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Abstract

Ionizing radiation is widely used in treatment and medical diagnosis. Doses

in the range of 1.5 Gy to 10 Gy are used in radiation treatment of cancer. Lower

doses (less than 1.5 Gy) are used in medical imaging, and also are incurred

by tissues that are near irradiated target volumes. The impact of treatment

doses on healthy and pathological tissues has been analyzed in great detail and

sophisticated mathematical models have been developed. A successful model,

for example, is the so-called Linear Quadratic (LQ) model, which describes

the survival fraction of cells as a function of radiation dose.

Recent experimental studies on low-dose radiation of tissue have shown a

discrepancy with the standard LQ model; cell damage is much larger than ex-

pected by the LQ model. This phenomenon has been called hyper-radiosensitivity

and increased radioresistance (HRS/IRR).

In this thesis, I develop and analyze mathematical models to understand

the HRS/IRR phenomenon, and to analyze corresponding experimental data

on low-dose radiation. I focus on two primary biological hypotheses, namely

the radiation-induced bystander effects and the cell-cycle G2-checkpoint ef-

fects. I show that both hypotheses are able to explain the HRS/IRR phe-

nomenon.

The bystander effects (BEs) are consequences of distress signals (also known

as the bystander signals) that are emitted by radiation-damaged cells. The

model for the BEs is a complex system of reaction-diffusion partial differential

equations (PDEs), which incorporates BEs like bystander signal-induced death
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and damage, and the bystander signal-dependent repair. I fit this model to ex-

perimental data and estimate model parameters. I analyze the steady states of

this model and I identify long transients in the dynamics of bystander signals,

consistent with biological observations. Moreover, I show the existence and

uniqueness of weak solutions, and the existence of a compact global attractor

for the system of PDE. Additionally, I analyze the effect of bystander signals

on invasion of cancer into healthy tissue and I show that the bystander signal

can accelerate cancer invasion.

On the other hand, the cell cycle G2-checkpoint is a regulatory mechanism

that ensures that damaged cells in G2 phase of the cell cycle are repaired before

progressing to the next phase. Experiments have shown that some damaged

cells evade the G2 checkpoint, which result in cell death in the next phase.

The model for the G2-checkpoint effects is derived from cell-cycle dynamics

and this model can also explain the HRS/IRR phenomenon as observed in

experiments on several cell lines. In fact, I have been able to derive explicit

formulas that relate the HRS/IRR phenomenon to their underlying cell-cycle

events, as well as to the surviving fraction at 2 Gy. This work has been able

to resolve such a highly debated relationship.

Considering two possible explanations for the HRS/IRR phenomenon, I

found evidence in the literature that these effects (bystander and G2-checkpoint)

are mutually exclusive. For a given cell line, typically only one of these effects

is important.

The HRS/IRR is a serious concern for tissues that are exposed to low-dose

radiation and the low-dose risk assessment will have to be updated. On the

other hand, low-dose radiation might suggest novel therapies for cancer treat-
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ment that benefit from a better understanding of the HRS/IRR phenomenon.
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Chapter 1

Introduction

In this chapter, we introduce radiation terminologies and experiments, and

also motivate the central research questions investigated with mathematical

models in this thesis.

In Section 1.1, we give a general introduction to ionizing radiation and

their usage in cancer treatments and medical imaging. We describe the cell

survival experiment from which the cell survival data used in this thesis were

measured. Finally, we discuss one of the classical mathematical models earlier

used to study cell survival. In Section 1.2, we review the effects of low doses

of radiation on some cell lines, discuss some possible underlying mechanisms,

and review one of the earlier mathematical models used to understand these

effects. In Section 1.3, we outline the experimental data of different cell lines

used in this thesis. In Section 1.4, we outline the research questions that will

be answered in this thesis. In Sections 1.5 and 1.6, we discuss the significance

of modeling cellular responses at low doses and the outline of main results of

the thesis, respectively.

1.1 Ionizing radiation

Ionizing radiation is widely used in the treatment of more than 50% of cancer

types and in various types of medical imaging. The effects of large doses of

ionizing radiation on different tissues and cell lines are well studied. Much
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of these studies are attributed to the availability of epidemiological data from

the atomic bomb survivors of Hiroshima and Nagasaki in 1945 [91], as well

as emergency workers that responded to the Chernobyl nuclear power plant

accident in 1986 [64]. Other sources of data include in vivo animal experiments

[62, 120, 77, 79] and in vitro cell culture experiments [76, 82, 11, 80, 5]. In

these studies, effects such as genetic mutations, carcinogenesis, cell death, and

acute organ damage were observed.

According to the Canadian Nuclear Safety Commission1, radiation from nu-

clear material is strictly regulated and humans seldom experience large doses.

Meanwhile, there is an increase in the use of low-dose radiation in cancer

treatments and in medical imagining such as dental scan, magnetic resonance

imaging (MRI), computed tomography (CT), and X-ray scan. Incidental ra-

diation exposures such as airplane has also increased. Studies on the effects

of low-dose radiation are relatively recent, and suggest that these effects may

have been underestimated. One of these studies, involving in vitro cell culture

experiment, will be described in the following subsection.

1.1.1 Cell survival experiment

In an attempt to investigate the effects of radiation doses on cells, cell survival

or cell death has been the measuring endpoint of most experiments [45, 108].

The cell survival curve describes the relationship between radiation doses and

the proportion of cells that ‘survive’ - sometimes called the cell surviving

fraction. Since cell survival, or its converse, cell death, can have different

contextual interpretations, a precise definition is essential. For differentiated

cells that do not proliferate, such as nerve, muscle, or secretory cells, death

can be defined as the loss of a specific function. Whereas for proliferating cells,

such as stem cells in the hematopoietic system or the intestinal epithelium,

loss of the capacity for sustained proliferation - that is, loss of reproductive

integrity - is an appropriate definition for death. This is sometimes called

reproductive death and is usually the endpoint measured with cell-cultured in

vitro experiments [38].

1http://nuclearsafety.gc.ca/eng/nuclear-substances/index.cfm
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Figure 1.1: Shape of surviving curve for mammalian cells exposed to radiation.
The surviving fraction axis is on a logarithmic scale while the dose axis is on a linear
scale. Adapted from [12].

These in vitro experiments were conducted to study the surviving fraction

of cells exposed to varying degrees of radiation doses. In these experiments,

as described in [66], cells maintained in a suspension culture are irradiated

at room temperature (21-240C) in sealed culture flasks. During irradiation,

the cell suspension is stirred continuously using a magnetic stirrer. Cell sam-

ples are then removed sequentially at specified doses and seeded into tissue

culture-grade plastic dishes. Dishes are incubated at 370C in a water satu-

rated atmosphere for at least 7 days. The dishes are then stained and colonies

containing ≥ 50 cells are scored as surviving cells from the original irradiated

suspension. The choice of 50 cells might be due to the minimum number of

cell cluster visible under the microscope. The surviving fraction (SF) is then

computed as

SF =
CC

CI× PE
,
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where CC denotes the number of irradiated colonies counted after the 7 day-

incubation period, CI denotes the initial number of cells (colonies) exposed

to radiation, and PE denotes the plating efficiency, which describes the % of

colonies that survive in a control dish (without radiation). Let’s illustrate this

experiment with the following example.

Example 1 (Adapted from [38]). Suppose there are 70 colonies in an unir-

radiated control dish, after 100 cells were seeded and allowed to grow for 7

days before being stained. Suppose also that in a separate experiment, there

are 32 colonies on the dish after 2000 cells were seeded and then exposed to

2Gy of x-rays. Then the surviving fraction (SF) of the irradiated cells is
32

2000×0.7
≈ 0.023.

A typical surviving fraction curve for mammalian cells, together with the

corresponding surviving fraction data are usually presented in the form shown

in Fig. 1.1, with dose (on the horizontal axis) plotted on a linear scale, and

the surviving fraction (on the vertical axis) on a logarithmic scale. In the

next subsection, we will review some of the mathematical models developed

to study the surviving fraction data.

1.1.2 Linear Quadratic Model

Mathematical models such as the Linear Quadratic (LQ) model were built

to study surviving fraction data. By the LQ model, the expression for dose-

dependent cell survival is given by

S0(D) = e−αD−βD
2

, (1.1)

where S0 is the surviving fraction at dose D. The constants α and β are the

component of radiation-induced cell killing that are respectively proportional

to D and D2. In Chapter 2, these constants will be described in terms of

the deoxyribonucleic acid (DNA) double strand breaks and of the interactions

between binary misrepair of two double strand breaks, respectively. In the

meantime, the component of cell killing that are proportional to dose (i.e.,

αD) and to the square of dose (i.e., βD2), respectively, are equal when D = α
β
.

The α
β

ratio is useful for predicting likely radio-responsiveness in cells. For
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example, low values of α
β

ratio (say between 1.5 - 5 Gy) indicate that the

surviving curves are bending rapidly at low doses per single radiation exposure

(also known as radiation fraction). Hence, there are more cell killing at low

doses per fraction. On the other hand, high values of α
β

(say between 6 - 14

Gy) indicate a greater predominance of the linear (α) term, so that changes in

dose size per fraction have lesser effects on the survival rate of such cells [117].

Simply put, cells with high values of α
β

require high doses to incur the same cell

killing that will be easily achieved by low doses in cells with low α
β
. The range

of values for α
β

in tumor cells is usually higher than the range for normal cells.

In a review paper [117], out of the 48 tumor cell lines investigated, 36 of them

have values > 8 Gy, while only 4 out of 48 tumors have values less than 5 Gy.

This high α
β

for tumor cell lines may be responsible for their radioresistance

to low doses [98, 7].

The LQ model is a good approximation to the surviving fraction of cells at

doses> 1 Gy. Earlier attempts to also understand the dynamics of cell death at

low doses simply extrapolated the LQ model to low radiation doses. As shown

in Fig. 1.1, such extrapolations adduce little or no radiation consequence with

low doses of radiation. In the next section, we will zoom in to the effects of low

doses of radiation on cells and review one of the mathematical models earlier

developed to study such effects.

1.2 Effects of low doses of radiation on cells

In the last decade, attention has shifted to the study of cell survival at low

doses. These have resulted in increasing experimental evidence that expo-

sure to low doses (< 1 Gy) can be quite dangerous. In fact, experiments have

shown that higher-than-expected proportions of cells in some cell lines undergo

cell death in response to low doses of radiation. This effect is called hyper-

radiosensitivity (HRS). Following this effect, some cell lines also undergo in-

creased resistance to radiation, a phenomenon called increased radio-resistance

(IRR) [65, 71, 108, 52, 53]. These low-dose radiation effects on cell survival

are illustrated in Figure 1.2. In addition, effects like enhanced cancer invasion

[46, 111], increased cell damage, mutation, and carcinogenesis, have also been
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Figure 1.2: Surviving fraction curve of T98G human glioma cells irradiated with
X-rays. The curve illustrates the phenomena of HRS and IRR. The solid curve is
the IR model while the dotted curve is the LQ model. −αs denotes the initial slope
of the IR model while −α denotes initial slope of the LQ model. Figure is from
Joiner [45]

observed in cells exposed to low doses of radiation.

The rest of this section is organized as follows. In Subsection 1.2.1, we

review one of the mathematical models that was developed to understand the

HRS/IRR phenomenon. In Subsection 1.2.2, we explore possible underlying

mechanisms for the HRS/IRR phenomenon.

1.2.1 Induced Repair Model

Since the LQ model is unable to capture the cell survival at low doses, there

is the need to build new models that can explain these low-dose responses.
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Marples and Joiner in 1993 [66] responded by formulating a phenomenological

model from the existing LQ model by introducing two additional parameters αs

and Dc. This model, which is called the Induced Repair (IR) model, expresses

dose-dependent cell survival as

S1(D) = exp
{
− α

(
1 +

(αs
α
− 1
)
e−

D
Dc

)
D − βD2

}
. (1.2)

The parameter Dc describes the dose at which the surviving fraction curve

attains minimum at low doses (usually < 1 Gy). This is also the dose at

which cell’s response switches from HRS to IRR. The parameter −αs describes

the slope of the surviving fraction curve at D = 0 (see Figure 1.2). Ever

since the IR model was built, it has been widely used to model the HRS/IRR

phenomenon. In fact, the index αs
α

is commonly used to quantify the amount

of HRS in cell lines [66, 68, 67]. Although the IR model is able to describe the

low-dose cellular response, it is not capable of explaining the internal cellular

mechanisms that cause the observed low-dose phenomenon.

1.2.2 Possible underlying mechanisms for HRS/IRR

Experiments [105, 88, 67, 65] have shown that the HRS/IRR phenomenon

can be explained by two mutually exclusive cellular events [81], namely the

radiation-induced bystander effects and the activity of the cell cycle G2 check-

point. The hypothesis of radiation-induced bystander effects adduced that

cells exposed to low dosees of radiation emit distress signals, also know as the

bystander signals. These signals trigger secondary radiation effects like cell

death, cell damage, mutation, genomic instability, and so on. Consequently,

the increased cell death observed at low doses is due to the secondary death

induced by the bystander signals. Examples of bystander signals include p53-

induced cytochrome-complex [104, 23, 31, 32, 49], matrix metalloproteinase-

induced vascular endothelial growth factor [42], reactive oxygen species [1],

etc. This hypothesis will be made more explicit in Chapter 2, where we de-

velop a detailed mathematical model to investigate the dynamics of bystander

signals in tissue.

On the other hand, the hypothesis involving the activities of the G2 check-
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Figure 1.3: A proposed p53-regulated signal pathways in radiation-enhanced in-
vasiveness of irradiated cells and their bystanders. Image adapted from He et. al
[42].

point states that at low doses, damaged cells in the G2-phase of the cell cycle

fail to undergo cell cycle arrest that leads to damage repair [100]. Rather

the damaged cells proceed to the next phase of the cell cycle (i.e., the mi-

totic phase), where they undergo mitotic catastrophe (another form of cell

death which occurs in the mitotic phase of the cell cycle) [16]. This hypoth-

esis will be made more explicit in Chapter 5, where we develop a cell cycle

model that incorporates G2-checkpoint dynamics to investigate the HRS/IRR

phenomenon.

The mechanism and the dynamics of radiation-induced bystander effects

and that of the cell cycle G2-checkpoint are still not well understood. Exper-

iments have shown that the low-dose HRS/IRR phenomenon might play an

important role in cancer invasion. In fact, experiments have also shown that

enhanced cellular invasion in some cancer cell lines have been attributed to

the activity of bystander effects [110, 19, 47, 37, 9, 97, 119, 18] (also see Figure

1.3). Intuitively, this could be the result of low dose exposure of normal cells

surrounding the treated tumor cells. This low-dose exposure in turn results in

both direct and indirect radiation effects that degrade the normal cells. Mean-

while, the tumor, which is often resistant to radiation and aggressive, now has

more room to invade. These ideas will be made more explicit in Chapter 4,
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where we generalize the system of PDEs model for bystander effects to inves-

tigate the role of bystander effects on tumor invasion into surrounding normal

cells.

1.3 Experimental data of cell survival

In this thesis, we work with some data of cell survival for different cell lines.

These cell lines include glioblastoma tumor cell line (T98G) [45, 108], prostate

cancer cell line (PC3) [73], Chinese hamster (V79) cell line [66, 69], human

lung carcinoma cell line (A549) [118], human colon cancer cell line (HT29)

[118], prostate epithelial cell line (RWPE1) [73], human astrocytoma cell line

(U373) [108], etc. These data were measured via similar experiments described

earlier in Section 1.1 and each cell line has been shown to exhibit HRS/IRR

phenomenon. These cells were exposed to 250 - 320-kVp X-rays with a dose

range between 0.01 - 6 Gy. Their incubation periods vary between 7 - 9 days

for different cell lines. Each data point represents about 10-12 experiments

and is presented as mean ± standard deviation.

1.4 Research Questions

This thesis is based on formulating and analyzing novel mathematical models

to answer the following research questions:

1. Can bystander effects explain the HRS/IRR phenomenon?

2. What are the dynamics of radiation-induced bystander signals in tissues?

3. Are mathematical properties like local and global existence, and global

attractor supported by the system of PDEs developed to model the by-

stander effects?

4. What are the effects of bystander signals on the speed and shape of

invading tumor waves into its surrounding normal tissue?

5. Can the activity of the G2-checkpoint explain the HRS/IRR phenomenon?

9



6. How does the classical index αs
α

for measuring the HRS in cells relate to

the underlying cellular events that contribute to its occurrence?

7. Is there a relationship between the HRS index αs
α

and the cell surviving

fraction at 2 Gy?

1.5 Importance of modeling cellular responses

to low doses of radiation

Both radiation-induced bystander effects and the dynamics of G2-checkpoint

result from complex cellular events. For instance, in order to understand

the dynamics of bystander signals, interactions such as direct and indirect

radiation-induced cell death and damage, and bystander signal-dependent re-

pair mechanisms are very important. Sometimes, the bystander effects are

overshadowed by the direct radiation effects, which makes it very difficult to

study experimentally. On the other hand, the dynamics of G2-checkpoint

involves cellular interactions such as mitotic catastrophe, activation of check-

point, cell damage, and direct radiation-induced death. Thus, in order to

understand such complex systems, the information gathered from biological

experiments and medical diagnostic data alone are not sufficient. Using math-

ematical models, and rigorous mathematical analyses, we can obtain insight

into possible mechanisms driving these low-dose phenomena.

A sizeable number of phenomenological and stochastic models, and few

hybrid of stochastic and continuum models have been formulated to investigate

some research questions relating to these interactions. We will reserve the

detailed literature review of these prior modeling attempts and our rationale

for formulating novel continuum models for the respective chapters of this

thesis, where each effects is investigated.

1.6 Outline of the main results

In this thesis, we formulate and analyze continuum models including systems of

partial and ordinary differential equations to answer research questions stated

10



in Section 1.4.

In Chapter 2, we formulate and analyze a system of reaction-diffusion par-

tial differential equations that model the evolution of cells exposed to low doses

of radiation in relation to the emission and response to bystander signals. We

employ an affine invariant Markov Chain Monte Carlo procedure [35] to fit the

model to a surviving fraction of glioblastoma cells [45]. We estimate the model

parameters and their respective 95% credible intervals. We use numerical sim-

ulation to recover the dynamics of bystander signals found in the literature

[91, 36]. By employing phase plane and bifurcation analyses, we show that the

model has a saddle node bifurcation, which explains the switch between long

persistence dynamics and decay of signals depending on the choice of parame-

ters. The significance of this work is that it allows us to elucidate in detail how

cell parameters influence the persistence of emitted bystander signals. Chapter

2 has been published in [89].

In Chapter 3, we study the existence of weak solutions to the system of par-

tial differential equations formulated in Chapter 2. We use the classical method

of Galerkin approximations to show the existence of weak solutions after a sin-

gle radiation exposure. Furthermore, during multiple radiation exposure, we

employ mollification in time to ‘smoothen out’ the temporal discontinuity in

the model. Then we apply a uniform convergence in an appropriate Sobolev

space to show existence of weak solutions. After single radiation exposure, we

show the existence of the global attractor for the model.

In Chapter 4, we extend the system of reaction-diffusion partial differential

equations to two cell lines - tumor and normal cells. The main motivation for

this chapter is to study the effects of bystander signals on the speed and shape

of invading tumor waves into surrounding normal cells. Using the method of

matched asymptotic analysis and singular perturbation [27], we compute the

asymptotic wave speed and show that it agrees very well with the numerical

simulation. We identify the parameter regime that supports such traveling

wave solutions.

In Chapter 5, we formulate a system of ordinary differential equations from

an underlying cell-cycle dynamics. We also incorporate the dynamics of the G2

checkpoint and radiation treatment. Using the techniques for solving systems
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of linear differential equations, we derive an analytical formula for measuring

the magnitude of hyper-radiosensitivity in cells. The relevance of this work

is that it connects the magnitude of HRS measured by the classical Induced

Repair (IR) model to its underlying cellular events. This derivation is validated

with experimental data. We also derive an analytical relationship between

index αs
α

and the radioresistance at 2 Gy. Chapter 5 has been published in

[90].

In Chapter 6, we conclude with a discussion, which presents the results of

this thesis in their scientific context, and also outlines possible future research

directions.
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Chapter 2

A reaction-diffusion model for

radiation-induced bystander

effects

The work presented in this chapter has been published as: Olobatuyi, Oluwole,

Gerda de Vries, and Thomas Hillen. A reaction-diffusion model for radiation-

induced bystander effects. Journal of mathematical biology 75(2) pp. 341-372,

2017.

Abstract. We develop and analyze a reaction-diffusion model to investigate

the dynamics of the lifespan of a bystander signal emitted when cells are ex-

posed to radiation. Experimental studies by Mothersill and Seymour 1997,

using malignant epithelial cell lines, found that an emitted bystander signal

can still cause bystander effects in cells even 60h after its emission. Sev-

eral other experiments have also shown that the signal can persist for months

and even years. Also, bystander effects have been hypothesized as one of the

factors responsible for the phenomenon of low-dose hyper-radiosensitivity and

increased radioresistance (HRS/IRR). Here, we confirm this hypothesis with

a mathematical model, which we fit to Joiner’s data on HRS/IRR in a T98G

glioma cell line. Furthermore, we use phase plane analysis to understand the

full dynamics of the signal’s lifespan. We find that both single and multiple
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radiation exposure can lead to bystander signals that either persist temporarily

or permanently. We also found that, in an heterogeneous environment, the

size of the domain exposed to radiation and the number of radiation exposures

can determine whether a signal will persist temporarily or permanently. Fi-

nally, we use sensitivity analysis to identify those cell parameters that affect

the signal’s lifespan and the signal-induced cell death the most.

2.1 Introduction

The radiation-induced bystander effect (RIBE) has fascinated scientists since

its first report in 1992 by Nagawasa and Little [86]. They observed that

even though less than 1% of irradiated cells were actually traversed by an α-

particle, about 30% of these cells exhibited radiation effects. At first, RIBE

was understood as a secondary effect of radiation on cells exposed to low dose

of radiation. These secondary effects of radiation include cell damage, cell

death, DNA repair delays and genetic instabilities [95, 94]. More experiments

[43] have further described RIBE to also include the induction of radiation-

like effects in cells that have not been exposed to radiation at all, but are

located near an irradiated region. These by-standing cells respond to signals

− called bystander signals − emitted by irradiated cells and in turn behave as

if they have been directly affected by radiation. In fact, it has been shown that

these by-standing cells can influence their neighbours and further transport the

bystander signal to more distant places. In exceptional cases, the bystander

signal has been reported to persist for 31 years in an atomic bomb victim [91]

and it was shown in [51] that irradiating a rat’s liver caused a RIBE in its

brain and affected the animal’s behavior. These experiments suggest that the

RIBE can persist for some time and may also have a non-local behavior.

The nature of the bystander signals is still not fully understood and several

mechanisms have been discussed in the literature. For example, ionizing radia-

tion produces free radicals which are, in principle, able to cross cell membranes

from cell to cell [8]. However, it is believed that free radicals will quickly react

with whatever they encounter and they will not survive very long. Hence free

radicals are not able to explain the longevity of the bystander signal. Another
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explanation considers reactive oxygen species, which can also be transported

from cell to cell and react with the DNA [8]. These reactive oxygen species

have been identified as bystander signal [1]. Since they behave similar to free

radicals, they cannot survive very long as well. Recently however, Cytochrome

complex has emerged as a new candidate. Cytochrome complex (cyto-c) plays

an important role in oxidative phosphorylation as it transports electrons from

the cytochrome b-c1 complex (complex II) to the cytochrome oxidase (com-

plex III) just before the ATP-synthase in complex IV. A functioning glycolysis

inside a mitochondrion produces energy in the form of ATP, which is essential

for the life of the cell. If glycolysis is disrupted, for example due to ionizing

radiation, cyto-c might leave the mitochondrion, diffuse through the cell, and

interact with other proteins, such as DNA [14]. Since cyto-c is small, it can

diffuse, or be transported, to neighbouring cells causing damage to those cells.

Cyto-c shows many of the characteristics of a bystander signal, making it a

good candidate for further analysis.

In this chapter, we develop a spatially dependent mathematical model for

the dynamics of the bystander signal. Since it is not established that cyto-c is

the only bystander signal, we will refer to a general bystander signal. However,

the model incorporates the bystander dynamics of cyto-c as far as they are

known.

After we develop the new bystander model, we fit it to radiation survival

data of Joiner et. al. [45]. Joiner et. al. [45], and many others, found that

the cell survival is lower than expected for low-dose radiation exposure. This

suggests potential risks associated with low-dose radiation exposure, which

may have implications for carcinogenesis and radiation protection. In fact,

low-dose radiation exposure has been found to be carcinogenic in some cases

[60, 41].

The longevity of the bystander signal in tissues has surprised many scien-

tists. Our model allows for a full understanding of the life time of the bystander

signal, based on a positive feedback loop. Cells are damaged by radiation, these

release cyto-c into the environment, which damages other cells, which releases

more cyto-c into the environment. This feedback will not accumulate cyto-c,

but it explains the long persistence of enlarged cyto-c levels.
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HRS

IRR

LQ MODEL

Figure 2.1: Surviving fraction of cells as a function of dose according to linear
quadratic model (2.1) (dashed line) and with the HRS/IRR phenomenon (solid
line)

The model lets us quantify how much tissue damage is related to direct

radiation damage versus indirect bystander damage. Not surprising, we find

that for low doses the bystander effect is largest, whereas for larger radiation

doses, the direct cell kill dominates. These conclusions have also been found

in Powathil et. al. [93] using a computational hybrid model.

The rest of this section will further describe some of the important termi-

nology in this chapter.

2.1.1 Hyper-radiosensitivity (HRS) and increased radio-

resistance (IRR)

If ionizing radiation is applied to cells, we consider a cell clonogenically dead

if it is unable to form cell colonies, i.e., it can no longer produce more than 50

offspring. The (clonogenic) surviving fraction (SF) of cells exposed to radiation

is defined as the fraction of the irradiated cells that is capable of forming

colonies after radiation exposure. A common model for SF of cells is the
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linear quadratic (LQ) model

SF(d) = e−αd−βd
2

, (2.1)

where d is the radiation dose (measured in Gy), α is the rate at which single

radiation tracks produce lethal lesion, and β is the rate at which binary mis-

repair of pairs of double strand break (DSB) from different radiation tracks

lead to lethal lesions [12].

In recent experiments [58, 66, 106, 107, 118], it was shown that cell survival

deviates from the LQ model prediction for low-dose radiation in the range of

0.1−1 Gy. We illustrate this difference in Figure 2.1. The measured surviving

fraction for low-dose radiation lies significantly below the LQ curve. This

phenomenon has been termed low-dose hyper-radiosensitivity (HRS) [45]. The

HRS is followed by a period of relative radio-resistance (per unit of dose) of

cell kill over the dose range of ∼ 0.5− 1Gy. This later phenomenon is referred

to as increased radio-resistance (IRR).

We will see that our bystander model can describe the observed hyper-

radiosensitivity (HRS) and increased radio-resistance (IRR) effects, making

the bystander effect a possible explanation of these phenomena.

2.1.2 Bystander effects

As previously noted, bystander effects are secondary effects of radiation either

in cells exposed to low dose of radiation or in cells located near an irradiated

region [94, 95]. Although most bystander effects are observed in direct prox-

imity of the irradiated region, bystander effects have also been reported quite

far from the irradiated region [96, 51]. Here we will focus on the immediate

spatial vicinity of an irradiated region.

The bystander effects can be roughly classified into [95, 94]:

1. Bystander signal-induced cell death

Bystander signal-induced cell death occurs when the bystander signal

interacts with the DNA of a cell to reduce its proliferation capacity

to the extent that it can no longer produce more than 50 offspring.
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Since bystander signal-induced death may also be other forms of death

besides clonogenic death, we will also account for other type of death

like apoptosis, necrosis and so on.

2. Bystander signal-induced cell damage

Bystander signal-induced cell damage occurs whenever the bystander

signal interacts with the cell’s DNA to damage its proliferation capacity

but the cell can still produce more than 50 offspring.

3. Cell repair delay2

This biological effect occurs when the repair mechanism of damaged

DNA of an irradiated cell is interrupted, delayed or completely hindered

by the bystander signals [101].

4. Genetic instability

The interaction of the bystander signal with the DNA can also lead to

DNA disrepair or mutations. We will not include genetic instabilities in

our mathematical model, since these do not contribute to the dynamics

of the bystander signal. Mutations might create cancers, or promote

cancer development, but this is beyond the scope of this chapter.

As mentioned above, several molecules are discussed as bystander signals,

and cyto-c is currently the most convincing candidate. Since this signal can

diffuse from cell to cell it is possible that irradiated cells are also affected by

the bystander signal. The release of cyto-c after radiation depends on the

tumor suppressor gene p53. p53 initiates DNA repair but, at the same time,

p53 initiates apoptosis when damage is irreparable. This apoptotic pathway

basically involves destruction of mitochondria, releasing cyto-c into the cyto-

plasm [104, 32, 31, 23]. When cyto-c is released from a damaged cell, it is

transmitted either via gap junctions [3] to neighboring cells or it diffuses to

neighboring cells [87]. The cyto-c protein can initiate double strand breaks

(DSBs) in neighboring cells [49]. These DSBs in neighboring cells also acti-

vate p53, which eventually can lead to further release of cyto-c. In this way

2The word “delay” in a biological context often refers to the fact that a process is slower
than normal. It does not necessarily refer to a delay term as would arise in a delay equation.
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Figure 2.2: p53-induced coupling between irradiated cells and between irradiated
and un-irradiated cells. The green ellipsoidal structures represent cells while the
lightning symbols indicate radiation.

the cycle continues as illustrated in Figure 2.2 and we can obtain a rather

long-lived signal cascade.

2.1.3 Bystander signal’s lifespan

Bystander effects have been found in various in vivo and in vitro experiments

to outlive the direct radiation effects. Pant and Kamada [91] reported the

presence of bystander signal in the blood plasma of heavily exposed atomic

bomb survivors 31 years after exposure. They found the presence of these sig-

nals when blood cells of normal individuals exhibited bystander effects when

they were cultured with the blood cells of bomb survivors. Similarly, Goyanes-

Villaescusa [36] reported the presence of bystander signals in the children born

to mothers exposed to radiation several months before conception. These ob-
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servations have led to an open question regarding “How long does a bystander

signal live after its emission?”[10]. Our mathematical model will allow us to

address this question in detail. We find that a saddle point in the phase plane of

the bystander model is the organizing centre for the longevity of the bystander

signal. Orbits pass by a saddle point, hence leading to a long transient.

2.1.4 Previous models of bystander effects

The idea of modelling radiation-induced bystander effects using diffusion-based

mechanism began with Khvostunov et. al. [48, 87]. These early models use

a quantitative approach that assumes that bystander signal is a protein-like

molecule spreading via diffusion. The bystander effects considered are cell

death and mutation induction. They assume that bystander effects only occurs

in un-irradiated neighboring cells and the bystander response to this signal is

assumed to be a binary “on/off” mechanism. They found that their bystander

model can explain the experimental data for cell survival and induced onco-

genic transformation frequencies. These data also confirm the assumption of

the protein-like nature for the bystander signal.

In 2013, McMahon et. al. [75] first modeled the evolution of bystander

signal with a partial differential equation (PDE) while a computational model

was used to describe bystander cell’s responses. Their model also assumes a

binary cell’s response to bystander signal but incorporates the occurrence of

bystander effects in the irradiated cells as well. Their model only incorporated

bystander signal-induced damage, which is assumed to result into cell death,

cell-cycle arrest, or further cell damage. This model suggests that bystander

effects play a significant role in determining cellular survival, even in directly

irradiated populations.

Most influential to our work is a recent work (2016) by Powathil et. al.

[93]. They developed a hybrid multi-scale mathematical and computational

model to study multiple radiation-induced bystander effects (bystander signal-

induced damage and death, and cell repair delay) on growing tumor within

host normal tissue. In their model, the evolution of the bystander signal was

described by a PDE, while a stochastic process was used to describe cellular

20



evolution and responses to the signals. They also assumed that both irradiated

and un-irradiated cells can respond to the bystander signals. They assumed

that bystander signals are emitted by radiation-induced dead and damaged

cells. Their model shows that bystander responses play a major role in medi-

ating radiation damage to cells at low-doses of radiation, doing more damage

than that due to direct radiation. The survival curves derived from this shows

an area of hyper-radio-sensitivity at low-doses that are not obtained using a

traditional radio-biological model.

In our model, we use PDE to describe both the dynamics of cells and the

signals. In general, we extend most of the assumptions of Powathil et. al.

in [93] but in a continuous setting. With the recent discovery of cyto-c as

a candidate for the bystander signal, our model is able to incorporate more

biologically justifiable assumptions. In particular, we assume that damaged

cells do not proliferate since they are expected to be under cell cycle arrest.

This assumption was not incorporated in any of the previous models. We

also assume that cells which are damaged via bystander signals can also emit

bystander signal. This is because DNA damage, irrespective of the cause, can

trigger the activity of p53 which eventually leads to the emission of cyto-c as

seen in Figure 2.2. The model also assumes that damaged cells emit bystander

signals as long as they are not repaired or dead. It is more biological to model

cellular response to bystander signal with a continuous functional rather than

a discontinuous binary “on/off” mechanism. Finally, both irradiated and un-

irradiated cells can exhibit the bystander effects.

Our model agrees with previous results on bystander effects both exper-

imental and theoretical. In particular, our bystander model shows that by-

stander effects are predominant at low-doses of radiation and it is a major

contributor to the phenomenon of hyper-radiosensitivity. Furthermore, we use

our model to determine cell parameters that affect this phenomenon the most.

Also, we use our model to extensively study how long an emitted signal lives

and to show that, although bystander signal is produced at every radiation

exposure, it does not increase with increase in radiation exposure. In fact,

we found that the concentration converge to a steady state after a couple of

exposures.
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2.1.5 Outline of the rest of the chapter

In Section 2.2, we formulate and develop the mathematical model, explain the

relevant parameters and parameter functions, and present a nondimensional-

ization of the model. We also fit the model to the radio-sensitivity data of

Joiner [45] and estimate the model parameter values as well as their 95% cred-

ible intervals. In Section 2.3, we numerically explore the qualitative behavior

of the bystander signal profile when cells undergo both single and multiple

radiation exposures, respectively, in both homogeneous and heterogeneous do-

mains. The numerical exploration in Section 2.3 shows that the bystander

signal can live quite long, hence in Section 2.4 we analyze the bystander signal

lifespan. In the analyses on the signal’s lifespan in Section 2.4, we perform

a phase-plane analysis to identify a saddle point as the organizing centre for

the bystander signal dynamics. We also perform a sensitivity analysis to see

which parameters have the most impact on the lifespan of the signal. After

having gained a good understanding of the bystander dynamics, we analyze

the relative significance of the bystander effect on cell survival in Section 2.5.

We show that this effect is significant for small radiation doses (0.1−1 Gy), but

it is almost irrelevant at larger doses. We finish the chapter with a discussion

in Section 2.6.

2.2 The bystander model

2.2.1 Model development

The mathematical model of this paper describes the biological interactions

between healthy cells, damaged cells, radiation energy, and bystander signals.

We base the model on a typical bystander - in vitro assay [43], where cells are

cultured on a petri-dish in a monolayer and radiation is applied to a certain

partial area of the dish.

A schematic of the model, illustrating the relationship between the compo-

nents, is given in Figure 2.3. The density of healthy cells is denoted by u, the

density of damaged cells by v and the concentration of bystander signal by w.

In Figure 2.3, we indicate that a cell exposed to ionizing radiation can either

22



Figure 2.3: Schematics of the bystander signal model. The dotted lines represent
the bystander effects, the dashed line represents the bystander signal emission, the
grey solid line represent cellular interactions, and the black solid lines represent
cellular responses to both radiations and bystander signals. The lightning symbols
indicate radiation.

be damaged, or killed, or be completely unharmed and reproduce [59]. After

radiation exposure, the fraction of the cells that is damaged by radiation enters

the damaged cell compartment v. As suggested by the biology of cyto-c, we

assume that radiation-induced damaged cells emit bystander signal as long as

they live, while dead cells release bystander signal into the environment once

at the time of their death.

Whenever a cell’s DNA is damaged, several mechanisms are triggered to

repair the damage [101, 2]. Thus, damaged cells have the potential to fully
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recover and become healthy cells again. The emitted bystander signals, w,

provide negative feedback to both the healthy and the damaged cells by causing

cell death, cell damage, and DNA repair delay. If a damaged cell is further

damaged, then we keep it in the class of damaged cells until it either dies or

is repaired. Finally, the bystander signal is produced by dying and damaged

cells, it diffuses through the petri dish and it can decay or be cleared out.

To formulate the model mathematically, we denote the number of healthy

cells by u(x, t), the number of damaged cells by v(x, t), and the concentration

of the bystander signal by w(x, t). Here x ∈ Ω denotes the spatial coordinate

in a smooth bounded domain Ω ⊂ Rn and t ≥ 0 denotes time. The model that

describes the mutual interactions between u, v, and w based on the schematics

described in Figure 2.3 is given by:

ut = Du∆u+ µu
(

1− u+ v

u0

)
− Radu(t)u

−γ(t)u− A(w)u+ F (w)v − E(w)u,

vt = Dv∆v − Radv(t)v + γ(t)u−B(w)v − F (w)v + E(w)u, (2.2)

wt = Dw∆w + λ1Radv(t)v + λ2Radu(t)u+ λ3κv − ηw,

with appropriate boundary conditions depending on the biological situation.

For instance, Neumann boundary conditions will be suitable for the petri dish

experiment. Details are as follow:

1. In this model, all components are subject to spatial diffusion, expressed

through the Laplacians ∆u, ∆v, and ∆w. In case of healthy normal

tissue, the diffusion coefficients Du and Dv might be zero, but if applied

to tumor tissue, then Du and Dv will be nonzero due to local spread

of the tumor. Since the signal w can diffuse everywhere, we assume a

nonzero diffusion coefficient Dw > 0.

2. Healthy cells, u, grow according to a logistic law with carrying capacity,

u0, and growth rate µ.

3. Biological cells respond to radiation exposure in two ways namely: radiation-

induced death at rate Radi(t) (for i = u, v) and radiation-induced dam-
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age at rate γ(t). We model the radiation-induced death rate by the

radiation hazard function for fractionated radiation [34]

Radi(t) = (α + βd)Ḋ(t), (2.3)

where d is the dose per fraction, Ḋ(t) denotes the dose rate (i.e. a

piecewise constant jump function), α is the rate at which single radiation

tracks produce lethal lesion, and β is the rate at which binary misrepair

of pairs of double strand break (DSB) from different radiation tracks

lead to lethal lesions [12].

4. To model the radiation-induced damage rate γ, we consider the classi-

cal Lethal-Potentially Lethal Model (LPL) of Curtis [22] for radiation

damage. As shown in Figure 2.4 (solid curve), the damage rate in the

LPL model has a characteristic shape of a steep increase, a single global

maximum and a slow decay to zero. We describe this behaviour by the

function shown in Figure 2.4 (dotted curve), which is given by

γ(t) = 2γ0
ηḊ(t)

1 + (ηḊ(t))2
. (2.4)

Here γ0 is the maximum damage rate and η = 1/Ḋmax denotes the recip-

rocal of the dose rate Ḋmax at which the radiation damage is maximal.

5. The bystander effects in system (2.2) are described by the functions

A(w), B(w), E(w), and F (w). The rates A(w) and B(w) denote the

bystander signal-induced death rates for healthy and damaged cells, re-

spectively. E(w) denotes the bystander signal-induced damage rate and

F (w) denotes the bystander signal-dependent damage repair rate. Moth-

ersill and Seymour suggested in [105, 102] that responses to bystander

signals are threshold phenomena. The signal induces a response only

when the signal concentration exceeds a lower threshold, and it reaches

a maximum response at an upper threshold. All the bystander effects

in this chapter will be modeled with two threshold parameters (see Fig-
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Figure 2.4: The profile of radiation-induced damage rate γ(t), according to both
the LPL model and our proposed simplified model. The solid line corresponds to
the LPL model [22] while the dotted line corresponds to our proposed simplified
model for radiation damage rate at γ0 = 0.038 and dmax = 0.2 Gy.

ure 2.5) using a generic tanh profile:

A(w) =
A0

2

[
1 + tanh

( 6

a2 − a1

(
w − a1 + a2

2

))]
, (2.5)

B(w) =
B0

2

[
1 + tanh

( 6

b2 − b1

(
w − b1 + b2

2

))]
, (2.6)

E(w) =
E0

2

[
1 + tanh

( 6

e2 − e1

(
w − e1 + e2

2

))]
, (2.7)

F (w) =
F0

2

[
1− tanh

( 6

f2 − f1

(
w − f1 + f2

2

))]
, (2.8)
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Figure 2.5: Bystander Effects, A, B, E, and F . The parameter values are a1 =
b1 = 0.05, a2 = b2 = 0.25 & A0 = B0 = 0.3 for A(w) and B(w), f1 = 0.02, f2 = 0.05
& F0 = 0.4 for F (w), e1 = 0.04, e2 = 0.3 & E0 = 0.1333 for E(w).

These models contain threshold values a1 < a2, b1 < b2, e1 < e2, and f1 <

f2 respectively. The repair rate, F (w), of damaged cells is a decaying

function of w, indicating reduced repair capabilities if w exceeds the lower

threshold f1. The above four rate functions are plotted in Figure 2.5.

2.2.2 Rescaling

The bystander signal model (2.2) contains many parameters. The parameters

whose values are found in the literature are listed in Table 2.1. The remaining

parameters will be estimated from Joiner’s data set in the next subsection.

However, before we attempt to estimate the parameters, we will rescale the

model to carrying capacity u0 = 1 and unit decay rate of the bystander signal.

27



Parameter Sym. Values Ref. Re-scaled

Diffusion constant for cells Du 0.001458mm2/hr [50] 1.157e− 3

Diffusion constant for BS Dw 0.72mm2/hr [4, 75] 0.571

Decay rate for Bystander Signal η 1.26/hr [75] 1

Cell’s Carrying Capacity u0 7.56e14Cell/hr [50] -

Cell’s proliferation rate µ 0.00666hr−1 [50] 5.29e− 3

Prop. of signalling damaged cells κ 0.5 [93] 0.3968

Signal prod. rate of damaged cells λ3 0.0066hr−1 [75] -

Max. rate of BS-induced cell damage E0 0.168hr−1 [61] 0.1333

Radiosensitivity (linear) α 0.11Gy−1 [108] -

Radiosensitivity (quadratic) β 0.019Gy−2 [108] -

Table 2.1: Parameter values available in the literature and their references.

We apply the following transformations

u∗ :=
u

u0

, v∗ :=
v

u0

, w∗ :=
w

λ3u0

, t∗ := ηt, µ∗ :=
µ

η
, A∗ :=

A

η
, (2.9)

F ∗0 :=
F0

η
, k∗i :=

ki
u0λ3

, a∗i :=
ai
u0λ3

, b∗i :=
bi
u0λ3

, e∗i :=
ei
u0λ3

, (2.10)

Rad∗i (t) :=
Radi(t)

η
, D∗i :=

Di

η
, κ∗ :=

κ

η
, λ∗1 :=

λ1

λ3

, λ∗2 :=
λ2

λ3

, (2.11)

to model (2.2) and arrive at the following dimensionless model after dropping

the asterisk (∗)

ut = Du∆u+ µu(1− u− v)− Radu(t)u− A(w)u− γ(t) u+ F (w)v − E(w)u,

vt = Dv∆v − Radv(t) v −B(w)v + γ(t)u− F (w)v + E(w)u, (2.12)

wt = Dw∆w + λ1Radv(t)v + λ2Radu(t)u+ κv − w.
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2.2.3 Parameterizations and data fitting

The parameters that are unknown (see Table 2.2) are mostly parameters such

as the bystander effect thresholds which may be difficult to measure directly.

Thus, there is the need to accurately estimate their values and a credible

interval for each of them, which will form the parameter space for our model.

The data of Joiner et. al. [45] describe the survival of asynchronous T98G

human glioma cells irradiated with 240kVp X-rays. These cells were irradiated

with single doses of X-ray between 0.05 and 6 Gy at a dose rate of 0.2−0.5 Gy

per min. The surviving fraction of cells following exposure to single doses was

measured using a Cell Sorter. Each data point in Figure 2.6 represents between

10−12 measurements and is denoted as mean ± the standard deviation. Cell

survival was described in terms of their ability to form a colony (i.e. reproduce

at least 50 offspring after radiation exposure) and cells which are unable to

form a colony do not survive.

We employ an implementation of the Goodman and Weare affine invariant

ensemble Markov Chain Monte Carlo (MCMC) sampler [35] to fit the model

to the dataset in [45]. In particular, we fit the surviving fraction, SF(t), of ir-

radiated cells at time t = 6h computed from the bystander signal model (2.12)

to the surviving fraction data [45]. The affine invariance property of this rou-

tine enables a much faster convergence even for badly scaled problems. The

implementation takes a log-likelihood function of the experimental data and a

log-prior of each parameter as input. We assume an exponential distribution

for these data. We also assume a uniform distribution for the prior of each

parameter over the prescribed intervals of biologically relevant values. The im-

plementation of this MCMC sampler on the bystander signal model results in

the fit shown in Figure 2.6. The values of the parameters and their respective

95% credible intervals are given in Table 2.2 below.

We need to reiterate that the parameters estimated are the dimensionless

parameters. For example, we will interpret the estimated threshold values in

unit of bystander signal per unit of cell’s carrying capacity per unit of rate

of bystander signal production. The 95% credible intervals of these parame-

ter values will allow for further study of the bystander signal’s dynamics via
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Figure 2.6: Data fitting. The dots with error bars are the data from Joiner et. al.
[45] while the solid curve is the best fit from the bystander signal model.

mathematical techniques like bifurcation and sensitivity analyses.

This parameter estimation gives some very useful insight into the param-

eter relationships between the healthy and damaged cells. For example, the

estimation suggests that the bystander signal-induced death rate and the rate

of one-time bystander signal emission by radiation-induced dead cells are the

same in both the healthy and damaged cells. Thus, we will henceforth assume

that A = B and λ1 = λ2. This estimation also suggests that the dynamics of

the bystander signal is faster than the cellular dynamics. This fact will become

important in Section 2.4 as we reduce the system of three PDEs to a system

of two ODEs for phase plane analysis.

As noted earlier, this system of three PDEs was motivated by the stochas-
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Parameters (thrld= threshold) Sym. Est. Values 95% C. I.

Lower thrld. for signal-dependent repair f1 0.0128 0.0009 − 0.0284

Lower thrld. for byst. damage in healthy cells e1 0.0251 0.0015 − 0.0592

Lower thrld. for byst. death in damaged cells b1 0.0254 0.0012 − 0.0600

Lower thrld. for byst. death in healthy cells a1 0.0262 0.0017 − 0.0634

Upper thrld. for signal-dependent repair f2 0.0327 0.0129 − 0.0546

Upper thrld. for byst. damage in healthy cells e2 0.2232 0.0918 − 0.3849

Upper thrld. for byst. death in damaged cells b2 0.1881 0.0283 − 0.3914

Upper thrld. for byst. death in healthy cells a2 0.1366 0.0245 − 0.2844

Max. rate of signal-dependent repair F0 0.5437 0.2642 − 0.8759

Max. rate of Byst. death in damaged cells B0 0.6507 0.2559 − 1.1186

Max. rate of Byst. death in undamaged cells A0 0.6524 0.2807 − 1.1423

Max. rate of radiation damage γ0 1.5027 1.3805 − 1.6208

Rate of signal prod. of dying healthy cells λ1 0.0512 0.0027 − 0.1184

Rate of signal prod. of dying damaged cells λ2 0.0490 0.0027 − 0.1164

Table 2.2: Parameters and their values estimated using an MCMC sampler.

a1 a2 A0 e1 e2 f1 f2 F0 λ1 γ0

0.05 0.25 0.3 0.04 0.3 0.02 0.05 0.4 0.016 1.5

Table 2.3: Default parameter set for the simulation in this chapter.

tic spatial model of Powathil et. al. [93]. Thus, in the next section, we will

numerically explore this system of PDEs, although much of the qualitative

behavior can be captured by the corresponding system of ODEs, as we will

show in Section 2.4. The standard parameter set used for all the simulations

in this chapter consists of the parameter values found in the literature (which

are highlighted in Table 2.1) and the default parameter set in Table 2.3, which

is a subset of the dimensionless parameter space (from Table 2.2).
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2.3 Numerical exploration of the model

For the numerical exploration of the model (2.12), we choose parameter values

from Tables 2.1 and 2.3. We use Matlab to solve system (2.12) on an interval

[0, 1] with spatial step dx = 0.05 and temporal step dt = 1/60 (corresponding

to 1 minute). We first consider a single radiation exposure with dose, d, given

at the beginning of the simulation, which we incorporate by the dose rate

Ḋ(t) =

{
d

10 min for 0 ≤ t ≤ 10 min

0 for t > 10 min.

The dose rate is incorporated into both the hazard function (2.3) and the

radiation-induced damage rate (2.4). Since the bystander effects have been

found to be more pronounced at low dose of radiation, we will only irradiate

at dose d = 0.2 Gy.

We will study the profile of a bystander signal in both homogeneous and

heterogeneous domains using the model (2.12). A domain is termed homoge-

neous if every part of the domain is equally exposed to radiation, otherwise,

it is termed heterogeneous. For simplicity, we will restrict our numerical sim-

ulations to a one-dimensional domain. We will assume the initial condition

(1, 0, 0), representing cells that are fully grown to its full carrying capacity but

have never been previously exposed to radiation. Since we want to study the

cellular response at low dose in a petri dish setting similar to [43], it is natural

to assume a Neumann boundary condition for all the components. Although

the boundary effects on the dynamics of bystander signal are also interesting,

we will not consider them in this chapter.

We are also interested in studying the behavior of the system under multiple

radiation exposures with each exposure corresponding to a daily dose of 0.2

Gy at 0.02 Gy/min dose rate. Each daily radiation exposure will be referred

to as a fraction.
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2.3.1 Bystander signal profile in a homogeneous domain

The monolayer cells are exposed uniformly to radiation similar to the setup

in [43]. Immediately, we observe a rapid production of the bystander signal

reaching a maximum shortly after the exposure as illustrated by Fig. 2.7a.

Although the signal concentration slowly declines, it seems to converge to

some nonzero concentration at w ' 0.0653. This value is higher than the

lower thresholds for all the bystander effects. This suggests that even in the

long run, the bystander effects can persist. On the other hand, if the maximum

rate of bystander signal-induced death, A0, in cells is increased to 0.7 as seen in

Fig. 2.7b, we observe that the signal concentration is washed out at some later

time after radiation exposure. This observation about the dynamics of the

signal’s lifespan raises the question of ‘How long can bystander effects persist

in cells after radiation exposure and what are the parameters that affect the

dynamics?’ We will fully answer this question in Section 2.4 using phase plane

and sensitivity analyses.

The profile of the emitted bystander signal is quite different under multiple

radiation exposures. At each fraction, there is an increase in the signal’s

(a) A0 = 0.3 (b) A0 = 0.7

Figure 2.7: Bystander signal profiles with single radiation exposure at different
values of A0.
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(a) Two fractions. (b) Three fractions.

(c) Ten fractions.

Figure 2.8: Bystander signal profiles with multiple radiation exposures atA0 = 0.3.

concentration with the maximum concentration occurring immediately after

the second fraction as seen in Fig. 2.8. In fact, further exposure to radiation

after about 7 days does not significantly increase the concentration of the

signal as seen in Fig. 2.8c.

We noted in Fig. 2.7a that the long-term dynamics of the signal converge

to a nonzero concentration at A0 = 0.3. However, at the same parameter

value, we observe that after three fractions of radiation exposures, the signal

converges to zero. Whereas, the nonzero convergence at A0 = 0.3, is preserved

with two fractions as seen in Figure 2.8a. The number of fractions of radiation
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(a) 90% of the domain irradiated. (b) 91% of the domain irradiated.

Figure 2.9: Bystander profiles in a single fraction on a heterogeneous domain at
A0 = 0.3.

exposure appears to affect the long-term dynamics of the signal. We will try

to understand this effect on signal dynamics using phase plane analysis in the

following section.

2.3.2 Bystander signal profile in a heterogeneous do-

main

It is also interesting to study the dynamics of the emitted signal when the cells

are not uniformly irradiated. In this subsection, all simulations will be done at

A0 = 0.3 unless otherwise stated. Depending on the percentage of the domain

exposed to radiation, we observe different dynamics. For instance, when we

irradiate ≤ 90% of the domain, even at A0 = 0.3, the signal converges to zero.

Figure 2.9a corresponds to the system when 90% of the domain is exposed to

radiation. Since the same behavior is seen when less < 90% of the domain is

irradiated we will not include the simulations. On the other hand, we observe

that the bystander signal converges to a nonzero value when ≥ 91% of the

domain is exposed to radiation as seen in Figure 2.9b. This spatially-driven

change in the signal’s dynamics is interesting and a rigorous mathematical

analysis of this phenomenon is required.
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(a) 2 fractions with 85% of the domain ir-
radiated.

(b) 2 fractions with 86% of the domain
irradiated.

(c) 3 fractions with 86% of the domain ir-
radiated.

Figure 2.10: Bystander signal profiles with fractionated radiation exposure in a
heterogeneous domain. All simulations done at A0 = 0.3.

The dynamics of bystander signal with multiple radiation exposures in a

heterogeneous domain is very interesting due to its application to radiotherapy.

For example, tumor undergoing fractionated radiation treatment is usually

surrounded by normal cells. We observe that the bystander signal dynamics

changes significantly depending on the number of fractional exposures and the

percentage of the domain exposed to radiation.

In Figures 2.10a and 2.10b, we observe the effect of space on the signal

dynamics. The signal converges to zero when 85% of the domain is exposed
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to radiation while the signal converges to a nonzero value when about 86%

of the domain is irradiated. We observe this phenomenon as well for a single

radiation exposure but with different size of irradiated domain.

In Figures 2.10b and 2.10c, we observe the effect of number of exposures on

the dynamics of the signal. Two exposures lead to a convergence to a nonzero

steady state while three exposures ensure a complete decay of the signal.

There is the need for further understanding of the effects of the number of

fractions and the size of irradiated domain on the qualitative behaviors of the

bystander signal, and it is time for a phase plane analysis.

2.4 Analysis of the signal’s lifespan in a ho-

mogeneous domain

In this section, we will analyze the model to further understand both the zero

and the nonzero steady state convergence observed in the previous section

as well as the effect of fractional radiation treatment schedules on the signal’s

dynamics. Since the focus is on a homogeneous domain, we ignore the diffusion

terms so that the system of PDEs reduces to a system of ODEs. For the

moment, we will focus on a single radiation exposure. Since we are interested

in the large-time dynamics of the model, we may view all the radiation terms

as a one-time input into the model which can be accommodated into the initial

conditions. Then system (2.12) becomes

u̇ = µu(1− u− v)− A(w)u+ F (w)v − E(w)u,

v̇ = −A(w)v − F (w)v + E(w)u, (2.13)

ẇ = κv − w,

coupled with appropriate initial conditions for u(t), v(t), and w(t), respec-

tively.

We will constrain the initial conditions for the cells to be below their car-

rying capacity, i.e., u(0) + v(0) ≤ 1 and consider a very small concentration

of bystander signal initially present, i.e., w(0)� κ. These conditions are bio-
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logically reasonable for healthy cells because they can not grow beyond their

carrying capacity. Under these conditions, the system (2.13) has the following

properties:

Theorem 1 (Positivity and Boundedness). All solutions of the system (2.13)

are positive for all time, t. Moreover, if u0 = u(0) ≥ 0, v0 = v(0) ≥ 0 and

w0 = w(0) ≥ 0, then

u(t) + v(t) ≤ u0 + v0

(1− u0 − v0)e−µt + u0 + v0

. (2.14)

Furthermore, if u0 + v0 ≤ 1 and w0 ≤ κ, then

u(t) + v(t) ≤ 1

w(t) ≤ κ− (κ− w0)e−t

and w(t) ≤ κ, for all time, t.

Proof. Since

u̇|u=0 = F (w)v ≥ 0, v̇|v=0 = E(w)u ≥ 0 and ẇ|w=0 = κv ≥ 0,

then all solutions are nonnegative for all time, t.

Let m = u+ v and m0 = u0 + v0. We have

ṁ = µu(1−m)− A(w)m ≤ µu(1−m) ≤ µm(1−m).

Thus,

m(t) ≤ m0

m0 + (1−m0)e−µt
, (2.15)

which implies (2.14) and u+ v ≤ 1 if u0 + v0 ≤ 1.

Also, in case of v ≤ 1,

ẇ = κv − w ≤ κ− w, (2.16)
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which implies that

w(t) ≤ κ− (κ− w0)e−t. (2.17)

An immediate consequence of the above result is given by the following

corollary:

Corollary 1 (Forward Invariant Region). The set

Γ = {(u, v, w) : u ≥ 0, v ≥ 0, 0 ≤ u+ v ≤ 1, 0 ≤ w ≤ κ} (2.18)

defines a forward invariant region of the system (2.13).

The forward invariant region is closed and bounded in R3; and therefore

compact. If we restrict the phase plane to this invariant region, then any

trajectory with initial condition in this region will remain in the region for

all times. This suggests that the system of three ODEs (2.13) has a global

attractor.

Figure 2.11: The graph of Ψ(w∗) as defined in (2.24) for A0 = 0.3.
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We can further reduce this system from three ODEs to two ODEs by simply

assuming that the bystander signal’s dynamics is faster than cells’ dynamics

(a fact that was suggested by the data fitting of the model). This implies that

ẇ = 0 and we have

w = κv. (2.19)

So

ẇ = κv̇ = −A(w)w − F (w)w + E(w)κu. (2.20)

Combining eqs. (2.13), (2.19), and (2.20) we derive

u̇ = µu(1− u− w

κ
)− A(w)u+ F (w)

w

κ
− E(w)u (2.21)

ẇ = −A(w)w − F (w)w + κE(w)u. (2.22)

2.4.1 Phase plane analysis of the system of two ODEs

The boundary steady states of (2.21)− (2.22) are (0, 0) and (1, 0). Interior

steady states
(
A(w∗)+F (w∗)

κE(w∗)
w∗, w∗

)
, exist provided Ψ(w∗) = 0 and

A(w∗)E(w∗) ≤ (µ− A(w∗))(A(w∗) + F (w∗)), (2.23)

with

Ψ(w∗) = w∗ − κE(w∗)
[ 1

A(w∗) + E(w∗) + F (w∗)
− A(w∗)

µ(A(w∗) + F (w∗))

]
.

(2.24)

A typical form of Ψ(w∗) is shown in Figure 2.11. We observe that (2.24)

has up to three zeros (including w∗ = 0 which is already listed above) which

implies that the system admits between two and four steady states depending

on the values of model parameters.

The trivial equilibrium, (0, 0), is a saddle, and the homogeneous equilib-
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(a) A0 = 0.3.
(b) A0 = 0.58.

(c) A0 = 0.7. (d) A0 = 0.3

Figure 2.12: Phase plane showing the nullclines of the system (2.21)−(2.22) for
three different values of A0. (a) A0 = 0.3; (b) A0 = 0.58; (c) A0 = 0.7; (d) A0 = 0.3
with a typical trajectory with two radiation exposures.

rium, (1, 0), is a stable node. An interior equilibrium, (u∗, w∗), is stable if

µ
(

1− u∗(2− κ

µ
E ′)− w∗

κ

)
< 2A+ E + F + (A′ + F ′)w∗, (2.25)

µ
(

1− 2u− w

κ
− 1

µ
(A− E)

)(
w(A′ + F ′) + (A+ F )− κE ′u

)
< E

(
µu+ κu(A′ + E ′)− F − F ′w

)
. (2.26)

Otherwise, (u∗, w∗) is unstable.

The nullclines of the system (2.21)− (2.22) are shown in Figure 2.12 for
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three different values of the parameter A0. For A0 = 0.3, the system has

two interior equilibria, one of which is a saddle and the other of which is

a stable node, as shown in Fig. 2.12a. The stable manifold of the interior

saddle equilibrium forms a separatrix (dotted line) that demarcates the basins

of attraction of the stable interior steady state and the stable homogeneous

steady state, (1, 0), into Region I and Region II, respectively. The interior

equilibria coalesce and disappear through a saddle-node bifurcation when the

condition in (2.23) is violated at A∗0 ' 0.58 as shown in Figure 2.12b and 2.12c.

For A0 > A∗0, there are no interior steady state. The homogeneous steady

state, (1, 0), is the global attractor in this case. Furthermore, we observe that

a trajectory that originates from Region I can be pushed into Region II by a

further radiation exposure as seen in Fig. 2.12d. This explains the effect of

multiple radiation exposures previously observed in the qualitative behavior

of bystander signal profile.

In what follows, we want to make connections between the previous phase

plane analysis and the lifespan of a bystander signal - which we make more

precise in the following.

Definition 1 (Lifespan). Let f1, a1, and e1 be the lower thresholds of the

bystander effects as in Equations (2.5) − (2.8). Let k = min{f1, a1, e1}.

1. A bystander signal w(t), at time, t, is called active (or inactive) if w(t) >

k (or w(t) < k).

2. Suppose that T is the time at which the bystander signal becomes active,

i.e., w(T ) = k and w(t) < k for t < T . Let

τ = inf{t > T : w(t) ≤ k}

be the time at which the signal, w(t), first becomes inactive after time,

T . If τ exists, then we define the lifespan of the emitted bystander signal

as τ . Otherwise, the lifespan is defined by the host’s lifespan.

3. A bystander signal w(t) is called a transient-state signal if the bystander

signal lifespan is finite. Otherwise, it is called a steady-state signal.
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Indeed, any trajectory with initial condition in Region I of Fig. 2.12a con-

verges to the stable interior steady state, while any trajectory with an initial

condition in Region II of Fig. 2.12a persists for a while but eventually converges

to zero. We can see this clearly illustrated in Fig. 2.13a. This persistence is

due to the slow transit along the saddle interior equilibrium, which may take

many days. However, as the values of A0 increases and the homogeneous steady

state, (1, 0), becomes the global attractor, we observe that it takes shorter time

for trajectories to converge to the homogeneous steady state, (1, 0). This is

(a) At A0 = 0.3. (b) At A0 = 0.58.

(c) At A0 = 0.7.

Figure 2.13: Phase portrait at different values of A0. A0 = 0.3; (b) A0 = 0.58; (c)
A0 = 0.7.
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illustrated in both Figures 2.13b and 2.13c.

2.4.2 Sensitivity analysis of the lifespan of the bystander

signal

In this section, we identify parameters that affect the lifespan of the bystander

signal the most. We study the normalized sensitivity coefficient Sτ of the

bystander signal’s lifespan, τ , to a parameter p, that is,

Sτ =

∂τ(p)
∂p

τ(p)
p

. (2.27)

Sτ can be interpreted as the % change in the signal’s lifespan per 1% change

in the value of a cell’s parameter. Sτ can be positive or negative indicating

that the parameter increases or decreases the lifespan of the signal.

Since we do not have an explicit formula for the signal’s lifespan, we esti-

mate ∂τ
∂p

using the central difference approximation:

∂τ

∂p
=

τ(p+ ∆)− τ(p−∆)

2∆p
+O(∆p2), (2.28)

where ∆p = 1% of p. The resulting sensitivity indices of the lifespan are

summarized in Table 2.4.

The lower threshold for the bystander-induced death in healthy cells, a1,

has the strongest positive relationship to the lifespan of the bystander signal.

The positive value suggests that a cell that is highly resistant to signal-induced

death, i.e., will emit a longer-lived bystander signal. In contrast to the lower

threshold of the signal-dependent repair, f1, which has the lowest positive

sensitivity index, a1 will be a more important parameter to control in order to

reduce the lifespan of an emitted bystander signal.

The upper threshold for the signal-dependent repair, f2, has the strongest

negative relationship to the lifespan of the signal. This is because any increase

in f2 will allow for more repair in the damaged cells and thereby reducing the

number of cells emitting the bystander signal. This parameter also is a good
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Parameters Sτ

µ 0.3676 Cell’s proliferation rate

λ -0.0028 Rate of one-time signal emission by dead cells

κ -0.1066 Proportion of damaged cells that are signalling

f1 0.0337 Lower threshold for signal-dependent repair

f2 -4.3947 Upper threshold for signal-dependent repair

a1 4.7595 Lower threshold for byst. death in healthy cells

a2 0.7577 Upper threshold for byst. death in healthy cells

e1 -0.9485 Lower threshold for byst. damage in healthy cells

e2 -0.0898 Upper threshold for byst. damage in healthy cells

A0 -1.6389 Max. rate of byst. death in healthy cells

E0 0.5192 Max. rate of bystander signal-induced cell damage

F0 -0.0730 Max. rate of signal-dependent repair

γ0 -0.8812 Max. rate of radiation damage

Table 2.4: Sensitivity analysis of the bystander signal’s lifespan.

candidate to control in order to reduce the lifespan of an emitted bystander

signal.

Parameters such as λ, κ, and γ0 that enhance the production of bystander

signal have negative sensitivity indices. This negative relationship to the sig-

nal’s lifespan might seem counterintuitive. Since an increase in either λ, κ or

γ0 will lead to an emission of more signals. However, increasing the bystander

signal production will also increase the rate of bystander signal-induced death

in cells. This in turn leads to the death of damaged cells, which are the emit-

ters of bystander signals, and ultimately leads to a reduction in the lifespan

of the signals.

The rate of proliferation, µ, has a positive relationship to the signal’s lifes-

pan. This increased proliferation will ensure a quick re-population of cells

after radiation exposure. This will in turn yield a consistent increase in the

population of the damaged cells via bystander signal-induced damage leading
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Figure 2.14: Histogram comparing the total cell death, direct radiation-induced
death, and bystander signal-induced death, respectively at different doses.

to a longer-lived signal.

Parameters such as e1, e2 and F0 whose increase in value reduce the pop-

ulation of the damaged cells have negative sensitivity indices. This is be-

cause reduced concentration of bystander signal will quickly decay due to the

threshold-dependent nature of bystander effects.

2.5 Sensitivity analysis of the bystander signal-

induced cell death

Bystander signal-induced death is one of the bystander effects in cells that

needs to be further understood. Many biological observations and mathemat-

ical models have found this bystander effect to be more pronounced with low
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doses of radiation [78, 93]. Our model exhibit the same behaviour, as illus-

trated in Figure 2.14. We found that, although the direct radiation-induced

death i.e., the direct cell kill, is monotonically increasing with doses, the by-

stander cell death is non-monotonic. Indeed, we observe more bystander cell

death at lower doses than at higher doses. The non-monotonicity of the by-

stander cell death reflects in the overall effect of radiation, i.e., the total cell

kill, where there are more cell death than expected at low doses. This is the

phenomenon of hyper-radiosensitivity and increased radio-resistance described

in Section 2.1.1. We use sensitivity analysis similar to the one used in the pre-

vious section to investigate the cell parameters that affect this bystander cell

death the most.

Let x∗(t) be the difference between the cell death at time, t, computed

using the full bystander model (2.12) and the cell death at time, t, computed

when the bystander signal component of the bystander model is removed.

The sensitivity coefficient, Sx∗ , of the bystander cell death to a parameter, p,

is given by

Sx∗ =

∂x∗(p)
∂p

x∗(p)
p

. (2.29)

We will use forward difference to estimate ∂x∗(p)
∂p

. The resulting sensitivity

indices of the bystander signal-induced cell death are summarized in Table 2.5.

The parameters such as κ, E0, and γ0 that enhance the population of the

damaged cells all have strong relationships to the bystander signal-induced

cell death. This is because increase in bystander signal production will in turn

increase the rate of bystander signal-induced death in cells. However, κ has

the strongest positive relationship to the bystander signal-induced cell death

and will be a more important parameter to control in order to reduce the

signal-induced death in cells.

As expected, the signal-induced death in cells increases with increase in the

rate of bystander signal-induced death in cells, A0, as seen in the positivity

of its sensitivity index. On the other hand, its lower and upper thresholds,

a1 and a2, both have negative relationship to the signal-induced death. This

is because increase in any of these thresholds will reduce the rate of signal-
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Parameters Sx∗

µ -0.0366 Cell’s proliferation rate

λ 0.0044 Rate of one-time signal emission by dead cells

κ 3.4630 Proportion of damaged cells that are signalling

f1 -0.1792 Lower threshold for signal-dependent repair

f2 -0.4733 Upper threshold for signal-dependent repair

a1 -0.9903 Lower threshold for byst. death in healthy cells

a2 -0.9699 Upper threshold for byst. death in healthy cells

e1 -0.3306 Lower threshold for byst. damage in healthy cells

e2 -0.4946 Upper threshold for byst. damage in healthy cells

A0 0.4012 Max. rate of byst. death in healthy cells

E0 0.2220 Max. rate of bystander signal-induced cell damage

F0 -0.5066 Max. rate of signal-dependent repair

γ0 2.7417 Max. rate of radiation damage

Table 2.5: Sensitivity analysis of the bystander signal-induced cell death.

induced death in cells, which explains their negative sensitivity indices.

Parameters such as f1, f2, e1, e2 and F0 whose increase in value reduces

the population of the damaged cells all have negative relationship to the signal-

induced death in cells. This is simply because fewer damaged cells will result

in lower concentration of emitted signals and in turn result in less bystander

effects including the signal-induced cell death.

Lastly, the rate of cell proliferation, µ, has a negative relationship to the

signal-induced death in cells. This seems counterintuitive but increase in cell

death will reduce the cell’s population below their carrying capacity. This

population reduction will result in cell repopulation which is even more rapid

with cells of high proliferation capacity. This repopulation eventually masks

the effect of radiation on cells, especially the secondary radiation effects on

cell death.
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2.6 Discussion

Radiation-induced bystander signal is a low-dose phenomenon whose effect

on cancer radiotherapy and radiation risk can no longer be overlooked. The

dynamics presented in this manuscript have many biological implications.

It is interesting to see that the bystander effect model is able to fully ex-

plain the observed HRS and IRR phenomena as seen in the fit in Fig. 2.6. This

is in perfect agreement with the result of a computational model of Powathil

et. al. in [93] and experimental observations of Mothersill and Seymour [83].

Although there are other possible explanations of the HRS/IRR phenomena

as well, namely, the cell cycle arrest via the G2-checkpoint [65] and the ATM-

independent p53-dependent apoptosis [118]. G2 checkpoint is a regulatory

mechanism that prevents damaged G2-phase cells from proceeding to mitosis

until the damage is repaired. At low doses, this checkpoint is not quickly

activated; and damaged cells entering mitosis without repair eventually un-

dergo apoptosis. This leads to an increased cell death at low doses; and hence

the phenomenon of HRS/IRR. ATM-independent p53-dependent apoptosis is

the apoptotic pathway that is initiated by the tumor suppressor protein, p53,

when a damage is irreparable. This mechanism is similar to the mechanism of

Cytochrome Complex, except that bystander signal can also involve molecules

or proteins which are not p53-dependent. There has been experimental evi-

dence for these three hypotheses, but it is still not clear which, or in which

combination, they contribute to the HRS and IRR; and thus further analysis

is required. However, our model shows that bystander effect is an important

contributor to the HRS/IRR phenomenon.

The parameter estimation in Section 2.2 computes a 95% credible interval

for each parameter value. The credible intervals for the lower thresholds of

bystander effects considered in this work (that is, bystander signal-induced cell

death, DNA repair delay and bystander signal-induced cell damage) present a

possible succession of occurrence of these bystander effects. Proper ordering

of the lower bounds of these credible intervals i.e., f1 ≤ b1 ≤ e1 ≤ a1, gives

some insight into the possibility of damaged cells experiencing DNA repair

delay as the first bystander effect. This is followed by the bystander signal-
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induced death in the damaged cells, and afterwards, the bystander signal-

induced damage and death in the healthy cells population. This sequence

suggests that the damaged cells respond to the signals before the healthy cells

respond.

In the implementation of affine invariant ensemble MCMC sampler to esti-

mate the model parameters, there may be technical issues such as parameter

identifiability. In which case the parameter space in Table 2.2 may not be

unique. This problem usually arises as a result of model complexity and/or

the sufficiency of the available data. There are standard methods for address-

ing such issues in literature [92, 13, 115, 72]. We did not investigate this issue

in this chapter and it will be a subject of future research.

The question about the lifespan of a bystander signal once it is emitted

has been questioned in the literature [10]. Mothersill and Seymour in [78]

found that an emitted bystander signal can still cause bystander effects in

cells even 60h after its emission. Also, Goyanes-Villaescusa [36] and Pant and

Kamada [91] observed that the signal can persist for several months and years,

respectively. In our model, we found two interior steady states whose stability

are respectively stable and saddle. We also found a stable homogeneous steady

state at (u = 1, w = 0). The stable manifold of the saddle interior steady state

forms a separatrix that demarcates the basins of attraction of the two stable

steady states. We observe that the trajectories that converge to the stable

interior steady state provides an explanation for the observation of the presence

of bystander signal in cells exposed to radiation several years before. On the

other hand, trajectories that converge to the stable homogeneous steady state,

(1, 0), pass by the interior saddle point leading to a long persistence.

We found a condition for the existence of the interior steady states in

Eqn. (2.11). Although this condition depends on all the bystander effects

considered in this work, we also found a dependence on the cell’s prolifera-

tion capacity, µ. We observe that cells with high values of µ are likely to

admit the interior steady states while lower values of µ are unlikely to satisfy

Eqn. (2.11). Also, we observe the dependence of the existence of this interior

steady states on the values of the bystander effects. In particular, we found

the maximum rate, A0, of bystander signal-induced death as an important
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bifurcation parameter leading to a saddle node bifurcation. Higher values of

A0 leads to disappearance of the interior steady state while the system admits

these interior steady states at lower values.

In the absence of the interior steady state, we found several sensitive pa-

rameters that can influence the signal’s lifespan. The strongest of these is the

lower threshold, a1, for bystander signal-induced death in cells. This parame-

ter will be very important in controlling the effect of bystander signal. Most

importantly, we also observe that highly proliferating cells emit a longer-lived

bystander signal. This is also corroborated by the dependence of the condition

in Eqn. (2.11) on µ.

The understanding of the signal’s behavior in a homogeneous environment

with multiple radiation exposures is of great interest since fractionated radi-

ation treatment is a very common treatment strategy for cancer. Our model

shows that the bystander signal is being produced immediately after each frac-

tion as seen in Section 2.3. Although the peak of signal concentration does not

grow with increase in radiation exposures, the peak of the signal concentration

immediately after the second radiation exposure is significantly higher than

the rest. We also observe that an increase in radiation exposure can push a

trajectory out of the basin of attraction for the stable interior steady state

to the basin of attraction of the stable homogeneous steady state. Thus, a

further radiation exposure can completely change the behavior of an emitted

bystander signal.

Bystander signal dynamics when the domain is partially irradiated is very

crucial. This is because tumor cells undergoing radiotherapy are usually sur-

rounded by normal tissues. Under singular and multiple exposures, there seem

to be a maximum domain size that needs to be irradiated in order for the sig-

nal to die out. We will refer to this as the maximum domain problem. Similar

to the dynamics in a homogeneous domain, we also observe that further ra-

diation exposure can push a trajectory heading for the stable interior steady

state to the basin of attraction of the stable homogeneous steady state. Our

simulations reveal that the signal dynamics with more than two fractions will

always converge to a zero steady state.

The understanding of the dynamics of the bystander signal cell kill is very
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interesting to the radiologists in administering low dose of radiation to sur-

rounding normal tissues while the target volume is treated to a high radiation

doses. This is usually done in order to reduce radiation toxicity to the sur-

rounding tissues. The sensitivity analysis of the bystander signal cell kill in

Section 2.5 shows that the maximum rate, E0, of radiation damage, the frac-

tion, κ, of damaged cells and the maximum rate, γ0, of radiation damage

are very strongly influential on the bystander signal-induced cell death. Thus,

highly resistant cells to radiation damage will also be resistant to the bystander

cell kill.

In this chapter, we analyzed some spatial aspects of the model, but addi-

tional analysis certainly would be fruitful. In typical radiation treatments, the

radiation dose is not applied uniformly over the tumor domain, hence a distinct

spatial structure is imprinted. Also, the bystander signal might be transported

differently in different types of tissue such as tumor tissue, stroma, blood ves-

sels, collagen networks etc. However, a detailed consideration of such spatial

aspects is beyond the scope of this chapter and needs to be left for future

research.

Our model incorporated three bystander effects: cell repair delay, bystander

signal-induced death and damage. There is the need to incorporate more

bystander effects like genetic instabilities, mutation, etc., for more insight and

richer understanding of this phenomenon of bystander effects.
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Chapter 3

Existence theory and global

attractor for the model in

Chapter 2

Abstract. We establish the global existence of weak solutions of the system of

reaction-diffusion equations with Neumann boundary condition. This system

of equations was developed in Chapter 2 to model the dynamics of radiation-

induced bystander effects. The model incorporates different radiation schedules

described by time-dependent functions with discontinuous jumps at time points

when radiation exposure ends or resumes. In this chapter, we employ molli-

fication and uniform convergence techniques to resolve this inherent temporal

discontinuity. We found that the choice of parameter values used for numerical

simulations in the previous chapter is a special case of a larger parameter space

that support global existence of solutions. Furthermore, we study the asymp-

totic behavior of solutions at long-time. We prove the asymptotic compactness

of solutions and then establish the existence of the global attractor in L2(Ω)3.
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3.1 Introduction

In the previous chapter, we formulated a continuum system of reaction-diffusion

equations for radiation-induced bystander effects given by

ut = Du∆u+ µu(1− u− v)− ru(t)u− A(w)u− γ(t)u+ F (w)v − E(w)u,

vt = Dv∆v − rv(t)v −B(w)v + γ(t)u− F (w)v + E(w)u, (3.1)

wt = Dw∆w + λ1rv(t)v + λ2ru(t)u+ κv − w,

with Neumann boundary condition:

∇u(x, t) · ~n = ∇v(x, t) · ~n = ∇w(x, t) · ~n = 0, x ∈ ∂Ω, t > 0, (3.2)

where Ω is a piecewise smooth domain and ~n is an outer normal vector to its

boundary ∂Ω. The initial cell population and signal concentration are given

by

u(x, 0) = u0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω, (3.3)

which satisfy the following nonnegative conditions:

min
x∈Ω̄

u0(x) ≥ 0, min
x∈Ω̄

v0(x) ≥ 0, and min
x∈Ω̄

w0(x) ≥ 0.

In this dimensionless model, u(x, t) and v(x, t) represent the populations of

healthy and damaged cells, and w(x, t) denotes the concentration of bystander

signals; at time t and position x. The functionals A,B,E and F represent

the bystander effects such as bystander signal-induced death and damage,

and bystander signal-dependent repair. The radiation death and damage are

denoted by ri and γ, respectively. The detailed explanation of the model and

a description of its terms can be found in the previous chapter.

In Chapter 2, we numerically explored the model’s qualitative behavior,

which includes persistent coexistence of cells with bystander signals as well as

non-persistent behaviors, where the bystander signal concentration converges

to zero steady state. In order to further understand these qualities, we re-
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duced the system of three partial differential equations (PDE) to a system of

two ordinary differential equations (ODE), which we then studied using phase

plane analysis.

The phase plane analysis of the reduced ODE system showed that the

model admits at most four steady states, namely, two boundary and two in-

ternal steady states. Depending on the parameter values, the two internal

steady states can collapse into a steady state, or disappear due to saddle-

node bifurcation. Furthermore, we analytically established the existence of

a compact invariant region for the reduced ODE system, which suggests the

existence of the global attractor. In this chapter, we want to investigate if

the same is true for the full system and establish the existence of the global

attractor for the full PDE system (3.1)-(3.3).

Global attractors play an important role in the study of the long-time

behavior of solutions of PDEs. Global attractor is a compact subset of the

phase space that attracts all the trajectories. As such, we can expect the set

of solutions that lie in the attractor to cover all possible ‘eventual’ dynamical

behaviors of the system. Particular attention has been directed to the existence

of attractors for a scalar reaction-diffusion equation both in bounded [63, 99]

and unbounded domains [116]. Several authors like Conway [21], Smoller [109]

and Temam [112] also have investigated the existence of attractors for systems

of partial differential equations.

In this chapter, we will proceed by first proving the global existence and

the uniqueness of solutions to the system of PDEs, and then investigate the

existence of the global attractor for the system. In Robinson [99], the global

existence of solutions and the existence of the global attractor for a single

reaction-diffusion equation with Dirichlet boundary condition was explored.

On the other hand, the biological motivation for our system of PDEs inspires

the choice of Neumann boundary condition and we will modify the methods

from [99] to establish global existence of solutions and the existence of the

global attractor. Much of the mathematical analysis will be made possible

by the isomorphism theorems and norm equivalence, which holds up to finite

Cartesian products of Banach Spaces.

Furthermore, we noted that the functions modeling the radiation contri-
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butions (both damage and death) are discontinuous in time at points when

radiation commences and stops. After radiation stops, the system is continu-

ous in time until the next radiation exposure. This intrinsic property of the

model will be explored by first establishing the global existence of solutions

to the system between radiation exposures. Afterward, we will apply mol-

lification in time and appropriate convergence results to establish the global

existence of solutions to the full system in the presence of radiation.

Indeed, we find a parameter regime for which we have the existence of global

attractor for the long-time dynamics of model after a radiation exposure. We

note that the parameters used in the model simulation in Chapter 2 belong to

these parameter regime. The existence of the global attractor suggests that for

an appropriate parameter regime, the long-time dynamics of the interactions

between the cells and the bystander signals is not affected by intermittent

radiation exposure. This was also confirmed numerically in Chapter 2, when

the fluctuations in the bystander signal concentration are unaffected by further

radiation exposures at long time.

The rest of this chapter is outlined as follows. In Section 3.2, we work with

model (3.1)-(3.3) in a vectorized form. We describe some of the properties of

various functionals in the model, properties of the the nonlinear reactions term,

with and in between radiation exposures, and the positivity of the system in

between radiation exposures. In particular, we establish the parameter regime

that supports the existence of the global attractor for the model. Some of the

classical results that will be applied in this chapter are outlined in Section 3.3.

Most of these results also hold in finite Cartesian product of their respective

Banach Spaces through norm equivalence in finite dimensional spaces and

isomorphism properties. In Section 3.4, we establish the global existence and

uniqueness of solutions to the system in between radiation exposures. Similarly

in Section 3.5, we establish the global existence and uniqueness of solutions to

the system with radiation exposures by employing temporal mollification and

relevant uniform convergence properties. In Section 3.6, we only establish the

existence of the global attractor for the system in between radiation exposures.

The analysis in this section also applies to the case with constant radiation

exposure. We conclude with a discussion in Section 3.7.

56



3.2 Preliminaries

The model (3.1)-(3.3) can be written in the vectorized form given by
zt = D∆z +GR(z), (x, t) ∈ Ω× {t ≥ 0}

∇z(x, t) · ~n = 0, (x, t) ∈ ∂Ω× {t ≥ 0}

z(x,0) = z0(x), x ∈ Ω.

(3.4)

where we have denoted

z =
(
u v w

)T
, ∆z =

(
∆u ∆v ∆w

)T
, D = diag(Du, Dv, Dw), (3.5)

G(z) =

µu(1− u− v)− A(w)u+ F (w)v − E(w)u

−B(w)v − F (w)v + E(w)u

κv − w

 , (3.6)

R(t, z) =

 −ru(t)u− γ(t)u

−rv(t)v + γ(t)u

λ1rv(t)v + λ2ru(t)u

 , (3.7)

and GR(z) = G(z) +R(t, z). (3.8)

The superscript T in equation (3.5) denote vector transpose.

Consequently, the interaction in between cells and bystander signals be-

tween radiation exposures is governed by
zt = D∆z +G(z), (x, t) ∈ Ω× {t ≥ 0}

∇z(x, t) · ~n = 0, (x, t) ∈ ∂Ω× {t ≥ 0}

z(x,0) = z0(x), x ∈ Ω.

(3.9)

3.2.1 Properties of the model’s parameters

P1: The radiation terms ru,v(t) and γ(t) are piecewise continuous and bounded

functions: there exists r1 > 0,γ0 > 0, such that 0 ≤ ru,v(t) ≤ r1

and 0 ≤ γ(t) ≤ γ0, for all t > 0. In applications, we typically have

rj(t) = rj(d(t)), j = u, v where d(t) denotes the total dose over time, t.
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For T1 > 0, let

ri := min
0≤t≤T1

ri(t), ri := max
0≤t≤T1

ri(t), γ := min
0≤t≤T1

γ(t), γ := max
0≤t≤T1

γ(t)

P2: The bystander response functions A(w), B(w), E(w), F (w) are mono-

tonic and bounded C∞ functions such that there exist positive con-

stants A0, B0, E0, and F0 satisfying 0 < A(w) ≤ A0, 0 < B(w) ≤ B0,

0 < E(w) ≤ E0, and 0 < F (w) ≤ F0. A,B, and E are increasing and F

is decreasing

P2*: Consequently, there exist nonnegative constants A10, B10, E10, and neg-

ative constant F10 such that for all w > 0, we have 0 ≤ A′(w) ≤ A10,

0 ≤ B′(w) ≤ B10, 0 ≤ E ′(w) ≤ E10, and F10 ≤ F ′(w) ≤ 0.

P3: For a given ε > 0 we denote by w∗0 > 0 a constant such that

A(w) ≥ A0 − ε := A1, ∀w ≥ w∗0, (3.10)

E(w) ≥ E0 − ε := E1, ∀w ≥ w∗0, (3.11)

B(w) ≥ B0 − ε := B1, ∀w ≥ w∗0, (3.12)

2ε ≥ F (w) ≥ 0, ∀w ≥ w∗0. (3.13)

We will focus on the properties of the nonlinear reaction term G(z) in the

next subsection.

3.2.2 Properties of the nonlinear term G(z)

Theorem 2 (Positivity). Suppose the initial data z0(x) ≥ 0 ∀x ∈ Ω̄ then any

classical solution z(x, t) to the system (3.9) is nonnegative ∀(x, t) ∈ Ω̄×(0,∞).

Proof. By inspection, we see that (G(z))1 ≥ 0 for u = 0, (G(z))2 ≥ 0 for v = 0,

and (G(z))3 ≥ 0 for w = 0, where the index 1,2,3 denotes the components of

G. Since ∆ with homogeneous Neumann boundary condition is uniformly

parabolic and G is C1 in z; and Hölder continuous in x and t. The result

follows from a comparison theorem in Theorem 10.1 [109].
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Theorem 3. Assume (P1)-(P3) hold. Suppose

κ2 < B1 −
E0

2
, (3.14)

then there exist positive constants M and k2 such that

G(z) · z ≤M − k2|z|2. (3.15)

Proof.

G(z) · z = µu2 − µu3 − µu2v − A(w)u2 − E(w)u2 + F (w)uv

−
(
B(w) + F (w)

)
v2 + E(w)uv + κvw − w2

Using property (P3) above, we have

G(z) · z ≤ µu2 − µu3 − µu2v − A1u
2 − E1u

2 + 2εuv −B1v
2

+ E0uv + κvw − w2 +M,

where

M = max{G(z) · z : 0 ≤ w ≤ w∗0, 0 ≤ u, v ≤ 1} (3.16)

Young’s inequality implies that

G(z) · z ≤ − µu2(u− 1 + v)−
(
A1 + E1 −

E0

2

)
u2

−
(
B1 −

E0

2
− κε0

)
v2 − (1− κ

ε0
)w2 +M

≤ −
[
µ(u− 1 + v) + A1 + E1 −

E0

2

]
u2

−
(
B1 −

E0

2
− κε0

)
v2 −

(
1− κ

ε0

)
w2 +M.

By the condition (3.14), if we choose ε0 > 0 such that κ2 < ε0 < B1− E0

2
then
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B1 − E0

2
− κε0 and 1− κ

ε0
are positive. If

k2 := min
{
µ(u− 1 + v) + A1 + E1 −

E0

2
, B1 −

E0

2
− κε0, 1− κ

ε0

}
,

then we have

G(z) · z ≤M − k2|z|2,

and the proof is complete.

We note that condition (3.14) is satisfied by the choice of parameter values:

κ = 0.3968, E0 = 0.1333, B1 ≈ 0.3, ε = 0

that was used in Chapter 2. The condition in (3.14) suggests that the rate

of bystander production κ, in the absence of radiation exposure, is less than

the maximum rate of bystander signal-induced death B1. Later on we will see

that this condition is also necessary for the global existence of weak solutions

to the system of PDEs (3.9) when the reaction term is G(z).

The following result shows that each component ofG(z) is linearly bounded.

Lemma 1. Suppose u, v, w > 0, there exist positive M1i and M2i, such that,

for each i ∈ {1, . . . , 3},

(G(u, v, w))i ≤M1i +M2i(u+ v + w). (3.17)

Proof. Using properties (P2)-(P3), let

M2i := {(G(z))i : 0 < u, v < 1, 0 < w < w∗0}.

For the first entry,

(G(u, v, w))1 = µu(1− u− v)− A(w)u+ F (w)v − E(w)u

≤ µu(1− u− v)− A1u+ 2εv − E1u+M11

≤ −(A1 + E1)u+ 2εv +M11.
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Thus, if M22 = 2ε, then

(G(u, v, w))1 ≤ M22(u+ v) +M11.

For the second entry,

(G(u, v, w))2 = −B(w)v − F (w)v + E(w)u

≤ −(B1 + 2ε)v + E0u+M13

≤ M23(v + w) +M13,

where M23 = κ.

For the third entry,

(G(u, v, w))2 = κv − w

≤ κv − w +M13

≤ M13(u+ v) +M12,

where M12 = E0.

In order to establish the local Lipschitz property of G(z), it suffices (in

conjunction with Lemma 1) to show that the derivative of G(z) is at least

linearly bounded.

Lemma 2. Consider G(z) given by (3.6). The derivative of G : R3
+ → R3, de-

noted by DG(z), has the following upper bound: There exist positive constants

M0 and M1 such that

|DG(z)| ≤M0 +M1|z|. (3.18)

Proof. The Jacobian matrix of G(z) is given by

DG(z) =µ(1− 2u− v)−A(w)− E(w) −µu+ F (w) −A′(w)u+ F ′(w)v − E′(w)u

E(w) −B(w)− F (w) −v(B′(w) + F ′(w)) + E′(w)u

0 κ −1

 .
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Using L1 norm, we have

|DG(z)| = |µ(1− 2u− v)− A(w)− E(w)|+ | − µu+ F (w)|

+ | − A′(w)u+ F ′(w)v − E ′(w)u|+ |E|+ | −B − F |

+ | − v(B′ + F ′) + E ′u)|+ κ+ 1

≤ |µ(1− 2u− v)− A1 − E1|+ | − µu+ F0|

+ | − A′(w)u+ F ′(w)v − E ′(w)u|+ E0 +B0 + F0

+ | − v(B′(w) + F ′(w)) + E ′(w)u|+ κ+

≤ µ+ 3µ|u|+ µ|v|+ A1 + E1 + E0 +B0 + 2F0

+ | − A′(w)u+ F ′(w)v − E ′(w)u|+ κ+ 1

+ | − v(B′(w) + F ′(w)) + E ′(w)u|

≤ µ+ 3µ|u|+ µ|v|+ A1 + E1 + E0 +B0 + 2F0

+ (A10 + E10)|u|+ F10|v|+ E10|u|+ κ+ 1

+ (B10 + F10)|v|+ E10|u|

≤ M0 + (3µ+ A10 + 3E10)|u|+ (µ+ 2F10 +B10)|v|

≤ M0 +M1|z|,

where

M0 := µ+ A1 + E1 + E0 +B0 + 2F0 + κ+ 1

M1 := max{3µ+ A10 + 3E10, µ+ 2F10 +B10}.

The first inequality holds by applying properties (P2) and (P3), and the third

inequality holds from the property (P2*).

The following useful corollary will be handy after the boundedness of z has

been established. In fact, we will only use it to establish the uniqueness of a

bounded solution.

Corollary 2. Suppose that there exists a positive constant M2 such that |z| <
M2, then

|DG(z)| ≤M,
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for some M > 0.

Proof. The result follows directly from Lemma 2 by noting that |z| < M2 and

setting M = M0 +M1M2.

This corollary implies that each component of the matrix DG(z) is finite

for bounded z.

In the next subsection, we will focus on the properties of the full nonlinear

reaction term GR(z).

3.2.3 Properties of the nonlinear term GR(z)

Similar to Theorem 3, we can prove the same result for the reaction term

GR(z) as follows:

Theorem 4. Suppose κ
2
< min

{
B1, 1− λ2

ru
2
− λ1

rv
2

}
. If

(γ + E0)2

2(µ+ A1 + E1 + γ− ε+ ru)− λ2ru
< 2(B1 − ε+ rv)− κ− λ1rv (3.19)

then under the assumptions (P1)-(P3), there exist positive M and k2 such that

GR(z) · z = M − k2|z|2. (3.20)

Proof.

GR(z) · z = µu2 − µu3 − µu2v − ru(t)u2 − γ(t)u2 − A(w)u2

− E(w)u2 + F (w)uv − ru(t)v2 + γ(t)uv

−
(
B(w) + F (w)

)
v2 + E(w)uv + λ1ru(t)vw

+ λ2ru(t)uw + κvw − w2

≤ − u2
[
µ(u+ v − 1) + ru(t) + A1 + E1 + γ(t)

]
− v2

(
rv(t) +B1

)
+
(
2ε+ γ(t) + E(w)

)
uv

+ λ1ru(t)vw + λ2ru(t)uw + κvw − w2 +M,
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where the last inequality is due to property (P3) and M is defined as

M = max{GR(z, t) · z : 0 ≤ w ≤ w∗0, 0 ≤ u, v ≤ 1, 0 < t < T} (3.21)

Young’s inequality implies that

GR(z) · z ≤ − u2
[
µ(u+ v − 1) + ru(t) + A1 + E1

+ γ(t)− ε− γ(t)

2ε0
− E0

2ε0
− λ2

ru(t)

2

]
− v2

[
rv(t) +B1 −

ε0γ(t)

2
− ε− ε0E0

2
− λ1

ru(t)

2
− κ

2

]
− w2

[
1− λ2

ru(t)

2
− λ1

rv(t)

2
− κ

2

]
+M

≤ − u2
[
µ(u+ v − 1) + ru(t) + A1 + E1 + γ(t)

− ε− γ(t)

2ε0
− E0

2ε0
− λ2

ru(t)

2

]
− v2

[
rv(t) +B1 −

ε0γ(t)

2
− ε− ε0E0

2
− λ1

ru(t)

2
− κ

2

]
− w2

[
1− λ2

ru(t)

2
− λ1

rv(t)

2
− κ

2

]
+M

≤ − u2
[
µ(u+ v − 1) + ru + A1 + E1 + γ

− ε− γ

2ε0
− E0

2ε0
− λ2

ru
2

]
− v2

[
rv +B1 −

ε0γ

2
− ε− ε0E0

2
− λ1

ru
2
− κ

2

]
− w2

[
1− λ2

ru
2
− λ1

rv
2
− κ

2

]
+M,

where the last inequality is as a result of property (P1). Let

A11 := µ(u+ v − 1) + ru + A1 + E1 + γ− ε− γ

2ε0
− E0

2ε0
− λ2

ru
2

B11 := rv +B1 −
ε0γ

2
− ε− ε0E0

2
− λ1

ru
2
− κ

2

C11 := 1− λ2
ru
2
− λ1

rv
2
− κ

2
.

64



Since

A11 ≥ µ+ ru + A1 + E1 + γ− ε− γ

2ε0
− E0

2ε0
− λ2

ru
2
,

if we choose positive ε0 such that

γ + E0

2(µ+ A1 + E1 + γ− ε+ ru)− λ2ru
< ε0 <

2(B1 − ε+ rv)− κ− λ1rv
γ + E0

then A11 and B11 are positive. If k2 := min
{
A11, B11, C11

}
, then we have

GR(z) · z ≤M − k2|z|2, and the proof is complete.

Condition (3.19) implies that the damage incurred through bystander and

radiation damage during a radiation event is less than the bystander death

incurred in both damaged and healthy cells. Notice that this condition still

holds when γ = ru,v = 0. It will be interesting to estimate the maximum

values of the radiation terms that satisfy the condition. For simplicity, we will

denote

L0 := 2E0,

L1 := E2
0 −

[
(2B1 − κ− 2ε− λ1rv)

][
2(µ+ A1 + E1 − ε)− λ2ru

]
. (3.22)

Corollary 3. Suppose L1 < 0. There exists a bound for γ for which condition

(3.19) holds. In fact,

0 ≤ γ ≤ 1

2

{
− L0 +

√
L2

0 − 4L1

}
,

where L0 and L1 are as defined in (3.22).

Proof. Let x = γ, then from (3.19) we have F(x) := x2 + xL0 + L1 < 0. If

we can show that F(x) has a minimum between its two zeros, then we are

done. Indeed, the zeros of F(x) are 1
2

{
− L0 ±

√
L2

0 − 4L1

}
and its attains

a minimum at x = −L0

2
. This implies that F attains a minimum (which is

negative) between its zeros. If L1 < 0 then F will be negative for all values in

the interval
(
0, 1

2

{
− L0 +

√
L2

0 − 4L1

})
and the proof is complete.
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Since we are dealing with a system of nonlinear parabolic equations in this

chapter, there is the need to define our vector norm that will be used in the

remainder of this chapter.

Definition 2. Let
(
X, ‖ · ‖X

)
be a Banach space and let z =

uv
w

 such that

z ∈ Y = X3. We will define

‖z‖Y := ‖u‖X + ‖v‖X + ‖w‖X.

In the next section, we will outline some of the classical results that will

be used in the remainder of this chapter.

3.3 Some useful classical results

In this section, we will state some of the classical results3 that will be used to

prove the existence of solutions for the system of reaction-diffusion equations

used to model the radiation-induced bystander effects (3.9). Although, these

results hold in their respective underlying Banach spaces. They also hold up

to a finite Cartesian product of these underlying spaces.

Let C0,α(Ω̄), 0 < α ≤ 1, be the spaces of Hölder continuous functions on

a bounded domain Ω̄ with the norm given by

‖f‖0,α = sup |f |+ |f |0,α,

where

|f |0,α = sup
x,y∈Ω̄,x6=y

|f(x)− f(y)|
|x− y|α

.

We will use the following classical result to deduce that the non-linearity

G(z) ∈ Lp(Ω)3 for p ∈ (1,∞).

Lemma 3. Let Ω̄ be bounded. C0,α(Ω̄) ⊂ Lp(Ω), for p ∈ (1,∞).

3please consult the references for the details of the proofs
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Proof. Let f ∈ C0,α(Ω̄), then

‖f‖p :=
(∫

Ω

|f |p
) 1
p ≤ |Ω|

1
p sup |f |

≤ |Ω|
1
p sup |f |+ |Ω|

1
p |f |0,α

= |Ω|
1
p‖f‖0,α.

Since ‖f‖0,α <∞ then the result follows.

Lemma 4. If G(z(x, t)) is Hölder continuous in z(x, t) and z(x, t) is Lipschitz

continuous in x. Then G(z(x, t)) is Hölder continuous in x for every finite

t > 0.

Proof. Since G(z(x, t)) is Hölder continuous in z(x, t) we have

|G(z(x, t))−G(z(y, t))| ≤ C1|z(x, t)− z(y, t)|α. (3.23)

If z(x, t) is Lipschitz continuous in x for every t > 0 then we have

|z(x, t)− z(y, t)| ≤ C2|x− y|. (3.24)

Substituting (3.24) into (3.23) yields

|G(z(x, t))−G(z(y, t))| ≤ C|x− y|α,

and the result follows.

If the function G(z(x, t)) is C∞(Ω) in z(x, t) it is then Hölder continuous

in z(x, t). In addition, if z(x, t) is Lipschitz continuous in x, then Lemma 4

implies that G(z(x, t)) is Hölder continuous in x. By applying Lemma 3, we

have the following corollary:

Corollary 4. Suppose Ω̄ is bounded. If G(z(x, t)) ∈ C∞(Ω) then G(z(x, t)) ∈
Lp(0, T ;Lp(Ω)) for every finite T > 0. Indeed, for every finite T > 0,∫ T

0

‖G(z(x, t))‖ppdt =

∫ T

0

∫
Ω

|G(z(x, t))|pdxdt ≤ T |Ω|‖G‖p0,α <∞.
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We will use the following result, which is usually a corollary to Alaoglu

compactness theorem, in the proof of the existence of solution of (3.9). This

result is from Corollary 4.19 in [99].

Lemma 5 (Reflexive weak compactness). Let X be a reflexive Banach space

and xn a bounded sequence in X. Then xn has a subsequence that converges

weakly in X.

The above result will be very useful in extracting a convergent subsequence

from a bounded sequence in a Hilbert space. In the next lemma, which is from

Theorem 8.1, [99], we will interpret A ⊂⊂ B as “A is compactly embedded

B”.

Lemma 6. Let X ⊂⊂ H ⊂ Y be Banach spaces, with X reflexive. Suppose

that un is a sequence that is uniformly bounded in L2(0, T ;X), and dun/dt is

uniformly bounded in Lp(0, T ;Y ), for some p > 1. Then there is a subsequence

that converges strongly in L2(0, T ;H).

The following result is from Exercise 7.3 in [99].

Lemma 7. Let 1 ≤ p <∞. Then elements of the form

ψ =
n∑
j=1

ψjαj(t), (3.25)

with ψj ∈ V and αj ∈ Lp(0, T ), are dense in Lp(0, T ;V ). Moreover, the result

also holds for αj ∈ C1(0, T ) or ψj ∈ C∞c (Ω).

The following result is adapted from Lemma 8.3 in [99]

Lemma 8. Let U ⊂ Rm be bounded and open, and let gj be a bounded sequence

of functions in Lp(U). If g ∈ Lp(U) and gj → g a.e then gj ⇀ g in Lp(U).

The following result is adapted from Theorem 7.2 in [99].

Lemma 9. Suppose that

u ∈ L2(0, T ;H1(Ω))3 and
du

dt
∈ L2(0, T ;H−1(Ω))3

then u ∈ C0(0, T ;L2(Ω)), with

sup
t∈[0,T ]

|u(t)| ≤ C
(
‖u‖L2(0,T ;H1(Ω)) +

∥∥∥du
dt

∥∥∥
L2(0,T ;H−1(Ω))

)
.
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In the next section, we will employ the above classical results to establish

the existence of weak solutions for the system of PDEs with G(z) as the

reaction term.

3.4 Existence of solutions to the system of PDEs

with reaction term G(z)

In this section, we will focus on the system (3.9) with reaction term G(z). A

natural way to think of a solution z(x, t) is as a trajectory in some infinity-

dimensional phase space. That is, we can view z(x, t) as a sequence of functions

z(t), each defined on Ω, so that

[z(t)](x) = z(x, t) with z(t) : Ω→ D3, for some space D. (3.26)

In the light of (3.26), we will rewrite (3.9) as

dz

dt
+ Az = G(z), (3.27)

where A = −∆ with Neumann boundary condition.

Definition 3 (Weak Solution). We say that a function

z ∈ L2(0, T ;H1(Ω))3 with
dz

dt
∈ L2(0, T ;H−1(Ω))3

is a weak solution of the initial-boundary-value problem in (3.9) provided〈dz
dt
, ν
〉

+ 〈Az, ν〉 = 〈G(z), ν〉

for each ν ∈ L2(0, T ;H1(Ω))3 and a.e. time 0 ≤ t ≤ T ; and z(0) = z0.

Theorem 5 (Existence of weak solution). Given z0 ∈ L2(Ω)3, then the system

of equations (3.9), with G(z) satisfying properties (3.15), (3.17), and (3.18),

has a unique weak solution z(t) for any T > 0. Moreover,

z ∈ L2(0, T ;H1(Ω))3 ∩ C0(0, T ;L2(Ω))3,
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and z0 7→ z(t) is continuous on L2(Ω)3. Eq. (3.27) holds as an equality in

L2(0, T ;H−1(Ω))3.

Proof. Using Galerkin approximation, we look for an approximate solution

zn(t) that lies in the finite dimensional space spanned by the first n eigenfunc-

tions, ωj ∈ L2(Ω)3, of A i.e.,

zn(x, t) =
n∑
j=1

znj(t)ωj(x), (3.28)

and solves 〈dzn
dt
, ωj

〉
+ 〈Azn, ωj〉 = 〈G(zn), ωj〉, 1 ≤ j ≤ n, (3.29)

with 〈zn(0), ωj〉 = 〈z0, ωj〉.
Since each ωj is orthonormal, from (3.28) we have znj = 〈zn, wj〉; also〈dzn

dt
, wj

〉
=
dznj
dt

and 〈Azn, wj〉 = λjznj.

So we have the following set of ODEs for the components znj:

dznj
dt

+ λjznj = 〈G(znj), wj〉.

We could also write this as

dzn
dt

+ Azn = PnG(zn), zn(0) = Pnz0, (3.30)

where Pn is the orthogonal projection in L2(Ω)3 unto the span of {ω1, · · · , ωn}.
Since the nonlinearity in (3.30) is locally Lipschitz by Lemmas 1 and 2 , then

the finite dimensional system (3.30) has a unique local solution.

It remains to show that the solutions are bounded in time and uniformly

bounded in n. If we multiply (3.30) by zn and integrate over domain Ω, while

noting that

〈PnG(zn), zn〉 = 〈G(zn), Pnzn〉 = 〈G(zn), zn〉,
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we get

1

2

d

dt
‖zn‖2

2 + ‖∇zn‖2
2 =

∫
Ω

G(zn)zndx.

Now we can use Theorem 3 to write

1

2

d

dt
‖zn‖2

2 + ‖∇zn‖2
2 ≤

∫
Ω

M − k2|zn|2dx

= M |Ω| − k2‖zn‖2
2. (3.31)

This implies that

1

2

d

dt
‖zn‖2

2 + k‖zn‖2
H1 ≤ M |Ω|, for some k.

Integrating both sides between 0 and T gives

1

2
‖zn(T )‖2

2 + k

∫ T

0

‖zn‖2
H1dt ≤ M |Ω|T +

1

2
‖z0‖2

2.

It then follows from the last inequality that

sup
t∈[0,T ]

‖zn(t)‖2
2 ≤ 2K,∫ T

0

‖zn‖2
H1dt ≤

K

k
,

where K := M |Ω|T + 1
2
‖z0‖2

2 < ∞, for bounded sets of initial conditions in

L2(Ω)3 and bounded time intervals. This implies that

zn is uniformly bounded in L∞(0, T ;L2(Ω))3, (3.32)

zn is uniformly bounded in L2(0, T ;H1(Ω))3. (3.33)

Corollary 4 already shows that

G(zn) is uniformly bounded in Lp(0, T ;Lp(Ω))3. (3.34)

Finally, we need a uniform bound on dzn
dt

. We first note that L2(0, T ;H−1(Ω))3
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and Lp(0, T ;Lp(Ω))3 are continuously included in Lp(0, T ;H−1(Ω))3, for p = 2.

It follows that since

dzn
dt

= −Azn + PnG(un),

we have

dzn
dt

is uniformly bounded in L2(0, T ;H−1(Ω))3.

Based on (3.32) and (3.33) and using Lemma 5 we can extract a weakly con-

vergent subsequence, zn, with

zn ⇀ z in L2(0, T ;H1(Ω))3, (3.35)

G(zn) ⇀ χ in L2(0, T ;L2(Ω))3. (3.36)

Since H1(Ω)3 ⊂⊂ L2(Ω)3 ⊂ H−1(Ω)3 and H1(Ω)3 is reflexive we can apply

Lemma 6 to further extract a subsequence such that

zn → z in L2(0, T ;L2(Ω))3.

Note that this space can also be written as L2(ΩT )3, where ΩT = Ω × T . If

Qn = I − Pn, since we want PnG(zn) ⇀ χ in L2(0, T, L2(Ω))3, we can write∫
Ω×T

(PnG(zn)− χ)ψdxdt =

∫
Ω×T

(G(zn)− χ)ψdxdt

−
∫

Ω×T
QnG(zn)ψdxdt (3.37)

for all ψ ∈ L2(0, T ;L2(Ω))3. The first term in (3.37) tends to zero by (3.36).

For the convergence of the second term, we will employ Lemma 7 to find

functions of the form (3.25) with αj ∈ L2(0, T )3 and ψj ∈ C∞c (Ω)3 which are

dense in L2(0, T ;L2(Ω))3. For such functions

∫
ΩT

3∑
i=1

[QnG(zn)]i

n∑
j=1

ψijα
i
j(t)dxdt =

∫
ΩT

3∑
i=1

[G(zn)]i

( n∑
j=1

αij(t)Qnψ
i
j

)
dxdt.
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Since Qnψ
i
j → 0 in L2(Ω) for each i and j, we have the required convergence of

PnG(zn). Notice that L2(0, T ;H1(Ω))3 ∩ L2(0, T ;L2(Ω))3 = L2(0, T ;H1(Ω))3.

It then follows that all terms converge in the dual space L2(0, T ;H−1(Ω))3

of L2(0, T ;H1(Ω))3. The following equality also holds in this dual space:

dz

dt
+ Az = χ.

It remains to show that χ = G(z). Since zn → z in L2(ΩT )3, then there is a

subsequence znj(x, t) that converges pointwise to z(x, t) almost everywhere in

ΩT . By the continuity of G, then G(znj(x, t))→ G(z(x, t)) for a.e (x, t) ∈ ΩT .

By the bound of G(znj) in L2(ΩT )3 in (3.34), we can apply Lemma 8 to deduce

that G(znj) ⇀ G(z) in L2(ΩT )3. By uniqueness of weak limits, it follows that

χ = G(z).

To prove that z ∈ C0(0, T ;L2(Ω))3, we use the fact that z ∈ L2(0, T ;H1(Ω))3

and dz
dt

= −Az+G(z) ∈ L2(0, T ;H−1(Ω))3, and then apply Lemma 9 to deduce

that z ∈ C0(0, T ;L2(Ω))3.

To show that z(0) = z0, we will choose some φ ∈ C1(0, T ;H1(Ω)∩L2(Ω))3

with φ(T ) = 0. Observe that φ ∈ L2(0, T ;H1(Ω))3. So if we integrate〈dz
dt
, φ
〉

+ 〈Az, φ〉 = 〈G(z), φ〉

by parts in the t variable we get∫ T

0

−〈z, φ̇〉+ 〈Az, φ〉ds =

∫ T

0

〈G(z), φ〉ds+ 〈z(0), φ(0)〉.

Also, doing the same in the Galerkin approximations yields∫ T

0

−〈zn, φ̇〉+ 〈Azn, φ〉ds =

∫ T

0

〈PnG(zn), φ〉ds+ 〈zn(0), φ(0)〉. (3.38)

We can take limits in (3.38) to conclude that∫ T

0

−〈z, φ̇〉+ 〈Az, φ〉ds =

∫ T

0

〈G(z), φ〉ds+ 〈z0, φ(0)〉,
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since zn(0) = Pnz0 → z0. Thus, z(0) = z0.

To prove uniqueness and continuous dependence, let z0, ζ0 ∈ L2(Ω)3 and

consider ξ(t) = z(t)− ζ(t). Then

∂ξ

∂t
+ Aξ = G(z)−G(ζ), ξ(0) = z0 − ζ0.

Multiplying by ξ and integrating over Ω gives

1

2

d

dt
‖ξ‖2

2 + ‖∇ξ‖2
2 = 〈G(z)−G(ζ), z − ζ〉.

The RHS can be further simplified as follows:

〈G(z)−G(ζ), z − ζ〉 =

∫
Ω

(
G(z)−G(ζ)

)
(z − ζ)dx

=

∫
Ω

3∑
i=1

(
Gi(z1, z2, z3)−Gi(ζ1, ζ2, ζ3)

)
(zi − ζi)dx

=

∫
Ω

3∑
i=1

(
Gi(z1, z2, z3)−Gi(ζ1, z2, z3)

+ Gi(ζ1, z2, z3)−Gi(ζ1, ζ2, z3)

+ Gi(ζ1, ζ2, z3)−Gi(ζ1, ζ2, ζ3)
)

(zi − ζi)dx

=

∫
Ω

3∑
i=1

[ 3∑
j=1

∫ zj

ζj

∂Gi

∂zj
(s)ds

]
(zi − ζi)dx

=

∫
Ω

3∑
i,j=1

li,j(zj − ζj)(zi − ζi)dx (3.39)

≤ 3l

∫
Ω

3∑
i=1

|zi − ζi|2dx (3.40)

= 3l

∫
Ω

|z − ζ|2dx

= 3l‖z − ζ‖2
2

= 3l‖ξ‖2
2.

The equality in (3.39) holds from Corollary 2, which implicitly implies that if
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z is bounded then ∂Gi
∂zj

(z) is finite for each i, j. Also, we have assumed that

∂Gi

∂zj
= li,j.

In (3.40), we assume that l = supi,j li,j and then expand the bracket in the

integrand using Young’s Inequality. We therefore obtain

1

2

d

dt
‖ξ‖2

2 ≤ 3l‖ξ‖2
2,

and integrating this yields

‖z(t)− ζ(t)‖2 ≤ ‖z0 − ζ0‖2e
3lt.

This is uniqueness if z0 = ζ0 and is continuous dependence on initial data

otherwise.

So far we have established the existence of global weak solution to the

system of PDE modeling evolution bystander signals after radiation exposure.

In the next section, we will show the existence theory for the full system of

PDE model with the radiation terms.

3.5 Existence of solutions to the system of PDEs

with reaction term GR(z)

In this section, we will focus on establishing the existence of unique, bounded,

weak solution for the full system in (3.4). The main challenge here is the

presence of inherent discontinuity in time in the reaction term GR(z) due to

switching on/off radiation. In order to establish the existence and uniqueness

of bounded solutions (in appropriate Sobolev spaces), we will consider the

following system:

dzh
dt

+ Azh = Gh(zh), (3.41)
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where {Gh}h is a sequence of smooth functions such that Gh → GR “in some

sense” (which will soon be made rigorous) as h → 0. To show the global

existence of unique, weak solution for the system of PDEs with GR as its

reaction terms, we proceed as follows:

• Since Gh is Lipschitz for each h, then (similar to the case with G(z) in

Theorem 5) there exists a unique, bounded, weak solution zh for each h;

• Also, similar to the case with G(z), we can write (3.41) as an equal-

ity in L2(0, T ;H−1(Ω))3 for each h. Thus, if Gh → GR uniformly in

L2(0, T ;H−1(Ω))3 as h → 0 then zh → z as h → 0, where z is the

unique, bounded, weak solution of

dz

dt
+ Az = GR(z). (3.42)

We therefore need to first establish that GR(z) ∈ L2(0, T ;H−1(Ω))3. Recall

that GR(z) = G(z) +R(t, z), where

R(t, z) =

 −ru(t)u− γ(t)u

−rv(t)v + γ(t)u

λ1rv(t)v + λ2ru(t)u

 .

Since G(z) ∈ L2(0, T ;H−1(Ω))3 by Theorem 5, investigating that GR(z) ∈
L2(0, T ;H−1(Ω))3 is equivalent to checking if R(t, z) ∈ L2(0, T ;H−1(Ω))3. We

have the following result to this effect:

Lemma 10. If z ∈ L2(0, T ;H1(Ω))3 then R(t, z) ∈ L2(0, T ;H−1(Ω))3.

Proof. It suffices to show that

‖R(t, z)‖H−1(Ω)3 ≤ K0‖z‖H1(Ω)3 ,

for some K0 > 0.

To this end,

‖R(t, z)‖H−1(Ω)3 = sup
‖θ‖H−1(Ω)3≤1

〈R(t, z), θ〉,
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where

〈R(t, z), θ〉 =

∫
Ω

R(t, z)θdx

=

∫
Ω

ru(t)(λ2uθ3 − uθ1) + γ(t)(uθ2 − uθ1)

+ rv(t)(λ1vθ3 − vθ2)dx

=

∫
Ω

u(γ(t)θ2 + ru(t)λ2θ3 − ru(t)θ1 − γ(t)θ1)

+ v(rv(t)λ1θ3 − rv(t)θ2)dx

=

∫
Ω

z ·m dx, (3.43)

where

m =

γ(t)θ2 + ru(t)λ2θ3 − ru(t)θ1 − γ(t)θ1

rv(t)λ1θ3 − rv(t)θ2

0

 ;

with

m1 =
(

(−γ(t)− ru(t)) γ(t) ru(t)λ2

)
· θ

m2 =
(

0 −rv(t) rv(t)λ1

)
· θ

m3 =
(

0 0 0
)
· θ,

where

θ =
(
θ1 θ2 θ3

)T
.

Applying Cauchy-Schwartz’s Inequality to Eqn. (3.43), we have

〈R(t, z), θ〉 ≤ ‖z‖H1(Ω)3‖m‖H−1(Ω)3 .

To compute ‖m‖H−1(Ω)3 , we proceed as follows:

‖m‖H−1(Ω)3 = sup
‖ζ‖H1(Ω)3≤1

〈m, ζ〉
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with

〈m, ζ〉 =

∫
Ω

m · ζdx

=

∫
Ω

γ(t)θ2ζ1 + ru(t)λ2θ3ζ1 − ru(t)θ1ζ1 − γ(t)θ1ζ1

+rv(t)λ1θ3ζ2 − rv(t)θ2ζ2dx

≤
∫

Ω

γ(t)θ2ζ1 + ru(t)λ2θ3ζ1 + rv(t)λ1θ3ζ2dx

≤
∫

Ω

γ̄θ2ζ1 + r̄uλ2θ3ζ1 + r̄vλ1θ3ζ2dx

≤ k

∫
Ω

θ2ζ1 + θ3ζ1 + θ3ζ2dx

= k

∫
Ω

θ2 + θ3

θ3

0

 ·
ζ1

ζ2

ζ3

 dx

≤ K0〈θ, ζ〉, for some K0

≤ K0‖θ‖H−1(Ω)3‖ζ‖H1(Ω)3 ,

where k = max{γ̄, r̄uλ2, r̄vλ1} and the last inequality is from Cauchy-Schwartz’s

inequality. Consequently,

‖m‖H−1(Ω)3 = sup
‖ζ‖H1(Ω)3≤1

〈m, ζ〉 ≤ K0‖θ‖H−1(Ω)3 .

We then have

sup
‖θ‖H−1(Ω)3≤1

〈R(t, z), θ〉 ≤ sup
‖θ‖H−1(Ω)3≤1

‖z‖H1(Ω)3‖m‖H−1(Ω)3

≤ sup
‖θ‖H−1(Ω)3≤1

K0‖z‖H1(Ω)3‖θ‖H−1(Ω)3

≤ K0‖z‖H1(Ω)3

This implies that

‖R(t, z)‖H−1(Ω)3 ≤ K0‖z‖H1(Ω)3 .
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We will now formally construct the sequence {Gh} of smooth functions.

First, let us define a time-dependent mollifier function ρ(t) as

ρ(t) =

c exp( 1
t2−1

), |t| ≤ 1

0, |t| ≥ 1,

with a choice of c so that
∫
R
ρ(t)dt = 1. Then for each h,

Rh(t, z) := ρh(t) ∗R(t, z) ∈ C∞(0, T ;H−1(Ω))3,

where ρh(t) = h−1ρ
(
t
h

)
and ∗ signifies convolution. For each h, we define our

sequence {Gh} of smooth functions as

Gh(z) = G(z) +Rh(t, z). (3.44)

Since Lemma 10 implies that R(t, z) ∈ L2(0, T ;H−1(Ω))3 whenever we have

z ∈ L2(0, T ;H1(Ω))3, then to complete the existence proof for system (3.42)

we only need to show that

Rh(t, z)→ R(t, z) in L2(0, T ;H−1(Ω))3 uniformly as h→ 0.

Theorem 6. If R(t, z) ∈ L2(0, T ;H−1(Ω))3 then Rh(t, z)→ R(t, z) uniformly

in L2(0, T ;H−1(Ω))3 as h→ 0.

Proof. Let L∗ = L2(0, T ;H−1(Ω))3, H∗ = H−1(Ω)3, H = H1(Ω)3. We claim

that

‖Rh(t, z)‖L∗ ≤ ‖R(τ, z)‖L∗ , ∀h, ∀R ∈ L∗. (3.45)

Suppose for the moment that the claim is true. Let’s choose a function K ∈
C(0, T ;H−1(Ω)) such that

‖R−K‖L∗ < δ.

79



Also, let Kh = ρh(t) ∗ K(t, z), which obviously belong to C(0, T ;H−1(Ω)).

Therefore, using (3.45) we find

‖Rh −R‖L∗ = ‖Rh −Kh +Kh −K +K −R‖L∗

≤ ‖Rh −Kh‖L∗ + ‖Kh −K‖L∗ + ‖K −R‖L∗

≤ 2‖R−K‖L∗ + ‖Kh −K‖L∗

= 2δ + ‖Kh −K‖L∗ .

Since Kh → K uniformly as h→ 0, we have lim suph→0 ‖Rh −R‖L∗ ≤ 2δ.

To prove the above claim (3.45), we consider

‖Rh(t, z)‖2
L∗ =

∫ T

0

‖Rh(s, z)‖2
H∗ds,

with

‖Rh(s, z)‖H∗ = sup
‖θ‖H≤1

∫
Ω

Rh(s, z) · θdx

= sup
‖θ‖H≤1

∫
Ω

θ

∫ T

0

ρh(s− τ)R(τ, z)dτdx

= sup
‖θ‖H≤1

∫ T

0

ρ
1
2
h (s− τ)

∫
Ω

ρ
1
2
h (s− τ)θR(τ, z)dxdτ

≤
(

sup
‖θ‖H≤1

∫ T

0

ρh(s− τ)dτ
) 1

2

[ ∫ T

0

(∫
Ω

ρ
1
2
h (s− τ)θR(τ, z)dx

)2

dτ
] 1

2
(3.46)

≤ sup
‖θ‖H≤1

[ ∫ T

0

(∫
Ω

ρ
1
2
h (s− τ)θR(τ, z)dx

)2

dτ
] 1

2

= sup
‖θ‖H≤1

[ ∫ T

0

(
ρ

1
2
h (s− τ)

∫
Ω

θR(τ, z)dx
)2

dτ
] 1

2

= sup
‖θ‖H≤1

[ ∫ T

0

ρh(s− τ)
(∫

Ω

θR(τ, z)dx
)2

dτ
] 1

2
,
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where we have used Holder’s Inequality in (3.46).

‖Rh(t, z)‖2
L∗ :=

∫ T

0

‖Rh(s, z)‖2
H∗ds

≤
∫ T

0

sup
‖θ‖H≤1

∫ T

0

ρh(s− τ)
(∫

Ω

θR(τ, z)dx
)2

dτds

≤
∫ T

0

sup
‖θ‖H≤1

∫ T

0

ρh(s− τ)
(
‖R(τ, z)‖H∗‖θ‖H

)2

dτds

≤
∫ T

0

∫ T

0

ρh(s− τ)‖R(τ, z)‖2
H∗dτds

=

∫ T

0

∫ T

0

ρh(s− τ)ds ‖R(τ, z)‖2
H∗dτ

=

∫ T

0

‖R(τ, z)‖2
H∗dτ = ‖R(τ, z)‖2

L∗ .

This result shows that Gh → GR uniformly in L2(0, T ;H−1(Ω))3 as h→ 0.

This in turn implies that zh → z ∈ Lp(0, T ;H1(Ω))3, where z is the unique

solution of the full system of PDE with radiation. Thus, we have proved the

following existence theorem for the fully system of PDE in (3.4) with radiation

terms (3.42):

Theorem 7 (Existence theory for the full system). Given z0 ∈ L2(Ω)3, then

the system of equations (3.4) has a unique, bounded weak solution z(t) for any

T > 0. Moreover,

z ∈ L2(0, T ;H1(Ω))3

and equation (3.42) holds as an equality in L2(0, T ;H−1(Ω))3.

3.6 Existence of global attractor for the PDEs

with G(z)

In this section, we will prove the existence of a global attractor for the system

of PDE with reaction term G(z) in L2(Ω)2. In the following, we will precisely
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define the notion of ω-limit set, which will be critical in the analysis of this

section.

Definition 4 (ω-limit set). The ω-limit set of a set D is the set consisting of

all the limit points of the orbits, S(t), of D. Precisely, ω(D) := {y : ∃ tn →
∞, xn ∈ D with S(tn)xn → y}.

Since global attractor is the ω-limit set of a compact absorbing set, we will

first prove the existence of a compact absorbing set. We will start by finding

an absorbing set in L2(Ω)3, and then use the result to show the existence of

an absorbing set in H1(Ω)3. Since H1(Ω)3 is compactly embedded in L2(Ω)3,

the we have a compact absorbing set in L2(Ω)3.

In the rest of this section, we will denote H1 := H1(Ω)3 and L2 := L2(Ω)3.

We proceed as follows:

Proposition 1 (Absorbing set in L2). The reaction-diffusion system (3.9) has

an absorbing set in L2; there is a constant I0 and a time t0(‖z0‖2) such that

the solution z(t) satisfies

‖z(t)‖2 ≤ I0, ∀ t ≥ t0(‖z0‖2)

In addition there is a constant I1 such that∫ t+1

t

‖z‖2
H1dx ≤ I1, ∀ t > t0(‖z0‖2) (3.47)

Proof. If we multiply (3.27) by z and integrate over Ω while applying Theorem

3, we obtain

d

dt
‖z(t)‖2

2 + ‖∇z‖2
2 ≤ 2M |Ω| − 2k2‖z‖2

2, (3.48)

from which we can derive

d

dt
‖z(t)‖2

2 + 2k2‖z‖2
2 ≤ 2M |Ω|.

Using Gronwall inequality we derive

‖z(t)‖2
2 ≤ ‖z0‖2

2e
−2k2t +

M |Ω|
k2

(1− e−2k2t).
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If t ≥ t0(‖z0‖2) = 1
2k2

ln
k2‖z0‖22
M |Ω| , then

‖z(t)‖2
2 ≤ I2

0 =
2M |Ω|
k2

. (3.49)

Thus, there exists an absorbing set

B =
{
z(t) : ‖z(t)‖2

2 ≤ I2
0 , ∀ t ≥

1

2k2

ln
k2‖z0‖2

2

M |Ω|

}
⊂ L2.

Furthermore, from (3.48) we can also derive

d

dt
‖z(t)‖2

2 + ‖∇z‖2
2 + 2k2‖z‖2

2 ≤ 2M |Ω|,

which implies

d

dt
‖z(t)‖2

2 + k‖z‖2
H1 ≤ 2M |Ω|, for some k.

Integrating this last equation from t to t+ 1 we obtain

1

2
‖z‖2

2

∣∣∣t+1

t
+ k

∫ t+1

t

‖z‖2
H1dt ≤M |Ω|

⇒
∫ t+1

t

‖z‖2
H1dt ≤

M

k
|Ω|+ 1

2k
‖z(t)‖2

2 ≤
M |Ω|
k

(
1 +

1

k2

)
:= I1

for all t ≥ t0(‖z0‖2).

Suppose we multiply the non-linearity G(z) by −∆z and integrate over the

space Ω, we derive

−
∫

Ω

∆z ·G(z)dx =

∫
Ω

∇zT∇G(z)∇zdz

=

∫
Ω

∑
i,j

∂Gi

∂zj

∂zi
∂x

∂zj
∂x

dx

≤
∫

Ω

∑
i,j

li,j
∂zi
∂x

∂zj
∂x

dx from (3.18),
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Thus, continuing from the last inequality, we have

−
∫

Ω

∆z ·G(z) ≤ I2

∫
Ω

∑
i,j

∂zi
∂x

∂zj
∂x

dx where I2 = sup
i,j

li,j

≤ I2

∫
Ω

3|ux|2 + 3|vx|2 + 3|wx|2dx

= 3I2

∫
Ω

|∇z|2dx.

The last inequality holds by Young’s inequality.

If we multiply (3.27) by −∆z and integrate over Ω, we obtain

1

2

d

dt
‖∇z‖2

2 + ‖Az‖2
2 ≤ 3I2‖∇z‖2

2

⇒ 1

2

d

dt
‖∇z‖2

2 ≤ 3I2‖∇z‖2
2. (3.50)

Similarly from (3.31) we obtain

1

2

d

dt
‖z‖2

2 ≤M |Ω|+ k2‖z‖2
2. (3.51)

Adding (3.50) and (3.51) we obtain

1

2

d

dt
‖z‖2

H1 ≤M |Ω|+ k0‖z‖2
H1 , for some constant k0.

Integrating between s and t (t− 1 ≤ s ≤ t) gives

‖z(t)‖2
H1 ≤ 2M |Ω|+ 2k0

∫ t

s

‖z(ζ)‖2
H1dζ + ‖z(s)‖2

H1 .

Integrating this equation with respect to s between t− 1 and t we obtain

‖z(t)‖2
H1 ≤ 2M |Ω|+ (2k0 + 1)

∫ t

t−1

‖z(s)‖2
H1ds.

Using (3.47) we obtain

‖z(t)‖2
H1 ≤ 2M |Ω|+ (2k0 + 1)I1, (3.52)
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provided that t ≥ t0(‖z0‖2) + 1.

Since we do not know if the solution z is smooth enough to justify the

above computations, we will need the following result to rigorously prove the

existence of an absorbing set in H1.

Lemma 11 (Lemma 11.2 [99]). Let V ⊂⊂ H, with dual V ∗. Suppose that

{zn} is uniformly bounded in L∞(0, T ;V ),

ess sup
t∈[0,T ]

‖zn(t)‖ ≤ C,

and that zn ⇀ z in L2(0, T ;V ); then

ess sup
t∈[0,T ]

‖z(t)‖ ≤ C.

Furthermore, if z ∈ C0(0, T ;H) then in fact

sup
t∈[0,T ]

‖z(t)‖ ≤ C.

In the next result we will apply the above result with V = H1 and H = L2.

Proposition 2. Suppose that Ω ⊂ R. Then the reaction-diffusion system

(3.9) has an absorbing set in H1; there is a constant I4 and a time t1(‖z0‖2)

such that

‖z(t)‖H1 ≤ I4, ∀ t ≥ t1(‖z0‖2).

Proof. We will work with the truncated Galerkin equations

dzn
dt

+ Azn = PnG(zn), zn(0) = Pnz0.

If we follow the computation of Proposition 1 we get

‖zn(t)‖2 ≤ I0, ∀ t ≥ t0(‖z0‖2),

since ‖zn(0)‖2 ≤ ‖z0‖2. Also, we can obtain the equivalent of (3.52) with z
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replaced by zn, i.e.

‖zn(t)‖2
H1 ≤ 2M |Ω|+ (2k0 + 1)I1, ∀ t ≥ t0(‖z0‖2) + 1,

a bound uniform in n. If we take I5 = 2M |Ω| + (2k0 + 1)I1 and t1(‖z0‖2) =

t0(‖z0‖2) + 1, then we can write, for any T > t1,

‖zn‖L∞(t1,T,H1(Ω))3 ≤ I5.

Since zn ⇀ z in L2(0, T ;H1(Ω))3 and z ∈ C0(0, T ;L2(Ω))3, it follows using

Lemma 11 that

‖z(t)‖2
H1 ≤ I5, ∀ t ≥ t1(‖z0‖2).

Using the absorbing set in H1, we can deduce the existence of a global

attractor as follows.

Theorem 8. Suppose Ω ⊂ R, the reaction-diffusion system (3.9) has a con-

nected and compact global attractor A.

Proof. Let

B := {z ∈ H1 : ‖z(t)‖2
H1 ≤ I5, ∀ t ≥ t1(‖z0‖2)}

be the absorbing set in Proposition 2. Since H1 ⊂⊂ L2 by Rellich-Kondrachov

compactness theorem, B is compact in L2 and A = ω(B) is the compact global

attractor, where ω(B) denotes the ω-limit set of the set B.

3.7 Discussion

Existence of an attractor is not really surprising, however, it confirms our

earlier argument that the finite-dimensional ODE system, consisting of the

PDE without the Laplacian, carries the interesting dynamics and diffusion

only combines this dynamics on a spatial scale.
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There are two ways to include impulse radiations into our bystander model.

One idea is to stop the dynamics at a radiation event, then apply the surviv-

ing fraction due to radiation, and use the resulting population size as initial

condition for the next time interval. In this iterative approach, the existence

result stated in Theorem 5 (for the system describing the cellular evolution

after radiation exposure) is sufficient to guarantee existence and uniqueness of

solutions. Each radiation fraction would create a jump in the solution, pos-

sibly away from the attractor. The dynamics between radiations would then

lead the system back onto the attractor.

Here, we focused on the approach that the radiation terms are directly

included into the system of differential-equations via the hazard functions

ru(d(t)), rv(d(t)), and γ(d(t)). In this case, the on-and-off switching of ra-

diation introduces jump discontinuities into the model. We needed to use

time-mollification to deal with these jumps. Although this second approach

seems complicated, it does allow for the inclusion of arbitrary radiation sched-

ules consisting of combinations of impulse, interval, and continuous radiations.

The parameter regime found for the existence of solutions for the system

with and without radiation suggested that (1) during radiation, the rate of

damage incurred both directly and indirectly does not exceed the bystander

signal-induced death incurred in both damaged and healthy cells, and (2) after

radiation exposure, the rate of bystander signal emission by the damaged cells

does not exceed the rate of bystander signal-induced death in the damaged

cells.
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Chapter 4

Asymptotic analysis of

bystander signal-mediated

cancer invasion

Abstract. In experimental studies, it has been shown that radiation expo-

sure enhances the invasion of certain cell lines whose invasion speed may have

been much slower without the radiation exposure. Radiation-induced bystander

signals have been implicated to mediate this radiation-induced cancer invasion.

Here, I examine a candidate explanation for this bystander signal-induced can-

cer invasion by generalizing a system of nonlinear reaction-diffusion equations

that describe bystander effects in a single cell line to incorporate tumor cell

lines and their surrounding normal tissue. I apply both numerical methods

and a matched asymptotic analysis in a traveling wave framework to obtain an

explicit understanding of the invasion of a homogeneous tumor-only population

into a normal-tissue-only population with a mixed interface. I also show how

fundamental parameters govern this speed and the shape of invading tumor

waves. Our theoretical analysis will help to identify key parameters that con-

trol radiation-induced cancer invasion and can further suggest possible novel

therapeutic strategies not yet considered.
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4.1 Introduction

Radiotherapy accounts for the treatment of more than 50% of cancers. As most

tumors are surrounded by normal tissues, the standard treatment practice

mediates gradients of doses to surrounding normal tissues in such a way that

the farther a cell is from the targeted tumor, the lesser the magnitude of dose it

receives. This invariably suggests that normal tissues surrounding solid tumors

receive low doses of radiation during cancer treatment, which was considered

to be acceptable.

However, recent experiments have shown that certain cell lines emit stress

signals when exposed to low doses of radiation [8, 42, 49]. These signals, also

known as bystander signals, can be propagated to neighboring cells to trigger

effects such as cell death, cell damage, delayed DNA repair, and so on. These

effects are popularly called the bystander effects. Since the discovery of the

phenomenon of bystander effects, there have been concerns about its effect on

tumor invasion and metastasis. This is crucial since one of the properties of

cancer cells that makes it extremely deadly is its ability to migrate, settle, and

survive in distant locations.

Experiments have shown that bystander signals can mediate and enhance

tumor invasion into surrounding normal tissues, especially after exposure to

radiation. While some of these experiments were conducted at the molecular

level, others were confined to different cellular responses of cancer and normal

cells to bystander signals. For instance, some experiments have been used to

study different molecular pathways that can lead to radiation-induced inva-

siveness in many cell lines like rectal cancer cells [110], non-small cell lung

carcinoma cells [37], human pancreatic cancer cells [97], glioblastoma cells

[47, 19], hepatocellular carcinoma cells [18], and metastatic breast cancer cells

[9]. In fact, in [9], the authors demonstrate the roles of bystander signals in the

enhanced invasiveness of metastatic breast cancer by injecting breast cancer

cells into the thorax of mice that were exposed to radiation an hour prior to

the injection of the cancer cells. The effect was an increased spread of the

cancer cells compared to the case when the thorax was not pre-irradiated.

Other experiments [25, 55, 17, 56] have also been used to study the en-
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hanced invasiveness of cancer cells at both cellular and molecular levels by

showing that some cancer cells such as lung cancer cells (A549 cells) and their

surrounding normal lung cells (W138 cells) respond differently to bystander

signals. In fact, the authors in [25, 55, 17, 56] showed that apart from the

destructive response of normal tissues to bystander signals, they can also have

a protective response. They showed that normal tissues emit a kind of res-

cue signals in response to bystander signals. These rescue signals trigger the

healing of neighboring damaged cancer cells. This recent discovery has shown

that cell-cell communication triggered by radiation can be quite complicated.

Our goal in this chapter is to model the distress signaling behaviours and

the corresponding bystander effects when a tumor and their surrounding nor-

mal tissue are both exposed to low doses of radiation at a constant rate. For

simplicity, we will not consider the effects of rescue signals on radiation-induced

invasion in this project. The main aim is to elucidate the role of bystander

signals in the observed enhanced invasiveness of tumors and to determine key

parameters that can be controlled in order to possibly prevent such side effects

of cancer treatment.

The work in this chapter will extend the mathematical model developed

in [89] and Chapter 2 to include two cell types namely, tumor and normal

cells. In [89], the model was used to analyze the persistence of the emitted

bystander signals and to determine key parameters that drive the signal’s

persistence. The analysis framework that will be employed in this chapter

is similar to those used in [29, 74], where matched asymptotic analyses in

a travelling wave setting were used to elucidate the consequences of altered

energy metabolism in cancer invasion. There are recent advances [122, 121]

toward standard analytical methods for computing the travelling wave speeds

of a general class of systems of reaction-diffusion equations. However, these

analytical methods cannot be generalized to general systems of more than three

reaction-diffusion equations. Thus, the analysis of the traveling wavespeed

our system of four reaction-diffusion equations will rely solely on the matched

asymptotic analysis. This will also help elucidate the role of the key model

parameters in the invasion process.

While several mathematical models have been developed to explore the
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interactions between cells and bystander signals [48, 75, 93], Olobatuyi et. al

[89] were the first to use the reaction-diffusion framework to study interac-

tions between cells and bystander signals. For convenience, we reproduce the

equations here, with U(y, τ) denoting the density of target cells as a function

of position y and time τ , V (y, τ) the density of damaged tumor cells, and

W (y, τ) the concentration of bystander signals emitted by the damaged cells.

The Olobatuyi et. al equations [89] as well as in Chapter 2 are:

Uτ = Du∆U︸ ︷︷ ︸
Diffusion

+µU
(

1− U + V

u0

)
︸ ︷︷ ︸

Growth Dynamics

− ru(t)U − γ(t)U︸ ︷︷ ︸
Radiation effect

−A(W )U + F (W )V − E(W )U︸ ︷︷ ︸
Bystander Effects

, (4.1)

Vτ = Dv∆V︸ ︷︷ ︸
Diffusion

− rv(t)V + γ(t)U︸ ︷︷ ︸
Radiation Effects

−A(W )V − F (W )V + E(W )U︸ ︷︷ ︸
Bystander Effects

, (4.2)

Wτ = Dw∆W︸ ︷︷ ︸
Diffusion

+λ1rv(t)V + λ2ru(t)U + λ3κV︸ ︷︷ ︸
Signal Emission

− ηW︸︷︷︸
Decay

. (4.3)

Here Di denotes the diffusion constant of the respective i compartment, µ

the cell proliferation rate, u0 the tissue carrying capacity, η the signal decay

rate, and λi the signal emission rate from the respective dead and damaged

cells. The terms ri(t) and γ(t) denote respectively the radiation-induced death

and the radiation-damage rate (readers should consult Chapter 2 for more

details on the parameters).

This model will be extended to describe a tumor surrounded by normal

tissues. This is similar to the framework modeled by Powathil et. al [93]

with an individual-based approach, where the effects of different fractional

radiation exposure strategies were considered, namely (1) when both tumor

and normal tissues are exposed to uniform doses of radiation, (2) when tumor

cells receive higher doses while the surrounding normal tissue receives doses

inversely proportional to their distance from the tumor cells, and (3) only

tumor cells are exposed to radiation and the surrounding normal tissue are

completely spared. However, in order to avoid the discontinuity introduced by

fractional exposure to radiation, we will assume a constant exposure of both
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tumor and normal tissues to the same low doses of radiation.

The remainder of this chapter is organized as follows. In Section 4.2,

we formulate and develop the generalized mathematical model that describes

the cellular interaction between tumor and surrounding normal tissues under

constant exposure to low-dose radiation. In Section 4.3, we compute possible

equilibrium points of the system under spatio-temporal invariance and also

analyze their stability. In Section 4.4, we explore the numerical simulation of

the traveling wave solutions of the model. We show numerically that invasion

with bystander effects is faster than invasion without bystander effects. In

Section 4.5, we explore the traveling wave analysis of the model using the

matched asymptotic analytical method to derive an approximate invasion wave

speed. This asymptotic wave speed also confirms that invasion speed with

bystander effects is always greater than that without bystander effects.

These types of analyses will suggest possible control measures that can

minimize or completely eradicate the side effects of cancer treatment in order

to improve post-treatment patients’ outcome.

4.2 Development of the generalized model

To generalize (4.1)-(4.3) to describe both tumor cells and surrounding normal

tissue, which are both uniformly exposed to low doses of radiation, we incor-

porate two additional compartments. These are the normal tissue and the

radiation-damaged normal tissue compartments. The existing compartments

will be retained as tumor cells, damaged tumor cells, and bystander signals

concentration.

Let U1(y, τ) and V1(y, τ) denote the densities of tumor and damaged tumor

cells, respectively. Also, let U2(y, τ) and V2(y, τ) denote the densities of normal

cells and damage normal cells, respectively. Let W (y, τ) remain the concen-

tration of bystander signals. Since the growth of damaged cells is arrested in

order to concentrate all their energy on repair, it makes sense to assume that

energy for motility also is harnessed for repair, which makes damaged cells

less diffusive. Also, normal cells are well regulated and participate normally in

organs. Therefore, we assume that normal cells will not be diffusive in space
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[33]. Denoting with subscript ‘1’ the parameters associated with tumor cells,

and subscript ‘2’ the parameters belonging to normal tissue, the new system

of reaction-diffusion partial differential equations (PDEs) is given by

U1τ = D1Uyy + µ̄1U1

(
1− U1 + V1 + ᾱU2 + ᾱ1V2

u10

)
− (Ā1(W ) + Ē1(W ) + γ̄1 + r̄1)U1 + F̄1(W )V1, (4.4)

V1τ = (γ̄1 + Ē1(W ))U1 − (Ā1(W ) + F̄1(W ) + r̄1)V1, (4.5)

U2τ = µ̄2U2

(
1− U2 + V2 + β̄1U1 + β̄2V1

u20

)
− (Ā2(W ) + Ē2(W ) + γ̄2 + r̄2)U2 + F̄2(W )V2, (4.6)

V2τ = (γ̄2 + Ē2(W ))U2 − (Ā2(W ) + F̄2(W ) + r̄2)V2, (4.7)

Wτ = DwWyy + δ1(κ̄1 + r̄1)V1 + δ2(κ̄2 + r̄2)V2

+ δ1r̄1U1 + δ2r̄2U2 − ηW, (4.8)

where D1 denotes the diffusion constant of tumor cells, µ̄1 the proliferation

rate of tumor cells, u10 the tumor cell carrying capacity, γ̄1 the constant rate

of radiation damage of the tumor cells, and r̄1 the radiation-induced tumor

death rate. With a change of subscript from ‘1’ to ‘2’, we have the same

parameters for the normal tissue. The rates for the bystander signal-induced

death, bystander signal-induced damage, and the bystander signal-dependent

repair are denoted respectively by Āi(W ), Ēi(W ), and F̄i(W ). As in Chapter

2, their functional forms are given by

Āi(W ) =
Āi0
2

[
1 + tanh

( 6

ai2 − ai1
(
W − ai1 + ai2

2

))]
, (4.9)

Ēi(W ) =
Ēi0
2

[
1 + tanh

( 6

ei2 − ei1
(
W − ei1 + ei2

2

))]
, (4.10)

F̄i(W ) =
F̄i0
2

[
1− tanh

( 6

fi2 − fi1
(
W − fi1 + fi2

2

))]
. (4.11)

The parameters aij, eij, and fij denote the lower and upper thresholds for

the respective bystander effects. The dead and damaged cells emit bystander

signals at rates δi (i = 1 for tumor and i = 2 for normal tissue). We denote

by κ̄i the fraction of damaged cells (i = 1 for tumor and i = 2 for normal
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tissue) emitting bystander signals. ᾱ denotes the relative competitive potential

of normal tissue with the tumor cells, while β̄1 and β̄2 denote the relative

competitive potential of tumor and their damaged cells with the normal tissue,

respectively.

The remainder of this section will focus on simplifying assumptions to

reduce the model complexity and the model’s non-dimensionalization.

4.2.1 Simplifying assumptions

In order to simplify the model, we will make the following simplifying assump-

tions:

• Damaged normal cells do not significantly contribute to the emission of

bystander signal. This make sense in the case of normal lung (W138) cells

which were found to emit almost negligible concentrations of bystander

signals when co-cultured with both irradiated lung cancer and normal

cells, respectively [25]. Thus, we will not be keeping track of the damaged

normal tissue and we can omit compartment V2 in the model.

• The conversion factor from bystander signal-producing tumor and nor-

mal cells to bystander signals is the same. Thus,

δ := δ1 = δ2.

• The diffusive coefficient for tumor cells is far less than that of the by-

stander signals. That is, D1 � Dw.

• The radiation terms r̄1,2 and γ̄1 are nonnegative constants. r̄1,2, γ̄1 > 0

correspond to constant low-dose radiation, and r̄1,2 = γ̄1 = 0 to no

radiation.

• Since radiation damage rates at constant low-dose radiation are possibly

small, we will assume that

γ̄ + Ē1(W )� 1 +
F̄1(W )

Ā1(W ) + r̄1

. (4.12)
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Eqn. (4.12) will be useful during the stability analysis of the model in

Section 4.3.1.

• β̄1,2, the competitive strength of damaged and undamaged tumor cells

are greater than α, the competitive strength of the normal cells, to reflect

tumor aggressiveness, which is one of the hallmarks of cancer [39, 40].

Thus ᾱ ≤ β̄1,2.

• Tumor cells produce more bystander signals but are more resistant to

these signals than the surrounding normal cells. This assumption is

due to the resistant nature of tumor cells to radiation. Thus a11 ≤
a21, and Ā20 ≤ Ā10.

• In the computation of the radiation terms, we employ

r̄i = (αi + βid)dr, (4.13)

γ̄ =
2γ0σdr

1 + (σdr)2
, (4.14)

where d and dr denote the dose and the constant dose rate, respectively.

αi is the rate at which single radiation tracks produce lethal lesion, and

βi is the rate at which binary misrepair of pairs of double strand break

(DSB) from different radiation tracks lead to lethal lesions [12]. For

details about the nonnegative terms γ0 and σ, please refer to Chapter 2.

Then model (4.4) - (4.8) simplifies to

U1τ = D1Uyy + µ̄1U1

(
1− U1 + V1 + ᾱU2

u10

)
− (Ā1(W ) + Ē1(W ) + γ̄1 + r̄1)U1 + F̄1(W )V1, (4.15)

V1τ = (γ̄1 + Ē1(W ))U1 − (Ā1(W ) + F̄1(W ) + r̄1)V1, (4.16)

U2τ = µ̄2U2

(
1− U2 + β̄1U1 + β̄2V1

u20

)
− (Ā2(W ) + r̄2)U2, (4.17)

Wτ = DwWyy + δ(κ̄1 + r̄1)V1 + δr̄1U1 + δr̄2U2 − ηW, (4.18)
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Parameter Value Units Source

µ̄1 3.6e-03 h−1 [33]

µ̄2 3.6e-03 h−1 [33]

u10 5e+07 cm−3 [114]

u20 5e+07 cm−3 [114]

D1 7.2e-07 cm2h−1 [24]

Dw 7.2e-03 cm2h−1 [4, 75]

ᾱ O(1) Dimensionless Chosen freely

δ 6.6e0-3 h−1 [75]

η 1.26 h−1 [75]

β̄1 O(1) Dimensionless Chosen freely

β̄2 O(1) Dimensionless Chosen freely

κ̄1 0.5 − [93]

Ā10 0.63 h−1 [89]

Ā20 0.88 h−1 [89]

Ē10 0.168 h−1 [89]

F̄10 0.432 h−1 [89]

a11 0.05 Dimensionless [89]

a21 0.01 Dimensionless Chosen freely

Table 4.1: Definition and values of dimensional parameters in system (4.15) -
(4.18).
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4.2.2 Non-dimensionalization

By applying the following transformations:

ui =
Ui
ui0

, v =
V1

u10

, w =
W

δu10

, x =

√
η

Dw

y, t := ητ, (4.19)

equations (4.15) - (4.18) become

u1t = Du1xx + µ1u1(1− u1 − v − αu2)

− (A1(w) + E1(w) + γ1 + r1)u1 + F1(w)v, (4.20)

vt = (γ1 + E1(w))u1 − (A1(w) + F1(w) + r1)v, (4.21)

u2t = µ2u2(1− u2 − β1u1 − β2v)− (A2(w) + r2)u2, (4.22)

wt = wxx + (κ1 + r1)v + r1u1 + r2u2 − w, (4.23)

Parameter Value or range Constraint Derivation

µ1,2 2.9e-03 µ̄1,2

η

D 1e-04 D1 � Dw
D1

Dw

α O(1) α ≤ βi
ᾱu20

u10

β1,2 O(1) β2 ≤ β1
β̄iu10

u20

κ1 0.3968 κ̄1

η

r1 1e-03 r̄1
η

r2 4.8e-04 r̄2
η

γ 0.0794 γ̄1

η

A10 0.28 - 1.14 A10 ≤ A20
Ā10

η

A20 0.7 Ā20

η

E10 0.1333
Ē10

η

F10 0.26 - 0.88 F̄10

η

Table 4.2: Values of dimensionless parameters in system (4.20) - (4.23).
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where

D :=
D1

Dw

, µi :=
µ̄i
η
, Ai0 :=

Āi0
η
, E10 :=

Ē10

η
, α :=

ᾱu20

u10

,

βi :=
β̄iu10

u20

, γ1 :=
γ̄1

η
, ri :=

r̄i
η
, κi :=

κ̄1

η
F10 :=

F̄10

η
.

The dimensional and dimensionless (based on the above transformation)

parameters are shown in Table 4.1 and 4.2.

4.3 Steady state analysis

In this section, we will compute all the possible steady states of the system

(4.20)-(4.23) under spatial and temporal invariance, as well as their respective

stability analyses.

4.3.1 Possible equilibrium points

In this subsection, we examine system (4.20)-(4.23) under spatial and tempo-

ral invariance to investigate the attainable types of behaviour under different

choices of model parameters. We will solve the following system of equations

0 = µ1u1(1− u1 − v − αu2)

−(A1(w) + E1(w) + γ1 + r1)u1 + F1(w)v, (4.24)

0 = (γ1 + E1(w))u1 − (A1(w) + F1(w) + r1)v, (4.25)

0 = µ2u2(1− u2 − β1u1 − β2v)− (A2(w) + r2)u2, (4.26)

0 = (κ1 + r1)v + r1u1 + r2u2 − w. (4.27)

From (4.25),

u1 = m1v, (4.28)
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where

m1 :=
F1 + A1 + r1

γ1 + E1

. (4.29)

From (4.26),

u2 = 0 or µ2(1− u2 − β1u1 − β2v)− A2 − r2 = 0.

If u2 = 0, then from (4.24) and (4.28) we have

µ1m1v(1−m1v − v)− (A1 + E1 + γ1 + r1)m1v + F1v = 0,

which implies that

v = 0 or µ1m1(1−m1v − v)− (A1 + E1 + γ1 + r1)m1 + F1 = 0.

If v = 0, then there exists a trivial equilibrium point

P0 = (0, 0, 0, 0).

On the other hand, if

µ1m1(1−m1v − v)− (A1 + E1 + γ1 + r1)m1 + F1 = 0,

then there exists a tumor-signal equilibrium point

P1 = (m1v
∗
1, v
∗
1, 0, w

∗
1),

where

v∗1 =
µ1m1 −m1(A1 + E1 + γ1 + r1) + F1

µ1m1(m1 + 1)

= (γ1 + E1)
[ 1

A1 + E1 + γ1 + r1 + F1

− A1 + r1

µ1(A1 + F1 + r1)

]
, (4.30)
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which is nonnegative provided that

A1 + r1

µ1

<
A1 + F1 + r1

A1 + E1 + γ1 + r1 + F1

< 1. (4.31)

Condition (4.31) implies that

A1 + r1 < µ1. (4.32)

Then we have

u∗1 =
A1 + F1 + r1

A1 + E1 + γ1 + r1 + F1

− A1 + r1

µ1

and w∗1 satisfies the expression

w = (r1 + κ1)v∗1 + r1u
∗
1. (4.33)

Remark 1. Condition (4.32) implies that the cumulative rate of cell death

induced from both the direct (radiation-induced) and the indirect effects (by-

stander signal-induced) is less than its proliferative rate. Otherwise, the tumor

will go extinct.

On the other hand, if

µ2(1− u2 − β1u1 − β2v)− A2 − r2 = 0, (4.34)

then substituting (4.29) into (4.24), we have

v = 0 or µ1m1(1−m1v − v − αu2)− (A1 + E1 + γ1 + r1)m1 + F1 = 0.

If v = 0, then from (4.28), u1 = 0. From (4.34), we have

µ2(1− u2)− A2 − r2 = 0,
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which implies

u∗2 = 1− r2

µ2

− A2

µ2

,

which is nonnegative provided

r2 + A2(w∗2) < µ2. (4.35)

From (4.27), we then have

w = r2

(
1− r2

µ2

− A2

µ2

)
. (4.36)

Thus, there exists a no-tumor equilibrium point

P2 = (0, 0, u∗2, w
∗
2),

where w∗2 satisfies the expression in (4.36).

Remark 2. Equilibrium P2 exists provided the cumulative rate of normal cell

death induced from both the direct and the indirect effects of radiation is less

than its proliferation rate. Otherwise, the normal tissue will go extinct.

Finally, if

µ1m1(1−m1v − v − αu2)− (A1 + E1 + γ1 + r1)m1 + F1 = 0, (4.37)

then from (4.34), u2 can be solved in terms of v as follows:

u∗∗2 = 1− v∗3(β1m1 + β2)− 1

µ2

(r2 + A2), (4.38)

provided

v(β1m1 + β2) +
1

µ2

(r2 + A2) < 1.

Thus, if (4.35) holds, then (4.38) holds if

v(β1m1 + β2) < 1.
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Substituting (4.38) into (4.37), we can solve for v as follows:

v∗3 =
µ1m1(1 + α

µ2
(r2 + A2)− α) + F1 −m1(A1 + E1 + γ1 + r1)

µ1m1(1 +m1 − α(β1m1 + β2))
(4.39)

provided v∗3 > 0 and

1 +m1 − α(β1m1 + β2) 6= 0. (4.40)

If β1 = β2 := β, then (4.40) implies that αβ 6= 1 and v∗3 becomes

v∗3 =
µ1m1(1 + α

µ2
(r2 + A2)− α) + F1 −m1(A1 + E1 + γ1 + r1)

µ1m1(1 +m1)(1− αβ)

=
γ1 + E1

1− αβ

[ 1 + α( r2+A2

µ2
− 1)

A1 + r1 + F1 + γ1 + E1

−
A1+r1
µ1

F1 + A1 + r1

]
. (4.41)

Thus, for (4.41) to exist, we must have the following conditions
1+α
[
r2+A2
µ2

−1
]

1
µ1

(A1+r1)
< A1+r1+F1+γ1+E1

F1+A1+r1
; αβ > 1,

1+α
[
r2+A2
µ2

−1
]

1
µ1

(A1+r1)
> A1+r1+F1+γ1+E1

F1+A1+r1
; αβ < 1.

(4.42)

Of course,αβ > 1⇒ (α > 1, β < 1), (α < 1, β > 1) or 1 < α < β

αβ < 1⇒ (α > 1, β < 1), (α < 1, β > 1) or 0 < α < β < 1.
(4.43)

However, since tumors are known to be more aggressive than the normal cells,

we will assume that α < β. Thus, the choices in (4.43) reduce toαβ > 1⇒ (α < 1, β > 1) or 1 < α < β;

αβ < 1⇒ (α < 1, β > 1) or 0 < α < β < 1.
(4.44)
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Substituting (4.41) into (4.38), we have

u∗∗2 =
1

1− αβ

[
1− β − r2 + A2

µ2

+ β
(A1 + r1

µ1

)(A1 + E1 + F1 + γ1 + r1

F1 + A1 + r1

)]
,

(4.45)

which exists provided1 + β
(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)
< β + r2+A2

µ2
, αβ > 1,

β + r2+A2

µ2
< 1 + β

(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)
, αβ < 1.

(4.46)

Since u∗∗1 = m1v
∗
3, we also the following expression for u∗∗1 :

u∗∗1 =
1

1− αβ

[(A1 + F1 + r1)
(
1 + α( r2+A2

µ2
− 1)

)
A1 + r1 + F1 + γ1 + E1

− A1 + r1

µ1

]
. (4.47)

Thus, there exists an heterogeneous equilibrium point

P3 = (u∗∗1 , v
∗
3, u

∗∗
2 , w

∗
3),

with v∗3 defined in (4.41), u∗∗2 defined in (4.38), and w∗3 satisfing the expression

w = r2u
∗∗
2 + (r1 + κ1)v∗3 + r1u

∗∗
1 .

If αβ < 1, then from (4.42), we have

1
µ
(A1 + r1)

1 + α
[
r2+A2

µ2
− 1
] <

F1 + A1 + r1

A1 + r1 + F1 + γ1 + E1

< 1,

which implies

1

µ
(A1 + r1) <

( F1 + A1 + r1

A1 + r1 + F1 + γ1 + E1

)(
1 + α

[r2 + A2

µ2

− 1
])
.

If r2 + A2 < µ2, then α, the normal tissue competitive potential is key in

determining the cumulative rate of cell death relative to tumor proliferation

rate that guarantees the existence of P3 whenever αβ < 1. Also, in order to
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ensure that A1+r1
µ1

is nonnegative, we must have

−1 < α
[r2 + A2

µ2

− 1
]
< 0,

which implies

0 < 1− 1

α
<
r2 + A2

µ2

< 1.

Thus, if αβ < 1, we have a lower bound for the ratio of the cumulative death

rate to the proliferation rate for the normal tissue in order for the heteroge-

neous equilibrium point P3 to exist. The lower bound implies that α > 1.

Thus, the conditions (4.44) already exclude the possibility of αβ < 1. This

is essentially due to the standing assumption that tumors are more aggressive

(relatively competitive) than normal cells. On the other hand, if αβ > 1, there

is no restriction on either α or β in order to ensure the existence of P3.

We summarize the equilibrium points of system (4.20)-(4.23) under spatial

and temporal invariance in tabular form in Table 4.3.

4.3.2 Stability analysis of the equilibrium points

The objective of this section is to determine the stability of the equilibrium

points derived in the previous subsection.

Stability of P0

The Jacobian matrix corresponding to this equilibrium point is

J(P0) =
µ1 − A1(0)− E1(0)− γ1 − r1 F10 0 0

γ1 + E1(0) −F10 − A1(0)− r1 0 0

0 0 µ2 − A2(0)− r2 0

r1 r1 + κ1 r2 −1

 .
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Symbol Expression

P0 (0, 0, 0, 0)

P1 (u∗1, v
∗
1, 0, w

∗
1) where

u∗1 = A1+F1+r1
A1+E1+γ1+r1+F1

− A1+r1
µ1

,

v∗1 = (γ1 + E1)
[

1
A1+E1+γ1+r1+F1

− A1+r1
µ1(A1+F1+r1)

]
, and

w∗1 solves w = (r1 + κ1)v∗1 + +r1u
∗
1.

Existence condition:

A1+r1
µ1

< A1+F1+r1
A1+E1+γ1+r1+F1

P2 (0, 0, u∗2, w
∗
2), where

u∗2 = 1− r2
µ2
− A2(w∗2)

µ2
,

w∗2 satisfies w = r2

(
1− r2

µ2
− A2(w)

µ2

)
.

Existence condition:

r2 + A2(w∗2) < µ2.

P3 (u∗∗1 , v
∗
3, u

∗∗
2 , w

∗
3), where

u∗∗1 = 1
1−αβ

[
(A1+F1+r1)

(
1+α(

r2+A2
µ2

−1)
)

A1+r1+F1+γ1+E1
− A1+r1

µ1

]
,

v∗3 = γ1+E1

1−αβ

[
1+α(

r2+A2
µ2

−1)

A1+r1+F1+γ1+E1
−

A1+r1
µ1

F1+A1+r1

]
,

u∗∗2 = 1
1−αβ

[
1− β − r2+A2

µ2
+ β

(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)]
, and

w∗3 satisfies w = r2u
∗∗
2 + (r1 + κ1)v∗3 + r1u

∗∗
1 .

Existence conditions are:

αβ > 1,
1
µ1

(A1+r1)

1+α
[
r2+A2
µ2

−1
] > F1+A1+r1

A1+r1+F1+γ1+E1
, and

1 + β
(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)
< β + r2+A2

µ2
.

Table 4.3: Notations and expressions for the equilibrium points for the system
(4.24) - (4.27) under temporal and spatial invariance. For clarity, we omit the w−
dependence. The equilibrium points are evaluated at the respective equilibrium
point for the signal w∗i , where i depends on the Pi.
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The corresponding eigenvalues are λ = −1,

λ = µ2 − (A2(0) + r2), (4.48)

and the rest satisfy

λ2 + λ(−aa − ab) + aaab − F10(γ1 + E1(0)) = 0, (4.49)

where

aa = −(F10 + A1(0) + r1),

ab = µ1 − A1(0)− E1(0)− γ1 − r1.

By using the Routh-Hurwitz criterion, we have the following stability theorem:

Theorem 9. P0 is locally asymptotically stable provided

A2(0) + r2 > µ2, and (4.50)

A1(0) + r1 > µ1. (4.51)

Biological meaning: If the radiation-induced death in both the tumor and

the normal cells exceed their respective proliferation rates, all cells will even-

tually go extinct.

Proof of Theorem 9: The eigenvalue (4.48) is negative provided (4.50) holds.

Also by the Routh-Hurwitz criterion, (4.49) has all negative eigenvalues pro-

vided

F10 + 2(A1(0) + r1) > µ1 − E1(0)− γ1 (4.52)

(A1(0) + r1)(A1(0) + E1(0) + γ1 + r1 − µ1) > F10(µ1 − A1(0)− r1). (4.53)

It is easy to see that (4.53) and (4.52) are both positive when (4.51) holds.
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Stability of P1

The Jacobian matrix corresponding to this equilibrium point is

J(P1) =


a11 a12 a13 a14

a21 a22 0 a24

0 0 a33 0

r1 a42 r2 −1

 ,

where

a11 = − F1

m1

− µ1m1v
∗
1, a12 = F1 − µ1m1v

∗
1,

a14 = −((A′1 + E ′1)m1 − F ′1)v∗1, a22 = −(F1 + A1 + r1), (4.54)

a33 = µ2(1− β1m1v
∗
1 − β2v

∗
1)− (A2 + r2),

a42 = r1 + κ1, a21 = γ1 + E1, a24 = −v∗1(F ′1 + A′1 − E ′1m1).

The corresponding characteristic polynomial is given by

(a33 − λ)
[
λ3 + λ2A2 + λA1 +A0

]
= 0,

where

A2 = 1 +
F1

m1

+ µ1m1v
∗
1 + F1 + A1 + r1, (4.55)

A1 =
F1

m1

+ µ1m1v
∗
1 + F1 + A1 + r1 +

( F1

m1

+ µ1m1v
∗
1

)
(F1 + A1 + r1)

− (γ1 + E1)(F1 − µ1m1v
∗
1) + r1v

∗
1((A′1 + E ′1)m1 − F ′1) (4.56)

+ v∗1(r1 + κ1)(F ′1 + A′1 − E ′1m1),

A0 =
( F1

m1

+ µ1m1v
∗
1

)
(F1 + A1 + r1)− (γ1 + E1)(F1 − µ1m1v

∗
1)

+ (F ′1 + A′1 − E ′1m1)v∗1

(
r1(

F1

m1

+ 1) + κ1

( F1

m1

+ µ1m1v
∗
1

))
(4.57)

+ ((A′1 + E ′1)m1 − F ′1)v∗1

(
(γ1 + E1)(r1 + κ1) + r1(F1 + A1 + r1 + 1)

)
.

This implies that one eigenvalue is
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λ1 =
µ1

1− αβ

[
1− β − r2 + A2

µ2

+ β
(A1 + r1

µ1

)(A1 + E1 + F1 + γ1 + r1

F1 + A1 + r1

)]
,

while the others satisfy the expression

λ3 + λ2A2 + λA1 +A0 = 0. (4.58)

If λ1 > 0, then P1 is locally unstable. Depending on the values of αβ, this is

the case whenever1 + β
(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)
< β + r2+A2

µ2
, αβ > 1,

β + r2+A2

µ2
< 1 + β

(
A1+r1
µ1

)(
A1+E1+F1+γ1+r1

F1+A1+r1

)
, αβ < 1.

(4.59)

Notice that the conditions in (4.59) are similar to those in (4.46). This implies

that whenever equilibrium P3 exists, equilibrium point P1 is unstable. On the

other hand, P1 is locally asymptotically stable whenever the eigenvalues of

(4.58) are all negative. By the Routh-Hurwitz criterion, all the eigenvalues of

(4.58) are negative provided A2 > 0, A0 > 0 and A2A1 > A0.

Since A2 > 0 clearly holds, then P1 is locally asymptotically stable only

whenever A0 > 0 and A2A1 > A0. To this end, while employing the notations

in (4.54) for clarity and simplicity, we have

A2A1 = A0 + E ,

where

E = −(a11 + a22)(1− a11 − a22 + a11a22 − a21a12) + a14(a21a42 + r1a11)

+ a24

(
r1
F1

m1

− κ1(1− a22) + r1(a11 + a22)
)
.

Thus, P1 is locally asymptotically stable provided

a11a22 − a21a12 > a24

[
r1

( F1

m1

+ 1
)
− κ1a11

]
+ a14

[
a21a42 + r1(1− a22)

]
(4.60)
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and

a24

[
r1
F1

m1

− κ1(1− a22) + r1(a11 + a22)
]

> (a11 + a22)(1− a11 − a22

+ a11a22 − a21a12)

− a14(a21a42 + r1a11). (4.61)

By adding (4.60) - (4.61), we have

(1− a11 − a22)
[
− a24(r1 + κ1)− r1a14 + a11a22 − a12a21 − a11 − a22

]
> 0.

However, since 1− a11 − a22 > 0, we have

a11a22 − a11 − a22 > a24(r1 + κ1) + r1a14 + a12a21. (4.62)

Hence, P1 is locally asymptotically stable provided that (4.60) and (4.62) hold.

Stability of P2

The Jacobian matrix corresponding to this equilibrium point is

J(P2) =


µ1(1− αu∗2)− (A1 + E1 + γ1 + r1) F1 0 0

γ1 + E1 −(F1 +A1 + r1) 0 0

−µ2β1u
∗
2 −µ2β2u

∗
2 −µ2 −A′2u∗2

r1 r1 + κ1 r2 −1

 .

The corresponding characteristic polynomial is given by

[
(λ+ 1)(λ+ µ2)− A′2u∗2r2

][(
µ1(αu∗2 − 1) + A1 + E1 + γ1 + r1 + λ

)
(F1 + A1 + r1 + λ)− F1(γ1 + E1)

]
= 0,

where

u∗2 = 1− r2

µ2

− A2

µ2

.

Thus, we can apply the Routh-Hurwitz criterion to the following quadratic

equations:
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λ2 + λ(1 + µ2) + µ2 − A′2u∗2r2 = 0, and

λ2 + λ(2(A1 + r1) + E1 + γ1 + µ1(αu∗2 − 1) + F1)

+ (A1 + E1 + γ1 + r1 + µ1(αu∗2 − 1))(F1 + A1 + r1)− F1(γ1 + E) = 0.

P2 is locally asymptotically stable whenever all the following conditions hold:

µ2 − A′2u∗2r2 > 0, (4.63)

2(A1 + r1) + E1 + γ1 + µ1(αu∗2 − 1) + F1 > 0, (4.64)

(A1 + E1 + γ1 + r1 + µ1(αu2 − 1))(F1 + A1 + r1)− F1(γ1 + E) > 0. (4.65)

From (4.63), while applying the existence condition (4.35) for equilibrium point

P2, we have

µ2 − A′2u∗2r2 = µ2 − A′2r2(1− r2

µ2

− A2

µ2

)

> r2 − A′2r2(1− r2

µ2

− A2

µ2

)

= r2

(
1− A′2(1− r2

µ2

− A2

µ2

)
)
,

which is positive whenever

1− A′2(1− r2

µ2

− A2

µ2

) > 0.

Equivalently (while combining with (4.35)), we have

0 < A′2(1− A2

µ2

− r2

µ2

) < 1. (4.66)

For (4.64) to hold while applying (4.35), it is sufficient to have the following,

2(A1 + r1) + E1 + γ1 + F1 > µ1. (4.67)
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Also for (4.65) to hold while applying (4.35), it is sufficient to have the follow-

ing,

(A1 + r1 − µ1)(F1 + A1 + r1) + (A1 + r1)(γ1 + E1)

=
(

1− µ1

A1 + r1

)( F1

A1 + r1

+ 1
)

+ γ1 + E1.

Since ( F1

A1 + r1

+ 1
)
� γ1 + E1,

for (4.65) to hold, it is sufficient that

1− µ1

A1 + r1

≥ 0,

or equivalently,

A1 + r1 ≥ µ1. (4.68)

Thus, we have the following theorem to summarize the above result:

Theorem 10. P2 is asymptotically stable provided that (4.66) and (4.68) hold.

Remark 3. Condition (4.66) implies that the rate of bystander signal-induced

normal tissue death at equilibrium must be bounded in order for the normal

tissue to still persist.

Remark 4. Condition (4.68) implies that the cumulative effect of radiation-

induced death on the tumor cells should exceed that tumor proliferation before

the tumor cell can completely go extinct and normal tissue takes up the entire

space.

Stability of P3

The Jacobian matrix corresponding to this equilibrium point is

J(P3) =


b11 −µ1m1v

∗
3 + F1 −µ1αm1v

∗
3 −((A′1 + E′1)m1 − F ′1)v∗3

γ1 + E1 −(F1 +A1 + r1) 0 −v∗3(F ′1 +A′1 − E′1m1)

−µ2βu
∗∗
2 −µ2βu

∗∗
2 b33 −A′2u∗∗2

r1 r1 + κ1 r2 −1

 ,
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where

b11 = µ1(1− 2m1v
∗
3 − v∗3 − αu∗∗2 )− (A1 + E1 + γ1 + r1)

= − F1

m1

− αµ1 −m1µ1v,

b33 = µ2(1− 2u∗∗2 − βm1v
∗
3 − βv∗3)− (A2 + r2)

= −µ2 + r2 + A2.

The corresponding characteristic polynomial is given by

λ4 − B3λ
3 − B2λ

2 − B1λ− B0 = 0,

where

B3 = 1 +B1 − b33 − b11, (4.69)

B2 = −b11(B1 + 1− b33)−B1(b33 − 1) + b33 − A′2u∗∗2 r2

−B2(r1 + κ1)−B5B3 − µ2βu
∗∗
2 B6 −B4r1, (4.70)

B1 = b11[B1(b33 − 1) + b33 − A′2u∗∗2 r2 −B2(r1 + κ1)]−B1b33 − A′2u∗∗2 r2B1

−B2[µ2βr2u
∗∗
2 − b33(r1 + κ1)]−B5B3(1− b33) +B2B3r1

−B6[µ2βu
∗∗
2 B5 +B1µ2βu

∗∗
2 + µ2βu

∗∗
2 + A′2u

∗∗
2 r1]

−B4[B5(r1 + κ1) +B1r1 − µ2βr2u
∗∗
2 − r1b33], (4.71)

B0 = b11[B1b33 + A′2u
∗∗
2 r2B1 +B1(µ2βr2u

∗∗
2 − b33(r1 + κ1))]

−B3[−b33B5 +B2(µ2βu
∗∗
2 r2 + r1b33)]−B5B6[µ2βu

∗∗
2 + A′2u

∗∗
2 (r1 + κ1)]

−B1B6[µ2βu
∗∗
2 + A′2u

∗∗
2 r1]−B2B6µ2βu

∗∗
2 κ1

−B4B5[−µ2βu
∗∗
2 r2 − b33(r1 + κ1)]−B1B4[−µ2βr2u

∗∗
2 − r1b33], (4.72)

where

B1 = F1 + A1 + r1, B2 = v∗3(F ′ + A′1 − E ′1m1), B3 = µ1u
∗∗
1 − F1,

B4 = v∗3[(A′1 + E ′1)m1 − F ′1], B5 = γ1 + E1, B6 = µ1αu
∗∗
1 .

By the Routh-Hurwitz criterion for n = 4, P3 is locally asymptotically
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Figure 4.1: Initial densities for
the non-dimensional tumor cell
(black), damaged tumor cell (red),
and normal cell (blue), for all
numerical simulations of system
(4.20)-(4.23). This assumes no
prior exposure to radiation, which
is why the initial density for dam-
aged tumor cell and the concentra-
tion of bystander signals are zero.

stable provided

B3,B1,B0 > 0, (B3B2B1 − B2
1) > B2

3B0.

Clearly, B3 > 0. Hence, P3 is locally asymptotically stable provided that

B1,B0 > 0, (B3B2B1 − B2
1) > B2

3B0,

where Bi is given in (4.69)-(4.72) for each i.

4.4 Numerical exploration of the model

Our initial condition (Fig. 4.1) imposes a tumor-only state at x = −1 and

a healthy-only state at x = 1. We assume that there is no prior radiation

exposure, and thus no damaged tumor cells and bystander signals are initial

present. This particular initial cell distribution is chosen simply for clear delin-

eation of tumor vs. healthy cells, with the interface positioned at the domain

midpoint (x = −0.5) to allow enough space in the domain to observe either

leftward- or rightward-propagating waves. Changing the initial condition (not

shown) does not alter the overall system behaviour, provided the biologically

motivated boundary constraints (one end of the domain is primarily tumor,

the other end is exclusively normal tissue with a mixed interface) are satisfied.

We will restrict the spatial domain to one-dimension.

We impose the healthy steady state (P2) at the boundary ahead of the the
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tumor wavefront and one of the two invaded states, P1 or P3 far behind, such

that the traveling wave boundary conditions are:

(u1, v, u2, w)(∞) = (0, 0, u∗2, w
∗
2), if r2 + A2(w∗2) < µ2,

and

(u1, v, u2, w)(−∞) =

(u∗1, v
∗
1, 0, w

∗
1), if (4.31), (4.60)− (4.62) holds, or

P3, when P3 is stable.

where

u∗1 =
A1(w∗1) + F1(w∗1) + r1

A1(w∗1) + E1(w∗1) + γ1 + r1 + F1(w∗1)
− A1(w∗1) + r1

µ1

,

v∗1 = (γ1 + E1(w∗1))
[ 1

A1(w∗1) + E1(w∗1) + γ1 + r1 + F1(w∗1)
− A1 + r1

µ1(A1 + F1 + r1)

]
,

u∗2 = 1− r2

µ2

− A2(w∗2)

µ2

,

w∗1 solves

w = (r1 + κ1)v∗1(w) + r1u
∗
1(w),

and w∗2 solves

w = r2

(
1− r2

µ2

− A2(w)

µ2

)
.

We solve (4.20)-(4.23) numerically in Matlab using the parameter values

in Table 4.2. We discretize the system of partial differential equations using a

spatial step of dx = 0.15 and temporal steps of dt = 0.01. The wavespeed of

an invasive tumour (propagation in the positive x-direction) is measured by

tracking the midpoint of the front as it evolves near the end of each simulation.

Consider a subsystem of (4.20) - (4.23), where the bystander signal con-

centration w is constant, and Ai(w) = E1(w) = 0 and F1(w) = F10 given
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by

u1t = Du1xx + µ1u1(1− u1 − v − αu2)− (γ1 + r1)u1 + F10v, (4.73)

vt = γ1u1 − (F10 + r1)v, (4.74)

u2t = µ2u2(1− u2 − β1u1 − β2v)− r2u2. (4.75)

The effect of the bystander signals on the invasion speed of tumor waves is

investigated by comparing traveling wave solutions (Figures 4.2a & 4.2b) for

the subsystem (4.73) - (4.75) and the traveling wave solutions (Figures 4.2c

& 4.2d) for the full system (4.20) - (4.23) for periods of 100 and 200 days

of constant radiation exposures, respectively. In comparison, these numerical

solutions confirm that bystander effects can indeed increase the invasion speed

of tumor cells into surrounding normal cells.

In the next section, we will asymptotically investigate the dependence of

the tumor wavespeed on bystander effects.

4.5 Traveling wave analysis of the model

In this section, we will use the method of matched asymptotic analysis to

investigate the effect of bystander signals on the cancer invasion. In particular,

we will compute the asymptotic wave speed of system (4.20) - (4.23) with

constant radiation terms r1,2, and γ. To this end, let z = x − ct be our

traveling wave coordinate with c denoting the constant, positive wave speed.

We transform (4.20)-(4.23) into traveling wave coordinates by letting u1(x, t) =

u1(z), v(x, t) = v(z), u2(x, t) = u2(z), and w(x, t) = w(z). If we denote

differentiation with respect to z by ’, then we have

−cu′1 = Du′′1 + µ1u1(1− u1 − v − αu2)

−(A1(w) + E1(w) + γ1 + r1)u1 + F1(w)v, (4.76)

−cv′ = (γ1 + E1(w))u1 − (A1(w) + F1(w) + r1)v, (4.77)

−cu′2 = µ2u2(1− u2 − β1u1 − β2v)− (A2(w) + r2)u2, (4.78)

−cw′ = w′′ + (κ1 + r1)v + r1u1 + r2u2 − w. (4.79)
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(a) (b)

(c) (d)

Figure 4.2: Cell distributions for the non-dimensional tumor density (black), dam-
aged tumor density (red), and healthy tissue density (blue) at 100 and 200 days,
respectively. The first row is the traveling wave solution for the system of PDE
(4.20) - (4.23) when the bystander signal, w is assumed constant, and bystander
effects are set to zero. The second row consists of the traveling wave solutions to
the system (4.20) - (4.23) with bystander effects. The parameter values are the same
as the dimensionless values outlined in Table 4.2.

The boundary condition is similar to the one used for the numerical simulation

in Section 4.4. Since D1 � Dw in (4.76), the parameter D, which is the ratio

between the free-space tumor diffusion coefficient D1 and bystander signal

diffusion coefficient Dw, is very small. We exploit it as a small parameter

in the upcoming asymptotic analysis. So we relate D to the wave speed via

consideration of the fast and slow dynamics of (4.76)-(4.79) related to a small

parameter ε. In other words, if we let z = x − εθt, where ε =
√
D � 1 and
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θ = O(1), then the system becomes:

−εθu′1 = ε2u′′1 + µ1u1(1− u1 − v − αu2)

−(A1 + E1 + γ1 + r1)u1 + F1v, (4.80)

−εθv′ = (γ1 + E1)u1 − (A1 + F1 + r1)v, (4.81)

−εθu′2 = µ2u2(1− u2 − β1u1 − β2v)− (A2 + r2)u2, (4.82)

−εθw′ = w′′ + (κ1 + r1)v + r1u1 + r2u2 − w. (4.83)

In the following subsection, we will briefly introduce an important integral

that will be very useful in the matched asymptotic analysis of the subsequent

subsections. In Subsections 4.5.2 and 4.5.3, we will solve the ordinary dif-

ferential equations (4.77) and (4.78) for an approximate solution to v and

u2, respectively. In Subsection 4.5.5, we will apply the method of matched

asymptotic analysis to solve the reaction-diffusion equation for w. These ap-

proximate solutions will be combined to compute the asymptotic wavespeed

in Subsection 4.5.6.

4.5.1 Laplace integral and Laplace method

Before we explore the asymptotic approximations for each model compart-

ment, we will define an important integral that will be useful in the asymptotic

analyses. The brief summary presented in this subsection is adapted from both

Murray [85] and Bender and Orszag [6].

Definition 5 (Laplace Integral). A Laplace integral has the form

I(x) :=

∫ s2

s1

f(s)exφ(s)ds, (4.84)

where x, which is very large (approaching infinity), is real and positive, f(s) is

a real continuous function, and φ(s), φ′(s), and φ′′(s) are real and continuous

in s1 ≤ s ≤ s2, where s1 and s2 are real.

A special case of the Laplace integral in (4.84) that occurs when φ(s) = −s,
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s1 = 0, and s2 =∞ is given as

I(x) :=

∫ ∞
0

f(s)e−xsds. (4.85)

A classical result that is fundamental in determining the behavior of Laplace

integral in (4.85), which can be extended to those of the form in (4.84) as well,

is the Watson’s Lemma, which we will state without proof in the following:

Theorem 11 (Watson’s Lemma). If f(s) ∼ sα
∑∞

n=0 ans
βn as s→ 0+, where

α > −1 and β > 0, then∫ ∞
0

e−xsf(s)ds ∼
∞∑
n=0

anΓ(α + βn + 1)

xα+βn+1
(x→∞),

provided the integral converges for all sufficiently large x.

Watson’s Lemma relies on the fact that the major contribution to the

integral and hence to its leading order asymptotic approximation as x →
∞ will come from the neighbourhood of zero, where φ(s) = −s assumes its

maximum. In general, the behavior of Laplace integral of the form (4.84) is

asymptotically determined by the contribution from the point in s1 ≤ s ≤ s2

where φ(s) has its maximum value. If there are several maxima, then the

asymptotic approximation may have contributions from each of them. For

example, if φ′(s) < 0 in s1 ≤ s ≤ s2, then φ(s1) is the maximum of φ(s).

The integral can therefore be solved asymptotically by ‘Taylor expanding’

both f(s) and φ(s) about s1. We will apply this technique in the asymptotic

approximations of the damaged tumor cells v and normal cells u2 in the next

two subsections.

4.5.2 Asymptotic approximation for the v−profile

For simplicity, let G1(z) = (γ1 + E1(w(z)))u1(z) and G2(z) = A1(w(z)) +

F1(w(z)) + r1. Thus, (4.81) simplifies to

v̇ − 1

εθ
G2(z)v = − 1

εθ
G1(z). (4.86)
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Using the elementary integrating factor method, the solution to the previous

equation becomes

v(z) =
1

εθ
e

1
εθ

∫ z
0 G2(ξ)dξ

∫ ∞
z

G1(s)e−
1
εθ

∫ s
0 G2(ξ)dξds. (4.87)

Letting

φ(s) = −1

θ

∫ s

0

G2(ξ)dξ and I(z) =

∫ ∞
z

G1(s)e
1
ε
φ(s)ds,

(4.87) becomes

v(z) =
I(z)

εθ
e

1
εθ

∫ z
0 G2(ξ)dξ,

where I(z) is a Laplace integral [6, 85] of the form (4.84). Since φ(s) < − r1s
θ

,

then e
1
ε
φ(s) decays faster than e

r1s
εθ . Since G2(z) > 0 for all z in the interval

[z,∞), then

φ̇(s) = −1

θ
G2(s) < 0, for all s in [z,∞).

This implies that on the interval [z,∞), 1
ε
φ(s) has its maximum at s = z, and

thus, Taylor expanding I(z) about this point, yields:

I(z) ∼
∫ ∞
z

G1(z)e
1
ε
(φ(z)+(s−z)φ̇(z))ds (4.88)

= G1(z)e
1
ε
(φ(z)−zφ̇(z))

∫ ∞
z

e
1
ε
sφ̇(z)ds

= − ε
˙φ(z)
G1(z)e

1
ε
φ(z).

The last equality uses the fact that

lim
z→∞

e
z
ε
φ̇(z) = 0.
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Note that in (4.88), we have used

G1(s) = G1(z) +O(z)

φ(s) = φ(z) + (s− z)φ̇(z) +O(z2).

Thus,

v(z) ∼ 1

εθ

(
− ε

˙φ(z)
G1(z)e

1
ε
φ(z)
)
e−

1
ε
φ(z)

=
G1(z)

G2(z)
:=

γ1 + E1(w(z))

A1(w(z)) + F1(w(z)) + r1

u1(z), (4.89)

where the last expression is valid since ε is very small parameter.

We notice that the asymptotic approximation to v is the steady-state so-

lution to Eq. (4.21). In Fig. 4.3, we show both the asymptotic approximation

and the numerical solution for damaged tumor cells and observe good agree-

ment.

Figure 4.3: Traveling wave solutions to the v− differential equation. We see
good agreement between the asymptotic approximation (black) and the numerical
solution (red) to the v− equation (4.86)
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4.5.3 Asymptotic approximation for the u2−profile

From (4.82), we have

u′2 =
µ2

εθ
u2

2 −
µ2

εθ
u2

(
1− β1u1 − β2v −

A2

µ2

− r2

µ2

)
=

µ2

εθ
(u2

2 −B(z)u2), (4.90)

where

B(z) = 1− β1u1 − β2v −
A2

µ2

− r2

µ2

.

With the substitution of u2 = 1
u3

in (4.90), we have

u′3 −
µ2

εθ
B(z)u3 = −µ2

εθ
,

which can be solved to get

u3(z) = u3(z̄)e−
µ2
εθ

∫ z̄
z B(s)ds +

µ2

εθ
e
µ2
εθ

∫ z
0 B(s)ds

∫ z̄

z

e−
µ2
εθ

∫ ξ
0 B(s)dsdξ,

where z̄ is chosen to be very large so that

u3(z̄) =
1

u2(z̄)
≈ 1

1− r2
µ2
− A2(wr)

µ2

=
µ2

µ2 − r2 − A2(wr)

with wr = w(+∞). Substituting u2(z) back into the equation, we have

u2(z) ≈
(
1− r2

µ2
− A2(wr)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1 + 1
εθ

(
µ2 − r2 − A2(wr)

)
e
µ2
εθ

∫ z̄
0 B(s)ds

∫ z̄
z
e−

µ2
εθ

∫ ξ
0 B(s)dsdξ

.

Suppose we denote

φ1(ξ) = −µ2

θ

∫ ξ

0

B(s)ds, and

I1(z) =

∫ z̄

z

e
1
ε
φ1(ξ)dξ,
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then we have

u2(z) ≈
(
1− r2

µ2
− A2(wr)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1 + I1(z)
εθ

(
µ2 − r2 − A2(wr)

)
e
µ2
εθ

∫ z̄
0 B(s)ds

, (4.91)

where I1(z) is a Laplace integral [6, 85]. To derive an asymptotic approxima-

tion to I1(z), we will consider different cases based on the zeros of B(z).

Case 1: B(z) has no root on the interval [z, z̄].

For fixed z, suppose that B > 0 on the interval [z, z̄], with z̄ � 1. Since we

have that φ̇1(s) = −µ2

θ
B(s) for all s ∈ [z, z̄], this implies that 1

ε
φ1(s) has its

maximum at s = z. Then we can Taylor expand the integrand of I1(z) about

s = z, as follows:

I(z) ∼
∫ z̄

z

e
1
ε
[φ1(z)+(ξ−z)φ̇1(z)]dξ

=

∫ ∞
z

e
1
ε
[φ1(z)+(ξ−z)φ̇1(z)]dξ

= − ε

φ̇1(z)
e

1
ε
φ1(z).

The last equality is based on the fact that

lim
z→∞

e
z
ε
φ̇1(z) = 0.

Substituting this into (4.91), we obtain

u2 ∼
(
1− r2

µ2
− A2(wr)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1 + 1
µ2B(z)

(
µ2 − r2 − A2(wr)

)
e
µ2
εθ

∫ z̄
z B(s)ds

=

(
1− r2

µ2
− A2(wr)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1
B(z)

(
1− r2

µ2
− A2(wr)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

= B(z),

where the second line follows from the first by observing that B(s) > 0 for all

s in [z, z̄], r2 +A2(w) < µ2, ε� 1, and hence the exponential dominates unity.
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Case 2: B(z) has at least one root on the interval [z, z̄].

Suppose that s = z∗ is the largest point in [z, z̄] for which B(z∗) = 0. For

z > z∗, B(z) > 0 and the asymptotic analysis are analogous to the no-root

case, where we found that u2(z) ≈ B(z). It remains to consider the case z < z∗.

At z∗ = z, φ̇1(z∗) = −1
θ
B(z∗) = 0, and it follows that φ̈1(z∗) = −1

θ
Ḃ(z∗) ≤ 0.

Excluding the case for which φ̈1(z∗) = 0, we assume that φ̈1(z∗) > 0 and

expand I(z) about s = z∗:

I1(z) ∼
∫ z∗

z

e
1
ε
[φ1(z∗)+(ξ−z∗)φ̈1(z∗)]dξ

= e
1
ε
φ1(z∗)

∫ 0

ξ−z
e
s2

ε
φ̈1(z∗)ds where s = ξ − z∗,

∼ e
1
ε
φ1(z∗)

∫ ∞
−∞

e
s2

ε
φ̈1(z∗)ds = 2e

1
ε
φ1(z∗)

∫ ∞
0

e
s2

ε
φ̈1(z∗)ds

= 2e
1
ε
φ1(z∗)

∫ ∞
0

e
x
ε

dx

φ̈1(z∗)
√

2x
φ̈1(z∗)

where x =
1

2
φ̈1(z∗)s2;

=

√
2

φ̈1(z∗)
e

1
ε
φ1(z∗)

∫ ∞
0

e
x
ε x−

1
2dx =

√
2πε

−φ̈1(z∗)
e

1
ε
φ1(z∗).

Substituting this into (4.90) gives us

u2(z) ∼
(
1− r2

µ2
− A2(w0)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1 + 1
εθ

√
2πεθ
Ḃ(z∗)

e
1
ε
φ1(z∗)

(
µ2 − r2 − A2(w0)

)
e
µ2
εθ

∫ z̄
0 B(s)ds

=

(
1− r2

µ2
− A2(w0)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds

1 +
√

2π
εθḂ(z∗)

(
µ2 − r2 − A2(w0)

)
e
µ2
εθ

∫ z̄
z∗ B(s)ds

≈
(
1− r2

µ2
− A2(w0)

µ2

)
e
µ2
εθ

∫ z̄
z B(s)ds√

2π
εθḂ(z∗)

(
µ2 − r2 − A2(w0)

)
e
µ2
εθ

∫ z̄
z∗ B(s)ds

=
e
µ2
εθ

∫ z̄
z B(s)ds

µ2

√
2π

εθḂ(z∗)
e
µ2
εθ

∫ z̄
z∗ B(s)ds

=
1

µ2

√
εθḂ(z∗)

2π
e
µ2
εθ

∫ z∗
z B(s)ds ≈ 0,
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Figure 4.4: Traveling wave solutions to the u2− differential equation. We see
good agreement between the asymptotic approximation (Eq. (4.92) in black) and
the numerical solution ( Eq. (4.90 in red)).

where the third line follows from the domination of the exponential function

over the unity and the last line follows from letting ε→ 0 from an approxima-

tion to leading order in ε. This holds since B(s) < 0 in the interval [z, z∗] and

hence the exponential vanishes.

Thus, we found that

u2 ∼ max{B(z), 0} (4.92)

to leading order of ε.

In Fig. 4.4, we show both the asymptotic approximation in Eq. (4.92) and

the numerical solution for normal cells and observe good agreement.

4.5.4 Boundary layer - outer and inner solutions

It is clear from the numerical simulations that the system exhibits a boundary

layer: within and near the tumor wavefront is a region of a rapid change for the

species and their derivatives, while far behind and ahead of the wavefront the

changes are much slower. To asymptotic (leading-order) accuracy, the solution
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in the slowly-varying outer regions satisfies (4.80)-(4.83) with ε = 0:

0 = µ1u1(1− u1 − v − αu2)

−(A1(w) + E1(w) + γ1 + r1)u1 + F1(w)v, (4.93)

0 = (γ1 + E1)u1 − (A1 + F1 + r1)v, (4.94)

0 = µ2u2(1− u2 − β1u1 − β2v)− (A2 + r2)u2, (4.95)

0 = w′′ + (κ1 + r1)v + r1u1 + r2u2 − w. (4.96)

If we rescale the narrow wavefront region by setting z = εζ and denote the

leading-order solution in the wavefront region with subscript ’in’, we have

−θu′1in = u′′1in + µ1u1in(1− u1in − vin − αu2in) (4.97)

−(A1(w) + E1(w) + γ1 + r1)u1in + F1(w)vin, (4.98)

−θv′in = (γ1 + E1)u1in − (A1 + F1 + r1)vin, (4.99)

−θu′2in = µ2u2in(1− u2in − β1u1in − β2vin)− (A2 + r2)u2in , (4.100)

w′′in = 0. (4.101)

We will find an asymptotic approximation for the bystander signal profile

(w) using the method of matched asymptotic analysis, which matches the

solution for the outer region to the solution for the inner region. Finally, we

will incorporate the asymptotic solutions for the inner region for v, u2, and w

into (4.98). By that, we can estimate the wavespeed of the system.

To this end, while incorporating the solution for v and u2 in the two pre-

vious subsections, we will approximate the bystander signals profile, w.

4.5.5 Asymptotic approximation for the w−profile

Based on the boundary conditions behind and ahead of the tumor wave front,

u1, v ≈ 0 ahead of the wavefront. Since u2 ∼ max{B(z), 0} on the domain,

we see that in order for the normal tissue to satisfy the boundary conditions

imposed ahead of the tumor waves, then u2 ∼ B(z) = 1 − A2(wr)
µ2
− r2

µ2
, with

wr = w(+∞).

Using this information, ahead of the wavefront, the bystander signal waves
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governed by (4.96) is asymptotically given by

0 ∼ w′′ + r2

(
1− A2(wr)

µ2

− r2

µ2

)
− w

= w′′ − w + r2

(
1− r2

µ2

− A2(wr)

µ2

)
,

the solution of which is given by

w+(z) ∼ r2(1− A2(wr)

µ2

− r2

µ2

) +K1e
−z +K2e

z

= r2(1− A2(wr)

µ2

− r2

µ2

) +K1e
−z,

where the last line follows from applying the boundary condition for w ahead of

the wavefront. On the other hand, behind the wavefront, since v ≈ v(−∞) =

v∗1, and u1 ≈ u(−∞) = m1(wl)v
∗
1, (where m1 and v∗1 are as in (4.29) and

(4.30)), the w−profile can be approximated by

w′′ − w + (κ1 + r1 + r1m1(wl))v
∗
1 ≈ 0,

which can be solved to get

w−(z) ≈ (κ1 + r1 + r1m1(wl))v
∗
1 +K3e

z +K4e
−z

= (κ1 + r1 + r1m1(wl))v
∗
1 +K3e

z,

where the last line follows from applying the boundary conditions for w behind

the wavefront. From (4.101),

win = K5 +K6ξ.

Since win must be bounded at both ends, win must be a constant. Matching the

outer solution to the inner boundary is equivalent to matching the functional

forms of w−(0) and w+(0) with one another across the inner region, where

both take the value of win. We match the functions, w−(0) = w+(0), and their

derivatives, ẇ−|0 = ẇ+|0, to obtain the leading order in ε: w−(0) = w+(0) and
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ẇ+(0) = ẇ−(0) respectively imply that

(κ1 + r1 + r1m1(wl))v
∗
1 +K3 = r2(1− A2(wr)

µ2

− r2

µ2

) +K1, and

−K1 = K3,

which in turn implies

K1 =
1

2

[
(κ1 + r1 + r1m1(wl))v

∗
1 − r2

(
1− A2(wr)

µ2

− r2

µ2

)]
,

K3 = −1

2

[
(κ1 + r1 + r1m1(wl))v

∗
1 − r2

(
1− A2(wr)

µ2

− r2

µ2

)]
.

Therefore,

w(z) ≈

(κ1 + r1 + r1m1(wl))v
∗
1(1− 1

2
ez) + r2

2

(
1− A2(wr)

µ2
− r2

µ2

)
ez, z < 0

r2

(
1− A2(wr)

µ2
− r2

µ2

)
(1− 1

2
e−z) +

v∗1
2

(κ1 + r1 + r1m1(wl))e
−z, z > 0,

(4.102)

and it follows that

win =
1

2

[
r2

(
1− A2(wr)

µ2

− r2

µ2

)
+ (κ1 + r1 + r1m1(wl))v

∗
1

]
(4.103)

since w+(0) = w−(0) = win, where

m1 =
F1(wl) + A1(wl) + r1

γ1 + E1(wl)
,

with wl = w(−∞).

4.5.6 Determination of asymptotic wave speed, c

In order to compute the invasive speed c, of an invading tumor wave in our

system, we first notice that the solution to the inner dynamics of the v−profile
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is given (as a consequence of 4.89) by

vin ∼
γ + E1(win)

A1(win) + F1(win) + r1

u1in(z). (4.104)

Also, as a consequence of (4.92), the solution to the inner dynamics of u2−profile

is given by

u2in ∼ 1− β1u1in − β2vin −
A2(win)

µ2

− r2

µ2

. (4.105)

Thus, incorporating the solution to the inner dynamics of v, u2, and w in

(4.98), (4.104), (4.103), (4.105), respectively, we get an equation for u1in ,

namely

−θu′1in = u′′1in + u1in

[
µ1 − µ1u1in −

µ1

m1(win)
u1in − µ1αu2in

−A1(win)− E1(win)− γ1 − r1 +
F1(win)

m1(win)

]
.

Thus, if we denote

β0 = µ1 +
F1(win)

m1(win)
+ µ1α

(A2(win)

µ2

− 1 +
r2

µ2

)
−
(
A1(win) + E1(win) + γ1 + r1

)
,

β00 = µ1

(
1 +

1− αβ2

m1(win)
− αβ1

)
,

then the equation simplifies to a Fisher-KPP-type equation:

−θu′1in ∼ u′′1in + u1in(β0 − β00u1in).

which exhibits an asymptotic front speed of θ ∼ 2
√
β0. Substituting back to

the original parameters and recalling that c ∼ εθ =
√
Dθ, the wavespeed is
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then given by

c ∼ 2

√
Dµ1

[
1 + α

(A2(win) + r2

µ2

− 1
)
−
(A1(win) + r1

µ1

)(
1 +

1

m1(win)

)]
,

(4.106)

where win is given by (4.103).

A close look at the wavespeed (4.106) reveals its dependence on the by-

stander signals in both the tumor and the normal cells. While the bystander

effect A2(w) on the normal cells enhances the tumor invasion speed, the by-

stander effect A1(w) on the tumor cells decreases the invasion speed. Similarly,

while the radiation-induced normal cell death (with rate r2) enhances the in-

vasion speed, radiation-induced tumor cell death (with rate r1) reduces the

speed. We also notice that highly proliferative normal cells (with large µ2)

will decrease the speed and highly proliferative (with large µ1) tumor cells will

be more invasive.

Comparing our analytical solutions, (4.89), (4.92), (4.102), and (4.103),

with estimates measured from our numerical solutions, we see an agreement

(figure not shown). There are discrepancies on the order of our asymptotic

parameter ε, resulting from the use of leading-order approximations in the

asymptotics. This discrepancies might decrease if we include higher-order

terms.

If we set Ai(win) = E1(win) = 0 and F1(win) = F10 in (4.106), we derive

the wavespeed c0 for the system without bystander effects as

c0 ∼ 2

√
Dµ1

[
1 + α

( r2

µ2

− 1
)
− r1

µ1

(
1 +

γ1

F10 + r1

)]
, (4.107)

which is the invasion speed of the subsystem (4.73)-(4.75). This clearly reveals

that a tumor that possesses a high rate F10 of damage repair will be more

invasive.

In order to confirm the bystander signal-induced invasion observed in the

numerical solutions in Fig. 4.2, we also compare the asymptotic wavespeeds

with and without bystander effects as shown in Fig. 4.5. We observe that

129



Figure 4.5: Asymptotic tumor wavespeed over increasing proliferation rate of
tumor cell population, µ1. The wavespeed with bystander effects is computed from
Eq. (4.106) and wavespeed without bystander effects is computed from (4.107).
We kept β1,2 = 2, α = 0.5, A10 = 0.5, F10 = 0.7, and other parameters are held
constant according to Table 4.2.

the wavespeed with bystander effects always predominates the speed without

bystander effects, thus confirming the signal-mediated cancer invasion.

4.6 Discussion

We have developed a continuum framework to investigate the bystander signal-

mediated tumor invasion observed in many biological experiments. This mod-

eling framework is a generalization of the model for bystander signal developed

in Chapter 2. By modeling continuous exposure of a tumor and its surround-

ing normal tissue to constant low doses of radiation, we were able to confirm

(both numerically and analytically) that bystander signal can expedite tumor

invasion. The analyses of this chapter are still restricted only to the invasion of

a homogeneous tumor mass into a homogeneous normal cell population with a

mixed interface. However, since tumors can be interwoven with other normal

cells, a next step is to consider the invasion of a heterogenous mixture of both

tumor and normal cells into a homogeneous normal cell population. This case

is also suggested by the steady-state analysis of our model. Nevertheless, it is

promising that the current analyses obtained such invasive behavior, in part
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because they provide good target for model validation. In this respect, our

model fits into a larger goal of assessing possible experiments that will test

the bystander signal-mediated invasion hypothesis - an important task toward

developing novel cancer treatment strategies.

Furthermore, Section 4.5 demonstrates that our model remains amenable

to mathematical analysis. Through matched asymptotic traveling wave anal-

ysis, we have been able to characterize the homogeneous invasive behavior in

parameter space. The asymptotic wavespeeds are also well corresponded with

the numerical simulations (figure not shown). We also compared the asymp-

totic approximation to the wavespeed with and without bystander effects. We

showed that the asymptotic wavespeed with bystander effects is always higher

than the speed without bystander effects. This also confirms the earlier nu-

merical solution.

While the model presented here captures experimental observations at the

cellular scale, the bystander signal-mediated invasion might be a result of some

biochemical or molecular mechanisms. These details would inform the choice

of the functional forms of Ai(w), B(w), E(w) and F (w), which describe the

bystander effects. Thus a finer-scale understanding of the bystander signal

interaction in the observed tumor invasion maybe necessary for more insight

that is capable of informing better treatment strategies for aggressively invasive

tumors.
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Chapter 5

Effects of G2-checkpoint

dynamics on low-dose

hyper-radiosensitivity

The work presented in this chapter has been published as: Olobatuyi, Olu-

wole, Gerda de Vries, and Thomas Hillen. Effects of G2 checkpoint dynamics

on low-dose hyper-radiosensitivity. Journal of mathematical biology, 2018,

https://doi.org/10.1007/s00285-018-1236-8.

Abstract. In experimental studies, it has been found that certain cell lines are

more sensitive to low-dose radiation than would be expected from the classical

Linear-Quadratic model (LQ model). In fact, it is frequently observed that

cells incur more damage at low dose (say 0.3 Gy) than at higher dose (say

1 Gy). This effect has been termed hyper-radiosensitivity (HRS). The effect

depends on the type of cells and on their phase in the cell cycle when radiation

is applied. Experiments have shown that the G2-checkpoint plays an important

role in the HRS effects. Here we design and analyze a differential equation

model for the cell cycle that includes G2-checkpoint dynamics and radiation

treatment. We fit the model to surviving fraction data for different cell lines

including glioma cells, prostate cancer cells, as well as to cell populations that

are enriched in certain phases of the cell cycle. The HRS effect is measured
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in the literature through αs
α

, the ratio of slope −αs of the surviving fraction

curve at zero dose to slope −α of the corresponding LQ model. We derive an

explicit formula for this ratio and we show that it corresponds very closely to

experimental observations. Finally, we identify the dependence of this ratio

on the surviving fraction at 2 Gy. It was speculated in the literature that such

dependence exists. Our theoretical analysis will help to more systematically

identify the HRS in cell lines, and opens doors to analyze its use in cancer

treatment.

5.1 Introduction

The cell cycle is an ordered sequence of phases in the lifespan of a cell, which

normally culminates in cell division. The cell cycle progression from one phase

to the other is unidirectional. The four phases of the cell cycle are ordered

as G1, S, G2, and M. The G1-phase is the first phase of a new daughter cell

which lasts between 10-12h. This is the first growth phase where a cell increases

its protein supply, increases the number of organelles like mitochondria and

ribosomes, and increases in size. The S-phase, also referred to as the synthesis

phase, starts when DNA replication commences. During this phase, which

lasts about 5-7h, the amount of DNA in the cell effectively doubles. The

G2-phase is the second growth phase lasting about 4h. This is the period of

protein synthesis and rapid cell growth in preparation for cell division. The

last phase is the M-phase, also referred to as the mitotic phase. This is the

shortest cycle which last about 2h. During this stage, the cell divides into two

daughter cells.

As a cell progresses through this cycle, the integrity of its genome is en-

sured and maintained by regulatory mechanisms called checkpoints [28]. These

checkpoints, seemingly situated at the entrance to the next cycle phase, en-

sure that a cell does not progress into the next phase with unrepaired damage.

Usually, when a cell sustains any form of damage in a particular phase, the

checkpoint of that phase will stop the cell’s progression into the next phase

in order to allow more time for damage repair. The process that stops cycle

progression in order to give more time for repair is referred to as cell cycle
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arrest [84]. As soon as the repair is complete, the cell is allowed to continue

to the next phase.

The type of damage that is of particular interest in this chapter is radiation-

induced damage and the corresponding response of various cell cycle check-

points. Sometimes, the radiation damage is not recognized by the checkpoint,

and damaged cells proceed to the next phase unrepaired. Damaged cells in

the G2 phase that evade the G2 checkpoint have been shown to experience

cell death shortly afterward. This cell death, which prevents mutation as a

result of unrepaired damage, is called mitotic catastrophe [16]. Experiments

have shown that checkpoint evasion predominantly occurs when cells are ex-

posed to low doses of radiation (mostly below 0.5 Gy) [45]. Mitotic catas-

trophe of G2-phase cells that evade the checkpoint has been shown to result

in increased cell death at low doses of radiation. This phenomenon is called

hyper-radio-sensitivity (HRS). As the radiation dose increases and the corre-

sponding damage is recognized by the checkpoint, there is cell cycle arrest of

the damaged cells, which results in an apparent resistance to radiation. This

low-dose resistance phenomenon is referred to as Increased Radio-Resistance

(IRR). Experiments involving cells in different phases have also shown that

the HRS/IRR phenomena are more exaggerated in G2-phase cells relative to

cells in other phases [108, 67, 65, 54, 30].

The surviving fraction (SF) of cells is traditionally modelled by the Linear

Quadratic (LQ) model given by

SF0(D) = e−αD−βD
2

, (5.1)

where D is the total radiation dose (measured in Gy), α is the rate at which

single radiation tracks produce lethal lesions, and β is the rate at which bi-

nary misrepair of pairs of double strand breaks (DSB) from different radiation

tracks lead to lethal lesions [12]. The LQ model is a monotonically decreasing

function of dose; it cannot be used to describe the low-dose phenomena of

HRS/IRR. In most cases, due to insufficient information about the low-dose

cellular behaviors, the LQ model is extrapolated to low doses. However, ex-

periments have shown that such extrapolation underestimates the low-dose
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Figure 5.1: A surviving fraction curve illustrating the phenomena of HRS and
IRR. The solid curve is the IR model while the dotted curve is the LQ model. −αs
denotes the initial slope of the IR model while −α denotes initial slope of the LQ
model.

radiation effects [54, 30].

In order to account for the HRS/IRR phenomena, Marples et. al. in [66]

developed a modification of the LQ model, called the Induced Repair (IR)

model, given by

SF1(D) = exp
{
− α

(
1 +

(αs
α
− 1
)
e−

D
Dc

)
D − βD2

}
, (5.2)

where α, β, and D are as defined in (5.1). Dc is the dose at which HRS tran-

sitions to the IRR phenomenon, and −αs is the initial slope of the surviving

fraction curve (5.2) at d = 0 Gy. Figure 5.1 clearly explains these terminolo-

gies. Since the IR model was developed, the HRS/IRR phenomena have been

widely quantified by the αs/α index [44, 108]. It is easy to see that if αs
α

= 1,

then the IR model reduces to the LQ model. Furthermore, any cell with αs
α
> 1

will exhibit the HRS/IRR phenomena.

Experiments in [53, 54] have been conducted at the molecular level in order

to identify what is responsible for the HRS/IRR phenomena. It has been

shown in [71, 65, 70] that the HRS/IRR phenomena consist of a sequence

of cellular events such as checkpoint activity, mitotic catastrophe, cellular
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repair mechanism; and also the proportion of G2-phase cells at the time of

radiation exposure. However, the relationship between the −αs, the slope of

the surviving fraction curve at d = 0 Gy, and these events remains unclear.

In particular, how can we interpret or model the slope −αs in terms of these

events?

In this chapter, we focus on the HRS phenomenon by building an ordinary

differential equations (ODE) model for the dynamics of cell cycle phases and

damage repair, and how these are affected by radiation. We validate the model

by fitting it to surviving fraction curves of ten asynchronous and three syn-

chronous cell lines that exhibit the HRS phenomenon. Then we derive −αs,
the initial slope of the surviving fraction (SF) curve, from this model for two

cases motivated by the radiobiological experiments. In particular, we derive

this initial slope of the SF curve when cell survival is computed immediately

after radiation with (1) exposure time too short to accommodate cell progres-

sion and damage repair, and (2) exposure time long enough to accommodate

damage repair but too short to accommodate cell cycle progression. Although

in the experimental procedures leading to the measurement of the SF data,

there is a post-radiation incubation period of 2 weeks after which survived

cells can be recognized by their ability to form colonies (i.e., more than 50

daughter cells). This is because the current technology cannot detect survived

cells until they are able to form colonies. However, since our deterministic

model can compute the number of radiation-induced dead cells immediately

after radiation exposure, we will assume that this model can be used as a

proxy for measuring SF. Furthermore, experiments have shown that the re-

pair of radiation damage usually occurs between 30-35mins after radiation [53].

Thus, since most SF data are measured from radiation exposure of at most

10 mins, we will use the derivation under the first assumption to compute the

corresponding −αs for our model. We find that the values of −αs computed

from our model agree with the data available in the literature. We also find

the relationship between −αs and some of the cellular events implicated in the

HRS phenomenon. Finally, we find an explicit relationship between the αs
α

index and the radioresistance at 2 Gy, which confirms speculations from the

observations in [57].
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All through this chapter, the term synchronous cell population will mean

a culture of cells that is rich in a particular phase of the cell cycle. Thus,

we will use this term interchangeably with the term cell culture enriched in a

particular phase of the cell cycle. On the other hand, the term asynchronous

cell population will refer to a cell culture that is not enriched in a particular

phase of the cell cycle.

The rest of this chapter will be organized as follows: In Section 5.2, we

formulate and develop the mathematical model from underlying cell cycle dy-

namics, and explain the relevant parameters. In Section 5.3, we fit the model

to the surviving fraction data for 10 different asynchronous cell lines. We also

fit the model to populations of cells enriched in various cell cycle phases. We

estimate the model parameters and their 95% credible intervals for these cell

lines. In Section 5.4, we derive the analytical formula for −αs from the model

under the two simplifying cases mentioned earlier. In Section 5.5, we numeri-

cally validate the derivations in the previous section. We find that the formula

for the initial slope of SF curve derived in the previous section can replicate

the values of −αs in the literature. In Section 5.6, we derive the relationship

between αs
α

index and the radioresistance at 2 Gy. We find that cells with

the same intrinsic radiosensitivity show an increasing relationship between αs
α

and the radioresistance at 2 Gy. This result contextualizes the suggestion of

Lambin et. al in [57]. We finish the chapter with a discussion in Section 5.7.

5.2 Model formulation

Let u and w denote the population of cells in G2- and M/G1/S-phases, re-

spectively. The model in this chapter will be built from a simple model given

by

u̇ = −µu+ aw,

ẇ = 2µu− aw, (5.3)

where µ is the rate of progression from G2 phase into mitosis, which results in

two daughter cells entering the M/G1/S phase, and a is the rate of cell cycle
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Figure 5.2: Schematics for the model in (5.4). The circle is partitioned into G2
and G1/S/M compartments. The arrows denote the rates of change between com-
partments. The damaged G2 compartment is an extension of the G2 compartments.
The extension of the G1/S/M compartment denotes the damaged cells in mitosis
that evade the G2 checkpoint.

progression from M/G1/S phase into G2 phase. We have restricted the model

compartments to these two phase categories for simplicity. However, as we

will see in Section 5.4, the derivation of the initial slope of the SF curve scales

“nicely” with increase in the number of compartments.

We include radiation in the cell cycle dynamics (5.3), keeping in mind

that the G2 checkpoint occurs in the damaged G2 phase. Thus, including the

population of the damaged G2 cells, v, and the radiation terms along with

their cellular interactions, we have,

u̇ = −µu+ aw − ru(D(t), Ḋ(t))u− γ(Ḋ(t))u+ θv,

v̇ = γ(Ḋ(t))u− rv(D(t), Ḋ(t))v − θv − κ(1− c(D(t)))v, (5.4)

ẇ = 2µu− aw − rw(D(t), Ḋ(t))w,

where D(t) denotes the total dose at time t, delivered at dose rate Ḋ(t), and

is given by

D(t) =

∫ t

0

Ḋ(z)dz.

A schematic of the model, illustrating the relationship between the com-
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partments, is given in Figure 5.2. When cells are exposed to radiation, a pro-

portion of G2-phase cells is damaged at rate γ(Ḋ(t)). Damaged cells in the G2

phase undergo mitotic catastrophe at rate κ. The rate of mitotic catastrophe

reduces when the G2 checkpoint, modeled by c(D), is activated. c(D) = 1

corresponds to a fully activated checkpoint and c(D) = 0 corresponds to the

state when the checkpoint is not activated. The activation of this checkpoint

arrests the damaged cells in the v compartment in order to give time for repair

which occurs at a rate, θ.

We model the checkpoint dynamics by the function c(D), defined as

c(D) =
1

2

[
1 + tanh

( 6

D2 −D1

(
D − D1 +D2

2

))]
. (5.5)

We denote D1 as the dose threshold below which the checkpoint fails to be

activated (c(D) ≈ 0, ∀D < D1), and D2 as the dose threshold above which

the checkpoint is fully activated (c(D) ≈ 1, ∀D ≥ D2) and damaged cells

are arrested for repair. These thresholds are chosen to be in line with the

experimental results in [53]. Figure 5.3 illustrates the profile of the checkpoint

function c(D). This conforms to the hypothesis of Joiner et. al. in [45], which

suggests that for HRS to occur at low doses, there must be a dose-sensing

threshold below which damage is not sufficient to activate the repair mecha-

nism. The half- saturation constant is given by D1+D2

2
and the slope of the

curve is given by 6
D2−D1

. We are not particularly concerned whether the G2

checkpoint is activated as a result of more damaged cells or as a result of

more damaged sites in a single cell. The dose-dependence of this checkpoint

function, c(D), is sufficient to take care of these concerns.

The two direct radiation effects on the cells are mainly the radiation-

induced DNA damage and death, which occur at rates γ and ri, with i =

{u, v, w}, respectively. We model the radiation-induced damage in the G2

cells as proposed in [89], that is,

γ(Ḋ(t)) = 2γ0
ηḊ(t)

1 + (ηḊ(t))2
, (5.6)

where γ0 is the maximum damage rate and η = 1
ḊM

denotes the reciprocal

139



Figure 5.3: The profile of the G2 checkpoint functional. The lower threshold below
which DNA is not recognized and the upper threshold above which the damaged
cells are completely arrested for repair are given by D1 = 0.25 Gy and D2 = 1 Gy,
respectively.

of the dose rate ḊM at which the radiation damage is maximal in a cell. We

model the radiation-induced death rate by the radiation hazard function in

[34], given by

ri(D(t), Ḋ(t)) = (αi + βiD)Ḋ(t), (5.7)

where αi and βi are as described in the LQ model for the different cycle phases,

i = u, v, w.

We note here that the method we will use to derive the initial slope of

the SF curve in Section 5.4 only works when the parameters and functions of

the model (5.4) are independent of time. Therefore, we restrict the analysis

to a time interval of constant radiation [0, t0] such that on this time interval

the dose rate Ḋ(t) = D
t0

is constant. Since we are only interested in the first

period of radiation exposure of length t0, we can drop the time dependence of
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(5.6)-(5.7) as follows:

γ
(D
t0

)
=

2γ0η
D
t0

1 +
(
ηD
t0

)2 and ri

(
D,

D

t0

)
= (αi + βiD)

D

t0
. (5.8)

In the definition of c(D(t)), the checkpoint functional depends on the total

dose given over total time, t0. Then,

D(t) =

∫ t0

0

D

t0
ds = D.

This implies that at time t0 we have

c(D) =
1

2

[
1 + tanh

( 6

D2 −D1

(
D − D1 +D2

2

))]
, ∀ t ≥ t0. (5.9)

The data fitting in Section 5.3 and the derivation of the initial slope of the

SF curve in Section 5.4 will be based on model (5.4) with time independent

parameters and functions, namely

u̇ = −µu+ aw − ru
(
D,

D

t0

)
u− γ

(D
t0

)
u+ θv,

v̇ = γ
(D
t0

)
u− rv

(
D,

D

t0

)
v − θv − κ(1− c(D))v, (5.10)

ẇ = 2µu− aw − rw
(
D,

D

t0

)
w,

for 0 ≤ t ≤ t0. The terms γ
(
D
t0

)
, ri
(
D, D

t0

)
, and c(D) are given by (5.8) and

(5.9), respectively.

5.3 Data fitting and numerical simulation

In this section, we fit a simplified version of model (5.10) to the surviving

fraction data of different cell lines (both synchronous and asynchronous cells),

and estimate the model parameters with their 95% credible intervals. All of the

cell lines in [53, 73, 66, 69, 118, 108] have been shown to exhibit the low-dose

HRS phenomenon, although with varying degrees.
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We will define the surviving fraction in the context of model (5.4). This

is crucial because the formulas for the surviving fraction in both the LQ and

the IR models do not account for the duration of the radiation exposure. The

duration of the radiation exposure will be very significant in our analysis.

Thus, we give the following definition:

Definition 6. The surviving fraction SF (D, t) of cells at total dose D and

time t from model (5.10) is given by

SF (D, t) =
u(D, t) + v(D, t) + w(D, t)

u0 + w0

, (5.11)

where u(D, t), v(D, t), and w(D, t) are the cell populations at time t and after

radiation dose D in G2, damaged G2, and M/G1/S phases, respectively. We

denote u0 = u(0, 0) and w0 = w(0, 0) as the initial populations of cells in G2

and M/G1/S phases, respectively, before radiation exposure started.

We fit the surviving fraction SF (D, t0) as defined in (5.11), to SF data

over a radiation exposure time t0 chosen to be too short to accommodate both

cell cycle progression and damage repair. This will be among the cases we

will consider in the next section. As noted earlier, we will assume that the

SF computed from model (5.10) is a good approximation to the experimental

values of SF. Since the duration of radiation exposure is very short, we will

also assume that the cell cycle progression rates µ, a and the DNA repair rate

θ are zero in the simulation.

Thus, the simplification of model (5.10) that we will fit to the asynchronous

data, for 0 ≤ t ≤ t0, is given by

u̇ = −ru
(
D,

D

t0

)
u− γ

(D
t0

)
u,

v̇ = γ
(D
t0

)
u− rv

(
D,

D

t0

)
v − κ(1− c(D))v, (5.12)

ẇ = −rw
(
D,

D

t0

)
w.

For the synchronous cell population, model (5.12) will be extended to accom-
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modate all the phases of the cell cycle. Thus, for 0 ≤ t ≤ t0, we have

u̇ = −ru
(
D,

D

t0

)
u− γ

(D
t0

)
u,

v̇ = γ
(D
t0

)
u− rv

(
D,

D

t0

)
v − κ(1− c(D))v,

ż = −rz
(
D,

D

t0

)
z, (5.13)

ẇ = −rw
(
D,

D

t0

)
w,

ṡ = −rs
(
D,

D

t0

)
s,

where u, v, z, w, s denote the population of cells in healthy G2, damaged G2,

M-, G1, and S phases, respectively. We have also excluded the cell cycle rates,

µ, a, and the DNA repair rate θ because the duration of radiation exposure

t0 of interest is assumed to be too short to accommodate such dynamics.

In particular, we are interested in using formula (5.26) derived in Section

5.4 to estimate the initial slope of the SF curve of these cell lines using the

parameter values for γ0, κ, η, D1, D2, α, and, β that will be estimated in

this section. Notice that we have dropped the subscripts in the α’s and β’s

in the data fitting. This is because in most of the literature, it is usually

assumed that α := αi and β := βi for all i ∈ {u, v, w} in the asynchronous

cell population. Similarly for the synchronous cell population, we will also

assume that α := αi and β := βi for all i ∈ {u, v, z, w, s} and that α and β

parameters will denote the radio-responsiveness of the enriched phase of the

cell cycle. The ultimate goal is to compare these computed values of initial

slope of the SF curve to the data in Figure 2 in [45].

The surviving fraction data of the various cell lines considered in this chap-

ter [53, 73, 66, 69, 118, 108] were measured from experiments where cells were

irradiated with single doses of X-rays between 0.05 and 6 Gy at dose rates

ranging between 0.2-0.5 Gy/min. The surviving fraction of cells after expo-

sure to a single dose was measured using a Cell Sorter. Most data points

represent multiple measurements and are denoted as mean ± standard devi-

ation. Cell survival was described in terms of their ability to form a colony
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(i.e., reproduce at least 50 offspring after radiation exposure) and cells which

are unable to form a colony do not survive.

In this data fitting, we employ an implementation of the Goodman and

Weare Affine invariant ensemble Markov Chain Monte Carlo (MCMC) sampler

[35] to fit the model to the available surviving fraction datasets. The affine

invariance property of this routine enables a much faster convergence even

for badly scaled problems. This implementation takes, as an input, a log-

likelihood function of the experimental data and a log-prior of each parameter.

We assume an exponential distribution for the surviving fraction data. We

also assume a uniform distribution for the prior of each parameter over the

prescribed intervals of biologically relevant values. The posterior distribution

for each parameter, which is one of the outputs of the fitting procedure, is

Gaussian. The 95% credible interval for each parameter is then computed from

the respective posterior distribution. It is important to clarify that the model

fits shown in Figures 5.4 and 5.5 are the median of the posterior distribution

for each parameter.

In the following subsections, we will respectively fit models (5.12) and

(5.13) to the asynchronous and synchronous cell data.

5.3.1 Asynchronous cell lines

In this subsection, we fit model (5.12) to the SF data of the following asyn-

chronous cell lines: MR4 [53], PC3 [73], V79 [66], V79ox [69], V79hyp [69],

A549 [118], HT29 [118], U1 [118], T98G [108], and RWPE1 [73] cells. As

mentioned earlier, these data describe the survival of cells after exposure to

a single dose of 240kvp X-rays radiation. Doses between 0.05 and 6 Gy were

delivered at dose rates ranging between 0.2 - 0.5 Gy/min. Since there is no

specific detail of which dose was delivered at a particular dose rate, we as-

sume that every dose was delivered over a period of 10 mins. This assumption

is fair because standard radiation technique delivers doses with appropriate

dose rate over 10 mins. We assume that these asynchronous cells consist of

63% G1-phase cells, 19.35% S-phase cells, and 17.65% G2-phase cells. This

assumption is based on the mean of the proportion of cells in each phase that
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Figure 5.4: Data fitting for the asynchronous cell population data. Model (5.12) is
fitted to the surviving fraction data of ten different asynchronous cell populations.
The data are shown with error bars. The best fit, computed from the median of
each parameter posterior distribution, is shown in red.
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constitute asynchronous cell population in [67]. The values of the parameters

and their respective 95% credible intervals from the data fitting are given in

Table 5.1.

5.3.2 Synchronous cell lines

In this subsection, we fit model (5.13) to the SF data of the V79, T98G,

and U373 cell lines available for enriched G1, S and G2 phases in [67, 108],

respectively. The proportion of cells in different cell cycle phases at the time of

radiation for the synchronous cell population are found in [67]. The estimated

parameter values in this subsection are in Table 5.2 and the corresponding fits

are in Figure 5.5.

Notice that in Figure 5.5, some of the cell lines enriched with non-G2-phase

cells also display the HRS phenomenon. In the middle row of Figure 5.5, both

the T98G cell lines enriched with G1-phase and S-phase cells, respectively,

exhibit a small measure of HRS. These two cell lines contain a sizable pro-

portion of G2-phase cells. For instance, according to the surviving fraction

data from [67], the T98G cell line enriched with G1-phase cells contains 85%

G1-phase cells, 4.7% S-phase cells, and 10.3% G2-phase cells. The relatively

high proportion of G2-phase cells in this cell line explains the observed HRS.

In contrast, HRS is not observed in the V79 and U373 cell lines enriched with

either G1-phase cells or S-phase cells. These cells lines contain a negligible

proportion of G2-phase cells. For example, according to the surviving fraction

from [67], both V79 and U373 cell lines enriched with G1-phase cells contain

95.2% G1-phase cells, 4.7% S-phase cells, and only 0.1% G2-phase cells. This

suggests that if we can synchronize the cell lines to be pure (contain only non-

G2-phase cells or only G2-phase cells), we might be better convinced that the

HRS phenomenon is exclusive to G2-phase cells.
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Figure 5.5: Data fitting for the synchronous cell population data. Model (5.13) is
fitted to the surviving fraction data of three different synchronous cell populations.
The data are shown with error bars. The best fit, computed from the median of
each parameter posterior distribution, is shown in red.
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Cell line γ0 κ η d1 d2 −α −β

MR4 0.255 ±
0.009

0.205 ±
0.009

50.75 ±
1.287

0.105 ±
0.009

0.575 ±
0.009

0.042 ±
0.002

0.160 ±
0.018

PC3 0.138 ±
0.049

0.115 ±
0.044

29.93 ±
6.450

0.370 ±
0.065

0.720 ±
0.208

0.113 ±
0.066

0.050 ±
0.030

V79 0.081 ±
0.0441

0.137 ±
0.073

23.87 ±
9.663

0.086 ±
0.038

0.379 ±
0.199

0.158 ±
0.016

0.030 ±
0.012

V79ox 0.128 ±
0.076

0.091 ±
0.059

17.74 ±
8.078

0.506 ±
0.188

1.057 ±
0.303

0.120 ±
0.054

0.044 ±
0.028

V79hyp 0.066 ±
0.036

0.092 ±
0.068

25.35 ±
9.516

0.503 ±
0.190

1.052 ±
0.303

0.086 ±
0.031

0.003 ±
0.002

A549 0.066 ±
0.036

0.040 ±
0.030

90.40 ±
12.31

0.155 ±
0.038

0.261 ±
0.060

0.119 ±
0.035

0.045 ±
0.026

HT29 0.092 ±
0.029

0.055 ±
0.029

25.22 ±
8.776

0.425 ±
0.086

0.848 ±
0.184

0.033 ±
0.016

0.055 ±
0.018

U1 0.058 ±
0.019

0.024 ±
0.007

149.99±
8.00

0.035 ±
0.008

0.600 ±
0.032

0.013 ±
0.004

0.017 ±
0.004

T98G 0.201 ±
0.065

0.165 ±
0.073

47.59 ±
5.657

0.110 ±
0.022

0.792 ±
0.392

0.135 ±
0.033

0.018 ±
0.009

RWPE1 0.300 ±
0.016

0.190 ±
0.016

55.65 ±
7.570

0.015 ±
0.008

0.385 ±
0.318

0.085 ±
0.023

0.090 ±
0.030

Table 5.1: Estimated parameter values and their respective 95% credible intervals
from fitting model (5.12) to the SF data of the listed asynchronous cell lines.

5.4 Derivation of the initial slope of the SF

curve from the model

In the previous section, we have numerically shown that the model we formu-

lated in this chapter can describe the low-dose HRS phenomenon observed in

both synchronous and asynchronous cells. In this section, we will derive the

formula for computing the initial slopes of these surviving fraction curves.

From the LQ and the IR models in (5.1) and (5.2), we have

∂

∂D
SF0(D)

∣∣∣
D=0

= −α, and
∂

∂D
SF1(D)

∣∣∣
D=0

= −αs. (5.14)
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Cell line γ0 κ η d1 d2 −α −β

V79 G1 0.159 ±
0.079

0.103 ±
0.062

23.77 ±
9.743

0.400 ±
0.058

0.700 ±
0.231

0.250 ±
0.013

0.052 ±
0.023

V79 S 0.162 ±
0.082

0.105 ±
0.064

23.67 ±
9.437

0.400 ±
0.059

0.698 ±
0.220

0.085 ±
0.007

0.025 ±
0.007

V79 G2 0.160 ±
0.069

0.103 ±
0.059

23.60 ±
7.349

0.399 ±
0.042

0.695 ±
0.172

0.303 ±
0.036

0.026 ±
0.016

T98G G1 0.185 ±
0.035

0.118 ±
0.041

65.02 ±
11.80

0.200 ±
0.046

0.964 ±
0.321

0.130 ±
0.023

0.005 ±
0.002

T98G S 0.185 ±
0.011

0.115 ±
0.033

64.89 ±
10.90

0.201 ±
0.046

0.9 ±
0.153

0.130 ±
0.022

0.014 ±
0.001

T98G G2 0.151 ±
0.062

0.110 ±
0.062

55.20 ±
7.062

0.150 ±
0.061

0.701 ±
0.130

0.21 ±
0.014

0.003 ±
0.001

U373 G1 0.091 ±
0.048

0.070 ±
0.028

145.13±
9.712

0.009 ±
0.003

0.291 ±
0.061

0.020 ±
0.011

0.111 ±
0.039

U373 S 0.100 ±
0.042

0.071 ±
0.021

14.48 ±
1.069

0.010 ±
0.003

0.291 ±
0.045

0.100 ±
0.042

0.051 ±
0.023

U373 G2 0.076 ±
0.033

0.065 ±
0.021

144.63±
11.53

0.009 ±
0.003

0.225 ±
0.038

0.160 ±
0.015

0.078 ±
0.004

Table 5.2: Estimated parameter values and their respective 95% credible intervals
from fitting model (5.13) to the SF data of the listed synchronous cell lines.

This implies that −α and −αs are the initial slopes of the surviving fraction

curve determined by both the LQ and the IR models, respectively. Hence, in

order to derive the initial slope of the surviving fraction curve determined by

model (5.12), it suffices to compute

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

=
∂u
∂D

(D, t0) + ∂v
∂D

(D, t0) + ∂w
∂D

(D, t0)

u0 + w0

∣∣∣
D=0

, (5.15)

where ∂u
∂D

, ∂v
∂D

, and ∂w
∂D

denote the partial derivatives of u, v, and w, with

respect to D. t0 is the time at which the surviving fraction data is measured.

Throughout this chapter, the surviving fraction from the above model will be

computed right after radiation exposure. Invariably, this implies that t0 is the

radiation exposure time. In the following two subsections, we will derive the
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initial slope of the SF curve from model (5.12) for the two cases that t0 is

1. too short to accommodate both cell cycle progression and damage repair,

and

2. too short to accommodate cell cycle progression but sufficient to accom-

modate damage repair.

The biological implications of these two cases will be discussed in Section 5.7.

5.4.1 Radiation exposure time too short for both repair

of damage and cell progression

Model (5.10) can be written in vector form as(
u v w

)T
t

= A
(
u v w

)T
, (5.16)

where

A =

−µ− ru
(
D, D

t0

)
− γ

(
D
t0

)
θ a

γ
(
D
t0

)
−rv

(
D, D

t0

)
− κ(1− c(D))− θ 0

2µ 0 −a− rw
(
D, D

t0

)
 .

(5.17)

If we assume that the radiation time is too small to accommodate cycle pro-

gression and cell repair, matrix A then becomes

A =

−ru
(
D, D

t0

)
− γ

(
D
t0

)
0 0

γ
(
D
t0

)
−rv

(
D, D

t0

)
− κ(1− c(D)) 0

0 0 −rw
(
D, D

t0

)
 ,(5.18)

so that model (5.10) can be approximated by the reduced system in (5.12).

System (5.12) can be solved explicitly with solution

(
u v w

)T
=

3∑
i=1

lie
λitEi, (5.19)
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where λi is the eigenvalue of A that corresponds to eigenvector Ei for each

i = {u, v, w}. To this end, let λ denote an eigenvalue of A. |A − λI| = 0

implies

λ1 = −ru
(
D,

D

t0

)
− γ

(D
t0

)
, λ2 = −rv

(
D,

D

t0

)
− κ(1− c(D)), λ3 = −rw

(
D,

D

t0

)
.

(5.20)

For each λi, the corresponding eigenvector Ei is given by

E1 =
(

1 m 0
)T

, E2 =
(

0 1 0
)T

and E3 =
(

0 0 1
)T

, (5.21)

with

m =
−γ
(
D
t0

)
−rv

(
D, D

t0

)
− κ(1− c(D)) + ru

(
D, D

t0

)
+ γ

(
D
t0

) .
Thus, (5.19) with the corresponding eigenvalues and eigenvectors in (5.20)

and (5.21) forms the general solution for system (5.12). Now, using the initial

conditions u(0) = u0, v(0) = 0, w(0) = w0, we have

u(t) = u0e
−
(
γ

(
D
t0

)
+ru

(
D,D

t0

))
t
, (5.22)

v(t) = u0m
(
e
−
(
γ

(
D
t0

)
+ru

(
D,D

t0

))
t − e−

(
rv

(
D,D

t0

)
+κ(1−c(D))

)
t
)
, (5.23)

w(t) = w0e
−ru
(
D,D

t0

)
t
. (5.24)

Since

∂

∂D
γ
(D
t0

)∣∣∣
D=0

=
2γ0η

t0
, γ

(D
t0

)∣∣∣
D=0

= 0, and

r′i
(
D,

D

t0

)∣∣∣
D=0

=
αi
t0
, ri

(
D,

D

t0

)∣∣∣
D=0

= 0, ∀i = {u, v, w},

the partial derivatives of u, v, w with respect to D, evaluated at D = 0 and at
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time t0, are given by

∂u

∂D
(D, t0)

∣∣∣
D=0

= −(2γ0η + αu)u0,

∂v

∂D
(D, t0)

∣∣∣
D=0

= u0m
′(0)
(
1− e−κt0(1−c(0))

)
,

∂w

∂D
(D, t0)

∣∣∣
D=0

= −αww0,

so that

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

= −αuu0 + αww0

u0 + w0

−
( u0

u0 + w0

)(
2γ0η −m′(0)(1− e−κt0

)
,

= −αuu0 + αww0

u0 + w0

−2γ0η
( u0

u0 + w0

)(
1− 1− e−κt0

κt0

)
. (5.25)

However, for asynchronous cell population where α := αu = αw, (5.25)

simplifies to

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

= −α− 2γ0η
( u0

u0 + w0

)(
1− 1− e−κt0

κt0

)
,

(5.26)

where the direct radiation effect is clearly described by −α, which is the rate at

which single radiation tracks produce lethal lesion in a general cell population.

Moreover, for small radiation exposure time, t0, using Taylor expansion, we

get a more compact form given by

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

≈ −α− γ0η
( u0

u0 + w0

)
κt0. (5.27)

(5.27) reveals that the slope of the SF curve after a short duration of radiation

exposure is controlled by two components, namely the direct effect of radiation

(captured by the first term on the RHS of (5.27)) and the indirect effect of

radiation (captured by the second term on the RHS of (5.27)). The impact of
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this second term on −αs is controlled by the proportion of cells in G2-phase.

This is largely because the other parameters in the second term on RHS of

(5.27) belong to the cells in the G2 phase of the cell cycle. This confirms the

essence of the initial distribution of cells in various phases of the cell cycle at

the time of radiation exposure on the low-dose HRS phenomenon hypothesized

in [45, 106, 67]. In fact, for synchronous cells enriched in G2-phase, the slope

of the SF curve will be steeper because of the significant contributions from

both the direct and the indirect radiation effects. On the other hand, for

any synchronous cells enriched in non-G2-phase, the steepness of the slope is

mainly controlled by the direct radiation effect −α with very little contribution

from the indirect radiation effect.

We also observe that the second term on the RHS of (5.27) is dominated by

the parameter κ, denoting the rate of mitotic catastrophe. This implies that a

major determinant of the degree of HRS is the rate of death of the G2-phase

cells which evade the checkpoint activity.

5.4.2 Radiation exposure time too short for cell pro-

gression but sufficient enough for damage repair

In the previous subsection, we considered the case where the SF is computed

right after radiation exposure whose duration is too short to accommodate

cell cycle progression and DNA damage repair. Now we compute the sur-

viving fraction immediately after a radiation exposure whose duration is long

enough to accommodate repair but not sufficient to have any significant cycle

progression. It is interesting to understand how the repair mechanism impacts

the initial slope of the SF curve in this case. This problem is simply equivalent

to solving (5.16) with A given by

A =

−ru
(
D, D

t0

)
− γ

(
D
t0

)
θ 0

γ
(
D
t0

)
−rv

(
D, D

t0

)
− κ(1− c(D))− θ 0

0 0 −rw
(
D, D

t0

)
 .

(5.28)
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Notice that the difference between this matrix and the one in the previous

subsection in (5.18) is the nonzero parameter θ in (5.28). As a check, this

derivation should result in that of the last subsection when θ = 0.

Following the technique used in the last subsection, we can solve this sys-

tem analytically to derive the following solution (where we have dropped the

arguments for simplicity)

u(t) = − u0

2m

(
ru + γ− rv − θ − κ(1− c)

)
(eλ+t − eλ−t) +

u0

2
(eλ+t + eλ−t),

(5.29)

v(t) =
u0

4mθ

(
(ru + γ− rv − θ − κ(1− c))2 −m2

)(
eλ−t − eλ+t

)
, (5.30)

w(t) = w0e
−rwt, (5.31)

where u0 = u(0, 0) and w0 = w(0, 0), with

m =

√(
ru + γ + rv + θ + κ(1− c)

)2 − 4
(
(ru + γ)(rv + θ + κ(1− c))− θγ)

)
(5.32)

and

λ± = −1

2

(
ru + γ + rv + θ + κ(1− c)

)
± 1

2
m. (5.33)

By computing ∂u
∂D

∣∣
D=0

, ∂v
∂D

∣∣
D=0

, and ∂w
∂D

∣∣
D=0

, we can evaluate (5.15) to get

∂SF (D, t0)

∂D

∣∣∣
D=0

= −
(αuu0 + αww0

u0 + w0

)
−2γ0η

( u0

u0 + w0

)(
1− θ

(κ+ θ)t0
− κ
(1− e−(κ+θ)t0

(κ+ θ)2t0

))
.

(5.34)
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Figure 5.6: The profile of the initial slope of the SF curve as a function of repair
rate θ, at different rates of mitotic catastrophe κ. The black dashed curve is for
κ = 0.01, the black dotted curve is for κ = 0.05, the red dashed curve is for κ = 0.1,
and the red dotted curve is for κ = 0.25.

As before, assuming αu = αw = α, (5.34) reduces to

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

= −α− 2γ0η
( u0

u0 + w0

)(
1− θ

(κ+ θ)t0
− κ
(1− e−(κ+θ)t0

(κ+ θ)2t0

))
.

(5.35)

After Taylor expansion for small t0, we can get a more compact form given by

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

= −α− 2γ0η
( u0

u0 + w0

)(κt0
2

+
θ(t0 − 1)

t0(κ+ θ)

)
.

(5.36)

As noted earlier, we see that (5.26) is a special case of (5.35) when θ = 0.

We can also understand the interaction between the rate of repairing DNA

damage and the mitotic catastrophe experienced by damaged G2-phase cells

that eventually culminates into the HRS phenomenon through (5.35). For

example in Figure 5.6, we see that for small mitotic catastrophic rate κ, the

slope −αs of the SF curve is more sensitive to changes in the DNA repair rate

θ than for larger values of κ. Thus, the slope −αs of the SF curve depends on
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MR4 PC3 V79 V79
ox

V79
hyp

A549 HT29 U1 T98G RWPE1

−αs 2.727±
0.774

0.703±
0.448

0.470±
0.280

0.394±
0.3032

0.289±
0.215

0.484±
0.362

0.222±
0.162

0.353±
0.186

1.858±
1.057

3.230±
0.810

αs
α

64.94 6.241 2.981 3.294 3.368 4.068 6.784 28.24 13.78 37.15

SF2 0.483 0.643 0.674 0.667 0.847 0.682 0.775 0.910 0.748 0.607

Table 5.3: Computed values of αsα and literature values of the SF2 for asynchronous
cell lines. The mean ± SD of −αs are computed from (5.26) using the estimated
parameters in Table 5.1; values of αs

α are computed using the mean of −αs and the
values of −α from Table 5.1; SF2 data are taken from the respective literature.

the relationship between the rates of mitotic catastrophe κ and DNA repair θ.

Furthermore, it is worth noting that (5.25) and (5.34) scale nicely with

increase in the number of model compartments. For example, suppose model

(5.10) has n compartments, where ui0 and ui denote the cell population at

time, t = 0, and at any time, t > 0, respectively, with i = 1, . . . , n. Let i = 1

denote the compartment for the G2-phase cells, then (5.25) and (5.34) become

−αs :=
∂SF (D, t0)

∂D

∣∣∣
D=0

= −
∑n

i=1 αiui0∑n
i=1 ui0

− 2γ0η
( u10∑n

i=1 ui0

)
κt0, (5.37)

= −
∑n

i=1 αiui0∑n
i=1 ui0

−2γ0η
( u10∑n

i=1 ui0

)(κt0
2

+
θ(t0 − 1)

t0(κ+ θ)

)
.

(5.38)

This implies that an increase in the number of model compartments only

affects direct radiation effects.

In the next section, we will validate these derivations against the data for

the −αs of the ten different asynchronous cell lines and three different syn-

chronous cell lines used earlier in Section 5.3. We are interested in computing

the initial slope of the SF curve using formula (5.26) and comparing it with

the data in [45].
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5.5 Validation of the analytical derivations of

the αs
α index

In this section, we validate the analytical results of the previous section against

SF data of both synchronous and asynchronous cell lines. In particular, we

estimate the initial slope of the SF curve using formula (5.26) and compare it

to the data in Figure 2 of Joiner et. al [45], which is the plot of αs
α

vs. SF2,

the surviving fraction at 2 Gy.

The values of −αs computed using formula (5.26) with parameter values

in Table 5.1 and 5.2 are recorded in Table 5.3 for asynchronous cells and Table

5.4 for synchronous cells, respectively. The third row contains the value of the
αs
α

index for each cell line and cell cycle phase, as the case may be. The −α
values used in the computation of αs

α
index are from Tables 5.1 and 5.2 while

SF2 values are taken from respective literature.

The numerical validation of formula (5.26) against data is shown in figure

5.7. This Figure shows the relationship between the αs
α

index and SF2. In this

figure, we superimpose two sets of data. First, we plot the model results from

Tables 5.3 and 5.4, and then superimpose experimental results from Joiner et.

al [45]. The plot in Joiner et. al [45] contains 33 different cell lines. Although

Figure 5.7 has fewer cell lines, we observe a good qualitative agreement between

model results and a subset of the data from Joiner et. al [45]. This affirms

that the values of −αs computed from formula (5.26) agree with the existing

V79
G1

V79 S V79
G2

T98G
G1

T98G
S

T98G
G2

U373
G1

U373
S

U373
G2

−αs 0.253±
0.016

0.155±
0.067

2.779±
2.017

1.157±
0.549

1.335±
0.491

5.890±
4.202

0.028±
0.017

0.120±
0.054

5.203±
3.195

αs
α

1.012 1.824 9.172 8.900 10.26 28.05 1.400 1.200 32.52

SF2 0.63 0.77 0.53 0.83 0.67 0.61 0.61 0.70 0.49

Table 5.4: Computed values of αsα and literature values of the SF2 for synchronous
cell lines. The mean ± SD of −αs are computed from (5.26) using the estimated
parameters in Table 5.2; values of αs

α are computed using the mean of −αs and the
values of −α from Table 5.2; SF2 data are taken from the respective literature.
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Figure 5.7: αs
α index measured at low doses of radiation against the surviving frac-

tion measured at 2 Gy, SF2. Red bullets represent data of different synchronous and
asynchronous cells line from [45, 67, 108]; green bullets represent the computational
results from formula (5.26).

data.

5.6 Relationship between the αs
α index and SF2

As noted earlier, considerable attempt has been made in the past to describe

the relationship between the degree of HRS exhibited in a cell and its radiore-

sistance at 2 Gy. In [57], the authors found that cells that exhibit a higher

degree of HRS also demonstrate a significant increase in radioresistance at 2

Gy. It was later found in [45] that more data from additional cell lines do not

bear this relationship. Figure 5.7 also does not bear out such relationship.

In this section, we will analytically derive this relationship and also nu-
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(a) (b)

Figure 5.8: Surface plot of the relationship (5.42) between the αs
α index and SF2,

the surviving fraction at 2 Gy, at different values of σ and β, respectively. The
white dots represent different cell lines depending on their σ and β values. (a) The
surface plot for a fixed σ = 2; (b) The surface plot for a fixed β = 0.01 Gy−2.

merically explore the relationship for better understanding of the relationship

between the surviving fraction at 2 Gy and the extent to which the HRS phe-

nomenon is exhibited in a cell. Fortunately, the derivation is simplified because

of the earlier work in Section 5.4.

From the LQ model, we derive;

SF2 := SF (2) = e−2α−4β.

This implies that

−α =
ln(SF2) + 4β

2
. (5.39)

From (5.26), we have

αs
α

= 1 +
2γ0η

α

( u0

u0 + w0

)(
1− 1− e−κt0

κt0

)
:= 1 +

σ

α
> 0, (5.40)
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where

σ = 2γ0η
( u0

u0 + w0

)(
1− 1− e−κt0

κt0

)
. (5.41)

Henceforth, the parameter σ in (5.41) will be referred to as the intrinsic ra-

diosensitivity of a cell. This terminology makes sense since it is the indirect

radiation effect that determines the degree of HRS a cell exhibits. Combining

(5.39) and (5.40) gives

αs
α

= 1− 2σ

ln(SF2) + 4β
, (5.42)

which depends on σ, the cell’s intrinsic radiosensitivity, β, the rate at which

binary misrepair of pairs of DSB from different radiation tracks lead to lethal

lesions, and SF2, the surviving fraction at 2 Gy. Our interest is to understand

how these three parameters affect the data in Figure 5.7 using (5.42).

As noted earlier, Lambin et. al [57] suggested that a universal relationship

between the αs
α

index and SF2 should exist, but that the hypothesis was not

supported by the study of more cell lines. Here we find that such a relationship

does exist. However, it depends on two cell-specific parameters, the intrinsic

radiosensitivity σ and the direct radiation sensitivity β. In Figure 5.8, we

show that the cell lines we examined do fall onto the surface defined by (5.42).

Since it is hard to visualize a plot in 4-dimensions, we fix either σ or β in

order to generate a surface plot of the function (5.42). It is worth noting that

function (5.42) has a vertical asymptote at SF2 = e−4β for each value of β.

Figure 5.8a is a surface plot of (5.42) for σ = 2. This plot is an increasing

manifold in both β and SF2, respectively. The white dots represent different

cell lines lying on the manifold based on their corresponding values for β and

SF2. Similarly, the surface plot in Figure 5.8b for a fixed β = 0.01 Gy−2 also

shows increasing trends both in σ and SF2 and a good match with the white

dots corresponding to different cell lines. Note that if we project these plots

onto the (αs
α
, SF2) plane, we will get a 2-dimensional plot similar to Figure

5.7, but in which the trends no longer are obvious. Hence, the trend suggested

by Lambin et. al [57] indeed holds across cell lines. In other word, if the data
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in Figure 5.7 was plotted in 3-dimension with β or σ as the third axis, we will

have different cell lines lying on different layers of these manifolds depending

on and increasing in both β and σ.

5.7 Discussion

The phenomenon of low-dose hyper-radiosensitivity has been observed across

many different kind of cell lines. Several malignant cancer cells like glioma cells

(T98G) and prostate cancer cells (PC3) are among the cells that exhibit this

low-dose phenomenon. Many researchers [15, 26, 103, 113] are currently inves-

tigating how this phenomenon can be exploited to improve the effectiveness of

cancer radiotherapies. The major obstacle to this idea is the superficiality in

the level of understanding of this low-dose phenomenon.

It is worth noting that there are other mechanisms, which are not cell

cycle-based, that can trigger the low-dose HRS phenomenon. For example, the

mechanism of bystander effects has been implicated in the HRS phenomenon

in [89, 93, 78, 86]. Moreover, Mothersill et al. in [81] have shown that both the

mechanisms of bystander effects and G2 checkpoint are two mutually exclusive

cellular events.

The most common approach for measuring this low-dose phenomenon in a

cell is by comparing the initial slope of its SF curve αs, to that of its initial

slope of the SF curve α, described by the LQ model. That is, by determining

the αs
α

index. We understand that this index quantifies the degree of HRS in a

cell and must relate to some of the molecular cascades or signaling pathways

implicated in the occurrence of HRS phenomenon [53, 54, 20]. However, the

specific form of this relationship is yet unknown.

In this chapter, we attempt to unravel this relationship by building a system

of ODE that captures the interaction between radiation exposure and cells

in different cycle phases. Our model is able to fully capture the observed

HRS phenomenon in ten different asynchronous cell lines and three different

synchronous cells in different cell cycle phases.

The derivation in Section 5.4 of −αs, the initial slope of the SF curve,

reveals the dependence of −αs on the proportion of cells in the G2 phase, the
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rate of mitotic catastrophe experienced by damaged G2-phase cells, the rate

of radiation-induced cell damage, the rate of damage repair, and the duration

of radiation exposure. This is consistent with experimental observations that

damaged G2-phase cells which evade the early G2-checkpoint to proceed to

mitosis undergo mitotic catastrophe, which manifests itself as the HRS phe-

nomenon as observed in the surviving fraction curve. Although, our result

is not surprising, the analytic quantification of this dependence is novel and

we observe a good qualitative agreement between this dependence and exper-

imental data as shown in Figure 5.7.

In the case where the duration of radiation exposure is long enough to

accommodate DNA repair, we observe that the repair rate θ, and the rate

of mitotic catastrophe κ, contribute differently to the degree at which a cell

exhibits HRS. Our model shows that for small mitotic catastrophe rate κ, the

slope −αs of the SF curve is more sensitive to changes in the DNA repair rate

θ, than for larger values of κ.

In these analytic relationships, we realize that there is no dependence on

any of the parameters in the checkpoint function, c(D). This further supports

the hypothesis that the low-dose HRS is a result of ineffective checkpoint

activity while the IRR is a consequence of checkpoint activation. The model

developed in this chapter can also be used to study the effect of checkpoint

activity on the low-dose increased radioresistance phenomenon. However, this

will be outside the scope of consideration since we are only exploring the

phenomenon of HRS in this chapter.

Another important concern in (5.26) is that it does not consider the effect

of cells that were damaged in non-G2 phases but have progressed into G2

phase with unrepaired damage. For instance, suppose only cells in non-G2

phases are irradiated. In a matter of time, there will be more cells entering

into the G2 phase, some of which will carry over damage from other cycle

phases. It is then reasonable to ask if these damaged cells in G2 phase also

contribute to the mechanism underlying the phenomenon of HRS. In response

to this concern, there are biological experiments [53, 54] that have shown that

the checkpoint mechanisms that control the mitosis of G2 cells that carry over

damage from other phases is different from the mechanism that controls the
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cells that sustain radiation damage right in the G2 phase. The checkpoint

that controls the former is called the Sinclair Checkpoint while the checkpoint

that controls the latter is called the Early G2 Checkpoint. An experiment

by Krueger et. al. in [53] has shown that the Sinclair checkpoint does not

contribute to the HRS phenomenon. This is also confirmed in the formula for

the initial slope of the SF curve in (5.27).

In order to investigate the relationship between the αs
α

index and SF2,

the surviving fraction at 2 Gy (or equivalently radioresistance at 2 Gy), we

derive an analytical formula which is a function of three parameters, namely;

SF2, the surviving fraction at 2 Gy, σ, the intrinsic radiosensitivity, and β,

the rate of binary misrepair of pairs of DSB forming lethal lesions. We found

that for each value of either σ or β, the increasing trend in SF2 is preserved

by a manifold increasing in either both σ and SF2 or β and SF2. Thus, the

cells with higher αs
α

index can also have higher SF2 value depending on the

corresponding values of σ and β. This result generalizes Lambin’s result in

[57] to any cell lines.

In the experiments for measuring the surviving fraction data, irradiated

cells undergo about two weeks of incubation period after which the surviving

cells are determined. Our mathematical derivations do not account for the cel-

lular dynamics during this incubation period. Our model simply assumes that

the outcome of the incubation can be approximated by computing the surviv-

ing fraction from our model immediately after an exposure. This assumption

was justified by the qualitative agreement between our model computational

results and the experimental data.

The current understanding of the low-dose HRS is still limited in the con-

text of cell lines. There is a need to understand the connection to low-dose

radiation in the context of human tissue. Such an understanding may have

implications for current radiotherapy practices and perhaps could point the

way to treatment strategies not yet considered.
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Chapter 6

Discussion

This thesis contains the formulations and analyses of novel continuum math-

ematical models that describe the effects of low-dose radiation on cell sur-

vival and their medical implications. We used the models to investigate the

HRS/IRR phenomenon. Based on biological insights, we focused on two cel-

lular occurrences, namely radiation-induced bystander effects, and the activ-

ities of the G2-checkpoint, which are hypothesized to underlie the low-dose

HRS/IRR phenomenon. We also explored the therapeutic consequences of

bystander effects on the invasion of tumor cells into their neighboring normal

tissues.

The main research questions we wished to address in this thesis were out-

lined in the introduction. These questions and their corresponding answers

are:

• Can bystander effects explain the HRS/IRR phenomena? The answer

is yes, as I was able to fit the bystander model to cell survival data of

glioma cells of Joiner et. al in [45].

• What are the dynamics of radiation-induced bystander signals in tissues?

I employed a detailed phase plane and bifurcation analyses of the system

of equations used to model the bystander effects, finding an interesting

saddle-node bifurcation that can explain the longevity of the bystander

signal in tissues.
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• Are mathematical properties like local and global existence and global

attractor supported by the system of PDEs developed to model the by-

stander effects? I present a full local and global existence theory and

results on global attractors for specific radiation schedules.

• What are the effects of bystander signals on the speed and shape of

invading tumor waves into its surrounding normal tissue? I was able to

quantify the invasion effect of the bystander signal, which can lead to

accelerated cancer invasion.

• Can the activity of the G2-checkpoint explain the HRS/IRR phenomenon?

The answer is yes, since I was able to fit the system of equations that

model the activity of the G2 checkpoint to the cell survival data of

glioblastoma, Chinese hamster, prostate cancer, human lung carcinoma,

human colon cancer, prostate epithelial cell, and human astrocytoma cell

[45, 108, 73, 66, 69, 66, 69, 118, 73].

• How does the classical index αs
α

for the HRS in cells relate to the under-

lying cellular events that contribute to its occurrence? The analysis of

the system of equations that model the G2-checkpoint dynamics enabled

me to find an explicit relation of the αs
α

ratio to the model parameters.

The medical implications are discussed in Chapter 5.

• Is there a relationship between the HRS index αs
α

and the cell surviving

fraction at 2 Gy? Indeed, we can find an explicit relationship between

the index αs
α

and SF2, which fits the observed experimental data really

well.

In Chapter 2, we began by improving on existing models of radiation-

induced bystander effects by incorporating novel features, which are largely

suggested by the dynamics of the cytochrome-complex. The additional fea-

tures of our model are:

• Modeling both the cellular evolution and bystander signal dynamics with

reaction-diffusion partial differential equations;
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• Modeling bystander responses in both irradiated and neighboring cells

with continuous functions;

• Incorporating more bystander effects such as cell death, DNA damage,

and DNA repair delay;

• Assuming that there is no proliferation in damaged cells since they should

experience cell cycle arrest;

• Assuming that damaged cells continuously emit bystander signals as long

as they are not dead or repaired.

To model the bystander responses in both irradiated and surrounding cells

with continuous functions, we employed the threshold-dependent hyperbolic

tangent function. The shortcoming of this approach is the introduction of

more parameters into the model. Some of these parameters, like the mini-

mum concentration of bystander signal that triggers bystander effect were not

available in the literature. Availability of such experimental data will better

inform our model and also suggest new scientific questions that can be tested

with our model.

We used the method of affine’s invariant ensemble MCMC sampler [35]

to fit this novel model to data of surviving fraction of glioblastoma cells in

Chapter 2. The estimated values for the minimum threshold for bystander

effects suggests a possible sequence of occurrence of the bystander effects such

as bystander signal-induced cell death, DNA repair delay, and signal-induced

DNA damage. As pointed out earlier, more experiments are needed to further

validate these results.

In Chapter 3, we showed existence of weak solutions to the system of

reaction-diffusion model for radiation-induced bystander effects. We also proved

the existence of the global attractor for the model. In the literature, there are

rich mathematical theories for studying the structures of global attractors of

gradient systems. These are systems that posses a Lyapunov functional, which

provides a powerful method to investigate the structure of the global attrac-

tor. However, similar theory for non-gradient systems is lacking and hence,
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proving the structure of the global attractor for our model still remains an

open question.

This model, in its present state, cannot be used to used to study the

dynamics of radiation-induced abscopal effects [10]. These effects describe

cellular responses to bystander signals emitted by cells in a distant location.

Aside from the normal diffusion, the bystander signals propagation can also

be assisted by body fluids like the blood to reach distant cells. Although, the

model can be extended to study such effects by introducing nonlocal terms,

we did not consider such class of cellular response in this thesis.

In Chapter 4, we investigated the role of bystander effects on the invasion

waves of tumor cells into surrounding healthy tissues. The model in Chapter

2 was extended to accommodate cellular interactions between tumor cells and

their surrounding normal tissues. We showed that bystander signals can en-

hance the speed of tumor invasion into surrounding healthy tissues. We found

an asymptotic wave speed for tumor waves from a tumor-only steady state

invading into a healthy-tissue-only steady state, which corresponds closely to

the wave speed observed numerically. We also found the parameter regime

that supports such invasive behavior.

In Chapter 5, we formulated and analyzed a continuum system of ordi-

nary differential equations, which incorporated cell cycle dynamics, radiation

treatment, and the G2-checkpoint dynamics. Under mild assumptions on the

duration of radiation exposure, we were able to derive an analytical formula

that connects the magnitude of HRS in cell lines to some of its underlying

cell cycle events. More work is still needed to understand the dynamics of the

low-dose HRS cell response when there is no restriction on the exposure time.

However, the exposure time in most in-vitro experiments for surviving frac-

tion is less than the average repair time, which is far less than the minimum

duration of a cell in any phase. As a consequence of our derivation, we were

also able to relate the magnitude of HRS in a cell to its radio-resistance at 2

Gy, and thereby settle a debate in the literature.

We found an experiment [81] that suggests that the two cellular events

(bystander signal and G2-checkpoint) studied in this thesis are mutually ex-

clusive in some cell lines. The underlying mechanism driving such exclusive
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relationship is still not well understood. The two models developed in this

thesis can be leveraged to build a more informative model that can investi-

gate such relationship. However, a major obstacle to such investigation is the

present lack of experimental data to develop such model.

In conclusion, we have made significant progress in the understanding of

the phenomenon of low-dose hyper-radiosensitivity via modeling the radiation-

induced bystander effects (RIBEs) and the activities of the G2-checkpoint.

Using a continuum framework, we investigated the dynamics of bystander sig-

nals and explained the various dynamics reported in the literature. Also in

a continuum framework, we showed that bystander signal can enhance tu-

mor invasion into surrounding healthy tissue. We also found conditions under

which such invasion can be stopped or even reversed. Finally, we were able

to connect HRS effect to underlying cellular mechanism through a system of

ordinary differential equations. We were also able to derive the long-debated

relationship between HRS in cells and their radio-resistance at 2 Gy.

Perhaps, the most important significance of this thesis are new possible

research directions that have been identified. So far, we have studied the low-

dose HRS/IRR phenomenon in cell lines. However, the main interest is to

understand these effects in the context of tissue radiation. This work can be

extended to study HRS/IRR in tissues and can perhaps suggest innovative

cancer therapies not yet considered.
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[1] Jérôme Alexandre, Yumin Hu, Weiqin Lu, Helene Pelicano, and Peng
Huang. Novel action of paclitaxel against cancer cells: bystander effect
mediated by reactive oxygen species. Cancer Research, 67(8):3512–3517,
2007.

[2] Francesca Antonelli, Mauro Belli, Giacomo Cuttone, Valentina Dini,
Giuseppe Esposito, Giustina Simone, Eugenio Sorrentino, and Maria An-
tonella Tabocchini. Induction and repair of DNA double-strand breaks
in human cells: dephosphorylation of histone H2AX and its inhibition
by calyculin a. Radiation Research, 164(4):514–517, 2005.

[3] Edouard I Azzam, Sonia M de Toledo, and John B Little. Direct evidence
for the participation of gap junction-mediated intercellular communica-
tion in the transmission of damage signals from α-particle irradiated to
nonirradiated cells. Proceedings of the National Academy of Sciences,
98(2):473–478, 2001.

[4] F Ballarini, D Alloni, A Facoetti, A Mairani, R Nano, and A Ottolenghi.
Modelling radiation-induced bystander effect and cellular communica-
tion. Radiation Protection Dosimetry, 122(1-4):244–251, 2006.

[5] Oleg V Belyakov, Stephen A Mitchell, Deep Parikh, Gerhard Randers-
Pehrson, Stephen A Marino, Sally A Amundson, Charles R Geard, and
David J Brenner. Biological effects in unirradiated human tissue induced
by radiation damage up to 1 mm away. Proceedings of the National
Academy of Sciences of the United States of America, 102(40):14203–
14208, 2005.

[6] Carl M Bender and Steven A Orszag. Advanced mathematical meth-
ods for scientists and engineers I: Asymptotic methods and perturbation
theory. Springer Science & Business Media, 2013.

[7] Eric J Bernhard, Eric J Stanbridge, Swati Gupta, Anjali K Gupta,
Daniel Soto, Vincent J Bakanauskas, George J Cerniglia, Ruth J

169



Muschel, and W Gillies McKenna. Direct evidence for the contribution
of activated n-ras and k-ras oncogenes to increased intrinsic radiation re-
sistance in human tumor cell lines. Cancer Research, 60(23):6597–6600,
2000.

[8] Anupam Bishayee, Helene Z Hill, Dana Stein, Dandamudi V Rao, and
Roger W Howell. Free radical-initiated and gap junction-mediated by-
stander effect due to nonuniform distribution of incorporated radioac-
tivity in a three-dimensional tissue culture model. Radiation Research,
155(2):335–344, 2001.

[9] Swati Biswas, Marta Guix, Cammie Rinehart, Teresa C Dugger, Anna
Chytil, Harold L Moses, Michael L Freeman, and Carlos L Arteaga. Inhi-
bition of TGF-β with neutralizing antibodies prevents radiation-induced
acceleration of metastatic cancer progression. Journal of Clinical Inves-
tigation, 117(5):1305, 2007.

[10] Benjamin J Blyth and Pamela J Sykes. Radiation-induced bystander
effects: what are they, and how relevant are they to human radiation
exposures? Radiation Research, 176(2):139–157, 2011.

[11] Marie Boyd, Susan C Ross, Jennifer Dorrens, Natasha E Fullerton,
Ker Wei Tan, Michael R Zalutsky, and Robert J Mairs. Radiation-
induced biologic bystander effect elicited in vitro by targeted radiophar-
maceuticals labeled with α-, β-, and auger electron–emitting radionu-
clides. Journal of Nuclear Medicine, 47(6):1007–1015, 2006.

[12] David J Brenner. The linear-quadratic model is an appropriate method-
ology for determining isoeffective doses at large doses per fraction. In
Seminars in Radiation Oncology, volume 18, pages 234–239. Elsevier,
2008.

[13] Andrew F Brouwer and Marisa C Eisenberg. The underlying connections
between identifiability, active subspaces, and parameter space dimension
reduction. arXiv preprint arXiv:1802.05641, 2018.

[14] Jiyang Cai, Jie Yang, and DeanP Jones. Mitochondrial control of apop-
tosis: the role of cytochrome c. Biochimica et Biophysica Acta (BBA)-
Bioenergetics, 1366(1):139–149, 1998.

[15] George M Cannon, Wolfgang A Tomé, H Ian Robins, and Steven P
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