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Abstract

Inefficient mobile software kills battery life. Yet, developers lack the tools necessary to detect and
solve energy bugs in software. In addition, developers are usually tasked with the creation of software
features and triaging existing bugs. This means that most developers do not have the time or
resources to research, build, or employ energy debugging tools.

We present a new method for predicting software energy consumption to help debug software
energy issues. Our approach enables developers to align traces of software behavior with traces of
software energy consumption. This allows developers to match run-time energy hot spots to the
corresponding execution. We accomplish this by applying state-of-the-art neural network models to
predict the time series of energy consumption given a software’s behavior. We compare our time
series models to prior state-of-the-art models that only predict total software energy consumption.
We found that machine learning based time series models, and LSTM based time series models, can
often be more accurate at predicting instantaneous power use and total energy consumption. We also
show that the machine learning time series models perform best in terms of learning the shape of
the application power usage compared to the other investigated models. This means the time series
models are better at modelling the hot spots in online energy consumption than the other tested

models.
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Chapter 1

Introduction

Developers are relatively unaware of techniques and tools used to address software energy issues [53].
Energy bugs deplete mobile batteries and cost developers time to debug. Battery life is an important
resource for end users because it dictates how long their applications can be used. To meet the
end-users’ demand for energy efficient applications, developers are more energy aware than ever, and
ask more questions about their software’s energy efficiency [53]. While answers to their energy related
questions help developers to some extent, in order to build energy efficient applications, developers
need actual feedback on their applications’ energy consumption. Researchers have built tools for
developers to model the energy consumption of mobile software and hardware components [61, 7].
However, these tools are not as easy to use as widely available performance metrics like: CPU load,
network interface usage, or disk usage. We are interested in building tools that help developers to
understand when and where their applications consume the most energy. Such tools would enable
the software development processes to better track and maintain energy goals by finding hotspots
and energy bugs [11, 42].

How would being able to see a timeseries of energy consumption from running software help
developers? Previous energy estimation tools [7, 32, 44] offer a summary of the total energy
consumption for a given run of the application. Although this gives an idea about an app’s energy
consumption, it does not give much about the location of the energy bugs and hotspots [11, 42]—
which segment of source code is responsible for the most energy drain. Therefore, we hypothesize
that developers provided with tools to align time series of software energy consumption to program

behaviour can more easily debug energy bugs. But, this work takes the first few steps towards
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answering our hypothesis: we reproduce current state of the art total energy consumption prediction
models; we construct models that can predict the time series of energy consumption; we compare the
total and time series models against the observed software energy consumption to better understand
how our models compare with the ground truth; and we compare the two types of total and time
series models to determine if time series models have higher accuracy than the current total energy
prediction models. Future work can evaluate the usage of our software-based energy prediction
models in helping developers find energy bugs in their software, as we hypothesize.

Researchers have worked towards online energy estimation tools (also referred to as time series
energy estimation tools) [43, 19]. However, current instantaneous energy prediction tools assume
that developers have access to battery API information or that developers have hardware access
to power measurement tools. In contrast, our work makes no hardware assumptions and provides
developers with hardware-free energy usage predictions as if the developers had access to energy
meters. As well, when refering to the online estimation tools in this work we mean the model that
takes already-measured data points and outputs energy readings. Our work describes how to collect
the data points from Android applications to use with these online estimation models.

In this work, we propose a series of models that use software performance measurements to
predict instantaneous energy consumption. We can align performance measurements with our
energy measurements to train neural networks and other machine learning models to predict the
instantaneous energy consumption of a software application.

We have to assess the quality of our proposed energy consumption prediction method compared to
existing solutions [16]. Our method uses instantaneous time measurements throughout a software test
run whereas existing state-of-the-art models measure a summary of software features at the beginning
and end of a software test run. We call the existing models time-summarized, or 1step for short, as
the software run is measured or aggregated in a single time step instead of many instantaneous time
steps or windows.

In other words, the time-summarized models ignore the time information associated with software
features used to predict the total energy consumption of a software test. Whereas, a time series
model accounts for the many instantaneous energy measurements that would occur throughout a
software test, from an energy measurement device, and creates windows/groups of software data

based on the hardware sampling rate of the energy measurement device. This allows the time series
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model to take the time windows of software data and produce an energy consumption prediction for
these observed software features.

To assess our models we raise the following questions:

o (RQ1) How well do time series models perform when predicting total energy consumption?

Can time series models beat state-of-the-art?;

e (RQ2) Do time series models with built-in state or memory perform better than time series

models without state when predicting energy consumption as a total or a time series?;

o (RQ3) Energy prediction models can be trained with different feature sets; how does perfor-
mance change when using them individually versus together? What features affect the energy

consumption models predictive power?;

o (RQ4) Do shallow multi-layer-perceptrons perform similarly to existing stateless models such

as those based on linear regression?;

o (RQ5) How do the time series model predictions fit the shape of the observed energy consumption

data?

The models in this work were created at a similar time to Nucci’s [19] and used a different software
feature measurement technique. Therefore, this thesis does not contain a comparison of models based

on Green Miner software measurements and Nucci’s.

1.1 Thesis Overview

In Chapter 3 a review of recent works is provided. Chapter 2 provides information on the features
used in our work, as well as an introduction to the machine learning models and background that
is needed to understand our methodology and evaluation. Chapter 4 details the methodology for
collecting data and training models. Chapter 5 details the evaluation of the machine learning models
trained in the previous chapter. Chapter 6 discusses the results and research questions. Chapter 7

concludes this theses.



Chapter 2

Background

Our work applies multiple machine learning models. Therefore, we provide background information
on each of the models applied, what cost functions are, what features and labels we train the
models with, and our process for training models. We cover the following models: linear and
ridge regressors; support vector regressors; neural networks; multi-layer perceptrons; recurrent layer
networks; and long-short term memory layer networks. Each model has a brief description of what
makes them unique and a high level summary of how the models work. More detailed machine
learning information can be supplemented with text books such as on how the training algorithms
work for each model [26, 25]. The variety of models are mostly chosen for exploration while several
like the RNN and LSTM have been picked for their performance on time series prediction tasks. When
picking models, we picked evaluation functions that would allow everything to become comparable
for assessing which model performed best on our learning task. We use the Keras and scikit-learn

python modules throughout this work to implement the various machine learning models [13, 51].

2.1 Cost functions

To assess the quality of a model, a cost function is applied. A cost function provides a score for
how well the model performed on its prediction task. There are multiple types of cost functions,
which provide their own contexts for ranking models. For instance, a mean squared error (MSE)
cost function will work well when it is important to detect negative errors. The result of the MSE

function is more prone to becoming skewed when a large outlying error is present in the analyzed
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measurements. Whereas, the similar, yet different, mean absolute error (MAE) cost function will
work well when negative outliers are not as important and we are interested in viewing the average
error per prediction. The MAE can still become skewed to outlying errors but will have a smaller
influence per outlier on the aggregated result.

It is also possible to assess how well prediction models fit the trends and shape of observed data
by using a technique known as dynamic time warping (DTW). DTW is useful in addition to MSE
and MAE because it can compare time series to assesses how well a predict time series fits a set of
observations. There are several works that detail the DTW algorithm and improvements to it [38].

We describe DTW and its implementation in Section 4.1.2.3.

2.2 Linear and Ridge Regression

Linear and ridge regressors consist of a set of inputs, a set of weights corresponding to the input,

and a constant value. Typically expressed as,
fz1, 29, oy 2n) = wo + W1x1 + Waka + ... + WpTp =Y

for some set of features x;, some set of trained model weights w;, and some label y — where 7 is an
integer denoting an index of the total number of features the model has trained on.

Both models can be trained using similar cost functions such as the least squares method. However,
ridge regressors have an additional constraint compared to linear regressors. Ridge regressor weights
are limited by a chosen coefficient ¢ such that (z”: w?) < t [25], which benefits the model by limiting
the amount that the weights can overfit trainirzlgldata.

Linear and ridge regressors are simple models and are typically inexpensive to train as a result.
This makes linear and ridge regression models convenient to test, because these can yield good results

on datasets with linear relationships. The linear models are also explainable compared to those like

deep networks due to reduced complexity.

2.3 Support Vector Regression

There are 3 types of SVR model kernels we include in our work: linear; radial basis; and polynomial

function. The goal of each model is to create a line of best fit through the dataset. The best
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Hidden Memory cell Hidden Backedge

Input Output

(a) Feed forward neural network (b) Recurrent neural network with memory cells

Figure 2.1: Feed forward and recurrent neural networks

fit is determined by minimizing a quadratic programing problem to achieve the best score on the

e-insensitive function:

0, if |[z] <€
Ve(z) =

|x| —e, otherwise

with the observed and predicted values of the SVR [25].

SVRs also support parameters to configure the kernels to better fit the data. However, it is
unknown which kernel configuration works best on a given dataset. Therefore, we select a subset
of kernel parameters as shown in Table 4.4 and perform a parameter sweep to find the best. Our
implementation of a hyper-parameter selection procedure for SVRs is discussed in Section 4.1.2.2. A
similar hyper parameter selection process is discussed in Chapter 5 of Goodfellow et al. [26].

We learned about SVRs in CMPUT 551 and they appeared to be widely successful models so we
applied them in our experiments. As well, SVRs also have reasonable explainability for their produced
models, compared to linear and ridge regression models, which is beneficial for understanding the

dataset if the models are found to perform well.

2.4 Neural Networks

Neural networks are currently quite successful models in machine learning capable of modelling
linear and non-linear relationships. Successes have been demonstrated in fields such as speech

recognition [31, 9], time series prediction [56], and even software engineering [62, 54, 63].
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Deep neural networks are neural networks with multiple layers in contrast to shallow networks
which have few layers. Deep learning is the process of training a model structure to represent a
hierarchy of abstract relationships from a given data set [41]. It avoids the need for manual feature
selection because the training algorithms for deep networks perform feature selection. Deep learning
is also capable of exploiting non-linear relationships in the input data.

Common types of neural networks like feed forward neural networks (FNN) and recurrent neural
networks (RNN) have nodes with specific edge configurations. FNNs are less complicated than RNNs,
because FNN nodes and edges do not contain loops. Both FNN and RNN networks have 1 or more
layers, each with 1 or more nodes. In a FNN, the edge are restricted such that their node outputs can
only go to lower layers. Whereas, RNNs allow edges from node outputs to be connected backwards
or forwards. Figure 2.1a shows an example of a multi-layer perceptron (MLP) which is a type of
FNN. The direction of the edges in the MLP is forward from left to right in contrast to the RNN in
Figure 2.1b which has edges going in both directions.

RNNSs are capable of learning more relationships from input data than FNNs due to their back-
edges. Back-edges refer to the looping edges of the network as shown in Figure 2.1b, because they go
back from a layers output to somewhere higher in the network. Yet, RNNs have poor performance
when used with time series of length 200 or more time steps [26]. This is due to the network nodes
becoming saturated which leads to very large or very small parameters (edge weights and biases).
However, this can be managed by adding memory cells to the RNN nodes. Popular networks that
use memory cells are the long-short term memory layers (LSTM). LSTMs avoid the part of the
saturation problem faced by RNNs. This makes LSTMs better at modelling the relationships that
exist in sequential input data than RNNs and FNNs. Both RNN and LSTM networks have achieved
strong results on tasks that require modelling sequences of inputs which motivates our exploratory
usage of the models in this work [41, 58]. In this thesis we present the results of LSTM models
because preliminary experimentation with the RNN models didn’t yield meaningful models with
respect to the amount of time required in training the RNN models.

Neural networks use activation functions in each neuron to transform the output of the network
and to update the weights at each neuron. In our work, we apply: linear, sigmoid, hard sigmoid, and
tanh activation functions. We use the linear activation function to model Gaussian distributions, and
we apply the tanh and hard sigmoid activation functions in our LSTMs to model the sequence-based

relationships of our input measurements [13]. We use the cross-entropy cost function with our
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networks as it has been found to yield good results in the training process due to training becoming

a convex optimization problem [26].

2.5 System Calls and The Process File System

System calls are generated by Linux applications when requesting system resources [5]. For example,
the write system call count explains how many times the processes has written to a file descriptor. Prior
work has shown that energy models can be constructed from using system calls as input features [49,
16, 6, 20]. We collect syscalls with strace, a linux debugging utility for collecting system calls and
signals [3]. We use the following system calls in our models: rename; lseek; pipe; bind; epoll ctl;
rt_sigtimedwait; mprotect; recvmsg; chmod; kill; close; prctl; pread; flock; futex; open; stat64; mmap2;
unlink; sigprocmask; epoll_ create; getpriority; nanosleep; mkdir; writev; write; set_ tls; fchmod;
exit; getpid; dup; _ llseek; fdatasync; setpriority; epoll wait; getdents64; fchown32; restart_ syscall;
getuid32; setsockopt; read; umask; clone; sched_ yield; statfs64; getgid32; gettimeofday; munmap;
mremap; socket; fcntl64; Istat64; clock nanosleep; cacheflush; getegid32; gettid; pwrite; fsync;
madvise; geteuid32; fstat64; access; ioctl; socketpair; recvfrom; sendto; clock gettime. These are the
system calls that we recorded from our GreenMiner based tests.

The process file system (procfs) provided by the Linux kernel provides process-specific run-time
information [4]. For example, the process utime feature records how long a process has been
scheduled in user land in clock ticks. The procfs provides additional resource-usage features asso-
ciated with a running application that we can use to predict the energy consumption of a given
application. It was also shown in prior work that using both system calls and process utilization
features can create accurate models for predicting the total energy consumption of a software ap-
plication test [20, 16]. We use the following procfs based features: pid_stat_kernel _mode_ time;
pid__statm_ size; pid_ stat_ vsize; pid_stat_ rss; stat_user; pid_stat_minor_ faults; stat_ iowait;
pid_stat_num_ threads; pid_ stat_ state; stat_ forks since boot; stat_ context_ switches; pid_statm_ resident;
stat_ system; date; pid_statm_ data; pid_stat_user_mode_time; pid_statm_ share; stat_ idle;

stat_ total_interrupts.
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2.6 Energy

Energy (E) is the capacity to do work measured in joules. It is represented by power (P), which is
the rate work is done, multiplied by time (T): E = P - T. Power is measured in watts. In our case,

energy is consumed by the smart phones to execute software applications.

2.7 Energy measurement

We make use of the GreenMiner testbed: a set of 4 instrumented Android 4.2.2 Galazy Nexus devices
that replay software test runs while recording device energy usage [35]. We apply the GreenMiner
to mine information from multiple Android applications versions to build a model-training corpus.
To pick an application for energy profile mining on the GreenMiner a researcher needs to check if
the application and each of its versions run on the devices. As well, the researcher needs to write
software tests which simulate how an end-user would interact with the application. This means a
software test needs to cover important functionality from the application under test. It is possible to
see how the energy consumption of tested functions change over time, because the software tests
are repeated across multiple revisions of the same software application. The GreenMiner provides
energy samples for each of the 4 mobile devices while tests are running at a rate of 50 Hz. The energy
samples are provided continuously from each running mobile device. In our experiments we configure
the GreenMiner to provide continous streams of software features in addition to the provided energy
measurements. We wrote a program to associate the software features with the corresponding energy
samples given the time the feature and energy samples occurred. The GreenMiner mobile devices do
not use mobile batteries and instead use power supplies to maintain consistent energy sources for the
running software tests; because, batteries degrade over time. The original GreenMiner work showed
that running repeated tests of the same software can reduce error in the captured measurements from
the non-deterministic environment of a linux-based mobile device [35]; e.g. the state of the operating
system and hardware devices might be different between two given software tests running on the
mobile phone causing the captured test results to differ between the two runs. The multiple test

runs can aid in preventing overfitting between the captured results from adding multiple test runs.
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2.8 Glossary

Here we introduce several terms that we use throughout the paper:

e a time series refers to a sequence of measurements or predictions grouped into time steps by

time of measurement/prediction.

o We refer to models that have been constructed to consume time series and output time series

predictions as time series models.

e If a model is unable to handle the multiple measurements across time, then we remove time by
aggregating via summation every measurement together. We refer to the time-summarized data
as a single time step or Istep. Because, the time series only contains information aggregated
into a single time step which covers from the beginning of a software test run to the end of its
duration. Further into the thesis, we discuss which segments of collected software observations

are used to train and test these 1step models.

o We refer to software tests, where we observe and collect our data, as test runs.
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Chapter 3

Literature Review

A summary of related work is provided in this chapter. In addition, this chapter also contains detailed
summaries of the individual related works. This chapter aims to provide a record of the context in
which our work and contribution exist.

Energy-aware software engineering poses many challenges in the development of energy-efficient
software [45, 46, 44]. Researchers have investigated three separate approaches for profiling energy
on given mobile devices: software, hardware, or hybrid models [7]. Software based energy profilers
use recordable features like API calls, system calls, and resource utilization to model the energy
consumption of a mobile device [7, 20, 20, 32]. Whereas, hardware based energy profilers can physically
measure the energy consumption of specific hardware components [7, 55]. Hybrid approaches use
both software and hardware based features to predict energy consumption [7].

Furthermore, a software based profiler might rely on an API to the battery to measure energy
consumption on the device during model construction [7, 20]. The measurement of the energy
consumption through an API is distinct from a hardware based profiler, which can sample the current
used by the phone with an external measurement tool [7]. Here are two examples of energy profilers:
se-same [20] is a smart-battery interface based application energy consumption predictor; therefore,
it is a software based profiler [7]; and Netw-trace [55] which uses an external device to measure the
energy used by the phone, and software to record the network traffic on the device’s WiFi and radio
devices [7]. Netw-trace is a hybrid profiler, because it uses software and hardware reading to predict

energy consumption. Work by Banerjee et al. [11] and the GreenMiner [35] are examples of tools that
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measure both energy with hardware and software features to study software execution and energy
consumption.

Researchers have also investigated energy draining hardware and software components that
software applications use. For instance, researchers have developed energy-efficiency targeted
operating systems like ErdOS [60] and CondOS [18, 61]. ErdOS [60] predicts how a user interacts
with hardware components to schedule more sleep behavior. Whereas, CondOS provides more energy
efficient APIs for sensing resources like GPS so that developers do not need to develop their own
energy efficient heuristics. More energy efficient networking protocols for battery limited mobile
devices have also been studied since WiFi and radio components can consume large amounts of
device energy [61, 17] Furthermore, researchers have also investigated the process of sharing mobile
computation with the cloud [61, 60]. This enables a phone to place energy-expensive computation on
another computer to prevent the battery from being drained by a costly operation.

Work has been accomplished on identifying software system calls as a method to profile the energy
consumption of software [6]. Tools that predict the total energy consumption of software applications
exist which are based on system calls and additional software and hardware features [16, 15]. However,
these tools often do not provide details of the software behavior that influences energy consumption.
GreenOracle is a regression tool which can predict the total energy consumption of a software
application test [16]. It uses system call and resource utilization metrics to predict the energy
consumption of given software applications under test. In this paper we employ GreenOracle features
and models to produce time series predicting energy models.

Prior work has created online energy profilers using hardware APIs and system calls to perform
online energy prediction [19] similar to our goal. Furthermore, online energy models have been
generated using hardware component models and a batteries API, or an external meter, for power
measurement as in PowerTutor [64]. Other prior work has also assumed there is access to an energy
measurement platform when predicting how much energy is consumed by software [43]. However,
our work does not assume that the developers using our models have access to a battery API or
that developers have access to energy measurement hardware. Therefore, developers can use our
prediction models to generate the energy consumption information of their applications under test as
if they had access to an energy meter of their own.

It is also notable that mobile lithium-ion battery hardware degrades over time and from charge

cycles [1]. As a result of battery wear the hardware API can become less reliable over time. It is also
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notable that batteries can have varying voltage output due to variance in internal components [35].
Battery wear and variability motivate us to construct software based energy models that are resilient
to prolonged device usage.

For each of the cited works in the thesis, we provide a brief summary of what the work did and
categorize it into 1 of 6 categories: mining software repositories and green software engineering;
software-based energy models; hardware-based energy models; hybrid energy models; software
engineering and green conventions; plus deep learning and software engineering. The categories
were picked by the author to help organize the reviewed work; literature surveys are included
in this chapter which provide published categorizations of existing software energy related works
too [7, 61]. The mining software repositories category was chosen because we collect data using
techniques from multiple repositories, and revisions, and evaluate our model performance on multiple
repositories and revisions; the 3 model type categories of software, hardware, and hybrid energy
prediction models were chosen because we wanted to build a new energy prediction model and due
to hardware-accessibility — hardware is not available to all developers and thus prevents researchers
and developers from reproducing hardware and hybrid based models without fiscal investment; the
software and green conventions category was created because understanding what features can be
measured to predict energy consumption is important for constructing energy prediction models and
this category discusses the rise, exploration, and development of what and how software development
has been evolving to become more energy efficient; and we create a deep learning and software
engineering category because we leverage deep learning in our model construction and because deep

learning has had a recent successful resurrection in building prediction models.

3.1 Mining Software Repositories: Green Software Engineer-
ing

This section discusses works related to studying multiple revisions of software products; as well as,
multiple software products. We are motivated to study multiple revisions of software because we
want to build energy prediction tools that explain to developers how their software changes influence
software energy consumption. For instance, our work aims to answer questions like: “did the last 5
commits to implement a new feature help or worsen the application’s energy consumption? As well,

what part of the applications energy consumption changed over time due to the software changes?”
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We did not find previous applications of time series models on this energy prediction task at the

time of writing.

3.1.1 Ubuntu’s Power Consumption Tested

Larabel investigates 6 releases of the Ubuntu operating system to study software energy consumption
as it changes with respect to software updates [39]. This work demonstrates that hardware energy
consumption can be influenced by the software updates it receives. The work is motivated by 1
release containing a new power management feature and curiosity to see how it actually changes
energy consumption behavior. This shows that software users, and developers, are interested in

energy performance alike.

3.1.2 Green Mining: A Methodology of Relating Software Change to

Power Consumption

Known as Green Mining, Hindle provides a methodology for mining a software’s history to understand
the effect code change has on software energy use [33]. The work demonstrates Green Mining in 2
case studies that investigate the relation object oriented metrics have with energy consumption. This
appears to be the first usage of mining software repositories to study software features and their

relationship with energy consumption.

3.1.3 Green Mining: Investigating Power Consumption across Versions

Hindle applies Green Mining, the process of studying software history and energy consumption,
to study 500 revisions of the Firefox software project and answers whether hardware component
usage, or lines of code, in a changeset influences energy consumption [34]. It is shown that hardware
components do influence energy usage, so future work will need to accomodate the various hardware
components a software application can interact with, and that lines of code do not correlate with

energy consumption. This work preludes Hindle’s formalization of the Green Mining methodology [33].
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3.1.4 GreenMiner: A Hardware Based Mining Software Repositories

Software Energy Consumption Framework

Green Mining studies the history of software and energy consumption change. It is time consuming
to run software tests and collect energy consumption from mobile devices. Therefore, the GreenMiner
is constructed which consists of 4 instrumented mobile devices augmented to apply the Green Mining
methodology [36]: a methodology to test and robustly collect information on multiple software
revisions throughout the software’s development in a given software repository. The GreenMiner
automates running tests, collecting data, and it provides visualizations of the tests results to aid
analysis. The GreenMiner is publicly available through a web service. This work reconfirms that
screen contrast can influence energy consumption; it studies the affect UI changes have on energy
consumption; and during development one of the researchers found an energy bug, and got it patched,

in an Android application used for testing the GreenMiner.

3.1.5 Mining Energy-greedy API Usage Patterns in Android Apps: An

Empirical Study

Linares-Vasquez et al. mine 55 Android applications to collect API calls and energy consumption
traces from common use cases of the applications [45]. Based on analyzing the energy-hungry API
calls the following recommendations are made for developers: avoid using a database management
service if your data is not overly complicated; use the MVC pattern sparingly because it is costly
to repeatedly update views; avoid displaying application state with energy-hungry widgets; design
application views to connect to each other in the simplest way possible because it costs energy to
switch views; and that developers should be critical when deciding between software design and

battery savings.

3.1.6 Mining questions about software energy consumption

Pinto et al. survey 850 posts on the popular code discussion service StackOverflow with a specific
focus on energy related discussion [53]. Pinto finds that energy questions appear to be more popular
than the average programming topics on stackoverflow and it is hypothesized that energy questions

are more challenging to answer given that the surveyed solutions suffer from varying quality. This
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work shows that energy questions appear to be a trending software development topic, at the time
of writing, and the authors find 5 categories that the questions can be grouped into: measurement;

general knowledge; code design; context specific; and noise [53].

3.2 Software-Based Energy Models

This section discusses prediction models that focus on using software based measurements to predict

the energy consumption of running software.

3.2.1 Modeling Power Management for Hard Disks

Greenawalt builds and demonstrates an energy efficient statistical model for determining when to
transition power states in a hard disk [28]. At the time of writing, hardware manufacturers have been
contributing new more efficient components. But, little work has been done to create software that is
also intended to be energy efficient. This paper is an early example of creating software models to

approximate hardware usage for saving energy consumption of a given device.

3.2.2 Instruction Level Power Analysis and Optimization of Software

Tiwari et al. show that software is an important part of power consumption in computers and it
can be studied from a CPU instruction point of view [59]. Tiwari et al. build and demonstrate
instruction based power models for 3 different hardware models and provide an evaluation of their
results. This work contributes a method for developing instruction based power models that do not

rely on hardware to predict the energy consumption of running software, once trained.

3.2.3 Using Complete Machine Simulation for Software Power Estima-

tion: The SoftWatt Approach

Gurumurthi et al. build a power consumption simulator that models the CPU, memory, and disk
components of a computer to blame applications and operating system services for their contribution
to device power consumption [30]. This allows users to understand what software tasks on their
device are causing energy drain and helps developers prioritize what to improve to gain energy

savings. The results show that power consumption simulators need to account for the whole system
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to better understand how running software applications are influenced by their hardware and software

environments.

3.2.4 Run-Time Software Monitor of the Power Consumption of Wireless

Network Interface Cards

Lattanzi et al. build a model for predicting the energy consumption of wireless network cards [40].
The model is trained using power consumption readings of a given network card. When in use, the
model needs only software metrics to predict the energy consumption of the card. This provides
developers with a view of how their software energy consumption is influenced by wireless network

card usage.

3.2.5 Green Tracker: A Tool for Estimating the Energy Consumption of

Software

Amsel et al. construct Green Tracker: a software model that uses software CPU usage to predict
energy consumption [10]. The work contains several software case studies where benchmarks are
ran against various softwares, that provide the same functionality, to figure out which software is
more efficient at a given task. This provides researchers with a view of how to model CPU usage and

methods for evaluating a model with software comparisons.

3.2.6 Detecting Energy Patterns in Software Development

Gupta et al. analyze mobile computing energy patterns to detect abnormal energy usage and potential
software bugs [29]. The work builds models of software energy consumption to calculate per-module
and total device energy consumption. It also provides a description of collecting power and data
traces to detect energy related programming errors. From investigation, the work shows that most of
the detected bugs were true-positives. This work shows a method for attributing energy consumption

to software and an approach to energy debugging.
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3.2.7 Fine-Grained Power Modeling for Smartphones Using System Call
Tracing

Pathak et al. construct an online system call based energy profiling tool called eprof [50]. This work
discusses and implements a method for building software-based energy models from system calls.
It also discusses some of the complexities of modeling modern hardware components such as tail
energy: the energy consumed from a components last use until it returns to a low-energy state. The
work approximates the power states of hardware components by writing a sample application called
CTester to interact with each of the components, while recording the system calls respectively. This
work provides a method for building system call based energy prediction models with finite state

machines and linear regression.

3.2.8 Where is the energy spent inside my app? Fine Grained Energy

Accounting on SmartPhones with Eprof

Pathak et al. present a per-software routine energy profiler for Android and Windows phone device,
named eprof [49]. The tool is able to account for tail energy, it also finds hot-spots and wake-lock
bugs, in tested Android applications. The work also discusses case studies of 6 Android applications
which are evaluated by the eprof tool. The case studies show how developers might use an energy

profiler and explain how energy is consumed by the applications under test.

3.2.9 The power of system call traces: predicting the software energy

consumption impact of changes

Aggarwal et al. apply a set of instrumented mobile phones for capturing software performance
information, known as the GreenMiner, to show that software system call profiles correlate with
software energy consumption usage [6]. This is interesting because it demonstrates that software
measurable features are sufficient to predict change in hardware performance of mobile devices. It
is also interesting because this work provides a methodology for testing software across multiple
revisions to track software performance as it evolves over time. This allows developers to track
software energy usage regressions over time and provides researchers with a method of extending this

technique to build software energy models.
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3.2.10 GreenOracle: Estimating Software Energy Consumption with En-

ergy Measurement Corpora

Chowdhury et al. construct a linear model that can predict the energy consumption of mobile
applications with, approximately, less than 10% error [16]. The work details training application
selection; application test generation; model training; and model testing. A total of 24 applications
with 984 revisions were used in creating the GreenOracle model. The work discusses future plans
to build online energy models and to collect a larger training and testing corpus to improve model
error rates. GreenOracle uses the following features: (system calls) recvirom; fsync; setsockopt;
mkdir; futex; write; sendto; unlink; open; and (procfs) user; ctxt; num_ threads; intr; vsize; and

duration [16].

3.2.11 GreenScaler: Automatically training software energy model with

big data

Chowdhury et al. show that it is possible to construct representative energy models that can
accurately predict the energy consumption of a mobile device [15]. The work explains: how hundreds
of Android applications are downloaded; how manual tests can be generated for the downloaded
applications; how automated tests can be generated to train representative energy models using the
monkey technique; and how these energy prediction models can continuously be refined with the
application of automated test generation and application. The GreenScaler mobile energy prediction
model is generated based on automated tests and achieves a prediction error close to 10% error.
GreenScaler is also capable of identifying energy inefficient revisions of a software application under

test.

3.2.12 Estimating Mobile Application Energy Consumption Using Pro-
gram Analysis
Hao et al. apply program analysis to create an instruction-level energy prediction model that achieve

within 10% error [32]. The eLens tool is applied to 6 Android application from the play store. eLens

estimate energy by recording the execution paths that are used in a developer’s test for a given
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application. Then the overhead of each instruction on the executed path is estimated to determine

energy consumption for the tested functionality in the application.

3.3 Hardware-Based Energy Models

This section discusses prediction models that focus on using hardware based measurements to predict

the energy consumption of running software.

3.3.1 PowerScope: A Tool for Profiling the Energy Usage of Mobile Ap-

plications

Flinn et al. build PowerScope: a hardware based energy model which assigns energy consumption cost
to specific software processes and methods [24]. A case study is performed with the tool that enables
developers to fix hotspots in their code to reduce energy consumption by 46%. This work shows that

giving developers access to the much needed energy profilers can improve software efficiency.

3.3.2 Accurate Online Power Estimation and Automatic Battery Behav-

ior Based Power Model Generation for Smartphones

Zhang et al. create PowerBooter, a hardware based power model creation technique, and PowerTutor,
an online power estimation tool that relies on the models created by PowerBooter [65]. PowerBooter
uses a battery’s API to measure voltage and approximates power consumption of various mobile
hardware components, like the CPU and screen. PowerTutor combines the component estimates
of PowerBooter into a single estimate for a given device. This work shows developers the energy
consumption their software is causing and gives researchers an approach to modeling the energy

consumption of multiple hardware components.

3.3.3 Sesame: Self-Constructive System Energy Modeling for Battery-
Powered Mobile Systems
Dong et al. develop Sesame: a hardware based power modeling technique which takes advantage of

battery interfaces to predict mobile device energy consumption [20]. The model is also capable of

predicting online energy consumption of software, at a higher granularity, for an accuracy trade off in
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the predicted values. A case study is performed with 4 users who have the energy modeling software
installed on their laptops. The case study shows that the modeling technique works well and that it
is non-invasive to the user’s computing experience. The work also discusses which features it collects
from the Linux operating system to predict energy consumption. Some of the feature sources include
the proc and sys file systems for system related information and the ACPI system (if available) to

take advantage of hardware available power consumption information [20].

3.3.4 Decomposing power measurements for mobile devices

Rice et al. construct energy measurement toolage for the Android G1 and Magic mobile phones [55].
Rice details how to construct the measurement platforms and how to measure the energy consumption
of software based questions. In particular, Rice experiment with the wireless message buffer size to

demonstrate that buffer size can have a large influence over device energy consumption.

3.4 Hybrid Energy Models

This section discusses prediction models that focus on using software and hardware based measure-

ments to predict the energy consumption of running software.

3.4.1 Software-based energy profiling of android apps: Simple, efficient

and reliable?

Nucci et al. provide the PETrA tool that can provide instruction level feedback based on hardware
and software observations of a running application [19]. Specifically, PETrA records information
from the Android battery API, systrace, and dmtracedump. The model is evaluated on 54 android
applications with software tests and is compared to the existing Monsoon hardware based model.
The work shows that the PETrA tool performs within 5% error on each of the evaluated tests for the

applications under test.
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3.4.2 Calculating source line level energy information for android appli-

cations

Li et al. provide the vLens tool [43]. vLens is a hybrid hardware/software based model that applies
dynamic analysis to predict the energy consumption from byte code of Android mobile applications
to provide instruction level energy feedback at a byte code granularity. After an application has
been attributed for it’s energy consumption, it is also possible to view the application in an IDE
with energy annotation on each line of executed code to approximate the influence each line has on
energy consumption. As well, the model does not always need source code to predict the energy
consumption of instructions (you just wont get that pretty java-high-level feedback). The work also
highlights run-time behaviors that model designers need to be aware of such as garbage collection,

concurrency thread-swapping, and tail energy.

3.4.3 An Empirical Study of the Energy Consumption of Android Appli-

cations

Li et al. study 405 Android applications at source code line granularity to better understand how
mobile applications consume energy on smart phones [42]. vLens and a Monsoon power meter are
used to collect run time information from the Android applications under test. Monkey was then
used to generate tests for the applications to enable energy runtime data collection. The investigation
shows that: more than 60% of the energy consumed by the Android applications come from API
invocations; that networking components on Android devices are used the most frequently compared
to other components and draw the most energy; in 91.1% of the Android applications surveyed,
only 10 of the used APIs were responsible for more than 50% of the applications non-idle energy

consumption; and code in loops was found to be responsible for 41.1% of non-idle energy consumption.

3.5 Software Engineering: Green Conventions

This section discusses works on energy focused software engineering and how researchers have been
developing methods and conventions to engineer energy efficient software. Understanding how more

efficient software can be created provides intuition about which measureable software features can be
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measured to approximate whether software is running efficiently. These works helped us engineer

features for our prediction task.

3.5.1 The Case for Higher-Level Power Management

This work advocates for more investment in high-level software engineering tools to enable developers
to build more energy efficient software [22]. The author developers a tool to monitor the power
consumption of software running in PalmOS and associates these power consumption values with OS
states. The work shows that software action can influence energy consumption states and that if
developers had access to this information during development then they would be able to configure
their hardware usage more efficiently. Clearly, hardware usage patterns influence energy consumption
and there is a call for awareness of hardware-usage patterns to save battery life on mobile devices.
The work also explores using GPS efficiently on the device, which is still an operation mobile devices

do today.

3.5.2 PC Energy Report 2007

This article studies how many PCs are left on over night, in the US, consuming energy and the
environmental impact this has [8]. The work also explains how much this costs companies to not have
a more efficient power management system setup for their office computers. This article provides
grounded motivation for the impact energy saving software engineering techniques and tools could

have.

3.5.3 Harnessing Green IT: Principles and Practices

This Murugesan write a call to arms for IT field members to develop and practice greener processes
in both hardware and software development [48]. The work discusses several measures which IT
workers can take in their development environments to reduce energy consumption as well as when
planning and building new IT infrastructure. This work shows how to engage industry in energy
efficienct hardware and software practices. It also discusses future steps that can be taken to further

improve the state of eco-friendly IT development.
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3.5.4 i0OS App Programming Guide

Apple provides a development guide for their i0S platform that includes recommendations to create
more energy efficient software applications [2]. Recommendations include minimizing the usage of
hardware to minimize power consumption. For instance, the OS will shut off unused hardware and it
is recommended that timers be used to interact with constrained resources instead of polling to enable
hardware to idle for longer periods of time. As well, it is explained that wireless communications is
the most hardware expensive operation that is frequently made on iOS devices. Therefore, developers
are given several recommendations to minimize these events to save energy. This work show industrial
interest in developing more energy efficient software. It also shows that industry members have

developed and are practicing green IT conventions.

3.5.5 Climate Change: A Grand Software Challenge

Easterbrook points out tentative topics that will need investigating to address the growing carbon
consumption conundrum created by modern IT [21]. Software practices need to be developed to
make climate models more accessible; maintainable; and portable [21]. Data processing needs to
become more transparent to allow end-users to understand how data was collected; what processed
it; and assumptions that were made about it [21]. Easterbrook also mentions that it would be useful
for climate science to be more open source to allow the community to view and better understand
exactly how the science is being done to aid in the prevention of climate denial. The work also
discusses more methods for educating the public on climate change as well as Green IT practices
that can improve energy usage of computer users.

This work is important because it discusses creating a more robust methodology for performing
climate science. It also provides a method for educating the public on the rising problem of CO2
emissions facing humanity. The method also provides a list of achievable tasks for approaching the

introduced problems.

3.5.6 Performance Considerations for Windows 7 Phone

Gray discusses how to reduce memory usage and garbage collection done on the Windows 7 Phone
development platform when developing games [27]. The work approaches this by discussing opti-

mizations for interacting with textures; how to better use objects to avoid losing performance to
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the garbage collector at run-time; and to use development profiling tools to view how memory is
utilized on a developer’s device before releasing the game to customers. This work shows industrially
motivated software efficiency conventions that developers can apply to get the most out of their

mobile hardware to improve their user’s experience.

3.5.7 Developing Green Software

This work discusses how to make software more energy efficient [57]. Getting work done quicker
often means that the device can idle for a longer period of time resulting in more energy savings.
Software should also minimize the amount of data accesses to minimize hardware usage and it should
try to use the processor cache more efficiently to reduce memory and hard disk accesses. The paper
also advocates for using device contextual awareness, the environment the device is operating in, to
optimize the hardware’s usage. An example of contextual awareness would be to dim the screen when
the room is bright. The paper is meaningful because it provides techniques for improving energy

efficiency of software and demonstrates the techniques with several examples.

3.5.8 Energy-Optimizing Source Code Transformations for Operating System-
Driven Embedded Software

Fei et al. study the affect code transformations can have on energy consumption by improving
software inter-process-communications (IPC) [23]. A case study, from the work, involves vectorizing
IPC messages and adding data buffers to the processes resulting in IPC related energy savings. 3 other
IPC optimizations are proposed and evaluated in the work that each show significant improvements
to the energy consumption of IPC from processes. These optimization demonstrate that development

tools can be improved to automatically help developers save energy consumption in their applications.

3.5.9 An Analysis of Power Consumption in a Smartphone

Carroll et al. provide a tutorial of measuring, and modeling, the individual hardware component’s
energy consumption in mobile devices, as well as the total consumption of the given devices [12].
This work provides a better understanding of which, and how, different components influence
energy consumption so that developers will have a better grasp of hardware behavior when creating

software. For instance, the screen and GSM components were found to contribute the most to energy
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consumption on the tested device. The screen can be accomodated by developers using contrast
reduction when the device is idle, but the GSM energy usage was found to be a hardware issue that

software developers cannot overcome with new programming techniques.

3.5.10 LessWatts.org — Saving Power on Intel Systems with Linux

Intel provides supporting evidence for making greener IT infrastructure in this work [37]. The work
covers how, at the time of writing, energy efficiency features will be added to newer Intel processors
to reduce the environmental cost of running servers and a new tickless idle time feature will be added
to the Linux kernel to improve the total idle time of the CPU, similar to Larabel [39]. Intel also
provides a variety of power saving software tools on their Less Watts web service, which are freely
available and developers can take advantage of to improve energy savings.

This work provides context for needing more energy efficient servers. It then provides a list of
future hardware changes that will be made as well as providing software tools that developers can

use to improve their energy efficiency.

3.5.11 Energy management techniques in modern mobile handsets

Vallina-Rodriguez et al. survey software energy research works between 1999 and 2011 [61]. 6
categories are created and used to classify work on software energy consumption. These categories
are: energy focused operating systems; efficient resource management; studying user interaction with
mobile applications and devices; sensor management; and the study of mobile energy benefits from

cloud computing.

3.5.12 ErdOS: achieving energy savings in mobile OS

Vallina-Rodriguez et al. develop an energy savings focused operating system for mobile devices [60].
The primary methods for acheiving energy savings, in this work, come from predicting user resource
usage to optimize hardware component usage. This is done by predicting the demand of resources the
device will use locally on the device; and, predicting when the device will access external resources
based on sensor usage such as scheduling the connection to wireless access point based on how the
user’s applications periodically collect data and the user’s location given gps measurements. The

latter, of using device sensor information to schedule component usage, is further optimized by crowd
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sourcing the task across ErdOS devices in close proximity to one another; crowd sourcing allows a
single device to share it’s sensor readings with the group which saves energy by reducing duplicate

work.

3.5.13 Optimizing Energy Consumption of GUIs in Android Apps: A

Multi-objective Approach

Linares-Vasquez et al. propose a colour pallette generation technique that aims to create legible
energy saving colour schemes for mobile devices [46]. In a case study 25 applications are updated
with new colour schemes and the authors find that the users are okay with the changes. The most
energy saving colour schemes are not always preferred by the users; but, users still pick a scheme

with energy saving when offered.

3.5.14 Making Web Applications More Energy Efficient for OLED Smart-

phones

Li et al. study how to reduce the amount of energy used by the OLED screen used by most smart
phone devices [44]. Li et al. develop a tool which can transform web applications to use more energy
efficient colour schemes on mobile devices. Li’s work shows that this approach saves 40% of energy

usage from the screen’s total energy consumption.

3.5.15 A Review on mobile application energy profiling: Taxonomy, state-

of-the-art, and open research issues

Ahmad et al. provide a detailed review of recent software and hardware based energy models [7]. The
work provides a review of 10 software models and 7 hardware models. This list includes: power-prof;
power booter; se-same; hybrid-feedback; SEMO; elens; ARO; wattson; eprof; p-top; DuT; netw-trace;
power memo; power scope. There is also discussion provided on measuring network; web-browser;
and multi-core CPU energy performance. Based on the created taxonomy, the authors also discuss
mobile energy profiling questions that still need to be addressed such as improving the ability of

operating systems to provide energy usage feedback to software applications.



3 Literature Review 28

3.5.16 Client-side Energy Efficiency of HTTP /2 for Web and Mobile App

Developers

Chowdhury et al. investigate the widely used HTTP/2 protocol compared to the prior HTTP/1.1 with
respect to energy consumption and show that the newer protocol is more efficient for transmissions
with longer round trip times [17]. The investigation is accomplished by using the GreenMiner testbed,
a web server, and a test script to simulate the mobile phones of the testbed. In the test, 4 applications
(world flags; gopher tiles; google; and twitter, each with 10 revisions) were used on the phones under
the HTTP/1.1 and HTTP/2 protocols respectively. This testing process showed the influence each of

the protocols had over energy consumption.

3.5.17 Detecting energy bugs and hotspots in mobile apps

Banerjee et al. provide an automated test generation framework for detecting 2 types of energy
issues faced by mobile devices known as hot spots and energy bugs [11]. Hot spots are locations in
an application which cause elevated energy consumption for their duration of use. Whereas, energy
bugs prevent the mobile hardware, used by the application, from returning to an idle state. The
work evaluates the test generation framework on 30 freely available mobile applications. The authors
also discuss what further work needs to be completed on the framework and what limitations exist

for the currently generatable software tests.

3.5.18 Mobile Apps: It’s Time to Move Up to CondOS.

Chu et al. propose a new abstraction layer be added to operating systems that makes interpretting
sensor data easier for software applications [18]. The work provides an example of having the
operating system track the device user’s current motion state, like walking or sitting, and providing
this high-level detail in a contextual data unit, which is the name given to the new sensor-operating-
system abstraction layers the authors’ propose. Furthermore, Chu et al. illustrate potential energy
savings that result from implementing CDUs throughout the operating system and reducing program

complexity for developers as direct hardware device interaction would no longer be necessary.
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3.6 Deep learning and software engineering

This section discusses several papers related to the resurgence of deep learning and deep learning’s
application to sequence prediction tasks. We use deep learning to predict sequences of energy

consumption in this work.

3.6.1 Deep learning (nature paper)

Lecun et al. discuss the ability of deep learning to extract abstract representations of complex
problems during training [41]. This discussion is extended to provide a review of convolutional
networks with supervised learning. At the time of writing, CNNs provide ground-breaking results in
image interprettation and it is hypothesized that future work will uncover similar ground-breaking
results with recurrent neural networks and unsupervised learning. In particular, the author guesses

that RNNs will have a strong influence on interpretting videos and natural language.

3.6.2 Deep learning in neural networks: An overview

Schmidhuber provides a survey of deep learning from it’s origin upto 2014 [56]. The work is motivated

by the recent success of deep learning models in machine learning contests.

3.6.3 Sequence to sequence learning with neural networks

Sutskever et al. investigate how to use deep neural networks to map a given sequence of inputs to a
given sequence of outputs [58]. To accomplish the sequence to sequence mapping, long short-term
memory layers are applied and experimented with in a deep network architecture. The model is

applied on language translation, from English to French, and achieves state of the art results.

3.6.4 Toward Deep Learning Software Repositories

White et al. apply deep learning to code recommendation tasks and compare their new models against
existing state-of-the-art non-deep learning models [62]. The findings show that simple recurrent

neural networks significantly out perform existing n-gram based models.
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3.6.5 Deep Speech: Scaling up end-to-end speech recognition

Hannun et al. apply deep learning to construct a robust speech recognition method [31]. Recurrent
neural networks and GPU training are used to achieve state-of-the-art performance on a widely used
data set called the Switchboard Hub5’00. This is related to our work; since, our energy prediction
problem is also a time series and we approach it using RNN based layers. Although, Hannun et al.

avoid using LSTM based layers due to the additional performance LSTM layers tax.
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Chapter 4

Modelling time-series of software

energy consumption

This section discusses motivation for predicting the timeseries of mobile device energy consumption,
the research questions we would like to answer while building timeseries prediction models, the
methodology to collect data to train and test models, and the model types and training methods
used to build our predictors.

We would like to gain a better understanding of how to predict the impact software change has on
energy consumption. However, it is not possible to predict the energy consumption of software using
only software measurements. Developers need costly hardware devices and or instrumentation to be
able to measure the energy consumption their software has. Therefore, we would like to work on
developing more efficient means to predict energy consumption without requiring software developers
to purchase extranuous hardware instruments.

To accomplish this, we develop a set of research questions that need to be addressed to construct
more sophisticated software energy prediction models. Particularly, we investigate how to predict the
time series of software energy consumption. This would allow developers to see how their software
uses energy over time, which extends the current state of the art that allows developers to see the

total energy consumption their software uses over a given time period [16].
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We would like to answer the following research questions pertaining to the task of predicting
mobile software application energy consumption and the corresponding feature sets we are using to

construct our prediction models:
o (RQ1) How well do time series models perform when predicting total energy consumption?;

e (RQ2) Do time series models with built-in state or memory perform better than time series

models without state when predicting energy consumption?;

o (RQ3) Energy prediction models can be trained with different feature sets; how does perfor-
mance change when using them individually versus together? What features affect the energy

consumption models predictive power?;

o (RQ4) Do shallow multi-layer-perceptrons perform similarly to existing stateless models such

as those based on linear regression?;

o (RQ5) How do the time series model predictions fit the shape of the observed energy consumption

data?

The rest of this chapter details the method used to answer these questions. The chapter details
how data is collected to build models; as well as, how model types are selected for training on and

predicting energy consumption.

4.1 Methodology

The steps of the methodology used to evaluate the energy models are:
1. Find applications with multiple versions for Android.
2. Write test cases to simulate user interaction with the applications.
3. Run application tests on the GreenMiner and collect data.
4. Create cross folds: 5 applications train; 1 application test.
5. Train models, or perform parameter selection, per fold.

6. Evaluate models on test folds.
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Table 4.1: Mined Applications

Application Description Test Duration
Calculator An Android calculator application 125s
Blockinger A Tetris like Android game 150s
Dalvik Explorer | A phone properties viewer for Android 80s
2048 A number puzzle game 60s
Pinball An Android pinball game 120s
Memopad A freehand drawing application 95s

We want to make energy models that can predict the energy consumption of software as it runs.
Such models would enable developers to associate their software behavior with corresponding changes
in energy consumption. To train energy prediction models, however, we need examples of running
software and their resource and energy usage.

We used the GreenMiner testbed, described in Section 4.1.1, to collect time series information
from Android applications concerning system calls from strace and process resource utilizations from
procfs. To use the GreenMiner we identified Android applications with multiple versions; we write
test cases to simulate user interaction with the applications; and we record information from the
tests while they run on the GreenMiner.

The collected System calls provide information about software resource requests over time.
However, system calls do not provide any information on CPU usage and other relevant information
like number of interrupts, number of context switches etc. This led us to periodically access and
collect those measurements from the Linux procfs throughout a software test. We also used hardware
instrumentation to collect the energy consumption of mobile devices as they run software tests. In
Section 4.1.2.1, we discuss the various models that we evaluate in our work and the reasons why they
were chosen. In Section 4.1.2.2 we discuss how the models are compared with one another to answer

our research questions.

4.1.1 Data Collection

Section 4.1.1.1 discusses how behavior and energy consumption profiles are extracted from software
applications. Section 4.1.1.2 explains how we collect behavior and energy measurements during the

mining process of Section 4.1.1.1. Section 4.1.1.3 shows preprocessing steps taken prior to training.
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4.1.1.1 Mining Applications

In order to train our models, we needed example applications so that we can run them with a
test case, collect their resource usage (as model input) and energy consumption (as model output)
periodically. We selected 6 Android applications from the GreenOracle dataset, as listed in Table 4.1
(step 1). Each application had multiple software revisions available and the applications are open
source software. Each application had at least 30 unique software revisions, except Dalvik Explorer
which only had 13 software revisions. 30 was chosen arbitrarily to provide enough statistical power
for many of the distribution comparison tests and to keep measurement time reasonable. Having
multiple versions of each application was good for models’ accuracy, because we could collect different
time series of software and energy features for each revision. We also needed to write only one test
case for a particular application, but could enlarge our training data by running the same test case
for the multiple versions (step 2). We only chose a subset of GreenOracle dataset because it was
time consuming to collect time series of the system call and procfs features (step 3). In addition,
with more number of applications, the training time of our deep networks is significantly longer.

The selected applications are very different in nature. A variety of applications will employ a
variety of device and hardware usage scenarios of various intensities. For example, a text editing
application will use hardware differently compared to a video game application. Using different
versions of the same application is also helpful for such variety. Such a process to build training data
enables building robust energy models—models that are familiar to very different resource usage
patterns and the corresponding energy consumption.

To measure energy consumption we wrote test runs which simulate common use cases of the
applications (step 2). The common use case of an application was assessed by the authors to
determine how the application is intended to be used. For example, test runs were written to do small
calculations, like finding the GST of purchased goods for the Calculator application, because this is
what we would expect an average user to do with a pocket calculator. Dalvik explorer displayed
phone meta-data. Blockinger’s test dropped and rotated tetris pieces randomly. 2048’s test made
random moves. Pinball’s test randomly throws and paddles the pinball. Memopad’s test draws a
hexagon monster with legs. To reduce the generalization error of our measurements we repeat the
test runs multiple times per revision to create multiple data sets for the same revision. In our study

we repeated test runs 20 times each matching methodology of other works [16].
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4.1.1.2 Mining Features and Labels

The software features we are interested in include: system calls, and device resource utilization (step
3). Similar to the GreenOracle [16], we used the strace program to collect all the system calls and
retrieved measurements from /proc/stat, /proc/pid/stat, and /proc/pid/statm file systems to
collect process related information. However, in contrast to GreenOracle, all of our features were
collected periodically throughout the duration of a software test run so we can create new time series
models.

To measure resource usage for a given application over time, we define a time step to be a period
of 0.02 seconds. The period of 0.02 is chosen because this is similar to the sampling rate of the
GreenMiner. Figure 4.1a shows an example of what our model features look like in a given time step.
In our energy models, after we have recorded an applications resource usage and system calls we
partition the information into time steps. For each period of 0.02 seconds, we count the number of
each system call that occurs in the time step, then we approximate additional applications resource
utilization from procfs such as CPU load.

We also collect a power sample, which is a single watt measurement for the period, that is paired
with the software-behavior measurements. We convert the watt measurement to energy usage using
the duration between two watt samples which will be used as the dependent variable in our models.

We collect the measurements and energy usage periodically throughout a software application’s
usage. We then synchronize the data measurements with energy usage to create partitions, or time
steps, of the data for training as in Figure 4.1b. This provides one time step for every 0.02 seconds,
and the corresponding energy measurements as shown in Figure 4.2a. We preprocess these timeseries

for training our energy models.

4.1.1.3 Preprocessing

We time align and bin our measurements for training. The software and energy measurement tools
in our experiment are not aligned with respect to time (step 4). The software application under test
begins first on the device and the GreenMiner creates a start time. The components that we wait on
to start is the strace log. The sampling procfs occurs after the application has launched and even
when we are waiting for the strace sampling to begin. We wait 3 seconds, or 150 time steps, after the

strace has started to synchronize the captured strace and procfs components for our time series data.
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[,

Feature Types Feature Types

Frequencies

Frequencies

(a) Features at a time step (b) Features over time steps

Figure 4.1: Figure (a) and (b): show feature set measurement groupings that are given to our Istep
and time series models respectively. The Istep features are grouped together and ignore time. The
time series features have the same features as the Istep, but these features are grouped once every
0.02 seconds the software test runs.

We use the next 1250 (25 seconds) time steps when training and evaluating our time series models.
The number 150 was chosen to ensure that only procfs samples captured after strace logging has
begun are used in upsampling and synchronization with the strace time series. The number 1250
was chosen due to hardware constraints at the time of writing. We initially tried 3200 time steps for
generating our time series models but could not train in a reasonable period.

In terms of data points, after processing, we have 5 applications with 30 revisions each and 1
application with 13 revisions. Each revision is tested 20 times and from each test 1250 time steps of
data with at most 80 features are used.

Therefore, we now describe how we time align the data. For the procfs and energy measurements
that we collect, we apply linear interpolation to approximate measurements at fixed times. Fixed
times allow us to partition our time series measurements into time steps which can be used by the
model as inputs. The system call measurements which we collect are counted for each of the fixed
time periods to create time steps. We collect every feature reported by strace and the selected procfs
files.

We also take the difference of consecutive samples of procfs counters, because a single sample will
only explain the current values of given resources used by a process. Whereas, the difference explains
the rate of change in the resource that was caused by the running process. The procfs features that
do not change throughout the duration of a test run are discarded.

With system calls, it is possible to have 2 semantically similar system calls occur in separate
applications. We provide a list of the system call groups that we apply to our data set in Table

4.2. Duplicate names create complications when tuning the weights in machine learning models;
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model predictions that are described later.
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Table 4.2: System call feature groupings

Group System calls
Iseek Iseek, _ llseek
write write, pwrite
read read, pread
stat fstat64, Istat64, stat64
fsync fdatasync, fsync

because, the training algorithm tries to attribute weight to multiple features causing the same effect
in the models. This becomes problematic for us, because our system call features can perform similar
operations and still have different names. Therefore, we group together similar system calls to make
training the models simpler for the learning methods. We use a subset of the system call groupings as
in the GreenOracle for comparison of our time series models against Istep models [16]. An example
of semantically similar system calls with different names are: fstat64 and stat6 which both get file
status information.

To improve the training times of our models, and to try and avoid gradient problems in the neural
networks models we train, input normalization is used in our preprocessing step. We chose to use
min-max scaling for each approximated procfs measurement, system call count, and approximated
energy usage values. For each software feature ¢ in our data set, we calculate the scaled values
Xscaled; from the given software feature X; using the following formula:

X; — min(X;)
max(X;) — min(X;)

Xscaled,; =

Feature normalization scales each features to the range of [0,1]. Normalization is used to prevent
the weights in models like neural networks from growing to infinity or shrinking to 0 known as the
exploding or vanishing gradient problem. We also apply normalization to our energy measurements
for model training. When training our models, input normalization tended to improve prediction

performance.

4.1.2 Models

Section 4.1.2.1 provides the list of models we consider in our experiments. It also discusses the
difference between models that consider a time series and models that are Istep (step 5). The

statefulness of LSTM models and whether or not that improves performance is also discussed. Section
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4.1.2.2 explains how it is possible for us to compare the time series models with the 1step models

(step 5).

4.1.2.1 Model Selection

Tools for predicting the time series energy consumption of software are not widely available at the
time of writing, although models do exist [49] or some models could be converted to do so [20], yet
implementations are not available or rely on battery measurement like Di Nucci et al. [19]. Therefore,
we do not have hardware-less time series models that we can compare our work against. However,
there are models that predict the total energy usage of software components or hardware devices
such as linear regression models of energy consumption [16]. We use the same performance metric as
the prior work to make our models comparable to the existing state-of-the-art.

Because it is unknown which machine learning models could perform well, predicting the time
series energy consumption, we select several. We evaluate ridge and lasso regression, and multiple
support vector machine regressors based on the results of the prior work [16]. However, none of the
models from the prior work are designed for taking advantage of the sequence in which data in a
time series occur. Therefore, we also evaluate two different LSTM RNNs because we think that they
will perform better on the time series energy prediction task. We also evaluate several MLPs because
we think that they will perform similarly to the ridge and lasso regression models due to the number
of weights in a single layer MLP being similar to the number of weights in a linear regression model.

We evaluate all of the models with 4 different feature sets to get an understanding of how the
models perform. Some of our selected models like the LSTM and MLPs perform feature selection
themselves, so it is not clear if manual feature selection would help these models perform more
effectively. We use a full feature set which consists of all the features we collected from system calls
and procfs, a GreenOracle feature set which consists of the best linear features as selected in the
prior work [16], a system call feature set which only consists of system call features, and a procfs
feature set which only consists of the process related features.

For the MLP and LSTM RNNs, we rely on stochastic gradient descent to perform model tuning.
We select specific structures, in the case of the MLPs we look at: a sigmoid hidden layer with a
linear output, two sigmoid hidden layers with a linear output, and three hidden sigmoid layers with
a linear output. On the deep neural networks, we consider the use of one and two hidden LSTM

layers with either a linear output layer or a sigmoidal output layer. Our neural network input and
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Table 4.3: Time Series and Time-Summed 1step Model Names and their Descriptions

Time Series Model Description

MLP_1_layer 1 layer MLP

MLP_ 2 layer 2 layer MLP

MLP_3_layer 3 layer MLP

Istm3sigm 2 layer LSTM and sigmoid output
Istm2sigm 1 layer LSTM and sigmoid output
Istm3line 2 layer LSTM and linear output
Istm2line 1 layer LSTM and linear output

linear_regressor

lasso regression model

ridge_ regressor

ridge regression model

svr_ poly polynomial SVR

svr_rbf radial-basis-function SVR
svr_ plain linear SVR

1step Model Description

Istep_ MLP_1_layer 1 layer MLP

Istep. MLP_ 2 layer 2 layer MLP

Istep_ MLP_ 3_ layer 3 layer MLP

1step_ linear_ regressor

linear regression model

1step_ ridge_ regressor

ridge regression model

1step_ svr_ poly

polynomial SVR

1step_svr_rbf

radial-basis-function SVR

Istep_ svr_ plain

linear SVR

hidden layers contain one node per feature being evaluated by the model. For example, a 2 layer
MLP evaluated on the GreenOracle feature set would have 14 input nodes, 14 nodes on the hidden
layer, and 1 node on the output layer.

Furthermore, the selection of appropriate MLP and RNN LSTM structures is further complicated
by neural network hyper parameters like number of nodes, number of layers, and activation functions.
Capacity of a model is associated with how much information the model can learn and store from the
training data. Capacity is associated with the number of edges, neurons, and whether or not the model
neurons contain memory cells. It is not clear if more or less capacity would help with the learning
task on the MLLP and our deep learning LSTM models. Too much capacity in a model can result in
over fitting, and too little capacity can lead to insufficient resources to capture the relationship from
a data set. Similarly, it is not clear in the case of LSTMs whether a linear or sigmoidal output layer
will produce better results. It has been found that linear outputs can model Gaussian distributions
and our physical measurements of the mobile devices often have Gaussian distributions [26]. So, we
evaluate several types of neural network structures to get a better understanding of the problem

which we are approaching. A list of the models is provided in Table 4.3.
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4.1.2.2 Model Comparison

We investigate how models perform when trained with each time step, and when we ignore time in
the data set by aggregating our time series into a single time step (step 6). This means, we have a
set of models which predict every instantaneous time step of a time series. The models use program
resource usage to predict energy consumption. We train models to predict, from a whole time series,
the total energy consumption of the application. Prior works evaluated performance using data sets
similar to the single time step models [16]. We also use the mean relative error as the loss function.
This is calculated by checking if the predicted total energy usage for an application is similar to the
observed total energy usage for the application.

Since, we use the same loss function in the instantaneous time step and single time step formats
of the data set, we are able to compare models trained on the separate contexts with one another
because they are evaluating the total predicted joules. It would not be possible to compare the error
of the per-time-window energy predictions of the time series models to the total energy predictions
of the Istep models. The loss function is given below, where Y denotes the energy observations
per-time-window of the time series in joules and Y denotes the energy predictions in joules for each

time step in a series.

The models which predict each time step of a given series will produce a normalized energy prediction,
we denormalize the prediction and denote it ¢, for each step of the series. Whereas, in the case
of the Istep models which take the whole time series and predict the total energy consumption,
in normalized joules for an application test run, there is only one predicted ¢ value which we
denormalize for evaluation. Furthermore, we test several different feature sets for comparison of our
model performance. We test a full feature set (80 features), which consists of all system calls and
process related features collected from the applications [5, 4]; a replica of the GreenOracle feature set
(14 features), which consists of a subset of the full feature set; a feature set based only on the system
calls (61 features); and a feature set based only on the process related features (19 features). The
GreenOracle model used linear methods to perform feature selection, whereas our stateful models
perform their own version of feature selection between features. So, if the full-feature set performs

remarkably better than the GreenOracle feature set, we would expect a non-linear relationship to



4 Modelling time-series of software energy consumption 42

Table 4.4: SVR Parameters
Parameter | Coefficients

Penalty [ 27°,27%,271,27,2°,2%, 97, 29,271,255
Gamma | 277°,277%,2711,279,277,275,275, 271,27, 9°
Degree 2

have been identified. We investigate the system call and process feature sets to determine if combining
the two feature sets improves the models accuracy.

We use 6-fold leave-one-out analysis on our 6 applications to train multiple instances of our
models (step 5). The data collected from each application is used to build a holdout fold. The models
are evaluated on the respective holdouts (step 6). We calculate the effect-size of a representative
sample from the training set and use it to train each SVM model. We perform 6-fold leave-one-out
analysis 4 times for the following feature sets mentioned above: full feature set, GreenOracle feature
set, process-only feature set, and the system-call-only feature set. This evaluation format was chosen
because it will explain if a particular model performs well for a given feature set and if a particular
model performs well for every feature set. As a result, in our evaluation we do not distinguish folds
from one another, we compare model performance by combining all of the folds for comparison of
each model.

For the SVR models [51] which we train, we perform parameter selection using 5-fold cross
validation on each fold. Table 4.4 shows the list of hyper parameters which we use for parameter
selection. The Gamma coefficients are used for radial basis and linear kernels, and the degree
coefficient is used for a polynomial kernel. SVRs are applied to the full and GreenOracle feature sets

only, as these are combined feature sets of the system-call-only and processor-only feature sets.

4.1.2.3 Time Series Model Comparison with Dynamic Time Warping

Dynamic Time Warping (DTW) is a common technique for determining how to align time-dependent
sequences with one another [47]. In other words, it is the minimum cost to transform one sequence
into the other. The alignment cost can also be viewed as the similarity between given time-dependent
sequences. We apply a Python implementation of the DTW algorithm from GitHub to calculate the
cost of aligning our approximated energy consumption costs, as predicted by our models, against the

observed energy consumption costs of running android applications [52]. The Python source code of
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the algorithm is provided in Listing 4.1. We apply the absolute distance function as dist(a, b) = |a— b|

in the program listing.

4.1.2.4 DTW implementation and visualization

The algorithm for calculating the optimal mutation sequence from one time series to another uses
dynamic programming. DTW uses a matrix to store the minimum cost mutation between two given
sequences, up to given time steps in the respective sequences, at each entry [z,y|. If we assume that
[,y] is a valid entry in the matrix, this position will store the minimum cost to mutate the 1st time
series t1[1..z] into the 2nd time series #2[1..y] — where the time series indices denote time steps up
from the start of the sequences up to the x and y time steps of the respective sequences. The next
paragraph goes through the code implementation in Python and discusses how the minimum cost
paths are calculated inside of the matrix.

In Listing 4.1, line 20 can be seen as calculating the distance between every time-based measurement
in the sequences being compared. Line 25 updates this matrix D1, of point-to-point costs, to now
store the minimum cumulative path cost of aligning the sequences up to points 7 and j, in the
respective sequences. Once the loop on line 23 has run to completion, the minimum cost path to
align the two sequences is stored in the matrix position D1/n, m] where n is the length of the input
sequence z and m is the length of the input sequence y. Line 25 can be interpretted as mutating the
2 input sequence into y by considering the points at x[i] and y[j] to be a minimal distance from one
another, incurring no mutation; z[i] and y[j+ 1] are closer than the formentioned path so y[j] becomes
ignored; or x[i + 1] and y[j] are the closest points in the iteration of the algorithm and z[i] becomes
ignored/deleted from the sequence x. Note, line 18 makes a copy by reference from D0 to D1, the
variables refer to the same matrix just different parts; this works because x and y are numpy arrays
and DO and D1 are numpy matrices. Visualizing how the DTW algorithm calculates the minimum
cost alignment seems simplest to understand by drawing/viewing the cumulative-alignment-cost
matrix (initialized on line 15 of Listing 4.1) and viewing how the algorithm compares nodes between
the sequences to figure out the best alignment cost (on line 25 of Listing 4.1).

Figure 4.3 shows the minimum cost path to mutate a predicted energy time series into an observed
energy time series. If the line blue line minimum cost path moves diagonally then the sequences
being aligned were similar at the given time steps and did not need to be modified. However, if the

blue line moves vertically, this means that the aligned sequence that is being generated used values
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from the observed data whereas horizontal movement of the blue line implies that the predicted
data was used to generate the mutated sequence. From this understanding, we can note that the
predictions and observations are differ interchangable until the coordinate region (750,800) where
the predicted data begins to differ from the observations more dramatically with a long horizontal
strech with mild incline and a long vertical strech with mild incline. The horizontal and veritcal

streches imply that neither time series was similar across these regions.

from numpy import array, zeros, argmin, inf, equal, ndim

from scipy.spatial.distance import cdist

def dtw(x, y, dist):
Computes Dynamic Time Warping (DIW) of two sequences.
:param array x: N1«M array
:param array y: N2xM array
:param func dist: distance used as cost measure
Returns the minimum distance, the cost matrix, the accumulated cost matrix, and
the wrap path.
assert len(x)
assert len(y)
r, ¢ = len(x), len(y)
DO = zeros((r + 1, ¢ + 1))
DO[0, 1:] = inf

inf

DO[1:, 0]
D1 = DO[1:, 1:] # view
for i in range(r):
for j in range(c):
DI[i, §] = dist(x[1], y[]])
C = D1.copy ()
for i in range(r):
for j in range(c):
Di[i, j] += min(DO[i, j], DO[i, j+1], DO[i+1, j])
if len(x)==I1:
waith — meen{Ten (5], maze(len ()
elif len(y) = 1:
path = range(len(x)), zeros(len(x))

else:
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path = _traceback (D0)
return D1[—1, —1] / sum(D1.shape), C, D1, path

def __traceback (D) :
i, j = array(D.shape) — 2
p, a=[i], []]
while ((i > 0) or (j > 0)):
tb = argmin ((D[i, j], D[i, j+1], D[i+1, j]))

if (tb = 0):
i—=1
j—=1

elif (tb = 1):
i —=1

else: # (tb = 2):
j—=1

p.insert (0, i)
q.insert (0, j)

return array (p), array(q)

Listing 4.1: DTW implementation from the Python pip2 module dtw under the GPLv3 license [52].
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0 200 400 600 800 1000 1200

Figure 4.3: Visualization of DTW path calculation as applied to an Android applications measured
energy consumption time series (on the X axis) and an LSTM’s prediction of the same application’s
energy consumption time series (on the Y axis.) The numeric values on the X and Y axis denote
the segment of time in the respective time series. e.g. 4 on the X axis is the 4th time slot of the
observed energy consumption representing the amount of energy consumed since the 4rd time slot was
measured. A magenta colour in the figure denotes a more expensive cost to mutate the predicted (Y
axis) time series into the observed (X axis) time series. The cyan colour denotes a cheaper mutation
between the given sequences. The dark line connecting the bottom-left to the top-right denotes the
minimum cost mutation path found with DTW.



47

Chapter 5

Evaluation

In this section, we discuss our evaluation of the models, listed in Table 4.3, that were created in the
previous chapter. We investigate if the models perform differently or similarly to one another when
predicting the total energy consumption of mobile applications. We perform a similar investigation
on the time series models to determine if they predict sequences that fit (follow the trends in) the
observed energy sequence values.

We provide our models with the time series of recorded software behavior for given software test
runs. The time series for the Istep models are summarized because the Istep models ignore the time
dimension of the series. Each of the multistep models will predict a series of energy predictions for
each of the input time steps. The models predict the energy consumption of each step of the time
series or cumulatively the energy consumption for the whole series.

Before it is possible to compare all of the models, we have to perform hyper parameter selection
to evaluate our SVR models. The SVR training parameter selections are shown in Table 5.1. We
generate SVR models for each of our feature sets because there might be non-linear relationships
which the RBF or polynomial kernel SVR could identify.

We want to know how our models compare against one another on the task of predicting normalized
joules from software behavior. We evaluate our models by denormalizing the joule predictions such
that we can compare energy usage across the lstep and time series models. With joules, we can
compare our prediction accuracy to the prior works [16].

We had numerous models and thus we wanted to see if models were significantly different in

their performance. To check whether or not our models produced normal distributions for the data
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Table 5.1: Selected SVR Pars

meters and Feature sets

Model Feature set Penalty | Gamma | Degree
linear Full 0.125 0.0125 -
rbf Full 2 8 -
polynomial Full 2048 - 2
linear GreenOracle | 0.03125 | 0.0714 -
rbf GreenOracle | 0.5 8 -
polynomial GreenOracle | 8 - 2
linear System call | 0.125 0.0125 -
rbf System call | 32 0.125 -
polynomial System call | 2048 - 2
linear Proc 2 0.0125 -
rbf Proc 128 0.5 -
polynomial Proc 128 - 2
1step_linear Full 0.125 0.0125 -
1step_ rbf Full 2 8 -
1step__polynomial | Full 2048 - 2
1step_ linear GreenOracle | 0.125 0.0714 -
1step_rbf GreenOracle | 0.5 8 -
1step_ polynomial | GreenOracle | 32 - 2
1step_linear System call 2 0.0125 -
1step_rbf System call | 2 0.125 -
1step_polynomial | System call | 2048 - 2
1step_linear Proc 8 0.0125 -
1step_rbf Proc 8192 0.0005 -
Istep_polynomial | Proc 512 - 2
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being predicted, we used the Anderson-Darling test. However, we found p-values below 2e—16 which
confirmed that none of the distributions under consideration are normal. Thus, non-parametric
tools are used to assess the relationships between the models. A Kruskal-Wallis test on each feature
set shows a p-value < 2e—16 which implies that the model type has a significant influence on the
output. Thus the models are mostly different from each other and we can show this with the pairwise
Wilcoxon test with Holm p-value correction for multiple comparisons. The Wilcoxon and Cliff’s
Delta methods do not make assumptions about the data distributions being evaluated and the two
tools can inform us whether or not two models perform significantly different from one another.

In the Figures 5.1a, 5.1b, 5.0c, 5.0d, 5.1a, 5.1b, 5.1c, and 5.1d, the text Istep denotes a model
which takes the total counts of different syscalls and other resource usage as the input and predicts
the total energy consumption for the test run. Models that do not include the Istep prefix predict
energy at each time step for the given time series of a given test.

Figure 5.1a, Figure 5.1b, Figure 5.0c, and Figure 5.0d show the evaluation of pairwise Wilcoxon
tests on each group of models as well as the evaluation of Cliff’s Delta. The color of a square shows
the Wilcoxon result where: white means the two models were not tested against one another for
their Wilcoxon p-values (this is due to the compared models being the same model or the compared
models are already compared on the other side of the grid), black (ggg) means a p-value above or
equal to 0.05, and grey (=) means a p-value less than 0.05. A p-value less than 0.05 means that two
given models are significantly different from one another as shown by the grey squares. Most models
were different from each other, as there were few black squares. The number on the square identifies
the Cliff’s Delta estimate of how different the two models under comparison are. A number close to
0 means that the models are very similar, whereas —1 or 1 mean that the models predict different
intervals of joules from one another. Models which predict different intervals from each other can be
compared to see if one creates stronger results than the other. We compare the models performance
against each other using their total energy prediction accuracy [16]. Figures 5.4a, 5.4b, 5.3c, and
5.3d show analogous pairwise Wilcoxon tests and Cliff’s Delta evaluation of the time series model
DTW alignment costs using absolute distance; these figures allow us to assess which models fit the
trends of the data the best.

Figures demonstrate that the models can predict software energy use and are mostly different from
each other we want to evaluate the performance of each model. We show box plots, ordered by the

mean total joule prediction error for each model, to illustrate the difference in performance between
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Figure 5.0: Pairwise Wilcoxon and Cliff’s Delta of energy models under 4 feature sets. A
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denotes

a significant difference and ggg denotes no-significant difference using Wilcoxon t-test with Holm
correction. Note these are the lower triangle of comparisons.
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models. Figure 5.1a, Figure 5.1b, Figure 5.1c, and Figure 5.1d show box plots of model predictions
using different feature sets. To generate the values for each box plot, the model is evaluated on how
well it predicts the total energy consumption for each test run. We show the combined results of
the Istep models and the time series models, in terms of relative error, of each model trained on a
given fold predicting the respective holdout set. Note in some of figures that the models boxplots are
missing, such as lasso regression or 3 layer MLP, because the models have huge cumulative error and
would not fit within the domain of the plot. We calculate the mean relative joule prediction error for

the total energy consumption using the following formula for the time series models:

Where n is the number of time steps, a; is the predicted energy consumption at timestep 4, and b;
is the observed energy consumption at time i. For the 1step models we use: L;H where a is the
predicted energy consumption for a model, and b is the total observed energy consumption of a
software test.

We also present box plots ordered by the mean relative joule prediction error for each time series
model. The mean relative joule prediction error shows how well the time series models performed
when predicting each time slot of the time series energy consumption. Figure 5.2a, Figure 5.2b,
Figure 5.2c, and Figure 5.2d show the timeslot relative error box plots for each of the feature sets

under evaluation. We use the following formula to calculate the mean relative joule prediction error

per time step:
 |ai — bi|
- h/m
i=1 v

Where n is the number of time steps, a; is the predicted energy consumption at timestep 4, and b; is
the observed energy consumption at timestep 1.

The subfigures of Figure 5.1 explain the total energy prediction error and the subfigures of Figure
5.2 explain the energy prediction error for each time slot of the time series. However, neither figure
explains how well the time series models predict the trends of the software test runs such as when
energy consumption is increasing over a period of time or decreasing. Therefore, we evaluate the
time series models using Dynamic Time Warping. We calculate the warping distance between the

observed energy usage of a time series and the predicted energy consumption. Figure 5.3a, Figure
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5.3b, Figure 5.3c, and Figure 5.3d show boxplots of the time series model performance under dynamic
time warping. Figures 5.4a, 5.4b, 5.3c, and 5.3d show comparisons of the time series models under a

Pairwise Wilcoxon comparison and the Pairwise Cliff’s Delta values.
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Figure 5.3: How well does our sequence of predicted energy values fit the curve of the observered
energy values? We provide the alignment costs of our predictions against the observations with box

plots under various feature sets.

The box plots compare timeseries sequence alignment between

predicted and observed values using the dynamic time warping cost of mutating our predict sequence

into the observed sequence, based on the absolute distance between sequence values.
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(d) Processor feature set

Figure 5.3: Timeseries Models evaluated with DTW with absolute distance alignment cost under
various feature sets with Pairwise Wilcoxon and Cliff’s Delta. A denotes a significant difference
and ggg denotes no-significant difference using Wilcoxon t-test with Holm correction. Note these are
the lower triangle of comparisons.
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Chapter 6

Research Questions and Discussion

In this section we answer our 5 research questions:
e« RQI1: How well do time series models perform when predicting total energy consumption?

¢ RQ2: Do time series models with built-in state perform better than time series models without

state when predicting energy consumption?

e RQ3: Energy prediction models can be trained with different feature sets. How does performance

change when using them individually versus together?

e RQ4: Do shallow multi-layer-perceptrons perform similarly to existing stateless models such as

those based on linear regression?

¢ RQ5: How do the time series model predictions fit the shape of the observed energy consumption

data?
and our findings:

e RQ1: Model performance depends on the feature set but timeseries models do slightly better

than models built specifically for predicting total energy consumption.

o RQ2: We find that stateful models are better than stateless models when predicting time series

of energy consumption.

+ RQ3: We found that using a combination of CPU and procfs features worked better than using

the CPU or procfs features individually.
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e« RQ4: No. MLP models perform worse than existing linear models.

e RQ5: The stateful time series models fit the shape of observed energy consumption much better
than the stateless models. Further work could be invested developing these models to achieve

better fits.

6.1 RQ1: How well do time series models perform when pre-
dicting total energy consumption?

Time series models often perform just as well or better than time-summarized/1step models. We
are motivated to answer RQ1 partially due to the idea that the time series models could have a
large cumulative error from miss-predicting many data points in a time series compared to the
total energy prediction model that only has to train to predict a single data point. We evaluated
whether or not any of the models perform similarly by checking their relative prediction error of
total energy consumption for given software test runs. Our Wilcoxon and Kruskal-Wallis results
suggest that each of our models perform differently. We plotted the relative errors of evaluation
for each model predicting energy consumption sorted by mean performance in Figure 5.1a, Figure
5.1b, Figure 5.1c, and Figure 5.1d. These figures show that the time series and 1step models perform
similarly to each other. For example, as shown in Figure 5.1a there is no well defined partition which
divides the models into time series or Istep models. Furthermore, Figure 5.1b shows that the time
series and time-summarized models are competitive with one another. As, the Istep ridge regressor
model can outperform several time series models, but it is outperformed by the time series Istm2sigm
model. The Istep ridge regressor model is our baseline for comparison because it represents the
state-of-the-art software energy prediction model GreenOracle [16]. It is surprising that 4 of the
time-summarized models outperform both the Istep ridge regressor and the lstm2sigm models as
outlined in Figure 5.1b. The Wilcoxon rank sum test shows that there is a significant difference
(p < 2.2e — 16), one shot models have slightly more mean relative error than timeseries models (95%
CI [0.0342,0.0400]), but Cliff’s delta (0.119) suggests this 3% to 4% difference is negligible. Model

performance depends on the feature set but timeseries models do slightly better.
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6.2 RQ2: Do time series models with built-in state perform
better than time series models without state when pre-
dicting energy consumption?

The answer is Yes. Figure 5.1a and Figure 5.1b show that the median error of the LSTM models is
very low for most of the models. In the Figure 5.1a, 4 of the top 5 models are LSTMs. In Figure 5.1b,
with GreenOracle feature set, 1 of the top 5 models is an LSTM. The best LSTM-based model in
Figure 5.1b has a median performance of 12% error. Prior work showed that a median performance
of roughly 14% was expected for 6 mobile applications [16]. Therefore, we conclude that the LSTM
models are competitive with the state-of-the-art. The stateful models are outperformed by 1step
models, or by lasso and ridge regression when considering fewer features since the LSTMs are unable
to do their own feature selection. On the full feature set, the Wilcoxon rank sum test shows that
there is a significant difference (p < 2.2e — 16), stateless models have more mean relative error than
stateful LSTM models (95% CI [0.101,0.108]), and a medium effect size (Clift’s delta 0.376).

We also select two random examples to show how our models perform in predicting the actual
energy time series. Do they maintain similar shape and scale as the ground truths? Shown in Figure
4.2b is a stateless time series SVR model predicting the denormalized energy consumption of a given
test run. This model’s predictions do not fit the observed data well. On the other hand Figure 4.2a
shows a stateful-time series LSTM model predicting the energy consumption of a given test run. The
LSTM is capable of achieving a better fit to the shape of the observed data with its denormalized
energy predictions. The SVR model does well in the aggregate rather than shape. Whereas, the
LSTM model is capable of predicting the fit in some runs, but can miss-predict when the energy
consumption of an application is going to change significantly. Figure 4.2a demonstrates that a
developer using the Istm2sigm model could predict their energy consumption for the given test run
and attribute the energy consumption to a part of that test run.

Figure 5.2a, Figure 5.2b, Figure 5.2c, and Figure 5.2d show the mean relative energy prediction
error per time slot. In all the feature sets, except the syscall feature set, the stateful models perform
better when predicting the energy consumption of each time slot than stateless models. Figure 5.3a,
Figure 5.3b, Figure 5.3c, and Figure 5.3d show the dynamic time warping distances of the predicted

and observed time series models. These figures show that the LSTM models have better relative
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performance when predicting the shape of the time series compared to the stateless models. The
per time slot relative error figures and the dynamic time warping figures support the idea that the
stateful time series models perform better than the stateless time series models when predicting
energy consumption. Both sets of figures provide evidence that the stateful models are better at

predicting the shapes of the timeseries under test compared to the stateless models.

6.3 RQ3: Energy prediction models can be trained with dif-
ferent feature sets. How does performance change when
using them individually versus together?

Models with multiple kinds of features tend to perform better. Two sources of software behaviour are
collected from strace and process summary information from procfs throughout the software tests.
Figure 5.1c shows the performance of models trained only using the collected system call features and
Figure 5.1d shows the performance of models only trained on the procfs features. In these figures it
is clear that most of the models have a median error near 20%. Whereas, in Figure 5.1b and Figure
5.1a most of the models have median errors below 20%. The Wilcoxon rank sum test shows that
there is a significant difference (p < 2.2e — 16), models trained on smaller feature sets tend to have
more mean relative error than the full feature set models (95% CI [0.00712,0.0103]) with negligible
effect size (Cliff’s delta 0.0289). When we compare procfs features to a full feature set the model
behave significantly differently (95% CI [0.0438,0.0489]) with nearly a 4.5% difference, although the
effect size is negligible (Cliff’s Delta 0.131). This suggests there is a difference but across all models
it is a 1% difference or less. The full set of features perform better than any subset. CPU/procfs

features alone are not enough. own.
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6.4 RQ4: Do shallow multi-layer-perceptrons perform simi-
larly to existing stateless models such as those based on
linear regression?

We expected that the single and shallow layer MLP models would perform similarly to the linear
or ridge regression models. However, in most cases the MLP models performed very poorly on
the learning task. Lasso and ridge regression models performed well on the system-call only and
process-only feature sets. The Wilcoxon rank sum test shows that there is a significant difference
(p < 2.2e — 16), MLP models have more mean relative error than linear models (95% CI [0.377,0.397])
with a medium effect size (Cliff’s ¢ 0.387).

6.5 RQ5: How do the time series model predictions fit the
shape of the observed energy consumption data?

An additional metric used to measure the quality of the time series model predictions, beyond total
energy prediction, is whether the predictions follow the same trends as the observed values over time.
To measure how well our predictions fit the trends of the energy consumption in the time series,
we calculate how much it costs to align our predictions with the observed values. Calculating the
alignment cost of our predictions with the observations is accomplished by using the dynamic time
warping algorithm with an absolute distance measure.

Figures 5.3a, 5.3b, 5.3c, and 5.3d show the log-scaled DTW alignment costs for our time series
models under each of our studied feature sets. In each of the figures, the stateful time series models
have the best scores. It is notable that in Figure 5.3a that 10 of the 12 models have similar medians
and overlapping first and third quartiles. Whereas, in the other 3 Figures the LSTM based models
have lower alignment costs and do not have overlapping quartiles with 6 or more of the 12 models.
Therefore, the other 3 Figures show that the LSTM models perform significantly better than the half
of the tested timeseries model.

Figures 5.4a, 5.4b, 5.3c, and 5.3d show that the LSTM models achieve DTW alignment costs

similar to each other under the Cliff’s Delta evaluation. The figures also show that there is at least
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1 pair of models in each set of LSTMs that are not significantly different from one another under
the Wilcoxon test. The LSTM models appear to be significantly different than the nonLSTM based
models included in the evaluation. To confirm this we calculate 95% confidence intervals on the mean
alignment cost differences of the LSTM and non-LSTM models for each feature set: Full feature
set (95% CI [-23.87574, -15.25068]); GreenOracle feature set (95% CI[-67.14663, -42.83967]); Syscall
feature set (95% CI[-9.070578, -7.247535]); Proc feature set (95% CI[-49.13488, -38.52599]).

Figure 4.2a shows an example of a stateful timeseries model predicting the energy consumption of
a software test based on the GreenOracle feature set. Figure 4.2b shows another timeseries prediction
based on a stateless model trained on the GreenOracle feature set. The predictions in Figure 4.2a
are more similar to the observation, and would achieve a better DTW cost, than the predictions in

Figure 4.2b.

6.6 Threats to Validity

Construct validity is threatened by energy and software behaviour measurements. Internal validity
is threatened by timeseries alignment, synchronization, and interpolation. External validity is
threatened by the small number of applications used to produce the models (5 apps per fold, 6 in
total), this is balanced by using multiple versions of each application.

The external validity is also threatened by the software tests used to exercise the applications for
machine learning feature and label collection. The threat is caused from researchers generating tests
that would represent how an end user would interact with the application. Because, the tests did not
study or validate how a user would interact with the application. Therefore, these representative
tests are not gauranteed to represent a users behaviour and may introduce bias into the model
training. Chowdhury et al. have addressed this problem in work completed after our experiments
with GreenScaler [14]. Chowdhury’s work provides an unbiased method for generating exploratory
Android software tests that exercise energy consuming components of the applications under test.

The GreenMiner does not suffer from the threat of battery degredation, because it uses power

supplies and does not use batteries in its mobile devices.
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Chapter 7

Conclusion

In summary, we explored software energy consumption prediction using time series regression models.
Our work evaluated and compared several existing state of the art machine learning based energy
prediction methods. Deep learning based models based on LSTMs did well but often simpler linear
regression models performed just as well. LSTM based models had best median relative error on the
full feature set.

Time series based models were accurate per step and cumulatively across the whole test run.
We found that machine learning based time series models and 1step models perform similarly when
predicting the total energy consumption of a software test run. We found evidence that stateful
time series models like LSTMs who maintained state/memory about the past, predicted energy
consumption better than stateless models, like SVR. We found that shallow MLPs performed poorly
in comparison to the lasso and ridge regression models when predicting energy consumption for a
given test run. We also found that LSTM model predictions fit the shape of observations better than
other models based on model comparison using the alignment cost of dynamic time warping with
an absolute distance metric; this shows that the LSTM models predicted more representative time
series than the other models we investigated.

Thus if a trained model is distributed to developers !, tools need only to record output strace and
procfs output in order to estimate the energy consumption of their application as it runs without
the need for external hardware measurement. Depending on the complexity of the application, the

developer can apply the trained models to predict their applications energy consumption over time.

IDownload our models here https://archive.org/details/deep_ green.tar
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The developer can then look up what code ran in each predicted energy time slot with the associated
strace log that was collected to run the model. This enables the developer to associate the energy

consumption of their software with the code that ran.

7.1 Future Work

Android developers have access to Android device emulators. Accessibility to emulators allows
developers to test and develop their code. Because of the accessibility to Android emulators, it
would be interesting to determine whether or not our generated time series models can run on
emulators to predict Android application energy consumption. A researcher would have to check if
Android emulators impose limitations on the syscalls that an encapsulated application can generate,
as well the emulator would have to be checked if it simulates procfs or imposes limitations on the
process file system. The ability to predict energy consumption with a device emulator would permit
developers to set software energy consumption development goals and to continuously measure their
software’s energy consumption as it is developed with little to no extra development cost. Further
motivation exists to use emulators to predict software energy consumption due to the costly nature of
hardware mobile devices; hardware energy measurement devices; and energy measurement expertise
to configure the mobile devices with measurement devices.

New Android devices are introduced annually and device users can use their device for multiple
years or purchase a new one as needed. Developers also have to account for multiple types of devices
as they churn out new software updates to accomodate new screens, faster processors, and other
hardware upgrades. Therefore, constructing energy models that work across multiple hardware
devices would be interesting. Since, developers need to ensure that their new software developed
features do not cause energy bugs on the different platforms that their software is going to run.
The theoretical benefit to this work would be that we could model the energy consumption various
hardware components across different devices. We could also emulate hardware components with
component-specific energy models to determine how much energy may be spent with given Android
programs.

The timeseries models constructed in our work were limited by the number of times the testbed
could sample the energy consumption of the software running on devices. The sampling rate of

energy consumption limits how accurately our trained models can predict the energy consumption of
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the running software. If we were able to upgrade the testbed used to sample energy consumption we
could construct software models that are more accurate at predicting software energy consumption.
For example, if we can measure energy consumption at a 30 Hz, then we can only predict energy
consumption for 0.03 seconds time steps — therefore, if software method ran in 0.01 seconds we could
not determine the energy consumption of this specific routine. Instead, we would only be able to
determine the total energy consumption of all software that ran within that 0.03 second period. From
the example, we can see that having a high precision energy consumption sampling device would
allow use to determine the energy consumption of software methods. e.g. There is currently a 20GHz
oscilliscope that is designed to measure computer processors and it supports 4 input channels. Such
a device would enable us to construct software models that can predict the energy consumption of
high-level Android functions as well as low-level Android byte-code. Being able to see what code is
using how much energy would help developers plan how to better optimize their code to meet energy
consumption constraints.

The Android RunTime (ART) environment adapts itself to how a user is interacting with their
software. For instance, functions can be optimized at run time to improve the runtime speed of code
that is run more frequently. However, this heuristic is unable to account for the runtime energy
consumption of the functions that are running on the device. Therefore, energy expensive functions
that are run less frequently may not be optimized to save battery life on the user’s device. It would
be interesting to determine if integrating runtime energy prediction LSTM models with ART allows
device users to save energy while interacting with their devices. If integrating energy consumption
awareness into ART enable software to be adapted/optimized more efficiently to users then this

would give device users better energy savings and cost developers little.
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