
A Comparison of Implicit and Explicit Methods for
Contingency Constrained Unit Commitment

Shengjun Huang(1)(2), Student Member, IEEE and Venkata Dinavahi(1), Senior Member, IEEE

(1) Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Alberta, Canada

(2) College of Information System and Management, National University of Defense Technology, Changsha, Hunan, China

shengjun@ualberta.ca, dinavahi@ualberta.ca

Abstract—Reliability management is of great importance for
the secure and sufficient operation of power systems, thus the
n−K

G
−K

L contingency constrained unit commitment (CCUC)
problem is determined for investigation in this paper. In order
to reveal the capability of different methods on the solution
of CCUC, both explicit and implicit decomposition frameworks
have been investigated, as well as their inner feedback strate-
gies, such as Benders decomposition and column-and-constraint
generation (CCG) algorithm. In addition, sensitivity analysis,
multi-cut strategy, and parallel implementation have also been
analyzed and discussed. The comparison between nine explicit
and implicit methods - all of them are deterministic with different
configurations and the global optimal can be guaranteed in a
finite number of iterations - is carried out on the IEEE 24-bus
system, resulting in several interesting conclusions. Finally, the
IEEE 118-bus test system is employed to explore the potential
on the large-scale instance.

Index Terms—Benders decomposition, contingency constrained
unit commitment, mixed-integer linear programming, robust
optimization.

I. INTRODUCTION

Reliability and security are crucial for modern power sys-

tems. Unexpected outage of power grid components, which

is mainly triggered by extreme weather events or other ran-

dom factors, can result in dramatic electricity shortages or

even large-scale blackouts. For the purpose of withstanding a

specified level of destruction, the n−KG −KL contingency

constrained unit commitment (CCUC) problem was proposed,

which furnishes the system (n components) with the capability

of surviving from the sudden unavailability of KG generation

units and KL transmission lines.

Two types of methodologies have been intensively investi-

gated for the solution of CCUC: 1) deterministic methods that

have explicit formulations and can lead to exact solutions, and

2) meta-heuristic methods such as particle swarm optimization,

simulated annealing, and genetic algorithm. Although meta-

heuristic methods are relatively straightforward and capable

of addressing nonlinear, non-convex, combinatorial, and even

NP-hard problems, the identification of the optimality of the

final obtained solution is yet to be established. On the other

hand, the global optimal solution is guaranteed in a finite

number of iterations for the deterministic methods, thus, they

are designated for investigation in this paper.

Reserve adjustment method [1] is widely utilized in the

power industry due to its easy application [2], however, it

is usually criticized for economic inefficiency or even inad-

equacy. Stochastic programming technique is authoritative in

the formulation and solution of problems with uncertainty,

which assures that the optimal solution is feasible for all (or

almost all) of the possible realizations. Nevertheless, how to

identify an accurate probability distribution of different types

of uncertainties remains a great challenge for practical applica-

tion. Instead of the hard-to-obtain probability distribution func-

tion, only the bounds of uncertainty are required for the robust

optimization (RO) [3]–[8] approach. The obtained solution is

global optimal and feasible for the worst case of uncertainty

set, as well as all the other possibilities. Unfortunately, the RO

approach might lead to a higher cost (the “price of robustness”)

since it protects against the most severe event regardless of its

low probability.

Although RO is far from impeccable, it gained close at-

tention in the solution of CCUC since the reliability has a

conservatism nature, i.e., the final solution should withstand

the worst circumstance. CCUC was first solved by [5] with

RO under n − K contingency criteria, however, neither the

transmission capacity constraints nor the transmission line

contingencies were considered. This work was extended by

[6] with full consideration of transmission constraints and

contingencies, but a heuristic was introduced to reduce the

solution time, which made the optimality of the final solution

difficult to identify. In [7], both generation unit and trans-

mission line contingencies were investigated; nevertheless,

this study was restricted on single-period CCUC (one-time

decision rather than 24-hours successive decision), i.e., time-

coupling constraints were omitted. Reference [8] enhanced this

work from the consideration of day-ahead schedule.

RO employs a two-stage decomposition framework for the

solution of CCUC, which divides the whole problem into two

stages or problems as shown in Fig. 1. The master problem

aims to minimize the total costs while satisfying the constraints

from pre-contingency and post-contingency (cuts or constraint

sets). At each iteration, the master problem is solved first to

generate an intermediate solution (unit commitment schedule),

which is then validated by subproblems to find the most

violated scenario from all realizations of uncertainty set. If

there exists a violated contingency scenario, one or more cuts

will be generated and included in the master problem, and it

goes to the next iteration; otherwise, the solution process is

terminated since all realizations are satisfied. In terms of how
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Fig. 1. Implementation frameworks of implicit and explicit methods.

to identify the worst case in the second stage, two schemes

are illustrated in Fig. 1, i.e., implicit and explicit method.

To distinguish the most serious situation, the implicit

method resorts to the bi-level max-min programming, which

will be exemplified in Section 2. The max−min problem in

the solution approach is NP-hard, and is usually converted into

a bilinear max−max problem according to the strong duality

theory, which is then relaxed and linearized based on the outer

approach [9] or disjunctive constraints [7], resulting into a

mixed-integer linear programming (MILP) problem [10], [11].

On the contrary, the enumeration strategy is adopted by the

explicit method to determine the worst scene.

The explicit method was conventionally criticized since the

number of subproblems presents an exponential dependence

with n, KG, and KL. However, some promising features

are overlooked: 1) each subproblem of characteristic is linear

programming (LP), which is much easier to solve than MILP;

2) the subproblems are independent from each other, thus

they can be solved simultaneously, i.e., suitable for parallel

computing; 3) not only the most violated scenario can be

found, but also all the other violated contingencies can also be

identified, therefore, more cuts can be generated to enhance

the convergence; 4) more information on the violated scenarios

is beneficial for the releasing of the conservatism.

In order to intensively explore the full potential of these

two methods and other constructive techniques that have

been integrated within the two-stage decomposition frame-

work for performance enhancement, such as Benders decom-

position (BD) and column-and-constraint generation (CCG)

[12] algorithm, extensive comparisons have been carried out

between these two methods and commercial MILP solver

Cplex. Finally, several instructive conclusions and concerns are

developed based on the revealed pros and cons. Furthermore,

the sensitivity analysis on contingency parameter KG and KL

is also performed, as well as the potential exploration for large-

scale instance.

The remainder of this paper is structured as follows. CCUC

mathematical formulation is described in Section II. In Section

III, both explicit and implicit decomposition algorithms are

illustrated. Numerical case studies and discussions are reported

in Section IV. Finally, conclusions and future works are

provided in Section V.

II. PROBLEM FORMULATION

Based on [6], [7], and [13], the CCUC can be given as:

min
vg ,cug ,cdg ,Qw,c

p(0)
g ,

r
(0)
i ,p

(0)
g ,θ

(0)
i ,f

(0)
ij

∑

t∈T

∑

g∈G

(

cp(0)g (t) + cug (t) + cdg(t)
)

+Qw (1)

s.t. − vg(t− 1) + vg(t)− vg(h) ≤ 0,

∀g ∈ G, ∀t ∈ T , ∀h : 1 ≤ h− (t− 1) ≤ TU
g (2)

vg(t− 1)− vg(t) + vg(h) ≤ 1,

∀g ∈ G, ∀t ∈ T , ∀h : 1 ≤ h− (t− 1) ≤ TD
g (3)

cug (t) ≥ CU
g (vg(t)− vg(t− 1)) , ∀g ∈ G, ∀t ∈ T (4)

cdg(t) ≥ CD
g (vg(t− 1)− vg(t)) , ∀g ∈ G, ∀t ∈ T (5)

cp(0)g (t) = Agvg(t) +Bgp
(0)
g (t), ∀g ∈ G, ∀t ∈ T (6)

cug (t), c
d
g(t) ≥ 0, vg(t) ∈ {0,1}, ∀g ∈ G, ∀t ∈ T (7)

(

p(0)g , f
(0)
ij , r

(0)
i , θ

(0)
i

)

∈ X(0) (8)

Qw = max
s∈S

{

min
p
(s)
g , f

(s)
ij

, r
(s)
i

, θ
(s)
i

∑

t∈T

∑

i∈I

Pr
(s)
i (t)

}

(9)

(

p(s)g , f
(s)
ij , r

(s)
i , θ

(s)
i

)

∈ X(s), ∀s ∈ S (10)

where

X(s) =
{(

p(s)g , f
(s)
ij , r

(s)
i , θ

(s)
i

)

:

z(s)g vg(t)
¯
Pg ≤ p(s)g (t) ≤ z(s)g vg(t)P̄g , ∀g ∈ G, ∀t ∈ T (11)

− z
(s)
ij f̄ij ≤ f

(s)
ij (t) ≤ z

(s)
ij f̄ij , ∀(i,j) ∈ L, ∀t ∈ T (12)

f
(s)
ij (t) =

z
(s)
ij

xij

(θ
(s)
i (t)− θ

(s)
j (t)), ∀(i,j) ∈ L,∀t ∈ T (13)

p(s)g (t)− p(s)g (t− 1) ≤ (2− vg(t− 1)− vg(t))
¯
Pg

+ (1 + vg(t− 1)− vg(t))R
U
g , ∀g ∈ G, ∀t ∈ T (14)

p(s)g (t− 1)− p(s)g (t) ≤ (2− vg(t− 1)− vg(t))P̄g

+ (1− vg(t− 1) + vg(t))R
D
g , ∀g ∈ G, ∀t ∈ T (15)

− r
(s)
i (t) ≤

∑

∀j∈L(·,i)

f
(s)
ji (t)−

∑

∀j∈L(i,·)

f
(s)
ij (t)

+
∑

g∈Gi

p(s)g (t)−Di(t) ≤ r
(s)
i (t), ∀i ∈ I , ∀t ∈ T (16)

p(s)g (t), r
(s)
i (t) ≥ 0, ∀i ∈ I , ∀g ∈ G, ∀t ∈ T

}

. (17)

where S, G, Gi, I , L, and T represents the set of indices of

the scenarios, generate units, bus i possessed generators, buses,

transmission lines, and time periods; Subscript/Superscript g,

i, ij, (t), and (s) are the indicator of specified generator,

bus, branch, time period, and scenario; cpg , cdg , and cug are

the production, shutdown, and startup costs; f , p, r, x,

and θ describes the power flow, power output, loss of load,

resistance, and phase angle; f̄ , P̄ and
¯
P are the limits on power

flow and power output; v and z are binary decision variable

with ‘1’ and ‘0’ stands for the adequacy and outage; Ag

and Bg are parameters for piecewise linear function; CD/CU ,

RD/RU , and TD/TU are fixed shutdown/startup costs, ramp-
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down/ramp-up rate limit, and minimum down/up time; D, M ,

P , and Q are the load demand, disjunctive parameter, penalty

factor, and the worst system operation cost.

The minimizing objective function (1) comprises of pre-

contingency operation cost and post-contingency power im-

balance penalty. Pre- and post-contingency constraints are

modeled by (2)–(8) and (9)–(10) respectively. Constraints (2)

and (3) represent the restrictions on the minimum up and down

time for units. Start-up and shut-down costs are modeled in

(4) and (5) respectively. Nonnegative and binary constraints

are stated in (7). Economic dispatch (ED) problems for pre-

and post-contingency are given by (8) and (10). (9) indicates

that Qw is the penalty for the worst-case of contingency.

For a fixed unit commitment decision vg(t) under any

contingency scenario s, the ED is formulated as (11)–(17),

where constraints on unit generation limit (11), transmission

line capacity (12), power flow (13), ramping up/down limit

(14)–(15), nodal power balance (16) are considered. (17)

indicates the nonnegative constraints.

For simplicity, the piecewise linear approximation of the

quadratic production cost function (18) is represented by (6),

where parameters Ag and Bg are defined by (19) and (20).

cpg(t) = agvg(t) + bgpg(t) + cgp
2
g(t), ∀g ∈ G, ∀t ∈ T , (18)

Ag = ag − cg
¯
PgP̄g , ∀g ∈ G, (19)

Bg = bg + cgP̄g + cg
¯
Pg , ∀g ∈ G. (20)

The contingency set S corresponding to the n−KG−KL

contingency criterion is defined as,

S =

{

(zg ,zij) ∈ {0,1}

∣

∣

∣

∣

∑

g∈G zg ≥ |G| −KG,
∑

(i,j)∈L zij ≥ |L| −KL

}

. (21)

III. SOLUTION METHODOLOGY

A. Decomposition Framework

The specific CCUC problem (1)–(10) can be reformulated

as a compact form (22), with cTx+P
∑|S|

s=1 q
T
s ys, Ax ≤ b,

and Tsx + Wsys ≤ hs corresponds to (1) and (9), (2)–

(8), and (10), respectively. Where x and ys are the pre- and

post-contingency decision variables; c, qs, A, b, Ts, Ws,

and hs are coefficient matrices and vectors. The objective

function (22) should be minx,ys

{

cTx+ P maxs∈S qT
s ys

}

in its original form, which is not suitable for the off-the-

shelf MILP solver due to the min−max programming. Since

the final objective is eliminating the power imbalance, i.e.,

pursuing min
{

maxs∈S qT
s ys

}

= 0, which is equivalent with

seeking min
{

∑|S|
s=1 q

T
s ys

}

= 0 as qT
s ys ≥ 0. Therefore,

MILP problem (22) is deduced.

min
x,ys

cTx + PqT
1 y1 + PqT

2 y2 · · ·+ PqT
s ys (22)

s.t. Ax ≤ b,

T1x + W1y1 ≤ h1,

T2x + W2y2 ≤ h2,

: + · · · ≤ :

Tsx + Wsys ≤ hs.

. .

T

x
min c x

s t Ax b

ìï
í

£ïî

1 1 1 1

s s s s

W y h T x
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ì £ -
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Fig. 2. Decomposition framework for the solution of CCUC with CCG.

Although (22) is applicable for available solver, it may

present great challenges or even be intractable when faced

with large-scale systems due to large numbers of decision

variables and constraints. Therefore, decomposition strategy is

usually employed to reduce the problem size. Fig. 2 presents

a general decomposition framework suitable for both explicit

and implicit methods.

B. Explicit Method

1) Subproblems: Explicit method formulate each realiza-

tion of the uncertainty set S into a subproblem (23), where z
(s)
g

and z
(s)
ij are fixed. By solving all of them, the most violated

scenario can be determined.

min
∑

t∈T

∑

i∈I

Pr
(s)
i (t) s.t. (p(s)g , f

(s)
ij , r

(s)
i , θ

(s)
i ) ∈ X(s). (23)

In order to deduce Benders cuts, the corresponding dual

problem (24)–(29) should be generated.

max Q
(s)
it (β, τ , ζ, η, ξ | v∗) see (24)

s.t. βt+
g − βt−

g + ηt−g − η(t+1)−
g + η(t+1)+

g − ηt+g

+
∑

Gi∋g

ξt+i −
∑

Gi∋g

ξt−i ≤ 0, ∀g ∈ G, ∀t ∈ T (25)

τ t+ij − τ t−ij + ζtij −
∑

i∈(i,j)

ξt+i +
∑

j∈(i,j)

ξt+j +

∑

i∈(i,j)

ξt−i −
∑

j∈(i,j)

ξt−j = 0, ∀(i,j) ∈ L, ∀t ∈ T (26)

∑

j∈L(i,·)

z
(s)
ij

xij

ζtij −
∑

j∈L(·,i)

z
(s)
ji

xji

ζtji = 0, ∀i ∈ I , ∀t ∈ T (27)

− ξt+i − ξt−i ≤ P , ∀i ∈ I , ∀t ∈ T (28)

β±, τ±, η±, ξ± ≤ 0, ζ unrestricted. (29)

where the subscript it represents the number of iteration;

β−/β+, τ−/τ+, and ξ−/ξ+ are dual variables for the left/right

hand side of constraints (11), (12), and (16); ζ, η−, and η+
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Q
(s)
it (β, τ , ζ, η, ξ | v∗) =

∑

t∈T





∑

g∈G

βt+
g z(s)g vg(t)P̄g −

∑

g∈G

βt−
g z(s)g vg(t)

¯
Pg +

∑

(i,j)∈L

τ t+ij z
(s)
ij f̄ij +

∑

(i,j)∈L

τ t−ij z
(s)
ij f̄ij

+
∑

i∈I

ξt+i Di(t) +
∑

g∈G

ηt−g
(

(2− vg(t− 1)− vg(t))
¯
Pg + (1 + vg(t− 1)− vg(t))R

U
g

)

−
∑

i∈I

ξt−i Di(t) +
∑

g∈G

ηt+g
(

(2− vg(t− 1)− vg(t))P̄g + (1− vg(t− 1) + vg(t))R
D
g

)



 .

(24)

are dual variables for constraints (13), (14), and (15), respec-

tively. Constraints (25), (26), (27), and (28) correspond to the

variables p
(s)
g (t), f

(s)
ij (t), θ

(s)
i (t), and r

(s)
i (t) in (11)–(16). The

upper script ∗ represents the fixed value, and henceforth.

For the worst scenario and all the other violated scenarios,

a Benders optimality cut can be generated, which is shown

in (30). The Benders feasibility cut is omitted since the

subproblem is always feasible due to the slack variable r
(s)
i (t).

Qw ≥ Q
(s)
it (v | β∗, τ∗, ζ∗, η∗, ξ∗), ∀s ∈ S. (30)

2) Master Problem: Take the optimality cuts (30) into

consideration, the master problem is described as follows:

min
vg

∑

t∈T

∑

g∈G

(

cp(0)g (t) + cug (t) + cdg(t)
)

+Qw (31)

s.t. constraints (2)–(8) and (30). (32)

3) Bounds: The lower bound LB is the objective function

value of master problem (31), and the upper bound UB is,

UB =
∑

t∈T

∑

g∈G

(

cp(0)∗g (t) + cu∗g (t) + cd∗g (t)
)

+max
s∈S

{

Q
(s)
it (v∗, β∗, τ∗, ζ∗, η∗, ξ∗)

}

. (33)

If the optimality criteria is met, i.e., |UB − LB| ≤ ǫ, then

stop the process; otherwise, start a new iteration to solve the

master problem.

C. Implicit Method

1) Subproblem: Implicit decomposition considers all the

contingency scenario into one whole subproblem, where z
(s)
g

and z
(s)
ij are binary decision variables. The primal max–min

subproblem is as follows:

Qw = max
zg,zij

{

∆, s.t.(zg , zij) ∈ S, (34)

∆ = min
[

∑

t∈T

∑

i∈I

Pri(t), s.t.(11)–(17) without (s).
]}

(35)

The inner problem (35) has the same form with (23),

therefore, its dual problem is similar with (24)–(29). By

replacing (35) with (24)–(29), the max–min subproblem turns

into max–max, which can be equivalently rewritten as a

maximizing problem. However, several bilinear terms emerged

in objective function (24) and constraints (27) since zg and zij
are also decision variables, such as βt+

g zg . In order to linearize

the problem, the bilinear term will be replaced with new

variables, i.e., Bt+
g = βt+

g zg , and the following disjunctive

constraints should be added.

−(1− zg)M ≤ Bt+
g − βt+

g ≤ (1− zg)M , (36)

−zgM ≤ Bt+
g ≤ zgM . (37)

2) Master Problem and Bounds: By solving the MILP

subproblem, the worst contingency can be identified, then

Benders cuts (30) can be generated. The remaining steps

corresponding to the master problem and bounds are the same

with the explicit method.

D. Acceleration Strategies

1) Parallel Computing: For the explicit method, all sub-

problems are independent and of the same scale, if parallel

computing is utilized, the solution time for subproblems is

almost inversely proportional to the number of processors

[14]. On the other hand, there is only one MILP subproblem

in the implicit method, which is not suitable for parallel

implementation. In terms of MILP master problem, the parallel

implementation can be worthwhile only if the calculation time

for the subproblems can be reduced to the point where the

master problem time becomes a significant fraction of the

whole [15].
2) Multi-cut Strategy: As shown above, each contingency

scenario can generate one Benders cut and one constraint set,

containing information of the solution space, which benefits

for the convergence process. If the complexity of the master

is not considered, more cuts and constraints mean faster

convergence. Therefore, a π-cut strategy can be proposed for

the explicit method, which determines the most violated π

realizations and adds corresponding cuts and constraints into

the master problem.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section, all the numerical tests are performed on

AMPL IDE 3.1.0 using CPLEX 12.6.3 solver on a PC running

on 64-bit Windows 8.1 operating system, with quad-core

Intel Xeon E5-2620 v2 CPU (2.1 GHz) and 32 GB RAM.

Parameters P , M and ǫ are valued as 103, 103 and 10−3.

A. Benchmark Systems

Extensive performance evaluation and sensitivity analysis

are implemented on the IEEE 24-bus test system [16] to

illustrate the efficacy of explicit and implicit methods. The re-

silience against multiple contingencies is increased by adding

4 generators and 5 transmission lines. As a consequence, the
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TABLE I
SCALES AND COMPLEXITY OF BENCHMARK TEST SYSTEMS UNDER

n− 1− 1 CONTINGENCY CRITERION

Items 24-bus system 118-bus system

No. of buses: 24 118
No. of generators: 14 56
No. of transm. lines: 46 189
No. of scenarios: 645 10,585
No. of bin. variables: 336 1,344
No. of cont. variables: 1,889,233 136,422,169
No. of constraints: 3,378,347 230,945,121

TABLE II
ALTERNATIVE VERSIONS OF ALGORITHMS

Algorithms Description

Alg.E.1/Alg.I.1: Explicit/Implicit method with Benders cuts only.

Alg.E.2/Alg.I.2: Explicit/Implicit method with constraint sets only.

Alg.E.3/Alg.I.3: Explicit/Implicit method with both constraint sets
and Benders cuts.

Alg.E.4: Alg.E.2 with its subproblems solved in parallel by
24 threads.

Alg.E.5: Alg.E.2 with multi-cut strategy.

Alg.C.6: Commercial MILP solver CPLEX 12.6.3.

system is able to withstand the n − 3 − 0 and n − 2 − 1
contingency criteria. The IEEE 118-bus test system [17] is in-

troduced to show the potential under large-scale circumstances,

where 2 generators and 3 circuits are enhanced to meet the

n− 1− 1 contingency criterion. Table I gives an overview of

the scales and complexity of both systems.

B. Performance Evaluation

In order to extensively compare the explicit and implicit

methods, several algorithms are separated and shown in Table

II. The convergence behavior and time consumption is illus-

trated in Fig. 3 and Fig. 4, where a cutoff time of 1000s is

employed. The global optimal objective value is 952,164$.

1) Performance Evaluation of Benders Cuts and Constraint

Sets: According to Fig. 4, both Alg.E.1 and Alg.I.1 cannot
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Fig. 3. Behavior of convergence for different algorithms.
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Fig. 4. Behavior of time consumption for different algorithms.

terminate after a run time of 1000s, while Alg.E.2 and Alg.I.2

converge at 426.1s and 223.6s, indicating that CCG is more

efficient than Benders cuts. On the other hand, Alg.E.3 and

Alg.I.3 are even slower than Alg.E.2 and Alg.I.2 with both

CCG and Benders cuts involved, which means the introduction

of Benders cuts even drags the solution efficiency. The reason

is that a slack variable r
(s)
i (t) is required during the solution

process of Benders decomposition, which expands the scale

for both master problem and subproblems.

2) Performance Evaluation of Parallel Implementation: It

is noticeable in Fig. 4 that the time consumed by subproblem is

much higher in the explicit method, while the master problem

consumes almost the same amount of time for both methods,

especially for Alg.E.2 and Alg.I.2. Therefore, the parallel

implementation is introduced in Alg.E.4 based on Alg.E.2.

The solution time is reduced from 426.1s to 228.7s, which

is comparable to Alg.I.2 with 223.6s; thus the performance

improvement gained by parallel computing is promising.

3) Performance Evaluation of Multi-cut Strategy: In

Alg.E.5, two sets of constraints are added in each iteration, i.e.,

π = 2. However, it spends more time than Alg.E.2 although

their subproblems spend the same time. Which means adding

one more set of constraints only increases the size of the

master problem, but does not enhance the convergence, i.e.,

the benefit of multi-cut strategy is not significant. One reason

is that the two most violated scenarios are similar and one of

them is redundant. Another reason lies in the small number of

iterations before termination, which can be seen from Fig. 3.

4) Performance Comparison between Explicit and Implicit

Methods with MILP Solver: If the cutoff time of 1000s is

replaced by 72h, the algorithms Alg.E.1 and Alg.I.1 end with

a gap of 8.3% and 1.6% respectively; however, no valuable

solution was reported by Alg.C.6. Therefore, two advantages

can be drawn from decomposition methods in comparison to

direct MILP solution: 1) the solution process is observable,

i.e., each intermediate solution can be output and its quality

can also be identified by gap, and 2) the decomposition

strategy makes the large-scale problem tractable in terms of
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TABLE III
COMPUTATIONAL RESULTS FOR DIFFERENT KG AND KL VALUES

KG KL Cost ($) Time (s) KG KL Cost ($) Time (s)

0 0 948,582 2.328 2 0 953,380 267.375
0 1 948,932 11.939 2 1 956,259 4,336.830
0 2 Infeasible ——– 2 2 Infeasible ——–
1 0 949,810 58.266 3 0 958,028 3,655.560
1 1 952,164 223.592 3 1 Infeasible ——–
1 2 Infeasible ——– 4 0 Infeasible ——–

execution time and memory resources.

C. Sensitivity Analysis for KG and KL

Table III summarizes the total cost and execution time in

terms of different values of KG and KL. As can be seen,

the cost goes higher as KG and KL increase, since more

units should be turned on to compensate for the failure of

components. Comparing the most severe contingency with the

sufficient one, only 1% additional cost is introduced; however,

the solution time increases heavily from 2s to more than 1h,

showing that the complexity of the problem is exponentially

related with KG and KL. It is also noticeable that the system

is more capable of surviving the loss of generator than the

outage of circuits. The reason is that generator is much easier

to be substituted by others if the network is still sufficient,

while the loss of circuits usually results in node isolation.

D. Potential Exploration for Large-scale Implementation

The comprehensive case study and discussion on IEEE 24-

bus test system reveals that the implicit method Alg.I.2 and

parallel explicit method Alg.E.4 are superior to other algo-

rithms and solvers. Their potential on the large-scale instance

is validated by the IEEE 118-bus test system in this section.

Fig. 5 depicts the convergence behavior of Alg.I.2, which

terminates at 3h after 3 iterations, while Alg.C.6 runs out of

memory at 1.2h. The solution process of Alg.E.4 is similar

with that of Alg.I.2 illustrated in Fig. 5 except for the solution

time of subproblems. Finally, Alg.E.4 takes 3.79h in total for

solution. Although Alg.I.2 is faster, it may be intractable for

larger systems since all the contingency scenarios are included

in one MILP subproblem. On the other hand, the solver’s limits

on the solution of Alg.E.4’s individual LP subproblem are far

from being reached.

V. CONCLUSION

Both explicit and implicit decomposition frameworks have

been investigated for the solution of n − KG − KL CCUC

problem. Except for the validation of conventional finding that

the CCG dominates on Benders cuts, several other conclusions

are made: 1) the introduction of Benders cuts may even drag

the solution efficiency of CCG; 2) the parallel implementation

of explicit method is proportionate with the implicit method;

3) the benefit of multi-cut strategy is not significant; 4) the

decomposition framework is superior over commercial solver

for this kind of problem; and 5) the system is more capable

of surviving the loss of generator than the outage of circuits.
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Fig. 5. Behavior of convergence of Alg.I.2 for IEEE 118-bus test system.
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