line in the weakly doped regime is insensitive to its
value. It is noteworthy that similar forms can be adopted if one wants to study vortex lines
along other directions.

The corresponding real space BdG Hamiltonian can be given by

H =
1

2

∑
i,j

(
c†i , ci

)(H0;ij ∆ij

−∆∗
ij −H∗

0;ij

)(
cj
c†j

)
, (5.10)

with the basis ci = (ci,a,↑, ci,b,↑, ci,a,↓, ci,b,↓)
T and

H0;ij =
∑

ν=0,x,y,z

Aν
ijsν , (5.11)
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∆ij = i
{

∆0δij +
∆s

2
(δj,i+x̂ + δj,i−x̂ + δj,i+ŷ + δj,i−ŷ)

}
σ0sy, (5.12)

where

A0
ij =

{
m0δij − t

∑
ν=x,y,z

(δj,i+ν̂ + δj,i−ν̂)
}
σz − µδijσ0, (5.13)

Aα
ij = − iλ(δj,i+α̂ − δj,i−α̂)σx + hαδijσ0, (5.14)

are four 2N × 2N matrices for N = LxLyLz and α ∈ {x, y, z}. In the presence of a π-flux
vortex line, let us say along the z direction, we need only modify the ∆ij matrix. In this
case, we should replace the site-independent real numbers ∆0 and ∆s with the site-dependent
complex numbers given by Eq. (5.9).

At µ = 0 and h = 0, we can establish a simple geometric criterion for the realization
of nontrivial time-reversal invariant second-order topology. The geometric picture of the
criterion is the crossing of the band inversion surface and the pairing node surface, which
is the equal-energy contour ∆(k) = 0. The logic behind this statement is as follows. The
Hamiltonian (5.1) at µ = h = 0 can be divided into two parts, i.e., H = He +Ho, where He

and Ho represent respectively the even-parity and odd-parity parts. Because {He, Ho} = 0,
the even-parity part He plays the role of Dirac mass. When the energy spectra of He are
gapless, H will be topologically nontrivial since the existence of nodes in He implies the
existence of domain walls of Dirac mass on the boundary. Such kinds of geometric criteria
are universally applicable to higher-order topological models as long as the condition that all
terms of the Hamiltonian anticommute with each other is fulfilled [54, 240, 260].

To show the validity of the geometric criterion explicitly, let us consider a cubic geometry
with open boundary condition in two directions and periodic boundary condition in the
remaining direction. As shown in the first row of Fig. 5.3, when the band inversion surface
and the pairing node surface do not cross [see the orange and the blue surfaces in Fig. 5.3(a)],
there is no gapless hinge mode [Figs. 5.3(b)-5.3(d)], confirming the trivial topology. On the
contrary, when the band inversion surface and the pairing node surface cross, helical Majorana
modes are found to appear on the interfacing hinges between z-normal surfaces and x- and
y-normal surfaces [Figs. 5.3(f) and 5.3(g)], with their distributions the same as in Fig. 5.1(b)
(here without vortex lines).

When µ or h becomes nonzero, surely the above simple geometric criterion generally no
longer holds because these two terms do not anticommute with all odd-parity terms in the
Hamiltonian. Nevertheless, the second-order topology can survive even when the normal
state becomes metallic. Generally, it is known that gapless helical modes will become gapped
when the time-reversal symmetry is lifted by the Zeeman field. However, here we find that the
helical Majorana hinge modes shown in Figs. 5.3(f) and 5.3(g) are counter-intuitively quite
robust against the Zeeman field. Only when the Zeeman field is strong enough to dominate
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Figure 5.3: (Color online) (a)-(d) No gapless modes appear on the hinges when the band inversion surface in
orange and the pairing node surface in blue do not cross. (e)-(h) Helical Majorana modes appear on the hinges
between z-normal surfaces and x- and y-normal surfaces when the band inversion surface and the pairing node
surface cross. Common parameters are: t = 1, m0 = 2.5, λ = 0.5, µ = 0, h = 0 and ∆0 = 0.25. (a)-(d)
∆s = 0.25, (e)-(h) ∆s = −0.25, without vortex lines. The two directions with open boundary conditions are
y and z in (b)(f), x and z in (c)(g), and x and y in (d)(h), and their lengths contain 24 lattice sites.

over the superconductivity-induced Dirac mass on some of the surfaces, e.g.,

|hz| >
√
µ2 + (∆0 + 2∆s)2, (5.15)

will the nature of the domain walls change and the helical Majorana hinge modes will become
chiral Majorana hinge modes as illustrated in Fig. 5.1(c) (see Appendix E for more details).
We find that the robustness of the helical Majorana hinge modes is simply because the Zeeman
field cannot directly act on the subspace of the domain walls. These results suggest that the
simple Hamiltonian (5.1) can realize both time-reversal invariant and chiral second-order
topological superconductors.

Throughout the main text, we have chosen t = 1 as the unit of energy, m0 = 2.5, λ = 0.5,
so that a band inversion takes place at the Γ = (0, 0, 0). It is worth noting that for this
set of parameters, the band edges are located at (0, π, 0) and (π, 0, 0), with the energy gap
Eg = 1.0. The normal state becomes metallic when µ > 0.5. We only consider positive µ
because the results are symmetric about µ = 0.
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5.3 Second-order topology without vortex lines

In this section, we focus on the uniform case without vortex lines, so we will study a homo-
geneous iron-based superconductor.

5.3.1 The effects of Zeeman field on the helical Majorana hinge modes

In the previous section, we showed that in the absence of a Zeeman field, the Majorana
hinge modes are helical due to the preservation of time-reversal symmetry. In this section,
we show the impact of the Zeeman field on the Majorana hinge modes in the absence of
vortex lines in detail. Naively, one may expect that the introduction of a Zeeman field would
immediately gap the helical Majorana hinge modes due to the breaking of time-reversal
symmetry. However, the actual results are in contradiction with this expectation!

While the magnetic field will generate vortices due to the orbital effect, in this section
we neglect the generation of vortex lines and focus on the effect from the Zeeman field to
the helical Majorana hinge modes. In Fig. 5.4 and Fig. 5.5, we show the evolution of the
energy spectra with respect to Zeeman field. The underlying cubic geometry takes on open
boundary conditions in the y and z directions and periodic boundary condition in the x
direction. In Fig. 5.4, the magnetic field is applied in the z direction i.e. h = (0, 0, hz),
and in Fig. 5.5, the magnetic field is applied in the [111] direction i.e. h = (h, h, h). For
comparison, the result for the time-reversal invariant case (h = 0) is presented in Fig. 5.4(a).
In Fig. 5.4(b) and Fig. 5.5(a), one can see that the Majorana hinge modes remain gapless in a
small applied field. Moreover, the degeneracy of the Majorana hinge modes does not change
even though the degeneracy of other higher-energy spectra is lifted due to the breaking of
time-reversal symmetry. The helical Majorana hinge modes are found to remain intact until
the Zeeman field becomes larger than an orientation-dependent critical value. In Fig. 5.4(c)
and Fig. 5.5(b), the results show that when the Zeeman field becomes a little larger than
the critical value, half of the gapless Majorana hinge modes become gapped. We find that
this corresponds to a transition from a second-order topological superconductor with helical
Majorana hinge modes to a second-order topological superconductor with chiral Majorana
hinge modes. With a further increase of Zeeman field, these chiral Majorana hinge modes
become more separated from other modes in energy, as shown in Figs. 5.4(d) and 5.4(e) and
Figs. 5.5(c) and 5.5(d).

In the following, we develop an analytic theory to explain the robustness of helical Ma-
jorana hinge modes against the Zeeman field. Following the standard procedure, we first
perform a lower-energy expansion of the lattice Hamiltonian in Eq. (5.6) around the band-
inversion momentum. Without loss of generality, we still consider that the band inversion
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Figure 5.4: The effects of Zeeman field (no vortex lines) to the helical Majorana hinge modes. Common
parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ∆0 = −∆s = 0.25, hx = hy = 0. The lengths along
the y and z directions contain Ly = Lz = 24 lattice sites. (a) hz = 0, (b) hz = 0.1, (c) hz = 0.2, (d)
hz = 0.3, (e) hz = 0.4. In (a) (b), the gapless modes traversing the gap are four-fold degenerate (read from
data), corresponding to four pairs of helical Majorana hinge modes. (c) shows the spectra just crossing the
transition from a second-order topological superconductor with helical Majorana hinge modes to a second-
order topological superconductor with chiral Majorana hinge modes. In (d) (e), the gapless modes traversing
the gap are two-fold degenerate (read from data), corresponding to four branches of chiral Majorana hinge
modes.

occurs at the Γ point. Accordingly, the low-energy continuum Hamiltonian reads

H(k) = (m+ tk2)σzs0τz + 2λσxk · sτz − µσ0s0τz + σ0h · sτ0

− [∆0 + 2∆s −
∆s

2
(k2x + k2y)]σ0s0τx,

(5.16)

where m = m0 − 6t. For simplicity, we focus on µ = 0 in the following and take t and λ
to be positive. Let us first derive the low-energy Hamiltonian for the surface states on the
z-normal surfaces. To proceed, let us consider a semi-infinite sample with 0 ≤ z < +∞. The
presence of a boundary breaks the translational symmetry in the z direction, so the kz in
the Hamiltonian (5.16) needs to be replaced by −i∂z. Following Ref. [152], we divide the
Hamiltonian into two parts, H = H1 + H2, where

H1(kx, ky,−i∂z) = [m+ t(k2x + k2y) − t∂2z ]σzs0τz − 2iλ∂zσxszτz, (5.17)

H2(kx, ky,−i∂z) = 2λσx(kxsx + kysy)τz + σ0h · sτ0 − [∆0 + 2∆s −
∆s

2
(k2x + k2y)]σ0s0τx.

(5.18)

In the division, we have taken H2 as a perturbation, which is quite accurate when the pairing
amplitude and the strength of Zeeman field are small. By solving the eigenvalue equation
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Figure 5.5: The effects of Zeeman field (no vortex lines) to the helical Majorana hinge modes. Common
parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ∆0 = −∆s = 0.25 . The lengths along the y and z directions
contain Ly = Lz = 24 lattice sites. h = (h, h, h), with (a) h = 0.05, (b) h = 0.1, (c) h = 0.15, (d) h = 0.2. In
(a) (b), the gapless modes traversing the gap are four-fold degenerate (read from data), corresponding to four
pairs of helical Majorana hinge modes. (c) shows the spectra just crossing the transition from a second-order
topological superconductor with helical Majorana hinge modes to a second-order topological superconductor
with chiral Majorana hinge modes. In (d), the gapless modes traversing the gap are two-fold degenerate (read
from data), corresponding to four branches of chiral Majorana hinge modes.

H1(kx, ky,−i∂z)ψα(z) = Eαψα(z) with the boundary condition ψα(0) = ψα(+∞) = 0, one
can find that there exist four zero-energy solutions. The wave functions ψα(z) can be com-
pactly written as

ψα(z) = N sin(κ1z)e−κ2zeikxxeikyyχα, (5.19)

with normalization given by |N |2 = |4κ2(κ21 + κ22)/κ
2
1|. The two parameters κ1 and κ2

are respectively given by κ1 =

√
[t(k2x+k2y)−m]

t −
(
λ
t

)2
and κ2 = λ

t . The most important
information is contained in χα. Here χα satisfy σxszτ0χα = −χα. We can explicitly choose
solutions as

χ1 = |σy = −1⟩ ⊗ |sz = 1⟩ ⊗ |τz = 1⟩, (5.20)

χ2 = |σy = 1⟩ ⊗ |sz = −1⟩ ⊗ |τz = 1⟩, (5.21)

χ3 = |σy = −1⟩ ⊗ |sz = 1⟩ ⊗ |τz = −1⟩, (5.22)

χ4 = |σy = 1⟩ ⊗ |sz = −1⟩ ⊗ |τz = −1⟩. (5.23)

By projecting H2 into the four-dimensional space spanned by χα, we obtain the low-energy
Hamiltonian for the surface states on the z = 0 surface, which reads

Heff(kx, ky) = 2λ(kysx − kxsy)τz +MZsz +MSτx, (5.24)
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where MZ = hz denotes the Dirac mass induced by the Zeeman field, and MS = ∆0 + 2∆s

in the leading order denotes the Dirac mass induced by the superconductivity. It is easy to
see that for the Zeeman field, only the component perpendicular to the concerned surface
contributes to the Dirac mass. It is worth noting that the two Dirac mass terms commute
with each other, and a closure of the surface gap happens at MZ = MS. That is, when MZ

becomes larger than MS, the nature of the Dirac mass on the surface will change from a
superconductivity-dominated one to a Zeeman-field-dominated one.

With Eq. (5.24), now we can explain why the helical Majorana hinge modes are stable
against the Zeeman field when its strength is below the critical value. To proceed, let us
consider that the y direction also becomes open and a domain wall hosting Majorana helical
modes is formed at the boundary. Following the same steps, we divide the Hamiltonian (5.24)
into two parts, Heff = Heff;1 + Heff;2, where

Heff;1(kx,−i∂y) = −2iλ∂ysxτz +MS(y)τx, (5.25)

Heff;2(kx, ky) = −2λkxsyτz +MZsz. (5.26)

As explained previously, such a division is justified when the Zeeman field, so MZ, is
small. From our analysis above, one can immediately read from Heff;1 that the space for the
low-energy modes is spanned by χ̃α which satisfy either sxτyχ̃α = χ̃α or sxτyχ̃α = −χ̃α [the
sign depends on the detail of the profile of MS(y)]. That is, the two-dimensional space for
the helical Majorana modes is spanned either by (|sx = 1⟩⊗ |τy = 1⟩, |sx = −1⟩⊗ |τy = −1⟩)
or by (|sx = 1⟩ ⊗ |τy = −1⟩, |sx = −1⟩ ⊗ |τy = 1⟩). Projecting Heff;2 into these two possible
two-dimensional spaces, one can find that the low-energy Hamiltonian on the hinge is given
by

Hhinge(kx) = −2λkysy. (5.27)

One can immediately see that in the weak field regime (the regime for which the pertur-
bative treatment is justified), the presence of Zeeman field does not alter the helical nature,
though the time-reversal symmetry is broken. According to Eq. (5.24), we know that a clo-
sure of the surface gap happens at MZ = MS. This indicates that when the Dirac mass
term induced by the Zeeman field is equal to the one induced by superconductivity, a surface
topological phase transition occurs, accompanying a change of the nature of domain walls.

5.3.2 Helical and chiral Majorana hinge modes for a finite-size sample

In this section, we show the dispersion of Majorana hinge modes for a cubic geometry in the
absence of vortex lines. As shown in Figs. 5.6(a)-5.6(c), one can find that for the second-order
topological superconducting phase with helical Majorana hinge modes, the eigenenergies of
the helical Majorana hinge modes show a four-fold degeneracy (a factor two is from the helical
nature, and the other factor two is from the equivalence between the top and bottom surfaces)
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Figure 5.6: (Color online) The dispersions of helical Majorana hinge modes for a finite-size system in the
absence of vortex lines. Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ∆0 = −∆s = 0.25, and
h = 0. All directions take open boundary conditions and their lengths contain Lx = Ly = Lz = 32 lattice
sites. (a)(c) The probability density profile of the hinge states. (b) The 16 energy eigenvalues closest to zero
energy. No robust Majorana zero mode exists. (d) Comparison between the analytical (red line) and the
numerical (blue line) small eigenvalues. The results show an excellent agreement.

and a regular jump. Most importantly, there is no zero-energy mode which is not due to finite
size effects. Similar results are also found for the second-order topological superconducting
phase with chiral Majorana hinge modes, as shown in Fig. 5.7.

To understand the absence of zero-energy modes (Majorana zero modes), one needs to
note that the periodic motion of the helical or chiral Majorana modes along the hinges of
the top and bottom z-normal surfaces will lead the momentum to be quantized discretely.
Accordingly, the dispersion of the helical or chiral Majorana modes will follow E = ±vqm,
with

qm = (2m+ α)
π

L
, (5.28)

where L denotes the total length of the closed path [here L = 2(Lx + Ly) − 4], m is an
integer, and α = 0 and 1 refer to periodic and antiperiodic boundary condition, respectively.
According to Eq. (5.27), we further have v = 2λ for the helical case (we do not have an
accurate analytical expression of v for the chiral case since the previous analytical treatment
loses its accuracy when the Zeeman field is strong). Apparently, there exists a big difference
between the two kinds of boundary conditions. For the periodical boundary condition, it
is readily seen that qm can take zero value (q0 = 0), so the helical or chiral hinges modes
will contain Majorana zero modes. In contrast, for the antiperiodic boundary condition, it is
readily seen that qm cannot take zero value, so there is no Majorana zero mode for the helical
or chiral hinge modes. The absence of Majorana zero modes in Fig. 5.6(b) and Fig. 5.7(b) thus
indicates that these propagating Majorana modes take an antiperiodic boundary condition.
As shown in Fig. 5.6(d), the analytical results for the helical case, i.e., E = ±2λ(2m +
1)π/L, agree very well with the numerical results shown in Fig. 5.6(b), demonstrating the
correctness of our analytical analysis. The antiperiodic boundary condition of the helical
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Figure 5.7: (Color online) The dispersions of chiral Majorana hinge modes for a finite-size system in the
absence of vortex lines. Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ∆0 = −∆s = 0.25,
and h = (hx, hy, hz) = (0, 0, 0.3). All directions take open boundary conditions and their lengths contain
Lx = Ly = Lz = 32 lattice sites. (a) The probability density profile of the hinge states. (b) The 12 energy
eigenvalues closest to zero energy. No robust Majorana zero mode exists.

or chiral Majorana modes can be understood from the fact that these low-energy Majorana
modes originate from the gapless Dirac surface states which has an intrinsic π Berry phase.

Interestingly, when a π-flux vortex line is inserted along the z direction, the closed path
that the helical or chiral Majorana modes propagate along will enclose the vortex line, so the
helical or chiral Majorana modes will pick up an additional π phase from the π-flux vortex
line. Accordingly, the boundary condition of these propagating Majorana modes will change
from an antiperiodic one to a periodic one. Then the helical or chiral Majorana modes will
contain Majorana zero modes according to our analysis.

5.4 Interplay of second-order topology and vortex lines

In this section, we focus on the non-uniform case with vortex lines, so we will study an inho-
mogeneous iron-based superconductor. As the vortex line breaks the time-reversal symmetry
but preserves the translational symmetry in the z direction, the system can be viewed as
a quasi-1D superconductor belonging to the class D of the Atland-Zirnbauer classification
[273, 274]. Accordingly, whether Majorana zero modes exist or not is characterized by the
Z2 invariant [91, 114],

ν = sgn{Pf[HM(0)]} · sgn{Pf[HM(π)]}, (5.29)

where HM(kz) represents the Hamiltonian in the Majorana representation and “Pf” is a
shorthand notation of Pfaffian (see Appendix D for more details). Here, ν = −1 and +1
indicate the presence and absence of one robust Majorana zero mode at each end of the
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Figure 5.8: (Color online) The evolution of energy dispersions at kz = 0 with respect to the doping level and
the locations of Majorana zero modes. (a)-(d) and (e)-(h) show the results without and with second-order
topology, respectively. For the parameters considered, the normal state becomes metallic when µ > 0.5, and
we restrict µ < 1.3 to guarantee the vortex-free bulk spectrum to be gapped. Because the conduction bands
of the normal state have two degenerate minima at the two time-reversal invariant momenta (0, π, 0) and
(π, 0, 0), (a) shows that the lowest excitation spectrum has a double degeneracy (read from data) when the
vortex line is located at the center of the system. As the energy gap of the vortex line remains non-zero in
(a), we have ν = −1 for 0 < µ < 1.3. In (c), the two blue dots correspond to two robust Majorana zero
modes, and the two red dots correspond to two high energy modes. (b) shows that the probability density of
the Majorana zero modes is strongly localized at the ends of the vortex line, and (d) shows that the two high
energy modes correspond to gapped surface states. In (e), the vortex line is centered at (xc, yc) = (6.01, 16.01)
so that it is very close to the hinges of the x-normal surface. The accidental double degeneracy of the lowest
excitation spectrum shown in (a) is lifted since the position of the vortex line does not preserve the C4 rotation
symmetry of the uniform Hamiltonian. One can find from (e) that the gap closes at µ ≈ 1, which signals
a vortex phase transition with ν changing from −1 to 1. In (g), the two blue dots also correspond to two
robust Majorana zero modes (not at exact zero energy due to finite-size effects). (f) shows that the probability
density of the robust Majorana zero modes is localized on the hinges. (h) the probability density of the four
modes in red suggests that they originate from the hybridization of the helical Majorana hinge modes and
vortex-end Majorana zero modes. Common parameters are t = 1, m0 = 2.5, λ = 0.5, h = 0, ξ = 4, and
∆0 = 0.25. In (a)-(d), ∆s = 0.25 and in (e)-(h), ∆s = −0.25. In (a)(e), Lx = Ly = 32 lattice sites, and in
(b)-(d) and (f)-(h), µ = 0, Lx = Ly = Lz = 32 lattice sites.

quasi-1D superconductor, respectively. The expression of the Z2 invariant suggests that only
the band information at the two time-reversal invariant momenta is important.

We first study the configuration in Fig. 5.3(a) for which the band topology of the homo-
geneous case is trivial. Since the band inversion takes place at the Γ point, we only need to
focus on the dispersion at kz = 0 in the weakly doped regime. From Fig. 5.8(a), we find that
the vortex line has a finite energy gap and the Z2 invariant is ν = −1 in the weakly doped
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regime1. When all sides of the sample are open, we find, as expected, that each end of the
vortex line binds one robust Majorana zero mode, as shown in Figs. 5.8(b)-5.8(d).

Next we study the configuration in Fig. 5.3(e) for which the second-order topology is
nontrivial. We first consider that the Zeeman field is negligible, which can be a good ap-
proximation for materials with small g factor. From a local surface perspective, the effects
of on-site and extended s-wave pairings are equivalent, namely, both of them induce a Dirac
mass to gap the surface Dirac cones. Since the Dirac mass is nearly uniform far away from the
hinges, regardless of whether the second-order topology is trivial or nontrivial, then a π-flux
vortex far away from the hinges will also bind one robust Majorana zero mode at its core in
the weakly-doped regime even when the second-order topology is nontrivial. However, this
picture will dramatically change when the vortex line is moved close to the hinges. To see
this, we consider that the vortex line is very close to the x-normal boundary [see Fig. 5.1(b)].
The results in Fig. 5.8(e) indicate that the dispersion of the vortex line remains gapped in the
weakly doped regime. However, the results in Figs. 5.8(f)-5.8(h) indicate that the Majorana
zero modes are no longer localized at the vortex ends, instead they are localized along the
hinges with helical Majorana modes.

To show that the formula in Eq. (5.29) indeed faithfully characterizes the topological
property, here we provide a concrete example with a vortex phase transition and show that
the Z2 invariant ν predicts this topological phase transition precisely. As is known, a change
of the topological invariant is associated with the closure of the energy gap. Because here
the topological invariant ν is of Z2 nature, if the gap closure occurs between two bands with
double degeneracy [which is the situation shown in Fig. 5.8(a)], then such gap closures do
not change ν. As the degeneracy of bands requires some symmetry protection [it is a C4z

rotation symmetry in Fig. 5.8(a)], in order to avoid such issues, here we consider lifting the
C4z rotation symmetry of the Hamiltonian in Eq. (5.1) by setting the strengths of the spin-
orbit coupling terms to be anisotropic, i.e., 2λ

∑
i=x,y,z sin kiσxsi → 2

∑
i=x,y,z λi sin kiσxsi,

with λx ̸= λy. To be specific, we also consider that the band inversion occurs at the kz = 0
plane, so that the vortex phase transition is associated with the gap closure at kz = 0. As
shown in Fig. 5.9(a), the energy dispersions at kz = 0 show a gap closure at µc = 0.85 for
the set of parameters we consider.

By contrast, the energy dispersions at kz = π are found to remain gapped for the range
of doping level we consider, as shown in Fig. 5.9(b). A combination of Figs. 5.9(a) and 5.9(b)
indicates that a vortex phase transition should occur at µc. Figs. 5.9(c) and 5.9(d) show
respectively the corresponding evolution of sgn{Pf[HM (0)]} and sgn{Pf[HM (π)]}. One can
see that sgn{Pf[HM (0)]} jumps from −1 to 1 exactly at µc where the energy dispersions at
kz = 0 get closed. Meanwhile, one can see that sgn{Pf[HM (π)]} keeps its value 1 for the range
of µ considered, agreeing with the fact that the band inversion does not occur at the kz = π
plane and the energy dispersions remain gapped as shown in Fig. 5.9(b). A combination of

1We have only shown µ > 0 as the result is symmetric about µ = 0.
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Figure 5.9: (Color online) Vortex phase transitions characterized by the Z2 invariant. (a) The evolution of
the energy dispersions at kz = 0 with respect to the doping level µ. A gap closure occurs at µc = 0.85 for the
parameters considered. (b) The evolution of the energy dispersions at kz = π with respect to the doping level
µ. The energy dispersion remains gapped for the range of µ that we consider here. (c) sgn{Pf[HM (0)]} jumps
from −1 to 1 when µ goes across µc. (d) sgn{Pf[HM (π)]} retains the value 1. A combination of (c) and (d)
indicates that the Z2 invariant ν changes from −1 for µ < µc to 1 for µ > µc. Common parameters are: t = 1,
m0 = 2.5, λx = 0.25, λy = λz = 0.5, ∆0 = −∆s = 0.25, h = 0, ξ = 4, and the vortex line is located at the
center of the xy plane. The lengths along the x and y directions contain Lx = Ly = 20 lattice sites. (a) and
(c) share the same horizontal coordinates, and (b) and (d) share the same horizontal coordinates.

Figs. 5.9(c) and 5.9(d) indicates that the Z2 invariant ν jumps from −1 for µ < µc to 1 for
µ > µc, demonstrating that the Z2 invariant given in Eq. (5.29) can precisely predict the
vortex phase transition.

The underlying reason for this transfer of robust Majorana zero modes from the vortex
ends to the hinges is as follows. When the helical Majorana modes go along the hinges
of the z-normal surfaces, they will pick up a π phase from the π-flux vortex line after one
circle, which will accordingly change their boundary conditions. It is known that the linear
dispersion of the helical Majorana modes for a finite-size system should follow E = ±vqm,
with v a constant and the discrete momentum qm determined by the boundary condition
eiqmL = 1 (periodic, qm = 2mπ/L ) or −1 [antiperiodic, qm = (2m + 1)π/L], where m is an
integer, and L is the total length of the closed path along the hinges. Notably, here we find
that the π-flux vortex line will change the boundary condition from an antiperiodic one to
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Figure 5.10: (Color online) (a) The probability density of Majorana zero modes [the two blue dots in (b)] for
a second-order topological superconductor with chiral Majorana hinge modes are also localized on the hinges
rather than at the vortex ends. We take t = 1, m0 = 2.5, λ = 0.5, ξ = 4, h = (hx, hy, hz) = (0, 0, 0.3), µ = 0,
∆0 = −∆s = 0.25, and Lx = Ly = Lz = 32 lattice sites.

a periodic one. As a result, each pair of helical Majorana modes will contain two Majorana
zero modes. Let us focus on the top z-normal surface. When the vortex line is moved close
to the hinges, the Majorana zero mode at the top vortex end will hybridize with the two
Majorana zero modes on the hinges and then get split. Nevertheless, the Z2 nature of the
Majorana zero modes guarantees that one of the three will remain robust2, which turns out
to be mostly localized along the hinges.

Finally, we take the Zeeman field into account and study the situation with chiral Ma-
jorana hinge modes. For the z-directional Zeeman field, we find that the condition for the
realization of a chiral second-order topological superconductor with chiral Majorana hinge
modes is given by Eq. (5.15) while maintaining a finite bulk gap (see Appendix E for more
details). In this regime, we find that the vortex line also does not bind robust Majorana zero
modes, and the Majorana zero modes also appear on the hinges, as shown in Figs. 5.10(a)
and 5.10(b). Notably, the trivialization of the vortex line in this regime does not depend on
the distance away from the chiral Majorana modes Notably, the trivialization of the vortex
line in this regime does not depend on the distance away from the chiral Majorana modes
as well as the existence of other vortex lines. This can be intuitively understood by noting
that the vortex-end Majorana zero modes must originate from certain gapless modes in the
normal state, so the prerequisite is that the chemical potential crosses the surface bands. As
the z-directional Zeeman field opens a gap of size 2|hz| to the Dirac surface states in the
normal state, the condition for the chemical potential to cross the surface bands is |µ| > |hz|,
which is apparently not compatible with the condition for the chiral second-order topologi-

2The energy of one of the three modes will be pinned at zero if the coupling between the top and bottom
surfaces is negligible.
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cal superconductor. When hz is finite and the chemical potential crosses the surface bands
(|µ| > |hz|), the scenario is found to be similar to the one at the limit hz = 0. That is,
whether the vortex line binds robust Majorana zero modes or not depends on its position
to the hinges which harbor counter-propagating gapless Majorana modes. It is worth noting
that, in the regime with chiral Majorana hinge modes, the presence of Majorana zero modes
on the hinges is similar to the helical case. That is, an odd number of π fluxes can change the
boundary condition of the chiral Majorana hinge modes, consequently allowing the presence
of Majorana zero modes [200].

5.4.1 Vortex lines far away from the helical Majorana hinge modes

Based on a local perspective of surface Dirac mass, we have argued that when the vortex line
is far away from the hinges, the existence of helical Majorana modes on the hinges should
have negligible impact on the vortex line, so the vortex line will host robust Majorana zero
modes at its ends in the weakly doped regime. In this section, we provide numerical results
to support this argument. In Fig. 5.11, we show the result for a cubic lattice with size
Lx = Ly = Lz = 32 lattice sites. A z-directional π-flux vortex line is inserted at the center
of the xy plane. According to our previous analysis, the six modes close to zero energy in
Fig. 5.11(b) correspond to two vortex-end Majorana zero modes and four hinge Majorana
zero modes. However, because of the finite-size effect, the modes within the top or bottom
surface will hybridize with each other, and the modes of the two surfaces also have finite
coupling, so all modes are split away from the zero energy (if the length along the z direction
increases to infinity, then because the particle-hole symmetry of the superconductor forces
the Majorana zero modes to be created or annihilated in pairs, two of the modes will take
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Figure 5.11: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ξ = 4, h = 0, and
∆0 = −∆s = 0.25. All directions take open boundary conditions and their lengths contain Lx = Ly = Lz = 32
lattice sites. The vortex line is at the center of xy-plane.
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Figure 5.12: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ξ = 4, h = 0, and
∆0 = −∆s = 0.25. All directions take open boundary conditions and their lengths contain Lx = Ly = 40,
and Lz = 32 lattice sites. The vortex line is at the center of xy plane and in the z direction.

exactly zero energy, even though the system size of the xy plane is finite). To show that
the increase of the distance between the vortex line and the helical Majorana modes will
decrease their hybridization, we further consider a cubic lattice with size Lx = Ly = 40 and
Lz = 32 lattice sites, with the result shown in Fig. 5.12. Compared to Fig. 5.11, it is readily
seen that the energy of the four red modes approaches zero energy. As these four modes
correspond to two hinge modes and two vortex-end modes [see Fig. 5.11(c) and Fig. 5.12(c)],
the decrease of their energy splitting indicates that the hybridization of the vortex-end and
hinge Majorana zero modes decreases with the increase of the distance between the vortex
line and the hinges. Therefore, it is justified to expect that for vortex lines far away from
the hinges, the vortex-end bound states will take exactly zero energy, restoring their exact
self-conjugate (γ = γ†) nature.

5.4.2 Vortex lines close to the hinges without gapless hinge modes

We have shown when a topological vortex line is moved close to the hinges with helical
Majorana modes, their hybridization will trivialize the vortex line. For comparison, in this
section we consider that the vortex line is also moved close to the hinges, but the hinges do
not host helical Majorana modes. Similar to Fig. 5.8(e), we find that the accidental double
degeneracy of the lowest-energy spectrum exhibited in the spectrum of Fig. 5.8(a) is lifted
when the vortex line is no longer located at the center of the system since the C4z rotation
symmetry is broken, as shown in Fig. 5.13(a). Nevertheless, this lifting of degeneracy does
not affect the vortex line topology in the weakly doped regime since the dispersion of the
vortex line remains gapped. As expected, in the weakly doped regime, the two lowest-energy
modes are strongly localized at the vortex ends, as shown in Figs. 5.13(b)-5.13(d). These
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Figure 5.13: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ξ = 4, h = 0, and
∆0 = ∆s = 0.25. All directions take open boundary conditions and their lengths contain Lx = Ly = Lz = 32
lattice sites. The vortex line is at (xc, yc) = (6.01, 16.01) point and in the z direction.

results demonstrate that the trivialization of the vortex line for the case with helical Majorana
modes does indeed originate from their hybridization.

5.4.3 Vortex lines in the x direction

So far, we have restricted ourselves to vortex lines generated in the z direction in order to
be directly comparable with the experiments. Here we provide the results for vortex lines
generated in the x direction for completeness. It is worth noting that because the results for
vortex lines generated in the y direction are the same due to the C4z rotation symmetry, we
will not show them to avoid repetition.

As the vortex line is forced to be trivial when the Zeeman field dominates over the
superconductivity, here we focus on the case with vanishing Zeeman field. Similar to the
z-directional vortex line, a local surface perspective suggests that an x-directional vortex
line will harbor Majorana zero modes at its ends when its position is far away from the
hinges and the doping level is low. Nevertheless, there exists a qualitative difference between
the x-directional and z-directional vortex lines. The difference is that for an x-directional
vortex line, the closed path that the helical Majorana modes propagate along does not enclose
the vortex line. As a result, the helical Majorana modes will not pick up an additional π
phase from the vortex line after going around the hinges for one circle. In other words,
the helical Majorana modes will keep their antiperiodic boundary condition when the vortex
line is generated along the x direction, and so the helical Majorana modes will not contain
zero-energy modes. The absence of Majorana zero modes on the hinges indicates that the
vortex-end Majorana zero modes cannot directly couple with the helical Majorana hinge
modes due to the constraint from the intrinsic particle-hole symmetry of superconductors (a
Majorana zero mode can get split only when it couples with another Majorana zero mode).
Anyway, because the helical Majorana modes provide some gapless channels which connect
the two x-normal surfaces, they will enhance the coupling of the two Majorana zero modes
at the vortex ends when the vortex line is moved close to the hinges with helical Majorana
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Figure 5.14: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, µ = 0, ξ = 4, ∆0 = −∆s = 0.25,
and h = 0. All directions take open boundary conditions and their lengths contain Lx = Ly = Lz = 32 lattice
sites. (a) The wave functions of the two lowest-energy modes [the two blue dots shown in (b)] are mostly
localized at the vortex ends. (b) The 14 energy eigenvalues closest to zero energy. (c) The wave functions of
the four finite-energy modes in red color are localized along the hinges, indicating that they correspond to the
helical Majorana modes.

modes. This enhancement of coupling can also split the vortex-end Majorana zero modes,
but now there will be no robust Majorana zero mode on the hinges. In Fig. 5.14, we show
the results for a geometry with size Lx = Ly = Lz = 32 lattice sites. Fig. 5.14(a) shows that
the two lowest-energy modes have most weight at the vortex ends, suggesting the vortex line
to be topological. Compared to Fig. 5.11(b) or Fig. 5.12(b), the pattern of the near-zero-
energy modes in Fig. 5.14(b) indicates that the helical Majorana modes keep the antiperiodic
boundary condition when the vortex line is generated in the x direction.

5.5 Discussions and Conclusions

Let us now apply our findings to explain the coexistence of topological and trivial vortex lines
observed in experiments. On the experimental side, strong signatures of helical Majorana
modes have been observed in FeTe0.55Se0.45 not only at the hinges [271], but also at certain
crystalline domain walls [229]. According to our theory, when the positions of the generated
vortex lines are close to these helical Majorana modes, their hybridizations can trivialize the
vortex-line topology, which accordingly provides an explanation for the existence of trivial
vortex lines even in the weak Zeeman field regime. Moreover, some of the topological vor-
tex lines are observed in experiments to be trivialized with the increase of magnetic field
[275]. Since the positions of these vortex lines do not change, according to our theory, their
trivialization is potentially caused by a change of the surface Dirac-mass nature.

It is noteworthy that the superconducting pairing gap has been observed to display con-
siderable inhomogeneity on the surface of FeTe0.55Se0.45, using scanning tunneling microscopy
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[229, 276]. Meanwhile, the chemical potential also inevitably displays certain fluctuations in
real space. Therefore, the increase of magnetic field will increase the regions dominated by
the Zeeman field, which will consequently increase the ratio of trivial vortex lines, agreeing
with the experiment observation.

In conclusion, we have developed a mechanism to explain the peculiar coexistence and
evolution of topological and trivial vortex lines in iron-based superconductors, hopefully
advance our understanding of the topological physics in these materials.
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Chapter 6

Summary and Future Directions

In summary, the aim of this thesis was to study the Majorna zero modes in the context of
higher-order topological superconductivity. In particular, we considered high-temperature
superconductivity in cuprates in both chapters 3 and 4, and iron-based superconductors in
chapter 5.

After a general overview and discussion about the theoretical tools in both chapters 1
and 2, we showed that confining a second-order topological superconductor with a harmonic
potential leads to a proliferation of Majorana corner modes in chapter 3. As a consequence,
this results in the formation of Majorana corner flat bands which have a fundamentally
different origin from that of the conventional mechanism. This is due to the fact that they
arise solely from the one-dimensional gapped boundary states of the hybrid system that
become gapless without the bulk gap closing under the increase of the trapping potential
magnitude. The Majorana corner states are found to be robust against the strength of
the harmonic trap and the transition from Majorana corner states to Majorana flat bands is
merely a smooth crossover. As a harmonic trap can potentially be realized in heterostructures,
this proposal paves a way to observe these Majorana corner flat bands in an experimental
context.

In chapter 4, we investigated the superconducting pairing instability of the two-dimensional
extended Hubbard model with both Rashba and Dresselhaus spin-orbit coupling within the
mean-field level at both zero and finite temperature. We find that both first- and second-order
time-reversal symmetry breaking topological gapped phases can be achieved under appropri-
ate parameters and temperature regimes due to the presence of a favored even-parity s+ id
-wave pairing even in the absence of an external magnetic field or intrinsic magnetism. This
results in two branches of chiral Majorana edge states on each edge or a single zero-energy
Majorana corner state at each corner of the sample. Interestingly, we also find that not only
does tuning the doping level lead to a direct topological phase transition between these two
distinct topological gapped phases, but also using the temperature as a highly controllable
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and reversible tuning knob leads to different direct temperature-driven topological phase
transitions between gapped and gapless topological superconducting phases. Our findings
suggest new possibilities in interacting spin-orbit coupled systems by unifying both first- and
higher-order topological superconductors in a simple but realistic microscopic model.

In chapter 5, we study the potential impact of second-order topology on the vortex lines
in iron-based superconductors in both weak and strong Zeeman field regimes. Recently, ex-
perimental evidence of Majorana zero modes in vortices has been observed in iron-based
superconductors with band inversion near the Fermi level. It is known that iron-based super-
conductors with band inversion and s±-wave pairing can give rise to second-order topological
superconductivity, manifested by the presence of helical or chiral Majorana hinge states in
three dimensions. In the weak Zeeman field regime, we find that vortex lines far away from
the hinges are topologically nontrivial in the weakly doped regime, regardless of whether the
second-order topology is present or not. However, when the superconductor falls into the
second-order topological phase and a topological vortex line is moved close to the helical Ma-
jorana hinge states, we find that their hybridization will trivialize the vortex line and transfer
the Majorana zero modes to the hinges. Furthermore, when the Zeeman field is large enough,
we find that the helical Majorana hinge states are changed into chiral Majorana hinge modes
and thus a chiral second-order topological superconducting phase is realized. In this regime,
the vortex lines are always topologically trivial, no matter how far away they are from the
chiral Majorana hinge modes. By incorporating a realistic assumption of inhomogeneous su-
perconductivity, our findings can explain the recent experimental observation of the peculiar
coexistence and evolution of topologically nontrivial and trivial vortex lines in iron-based
superconductors.

As an extension of the studies in chapter 3, it would be interesting to find a topological
invariant in real space, which characterizes Majorana corner flat bands, by incorporating
Chern marker [277]. Another possible extension is considering other superconducting pairing
symmetries such as extended s-wave pairing in the presence of a harmonic potential. In
chapter 4, it would be promising to investigate the effects of external magnetic field on
the different phases inside the phase diagram. An in-plane magnetic field, could result in
the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) phase [278, 279] or Cooper pairs with finite
momentum. Also, considering odd-parity pairing terms inside the Hamiltonian and extending
the results seems interesting. For future study on chapter 5, it would be interesting to consider
three-dimensional weak topological insulators.

There is a lot more to learn. We hope to continue the investigations described in this
thesis to uncover more and more mysteries hidden in topological superconductors.
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Bernd Büchner, Klaus Koepernik, Carmine Ortix, Manuel Richter, and Jeroen Van
Den Brink. Stacked topological insulator built from bismuth-based graphene sheet
analogues. Nature materials, 12(5):422–425, 2013.

[94] Christian Pauly, Bertold Rasche, Klaus Koepernik, Marcus Liebmann, Marco Pratzer,
Manuel Richter, Jens Kellner, Markus Eschbach, Bernhard Kaufmann, Lukasz Plucin-
ski, et al. Subnanometre-wide electron channels protected by topology. Nature Physics,
11(4):338–343, 2015.

[95] H Kamerlingh Onnes. The resistance of pure mercury at helium temperatures. Com-
mun. Phys. Lab. Univ. Leiden, b, 120, 1911.

[96] Walther Meissner and Robert Ochsenfeld. Ein neuer effekt bei eintritt der
supraleitfähigkeit. Naturwissenschaften, 21(44):787–788, 1933.

[97] Fritz London and Heinz London. The electromagnetic equations of the supraconduc-
tor. Proceedings of the Royal Society of London. Series A-Mathematical and Physical
Sciences, 149(866):71–88, 1935.

[98] V Ginzburg and L Landau. On the theory of superconductivity, zh. lksper. Teoret. Fiz,
20:1064–1082, 1950.

[99] Leon N. Cooper. Bound electron pairs in a degenerate Fermi gas. Phys. Rev., 104:1189–
1190, Nov 1956.

[100] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Theory of superconductivity. Phys.
Rev., 108:1175–1204, Dec 1957.

[101] J. Bardeen, L. N. Cooper, and J. R. Schrieffer. Microscopic theory of superconductivity.
Phys. Rev., 106:162–164, Apr 1957.
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Appendix A

Majorana Condition

Although the BdG Hamiltonian in Chapter 3 is an 8N × 8N matrix, by changing the basis it
can be written as a block diagonal matrix where each block is an 4N × 4N matrix and N is
the number of lattice sites. In this section, it is shown that the zero modes of each of these
4N × 4N blocks meets the Majorana conditions. The Hamiltonian can be rewritten as,

H =
1

2
Ψ†ĤΨ, (A.1)

here ψ†
i = (c†i,a,↑, c

†
i,b,↑, c

†
i,a,↓, c

†
i,b,↓, ci,a,↑, ci,b,↑, ci,a,↓, ci,b,↓) and,

Ĥ =

(
Hn ∆
∆† −H∗

n

)
, (A.2)

where

Hn =

(
H1 0
0 H2

)
, ∆ =

(
0 −∆
∆ 0

)
. (A.3)

The BdG equations are

Ĥ

⎛⎜⎜⎝
u⃗1
u⃗2
v⃗1
v⃗2

⎞⎟⎟⎠ = E

⎛⎜⎜⎝
u⃗1
u⃗2
v⃗1
v⃗2

⎞⎟⎟⎠ , (A.4)

or

H1u⃗1 − ∆v⃗2 = Eu⃗1, (A.5)

H2u⃗2 + ∆v⃗1 = Eu⃗2, (A.6)
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∆∗u⃗2 −H∗
1 v⃗1 = Ev⃗1, (A.7)

−∆∗u⃗1 −H∗
2 v⃗2 = Ev⃗2. (A.8)

So, we have an 4N × 4N matrix:(
H1 −∆
−∆∗ −H∗

2

)(
u⃗1
v⃗2

)
= E

(
u⃗1
v⃗2

)
. (A.9)

Then, it can be shown that,

−H∗
1 u⃗

∗
1 + ∆∗v⃗∗2 = −Eu⃗∗1, (A.10)

−H∗
2 u⃗

∗
2 − ∆∗v⃗∗1 = −Eu⃗∗2, (A.11)

−∆u⃗∗2 +H1v⃗
∗
1 = −Ev⃗∗1, (A.12)

∆u⃗∗1 +H2v⃗
∗
2 = −Ev⃗∗2, (A.13)

or

Ĥ

⎛⎜⎜⎝
v⃗∗1
v⃗∗2
u⃗∗1
u⃗∗2

⎞⎟⎟⎠ = −E

⎛⎜⎜⎝
v⃗∗1
v⃗∗2
u⃗∗1
u⃗∗2

⎞⎟⎟⎠ . (A.14)

Therefore, if (u⃗i1, u⃗
i
2, v⃗

i
1, v⃗

i
2) is an eigenstate with energy Ei, then (v⃗i∗1 , v⃗

i∗
2 , u⃗

i∗
1 , u⃗

i∗
2 ) is an eigen-

state with energy −Ei which should be expected because of particle-hole symmetry. This
means that if E = 0, we have the following relations,

u⃗i1 = v⃗i∗1 u⃗i2 = v⃗i∗2 . (A.15)

In other words, if we have (u⃗i1, v⃗
i
2) with the energy Ei, we can obtain eigenstates (u⃗i2, v⃗

i
1) =

(v⃗i∗2 , u⃗
i∗
1 ) with the energy −Ei. It means by finding only the eigenvalues and eigenstates of

the 4N × 4N Hamiltonian in Eq. (A.9), one can find all eigenvalues and eigenstates of the
8N × 8N Hamiltonian in Eq. (A.2) much more easily due to the particle-hole symmetry. In
the rest of this section, we will show that all the zero modes of the 4N × 4N Hamiltonian
satisfy Majorana conditions.

The unitary matrix that diagonalizes the matrix Ĥ is expressed as

Û =

(
û v̂∗

v̂ û∗

)
, Ĥ = Û

(
Ê 0

0 −Ê

)
Û †, (A.16)

where

û ≡
(
u⃗11 · · · u⃗N1
u⃗22 · · · u⃗N2

)
, v̂ ≡

(
v⃗11 · · · v⃗N1
v⃗22 · · · v⃗N2

)
. (A.17)
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So,

H =
1

2
Ψ†Û

(
Ê 0

0 −Ê

)
Û †Ψ (A.18)

=
1

2

∑
i

(Eiγ
†
i γi − Eiγiγ

†
i ), (A.19)

where (
γ⃗

γ⃗†

)
= Û †

(
c⃗

c⃗†

)
, (A.20)

or

γi =
∑
l

[
[û]∗licl + [v̂]∗lic

†
l

]
, (A.21)

γ†i =
∑
l

[
[û]lic

†
l + [v̂]licl

]
. (A.22)

It is obvious that γ†i ̸= γi. However, we have two special conditions for only zero-eigenvalues
which is Eq. (A.15). Using them we will have,

γ†i =
∑
l

[
[v̂]∗lic

†
l + [û]∗licl

]
= γi. (A.23)

Therefore, the zero-energy eigenstates are all Majorana.
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Effective Realization of Odd-Parity
Superconductivity

For generality, here we further include an out-of-plane Zeeman field. Accordingly, the normal
state Hamiltonian is

H0 =
∑
k

(c†k,↑, c
†
k,↓)

(
ξk + hz lx − ily
lx + ily ξk − hz

)(
ck,↑
ck,↓

)
, (B.1)

The spin singlet-pairing superconductivity is described by

HSC =
∑
k

(∆s(k) + i∆d(k))c†k,↑c
†
−k,↓ + h.c., (B.2)

where ∆s(k) = ∆0 + ∆sηs(k) and ∆d(k) = ∆dηd(k). We first follow Ref. [125] and do the
following transformation

ck,↑ = (cos
θk
2
ck,+ + e−iϕk sin

θk
2
ck,−), (B.3)

ck,↓ = (eiϕk sin
θk
2
ck,+ − cos

θk
2
ck,−), (B.4)

where θk satisfies cos θk = hz/Λk with Λk =
√
h2z + l2x + l2y, and ϕk satisfy

eiϕk =
lx + ily√
l2x + l2y

. (B.5)

Substituting Eq. (B.3) and Eq. (B.4) into Eq. (B.1), we have

H0 =
∑
k

(ξk + Λk)c†k,+ck,+ + (ξk − Λk)c†k,−ck,−. (B.6)
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For the superconducting part,

HSC =
∑
k

(
−hz(∆s(k) + i∆d(k))

Λk
c†k,+c

†
−k,− + h.c.

)
+

1

2

∑
k

(
−(∆s(k) + i∆d(k))(lx − ily)

Λk
c†k,+c

†
−k,+ + h.c.

)
+

1

2

∑
k

(
−(∆s(k) + i∆d(k))(lx + ily)

Λk
c†k,−c

†
−k,− + h.c.

)
(B.7)

Below we go beyond Ref. [125] and do a band-dependent gauge transformation, ck,+ =
−c̄k,+eiφk , ck,− = c̄k,−, with

eiφk =
∆s(k) + i∆d(k)√

∆2
s(k) + ∆2

d(k)
. (B.8)

Accordingly, we have

H0 =
∑
k

(ξk + Λk)c̄†k,+c̄k,+ + (ξk − Λk)c̄†k,−c̄k,−, (B.9)

HSC =
∑
k

⎛⎝hz
√

∆2
s(k) + ∆2

d(k)

Λk
c̄†k,+c̄

†
−k,− + h.c.

⎞⎠
+

1

2

∑
k

(
−(∆s(k) − i∆d(k))(lx − ily)

Λk
c̄†k,+c̄

†
−k,+ + h.c.

)
+

1

2

∑
k

(
−(∆s(k) + i∆d(k))(lx + ily)

Λk
c̄†k,−c̄

†
−k,− + h.c.

)
. (B.10)

By further doing the following transformation

c̄k,+ = cos
γk
2
c̃k,+ + sin

γk
2
c†−k,−, (B.11)

c̄†−k,− = sin
γk
2
c̃k,+ − cos

γk
2
c̃†−k,−, (B.12)

where

γk = arctan
hz

√
∆2

s(k) + ∆2
d(k)

Λkξk
, (B.13)

the Hamiltonian can be further transformed into the below form

H =
∑
kα

ϵk,αc̃
†
k,αc̃k,α − 1

2

(
(∆s(k) − iα∆d(k))(lx − iαly)

Λk
c̃†k,αc̃

†
−k,α + h.c.

)
, (B.14)
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where

ϵk,± =

√
ξ2k +

(∆2
s(k) + ∆2

d(k))h2z
Λ2
k

± Λk. (B.15)

It is readily seen that the Hamiltonian can be decoupled into two independent parts, i.e.,
H = H+ ⊕H−, with

H+ =
∑
k

ϵk,+c̃
†
k,+c̃k,+ − 1

2

(
(∆s(k) − i∆d(k))(lx − ily)

Λk
c̃†k,+c̃

†
−k,+ + h.c.

)
, (B.16)

H− =
∑
k

ϵk,−c̃
†
k,−c̃k,− − 1

2

(
(∆s(k) + i∆d(k))(lx + ily)

Λk
c̃†k,−c̃

†
−k,− + h.c.

)
. (B.17)

It is obvious that both H+ and H− describe odd-parity superconductors. It is worthy pointing
out the pairing forms in H+ and H− are similar to that in the toy model for second-order
topological odd-party superconductors proposed in Ref. [191]. In the limit hz = 0, we obtain
Eq. 4.39 in Chapter 4.
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Phase Boundaries in The
s + id-Wave Pairing Regime

As shown in Fig. 4.1, the s+ id-wave superconducting regime consists of three time-reversal
symmetry breaking topologically distinct phases. The boundaries between these phases are
two straight lines with the same slope but different intercepts. In this section, we are going
to derive the equations of those two lines.

The nodes of s+ id-wave pairing are located where both ∆0 + ∆sηs(k) = 0 and ηd(k) = 0
are simultaneously satisfied in the first Brillouin zone while the Fermi surfaces of the normal
state are determined by the equation εσ(k) = ξ(k) + σl(k) = 0. As explained in the main
paper, a topological phase transition happens in the s + id-wave regime when the Fermi
surface crosses these pairing nodes. It can be shown that the four pairing nodes in the first
Brillouin zone satisfy,

4∆0t

∆s
+ σl(k) = µ, (C.1)

or
4∆0t

∆s
± 2
√

(λR sin ky + λD sin kx)2 + (λR sin kx + λD sin ky)2 = µ. (C.2)

Since ηd(k) = 0 is satisfied on the two lines kx = ±ky, using the fact that sin kx = ± sin ky
on these two lines leads to

sin2 kx(λR ± λD)2 =
1

2
(
µ

2
− 2∆0t

∆s
)2. (C.3)

At the pairing nodes, we also have cos kx = −∆0
∆s

, so,

{1 − (
∆0

∆s
)2}(λR ± λD)2 =

1

2
(
µ

2
− 2∆0t

∆s
)2. (C.4)
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For ∆0 ≪ ∆s, we have

(λR ± λD)2 ≃ µ2

8
. (C.5)

If we restrict ourselves to the lines with positive slope in λD − µ plane, we will have

λD ≃
√

2

4
µ± λR, (C.6)

which are the equations of two lines with the slope
√

2/4 and intercept λR (the boundary
between first- and second-order topological superconductivity phases) and intercept −λR (the
boundary between first-order topological phase and the topologically trivial phase).
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The Z2 Topological Invariant

While the presence of a straight z-directional vortex line breaks translational symmetry in the
x and y directions, the z direction still preserves translational symmetry and kz is still a good
quantum number. Therefore, the whole system can be taken as a quasi-1D superconductor.
Since the presence of a vortex line also breaks the time-reversal symmetry, this quasi-1D
superconductor thus falls into the D class of the Atland-Zirnbauer classification [273, 274].
As is known, when a superconductor in the D class is fully gapped, its band topology is
characterized by a Z2 invariant of the form [114]

ν = sgn{Pf[HM(0)]} · sgn{Pf[HM(π)]}, (D.1)

where HM(kz) represents the Hamiltonian in the Majorana representation, which is an anti-
symmetric matrix forced by the intrinsic self-adjoint property of Majorana operators; “Pf” is
a shorthand notation of Pfaffian. The formula (5.29) implies that a change of the Z2 invariant,
or say a topological phase transition, can only occur at kz = 0 or π, a consequence originating
from the particle-hole symmetry. To obtain the explicit form of HM(kz), we introduce the
following Majorana operators,

γα,s,r;1 =
1√
2

(c†α,s,r + cα,s,r) = γ†α,s,r;1, (D.2)

γα,s,r;2 =
i√
2

(c†α,s,r − cα,s,r) = γ†α,s,r;2, (D.3)

at orbital α, with spin s, and at site r. Since only the two time-reversal invariant momenta
are relevant for the determination of the underlying band topology, in the following we restrict
ourselves to these two points. At kz = 0, it is straightforward to find that the real space
Hamiltonian is reduced as

H(kz = 0) =
∑

r̄;αα′;s,s′

{
− µc†α,s,r̄δαα′δss′cα′,s′,r̄ + (m0 − 2t)c†α,s,r̄[σz]αα′δss′cα′,s′,r̄
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+hzc
†
α,s,r̄δαα′ [sz]ss′cα′,s′,r̄

−(tc†α,s,r̄[σz]αα′δss′cα′,s′,r̄+x̂ + tc†α,s,r̄[σz]αα′δss′cα′,s′,r̄+ŷ + h.c.)

+(−iλc†α,s,r̄[σx]αα′ [sx]ss′cα′,s′,r̄+x̂ − iλc†α,s,r̄[σx]αα′ [sy]ss′cα′,s′,r̄+ŷ + h.c.)

+(i
∆0(r̄)

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄ + i(

∆s(r̄ + x̂
2 )

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄+x̂

+
∆s(r̄ + ŷ

2 )

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄+ŷ) + h.c.)

}
, (D.4)

and at kz = π, we have

H(kz = π) =
∑

r̄;αα′;s,s′

{
− µc†α,s,r̄δαα′δss′cα′,s′,r̄ + (m0 + 2t)c†α,s,r̄[σz]αα′δss′cα′,s′,r̄

+hzc
†
α,s,r̄δαα′ [sz]ss′cα′,s′,r̄

−(tc†α,s,r̄[σz]αα′δss′cα′,s′,r̄+x̂ + tc†α,s,r̄[σz]αα′δss′cα′,s′,r̄+ŷ + h.c.)

+(−iλc†α,s,r̄[σx]αα′ [sx]ss′cα′,s′,r̄+x̂ − iλc†α,s,r̄[σx]αα′ [sy]ss′cα′,s′,r̄+ŷ + h.c.)

+(i
∆0(r̄)

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄ + i(

∆s(r̄ + x̂
2 )

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄+x̂

+
∆s(r̄ + ŷ

2 )

2
c†α,s,r̄δαα′ [sy]ss′c

†
α′,s′,r̄+ŷ) + h.c.)

}
, (D.5)

where r̄ = (x, y) only involves the lattice sites because the kinetic terms in the z direction
have been rewritten in wave vector space due to the preservation of translational symmetry
in this direction. It is worth noting that because the vortex line is generated along the z
direction, above we have accordingly taken h = (0, 0, hz). Substituting the Dirac fermion
operators by Majorana operators, we get

H(kz = 0) =
∑

r̄;αα′;s,s′

{
− iµγα,s,r̄;1δαα′δss′γα′,s′,r̄;2 + i(m− 2t)γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄;2

+ihzγα,s,r̄;1δαα′ [sz]ss′γα′,s′,r̄;2

−it(γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄+x̂;2 − γα,s,r̄;2[σz]αα′δss′γα′,s′,r̄+x̂;1)

−it(γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄+ŷ;2 − γα,s,r̄;2[σz]αα′δss′γα′,s′,r̄+ŷ;1)

−iλ(γα,s,r̄;1[σx]αα′ [sx]ss′γα′,s′,r̄+x̂;1 + γα,s,r̄;2[σx]αα′ [sx]ss′γα′,s′,r̄+x̂;2)

+λ(γα,s,r̄;1[σy]αα′ [sy]ss′γα′,s′,r̄+ŷ;2 − γα,s,r̄;2[σx]αα′ [sx]ss′γα′,s′,r̄+ŷ;1)

+
Re∆0(r̄)

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄;1 + γα,s,r;1δαα′ [sy]ss′γα′,s′,r;2)

− Im∆0(r̄)

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄;2) (D.6)
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+
Re∆s(r̄ + x̂

2 )

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+x̂;1 + γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+x̂;2)

−
Im∆s(r̄ + x̂

2 )

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+x̂;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+x̂;2)

+
Re∆s(r̄ + ŷ

2 )

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+ŷ;1 + γα,s,r;1δαα′ [sy]ss′γα′,s′,r+ŷ;2)

−
Im∆s(r̄ + ŷ

2 )

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+ŷ;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+ŷ;2)

}
,

and

H(kz = π) =
∑

r̄;αα′;s,s′

{
− iµγα,s,r̄;1δαα′δss′γα′,s′,r̄;2 + i(m+ 2t)γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄;2

+ihzγα,s,r̄;1δαα′ [sz]ss′γα′,s′,r̄;2

−it(γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄+x̂;2 − γα,s,r̄;2[σz]αα′δss′γα′,s′,r̄+x̂;1)

−it(γα,s,r̄;1[σz]αα′δss′γα′,s′,r̄+ŷ;2 − γα,s,r̄;2[σz]αα′δss′γα′,s′,r̄+ŷ;1)

−iλ(γα,s,r̄;1[σx]αα′ [sx]ss′γα′,s′,r̄+x̂;1 + γα,s,r̄;2[σx]αα′ [sx]ss′γα′,s′,r̄+x̂;2)

+λ(γα,s,r̄;1[σx]αα′ [sy]ss′γα′,s′,r̄+ŷ;2 − γα,s,r̄;2[σx]αα′ [sy]ss′γα′,s′,r̄+ŷ;1)

+
Re∆0(r̄)

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄;1 + γα,s,r;1δαα′ [sy]ss′γα′,s′,r;2)

− Im∆0(r̄)

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄;2) (D.7)

+
Re∆s(r̄ + x̂

2 )

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+x̂;1 + γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+x̂;2)

−
Im∆s(r̄ + x̂

2 )

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+x̂;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+x̂;2)

+
Re∆s(r̄ + ŷ

2 )

2
(γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+ŷ;1 + γα,s,r;1δαα′ [sy]ss′γα′,s′,r+ŷ;2)

−
Im∆s(r̄ + ŷ

2 )

2
(γα,s,r̄;1δαα′ [sy]ss′γα′,s′,r̄+ŷ;1 − γα,s,r̄;2δαα′ [sy]ss′γα′,s′,r̄+ŷ;2)

}
.

Let us consider a system with open boundary conditions in both the x and y directions
where the number of lattice sites is Nx in the x direction and Ny in the y direction. In terms
of the Majorana representation

γkz=0/π = (Γ1,1,Γ2,1, ...,Γn,m, ...,ΓNx,Ny)T , (D.8)

with

Γn,m = (γa,↑,nx̂+mŷ;1, γa,↑,nx̂+mŷ;2, γb,↑,nx̂+mŷ;1, γb,↑,nx̂+mŷ;2,

γa,↓,nx̂+mŷ;1, γa,↓,nx̂+mŷ;2, γb,↓,nx̂+mŷ;1, γb,↓,nx̂+mŷ;2),
(D.9)
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the Hamiltonian can be written as

H(kz = 0/π) = iγ†0/πHM(kz = 0/π)γ0/π, (D.10)

where HM is an 8NxNy × 8NxNy real antisymmetric matrix for which the Pfaffian is well
defined. In this work, the Pfaffian has been calculated by using the code developed in Ref. [91].
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Boundary Fermi Surface and
Vortex Bound States

In the chapter 5, we have shown that the low-energy effective Hamiltonian on the bottom
surface reads [see Eq.(5.24)]

Heff(kx, ky) = 2λ(kysx − kxsy)τz +MZsz +MSτx, (E.1)

where MS = ∆0 + 2∆s and MZ = hz. Such a form is derived for the special case with µ = 0.
When µ ̸= 0, the low-energy effective Hamiltonian becomes

Heff(kx, ky) = 2λ(kysx − kxsy)τz − µτz +MZsz +MSτx. (E.2)

Accordingly, the energy spectra are

E(kx, ky) = ±
√

4λ2(k2x + k2y) + µ2 +M2
Z +M2

S ± 2
√
µ2[4λ2(k2x + k2y) +M2

Z] +M2
ZM

2
S ,(E.3)

whose gap gets closed at kx = ky = 0 only when M2
Z = µ2 +M2

S . As long as µ <
√
M2

Z −M2
S

( since here only the absolute values of µ and hz are relevant, we consider both of them to be
positive in this section for the convenience of discussion), no matter whether the supercon-
ducting pairing is purely on-site (∆s = 0) or extensive (∆s ̸= 0), the system corresponds to
a second-order topological superconductor with chiral Majorana hinge states circling around
the top and bottom surfaces because the nature of Dirac masses on these two surfaces is
different from that of the side surfaces.

In Fig. 5.10, we have shown the absence of vortex-end Majorana zero modes when the
superconductor falls in the chiral second-order superconducting phase. From a surface view-
point, this result can be simply understood as a consequence of the absence of a boundary
Fermi surface in the normal state. The underlying reason is that the vortex-core Majorana
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zero modes must originate from certain low-energy modes, so the absence of a boundary
Fermi surface naturally implies the absence of vortex-core Majorana zero modes. As the
condition for the existence of a boundary Fermi surface before the introduction of super-
conductivity is µ > hz, whereas the chiral second-order topological superconducting phase

requires µ <
√
M2

Z −M2
S < hz, their incompatibility indicates that vortex-end Majorana

zero modes will always be absent on the top and bottom surfaces when the system is in the
chiral second-order topological superconducting phase.

Focusing on the normal state, in effect, the Zeeman term not only opens a gap of the
size 2hz on the top and bottom surfaces, but also reduces the bulk gap. This can be easily
inferred from the normal-state Hamiltonian which reads

HN (k) = (m0 − 2t
∑

i=x,y,z cos ki)σzs0 + 2λ
∑

i=x,y,z sin kiσxsi + hzσ0sz, (E.4)

whose energy spectra are given by

E(k) = ±

√4λ2(sin2 kx + sin2 ky) +

⎛⎝hz ±√4λ2 sin2 kz + (m0 − 2t
∑

i=x,y,z

t cos ki)2

⎞⎠2

.(E.5)

According to the above equation, one can easily find that the bulk gap will reduce from Eg

(the zero-field value) to Eg − 2hz when hz < Eg/2. When hz > Eg/2, the normal state
will become a Weyl semimetal. Importantly, the increase of surface gap and the decrease
of bulk gap imply that bulk and boundary Fermi surfaces will coexist when hz > Eg/4 and
hz < µ < Eu, where Eu denotes the upper limit beyond which the surface states do not exist
on the top and bottom surfaces. Therefore, in the regime hz > Eg/4, the low-energy surface
Hamiltonian only cannot fully describe the low-energy physics. In the following, we restrict
to the regime hz < Eg/4, so that the low-energy surface Hamiltonian can faithfully describe
the low-energy physics when the chemical potential only crosses the surface bands.

We first consider that the superconducting pair contains both on-site and extended s-wave
components, and the configuration of the band inversion surface and the pairing node surface
realizes a helical (time-reversal invariant) second-order topological superconductor at hz = 0
and µ = 0. Next, we consider hz > |∆0+2∆s|, so that the system realizes a chiral second-order
topological superconductor at µ = 0. In Fig. E.1(a), the numerical result shows that increas-
ing µ will induce a gap closure on the top and bottom surfaces when µ =

√
h2z − (∆0 + 2∆s)2

(see the dashed purple line). The gap closure signals a change of the topological property on
the boundary. When µ <

√
h2z − (∆0 + 2∆s)2, robust chiral Majorana modes exist on the

hinges, as shown in Fig. E.1(b). When µ >
√
h2z − (∆0 + 2∆s)2, we find that the hinges pre-

viously harboring one chiral Majorana modes now harbor two counter-propagating Majorana
modes, as shown in Fig. E.1(c). The existence of two counter-propagating Majorana hinge
modes in this regime is similar to the helical case at the limit hz = 0. However, because the
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Figure E.1: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, ∆0 = −∆s = 0.1, and
h = (hx, hy, hz) = (0, 0, 0.2). (a) Energy spectra for a geometry with open boundary directions in the z
direction (Lz = 200) and periodic boundary conditions in the x and y directions. Only the energy spectra
at (kx, ky) = (0, 0) are shown. The mid-gap spectra correspond to surface states on the z-normal surfaces,
which show a gap closure at µc =

√
h2
z − (∆0 + 2∆s)2 = 0.173. (b)(c) Energy spectra for a geometry with

open boundary conditions in the x and z directions (Lx = Lz = 30) and periodic boundary conditions in
the y direction. µ = 0 for (b) and µ = 0.25 for (c). In (b), the mid-gap spectra have two-fold degeneracy,
which indicates that each of the y-directional hinges harbors one chiral Majorana mode. In (c), there are
eight mid-gap spectra, which indicates that each of the y-directional hinges harbors two counter-propagating
gapless Majorana modes. (d) The lowest 16 eigen-energies for a geometry with open boundary conditions in
all directions. The z-directional vortex line is located at the center of the xy plane. (e) The total probability
density profiles of the lowest 16 eigen-states shown in (d). There is no signature for the existence of vortex
bound states in the given energy window. In (d)(e), µ = 0.25, ξ = 4 and Lx = Ly = Lz = 32.

time-reversal symmetry is broken by a finite hz, the counter-propagating Majorana modes on
each hinge are no longer protected by time-reversal symmetry but by certain additional sym-
metry on the hinge. After inserting a π-flux vortex line along the z direction, we diagonalize
the Hamiltonian under the cubic geometry with lattice sizes Lx = Ly = Lz = 32. The nu-
merical results presented in Figs. E.1(d)(e) suggest that the lowest-energy modes are located
at the hinges. Within the energy window shown in Fig. E.1(d), we do not find the signature
of vortex bound states. There are two possible reasons for this result. The first possibility
is that the vortex line itself is trivial so there is no Majorana zero mode at the vortex-line
ends. The second possibility is that the vortex line is topological and harbors Majorana zero
modes at its ends, but the hybridization between the vortex-end Majorana zero modes and
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Fig 11
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Figure E.2: (Color online) Common parameters are t = 1, m0 = 2.5, λ = 0.5, ∆0 = 0.1, ∆s = 0, and
h = (hx, hy, hz) = (0, 0, 0.2). (a) Energy spectra for a geometry with open boundary directions in the z
direction (Lz = 200) and periodic boundary conditions in the x and y directions. Only the energy spectra
at (kx, ky) = (0, 0) are shown. The mid-gap spectra correspond to surface states on the z-normal surfaces,
which show a gap closure at µc =

√
h2
z − (∆0 + 2∆s)2 = 0.173. (b)(c) Energy spectra for a geometry with

open boundary conditions in the x and z directions (Lx = Lz = 30) and periodic boundary conditions in the
y direction. µ = 0 for (b) and µ = 0.25 for (c). In (b), the mid-gap spectra have two-fold degeneracy, which
suggests that each of the y-directional hinges harbors one chiral Majorana mode. The result in (c) shows the
absence of gapless Majorana modes. (d) The lowest 16 eigen-energies for a geometry with open boundary
conditions in all directions. The z-directional vortex line is located at the center of the xy plane. (e) The
probability density profiles of the lowest two eigen-states shown in (d) (labeled by red dots). The results in
(d) and (e) indicate the existence of Majorana zero modes at the vortex ends. In (d)(e), µ = 0.25, ξ = 4 and
Lx = Ly = Lz = 32.

the low-energy modes on the hinge shift the energies of the vortex-end Majorana zero modes
to finite values, similar to the helical case. In order to distinguish them, we further consider
the case with pure on-site s-wave pairing for comparison.

In order to have a direct comparison, we consider that the value of ∆0 for the case with
pure on-site s-wave pairing is equal to the value of |∆0 + 2∆s| for the case with both on-
site and extended s-wave pairings, so that the superconductivity-induced Dirac masses for
these two cases are equivalent. Because of this equivalence, one can find that the results
shown in Figs. E.2(a)(b) are almost the same as those in Figs. E.1(a)(b). However, when
µ >

√
h2z − ∆2

0, the difference emerges. In Fig. E.2(c), we show the numerical result for
µ > hz. One can see that there are no gapless Majorana modes on the hinges. Because of
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the absence of low-energy Majorana modes on the hinges, the hybridization between low-
energy vortex bound states and low-energy Majorana hinge modes can be avoided. After
the insertion of a π-flux vortex line, we also diagonalize the Hamiltonian under the cubic
geometry with lattice sizes Lx = Ly = Lz = 32. The results shown in Figs. E.2(d)(e) now
clearly demonstrate the appearance of vortex-end Majorana zero modes. As here the only
difference is the absence of gapless Majorana hinge modes, we reach the conclusion that the
absence of low-energy vortex bound states within the given energy window in Fig. E.1(d)
originates from the hybridization between the vortex bound states and the gapless Majorana
hinge modes.

Now we can establish a complete picture for the interplay of second-order topology and
vortex-line topology from a surface perspective. For the low-energy surface Hamiltonian
given in Eq. (E.2), it is known that it can be mapped to a form describing a chiral p-wave
superconductor by some basis transformations. When µ < hz, the boundary Fermi surface is
absent and the effective chiral p-wave superconductor falls into the so-called strong-pairing
phase [200]. According to the physics in chiral p-wave superconductors, it is known that the
vortex core does not harbor any Majorana zero mode in the strong-pairing regime [200]. As
here the chiral second-order topological superconducting phase always has µ < hz, it indicates
that vortex-end Majorana zero modes are always absent when the system is in the the chiral
second-order topological superconducting phase. In the regime hz < Eg/4 and µ > hz, the
low-energy surface Hamiltonian description is valid, and the effective surface chiral p-wave
superconductor falls into the weak-pairing regime [200]. Accordingly, the vortex will bind
one robust Majorana zero modes at its core. However, if there exist gapless Majorana modes
on the hinges and the vortex is generated to be close to the hinges, then the hybridization
between the vortex-core Majorana zero modes and the gapless Majorana hinge modes will
split the vortex-core Majorana zero modes and lead to the absence of robust Majorana zero
modes at the vortex core.
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