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Abstract

A principal concern of ecological research is to unveil the causes behind observed spatio-

temporal distributions of species. A key tactic is to correlate observed locations with en-

vironmental features, in the form of resource selection functions or other correlative species

distribution models. In reality, however, the distribution of any population both affects and

is affected by those surrounding it, creating a complex network of feedbacks causing emergent

spatio-temporal features that may not correlate with any particular aspect of the underlying

environment. Here, we study the way in which the movements of populations in response to one

another can affect the spatio-temporal distributions of ecosystems. We construct a stochastic

individual-based modelling (IBM) framework, based on stigmergent interactions (i.e. organisms

leave marks which cause others to alter their movements) between and within populations. We

show how to gain insight into this IBM via mathematical analysis of a partial differential equa-

tion (PDE) system given by a continuum limit. We show how the combination of stochastic

simulations of the IBM and mathematical analysis of PDEs can be used to categorise emer-

gent patterns into homogeneous vs. heterogeneous, stationary vs. perpetually-fluctuating, and

aggregation vs. segregation. In doing so, we develop techniques for understanding spatial

bifurcations in stochastic IBMs, grounded in mathematical analysis. Finally, we demonstrate
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through a simple example how the interplay between environmental features and between-

population stigmergent interactions can give rise to predicted spatial distributions that are

quite different to those predicted purely by accounting for environmental covariates.

Key words: animal movement, animal space use, individual based models, partial differential

equations, resource selection, species distribution models, stigmergy

1 Introduction

Understanding the processes behind the spatial distributions of animal populations has been

a core concern of ecological research throughout its history (Elton, 2001; Nathan et al., 2008).

Today, the need to manage the effects of rapid anthropogenic actions on ecosystems makes

predictive tools for spatial ecology more important than ever (Azaele et al., 2015; Maris et al.,

2018). However, spatial ecology is complicated by the fact that the distribution of a population

of organisms will affect the distributions of those populations that surround it, and also be

affected by these populations (Morales et al., 2010; Ovaskainen & Abrego, 2020). This generates

a complex network of feedbacks between the constituent populations of an ecosystem, causing

spatio-temporal patterns that can be difficult to predict, and impossible without the correct

mathematical and computational tools linking process to pattern (May, 2019; Potts & Lewis,

2019).

There are two principal processes by which space use can be affected by interactions between

populations (we use the word ‘population’ loosely, referring to anything ranging from a small

group such as a territorial unit or herd through to an entire species). First, interactions can

affect demographics, i.e. birth- and death-rates. This can be, for example, through predator-

prey interactions or competition for resources, both of which are well-known to have non-trivial

effects on both the overall demographic dynamics and the spatial distribution of species (Holmes

et al., 1994; Tilman et al., 1997; Okubo & Levin, 2001; Cantrell & Cosner, 2004; Lewis et al.,

2013, 2016).
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Second, for mobile organisms, population interactions can affect the movement of individ-

uals (Mitchell & Lima, 2002; Vanak et al., 2013; Breed et al., 2017; Matthews et al., 2020).

It is well-known, from the mathematical literature, that the two processes of demographics

and movement can combine to affect spatial distribution patterns in non-trivial ways, as ex-

emplified by studies of cross-diffusion and prey-taxis (Shigesada et al., 1979; Lee et al., 2009;

Gambino et al., 2013; Potts & Petrovskii, 2017; Han & Dai, 2019; Haskell & Bell, 2020). These

studies typically model movement and demographics in the same system of equations (usually

partial differential equations), implying that the movements are occurring on the same spatio-

temporal scale as the demographics. Therefore the movements considered in such studies are

usually dispersal events. However, many animal populations can make significant movements

to rearrange themselves in space over timescales where births and deaths are negligible (Moor-

croft et al., 2006; Vanak et al., 2013; Ellison et al., 2020). This particularly applies to larger

animals, such as birds, mammals, and reptiles, who have great capability for movement but

may only reproduce at a particular time of the year (e.g. spring). Therefore it is important

to understand how movement processes alone may affect spatio-temporal population patterns

(Potts & Lewis, 2019).

Spurred by rapid improvements in animal tagging technology, the empirical study of move-

ment has surged, with data being gathered at ever higher resolutions (Williams et al., 2020).

Furthermore, an increasing number of studies are measuring animal interactions via the co-

tagging of multiple animals and new techniques for decoding the resulting information (Vanak

et al., 2013; Potts et al., 2014c; Schlägel et al., 2019). A key goal of movement ecology is

to understand animal space use, so the question of how fine-grained movement and interac-

tion processes upscale to broader spatio-temporal patterns is gaining significant methodolog-

ical attention (Avgar et al., 2016; Signer et al., 2017; Potts & Schlägel, 2020). However, to

make predictions requires a theoretical understanding of how movements mediated by between-

population interactions affect space use. Our principal aim here is to provide the theoretical

framework for answering such questions.
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Fig. 1. Schematic diagram of stigmergent interactions. The left-hand side shows the
three possible pairwise interactions between two populations. On the right is an example
network built from these interactions. One might imagine that A and B are competing prey
being predated by mutualistic predators C and D.

To this end, we construct a general and extensible individual-based model (IBM) of move-

ments and interactions between multiple populations. We assume that animals, left alone on

the landscape, will have some sort of movement process allowing them to embark on daily

activities such as foraging. We model this very simply as a nearest-neighbour lattice random

walk (Okubo & Levin, 2001; Codling et al., 2008). This is a foundational movement model,

which can be readily extended if one is interested in the finer details of foraging activity.

In this study, however, our focus is on the interactions between individuals and populations.

For this, we assume that, as individuals move, they leave a trace of where they have been on

the landscape, which could be in the form of scent, visual or olfactory marks, feces or a simply

a trail. These marks decay over time if the area is not revisited. Consequently, each population

leaves a distribution of such marks on the landscape, which changes over time as the constituent

individuals move about. Individuals of a population alter their movement according to the

presence or otherwise of marks, both from their own population and from others.
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This process of leaving marks that cause others to alter their movement is called stigmergy,

and has been studied in various contexts, including collective animal movement and territorial

formation (Theraulaz & Bonabeau, 1999; Giuggioli et al., 2013; White et al., 2020). For any

given pair of populations, A and B, one could either have mutual avoidance (where individuals

from A avoid the marks of B and B avoid those of A), mutual attraction (individuals from

A and B are attracted to the marks of one another), or pursuit-and-avoidance (individuals

from A are attracted to marks of B but those from B avoid the marks of A). These combine

into a network of stigmergent interactions that together determine the overall spatio-temporal

distribution of the constituent populations (Figure 1). Our model is a generalisation of previous

models of territory formation from stigmergent interactions (Giuggioli et al., 2011, 2013; Potts

et al., 2012). However, these previous models were restricted to mutual avoidance processes

and typically had only one individual per ‘population’ (recall, we are using ‘population’ quite

generically here and could mean anything from a territorial unit to a larger group to a whole

species, depending on context).

As well as stochastic simulation analysis, we also examine the continuum limit of our IBM

model in space and time. We construct the IBM so that this limit is a system of partial differ-

ential equations (PDEs) studied previously in Potts & Lewis (2019). This formal connection

between IBM and PDE enables us to use the mathematical tools of PDE analysis to gain in-

sight into the expected behaviour of the IBM, which we can verify through simulation. The

resulting techniques allow us to use PDE analysis as a starting-point for exploring IBM models.

This is valuable because PDEs are amenable to mathematical analysis, enjoying a huge history

of analytic techniques (Evans, 2010; Murray, 2012). However, IBMs are closer to reality and

may be more amenable to extensions that incorporate further realism beyond what is studied

here (for example, realistic movement processes based on life history needs such as foraging

and tending to young). Such formal connections between IBMs and PDEs are powerful as

they enable the best of both worlds: combining rigorous mathematical analysis with realistic

modelling.
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Finally, we explain how to account for landscape heterogeneity in our model, through

coupling our IBM to a step selection function (Fortin et al., 2005; Potts et al., 2014a; Avgar

et al., 2016). We illustrate this with a simple example of two co-existing populations competing

for the same resource, inspired by wolf-coyote coexistence in the Greater Yellowstone Ecosystem

(Arjo & Pletscher, 2000). We investigate how the inclusion of interactions between and within

the populations combine with the heterogeneous landscape. We show how this combination

can cause emergent spatio-temporal patterns that cannot be explained merely by examining

the effect of landscape heterogeneity on animal space use (as is the norm in resource selection

studies and many other species distribution models).

Overall, our study aims to provide both insights into the effect of stigmergent interactions

between populations on the spatio-temporal distribution of mobile species, and provide extensi-

ble methods for studying these emergent features. This complements the burgeoning statistical

field of joint species distribution modelling, which gives tools for inferring the effect of one (or

more) species on the distribution of another (Ovaskainen & Abrego, 2020), whilst also enhanc-

ing this field by demonstrating the importance of considering the nonlinear feedbacks between

the movement processes of constituent populations for understanding spatial distributions.

2 Methods

2.1 The model

Our model of animal movement and stigmergent interactions is based on a nearest-neighbour

lattice random walk formalism. We work on an L × L square lattice, Λ. We choose periodic

boundary conditions for simplicity of presentation, although other forms are possible. We

assume that there are N populations and that, for each index i = 1, ..., N , population i consists

of Mi individuals. Individuals leave marks at each lattice site they visit, and those marks decay

geometrically over time. For simplicity, one can think of these marks as scent, such as faeces

or urine, but they could correspond to any form by which animals may leave a trace of their
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presence on the environment. The movement of each individual is biased by the presence of

marks from both their own population and others. For each population, this bias could be either

attractive or repulsive, depending on whether it is beneficial or detrimental for individuals

of one population to be in the presence of another population. Since animals look at their

surroundings at a distance to make movement decisions, our model allows for individuals to

respond to the local average density of nearby marks.

Mathematically this situation can be described by writing down the probability f(x, t +

τ |x′, t) of moving from lattice site x′ to x in a timestep of length τ . This function f is known

as a movement kernel. To construct our movement kernel, we use a generalised linear model

to describe the attraction to, or repulsion from, the local average density of nearby marks. A

second equation is then required to describe how marks are averaged over space. Finally, the

deposition and decay of marks over time is given by a third equation. We now give precise

functional forms of these three equations in turn.

Letting l be the lattice spacing and mi(x, t) be the density of marks from population i at

location x at time t, the movement kernel is given by

f(x, t+ τ |x′, t) =


Kx′ exp

[∑N
j=1 aijm̄

δ
j(x, t)

]
, if |x− x′| = l,

0, otherwise.

(1)

Here Kx′ =
∑

x f(x, t + τ |x′, t) is a normalising constant ensuring that f(x, t + τ |x′, t) is a

well-defined probability distribution; if aij > 0 (resp. aij < 0) then |aij | is the strength of

population i’s attraction to (resp. repulsion from) population j; and m̄δ
j(x, t) represents the

average mark density over a radius of δ.

The equation for this average mark density is

m̄δ
j(x, t) =

1

|Sδ|
∑
z∈Sδ

mj(x + z, t), (2)

where Sδ = {z ∈ Λ : |z| < δ} is the set of lattice sites that are within a distance of δ from 0
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and |Sδ| is the number of lattice sites in Sδ.

The equation defining the change in marks over time, which are deposited by individuals

and then decay geometrically, is

mi(x, t+ τ) = (1− µτ )mi(x, t) + ρτNi(x, t), (3)

where Ni(x, t) is the number of individuals at location x in population i at time t, µτ is the

amount by which marks decay in a time step of length τ , and ρτ is the amount of marking

made by a single animal in a single time step.

Equations (1-3) are not the only available functional forms to describe our stigmergent

process. However, the specific form for Equation (1) is advantageous because it arrives in

the form of a step selection function (Fortin et al., 2005; Avgar et al., 2016). It thus has

the potential to be parametrised by the methods of Schlägel et al. (2019), which deals with

step selection for interacting individuals (although here we focus on analysing the emergent

features of the model in Equation (3) rather than the question of fitting this model to data.)

Equation (2) assumes that marks are averaged over a fixed disc around the individual and was

chosen for simplicity, but other options, such as exponentially decaying averaging kernels, are

also possible. Equation (3) was, likewise, chosen for simplicity. One drawback is that there, in

theory, is no limit on the amount of marks in one location. If it is necessary to account for such a

limit, one might exchange the ρτNi(x, t) term for something like ρτ (1−Ni(x, t)/Nmax)Ni(x, t),

where Nmax is the maximum number of marks at a single location. However, we do not explore

this extension in detail here; much insight can be gained without needing to incorporate this

extra complexity.

2.2 Methods for analysing simulation output

We analyse the individual-based model (IBM) from Equations (1-3) using stochastic simula-

tions. Example simulation runs reveal a range of patterns (Fig. 2). Here, we detail methods

for characterising these via three broad questions: (I) Is the distribution of animal locations
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heterogeneous or homogeneous? (II) If heterogeneous, do the patterns stabilise over time, so

that populations keep broadly to fixed areas of space, or do they undergo persistent fluctua-

tions? (III) For any two populations, are they segregated from one another or aggregated in

the same small area? The stochastic nature of the IBM means that there will always be some

amount of heterogeneity and persistent fluctuations due to noise. Our methods thus need to

distinguish between what is noise and what is an actual pattern.

To answer question (I), we examine the local population density, li,d(x, t), averaged around

a disc of radius d, at each lattice site x and time t, for each population i. At each point in

time, we compute the amplitude of the pattern as Ai,d(t) = maxx[li,d(x, t)] − minx[li,d(x, t)],

the maximum local population density across space minus the minimum. We want to find out

whether the amplitude ever becomes higher than would be expected from individuals moving

as independent random walkers (i.e. when aij = 0 for all i, j in Equation 1), assuming that the

individuals are initially distributed uniformly at random on the lattice. For this, we calculate

Ai,d(t) in the case aij = 0 for all i, j (i.e. no mark deposition so no interactions between walkers)

and take the average over a sufficiently long time period to calculate the mean to a given degree

of accuracy (i.e. so that the standard deviation of the mean is below a pre-defined threshold,

determined by the needs of the simulation experiment). We call this mean amplitude Arw (for

‘random walk’). Then the extent to which the patterns are heterogenous can be determined

with reference to this base-line value.

Question (II) requires that we keep track of the mean location of individuals in each pop-

ulation. Since individuals are moving on a lattice with periodic boundary conditions, it is

necessary to take a circular mean (Berens, 2009). However, if individuals are roughly uni-

formly spread in either the horizontal or vertical direction then the circular mean can be very

sensitive to stochastic fluctuations. We therefore introduce a corrected circular mean which

accounts for this, and denote it by ci(t) (notice that this is a location in two dimensions, for

each time, t). Precise details of how to calculate ci(t) are given in Supplementary Appendix

A.
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Fig. 2. Example snapshots of simulation output. In all panels, two populations of 100
individuals each were simulated on a 25×25 lattice, with initial locations distributed
uniformly at random on the landscape. Also µ = 0.001 and ρ = 0.01 for all panels (Equation
3). Panel (a) shows a system where two populations form a single, stable aggregation. Here,
a11 = a22 = 0, a12 = a21 = 2, δ = 10l (Equation 1). In panel (b) the populations segregate
into distinct parts of space. Here, a11 = a22 = 0, a12 = a21 = −2, and δ = 5l. In both Panels
(a) and (b) the snapshot is taken at time t = 5000τ . Panels (c) and (d) show a situation
where one population (blue) chases other (red) around the landscape in perpetuity, with
snapshots at two different times. Here, a11 = a22 = 1, a12 = 10, a21 = −10, and δ = 10l.

As with the amplitude calculations, we need to determine whether changes in ci(t) are

indicative of a fluctuating pattern (like in Figs. 2c,d) or just noise around an essentially

stationary population distribution (as in Figs. 2a,b). For any length R and time-interval, T ,
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we say that a system has become (R, T )-stable at time T∗ if |ci(T∗ + t)− ci(T∗)| < R for each

population i whenever 0 ≤ t ≤ T . For example, the systems in Figs. 2a,b are both (l, 1000τ)-

stable, but the system shown in Figs. 2c,d is not. In Section 2.3 we will show how to choose

values of R and T , by ensuring they are consistent with the results of mathematical analysis.

For Question (III), the extent to which a pair of populations i, j (i 6= j) is aggregated or

segregated at any point in time is measured using the separation index, sij(t) = |ci(t)− cj(t)|.

For systems that become (R, T )-stable at some time T∗, we can define the asymptotic separation

index s∗ij as the average of sij(t) across T∗ < t < T∗+T . A separation index close to 0 indicates

that the populations are occupying a similar part of space. If we know, from Question (I), that

both populations are displaying heterogeneous patterns then in this case we have an aggregation

of both populations. Higher separation indices, coupled with the existence of heterogeneous

patterns, are suggestive of segregation patterns.

The separation index is a simple metric that is quick to calculate for multiple simulation

analysis. However, one could also use more sophisticated measures of range overlap, such as

the Bhattacharyya’s Affinity (Fieberg & Kochanny, 2005) between kernel density estimators

(Worton, 1989; Fleming et al., 2015). Here, though, we will keep things simple, to enable

analysis of a broader range of simulation scenarios in a realistic time-frame.

2.3 Mathematical techniques

Techniques for analysing the output of stochastic IBMs can involve choices that might be

somewhat arbitrary, for example the choices of Tamp, R, and T in Section 2.2. Therefore it

is valuable to ground-truth these choices by means of mathematical analysis. In particular,

we do this via a PDE approximation describing the probability distribution of individuals for

each population. In PDE theory, patterns can emerge when a change in parameter causes

the system to switch from a situation whereby the constant steady state (corresponding to

homogeneously distributed individuals) becomes unstable, leading to the distribution tending

to either a non-constant steady state (heterogeneously distributed individuals), or entering a
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perpetually fluctuating situation. The parameter value where the switch occurs is called a

bifurcation point. The nature of this bifurcation point can be ascertained by a combination

of linear stability analysis (LSA) and weakly non-linear analysis. Here we focus on LSA for

simplicity (which is also called Turing pattern analysis, after Turing (1952)).

To arrive at a PDE system, we take a continuous limit in both space and time, sending

l and τ to 0 such that l2/τ tends to a finite constant, D > 0. This is sometimes called the

diffusion limit, as D is a diffusion constant, but is also referred to as the parabolic limit (Hillen

& Painter, 2013). If we take this limit, and also assume that infinitesimal moments beyond the

second are negligible, we arrive at the following system of PDEs (see Supplementary Appendix

B for details)

∂ui
∂t

= D∇2ui︸ ︷︷ ︸
Diffusive movement

− 2D∇ ·

ui∇ N∑
j=1

aij q̄
δ
j


︸ ︷︷ ︸

Advection due to presence of marks

, (4)

∂qi
∂t

= ρui︸︷︷︸
Mark deposition

− µqi︸︷︷︸
Mark decay

, (5)

for each i = 1, ..., N , where ui(x, t) is the location density of population i, qi(x, t) is the density

of marks, ρ is the limit of ρτ
τ as ρτ , τ → 0, µ is the limit of µτ

τ as µτ , τ → 0, and q̄δj (x, t) is

the average of q(x, t) over a ball of radius δ. It is sometimes helpful to simplify calculations by

assuming that qi equilibrates much faster than ui, so that the scent mark is in quasi-equilibrium

(∂qi∂t = 0), leading to the following equation for each i = 1, ..., N

∂ui
∂t

= D∇2ui −
2Dρ

µ
∇ ·

ui∇ N∑
j=1

aij q̄
δ
j

 . (6)

The LSA technique enables us to use Equations (4-5) to construct the pattern formation matrix,

M (see Supplementary Appendix C for the full expression and derivation). The eigenvalues of

M give key information about whether heterogeneous patterns will spontaneously form from
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small perturbations of a homogeneous system (i.e. individuals initially uniformly distributed

on the landscape), and also whether these patterns begin to oscillate as they emerge.

The emergence of heterogeneous patterns is expected whenever there is an eigenvalue whose

real part is positive. Thus the sign of the eigenvalue with biggest real part (a.k.a. the dominant

eigenvalue) gives an indication of the answer to Question (I) above. If the dominant eigenvalue

has positive real part and a non-zero imaginary part then small perturbations of the homoge-

neous system will oscillate as they grow, at least at small times. Often (but not always) these

oscillations will persist for all times, so give an indication of the likely answer to Question (II).

We stress that this is just an indication, though, and that discrepancies may exist between the

answer to (II) and whether or not the dominant eigenvalue ofM is real. Full analysis of when

to expect non-constant stationary patterns in Equation (4-5), or when to expect perpetually

changing patterns, requires more sophisticated techniques.

2.4 Simulation experiments

To give some insight into the sort of patterns that can emerge from our model (Equations 1-3),

we perform a variety of simulations in the simple case of two populations (N = 2). Throughout,

we assume that each population has 100 individuals (M1 = M2 = 100) and we work on a 25×25

lattice. We assume τ = 1 and l = 1 so can write µτ = µ and ρτ = ρ for ease of notation. We

also assume δ = 5 throughout.

First, we examine the situation where populations have a symmetric response to one an-

other, so that a12 = a21 = a. For simplicity, we set a11 = a22 = 0. In this case the continuum

limit PDE system (Equations 4-5) has the following pattern formation matrix (derived in Sup-
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plementary Appendix C)

M =



−κ2 0 0 8a
25κ

2

0 −κ2 8a
25κ

2 0

ρ 0 −µ 0

0 ρ 0 −µ


. (7)

Here, κ is the wavenumber of the patterns that may emerge at small times, if there is an

eigenvalue ofM with positive real part (i.e. the wavelength of these patterns would be 2π/κ).

For our simulation experiments, we fix the scent-marking rate ρ = 0.01 to be a low number and

vary the decay rate µ. We consider two different values of a: either a = 2, which corresponds

to populations having a mutual attraction, or a = −2, corresponding to mutual avoidance.

In either case, the dominant eigenvalue of M is always real (Supplementary Appendix C).

Furthermore, it is positive if and only if µ < 0.0064. In other words, this mathematical analysis

predicts that the system will bifurcate at µ = 0.0064 from homogeneous patterns (µ > 0.0064)

to heterogeneous patterns (µ < 0.0064). In other words, the heterogeneous patterns require

that the decay rate of scent marks is sufficiently low so that the scent marks can accumulate

and thereby substantially affect the movement behaviour.

To test whether we see a similar change in stability in simulations, we start by simulating

our system in the case µ = 0.009, run this until it is (R, T )-stable for R = 1 and T = 1000

and measure the asymptotic amplitude, A∗i,d for i = 1, 2, by averaging Ai,d(t) over the 10000

time steps after (R, T )-stability has been achieved. For this, we use d = 5. We then use

the final locations of each individual as initial conditions in our next simulation run, which is

identical except for choosing µ = 0.0069. We iterate this process, reducing µ by 0.0001 each

time, until µ = 0.001. This mimics the numerical bifurcation analysis often performed when

analysing PDEs (Painter & Hillen, 2011). We perform this whole iterative process for both

a = 2 and a = −2, the expectation being that A∗i,d will be approximately the same as that of

non-interacting individuals (Arw) until the value of µ crosses µ = 0.0064, at which point we
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expect A∗i,d to start increasing.
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Fig. 3. Pattern formation analysis of stochastic simulations for N = 2. Each panel
shows, using solid dots, the amplitude, A∗1,5, of Population 1 for different values of µ, where
ρ = 0.01, a12 = a21 = a, and a11 = a22 = 0. Black dots represent the situation where µ is
decreased progressively (see Section 2.4 for details) and red dots show the situation where µ
is increased (Section 3). In Panel (a), a = −2 so that the populations repel one another and
in Panel (b), a = 2 so populations are attractive. The value Arw, the amplitude in the
situation where each individual is a non-interacting random walker, is given by the dashed
black line. The blue line gives the bifurcation point predicted by analysis of the continuum
limit PDE, Equations (4)-(5), which gives an indication of where we expect the amplitudes of
the simulations to become notably larger Arw.

To investigate whether linear stability analysis of the PDE system (Equations 4-5) reflects

our method for answering Question (II), we set a11 = a22 = 1, ρ = 0.01, µ = 0.002, and

sample a12 and a21 uniformly at random, 100 times each, from the interval [−5, 5]. To make

calculations more transparent, we assume that the scent marks are in quasi-equilibrium, taking

the adiabatic approximation in Equation (6). In this case the pattern formation matrix is

M =
1

5

 3 8a12

8a21 3

 , (8)

and so the dominant eigenvalue is (15 + 4
√
a12a21)/25. If the cross interaction terms are of

identical sign (a12a21 > 0) then linear stability analysis predicts stationary patterns to emerge
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(at least at small times), but if they are of different sign (a12a21 < 0) then the dominant

eigenvalue is not real, so patterns should oscillate as they emerge. The latter case corresponds

to the type of pursuit-and-avoidance situation that we see in Fig. 2c,d. We compare these

predictions to our definition of (R, T )-stability for a range of values of R and T to ascertain

the extent to which the separation between real and non-real eigenvalues corresponds to the

existence or not of (R, T )-stability.

Fig. 4. Stability of emergent patterns. In Panel (a), each dot represents a simulation
run of the IBM in Equations (1)-(3) where a11 = a22 = 1, ρ = 0.01, µ = 0.002 and the values
of a12 and a21 are given by the horizontal and vertical axes respectively. Red dots denote
simulation runs that were not (R, T )-stable (for R/l = 1, T/τ = 7500), whereas those on the
purple-to-brown spectrum were (R, T )-stable. This colour spectrum corresponds to the
separation index, from aggregative to segregative. Linear pattern formation analysis of the
PDEs in Equations (4)-(5) predicts stationary (resp. non-stationary) patterns to emerge in
the top-right and bottom-left (resp. top-left and bottom-right) quadrants, which corresponds
well with the dot colours. Notice that the top-right (resp. bottom-left) quadrant corresponds
to mutual attraction (resp. avoidance) and, likewise, the dot colours indicate aggregation
(resp. segregation) patterns. Panel (b) gives a schematic of the between-population
movement responses corresponding to the four quadrants in panel (a). An arrow from ui to
uj represents attraction of population i towards population j. An arrow pointing out of ui
away from uj represents ui avoiding uj .
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R/l T/τ Agreement SU/AS SS/AU

0.5 5000 54% 46% 0%
1 5000 87% 0% 13%
1 7000 96% 0% 4%
1 7500 97% 2% 1%
1 8000 95% 5% 0%
2 5000 84% 0% 14%
2 7000 93% 0% 7%
2 7500 95% 0% 5%
2 8000 96% 4% 0%

Table 1. Extent to which analytic predictions agree with our simulation analysis for different
choices of R and T . The third column gives the percentage of the simulations from Fig. 4 for
which the analytic prediction for stability agrees with that measured from stochastic
simulations using our method. The fourth (resp. fifth) gives the percentage for which the
stochastic simulations were deemed unstable (resp. stable), for the given values of R and T ,
but the analytic prediction is stable (resp. unstable), denoted as SU/AS (rep. SS/AU).

2.5 Incorporating environmental effects

As mentioned at the end of Section 2.1, Equation (1) is in the form of a step selection function.

This means that it can be readily used to incorporate the effect on movement of environ-

mental or landscape features. Suppose that we have n such features, denoted by functions

Z1(x), . . . , Zn(x). For each k = 1, . . . , n, denote by βk the relative effect of Zk(x) on move-

ment. Then, to incorporate these into the movement kernel, we modify Equation (1) as follows

f(x, t+ τ |x′, t) =


Kx′ exp

[∑N
j=1 aijm̄

δ
j(x, t) +

∑n
k=1 βkZk(x)

]
, if |x− x′| = l,

0, otherwise.

(9)

We use this to investigate the effect on space use of interactions both between populations

and with the environment, by considering a simple toy scenario, but one that is based on a

particular empirical situation. Specifically, we consider two populations competing for the same

heterogeneously-distributed resource, Z1(x) (here, n = 1). One population is assumed to be

a weaker competitor, so avoids the stronger competitor, whilst the movements of the stronger

are not affected by the weaker. Both have a tendency to move towards areas of higher-density
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resources.

In our simulations, each population consists of 100 individuals. We examine three cases.

The first is where the effect of the stronger competitor on the weaker is ignored (so animals

are assumed to act independently, which mirrors many basic resource/step selection studies).

The second incorporates the effect of the stronger on the weaker’s movements, but treats each

individual within a population as independent from the others in the population. This mirrors

some recent resource selection studies whereby the movement of one population is affected by

the presence of another, e.g. Vanak et al. (2013); Latombe et al. (2014). The third assumes

that the stronger population are highly territorial, so are split into five separate sub-groups,

each of which exhibit strong intra-group attraction but inter-group repulsion. The simulated

resource layer is a Gaussian random field on a 25 × 25 lattice, previously used in the context

of resource selection by (Potts et al., 2014b). Precise details of the simulation experiments we

performed are given in Supplementary Appendix D.

Whilst this situation is a deliberately general and simplified model, it is inspired by the

particular situation of wolf-coyote coexistence in the Greater Yellowstone Ecosystem. Here, the

stronger competitor is the wolf population, coyotes being weaker, and the resource layer is the

distribution of where prey are likely to be found. The ability for coyotes to coexist with wolves

in this system has been conjectured to emerge from the territorial structures of wolves, which

include relatively large interstitial regions that may be havens for coyote (Arjo & Pletscher,

2000). If true, this means that the intra-pack attraction and inter-pack avoidance mechanisms

are key to understanding the space use of wolves and coyotes. The three models presented

here can be viewed as testing how the different assumptions about wolf-coyote and wolf-wolf

interactions might interface with resource selection to affect their space use distributions.

3 Results

Fig. 3 shows the results of pattern formation analysis of our IBM. The place at which the

amplitude grows higher than that of random non-interacting individuals is reasonably close to
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the bifurcation point predicted by linear stability analysis of the corresponding continuum PDE

system. However, the latter occurs at a slightly lower value of µ than for the IBM indicating

that a slightly lower decay rate of marks is necessary to overcome the stochastic effects and

allow patterns to form. In other words, the stochasticity has a mild homogenising effect.

For negative a (recall a = a12 = a21 in Equation 1), where we tend to see segregation

patterns beyond the bifurcation point, the amplitudes A∗1,5, represented by black dots, appear

to grow steadily as µ is decreased (Fig. 3a). However, for positive a, there is a sudden jump

in the amplitude between µ = 0.0062 and µ = 0.0061 (Fig. 3b). Such jumps in bifurcation

diagrams can sometimes be accompanied by a hysteresis effect, whereby if the initial conditions

contain patterns then the patterns may persist even in parameter regimes where they would

not emerge spontaneously. To test this, we performed the same IBM pattern formation analysis

as before, but this time starting with µ = 0.0004 and increasing µ by 0.0001 each iteration

(rather than decreasing as before). The red dots in Fig. 3b show that there is indeed hysteresis

in the IBM system, whereby the system is bistable for 0.006 . µ . 0.0065, a phenomenon

that has also been observed in single population aggregation models with differential equation

formalisms (Potts & Painter, 2021).

Fig. 4 shows that (R, T )-stability corresponds well to the predictions of pattern formation

analysis in the case where R = l and T = 5000τ . These were the best values of R and T

we found from the ones tested, inasmuch as the results corresponded to the pattern formation

analysis in the highest proportion of cases, N% (Table 1). Notice too that the mutually-

avoiding populations (with a12, a21 < 0) tend to have much higher separation indices, s∗12, than

the mutually attracting populations, as one would expect.

Fig. 5 shows the results of our three simulation experiments on a heterogeneous resource

landscape. When we assume that there are no inter-population interactions then the result-

ing model predicts space-use patterns whereby both populations have very similar space use

distributions (Fig. 5a). When we account for the avoidance of the weaker population by the

stronger then the model predicts that the stronger population will live where the resources are
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Fig. 5. Incorporating environmental effects. This figure shows the space use
distributions that emerge from three different scenarios involving two populations attracted
to the same heterogeneously-distributed resource. This resource is shown in shades of
yellow-green, with darker (resp. lighter) green denoting higher (resp. lower) density of
resources. Magenta (resp. blue) dots denote the stronger (resp. weaker) competitor. In Panel
(a) the individuals do not alter their movement in response to the presence of others, and we
simply see a preference for higher quality resources. In Panel (b), as well as attraction to
better resources, the weaker (blue) population has a tendency to move away from the
stronger (magenta) population. In addition to this avoidance mechanism, in Panel (c) the
magenta population is strongly territorial. This leads to the emergence of interstitial regions
where the blue population can access resources that may be quite high quality.

better, driving the weaker to resource-poor areas (Fig. 5b). This, of course, may ultimately

lead to the weaker population being unable to survive. However, if the stronger population is

strongly territorial, it can subdivide into separate groups, leaving interstitial regions where the

weaker population can survive and have access to resources that may be relatively high quality

(Fig. 5c).

4 Discussion

Resource selection analysis is one of the most popular techniques for understanding the distri-

bution of species and populations. However, like many species distribution models, studies tend

to focus on correlating animal locations with environmental and landscape features. Whilst

some more recent studies in resource selection (Bastille-Rousseau et al., 2015), step selection
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(Vanak et al., 2013), and species distribution modelling (Ovaskainen & Abrego, 2020) have

examined the way presence of one population may affect that of another, the first population

tends to be treated as a static layer, similar to a resource layer, which then affects the presence

or movement of the second population. This assumption neglects the dynamic feedbacks that

can occur between two or more populations of animals.

Here, we have shown that such feedbacks can generate a variety of emergent patterns that

can be quite different to those that appear when only accounting for static layers (Fig. 5).

We have given a basic categoration scheme for these patterns via simple binary questions:

homogeneous or heterogeneous, stable or dynamic, segregated or aggregated. We have shown

that, even with just two populations, all these patterns are possible. This categorisation,

however, is likely to be only the tip of the iceberg in terms of the possible patterning properties

arising from sigmergent interactions between multiple populations. Indeed, a recent study of

the limiting deterministic PDE (Potts & Lewis, 2019) unveiled a rich suite of patterns through

numerical simulations, including all those patterns studied here, as well as period doubling

bifurcations, travelling-waves, and irregular patterns suggestive of chaos. Whilst such subtleties

in pattern formation may be tricky to distinguish from noise in an IBM, it is valuable to be

aware that they may yet be present in real systems.

Whilst a coarse-grained, individual-based approach to ecological modelling is valuable in

ensuring emergent phenomena are not simply an outcome of continuum assumptions (Durrett

& Levin, 1994; Getz et al., 2018), here the limiting PDE has been very valuable for gaining

insight into our IBM. First, understanding the places where the PDE system bifurcates from

between different patterning regimes has enabled us to identify interesting parameter regimes

for studying our IBM (Figs. 3 and 4). Second, comparison between patterns in our IBM

and the corresponding PDE has enabled us to tune the various otherwise-arbitrary choices

of parameters used in analysing IBMs (e.g. the choices of R and T determined by Table 1).

Whilst there is a tradition of ecological studies where limiting PDEs have helped decode the

complexity inherent in IBMs (Durrett & Levin, 1994; Sherratt et al., 1997; Hosseini, 2006), this
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is perhaps overshadowed by the recent prevalence of IBM-only studies in ecology (Grimm, 1999;

Grimm & Railsback, 2013; DeAngelis, 2018). We hope our use of PDEs here helps encourage

further studies to implement PDEs as a tool for understanding IBMs.

Here, we have explored pattern formation analysis of PDEs using perhaps the simplest

tool, that of linear analysis. However, there are plenty of other tools, with varying conceptual

and mathematical complexity, that may provide insight. For example, in Fig. 3a, we see that

patterns emerge smoothly as one decreases µ past the bifurcation point, which is suggestive

of a super-critical bifurcation. However, in Fig. 3b, there is a sudden jump, together with

a hysteresis (bistable) region, something usually accompanied by a sub-critical bifurcation.

Techniques such as weakly non-linear analysis (Eftimie et al., 2009) and Crandall-Rabinowitz

abstract bifurcation theory (Buttenschön & Hillen, 2020) are able to distinguish rigorously be-

tween these two cases. These are, however, much more conceptually and technically demanding

than linear analysis, and will require a significant, separate work.

On the more ecological side, we have shown how accounting for feedbacks between the

movement mechanisms of constituent populations may help explain the emergence of intersti-

tial regions in territorial animals that could provide safe-havens for weaker competitors. Such

patterns have been observed in coexistent wolf and coyote populations in the Greater Yellow-

stone Ecosystem. There, these interstitial regions have also been observed as refuges for deer

(Lewis & Murray, 1993). Although we did not consider the mobility of prey resources in our

simple example, one could add extra complexity by considering the attempts of mobile prey to

avoid predators, and observe how this affects the spatial patterns. However, for the purposes

of our simple illustration, this level of modelling complexity was not required.

In general, our approach may be valuable for understanding the distribution of populations

whenever the locations of two or more populations affect the movements of each other (Schlägel

et al., 2020). This has been observed in a variety of situations. We have already mentioned

competition between carnivores, and indeed the movements of coexistent carnivore populations

in response to the presence of others has been measured in various studies (Vanak et al., 2013;
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Swanson et al., 2016). Also the effect of predator movement on prey locations (sometimes

called prey-taxis), and vice versa (the ‘landscape of fear’), has been documented in a variety of

scenarios (Kareiva & Odell, 1987; Laundré et al., 2010; Latombe et al., 2014; Gallagher et al.,

2017). Despite this, the predominant species distributions models used in ecology tend to

not to account for the underlying between-population movement processes and the emergent

features that they engender, even in cases where they model species jointly (Ovaskainen &

Abrego, 2020). Explicit modelling of the underlying movement mechanisms, as we have done

here, would help plug this gap and lead to more accurate description and forecasting of species

distributions.
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