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Abstract

Herein we examine aspects of field theoretic limits of string theory. 

First, we explore at the field-theoretical level the role of the dynamical 

dilaton in the vortices associated with the spontaneous breaking of a 

pseudo-anomalous U (l) symmetry present in certain heterotic string 

compactifications. Treating the anomaly as a controlled perturba­

tion, we find that the four-dimensional dilaton unavoidably diverges 

at the vortex core, which signals the presence of a strong-coupling 

regime, the failure of the classical effective theory, and given the role 

of the dilaton in string theory, implies that such objects are intrinsi­

cally quantum mechanical.

We next examine the quantum dynamics of spontaneous symmetry 

breaking in the context of noncommutative field theories, which nat­

urally arise on the world-volumes of D-branes in string theory, in 

the presence of a constant Kalb-Ramond two-form background. We 

first study the noncommutative linear sigma model with a global 

O(N) symmetry in the broken phase, where we find conflicts between 

renormalization and Goldstone symmetry realization leading to the 

violation of Goldstone’s theorem at the quantum level for N>2. To
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investigate possible group dependence, we compare noncommutative 

linear sigma models with a U(N) global symmetry, where we find 

that due to purely noncommutative commutator interactions consis­

tent only with U(N) symmetry, no violation of Goldstone’s theorem 

occurs at one-loop for potentials consistent with a possible noncom­

mutative gauging of the model. To examine possible representation 

dependence, we repeat the calculations for the adjoint representation 

U(2) and 0(4) global models, and find that the former is consistent 

with Goldstone's theorem at one-loop if we only include trace in­

variants consistent with noncommutative gauge invariance, while the 

latter exhibits violations of the kind seen for the fundamental repre­

sentation 0(N) model for N>2. These results are corroborated with 

string theory arguments, four-point amplitudes, and gauge theory 

calculations.
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1

Chapter 1 

Introduction

1.1 W hy string theory?

Other than the rhetorical “Why not", string theory is the only, and therefore best, 

candidate humanity possesses for a consistent unification of the fundamental 

interactions including gravity, and quantum mechanics. The more one delves 

into this beautiful and vast framework, the more one acquires the impression 

that we are discovering structure and not merely inventing it as mathematical 

fancy: the self-consistencies, the so-called “string miracles", the lack of any free 

dimensionless parameters, and even the relatively recent revelation that string 

theon.- is not even 'merely' a theory of strings, provocatively suggest the presence 

of a unique and powerful structure.

However, insofar as physics is an empirical science, we must eventually make 

contact with the structures that underpin our less tentative understanding of 

the universe (such as the standard model of particle physics), try to explain

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 2

the puzzles these frameworks have left unanswered, and hopefully make new 

predictions that are experimentally testable; a formidable task indeed. The 

central criticism of string theory has traditionally been that it does not make 

contact with experiment, or uniquely single out our low energy 'approximations’ 

to the universe. Or. as Feynman articulated in indirect reference to the massive 

space of possible vacua and hence the pragmatic incalculability of the theory, 

“I don't like that they're not calculating anything”[1]. However, the principal 

problem with string theory lies not in that it is a theory which naturally lives near 

the Planck scale (and so probably forever beyond direct experimental access), but 

in that we do not understand what conceptual paradigms underlie it. or even 

what the correct fundamental degrees of freedom are. As Polchinski eloquently 

summarized. “String theory is smarter than we are. It knows w-hat spacetime is, 

and we don’t, and we have to figure out how to ask it" [2]. Furthermore, while 

in principle everything about the low-energy world is fixed by the theory, we do 

not understand how the dynamics of the theory selects out the vacuum.

These issues stem primarily from the fact that string theory was discovered 

historically through a first-quantized, perturbative formulation, and until we have 

a nonperturbative definition of the theory, we really cannot hope to accomplish 

the task discussed above, or answer Feynman’s objection. While the discovery of 

such things as string dualities. D-branes. and the AdS-CFT correspondence has 

significantly advanced our understanding of nonperturbative string dynamics, we 

cannot as yet answer the question “What is string theory?” . To summarize, the 

main problems in string theory are theoretical, and until we can solve them, we 

cannot address phenomenological or experimental issues.

Nonetheless, since string theories are a priori capable of making contact with 

low-energy physics, and predicting new kinds of phenomena through their field-
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CHAPTER 1. INTRODUCTION 3

theoretical limits, we can view some the issues discussed above as. in some sense, 

ones of uniqueness: because we do not know how string theory dynamically 

selects the vacuum, we cannot make unique or specific predictions, but we can 

still build models from string theory, make generalized predictions, and suggest 

new phenomena that are falsifiable through experiment. In this thesis we will 

examine certain aspects of such field-theoretical limits of string theories.

1.2 Why this thesis?

To illustrate the argument just considered, as well the path from string theory to 

field theoretic models, consider the problems we will study in this thesis. First, 

we will examine the role of the dilaton in anomalous L'(l) vortices. Superstring 

theories naturally reside in ten spacetime dimensions, so we must compactify six 

spacelike dimensions in order to make contact with a rather obvious phenomeno­

logical fact. Certain classes of compactifications of string theory possess a U(l) 

symmetry with apparently anomalous m atter content. Since this anomaly de­

pends only on the massless content of the theory, and the massive states in string 

theory are on order of the Planck mass, we should be able to analyze the struc­

ture from a field-theoretic limit of the corresponding string theory involving only 

massless modes of the string. Furthermore, since the underlying string theory is 

perturbativelv consistent, there should be a stringy mechanism to cancel such an 

anomaly. Indeed, the famous Green-Schwarz anomaly cancellation mechanism 

involving the two-form Kalb-Ramond field [3], has a four-dimensional remnant 

that cancels the anomaly. However, the mechanism generates a supersymmetry 

breaking Fayet-Illipolous D-term at one-loop in the string expansion, and poten­

tially destabilizes the vacuum [4]. In turn, it is often possible to assign a scalar
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CHAPTER 1. INTRODUCTION 4

charged under this U(l) symmetry a vacuum expectation value (VEV) to cancel 

the D-term, thereby restoring supersvmmetry and spontaneously breaking the 

l '( l )  symmetry in a process called vacuum restabilization. Now on the other 

hand, generically breaking a U(l) symmetry can lead to topologically stable de­

fects known as vortices, or in a cosmological setting, cosmic strings. In this 

scenario, the usual Higgs and gauge fields of the system are also coupled to the 

dilaton. and model-independent axion originating from the universal superfield 

multiplet in string theory, and in the second chapter we will investigate the con­

sequences of such additional couplings, focusing in particular upon the dynamics 

of the dilaton.

The second component of this thesis deals with a very different field-theoretical 

limit of string theory, but which also directly involves the two-form Kalb-Ramond 

field. One of the deepest aspects of string theory is that spacetime itself is not 

fundamental, but rather emerges from the two-dimensional conformal field theory 

of the worldsheet that propagating strings map out; specifically the coordinates 

of spacetime become bosonic fields living on the worldsheet. Thus one expects 

that the properties of spacetime are predicted by string theory and in fact, in 

certain limits, spacetime itself is predicted to be noncommutative. In particu­

lar, in the presence of D-branes (nonperturbative, dynamical, soiitonic objects 

on which open strings can end) and a constant two-form Kalb-Ramond back­

ground, the conformal field theory becomes topological in a certain scaling limit, 

and the associated correlators between the fields corresponding to the embed­

ding coordinates now imply the associated spacetime is noncommutative. This 

limit is a field-theoretical one, which suggests the study of noncommutative field 

theories with the structure inherited from string theory. Surprising results are 

found for even the simplest of scalar field theories where, despite the induced 

infinite nonlocality, the resultant theory is formally renormalizable (with modi­
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CHAPTER 1. INTRODUCTION 5

fied combinatorics), the potentially dangerous nonlocal divergences regulated by 

the noncommutativity of spacetime. However, this regulator couples the external 

momenta of a given amplitude to the dimensionful noncommutative parameter in 

such a way that after the ultraviolet cutoff is removed, new infrared divergences 

in the external momenta are introduced, effectively modifying the infrared part 

of the spectrum. This result, plus the modified combinatorics, strongly sug­

gest we study spontaneous symmetry breaking in this context where massless 

Goldstone modes arise in the commutative case, and whose consistent renor­

malization depends on delicate graphwise cancellations. These studies are the 

subject of chapters 3 and 4.

In the remainder of this chapter, we will develop the minimal formalism required 

to demonstrate how the field-theoretic models we study arise from string theory. 

Because of the massive scope of the material involved (by a  crude estimate, there 

are more than twenty thousand papers on the subject of string theory), we will 

be extremely cursory in the treatment, focusing on only what we need later. Our 

approach primarily follows that of the textbooks by Polchinski [5]. Other useful 

general references include [6]-[10].

1.3 String and conformal theory basics

In this section we will discuss the gauge fixed worldsheet action for the string, 

its first quantization and basic conformal field theory techniques, emphasizing 

only the aspects we need for later.
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CHAPTER 1. INTRODUCTION

1.3.1 The Polyakov action and its sym m etries

6

Consider first the classical action for a relativistic point particle, defined by its 

spacetime coordinate positions A'M, which map out a world-line parametrized by 

r  as it propagates through spacetime. The natural action

proportional to the invariant length of the worldline, is manifestly r  reparamet- 

rization and Poincare invariant but is difficult to quantize because of the presence 

of the square root. Consider the addition of an auxiliary world-line metric r/(r). 

and the action

By varying with respect to t j . and then eliminating it from the action, we recover 

(1.1). which implies the two forms are classically equivalent. The advantage of 

the latter is that it is easy to quantize.

Now consider the analogous construction for the propagation of a string in 

D spacetime dimensions, which now maps out a worldsheet parametrized by 

(a. t ) =  (a1, a 2). Requiring again that the action depends only on the spacetime 

embedding, and not on a particular parametrization, the natural (Nambu-Goto) 

action

where a, b take the values a  or r, is proportional to the area of the world- 

sheet. Analogous to the point particle case, by introducing an auxiliary (Eu­

clidean) metric on the worldsheet, g^,  we can introduce the classically equivalent 

Polyakov action

( 1. 1)

( 1 .2 )

(1.3)

Sp[X.g] = ^  f MdTdogll2gabdaX»dbX l l , (1.4)
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CHAPTER 1. INTRODUCTION

which again is amenable to quantization. The symmetries of the action are:

a) Worldsheet reparametrization (or diffeomorphism) invariance

A ""(r> ') =  Ar/1(r, a )

=  9ab{T' G) (L5)

for coordinate transformations <7/a(r, a).

b) local Wevl invariance

A =  A^(r,<r)

9ab(T-<7) = exp(2oi(T,a))gab(T,a) (1.6)

for arbitrary lj(t. cr).

c) D-dimensional Poincare invariance

X ' ^ T . c r )  =  A +

a'abiuv) =  gab{r.(r). (1.7)

The parameter a' in (1.4) with dimensions (Mass)~2, is called the Regge slope, 

and is proportional to the inverse tension of the string. Its significance will

be seen later. The Weyl symmetry, unique to the string (as opposed to the

membrane. ...) because of the elementary identity det(aA) = andet(.4) applied 

to g x̂ 2gab , is central to string physics. In particular, we have three independent 

worldsheet metric components, and three local symmetries (two diffeomorphism, 

and one Weyl) with which to put the metric into any canonical form we wish 

(say Sab. the unit gauge), at least locally. Explicitly, using the Weyl transform 

of the worldsheet Ricci scalar which is easily shown to be

gn/2R,{2) = gl/2(R {2) _  2V2u ), (1.8)
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CHAPTER 1. INTRODUCTION 8

we can set R ,(2'1 to zero by locally solving the potential problem 2V 2a; =  R^K But 

in two dimensions, the vanishing of the Ricci scalar implies the vanishing of the 

Riemann tensor because the symmetries of the latter imply R ^ d  = 1 /2(gac9bd -  

9ad9bc)# (2) • Thus the metric is (locally) flat, and so diffeomorphically equivalent 

to the unit metric.

There exist diff x Wevl transformations that leave the metric in unit gauge, and 

so are not fixed by our gauge choice: the conformal transformations. Introduc­

ing a complex coordinate on the worldsheet, 2 =  cr1 +  ia2 , so th a t ds2 =  dzdz, 

consider holomorphic transformations of 2 . 2 ' =  f (z ) .  and a general Weyl trans­

form. under which the metric transforms as dsn =  exp(2u)\d:f \ ~ 2dz'dz'. Thus 

by choosing u  =  log \d:f\ ,  we remain in the unit gauge. While most of this free­

dom is eaten when one considers the worldsheet globally, locally this conformal 

invariance gives rise to conserved currents and Ward identities which are crucial 

to the consistency of the theory, and the subject of the next subsection.

Incidentally (1.8) also shows that the two-dimensional Einstein-Hilbert action

v =  f  /  (1.9)47r Jm

possesses the symmetries of the Polyakov action, since its variation is a total 

derivative [using in addition gl/2V ava =  da(gl 2̂va)). and so we must include 

it in the theory. This term is a topological invariant, since the metric field 

equation =  (l/2 )^a*i2(2) automatically holds in two dimensions, implying 

that (1.9) is invariant under continuous metric deformations. In fact, it is the 

Euler characteristic of the worldsheet. Thus, when we quantize, it has the effect of 

relatively weighting the path integral by e-A* with respect to worldsheet topology. 

This leads directly to the first quantized expansion of string theory as a sum over 

worldsheets of different topologies.
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CHAPTER 1. INTRODUCTION

1.3.2 Operator product expansions

9

Assume now that we gauge fix the action (1.4) to the form

5  =  2 / d2zdx>lBxv  (L1°)

where we have expressed it in terms of complex coordinates z =  a x +  itr2, z = 

cr1 — ia2, and canonical derivatives d. = d = {di — id-2) /2, d~ =  8  =  {d\ +  i^ ) /2  

with dzz =  1. etc. Vectors va are similarly defined, vz =  vl+iv2, v2 = v l —iv2 and 

are lowered with the metric with components gzz = gZz = 0 and gzz = gzz = 1/2, 

corresponding to the unit metric in the a" coordinates. Finally, an oft used result 

is the divergence or Green’s theorem in complex coordinates

[  d2z(dzv: + dzv2) = i (v2dz — v2dz). (1-11)
JR. J d R

The field equation derived from (1.10) is simply

aa.Y"(2,f) =  0? (1.12)

which implies that d X ,l{z) and 8X^(2)  are respectively holomorphic and anti- 

holomorphic. as the notation suggests. Quantum mechanical expectation values 

for operators are defined as usual by the path integral

W ] )  =  I [d.Y] exp(-S)^[.Y], (1.13)

and are not normalized with respect to (1). From the spacetime perspective, this 

makes it manifest that we are doing first quantized string theory', quantizing a

single string, and not string field theory’. From the worldsheet perspective, the

X*1 are quantum fields living on the worldsheet, and the path integral defines a 

two-dimensional quantum (and conformal) field theory.

In the quantum theory, the field equation is encoded as an operator equation, 

or equivalently as the expectation value ( d d X .. .^ =  0, where the dots denote
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insertions away from c. More generally

0 - hdX
=  I T  { ? ( - - - z \ i - z ' ) )  + ± 19 ,d t (X ‘‘( ; . z )X ' ' ( z ' . z ' ) ) .  (1.14)\ / not'

so that d:d=X^(z. f)A'i/(^/. z') = - i r a ' ^ S ^ i z  — z ' .z  — z') holds as an operator 

equation. Solving this Green's function motivates the definition of conformal 

normal ordering as

: X » ( z . z ) :  = X»(z ,z )

:.Y *(s,.f,).V (st ,J»): = ;,).Y-(z2 . ; 3 ) + log IM 2- (1.15)

with ztJ =  Zi — Zj, so that the property

dxBx : X ^ z u z2) := 0 (1.16)

holds as a consequence of dc?log|;:|2 = 2i~62(z.z).  which in turn follows from

(1.11). This definition is most elegantly extended to arbitrary numbers of fields

through the definition

:^[.Y]: =  e x p ^ / r f W 22log|;i2|2^ ^ ^ - ^ ) n V ]

= exp(.4)JF[A]. (1.17)

which has the effect of summing over all ways of choosing one or more pairs of 

fields inside the product and replacing each with the subtraction ^ r f ^ 3 log \z,j\2. 

with the factorial from the exponential cancelling the number of ways the func­

tional derivatives can act. This is invertible in the obvious way. where instead 

we replace each pair with the contraction (propagator). From this definition, 

we arrive at the extremely useful expression for the product of normal ordered 

operators in terms of the normal ordering of the product:

=  exp (-B ) exp(.4).F£ (1-18)
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CHAPTER 1. INTRODUCTION 11

where the functional derivatives pick up one field from each of T  and Q. This 

amounts to the Wick expansion, as its expansion generates all cross-contractions, 

and is most easily established inductively on the order of the exponential expan­

sion using the basic relation A(TQ)  =  ( A ^ Q  +  ? { AQ) +  B(TQ).

The harmonicity of the two-point definition reflected by (1.16) extends pointwise 

to N-products of As. The point of these definitions is that they render the 

corresponding operator products finite, so we can then Taylor expand inside the 

normal ordering as necessary, thereby generating the so-called operator product 

expansion (OPE). This states that the product of local operators can be expanded 

in a basis of of local operators, with c-number coefficient functions that possibly 

diverge as the relative position of the two operators vanishes. Schematically

( A i f a i W j M  ■■■} = E 4 ( ffi -  ( A M  • • •), (1.19)
k

with the other operators outside of \a\ — a^\ = r from cr2. These expansions 

are used as asymptotic expansions, the singularity structure encoding the basic 

information of the quantum theory, and as we will see a little later, when the 

operators are conserved currents, the algebra of the associated charges as well.

Before proceeding, we first apply (1.18) to determine the OPE of the product of 

two exponential operators in anticipation of later use. Thus with F  =  exp(iA:1 • 

A'(z, z)), and Q =  exp(iA:2 ■ A'(0,0)), applying (1.18) directly yields

. gifci-A(z,z) . . e:t2-A'(o,o) log |z|2) : e , k l 'x ^z ' ^ e tk2'x 0̂'0  ̂ :

= : e«*i+*»>•*««»[! +  ,-jfc, . (dA(0,0)z + idAT(0,0)z) +  . . .] :  (1.20)

after Taylor expanding inside the normal ordering to express the result as an 

OPE.
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1.3.3 Ward identities and conformal invariance

12

Continuous symmetries in field theory yield conserved (Noether) currents and 

Ward identities, the latter of which constrain operator products. Under an in­

finitesimal continuous symmetry transformation of a field o. denoted by 60(a), 

the quantity [d<!>] exp(-S ) is by assumption invariant. Generalizing the trans­

formation to p(a)6o(a) modifies this quantity, but since it still represents just a 

change of variables, the path integral itself is invariant. Expanding [d<j>'] exp (—S') 

to first order, with an operator insertion A (a 0) inside the variation region on 

which p has compact support, yields the operator relation

6A(a0) + 7T~- f ddag1/2V J a(a)A(a0) =  0, (1 .2 1 )
27T Z  J R

where j a is the Noether current coupled to the gradient of the p. Going to two 

flat dimensions, and invoking the divergence theorem (1.11) yields via the residue 

theorem

R-es=-+ro./(‘:M(~0- ^o) + R-esi-Kf0i(-)^l(2o. ~o) ; -t 6A(Zq. Zq). (1-22)

where j  =  j : (z) and j  =  j ( z )  are respectively holomorphic and antiholomorphic.

We consider two examples of central importance. Consider the A'*1 theory, and 

the spacetime translation 6 X ,l(a) =  ea^. Under 6X^ — ep(a)ati we have 5S ex. 

ea ^ f  (Pad^X^daP, whence the Noether current j% =  ^rdaX the integral (over

a) of which is just the spacetime momentum of the string. Specifically, using our 

master formula (1.18). we have the OPE

f ( z )  : e* ‘A(0’0) : ~  : e‘'*-A(°>°) (1.23)
2 z

where ~  means equality up to nonsingular terms, consistent with (1.22).
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Next conside the worldsheet translation 6oa =  eva. under which invariance im­

plies 6X*1 =  -evadaX^.  After some manipulation via integration by parts, the 

corresponding Noether current, read from SS oc / (Pad0pja{cr), is

j a = ivbTab . Tab = - ^  :daX>1dbX t l - ^ S abdcX lldcX l l : (1.24)

with Tab defining the worldsheet energv-momentum tensor.

The OPEs with Tab determine much of the structure of the theory, as we shall 

now see. First note that Tab is traceless: 7 “ = 0. In a quantum field theory this 

implies the theory is scale-invariant, though such invariance can potentially be 

broken by anomalies. In complex coordinates this is expressed as T:z =  0. The 

usual conservation law daTab = 0 then implies that dTz: = dTiz = 0. so that 

Tz: =  T{z) and T~* = T{z) are respectively holomorphic and antiholomorphic. 

For our theory, these components are

T(: ) ^ - -  :dP 3 A V  . T{z) = d X^ B .Y„ : . (1.25)
a 1 a'

The OPE of T  (or T) with X from our master formula (1.18) is

T(z)A'^O.O) ~  ^ a v ^ o )  , f^ A '^ O .O ) ~  ^A '^(O ). (1.26)
z z

Combining this with the fact that tracelessness implies the conservation of j(z)  =  

iv(z)T{z). j{z) = fr(r)*T(2 ) for any holomorphic r(z). implies via the VV*ard 

identity (1.22) the transformation

S X 11 = - e v ( z )d X >l -  e v i z y d X 11. (1.27)

which is the infinitesimal form of the conformal transformation:

X '^ z ' .  z') =  X*{z, z) , z' =  f{z) .  (1.28)

Thus the theory is conformally invariant up to possible anomalies.
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CHAPTER 1. INTRODUCTION 14

The OPE of T with a general operator A ( z , 2 ). which by holomorphicity takes 

the form of a Laurent expansion

r(* M (o ,o ) ~  f ;  ^ ^ " ( 0 , 0 ), (i.29)
n = 0  ^

is determined by infinitesimal conformal transformations [z1 =  2 +  ei>(2 )]. since 

a residue in i,(2)7’(2).4(0. 0) appears when the term zn in the expansion of v{z) 

multiplies the z~n~x term in the T A  OPE: whence the Ward identity (1.22) yields

6A(z.s) = - e  f ;  i  [arv (z )A n\ z , z ) + c . c ]  . (1.30)
7 1 =  0  U -

For a basis of local operators which are rigid scale transformation eigenstates 

.4 '(2 '. 2 ') =  £~h£~tlA{z. 2 ), and for the worldsheet translations, a straightforward 

calculation determines part of this OPE:

T{z)A(0.0) =  . . .  +  4 A(0 .0) +  \ d A ( 0 . 0) + . . . .  (1.31)

The numbers (h. h) are called the conformal weights of A: the sum determines the 

scaling dimension, the difference the behaviour under two-dimensional rotations.

The subset of operators which transform under arbitrary conformal transforma­

tions as O'(z'.z') = (d:z')~h(dsz')~hO{z, 2 ), are called primary operators, and 

have OPEs with T  of the form (1.31) with no further singular terms. Primary 

operators with weights (h . h) = (1.1) will be important later.

Applying these considerations to T  itself yields the T T  OPE. which via (1.18) 

and Taylor expansion about 2 =  0 is

T ( : ) T ( 0 )  +  1 T(0) + ld r(0 ) . (1.32)

Thus T  is not primary, because of the central charge term proportional to  D 

(denoted c in an arbitrary CFT). This is central to string theory, and when 

combined with the reparametrization ghost CFT (which arises by virtue of our 

gauge fixing), determines the dimension of spacetime.
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1.3.4 The OPE-algebra correspondence

15

The (classical) conformal invariance of (1.10) allows us to switch between con­

formally related worldsheet coordinate systems. For the canonical interpretation

while for the open string we take 0 < a 1 < it. For both, the (Euclidean) time 

coordinate runs over the reals. For closed strings we obtain an infinite cylinder, 

while for open strings we obtain the infinite strip. The second system, in which 

most calculations are done, is defined by

In this system time runs radially, the origin corresponding to the infinite past, 

the ‘point at infinity' the infinite future. This transformation maps the closed 

string cylinder onto the complex plane, and the open string strip onto the upper 

half-plane.

Consider the closed string and a holomorphic operator 0(c), with conformal 

weight h with the Laurent expansion

The coefficients are determined as usual by contour integrals (about the origin 

counterclockwise)

In the w-frame the Laurent coefficients become Fourier coefficients, the extra 

factor of z~h in the definition cancelling the conformal transformations of the 

corresponding operator.

of the theory we have the w — a 1 +  ia2 frame, which we have been calling c. For 

closed strings we take the spatial coordinate a 1 periodic, identifying cr1 ~  cr1+27T.

z =  exp(—iw) =  exp(—icr1 + cr2). (1.33)

(1.34)

(1.35)
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For the specific case of the holomorphic component of the energy-momentum

tensor T(z). where h = 2, the coefficients are labelled as Lm and are called the 

the Virasoro generators for reasons that will become clear.

Now consider the quantum theory, and imagine cutting open the path inte­

gral on circles of constant time in the radial frame. The assumed holomor- 

phicity of the integrands in (1.35) allows us to arbitrarily deform the contours 

C about the origin, and in particular the integrals are invariant under radial 

(time) rescalings (translations), whence the generators are conserved charges. 

Pursuing this further leads to the equivalence between the OPEs of currents 

and the (anti)commutator algebra of the associated charges. For two charges 

Qi.2{C} =  / c dc/(27ri)j 1,2 (2 ) associated with holomorphic currents, consider an 

equal-time contour C2 about z = 0 associated with a time t2. and two radial 

deformation contours: C\ displaced forward in time > t2. and C3 displaced 

backwards in time t3 < t2. Since the operator ordering defined when we cut open 

a path integral is time (and hence radial) ordering, by deforming the difference 

of the contours C1 and C3 about a fixed point z2 on C2 into a contour encircling 

z2 (denoted by C-„). we have successively

where the residue is determined by the OPE of the two currents, assumed here to 

be bosonic; otherwise, we pick up the anticommutator in the second line. We use 

this very important concept later in the section on spacetime noncommutativity.

Jc2 2ni | / | z , | > | z 2| / | z i | < | z 2|J 27r i

/  dz2
f  7 T -  R * S « i - « 2 . 7 1 ( * l ) . 7 2 ( * 2 ) , (1.36)
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An important, simple, and fun example illustrating the utility of this construc­

tion, is the determination of the algebra corresponding to the Virasoro generators 

Lm, with currents j m =  zm+lT(z).  Thus from (1.35),

This is the famous Virasoro algebra, which encodes the infinite dimensional con­

formal symmetry of the system, with a central charge term reflecting a quantum 

mechanical anomaly. For the closed string there is a second copy of the Virasoro 

algebra for Lm.

1.3.5 Mode expansions

We now determine the spectrum of the simple free theory we have been studying, 

focusing first on the closed string. The OPEs of T  and T  with d X  are

after Taylor expanding about 0. Thus d X  is primary with conformal weights

(1.0). Similarly OX is also primary with conformal weights (0,1). Since they 

are (anti)holomorphic, we can thus write Laurent expansions as

, m + l

m + n  —I m + n +2+ 2 { m + l ) z ^ lT{z2) + z^

^ ( m 3 -  m)f)m,_„ +  jf  ̂  ^  {(m -  n)z^+n~lT(z2) +  d [< 
£

(m -  n)Lm+n -I- — (m3 -  m)Sm

m+n+2

r dz2 c(m3 — m) 
c2 27ti 12

(1.37)

r ^ & Y ^ o )  ~
dA'(O) d ^ X ^ O )

n d“ , T(2)dX(0) ~  0. (1.38)

zm+1 , dX H z)  = - t
m= —oo jm+l ’ (1.39)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 18

with the normalizations chosen to obtain canonical results in the following. Thus, 

inverting these relations, we have

while partial integration yields

- K ! o g : + a51ogf)+ £ i ( ? |  +  f | )
mjtO 111 v ~ ~ 7

• (1-41)

The associated spacetime momentum is given by = ( l /v /2o7)(rto + and

is the ’charge" associated with the Noether current of spacetime translations.

For a noncompact spatial dimension p. single-valuedness implies aft = d^. but 

in anticipation of our discussion of T-duality and D-branes. we will consider the 

general case, where it is convenient to also write the expansion in the w-frame 

for the zero modes:

A'M(cr. r) =  x" -  o +  ~  / j ( a o ~  do)^ +  • ■ • (142)

where the ellipsis refers to the 27r periodic oscillator exponentials.

Via the contour argument presented in the last subsection.we can compute the 

mode operator commutation relations from the d X (z i )d X (z 2) OPE:

a . a v] = —  l  —  \ l  -
1 n a' Jc2 2-k / |2l|>|22| /isiKiul
I  d z -l I  d Z\ _n F_m  ____m - l , _  , 1 V T

~  '  f c ,  2 7  f c „  2 7 ‘2 H  +  -J

■ I  2 
l k  2 tt

=  mSm, .nrfu>.

m z? +n- lr r

(1.43)

Similarly [d£,,d£] =  m8m - nrf t', and from the A'.Y OPE, we have

V ' - r t  =  h u  ^ - X " ( z , z ) f f X " ( z ’) =  £ 4  (1.44)
Q J - C : Z7T 2tT J C ;  z  —  z
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being careful with the contour orientation. These familiar commutators reflect 

the first quantized string programme we are developing.

In the Hilbert space formalism of string theory, these operators act on the vac­

uum to produce the spectrum; i.e. wre start with a momentum eigenstate |0; k) 

annihilated by all lowering modes a £ for n > 0. and then generate the spectrum 

by applying all combinations of raising operators a% for n < 0.

In terms of modes, the Virasoro generators are expressed as

1 00
I'm — X ^ N(otm—n^nn) A (I (1-"1̂ )

n = —oo

where JV(-) denotes ordinary creation-annihilation normal ordering, and ax  a 

normal-ordering constant for Lq which is determined from the Virasoro algebra 

(i.e. without resort to C-regularization) to be zero for this CFT. By grouping 

fi'ix*1) with the lowering (raising) operators, and keeping track of the commu­

tators in the time-ordered product X fl(zi, f 1).Yl/(z2. £■>). it is easy to show that 

the two forms of normal ordering (JV(-) and : • :) coincide, the time-ordering 

!~li > I~2I required for convergence. This relationship (which does not hold in 

general) is useful in calculating scattering amplitudes.

Now consider the open string. Natural boundary conditions for the open string, 

following from the variation of (1.10), imply that no spacetime momentum can 

flow off the the ends of the string: 9crA''I(0. r) =  5<rA'/i(7r, r) = 0. in the w-frame. 

In the z-frame this condition becomes dX* = d X ** for Im(^) = 0. which couples 

holomorphic and antiholomorphic modes, whence a =  d£,. The normalization 

for f i1 is now Oq = (2o')1/2p/i, and the mode expansion reads

.v ( .- , z) = X- -  i a Y  log |z |2 +  J %  Y .  —  (*-“m +  2""). (1.46)
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1.3.6 Vertex operators and physical states

20

In conformal field theory there is a bijective correspondence between the Hilbert 

space of states and the space of local operators. To evaluate the path integral in 

the vv-frame. we would have to specify a boundary condition on the string as a 2 = 

Im(u’) -» —oc. corresponding to the definition of an initial state for the string. In 

the z-frame. Im{w) = -o c  is mapped to the origin, so the boundary condition is 

equivalent to specifying a local operator at the origin with the quantum numbers 

of the initial state. This trivially works in the opposite direction, and we will 

argue in the next subsection that this extends naturally to scattering amplitudes 

involving many strings, where each asymptotic state is mapped to a local operator 

on the worldsheet.

First consider the unit operator at the origin, corresponding to the state |1). 

and consider acting on it with the conserved charges §c ~ z mdX^{z) .

where the contour circles the origin. Since there is no operator at the origin, there 

is no OPE to compute, and dX^  is holomorphic everywhere inside C. Thus for 

m > 0 we have

Q iil) := / l / l ‘' ” aY' (-r) = 0- (1-47)
where we have used ~ to denote the isomorphism between operator and state. 

Since p11 ~  Qq, this state has no momentum. On the other hand for o^.m writh 

777 > 0 we obtain

o ! - |I > =  v ' (0)' (L48) 

via the Cauchy integral formula. Therefore, for this CFT. we identify |1) =  |0; 0).

To obtain a state with nonzero momentum, consider first acting on the vacuum 

with the operator : exp (He • X )  : at the origin. Then, applying the momentum
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operator p*1, and using the OPE (1.23) we obtain

2 f  dzj f  : etk x  : |0:0) ~  - t /  ^  &Y"(z) : e,fc A'(0’0) : 
a '  J c  2n

= $  ■ e,fc'Y(0’0) : ~  F  : eik X : |0,0). (1.49)
J c  2m  z

while a ^  for m > 0 still annihilate the state. This leads us to identify |0; k) ~

: exp(ik • A') The exponential shifts the (center of mass) momentum of the

string, while keeping all of the nonzero frequency oscillators in their ground state.

The correspondence continues to hold inductively when we apply a t m to a gen­

eral state |.4) built from |0:0). To prove this, consider

a ' m :-4(0.0): = ^  f ^ z ^ d X ^ z )  : A { 0 . 0 )  :

= \l^ - J  [: dA'̂ MtO.O) ■ + ̂  •4(n-.(Q: 9)
\ a' Jc 2n _ £r0 r n+I

= : a d m̂ (0 .0 ) :  (1.50)

for m > 0. and an arbitrary conformally normal-ordered operator : >4(0.0) :. 

Thus we can carry out the same operations as in (1.47)-(1.49). on an arbitrary 

state built from o^m excitations. As well, all of the above considerations apply 

in the obvious way for the charges d£,, with d —► d. and which represent right- 

moving excitations of a closed string.

This brings us to the issue of physical states, the proper treatment of which 

would require us to develop BRST invariance for the string. We will settle for a 

heuristic argument instead to arrive at the conditions we need. We have argued 

that asymptotic string states correspond to local operator insertions (called ver­

tex operators) on the worldsheet. In the next subsection we will argue that it is 

somewhat irrelevant whether we consider freely propagating strings or interacting 

strings: in both cases the asymptotic states are conformally mapped onto world- 

sheets (Riemann surfaces) of a given topology. Since the actual points on the
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worldsheet to which these states are mapped are immaterial, to he democratic 

(i.e. consistent with quantum mechanics), we should therefore integrate the op­

erators over all possible insertions on the worldsheet. That is to say physical 

asymptotic states will correspond to /  d?zV(z , 5) insertions in the (gauge-fixed) 

path integral. This quantity must be conformally invariant, and since the mea­

sure transforms as
2J _  SW,  z’) » . _ d z ' d z '  2_ 

d - - ~ & ( n r  d zd - z d ~ ( lo l )
under arbitrary conformal transformations z' =  f ( z )  (i.e. as a (-1 . -1 ) primary), 

we therefore require that V(z. z) transform as a (1,1) primary.

This is a powerful restriction which yields much information about the nature 

of string theory. Consider the closed string states \ \  =: e\p(ik • .V) : and l 2 =

: B X ^ d X 1" exp(ik • X )  :. The OPEs of T  with these states are

r w i l ( 0 .0) ~  +
z z

r(c)r2(o.o) ~ - ZQ : aYV*-A'(o.o): + — -^ v2(o.o) + - a v 2(o.o),•rj +>■N, ^
(1.52)

and similarly for the OPEs of T  with these operators. V'i and V2 have weights

(1.1) iff m2 = - k 2 = —4 /a ', and k2 =  0 respectively. Furthermore, V2 is primary- 

iff = 0.

Thus 1 1, having a negative mass squared, is a tachyon, and V2 is a set of massless 

states, with a physical transversality condition. The latter decomposes into three 

different Lorentz multiplets: the ‘graviton’ (for / ^  symmetric and traceless),

the two-form tensor field (for antisymmetric), and the dilaton 0  (the

trace piece of The transversality condition ensures that unphysical modes 

are removed from the system, and reflects a deep connection between worldsheet 

and spacetime physics. The appearance of a massless spin two particle (the
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graviton) in the spectrum also tells us that string theory should be a theory 

that automatically contains gravity, a viewpoint we will see again a little later. 

Furthermore, this thesis is, roughly speaking, a study of some possible low-energy 

consequences of the form field B ^ .

The higher states of the string correspond to vertex operators with more factors 

of dX*  and d X v. By again using (1.18), and the expression for T.  we can show 

that the state corresponding to

m2 =  ~  1) =  t fiY. nj ~ 1)- This gives us both a physical connec­

tion betw-een spacetime spin and mass (more derivatives yielding higher rank 

Lorentz representations with correspondingly higher masses), and a physical in­

terpretation of the parameter a': it sets the scale of the massive string states 

(or equivalently the length scale at which states become stringy). In string per­

turbation theory, (o ')-1/2 is naturally near the Planck scale so that the graviton 

interacts with Newtonian strength in the w’eak coupling limit.

Finally, w-e briefly note that the considerations of this subsection apply to the 

open string, where the state-operator isomorphism maps asymptotic states to 

the worldsheet boundary, the real axis in the z-frame. Then, recalling that there 

is only one set of modes for the open string, its first excited state e^ati  |0; k ) has 

conformal weight one, iff k2 = 0, and is primary iff e • k =  0. The latter condition 

is again the familiar transversality requirement of a massless vector particle.

(1.53)

has conformal weights -I- m,. + Y.j^ j) ,  and hence mass squared
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1.3.7 String ‘interactions’ and scattering amplitudes

Thus far, we have been considering the propagation of free strings and now we 

wish to consider the interactions of strings, considering for clarity mainly closed 

strings. It turns out that the only symmetry preserving interactions between 

(weaklv-coupled) strings are those already contained in the 'sum over world- 

slieets'. Specifically, interactions arise from the global topology of the world- 

sheet as it is embedded in spacetime, while locally the worldsheet looks the same 

as the free case: put another way, any part of a scattering amplitude diagram 

looks locally like the propagation of a free string. Time-slicing the worldsheet in 

a given frame then implies that the basic interaction for a closed string is one 

where a single closed string breaks (or decays) into two closed strings by local 

pinching as in figure (1.1), or the time reversed process.

Figure 1.1: a) Decay of one closed string into two, b) as seen in a given Lorentz 

frame. (From [11].)

A freely propagating closed string will quantum mechanically divide and rejoin 

any number of times, with each such combination effectively adding a loop (or 

handle) to the worldsheet. Such changes in worldsheet topology (n-multiple 

connectedness) correspond to stringy quantum corrections.

a) b)
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The fact that interactions emerge from the topology of the worldsheet. has the 

(very desirable) effect of spreading out the interaction in spacetime so that dif­

ferent Lorentz frames see the different apparent interaction points. Heuristicallv 

speaking, this smearing of the interaction in spacetime is responsible for the 

well-behaved ultraviolet behaviour for which string theory is so famous.

In the last subsection, via the state-operator correspondence, we argued that an 

asymptotic state of a freely propagating string could be conformally mapped to 

a point on the worldsheet, where we insert a vertex operator which carries the 

quantum numbers of that state. Now consider the (tree-level) 2-1-2 scattering of 

closed strings, as in figure 1.2(a).

Figure 1.2: a) 4-point scattering of closed strings at tree level, and b) the con­

formally equivalent worldsheet. (From [8].)

By applying the state-operator correspondence to each external state, we can 

map each semi-infinite cylinder of the w-frame [Re(w) G [0, 2tt\, —t <  Im(w) <0] 

into the unit disk in the z-frame, with the boundary loop corresponding to a 

small circle of radius exp(—t). Now the worldsheet looks like that of figure 1.2(b). 

Taking t to infinity (corresponding to asymptotic, on-shell external states), these 

circles degenerate to points, and the worldsheet becomes (topologically equivalent 

to) a sphere, with vertex operator insertions.

•1
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As discussed above for the free propagation case, by adding handles (loops) to 

the worldsheet (thereby changing its topology), we can obtain stringy quantum 

corrections to such a scattering amplitude, the first (corresponding topologically 

to the torus) of which is shown here in figure (1.3).

Figure 1.3: a) 4-point scattering of closed strings at one-loop, and b) the confor­

mally equivalent worldsheet. (From [8].)

We noted in our discussion of the Polyakov action that the term \  = S dPoy/gRP^ 

was consistent with the symmetries, but was a topological invariant in two- 

dimensions. Specifically, it is the Euler characteristic of the worldsheet. and is 

equal to \  = 2(1 — g) for an integer g called the genus, which corresponds to the 

number of handles. As a consequence of 19th century mathematics, this integer 

completely classifies the possible topologies for compact, connected, oriented 

surfaces without boundary (relevant to the oriented closed string). Thus we 

have given a precise meaning to the phrase ‘sum over worksheets', as a sum over 

genus (for this type of string). The other cases (with boundaries, or unoriented) 

follow without too much added difficulty (each essentially adds an integer to the 

classification). However, for later reference we note that the relevant surfaces 

for (oriented) open string scattering amplitudes are topologically equivalent to 

the disk (at tree level), and the annulus (at one-loop), with asymptotic states 

mapped to vertex operators on the boundaries.
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This leads us finally to the prescription for calculating amplitudes in string the­

ory. For each asymptotic string state, we insert the corresponding vertex op­

erator into the gauge-fixed path integral, which is weighted by the Polyakov 

action. After integrating the vertex operators over the worldsheet, integrating 

the worldsheet moduli rj present for g > 1 corresponding to conformally in­

equivalent surfaces (i.e. metric parameters that cannot be removed by the local 

symmetries), and summing over worldsheet genus, the resulting CFT correlator 

describes a spacetime scattering amplitude:

oc .  .v

S]t. ^ ( k , . . . . . k s ) =  £  / [ i X l e - * - n * V  I I /  (1-54)
9 = 0 J  j  i = l J

where we have ignored the Fadeev-Popov ghosts arising from a proper gauge- 

fixing of the Polykov action, and which we will briefly consider momentarily. 

From (1.54). it is evident that 1) \  effectively sets the string coupling of the 

theory, and that 2) this is free field theory. The case of g = 1. corresponding to 

the torus yields particularly interesting consistency conditions on string theory 

in the form of modular invariance, as we will see.

We close by pointing out a fundamental limitation of this discussion. In order to 

invoke conformal invariance to map external states onto points on the worldsheet, 

we had to take the string sources to infinity (t —» oc), thereby limiting us to a 

discussion of on-shell S-matrix elements. Another way to see this is to note that 

as per the previous subsection, the vertex operators were conformally invariant 

only if they transformed as (1,1) primaries, which in turn fixed the states to lie on 

their mass shell. This differs from ordinary field theory, where Green’s functions 

are also defined off-shell, and where we can compute finite time transitions. It is 

not known in general how to ask string theory off-shell questions, the difficulty 

being linked to the fact that we do not possess a second-quantized definition of 

string theory.
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1.3.8 The be CFT

28

While the X  CFT that we have been studying hitherto will be sufficient for our 

discussion on spacetime noncommutativity, a brief look at the so-called be CFT 

involving anticommuting fields is useful for understanding the origin of the critical 

dimension, and for the discussion of superstring theories in the next section.

When we gauge fixed the symmetries of the Polyakov action, we ignored the 

Fadeev-Popov determinants that would arise in the associated worldsheet quan­

tum field theory. Consider the gauge choice gzi =  exp[2u;(a)], g:z = gzz =  0, and 

the infinitesimal coordinate transformations 2 —> f*, z —> under which the 

metric changes by Sgzz =  8gzz =  Using the standard functional

integral representation for determinants in terms of anticommuting fields, the 

associated Fadeev-Popov determinant which implements the gauge-fixing is thus

J  =  det ' ^et =  ^e t( ^ ) ' det(Vf)

=  J  [dbzz){dcz][dbzi}[dcz] exp j d 2zbzzV  zcz + b:zV  zcz ĵ

= j [dbzz][dcz][dbzz\[dcz] exp J d 2zbzzdzcz -I- bzzdzcz ĵ , (1.55)

where we have absorbed factors of two into field definitions. Also, we have used 

the fact that covariant z derivatives of tensors with only 2 indices reduce to 

ordinary derivatives, and vice-versa.

Thus we are led to consider the be CFT described by the action

S = - — f d2z bde, (1.56)
27r J

which is (classically) conformally invariant for anticommuting b and c transform­

ing as conformal tensors of weights (A, 0) and (1 — A, 0) respectively. This follows
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because the integrand and measure transform as

= d2z bdc (1.57)

under conformal transformations z' =  f{z).  For the gauge-fixing application 

above, the index structure implies A =  2.

The operator equations of motion from (1.56) are given by dc(z) =  db(z) =  0. so 

that b and c are holomorphic. while db(z)c{0) = 2-k62(z , z) (from a path integral 

insertion with c). This last equation implies the normal ordered product

: b(zx)c(z2) ■= K z M z - i )  —  (1-58)
1̂ — ~2

obeys the equations of motion using d(z~x) = 2nS2{z,z)  derived from (1.11). 

Two straightforward calculations yield the energy-momentum tensor

T(z) = (1 -  A) : (db)c : -A : bdc :. (1.59)

and the T T  OPE

W ( 0 ) ~  + m . + ? m .  (1.60,

Thus the central charge of this theory is c = -3(2A -  l)2 +  1. which is —26

for A =  2. The total central charge for the combined A' and be systems is

thus D — 26. and so vanishes in 26 spacetime dimensions, the so-called critical 

dimension of bosonic string theory.

Finally, we note that for A =  1/2, where c =  1. (1.56) can be written as

S  =  f  d2z ibxdibi +  xti'tdipi, (1-61)
47T J

where we have taken b =  ib, c =  0, and then split ip =  (l/v /2)(0! +iip2). This 

worldsheet fermion CFT arises immediately in the superstring theories we now 

consider.
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1.4 Supersymmetry, SCFTs, and superstrings

In the previous section we developed some of the fundamentals of what is called 

bosonic string theory. Unfortunately, it suffers from (at least) two drawbacks. 

First, the presence of a tachyonic mode in the spectrum signals that the theory 

corresponds to an expansion about an unstable vacuum. Secondly, there are no 

spacetime fermions. Both of these problems are resolved in string perturbation 

theory by the addition of worldsheet fermions xb*1 (as in the so-called Neveu- 

Ramond-Schwarz formalism) to the Polyakov action (1.4) in such a way that 

the conformal symmetry of the bosonic string is enlarged to the superconformal 

symmetry of the superstring. Our treatment is completely cursory; our interest 

lies in understanding the terminology that occurs later.

We have just seen that the purely holomorphic anticommuting be theory has a 

conformally invariant splitting (for A =  1/2) to two real worldsheet fermions. 

We can similarly construct a purely antiholomorphic anticommuting CFT. We 

can apply these facts to write down a supersvmmetric generalization of the con­

formally gauge-fixed action (1.10) in a complex coordinate as

for D holomorphic, and antiholomorphic worldsheet fermions. We have the 

basic OPEs A'M(z, £)A'"(0,0) ~  — (a'/2)r]fl‘/ log \z\2, i/^(z)i/>"(0) ~  tĵ / z , and 

V#*(-s) U’̂ (0) ~  i f v/ z. The worldsheet supersymmetrv is encoded in the world- 

sheet supercurrents

1.4.1 SCFT

5 =  -1  f  tPz— aX^dXa + +  frdtPu
4tt J a'

(1.62)

(1.63)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 31

because for an arbitrary holomorphic anticommuting parameter r?(z). the OPEs 

and the Ward identity (1.22) imply that the currents ^ ( z )  =  rj(z)Tp(z) and 

j^ iz)  = fj(z)Tp(z) generate superconformal transformations

SX^ iz .z )  oc - t}(z)iI ^ ( z) -  r j i z Y ^ i z )

5x!*{z) oc rj(z)dX'"(z)

6&(z)  oc r j i z y B X ^ z ) .  (1.64)

It seems paradoxical that we have added anticommuting worldsheet fermions that 

carry spacetime vector indices, but recall that they are just internal symmetry 

indices from the worldsheet perspective. It turns out that the zero modes of v̂  

and t   ̂ satisfy the (spacetime) gamma matrix algebra, and the zero modes of TV 

yield the spacetime Dirac equation when applied to physical states .

For this system the w’orldsheet energy-momentum tensor (which we now denote 

by Tb ) is

Tb = - —' -  dX»dX,{z)  : : C ldv,(z)  : (1.65)
a I

and hence we have the OPEs

3 D 2 1
Tb (z)Tb ( 0) ~  —  + ^ T B(0) + z dTB(0)

TB(z)TF(0) ~ -LrF(o) + W ( 0)

7 >(z)7 >(0 ) ~  °  + - T g (  0 ). (1 .6 6 )z z

which imply the closure of the corresponding algebra, since only Tb and Tp (or c- 

numbers) appear in the OPE singular terms. From the TBTp OPE wTe conclude 

that the Tp is primary with conformal weights (3/2,0), while the Tb Tb OPE 

implies that the central charge for the system is c =  3D/2. Finally, the TpTp 

OPE implies that the commutator of two superconformal transformations is a
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conformal transformation. Similarly, we have an antiholomorphic copy of the 

algebra, and thus in total have a so-called (1,1) superconformal algebra, where 

in general (N , iV) denotes the number of (3/2,0) and (0,3/2) currents.

The be system of Fadeev-Popov ghosts also has a superconformal extension via 

the superconformal ghost system, which now involves a commuting 3 j  system 

in addition to the be system, and arises from the gauge-fixing of the local su- 

persymmetric extension of the Polyakov action (which we have not discussed) to 

the superconformal gauge (which we took as our starting point). Specializing to 

the case of interest in string theory we have

with conformal weights hb = 2 ,h c = —1, hs = 3/2, h-, = —1/2. This system has 

a central charge of -15, so the total central charge of the combined m atter and 

ghost SCFTs is 3D/2 -  15. Requiring this to vanish, so that the theory remains 

superconformally invariant at the quantum level, implies that D =  10. This is 

the famous critical dimension of superstring theory.

1.4.2 Ramond and Neveu-Schwarz sectors

In addition to an internal 0 ( D  — 1,1) symmetry, the fermionic part of the action 

(1.62) has a Z2 symmetry under which —> —ip11, or xp* —> — xp̂ . Consequently, 

in the w-frame where we must have invariance under the periodic identification 

w ~  w +  27T, we can choose two different boundary conditions:

These are called Ramond (R) and Neveu-Schwarz (NS) fermions respectively. 

We apply the same boundary conditions for all // in order to maintain maximal

(1.67)

^ ( w  + 2ir) = +xp,1(w) (R), xp,t(xv +  2n) = — xp^{w) (NS).  (1.68)
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Lorentz invariance. Similar considerations hold for ip*1. For a closed string, we 

therefore have four sectors labelled R-R, R-NS, NS-R, and NS-NS. Superstring 

consistency will require that certain states survive from each sector to form the 

full spectrum. For the open string, where ^  and are linked via the string 

endpoints, we can have ^ ( 0 . er2) =  ± 1̂ ( 0 , cr2), and a2) =  cr2). ib

and v  can be combined to form a single field with cq 6 [0. 2tt] via t̂ ( w )  = 

r M(2ir -  w), for which the boundary conditions now imply the presence of an R 

and an NS sector for the open string.

The mode expansion for a periodic holomorphic field in the w-frame is

wtl(w) =  i~l/2 £  il%einw. (1.69)
neZ+i/

where u =  0 in the R sector, and 1/2 in the NS sector. Using the fact that the

conformal weight of t£ is 1/2, we can transform to the z-frame using n^(z) =

(dzw )111141 (w). whence

E  d '- f )
rgZ+fc'

Thus the NS sector fermions are single-valued, while the R sector fermions have 

a Z2 branch cut. From the OPE-algebra correspondence, these modes obey the 

anticommutation relation

W X )  =  f W  (1-71)

The spectrum generated by a single set of NS modes is simple because there are 

no zero modes, so the ground state is singled out as the state for which

< | 0 ) ns  =  0 ,  r > 0 ,  (1.72)

while the xb? with r < 0 act as raising operators to generate the spectrum. It can 

be shown that the NS vacuum state is a Lorentz singlet and since, as discussed,
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the raising operators are spacetime bosons (despite being anticommuting objects 

on the worldsheet), all the states in the NS spectrum are spacetime bosons.

The R ground state on the other hand is degenerate; (1.71) implies the zero 

modes Vq satisfy the Dirac gamma algebra if we define ~  \ /2Vq. As a 

consequence the R ground state must be a spacetime (Dirac) spinor with 2D/2 

components, and which we can label by | s ) r :  s  is a vector of eigenvalues ( ± 1 / 2 )  

of raising and lowering operators of the Lorentz group 0 ( D — 1.1). By the same 

argument we applied to NS spectrum, the states then generated by acting on 

the R ground state with the raising operators with r < 0) are therefore all 

spacetime fermions.

Finally, we introduce an operator called the worldsheet fermion number denoted 

alternately by exp(?7rF) or ( —1)F, which counts the number of fermionic modes 

in a state modulo two: to be precise

{ (-1 )F, < } = 0 .  (1.73)

This defines the operator only up to an overall sign, which we fix by defining the 

(massless) vector in the NS spectrum, jO:k). to have ( — 1)F =  +1 [6].

1.4.3 Type I and II Superstrings

Let us first discuss the Gliozzi-Scherk-Olive (GSO) projection [12]. Start with a 

bosonic state |e>) that will remain in the spectrum, such as the massless vector 

of the NS spectrum. Then, as discussed, r/Flri . . .it'd"n|<p) is bosonic for any n. 

For odd n however, this is disconcerting (though not in actual conflict with the 

spin-statistics theorem [6]), so we would like to keep only states with even n, or 

equivalently, those for which (—1)F =  +1. This is the GSO projection. It has
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the virtue of projecting out the tachyon, and yielding spacetime supersymmetry 

(which is obscure in this formalism). For closed strings, we can separately apply 

GSO projections to the left and the right moving modes. Finally, we note that 

modular invariant partition functions at one-loop require GSO projections to 

avoid divergences in one-loop string amplitudes.

Now reconsider the NS sector of the open string, or the left moving closed string. 

The lowest mode |0: k)ss  is tachvonic, has (—1)F =  -1 , and so is projected 

out by the GSO projection. The next state, is a massless spacetime

boson, and has (—1)F =  1. In ten dimensions (the critical dimension of the 

superstring), massless states are classified by their 50(8) representations (the 

little group). Thus this state corresponds to the eight transverse polarizations 

that form the vector representation of 50(8), which we denote 8V. In the R 

sector, we have seen that the states correspond to spacetime fermions; the ground 

states can be shown to be massless, and form the two inequivalent irreducible 

spinor representations of 50(8): the 8S and 8C. with (—I)F = 1 and ( — 1)F =  —1 

respectively.

We thus have four sectors labelled by NS±. and R ± .' Closed string states are 

tensor products of left and right moving states; the massless states are obtained 

by taking one left and one right moving state subject to a level matching mass- 

shell condition. Since the NS— state is tachyonic, and the R-NS and NS-R spectra 

are identical, we have (in terms of irreducible representations) the massless closed 

string states shown in table (1.1).

For closed strings, a careful analysis of the consistency conditions coming from

1 Due to the different vacuum energies of the NS and R ground states relative to the bosonic 

ground state, the usual bosonic oscillator excitations, a d n do not contribute to the massless 

spectra of the theories in this subsection.
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Sector SO(8) spin tensor decomposition dimension

(NS+.XS+) 8„x8t, [0] + [2 ] +  (2 ) 1 + 2 8  + 35

(NS+,R+) 8„x8s 8C + 56,

(NS+.R-) 8t.x8c 8S + 56r

(R+.R+) 8sx8s [0] + [2] + [4]+ 1 + 28 +  35 .

(R+.R-) 8sx8c [1] + [3] 8r + 56(

(R-.R-) 8cx8c [0] + [2] + [4]. 1 + 28 +  35_

Table 1.1: Irrep decomposition of products of SO(8) irreps for closed strings at 

the massless level. (From [5].)

level matching. OPE locality (R sector branch cuts introduce branch cuts in 

the OPEs of certain pairs of vertex operators), and one-loop modular invariance 

(invariance of the string path integral under 'large' coordinate transformations) 

yields two supersymmetric theories: the type IIA and IIB (oriented) superstrings. 

The former is defined by the GSO projections (—1)F =  +1, (—1)^ =  (—I)1-2" 

[see below (1.69)]. while the latter is defined by taking GSO projections (—1)F = 

( - 1 )^ = + 1 .

Thus, from table (1.1) we deduce the massless content for the IIA theory as 

[0] +  [2] -I- (2) -I- [1] +  [3] +  8S + 8C +  56s +  56c. The first three correspond 

to the gravity multiplet that we found for the bosonic string (the dilaton. the 

Kalb-Ramond antisymmetric tensor field, and the graviton respectively). The 

next two R.-R states correspond to a one-form (vector) field and three-index 

antisymmetric tensor field. The final four states are fermionic, and correspond 

to two Majorana-Weyl gravitinos (the 56s), and two spin 1/2 fermions (the 8s) 

of opposite chiralities. Since spacetime parity interchanges the 8s and the 56s 

(the other states are invariant) the theory is nonchiral. The massless content of 

the chiral IIB theory is [0] +  [2] + (2) -I- [0] -I- [2] -I- [4]+ +  8^ +  56^. In addition
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to the gravity multiplet. we have R-R scalar, R-R two-form, and R-R self-dual 

four-form fields, as well as two gravitinos and two spin 1/2 fermions of the same 

chirality. These theories both have two gravitinos (the origin of the term type 

II). which indicates the presence of an N  = 2 local spacetime supersymmetry. 

Furthermore, the two theories differ only in their massless spectra.

This brings us finally to the type I unoriented, open plus closed superstring which 

can be found by first taking the IIB superstring, and gauging world-sheet parity. 

Among other things, this projects out one of the gravitinos, and so one of the 

supersymmetries. The result is the type I unoriented closed string theory, which 

is by itself inconsistent. On the other hand, open strings must couple to closed 

strings; one way to see this is to consider a process in which two open strings 

touch endpoints to form one open string, and an interaction where the endpoints 

of a single open string touch to form a closed string. Since the interaction is 

local, to forbid the second interaction would require some nonlocal constraint 

on the dynamics, which would spoil the consistency of the theory. As discussed 

above, the massless spectra for an open string can consist of .YS+ and a R+ (or 

R-) spectrum. We can add so-called Chan-Paton factors to the string endpoints, 

and so introduce a gauge group under wrhich the  NS+ and R+ (or R-) open 

string states are charged. However such states fill out the representation of an 

X=1 supersymmetry vector multiplet, and so can consistently couple only to the 

unoriented closed string theory, which in turn fixes the open string sector to be 

unoriented, and pins down the choice of R sector. The result is a massless sector 

that consists of N  =  1. D  =  10 super Yang-Mills coupled to N  =  1, D =  10 

supergravity. Finally, both one-loop and spacetime anomaly conditions single 

out the gauge group 50(32).
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1.4.4 Heterotic Strings

38

The type II theories discussed in the previous section have the drawback that they 

do not possess (spacetime) gauge groups in ten dimensions, and cannot generate 

large enough gauge groups to contain the standard model by compactification. 

A careful analysis of other SCFTs yields two more possibilities for consistent 

string theories with spacetime supersymmetry, and non-Abelian gauge groups in 

ten dimensions, one of which has compactifications which closely resemble the 

standard model: these are the heterotic string theories [13]. Again, anticipating 

our interest in field-theoretic limits, we will focus on the massless spectra.

These theories are so-named because they combine the left-moving (holomorphic) 

modes of the (closed) bosonic string, with the right moving (antiholomorphic) 

modes of the type II superstring. This seems paradoxical because these theories 

have different critical dimensions, but since they are closed strings, the left and 

right moving modes are decoupled, so there is no a priori contradiction. We 

can either consider the extra left-moving modes to be toroidallv compactified 

on a length scale of order \ fa'  for a literal interpretation, or take the stringy 

(i.e. CFT) perspective and simply regard the extra modes as an internal CFT 

required for conformal invariance and keep the same number of dimensions on 

both sides: ten. Adopting the latter view, we first have the worldsheet fields

N ^ z . z )  . i ' ^ z )  . p = 0 . . .9  (1.74)

which give rise to a CFT with central charge (c, c) =  (10.15), while the be 

conformal ghosts on the left side and the superconformal (be and fiy) ghosts 

on the right side contribute ( -2 6 ,-1 5 ) . Therefore, to obtain a conformally 

invariant theory at the quantum level, we must add a holomorphic (matter) 

CFT with central charge (16,0). From our discussion of the A' and be (i.e.
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V') CFTs. we can take either 16 left-moving bosons or 32 left-moving fermions. 

which give rise to the so-called bosonic and fermionic constructions respectively; 

we will describe the latter. Thus we introduce holomorphic worldsheet fermions 

XA(z) for A =  1 .. .32. and so obtain the total m atter action

S = ± r  ( f z - d X ^ B X .  +  XAdXA +  (1.75)47x J a' *

This action has a (N .N)  =  (0,1) superconformal symmetry, and an internal 

(global) 50(9.1) x 50(32), where the 50(32) acts on the XA. As before, we 

have to specify boundary conditions for the fields and GSO projections. Since 

we do not apply Poincare invariance to the internal XA, w-frame periodicity of 

the worldsheet energv-momentum tensor ( T b )  requires only that XA be periodic 

up to an arbitrary 0(32) rotation, under which \ A(iv +  2n) = 0 ABXB(w). This 

complicates the analysis, but it turns out there are only two theories that are 

spacetime supersymmetric, tachyon free, and modular invariant.

The first is obtained by imposing the right moving GSO projection ( — 1)F = 

1. the left-moving periodicities XA(w + 2rr) = ± \ A(w) for all .4. and the left- 

moving GSO projection (—1)F =  1 on the left-moving fermion number. The 

right moving side, being the same as the type II string, has 8„ +  8S at the 

massless level. The left moving massless states are obtained from q ‘_i|0)^s* and 

A  ̂r /2A^x/210) ,V5 - where the index i refers to the transverse coordinates. Under 

50 (8) x  50(32). these transform respectively as (8t,, 1) and (1, [2]) =  (1.496). 

since the latter is antisymmetric under .4 B  [and hence forms the adjoint

representation of 50(32)]. Combining left and right movers, we thus have at the 

massless level 1) the N  = 1 supergravity multiplet from (8„, 1) x (8„ -I- 84) =

(1.1) -I- (28.1) 4- (35,1) +  (56,1) -I- (8C, 1), consisting of the usual dilaton, B 

field and graviton, plus a gravitino and a Majorana-Weyl fermion; and 2) the 

X  = 1 vector supermultiplet in the adjoint of 50(32) from (1,496) x (8„ +  8S) =
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(8 t,. 496) + (8S. 496), corresponding to a gauge field and its gaugino.

The second heterotic string is obtained by dividing up the A4 into two sets 

of 16. each with independent w-frame periodicity conditions (which thus lead 

to four sectors labelled by NS-NS'. etc.), and imposing the GSO projections 

( —l) Fl = (—1)F' =  (—1)F =  1, where the first two refer to the two sets of As. 

Again the right side massless states are 8 t, +  8 S. The left R-R' sector produces 

no massless states, while the NS-NS' sector has massless states a ‘_i |0 )ns .x s ' and 

A'4, /2 A ? 1/ 2 | 0 ) , v s . . v s s  for .4 and B  both from one set of As. The periodicity con­

ditions on A4 break the internal 50(8) x 50(32) to 50(8) x 50(16) x 50(16). 

under which we have (8„. 1,1) -I- (1,120,1) +  (1,1,120), where the 120 is the 

adjoint of 50(16). Meanwhile the NS-R' and R-NS' sectors yield (after GSO pro­

jection) the massless states (1,128,1) and (1,1,128). Tensoring these with the 

right-moving 8V, we obtain massless vectors transforming as 120 -I-128 for each 

50(16). Since consistency requires massless spacetime vectors to transform in 

the adjoint, we finally arrive at the group Eg, under which the adjoint decomposes 

as the 120 -f 128 of 50(16). Thus the full gauge group will be Eg x Eg, though 

only 50(16) x 50(16) is manifest in this construction. Putting it all together, 

under 50(8) x EgxEg,  we thus obtain the now familiar N  =  1 supergravitv multi­

plet: (1.1, l) + (28.1, l) +  (35,1, l )+(56 ,1 ,1) + (8 C, 1.1). and an N  =  1 £ 8 x £ 8 

vector supermultiplet, (8 t,. 248,1) + (8 S, 248,1) +  (8 „. 1.248) + (8 S, 1, 248).

The main reason that the Eg x Eg heterotic string generated so much interest 

historically, was that if we embed the spin connection of the compactification 

manifold in one of the Egs (and preserve an unbroken supersymmetry in four 

dimensions), we naturally break Eg x Eg down to SU(3) x Eg x Eg, and Eg is a 

favorite candidate for grand unified model building.
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1.5 Low-energy field theory limits
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We have seen that the spectrum of a string theory consists of a finite number 

of massless states, and an infinite tower of massive states proportional to Ms = 

In weakly coupled string perturbation theory, where we can calculate 

graviton scattering, it emerges that this parameter must be near the Planck 

scale in order for gravity to interact with Newtonian strength. Therefore if one 

wishes to obtain a description of string theory at low-energies in order to discuss 

phenomenology, it should be sufficient to study the behaviour of the massless 

modes; in effect by constructing a Wilsonian effective action for these fields in 

which the infinite tower of massive string states have been integrated out. This 

is analogous to the Fermi theory that emerges at low energies by integrating out 

the massive W-boson in standard electroweak theory.

Since an exact effective action for the massless fields is prohibitively difficult to 

obtain, in practice we construct a derivative expansion, corresponding to a sup­

pression by powers of E /M s, where E  is the energy- scale of an interaction. In the 

spirit of Wilson, this should represent an increasingly accurate approximation in 

the infrared (although the resultant field theory is a priori nonrenormalizable 

because we have sacrificed the ultraviolet finiteness of string theory originating 

from the infinite tower of states/finite size of the string). Another way of thinking 

about this is to note that formally, the low-energy limit of string theory corre­

sponds to sending a' to zero, in effect sending the massive states to infinity and 

decoupling them from the massless spectrum. Of course, strictly speaking we 

cannot send a dimensionful parameter to zero, but we will see th a t we can give 

this a precise meaning. In this section, we will therefore describe three different 

techniques for arriving at low energy, field-theoretic limits of string theory.
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1.5.1 Limits from scattering am plitudes

42

The most direct way of constructing field theoretic limits from string theory is to 

compute scattering amplitudes of massless string states, as represented by their 

vertex operators (using the prescription we outlined in section 1.3), and then 

write down a Lagrangian density for fields corresponding to these states that 

can reproduce these amplitudes. Since we are restricted to computing on-shell 

S-matrix elements in string theory, this fixes the effective action only up to terms 

which vanish by the equations of motion (and field redefinitions).

Specifically, we start by writing down a field theory Lagrangian with the kinetic 

terms appropriate for the massless modes, £ 2p<. Then one writes down Czpt 

that can reproduce the three point string amplitudes, which allows us to connect 

the effective action coupling constants to the string theory' parameters (the string 

coupling constant, and a '). The four point amplitudes are slightly more involved. 

Unitarity ensures that the massless poles are generated by the tree graphs of Ĉ3pt, 

while the remainder is due to massive particle exchange, the effects of which we 

are integrating out into £ 4pf, and which are expanded in powers of the external 

momenta (and hence powers of \fa') to generate local four point vertices in £ 4p*. 

We then similarly proceed to arbitrary order to generate the n-point contributions 

to the action.

Space prohibits us from presenting more detail of these constructions, so we 

refer the reader to the references, the early ones of which include [14] (zero slope 

limit). [15] (open string amplitudes and the Yang-Mills action), [16] (graviton 

amplitudes and the Einstein-Hilbert action), [17] (superstring effective actions), 

and [13]. [18] (heterotic string effective actions).
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1.5.2 Limits from nonlinear sigma models
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We have already seen examples of the deep connections between worldsheet and 

spacetime physics, and in this subsection we briefly consider one of the most 

dramatic: the emergence of spacetime effective actions from conformal (or Weyl) 

invariance of strings propagating in nontrivial backgrounds [19], [20]. For sim­

plicity, we restrict our attention to closed, oriented, bosonic strings.

When we discussed the Polyakov action (1.4). we implicitly assumed that the 

strings were propagating in a flat Minkowski background. Now consider coupling 

a general background spacetime metric, which we denote by Gfll/(X ) .  to the 

Polyakov action as

5" =  4 ^ b  L drd<J9 l 129abGhi, (A')daX udbX u . (1.76)

To make contact with what we already know, consider a spacetime which is a 

perturbation about Minkowski space, where may expand the metric as G ^ i X )  =  

lni> +e\,,„(-Y), and the worldsheet path integrand as

exp(-Stf) =  exp(—Sp) [l -  /  d W n 9 ab̂ { X ) d aX fidbX 1' + 0 (e2) .
L 47tq' Jm

(1.77)

We recognize the term of order e (in conformal gauge) as the graviton vertex 

operator with \ ^ ( X )  oc f ^ e x p ^ k  • A'), so the action (1.76) just corresponds to 

an insertion of a coherent state of gravitons.

When we studied the massless modes of the closed bosonic string theory in 

section 1.3.6. we found that the graviton was just the traceless, symmetric piece 

of a general two (spacetime) index tensor. This suggests we should also include 

backgrounds for the other massless fields (namely the antisymmetric two-form 

tensor and the dilaton, denoted respectively by B ^ ,  $). The correct prescription

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 44

turns out to be

5,7 =  4 ^ b  L  dTdGgXI2 + i e ^ B ^ iX ) )  daX tid„X1' +  a 'R ^ ^ ( X ) ]  .

(1.78)

where eab is just the antisymmetric tensor (density) on the worldsheet, and as 

before /?(2) is the worldsheet Ricci scalar. It is easy to check that the expected 

spacetime gauge invariances are respected by this action (which includes in­

variance under S B =  dfl£„(X) — d ^ ^ X ) ,  the gauge invariance of a two-form 

antisymmetric tensor potential).

For historical reasons, models such as (1.78) involving field-dependent kinetic 

terms are called nonlinear sigma models, the action defining a two-dimensional 

interacting worldsheet quantum field theory. This is treated perturbatively by 

expanding X*  about a classical solution Xq as X M = xft +  Vfl, and expanding the 

metric in Riemann normal coordinates as

G ^ ( X )  = f a  -  j R ^ x o ) Y xY k -  +  . . .  (1.79)

where R^ai/k refers to the spacetime Riemann curvature tensor. The coupling 

constants of the interaction terms thus involve derivatives of the metric, which 

are of order R~l. the characteristic radius of curvature of the spacetime manifold. 

Thus the effective dimensionless coupling of the worldsheet quantum field theory 

is \ fa 'R ~x. If this is small, then not only is the (worldsheet) quantum mechanical 

perturbation theory useful, but is also precisely the regime where we expect to 

be able to use a low-energy effective field theory in the first place! Thus our 

restriction to massless modes is a self-consistent one.

Recalling our discussion in section 1.3.4 on the connection between conformal 

invariance and the tracelessness of the worldsheet energy-momentum tensor, one 

can show using the sigma model perturbation theory just described, that for
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general backgrounds, (1-78) is not conformally (strictly speaking VVeyl) invariant 

at the quantum level, but instead we have [5]

In the above, H3 = dB2 is the field strength associated with B^v.

Since VVeyl (and hence conformal) invariance are crucial to the consistency of 

string theory, these beta functions must vanish. The miracle is that all three 

of the resultant field equations can arise from Euler-Lagrange variation of the 

spacetime effective action (assuming D =  26)

We can cast this in standard Einstein-Hilbert form by performing a spacetime 

VVeyl transformation on the metric G ^.

At this point it is natural to point out the central role the dilaton plays in string 

theory. We note that, as per our discussions of (1.9) in sections 1.3.1 and 1.3.7, if 

we shift the VEV of <J> —> $  +  $ 0 , then (1.78) transforms as Sa —» 5(T+ 2$0(1 —9 ), 

where g is the worldsheet genus. Thus, such a shift in the dilaton corresponds 

to a shift in the coupling constant of the string perturbation expansion; i.e. the 

dilaton VEV, e-2*0 is the string coupling constant. Similarly, the coupling k in

(1.82) is not physical since it can be redefined by a shift in dilaton VEV: there 

are no free dimensionless parameters in string theory.

T aa oc ~  ( d ^ g ab + i $ y )  d a X ^ X "  + V f l (2), (1.80)

where the beta functions up to O(a') (two derivatives) are

0°, = a ' R f U/  +  2 a V l l V l, * - j H M X K H j « + 0 ( a ' 2 )

= - y V Â  +  Q \ „ V A$  +  0 (a'2)

3* = ~ ~ q~  ~  y  V2<& + a 'V ^ V ^  — + 0 {a n ). (1.81)

I d 26x ^ G e ~ 2* R  + 4d f l d P Q - ^ H ^ x H ^ + O i a ' )  . (1.82)
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1.5.3 Limits from supersymmetry
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The previous two methods for determining low-energy effective actions are direct, 

stringy, and unfortunately, difficult. However, in the case of the five superstring 

theories we discussed in the previous section, the constraint of local supersym­

metry in ten dimensions (along with gauge invariance) is powerful enough to 

completely determine the low-energy effective action, up to field redefinitions.

For our purposes in the next chapter, all that we need is the effective action for 

the bosonic massless states we previously found for the heterotic string theories:

ShelMs = 2 ^ 1  d l0x y ^ G e ~ 2*
2

R  +  4 d ^ 4 >  -  h i l 3\2 +  1 f T r v {\F2\2)
2 gfQ

(1.83)

Here subscripts denote the rank of the antisymmetric tensor to which they refer. 

Kio and <710 are gravitational and gauge couplings respectively (and are related 

to a' through K2w/g\a =  a 74)- and the trace is performed in the vector represen­

tation for 50(32), or normalized to ^ T ra(faf6) for E& x E%.

We recognize the first two terms in (1.83) already from (1.82), and the fourth 

term simply represents the kinetic terms for the 50(32) or E$ x E% gauge fields 

of the heterotic string. Finally, the third term in (1.83), the kinetic term for the 

B2. is a modification of the third term in (1.82) required to consistently couple 

the super Yang-Mills action to the supergravity [6], [21]:

H3 = dB2 -  ^ T rv (A i  A dAx +  \ a x A .4! A .4^  . 8B2 = ^ - T r v {XdAx).
9w \  3 /  g fo

(1.84)

In (1.84) we have written a nontrivial gauge transformation law for B2, which is 

surprising since it is neutral with respect to the gauge group. This transformation 

is required for Yang-Mills gauge invariance nonetheless, and plays an important 

role in superstring anomaly cancellation; the subject to which we now turn.
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1.6 Anomalies and anomalous U ( l ) s

When a classical symmetry or conservation law is violated by quantization, that 

symmetry is said to be anomalous. While anomalies in global symmetries can 

be phenomenologicallv desirable (as in the breaking of global scale invariance in 

massless QCD for example), anomalies in gauge symmetries are fatal because 

unphysical longitudinal modes no longer decouple from amplitudes, so that uni- 

tarity is violated.

Anomalies have the peculiar property that they can be understood simultane­

ously as ultraviolet effects (where a quantum mechanical regulator consistent 

with the symmetry cannot be defined), and infrared effects (because they depend 

only on the massless spectrum of the theory). The latter perspective allows us to 

analyze potential anomaly structure from a field-theoretical view'. Furthermore it 

turns out that anomalies in local conservation laws can arise only in parity violat­

ing amplitudes, because standard Pauli-Villars regularization involving massive 

regulator fields can always be used for parity-conserving amplitudes.

In four-dimensions, anomalies arise from triangle diagrams with chiral fermion 

fields propagating in a loop coupled to three external currents. For f/(l) charges 

q. the anomalous amplitudes themselves involve F  A F  (and R  A  R), and are 

proportional to Y.lQ3 (pure gauge anomaly) and Y.lQ (mixed anomaly), where 

the sums are taken over all massless left-handed fermions that can circulate in 

the loop. Thus, we require that these sums vanish for an anomaly free theory in 

four-dimensions. For example, when we include the contributions of a generation 

of both quarks (including colour) and leptons, potential anomalies involving the 

U{l)v  hypercharge cancel, suggesting structure beyond the standard model in 

which quarks and leptons appear in a single multiplet.
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1.6.1 Anom alies and the Green-Schwarz mechanism

It turns out that in general, anomalies in D dimensions can be conveniently 

encoded in terms of a formal D + 2 form ID+2(R2, F2) [6]. Here, F2 is the gauge 

field strength written as a matrix-valued two-form F2 = Fft*. for a representation 

r  (relevant to gauge and mixed anomalies), and R 2 is the gravitational analogue of 

F2 (relevant to gravitational and mixed anomalies); specifically it is the Riemann 

curvature tensor in the tetrad formalism, Rfy, with two 0 (D  — 1,1) tangent 

space indices a. b to be contracted with the adjoint representation matrices of 

0 (D  — 1.1). T ab. to make the matrix-valued two-form R 2. Locally, I  u+i can 

be written as ID+2 =  dlo+i (since it is closed), where in turn 5ID+1 =  dID 

under a gauge transformation. The anomaly corresponding to Id +2 is given by 

f  dDx I D[F2. R 2). which is proportional to the anomalous variation of the path 

integral under gauge transformations. The condition for anomaly cancellation 

can then be shown to correspond to the vanishing of Id+2 -

For the ten-dimensional heterotic theories, which have the massless content of 

.V =  1. D =  10 supergravity and JV =  1, D =  10 super Yang-Mills. I \2 receives 

contributions from the gravitino 56, the neutral 8C Majorana-VVeyl fermion (the 

chiral fermions from the supergravity sector), and the gaugino 8S in the adjoint 

of the gauge group (the chiral fermion from the Yang-Mills sector). Denoting 

adjoint representation traces for the gauge field strength two-form F2 by Tr„, 

traces over the tangent space indices of the curvature two form R 2 by tr, and 

omitting explicit wedge products so that ,4m A Bn = A mB n, the total anomaly 

polynomial can be shown to be equal to [6], [5]

14400

725760
(1.85)
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where

tr(flf) -  ^ T r a (F |)

, M *?)]2 Tr„(Fj)tr(/iJ) , Tr,,(F24) [Tr„(F?)]2
+  — j-----------------^ --------  +  — 3-------------

The first two terms cannot be be written in the factorized form that the third one 

has been written, and must vanish separately for the theories to be anomaly free. 

The vanishing of the second term implies the gauge group has 496 generators, 

while, as we will see, the cancellations among the components of the first term 

further restrict the gauge group to be 50(32), Eg x Eg, U(l )496, or Eg x F ( l ) 248. 

Xo known string theories correspond to the latter two gauge groups, so we will 

focus on the first two. This leaves the factorized (also called reducible) term 

}\Xg, so written in anticipation of the following discussion.

To illustrate the general principle, let us first consider the pure gauge anomaly in 

ten dimensions, which is proportional to T r^ F 8). On the other hand, consider 

the Chern-Simons interaction

where we do not specify for the moment the representation in which we perform 

the trace. Recall from the previous section that under gauge transformations, 

Bo was assigned a nontrivial gauge transformation law (so that the supergravity 

could be consistently coupled to the super Yang-Mills theory), whence

using the fact that F2 itself is gauge-invariant by construction. Therefore, by 

taking ID oc Tr(Ad4i)Tr(F2) [whence I d + i  o c  Tr(.4tF2)Tr(F24), and I d +2 o c

(1.87)

where Sgs is a number, wedge products between forms are again implicit, and

SS' oc J Tr(A<M,)Tr(F?), ( 1.88)
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Tr(F22)Tr(F2)], we can cancel an anomaly of the form Tr(F2 )Tr(F2) by the cor­

rect choice of Sg s . Similarly a Chern-Simons term of the form /  J32[Tr(F2)]2 can 

cancel an anomaly polynomial of the form [Tr(F2)]3. This is the simplest form 

of the so-called Green-Schwarz mechanism [3].

Since the pure gauge anomaly Tra(7f) is not of this factorized form, this does 

not seem to help us. However, for SO(N)  groups there exist relations between

invariants in different representations, and in particular

Tra(t6) =  (N  -  32)Trv (t6) +  15Trv(*2)Trv (£4) (1.89)

for any linear combination t of group generators. Thus precisely for 50(32). 

we can cancel the anomaly with the Green-Schwarz mechanism. Similarly, for 

the group Fg. we have Tra(£6) = [Tra(t2)]3/7200. and holds for F g x E% as well. 

(For a single E% factor with only 248 generators, we cannot cancel the second 

term in (1.85) proportional to tr(R%), which essentially involves the adjoint of 

50(10). and as such has no factorization under (1.89); consequently there is a 

gravitational anomaly for a single F g.)

Returning now to the general anomaly, we generalize the Chern-Simons interac­

tion (1.87) to

f  B,Xa(F2,R2). (1.90)

and now include a Lorentz Chern-Simons term u3L (in addition to the Yang-Mills 

Chern Simons term we wrote earlier) in the field strength for Z?2:

H 3 =  (IB 2 — CyU)3Y ~~ c l u 3l  (1-91)

where ui3l = uiidui +  {2/3)uf, and uq is the spin connection2. Then the leading

2 This additional Chern-Simons term did not appear earlier in the low-energy action because

it corresponds to a higher derivative correction.
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order transformation law for B2 becomes

SB2 —  c>-Tr(Ad.4i) 4- c l T t ( 3 ( L j i ) . (1.92)

while d.4i =  dX. and Suii = d/3. With this generalization we can thus cancel an 

anomaly polynomial I\2 of the form

which is precisely the form of the third (and remaining) term in (1.85) for 

cy = 1 =  —cl. The careful reader will note that because the gauge trans­

formation law for B 2 was originally defined in terms of the vector representation, 

we are implicitly using the SO{N) relation Tra(f2) =  (N  — 2)Try(f2). Thus 

the normalization defined for SB2 in the Eg x Eg case (where there is no vec­

tor representation) is uniform with the 50(32) definition. Finally, by using 

T ra(/4) =  (.V — 8)Trv (f4) -I- 3Trv(t2)Try(f2) [again for 50(.V)]. in addition to 

the second and sixth order relations we have written, we can show that the first 

term in (1.85) cancels for 50(32) as claimed, by expressing everything in terms 

of the vector representation. A similar argument holds for Eg x Eg.

To summarize, for the gauge groups Eg x Eg and 50(32). the irreducible part 

of the total anomaly polynomial vanishes, and the remaining factorizable part 

can be cancelled with a Green-Schwarz counterterm. These are precisely the 

gauge groups we claimed are singled out for the heterotic string theories by 

the requirements of modular invariance, and spacetime supersymmetry. The 

connection between these two ideas (modular invariance of the worldsheet and 

the absence of spacetime gauge and gravitational anomalies), as well as the direct 

verification of the presence of the Green-Schwarz counterterms in the one-loop 

string amplitudes was obtained in [22]. The presence of these counterterms in 

the type I theory, was of course earlier obtained by Green and Schwarz [3].

[c,-Tr(/?) +  ct tr(i© ].Y ,(F2, R,). (1.93)
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Let us note that the term 'Green-Schwarz anomaly cancellation mechanism' is in 

some sense a misnomer, because these “counterterms’' are really already present 

in the string theory amplitudes (see below) without any additional input. They 

are so named because they are not part of canonical low-energy N  =  1. D = 10 

supergravity plus super Yang-Mills system; in fact we might even take this as a 

hint that N  =  1 local supersymmetry in ten-dimensions implies string theory, 

since these theories are anomalous without the Green-Schwarz counterterms.

Before we leave this very technical section, let us consider this mechanism from 

the perspective of Feynman diagrams. Analogous to the triangle graph in four di­

mensions. the basic anomalous graph in ten-dimensions is the one-loop hexagon 

graph with chiral fermions in the loop coupled to six external currents. The 

Green-Schwarz “counterterm" then amounts to a cancelling tree-level graph in­

volving the exchange of a field between two vertices containing two and four 

fermions. The apparent paradox that a tree-level graph can cancel the anoma­

lous variation from a loop diagram is resolved by either a careful study of the 

dilaton dependence in the vertices of the tree graph, or the observation that both 

graphs in string theory arise from the same topology but in different limits of 

moduli space.

1.6.2 Pseudo-anomalous U ( l)  sym m etries

It is of obvious interest to ask what four-dimensional ramifications these ten­

dimensional considerations might have. While a general discussion of geometric 

or CFT compactifications lies outside the scope of this introduction, it suffices 

to note for our purposes in the next chapter that many compactifications of 

heterotic string theory to four-dimensions which preserve an unbroken N  =  1
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spacetime supersvmmetry may also possess a U(l)  symmetry with apparently 

anomalous fermion content. In standard field theory this would imply that under 

a U(l) gauge transformation the effective action is not invariant, but picks up an 

anomalous variation proportional to Tr(<2i/(i))F A  F. But we expect that string 

theory, which is anomaly-free in ten-dimensions, has a four-dimensional remnant 

of the Green-Schwarz mechanism which cancels such an anomaly. Indeed this is 

the case, and furthermore is linked to the issue of the vacuum stability of string 

theory.

Let us consider a specific example due to Dine, Seiberg, and Witten [4] for the 

heterotic 50(32) superstring compactified on a so-called Calabi-Yau manifold

[23]. If we wish to compactify string theory on a manifold, and preserve pre­

cisely one spacetime supersymmetry, we are naturally led to these objects as 

follows [6]. An unbroken supersvmmetry Q, is a conserved charge which anni­

hilates the vacuum |Q), or equivalently satisfies (fi|{Q. Lr}|f2) =  0 (using the 

the hermicitv of Q) for all operators U. Since this automatically holds for all 

bosonic U by Lorentz invariance, we can restrict our attention to fermionic U. 

But then {Q.U} is just the supersymmetric variation S q U .  so in the classical 

limit we have S q U  = 0 for all fermionic fields as the condition for an unbroken 

supersymmetry. In particular, the gravitino variation leads us to consider com­

pact six-manifolds admitting a covariantly constant spinor field. Since the spin 

connection on a six-manifold is in general an 5 0 (6 ) ^  SU(4) gauge field, the 

existence of a covariantly constant spinor implies that the holonomy (parallel 

transport of a field around a closed curve) group of the compact manifold is 

SU(3). Manifolds with metrics of SU (3) holonomy are equivalent to manifolds 

with Ricci-flat. Kahler metrics. Explicit examples of the latter are difficult to 

construct due to the Ricci-flat condition, but a crucial existence theorem con­

jectured by Calabi and proven by Yau states that any Kahler manifold with
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so-called vanishing first Chern class, admits a unique Ricci-flat metric, and so a 

metric of SU(3) holonomy. Examples of these Calabi-Yau manifolds are easy to 

find, and the existence theorem does the rest. Finally, we note that all of the 

Hodge numbers hr's (the complex dimension of the Dolbeault cohomology groups 

H™. which characterize the topological nontriviality of the manifold) for a six 

(real) dimensional Calabi-Yau manifold are determined from just h ld and h2,1.

Returning to the example, if we embed the 50(3) spin connection of the Calabi- 

Yau manifold into the gauge group SO(32), the latter is broken to SU{3) x 

50(26) x 0(1). Recalling that the massless modes charged under the 50(32) 

are the gauge fields and the gauginos (both in the 496 dimensional adjoint rep­

resentation), we have the decomposition

( 8 . 1)0 +  (1.325)0 +  (1, l)o +  (3 ,26) ,  +  ( 3 . 1)_2 +  ( 3 . 26)_,  +  ( 3 , 1)2. (1.94)

where the subscripts denote the 0(1) charges. Only the last four are charged un­

der the 0(1) (which can be anomalous), so consider the massless four-dimensional 

states to which they give rise. Wave operators in ten-dimensions break into non­

compact and internal pieces for scalars and fermions respectively as

v A,v A/ = + v mv m , rA,v M = + rmvm. (1 .9 5 )

where M  =  0 ,... 9, /z =  0 . . .  3 and m =  4 . . .  9. Thus massless fields in four 

dimensions correspond to the modes of the massless fields in ten-dimensions that 

are also zero modes of the internal operators or rmVm, the number of

which are determined topologically by the Hodge numbers of the Calabi-Yau 

manifold. Specifically, the last four states in (1.94) give rise to /iu  massless 

four-dimensional fields transforming as 26+1 under the surviving 50(26) x 0(1), 

h 1'1 as 1_2, h2'1 as 26_,, and h2,1 as l +2. This applies to both the original gauge 

fields [which under 5 0 (8 ) spin x50(32) transformed as (8y,496)], and their
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supersymmetric gaugino partners [transforming as (8S, 496)]. Thus if h2A ^  /i1,1. 

the latter gives rise to a four-dimensional massless fermion spectrum is both 

chiral, and anomalous under the U( 1) [since Tr(Q[/(1)) ^  0].

As suggested, an (apparent) anomaly in the four-dimensional effective theory is 

cancelled by a four-dimensional remnant of the Green-Schwarz mechanism. Here 

is how it works. Recall that a Green-Schwarz counterterm could take the form

(1.87): B a F a F a F a F .  In compactifying to four-dimensions, we can take the 

six spacetime indices on three of the Fs  to correspond to internal dimensions, so 

that in four dimensions this term gives rise to a term B aF . with a proportionality 

factor J K F  A  F  A F  ( K  is the compact manifold) that can be computed in string 

theory [25]. Recalling the form of the gauge transformation of B, we see that 

this term could therefore cancel an anomalous variation of the effective action 

proportional to F  A  F.

On the other hand, the components of B ^  with indices tangent to the four 

noncompact spacetime dimensions always yield a pseudoscalar called the (model- 

independent) axion a. via the (differential forms) dualization d^a ~  e^xrd^BXr. 

This combines with the dilaton <b to form a scalar component of a chiral superfield 

5  = d> + ia, called the universal superfield. The kinetic terms for B ^  and <p in

(1.83) imply (see chapter 2. or [5]) that the Kahler potential for S  at string 

tree level is — log(S +  S').  But now the F ( l ).4 gauge transformation assigned 

to B  to cancel an anomaly proportional to 6gs, under which S  —> S  + 2i5gsA. 

implies that at one-loop the Kahler potential is modified to A's =  — log(S +  S* — 

4£ffS\')  in order to maintain gauge invariance (V' is the vector superfield for the 

pseudoanomalous U ( 1 ) a  gauge symmetry).

In addition to generating potentials for the dilaton and the scalars charged under
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the U { 1 ) a  symmetry, an important consequence of this modified Kahler poten­

tial is the generation of a Fayet-Ilopoulos [24] D-term at one-loop in the string 

expansion corresponding to the U { 1 ) a  and proportional to Tr(<5{/(i))- which po­

tentially breaks the spacetime supersymmetrv and destabilizes the vacuum by 

allowing tachyons. While nonrenormalization theorems protect the tree level 

superpotential (so that one might expect the perturbative stability of supersym- 

metric vacua), this is an important potential exception. Fortunately, the full 

D-term includes contributions from the charged fields, which in the known cases 

can be assigned vacuum expectation values to cancel the Fayet-Iliopoulos term. 

The net effect is to restore supersymmetry (albeit at a shifted vacuum), and 

spontaneously break the t / ( l ).4 pseudoanomalous symmetry.

This brings us directly to the topic studied in chapter 2: when we spontaneously 

break a.U(l) symmetry, we generally induce topologically stable solutions called 

Xielsen-Olesen vortices [28]. In the stringy framework described here, such po­

tential vortices are also coupled to the axion and the dilaton. While the role of 

the axion had been previously emphasized, the dilaton was frozen to its asymp­

totic vacuum expectation value, which explicitly breaks the supersymmetry we 

sought to restore. The study of the full system is the subject of chapter 2. to 

which the reader may now turn.

Finally, let us note that the above low-energy field-theoretical arguments can 

be explicitly confirmed by one-loop string theory calculations; in particular the 

explicit generation of the Favet-Iliopoulos term (and its finite Green-Schwarz 

coefficient), and some of the one-loop induced masses were calculated in [25],

[26] and [27].
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1.7 Spacetime noncommutativity from strings

Thus far our discussion of string theory has been entirely within perturbation 

theory: small numbers of weakly coupled strings. This is related to the fact that 

our starting point, the Polyakov path integral, involved the quantization of the 

coordinates of a string (first quantization) and not fields of strings. Furthermore, 

interactions emerged naturally from the sum over topologies where no special 

interaction points occurred. This is completely dissimilar to point particle field 

theory, which if developed in a first quantized formalism as a sum over particle 

histories, requires the ad hoc introduction of special interaction points or vertices, 

constrained by unitaritv.

On the other hand, quantum field theory (as a path integral sum of field configu­

rations) contains many phenomena which are intrinsically nonperturbative, and 

which play a central role in our understanding of the vacuum. While it is pos­

sible to develop a string field theory for bosonic open strings, this approach has 

not yet been particularly fruitful in yielding new insights into string theory be­

yond perturbation theory. Nevertheless, much progress has been made in recent 

years towards understanding what kinds of nonperturbative phenomena occur in 

string theory (see [5]) from the study of string dualities, which relate different 

string theories and different vacua to each other. While we do not have the space 

to examine these vast developments, for our purposes, we note that at the cen­

ter of this nonperturbative understanding are the so-called Dirichlet branes (or 

D-branes for short) [29], [5]: nonperturbative dynamical objects on which open 

strings can end. Furthermore, when we turn on a constant, background B ^  field 

on a D-brane. string theory naturally predicts spacetime noncommutativitv on 

the brane [30]. In this section we briefly develop this construction in order to 

motivate our work in chapters 3 and 4.
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1.7.1 D-branes via T-duality

58

The emergence of D-branes in string theory can fortunately be understood via a 

symmetry called T-duality, which is visible in perturbation theory. This is the 

approach we follow, our goal merely to see how these objects necessarily appear.

First however, consider an ordinary free massless scalar <fi in D  dimensions 

compactified on a circle of radius R  along the direction corresponding to xd 

(d =  D  — 1). We can then freely expand the dependence of 0  on x d as

<t>{xM) =  exp {inxd/R),  (1.96)
n

where M  =  0 . . .  d, p. =  0 . . . d —1 . The momentum in the compact direction 

is therefore quantized as pd =  n / R, and the wave equation for 4>, dM 8 m <f> =  0 , 

becomes an infinite set of equations for the modes (f>n:

P d ^ n ix * )  = (1-97)

This is the simplest example of a Kaluza-Klein tower of states: for energies small 

compared to R~l, physics is D  — 1 dimensional and we only see the 4>q mode, 

whereas for energies above R ~ l , the effects of the massive modes become visible.

Now consider bosonic string theory in D = 26, compactified on a circle along 

.V2°, so that we identify A' 25 cs: A' 25 -I- 2nnR, n G Z. This has two effects. 

First, since the operator exp(2TriRp2s) which translates string states around the 

compact dimension must leave states invariant, the center of mass momentum 

is again quantized: P25 =  n /R ,  n G Z. The second, intrinsically stringy effect, 

corresponds to a closed string winding around the compact dimension:

X 25(a +  2n) = X 25(a) -I- 2nRw , w 6 Z. (1.98)

Otherwise the world-sheet action, and hence the OPEs and worldsheet energy- 

momentum tensor, are unchanged by these worldsheet solitons.
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Now recall the mode expansion for the closed string (1.42):

7 ) = -  i ^ - ( a £  + &o)t -  +  (oscillators). (1.99)

Under a —► a +  2~. A'25 changes by Inyja.'/2(otQ° — djj5), while the Noether

momentum in the 25 direction is given by po5 =  ( l / \ /2 a i)(al5 +  d jf). so that 

(1.98) and Kaluza-Klein momentum quantization respectively imply

c f - a f  =  w l l j l  . Qf + d “  =  ^ 1/ | .  (1.100)

Inverting this we have

[ 2  2= n wR [ 2  .,5  n w/2 .
P K . L  =  s  +  -JT • « =  V ? “ » =  fi - -JT- <L10I>

Recalling our discussion of string state masses below' (1.53), and the state- 

operator correspondence, the mass spectrum is now given by

m2 =  i ( a f  )2 +  U .V  -  1) =  i ( d 25)2 +  i ( ,V  -  1) 
a a a  a
n2 w~ /?2 2

= W2 + ^  + a ' iN + N ~ 2)' (L1° 2)

where .V and N  represent the total number of left and right moving oscillator

excitations. (This also implies N  — N  = nw.)

There are two limits of interest: R  -» 0 0  and R  —► 0. In the former, corre­

sponding to the decompactification of A'25, the winding states become infinitely 

massive while the compact momentum spectrum approaches a continuum. In 

the latter, the compact momentum states become very massive, but now the 

winding number states become light and approach a continuum, because it costs 

little energy to wrap a string around a small circle. The surprise is that these 

two limits are identical, since the spectrum is invariant under

a 1
R  —► R 1 — — , n w, (1.103)

H
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which takes pf° —> p |5. and p“  —> —p^5. This last fact, combined with the 

harmonic separation X 25(z,z)  =  A'l5(z) +  X ^ { z ) ,  suggests the definition of a 

dual coordinate

X™ (z,z) = X f ( z ) - X ' f ( z ) ,  (1.104)

which has the same OPEs and energy-momentum tensor as .V25 (because the 

sign change always occurs in pairs in these objects). The only change to the 

CFT induced by this rewriting, is the spectrum of the dual coordinate is now 

that of the R' = a ' /R  theory.

This equivalence is called T-duality and implies, at least in string perturbation 

theory, that the minimum length scale is set by s / a ' .  Putative physics at smaller 

scales always has a dual description at a larger distance scale. This is obvi­

ously completely unlike point particle physics, and is tied to the existence of the 

winding modes admitted by an extended object such as the string.

Now let us consider this discussion in the context of open strings. Recalling 

our mode expansion (1.46) which couples left and right moving modes by the 

Neumann boundary conditions at the endpoints, we again can separate A'25(z, z) 

into its holomorphic and antiholomorphic components:

A'25(z) =  + C -  ia' log(z) +  i

-v25(;0 =  T “ c ‘ ia ' log(5) +  i \ / f  (U 05)

for a constant C. As above, consider the theory written in terms of the dual 

coordinate A'-'25 =  X 25(z) — X 25(z):

= 2C -ia 'p*H og ( f ) + i ^ Y , o S§ U m - i ~ m)

= 2 C -  2 a 'p25a +  i J ^ -  Y ,  —  e_mr (e,m<r -  e"'""7) . (1.106)
* ^ m?t0 m
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Recalling that the endpoints of the open string correspond to a  =  0 or 7r, (1.106) 

implies that they are r-independent in this direction; that is they cannot move 

along A''25. The Neumann conditions in the A' 25 coordinate for the endpoints 

have become Dirichlet conditions in the dual A' ' 25 coordinate, so in effect the 

open string endpoints are restricted to the 24-dimensional hvpersurface.

YVe can easily extend these considerations to the toroidal compactification of

25 -  p dimensions. A"25___,ATP+1, and, by adding Chan-Paton factors to the

string endpoints, to the case of multiple D-branes. The string endpoints will 

then be restricted to a (p +  l)-dimensional hypersurface, called a Dp-brane. As 

discussed earlier, since open strings necessarily couple to closed strings, and hence 

gravity, we expect that these objects are not rigid, but dynamical, fluctuating 

in shape and position. For example, massless states arise for non-winding open 

strings states with endpoints on the same Dp-brane as a^,|A\ ii) and a™,|A:, zz) 

(|k. ij) denotes an open string state with momentum fc. and Chan-Paton quantum 

numbers i . j ) ,  which correspond respectively to a L’(l) gauge-field tangent to the 

hyperplane and 25 -  p scalars corresponding to the transverse fluctuations of the 

brane. When X Dp-branes coincide, this gauge symmetry is enhanced to U(N).

1.7.2 D-branes in background B-fields

Following the approach of Seiberg and W itten [30], we now examine the space­

time effects of a constant B NS-NS background on a Dp-brane in flat space. 

We will now denote flat spacetime metric by to free up the symbol G: since we 

work in a flat worldsheet gauge there is no ambiguity relative to earlier notation, 

where g denoted the worldsheet metric.
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Consider the usual bosonic worldsheet action (in a flat worldsheet gauge), with 

a constant of full rank with respect to the Dp-brane3, as in (1.78):

S  = [  (gltvdaX f,&,X v -  2nia'eabBfil/daX fidbXl/)
4/ra ' J m k '

— 7 — 7 f 9„ d aX ^ X l' -  t-l Blll/X fidtX t/, (1.107)
47ra' J m  2 J a x i

after using the divergence theorem, and where we have (essentially) taken out a 

factor of ol out of B ^  for later convenience. Here dt denotes the tangent deriva­

tive to the worldsheet boundary dM. The boundary conditions the equations of 

motion imply for \i along the D-brane are

gtlvdnX v +  2irioL BpvdtX1' =  0 on dM. (1.108)

with dn the normal derivative to dM. For B = 0, these are the usual Neumann 

conditions for an open string, whereas in the limit B  —> 0 0  (or g —> 0) for the 

spatial directions along the brane, these conditions become Dirichlet. In this 

limit, each boundary of the worldsheet can be thought of as being attached to a 

DO-brane within the Dp-brane.

Since we are considering open strings, the relevant worldsheet at the classical 

level is the disk, which can be conformally mapped to the upper-half plane with 

the real axis as the worldsheet boundary. Then for the ‘z’-coordinate of this 

description, z =  x + iy, for which dt on d /dx  and dn a  —d /d y  on y =  0 , (1.108) 

becomes

9^ { d  -  d)X" A  2tTa'BfW(d +  d )X v = 0  on Im(z) =  0. (1.109)

The problem of finding the two-dimensional Green’s function or propagator sat-

3The components of B  transverse to the D-brane can be gauged away [as below (1.78)], but 

in the presence of the D-brane they give rise to physical effects as we shall see.
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isfving (1.109) was solved in [31]:

<A'"(c, =)*"(*', O )  = - a f [ g ^ l o g \ z - z ' \ - g ^ \ o g \ z - z ' \ +
Qtit' /  - _  y> \

log |2 - s f  +  —  lo g [ r z r b j  ^ - 110)

where we take the branch cut of the fourth term in the lower half plane (for 

single-valuedness), and where

For open strings, whose vertex operators are inserted on the worldsheet boundary, 

we restrict c and z' to the reals r  and r '. for which (1 .1 1 0 ) reduces to

where f is the ± 1  step function. G ^  is called the open string metric.

The surprise comes when we consider the consequences of the second term in 

(1 .1 1 2 ). using the tools of conformal field theory we developed in section 1 .3 . 

Recall that the propagator (Green’s function) determined the basic A'A* OPE. 

and the OPEs of operators built from As (including conserved currents). The 

OPE-algebra correspondence then determined the commutator algebra of op­

erators when the operator ordering corresponded to time ordering. Thus, by 

interpreting t  as time, and displacing forward and backwards in time, (1 .1 1 2 ) 

implies

Thus A’** define a noncommutative spacetime. Note that the components 6 ^  are 

constants since B  and g are, and that the mass scale of this noncommutativity

(1.111)

(A'J(r)A "(r ')) =  - a ' G ^  log(r -  r')2 + l-d ^e{r  -  r ') , (1 .1 1 2 )

[A ^ rJ .A ^ r ) ] (1.113)
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is set by l/yj\\9\\. Furthermore, since the combinatorics of normal ordering 

defined by (1.18) are unchanged [(1.18) is modified only by the replacement of 

( o '/2 ) log 1 | 2 bv the new propagator (1 .1 1 2 )], the normal ordered product of two 

vertex operators e,p A (r) and e,, A(r /) is now

. etp--Y^ . , . T̂ _  Tl ^ 2 a ' G * " . e*(P+<7)-'V(r ') _|_ _ .

(1.114)

which is the analogue of (1 .2 0 ) for the propagator (1 .1 1 2 ).

It turns out particularly useful to consider the zero-slope (o' —> 0) limit, taken 

in such a way that G and 9 (the parameters to which open strings are sensitive) 

are kept fixed, rather than g and B  (the closed string parameters). Specifically, 

we scale o ' as e1/2, and as e for (/z, v  along the brane), holding everything else 

fixed. In the limit e -> 0 , where G and 6 remain finite, several things happen. 

The boundary propagator further simplifies to (.YM(r)A'l/(0)) =  ^ pI/e(r), and 

the worldsheet theory for the A'p corresponding to directions along the brane 

becomes topological, since the first term in (1.107) vanishes. Furthermore, the 

normal ordered product of the tachyon vertex operators now simplifies to

: eip'A (r) : • : := . e»(P+?)-Ŷ  +  . (1.115)

which immediately generalizes, essentially as a consequence of our old friend 

(1.18). to the product of general functions

: /(x ( r ) )  : • : p(x(0)) :=: 6zU(r) drl/(0) f ( x ( T ) ) g ( x ( 0 ) )  : . (1.116)

We may now take the (finite) r  -> 0 coincidence limit to obtain finally

: f ( x )  : • : g{x) :=: f{x )* g (x )  :=: e*e‘“' f { x  +  £)g{x + C)|f=<=o : • (1-117)

This is the so-called star product of functions, which we will see emerge directly 

from (1.113) in chapter 3, and is the basis for everything we do in chapters 3 and 

4 of this thesis.
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The a ' —> 0 limit just discussed is called the Seiberg-Witten scaling or decoupling 

limit [30]; so-called because we have decoupled the closed string modes (including 

gravity) from the open ones. But when we recall that an a' —► 0 limit is really a 

field-theoretical limit, it suggests that we therefore study noncommutative field 

theories with the noncommutative structure defined by (1.113). Furthermore, if 

we take the notion of a noncommutative spacetime as a phenomenological possi­

bility, it then becomes imperative to study the compatibility of such a structure 

with standard field-theoretical constructs as spontaneous symmetry breaking.4. 

This brings us to the topics we elucidate upon in chapters 3 and 4. to which the 

reader may now turn, having seen the stringy motivation for spacetime noncom­

mutativity.

4 In fact we will see in chapter 3 that there are other, more specific motivations coming from 

the study of simple noncommutative scalar field theories [32].
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Chapter 2 

Anomalous U (l)  vortices and the 
dilaton

2.1 Introduction

Many four-dimensional compactifications of superstring theory [1. 2. 3] which 

preserve an unbroken N=1 spacetime supersymmetry also possess a U(l) gauge 

symmetry with apparently anomalous content for the massless fermions of the 

associated gauge charge. The apparent anomalies of these U(l) gauge groups are 

cancelled by a four-dimensional remnant of the Green-Schwarz mechanism [4], 

as originally argued by Dine, Seiberg, and W itten [5. 6 . 7],

These authors noted that while the superpotential is not renormalized in ei­

ther string or sigma model perturbation theory (so that solutions of the string 

equations at lowest order remain solutions to all orders and the vacuum remains 

perturbatively stable), vacuum degeneracy can still be lifted if a compactifica- 

tion contains a gauge group with an unbroken U(l) subgroup, by generating a 

Favet-Iliopoulos [8 ] D-term. By assumption such a term is not present at tree
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level in the loop or sigma-model expansion, so the question arises as to whether 

it is possible to generate it radiativelv in perturbation theory. It turns out that it 

can arise only at one loop in the string-loop expansion, and then only if the U(l) 

is anomalous (since the term is proportional to the trace over the U(l) charges 

of the left-handed massless fermions [6 ]).

In fact many string compactifications have precisely such an anomalous U (l). 

with an explicit example being furnished by Dine, Seiberg and Witten for the 

SO(3‘2) heterotic string. They argue that the anomalies induced by such a U(l) 

are cancelled by assigning the model-independent axion a nontrivial U(l) gauge 

variation, corresponding to the remnant of the underlying ten-dimensional Green- 

Schwarz anomaly cancellation mechanism. Supersymmetrically, the model inde­

pendent axion is paired with the dilaton [whose vacuum expectation value (VEV) 

sets the string-loop coupling constant] to form the scalar component of a chiral 

multiplet, whose modified (due to the anomaly cancellation and gauge invari­

ance) Kahler potential now yields the Favet-Iliopoulos term. The effect of this 

induced Fayet-Iliopoulos D-term, generically. is to break spacetime supersymme­

try as a one-loop effect in the string loop expansion. However, the full D-term 

also includes contributions from charged scalars in the theory. In the known cases 

some of these scalars can acquire VEVs to cancel the Fayet-Iliopoulos D-term 

thereby restoring supersymmetry by spontaneously breaking the U(l) symmetry 

in a process referred to as vacuum restabilization.

It has recently been argued that in heterotic E% x Eg [as opposed to heterotic 

50(32)] compactifications, that the axion involved in the anomaly cancellation is 

a model-dependent axion originating from internal modes of the Kalb-Ramond 

form field B tj .  with i . j  = 4 . . .9 .  (The essence of this argument dates back 

to Distler and Greene [9].) Such axionic modes appear paired with an internal
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Kahler form zero mode to form the scalar components of complex moduli Tt, 

which describe the size and shape of the compactification manifold. However 

as Dine, Seiberg. and Witten had noted [5], if we assign one of the model- 

dependent axions a nontrivial gauge transformation to cancel the anomaly, and 

then proceed as in the model-independent case, we again get mass and tadpole 

terms that now appear at string tree level because there is no longer the dilaton 

(and hence string-loop) dependence that occurs in the model-independent case. 

These terms are by assumption absent in the classical, massless limit of string 

theory. The other way of saying this [9] is that the U(l) is not a symmetry 

of the world-sheet construction, and hence is not a symmetry of the low-energy 

effective theory describing the (classical) string vacuum. Furthermore there is no 

Fayet-Iliopoulos term generated in this case, so spacetime supersymmetry is not 

spontaneously broken and the vacuum destabilized. Thus, henceforth, we will 

work within the usual framework of Dine, Seiberg, and Witten [5] and consider 

anomaly cancellation via the dilaton/model-independent axion, or S  multiplet.

On the other hand, it is well known that the breaking of a U(l) symmetry can 

give rise to topological defects known as Nielsen-Olesen vortices [1 0 ]. which may 

appear in a cosmological context as cosmic strings [11]. Binetruv. Deffayet, and 

Peter [12] analyzed the vortices arising from such anomalous U(l) scenarios and 

concluded that there exist configurations of the axion such that some of these 

vortices can be local gauge strings, whereas, for other choices of the axion con­

figuration the vortices are global [1 1 ], However, in order to arrive at their final 

model, they freeze the dilaton to its (asymptotic) VEV while leaving the axion 

dynamical. Since the dilaton and model-independent axion form the scalar com­

ponent of a chiral superfield, this ansatz explicitly breaks supersymmetry as they 

acknowledge. Since vacuum restabilization perturbatively restores supersymme­

try in the resulting low-energy effective theory, an analysis of the vortex solutions
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of this effective theory should retain the fields required by the supersymmetry. 

In this chapter we present such an analysis, and examine the structure of the 

anomalous U(l) vortex including the dilaton as a dynamical field.

In order to treat the dilaton. axion, and anomaly in a  systematic way, we show 

that the anomaly can be treated in the low-energy effective Lagrangian, and in 

the field equations, as a perturbation about the Abelian Higgs model and Nielsen- 

Olesen equations respectively. The dimensionless Green-Schwarz coefficient Sg3 

will be considered as the perturbation parameter; in the simplified model of [1 2 ], 

wherein a single scalar accomplishes the vacuum restabilization, supersymmetry 

restoration, and U(l) breaking, this parameter is of order 10-3. Then, looking 

for static, axially symmetric (vortex) solutions of the field equations using the 

standard ansatz for the Higgs (scalar) and gauge fields, we show that the axion 

is only 9 dependent (as [12] obtain), and the dilaton is only r dependent given 

the assumed time-independent, cylindrical symmetry of the fields. The axion 

field equation effectively decouples (we still obtain the asymptotically converging 

solution of [1 2 ] for the axion, plus the others corresponding to global axionic 

strings), and we obtain ordinary differential equations for the dilaton, Higgs 

modulus, and the nontrivial component of the gauge field.

Corrections to a constant dilaton appear only at 0(Sgs); at zeroth order we simply 

obtain the usual Nielsen-Olesen equations for the Higgs and gauge field. Using 

a parametrization for the solutions to the Nielsen-Olesen equations correct at 

the asymptotic limits r —> oc, and r —> 0 , we obtain the first order correction 

to the dilaton. We find that the correction necessarily diverges logarithmically 

to positive infinity as r -> 0  as a direct consequence of the r —> oc boundary 

condition and the two-dimensional nature of the problem. We also show this is 

not an artifact of the parametrization of the Nielsen-Olesen solutions, but is only
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dependent on these asymptotic regimes. This divergence reflects a transition to 

a (heterotic) strong-coupling regime and hence a failure of the effective theory 

as a classical limit (since the large dilaton field means large quantum effects). 

Finally, we check the consistency of this result outside of Sgs perturbation the­

ory by examining an exact solution to the large-dilaton limit of the full dilaton 

field equation, which involves exponential dilaton self-couplings, and the axion 

contribution, neither of which is visible in the first order 5gs perturbation theory.

2.2 The m odel Lagrangian

In this section we will construct the effective field-theoretic action that will be the 

basis for the rest of this chapter. We will only consider the model-independent 

framework (and hence the model-independent axion), in which the details of the 

compactification from ten to four dimensions are not important.

The four-dimensional low energy limit of an X=1 supersymmetric compactifi­

cation of heterotic string theory is an N= 1  supersymmetric field theory for the 

massless fields. In ten dimensions, the massless fields in the pure supergravity 

sector are the dilaton the antisymmetric tensor field B m x , the graviton 

and their fermionic superpartners, while in the Yang-Mills sector we have the 

massless gauge fields of Es x Es or 50(32), and their gaugino superpartners. In­

dependently of the compactification scheme to four dimensions, the antisymmet­

ric tensor field B Ms  yields via dualization the universal or model-independent 

axion a. which combines with the four-dimensional dilaton to form the scalar 

component of a chiral superfield denoted by S. Starting from the bosonic ten
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dimensional effective action for the heterotic string [2 ],

Shet = 2 ^~  J dl°x (~ G )k' e~2*
(2 . 1)

[with Hz — dBo — ^T rv(.4 i A  d,4i +  2Ai A  A\ A  Ai/3), and where subscripts 

denote the rank of the associated tensor, so that for example F2 is the field 

strength of the gauge fields Ai, etc.], dimensional reduction to four dimensions, 

Weyl transformation from the string to Einstein metric, and Poincare duality 

yield [2]:

W ,  = / a * * (-<?«„)*

- a F ^ F *„]}  + . . .  (2.2)

where the ellipsis represents compactification-dependent terms involving for ex­

ample the other T-like moduli of the orbifold or Calabi-Yau manifold, thresh­

old corrections, and the scalars (matter fields) coming from the ten-dimensional 

gauge fields. Here, g2 =  k 1/a', S  =  e~2**+ia, <£4 =  4>i0 +de<(GAfjv), and a is the 

dualization of the Kalb-Ramond field strength [2], define the four-dimensional 

gauge coupling and the four-dimensional dilaton, and axion multiplet. Also, all 

gauge field references now refer to the surviving 4-dimensional gauge group. Thus 

we see that a in fact has the required axion-like coupling, and that the dilaton 

VEY sets the four-dimensional gauge coupling.

On the other hand the purely bosonic sector of the general supergravity form 

(1|,[2].[3] is:

Cbos r  =  - l- R e ( U m F ‘ F ^
( - G ) i  2«2

+  \R e ( fa M ) D ° D l> + . . .  (2.3)

where K(<j>,<j>*) is the Kahler potential, f ab is the gauge kinetic function, Da is 

the supergravity D-term (included in anticipation of what is to come), and . . .
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represent omitted superpotential terms. Thus comparing (2.2) and (2.3) we see 

that the string action yields a supergravity action with a dilaton-axion Kahler 

potential given by — log(S +  5 f). and that the gauge kinetic function is simply 

given by f ab = V-5.
9 4

Many compactifications of string theory possess gauge groups containing U(l) 

subgroups. Sometimes the quantum numbers of the massless fermions associ­

ated with such a compactification appear to lie in anomalous representations, 

and hence the U(l) is referred to as anomalous. As Dine. Seiberg, and W it­

ten [5] showed, the Green-Schwarz mechanism of the underlying string theories 

(which ensures that the string theories themselves are anomaly free) has a four­

dimensional remnant which cancels the would-be anomalies associated with U(l), 

thereby resolving the paradox. Specifically, a U(l) anomaly means that under a 

U(l) gauge transformation .4  ̂ —> .4  ̂ 4-c^A the effective action is not invariant, 

but picks up the usual anomalous variation:

(2.4)

where Sgs is the anomaly coefficient (henceforth we work in the notation of [1 2 ]). 

Since this is of the form of the standard axion coupling term in (2.2), it is clear 

that this anomalous variation can be cancelled by assigning the axion a nontrivial 

U(l) variation: namely a a + 28gs\ .  In terms of the dilaton/axion superfield 

S this reads

S  —► S  +  2i5gsA. (2-5)

where A. a chiral superfield, is the supersymmetric generalization of the gauge 

transformation parameter A; i.e. the vector field A gets promoted to a vector 

superfield V. with gauge transformation V' —> V' -I- i(A — At)/2. However, now 

the Kahler potential for the S is no longer gauge invariant, and must be modified
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to the gauge invariant form:

A ^ - l o ^  +  ^ ^ y - ) .  (2.6)

Among other terms this induces a one-loop (in the string loop expansion) Fayet- 

Iliopoulos term [8 ]. We can also now add the contributions coming from the 

(other) scalars charged under the U(l). Specializing to the anomalous U(l) 

sector of the theory, denoting the four-dimensional dilaton now by $ 4  —> ty. and 

the scalar (chiral) superfields by .A*with charges A", and scalar components <£,. 

we can write the effective Lagrangian of our model:

C = JcP e  [A'(S. Sf) +  J ^ e x ' vX \  +  J d 29 ^ S W aWa + h.c. (2.7)

with TUQ the spinor (chiral) superfield associated with the field strength of V. 

While a superpotential for the Ai could be added, since it must be independent of 

the dilaton superfield S in perturbation theory, we neglect it for simplicity since 

we are primarily interested in dilaton and axion dynamics. Using the fact that

(S + S* -4(5ssr u  = 2e-2* A 26a^(25gsA ,  -0 „ a )  + 0 2e2( d ^ ( e ~ 2* /2 ) - 2 5 gsD)

in W ess-Zumino gauge, we can expand the Kahler potential term in component 

form to get:

J  dA6K(S. Sf) =  -
i  Ore

(2 .8 )
4

Note that the kinetic terms agree with those found in equation (2.2) since 

(dftS 5/i5 t ) /(5  + S * ) 2 =  d1*'# d ^  +  (e4*/4) d^ad^a. The last term is the Favet- 

Iliopoulos term, and is explicitly dependent upon the dilaton. The coupling 

between the gauge field and the axion is the four dimensional remnant of the 

Green-Schwarz counterterm [4]. Next, we have:

J d A6 A \e x 'v Ai =  -  A ,-$?$*£> + . . .  (2.9)

where =  (d^ — UVjA^)^*,. These are simply the minimal kinetic terms for 

the charged scalars, and the usual D-term contribution to their potential. The
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final term in (2.7), expanded as usual yields:

\ f d29 S \V aWa = - - e - ^ F ^ F ^  +  \ a F ^ F ^  + \e ~ 2* D2 +  . . .  (2.10)
4 J 4 4 2

The F 2. and the F F  terms agree of course with (2.2) [or (2.3) with f ab =  

by construction, and the D2 term is the last supergravity term from (2.3) . 

Combining the terms from (2.8), (2.9). and (2.10) as in (2.7) we finally arrive at:

4

Cbos = - d f l d W -  V ( ^ a - 2 5 9Ŝ ) 2 - ( £ > ^ I)t£>''$l
4

1 1 P2* 9_ _ €-2*F ^  +  _a F ^ _ _ ( e2*5ffa +  X. $ t ^   ̂ ( 2 n )  

where we have eliminated D by its algebraic equation of motion:

0  =  e2* ( e 2%  +  AV*t*,.). (2.12)

Equation (2.11). with the Planck mass restored everywhere, (which we have 

implicitly suppressed by setting =  a 1 = 1) and with s instead of e-2* for the 

dilaton. agrees with the Lagrangian of reference [12]. Notice that throughout, 

we have been implicitly using the metric convention (—. +, +. +), in accordance 

with [1 2 ]. as is evident from the negative signs in front of some of the kinetic 

terms. This Lagrangian represents the bosonic part of the anomalous U(l) sector 

of the low energy action of heterotic string theory, and represents our starting 

point for the analysis of vortex solutions.

2.3 Perturbation scheme and field equations

In string theory the dilaton is the string loop expansion parameter, its vacuum 

expectation value setting the string coupling constant [1]. As is evident from 

(2 .1 1 ), its four dimensional remnant in this model manifestly sets the U(l) gauge
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coupling: (e*) = g. Since our main interest is in the dilaton, it will be convenient 

for our purposes to consider variations of the dilaton about its VEV. Thus define 

v  = -  (4>) so that

e* =  ge*. (2.13)

We will henceforth refer to U as the dilaton. Then ip = 0 <-» (Re(S)) =  1/g2. 

Inserting this into (2.11), restoring the Planck mass, and rescaling Sgs and a by 

1 /g 2 we have

c eff =

b

This is invariant under local U(l) gauge transformations [with gauge parameter 

A(x'1)] which now read

 ̂e 'A,A$, . .4  ̂ —̂ .4,, +  d^X , a —̂ o + 2AIpSgsX. (2.15)

As discussed above, the gauge variation of the axion in the F F  term cancels 

the anomalous variation of the Lagrangian due to the (suppressed) fermions. In 

weakly coupled string theory, the anomaly coefficient Sgs is calculated to be [5]

S"  = 192^2 (216)

where the sum is over the U(l) charges of the massless fermions and hence,

by supersymmetrv, over the charges of the massless bosons. In semi-realistic

string models this sum may be large. A particular example furnished by the

free-fermionic construction [13] yields Tr(Q,\) =  72/y/Z, so that Sgs ~  10-2.

Assuming without loss of generality that 5gs > 0, the presence of a  single scalar

with negative charge can minimize the potential in (2.14) (assuming we assign

the other scalars zero VEVs), thereby cancelling the Fayet-Iliopoulos D-term,
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restoring supersymmetrv, and spontaneously breaking the U (l) gauge symmetry. 

Thus, as in [12], we consider a single Higgs scalar $  with negative unit charge, 

effectively ignoring quantum fluctuations of the other scalars about their zero 

YEVs, and working in the classical limit. This is consistent with ignoring the 

fermionic contributions.

Then (2.14) essentially becomes an Abelian Higgs model, coupled to the dilaton 

and axion through the anomaly, which may be viewed as a perturbation. To 

motivate this perspective, introduce a fictitious scaling parameter a  so that

Sgs -> aSgs. (2.17)

Then, as a —> 0. the anomaly is turned off. In order for the spontaneously

broken Abelian Higgs model to remain in this limit, the invariance of the term

SgsM } e ^  in the potential, and in turn the gauge transformation of the axion, 

imply respectively that Mp and a should scale as

A/p -» a~*Mp , a —> a 1/2a. (2.18)

Next we switch to dimensionless variables using the symmetry breaking scale 

defined by S ^ 2M p l

^  = Mpx* , <p = x/2 » ^  — . 1 /2 , ,  ’ ® =  j  \ f '  (219)
dg's M p gOgs M p  OgsMp

where we have written $  =  cte"1. so + (dpT] + A p ) 2. By

design, these dimensionless variables are a  invariants as required for a consistent 

perturbation scheme. Effecting these transformations and dropping the hats, we

‘As typically SXg,2 <  10“ l , the tension of our vortex solutions, which is set by the scale of 

the spontaneous U( l )  breaking, is below the Planck scale, justifying our neglect of metric back 

reaction in our analysis of these solutions.
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arrive at our final Lagrangian form:

-1C  — ef f  ~ . duVcPip -  -  0 2 (duT) + ,4„)
&Ogs

p—2v p2v o

gs -aF^uF ^  -  ( P a  -  2Atif  
4 4

(2 .20)

where we have rescaled the overall Lagrangian by the factor Mpg252s. In the limit 

ctSgs —> 0. we identically get the spontaneously broken Abelian Higgs model2. 

Thus, since only the combination a 8gs appears, setting a = 1 (or relabelling 8  — 

aSgs). the only remaining parameter is Sgs (or 8 ) which is now to be interpreted 

as a perturbation parameter.

The field equations derived from (2.20) are

3-2v
— f ^ f ^

82
+  y e 4v' ( ^ a - 2 . 4 " ) 2 

□0 = 6 {dtlrj +  An)2 +  e2t d>{0 2 -  e2 t)

0 = d ^ i & v  + A*)}
, - 4 0

□a =  2 ^ .4 "  -  — -Fta,F tu' -  A d ^ i& a  -  2A^)

(2.21)

(2 .22 )

(2.23)

(2.24)

dfl(e~2vFlu') = 2 0 2{dug + A") + 8  [ d ^ a F ^ )  -  -  2.4")] . (2.25)

Despite the presence of the dynamical dilation, by differentiating (2.25) with 

respect to x", and then using (2.23). (2.24), and dftF til' =  0, we obtain

F ^ F p ,  = 0. (2.26)

2 As we will later show explicitly, in this limit, the dilaton ip -> (ip) =  0, so its gradients 

vanish identically and the kinetic term  poses no problem.
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Then, after choosing the Lorentz gauge d^.4" =  0, the axion field equation (2.24) 

simplifies to

□a = - 4 d ^ i d ^ a  -  2.4"). (2.27)

2.4 Vortex ODE’s

It is well-known that the spontaneously broken Abelian Higgs model possesses 

topologically stable vortex solutions sometimes called Xielsen-Olesen vortices [10] 

(see Shellard and Vilenkin [11] for a complete reference on the subject). These 

correspond to static, cylindricallv symmetrical solutions of the field equations 

for the Higgs and gauge fields. Specifically, working in cylindrical coordinates 

(t. r. 0 , z) we look for solutions independent of t and z, with the standard vortex 

ansatz [10],[11] for the Higgs phase and the gauge field

rj =  n0,

.4" =  (0,0. .4e(r), 0) =  (0.0, .4(r), 0). (2.28)

where n is an integer characterizing the winding number of the vortex. The Higgs 

field $  = oelv —> {o)elv (as r —► oo) defines a representation of the U(l) gauge 

group space S 1 since from (2.15), $  —► e-,A$  under a gauge transformation. 

Thus $  defines (as r —> oc) a mapping from the boundary S 1 of physical space

onto the group space S 1, and so can topologically be classified by an integer n.

In the language of homotopy theory ^ ( S 1) =  Z. With these ansatze. the Higgs 

phase field equation (2.23) can be written as

] ^  +  . 4 ) = ° .  (2.29)
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where we have used d^A* =  0, and the fact that r) =  nO implies □// =  0. Then 

since in general .4(r) ^  — n/r.  we get

d<p—  = 0 => <f> =  <p(r). (2.30)

This is normally assumed as an ansatz, but this shows it actually follows from the 

Higgs phase field equation. Then (2.23) is identically satisfied with these forms 

of 7], A. and <j>. At this point we still have a =  a{r,6 ), and ip = ip(r,6 ) assuming 

only static, axial symmetry. However, writing the Higgs modulus equation (2.22)

as

0 0 - 6 (8 ^  + .4„)2 =  ^  + I ^ - 0 ( r )  

=  f{r)

7 1  4 /  \-  +  A{r)
.T

= e2^ T'6]<t>{r) [0 2{r) -  e2̂ T'e)] (2.31)

determines ip algebraically as a function of r alone, so ip =  t.'(r). Furthermore, 

consider the gauge field equation (2.25) for v =  r, i.e. v  =  1. Since A* =  S2flA(r), 

only F 12 and F 03 are nonzero. Then (2.25) for u =  1 reads

1 d
- - q q  je~2fc’(r)F 2I(r)j =  O =  202(O +  O) +  3

da
0 _ e  (§ 7 _ 0 ) - 1- “-

(2.32)

so that a = a(6 ). Now ip =  ip(r), a = a(9), and .4 =  .4(r) imply in the axion 

field equation (2.27) that

1 (Pa
d ^ i d ^ a  -  2A») =  0 Oa =

r2 d0 2
=  0 .

This fixes

a(0) = C0 + D.

(2.33)

(2.34)

3Remember we are always working with metric signature (—, + , + , + )  so □ = + A,

etc.
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Because a appears only derivatively coupled, we may take without loss of gen­

erality D = 0. Furthermore, single-valuedness in the physical space requires 

that C  be an integer, so that a represents a  mapping from physical space into 

the gauge group space just as t\  does (see [12]). The specific axion solution of 

Binetruv. DefFayet and Peter [12] corresponds to the choice C  =  —2n, where n 

is the winding number of the Higgs phase4. It has the property of rendering the 

energy-momentum tensor associated with the Lagrangian (2.11), but with a fixed 

dilaton. asymptotically finite. It is clear however, that we can also get the usual 

global-axionic strings with other choices of the integer C. We w-ill consider the 

general case for the moment, leaving C = —2m  without loss of generality, with 

m not necessarily equal to n. Effectively this allows the axion and the Higgs 

phase to have different winding numbers. In a moment it will be clear why the 

local solution of [12] is special.

Combining what we have learned about the coordinate dependences of the fields, 

we can now reduce the remaining field equations (2.21), (2.22). and (2.25) to three 

ordinary differential equations:

d2v  1 dtp 
dr2 ^  r dr

3
2

-  02)(e2v -  <t>2) -  e~2̂  ( -^-(r.4 )")
\ r  dr )

+ 2 3 V “ ( ” + . 4 ) \ (2.35)

~ ( r . 4 ) ]  = 2 ^ ~ ( r . 4 ) + 2 ^ e w ( -  +  / t )+ 2 /J e 6» ( - + . 4 ) .  (2.37) 
r dr dr r dr \ r  / \ r  )

where we have used the following:

d_
dr

= 2(V x .4)2 =  2 1 d l A\
7 T r (TA]

4a =  - 2 nff in the original variables reads a =  2SgsM pT)jX
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aMF« = V’(.4)|9 =  V’ .4 -  ,4/r* = ±  i l ( r . 4 )  .

(2.38)

As in the standard Nielsen-Olesen vortices [10].[11] of the Abelian Higgs model, 

we require that the Higgs modulus approach its vacuum expectation value asymp­

totically to minimize the potential term, and that the covariant derivative D f i  

vanish asymptotically (i.e. the gauge field asymptotically becomes a pure gauge) 

so that the energy (per unit length) of the vortex remains finite. Translated into 

our language, these conditions read

The Higgs ‘screening’ by the gauge fields prevents the logarithmic divergence of 

global vortices, so that the terms involving ( j  + .4)2 (remnants of the covariant 

derivative D f l )  are well behaved under the energy integral. To be precise the 

energy of the vortex contains the following term5

which may converge asymptotically if A has the behaviour (2.39), and necessarily 

diverges logarithmically otherwise. However, once we have fixed the asymptotic 

behaviour of the gauge field (with respect to the Higgs field), the presence of 

the axion reintroduces these logarithmic divergences if m  ^  n, because now the

In the special case that m  =  n, corresponding to the Binetruy et. al result, the

4>(r) —>• 1 , r  —> oc,

.4(7-)
—n

(2.39)r —> oo.
r

(2.40)

( f  + A)2 term (from the axion kinetic term) in the energy integral is divergent .

5 Incidentally, we require <£(0) =  0 in order for this integral to be well-behaved for small r, 

something we will not be able to do for the analogous axion term we are about to discuss. This 

is precisely the origin of the short-distance log divergence of Binetruy et. al [12].
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axion contribution equals the Higgs phase contribution, and again the asymptotic 

logarithmic divergence coming from the axion kinetic term is avoided by the 

cancelling contribution of the axion-gauge field coupling. Now however, a short- 

distance divergence remains since the energy integral f(™ +  A )2rdr is ill-defined 

for r —> 0 (see footnote). Since our primary interest is now in the dilaton, for the 

remainder of our discussion we consider the m = n case to simplify the equations 

slightly. We demonstrate in the next section that this will in no way affect any 

subsequent results.

Before proceeding we now make a convenient change of variables for the gauge 

field. Define i>(r) through

—n [1 — c(r)]

so that

A(r) =

v(r) -> 0 , r  -> oc.

(2.41)

(2.42)

The equations (2.35)-(2.37) now read, denoting r derivatives by primes:

£
2

e~2vn2
■ ( » ' )

2 2 . 7 7 V

<t>" + — =  —-<pv2 +  e2vd){(t)2 -  e2t’). 
rz

v " - ~  = 2x1/v’ + 2(<*2e2* + $e™)v. 
r

+ 2Q2e ^ — -{2A Z )  
r l

(2.44)

(2.45)

We require the dilaton to approach its asymptotic VEV as r 

language, means

V —> 0 , r  -> oo (i.e.(Re(S)) = ^ ) .
9

oo. which, in our

(2.46)

Now consider the boundary conditions at r  =  0. In the standard Nielsen- 

Olesen/Abelian Higgs model [11], the vortex configuration means that <f> attains
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the symmetric (false vacuum) state 0 =  0 at r  =  0 (which we argued was nec­

essary for the energy integral to be well-defined), and .4 remains bounded (more 

precisely the magnetic field remains bounded). Thus we have

0(0) = 0 , u(0) =  1. (2.47)

This leaves, finally, the boundary condition for the dilaton at r = 0. Of course 

we would like to have the dilaton (VEV) remain bounded in the core, but as we 

shall now show, this is not possible if $ ±  0.

2.5 Perturbative expansion and corrections to
the dilaton

Throughout this section we will make usage of the following elementary fact of 

our radial equations:

r  + !-  = o = > /(r)  =  C 1+ C 2 log(r). (2.48)
r

First, note that if 0 =  0, then the dilaton equation (2.43) becomes (2.48). so 

that the asymptotic condition (2.46) on the dilaton then implies

0 o(r) =  0 Vr. (2.49)

This of course corresponds to the frozen dilaton. Then the other two equa­

tions. (2.44) and (2.45), identically reduce to the Nielsen-Olesen equations of the 

Abelian Higgs model, as promised:

00 + ^r = ^2 vo +  fao — l)  i (2.50)

= 20g v0, (2.51)
r
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with i'o(O) = 1, v0(oo) =  0, 0o(O) =  0, 0o(oc) =  1. We have subscripted the fields 

with zeros to indicate that these are the zeroth order terms in a perturbation 

expansion in 8, which we now define formally in the obvious way:
PC OO OO

*Wr ) = 53 £V.-(r) ’ = > y(r) =  (2.52)
i= 0  i= 0  i= 0

40o +  0o -  ~ j(vo)2Ti

Substituting these into (2.43)-(2.45) yields the following 0(/3) corrections:

(2.53)

0” +  ~  =  (0i vo +  20oVoVi) +  20i (0o — 20o) +  0i (30o — l)  ,(2.54)

vf
v'l — A  =  20jUq -F 2v0 (20o0 i +  20001 +  1̂  +  2vi0o, (2.55)

where we have included the corrections to the Higgs and gauge field for com­

pleteness. What really interests us is the first of these equations, (2.53), the first 

correction to the dilaton. Note that this 0{8)  correction does not depend on 

having chosen the choice of Binetruy et. al. for the axion, since the axion does 

not enter at this order. This can be seen directly from (2.20) or (2.43). More 

importantly, this dilaton correction can be calculated from knowledge of only 0O 

and vQ: i.e. the Nielsen-Olesen solution for the Higgs and the gauge field.6

Unfortunately explicit solutions to the Nielsen-Olesen equations (2.50), (2.51) 

are not known. However, all we really need is a parametrization of the solutions 

with the correct behaviour at r —> oo and at r —> 0. The conclusions we will 

draw will depend only on the asymptotic behaviour of 0O, v0, and in particular 

the r —> oo boundary condition on 0  itself.

Thus, first consider the large r behaviour of the Nielsen-Olesen equations (2.50),

(2.51). Write 0o and v0 as 1 — <50o and Svo respectively, where S's represent

6In fact, it is obvious that the dilaton at any order is determined only by functions of lower 

order.
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deviations with respect to asymptotic values. Then the linearizations of (2.50).

(2.51) are

t5<pQ h— —  =  2(50o  +  0 ( ( 5 2 ) .  ( 2 .5 6 )
T

=  2dv0 + 0 (62). (2.57)
r

Note that as per Perivolaropoulos [14] (or Shellard and Vilenkin [11]), since

we have the case '3 < 4T (in their notation), we do not need to consider the

inhomogeneous term (5v0)2/ r 2 in the <50o equation, which can dominate a linear 

term of O{6o0) if 3 > 4. In this case, the gauge field dictates the falloff of the 

Higgs field. Our ‘S' (not to be confused with the perturbation parameter) is 

1. so this usual (strict) linearization applies. The solutions to these linearized 

equations, with the asymptotic boundary conditions, are in terms of modified 

Bessel functions:

e-x/2f
(50o —> A'0(\/2r) -> Cp— y=- . r -» oc. (2.58)

yjr
(5i>0 —► A'i(\/2r) —> Cvy/re~'^T . r —► oc. (2.59)

where C0. and Cv are constants of order 1. As Perivolaropolous [14] notes, the 

factor of l /y /r  is usually neglected in (2.58). We will neglect these y/r terms as 

being negligible with respect to the exponentials when parametrizing a solution 

of the Nielsen-Olesen equations over the whole range, and later show that this 

does not affect our results.

Now consider the small r behaviour, this time taking d>o as <50o- With i;0(r <C 

1) ss 1 the leading order behaviour of equation (2.50) at small r is

<50o +  — -  =  -  ^  =  ^ r " • r ^  1- (2.60)r  ri

where A > 0 (to be determined conveniently in a moment), and where we have 

discarded the second singular solution. At this point we specialize to the n = ±1
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vortex for simplicity. Then the small r gauge field equation is

v'o -  —  =  2 ( 6 & 0 ) 2 v 0 = 2A2r2v0. (2.61)r

with solution

vQ = e“ '4r‘/v/2 ~  1 -  +  0 ( r 4) • r < l .  (2.62)

where again we have discarded the second solution (a positive exponential), which 

has the wrong behaviour near r =  0, and used uo(0) =  1- Combining (2.58). 

(2.59). (2.60). and (2.62) suggests the following parametrizations of the solutions 

to the Nielsen-Olesen equations:

Oa(r) ~  tanh * (2-63)

u0(r) ~  sech2 • (2-64)

which corresponds to setting .4 =  l/\/2 -  They have the following asymptotic 

behaviour:

O0(r) —> —  (r -* 0) , ©o(r ) —> 1 — 2e~'/2r (r —> oc) (2.65)
v2
r 2 r

vo{r) 1 — (r —► 0) , v0(r) —y 4e (r —> oc). (2.66)

and are therefore suitable parametrizations that become exact; in both r-limits.7 

These are of course the usual solitonic-tvpe forms that qualitatively describe 

the behaviour of the solutions to (2.50). (2.51) very well, as can be checked by 

comparing them with the exact numerical calculations.

Inserting (2.63) and (2.64) into the dilaton correction (2.53) yields, after some 

trigonometric simplification.

+  =  sech2 (  '  )  +Sech< ( ^ \  H 1* f  ( ‘ ~  ?)1  ^
r \y /2J  \ \ / 2 /  7-2

=  / ( r). (2.67)

"A quick numerical check reveals that the error, by construction, is concentrated near r =  1 

and is bounded above by about 20%.
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However, the inhomogeneous right hand side is well approximated globally by 

the first term sech2(r/\/2 )- In particular, the dominant asymptotic behaviour 

as r  —t x  is the same [since the latter term is a correction of 0 (ex p (—2\/2r)) 

coming from the (v '0)2 and the contributions], and is correct to O(r) in the 

small r limit. 8 Thus we take

'/ +  — ~  sech2 4e v̂ r 35 r —► oc). (2.68)

where we have included the explicit asymptotic behaviour for later usage. The 

general solution of (2.68) is a particular solution of the inhomogeneous equation, 

plus the fundamental solution (2.48) with the arbitrary constants chosen to sat­

isfy the boundary conditions. From the theory of ODEs, a particular solution to 

an inhomogeneous second order ODE, with inhomogeneitv f(r )  is given bv

t \ , s I  -Jfe(r)/(r) , f  yi{r)f{r)
y P ( n  =  2/i(r) /   p r -d r  +  y2(r) /  — ■  r r r d r , (2.69)

J H (l/i(r),jfe(r)) J W'{yi{r).y2{r))

where H'(yx. y2) is the Wronksian; 1 /r in our case. Thus we have the general

solution for V \ { r )

t'l (r) =  log(r) J  r sech2 dr -  J  r log(r)sech2 dr + C\ -I- C2 log(r),

(2.70)

with the requirement that V\{oc) = 0. Evaluating the first integral explicitly, 

and then integrating the second integral by parts using the result just obtained, 

allows us to bring this to the much more convenient form

w

t ’i (r) dx + Ci -I- C2 logr, (2.71)

where we have introduced a lower integration limit a, to be determined momen­

tarily. In order to be able to impose the boundary’ condition ^ 1(0 0 ) =  0, we need

8 Alternatively, we do not have to make this truncation, at the price of making the subsequent 

analysis much more algebraically tedious, without qualitatively changing the result. The point 

is that it will be the dominant asymptotic behaviour that determines the dilaton behaviour.
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to understand the convergence of this integral as a (type I) improper integral. It 

is easy to show that in fact the integral is logarithmically divergent as r —> oc

If we rewrite the integrand in terms of exponentials, this limit is made more 

evident, as well as allowing us to write a closed form expression for the integral. 

Denoting the integrand by F(r) we have

whence it is clear that the last term yields the logarithmic divergence, whereas 

the other terms yield obviously convergent integrals. This divergence must be 

cancelled bv the C2log(r) term of the homogeneous solution (2.48), by setting 

Co =  —2 log(2). This is a necessary condition of being able to impose ipi(oo) = 0. 

Then, pulling the homogeneous solution -2log(2) log(r) under the integral to 

cancel the 2 log(2)/r piece, to fully impose the boundary’ condition we must take 

the integration limit a to infinity since the integrand is monotonic. Also, we 

must take the constant homogeneous solution C\ =  0. Putting it all together, 

we finally have

since

\/2  tanh — 2
(2.72)

r

F ( r )  =  A 1 - * " *  - ^ - 2 |o g ( 1 + ^ )  +  2 log(2)
1 +  e -v^r t r

= 21og(l +  e ~ ^ T) +  2 f ;   ̂ 1^"-l-Ei1(wv^r), (2.74)

where we have introduced the exponential integral defined by

(2.75)
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It is easy to verify explicitly that this solves the dilaton correction equation (2.68) 

and satisfies

fim y-i(r) =  0. (2.76)

However, though we have been able set the dilaton tl’ equal to zero at spatial 

infinity, the dilaton now diverges to +oc at r =  0 since

x  30 / i \ n  +  l

lim t'i(r) = lim 2 5 1 -----------Eii(n\/2r) ~  lim — 2 V * -------
r ^ °  r^ °  n ^ l n  r^ °  n^l n

log(r)

= lim - 2  log(2) log(r) -> -Foe, (2.77)

using the fact that

Eii (ar)
lim —;— —  =  lim — = 1 Va > 0. (2.78)
r —>0 -  log(r) r - » 0  v '

How did this come about? This singularity is none other than the one introduced 

when we were forced to assign a nonzero value to the homogeneous term C2 log(r) 

in order to obey the boundary condition at infinity. Thus in order to avoid a 

logarithmic divergence at infinity, we are forced to introduce one at zero by 

turning on log(r). This can be viewed as a direct consequence of the fact that we 

are dealing with an essentially two-dimensional problem and the two-dimensional 

Laplace equation.

It is now clear why this result is independent of the parametrizations (2.63), 

(2.64) and of the truncation made in going to (2.68). The C2 log(r) homogeneous 

term is turned on (and effectively shifts the particular solution) if and only if 

the (unshifted) particular solution integral is asymptotically divergent, which in 

turn depends only on the dominant asymptotic behaviour of the Nielsen-Olesen 

solutions. But this is precisely how we chose the parametrization and made the 

truncation: they have the correct asymptotic behaviour. Conversely, once the 

C2 log(r) term is turned on, we now unavoidably have a positive logarithmic
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divergence at r  =  0. because the unshifted integrand is well behaved near r =  0. 

Again, we chose our pararaetrization to have the correct small r behaviour of the 

Nielsen-Olesen solutions.

Finally one might worry in taking, as most authors including Nielsen-Olesen do, 

the asymptotic behaviour of <z>0 as exp(—V2r) and not exp(—\/2 r ) /s/r,  that we 

may have affected the convergence of the unshifted particular integral. This is 

not the case. Consider taking 0o ~► 1 — c-xp(-(^/^ . and t>0 —> v ^^P C -v /S r). as 

(2.58)-(2.59) indicate. Then the dilaton correction (2.53) reads

~  \  [3 -  4(i -  c0e ^ T)2 +  (1 -  c0e ~ ^ r)4 
r 1 1

r2 2 y/r
2 e - 2 ^ 2 r

p — Vir
e  _ 2 v / 2 r \= 2c0— 7̂  + O ( e - ^ 2r), (2.79)

v r

where we retain, as per our argument above, only the dominant asymptotic con­

tribution. Excepting the yjr factor, this is the same result as our parametrization 

and truncation (2.68). i.e. the terms linear in d0 o yield the dominant asymptotic 

contribution. This is now the exact asymptotic behaviour. Now using (2.69), 

the bare particular solution is

i ’i,p(r) ~  2c0 jtog(r) J  y / r e ' ^ d r  -  J  log(r) v/re_v/5rdr 

y ^ v / i e r f ^ 1/4^ )  v /2 e " ^
■ r \ f x

d x , (2.80)

after various substitutions, and integration by parts very similar to the pre­

vious case. Here erf(x) =  2 /v /7r/0xexp(—t2)dt. Clearly this integral diverges 

logarithmically as 2~3/4v/7r log(a) as a —► 0 0 , so once again, in order to impose 

t ’i(oc) = 0. we cancel this with the homogeneous solution —2-3/4v/7rlog(r). 

Then, pulling it under the integral sign and reversing limits as before to make
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the sign of the correction clear, we have

roc ( 2-3/4v ^  [l -  erf(21/4N/^ )l
{ --------------4 -----------^  +  4 r - r -  (281 )

As can be easily checked, this satisfies (2.79) and tp\ (oc) = 0. Thus the asymp­

totic divergence is not avoided by the additional factor of l /y 'r .  and we are again 

forced to turn on the homogeneous C2 log(r) solution. We worked with a simpler 

global parametrization before, so that we could discuss small r behaviour of the 

solution as well. This completes the argument that our result is independent of 

our parametrization. and our truncation.

2.6 Discussion

The results of the previous section are perhaps surprising. In fact, this is a rather 

generic property of solutions to the inhomogeneous equation

L’i +  — =  f ( r ) (2.82)r

with a vanishing asymptotic boundary condition, and with reasonable assump­

tions on / ( r ) .  As we have seen, the general solution of (2.82) can be written

as

f i ( r )  = log(r) J r f (r )d r  — j  r lo g (r)/(r)d r +  Cx +  C2 log(r)

= log(r) f  x f ( x ) d x -  f  x log (x)f(x)dx,  (2.83)
Ja Jb

where we have absorbed the homogeneous solution into the particular indefinite 

integrals by making them definite integrals: the arbitrary constants of the general 

solution are now the lower, constant, limits of integration. Clearly, we cannot in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. ANOMALOUS U(l) VORTICES AND THE DILATON  96

general impose the boundary condition ^i(oo) =  0. A necessary condition for 

being able to impose this condition is that

J[im J  xlog(x) f (x)dx  (2.84)

exists. Unfortunately, this is not quite sufficient [f(x) = sin(x2)/(x  Iog(x)) fur­

nishes a counterexample]. However, the absolute convergence of the integral

(2.84) is sufficient to be able to impose tZ’i(oc) =  0, i.e. if

J|im J  xlog(x) \ f (x) \dx = K  < oc. (2.85)

For if this limit exists, then so does the limit

K m /  x\ f {x) \ dx.  (2.86)

Then the squeeze theorem, and the inequalities

0 <  log {r) j  x f ( x ) d x  <  J  log(r)x |/(x )| dx <  J  log(x)x |/ (x ) | dx  -* 0

(2.87)

as r —>• oc, imply that

/ oo
xf (x)dx =  0. (2.88)

This establishes the sufficiency of the condition (2.85).

From (2.53), the actual f ( r )  in which we are interested is determined from the 

Xielsen-Olesen solutions d>o and uo, and the arguments from the previous section 

establish that this / ( r )  decays exponentially as r  —» oo. Thus we easily satisfy 

the above sufficient condition allowing us to take 0i(oc) =  0.

Now consider the behaviour of ip\ (r) near r =  0, subsequent to imposing 0 i (oo) = 

0. We now write the solution (2.83) as

M r ) =  J x log(x) f ( x)dx -  log(r) j  xf ( x) dx.  (2.89)
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Remembering that xlog(x) —>■ 0 as x -» 0+, we now demonstrate the inevitable 

presence of a logarithmic divergence of ipi(r) at r  =  0 as long as / ( r )  is well- 

behaved near r =  0 and K  =  /Oocx /(x )dx  0. The sign of the divergence will 

depend on the sign of K. Explicitly we have

roc roc
limt-'i(r) ~  / xlog(x)/(x)dx — log(r) / xf ( x ) dx  -4 sgn(A') x oc. (2.90)
r~>0 J 0 Jo

Note that these integrals exist assuming only, in addition to the previous restric­

tions on f ensuring improper convergence, that f is defined and say continuous 

(or Riemann integrable) everywhere on r > 0, and in particular at 09.

Again, because our f ( r )  from (2.53) is defined and continuous for all r  > 0 

because the Nielsen-Olesen solutions are [remember that the term (vq)2/ r 2 in

(2.53) is finite as r —> 0 as seen in (2.67); in other words the field strength of 

the Nielsen-Olesen vortex is finite at the core], we have a logarithmic divergence 

at r = 0 as explicitly shown in the previous section. In fact, since our f ( r )  is 

explicitly nonnegative [as seen in either (2.67) or its truncation (2.68)]. the K 

defined above is positive, and so the logarithmic divergence is to positive infinity 

at r =  0. Again, this was seen explicitly in the last section.

To summarize, we have found that a solution to (2.82) can satisfy tyi(oc) =  0, if 

the limit (2.85) exists. Furthermore, if this limit exists so that we may impose 

t'l (oc) =  0. the solution diverges logarithmically at r =  0. Thus tp{oc) — 0 im­

plies t ’(0) = oc. Since the / ( r )  relevant to our discussion decays exponentially 

as r —> oc, and is well behaved at r  =  0, this provides a general and generic 

proof of our result. Incidentally, this also shows why our results of the previ­

ous section are independent of either the parametrizations to the Nielsen-Olesen 

solutions or the truncation made in going from (2.67) to (2.68): this general

9Of course if f is poorly behaved (say divergent) as r —► 0. so that the integral diverges, 

then already the dilaton diverges without further argument.
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behaviour depends only on the behaviour of f as r —> oc and as r —► 0, and our 

parametrization was chosen to be exact in these limits.

Given that we have now established that this dilaton behaviour is rather generic, 

one might wonder if this divergent behaviour of the dilaton at the core of the 

vortex is somehow an artifact of the perturbation theory. In fact, we now expect 

the full dilaton equation to yield even worse behaviour because of the exponential 

feedback. As a consistency check of our result, we will briefly examine the full 

dilaton equation (2.43). If we take the perturbation theory to be valid only for 

very large r. where the dilaton VEV is still small, so that we are still in a classical 

and perturbative regime, we know that it starts to run positive as one comes in 

from spatial infinity. A positive exponential self-coupling acts as a source term 

that becomes larger and larger as r —> 0. So if we equate small r with large ip- 

then the dilaton equation (2.43) is dominated by the vacuum Fayet-Iliopoulos 

term [2] proportional to e6* [or l / (S  +  5 t )3 in the notation of Polchinski], which 

comes directly from the anomaly cancellation as a two string-Ioop tadpole [5], so 

that, approximately

t  (2.91)
r 2 v '

where we are taking 3 so small that wre can neglect the axion contribution that 

is otherwise possibly as large (but of the same sign in any case), and where we 

are assuming that we still have 0 0 as r -4 0: i.e. the vortex is well defined.

An exact solution to (2.91) is given by

where a{ is an undetermined constant. For very small 3  this is essentially the 

same behaviour as our perturbative calculations. This solution is obviously con­

sistent with the approximation (2.91) to the full dilaton equation (2.43) if we

(2.92)
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assume that the gauge and Higgs fields still have the boundary values 0(0) =  0. 

and i/(0) = 0.

In any case, we seem to be led to the conclusion that the four-dimensional dila­

ton in this model starts to grow as we come in from spatial infinity. Since the 

dilaton VEV in this model sets the anomalous U(l) gauge coupling, we eventu­

ally enter a strongly coupled regime where not only the 3 perturbation theory 

breaks down, but where it no longer makes sense to ignore quantum and string 

threshold corrections. In other words, such a vortex is fundamentally a quantum 

mechanical object. Furthermore, as we have seen, the unavoidable singularities 

we have encountered are a direct consequence of the effectively two-dimensional 

nature of the vortex system: the solution of the Laplace (or Poisson) equation in 

two dimensions involves a logarithm which is singular at both r =  0 and r  —> oo.

Our conclusion then is that anomalous U(l) vortex solutions of heterotic su­

perstring theory, if they are to have the standard asymptotic structure at large 

radial distances from the vortex core, necessarily generate large dilaton field val­

ues within that core signalling the presence of strong coupling and large quantum 

fluctuations. As such, these vortices can never be adequately described as entirely 

classical objects: their classical exterior surrounds an interior that is intrinsically 

quantum mechanical.
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Chapter 3 

Noncommutative field theory and 
spontaneous symmetry breaking

3.1 Introduction

In this chapter we undertake a perturbative analysis of quantum field theories 

on noncommutative R" which exhibit the spontaneous breaking of a continuous 

global 0 { N )  symmetry. The perturbative expansion of noncommutative field 

theories has been the subject of much recent investigation. In the original work 

of Filk [1], it was suggested that despite being (infinitely) nonlocal, these theories 

exhibit the same divergence structure as their commutative counterparts (due to 

nonplanar oscillatory damping). More recently, Minwalla, Van Raamsdonk. and 

Seiberg [2] have shown that the effective cutoff of nonplanar graphs at one-loop 

in scalar theories replaces a UV divergence (which would ordinarily be cancelled 

with a counterterm) with an IR divergence in the external momenta:

A \ j t  =  - j-------------—►--------- , A2 —> oo. (3-1)
j ? + P ° P  P ° P
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They find that UV and IR limits do not commute, and suggest that UV diver­

gences that persist at higher orders can be interpreted as IR divergences.

We continue these investigations, and examine global spontaneous symmetry 

breaking in the simplest case of the (noncommutative) O(N)  linear sigma model. 

In particular, we wish to investigate the status of Goldstone’s theorem at one- 

loop for the noncommutative case. As is well known, the renormalizabilitv of 

spontaneously broken theories is more subtle because the number of countert­

erm vertices exceeds the number of renormalization parameters (eight and three 

respectively in the linear sigma model). In the standard commutative case, the 

renormalizabilitv of the theory, and the persistence of Goldstone’s theorem ensur­

ing the masslessness of the classical pions at the quantum level, involve a delicate 

cancellation between the relevant graphs and the pion propagator counterterm 

at zero external momentum [5-8]. The pion propagator counterterm is however 

fixed by the sigma tadpole counterterm, which in turn is fixed by the usual renor­

malization condition imposed on tadpoles: namely that they vanish so that the 

YEY of the sigma is not renormalized. Thus, the persistence of masslessness of 

the pions (Goldstone’s theorem) at the quantum level is a genuine prediction of 

the quantum field theory. We now generalize this standard calculation to the 

noncommutative case.

We will find that the cancellation in the calculation of the pion mass renormal­

ization is violated already at one loop order, and the 1PI renormalized (ie. after 

adding the counterterm fixed by the tadpole renormalization condition) effective 

action depends explicitly on the UV cutoff A, so the naive continuum limit does 

not exist; there is no more counterterm freedom to subtract off these divergences. 

Put another way, turning on the noncommutativity parameter induces UV cut­

off dependence in the one-loop corrections to the renormalized pion propagator,
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and renders renormalization inconsistent with Goldstone symmetry realization. 

Viewed however as a Wilsonian effective theory where A is fixed, the limit of 

the mass correction as the external momentum is taken to zero still vanishes, so 

that Goldstone's theorem is satisfied for the Wilsonian action. The difference 

between the Wilsonian effective theory, and the putative continuum renormal­

ized theory is a direct consequence of the noncommutativity of the UV and IR 

limits in noncommutative field theories.

The basic idea behind this calculation is that the noncommutativity does not 

affect the tadpole calculation as no external momentum flows into a trilinear 

tadpole vertex. Insofar as the sigma tadpole measures quantum corrections to 

the sigma VEV, this suggests that the order parameter for spontaneous symmetry 

breaking is insensitive to the underlying noncommutativity. Furthermore, since 

the tadpole counterterm, and the pion propagator counterterm are (essentially) 

the same (modulo wavefunction renormalization), the latter is therefore unmodi­

fied. and fixed with respect to renormalization. Now however, the re-weighting of 

planar graphs (due to noncommutativity) with respect to commutative graphs, 

and the distinct behaviour of new nonplanar graphs occurring in the one-loop 

contributions to the pion propagator, lead to an inexact UV cutoff cancellation 

with the associated counterterm. We emphasize th a t this cannot be evaded by 

simply imposing that the propagator counterterm cancel the cutoff dependence 

of the one-loop planar and nonplanar diagrams (in effect changing the renor­

malization scheme), because now the sigma tadpole corrections will unavoidably 

diverge. This is a direct consequence of the relationship between the countert­

erm vertices in a spontaneously broken quantum field theory. In the following 

we calculate the one-loop renormalization of the inverse pion propagator in the 

linear sigma model of noncommutative field theory, and demonstrate the incom­

patibility of continuum renormalization with spontaneous symmetry breaking.
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3.2 Background and Formalism

In this section we introduce the noncommutative geometry and linear sigma 

model formalism we will need for the calculations of the next section in a rea­

sonably self-contained way. The underlying noncommutative R" is labelled by n 

coordinates satisfying

[xti, x v) = ietiv , r € C  (3 .2 )

so that the commutators are C-numbers. Let A x  be the associative algebraic 

structure naturally defined by (3.2). We are naturally interested in functions 

defined over the noncommutative spacetime. Following Weyl [9] define

° ( f ) =  (5 ^ 7 7  /  "  < ? “ ■ * '  m  (3.3)

where /  is the Fourier transform of / :

m  = (5 ^ 7 5  /<*”* /(x ). (3.4)

This uniquely associates an operator in 0{ f )  G A x with a function of classical

variables: replacing the commuting variables x  with operators x in a symmetric

fashion. The product of two such operators is then defined in the obvious way

0 ( f )  ■ 0(g)  =  J  d*kd"P eik̂ f ( k ) g ( p )

=  ^  f(k)g(p).  (3.3)

where on the second line we have used the Baker-Campbell-Hausdorff lemma 

eAeB =  e-4+B- 1/2[-4,B]+-) an(j the fact that for the canonical structure (3.2), 

the higher commutators vanishes. This allows us to establish a homomorphism, 

O( f )  • 0(g)  = 0 ( f  * g ), between this operator product (•) and the Moyal [10] 

product (*) of ordinary functions:

( /* » )(* )  =  /<*”“ >  f(k)g(p)

= Kv ) g ( z ) U, ^ z . (3.6)
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This induced homomorphism allows us to view the algebra of functions on non- 

commutative R" as the algebra of ordinary functions on commutative R" with 

the Moyal ^-product instead of the usual pointwise product. In particular, we can 

study field theories defined by classical actions of the usual form S  = f  dnxC{4>\ 

but with the ^-product of fields.

Now consider the spontaneously broken O(N)  linear sigma model. At this point 

we specialize to four dimensions for the remainder of this paper. Furthermore, 

our sigma-model conventions will be essentially those of Peskin and Schroeder 

[11]. The commutative linear sigma model involves a set of N interacting real 

scalar fields 0 l{x) with a continuous O(A0 internal symmetry. Renormalizability 

(of the commutative case) in four dimensions implies the Lagrangian

C =  W  +  i / i V ) J -  j  [(«‘)2]2 (3.7)

with implicit sums over the internal i index. Note the rescaling of the coupling 

A to avoid awkward factors of The global O(N)  symmetry' acts as

0* -> / W ,  (3.8)

where R  is a spacetime-constant N  x N  orthogonal matrix. Because the sym­

metry is global (so R  is constant), the noncommutative generalization of this 

symmetry will manifestly pose no problem with respect to the Moyal product, 

which explicitly degenerates into the pointwise product if one of the factors is a 

spacetime constant. In particular we will not need to worry about the intricacies 

of the noncommutative generalization of gauge invariance (see for example [3]).

For n2 >0 , the classical potential is minimized by a constant field <f>‘0 configura­

tion such that

m 2 =  j  (3 .9 )
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and the O(N)  symmetry is spontaneously broken. Since this determines only the 

length of the vector <pl. the rotational invariance allows us to choose coordinates 

so that

o'o = (0 ,0 , . . . ,  0,v). v =  (3.10)
v A

Then define o — <z>q — v such that

<!>l = (TTk,cr). k = l , . . . N - l ,  (3.11)

with < a > =  0. The linear sigma-model Lagrangian (3.7) rewritten in terms 

of these fields, and Wick rotated to Euclidean space (via x° = —ix°E) yields the 

following (commutative) action:

=  - f d > z \ d ^ < r * k +  +  jK * * )2]2

+  -< 7 4 +  v \ a ( 7 t k ) 2 +  ~{TTk ) 2a 2 +  A uer3
4 2

(3.12)

which reveals explicitly the masslessness of the N —1 pions of Goldstone's theorem 

at tree level. The renormalization counterterm structure determined from the 

symmetric theory (if the O(N)  symmetry is to hold quantum mechanically) is 

given by:

- C e .'., =  ^ 3 , , o W + ^ ( o ' r  +  ^ [ ( o f l !

= y  ( ^ ‘ )2 +  y  ( W 2 + j (* ,  + ^ H * * ) 2

\ r
^  \2l2 , ^  _2/_fc\2 , ^-*4

+ ~(<V +  35xv2)a2 -I- (SftV + 6xv3)cr + 5xva(nk)2 +  6xvcr3

+ j l ( * k) r  + J ° 2(xk)2 + (3.13)

Now consider the noncommutative generalization of this theory. As discussed 

above, the effect at the Lagrangian level of the noncommutativity is to replace 

the (implicit) pointwise product of fields with the Moyal ^-product. However,
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under the spacetime integral, an elementary but important result is that the 

quadratic part of the action is identical with commutative theory because 6'iI/ is 

antisymmetric. For example from (3.6).

( O l * 0 2 ) ( x )  =  0 l ( x ) 0 2 ( x )  +  ^ 0 ," ' d l l < i > i { x ) d l / d>2 { x )  +  . . .

=  0 i ( x ) < i > 2 { x )  +  [ d ^ { ( P i { x ) d v <i>2 { x ) )  -  O ^ d ^ d ^ i x ) }  +  . . .

=  <i>x(x)(t>2 ( x )  + total derivative + __  (3.14)

where ...  represent the higher terms in 0  that behave identically with respect 

to this calculation. Thus dropping total derivatives, by assuming appropriate 

asymptotic conditions on the fields, we have

J d4x d) * (b =  J cPx 0  ■ 0

J d 4 x  d d )  * d ( p  =  J d 4 x  d 0  ■ d 0  (3.15)

Interactions in higher powers of the fields are modified, and yield nontrivial 

phase factors in the momentum space Feynman rules, as we will see in a mo­

ment. There are two possible orderings for the noncommutative generalizations 

of the quartic terms TTk7rknlnl, and nknkcrcr. so we will include both orderings for 

each interaction in the model with unit total weighting. Thus the most general 

noncommutative, spontaneously broken linear sigma model action in Euclidean 

space is given by

’E,nc ■ - /
d x + \dnadro  + ^(2 ̂ ) a 2

+  ̂ r f ( T T k  *  7T*) *  ( 7Tl *  TTl ) +  ^ ( 1  —  / ) ( 7 T *  *  f t 1) *  ( 7T* *  7Tl )
4  4

+ —a * a * a * a + vXa * (irk * nk) + — f(irk * nk) * a * a  
4  2

( 1  — / )  (7rfc *cr) * (7rfc * a) +  Xva * a * a (3.16)
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and similarly for the counterterm structure. Note that the global O(N)  symmetry 

of the model implies that only a single /  can occur. Since we wish to examine 

the theory at the quantum level, we will need the Feynman rules. In momentum 

space the Moyal product (3.6) of n fields yields

where p, x p3 = p ^O ^p ^ . We will prove this in the appendix to this chapter 

inductively. Thus the only modification to the Feynman rules is due to the phase 

factor

at each vertex of n fields with pi the momentum into the vertex from the ith 

field. Otherwise the Feynman rules will be identical to the linear sigma model. 

Note that the sum contains n(n — l) /2  terms, and by momentum conservation 

is invariant under cyclic permutations, but not under arbitrary permutations of 

the momenta. We have both three and four point vertices in the spontaneously 

broken linear sigma model; a fact that will be crucial for our analysis.

To summarize we write the symmetrized Feynman rules for the spontaneously 

broken noncommutative linear sigma model using (3.16) and (3.18). Throughout 

solid lines refer to the sigma, and dotted lines refer to the pions. As discussed 

above, the quadratic terms are not modified, so the propagators are not modified 

from the commutative case:

V{pi . . . p n) = e 5£ '< jp,XPj (3.18)

Sij a
P P

The symmetrized vertices (all momenta flow into the vertex) of the theory are
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now given by:

P i

P 2

I P i  \

•  P 3  =  —2vX&i  c o s ( E iJL -E l)
/  '  0  '

J P 2

P 3  =  - 2 v \ (Pi X P2 Pi x  p3 , , P 2  X  P 3 .

I Px J P 2
\  /  

\  /
\  / =  -2A StJ t  (Pi  x  P2 , ( P 3 X p 4J cos(— -— ) cos(— -— )

P 3 Pa

+ ( 1 _ / ) cos( £ L ^  +  ^ 4 ^ )

P i

P 3

P 2

= —2A (Pi  *  P 2  \ / P 3  X  p 4 , P l  X p 3 p
c o s (  7----- ) c o s ( -----7 ) +  co s( ---- 7----- ) COS( —

Pa ( P i  x p i  , P 2 x  p3+  cos(— -— )cos(— -— ,

* Pi

P 3

\  /N /•
/  \

✓ \

J P2

I p A

= —2A 6']6kl ( j  cos( 

+(1 -  / )  cos(

P l X p 2 , ( P z x p A
— I c o s f - j - )

P l  X p 3 , p2 X p4 ,

+ f V ( / c o s ( ^ l ) c o s ( ^ i )  

+ ( l _ /)c o s (P L 4 S  +  a } * > )

+  <S"^‘ ( / c o s ( 2 l | ^ ) c o s ( ^ - p )  

+ ( i - / ) C0S(e L iZ ‘ +  e iP>)1

(3.20) 

■ (3.21)

(3.22)

X  P 4  \

2 J

(3.23)

(3.24)
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Working with totally symmetrized vertices allows us to capture both planar and 

nonplanar terms at once, though to make this explicit we will a posteriori extract 

planar and nonplanar parts below.

In the calculations of the next section we will only be interested in one and two 

point amplitudes, so the counterterms from (3.13) we will need are given by

- - - - - X - - - -  =  - ^ ( 5 ^  + 6xv2 - 6 zp2).

-(S^v +  6xv3),

 * ----------  =  -(6^ + 3 6 ^ - d zp2). (3.25)

3.3 One-loop quantum level calculations

The 0(A r) linear sigma model contains three counterterm parameters, and so 

three renormalization conditions are needed. These are conventionally taken to 

be conditions specifying the field strength of a. the 4-a scattering amplitude at 

threshold, and the vanishing of the one-point amplitude or vacuum expectation 

value renormalization of the a. Everything else, including the masses of both 

a and the 7fs. are predictions of the quantum field theory. In the renormalized 

perturbation theory sense, if the counterterms can be adjusted order by order to 

maintain the renormalization conditions, and yield finite predictions for every-
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thing else then the theory is perturbatively renormalizable. In the following we 

will examine the one-loop quantum structure of the noncommutative theory.

Of course, our results will not depend on this particular renormalization scheme, 

but since our explicit interest is in Goldstone's theorem at the quantum level 

for the noncommutative case, and in this scheme the masslessness of the pions 

is a prediction of the quantum field theory, we will employ it in the following.1 

In the ordinary commutative calculation of pion mass renormalization (see [11] 

for example) the masslessness of the pions at one-loop (Goldstone's theorem) 

follows from a cancellation of the following graphs at zero external momentum 

(p =  0):

j . .
p p p p

k

i /  ̂ 3 i J
+  " " * "  (3 2 6 )

k + p

Because the full noncommutative calculation we are about to explore subsumes 

this as the special case where 0 —► 0, we will not do this calculation explicitly: 

for a demonstration using dimensional regularization, the reader is referred to

[11]. We do point out that the counterterm displayed is not arbitrary, but com­

pletely fixed (at zero external momentum) by the renormalization condition on 

the sigma tadpole, as inspection of (3.25) reveals. At one loop the sigma tadpole 

counterterm is fixed by the requirement that

'A ctually we will directly use only the renormalization condition on the sigma one-point 

amplitude: namely that it vanishes. We will consider the general case later.
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(3.27)

Now consider the noncommutative case. The first, perhaps surprising, fact is that 

noncommutativity does not alter the tadpole graphs at one-loop. This follows 

from the elementary observation that while the one-loop tadpole graphs above 

contain cubic vertices (and so yield nontrivial noncommutative phase terms), 

momentum conservation dictates that no external momentum flows into the cubic 

vertices, so that phase factor (3.18) always degenerates to one, or equivalently 

the arguments of the cosine terms in the symmetrized vertices always vanish.

Thus the sigma tadpole counterterm will not be modified in the noncommutative 

case. Nonetheless we need to  explicitly calculate it from (3.27). Since loop 

integrals containing phases like (3.18) are most easily evaluated using Schwinger 

parameters (see for example [12],[13]), we will henceforth use them, coupled 

with a C 00 smooth UV momentum cutoff regularization throughout. The basic 

Schwinger parameter representation is

1 =  r ° r f a e -Q(<:2W) (3.28)
k2 +  m l Jo

whence

S ^ = S d9- C d a l d k k i ^ m' ) = ^ C % ~ M - <3-29>

Thus high momentum divergences are replaced with small a  divergences which 

are regulated by inserting a factor of e-1^aA2) under the a  integral, where A is 

the (fundamental) UV momentum cutoff. The basic integral we will encounter 

repeatedly is then of the form

L
DC fjf\ ~ _2 | r j 2

e~Qm =  —  +  m2 log(x2) +  m2(27 -  1) +  0(x)  (3.30)
o a 2 x 2
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in the limit of small x(=  ^ ) .  This is derived in the appendix to this chapter. 

Thus.

= ^ (—6cA) j
d 4k 1

( 2 7 r 4 ) k 2 + m 2

3Xv

16tt2
A2 -  m2 log( —y ) 

m2a

+ m 2(27 - l ) + 0 ( ^ )

where m2 = 2n2 is the (tree-level) mass-squared for the sigma. Next.

=  \ ( - 2 v X F ’ ) j
d Ak  5'1 

(2 ir*)k2 +  ?

( N  -  l ) Xv

167T 2
A2 - £ 2log(^-)A2.

+ e 2( 2 7 - l )  + 0(^-)

(3.31)

(3.32)

where £ is a  small infrared mass for the pion. to be taken to zero later. Thus 

(3.27) fixes the tadpole counterterm to be

. * =  - ^ v  + S.v3)

Xt-  | a 2(JV +  2) -  3m2 lo g (^ -)  -  ? { N  -  1) log(^-)
167T2

+ ( 2 7 - l ) [ 3 m J  +  f 2( . V - l ) ] + 0 ( i ) } (3.33)

As discussed this fixes the pion propagator counterterm at zero momentum (and 

at one loop). Thus, including the momentum-dependent wave function renor­

malization term we have

J — =
\Xij ( A 2 A 2

|A 2(N  +  2) -  3m2 log(— ) -  e ( N  -  1) lo g ( |- )
167T 2
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+(27 -  1) [3m l + ? ( N  -  1)] +  0 ( i ) } +  &'*8:p2. (3.34)

\o w  consider the one-loop contributions to the pion propagator. In order to 

consider separately the (noncommuting) [2] UV (A —> oc), and IR (p —► 0) 

limits, we will not set p = 0 a priori, but will compute the tttt amplitude for 

an arbitarv external momentum p. The first graph in (3.26) has a single quartic 

vertex (3.24). Denoting the loop momentum by k, (3.24) yields a phase factor of

/  ^2cos2( - ) 4- .V -  1^ +  (1 -  f ) ^ 2  + (N -  l)cos(p x k)^j

= f N  + 2(1 - / ) + ( /  +  (1 -  f ) ( N  -  1)) cos(p x k). (3.35)

The constant term is the planar contribution to the noncommutative analogue 

of the first graph in (3.26), and is explicitly

i A  )
=  2(1 - / » ] /

dAk 1

16;r2

(3.36)f ( 2 7 - l ) + 0 ( | )

whereas writing cos(fc x p) = I(elkxp +  etpxk), and using the fact that the ex­

ponentials are the same under the integral over all momenta, the nonplanar 

contribution isI
-/,«*-»>]/ ( S ^

✓

f  (3.37)+ f 2(27 - l ) + 0 ( - i - )
A ef f  J
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where

(3.38)

and

p o q  =  -
4 (3.39)

in a basis where 9 ^  is skew-symmetric (the coordinates form pairs of noncom­

muting coordinates), so that its square is diagonal. This effective cutoff arises 

because completing the square in the Schwinger integral now yields an inhomo- 

geneous term that is the same form as the fundamental UV cutoff regulator:

where l^ = — i/(2a)6liupl/ is a linear change of variables with respect to the k

integral. Note the (irrelevant) 1/4 factor in the definition of p oq  which does not 

appear in [2].

The second diagram in (3.26) is handled similarly. The phase factor from (3.22) 

is now

Thus the planar contribution to the noncommutative analogue of the second 

graph in (3.26) is

dae~a k̂2+m̂ +iky'p

(3.40)

/  + (1 -  f )cos(k x p) (3.41)

P  P
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and the nonplanar contribution is

d4k eikxp
(27t)4 k2 +  m 2 

X6 &  f )  [Xlf!  -  ml \ og(A2eff / ml )+
m  -

(3.43)m2̂ ,  -  I) + O ( ^ )
Aeff .

The third diagram of (3.26) will yield momentum dependent corrections to the 

propagator, as the external momentum circulates in the loop. Note also that 

it does not depend on /  since there are no quartic vertices. Instead of using 

two Schwinger parameters for the two internal propagators, we will combine the 

propagators using a Feynman parameter, and then use a Schwinger parameter 

via the identity

W T x ?  = ~ m \ J > ^ \  = f  **'"  " (344>
Then we will need (see appendix) the small x expansion:

-qA = — log(;r2) -  2y + O(x).  (3.45)
r da

i r
which makes explicit the logarithmic (as opposed to quadratic) divergence of this 

type of diagram. Now, since we have two cubic vertices, we pick up two phase 

factors due to noncommutativity. Denoting by k the pion momentum in the 

loop, the vertex (3.20) yields for the third diagram of (3.26) the phase

cos ( )  cos( k ~  P) =  ^ (1 +  cos (A: x p )). (3.46)

Thus planar and nonplanar contributions are weighted equally. The former yields 
k

(27t)4 k2 + £2 { k+ p)2 +  m2 

k + p
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=  2v2\ 26'i [ '  dx f --r-1-
Jo J (2tt)4 {I2 +  .

v2\ 26ii C
(27r)4 {I2 + A 2)2

\*d'J /■* /•« da  _ q A 2 i
rreg q •> I dx J 6 “■'*87T“ Jo Jo a

- v 2\ 25ij r l A 2 A  'JQ loe(^ j)rfa: + 27 + 0 ( - )
87r2 (3.47)

where A2 =  x(l — x)p2 +  x f2 +  (1 — x)m2, I =  k +  (1 — x)p, and where in the 

second line we introduced the Feynman parametrization:

1 U . 1=r dx- (3.48)
(fr2 + { 2)[(fc+P)2 +  m2]) y0 ” ((2 +  a 2)2 

To proceed, we can take the IR regulator f  to zero without any difficulty, to 

simplify the Feynman parameter integral, so that (recalling v2 =  p.2/ A)

(3.47) =
—A m25l}

1 6 7 T2

(3, 9)
Noting that / = k +  (1 — x)p implies that k x p =  / x p, and writing as usual 

cos(A; x p) =  cos(/ x p) in exponential form, and noting the symmetry of the 

terms under integration over all I, the nonplanar contribution to the third graph 

in (3.26) is

k + p

- -  =  2v2\ 2d,J f dAk 1 Jkxp

(27t)4 k2 +  £2 (k +  p)2 +  m 2

=  2v2X25lj f  dx f
Jo J (27r 4

„ilxp

—A m 25ij 
16tt2

log
I A«// >

I Inrr/"p 2  ++^ logr^r,

(2tt)4 (/2 + A 2)2 

+ 2(7 - l )  +  0 ( A - )
Aeff J 

( .50)

Thus the effect of noncommutativity is to re-weight the planar and nonplanar 

graphs with respect to the commutative graphs (where there is no distinction
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between planarity and nonplanaritv) in the cases where nonplanar graphs are 

generated, and replace the A in the planar graphs with Ae/ /  in the nonplanar 

graphs. The one-loop correction to the (inverse) propagator is the sum of the six 

graphs (3.36), (3.37). (3.4*2), (3.43), (3.47), (3.50), and the counterterm (3.34). 

This sum is the noncommutative equivalent of (3.26). Explicitly it is equal to

E =
1 —loop

X

167T2 - V ( l - / )  +  / ( A'  -  Ae//) +  ( 2 -  / ) " 4 l o g ( ^ f )

+2 mi 'l _ l  + nt |og(̂ +r )̂ j j] + s , ,Szp2 (JJS1)
mi

or eliminating Aej f  in favour of A, 8, and p

X S'JE -
l —loop 16?r2

-V(! _ / ) + / ]  A2

log(l +  A2(pop))

+2m2 \ - ^ l o g ( ^ ) ) j + ^ zp2.(3.52)
mi

3.4 Discussion

This result is rather remarkable, and some comments are in order. First note 

that if we take the noncommutativity 8 to zero, the explicit dependence on A 

cancels, and we are left with the usual finite commutative result:

XS'J 2 
L  =  73-™*

l —loop,comm 1 P2 mi
+  Slj 6 zp2 (3.53)

which furthermore vanishes in the p —> 0 limit. Thus the mass shift of the pions 

due to one-loop quantum corrections vanishes; this is just Goldstone’s theorem. 

However, unless we choose N  = 2 (corresponding to the trivial Abelian case) and 

f  =  2,2 for a strictly nonzero 8, the result is unavoidably UV cutoff dependent

2We will see the interpretation of this bizarre ordering choice in the next chapter.
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(the freedom to choose Sz clearly does not help us because the divergences are 

not proportional to p2). and therefore naively divergent (both quadraticallv and 

logarithmically) in the continuum (A —> oc) limit. However, viewed as a Wilso­

nian action, for which A is a fixed, physical parameter, the limit p —> 0 exists, 

and (3.52) becomes zero: again yielding Goldstone’s theorem in this ordering of 

the limits. The conclusion is that not only do UV and IR limits not commute, 

but the continuum limit of the renormalized theory is inconsistent with Nambu- 

Goldstone realization of the global symmetry. We emphasize, that this occurs 

after the renormalization programme has been carried out; we have used up the 

counterterm freedom in fixing the sigma VEV.

This is not an artifact of the renormalization prescription (of which we have 

only used the condition imposing nonrenormalization of the sigma VEV'), since 

clearly if we somehow arrange the ttir amplitude to contain no net fundamental 

A dependence, post-renormalization A dependence will be shifted into the sigma 

tadpole. This is a direct consequence of the restrictive counterterm structure 

present in a spontaneously broken theory.

To summarize, because no external momentum flows into a tadpole vertex, non­

commutativity does not affect tadpole graphs, and hence the sigma tadpole 

renormalization counterterm is not modified. Since tadpole terms reflect shifts 

in vacuum expectation values of fields, and since the sigma VEV measures the 

spontaneous symmetry breaking of the theory, colloquially, spontaneous symme­

try breaking is blind to the noncommutativity at this level. On the other hand, 

since the counterterm structure is fixed, this means that the pion propagator 

counterterm is not modified (modulo wave function renormalization). However, 

the graphs that contribute to the one-loop quantum corrections of the pion prop­

agator are modified, and the usual cancellation that ensures the pion masses are
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finite (and zero) after quantum corrections is violated in such a wav. that cutoff 

dependence is restored; so UV and IR limits do not commute. In sum. we con­

clude that the Nambu-Goldstone realization of the O(N)  symmetry (except for 

the trivial Abelian case) of this model is not perturbatively compatible with the 

continuum renormalization of the noncommutative theory.

To illuminate the nature of these unusual results, we will explore group and 

representation dependence in the next chapter [where, for example we find the 

origin of the unusual /  =  2 restriction on the 0(2) case], while in appendix B 

to this thesis, we will see how the pathology discovered here manifests itself in 

four-point amplitudes.

3.5 Appendix for chapter 3

3.5.1 The Feynman rule for noncommutative phases

Proceeding inductively, we have:

((Pi * •••<?«) * cW iH*)

=  /  T T - ^ t lim
J \ L ( 2 t t ) 2 v '

xe~2 • . . 0 n + l ( P n + l )

-  f  TT d4pi r-i0 ‘“'{P\+-Pn)u(Pn+l).ri(Pl+~+Pn+l) x
J  W ( 2 t t )2

x e ~ ^ ' < } p'XP]M Pl ) .. .<£„+!(pn+1)

/  n  ^ ( P ! )  • • • ^ ( P ^ )  (3.54)
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where the induction hypothesis is used in the second line. Thus,

V (P i,-,P n ) =  e " * £ ,<;PiXp'.  (3.55)

3.5.2 A useful integral

In evaluating the loop integrals in this paper, we encountered integrals of the 

form
fO O  f j r y  5 ,2

Xn(x)  =  /  — e - Qm "==*, (3.56)
Jo a n

which can be taken as definitions (modulo constants) of the K  type modified 

Bessel functions. Since we are really only interested in the small x (large A) 

behaviour, and in the cases n =  1,2, an elementary treatment suffices to deter­

mine dominant behaviour. We split the integration region into [0. x /m 2], and 

[x/m2,oc). and then expand the appropriate exponential on each region. For 

n =  2. after changing variables a  —> 1 /a  • x 2/m 4,

m4 r°° 2 x2
r2(x) =  /  e~am da

x 2 Jo
f i t  ( .  2 tx2™4 3\ \  - s LJ  I 1 — am  H   F 0 ( a ) J ■ e

+ I 2 ( i - ^ + ° { x , ) ) e

ra4 
x 2

da
2 ' /

oc /  1 * 2

rrf_
x2
m2

x 2
(x — —)e 1 -  x2Eii(x) -I- 0 ( x 3) + e 1 — x2Eii(x) + 0 (x 4)

=  —  [l -  x2 +  2x2 log(x) -I- 2x 27  +  0 ( x 3)]
x

, 2772
=  —=- + m 2log(x2) + m 2 ( 2 7  -  1) + 0 (x ) ,  (3.57)

x i

where we have used the exponential integral

Eii(x) =  f  —̂—dt (3.58)
* 1 C
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and its asymptotic expansion near x  =  0. discovered through

(j roc P ~ I
- (E i ,(x ) ]  =  - f t e - d t  = ~  —

1 | ( - x ) " - '

x  n = l  n !

(3.59)

whence

Eii(x) =  -  log(z) +  C + O(x).  (3.60)

It can be shown that C =  — 7 . but since it must cancel out of all physical 

amplitudes, we heed it no further. The n = 1 case, also used earlier, is handled 

identically and we omit it here.
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Chapter 4 

Noncommutative linear sigma 
models

4.1 Introduction

Recently field theories on noncommutative spacetime backgrounds have been 

the subject of intense scrutiny. Part of this motivation stems from the fact that 

noncommutative U(N)  gauge theories arise on D-branes in the presence of a con­

stant NS-NS B-field background, in the zero-slope, field theoretic limit of string 

theory [l],[2j. A second motivation, independent of string theory, is the question 

of whether the world we live in is based on a noncommutative spacetime. In 

order to construct realistic models of particle physics on noncommutative space- 

times, one needs to be sure that noncommutative theories preserve the features 

that underlie the standard model, including perturbative renormalizability in the 

presence of spontaneous symmetry breaking[3],[4].

The general scheme for defining field theories with the noncommutative space­

time structure defined by [x^x"] =  i0,u', real, constant and antisymmetric,
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is to invoke Wevl-Moyal correspondence. This has the effect of replacing the 

underlying noncommutative spacetime with a commutative spacetime at the ex­

pense of replacing the ordinary pointwise product of spacetime dependent func­

tions with an infinitely nonlocal star product. The induced momentum space 

Feynman rules for interaction vertices associated with a given field theory then 

involve momentum-dependent phases, which generically split a graph (at least 

at one-loop) into planar and nonplanar parts. The former are identical to the 

usual commutative graphs (up to a total phase depending only on the external 

momenta, and a combinatorial reweighting), and in particular possess the usual 

divergence structure associated with a commutative quantum field theory. The 

latter, nonplanar components are explicitly finite (at least at one-loop) because 

of oscillatory damping due to the phases, and replace an ultraviolet divergence 

with an infrared divergence in the external momenta [5],[6].

Superficially, as a consequence of the finiteness of nonplanar graphs, and of the 

similar divergence structure of the planar graphs, one might conclude that the 

renormalization of noncommutative field theories proceeds as in the commutative 

theory, because the counterterm structure is formally the same. However, as is 

well-known, the renormalization of spontaneously broken theories, with either 

underlying global or gauge symmetries, is more subtle because the number of 

counterterm vertices exceeds the number of renormalization parameters. As 

a result, the renormalizability of (commutative) spontaneously broken theories 

hinges in general on intricate graphwise cancellations [3], [4] order by order in 

perturbation theory. Thus it is of obvious interest to examine whether or not 

these cancellations persist in noncommutative field theories.

In the previous chapter we studied the spontaneous symmetry breaking of a 

global 0 { N)  symmetry in the noncommutative deformation of the linear sigma
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model with scalars in the fundamental representation. We found that one-point 

tadpoles of the sigma at one-loop were insensitive to the noncommutativity be­

cause no external momentum flows into the trilinear tadpole vertex. Thus the 

one-point sigma counterterm is identical to the one in the commutative limit, 

which in turn fixes the pion mass counterterm to be the same as its commutative 

limit. On the other hand, the planar components of the 1PI graphs contributing 

to the one-loop pion (inverse) propagator renormalization are re-weighted with 

respect to the corresponding commutative graphs. As a consequence, there is 

an unavoidable UV cutoff dependence (for nonzero external momentum) after 

renormalization, signalling the nonexistence of a continuum limit, and noncom­

muting UV (A[/\- —> oc) and IR (p —> 0) limits. Specifically we found that 

the sum of the 1PI graphs and the counterterm contributing to the pion mass 

renormalization yielded quadratic and logarithmic UV cutoff A dependences as:

respectively. Here .V is the dimension of the fundamental of O(N),  p o q = 

—p^Q^qv/A. and /  takes into account the two possible quartic orderings for

7r7r7T7r and ir-acr terms:

For nonzero 9 and p. the only circumstance under which we can take the con­

tinuum limit is when f  = 2 and N  =  2, where both logarithmic and quadratic 

dependences on A vanish. This corresponds to the Abelian 0(2)  model, and 

if written in terms of a complex scalar <p corresponds precisely to the ordering
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(4.1)

^ f ( T T k  *  7Tk ) * ( n ‘ *  7TZ) +  ~  / H 7̂  * * l ) *  ( * h  *  K l )
4  4

+  ̂ / ( 7r<: * Kk) * cr * cr +  ^  (l -  f )  (nh * o) * (7ik * a) C C (4.2)

o’ *0*d**c£>. Otherwise, the conditions /  =  N / ( N  — 1) and /  =  2 required for the
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cancellations of quadratic and logarithmic dependences on A respectively, can­

not be simultaneously satisfied, Goldstone's theorem fails at the one-loop level, 

and the continuum limit of the model fails to exist. Furthermore, a study of 

the four-point scattering amplitudes (as in appendix B) confirms that the model 

is nonrenormalizable for N  > 2. Thus for general N  > 2 and for all possible 

orderings consistent with the global O(N)  symmetry, the noncommutative O(N)  

linear sigma model does not exist in the continuum limit.

Prima facie, this incompatibility of continuum renormalizability with sponta­

neous symmetry* breaking for O(N)  linear sigma models appears to present severe 

difficulties for attem pts to make realistic models of particle physics on noncom­

mutative spacetimes. First, it is clear that models with spontaneously broken 

gauge symmetries must have consistent spontaneously broken global limits (as the 

gauge couplings vanish): the absence of such a global limit with spontaneous sym­

metry breaking would preclude its subsequent gauging (at least perturbatively). 

Second, the standard model of the fundamental interactions (and unified theories 

which encompass it) depends, for electroweak symmetry* breaking, on a complex 

Higgs doublet. As is well known, resolved into real components, the purely scalar 

sector of the standard model is 0(4) invariant (and not just SU{2)  x U{ 1) invari­

ant). with the real components in the fundamental representation: our previous 

results then appear to preclude noncommutative deformation of the standard 

model. We will argue below that this is not necessarily the case. In particu­

lar, noncommutative theories with N  complex scalars, <£* (i =  l..JV,JV > 1), 

and with U{N)  invariant self-interact ions, are not invariant under an 0( 2N)  

symmetry acting on their real components, due to purely noncommutative com­

mutator interactions arising from the noncommutativitv of the spacetime. Thus 

we will first undertake an analysis for the case of a U(N)  symmetry group with 

the scalars in the fundamental representation, choosing the quartic invariant
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<j»t3>$t$ The spontaneous breaking of this group to U( N — 1) leaves N  — 1 com­

plex pions, and one real pion. We find that the one-loop 1PI graphs contributing 

to the mass renormalization of the complex pions, like the one-point tadpoles, do 

not see the noncommutativity at this order, and so Goldstone’s theorem holds. 

The 1PI one-loop graphs contributing to the mass renormalization of the real 

pion (which arises through the breaking of the U( 1) =  0(2) subgroup of the 

U(N)),  are split into divergent planar, and finite nonplanar pieces in such a way 

that Goldstone’s theorem holds at one-loop. The essential difference between the 

U{N)  models and the corresponding 0( 2N)  models ( N > 1) is the presence of 

the purely noncommutative commutator interactions in the former.

We will also begin to explore how our present and previous, results might de­

pend on the scalar field representation responsible for spontaneously breaking 

the symmetry. In particular, we consider both an 0 (4 ) and a U(2) model, with 

scalars in the adjoint representation, to see if our previous results depended on 

our scalars being in the respective fundamentals. For the U(2) model with m at­

ter in the adjoint representation, we will find that Goldstone’s theorem holds if 

we include only interactions involving a single trace operator, which we will in 

turn demonstrate are the only ones consistent with noncommutative gauge in­

variance in the case that we gauge the U{2) symmetry. In this model Goldstone’s 

theorem holds due to a notable cancellation of a purely noncommutative graph 

involving couplings to the t/(l) component of the field. For the 0(4) model with 

m atter in the adjoint, we find violations of Goldstone’s theorem at one-loop of 

the type found in the 0( N)  fundamental representation studied in the previous 

chapter. Finally we discuss the implications of these results for model building, 

and comment on the nature of the IR divergences found by [6] in the context of 

noncommutative theories with matter in the adjoint representation.
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4.2 NC U ( N )  Linear Sigma model: Fundamen­

tal Representation

In this section we examine Goldstone’s theorem in the noncommutative deforma­

tion of the linear sigma model with a global U{N) symmetry group, and contrast 

the results with our previously discovered violations of Goldstone’s theorem in 

the O(N)  linear sigma model.

The noncommutative U(N)  linear sigma model is defined by the Lagrangian 

density given by

where $  is an N-vector of complex fields Oi (i = 1 . .N ) .  where the star product is 

defined as usual by f(x )*g(x)  =  exp (i6tiUd ^d l) f(y )g (z ) a n d  where ŵe have 

included the star ordering of the quartic term consistent with noncommutative 

gauge invariance of a possible gauging of the model (see below). For fi2 > 0, the 

symmetry is spontaneously broken to U(N — 1). Throughout the remainder of 

this paper, we will consider only translationally invariant vacua1. By an SU{N) 

transformation, we can rotate the resulting VEV into the last field of 3>, and by a 

U( 1) rotation we can identify this VEV with a  constant shift, a, in the real part 

of this field. Thus we define 7r, =  d>i for i =  1 . .N  — 1. while 4>\- =  (<7-t-a+z7r0)/\/2:  

there are N  — 1 complex Goldstone bosons, and one real Goldstone mode. The 

minimization of the potential for this configuration implies

£  =  *d»$  + p2&  * $  -  A#1 * $  * (4.3)

1 As Gubser and Sondhi have argued [9], more exotic vacua such as stripe phases are possible 

in noncommutative theories.
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Writing (4.3) in terms of these variables yields:

For notational brevity all star products will be suppressed henceforth, unless 

there is danger of confusion. Furthermore, we will implicitly use the identity

(where { a ( l ) .. . cr(n)} represents any cyclic permutation of {1.. .n}). with the 

understanding that all Lagrangian density terms sit under a spacetime integral. 

This identity means that quadratic terms in the action, and hence propagators, 

are identical to their commutative counterparts.

To simplify the discussion relative to the previous chapter, and to emphasize 

the regulator independent nature of the results, we will not a priori impose 

the vanishing of the tadpole as a renormalization condition. Instead we will 

include the one-point tadpole contributions, and their counterterm directly in 

calculating the mass renormalization of the pion. In this completely equivalent 

language, the two counterterms present cancel each other, up to the wavefunction 

renormalization, so the sum of the one-particle irreducible (1PI) graphs and the 

one-point tadpole insertions must be automatically finite up to wavefunction 

renormalization (and for Goldstone's theorem to hold a t one-loop, must vanish 

in the p —> 0 limit)[8]. Furthermore, to exhibit the essentially algebraic nature 

of the result, we will expand the non-phase part of the integrands about zero- 

external momentum, in the cases where there are two propagators in the loop 

using the Taylor expansion

(4.6)

1 1 2
(4.7)

k2[{p + k )2 -  m2] k2{k2 -  m 2) Ptl k2[k2 -  m 2}2 +  "  ’
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and then note that the p-dependent terms yield finite loop-momentum integrals 

(for all p), and vanish as p —> 0. We then define the momentum integrals

r( 2 \   f  d*k 1 2 r dAk cos(k x p) _  r dAk etkxp
J (27r)4 k2 — m2 6,p m J (27r)4 k2 — m2 J (27r)4 k2 — m2'

(4.8)

where k x p =  k^Q^p,,.

The vertices for the theory are listed in the appendix to this chapter, and the 

propagators are the usual ones. Dashes denote complex pions. dots the real pion 

associated with the sigma, and solid lines denote the sigma. The 1PI one-loop 

graphs contributing to the mass renormalization of the N  — l  complex pions are 

/ \
7T*k [ /’ 7T* 7T, k  '■

=  ( a ) , ---------------------------------------(6)p p p

7T, * V J *1 TTj /  '
= (c). —  f -------= (d)  (4.9)

p p

k + p

They are given respectively by

<« =  z ^ ~  J  =  M ” ,<0>
. -2 i \ iS 'J r dAk e°cos(0) 2\
w  =  — 2 ~ l \ =  1(211 ]

r (J*lr p~  2 2 (— P *
M  =  ( - ^ ) 2- W / ^ [(p +  t ) 2 _ v ] t 2

4A2a2 r dAk \ 1 1
-o J f  —7 (272p2 7 (2tt)4 [A:2 -  2p2 k2

= 2X6'j [/(2p2) -  7(0)] +  < ^ .4 ^ ,  (4.10)
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where .4M(p) is finite for all p. Evidently these 1PI graphs do not see the non­

commutativity. Meanwhile the one-point tadpoles insertions, as in the previous 

chapter, also do not see the noncommutativity at one-loop. They are given by
✓ \\ I
T  ni ni T  Ti tt. T'— ►  = (e), = (/),-----»— i---► i  =(</) (4 .11)

P P P P p p

Their values are given by

(e) =  {-2 i\a6 '] ) - ^ — {-2 i\a6kk)iI{2p2) =  - 2 (N -  1)A<PJ7(0)
Zf i

(!) = ( - 2 i \ a S » ) - ^ ( - 6 i \ a ) ' - I ( 2 ^ )  =  -3AJ«/(2/i2)

(g) = ( -2 i \a S ,j)—^-^(-2 iX a)^I(2 fi2) = —\6'*I(0) (4.12)

where all noncommutative vertices manifestly collapse.

The sum of these seven graphs is equal to zero (modulo the finite term which itself 

vanishes as p —> 0). independently of a regulator, and of the noncommutativity, 

whence Goldstone’s theorem holds at one-loop; the complex pions undergo no 

mass renormalization. Now consider the one-loop mass renormalization of 7r0. 

The 1PI graphs contributing are given by

.*CL"0 ^ .' "0 . 7To ~ V J -------={h),  ►  = ( ,)
P p p p

/  \
I .  I t

7T0 \ /  7T0 7T0 . '  ' .  7T0
 ----------  - s  (j), f ........  - = W  (4-13)
P P

k + p
with values given by

-2£A f  d4k * f2cos2(^f£) -h l]
{h) =  I " / ( 2 ^   W -------- U 2A/(0) + AW 0)

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



C H A P T E R  4. N O N C O M M U T A T I V E  L I N E A R  S I G M A  M O D E L S  135

(*■) =  z f  f * L lIW ( 0 ) X p ) ]  =  2 A / ( V )  _  W )

U) =  - 2 * 5 “  j  * *  ‘e° C” (0) - 2(A' -  l)AJ(O)
(2;r)4 

d4Jt i2COS2( ^ )
(Ar) ( 2z^a)2 f  (2?r)4 [(p +  A:)2 — 2p2]k

4A2a2 f  d xk 1 T 1
1 ^ 7  ( 2 ^ 2 (1+C0S(':X P) A2 -  2p2 A:2

=  A[/(2p2) -  1(0)} + A[/fl>p(2/i2) -  /g,p(0)j +  (4.14)

where B$ (p) is finite for all p. Evidently, the nonplanar contributions due to the 

noncommutativity cancel between these graphs. For completeness, the one-point 

tadpole insertions are

✓ \  
\  t

7T0 "T " 7To 7T0 7T0 7T<) T  7T0
— ► 4 • =  (/).— ► 4 •■•►••• =  (m) , — • 4 ►= (/)-”  ( m ) , -  -► "4  (4.15)

P  P  P  P  P  P

with values given by

(/) =  (-2 iX a)— ~ ( - 2 iX a S kk)iI(0) =  - 2 ( N  -  l)A/(0)
-2 /i2

i . „ i(m) = ( - 0 i \ a ) ~ ( - 6 i \ a ) - I ( 2 p 2) = - 3 \ I ( 2 p 2) 

(n) =  ( - 2 i \ a ) - ~ ( - 2 i \ a ) l-I(0 )  = - \ I ( 0 ) .

(4.16)

The sum of these seven graphs also vanishes (again modulo the finite p dependent 

term, which vanishes as p —> 0); so that Goldstone’s theorem also holds for the 

neutral pion of this model.

Let us reflect on these results. First, had we included the other ordering of 

the quartic term 0* * fa- * fa * fa, we would again find violations of Goldstone’s 

theorem of the type found in the previous chapter. Secondly, we contrast these
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results with those of the general 0 (N )  model studied in the previous chapter, 

where we showed violations of Goldstone’s theorem at one-loop for all order­

ings consistent with the O(N) global symmetry (except for the trivial Abelian 

case). The difference here of course is that we are working with a U{N) group, 

which we now show exhibits crucial algebraic differences with the O(N) case in 

noncommutative scalar theories.

Matter in the fundamental representation of O (N )  is described by a real N-vector 

of fields, which we denote by tf. As such, the invariant term * $  merely is 

the sum of squares of the real components. Then, the expansion of the quartic 

invariant can yield cross-terms only of the form xbi * ipi * ipj * or ip\ * ipj *ipi * ipj 

corresponding to the two possible star product orderings of such an invariant. 

Note that no more than two distinct fields can occur.

On the other hand, the fundamental of U(N) is described by a complex N-vector 

of fields, $. Now however, the quadratic invariant * 4>, written in terms of 

real fields picks up the commutator of each field’s real part with its imaginary 

part due to the noncommutativity since

{R -  iI){R + U) =  R2 + I 2 +  i[R, /]. (4.17)

While such commutators in the quadratic term vanish when integrated over 

spacetime, the quartic invariant now picks up products of such commutators 

with other fields or commutators which, for N  > 1, constitute new interactions 

between real components of two complex 0’s, not present in, and incompatible 

with, the 0 (2 N )  symmetry.

Let us make this argument manifest. Expanding the quartic term in the U{N) 

theory in terms of its real components yields

0 * 0 i 0 * 0 j  =  ( 0 , R  —  +  i< P il){< t> jR  —  i< f> jl)(< t> jR  +
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=  ^iR^jR +  ^R ^ jl  +  tflVjR  +  ~ [<f>iR, <t>il][<t>jRr <t>jl]

+  + t i l l^ jR i  <t>jl\ +  ft- 0i/]- (4-18)

We note for i ^  j  (which can occur for N  > 1). the presence of interactions 

(those involving three or four distinct real fields) which cannot occur in the 

0(2N )  case by the general argument above. We emphasize this is a purely 

noncommutative effect2. The presence of these extra, purely noncommutative 

interactions is responsible for the differing behaviour of the spontaneously broken 

phase at the quantum level for these models.

To conclude, we have found that one cannot in general spontaneously break a 

fundamental representation NC O(N) linear sigma model, while one can break 

a fundamental representation NC U(N) linear sigma model for the noncommu­

tative gauge invariant quartic ordering. This latter theme is one that will arise 

again in a more dramatic fashion in the adjoint representation model to which 

we now turn.

4.3 NC U ( 2) Sigma Model: Adjoint Represen­

tation

We now examine the status of Goldstone’s theorem in the noncommutative de­

formation of the linear sigma model with scalars in the adjoint representation of 

U(2). There are several reasons for this: first, we wish to compare the results for 

adjoint representation scalars with our results from the previous section for fun­

2For i =  j  (or N  =  1), the last two terms vanish under the spacetime integral, and the 

product of commutators merely induces the orderings of the 0(2) model studied in the previous 

chapter with f  =  2 .
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damental scalars, in a tractable case. Secondly, adjoint matter naturally arises 

in noncommutative world-volume theories on D-branes. Thirdly, grand unified 

theories embedding the standard model commonly rely on adjoints for the first 

stage of symmetry breaking.

We write the scalars in the adjoint of U(2) as

where T a are the canonical generators of U (2): T a =  aa j 2. for a =  1,2,3 and 

T A =  I2/ 2 . The global l'(2) symmetry transformation acts as

and as before does not involve the star product because the symmetry is global. 

For simplicity we impose invariance under $  —> The Lagrangian density for

the global model we consider is defined by

C = Tr {d,& * d»<S>) + /rT r (4> * $) -  A]Tr ($ * $  * <I> * 4>) -  A2 [Tr($ * $ )]2 .

(4.21)

and where we discuss the remaining, omitted trace invariants and star product 

orderings at the end of this section.

Let us now consider spontaneous symmetry breaking which occurs for n2 > 0 

(we take A, > 0). Then $  acquires a vacuum expectation value, say $ 0, and 

since it is a Hermitian (but not necessarily traceless) matrix, we analyze it by

(4.19)

(4.20)

where we define

Tr(4>?) =  $ 5  

[T r($*$)]J =  $ 5  * $2 * * <&jt (4.22)
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diagonalization to the form

(4.23)

whence the potential becomes

1 '(a, b) = —̂ ( a 2 +  b2) +  ^ ( a 4 +  bA) +  ^§(a4 +  2a2b2 +  64). (4.24)
4 lo lo

This is minimized for

The states corresponding to a = b, which are degenerate in energy with the states 

corresponding to a = —b, and admitted because we are considering U(2) and not 

simply SU{2 ), do not reflect spontaneously broken states, because <£0 is then pro­

portional to the identity and so manifestly commutes with all of the generators. 

Furthermore since they correspond to constant shifts in the U( 1) component 04, 

they are forbidden by the discrete symmetry. On the other hand, the states 

corresponding to a = — b do yield spontaneously broken vacua, since they do not 

commute with the T l and T 2 generators and reflect a vacuum expectation value 

for the field ^ 3 .

In notation suggestive of the linear sigma model, we expand around the vacuum 

b = —a < 0  (without any loss of generality), defining o and 7r through

so that 03 =  a + a. Expanding the scalar potential in terms of these variables 

yields

(4.26)

7T *<T7T <7  +
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+ +  a\(ir'ir +  irirm)cr +  j(c r4 + <j>\) +  Xaa3 +  ^  ^  ^ 2cr2o\
2. 4 2

-F—oo\<y <t>4 +  (A -+- Ai)a<̂ 4<7 +

[7-'fairer -  7r*a7r04 +  a(7T7r*04 -  7r*7r<̂ 4)] (4.27)

using A =  Ai/2 +  A2.

The symmetrized vertices for this theory are listed in the appendix to this chap­

ter. In the following, solid lines denote the a, dots denote the d>4, and dashes 

denote the 7r. Excluding the purely noncommutative interactions for separate 

consideration, there are four 1PI graphs contributing to the mass renormaliza­

tion of the complex pion (Goldstone mode) in this model:

,  ( 0 ) ,

k

J L - -  I  =  (c) , V - - "  =  (d) (4-28)p  p  - i f

k + p
with values given by

. . . . . .  ,  . f  dAk 1 r dAk icos2( ^ E)(a) -  -2 ,(A 1 + A2) / —  - - 2 z A 2/ — ----- -------

=  (2Ai 4- 3A2)/(0) +  X2Ie,P{0)

m  = (a, +

(c) =  (A i - f  A 2)/(A ta2) +  A ia 2)

/_n  ̂ A a2 f  dAk i i 2 k  x p,
(rf) =  (- 2!An) /  ? ^ F F (̂ r ^  - 2 . 2COS (- t ->

=  4A v /
dAk 1

(2tt)4 2p2
1 1

fc2 -  2 p 2 it2
Cos2(2 _ _ r) +  ^ (p jp p,k x p

= X [/(2/t2) -  7(0)] + A [/*,„(2p2) -  /,„(<))] +  C"(p)pM, (4.29)
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where is finite for all p.

141

The one-point tadpole contributions are given by

/t

whose values are respectively given by

(e) = ( -2 i \a )2^ —  i/(0) =  -2A/(0)
- 2  p 2

( /)  =  ( ~ 2 i \ a ) ^ - ( - 6 i X a ) l-H2ix2) =  —3A/(2^2)

(.g) = ( - 2 iA a ) - ^ ( - 2 t ( A  +  Al )a)^ /(A 1a2)

=  -(A H- Av)/(Aia2)- (4.31)

The sum of these seven graphs is given by

Z  = T  W0* -  ['(2'‘2> -  M 2m 2)] -  y  [ / ( V 2) -  W A .a 2)]

+ C ‘(p)p„. (4.32)

In the commutative limit 9 —¥ 0. this degenerates to the finite term C,i(p)p^ 

(which itself vanishes as p —> 0). so the mass counterterm vanishes and this is 

a demonstration of Goldstone's theorem for this model. However for nonzero 9. 

the I(rn2) terms are divergent and require regularization, say by an ultraviolet 

cutoff A. But there is no counterterm freedom to cancel the A dependence, so 

for nonzero p and nonzero 9 we cannot take the continuum limit; that is, UV 

(A -» oc) and IR (p  —► 0) limits do not commute.

However, we have (intentionally) neglected a purely noncommutative graph due 

to the last interaction in (4.27). The purely noncommutative interaction gener-
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ated by (n~' — 7r*7r)<z>4 yields a graphical contribution given by 
k

j r  v2-2 f  sin(£f ^ ) sin( ^ r ::£)
p *. l° 1 J (2n)i k2[(p + k)2 -  X ^ 2]

k +  p
d4* sin2(^ £ )

= A ^ /
1 1

+ D%(p)p»(27t)4 Aia2 U-2 - A ia2 k2.

= ^ I ^ l l - c o s { k x p ) ] [ w ^ - k

= y  [/(A,a2) -  /»,p(A,a2)] -  ^  [/(0) -  /,,(0)]

+D s“(p)pM, (4.33)

where again Dg is finite for all p. and vanishes also in the limit 6 —» 0. Rather 

unexpectedly, this graph, which manifestly vanishes in the commutative limit, 

and involves the L'(l) component of the m atter field, cancels the A! pieces in 

(4.32), leaving behind a residual divergence (for nonzero p) that depends only 

on the coupling to the Tr(4>2)2 term in the potential.

However, in the corresponding gauge theory, the term

T r($2) * Tr($2) (4.34)

is not gauge invariant even under the spacetime integral. In fact no term involving 

the product of more than one trace in the adjoint representation is gauge invariant 

(even under /  dDx) in noncommutative theories for .V > 1. To see this write 

(4.34) in terms of its internal indices (first choosing the canonical ordering with 

respect to the star product) and gauge transform:

[Tr($2)]2 =

(17, . * « , * up2)
•(ut\ »«.,*•»u!"»v‘a * . c O

= 1% .  ^  .  i f 2 .  t/f, .  *?,' .  .  Vla  (4.35)
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The presence of the star product does not allow us to use C/j * L[lJ =  on 

the remaining local U and 6rt factors which are separated by two factors of $, 

even if we use the cyclicity property of the star product under the spacetime 

integral. This is to be contrasted with a single internal index trace term (with 

canonical internal index ordering), and the commutative limit where the ordering 

of components is immaterial.

It is clear this argument applies both to the other internal index ordering 4>‘ * 

^  * $ lk (whose gauge transformation does not allow the use of U * W  = I  

anywhere), and to any product of (internal index) traces in the adjoint repre­

sentation. Thus if we forbid [Tr($2)]2 from the scalar potential, by regarding 

the global theory as the limit of a gauge theory, we have no remaining violation 

of Goldstone’s theorem for this model. Incidentally, this argument also forbids 

the other terms still allowed by the imposition of the discrete symmetry that we 

neglected when we wrote the scalar potential for this theory; namely

Tr($) * Tr($3) , Tr($) * Tr($) , [Tr($)j? , T r($2) * [Tr($)]? (4.36)

as well as other star product orderings of the Tr($4) term.

An immediate consequence of the preceding argument is that for U(N) gauge 

theories with adjoint scalar matter, the symmetry breaking pattern is restricted 

to only one of the two possible patterns that would be allowed by the commuta­

tive limit of the theory. Specifically, because noncommutative gauge invariance 

forbids Tr($2) *Tr(<I>2), vacuum stability now requires Ai > 0, and thus allows 

only the breaking pattern U(N) —> U(n\) x U (N — n t) (with n\ =  N/2, N  even; 

or =  (N  -I-1)/2, N  odd)[10], and forbids U{N) - > U ( N -  1)[10].

This argument has another consequence for noncommutative theories in general. 

As van Raamsdonk and Seiberg [6] demonstrated in considering scalar theories
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with scalars represented by N  x N  matrices, all infrared divergences of the type 

found in [5] are proportional at one-loop to

TrfOOTrftfa) (4.37)

where Oi are operators built out of <£. Furthermore we have seen above that an 

operator of this form (Tr(<F?) * Tr($^)) appearing in the scalar potential, would 

induce violations of Goldstone’s theorem by renormalization effects. However the 

preceding argument indicates that these are precisely the form of operators that 

are not gauge invariant in an adjoint representation gauge theory. So if we regard 

these theories as embedded in a corresponding gauge theory where we must forbid 

such terms, then we would expect that infrared divergences for N > l 3 of the 

form observed in [6], no longer appear. To corroborate the claims made in this 

section, we will show in Appendix A, that if we include such terms classically 

in a gauge theory, the Higgs particle of the theory acquires a divergent, gauge- 

dependent mass shift at the one-loop level. This calculation will also illustrate 

how to compute in a noncommutative gauge theory.

4.4 NC 0 (4 )  Sigma Model: Adjoint Represen­

tation

In this section we repeat the analysis of the previous section for the noncommu­

tative 0(4) sigma model in the adjoint representation; again this will allow us 

to study, in a simple context, scalar representation (in)dependence of our results 

on Goldstone renormalization, this time in the context of orthogonal symmetry

3 For the N  =  1 case considered in [5], corresponding to a single scalar, the above argument 

fails, since the index structure becomes degenerate.
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groups.

We consider the classical symmetry breaking 0(4) —> U(2). Now $  is a real 

antisymmetric matrix, whence the vacuum state <J>0 can be put in standard form

/  n  ,  „  «  \0 1 0  0

- 1 0  0 0

0 0 0 1 

0 0 - 1 0

(4.38)

The scalar potential is given by

Ai
»'(*) = £-Tr(tf) + j[Tr(*;)K  + ^Tr(*J) (4.39)

where we note that the sign of the quadratic term is opposite that of the U(2) 

model of the previous section because of the antisymmetry (as opposed to Her- 

micity) of <£. and where we have normalized differently for later convenience (we 

now assume the canonical internal index ordering with respect to the star prod­

uct as per the conclusions of the previous section). Thus the minimization of the 

potential with respect to the vacuum (4.38). yields

2•} Ai« A2o
' ( $ 0) =  - T ° '  +  — + T T

—y a —
4/i2

(4.40)
4Ai —(- A2 Aj +  ^

The suitable parametrization of $  relevant to a discussion of spontaneous sym­

metry breaking is given by

/ 0 {o + a) +ip a  +  7Ti

— {(a +  a) +  ip) 0 7r2 — 3

— ( a + 7̂ ) 3 — 7t2 0

3 + ^2

a  -  7T]

(a + a) -  ip 

0

(4.41)

y — { 3  + 112) 7ti — a  ip — (a -f a)

where the a  is the field acquiring the VEV, and 7ti, 7t2 are the two Goldstone 

modes. Focusing now on the one-loop mass renormalization of one of the 7r’s,
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say 7ri. the expansion of the potential reads

\ ' =  “ ( 2 /z 2 ) ( t 2 +  ^(A2a2/2) [ib2 +  a 2 +  ,<32] +  -  ^  ^ j  t t?  +

( t  +  i f )  ^  M  +  ° 2 +  ^  +  V 2 +  O'2 ] +  ^  -  7Tl 7T2 7ri 7T2 +

l T \ a ~ i a  +  TTi &TTi d +  TTiUTTl Ip  ~  7T̂ tT7TiCTJ +  I A[ +  —  J CIOt ) a2 +

7T t  +  7Tn +  ( A! + a o  [a2 +  Q2 +  t/’2] +  . . . (4.42)

where the ellipsis represents (four-field) terms that do not contribute to the one- 

loop mass renormalization of it\. The Feynman rules for these vertices are in the 

appendix. Now that we have six distinct fields, we simply use dotted lines to 

denote the 7Ts, and use solid lines for the other four fields, and instead explicitly 

label the lines.

The 1PI graphs contributing are

/  \
7T \ I I

* J
-  =  («) , —

Ho »

(^) H i 7T i -  V /  7T i

P P P P

\  /  -
T ~  p

-S X

TTl
-  = { b )

TTl
7Ti '

P

'* 1
—  = ( e ) (4.43)

and are given respectively by

A2 ^ i [ d*k 1 + cos2( )
(a) — —2i Aj  +

(2?r)4 k 2
(A, + h )  [2/(0) + /,,(0)]

(6) =  ( a, + 7(0) -  ^ / „ ( 0 )
A2

4
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( c )

( d )

(e)

2«2/2)

(a , +  I{'2fi2) -  2/i2)

A2\  I 2 .2 f  d*k cos2( ^ )
4 )  1 -I

- 2 i A! +
(2 7 r )U 2 [(p  +  A : ) 2 - 2 / i 2]

2(Ai +  ^ ) 2a2 f  d*k
2 ix2 j  ( ^ j l t 1 +  C O s ( p X  W 1

+k2 -  2/i2 k2

=  [H2p2) ~ /(O )] +  ^  J/9-p( 2 / i2) — /9 ,p(0)|

+Dflpfl. (4.44)

where is finite for all p. and where the factor of three in the third graph 

originates from having three species of particle with the same contribution.

The one-point tadpoles contributions are

a Q  a(3){il>) Q_ /  \
' ‘ 1( 2 ) \ I

n 1 'J j j  ~1 _
( / ) . =  (g)--

p p
= (h)(4.45)

with values given by

( / )  — 2 x  - 2 i  ^Ai  +  —  j  a  — - j  ( —2i) ( Aj +  —  1 a - / ( 0 )

= - 2 ^ 1 +  f J / ( 0 )

(y) = - 2 i  fA] + a _ l _ ( _ 6 i )  fAi + a l- I{ 2 p 2)
2 / i

Ao
= - 3 [ A ,  +  j j W )

(A) = 3 x -2 i  +  - i j  a ^ j ( - 2 ' )  + - j p j  Oj / ( ^ )

(4.46)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. NONCOMMUTATIVE LINEAR SIGMA MODELS 148

where the overall factors of two and three in the first and third graphs respectively 

again come from the multiplicity of particle species with the same contribution.

Thus the total one-loop contribution to the mass renormalization of the iry (or

7To) in this model is

Unlike the U(2) adjoint representation model, there is no purely noncommutative 

graph that saves us for either quartic invariant, and so again we cannot take the 

continuum limit (A rr -> sc) and Goldstone’s theorem fails for this model.

4.5 Discussion

Before concluding, a final calculational note is in order. Since Goldstone's the­

orem is really an algebraic, and not a regulator dependent result, we have em­

phasized the former throughout the present chapter. In this language, the two 

conditions from the previous chapter (N  =  2 and /  =  2) which emerged from 

the vanishing of quadratic and logarithmic divergences, would instead arise from 

the separate cancellations involving the I(2^i2) and 1(0) type terms. The cal­

culations in the previous chapter had the advantage, however, of demonstrating 

how to explicitly compute the nonplanar pieces.

To summarize: in noncommutative field theory, U(N)  (N  > 1) linear sigma 

models with complex scalars in the fundamental representation, do not have 

0( 2N)  global invariance due to noncommutative commutator interactions be­

tween the real components, which vanish in the commutative limit. As a result of

(4.47)
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these commutator interactions, noncommutative linear U(N)  sigma models with 

fundamental matter can be continuum renormalized while preserving Nambu- 

Goldstone symmetry realization, at least at one-loop. This contrasts with our 

previous results, where we demonstrated that for noncommutative linear O( N)  

sigma models with fundamental matter, continuum renormalization is inconsis­

tent with Nambu-Goldstone symmetry realization already at one loop (except 

for the degenerate Abelian case 0(2)  = U( 1)).

To investigate possible scalar representation dependence of these contrasting re­

sults. we have considered linear sigma models with adjoint matter. For the ad­

joint U(2) linear sigma model, we again find that Nambu-Goldstone symmetry 

realization survives at one-loop, provided we drop interaction terms (and star 

product orderings) which would be inconsistent with the gauging of the sym­

metry: noncommutative restrictions on the allowed operators in a U(N)  gauge 

theory Lagrangian also act to restrict the allowed symmetry breaking patterns. 

For the adjoint 0(4) linear sigma model, we find violations of Nambu-Goldstone 

symmetry realization at one-loop order, as in the fundamental 0(.V) models. 

These results suggest that the difference in behaviour is determined by the sym­

metry group, as opposed to the scalar representation thereof.

Some of the results in this paper are suggested by D-brane dynamics. Consider 

the coincidence of N D3-branes in type IIB string theory, in a constant NS-NS 

background. It describes a U(N)  gauge theory in the decoupling limit. The 

separation of k < N  D3-branes from the other branes spontaneously breaks the 

U(N)  gauge symmetry down to  U( N — k ) x  U(k), the global limit (gy\f —> 0) of 

which is the process described in section 3. On the other hand, since orthogonal 

groups are realized on branes by orientifold projections, which project out the NS- 

NS field responsible for noncommutativity on the brane. we expect that similar
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constructions with O(.V) groups should encounter difficulties, and our arguments 

bear this out.

Our results for the noncommutative linear U(N)  sigma models nowr open the pos­

sibility of building models of the elementary particles and their interactions based 

on noncommutative non-Abelian theories with spontaneous symmetry breaking. 

Clearly, to make particle physics models, it is necessary that the spontaneous 

symmetry breaking be consistent with the renormalization not just of the global 

limits of these theories, but also with their gaugings; wre see two reasons to be san­

guine on this point, at least at one-loop. First, the gauging of the U (l)(=  0(2))) 

model [7] is consistent with spontaneous symmetry breaking for precisely the 

star orderings uniquely picked out4 by our previous calculation of the Goldstone 

violating effects in the general noncommutative O(N)  fundamental linear sigma 

model. Second, in our treatment of the non-Abelian U(2) model with adjoint 

scalars, violations of Nambu-Goldstone symmetry realization vanish wrhen one 

restricts to the subset of couplings w'hich wrould be allowed, w’ere the symmetry 

to be gauged: so the limited evidence suggests that global theories may be a good 

guide to the behaviour of the local theories, much as in the case of commutative 

field theories[3], [4].

However, to go from models to actual theories would require demonstration of all­

order consistency of continuum renormalization of noncommutative theories with 

spontaneous symmetry breaking. While failure of Nambu-Goldstone symmetry 

breaking can be demonstrated at one-loop, demonstrating consistency requires 

an all order analysis: this remains a major open issue in this field.

4to make the anomalous effects vanish, which can happen only in the Abelian 0 (2 )  case.
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4.6 Appendix for chapter 4

151

All momenta flow into the vertices.

4.6.1 Scalar potential Feynman rules, U ( N )  fundamental

Pi
\  /V /•

✓ \✓ s✓ \
nk P3 7T/ P a

=  - 2 z 'A  [<50 J fc' e ~  = (p ,x p 2 + P 3 ’<P4) +  

Sil 8jke+ * ̂Pl xpj+p3 x P41J

(4.48)

a {~o) Pi

ffO'o) Pz

c r ( 7 T o )  P 2

= —2 i\  

(r(n0) p4

,Pl X P2, , P 3  X  p 4cos( —— )cos(— — )

,Pl X  p 3 . , P 2  X  p 4 .+ cos(— -— )cos(— -— )

/ P l X p 4 . / P 2  X  p 3  '  + cos(— -— )cos(— -— ) (4.49)

a p x ( 7  p 2

= —2*A

Ti'O P3 TTO P 4

X P 2 n „ , P 3  X p 4 l  2cos(— -— )cos(— -— )

 ,Pl x p 3 , P2 x p 4;- c o s ( —  ----- 1-------— )

(4.50)

Pi P2

\  /  
\  /

(̂TTo) P3 <t(^o) P4

=  -2 iA ^ e -5 (p‘xp2> cos(P3~ A)

(4.51)
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P i  ~ j  P 2
\  4

\  /
\  ✓

/ = -2zA<J'V^p>xp2)s in (^ -^ )v 2 )

a P3 tto P 4

P i  \
\

/
/

" j  P 2 

*0  P i  •.

'I'O P2

=  —2i\a , P l X p 2 
cos(— ;;— )

/Pi X P3X , /P2 X p3,+  cos ( — - — ) + c o s (   -----)

=  -2 i \a S ije - ^ plXp^

a  P 3
—2i\a  cos ( )

4.6.2 Scalar potential Feynman rules, U ( 2) adjoint

7T* p: 7T p2
\  /

N /
\  /•
✓ \✓ N

✓ \

'» P 3

7T* P! 7T P2

(7  p 4

a  /  x , x x — / P i  x  P 2 , P 3  X p 4 ,  -2z(Ai +  A2) c o s ( —  ----------- 1----------- --— )

■ P i  x d 3 . /P2 x p4 .
- 2z A2 cos ( — - — ) cos ( — - — )

-2i(A, +  Aa) c o s ( 2 ! - ^ )  c o s f ^ i ^ 1)

, , x  —  / P i  X P 3  , P 2 X p 4 ,+*Ai c o s (—  ------ 1------ -— )
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(4.52)

(4.53)

(4.54)

(4.55)

(4.56)

(4.57)
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7T* p j

04 P i

a pi 

04 P i

<r { Oi )  P i  

<?{<?i) Pi

7T* pi

*  P 3  

" *  P i

NONCOMMUTATIVE LINEAR SIGMA MODELS

7T P2

153

=  -2i(A, +  A2) C O S (^ y ^ )  c o s ( ^ P i )

0 4  P 4  /Pi x P 3  , P2 X p4x-zAi cos(— -—  +  — - — )

(4.58)

N /
<* P 2

=  -2*(A! +  A2) cos( ^ 4 ^ )  0 0 8 ( ^ 4 ^ )

04 P i •v /Pi X p3 P2 X p4 —zAi cos(— ~—  -f*----------j

X
o{Ol)  P 2

=  —2z'A

<r(04) P4

• P i  X  D o  . D 3 X  D 4cos(— -X2) Cos( F4)+

/ P i  X  p 3 , P 2 X P 4 ,  cos(— -— )cos(— - — )

  / P l X p 4N , p 2 x p 3 ,
-F cos(— -— ) cos(— -—

(4.59)

(4.60)

0 4  P2

N . 

/ \
x „ : „ / P l  X  P 2  , P 3  X  P 4—Ai sm(—  ----- 1-------— )

a pA
(4.61)

a Pi . . .  /Pi x p2. 
=  —2zAacos(— -— ) (4.62)
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= —2iXa / P l XP2, cos(— -— )

(Pi  X P 3 ,  . P2 X p 3 , +  cos(— -— ) + c o s(— -— , (4.63)

0 4  Pi

.2 i(X  + Xl)acM ( ^ 4 ^ ) (4.64)

0 4  P2 

*  Pi  \

P3 . px Xp2
=  —A!asin(— -— ) (4.65)

7T p-i

4.6.3 Scalar potential Feynman rules, 0 (4 )  adjoint (par­

tial)

TT1 p2
\  /

\  /N ✓•
✓ \

✓ \
✓ \

-2 i( \x  +  ^ )  4
/Pi  x  P2  ̂ ( P 3 * P 4 ,cos(— -— ) cos(  ---- )

P3
/ P l X p 3 ,  fP2 X  p 4 ^+  cos(— -— )cos(— -— )

2
, P l  X P i

2
P 2 x  p 3 ,

*1 Pi 7Ti pi
\  ✓N ✓

>  /•
/  N 

✓ \
✓ N

^2  P3 7T2 P 4

+  c o s ( ^ - ^ ) c o s ( ^ - ^ )

« • / »  . A 2 ,  ,Pl  X  P 2 ,  „ , P 3 x p 4 ,-2*(A! +  — ) cos(— -— ) cos(  ----)

, *A2 , P i  x p 3 P 2 X p 4

2~  (  2 2

(4.66)

(4.67)
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7Ti pi  7Ti P2

N / 
\  /

a ( 0 ) ( v )  P 3

o / x  , A 2 ,  , P l  X  P2 \ ,P3 X  p4 ,=  -2i(A ! +  y ) c o s ( — -— ) cos(— - — )

« ( £ ) ( V )  P4 IX2 P l x p 3 P2 X  p 4

r 005 2 2 1

(4.68)

TTl P i "l P2
\  /  

\  /

a  P 3 O'  P 4

~  /  .  Ao .  , P l  X D o .  , P 3  X  » 4 ,  
—2*(Ar +  y ) cos(— -— ) cos(— - — )

, *A2 , P l  x p 3  p 2  X  P 4

T  * 2 2 1
(4.69)

" 1 ( 2 )  P i  x

a  P3 o - M  , A 2 v  / P i  X  P 2 .
=  - 2 z ( A !  +  y ) a c o s ( — - — ) (4.70)

7r l ( 2 )  P 2

-2i(Ai +  “r)a 
4

<v1 X , ,cos(— -— ) +  cos(

/ Pl Xpo,  cos(— -— )

P 2  X  p 3 l
(4.71)

aO*)(0) Pi
a  P3 o / x  , 3 A 2 x , P l  X  P 2 ,= -2i(A ! +  —  )acos(— -— ) (4.72)
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Chapter 5 

Conclusions

String theory is an intensely active branch of theoretical physics, with the most 

ambitious goal of all of science: to understand the fundamental structures of the 

universe. However, as discussed at the outset, because physics is an experimen­

tal and phenomenological science, string theory must therefore ultimately make 

contact with the real world in order for it to be seriously accepted by the broader 

scientific community.

We have reviewed how string theory is. in fact, a potentially vast predictive 

framework: there are no free dimensionless parameters in the theory, so in prin­

ciple everything is already determined by the theory once the dynamics that 

select the vacuum are understood. Furthermore, even perturbative string theory 

makes such dramatic predictions as the number of spacetime dimensions we live 

in. and sets the minimum length scale below which the theory has an alternate 

description at larger length scales. We have also seen that under fairly trivial 

assumptions, string theory even predicts that spacetime itself becomes noncom­

mutative. As an example of a more particle phvsics-like ‘prediction’ that we
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unfortunately did not have space to explore, the mystery of why nature chose 

to replicate itself with essentially three identical generations of particles (at low 

energies at least) is in principle solved in string theory: the net number of chiral 

generations minus antichiral fermion generations is determined as a topological 

property of the compactification (Calabi-Yau) manifold. It is hard to envision a 

more elegant solution to this perplexing problem that was succinctly summarized 

by 1.1. Rabi's famous remark as “Who ordered that?” . Of course this is an in 

principle' resolution because again, until we understand how vacua are dynami­

cally selected, we do not know which Calabi-Yau manifold vacuum is the one we 

might inhabit. But it illustrates the point that a priori, string theory is capable 

of making predictions, if not specific (because of our lack of understanding about 

nonperturbative string theory), then general, as the topics explored in this thesis 

indicate.

We saw how string theory compactifications to four-dimensions can predict the 

presence of a pseudo-anomalous U{ 1) symmetry, which is spontaneously broken, 

and hence can genericallv give rise to vortex configurations. In chapter 2 we 

studied such string theory motivated vortices, which now include couplings to the 

dilaton and the model-independent axion (which is the four-dimensional remnant 

of the universal BIIU field). We showed how the anomaly remnants and the 

stringy couplings to the dilaton and axion can be treated as a perturbation 

about the the standard Nielsen-Olesen vortex system. Then, after reducing the 

system to a set of coupled ordinary differential equations for the Higgs modulus, 

gauge field and the dilaton, we solved the system for the dilaton at first order. 

We found that the dilaton inexorably diverged in the effective theory as one 

approaches the vortex core, essentially as a consequence of the two-dimensional 

nature of the vortex system. This was confirmed with generalized arguments, and 

a self-consistent nonperturbative solution. Since the dilaton vacuum expectation
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value sets the strength of quantum corrections in string theory (and specifically 

the strength of the gauge coupling in this model), such divergent behaviour 

signals the breakdown of the classical effective description of the system, and 

the emergence of a strongly-coupled, intrinsically quantum mechanical regime. 

Such string-motivated objects, if they are to have a classical exterior, necessarily 

surround a core that is quantum mechanical.

We also saw how the universal B ^  antisymmetric tensor field of string theory 

can predict the emergence of spacetime noncommutativity of a specific form, 

which has its clearest interpretation in the field-theoretic or zero-slope limit of 

string theory. Since previous studies of noncommutative field theories had indi­

cated unusual ultraviolet-infrared mixings in even the simplest of such theories, 

it was natural to undertake an analysis of spontaneous symmetry breaking in 

this framework, where in commutative case, massless Goldstone particles are 

predicted and renormalizabilitv hinges on delicate graphwise cancellations. This 

was the subject of chapters 3 and 4, as well as the corroborative appendices. In 

chapter 3 we studied the most general noncommutative O(N)  linear sigma model 

in the spontaneously broken phase. In particular we studied a key signature of 

spontaneous symmetry breaking a t the quantum level: the mass renormalization 

of the tree-level massless pions. We found that because one-point functions are 

insensitive at one-loop to the noncommutativity, while the 1PI corrections to 

the inverse pion propagator do see the noncommutativity in a nontrivial way, 

the cancellations present in the commutative case that ensure that pions remain 

massless at the quantum level are violated for all N  > 2 and all star product or­

derings of the potential terms. Consequently, the continuum renormalization of 

the model is in conflict with Nambu-Goldstone symmetry realization for N  > 2, 

a conclusion also borne out by studying the four-point functions of the theory, 

as in the second appendix. The case of N  =  1 for the particular star ordering
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corresponding to /  =  2 led to no conflict with renormalization and Goldstone’s 

theorem.

This takes us directly to the studies in chapter 4, where we investigated group 

and representation dependence of these results. We found that for the U(N)  

linear sigma model, again with matter in the fundamental representation, that 

there was no conflict between renormalization and Goldstone symmetry realiza­

tion. at least at one-loop for the star product ordering consistent with a possible 

noncommutative gauging of the model. For N  = I, this ordering corresponds 

precisely with the one consistent O(N)  model: 0(2) with /  =  2. We explained 

the differing behaviour of the two models as arising from the presence of purely 

noncommutative commutator interactions that are consistent with U(N),  but 

not 0('2N), symmetries. When we then studied representation dependence, we 

found that the U(2) model with adjoint representation matter could only be con­

sistently renormalized in the spontaneously broken phase and Goldstone’s the­

orem retained if we forbade multiple trace terms in the scalar potential, which 

are incompatible with noncommutative gauge invariance, even though we had 

not imposed a priori local gauge invariance on our Lagrangian. (The noncom­

mutative sickness of such terms was corroborated in the first appendix, where 

we showed that in the corresponding putative gauge theory, the physical Higgs 

field would acquire a divergent, gauge-dependent, on-shell mass shift at one-loop 

proportional to the coupling of a multiple trace term.) In particular, we found 

that in the U ( 2 ) model, a purely noncommutative graph played a key role in 

ensuring that the remaining potential divergences were cancelled. Finally, we 

studied the 0(4) adjoint representation noncommutative linear sigma model in 

the broken phase, and showed that as in the 0 ( N )  fundamental case, there was 

no way to consistently renormalize the theory and preserve Goldstone’s theorem; 

this time there was no purely noncommutative graph to save us.
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Thus we were led to conclude that U (N ) symmetry groups can be used in mod­

els of spontaneous symmetry breaking in a noncommutative context, while O(N)  

models cannot. Furthermore, we saw that the consistency of the spontaneously- 

broken U(N) models at the quantum level is intimately connected with (non­

commutative) gauge invariance, even though the we had not imposed noncom­

mutative gauge invariance at the outset. These claims are consistent with string 

theory, in which the orientifold projection on a D-brane required to obtain or­

thogonal gauge groups projects out the B-field responsible for the spacetime non- 

commutativitv. This supports the contention that noncommutative field theories 

'know-' about string theory.

Finally we note that these disparate studies are related by the fact that they 

are both directly connected to the B ^  field that is present in all perturbative 

string theories. In the first instance, the B ^  field is responsible for the anomaly 

cancellation, and sits in the same supermultiplet that the dilaton does. In the 

second instance, a constant B-field on a Dp-brane leads directly to spacetime 

noncommutativitv. So in conclusion, we have seen in this thesis some possible 

consequences of the Biiu field in string theory on low-energyr physics; that is. we 

have studied specific aspects of the field-theoretic limits of string theory.
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Appendix A  

Corroboration by gauge theory

In this appendix, we investigate the consequences of noncommutativitv-induced 

gauge noninvariance (of terms like [Tr(<I> *$)]?) on the renormalization of physi­

cal quantities: we study the one-loop corrections to the physical Higgs mass for a 

noncommutative ( \C ) L'(2) adjoint representation Higgs model. We emphasize 

that we are looking for a pathology that terms like [Tr(<5*$)]^ induce, that single 

trace terms like Tr($j) do not. This will also serve to illustrate how noncommu­

tative gauge calculations are approached. We will define the R^ gauge fixing for 

the theory so that we may attem pt to quantize it. and will study the simplest 

quantity which must be gauge-independent: the on-shell mass renormalization 

of the physical Higgs particle (the a  of our model). An excellent reference for the 

methodology used here is given in the original article by Appelquist, Carazzone. 

Goldman and Quinn: Renormalization and gauge independence in spontaneously 

broken gauge theories, Phys. Rev. D 8 :6 , 1747 (1973).

The NC U{2) gauge transformations on the scalar field $  in the adjoint repre­

sentation read

<J> U2 * $  * U\. (A.l)
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Expanding these gauge transformations to linear order in the gauge parameter 

yields

1 (  A4 4" A3 y/2X* \
xaTa = -  , (A.2)

2 \  V2 X XA - X 3 )

whence the components of $  defined in (4.19) have infinitesimal transformations

S o  ~  — 
4

S o * ~  -  
4

So-3 ~  -

S o 4 ~  -

{A, 0 3 } +  [A, 04] +  [A4 , 0 ] — {A3 . 0} 

[A*: 04] — {A*, 0 3 } +  {A3, 0*} + [A4, 0*] 

[A3. 0 4 ] +  [A4, 03  ] +  {A*. 0 } — {0*. A} 

[A3 , 0 3 ] +  [A4. <Pa] +  [A*, 0] + [A. 0 *

(A.3) 

(A.4) 

(A.5) 

(A-6 )

where A, are not to be confused with the scalar potential coupling constants; 

they will never appear in the same discussion.

We introduce gauge fields in the adjoint of NC U{2) as

A» =  I  (  A* +  *4*
2 \  y /2 A ^  A $  -  .43 

The gauge transformation of A ^  is given by

An —> Li2 * An * u \  {9 ^ 2) * U2
9

(A.7)

(A.8 )

and the gauge-invariant (under the spacetime integral) field strength is given by

^uv — d^A.1/ Bv*A ^[-4^, .4 ]̂*, 

which generates the usual kinetic term -( l/2 )T r( .P 1'/ *

(A.9)

This allows us to build the covariant derivative for $  in the usual wrav for a field 

in the adjoint representation. Defining

(A.10)
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the correctlv normalized kinetic term for $  now reads

T r (D ^  * D ^ )  =  T r ^ ^ S )  -  2igTr(d,<t> * [A1, $ ].) -  5 2T r ( [^ .  $]. * [A„ *].)

(A .ll)

using /T r(.4  * [B.C].) =  /T r([B , C], * .4).

Due to the noncommutativitv (and exacerbated by the fact that we have a non- 

Abelian gauge group), the complete expansion of some of these objects in com­

ponent form yields a large number of terms, especially in the Tr([A $ ] [A $]) 

term: because of our stated intention to study the mass renormalization of the 

Higgs at one-loop, we will only exhibit the terms we will later need.

Next, consider as usual translationally invariant vacua, where the discussion of 

spontaneous symmetry breaking (at the classical level) proceeds exactly as in 

chapter 4. Thus, defining as before 03 =  a 4- a and 7r =  0. we have successively

T r ^ S d " * )  =  \  [(c^a)2 + [ d ^ f ]  +  (A.12)

-2igTv(d,<I>{A».<t>}) =  - | { a /ia[[.4^d4] +  [ .4 ta ]  +  {.4^.7r}-{7r*..4^}

4-

-I- df.Tr*

[A 3 , cr] 4- [,44. 04] +  [A**1, tt) 4- [ A .  7r*]

[A4, 7T*] +  [A**1. <£>4] 4- {A3. 7T*} — {.4*^,0-} 

[A4 ,7r] 4- [.4^,<p4] — {A 3, TT} 4- {A^.Ct}

+  2 a { d f . i r *  A 11 — d/J7T.4’,i) j ,  (A .13)

(the last two terms are the ones the gauges are engineered to cancel) and

- 92Tr([.4'\4'][.4,i,4>])

=  — ^ - | . 4 3  [<7, A 3 /J<7 4 - A 4 [<T, A i f . ] a  + A 3 [04, A 3/1]04 4- A 4 [0 4 , A 4 /i]0 4 

A A ^ C , A 4<i] 0 4  4 - A 3 [04, A 4 ]̂<T 4 - A 4 [04, A 3M]<7 4- A 4 [(7 , A 3#1]0 4
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+ [2 ^ o 4.4'c>4 -  oj(A lA»  + A , A ^ ) \  +  2(04̂ ^ .4*  -  <jA»oaA;)  

+6Ao[Atl, .4.*] +  cr<t>A [*4/1, .4*] -F 4a04[.4/i. -4’ ] |

+ < f {  J  [ 2 ^ . 4 - a  +  cr2 (-4*.4M +  .4„.4'»‘)]

+a<7(.4M; +  .4^4") +  a2.4;.4^} + . . . (A.14)

where we have written the terms which survive in the commutative limit in (A. 14)

that do not contribute to the one-loop corrections to the inverse Higgs/sigma 

propagator. The last term in (A. 14) gives the complex gauge field A* its properly 

weighted mass M  =  ag. The Feynman rules we will need are displayed at the 

end of this appendix.

The construction of the R^ gauge fixing proceeds as in the commutative case, 

because the gauge-fixing function is linear in the fields, so its Gaussian weighted 

insertion into the Lagrangian density is at most quadratic in the fields: by design, 

it is to cancel .4 — tt mixing terms. Explicitly, we take

after integrating by parts the mixing terms and dropping the total derivative.

at the end, and where the ellipsis represents four-field terms involving n and 7r*

G4 + C?3 \f2G ’

\/2G  G4 — G3 j
(A.15)

with

G = -  igta-K . G* =  +  i^aTr*

G3 =  , G4 =  d„A$, (A. 16)

so the contribution to the Lagrangian density is given by

£„/ =  -  Tr(<?2) =  _ ± [ (a„.4!;)2 +  (a„.4i;)2] - i ( a ^ ) ( a „ . 4 “ ')

+iag(dtln*A** -  d ^ A * 11) — £a2<727T7r* (A.17)
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This gives the usual gauge-dependent mass term to the would-be Goldstone 

mode, and signals that the w is now unphysical.

Recalling that even in the commutative Abelian Higgs model, the ghosts are 

coupled to the physical Higgs field, we now construct the piece of the ghost 

Lagrangian we need. The a  couples to the ghosts corresponding to the complex 

vector field A*1. To each real gauge field (more precisely to each real gauge 

fixing function), corresponds a complex ghost. Defining the infinitesimal gauge 

transformations for the real and imaginary components of .4M through (A* -F 

A mfi) / \ / 2  and i ( A afl — A ^ / ' j T .  respectively. we obtain

<5.4? =  -  [{A3. .4? } — {A2, .4?} -I- commutators] +  t^-c^Ai
4 2 g

<5.4? =  -  [{Aj.A?} — {A3. .4?} -(-commutators] + — 5/iA2. (A.18)
4 2 g

where the omitted commutators will not contribute to the linear object {6G)/{6\)  

needed to construct the Fadeev Popov ghosts below. The infinitesimal gauge 

transformations of the real and imaginary' components of 7r, are similarly ob­

tained. Thus for our purposes, we need only note the presence of two complex 

ghosts denoted by cx and c2, corresponding to the gauge field .4M (or the gauge- 

fixing function G ) and the ghost-ghost-Higgs couplings associated with these 

ghosts, which we now fix. We first decompose G

{ G\ =  d n A \  -t- g£a.7T2
* . (A. 19)

G2 = d^A2 -  g^airi

Then from (A.3), and (A.18) we obtain

<571-1 1, , <5*2 1 / , <5-4? <5.4? 1
^  -  2 ^  + ’ Jx[ ~  2 ^  +  ’ Ja7  ~  “  2g ^  ^

Combining these, we get the derivatives

+  ( A -2 1 )
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which yield the desired interactions (modulo a factor of 2g. which we absorb into 

the definition of the ghosts themselves to obtain canonical kinetic terms), plus 

canonical ghost kinetic and mass terms:

ci [ - d ^  -  €g2a{cr 4- a)] cx + (1 <-> 2). (A.22)

Of course there are other interactions between ghosts and gauge fields, [because 

we have a (NC) non-Abelian group] and arising from other possible derivatives 

that we will not require.

In commutative gauge theories, the ghost terms are written schematically as 

c(SG/6X)c. which includes terms of the form cac. We have two possible noncom­

mutative orderings for such terms, and as in the BRST treatment of unbroken 

noncommutative gauge theories we must include both orderings, symmetrically 

weighted. In the calculation we report below, we will find that in the absence of 

such symmetric weightings of the ghost orderings, the gauge-dependence of the 

renormalized theory would be more severe. Thus the final piece of the Fadeev- 

Popov ghost contribution to the Lagrangian density that we will require is given 

by

C f p g  =  c i  [ - d ^  -  £ M 2] c i  -  ^ [ c i a c i  +  c xc i o \  + (1 4 4  2) +  . . .  (A.23)

where we use M  = ag. and where the ellipsis denotes the aforementioned ghost- 

ghost-gauge couplings we do not need here.

Putting it all together, the classical R$ gauge-fixed Lagrangian density is given 

by

C =  - ^ T r C F ^ ^  +  T r ^ D ^  +  ^ T r ^ l - A ^ r ^ l - A s f T r ^ 2)]2 

+Cgf  +  Cfpg- (A.24)

where star products are implicit. We now discuss the one-loop on-shell mass 

renormalization of the physical Higgs, which we have been denoting by a.
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We generate the counterterms for this model by rescaling the fields and param­

eters according to

1
-4/i —> \ fZ 3An  , $  —> y fz$  , g —r —j.==y

V^3
2 Zn 2 x \ \ Z\^ .

f1 7 1 ’ 2 (A.25)

applied to the symmetric Lagrangian (the gauge fixing terms, and the Fadeev- 

Popov terms are assumed to be written in terms of renormalized fields). The 

only terms out of the counterterm Lagrangian we need are the terms associated 

with er. and <r2:

Zf,X — Z\ Ai 3 1a o + -, 0 ~ Z \2\ 2 

- 3 ( Z A, , - l ) A 2a2 + p 2( Z - l )

( Z . - I ^ - ^ Z a. - D A ^ 2

o 2 C  C c t . (A.26)

At this point we note that Z^/Z  must be a gauge-independent quantity, since 

it represents the (symmetric) mass renormalization of the model. In the loop 

expansion,

Z„ _  1 +Q(ft ; ) _ (I1 (|| ( \ 2 T )
Z  -  1 + z») + 0 ( h 2) ' » Z H 0 ( » >  (A.2.)

which means that Z ^ - Z  must be gauge-independent to lowest nontrivial order. 

This quantity is proportional to the on-shell mass renormalization of the phys­

ical Higgs a  as follows. Without imposing a condition on the one-point Higgs 

amplitude (which is itself gauge-dependent and divergent, but unphysical), there 

are two types of one-loop quantum corrections to the inverse Higgs propagator: 

the usual 1PI self-energy graphs (and their counterterm), and one-point Higgs 

tadpole insertions (and their counterterm). From (A.26) these two counterterms 

are

=  1 (Z„ -  l) / i2 -  - ( Z Al -  l)Axa2 -  3(ZA2 -  l)A2a2
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¥
+ P 2 { Z -  1)]

a
- 3 ia2 Z„A -  ^ Z Al -  A2Za,

a
(A.28)

a

Using A =  A[/2 + A2, the sum of these two counterterms equals

5 > - i [ 2 A a2( Z „ - l ) - p 2( Z - l ) ] , (A.29)
ct

which, when evaluated on the mass-shell of the Higgs (p2 = 2//2 =  2Aa2) equals

Thus, denoting FI(p2) as the sum of all 1PI and one-point tadpole corrections to 

the inverse a  propagator, performing on-shell mass subtraction means that

and so should be gauge-invariant by the previous argument.

We now come to the main calculation where we will show that the divergent (i.e. 

cutoff-dependent1) part of this graphical sum is not gauge-invariant even when 

evaluated on-shell. Because the nonplanar parts of these one-loop graphs are 

finite, in essence we will only be examining the now ’re-weighted’ planar parts of 

these graphs. Since we are discarding the finite nonplanar pieces (which become 

divergent themselves as 0 —> 0), we will separately keep track of the commutative 

values of the relevant graphs as a double check at the end. Finally, we will pro­

ceed as far as possible algebraically [by getting momentum independent pieces 

separately from 0( p2) pieces] in order to see how most of the £ (i.e. gauge pa­

rameter) dependence is still cancelled. The presence of divergent wave-function

1 Of course, we will be using dimensional regularization which respects gauge symmetries.

(p2 = 2fi2) =  —2Xa2i [Zp — Z]. (A.30)
Ct

n(2/x2) = 2Aa2i [Z„ -  Z ] . (A.31)
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renormalizations due to momentum-dependent vertices (i.e. outside of the non­

commutative phases) will not allow us to completely and conveniently carry this 

out. so we will express all remaining divergences in terms of the dimensional pole 

at D = 4.

I n i m 2) J (2TT)D(k2-m2)n' ( A ' 3 2 )

We will handle the purely noncommutative graphs at the end; first we will calcu­

late the 1PI graphs that survive in the commutative limit. We use the definition

d D k  ____1_
(27r ) D  ( k 2 — m 2 ) T

which will be useful for the momentum-independent pieces, the identity T(2 —

D/2) = (1 — D / 2 ) r ( l  — D/2 ) =  —T(1 -  D/2)  -P finite, near D  =  4. and the

dimensional regularization formulae

f  d D k  ( t 2)2 = ( - l ) " i  D ( D  +  2 )  r(n  -  D / 2  -  2) p/2_„+2
J  (2ir)D (k2 — A)n (47r)°/2 4 T(n)

( _ l ) w l j D Y(n —D / 2  — 1) D/2-n+i 
(4tt)d/2 2 r(n)

f  < * " *  1 =  ( - ! ) " »  r (n ~  D / 2 )  A D / 2 - n  / a o o N

J  (2~) D ( k2 -  A)n (47r)D/2 r(n) ' [ 1

The first five graphs contributing to the one-loop mass renormalization of the 

Higgs.

(2tt)d (,k2 -  A )n
dDk k 2

(:2tt)d (k2 - A ) "
dDk 1

{2~)D (k2 - A ) "

k '
\  J  er a»  =  (a) .  »  ' • '

(A.34)
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are either manifestly gauge-independent, (a)-(d), or have no divergent gauge- 

dependent piece, (e), in either the noncommutative or commutative theories.

The remaining 1PI graphs possess gauge-dependent divergent pieces,
* ^

/  \

k 1 *
<L 'v /  _

=  ( / ) ,

k + p

O l

a CK 2)/

P ' P * \  •

k k +P

a
•  • • •

P %
= (j ), (A.35)

• • • •

k +  p
and have values in the noncommutative theory as

= /  (o-xjD [—2/‘(Ai +  A2) + i \ i  cos(p x k)}

= 2(Ai + A2)/i(fA /2) +  finite

= - (A‘ T,A2i ^ ‘U ^ r(2  -  D / 2 )  +  finite, (A.36)(Any
,«■ 2 , 2 , v2 f  d Dk  2 / p x k ^ D - 2 k 2/ A l 2 +  k ' / M *

(9) = (2rag ) ( - , )  J  j ^ c o s  (— ) | -------

2(k2/ M 2 - k ^ / M 4) k * / M 4 1 .
+  (k2 -  M 2) ( k2 -  £A/2) +  (it2 -  £M2)2 J +  mtG

= 2g4a2 [(£> -  l ) /2(il/2) +  f 2/2(£A/2)j +  finite, (A.37)

• 2 ,  •, f  d ° k  r, , fX1f D - i t 2/A /2 k 2/ M 2 |
(/?) = 12^)0 [1 +  cos^  x ( k2 -  A P -  +

= g2 [ (D -  l ) h ( M 2) +  £ /,(fA /2)] + finite, (A.38)

/■ \ 2 v  f  d ° k  2 , P X  k \ ( - 2 p - k) n ( - 2 p - k ) v

(,) = ( ig ) ,( - !)/ < 2 ^ cos <— 1 o»+ * ) » - { « «  *

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. CORROBORATION B Y  GAUGE THEORY 173

f -  k»kv/ M 2 k^k1' 1
{ k2 -  A/2 + k2 -  £A/2 J

g2 r dDk ( k2 - k A/ M 2 k*/M2 1
2 J {2n)D { ( k2 -  M 2)(k2 -  £A/2) + {k2 -  fA/2)2) J

4 ^ (3- ^ +finite
=  - J  [?/, W 2) + ( 2M 2I2( ( M 2)] -  \ ~ { 3  -  f)r(2 -  D/2) + finite,

(A.39)

U) = n - i ) ( - i — ) 2i2 1 — _______ cos2(£^ )_______U> { ’ { a )  J  (2ir)D [(p +  k)2 -  £M2](k2 -  A/2)
=  —gAa2̂ 2I2{^M2) 4- finite. (A.40)

A few comments are in order about the above computations. By power-counting, 

graph (i) has momentum-dependent (outside of the noncommutative phase) a-n- 

.4* and <t-7t*-.4 vertices, which yield divergent contributions at 0 (p 2); i.e. diver­

gent wavefunction renormalization. To evaluate it we used the following identity 

(established with a Feynman parameter, and symmetric integration) :

d (  r dDk J (2p + k)2 — (2p ■ k +  k2)2/ M 2 
d f  { J (2n)D { [{p + k)2 -  £ M 2){k2 -  M 2)

+ w r w ^ m ^ m i ) = ( i ^ r(2 - D/2)(3 - f)+finite'
(A.41)

We then Taylor expand as usual the planar part of the graph in powers of p2. As 

well, there is a ‘crossed’ graph to (i) with the cr-ir-A* and cr-7r*-.4 vertices switched 

with respect to the external lines; equivalently, the gauge charge circulates in the 

opposite direction. It has the identical value as (i), so we will account for it by a 

factor of two below. The ghost graph (h) includes a factor of two for the two sets 

of ghosts, and an overall minus sign for the ghost statistics. It is also now evident 

that if we had not included both ghost-ghost-Higgs orderings, the noncommuta­

tive phase at each vertex of (j) would cancel, and the ghost graphs would coincide
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with their commutative counterparts. Clearly, the ghost graph is used to can­

cel divergent, momentum-independent, gauge-dependent contributions coming 

from (A.37) and (A.39), whose divergent pieces in the noncommutative case are 

half those of their commutative counterparts. Thus, if we were not to introduce 

both orderings symmetrically weighted, we would (already) obtain a manifest 

gauge-dependence proportional to £2g2M 2.

The values for graphs (f)-(j) in the commutative theory are given by

( /) ' =  2A/,(£A/2) =  2l(^ (4 ^ 2 ^ M 2r(2  ~ D/2) +  finite, (A.42)

(g)' = 4gia2 [ ( D - l ) I 2(M2) + e i 2(ZM2)}+  finite. (A.43)

(/»)' =  2g2 [ ( D - l ) I 1( M2) + ^ M 2)]. (A.44)

(O' =  - f  [ e / i ( ^ / 2) + e 2M 2/ 2( a / 2)J -  j f ^ ( 3  - 0 F ( 2 -  D/2)  +  finite,

(A.45)

(j)' = —2g4a2€2I2(£M2) -I-finite. (A.46)

We have four purely noncommutative 1PI graphs which we will add later. Let 

us now consider the one-point tadpole contributions, which, as usual are the 

same for both the noncommutative and commutative theories. There are two 

gauge-independent tadpoles:

£ (A.47)

which do not concern us. The gauge-dependent one-point tadpole graphs are
✓ \\ I

 (*). 1—T -- i ,  (0.1 Z 2-s (m)
p  p p p p

(A.48)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX A. CORROBORATION B Y  GAUGE THEORY 175

with values

 02 \
(*) =  -6A /,(fA /2) =  — -5(fS2a2)r(2 -Z )/2 )  + anite. (A.49)

(!) = - 6 92 [ ( D - l ) / , ( A /2) +  ?/,(eA /2)] , (A.50)

(m) = +6f92/,(?A /2). (A.51)

The gauge-dependence between the last two graphs explicitly cancels, so the only 

one-point tadpole correction which remains in our calculation is (A.49).

This completes the list of graphs that survive in the commutative limit. Thus, 

let us first check that the sum of divergent gauge-dependent contributions for 

the commutative theory graphs vanishes on the Higgs mass-shell as required. 

Adding (A.42). (A.43), (A.44), 2x (A.45), (A.46), and (A.49)-(A.51) we obtain

I W ( p 2. o  =  2rA£A/2 +  \g 'a 2e h m 2) +  2g2̂ M 2) -  2g2 A/2)

+£2A/2/2(£A/2)] +  2 r & y  -  2gi a2e i 2(ZM2) -  6rAg2a2 

= 2£Xg2{p2 — 2Xa2)

—> 0 as p2 —> 2Aa2, (A.52)

where T is shorthand for *T(2 — D/2) / (16n2).

Repeating this calculation for the noncommutative theory, by adding the gauge- 

dependent. divergent pieces from (A.36), (A.37), (A.38), 2x (A.39), (A.40), 

(A.49)-(A.51) we get

£ ( p 2. 0  = 2(\l + \ 2)rt \f2 + 2g4a2e i 2(ZM2)+ g 2ZIl(SM2)
div.nc

-g> [{AKA/2) + ( 2M 2h((M 2)] + r?«Y -  9V f 2/2({A/2)
-6rA p2a2 

=  & g2(p2 -  A,a2 -  4A2a2)

—► -2 ^ fp 2A2a2 as p2 —> 2Aa2. (A.53)
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Thus, although most of the f  cancellation persists, since the divergent parts 

of several of the graphs are simply halved with respect to their commutative 

counterparts. (A.36) is split differently than the p2 wavefunction renormalization 

piece in (A.39), and (A.49), the one-point tadpole, is not split at all.

However, we still have to add the contributions from purely noncommutative 

graphs, i.e. graphs that disappear in the commutative limit. There are four of 

them, although only one will contribute. First the graphs with the gauge fields 

A3 and A$ as 1PI tadpoles disappear in dimensional regularization because they 

involve massless propagators:

The last two graphs we need to consider both involve the following integral (again 

evaluated by introducing a Feynman parameter, and symmetrically integrating)

which like (A.39) have divergent wavefunction renormalization contributions, and 

originate from the matter covariant derivative. Thus we have

(A.54)
P P

r dDk (2p +  A; )2 +  (£ — l)(2p • k -f k2)2/ k 2 

J (2ti-)d [(p + k )2 — m 2]k2

=  T T ^ r (2  -  D/2)  [fm 2 -I- (3 -  Op2] +  finite, (A.55)
(4'i)~

a

A4 k

=  (o), (A.56)
P ••

k + p
with values given by

k + p

p x  k { - p - k  -  p)n(p + k + p)„ i(-i)
2 '  [(p + k)2 -  Xia2]k2

k

x
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(2p + k ) 2  +  (£ -  l)(2p • k  +  k ' 2 ) 2 / k 2  

[(p + A:)2 -  Ata2]A:2
• 2

~ 2 (S )5 r(2 "  D /2) [fAl“2 +  (3 "  ?)p2] +  finite’ (A.57)

2 r  d D k  . 2 , p x  k A - P - k - p ) i i { p  +  k + p ) l / i ( - i )

J  (2tt)d 1 2 '  [(p + A:)2 -  2Aa2]A:2
x

-  D/2)  [«(2Aa2) +  (3 -  f)p2] . (A.58)

In the notation used above, the sum of the divergent, gauge-dependent pieces 

from these two graphs is

which is not enough to cancel the residual piece in (A.53), although yet again, 

depends only on the coupling A2 (and g )  and not Ai. Thus the sum of all gauge- 

dependent pieces evaluated on the Higgs mass-shell is

where T =  *T(2 — D/2)/{16n'2).

This signals gauge-dependence in the on-shell mass renormalization of the Higgs 

in this model and confirms directly, at the quantum level, that terms like [Tr(«J>2)]2 

are pathological in noncommutative gauge theories.

A .l Gauge sector Feynman rules

The scalar potential Feynman rules are identical to those of chapter 4. As usual, 

all momenta flow into interaction vertices.

y ,  (pure noncomm)

—> £r</2A2a2 as p2 —► 2Ao2. (A.59)

H £—dep,noncomm(P —  2 A q  ) —  ^^9 A2Q -F  finite (A.60)
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P

TT TT*

P

0 4 04

P

A "  . 4 * "

P

3 (4 )
4 "

3 (4 )

p1 — 2A a2 +  it

p* -  + it

p2 — A ^2 +  it

9nv -  kpkv /M2 +  k^kJM '2
k2 -  M 2 +  it k2 -  £.V/2 +  it

—t
k2 + it

, (C _  1 \ kftky9nv A  (£ 1)

Cl(2) C1(2) i

p2 — £A/2 +  it

P3 2 /Pi X P3,=  2iag g ^ c o s i— -— )

a pi a po

- 4 "  p 3 A ”  P4

ig2gtlu
,P l  x  ? 2 , /P i  X  P4 cos(— -— ) cos(— -— )

(Pi x p 4 , P2 x p 3, +  cos(— -—  +  — — ]

a px
* P3 ,px Xp2

=  *9\Pi Pi)(iCOs(— -— )
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a  p x

P3 . / \ „ ,P l X P2 ,
=  i g { P \  -  P s ) n  COS(  ------ ) (A. 70)

A " P2

a  p x

<Z>4 ? 3  » . / P i  X  P 2
=  ?(P3 -  Pl)/xSm(  o ) (A.71)

A 3 P 2

°  PZ ( \ ■ X P2\= P (P 3 -P i)^ sm (— -— ) (A.72)

a px

\ c l ( 2) P 3 ^ A /2____ / P 2  X  P 3 n —  C°s(—  ---- ) (A. 73)

c l ( 2) P 2
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Appendix B 

Corroboration by four-point 
functions

The restrictions to N  =  2 and /  = 2 in the noncommutative O(N)  linear sigma 

model that we found in chapter 3 are quite intriguing, although we found a 

natural interpretation of them in chapter 4. by rewriting of the theory in terms 

of a £'(1) symmetry. It is interesting to see how these restrictions emerge by 

studying the four-point scattering amplitudes of the noncommutative O(N)  lin­

ear sigma model. Not only will this corroborate the claims made in chapter 3, 

it will also serve as an example of how to compute higher point functions in 

a noncommutative theory (which are more challenging algebraically than their 

commutative counterparts), and further illuminate the connection these results 

have with spontaneous symmetry breaking.

So let us return to the O(N)  model of chapter 3. and consider the 1PI contri­

butions to the t t  — 7r  — a — a amplitude at one-loop, which has four graphical
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contributions
i p x J  P 2 i pi J  P 2

=  (b) .

P -3

i  P i

P a

j  P2

P 3  

i pi
\  . T .  /
\  k  +  b  /

P a

j  P 2

V k + Q i /

V ^  / V ^  /

=  (d) . (B.l)

where all external momenta flow into the vertices, P  =  P i  +  P2 - Q =  P i  + P3 , 

and U =  pi +  pj. Graph (d) is merely the crossing of (c) under p3 p4. One 

immediate condition for renormalizability requires that the sum of the divergent 

contributions of these graphs must be proportional to the tree level vertex.

All four graphs are logarithmically divergent, their respective divergences orig­

inating from the zero-frequency component of the total phase; i.e. the terms 

independent of 9, as in chapter 3. To this end, we need isolate only the divergent 

parts of the diagrams and so now introduce several convenient notations and 

identities that will simplify the algebraic task. First define

Momentum conservation and antisymmetry of A imply

P i  A  P 2 +  p 3 A  p 4 =  P 2 A  p 3  +  p i  A p i  , p i  A  p 4 +  p 3 A  P 2  = p 4 A  p 3 +  p i  A  p x

P i  A p 3 - I -  p-2 A  p 4 =  p 3 A  p 2 - I -  p 4  A p i  , p i  A  p 4 4- p 2 A  p 3 =  p 4 A  p 2 +  p 3 A  p i

P i  A  P 2 +  P a A  p 3 =  p 2 A  p 4 +  p 3 A px , p x A  p 3 +  p 4 A  P 2 =  p 3 A  p 4 +  p 2 A  p i

i A j = p i A  pj  = Pt ^ Pj . c(-) =  cos(-) , s(-) =  sin(-) , c( i )  =  c{pi A k) .  (B.2)

(B.3)
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where we have grouped pairs of equalities that are the negatives of each other, 

and so equal as arguments of a cosine. Then, in order to extract the ’constant' 

part of a product of trigonometric functions we have the equivalences

c(l)c(2)c(3)c(4) =  c(l)c(2)c(3)c(l + 2 +  3) ~  c(l)c(2)c2(3)c(l +  2) ~  £
8

c(l)c(2)c(3)s(4) =  —c(l)c(2)c(3)s(l +  2 +  3) ~  —c(l)c(2)c2(3)s(l +  2) ~ 0

c(l)c(2)s(3)s(4) =  —c(l)c(2)s(3)s(l + 2 +  3) ~  —̂

r(l)s(2)s(3)s(4) =  —c(l)s(2)s(3)s(l +  2 +  3) ~  -c (l)s(2 )s2(3)c(l +  2) ~  0

s(l)s(2)s(3)s(4) =  —s(l)s(2)s(3)s(l +  2 +  3) ~  -s ( l)s (2 )s2(3)c(l +  2) ~  ^
8

(B.4)

which in turn imply

c(l +  2 ) c ( l - 2 )  =  [c(l)c(2)-a(l)s(2)][c(l)c(2) +  5 ( l ) s ( 2 ) ] ~ i - ^ = 0  

•s(l +  2).s(l — 2) =  [ s ( l ) c ( 2 ) + s ( 2 ) c ( l ) ] [ s ( l ) c ( 2 ) - , - ( 2 ) c ( l ) ] ~ i - i= 0  

c(l +  2 ) s ( l - 2 )  =  [c ( l)c (2 ) -s ( l) s (2 )][s (l)c (2 )-c (l)s (2 )]~ 0  (B.5)

and

c(PAlr)c(l)c(2) =  ( c ( l ) c ( 2 ) - s ( l ) s ( 2 ) ) c ( l ) c ( 2 ) ~ i

c(P A fc)s(l)s(2) =  [ c ( l ) c ( 2 ) - s ( l ) s ( 2 ) ] s ( l ) s ( 2 ) = - i  (B.6)

Now consider diagram (a) whose value is 

(-2A)2 r dAk Sklt \ ( 1X) r dk
(a) 2 J  (2;r)A(27r)Mfc2 +e][(fc + P )2 +  e ]

[ fc{-k  A {k +  P))c(p3 A p4) + (1 -  f)c{ — k A p3 +  (ft +  P) A  p4)] x

{8'>6hl [fc(Pl A  p2 )c(k A (—k — P)) +  (1 — /)c(p , A  k -  P2 A  (k + P))]

+5tkSjl [fc{pi A  k)c{p2 A ( - k -  P)) +  (1 -  f)c(pi / \p2 -  k A ( k  + P))]

+Sil6]k [fc(Pl A  (k + P))c(p2 A k) +  (1 -  f )c(Pl A  P2 -  (lb +  P) A  *)]}

(B.7)
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The divergence of this graph is proportional to (N  -  1).4 +  B  +  C . where A.B.C  

are the three trigonometric polynomials obtained from multiplying the terms 

inside the first square bracket by the each of the three sets of terms inside the 

curly bracket of (B.7) respectively. Inspection reveals that C  =  B{p\ <— P2).

Then by using the notation and algebraic tricks above we have successively

p
.4 ~  j c ( 1 A 2 ) c ( 3 A 4 )

+(1 -  f ) 2[c(3)c(p4 A (k -  p3)) +  s(3)s(p4 A ( k - p 3))] x 

x[c(l)c(p2 A (k +  pj)) -h s(l)s(p 2 A (k +  p,))}

-1-/(1 -  / )  { c ( P  A k ) c ( 3  A 4) [ c ( l ) c ( p 2 A {k +  p i ) )  +  s ( l ) s ( p 2 A (fc +  P i ) ) ]  

+ c ( l  A 2 ) c ( P  A k) [c (3)c(p4 A (k -  p3)) +  s{3)s(p4 A {k -  p 3))]}

~  ^ - c ( l  A 2 ) c ( 3  A 4)  +  (1 — / ) 2 x

{ c ( l ) c ( 3 )  [c (4)c(4  A 3 )  +  s ( 4 ) s ( 4  A  3)] [c (2)c(2  A 1) -  s ( 2 ) s ( 2  A  1)] 

+ c ( 3 ) s ( l )  [ c (4) c (4  A  3) +  s ( 4 ) s ( 4  A  3)] [ s (2) c (2  A 1) +  c ( 2 ) s ( 2  A 1)] 

+ s ( 3 ) c ( l )  [ s ( 4 ) c ( 4  A 3) -  c ( 4 ) s ( 4  A  3)] [c (2)c(2  A 1) -  s ( 2 ) s ( 2  A 1)]

+  s ( 3 ) s ( l )  [ s ( 4 ) c ( 4  A 3) -  c ( 4 ) s ( 4  A 3)] [ s (2)c (2  A 1) +  c ( 2 ) s ( 2  A 1)]}

+ / ( !  -  / )  {c(P A  k)c{3 A 4 ) c ( l )  [c (2 )c (2  A 1) -  s ( 2 ) s ( 2  A 1)]

+c{P A  k)c(3 A 4 ) s ( l )  [ s ( 2 ) c ( 2  A 1) +  c (2) ,s (2  A  1)]

+ c ( l  A 2 )c(P A k)c(3)  [c (4 )c (4  A  3) +  s ( 4 ) s ( 4  A  3)]

+  c ( l  A 2 )c(P A k)s(3)  [ s ( 4 ) c ( 4  A 3) -  c ( 4 ) s ( 4  A 3) ]}

f 2 (1 -  f)2
~  c ( l  A 2 ) c ( 3  A 4 ) +  - [ c ( l  A 2 ) c ( 3  A 4) +  s {  1 A 2 ) s ( 3  A  4)

2 8

—c ( l  A 2 ) c ( 3  A 4)  -  s ( l  A 2 ) s ( 3  A 4) -  c ( l  A 2)c(3  A 4)

- s ( l  A 2 ) s ( 3  A  4) +  c ( l  A 2 ) c ( 3  A 4) +  s( 1 A  2 ) s ( 3  A 4)]

+  —  - ^ - c (  1 A 2 ) c ( 3  A 4)[1 - 1  +  1 - 1 ]
4

f 2
= - ^ c(Pi Ap2)c(p3 A p4). (B.8)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B. CORROBORATION B Y  FOUR-POINT FUNCTIONS 184 

Next we have

B f 2c{3 A 4)c(P A fc)c(l) [c(2)e(2 A 1) — s(2)s(2 A 1)]

+(1 ~  I f  [c((Pt -p<) A / : ) c( 4 A 3 )  -  s((p3 - p 4) A f c ) s ( 4 A 3 ) ]  

x  [e(l A 2 )c(P A k) — s ( l  A 2 )s(P A A:)]

-4-/(1 -  I )  {c{P A k)c{3 A 4) [c(l A 2)c(P A k) -  s ( l  A 2)s(P A k)} 

+c(l) [c(2)c(2 A 1) -  s(2)s('2 A 1)] [c((p3 -  p4) A A:)c(4 A 3)

- s ( (p 3 - p ^  Ak)s{4 A3)]}
/j c { l  A 2 ) c ( 3  A 4) +  0 +  / ( I  -  / )

c f a  A  p 2 ) c { p 3 A  P i ) .

- c ( l  A 2 ) c ( 3  A 4) + 0  +  0

whence it follows that

C =  P(pi «-> p2) =

(B.9)

c(p i  A p 2 ) c ( p 3 A  P i ) . (B.10)

Thus combining (B.8). (B.9) and (B.10), the total divergence in (B.7) is propor­

tional to

Div(a) ~  2A261] co s ( p i  A p 2) c o s ( p 3 A p 4). (B .ll)

Now consider the second diagram (b) which is equal to

(—2A)2 r d4k Sij
( 6 ) = I2 J (27r)Uk2 + ml ) l ( P + k)2 + mZ\ 

x [/c (l A 2)c(A: A { - k  -  P)) -I- (1 — /)c (p t A k — p2 A {k -I- P))] x

[c(k A (k +  P))c(3 A 4) + c(3)c((A: +  P ) A p4) +  c(4)c((fc + P) A p3)].

(B.12)
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The divergence in this graph is proportional to

( b )  oc ^ c ( l A 2 ) c ( 3 A 4 )

+ / c ( l  A 2 ) c ( ( p 3 + P 4 ) A  fc )c (3) [c (4)c(4  A  3)  +  s ( 4 ) s ( 4  A  3)]

+ / c ( l  A 2 ) c ( ( p 3 + P 4 ) A fc )c (4) [c (3)c(3  A 4 )  +  s ( 3 ) s ( 3  A 4)]

+ ( 1  -  f)c{{pi — P 2 ) A fc)c(l  A 2) -  s ( ( p !  — P 2 ) A k)s( 1 A 2)] 

x c ( 3  A 4 )c(P A k)

+ ( 1  ~  / ) [ c ( ( P i  ~  P 2 ) A  fc)c( l  A 2) -  s ( ( p !  -  pa) A k)s( 1 A  2)] 

x c ( 3 ) [ c ( 4 ) c ( 4  A  3)  4- s ( 4 ) s ( 4  A  3)]

+ ( 1  -  / ) [ c ( ( p i  — P 2 ) A  k)c( 1 A 2) -  s ( ( p i  -  pa) A k)s( 1 A 2)] 

x c ( 4 ) [ c ( 3 ) c ( 3  A  4) +  s ( 3 ) s ( 3  A  4)]

~  ^ c (  1 A 2 ) c ( 3  A 4)  +  ^  +  0  c ( l  A 2 ) c ( 3  A 4) +  0 

+ ( 1  -  / ) c ( l  A 2 ) c ( 3  A 4 ) c ( 3 ) c ( 4 ) [ c ( l ) c ( 2 )  +  s{l)s{2)]

+ ( 1  -  f )s (  1 A 2 ) s ( 3  A 4 ) c ( 3 ) s ( 4 ) [ s ( l ) c ( 2 )  -  c ( l ) s ( 2 ) ]

+ ( 1  -  / ) c ( l  A 2 ) c ( 3  A  4 ) c ( 3 ) c ( 4 ) [ c ( l ) c ( 2 )  +  s(l)s(2)]

- ( 1  -  f )s (  1 A 2 ) 5 ( 3  A  4 ) s ( 3 ) c ( 4 ) [ s ( l ) c ( 2 )  -  c ( l ) s ( 2 ) ]

~  / c (  1 A 2 ) c ( 3  A 4) +  (1 -  / ) c ( l  A 2 ) c ( 3  A 4)  [ i  -  i  +  I  -  1 ]  +

+ ( 1 - / W l A 2 W 3 A 4 ) { - i - ( - i ) - [ - i - ( - l ) ] }

~  /c(lA 2)c(3A 4). (B.13)

Thus we have

Div(6) ~  2A2<5'J/co s(p 1 A P 2 ) cos(p3 A p4). (B.14)

Diagram (c) has no symmetry factor and is equal to

2 f  d 4 k  & i k 6 k j

(C) ( 2A) /  (27r)4 (fc2 +  m 2 ) [ (Q +  fc)2 +  C2] X

[ / c (p i  A  (k +  Q ) ) c ( 3 )  +  (1 -  / ) c ( l  A  3 -  ( Q  +  k) A  *)]

[ / c ( ( Q  +  k) A  P 2 ) c ( 4 ) +  (1 -  f)c((Q A  k) A ( -k )  +  2 A  4)]. (B.15)
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Its divergence is proportional to

(c)  oc / 2c(3)c(4)[c(1)c(1 A 3) -  s ( l ) s ( l  A 3 ) ] [ c (2 )c (2  A  4)  +  s ( 2 ) s ( 2  A 4)] 

+ ( 1  ~  / ) 2 [ c ( l  A 3 ) c ( ( p !  + p 3) A k )  + s ( l  A 3 ) s ( ( p !  +  p 3) A A:)] 

x [ c ( 2  A 4 )c ( (p 2  +  Pa ) A  k) -  s { 2 A 4 )s ( (p2  +  P a ) A k)]

+ / ( 1  -  / ) { c ( 3 ) [ c ( l ) c ( l  A 3) -  s( l ) s ( l  A 3)]

x[c(2 A4)c((p2 + P a ) A k) -  s(2 A 4)s((p2 + P a ) A k)} 

+c(4)[c(2)c(2 A 4) + s(2)s(2 A 4)] 

x[c(l A 3)c((pi +  p3) A k) + 5(1 A 3)s((pi +  p3) A  A:)]}
f'2

~  M c ( l A 3 ) c ( 2 A 4 ) + s ( l A 3 ) s ( 2 A 4 ) ]
O

+(1 -  / ) 2c ( l  A 3 ) c ( 2  A 4 ) [ c ( l ) c ( 3 )  -  s ( l ) s ( 3 ) j [ c ( 2 ) c ( 4 )  -  s ( 2 ) s ( 4 ) ]  

- ( 1  -  / ) 2s ( l  A 3 ) s ( 2  A 4 ) [ s ( l ) c ( 3 )  +  s ( 3 ) c ( l ) ] [ s ( 2 ) c ( 4 )  +  a (4 )c (2 ) ]  

+ / ( 1  -  / ) { c ( l  A 3 ) c ( 2  A 4 ) c ( l ) c ( 3 ) [ c ( 2 ) c ( 4 )  -  s ( 2 ) s ( 4 ) ]

+ s(l A 3 ) s ( 2  A 4 ) s ( l ) c ( 3 ) [ « ( 2 ) c ( 4 )  +  s (4 )c (2 ) ]

+ c(l A 3)c(2 A 4)c(2)c(4)[c(l)c(3) -  s(l)s(3)]

+s( 1 A 3)s(2 A 4)s(2)c(4)[s(l)c(3) +  s(3)c(l)]}
I 2 (1 -  f )2

~  j c ( 1 A 3 - 2 A 4 )  +  — » {c (1 A 3 ) c(2 A 4) +  s ( l  A 3 ) 5 ( 2  A 4)}
8 2

That is.

+ / ( I - / )
[ c ( l  A 3 ) c ( 2  A 4) -  s ( l  A 3 ) s ( 2  A 4)]

f 2 (1 - / )  
8 2

21
c ( l A 3 - 2 A 4 )  +  - - 1-- -^ c( 1 A 3  +  2 A 4 ) .  (B.16)

Div(c) 4A <5,J I7 2 , ( i - / ) 2 
8 2

COS (pj  A p 3 — P2 A p 4)

+  ~ ~ 2 ~ ^  c o s ( j> l  A p 3 +  P2 A P a ) |  • (B. 17)

Since the fourth diagram, (d), is just (c) with p3 and P4 interchanged, we imme-
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diately  obtain

Div(d) 4A2Si] |
21

cos(pi A p4 -  P2  A p3)

+  ̂  ~ 9 ^ c(Pl A P-« +P2 A p3) |

= 4A <5lJ / -  (1 ~  f ?
8 2

C O S ( p i  A p 4 —  P 2  A p 3 )

+ ^ y ^ c ( p 1 A p3 + P 2  A p 4) |  . (B.18)

using cos(x) =  cos(—x). and the identities (B.3). Furthermore, we note that by 

eliminating and then restoring p4, we can obtain

cos(pi A  p3 — P 2 A  p4) +  cos(p! A  p4 -  P 2 A  p3)

= c(pi A  p3 +  p2 A  (P! + p3)) +  c(pi A  (-Pa -  Ps) -  P2 A p3)

=  c ( p j  a  p 3  +  P 2 A  p 3  -  P !  A  P a )  +  c ( p i  A  p 3  +  P 2 A  p 3  +  p i  A  P 2 )

= 2c(pi A  p3 +  P2 A  p3)c(pi A  P2 )

= 2c(pi A  p2)c((pi + P2 +  p3) A  p3)

=  2 c o s ( p i  A p 2) cos(p3 A p 4). (B.19)

This now allows us to  add the divergences from all four graphs, (B.ll). (B.14). 

(B.17). (B.18). to  finally arrive at

r.v + 3
£ Div - r  +  2( i - / ) cos(p! A P2 ) cos(p3 A p4)

+ 2 /(1  -  / )  cos(pi A p3 +  pa A p4), (B.20)

whence, com paring with the tree-level form (3.22), we require 

' V +  3
~ -y ~ / 2 +  2(1 -  / )  cos(pi A P 2 ) cos(p3 A p 4)

+ 2 /(1  -  /)cos(p ! A p3 + P 2  A p 4)

=  C [/cO S(p! A P2 ) COs(p3 A p4) +  (1 / )  COS(p! A p3 +  P2  A p 4)] (B.21)
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(where C  is an arbitrary constant) for renormalizability. Remembering that 

/  =  1 leads to problems in the pion two-point function, we arrive at the system

- / 2 +  2(1 -  / )  =  C f  . 2f  = C (B.22)

or
f 2(.V — 1)/ — 4 /  +  4 =  0. (B.23)

Solving for /  in terms of .V > 2 (and integer of course) yields

4 ±  y/16 -  I6(JV -  1) 2 2 y /2 ^ iv
1  2(iV  -  1) .V -  1 .V - 1  ' * ' *

Now for N  > 2. /  is necessarily complex which conflicts with the Hermicity of 

the Lagrangian density. Thus we require N  =  2, which yields /  =  2. in complete 

support of the results of chapter 3.

Furthermore, if we repeat the calculations of this section for the easier 4 — a 

amplitude, it is not difficult to show that the one-loop divergences are then 

proportional to

Div x  A2 [4 + (.V -  l ) / 2] {cos(pi A pa) cos(p3 A p4) +  (p2 Pz) +  (P2 -»• Pa )} ■

(B.25)

As one might expect, this amplitude in isolation is automatically consistent for all 

N  and / .  analogous to the unbroken phase, or <p4 theory; our restrictions emerge 

from an analysis of the (putative) spontaneously broken phase, which is why we 

studied the ~ -  it — a — a amplitude in this appendix, and the pion propagator 

in chapter 3. To see this connection from yet another view, remember that the 

limited counterterm structure in the spontaneously broken phase also requires 

consistency between the 4 —a and tt — n — a — a  amplitudes [for renormalizability 

or at least quantum mechanical consistency with the 0 { N)  global symmetry], so 

that comparing (B.20) and (B.25) with (3.16), we require

[4 + (.V -  1 ) /2)/ = (JV + 3) f  + 4(1 -  /), (B.26)
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which again leads to the so lutions N  =  2, /  =  2 (after again  excluding /  =  1 

on the  basis o f results of chap te r 3). Finally, with a  m om ent's  thought, one can 

convince oneself th a t the rem ain ing  four-point function (the four-pion am plitude) 

will also yield th e  same conditions w ithout further calculation.

Thus, we again conclude th a t  a  global 0 ( N ) sym m etry is incom patible with 

continuum  quantization in the  spontaneously broken phase, except for the case 

.V =  2. /  =  2, which we saw in chapter 4 precisely corresponds to a  f / ( l )  

sym m etry (in disguise) w ith th e  s ta r  product ordering consisten t w ith the gauging 

of th a t sym m etry.
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