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Abstract

The main area of research delineated in this thesis provides instances when Com-

puter vision based technology has shown tremendous productivity gains in the Oil

sands industry in Fort McMurray, Alberta, Canada. Specifically, the interface be-

tween Bitumen-froth (crude oil) and the Middlings (Sand) in separation cells (during

the extraction process) is estimated in real time from camera video and used for au-

tomatic control of the interface level. Two original algorithms have been developed

which solve the interface estimation problem using techniques ranging from image

analysis, estimation theory (Particle filters) and probabilistic reasoning. These ideas

are discussed in chapters three and four.

The first chapter of this thesis discusses the broad area of Computer vision re-

search as a knowledge basis for the current work. Computer vision (automatic image

analysis) has been presented starting from the basics and culminating in advanced

algorithms that are used frequently. The methods described in this chapter form the

foundation of the work that follows in the subsequent chapters.

After the introduction to automatic image analysis, a set of Monte Carlo simula-

tion based methods called Particle filters are introduced in the second chapter. These

Monte Carlo filters assume importance in the current work as they are used to derive

one of the main results of this thesis. A large part of this chapter though is devoted

to the introduction of the concept of measure theoretic probability which is used in

proving the convergence of Particle filters.

Another application of Computer vision techniques is also developed in this thesis

(in chapter five) to treat the problem of automatic interface and boundary detection

in X-ray view cell images. These images are typically used to observe liquid-liquid

and liquid-vapour phase behaviour of heavy oils such as Bitumen in chemical equilib-

rium investigations. The equilibrium data would then be used to enhance Bitumen



separation technologies. Manual tracking of the interfaces between these phases for

different mixtures and conditions is time consuming when a large set of such images

are to be analysed. A novel algorithm is developed that is based on state-of-the-art

in Computer vision techniques and automates the entire task.
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Chapter 1

Introduction to automatic image
analysis

One of the most important of all human senses is the visual system, which comprises

primarily of the eye, optic nerve and the visual cortex in the brain. The eye can be

considered as an instrument which collects visual data to be transmitted to the visual

cortex (through the optic nerve). The visual cortex is the most massive part of the

human brain located at the rear of the head. This part of the brain interprets all the

visual stimuli which form a very large part of our experience in this world.

The visual cortex can make sense of complex visual stimuli with apparent ease,

even though the exact method with which it works is not entirely known. From

our experience we know that the brain tries to interpret any new visual data by

comparing with similar patterns already in memory. More specifically, the brain

can recognize faces, objects which are rotated and/or translated, objects which are

partially occluded (once these objects have been committed to memory), instantly.

It turns out that mimicking the same object recognition functions of the brain, by

the help of computers, is an extremely challenging task.

Automatic image analysis is the area of study in which computer algorithms are

developed to extract information from digital images and videos. This information is

then used to automatically describe the contents of the image. Face recognition is an

example - important features are extracted from the image containing the face and

then compared with an existing database to identify the person.

The field of automatic image analysis is very diverse with many important appli-

cations as seen from the examples below:

• Remote Sensing, e.g.: Automatically detecting the location of buildings on

earth or clouds in the atmosphere using satellite images.

• Medical imaging, e.g.: Automatically locating and characterizing any tu-

1



mours present in an MRI scan of the brain.

• Agriculture and Food Processing, e.g.: In food processing, images of the

fruits are used to automatically remove the unripe ones from the final produce

(Quality control)

• Video surveillance, e.g.: Home security - automatic robbery detection, Traffic

monitoring - number plate recognition systems

• Robotics, e.g.: Unmanned vehicles which can “see” (Thrun et al., 2006)

• Object tracking, e.g.: Defense purposes

• Document processing, e.g.: Optical Character Recognition

Information recorded in the form of digital images and videos is increasing very

rapidly due to the advent of low cost imaging systems (e.g., digital and video cameras).

The availability of this cheap yet highly feature rich information has given a huge

impetus to research in the field of automatic image analysis.

Image analysis research has matured over the past thirty years using techniques

and algorithms from a wide spectrum of subject areas. The most important of them

are:

• Digital signal processing, e.g.: Wavelets and Fourier transforms used for im-

age compression, extracting important features and removing (high frequency)

noise in images (Mallat, 1989)

• Filtering theory, e.g.: Kalman filter and Particle filters used for tracking

motion of objects in video sequences (Dickmanns & Graefe, 1988; Isard & Blake,

1998)

• Background Mathematics:

– Probability theory, Multivariable calculus, e.g.: Used for Bayesian

decision making (Li, 1995) and Calculus on Images

– Calculus of variations, e.g.: Used in energy based techniques for seg-

menting images (Mumford & Shah, 1989; Chan & Vese, 2001)

– Other pure mathematical disciplines, e.g.: Topology, used in the de-

velopment of image segmenting algorithms (Caselles et al., 1997).;

2



Due to its immense importance in both academic and practical settings, automatic

image analysis can be seen as a critical tool in the advancement of technology today.

This chapter attempts to introduce the most basic algorithms in this field and also

provides the necessary mathematical basis for the work that follows.

1.1 Digital Images

Traditional (Film) cameras use a photographic film to capture a scene. When light

originating from the objects in a scene (whether emitted, reflected of refracted) strikes

the light-sensitive photographic film, an invisible image is formed. Chemical processes

are then applied to the film to develop the final image. In this imaging process, the

resolution of the final image is defined by the crystal sizes of the photosensitive element

used in the film.

A digital camera on the other hand uses an array of electronic light sensors

(Charge-coupled device (CCD) or Complementary metal-oxide semiconductor

(CMOS)). Each individual sensor in this array corresponds to a pixel in the final

image which may have as many as 106 pixels (typical sizes are 1024×800, 640×480).

The amount of excitation due to incoming light at a sensor gives the intensity value

at this pixel. When capturing a “black-white” scene, light intensity is all that matters

and hence the final image is just a two dimensional array of pixel intensity values.

Whereas, for scenes with colour, special filters are used in the CCD sensors, which

capture the intensities at each pixel in each of the three colour bands red, green and

blue (RGB). In this case, the final image is a three-dimensional array, where the

colour at each pixel is defined by the triple (R,G,B).

The range of the detected light intensity values is specific to the imaging system

but finally these values are quantized and encoded in the range R = [0, 255] ⊂ N.

This is just a convention used to store image data in computers using one byte per

pixel (three bytes per pixel for RGB images), as any other finite range can be used.

Zero corresponds to a complete lack of that colour and 255 represents its full strength.

For example, in a grayscale (“black-white”) image, 0 corresponds to black whereas

255 corresponds to white and in a colour image, the triple (255, 0, 0) corresponds to

red (0, 255, 0) to blue (0, 0, 255) to green etc.

In both traditional and digital images, the resolution is finite. Hence, a grayscale

image can be represented as I(m,n) where m = 1, 2, ...,M and n = 1, 2, ...., N with

M , N representing the horizontal and vertical dimensions of the image respectively.

In the case of a colour image, the representation is of the form I(m,n, p), where

m = 1, 2, ...,M , n = 1, 2, ..., N and p = 1, 2, 3 with each value of p representing a

3



color channel. Even though physical images are always discrete, for the sake of math-

ematical clarity and ease in analysis, images sometimes are considered as analogue,

i.e., I(x, y, p), where x = [0,W ] ∈ R, y = [0, H ] ∈ R and p ∈ N spans the number of

color channels.

All real world images contain small amount of unwanted fluctuations in the in-

tensity known as image noise. This noise arises, at the most basic level, due to the

probabilistic nature of light carrying photons. Assume that a single light source is il-

luminating the scene. Then the number of photons collected, k, at any given location

follows a Poisson distribution with the probabilities given by:

f(k, λ) =
λke−λ

k!

where, λ is the average number of photons arriving at that point. This noise called

Photon noise is inherent in the physical universe and cannot be eliminated (Narisada

& Schreuder, 2004). At small values of λ the probability of receiving photons whose

number is far off (e.g. two or three fold) from the expected value λ is quite high.

Therefore this type of noise becomes apparent only when the value of λ is small.

For high values of λ the effect of noise is not clearly evident. Even though noise in

images can arise from other sources, such as amplification noise, quantization noise

etc., photon noise is the most significant.

1.2 Division of Image analysis algorithms

Due to the vastness of the field, image analysis can be divided into three main cate-

gories:

• Image processing: Enhancing the input image (colorizing, enhancing the

contrast, image sharpening etc.) for visual purposes. In most cases, the input

to and the output of the algorithm is an image. This term is used only for

the most basic image analysis algorithms. Software such as Adobe PhotoShop,

GIMP (GNU Image Manipulation Program) etc. belong to this category. An

example of image sharpening obtained by GIMP is shown in Fig 1.1.

• Computer vision: A general class of algorithms which extract information

from images, i.e. the output of the algorithm need not be an image as in the

case of Image processing, e.g. detecting the location (x and y co-ordinates) of

an object in an image. The input to the algorithm also need not be a single

image but a video sequence, images from multiple angles of a scene of interest

etc. As an example, consider an algorithm (Dalal, 2006) which analyzes a given
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(a) Blurry original image (b) Sharpened image

Figure 1.1: Image sharpening

image and outputs the location of humans present (if any) in an image (Fig 1.2).

(a) Original image

(b) Detected locations of humans in the image (the
superimposed red boundaries). Note also the false de-
tection.

Figure 1.2: Detection of the human form
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• Machine vision: Use of Computer vision algorithms in industry, e.g. feedback

control or for robot control applications etc. Computer vision algorithms only

extract information from an image whereas Machine vision involves using this

knowledge to manipulate a manufacturing element (such as a control valve,

robotic arm etc.). An example is the use of image analysis algorithms in the food

industry to remove fruits or vegetables that are unripe from the final produce

or to use the colour of baked cookies to adjust the cooking temperature and the

baking time.

Image processing techniques for image enhancement are not used in the current

work and hence are not described here ([Gonzalez & Woods, 2001]). Instead, the focus

here is on computer vision algorithms and some of the basic information extraction

methods.

1.3 Edge Detection and Smoothing

Edge detection is the process of identifying pixels in an image, where intensity values

change sharply. As an example, consider the image shown in Fig 1.3a. The edges

detected are shown in Fig 1.3b : the predominant dark areas correspond to the pixels

where there are no significant intensity changes and the white pixels represent the

detected edges.

(a) Original image (b) Edges detected

Figure 1.3: Example of edge detection

The ultimate goal of the process of edge detection, in many cases, is to detect ob-

ject boundaries in images. Object boundaries induce sudden changes in pixel intensity

values in real world images and it is hoped that, by the process of edge detection,

these changes can be found. Not all sudden intensity changes correspond to a bound-

ary of an object (e.g. lighting glare, texture, patterns etc.). Hence, choosing the
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pixels which correspond to boundaries of objects based on edge information alone is

not possible except in trivial cases. Additional information on the shape and size

of the object is often used to establish a heuristic criterion for boundary detection.

Therefore, edge detection is often used as a preliminary step to extract salient features

from the images.

The ability to detect boundaries of the objects present in an image is very impor-

tant in image analysis and hence edge detection is an extremely essential basic tool.

The next few paragraphs describe the edge detection process and also provide some

examples.

For simplicity, assume that the image is grayscale, I(x, y) : R2 → R. One method

to detect sharp changes is by finding the local maxima of the first derivative of the

image. An image can be considered as a two dimensional function hence the direction

in which the derivative is taken also needs to be known. If I(x, y) is assumed to

be differentiable at a point (x0, y0) and if [gx](x0, y0) = ∂I
∂x

∣

∣

∣

(x0,y0)
and [gy](x0, y0) =

∂I
∂y

∣

∣

∣

(x0,y0)
denote the first derivatives along the x and y axes, then the derivative at

any other angle θ with the x axis is given by

[gθ](x0, y0) = cos θ[gx](x0, y0) + sin θ[gy](x0, y0) (1.1)

For digital images, I(m,n) : {1, 2, ...,M} × {1, 2, ..., N} → R, a direct method

of computing the directional derivatives is to use simple finite difference schemes on

the interpolated pixel values along the required direction. Another way is to use

the same formula (1.1) as the directional derivatives along the x and y axes can be

computed easily on the discrete image (again using finite difference schemes). The

motivation behind this approach is that the digital image I(m,n) can be considered

as the discrete form of a continuous image I(x, y) which is not known. This unknown

image can be assumed to be differentiable.

Along a given direction θ, the challenging part is to establish a criteria which

determines the points (x, y) or pixels (i, j), where the derivative differs significantly

from the neighbours along this direction. One simple way to specify this criterion is

by defining hard thresholds on the derivative values, i.e. naming any pixel where the

derivative value is greater or smaller than a predefined value to be an edge. Derivative

computation amplifies any noise present in the image which makes it difficult to

establish such edge detection heuristics in an easy manner. (Note that the noise in

images is mostly assumed to be Gaussian and independent)

To filter the effect of noise, the image is initially smoothened with the Gaus-

sian filter. The smoothing operation takes an image as input and outputs a blurry
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(smoothed) version of it. Mathematically, smoothing with a Gaussian filter can be

represented as a two dimensional convolution:

Iout(x, y) = G(x, y, σ) ∗ Iin(x, y)

=

(

1

2πσ2
exp

(

−(x2 + y2)

2σ2

))

∗ Iin(x, y)

=

∫ ∞

−∞

∫ ∞

−∞

(

1

2πσ2
exp

(

−(a2 + b2)

2σ2

))

Iin(x− a, y − b)dadb

An example of smoothing is shown in Fig 1.4. As the image considered in this example

is digital, the Gaussian density function G(x, y, σ) is sampled at equidistant points

in both x and y directions and the convolution is carried out in the discrete domain.

The formula for two dimensional discrete convolution is given by the following:

Iout(m,n) =
+∞
∑

k1=−∞

+∞
∑

k2=−∞

Gd(k1, k2)Iin(m− k1, n− k2) (1.2)

where, Gd is the sampled version of the continuous Gaussian filter.

It has to be noted that the degree of smoothing should not be too high as much of

the image detail would be lost. On the other hand, it should not also be too small as

the noise present in the image would not be suppressed. This degree can be controlled

by the variance σ2 of the Gaussian density function from which Gd is sampled. In

practice, the ranges of k1, k2 are computed based on the value of σ as the values of

G(k1, k2) would be very small after a certain range and these terms would not change

the convolution significantly.

(a) Original image (b) Smoothed image

Figure 1.4: Image smoothing with σ = 7.0 pixels

On a sufficiently smoothed image, edges can be detected by finding the local

maxima of the first derivative of the image. Consider the image shown in Fig 1.5a.

To reduce the effect of noise, this image is initially smoothed with a Gaussian kernel

of σ = 3.0 pixels as described earlier and the result of the operation is shown in,

Fig 1.5b. To detect the horizontal edge, the derivative in the vertical direction has to

be computed. This can be achieved by computing the derivative of the smoothened
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image explicitly in the discrete domain. Another way is to compute the derivative

of the Gaussian analytically and convolve the image with the result (Note that from

the properties of convolution ∂(G(x,y,σ)∗I(x,y))
∂y

= ∂G(x,y,σ)
∂y

∗ I(x, y), etc.). The resulting

operator known as the Derivative of Gaussian, is given by:

DG
y =

∂G

∂y
=

−y

2πσ4
exp

(

−(x2 + y2)

2σ2

)

, DG
x =

∂G

∂x
=

−x

2πσ4
exp

(

−(x2 + y2)

2σ2

)

DG
θ = cos θDG

y + sin θDG
x

Using the above, for example, the first derivative in the direction of θ can be found

using the convolution:

Iout(x, y) = DG
θ ∗ Iin(x, y)

(a) Noisy im-
age containing
a “step” edge

(b) Gaussian
smoothed
image with
σ = 3.0 pixels

(c) Result of
Derivative of
Gaussian on
Fig 1.5a

(d) Result of
thresholding
on Fig 1.5c

Figure 1.5: Edge detection with first derivative operators

The above expressions show the method of convolution when the domain of images

is R2. For the case of digital images these operators are discretized. Fig 1.6 shows

this discretization (along the grid lines) for Dg
y and Dg

x. Convolution can then be

carried out as shown before in (1.2). Fig 1.5c shows the result of convolution of

the original image with the discrete version of DG
y . It can be seen that the edge is

clearly highlighted. Fig 1.5d shows the detected edge by thresholding Fig 1.5c, with

a threshold of T = 128.

The example above showed a simple use of the Derivative of Gaussian (DoG) oper-

ator to detect horizontal edges. Detecting edges in unknown orientations is also possi-

ble with the DoG operators. The Canny edge detection algorithm (Canny, 1986) is an
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Figure 1.6: Discretization of Derivative of Gaussian operators with σ = 1.0 pixel

example in this class. In this method, gradient magnitude M(x0, y0) at each location

(x0, y0) is computed using M(x0, y0) =
√

(Dπ/2 ∗ Iin)2(x0, y0) + (D0 ∗ Iin)2(x0, y0).

Similarly the gradient direction α(x0, y0) is also computed with

α(x0, y0) = arctan
(Dπ/2∗Iin)(x0,y0)

(D0∗Iin)(x0,y0)
. These gradient directions are then quantized to the

set {0, π/4, π/2, 3π/2}, as only these four directions can be observed on the discrete

pixel grid, when an eight connected neighbourhood is used. The Canny edge detection

process is carried out in the following way:-

1. A threshold T on the gradient magnitude is chosen so that only the edge ele-

ments remain and the noise is suppressed. This is due to the assumption that

real edges give higher values for the gradient than the spurious values generated

by noise. Define

MT (x0, y0) =

{

M(x0, y0) if M(x0, y0) > T ;
0 if M(x0, y0) ≤ T

2. The next step called non-maximum suppression checks if the valueMT (x0, y0) is

greater than its neighbours in the direction α(x0, y0). If so, the valueMT (x0, y0)

is unchanged or else it is set to zero.

3. The thresholded gradient values resulting from non-maximum suppression are

further thresholded using two thresholds, T1, T2 where T1 < T2. This results in

two images I1, I2. The image I2 has less number of spurious edges compared to

I1 but also has larger gaps between edges.

4. Edges in I2 are joined to make them continuous. Each edge in I2 is traced

until the end and then any neighbouring edges in I1 are joined. This process is

repeated for all the edge segments in I2.

Two examples of the Canny edge detection are given in Fig 1.7. Note that in

both the examples, prominent edges have been detected. The drawback however is
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the need to tune the various parameters in the algorithm carefully to achieve such

accurate edge detection.

Until now only the first derivative of the image was used to detect edges. Edges

can also be detected using second derivatives. When the first derivative achieves a

local maximum the second derivative changes sign (from negative to positive or vice

versa). These locations, called zero crossings can be considered as edge points (Marr

& Hildreth, 1980). Note that the second derivative can change sign due to a number of

other reasons, e.g. near the saddle points, noise in flat image regions etc. hence some

edges detected by this procedure may be spurious. Similar to the first derivatives,

(a) Original image (b) Result of Canny edge detection
with σ = 2.0, T1 = 0.04, T2 = 0.5

(c) Original image (d) Result of Canny edge detection
with σ = 2.0, T1 = 0.04, T2 = 0.5

Figure 1.7: Canny edge detection examples

second derivatives are also applied after Gaussian smoothing to reduce the effect of

noise. The second derivatives of Gaussian can be written as (Elder & Zucker, 1998):

DG
yy =

1

2πσ4

(

(y/σ)2 − 1
)

e−(x2+y2)/2σ2

, DG
xx =

1

2πσ4

(

(x/σ)2 − 1
)

e−(x2+y2)/2σ2
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DG
xy =

xy

2πσ6
e−(x2+y2)/2σ2

Using these the second derivative at any other angle θ with the x-axis is given by:

DG
θ = cos2 θDG

xx + 2 cos θ sin θDG
yy + sin2 θDG

xy

Fig 1.8 shows these second derivative operators with possible discretization along the

grid lines. Using the discrete operators, convolution is carried as before in (1.2).

Now, consider the image shown in Fig 1.9a, where the edge is blurry. Note that

there is no single specific location which can be considered as an edge. Instead, the

“ramp” portion of the image can be considered as an edge as a whole. To detect this

edge the image can be convolved with DG
yy and zero crossings be found, as shown

in Fig 1.9b. As can be seen, many spurious zero crossings have been identified.

This results because of the errors committed during derivative estimation due to the

presence of noise. It can be seen that derivatives are highly sensitive to noise in the

image.

One simple way to reduce the number of spurious zero crossings is to check if

the estimated derivative values are significant at those locations. For example, in

Fig 1.9, in the area outside of the edge, the first derivative values would be close to

zero and hence these pixels can be excluded. However, establishing the criterion for

significance is not straight-forward. Based on statistical reliability analysis, (Elder

& Zucker, 1998) describe a way for detecting if the first and second derivatives at a

pixel are non-zero or not. The following paragraphs give a brief summary of their

edge detection algorithm.

Derivative estimation is imprecise when the image is corrupted by noise. However,

if the statistics of the noise are known, it is possible to compute a critical value for

the derivatives, below which the estimates are unreliable (reliable up to a very small

probability) and should be treated as being equal to zero.

If the image contains only Gaussian i.i.d noise with standard deviation sn, a critical

value for the first derivative in the gradient direction is estimated to be c1(σ1) =
1.1sn
σ2

1

.

Similarly, for the second derivative in the gradient direction, the critical value is

computed to be c2(σ2) =
1.8sn
σ3

2

. Here, σ1 and σ2 are the smoothing parameters used

in the first and second Derivative of Gaussian operators respectively.

The edge detection algorithm proceeds as follows. At every pixel, minimum reli-

able scales(σmin
1 , σmin

2 ) are computed for each of the first and second derivatives where

the derivative values are higher than these critical values. Note that only a small

range of scales are tested (typically {0.5, 1.0, 2.0, 4.0, 8.0, 16.0}) as it is practically

impossible to find the minimum reliable scales over the whole positive real number

line.
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Figure 1.8: Discretization of Second Derivative of Gaussian operators with σ = 1.0
pixel

First, for each pixel in the image, it is checked if the first and second derivatives

are estimated reliably at one of the scales {0.5, 1.0, 2.0, 4.0, 8.0, 16.0}. If so, then

the presence of zero crossings at any such locations is considered to be an edge in

the image. If not, the pixel is discarded and marked as a non-edge point. The exact

details of detecting zero crossings at the locations for which the derivatives are reliably

estimated can be found in (Elder & Zucker, 1998).

Fig 1.9c shows the result of edge detection using this algorithm. Note the drastic

reduction in the number spurious edges and also that most of the detected edges

belong to the ramp portion of the edge.
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(a) Noisy im-
age containing
a Ramp edge

(b) Zero cross-
ings of DG

yy ∗ I
(c) Result of
EZ edge detec-
tion algorithm
on the image
Fig 1.9a

Figure 1.9: Edge detection with first and second derivative operators

1.4 Segmentation

The result of an edge detection algorithm - the edge map, can be subsequently used to

detect the boundaries of objects present in the image. For example, missing edges on

the boundary can be reconstructed using higher level reasoning (information about

the shape of object). Using the edge map and knowledge about the shape, the final

aim in most cases is to detect the location of the object in the image. Locating specific

objects in an image is a fundamental problem in image processing and edge detection

is but one approach for a solution.

Segmentation of an image is the process of partitioning it into perceptually equiv-

alent non-overlapping regions. Mathematically, if I(x, y) : Ω ⊂ R2 → R is any given

image, then segmentation results in a new image J(x, y) : Ω ⊂ R
2 → R such that

there exist regions R1, R2, R3, ..., RN for some N ∈ N which satisfy the following:

• ∪N
i=1Ri = Ω

• Ri ∩ Rj = φ whenever i 6= j

• J(ω1) = J(ω2) whenever ω1 and ω2 belong to the same region Rf for some

f ∈ 1, 2, ..., N .

Perceptual equivalence is a subjective phenomenon and hence there does not exist

a single correct segmentation of the image. For example, Fig 1.10 shows a plausible
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segmentation achieved by the algorithm described in Nock & Nielsen, 2004. Note

that, even though both these images look almost similar, the resulting image has

the same pixel values in each of the segmented regions unlike the original one. For

example, the area occupied by the leaves of the tree can have pixels values over a

wide range in the original image but in this same area in the segmented image, all

the pixels values would be the same. It can also be noted from this segmentation

result that the leaves and the trunk of the tree can be easily automatically identified.

Hence, it can be seen that segmentation is yet another approach for object detection.

Edge detection and segmentation are two corner stones in automatic image analysis.

(a) Original image

(b) Segmented image

Figure 1.10: Image segmentation by the Statistical region merging algorithm

Image segmentation has been the focus of a substantial amount of research in

the recent past. Many segmentation algorithms exist such as simple histogram based
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methods (Otsu, 1979), region growing/merging techniques (Nock & Nielsen, 2004),

energy minimization (Kass et al., 1988), curve evolution (Caselles et al., 1997; Chan

& Vese, 2001) and graph cuts (Shi & Malik, 2000). The next few sections describe

many of these methods in detail.

1.4.1 Histogram based segmentation

The histogram of an image is an important tool in analyzing its global properties.

Based on the image histogram simple segmentation methods can be obtained. For

example, consider the grayscale image and its histogram shown in Fig 1.11. Clearly,

this image contains two prominent gray levels of 0.25 (0.25 ∗ 255) and 0.7 (0.7 ∗

255) - the gray level at 0.7 corresponding to the coins and 0.25 representing the

background. A good threshold for segmentation based on this histogram information

can be established in the range T ∈ (0.3, 0.55). Fig 1.12 shows the image J achieved

by such a segmentation:

J(i, j) =

{

1.0 if I(i, j) > 0.35
0.0 otherwise

(a) Original image, I (b) Histogram

Figure 1.11: Image histogram example

Figure 1.12: Segmentation by simple thresholding, J

Even though this is a satisfactory segmentation, the technique is not automatic

as it involves finding the threshold T (= 0.35) by hand. (Otsu, 1979) describes a

method for automatic segmentation of a grayscale image based on its histogram. The
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Otsu’s thresholding method is a binary segmentation method which tries to minimize

a weighted within-class variance. The global threshold T is computed as

T = argmin
t

σw(t)

where,

• σw(t) = q1(t)σ
2
1 + q2(t)σ

2
2 , called the weighted within-class variance

• q1(t) =
∑t

i=0 P (i)

• q2(t) =
∑255

i=t+1 P (i),

• σ1, σ2 are the variances of the pixels with pixel values ≤ t and > t respectively

and

• P (i), i ∈ {0, 1, 2, ..., 255} is the normalized image histogram

On the image shown in Fig 1.11a, a threshold T = 0.49 was obtained using Otsu’s

method. The result is shown in Fig 1.13. It has to be noted that this method

gives satisfactory results only when the histogram has two regions which are clearly

separated as shown earlier.

Figure 1.13: Segmentation by Otsu’s thresholding

The threshold T computed in both the above methods was global. It is also possible

to have different thresholds for different pixels in the image. This is done in adaptive

thresholding. In adaptive thresholding, instead of considering the histogram of the

whole image, local histograms are considered and thresholds are computed based on

these (Shapiro & Stockman, 2002).

1.4.2 Region merging / growing methods

Region merging methods start by assuming each pixel in the image to be a unique

region. Following a merging order, adjacent regions are tested for similarity and
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merged if the test is positive. The similarity measure is usually based on the pixel

intensity values inside the regions. Given a similarity measure, a merging order has to

be known a priori because it alone guarantees uniqueness of segmentation. Specifying

a merging order and the similarity measure (also called merging predicate) completely

specifies the region merging algorithm.

An example of a region merging algorithm is the following:

1. Initially assume each pixel in the image to be a unique region

2. For each pair of adjacent regions, say R1 and R2, compute the absolute difference

in their average intensities : |R̄1 − R̄2|, where R̄i represents the average pixel

intensity value in the region Ri, i = 1, 2.

3. Arrange the adjacent region pairs in increasing order of their absolute intensity

differences (This step specifies the merging order) i.e., if < R1, R2 > and <

R3, R4 > are two adjacent region pairs then if |R̄1−R̄2| < |R̄3−R̄4|, < R1, R2 >

is arranged before < R3, R4 > otherwise < R3, R4 > is arranged before <

R1, R2 >

4. Following the merging order, combine the two regions R1, R2 belonging to an

adjacent pair < R1, R2 > if |R̄1 − R̄2| < T , where T is a threshold. (This is the

merging predicate). The combined region is represented as (R1, R2).

5. Carry the above procedure for all adjacent regions. If one of the regions R3 in

an adjacent pair < R3, R4 > is already merged with another region R2, the test

should be carried out on the adjacent pair, < (R2, R3), R4 >.

This method is very useful for images which do not contain too many local varia-

tions in intensity. Fig 1.14 shows an example where the foreground has been detected

successfully from the dark background. This segmentation has been achieved by a

threshold of T = 20. On more complex images, the same method fails to give a good

segmentation as seen in Fig 1.15. Note that if T is increased then the number of

unique regions detected will reduce and the opposite behaviour would result if T is

decreased.

The threshold T considered above was global but there is no such restriction in

the region merging algorithm. An adaptive threshold T (R1, R2), which depends on

the adjacent region pair being tested for < R1, R2 > can also be developed. Such

thresholds can be chosen based on the statistics of the pixel intensities in the regions

R1, R2.
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(a) Original image (b) Segmented Image

Figure 1.14: Region Merging based image segmentation with a global threshold T =
20 in the case of a simple image

(a) Original image (b) Segmented Image

Figure 1.15: Region Merging based image segmentation with a global threshold T =
20 in the case of a complex image

For example, if each pixel in the image is assumed to possess a Gaussian distribu-

tion then the region averages R̄1 and R̄2 too would be Gaussian distributed (say, with

(µ1, σ1) and (µ2, σ2)), when the pixels are assumed to be independent. Then, based

on simple statistical analysis a threshold T (R1, R2) can be found. R̄1 − R̄2 follows a

Gaussian distribution with the parameters (µ1 − µ2, σ1 + σ2) and so the distribution

of |R̄1 − R̄2| can be theoretically known. If δ << 1 and P (|R̄1 − R̄2| > T ) < δ for

some T , then a reasonable predicate would be to merge R1, R2 if |R̄1 − R̄2| < T .

The Statistical Region Merging (SRM) (Nock & Nielsen, 2004) algorithm com-

putes such adaptive thresholds. In this method an image I is considered to be an

observation of a perfect scene I∗, which is unknown. For example, the image I may

contain image noise (e.g. photon noise) and other irregularities (lighting glare, shad-
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ows) which are not present in the theoretical image I∗.

In the image I∗ the intensity at each pixel is modelled as a random variable. The

random variable at any given pixel location is further represented as a sum of Q

independent random variables, whose probability distributions might differ (i.e. the

Q random variables may not be i.i.d). Note that there is no restriction on the class

of these probability distributions unlike the Gaussian distribution above.

If R and R′ represent two regions in I∗ then using an inequality from random

variable calculus it is obtained that:

P

(

|R̄− R̄′ − E(R̄− R̄′)| ≥ 255

√

1

2Q

(

1

R̄
+

1

R̄′

)

log
2

δ

)

≤ δ

where R̄, R̄′ represent pixel intensity averages in the regions R,R′ respectively. When

the two regions are similar they have the same mathematical expectation and the

above inequality is transformed into a predicate for merging:

Merge R̄, R̄′ if |R̄− R̄′| <=
√

b2(R) + b2(R′)

b(R) = 255
√

(1/2Q|R|) ln (|H|R||/δ)

where |•| represents cardinality. HA represents the set of all regions containing A

number of pixels, δ = 1/(6|I|2). The merging order is obtained by arranging adjacent

pixels in the increasing order of the absolute value of their pixel intensity differences.

So, pixels whose intensity values are closer to each other are tested first for merging.

Fig 1.16 shows the results of SRM on the images considered previously. Note that

the results on the first image are comparable but on the second image, SRM was

substantially better being able to detect the body of the rabbit as a whole.

Given the merging order and the predicate, the region merging algorithm is im-

plemented using the Union - Find data structure along with path compression for

efficiency (Fioro & Gustedt, 1996). The algorithm runs in linear time O(n) where

n is the total number of adjacent pixels in the image which is of the order O(NM)

where N,M are the dimensions of the image. The algorithm takes about one second

for a 512x512 image on a standard Pentium 4 with 1GB RAM.

1.4.3 Energy minimization and Curve evolution methods

Both the methods rely on an important area in mathematical analysis called Calculus

of variations. Basics of this field are briefly reviewed first.
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(a) Result of SRM on 1.14a (b) Result of SRM on 1.15a

Figure 1.16: Statistical region merging with Q = 32

Brief results from the calculus of variations

Calculus of variations plays a very important role in the analysis of images. It arises

as a natural outcome of problems which involve finding extrema of functionals. The

function which is a minimizer may correspond to the contour of an object to be

detected in the image, for example.

Ordinary calculus studies the variation of functions defined on the real number

line R, i.e. functions of the type f : R → R. A functional is a function defined on

a space of functions rather than a space of points. For example, if C(a, b) represents

the class of all continuous functions in the interval (a, b) ∈ R, then a functional is any

function which maps each of these functions to a real number, g : C(a, b) → R.

To see why such functionals are important in image analysis, consider the image

shown in Fig 1.17. In this image, a circular object is comfortably visible though a

substantial amount of noise is present. Detecting the location of this object automat-

ically using edge detection methods may prove to be difficult due to the presence of

noise. Even histogram and region merging based segmentation methods do not give

an accurate solution.

A novel approach is to find a closed curve in the image plane such that,

• the pixels in the inside region of the curve are as statistically similar as possible

and the pixels in the outside region of the curve are also as statistically similar

as possible
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Figure 1.17: A circular object in a highly noisy image

It is clear that any such curve can be parameterized as a function f : [0, 1] → R2.

Each such curve f can be mapped to a real number which represents the statistical

similarity of the pixels in the inside and the outside regions. The following energy

shows one such mapping

E(f) =

∫

inside(f)

|I(x, y)− b1|
2dxdy +

∫

outside(f)

|I(x, y)− b2|
2dxdy (1.3)

where b1 =
∫

inside(f)
I(x, y)dxdy, b2 =

∫

inside(f)
I(x, y)dxdy represent the mean pixel

intensities in the inside and outside regions. Fig 1.18 shows a curve f in yellow with

its inside and outside regions marked. The value E(f) is the smallest for a function f

for which the variance of pixel intensity values in both the regions are minimal. This

function is denoted by fmin.

Figure 1.18: A curve f superimposed on the image

Finding extrema of functionals such as E is done using the Calculus of Variations.

The theory for finding the extrema of functionals can be directly extended intuitively

from the techniques for computing extrema of multi variable functions. This approach

is taken here. For a detailed derivation of the results described, the reader is referred

to a standard textbook on the subject (Gelfand & Fomin, 2000). Even though Cal-
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culus of variations is a much broader subject, the current work will confine itself to

the basics of finding extrema, as it is the most relevant to the rest of the thesis.

Let, Rn be the n-dimensional Euclidean space. A vector in this space is an n-

tuple of real numbers v = (a1, a2, ..., an). Physically, a vector v can be viewed as being

based at the origin and pointing towards the point (a1, a2, ..., an) in the n-dimensional

space. It can be easily verified that the set of all such vectors forms a linear space.

Let Rn
x denote the set of all vectors whose origin is at the point x ∈ R

n. These vectors

also form a linear space known as the tangent space at the point x. The tangent space

represents all the possible velocities with which one can travel through the point x.

Let f : U ⊂ R
n → R, be a differentiable function. The directional derivative at

the point x in the direction ǫ ∈ Rn
x of f is defined as :

Dǫf(x) = lim
h→0

f(x+ hǫ)− f(x)

h

Note that,

df(x+ hǫ)

dh

∣

∣

∣

h=0
= lim

δh→0

f(x+ hǫ+ δhǫ)− f(x+ hǫ)

δh

∣

∣

∣

h=0

= lim
δh→0

f(x+ δhǫ)− f(x)

δh
= Dǫf(x)

hence,

Dǫf(x) = lim
h→0

f(x+ hǫ)− f(x)

h
=
df(x+ hǫ)

dh

∣

∣

∣

h=0

When f is differentiable on U , the directional derivatives can also be written using

the gradient:

Dǫf(x) = ∇f · ǫ

Therefore, at the critical points (points where all the partial derivatives are equal

to zero) of the function, all the directional derivatives would be equal to zero, i.e.,

whenever x ∈ U is a critical point

df(x+ hǫ)

dh

∣

∣

∣

h=0
= 0, ∀ǫ ∈ R

n
x (1.4)

It can also be shown that, in the reverse, whenever (1.4) is true x is a critical point.

Now let V be a linear space of functions. Some examples are C(a, b) - the set of

all continuous functions in (a, b), D1(a, b) - the set of all continuously differentiable

functions in (a, b), etc. Also assume that a norm is defined on this space, which is

denoted by ||.||. E is called a functional, if E : U ⊂ V → R. Analogous to the
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directional derivative for multivariable functions the Gateaux derivative (also called

the first variation) is defined for functionals:

δE(x, ǫ) =
dE(x+ hǫ)

dh

∣

∣

∣

h=0

where, ǫ ∈ V such that x + hǫ ∈ U for small enough h. Such ǫ are called admissible

variations. Let A denote the set of all admissible variations. Similar to the definition

of critical points for multivariable functions, at the extrema x ∈ U of E :

δE(x, ǫ) = 0 ∀ǫ ∈ A (1.5)

This is the fundamental necessary condition that should be satisfied by all extrema

of the functional E.

Lemma 1.4.1 (Fundamental Lemma of Calculus of Variations) If f : [0, 1] →

Rn is a continuous function such that

∫ 1

0

〈f(t), h(t)〉 dt = 0

for every twice continuously differentiable h : [0, 1] → Rn with h(0) = h(1) = 0 then

f ≡ 0

In most applications, the condition (1.5) and the fundamental lemma (Lemma 1.4.1)

are used together in deriving what are known as the Euler-Lagrange equations. An

example of such a derivation is shown in the next section.

Examples of Energy minimization and Curve evolution

Using the above criterion, the minimizer, fmin of functionals such as (1.3) can be

found. The result in general is a partial differential equation of fmin which can be

solved using numerical methods such as gradient descent.

In (Kass et al., 1988) the energy functional whose minimization is sought was:

E(f) = α

∫ 1

0

|f ′(q)|2 + β

∫ 1

0

|f ′′(q)|2dq − λ

∫ 1

0

|∇I(f(q))|dq

where the first two terms are regularization terms which control the smoothness of the

curve f and the last term attracts the curve towards higher gradients in the image.

The criterion which the minimizer satisfies for this energy functional can be derived

using (1.5). Let f(q) = (xf (q), yf(q)), ∀q ∈ [0, 1] and ǫ(q) = (xǫ(q), yǫ(q)), ∀q ∈ [0, 1]

with ǫ ∈ C2 ǫ(0) = (0, 0), ǫ(1) = (0, 0), ǫ′(0) = (0, 0), ǫ′(1) = (0, 0)
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dE(f + ǫh)

dh

∣

∣

∣

h=0
= α

∫ 1

0

d

dh
((x′f(q) + hx′ǫ(q))

2 + (y′f(q) + hy′ǫ(q))
2)
∣

∣

∣

h=0
dq

+β

∫ 1

0

d

dh
((x′′f (q) + hx′′ǫ (q))

2 + (y′′f (q) + hy′′ǫ (q))
2)
∣

∣

∣

h=0
dq

−λ

∫ 1

0

d

dh
(Ix(xf (q) + hxǫ(q), yf(q) + hyǫ(q)))

2
∣

∣

∣

h=0
dq

−λ

∫ 1

0

d

dh
(Iy(xf (q) + hxǫ(q), yf(q) + hyǫ(q)))

2
∣

∣

∣

h=0
dq

where Ix and Iy denote the partial derivatives of I in the direction of the x and y

axes.

dE(f + ǫh)

dh

∣

∣

∣

h=0
= 2α

∫ 1

0

(x′f (q)x
′
ǫ(q) + y′f(q)y

′
ǫ(q))dq

+2β

∫ 1

0

(x′′f (q)x
′′
ǫ (q) + y′′f (q)y

′′
ǫ (q))dq

−2λ

∫ 1

0

Ix(xf (q) + hxǫ(q), yf(q) + hyǫ(q))
∣

∣

∣

h=0
×

d

dh
Ix(xf + hxǫ, yf + hyǫ)

∣

∣

∣

h=0
dq

−2λ

∫ 1

0

Iy(xf (q) + hxǫ(q), yf(q) + hyǫ(q))
∣

∣

∣

h=0
×

d

dh
Iy(xf + hxǫ, yf + hyǫ)

∣

∣

∣

h=0
dq

= −2α

∫ 1

0

(x′′f(q), y
′′
f(q)) · (xǫ(q), yǫ(q))dq

+2β

∫ 1

0

(x′′′′f (q), y′′′′f (q)) · (xǫ(q), yǫ(q))dq

−2λ

∫ 1

0

Ix(xf (q), yf(q)) (∇Ix(xf(q), yf(q))) · (xǫ(q), yǫ(q))dq

−2λ

∫ 1

0

Iy(xf (q), yf(q)) (∇Iy(xf(q), yf(q))) · (xǫ(q), yǫ(q))dq

Here, integration by parts is carried out on the first two terms and the property

of directional derivatives (1.4) has been used on the last two. With the help of the

fundamental lemma (Lemma 1.4.1) the following equalities can be obtained:

−2α

(

x′′f
y′′f

)

+ 2β

(

x′′′′f

y′′′′f

)

− 2λ (Ix(xf , yf)∇Ix(xf , yf) + Iy(xf , yf)∇Iy(xf , yf)) = 0
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This equation is then solved in the discrete domain using finite differencing schemes

with iteration (Kass et al., 1988). The curve f when initialised closed to the boundary

of an object moves closer in subsequent iterations until it finally traces the boundary

of the object at convergence. Note that, as the energy functional uses the gradients

of the image, this type of minimization is not satisfactory when the image contains a

substantial amount of noise.

The explicit representation of functions, i.e., f : [0, 1] → R
2, however, was later

found to be problematic when the curve had to change its topology. For example,

consider the image shown in Fig 1.19. Any initial closed curve in this image has

to split into two to detect both the objects. In the explicit representation scheme,

arbitrary breaking and joining of the curve were only possible with the incorporation

of additional heuristics.

A neat solution for this problem is provided by the concept of Level sets (Osher &

Sethian, 1988). In these methods, instead of evolving the curve f , a two dimensional

surface (in which the curve is embedded) is updated. The curve is usually specified to

be the zero level set of this surface. As the surface can change arbitrarily the topology

of the curve contained within can also take any shape.

In (Caselles et al., 1997) the minimization criterion of an energy functional similar

to (1.6) has been developed in the framework of Level sets. Even though the curve

can now change its topology freely, the dependence on gradients of the image, makes

the algorithm only useful for images with little noise present. In (Chan & Vese, 2001)

the energy functional developed was independent of gradient information and relied

on the region statistics inside and outside the curve similar to (1.3). Fig 1.20 shows

the evolution of the zero level set in this method on the image (1.19).

Figure 1.19: Objects of two shapes visible through a high level of noise
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(a) Initial curve (b) Curve at a later itera-
tion

(c) Curve at a later iteration (d) Final position

Figure 1.20: Curve evolution using the Chan Vese algorithm

1.5 Incorporating a priori knowledge

The algorithms presented in the two sections above for edge detection and segmenta-

tion are general and applicable to a wide class of images. Nevertheless, these methods

cannot directly incorporate any a priori knowledge about the structure of images that

might be available before hand. As most types of images which are of practical in-

terest possess local as well as global structure, it is very important to encode this

information into the object detection algorithm.

There are two main methods to achieve this :

• via supervised learning

• or using template matching

In supervised learning methods such as Neural Networks (Alpaydin, 2004), Sup-

port Vector Machines (SVM) (Burges, 1998), Boosting techniques (Freund & Schapire,

1999), etc. training images and their desired responses are used to obtain the model

for object detection or classification. These models are later utilized on the test

images to make the final decision. The human detection example shown in Fig 1.2

initially identifies a binary classification model using SVM (implemented using SVM-

Light, Joachims, 1999). The response of this model to a new image decides whether

a human form is present in the image or not.

The main disadvantage with the supervised learning algorithms mentioned above

is that the object detection model obtained cannot be easily or intuitively justified.
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These models are sometimes also called as black-box models referring to the fact that

they cannot be understandable in terms of the physical parameters of the problem.

Note that, in cases where such understanding is not necessary, these models are very

advantageous especially if they give accurate results.

Template matching is a different approach in which the a priori information is

transparently encoded into the detection algorithm. In these methods, a reference or

template of the object is first identified from training images. All parts of the test

image are scanned for any occurrence of this template using a simple criterion (e.g.

sum of squared errors). High responses to the criterion are considered to indicate the

presence of the object. The Lucas-Kanade algorithm (Baker & Matthews, 2004) for

image registration is an important example in this category. Other examples that

do not completely fit into this category are the Hough (Duda & Hart, 1972) and

Radon transforms (Deans, 1981) which are used to detect objects of specific shapes

in images.

1.6 Summary

This chapter introduced the field of automatic image analysis. Important applications

in various areas have been mentioned briefly. The two fundamental methods in image

analysis - Edge detection and segmentation have been introduced and discussed in

detail. These two methods share the common goal of locating objects of interest

in images. Standard edge detection algorithms have been presented from the basics

of multivariable calculus. Edges were detected using the first derivative and second

derivative operators. When substantial noise is present in the images, these standard

methods fell short of producing an accurate edge map. The shortcomings of such

algorithms were highlighted and an advanced algorithm has been introduced which

solved these problems.

Three types of segmentation methods have been discussed:

• Histogram based methods

• Region growing

• Energy Minimization / Curve evolution

It has been shown that histogram methods are used to derive global thresholds and

are suitable for very simple images with two distinct peaks in the histogram. Region

growing methods can use both global and adaptive thresholding and results on two

images have been shown for both the cases. Energy minimization methods have been
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introduced from the basis of Calculus of Variations and an example minimization

criterion has been derived. To solve the difficulties in energy minimization methods,

curve evolution via level sets have been introduced and results of a recent algorithm

have been shown. Supervised learning algorithms and Template matching methods

have been shown to be able to incorporate a priori information about the structure

of the images into the object detection procedure.
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Chapter 2

Particle Filters

Chapter 1 introduced the image analysis part of the current work, which is subse-

quently used in Chapters 3,4,5. One of the main goals of this chapter is to introduce

Particle filters. Image analysis algorithms and Particle filters are used together in

Chapter 3 to derive one of the main results of this thesis. A substantial part of this

chapter is also devoted to introducing measure theoretic probability which is used in

proving the convergence results of Particle filters.

Most measurements obtained in a chemical process industry are noisy i.e. the

measurements obtained include fluctuations due to random elements which cannot

be controlled. In a few cases the fluctuations are high enough to cause significant

deviations from the actual values of the variables. In such cases one desires to obtain

an optimal estimate of the variables (also called states) based on other available

information. For example, the dynamics of the state might be known (e.g. its velocity)

and it might be possible to estimate the state optimally from the noisy measurements

using this additional information. This problem is known as state estimation and

Particle filters are a class of such algorithms.

This chapter begins by introducing the problem of state estimation more tech-

nically. Classic algorithms in this domain are also briefly reviewed in the process.

Particle filters are discussed afterwards along with a standard particle filtering algo-

rithm used frequently. The major part of this chapter though is devoted to developing

the (measure) theory required for deriving the convergence results of particle filter al-

gorithms. The theory presented here is obtained from various textbooks as referenced

in the text. The main motivation of this section is to present the theory as a whole

with some tutorial value. This theory is otherwise only found in fragmented states (in

various sources) from the view point of the process systems engineering community.

It is hoped that the survey of theory given here is simpler and easily comprehensible

than the sources from which it is derived.
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2.1 Introduction to state estimation

A good account of the history of state estimation can be found in (Sorenson, 1970).

To quote from this source briefly, assume X (anM ×1 vector) to be a constant signal

and Yn (P × 1 vector) to be measurements related to this signal at various times

n ∈ {0, 1, 2, ..., N − 1}. Also assume that the relation is linear:

Yn = HnX+Vn, ∀n ∈ {0, 1, 2, ..., N − 1} (2.1)

where,

• Hn ∀n ∈ {0, 1, 2, ..., N − 1} is deterministic (a P ×M matrix) and known a

priori

• Vn ∀n ∈ {0, 1, 2, ..., N − 1} represents the measurement noise and is stochastic

An important problem here is the estimation of the constant signal X (also called

the state) which best describes the set of N measurements Yn, i.e. given Yn and

Hn what is the value of X which best fits (2.1).

One of the early interpretations of the term best was in the least squares sense

(due to Gauss and Legendre) i.e. X̂ which minimizes the sum of squared errors -

J(X) =
∑N−1

n=0 [Yn −HnX]T [Yn −HnX] was chosen to be optimal.

This least squares solution can be derived easily for the case P = 1 and it turns

out that the solution for arbitrary P can be extended directly from this solution. To

derive the solution for this simple case, the following concatenations are made first:

• Y = [Y0Y2 · · ·YN−1]
T (Y is a N × 1 vector),

• H = [HT
0H

T
2 · · ·HT

N−1]
T (H is a N ×M matrix)

• V = [V0V2 · · ·VN−1]
T (V is a N × 1 vector).

Rewriting the objective function using the above, we obtain J(X) = (Y−HX)T (Y−

HX). J(X) = J(x1, x2, · · · , xM) (where X = [x1x2 · · ·xM ]) can be observed to be a

function of several variables. As maxima or minima of a function occur at its sta-

tionary points, these points are first computed (by setting all the partial derivatives
∂J
∂xi

= 0, ∀i ∈ {1, 2, · · · ,M})
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J(X) = (Y −HX)T (Y −HX)

J(X) =
N−1
∑

n=0

(Yn −HnX)2

∂J

∂xi
=

N−1
∑

n=0

2(Yn −HnX)(−Hni) ∀i ∈ {1, 2, · · · ,M}

Here, Hni represents the i
th element of the Hn vector.

∂J

∂xi
= 0 ∀i ∈ {1, 2, · · · ,M}

N−1
∑

n=0

2(Yn −HnX)(−Hni) = 0 ∀i ∈ {1, 2, · · · ,M}

N−1
∑

n=0

YnHni =
N−1
∑

n=0

HniHnX ∀i ∈ {1, 2, · · · ,M}

The equalities above can be expressed very succinctly as follows:

HTY = (HTH)X

If HTH is invertible, then X = (HTH)−1HTY. Note that HTH need not always

be invertible. The rank of HTH is equal to the rank of H (as the null spaces of HTH

and H are the same) and hence, the above represents a unique stationary point only

when rank(H) = M . If rank(H) < M there would exist infinite stationary points.

The Hessian of J(X) is HTH and it can be shown easily that this matrix is positive

definite. Hence the solution X obtained is indeed a local minimum.

When P > 1, the following concatenations can be used to reduce the problem to

the P = 1 case:

• Y = [Y0
TY2

T · · ·YN−1
T ]T (Y is a NP × 1 vector),

• H = [H0;H2;H2; · · ·HN−1] (H is a NP ×M matrix),

• V = [V0
TV2

T · · ·VN−1
T ]T (V is a NP × 1 vector),

Using the above notation, the given system of equations can be reduced to

Y = HX+V

Hence, the solution can be directly found by utilizing the formulas for the case P = 1.
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In the above expressions, the signal X was assumed to be a constant. Now, let X

also be time varying, denoted as Xn. As the measurements Yn are obtained sequen-

tially in time, at the time N , the past and present measurements Y0,Y2, ...,YN−1

contain all of the information that is available. An important problem here is to

estimate XN−1 optimally based on this information.

Linear filtering is the problem of describing XN−1 as a linear combination of

the measurements Y0, ...,YN−1 i.e., representing XN−1 ≈
∑N−1

i=1 GN−1,iYi for some

M × P matrices GN−1,i. The solution to this problem was developed independently

by Norbert Wiener and Andrei Kolmogorov during the early forties. The optimality

criterion was based on a probabilistic version of least squares, i.e., GN−1,i which

minimize

J(GN−1,0,GN−1,2, · · ·GN−1,N−1) = E[|XN−1 −
N−1
∑

i=0

GN−1,i|
2] (2.2)

are chosen to be optimal, where E is the mathematical expectation operator. The

solution can be derived as follows:

Let j ∈ {1, 2, · · · ,M} and k ∈ {1, 2, · · · , P}. As in the case when X is assumed

to be constant (above), the stationary points of the objective function J are to be

found (by setting all the partial derivatives ∂J
∂GN−1,i(j,k)

= 0, ∀i ∈ {0, 1, 2, · · · , N − 1},

∀j ∈ {1, 2, · · · ,M}, ∀k ∈ {1, 2, · · · , P})

J(GN−1,0, · · ·GN−1,N) = E[|XN−1 −
N−1
∑

i=0

GN−1,iYi|
2]

= E[XN−1
TXN−1]− E[XN−1

T
N−1
∑

i=0

GN−1,iYi]

−E

[(

N−1
∑

i=0

Yi
TGN−1,i

T

)

XN−1

]

+

((

N−1
∑

i=0

Yi
TGN−1,i

T

)

N−1
∑

i=0

GN−1,iYi

)

Denote the first term on the right hand side of equation above as (I), the second

term as (II), the third term as (III) and the fourth term as (IV). Note first that the

derivative operator can be interchanged with the expectation operator due to the

fact that the terms inside the expectation signs and their derivatives are continuous

functions. The partial derivative of (II) and (III) would be the same as they are

just transposes of each other. It can be easily shown that
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∂(II)

∂GN−1,i(j, k)
=

∂(III)

∂GN−1,i(j, k)
= E[XN−1jYik]

It can also be shown that,

∂(IV )

∂GN−1,i(j, k)
= 2 ∗ E

[

N
∑

f=1

(GN−1,fYf )Yik

]

The above equations for all j, k can be written succinctly as

E[XNYi
T ] = E

[

N
∑

f=1

(GN,fYf)Yi
T

]

∀i ∈ {0, 1, 2, · · · , N − 1} (2.3)

The above is known as the Wiener-Hopf equation. It is assumed that the cross-

correlations between the signal and the measurements are given, i.e. the left hand

side of the equation are assumed to be known. This equation can be written as

a simple vector-matrix equation whose solution is theoretically straight forward but

solving it numerically when N is large is cumbersome (it amounts to solvingM×N×P

simultaneous linear equations). It has been noted however that a solution for (2.3) is

relatively easier when the state dynamics and the measurement process are described

in the following State Space form:

Xn = ΦnXn−1 +Wn−1 (2.4)

Yn = HnXn +Vn (2.5)

where Φn is an M ×M matrix, Hn is a P ×M matrix and Wn,Vn are i.i.d white

noise sequences.

The solution in this framework is given by the celebrated Kalman Filter algorithm

(Kalman & Emil, 1960). The Kalman Filter represents the state at any time k, Xk

as a linear combination of the measurements until that time, i.e. Y0,Y1, ...,Yk in

the most optimal way. Optimality is defined under the criterion of (2.2). Another

way to view this representation is that it provides an estimate of the state Xk based

solely on the information given by Y0,Y1, ...,Yk and equations (2.4, 2.5). This is

the precise form of the state estimation problem.

The filtering / state estimation problem discussed above was based on minimizing

a probabilistic version of the least squares criterion (2.2). A significantly different

view point of state estimation can be obtained based on the concept of conditional

probability (Bayesian probability). This type of characterization of the filtering prob-

lem is often referred to as Bayesian filtering. In the framework of Bayesian filtering

a more general class of filtering problems can be solved. The next section describes

Bayesian filtering in detail.
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2.2 Bayesian Filtering

Consider the dynamic system described by the following discrete time state space

model :-

Xn = f(Xn−1) +Wn−1

Yn = g(Xn) +Vn

where

• Xn is the state at time n

• Yn is the noisy measurement at time n

• Wn is state noise at time n

• Vn is the measurement noise at time n

• f and g are possibly nonlinear mappings

The aim of filtering / state estimation is to estimate the state Xk of this system

given the set of noisy measurements Yi, i = {0, 1, 2, ..., k} in the most optimal way.

(Note that in this more general formulation there is no requirement that Xk be

linearly described by Yi, i = {0, 1, 2, ..., k} as was the case with the Kalman Filter

algorithm). In terms of a conditional probabilistic formulation, the interest is in

finding the following posterior distribution:

P (Xk|Y0,Y1,Y2, ...,Yk)

with the corresponding density

p(xk|y0,y1,y2, ...,yk) (2.6)

The posterior distribution contains all the information about the state Xk that

can possibly be obtained from the set of all noisy measurements available until the

current time, {Y0,Y1,Y2, ...,Yk}. Any estimate of the state Xk can be obtained

(e.g. mean or mode estimate) once this distribution is known.

Based on Bayes theorem for probability density functions (Athanasios & Pil-

lai, 2002), the following can be derived for the posterior density (2.6) (using the

assumption that the states are Markovian, i.e. p(xk|x0, . . . ,xk−1) = p(xk|xk−1)) :-
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p(xk|y0,y1,y2, ...,yk) =
p(xk,y0,y1,y2, ...,yk)

p(y0,y1,y2, ...yk)

=
p(xk,y0,y1,y2, ...,yk−1,yk)

p(y0,y1,y2, ...yk)

=
p(yk|xk,y0,y1,y2, ...,yk−1)

p(y0,y1,y2, ...yk)

∗
p(xk,y0,y1,y2, ...,yk−1)

p(y0,y1,y2, ...yk)

=
p(yk|xk) ∗ p(xk|y0,y1,y2, ...,yk−1)

p(y0,y1,y2, ...yk)

∗
p(y0,y1,y2, ...,yk−1)

p(y0,y1,y2, ...yk)

=
p(yk|xk) ∗ p(xk|y0,y1,y2, ...,yk−1)

p(yk|y0,y1,y2, ...,yk−1)

∝ p(yk|xk) ∗ p(xk|y0,y1,y2, ...,yk−1) (2.7)

Using the Chapman - Kolmogorov formula, the following can be written:

p(xk|y0, ...,yk−1) =

∫

xk−1

p(xk,xk−1|y0,y1,y2, ...,yk−1)dxk−1

=

∫

xk−1

p(xk|xk−1)p(xk−1|y0,y1,y2, ...,yk−1)dxk−1 (2.8)

In the above, p(xk|y0,y1,y2, ...,yk−1) is called the prior at time k. It can be seen

that (2.7) and (2.8) describe a recursive set of equations. The posterior at time k− 1

is used to compute the prior at time k (from (2.8)) and then the posterior at time k is

computed from this prior (from (2.7)). p(xk|xk−1) called the state transition density

is known as the distribution of Wk is assumed to be given. Specifically, p(xk|xk−1)

is equal to the density p(wk) translated by f(xk−1). p(yk|xk), called the likelihood

function, is either specified directly or derived from the distribution of Vk, if this is

given. When the distribution of Vk is specified, p(yk|xk) is the same as the density

p(vk) translated by g(xk).

The proportionality in (2.7) is usually expressed as

posterior ∝ likelihood * prior

The prior is the information about the state Xk before the arrival of the new ob-

servation Yk. Intuitively, the observation Yk updates the prior through the like-

lihood function resulting in the posterior. If the mappings f and g are linear and

the state/measurement noises are Gaussian, the prior, likelihood and the posterior
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distributions at all times are also Gaussian and hence completely characterized by

their first and second moments (mean and variance). In such cases, the analytical

recursive solution for the mean and variance is given by the Kalman filter algorithm.

In the general case (linear or nonlinear systems affected by Gaussian or non-

Gaussian noise processes), the prior and posterior distributions cannot be evaluated

analytically and Monte Carlo simulation methods are resorted to. The recursive

nature of (2.7) and (2.8) makes it possible to estimate these distributions sequentially.

Such methods are called sequential Monte Carlo methods or Particle filters. One such

method used frequently is the Sampling Importance Resampling (SIR) algorithm

described below:-

2.2.1 Sampling Importance Resampling (SIR) algorithm

SIR is a Monte Carlo technique used to generate samples from distributions which are

difficult to sample from and whose densities are known only up to a proportionality

constant.

Let P (Y) be such a distribution with the corresponding density p(y). Consider

any (importance) density q(y) which is easy to sample from and which is proportional

to p(y) (i.e. p(y) = b(y)q(y)). Generate the samples [y1,y2, ...,yN] from the density

function q(y). Now, compute the weights b(yi) =
p(yi)
q(yi)

and sample from the discrete

distribution which places weights b(yi) at yi, M times. It can be shown that as N →

∞ the discrete distribution tends to the original distribution p(y) (Fearnhead, 1998).

Hence the M samples represent samples from p(y). These samples are also called as

Particles.

If the prior p(xk|y1,y2, ...,yk−1) is assumed to be the importance density, then

to generate samples from the posterior p(xk|y1,y2, ...,yk), it can be seen that the

weights (from (2.7)) are given by p(yk|x
i
k), where xi

k represent samples from the

prior. These prior samples are generated by passing the samples from the posterior

at the previous time step p(xk−1|y1,y2, ...,yk−1) through the state equation. This is

described in the complete SIR algorithm below:

1. Assume [xi
k−1; i = 1 : N ] are available from p(xk−1|y1,y2, ...,yk−1)

2. Generate samples [xi
k|k−1; i = 1 : N ] by xi

k|k−1 = f(xi
k−1) +wi

k−1 where wi
k−1

are instantiations of the state noise Wk−1. These samples intuitively represent

samples from the prior p(xk|y1,y2, ...,yk−1).

3. Calculate the weights p(yk|xk = xi
k|k−1)

37



4. Resample from the discrete distribution which places the weights

p(yk|xk = xi
k|k−1

) at xi
k|k−1

. These represent samples from p(xk|y1,y2, ...,yk).

As p(x0) is known the assumption in step one is valid for the first iteration and

hence all the posterior distributions can be computed recursively. The resampling

step shown above is done using the normal procedure of constructing the cumulative

distribution function (cdf) of the discrete distribution and generating uniform random

variates. The following shows the reasoning behind this approach (Devroye, 1986)

(assume here that it is required to sample from the distribution of X as an example).

Let,

• F be the cdf of X , i.e. F : R → [0, 1], F (x) = P (X ≤ x),

• F−1 : [0, 1] → R , F−1(u) = inf{x|F (x) = u}. Note that as F need not be

strictly increasing, F−1 in the traditional sense cannot always be defined.

Then, it can be shown that P (F−1(U) ≤ x) = F (x) where U is an Uniform

random variable. Indeed,

P (F−1(U) ≤ x) = P ({ω|F−1(U(ω)) ≤ x})

= P ({ω| inf{y|F (y) = U(ω)} ≤ x})

Now consider the set {ω| inf{y|F (y) = U(ω)} ≤ x}

ω ∈ {ω| inf{y|F (y) = U(ω)} ≤ x} =⇒ F (yω) = U(ω), yω ≤ x

(for some yω)

(due to right continuity of F )

=⇒ U(ω) ≤ F (x)

Therefore, {ω| inf{y|F (y) = U(ω)} ≤ x} ⊂ {ω|U(ω) ≤ F (x)}. Also, as F is an

increasing function U(ω) ≤ F (x) =⇒ F (yω) = U(ω), yω ≤ x for some yω which

shows that {ω| inf{y|F (y) = U(ω)} ≤ x} ⊃ {ω|U(ω) ≤ F (x)}. As we have both

inclusions the sets are equal. Finally, P (F−1(U) ≤ x) = P (U ≤ F (x)) = F (x).

Hence, to generate samples from the distribution of X , uniform random variables are

generated and transformed using the inverse of the cdf of X .

Note that, even though step (4) in the above algorithm guarantees that the sam-

ples obtained are indeed samples from the posterior (Fearnhead, 1998), step (2) is

ambiguous as it is not known why the samples obtained at this stage represent sam-

ples from the prior. The question to be answered is: when the particles are passed
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through the state transition equation what property guarantees that they represent

samples from the prior?

To prove that the output of the SIR filter indeed converges to the posterior dis-

tribution, the mathematical machinery of measure theoretic probability is required.

Chapter 2 (Section 2.4.1 ) of (Doucet et al., 2001) by Dan Crisan contains detailed

proofs for the convergence of various particle filters (including the SIR filter) based

on this modern interpretation of probability. The next section reviews this required

theory.

2.3 Elements of measure theory for proving con-

vergence of particle filters

Measure theory is a vast field and there is a voluminous literature on the subject.

Fortunately, only few concepts are needed to understand and prove the convergence

of the particle filters. These are presented in this section.

2.3.1 Basic concepts

Let Ω denote a set of points. Common examples of Ω are the set of natural numbers

N, real numbers R, etc. More generally, Ω can also represent a set of functions or any

other abstract objects. An important characteristic of Ω is its cardinality – a measure

of the number of points it contains. The number of points in Ω can either be finite

or infinite. In the case Ω contains an infinite set of points, Ω can be said to be either

countably infinite or uncountably infinite depending on the following definitions:

Definition 2.3.1 (Countably infinite) : If there exists a one-to-one function (in-

jective function) f : Ω → N, then Ω is said to be countably infinite.

Definition 2.3.2 (Uncountably infinite) : If there does not exist a one to one

function from Ω to the set of natural numbers, N, then Ω is said to be uncountably

infinite.

Straight forward example of a countably infinite set is N itself, whereas R is an

example of an uncountably infinite set. A countable set is a set which is either finite

or countably infinite.

Given Ω, many subsets can be defined. Two important collections (set of sets) of

such subsets are:

• field (also called an algebra)
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• σ-field (also called σ-algebra)

Definition 2.3.3 (field) : A non-empty collection of sets F is called a field if

• Ac ∈ F whenever A ∈ F

• A ∪ B ∈ F, whenever A,B ∈ F

Definition 2.3.4 (σ-field) : A non-empty collection of sets F is called a σ-field if

• Ac ∈ F whenever A ∈ F

• ∪∞
i=1Ai ∈ F whenever Ai ∈ F for all i ∈ N

Note that a σ-field is non-empty by definition. From this it can be shown that

F always contains φ and Ω (therefore, the σ-field, F = {φ,Ω} is called the trivial

σ-field).

It can also be shown that countable intersections of σ-fields is again a σ-field, i.e.

if Fi is a σ-field for all i ∈ N, then ∩∞
i=1Fi is also a σ-field. Given a collection of sets

C there can be many σ-fields which contain C. The intersection of all these σ-fields

(which is a σ-field) is called the σ-field generated by C and is represented as σ(C).

The space Ω along with a σ-field F on it is called a measurable space, repre-

sented as (Ω,F). An important type of σ-field is the Borel σ-field. Even though the

Borel σ-field can be defined on any topological space, it is enough for the current

purposes to define only the Borel σ-field on the real line.

Definition 2.3.5 (Borel σ-field on R) : The σ-field generated by all the open in-

tervals in R.

This σ-field is represented as B and the measurable space as (R,B). Any set which

belongs to the Borel σ-field is called a Borel set. The Borel σ-field contains all closed,

open, half open, half closed intervals, their unions, all real numbers etc. When the

symbols −∞ and ∞ are added to the real number line R, the σ-field generated by

all open intervals in R together with the two singletons {−∞} and {∞} is denoted

as B̄. The extended real line is denoted by R̄ hence the measurable space as (R̄, B̄)

2.3.2 Random Variables

Definition 2.3.6 (Random variable) : A random variable is first of all a function

mapping points of Ω onto the real line, i.e. X : Ω → R. It has the additional defining

property that the pre-images of all Borel sets in R belong to F , i.e., X−1(B) ∈ F for

all B ∈ B, where X−1(B) = {ω : X(ω) ∈ B}.
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Definition 2.3.7 (Simple random variable) : If Ai ∈ F and αi ∈ R for all i ∈

{1, 2, ..., n} then X =
∑n

i=1 αiIAi
, where IA is the indicator function of A, is called a

simple random variable.

A non-negative random variable is one such that X : Ω → R+. An extremely

important lemma concerning a non-negative random variable is given below:

Lemma 2.3.1 If X is a non-negative random variable, i.e. X : Ω → R+, then there

exist simple, non-negative random variables X1, X2, ... such that Xn ↑ X

(Xn increases to X) (Roussas, 2005).

Proof. Consider the interval [0, n) and define the sets: Anj = ( j−1
2n

≤ X < j
2n
)

for j = 1, 2, ..., n2n. For example, An1 corresponds to all those Ω which are mapped

to [0, 1
2n
) by X . Notice that all Anj are disjoint sets. Now define Xn =

∑n2n

j=1
j−1
2n
IAnj

.

For the sake of visualization of the proof, let Ω be a two dimensional set of points,

say R2, and let the mapping X : Ω → R represent a smooth surface. Then, Xn can be

visualized to be a surface flattened at some areas. As n increases the flatness slowly

vanishes and we reach the actual smooth surface defined by X .

For the formal proof, first it is shown that Xn(ω) → X(ω) for all ω ∈ Ω. Then it

is shown that Xn ↑.

Xn(ω) → X(ω): For any ω there exists an n0 = n0(w) such that X(ω) < n0. For

all n ≥ n0, clearly ω ∈ Anj(n) for some j(n). Now, as ω ∈ Anj(n),
j(n)−1

2n
≤ X(w) < j(n)

2n

and Xn(w) =
j(n)−1

2n
by definition. From this we get |X(w) − Xn(w)| <

1
2n
. Hence,

Xn(w) → X(w).

Xn ↑: The set Anj gets subdivided into two as n increases by one. More specif-

ically, Anj = A(n+1)(2j−1) ∪ A(n+1)(2j), where A(n+1)(2j−1) and A(n+1)(2j) are disjoint.

Now, if we can show that Xn <= Xn+1 on Anj for all j, Xn ↑ follows immediately.

For all ω ∈ Anj the value of Xn is j−1
2n

. Similarly, for all ω ∈ A(n+1)(2j−1) the value

of Xn+1 is j−1
2n

. Finally, for all ω ∈ A(n+1)(2j) the value of Xn+1 is j−(1/2)
2n

. Clearly

Xn <= Xn+1 on Anj and hence Xn ↑.

2.3.3 Measure and Signed measure

Definition 2.3.8 (Measure) : A set function µ : C → [0,+∞] (where C is a field

or a σ-field) which satisfies:

• µ(∪∞
i=1Ai) =

∑∞
i=1 µ(Ai) whenever Ai ∈ C ∀i, Ai are all disjoint and ∪∞

i=1Ai ∈ C
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There are two important types of measures, finite and σ-finite. A finite measure is

one for which µ(Ω) < ∞ (A probability measure is a finite measure with µ(Ω) = 1).

In the case of a σ-finite measure, there exist Ai ∈ C, i ∈ N such that Ai are all

disjoint, ∪∞
i=1Ai = Ω and µ(Ai) <∞ for all i ∈ N.

The generalization of measure is called the signed measure.

Definition 2.3.9 (Signed measure) : A set function ψ : F → (−∞,+∞] (where

F is a σ-field) which satisfies:

• ψ(∪∞
i=1Ai) =

∑∞
i=1 ψ(Ai) whenever Ai ∈ F for all i and Ai are all disjoint

Let ψ be a signed measure on (Ω,F). An important property of ψ is that if An ↓ A

as n → ∞ and ψ(Am) < ∞ for some m then limn→∞ ψ(An) = ψ(A). Similarly, if

An ↑ A then ψ(An) ↑ ψ(A). In the first case, ψ is said to be continuous from above

and in the latter, it is said to be continuous from below. If ψ is continuous from above

and below, it is said to be continuous.

Lemma 2.3.2 Every signed measure is continuous (Roussas, 2005)

Proof. First it is proved that ψ is continuous from above.

Let ψ(Am) < ∞ for some m. Now, Am = (Am − A) + A as A is a subset of Am.

Similarly, Am = (Am − Am+1) + Am+1. In general, Aj = (Aj − Aj+1) + Aj+1. Using

this recursively, we have (Am −A) = (An+1 −A) +
∑n

j=m(Aj −Aj+1), for all n ≥ m.

If we let n→ ∞, (Am − A) =
∑∞

j=m(Aj −Aj+1). So, Am =
∑∞

j=m(Aj − Aj+1) + A.

Using the σ-additivity property of ψ, ψ(Am) =
∑∞

j=m ψ(Aj − Aj+1) + ψ(A) =

limn→∞

∑n
j=m ψ(Aj − Aj+1) + ψ(A). Now, as ψ(Am) = ψ(Am − Aj) + ψ(Aj) for

all j ≥ m and ψ(Am) < ∞ we have, ψ(Aj) < ∞ for all j ≥ m. As, ψ(Aj) =

ψ(Aj+1)+ψ(Aj−Aj+1), ψ(Am) = limn→∞

∑n
j=m(ψ(Aj)−ψ(Aj+1))+ψ(A) = ψ(Am)−

limn→∞ ψ(An) + ψ(A). Hence, limn→∞ ψ(An) = ψ(A).

Now, it is shown that ψ is continuous from below.

Let An ↑ A and first assume that |ψ(An)| < ∞ for all n. Now, A = A1 + (A −

A1) = A1 + (A2 − A1) + (A − A2) = A1 + (A3 − A2) + (A2 − A1) + (A − A3)... =

A1 +
∑k

j=2(Aj −Aj−1) + (A−Ak). Letting, k → ∞, A = A1 +
∑∞

j=2(Aj −Aj−1). So,

ψ(A) = ψ(A1)+
∑∞

j=2 ψ(Aj−Aj−1). As, Aj−1 ⊂ Aj , we have Aj = Aj−1+(Aj−Aj−1).,

which implies (along with the fact that |ψ(An)| <∞) that ψ(Aj − Aj−1) = ψ(Aj)−

ψ(Aj−1). Therefore, ψ(A) = ψ(A1) + limn→∞

∑n
j=2(ψ(Aj) − ψ(Aj−1)) = ψ(A1) +

limn→∞(ψ(An)−ψ(A1)) = limn→∞ ψ(An). Now assume that ψ(Am) = ∞ for some m.

Then for all n ≥ m, An = Am+(An−Am), so that ψ(An) = ψ(Am)+ψ(An−Am) = ∞.

Similarly, ψ(A) is also equal to ∞. Hence, clearly, limn→∞ ψ(An) = ψ(A).
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Note that, as every measure is also a signed measure (the converse need not be

true), all measures are also continuous.

2.3.4 Lebesgue measure

In the case of the real line we would like to specify a measure on B, the Borel σ-field

on R. As one is not quite sure of all the types of Borel sets present in B, such a

specification is highly non-trivial. It is relatively easy, however, to specify a measure

on smaller, well known collection of sets such as intervals, (a, b] for a, b ∈ R, a < b.

µ((a, b]) = b− a, which represents the length of an interval is one example.

All finite disjoint unions of sets of the form (called intervals) (a, b],(−∞, c] and

(d,∞), where a, b, c, d ∈ R and a < b form a field (say, F). Define µ(a, b] = b −

a, µ(−∞, c] = ∞, µ(d,∞) = ∞. The set function µ can also be extended in a

straight forward way to any set which belongs to the field F. If A = ∪N
i=1Ii, where Ii

is an interval of the form above, then µ(A) =
∑N

i=1 µ(Ii). It can be shown that µ is

in fact a measure on the field, F. A detailed proof can be found in (Halmos, 1950). It

can also be shown easily that the σ-field generated by the field F is the Borel σ-field

on R. What is needed now is a way to extend the measure defined on F to the σ-field

generated by F, which is B.

A very important theorem in measure theory called the Caratheodory extension

theorem (due to Constantin Caratheodory) is used for this purpose (Roussas, 2005).

The result of extending the length based measure µ as defined above to B is called

the Lebesgue measure (Roussas, 2005) denoted by λ. A measurable space (Ω,F)

equipped with a measure µ is called a measure space and represented as (Ω,F , µ).

2.3.5 Integration

Let X be a random variable on a measure space (Ω,F , µ). Then, the integral of

X w.r.t µ is denoted by
∫

Ω
Xdµ (called the expectation of X) and the theory of

integration is developed in three stages.

Stage 1 : First assume that X is a non-negative, simple r.v. Hence it can be

represented as X = c11A1
+ c21A2

+ c31A3
... + cn1An where ci ∈ R+ and Ai ∈ F for

i = 1, 2, ..., n. The integral for such functions is defined as:
∫

Ω
Xdµ =

∑

i ciµ(Ai).

Note that the integral can take a value of +∞ because the underlying measure µ is

not restricted to be finite.

An important point of the above definition is that the integral is independent of

the choice of representation of X . To prove this, first it should be noted that if X is

a simple r.v. then X =
∑m

i=1 αi1A′

i
where A′

i are all disjoint and ∪m
i=1A

′
i = Ω (such A′

i
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for i = 1, 2, ..., m is called a partition of Ω). The proof of this fact is straight forward

and will not be given here. Based on this new representation, the independence can

be shown easily as follows:

Lemma 2.3.3 (Consistency (Roussas, 2005)) If X =
∑n

i=1 αi1Ai
,

Y =
∑m

j=1 βi1Bi
and X = Y a.e. then

∫

Ω
Xdµ =

∫

Ω
Y dµ.

Proof. First, the lemma is proved for the case where X = Y everywhere, i.e.

on all of Ω. Then, it is easily extended for the case X = Y a.e (almost every-

where. Note that X = Y a.e. if µ(X 6= Y ) = 0). Without loss of generality, it

can be assumed that Ai are all disjoint and they form a partition of Ω. The same

is the case with Bj . An important point to observe here is that Ai ∩ Bj for all

i, j is also a partition of Ω (even though some of the Ai ∩ Bj might be equal to

φ). Hence, 1Ai
=
∑m

j=1 1Ai∩Bj
for all i = 1, 2, ..., n. Therefore, X =

∑n
i=1 αi1Ai

=
∑n

i=1 αi(
∑m

j=1 1Ai∩Bj
) =

∑n
i=1

∑m
j=1 αi1Ai∩Bj

. Similarly, Y =
∑n

i=1

∑m
j=1 βj1Ai∩Bj

.

As, X = Y , clearly αi = βj whenever Ai ∩ Bj 6= φ. Now, from the definition of the

integral,
∫

Ω
Xdµ =

∑n
i=1

∑m
j=1 αiµ(Ai ∩ Bj) =

∑n
i=1

∑m
j=1 βjµ(Ai ∩Bj) =

∫

Ω
Y dµ.

For the case of X = Y a.e., let Q = (X = Y ) and define X ′ = X1Q, Y
′ = Y 1Q.

Now, X ′ = Y ′ everywhere. Also,
∫

Ω
Xdµ =

∑n
i=1 αiµ(Ai) =

∑n
i=1 αiµ((Ai ∩ Q) ∪

(Ai ∩ Qc)) =
∑n

i=1 αiµ(Ai ∩ Q) =
∫

Ω
X ′dµ. Similarly

∫

Ω
Y dµ =

∫

Ω
Y ′dµ. But we

know that
∫

Ω
X ′dµ =

∫

Ω
Y ′dµ as X ′ = Y ′ everywhere. Hence

∫

Ω
Xdµ =

∫

Ω
Y dµ.

Two very important properties of the integral are monotonicity and linearity.

Lemma 2.3.4 (Monotonicity (Roussas, 2005)) If X =
∑n

i=1 αi1Ai
and Y =

∑n
j=1 βj1Bj

are non-negative simple r.v.’s and X ≤ Y a.e. then
∫

Ω
Xdµ ≤

∫

Ω
Y dµ.

Proof. The proof is very similar to the invariance proof above. First we prove

for the case when, X ≤ Y everywhere and extend it to the case when X ≤ Y a.e.

As before, we have X =
∑n

i=1

∑m
j=1 αi1Ai∩Bj

and Y =
∑n

i=1

∑m
j=1 βj1Ai∩Bj

. X ≤ Y

implies that αi ≤ βj whenever Ai∩Bj 6= φ. So,
∫

Ω
Xdµ =

∑n
i=1

∑m
j=1 αiµ(Ai∩Bj) ≤

∑n
i=1

∑m
j=1 βjµ(Ai ∩ Bj) =

∫

Ω
Y dµ. The almost everywhere case is proved similarly

as above.

Lemma 2.3.5 (Linearity (Roussas, 2005)) : If α ≥ 0, β ≥ 0 and X, Y are

non-negative simple r.v.’s then
∫

Ω
(αX + βY )dµ =

∫

Ω
αXdµ+

∫

Ω
βY dµ

Proof. The proof follows directly from the definition of the integral.

Stage 2 : Now the simple r.v. constraint is removed and X is allowed to be

any non-negative r.v, i.e. X : Ω → R+. Then, from lemma 2.3.1 there exist non-

negative simple r.v.’s X1, X2, X3, .... which converge to X point wise and also increase
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i.e. Xn ↑ X . The integral is then defined as
∫

Ω
Xdµ = limn

∫

Ω
Xndµ. This integral

is independent of the approximating sequence of simple functions, X1, X2, .... To

establish this, the following lemma is proved first.

Lemma 2.3.6 (Consistency (Kallenberg, 2001)) Let Y,X1, X2, ... all be

non-negative simple r.v’s and X be a non-negative r.v, such that Xn ↑ X and Y ≤ X.

Then limn

∫

Ω
Xndµ ≥

∫

Ω
Y dµ.

Proof. First the assertion is proved for Y = α1A for some A ∈ F and α >

0, α ∈ R, then extended in a straight forward way to any non-negative simple r.v.

Y =
∑n

i=1 αi1Ai
. Fix any 0 < ǫ < α and define An = {ω ∈ A;Xn(ω) ≥ α− ǫ}. Then,

it can be shown that limnAn = ∪∞
n=1An = A.

Clearly, ∪∞
n=1{w ∈ A;Xn(w) ≥ α − ǫ} ⊂ A. As Xn(ω) ↑ X(ω) ∀ω ∈ Ω, there

exists N(ǫ1) such that X(ω)−XN(ǫ1)(ω) < ǫ1 for any given ǫ1 > 0 (from the definition

of limit) if X(ω) < ∞. Further, if ω ∈ A, then XN(ǫ1)(ω) ≥ α − ǫ1. The same is

also clearly true if X(ω) = ∞. Now, if ǫ1 is chosen to be equal to ǫ, then we have

XN(ǫ)(ω) ≥ α − ǫ. Hence, A ⊂ ∪∞
n=1{w ∈ A;Xn(w) ≥ α − ǫ} and so limnAn = A as

we have both inclusions.

Now, Xn ≥ (α − ǫ)1An and so
∫

Ω
Xndµ ≥ (α − ǫ)µ(An) from monotonicity

lemma 2.3.4. As, An ↑ A, µ(An) ↑ µ(A). Therefore, limn

∫

Ω
Xndµ ≥ (α − ǫ)µ(A) =

(1− ǫ
α
)
∫

Ω
Y dµ. As ǫ→ 0, we can see that limn

∫

Ω
Xndµ ≥

∫

Ω
Y dµ.

If Y =
∑n

i=1 αi1Ai
and assuming WLOG Ai are disjoint, we have Xn1Ai

↑ X1Ai

and αi1Ai
≤ X1Ai

for all i = 1, 2, . . . n, n + 1, where An+1 ≡ (A1 ∪ A2 ∪ . . . An)
c

and αn+1 = 0. Then, limj

∫

Ω
Xj1Ai

dµ ≥
∫

Ω
αi1Ai

dµ for all i = 1, 2, . . . n, n +

1 from the above. So,
∑n+1

i=1 limj

∫

Ω
Xj1Ai

dµ ≥
∑n+1

i=1

∫

Ω
αi1Ai

dµ which implies,

limj

∑n+1
i=1

∫

Ω
Xj1Ai

dµ ≥
∑n+1

i=1

∫

Ω
αi1Ai

dµ. From the linearity of the integral 2.3.5

it follows that, limj

∫

Ω
Xjdµ ≥

∫

Ω
Y dµ.

If we have two sequences of r.v.’s, X1, X2, X3..., Y1, Y2, Y3, ... such that Xn ↑ X

and Yn ↑ X , then from the above lemma we have limn

∫

Ω
Xndµ ≥

∫

Ω
Yidµ for all

i ∈ N. So, limn

∫

Ω
Xndµ ≥ limi

∫

Ω
Yidµ. Again, using the same lemma on Xi instead

of Yi we get limn

∫

Ω
Yndµ ≥ limi

∫

Ω
Xidµ. Hence, limn

∫

Ω
Xndµ = limn

∫

Ω
Yndµ.

Lemma 2.3.7 (Linearity) If X ≥ 0 and Y ≥ 0 are non-negative r.v.’s, then
∫

Ω
(X+

Y )dµ =
∫

Ω
Xdµ+

∫

Ω
Y dµ

Proof. If X1, X2, X3, ... ↑ X and Y1, Y2, Y3, ... ↑ Y , then we have X1 + Y1, X2 +

Y2, X3 + Y3, ... ↑ X + Y . From properties of the limit and lemma 2.3.5 we have

limn

∫

Ω
(Xn+Yn)dµ = limn

∫

Ω
Xndµ+limn

∫

Ω
Yndµ. Hence,

∫

Ω
(X+Y )dµ =

∫

Ω
Xdµ+

∫

Ω
Y dµ.
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Lemma 2.3.8 (Monotonicity) If X ≥ 0 and Y ≥ 0 are non-negative simple r.v.’s

and Y ≤ X a.e. then
∫

Ω
Y dµ ≤

∫

Ω
Xdµ.

Proof. The proof is first given for the case of Y ≤ X everywhere and then

extended for Y ≤ X a.e. If X1, X2, X3.. ↑ X and Y1, Y2, Y3.. ↑ Y , we have Yi ≤ Y ≤ X

for all i ∈ N. Then from lemma 2.3.6, limn

∫

Ω
Xndµ ≥

∫

Ω
Yidµ for all i ∈ N. Therefore,

limn

∫

Ω
Yndµ ≤ limn

∫

Ω
Xndµ.

If Y ≤ X a.e. define Y ′ = Y 1Q, X
′ = X1Q, where Q = (Y ≤ X). Now, Y ′ ≤ X ′

everywhere and we get
∫

Ω
Y ′dµ ≤

∫

Ω
X ′dµ. Now, Y = Y 1Q + Y 1Qc = Y ′ + Y 1Qc .

From linearity lemma 2.3.7, we have
∫

Ω
Y dµ =

∫

Ω
Y ′dµ+

∫

Ω
Y 1Qcdµ. Here, it is easy

to show that
∫

Ω
Y 1Qcdµ = 0 as µ(Qc) = 0. Hence,

∫

Ω
Y dµ =

∫

Ω
Y ′dµ. Similarly

∫

Ω
Xdµ =

∫

Ω
X ′dµ, so we have

∫

Ω
Y dµ ≤

∫

Ω
Xdµ.

Stage 3 : Now, the non-negative constraint is also removed and X is allowed to

be any r.v. If X can be written as the difference of two nonnegative r.v.’s, Y and Z

such that
∫

Ω
Y dµ−

∫

Ω
Zdµ exists, then

∫

Ω
Xdµ ≡

∫

Ω
Y dµ−

∫

Ω
Zdµ. If no such pair

Y and Z exist, then the integral
∫

Ω
Xdµ does not exist.

Lemma 2.3.9 (Consistency) IfX = Y1−Z1 andX = Y2−Z2 such that Y1, Z1, Y2, Z2

are nonnegative and
∫

Ω
Y1dµ −

∫

Ω
Z1dµ,

∫

Ω
Y2dµ −

∫

Ω
Z2dµ exist, then

∫

Ω
Xdµ =

∫

Ω
Y1dµ−

∫

Ω
Z1dµ =

∫

Ω
Y2dµ−

∫

Ω
Z2dµ.

Proof. Y1 − Z1 = Y2 − Z2 which implies Y1 + Z2 = Y2 + Z1. Hence,
∫

Ω
Y1dµ +

∫

Ω
Z2dµ =

∫

Ω
Y2dµ +

∫

Ω
Z1dµ from the linearity lemma 2.3.7. Therefore,

∫

Ω
Y1dµ −

∫

Ω
Z1dµ =

∫

Ω
Y2dµ−

∫

Ω
Z2dµ.

Lemma 2.3.10 (Monotonicity) If X and Y are r.v.’s such that
∫

Ω
Xdµ,

∫

Ω
Y dµ

exist and Y ≤ X a.e. then
∫

Ω
Y dµ ≤

∫

Ω
Xdµ

Proof. First the lemma is proved for the case Y ≤ X everywhere and then

extended to Y ≤ X a.e. Let X+ = max(X, 0), X− = −min(X, 0), then X = X+ −

X−. Similarly, if Y + = max(Y, 0), Y − = −min(Y, 0), then Y = Y + − Y −.

Y ≤ X

Y + − Y − ≤ X+ −X−

Y + +X− ≤ X+ + Y −

∫

Ω

(Y + +X−)dµ ≤

∫

Ω

(X+ + Y −)dµ
∫

Ω

Y +dµ+

∫

Ω

X−dµ ≤

∫

Ω

X+dµ+

∫

Ω

Y −dµ
∫

Ω

Y +dµ−

∫

Ω

Y −dµ ≤

∫

Ω

X+dµ−

∫

Ω

X−dµ
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The a.e. part is proved very similar to the proof in lemma 2.3.8

Lemma 2.3.11 (Linearity) If X and Y are r.v.’s such that
∫

Ω
Xdµ+

∫

Ω
Y dµ exists

then
∫

Ω
(X + Y )dµ exists and

∫

Ω
(X + Y )dµ =

∫

Ω
Xdµ+

∫

Ω
Y dµ.

Proof. X+Y = (X++Y +)−(X−+Y −) and
∫

Ω
(X++Y +)dµ−

∫

Ω
(X−+Y −)dµ =

∫

Ω
Xdµ+

∫

Ω
Y dµ.

The following theorem concerning non-negative random variables is important,

(Kallenberg, 2001):

Theorem 2.3.1 (Monotone convergence (Kallenberg, 2001)) If X1, X2, X3, ...

are r.v’s such that 0 ≤ Xn ↑ X then
∫

Ω
Xndµ ↑

∫

Ω
Xdµ.

Proof. For every Xn, n ∈ N we know from lemma 2.3.1 that there exist Xnk ↑ Xn

as k → +∞ where Xnk are simple. Now, define Ynk = max(X1k, X2k, ..., Xnk). First

it is established that Ykk ↑ X . As, Y(n+1)k = max(Ynk, X(n+1)k) and Yn(k+1) ≥

max(Ynk, Xn(k+1)), we have that Ynk increases in both the indices n and k. Also,

Ykk ≤ X as all Xnk ≤ X . Hence, limk Ykk ≤ X . But, limk Ykk ≥ limk Ynk be-

cause Ykk ≥ Ynk for all k ≥ n. So, we get X ≥ limk Ykk ≥ limk Ynk. But, limk Ynk =

limk max(X1k, X2k, ..., Xnk) ≥ limkXnk = Xn. Applying limit n→ ∞, we obtainX ≥

limk Ykk ≥ X , which implies Ykk ↑ X . Using the definition of integral for nonnegative

r.v’s, we have limk

∫

Ω
Ykkdµ =

∫

Ω
Xdµ. As Ykk ≤ Xk, from monotonicity lemma 2.3.8,

we have
∫

Ω
Ykkdµ ≤

∫

Ω
Xkdµ. Hence, limk

∫

Ω
Ykkdµ ≤ limk

∫

Ω
Xkdµ. Also from the

same lemma,
∫

Ω
Xkdµ ≤

∫

Ω
Xdµ, which implies limk

∫

Ω
Xkdµ ≤

∫

Ω
Xdµ. Com-

bining the above two inequalities we have,
∫

Ω
Xdµ ≤ limk

∫

Ω
Xkdµ ≤

∫

Ω
Xdµ or

limk

∫

Ω
Xkdµ =

∫

Ω
Xdµ.

2.3.6 Radon-Nikodym theorem and Conditional probability

The proof of the Hahn Decomposition is presented initially which is later used in

the proof of the Lebesgue Decomposition theorem which in turn is used to prove the

Radon-Nikodym theorem. First, the following are defined:

• Positive Set: P is a positive set if ψ(A ∩ P ) ≥ 0 for all A ∈ F

• Negative Set: N is a negative set if ψ(A ∩N) ≤ 0 for all A ∈ F

Theorem 2.3.2 (Hahn Decomposition (Halmos, 1950)) If ψ is a signed mea-

sure on (Ω,F) then there exist positive and negative sets, P and N such that P ∩N =

φ, P ∪N = Ω.
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Proof. If N1 and N2 are negative sets, then so is N1 \N2 as it is a subset of N1.

Similarly N2 \ N1 is a negative set. If Ni are disjoint negative sets, then ∪∞
i=1Ni is

again negative. This is because, A ∩ ∪∞
i=1Ni = ∪∞

i=1(A ∩Ni) and by the σ-additivity

property of ψ, ψ(A ∩ ∪∞
i=1Ni) =

∑∞
i=1 ψ(A ∩Ni) ≤ 0. If N1 and N2 are negative sets

which are not necessarily disjoint, then N1∪N2 = (N1 \N2)+(N1∩N2)+(N2 \N1) is

negative. This can be extended inductively for any finite n, i.e., ∪n
i=1Ni is a negative

set for all n ∈ N. ∪∞
i=1Ni = ∪∞

i=1N
′
i , where, N

′
i = Ni\(∪

i−1
j=1Nj), so that N ′

i are disjoint

and negative using the result above. Hence, ∪∞
i=1Ni is also negative.

Let β = inf ψ(N) for all negative sets, N . Then, let {Ni} be a sequence of sets

such that limi→∞ ψ(Ni) = β. Now, if N = ∪∞
i=1Ni then, N is a negative set and

ψ(N) = β. This is because, N = N1 + (N \N1), so ψ(N) = ψ(N1) + ψ(N \N1) and

therefore ψ(N) ≤ ψ(N1) as ψ(N \ N1) ≤ 0 with N \ N1 being negative. Similarly,

ψ(N) ≤ ψ(Ni) for all i ∈ N.

Now, it is proved that the set P = Ω−N is a positive set. Let E0 be measurable

subset of P for which ψ(E0) < 0 (The idea here is to show that such a set does not

exist, and hence the claim is proved by contradiction). First of all E0 cannot be a

negative set, if it is then N∪E0 is again negative and ψ(N∪E0) = ψ(N)+ψ(E0) < β,

which cannot happen. So, there is at least one subset of E0 which has a non-negative

signed measure. Let k1 be the smallest positive integer such that ψ(E1) ≥
1
k1
, with

E1 ⊂ E0. As, ψ(E0) < 0 and ψ(E0) = ψ(E1) + ψ(E0 − E1), ψ(E1) and ψ(E0 − E1)

are also finite.

ψ(E0 − E1) = ψ(E0)− ψ(E1) < 0, and the argument applied to E0 above can be

applied to E0−E1. So, now let k2 be the smallest positive integer such that ψ(E2) ≥
1
k2
, with E2 ⊂ (E0 −E1). If this process stops in iteration M ∈ N, then E0 = ∪M

i=1Ei

as otherwise E0−∪M
i=1Ei would be a negative set resulting in a contradiction as before.

E0 = ∪M
i=1Ei also cannot be true because ψ(E0) = ψ(∪M

i=1Ei) =
∑M

i=1 ψ(Ei) > 0 (as

all Ei are pairwise disjoint), leads to a contradiction. Hence, the process should be

carried ad infinitum.

It is clear that ψ(E1) ≥ ψ(E2) ≥ ψ(E3)... from their construction. ∪∞
i=1Ei ⊂ E0

and ψ(∪∞
i=1Ei) + ψ(E0 −∪∞

i=1Ei) = ψ(E0) < 0, so that ψ(∪∞
i=1Ei) <∞. ψ(∪∞

i=1Ei) =
∑∞

i=1 ψ(Ei) and if limn→∞
1
kn

= ǫ for some ǫ > 0,
∑∞

i=1 ψ(Ei) = ∞ as ψ(Ei) ≥ ǫ for

all i ∈ N. Therefore, limn→∞
1
kn

= 0 or kn ↑ ∞.

Let F0 = E0 − ∪∞
i=1Ei. Suppose, F ∈ F0 and ψ(F ) = ǫ > 0. Find the minimum

k such that 1
k
≤ ǫ then ψ(F ) ≥ 1

k
. As, kn ↑ ∞, let B ≡ {N ; k < kN} and Nmin =

inf B. This implies that F = ENmin
according to the construction of EN , which is a

contradiction. Hence ψ(F ) ≤ 0 for all F ⊂ F0 implying that F0 is negative, which

cannot be true. Therefore the set E0 does not exist and hence P is a positive set.
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If we define ψ+(A) = ψ(A∩P ) and ψ−(A) = −ψ(A∩N) (so that ψ = ψ+ −ψ−),

then it can be shown easily that ψ+ and ψ− are in fact, measures. ψ+ and ψ− are

called the upper and lower variations of ψ respectively. Another important notion in

the study of signed measures is that of absolute continuity.

Definition 2.3.10 (Absolute continuity of measures) : Given a measure µ and

a signed measure ψ on (Ω,F), ψ is called absolutely continuous w.r.t µ (written

ψ << µ) if ψ(A) = 0 whenever µ(A) = 0, A ∈ F . ψ is also said to be µ-continuous.

Definition 2.3.11 (Singularty of Measures) : Two measures µ and ν are called

singular if there exist two disjoint sets A, B ∈ F such that A ∪ B = Ω and µ(B) =

ν(A) = 0. Singularity of measures is denoted as µ ⊥ ν.

An example for a pair of absolutely continuous measures is ψ(A) =
∫

A
Xdµ, for

every A ∈ F where, µ is a measure and X is any integrable r.v. From the linearity of

the integral, it follows that ψ is a signed measure. For, if Ai ∈ F , i ∈ N are disjoint

then
∫

∑n
i=1

Ai
Xdµ =

∑n
i=1

∫

Ai
Xdµ (from lemma 2.3.11, using induction).

By definition,
∫

∑n
i=1

Ai

Xdµ =

∫

∑n
i=1

Ai

X+dµ−

∫

∑n
i=1

Ai

X−dµ

n
∑

i=1

∫

Ai

Xdµ =

n
∑

i=1

∫

Ai

X+dµ−

n
∑

i=1

∫

Ai

X−dµ

So that,

∫

∑n
i=1

Ai

X+dµ−

∫

∑n
i=1

Ai

X−dµ =

n
∑

i=1

∫

Ai

X+dµ−

n
∑

i=1

∫

Ai

X−dµ

Now, we have

lim
n→∞

∫

∑n
i=1

Ai

X+dµ =

∫

∑
∞

i=1
Ai

X+dµ as X+1∑n
i=1

Ai
↑ X+1∑∞

i=1
Ai

lim
n→∞

n
∑

i=1

∫

Ai

X+dµ =

∞
∑

i=1

∫

Ai

X+dµ <∞

Similarly for the terms involving X−. Hence,

∫

∑
∞

i=1
Ai

X+dµ−

∫

∑
∞

i=1
Ai

X−dµ =

∞
∑

i=1

∫

Ai

X+dµ−

∞
∑

i=1

∫

Ai

X−dµ

∫

∑
∞

i=1
Ai

Xdµ =

∞
∑

i=1

∫

Ai

Xdµ
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A proof demonstrating the absolute continuity of ψ w.r.t µ is given by the follow-

ing. The proof is done in stages akin to the definition of integration above in sec-

tion 2.3.5. Firstly, if X = c11A1
+ c21A2

+ c31A3
...+ cn1An is simple and non-negative,

then ψ(A) =
∑n

i=1 ciµ(A∩Ai) and µ(A∩Ai) = 0 if µ(A) = 0, therefore ψ(A) = 0. For

any non-negative X , there would exist Xn ↑ X1A such that ψ(A) = limn

∫

A
Xndµ. If

µ(A) = 0, then each integral in the limiting sequence would be zero, if µ(A) = 0, using

the result for simple functions just derived, hence ψ(A) = 0. Finally, if X is any inte-

grable r.v. X = X+−X− and
∫

A
X+dµ =

∫

A
X−dµ = 0, if µ(A) = 0 using the result

for non-negative r.v.’s just derived. Hence,
∫

A
Xdµ = 0 if µ(A) = 0, which implies

that ψ(A) = 0. An important observation here is that a sort of inverse of this state-

ment is also true - this is the Radon-Nikodym theorem. The proof of Radon-Nikodym

theorem relies on another result known as the Lebesgue decomposition theorem.

Theorem 2.3.3 (Lebesgue decomposition (Shorack, 2000)) : Let the measure

µ and the signed measure ψ be σ−finite on the measurable space (Ω,F). Then there

exists a unique decomposition of ψ as

ψ = ψac + ψs, where ψac ≪ µ and ψs ⊥ µ

where ψac and ψs are σ − finite signed measures. Additionally,

ψac(A) =

∫

A

Z0dµ for all A ∈ F

for some finite r.v. Z0 which is unique a.e. µ.

Proof. : The theorem is proved first for the case when µ and ψ are finite measures

and later extended using the Hahn decomposition theorem described earlier. Let,

Y ≡ {Y : Y ≥ 0, Y ∈ L1,

∫

A

Y dµ ≤ ψ(A) ∀A ∈ F}

Now, if Y1, Y2 ∈ Y then Y1 ∨ Y2 ∈ Y . First of all Y1 ∨ Y2 is a r.v. because (Y1 ∨ Y2 ≥

x) = (Y1 ≥ x) ∪ (Y2 ≥ x) ∀x ∈ R̄. Let A1 = (Y1 > Y2) and A2 = A ∩ Ac
1, then

∫

Y1 ∨ Y2dµ =
∫

A1

Y1dµ+
∫

Ac
1

Y2dµ <∞. Also,
∫

A
Y1 ∨ Y2dµ =

∫

A1

Y1dµ+
∫

A2

Y2dµ ≤

ψ(A1) + ψ(A2) = ψ(A). Choose a sequence Yn ∈ Y such that
∫

Ω

Yndµ→ C ≡ sup
Y ∈Y

∫

Ω

Y dµ ≤ ψ(Ω) <∞

Let Zn = Y1 ∨ Y2 ∨ · · · ∨ Yn and Z ′ = limZn. From Monotone Convergence Theo-

rem(Theorem 2.3.1)
∫

A

Z ′dµ = lim

∫

A

Zndµ ≤ ψ(A) =⇒ Z ′ ∈ Y
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∫

Ω

Z ′dµ = lim

∫

Ω

Zndµ = lim

∫

Ω

Y1 ∨ Y2 ∨ · · · ∨ Yndµ = C =⇒ Z ′ is finite a.e.

Now, define

Z0(ω) =

{

Z ′(ω);Z ′(ω) 6= ∞
0; otherwise

ψac(A) =

∫

A

Z0dµ and ψs(A) = ψ(A)− ψac(A) ∀A ∈ F

From the discussion following absolute continuity of measures it is clear that ψac

is a measure. It is also finite as C = ψac(Ω) <∞. Also, ψs(A) = ψ(A)−
∫

A
Z0dµ ≥ 0

as Z0 ∈ Y , hence ψs is also a finite measure. If ψs(Ω) = 0, then ψ = ψac and

theorem is true with ψs ≡ 0 (The unique µ a.e. property follows by observing that

any r.v. obtained by changing the value of Z0 over a null set also lies in Y and has

exactly similar properties as Z0). If ψs(Ω) > 0, then there is some θ > 0 for which

ψs(Ω) > θµ(Ω) as µ(Ω) < ∞. ψ∗ = ψs − θµ is a signed measure as both ψs and µ

are finite measures. Now the case ψ ≪ µ is considered first. Let P and N represent

the Hahn decomposition of Ω for the signed measure ψ∗, then µ(P ) > 0. This is

because if µ(P ) = 0 then it would imply that ψs(P ) = 0, which in turn implies that

ψ∗(P ) = 0. So, ψs(Ω)− θµ(Ω) = ψ∗(Ω) = ψ∗(N) ≤ 0 which is a contradiction.

Now, ψ∗(A∩P ) = ψs(A∩P )− θµ(A∩P ) ≥ 0. Hence, ψ(A) = ψac(A) +ψs(A) ≥
∫

A
Z0dµ+ψs(A∩P ) ≥

∫

A
Z0dµ+θµ(A∩P ) ≥

∫

A
(Z0+θ1P )dµ, ∀A ∈ F . This implies

that Zθ = Z0 + θ1P ∈ Y and
∫

Ω
Zθdµ = C + θµ(P ) > C. This is a contradiction and

hence ψs(Ω) = 0 and hence the theorem is true in the case of ψ ≪ µ.

Now the case of a general ψ is considered. Let ν = ψ+µ then clearly, ψ ≪ ν and

µ≪ ν. Then by the case considered above,

ψ(A) =

∫

A

Xdν and µ(A) =

∫

A

Y dν ∀A ∈ F

for finite r.v’s X and Y which are also unique a.e. ν. Let D ≡ {ω : Y (ω) = 0},

and then Dc = {ω : Y (ω) > 0}. Define,

ψs(A) = ψ(A ∩D) and ψac(A) = ψ(A ∩Dc)

As, µ(D) =
∫

D
Y dν = 0 and ψs(D

c) = ψ(D ∩ Dc) = 0, we have ψs ⊥ µ. If

µ(A) = 0, then
∫

A
Y dν = 0 and so Y = 0 a.e. ν in A. But Y > 0 on A ∩Dc and so

ν(A ∩Dc) = 0. Then ψac(A) = ψ(A ∩Dc) = 0 since ψ ≪ ν. Thus ψac ≪ µ.

To show the uniqueness of the decomposition, let ψ = ψac + ψs = ψ′
ac + ψ′

s. If

φ = ψac − ψ′
ac = ψ′

s − ψs then it is clear that φ ≪ µ and φ ⊥ µ, so that φ ≡ 0.
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Theorem 2.3.4 (Radon-Nikodym) : Suppose both the signed measure ψ and the

measure µ are σ-finite on (Ω,F). Then ψ ≪ µ if and only if there exists a finite r.v.

Y which is unique a.e. µ, such that ψ(A) =
∫

A
Y dµ for all A ∈ F . Y is called the

Radon-Nikodym derivative and written as Y = dν
dµ
.

Proof. : The proof directly follows from the Lebesgue decomposition theorem

above.

The Radon-Nikodym allows us to define the important concepts of Conditional

Expectation and Conditional Probability. Both these ideas form the core of the

knowledge used to understand the convergence results of particle filters.

Definition 2.3.12 (Conditional Expectation) : Let (Ω,F , P ) be a probability

space and G be a sub σ-field of F . If X is an r.v. on (Ω,F , P ) and is integrable

(i.e.
∫

Ω
|X|dP <∞), then there exists a finite r.v. Y which is unique a.e. P, that is

G-measurable and satisfies
∫

G
Y dP =

∫

G
XdP ∀ G ∈ G. Y is called the conditional

expectation and denoted as Y = E[X|G].

Proof. First let X ≥ 0. Define a set function ν on G by

ν(G) ≡

∫

G

XdP ∀ G ∈ G

Now, ν is a finite measure on (Ω,G) as shown earlier. The restriction of P to G,

denoted as P |G ≡ P ′ is another finite measure on (Ω,G). ν ≪ P ′ and hence from the

Radon-Nikodym Theorem (Theorem 2.3.4), there exists a unique a.e. P ′ finite-valued

r.v. Y such that,

ν(G) =

∫

G

Y dP ′ ∀ G ∈ G

It can be easily shown that
∫

G
Y dP ′ =

∫

G
Y dP ∀ G ∈ G and also that Y is unique

a.e. P . In the general case, let Y = Y + − Y − where Y + and Y − are obtained by

applying the above to X+ and X−.

Definition 2.3.13 (Conditional Probability) : In the above definition of condi-

tional expectation, if X = 1A, A ∈ F , the resulting r.v. Y is called the conditional

probability denoted by P (A|G).

2.4 Summary

This chapter briefly introduced the problem of state estimation and linear filtering.

Based on the concept of conditional probability the field of Bayesian filtering has been
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introduced. Particle filters are shown to be Monte Carlo techniques which solve the

Bayesian filtering problems when the analytical solutions are not possible. It has also

been shown that in this framework many general filtering problems with non-linear

dynamics and/or non-Gaussian noise processes can be solved in a straight forward

manner. A simple Particle filtering algorithm is introduced and to prove that the al-

gorithm indeed converges to the posterior distribution of interest concepts of measure

theoretic probability have been discussed in detail. This discussion culminated with

the introduction of Conditional expectation and Conditional probability which are the

foundations upon which the proofs of convergence of Particle filters are based on.
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Chapter 3

Automatic detection and control of
interface level in separation cells
with a single sight view glass

3.1 Introduction

Oil sands are sand deposits that contain a high fraction of extremely dense and viscous

form of petroleum known as Bitumen. Bitumen can be extracted from these sands

and upgraded to produce crude oil (petroleum). Due to the huge reserves of oil sands

in Canada (e.g. the Athabasca oil sands reserves in Alberta, Canada are the second

largest oil reserves in the world), crude oil production from oil sands has risen to be

a multi billion dollar industry. Crude oil thus produced accounts for almost half of

total crude oil production in Canada (Govt.of.Alberta, 2007).

Bitumen is extracted from the oil sands using a simple hot water based extrac-

tion process. The oil sands are mixed with hot water and hydro-transported through

pipelines. In these pipelines Bitumen is liberated and entrained air attaches to the

liberated Bitumen particles. The flow out of these pipelines is subsequently trans-

ported into large gravity separation vessels called primary separation cells. Inside the

separation cells, aerated Bitumen floats to the top as froth and sand settles to the

bottom due to gravity. This process is called extraction. Bitumen is then skimmed

off and transported to later stages of the process for upgrading to crude oil (Masliyah

et al., 2004).

In the extraction unit operation, three layers form inside the separation cell as

shown in Fig 3.1. The top layer consists of the Bitumen froth which is skimmed

off. In this layer very small quantities of fine sand particles called fines can also be

0This work has been presented at the IFAC world congress 2008, Seoul, Korea. It is in press with
Control Engineering Practice.
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present. The second layer called the Middlings contains a high percentage of sand

along with considerable quantities of Bitumen. Middlings are sent for a secondary

extraction process to extract the small amounts of Bitumen present. The last layer

called the Tailings is made of sand, clay and water. Tailings are directly rejected into

the tailings ponds.

Of particular interest is the interface level between the Bitumen-froth and the

Middlings layers, which is known to affect the Bitumen froth quality and thus heavily

influence process economics. For example, when this level is too high, many fines

escape into Bitumen-froth degrading its quality and when it is too low, Bitumen is

lost to the Tailings ponds causing financial losses and environmental problems. For

these reasons, there has been much interest in the oil sands industry to control this

interface level to optimize Bitumen recovery.

Figure 3.1: Schematic of the primary Separation cell

Control of the interface is achieved by manipulating the speed of the Tailings

pump (Fig 3.1). To lower the interface level, the pump speed is increased and the

opposite is done to raise the level. The problem in implementing an automatic control

system is the lack of safe and reliable instruments for interface level measurements.

For example, interface level can be estimated by Differential pressure transducers or

Capacitance probes (which estimate density) located along the height of the separa-

tion cell. The location of maximum change (i.e. the inflection point) in the pressure or

density profiles is used as an estimate of the interface level. Fig 3.2 highlights (white

circles) the (Differential pressure) DP cells used at Suncor Energy Inc, FortMcMur-

ray, Alberta, Canada. It has been observed that these measurements are unreliable.

Other expensive sensors such as Nuclear density profilers were also used but were

abandoned due to issues of concern over their safety.
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In the absence of precise interface level estimates, the interface level is currently

controlled using the Capacitance probe measurements. As these measurements are

not accurate, operators frequently watch the sight glass video (obtained by the camera

shown in Fig 3.3) and adjust the interface level set point manually. The changes in

the set point are done so as to negate the effect of inaccuracies in the Capacitance

probe measurements. A typical image from such a video sequence observed by the

operators is shown in Fig 3.2.

Figure 3.2: Sight view glass showing the interface between the Bitumen froth(dark
surface) and the Middlings(light surface). The super imposed white circles show the
location of the Capacitance probes.

A novel idea to improve the accuracy of interface level measurements is to detect

the interface level by automatic image analysis methods on video frames obtained

from the sight glass video camera. Apart from the obvious improvement in accuracy

that can be gained (as the interface is clearly visible in the video), such a sensor

also provides the advantage of being completely non-intrusive i.e. the sensor does not

come in the way of the separation process and is not affected by it.

The schematic in Fig 3.3 gives a block diagram of the feedback control system

with such a vision sensor. The interface level estimated from the camera video is

transmitted to the Distributed Control System (DCS) which in turn manipulates the

pump speed to maintain the interface level at a given set point. The Application

server hosts the automatic level detection program and the Control room monitor

displays the video images (shown in Fig 3.2) for the operators.

3.1.1 Preliminary image analysis

As mentioned in Chapter 1, image analysis methods for object recognition / feature

extraction can be broadly classified into two: a) Segmentation b) Edge detection.

These two methods are considered in detail in the following paragraphs.
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Figure 3.3: Overall schematic of the closed loop feedback system

Segmentation

The basic goal of segmentation in this problem is to separate the image into two

regions R1 and R2, which represent pixels in the Bitumen and Middlings layer re-

spectively. For example, a perfect segmentation for the sight view glass image is

shown in Fig 3.4. Based on such a segmentation the location of the interface can be

trivially found.

(a) Original
image

(b) Perfectly
segmented
image

Figure 3.4: Perfect segmentation on sight glass images

However such desired segmentation is not often obtained using existing segmenta-

tion methods. For example, Fig 3.5 shows the results of segmentation using algorithms

57



described in (Nock & Nielsen, 2004) and (Chan & Vese, 2001) (see Chapter 1). The

former method gives a complete segmentation (number of regions depends on the

image) of the image and the segmented regions need to be combined using heuristic

methods to achieve a binary segmentation whereas the latter directly provides such

a result. It can be seen that both the algorithms do not give an acceptable segmen-

tation. The segmentation problem is hard because of the lighting glare at the top of

the image, the gradual variation in its intensity along the height of the image and

the closeness of pixel intensity values in the Bitumen-froth and Middlings regions

resulting from poor feed quality of the oil sands ore. As lighting conditions cannot

be controlled in the real process it is desired that the interface detection algorithm

be robust to them.

Edge detection

The other important feature extraction method is edge detection. This is the pro-

cess of finding points in the image where the gradient is significant. Significance is

expressed in the form of hard thresholds in basic edge detection algorithms. Fig 3.6

shows the results of edge detection using Canny’s algorithm (Canny, 1986) (with ap-

propriately chosen thresholds, low = 0.1, high = 0.2) and Sobel horizontal mask (with

threshold = 0.018). Even though edges near the interface are detected many spurious

edges result from the lighting glare. It has been found that the spurious edges cannot

be eliminated by changing the thresholds without also removing edges near the inter-

face. Also, as the edge detection algorithm is to be used in real time, the thresholds

should be made adaptive to provide robustness to lighting conditions. Computing

such adaptive thresholds is not straight forward and hence a simple edge detection

algorithm is proposed in Section 3.2 which depends only on a single threshold, M .

As the results of edge detection were found to be better than that of segmentation,

edges are used as features in what follows.

Filtering and Contour tracking

The edge detection algorithm introduces spurious edges and hence a filtering algo-

rithm is required to estimate the true interface from the noisy edge images. In this

respect, Bitumen froth - Middlings interface level detection in real time(from images)

can be seen as a special case of a general problem of contour tracking, with the con-

tour being approximated by a horizontal line. Contour tracking is a much studied

problem in computer vision literature (Blake & Isard, 2000; Isard & Blake, 1998).

In (Isard & Blake, 1998), contour tracking has been used to track the upper part
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of a human body in video consisting of other humans and substantial visual clutter

(presence of other objects). The shape of the top part of the human form (i.e., head,

shoulders) has been modelled using B-splines and is allowed to undergo planar affine

transformations (translation, rotation, scaling and shear). Using a Kalman filter on

a training video (which did not contain the visual clutter), the motion of the human

is tracked and used in estimating the parameters of a second order motion model.

A likelihood model for the edge features extracted from images is designed based on

clutter and false alarm reasoning. The motion and the likelihood models are then

used in the particle filtering algorithm to track the human through a sequence of

video frames.

(a) Statistical
region merging

(b) Level set
based segmen-
tation

Figure 3.5: Segmentation achieved by state of the art algorithms

The current work is based on similar but simpler grounds. Bitumen-froth and

Middlings interface is parameterized by a single scalar level value instead of a B-spline.

This is because the interface is not rigid and highly deformable and hence it is difficult

to model the allowable transformations. For example, Fig 3.7 shows the interface in

a high fines(low quality feed) process condition. Such arbitrary deformations of the

interface cannot be modelled satisfactorily and since computing a single interface

level value is sufficient for control purposes, the interface is modelled as a scalar value

which represents the hypothetical interface level.

The motion model used for the interface level is a simple random walk. The

reasons for this are explained in section 3.3.1. Edge features are extracted from

images (section 3.2) and are modelled based on clutter and false alarm reasoning

as described in (Isard & Blake, 1998). The output of the designed particle filter is
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(a) Edges
detected us-
ing Canny’s
method

(b) Edges
detected
using Sobel
horizontal
mask

Figure 3.6: Edge detection using basic algorithms

Figure 3.7: Interface in high fines (or poor feed quality) process conditions

a (posterior) probability distribution of the interface level and the desired interface

level and quality values are then estimated from statistics of this distribution. The

interface level and quality values are then used for feedback control of the interface.

3.2 Edge feature extraction

Edge features are used to form a measurement model that is to be incorporated

in the Sampling Importance Filtering algorithm (SIR) (see Chapter 4). They are

extracted from the input images using simple image processing techniques. Initially,

the region of interest (ROI) i.e. the glass window area, is smoothened by a two

dimensional convolution with a Gaussian 3x3 kernel of variance 0.5. Smoothing is
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done to suppress the detection of edges due to image noise.

Horizontal edge detection is then performed on the smoothened image using the

simple mask [-1 0 1]T . From the resulting image the strongestM pixels in each column

are selected as the edge features. A sample transformation of the image in Fig 3.2 is

shown in Fig 3.8 (with M = 5).

Figure 3.8: Edge features (based on transformation of the image shown in Fig.2) with
M = 5

The reason for adopting the procedure above instead of thresholding the edge

image is that finding a simple adaptive threshold that provides robustness to lighting

conditions is not straight forward. Figures 3.9 and 3.10 compare the current algo-

rithm with edge detection using a Sobel horizontal mask on the two images shown in

Figures 3.2 and 3.7. It can be seen that current algorithm with the single threshold

M = 5 provides comparable (and slightly better) results to the Sobel edge detection

algorithm with adaptive thresholding even when the lighting conditions have changed

considerably. Choosing the appropriate value of M is described in section 3.3.2

3.3 Motion and Measurement models

3.3.1 Motion model

Considering the input and output streams to the separation cell, it can be said that

the dynamics of the Bitumen-froth and Middlings interface level is governed by the

following:-

1. Rate of settling of sand from the Bitumen froth to the Middlings layer

2. Flow rate of oil sands feed

3. Middlings flow rate

4. Tailings flow rate

61



(a) Current
method

(b) Sobel
method

Figure 3.9: Comparison of edge detection algorithms for the video frame shown in
Fig 3.2

In addition to the above, the addition of feed from the top of the separation cell

causes a sloshing effect inside resulting in very fast interface level dynamics. Ac-

cording to plant personnel, this phenomenon is the main contributor to the observed

dynamics of the Bitumen-froth and Middlings interface. Unfortunately, this sloshing

effect cannot be modelled satisfactorily. Thus, even empirical laws for interface level

dynamics (based on rate of settling and flow rates enumerated above) are not reliable.

Also, the flow rates of the above mentioned streams are only measured every once a

minute and so cannot be used with a camera sensor which operates at approximately

nine times a second. In the wake of these reasons, the interface level dynamics is

modelled as a simple random walk process:

xk = xk−1 + wk−1

where xk represents the interface level at time k. wk−1 represents a Gaussian process

with a small variance γ2. A justification of the model is based on the temporal

continuity - the fact that level at time k would not be very different from level at

time k− 1 especially if the frame rate of the camera is very high (typical surveillance

cameras provide 30 frames per second)

3.3.2 Measurement model

To form the measurement model, the edge image obtained after the image processing

described above (section 3.2) is transformed into a measurement vector zk. This is
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(a) Current
method

(b) Sobel
method

Figure 3.10: Comparison of edge detection algorithms based on the video clip shown
in Fig 3.7

done as follows: let zki
represent the vector of M measurements obtained from the

ith column of the edge image, where the elements of zki
are the heights of the edge

points(from the base of the image) in that column. Then the overall zk is constructed

by stacking all zki
together i.e. zk = [zk1

, zk2
, ...zkC

]T where C represents the total

number of columns in the edge image, so the dimension of zk is MC.

In the case of perfect measurements (i.e. no noise in the edge image and horizontal

interface) and with M = 1 all the elements of zk will be equal to xk for a one pixel

thick edge. So, in the presence of noise vk, the measurements can be modelled as:-

zk = IMCxk + vk

where IMC represents a vector of ones of dimension MC.

The measurement noise density p(vk) is the same as p(zk|xk) except for a trans-

lation by the mean value g(xk) = IMCxk as mentioned before. Hence, a particular

choice of p(vk) corresponds to a particular choice of p(zk|xk) and vice versa. The

choice of p(zk|xk) (or p(vk)) is the most crucial step in designing the particle filter. It

has been found that if p(zk|xk) is modelled as a Gaussian density, the particle filter

estimates wrong interface level values. Fig 3.11 illustrates the problems encountered

when such a Gaussian likelihood model is used. In this simulation,

• p(x0) is modelled as a uniform distribution between the upper and lower limits

of the view glass, as the exact location of the interface is assumed to be unknown
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(a) Second frame from a video sequence (b) A later frame

Figure 3.11: Tracking using a Gaussian likelihood model

• p(vk) is taken to be Gaussian density with µ = 0, σ = 5 pixels

In each of the two frames in this figure, the posterior probability density is shown

on the left and the extracted edges are shown on the right. It can be seen clearly

that the particle filter tracker is trapped between the spurious edges and edges near

the interface. This is because uni-modal densities cannot represent the type of noise

observed in Fig 3.8.

The likelihood model described in (Isard & Blake, 1998) based on sum of Gaussians

is more appropriate for the current purpose:-

p(zkj
|xk) ∝ 1 + α

M
∑

i=1

exp(−(zikj − xk)
2/2σ2)

where zikj represents the elements of zkj
for all j = 1, 2..., C; σ2 is akin to the

measurement noise variance and α is related to the density of a Poisson process, which

is assumed to represent the clutter (spurious edges per pixel) in the measurements.

Assuming that the edge points in each column are independent of each other given

the level, the likelihood function can be derived as follows:-

p(zk|xk) = p(zk1
, zk2

, ..., zkC
|xk)

=

C
∏

j=1

p(zkj
|xk)

∝

C
∏

j=1

(1 + α

M
∑

i=1

exp(−(zikj − xk)
2/σ2))

When the above likelihood function is observed as a function of xk with zk fixed,

it can be seen that the peaks of the function will be located at zikj . This makes the

likelihood function multi-modal. Such a likelihood function is essential for robust

tracking as it can handle more general types of noise distributions.
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The value of M reflects the thickness of the interface (edge), the model (9) gives

good results only for medium values of M , typically 3-6 pixels for the current video

sequence. If M is too small, only noise may be captured in the measurements and

if M is too high the edge image contains too many spurious edges and the filter will

be confused in both the cases. A value of M = 5 pixels, has been found to give good

results.

Using the measurement model described above, the basic particle filter obtained

is demonstrated in Fig 3.12. The posterior density is multi-modal in the first frame,

owing to the large extent of spurious edges present on the top part of the edge image.

As new images are obtained in time, the filter rejects the spurious peak in favour of

the actual interface as shown in the last frame.

(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Frame 4

(e) Frame 5 (f) Frame 6

Figure 3.12: Tracking using a sum of Gaussians likelihood model
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3.4 Implementation issues

As the initial position of the interface is unknown, p(x0) is modelled as a uniform

distribution between the upper and lower limits of the view glass area. This gives

equal probability for all interface levels in the range. P = 300 particles are generated

from this distribution and subsequently updated according to the SIR filtering algo-

rithm using the motion and measurement models in (1), (2) and the sum of Gaussians

likelihood model described before. With the parameters γ = 3 pixels, σ = 5 pixels

and α = 1 the particle filter is able to track the interface level satisfactorily under

normal operating conditions.

To handle process abnormalities, a quality estimate of the interface level estimate

is also computed. This estimate is used, for example, to switch to manual control

when the quality is bad for a sustained period of time. Two cases where the quality

estimate is useful are:

1. The interface between Bitumen-froth and Middlings layers is blurry.

2. The interface is not visible in the image because it is above or below the sight

view glass area

The quality estimate is computed in a straight forward way by considering the

support of the posterior probability density function (p.d.f). Under normal operating

conditions (with clear interface) the particles are a maximum of 6 − 9 pixels apart

and this support increases as the interface becomes blurry. Hence, there is a direct

correlation between visual quality of the interface and the support of the posterior

p.d.f. This is shown more clearly in Fig 3.13. A threshold of 15 pixels on the support

is used currently to distinguish between the bad(quality = 0) and good(quality = 1)

quality interfaces. To avoid cases where the interface level is not present in the view

glass area, alarms are announced whenever the interface level crosses 10% and 90%

bounds for operator intervention.

The final algorithm operates at 9 hertz and these filter outputs are averaged

over one second and communicated to the Distributed Control System(DCS) every

second. The image processing software is written in the C programming language

using Intel Integrated Performance Primitives for Windows 5.1 and Intel OpenCV.

Matrox Meteor II frame grabber card is used for image transfer from the analog

camera to the PC.
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(a) Support = 7 pixels (b) Support = 7 pixels

(c) Support = 8 pixels

Figure 3.13: Tracker output on good quality frames.

Figure 3.14: Edge images - the white pixels are the strongest edges detected in each
column

3.5 Results

The particle filter based interface detection program has been installed on the Line 6

extraction circuit at Suncor Energy Inc., Fort McMurray, Canada starting December

2006. Online results from this sensor are presented in this section.

Fig 3.13 shows the output of the filter on good quality frames from a video se-

quence. The black line superimposed on the image is the mode of the posterior p.d.f.

For each image the support of the posterior distribution is also given. Fig 3.14 shows

frames along with the edges detected. Note that even though there are spurious edges

the filter is able to detect the interface very well.

Fig 3.15 shows frames with changed lighting conditions. In these frames the

posterior probability distribution is also shown next to the superimposed line. In all

these frames the support of the posterior p.d.f. very closely reflects the visual quality
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(a) Support = 6 pixels (b) Support = 13 pixels

(c) Support = 30 pixels

Figure 3.15: Different lighting conditions

(a) Multiple interfaces (b) Partial obstruction

Figure 3.16: Stability of the filter

of the interface as mentioned before. The last frame in this figure is an example of a

bad quality interface (support greater than 15 pixels). Support of the posterior p.d.f.

is dependant not only on the current video frame but also on σ and γ. Increase in

any of these parameters increases the support but also affects the robustness of the

filter. In the last frame of Fig 3.15 the support is smaller than what can be observed

visually because of the particular choice of σ and γ which tries to maintain robustness

of the filter.

Fig 3.16 highlights the stability of the filter. For example, in the first frame three

interfaces are visible but because of the temporal continuity constraint in the state

model, the filter is undisturbed. The second frame highlights a similar concept in the

case of partial obstruction of camera view.

Fig 3.17 compares results when estimates from the Capacitance probe and the
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(a) Partial manual control
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(b) Automatic control using vision sensor

Figure 3.17: Closed loop control results
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current image based sensor are used in closed loop control of the interface level.

Fig 3.17a shows control achieved with the Capacitance probe measurements whereas

Fig 3.17b shows control achieved with the vision based sensor. From the one day

time trend shown in Fig 3.17a it can be seen that the variance in the interface level

and the pump speed is clearly very high. Note that there is no unique interface level

set point shown as it is constantly manipulated by the operators. With the control

based on the vision sensor however, the interface level closely follows the set point.

The pump speed is also relatively constant, pointing to a smooth operation of the

control system.

Fig 3.18 shows another trend of the interface level and set point for a period of

approximately two days. There are four significant portions in this plot:

• Automatic control with capacitance probes from time 1 to 800 minutes

• Automatic control with image based sensor from 800 to 1300 minutes

• Manual control from 1300 to 2000 minutes

• Automatic control with image based sensor from 2000 to 2600 minutes

The period in which the image based sensor is used for control is highlighted in

gray. It can be observed that the control achieved is very tight during this time

compared to the other time periods, where either capacitance probe based or manual

control has been used. Fig 3.19 shows the normalized histograms of the PV for these

four time periods. Again, note the significant variance reduction when the image

based sensor is used for control.

Finally, using approximately three weeks of laboratory data (one week of camera

control, two weeks of Capacitance probe control), it has been calculated that the

Bitumen losses in Tailings dropped by 53.6%. A similar reduction of 29.12% has

also been noticed in Bitumen losses to Middlings. The laboratory data indicates

increased economic benefit and reduced environmental losses. Process data collected

for the same duration also indicated significant reduction in the variance of process

variables around the separation cell (Interface level, Tailings pump speed, Tailings

flow rate, Froth temperature, etc.) resulting in a steadier process operation benefiting

the downstream processes. Plant personnel attribute the gains to tighter control

achievable using the interface level obtained from the camera images and the feed

forward component used in the controller.

70



Figure 3.18: Interface level and set point for a period of approximately two days.
The yellow regions of the plot represent manual control (with and without the use of
capacitance probe measurements) and the gray areas represent the control achieved
by the image based sensor

3.6 Summary

This chapter discussed the problem of detecting the Bitumen-froth and Middling’s

interface using image analysis and particle filters. The image analysis method used is

simple edge detection and the effect of the spurious edges obtained are reduced using

a novel particle filter algorithm. To aid in estimating the interface level, a dynamic

motion model of the process and a measurement model are developed. The motion

model is a simple random walk and the measurement model is based on false alarm

reasoning as described in (Blake & Isard, 2000). A quality estimate of the interface

level is also computed for control purposes. The final algorithm is shown to be

robust to lighting changes and other process abnormalities. When the interface level

estimates from this sensor were used in the feedback control loop, very tight control

could be achieved. The reduced variability in the interface level in turn resulted in a

significant reduction of Bitumen losses in the Tailings and Middlings streams.
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(a) Period 1

(b) Period 2

(c) period 3 (d) period 4

Figure 3.19: The histograms for the four periods shown in Fig 3.18. The x-axis
corresponds to the percentage of interface level and the y-axis represents the frequency
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Chapter 4

Automatic detection and control of
interface level in separation cells
with arbitrary number of sight
view glasses

4.1 Introduction

The algorithm described in the previous chapter uses edge detection and particle

filtering methods for interface level detection. Edges are detected using a simple

algorithm but due to bad lighting conditions and other irregularities in the separation

process, many spurious edges resulted. The interface level is extracted from these edge

observations via state estimation using a particle filtering (Arulampalam et al., 2002)

algorithm. For implementing the particle filter, the interface level is assumed to have

random walk dynamics and the observation noise is modelled to be non-Gaussian and

multi-modal (Isard & Blake, 1998). The output of the particle filtering algorithm is

a probability density function of the location of interface level. The mode of this

function is used as an estimate of the interface level and a confidence statistic (called

quality) similar to the inverse of variance is used to estimate the turbidity near the

interface. These interface level and confidence estimates are then used for control

purposes.

The separation cell on which the vision sensor in the previous chapter was imple-

mented had a single sight view glass. For separation cells with multiple sight view

glasses (Fig 4.1b) an extension of the algorithm can be sought.

A simple and direct method for generalizing the algorithm described in the pre-

0This work has been presented at the AdChem 2009, Istanbul, Turkey and submitted to Computer
Vision and Image Understanding for review
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vious chapter for the case of multiple sight view glasses is as follows. Consider (in

the case of the separation cell shown in Fig 4.1b with three sight view glasses), the

extension to three particle filters, each running on image data from a separate glass

window. Let pi, i = 1, 2, 3 denote the resulting p.d.f’s of the particle filter where i

represents the glass number. Then, the glass with the minimum spread of pi can be

chosen and the interface level estimate considered to be the one detected in that glass.

However, note that the spread of pi estimates the turbidity or the fuzziness near

the current interface level estimate. Hence, the spread does not directly correspond

to the degree of correctness of interface level estimation. For example, when the

interface is not present inside a particular sight view glass or when the particle filter

loses track of the true interface level, the confidence estimate is no more meaningful

and in general, may be high. Due to these reasons, this method of choosing the

interface level would result in highly spurious interface level estimates.

Consider, a more complicated algorithm based on the above. The information

resulting from the three posterior p.d.f’s p1, p2, p3 can be combined in suitable ways

to obtain the final interface level and quality estimates. One way is to state that, in

the regions where the windows overlap (the areas with the red and blue boundaries

in Fig 4.2), an interface level estimate is considered correct only when all the particle

filters running on the glasses which contain these overlapping portions return the

same interface level. For example, if the particle filter running on the first sight glass

returns an interface level estimate in the area inside the red boundary, the particle

filter running on the second sight glass should also return the same interface level for

the estimate to be considered valid. In other areas, the values of a single filter can be

considered final.

This approach can be seen to be problematic because a wrong estimation of the

interface level in one glass affects the final result even when the interface level has

been detected correctly in another one. As an example, consider the case where

glasses two and three in Fig 4.2 are full and the interface is present in the green area

of glasses one. When glasses are completely full the results of the particle filtering

algorithm are not meaningful and hence there is a high chance that the interface level

estimate in the second glass might be (wrongly) located in the red area. Now, even

if the interface is correctly detected in the first glass by the particle filter (running

there), due to the heuristic followed this correct interface may be discarded as it does

not lie in the red area of the first glass.

These problems can be alleviated if the quality directly measures the confidence in

the interface level estimate instead of the turbidity near the interface. For example,

if the sight glasses are full or empty these quality estimates should be very low. As
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(a) Separation cell with one sight
view glass (Line 6, Suncor Energy
Inc.)

(b) Separation cell with three sight
view glasses (Lines 7 & 8, Suncor
Energy Inc.)

Figure 4.1: Separation cells with different number of sight view glasses

Figure 4.2: Overlap of windows. The green portion in each sight glass window shows
the portion which does not overlap with any of the remaining two glasses. The area
with red boundary shows the overlap between the first and second glasses and the
blue boundary shows the overlap between the second and third glasses with glasses
numbered from the left

confidence computation is not entirely independent of the interface level estimation

procedure, the interface level estimation procedure should facilitate the computation

of confidence values in an easy manner.

This chapter describes a novel interface level detection algorithm based on image

differencing which further facilitates the computation of such a confidence estimate.

The image differencing method is based on the idea that the change from any previous

video frame to the current video frame is maximum near the current interface, though

this maximum need not be unique. This change is detected here through (absolute)

image differencing. To ensure that the maximum change occurs very close to the

current interface, (absolute) image differences between the current and many previous

frames are used. The sum image of all these differenced images has maximum values

located close to the current interface level for ideal interface images, i.e. images which

are completely free from noise, Figures 4.4 and 4.5. The proof of this fact is given in
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section 4.2.

In reality, interface images are seldom noise free. The noise may arise purely from

the camera (acquisition noise) or from other sources (e.g. fine sand particles present

in the Bitumen layer). In both these cases, homogeneity of pixel intensity values

in the Bitumen and the Middlings layers breaks down and maximum change(from a

previous video frame) near the current interface is no longer guaranteed. This leads

us into estimating a quality value which reflects whether the current interface level

estimate is purely a result of noise.

To compute the final confidence estimate however, the noise based quality value

alone would not suffice. This is because abnormal changes might occur in the sepa-

ration cell, which cannot be attributed to noise alone and which do not necessarily

imply the existence of a true interface. Fig 4.3 shows an example of such a change

where the noise based quality described above might be high but the interface is

spurious.

Spurious Interface

Figure 4.3: Process abnormality in the separation cell

Therefore, an edge quality is also estimated. This quality value quantifies the

number of edges detected near the interface level estimate. The edge detection method

employed here is described in Elder & Zucker, 1998. A combination of both these

quality estimates suppresses most false negatives. In a few pathological cases, both

the noise based quality and the edge based quality can be high, even though the

detected interface is spurious. To make the algorithm robust to these, a change based

quality is estimated. The final confidence estimate is then based on the three values

- noise based quality, edge based quality and change based quality.

This chapter is organised as follows: Section 4.2 presents the image differencing

based interface level detection algorithm in detail followed by section 4.3 which de-

scribes the confidence estimation procedure. Results are displayed in section 4.4 and

section 4.5 gives the concluding remarks.
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4.2 Interface level detection using absolute image

differencing

The image differencing method for interface level detection is a simple extension of

the change detection method used in computer vision. Change detection between two

video frames can be estimated by computing the difference between two successive

video frames, when only the object of interest is moving in the scene. In the case of

interface level detection, difference between two video frames (might not be successive)

highlights the area which has been traversed by the interface.

Fig 4.4 shows three images A,B and C, which represent successive video frames

from an ideal interface (the pixel values in both the regions are homogeneous and

the interface is horizontal) motion. The absolute differences |C − A| and |C − B|

are also shown. The regions with high pixel values (the highlighted regions) in these

images clearly represent the distance traversed by the interface during the respective

time intervals. A sum of these two images results in an image which has high values

near the current interface as shown in Figures 4.4f and 4.4g, where the profile is

generated by summing the pixel values along the horizontal direction. From the

profile (Fig 4.4g) the value of the interface level can be estimated accurate up to the

maximum displacement of the interface between two successive video frames.

The only assumption in the above procedure for interface level estimation is that

the interface level changes in the time window considered. The differencing and

absolute addition procedure can be carried as far back in time as possible but it is

enough to consider a time window where there is a change in the interface level. Next,

we prove for the simple cases of homogeneous images, the image differencing method

indeed results in an interface level estimate close to the actual value.

Let,

1. It represent the video frame obtained at time t

2. Dt1,t2 = It1 − It2 , be the difference of two images at times t1 and t2

3. ADt1,t2 = abs(It1 −It2), be the absolute difference of two images at times t1 and

t2

4. il(t) represent the interface level at time t (The interface level is always assumed

to be on the Middlings sight of the interface).

5. µB(t), µM(t) represent the average intensity values of pixels in the Bitumen-froth

and Middlings regions at time t, respectively.
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(a) A (b) B (c) C (d) |C −A| (e) |C −B| (f) |C −
B|+ |C−A|

(g) Profile
of |C−B|+
|C −A|

Figure 4.4: Simple illustration of the differencing method

6. W and H represent the width and height of the interface image

7. C be the maximum change in the interface level between two successive video

frames

Lemma 4.2.1 Consider a noise free interface having dynamics such that it remains

horizontal at all times and having homogeneous pixel intensities in the Bitumen and

Middlings regions. Let {It, t = 0, 1, ...} be a sequence of completely noiseless images

from such an interface such that µB(0) = µB(1) = µB(2) = ... and µM(0) = µM(1) =

µM(2) = .... If there is a change in the interface level in a time window [t0, tN ] and

if:-
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JN(i, j) =
N−1
∑

k=0

ADtN ,tk(i, j),

∀i ∈ {0, 1, 2, ..., H − 1},

j ∈ {0, 1, 2, ...,W − 1}

PN =
W−1
∑

j=0

JN(i, j), ∀i ∈ {0, 1, 2, ..., H − 1}

îl(tN) = inf(argmax
i

PN(i))

then,

1. PN(i) is decreasing in i ∈ [îl(tN ), H − 1] and increasing in i ∈ [0, îl(tN)],

2. 0 ≤ il(tN )− îl(tN) ≤ C

Proof : Let,

IL1 = {il(t), t ∈ [t0, tN) : il(t) < il(tN ),

il(t + 1) ≥ il(tN )}

IL2 = {il(t), t ∈ [t0, tN) : il(t) > il(tN ),

il(t + 1) ≤ il(tN )}

One of the sets IL1 and IL2 can be empty but not both of them. This is because of

the assumption of a change in the interface level in the time window [t0, tN ]. If IL1

is not empty, then let ilu(tN) = max({il(t), t ∈ [t0, tN ) : il(t) < il(tN )}). Similarly,

let ild(tN ) = min({il(t), t ∈ [t0, tN ) : il(t) > il(tN )}), when IL2 is not empty. Now,

three cases are considered:

• Case I: IL1 is non empty but IL2 is empty.

In general, it is clear that PN(ilu(tN)− k1) ≤ PN(ilu(tN )− k2) whenever, k1 >

k2, where k1 ≥ 0, k2 ≥ 0. Specifically, PN (ilu(tN)) > PN(ilu(tN ) − k) when

k ∈ [1, ilu(tN)]. For k ∈ [1, il(tN) − ilu(tN)), PN (ilu(tN) + k) = PN(ilu(tN))

and PN(i) = 0 for i ∈ [il(tN ), H − 1]. So, PN(i) increases in i ∈ [0, ilu(tN)]

and decreases in i ∈ [ilu(tN ), H − 1]. By definition, îl(tN ) = ilu(tN) and as

il(tN )− ilu(tN) ≤ C, both the assertions are true.
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• Case II: IL2 is non empty but IL1 is empty.

In this case, PN(ild(tN )+k1) ≤ PN(ild(tN )+k2) whenever, k1 > k2, where k1 ≥

0, k2 ≥ −1. Also, PN (ild(tN ) + k) < PN(ild(tN )− 1) for k ∈ [0, H − ild(tN)− 1].

PN(ild(tN) − k) = PN(ild(tN ) − 1) for k ∈ (1, il(td) − il(tN )] and PN(i) = 0

for i ∈ [0, il(tN) − 1]. So, PN(i) increases in i ∈ [0, il(tN )] and decreases in

i ∈ [il(tN ), H − 1]. By definition, îl(tN) = il(tN ) and hence both the assertions

are again true.

• Case III: Both IL2 and IL1 are non empty.

Let the original set of images be partitioned into two disjoint subsets, one where

the interface is always above il(tN ) and the other where the interface is always

below il(tN ). Then this particular case can be seen as a juxtaposition of both the

cases considered above. Hence, PN(i) increases in i ∈ [0, ilu(tN)], PN(ilu(tN ) +

k) = PN(ilu(tN)) for k ∈ [1, il(tN ) − ilu(tN)). And PN(i) decreases in k ∈

[il(tN ), H − 1]. Hence, îl(tN) = ilu(tN ) or îl(tN) = il(tN ). In either case, both

the assertions are true as before.

Lemma 4.2.2 guarantees similar bounds for the interface level estimate even for

the more general case of non-horizontal interfaces:

Lemma 4.2.2 Consider the more general case of an interface having dynamics such

that it can become non-horizontal (Fig 4.5). Let ip(t, v) for v ∈ [0,W − 1] be the

interface pixels at time t. If |ip(t, v) − ip(t,m)| < Q, for all v,m ∈ [0,W − 1],

t ∈ [t0, tN ] and |ip(t1, v) − ip(t2, v)| < C whenever |t1 − t2| = 1, v ∈ [0,W − 1] and

if there is a change in the interface in the time window [t0, tN ] then it is true that

−C ≤ îl(tN)− ip(tN , v) ≤ C +Q for some v ∈ [0,W − 1].

Proof : No assumption has been made in Lemma 4.2.1 regarding the width of the

images, W . Hence, the images can be decomposed into several one pixel wide images

and the lemma be applied on each of these. If,

P v
N(i) =

N−1
∑

k=0

ADtN ,tk(i, v),

∀i ∈ {0, 1, 2, ..., H − 1},

v ∈ {0, 1, 2, ...,W − 1}

îp(tN , v) = inf(argmax
i

P v
N (i))

then,
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1. P v
N(i) is decreasing in i ∈ [îp(tN , v), H − 1] and increasing in i ∈ [0, îp(tN , v)],

2. 0 ≤ ip(tN , v)− îp(tN , v) ≤ C

As,
∑M

v=1 P
v
N(i) = PN(i), ∀i ∈ {1, 2, ..., H} and by the monotonic properties of

P v
N(i), it is clear that îp(tN , vmin) ≤ îl(tN ) ≤ îp(tN , vmax), where îp(tN , vmin) =

min{îp(tN , v), v ∈ [0,W − 1]} and îp(tN , vmax) = max({îp(tN , v), v ∈ [0,W − 1]}).

Now, from 0 ≤ ip(tN , vmin)−îp(tN , vmin) ≤ C and 0 ≤ ip(tN , vmax)−îp(tN , vmax) ≤ C,

we get −C ≤ ip(tN , vmax) − ip(tN , vmin) + îp(tN , vmin) − îp(tN , vmax) ≤ C. Hence,

−C + ip(tN , vmin) − ip(tN , vmax) ≤ îp(tN , vmin) − îp(tN , vmax) ≤ C + ip(tN , vmin) −

ip(tN , vmax). Therefore, −C − Q ≤ îp(tN , vmin) − îp(tN , vmax) ≤ C + Q and so

0 ≤ îl(tN )− îp(tN , vmin) ≤ C +Q, which implies −C ≤ îl(tN)− ip(tN , vmin) ≤ C +Q

Figure 4.5: Example of a Non-horizontal interface

The above results show that in the absence of noise and non-homogeneities in

images, the estimated interface level is close to the actual interface, especially if C

and Q are small. However, when the images are corrupted by noise and other non-

homogeneities in pixel intensities, the estimated interface level might not be close

to the actual interface. Hence a confidence value of the interface level estimate is

computed.

4.3 Confidence estimation

The analysis above assumed that images obtained are completely noise free - an

assumption that is never met in practice. Image noise is modelled to be additive,

homogeneous and Gaussian with zero mean and variance σ2. Additive noise implies

that if the true (expected) grayscale value of a pixel is p, the observed value is p+ n
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where n is the noise term. Homogeneity here means that the noise is independent

and identically distributed (i.i.d) in the two image spatial dimensions. Based on this

noise model, the interface image model consists of two regions of expected intensities

(µB(t), µM(t)) affected by Gaussian noise as shown in (Fig 4.6).

(a) Horizontal
interface with
noise

(b) Non
horizontal
interface with
noise

Figure 4.6: Image noise model: interface image corrupted by Gaussian noise

In the presence of noise, it might no longer be true that îl(tN) will lie close to an

interface point as predicted by Lemmas 4.2.1 and 4.2.2. This is because the images

observed are only instantiations of a (two dimensional) random field, which is com-

pletely described by the noise statistics, the interface level il(tN ) and the Middlings

and Bitumen pixel intensities µM(t), µB(t). Hence, each PN(i) for i ∈ [0, H − 1] now

has a probability distribution and hence one can only talk in terms of probabilities

as opposed to making deterministic comments. In the case of a horizontal inter-

face (Fig 4.6a), given the noise distribution, the probability that is of interest is the

following:-

P ( max
|j−il(tN )|≤H

PN(j) > max
|j−il(tN )|>H

PN(j))

The above probability quantifies the chance of obtaining an interface level esti-

mate (by following the differencing method described before), îl(tN ), which satisfies

|îl(tN ) − il(tN )| ≤ H . This probability can be used as the confidence value but it

cannot be determined, as il(tN ) cannot be known a priori.

As the theoretical confidence (the probability above) cannot be computed, a con-

fidence estimate is obtained by heuristic methods. The confidence estimate is based
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on the following three quality values, which are explained subsequently:

• Noise based quality

• Edge based quality

• Change based quality

4.3.1 Noise based quality

Real interface images contain small amount of sensor noise as well as other non-

homogeneities in the pixel intensities in both the Bitumen and the Middlings layers.

Interface level estimates are sometimes purely a result of such irregularities in the

images. Straightforward examples for such cases are the scenarios when the interface

is below or above the view glass(and hence no interface is visible in the view glass).

The noise based quality determines whether the interface level estimate is a result of

such noise alone.

Let Y1, Y2 be independent random variables which have the same distribution as

the noise in the images. Then, the Gaussian noise parameter σ at time tN is estimated

from the difference image D(tN , tN−1). For cameras which have a high frame rate,

the change due to interface between two successive video frames is relatively small

when compared to that of the change due to image noise Hence, the difference image

can itself be used for noise estimation. In other cases, noise can be estimated from

the difference images by considering the areas in the images where the change due to

interface is minimal. Such areas can be computed as it is assumed that the interface

level estimates ..., îl(tN−1), îl(tN) are known.

Histogram of such areas in D(tN , tN−1) is constructed, which approximately gives

the probability density function of Y1 − Y2. A sample p.d.f estimated in such a way

from a test video is shown in (Fig 4.7). The standard deviation of Y1−Y2 is 2σ, from

which the noise standard deviation σ can be easily computed.

A noise based quality value can be computed in many different ways. One such

approach is from the probability

P (PN(îl(tN )) > max
j 6=îl(tN )

PN(j))

which computes the chance of obtaining the current interface level estimate. To

compute this probability, however, the location of each pixel (whether in the Bitumen

or Middlings layer) in all the images, It, t ∈ [0, N ] has to be known. Determining

this information is highly non-trivial and hence an alternative method for noise based

quality estimation is chosen here.
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Figure 4.7: Difference noise distribution estimated from difference images

Let TP (t, i, j) represent the true pixel value in the image at time t and at the loca-

tion i, j. Then the observed value of each pixel It(i, j) can be written as TP (t, i, j)+

Y (t, i, j), where Y (t, i, j) is a random variable whose distribution is the same as the

estimated noise distribution. Using this, the following can be obtained using simple

algebra:

JN(i, j) =
N−1
∑

k=0

|TP (tN , i, j)− TP (tk, i, j)

+Y (tN , i, j)− Y (tk, i, j)|,

∀i ∈ {0, 1, 2, ..., H − 1},

j ∈ {0, 1, 2, ...,W − 1}

PN(i) =
W−1
∑

j=0

JN(i, j), ∀i ∈ {0, 1, 2, ..., H − 1}
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From,

W−1
∑

j=0

N−1
∑

k=0

(|TP (tN , i, j)− TP (tk, i, j)|

−|Y (tN , i, j)− Y (tk, i, j)|)

≤ PN (i)

≤
W−1
∑

j=0

N−1
∑

k=0

(|TP (tN , i, j)− TP (tk, i, j)|

+|Y (tN , i, j)− Y (tk, i, j)|)

we get,

PN(i) −

W−1
∑

j=0

N−1
∑

k=0

|Y (tN , i, j)− Y (tk, i, j)|

≤

W−1
∑

j=0

N−1
∑

k=0

|TP (tN , i, j)− TP (tk, i, j)|

≤ PN(i) +
W−1
∑

j=0

N−1
∑

k=0

|Y (tN , i, j)− Y (tk, i, j)|

The above inequality gives loose bounds on the actual values,
∑W−1

j=0

∑N−1
k=0 |TP (tN , i, j) − TP (tk, i, j)| = M(i)(say), i.e., the values which would

have resulted if the images are noise free. In practice, only one instance of PN(i)

is observed. From the value of the observed PN(i), the value of the correspond-

ing instance of RN(i) =
∑W−1

j=0

∑N−1
k=0 |Y (tN , i, j) − Y (tk, i, j)| cannot be computed.

Therefore the bounds above cannot be determined exactly.

Given PN (i) = P̂N(i), RN (i) follows the conditional probability distribution given

by P (RN(i)|PN(i) = P̂N(i)). Considering the instances (R̂N(i)) of this distribution

allows us to compute inequalities which are be obeyed with a certain degree of prob-

ability. For example, if PRN (i)|PN (i)(RN (i) ≤ R̂N(i)) = r(i), then the inequalities

P̂N(i)− R̂N (i) ≤M(i) ≤ P̂N(i) + R̂N(i)

are true with a probability of r(i). If R̂N(i) are chosen such that r(i) are very high,

then the inequalities are very likely to be satisfied. On the other hand, if the R̂N (i)

are chosen such that r(i) are very low, it is very unlikely that the inequalities will be
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correct. Given a choice of R̂N(i), the noise based quality can be defined as:

Qnoise(tN) =







0; if ∃i, |i− îl(tN)| > NTH , P̂N(i) + R̂N (i) >

P̂N(îl(tN))− R̂N(îl(tN))
1; otherwise

This quality value penalizes the interface level estimates when the minimum bound

of M(îl(tN)) is less than the maximum bound of M(i), for i far away (NTH > C)

from the current interface. In this case, the interface estimate is said to be obtained

purely due to camera noise and other irregularities in the images.

As the conditional probability distribution cannot be estimated, the instance

R̂N(i), is chosen based on the unconditional one. The support of the unconditional

distribution is a superset of the support of the conditional distribution. Hence, for

high values of R̂N (i) (based on the unconditional distribution) the inequalities ob-

tained will very likely be true. But high values of R̂N (i) make the bounds very loose

which are not useful for noise based quality estimation as most quality estimates will

be zero. On the other hand, for small values of R̂N(i), the quality estimates might

be high but the inequalities are true only with a very small probability.

The problem is to obtain estimates R̂N(i), for which the inequalities will be true

with a high probability and are tight enough for use in noise based quality estimation.

In the absence of any other information, the choice E(RN(i)) = R̂N(i), where E rep-

resents mathematical expectation can be considered a possible candidate. From basic

probability and the properties of the Gaussian distribution, it can be computed that

E(RN(i)) = NWσ
√

( 8
π
). Based on this, the noise based quality estimate is defined as:

Qnoise(tN) =







0; if ∃i, |i− îl(tN )| > NTH ,

P̂N(i) +NWσ
√

( 8
π
) > P̂N(îl(tN))−NWσ

√

( 8
π
)

1; otherwise

The accuracy of the noise based quality estimates Qnoise(tN), obtained by the

choice R̂N (i) = E(RN (i)) depends on the absolute difference of average pixel in-

tensities |µB(tN ) − µM(tN )|, the size of the images and the noise standard devia-

tion σ. Based on this dependence, false positive and false negative error rates for

the noise based quality can be estimated, which reflect the validity of the choice

R̂N(i) = E(RN(i)).

False positive rate is defined as the percentage of time Qnoise(tN) = 0 when the

interface is correctly detected, |il(tN )− îl(tN )| ≤ δ. Similarly the false negative rate

is defined as the percentage of time Qnoise(tN) = 1 when |il(tN)− îl(tN )| > δ, where

δ is the allowable discrepancy in the estimation (typically δ ≈ C). These rates are
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Table 4.1: False positive rate for the Image Differencing method

|µB(tN)− µM(tN)|

σ

10 15 20 25 30 35 40 45 50
0.5 0.63 0.13 0 0 0 0 0 0 0
1.0 7.09 1.14 0 0 0 0.13 0 0 0
1.5 39.87 5.32 1.77 2.15 0 0 0 0 0.13
2.0 70.89 34.05 8.35 5.06 1.77 0.51 0 0.51 0.25
2.5 100 46.84 19.87 10.13 7.97 1.65 1.9 1.14 0.13
3.0 100 71.52 36.58 18.73 8.1 5.32 1.27 2.15 1.14
3.5 100 99.37 56.84 32.41 17.85 7.85 7.72 0.89 0.89
4.0 100 100 71.39 40.25 28.86 20.89 7.34 6.08 4.68

estimated in a simulation study for the case of horizontal interfaces. Interface images

are generated with random interface levels satisfying the parameters C = 1 pixel,

W = 75, H = 300, N = 10, NTH = 30, µB(tN) = 100 and with varying values for

µM(tN) and σ. With δ = 5 pixels, the false positive rates obtained are shown in

Table 4.1.

When σ is small and |µB(tN)− µM(tN)| is high, the false positive rate is small as

expected. This rate increases with an increase in σ but decreases with an increase in

|µB(tN)−µM (tN)|. The ratio
|µB(tN )−µM (tN )|

σ
can be considered as an upper bound on

the Signal to Noise ratio (SNR). If |µB(tN )−µM (tN )|
σ

= 10, the false positive error rate

is 7 − 8% on an average. In real interface images analyzed in the current work, the

signal to noise ratio was always observed to be greater than this required minimum

value.

The choice of R̂N (i) = E(RN(i)) can hence be seen to be pessimistic - if the

signal to noise ratio is smaller than a minimum value, false positive rate increases

dramatically. The reason for considering such a choice is not entirely technical as

shown before. Conservativeness in the noise based quality is an essential requirement

as mistakes in interface level and quality estimation can harm the overall process in a

very adverse manner. This means that the sensor is designed to allow false positives

in order to reduce or eliminate false negatives, which are deemed to cause problems

in a live control system.

For computing the false negative error rates, random interface images, which do

not contain an interface are created. As these images do not contain any interface

the percentage of time Qnoise(tN) = 1 is considered an estimate of the false negative

error rate. In a simulation study using the same parameters as above (except that

µB(tN ) = µM(tN )), it has been found that there were no false negatives. As other

type of examples cannot be readily created to study the false positive and negative
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error rates, they are estimated on real videos collected from a plant site. These are

presented in Section 5.4.

4.3.2 Edge based quality

Noise based quality alone is not sufficient for estimating confidence. This is due to the

fact that false negatives result when abnormal changes occur inside the separation cell

(scenarios as shown in Fig 4.3) which cannot be explained by noise alone. Hence, an

additional edge detection algorithm is used to aid in the estimation of the confidence.

The motivation for using edge detection to estimate a quality value is that the

available information in images would be utilised in a very efficient manner as the

edge based algorithm captures information “orthogonal” to the differencing method.

Given only the difference images I(t)− I(s) for s < t, it is impossible to recover the

edge map of I(t) and similarly given only the edge map of I(t), it is impossible to

estimate the difference images except in a few pathological cases. Orthogonality above

must be understood in this sense. Using these algorithms simultaneously most false

negatives, i.e. high confidence values when the interface level estimates are wrong,

can be avoided.

The algorithm described in Elder & Zucker, 1998 is used here with the already

estimated variance σ2 of the Gaussian noise distribution. The advantage of this

particular edge detection algorithm over standard algorithms (Sobel, Canny etc.) is

its ability to detect edges over a large blur scale and contrast. The Bitumen-Middlings

interface tends to become fuzzy when the percent of sand in the oil sands ore is high.

The chosen algorithm can detect edges under these situations and hence is suitable

for the purpose. Another reason for the choice is that spurious edges that occur

due to sensor noise are minimised because of statistical bound checking based on the

sensor noise variance in the algorithm. This increases the efficiency of the edge based

quality.

A simple heuristic based on the number of edge points in a predefined window

near the detected interface level is used to estimate the edge based quality. If EI is

the edge map returned by the edge detection algorithm, and if nedges represent the

number of edges in a predefined window near the detected interface level and ETH is

a given threshold then the edge based quality is defined as:

Qedge(tN ) =

{

0; nedges < ETH

1; otherwise
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4.3.3 Change based quality

The edge detection algorithm, in most cases does not produce the exact edge map,

EI. When spurious edges are detected (due to shadows, lighting glare etc.), the edge

based quality might be high even when the interface level estimate is not correct.

If the noise variance is under estimated, the noise based quality would also be high

resulting in a wrong estimate of the interface level. False negatives in interface level

detection can have an undesired effect on the overall process as the controller takes

immediate corrective action based on these false readings.

To make the algorithm robust to such cases a quality based on the percent change

near the interface is estimated. The change based quality analyzes the instance of

PN observed, P̂N . An example P̂N (for a normal interface image sequence) is shown

in Fig 4.8.

Figure 4.8: An instance of PN

If the change near the interface, given by P̂N(îl(tN )), is not large enough when

compared with the rest of the values P̂N(i) |i − îl(tN )| > δ, the interface estimate

should have a low confidence value. In most such cases, the noise based quality

would be zero. However, when the noise is very low and when the noise variance is

underestimated, even small changes (i.e. small values of P̂N(îl(tN))) result in a high

noise based quality value. The change based quality value is designed to output low

values in these cases.

For a normal interface, based on test videos, the average and minimum values of

P̂N have been observed to be close to each other as shown in the figure above. The

maximum value of PN , P̂N(îl(tN)), is in general high compared to both these values.
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Based on this, the change based quality is defined simply as:

Qchange(tN) =

{

0; max(P̂N )−avg(P̂N )

max(P̂N )−((1−ǫ)min(P̂N ))
< CTH

1; otherwise

Here, 0 < ǫ ≈ 10−2 << min(P̂N ). The change based quality value would be high

when the average value of P̂N is close to the minimum value of P̂N . When the average

is close to the maximum this quality value would be small.

The thresholds – NTH , ETH , CTH and N determine the performance of the final

algorithm. The value of ETH is chosen as a percentage of the width of the image W

and the value of CTH ∈ [0, 1]. Hence both these thresholds are relative in nature.

The value of NTH is chosen based on the dynamics of the interface. Based on the

three quality values, the final confidence is defined as

ilconf (tN) =















1; Qnoise(tN) = 1,
Qedge(tN ) = 1,
Qchange(tN ) = 1

0; otherwise

4.4 Results

4.4.1 Off-line results

The algorithm is first tested off-line on three videos recorded at the Suncor Energy

Inc. plant site located at Fort McMurray, Alberta, Canada. The first video contained

only one sight view glass whereas the other two were equipped with three sight view

glasses. (Note that the separation cell with the single sight view glasses is the same

as the one analyzed in Chapter 3. It is analyzed here again to highlight the ability

of the current algorithm to handle arbitrary number of sight view glasses). In the

first video (Fig 4.9a) the view glass was wider and the interface was always present

inside it. There was also significant lighting glare present on the top of the glass

window. The other two videos had considerably smaller view glasses. In one of these

two videos (Fig 4.9c), the interface was only present in two of the three view glasses.

In the other video (Fig 4.9b), spurious changes occurred (due to Bitumen sticking on

the inside) in one of the glasses initially and the interface reappeared at the end.

The original videos were from colour cameras and for the purpose of analysis, they

were converted to grayscale by averaging across all the three channels. For single

sight view glass, the algorithm as described in the sections before can be applied

directly. Whereas, in the case of three view glasses, the algorithm is extended in a
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straightforward manner. Each glass window is analysed separately and finally the

window with the highest confidence value is chosen along with its interface level

estimate. In cases where the interface is present in two or more glasses, more than

one window can have a high confidence value. In such situations, the final interface

level is chosen at random from these glasses, as all of the interface level estimates

refer to the same interface.

In all the videos the same parameters, N = 100, NTH = 30 pixels, ETH = W
4
,

CTH = 0.75 were used. Fig 4.10 shows the true and the estimated interface level

values for the video with a single sight view glass (H = 188 pixels, W = 61 pixels).

It can be seen that the estimated value is very close to the actual value. The average

absolute error was calculated to be approximately two pixels. This corresponds to an

average error of less than one percent with respect to the height of the view glass. The

confidence estimate was equal to one throughout (except at one frame where the edge

based quality was zero). Noise standard deviation was estimated to be σ = 1.0 pixels

and |µB(tN )−µN(tN )| = 21.9 intensity units. From Table 4.1, the corresponding false

positive rate is zero which explains the fact that the noise based quality was equal

to one throughout. Edge based quality was also high because the interface was clear

and easily detectable by the edge detection algorithm. The change based quality was

one throughout.

For the video with three sight view glasses shown in Fig 4.9c, the results obtained

are shown in Fig 4.11. Note that in this case, the interface level estimate corresponds

to the view glass with the highest confidence value. The average absolute error was

calculated to be three pixels approximately, which corresponds to an average error

of less than one percent with respect to the height of the view glass, as before. The

confidence estimate was equal to one at all times except for three frames. The noise

based quality was equal to one throughout but the edge based quality was zero at

these three frames owing to significant fuzziness in the interface (not shown here).

The change based quality was one throughout as before.

Finally, the video shown in Fig 4.9b is split into two segments. In the first part, the

interface was either spurious or not present in the view glass. For this segment of the

video the false negative rate obtained was equal to zero, i.e. the confidence value was

identically zero all the time. Fig 4.12 shows the estimated and the actual interface

level for the second part of the video, when the interface reappeared in the view

glass. The average absolute difference was equal to three pixels which corresponds

to an error of less than one percent with respect to the height of the view glasses.

The false positive rate during this time was estimated to be 10%, due to zero edge

based quality during those frames. The high false positive rate in this video can be
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(a) Video with one sight view glass (b) Video with spurious changes

(c) Video with interface present in
two glasses

Figure 4.9: Interface in different separation cells

attributed to following:-

• Loss of resolution from the original to the recorded video resulting in a poor

quality of the video

• Highly fuzzy interfaces occur due to a high fines situation – too many sand

particles in the Bitumen-froth

The false positive rate can be minimized by employing a simple filtering rule. In

the industry, a single occurrence of a confidence value of zero triggers an alarm for

operator intervention. As the confidence value is susceptible to sudden changes in the

fuzziness of the interface it is reasonable to wait until the confidence value stabilizes.

Hence, instead of signalling an alarm for a single occurrence, alarm is only signalled

when the confidence value is zero for a sustained period of time (τ). The interface

level estimate used for control during this phase is the most recent estimate with a

confidence value of one. This simple filtering rule has been observed to increase the

efficiency of the algorithm.

4.4.2 Online results

The algorithm described in this paper has been implemented on two separation cells

(previously shown in Figures 4.9b and 4.9c) on Plant 86 at, Suncor Energy Inc., Fort
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Figure 4.10: True and estimated interface levels for the video in Fig 4.9a

Figure 4.11: True and estimated interface levels for the video in Fig 4.9c
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Figure 4.12: True and estimated interface levels for the video in Fig 4.9b

McMurray, Alberta, Canada. A frame grabber card is used to transfer the images from

the analog cameras to the PC. Software has been built in in the C++ programming

language based mainly on the Intel OpenCV library for image manipulation.

Fig 4.13 compares the true and estimated interface level values for the separation

cell shown in Fig 4.9b. In this plot, hourly data is collected at random times and

stitched together for the final result. A total of eight hours of data is used for com-

parison. On this data set, the average absolute error (in percentage) was calculated

to be four percent. Similarly, Fig 4.14 compares the true and estimated interface level

values for the separation cell shown in Fig 4.9c. The average absolute error was equal

to three percent of the total height of the view glasses. These results suggest that the

estimates from the vision sensor very closely reflect the true interface level values.

Figures 4.15 and 4.16 superimpose the measurements obtained by the Capacitance

probes on the above figures and Figures 4.17 and 4.18 show their corresponding scatter

plots. It can be seen clearly in all the figures that the measurements of the camera

sensor are very accurate in comparison to the Capacitance probe values.

Four months of industrial data were collected to analyze the percentage of time

the vision sensor was controlling the interface level. It has been found that the sensor

for separation cell in Fig 4.9b has been used for 80% of the time whereas the sensor

for the other separation cell has been in use for 67% of the time. This suggests a

significant automation of the plant during this time period.
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Figure 4.13: True and estimated interface levels for separation cell shown in Fig 4.9b

4.5 Summary

This chapter has presented a novel image differencing method for Bitumen-froth and

Middlings interface level detection. It has been shown that in the case of noiseless

images the estimation error is bounded. For nominal values of the dynamics of the

separation cell, the bounds are very small.

When noise is present in the images, a confidence value which estimates the cor-

rectness of the detection is computed. The confidence value is based on a novel noise

based quality estimate along with simple edge and change criterion. Theoretical Anal-

ysis complimented with experimental results show that the final algorithm accurately

detected the interface level and exhibited very few false positive and negative error

rates. The sensor has been installed on lines 7 & 8 at Suncor Energy. Inc, Fort

McMurray, Canada for over one year and has been yielding excellent results.
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Figure 4.14: True and estimated interface levels for separation cell shown in Fig 4.9c

Figure 4.15: Comparison of the Camera sensor and the Capacitance probe measure-
ments for separation cell shown in Fig 4.9b
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Figure 4.16: Comparison of the Camera sensor and the Capacitance probe measure-
ments shown in Fig 4.9c
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(a) Camera vs Actual measurements

(b) Capacitance probe vs Actual measurements

Figure 4.17: Scatter plots for comparison of the Camera and Capacitance probe
measurements for the separation cell shown in Fig 4.9b
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(a) Camera vs Actual measurements

(b) Capacitance probe vs Actual measurements

Figure 4.18: Scatter plots for comparison of the Camera and Capacitance probe
measurements for the separation cell shown in Fig 4.9c
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Chapter 5

Automatic interface and boundary
detection in X-ray view cell images

The interface level detection algorithms described in the two previous chapters were

completely automatic, requiring human intervention only during start up. Indeed,

frequent human inputs to these algorithms would lessen their utility in the control

system. The algorithms are also implemented in real time and hence errors committed

in interface level estimation cannot be rectified in a speedy manner. These mistakes

might also adversely affect the separation process.

On the other hand, there exist applications which are implemented under human

supervision. Typically, the output of the algorithm is further analysed for correctness

(by a human) and the information used only if accurate. In fact, such applications

constitute the major part of image-based sensor technology available today. Some

of the examples include, as mentioned in the first chapter include, face recognition,

detecting tumours in MRI scans of the brain etc. The usefulness of these algorithms

lies in the fact that they help extract information automatically from the images

which would otherwise be tedious and time consuming to do by hand. The user can

then verify if this information is indeed accurate before utilising it.

This chapter describes one such application of automatic image analysis in images

obtained from X-ray view cells used to observe thermodynamic phase behaviour of

Bitumen.

5.1 Introduction

Information about the phase behaviour of Bitumen at various temperatures and pres-

sures can be used to adapt existing technologies and develop new ones for Bitumen

0This work has been presented in poster form at the IRC (for Thermodynamics) review 2009, at
the University of Alberta and sent to Engineering Applications of Artificial Intelligence for review
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production and refining. Typical instruments for phase behaviour measurements are

based on view cells employing visible or infrared light but these instruments have been

observed to fail in identifying all the phases present in the mixture. A recent method

to overcome the limitations of the traditional instruments is by the use of X-rays in

place of infrared or visible light. This technology is known as X-ray transmission

videography (Zou & Shaw, 2006).

Fig 5.1 shows an image from a typical X-ray view cell used for observing phase

behaviour of Bitumen. The locations of the interfaces between the various phases of

Bitumen (seen in the image as grayscale intensity changes in the horizontal direction)

are used to compute important phase equilibrium data. Manual marking of these

interfaces and the adjoining boundaries is both time consuming and inefficient. This

is especially true when the task has to be performed for a wide range of temperatures,

pressures and volumes. The goal of this work is to automate this process as much as

possible using state of the art computer vision techniques.

The X-ray view cell consists of a hollow Beryllium cylindrical rod with an en-

closing steel plate at the top and a Beryllium insert at the bottom. The top plate

is attached with bellows for varying the internal volume and the Beryllium insert

permits detection of small volumes of dense liquid phases. Above this insert sits a

magnetic stirrer, which is used to mix and homogenize the heavy oil. The heavy oil

is contained inside the hollow portion of the Beryllium rod and X-ray images of the

whole setup are obtained (Zou & Shaw, 2006).

Fig 5.2 shows the individual components of the view cell as described above. The

filter in Fig 5.2b is used to restrict the stirrer from falling into the insert. The top

plate is clasped to the upper part of the view cell and the insert along with the filter

and the stirrer is fitted into the hollow part of the view cell at the bottom. The stirrer

is then operated using an external magnetic field.

Fig 5.3 marks the components and the phase boundaries in the X-ray image ob-

tained. The grayscale values observed in this image directly correspond to the ab-

sorbency of the material at that point. For example, the vapour phase absorbs little

energy and appears light. There are two liquid phases shown in this image and

both of them absorb higher energy than the vapour phase and hence look darker.

The predominantly dark area in the image corresponds to the non-hollow portion of

the Beryllium rod, which completely absorbs X-ray energy and hence appears black.

From these images, the volumes of all the phases can be obtained by computing

the distance between the various interfaces as the cross-sectional area of the hollow

part of the Beryllium rod is known a priori. Typically X-ray images are obtained

very frequently and human marking of the interfaces is time consuming when a large
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volume of images are to be analyzed to investigate phase properties of fluids at dif-

ferent conditions. Instead, state of the art computer vision techniques can be used

for automatic detection of all the interfaces present.

Figure 5.1: Typical X ray view cell image. The grayscale changes in the horizontal
direction represent phase boundaries

(a) Top plate with
bellows

(b) Beryllium insert,
filter and the mag-
netic stirrer

(c) Hollow Beryllium
rod from top view

Figure 5.2: Components of the X-ray view cell

The problem of automatic detection of the interfaces and boundaries in a X-ray

view cell image is approached here using the following two steps:

• Image segmentation:- Locating the area between the Beryllium insert and

the bellows in the image; and

• Edge detection:- Detection of edges inside the above segmented area for find-

ing the interfaces;

Image segmentation and Edge detection are classical inverse problems in image

processing and generic solutions do not exist for either of them. The algorithms chosen
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BellowsVapour

Interface

Liquid
Interface

LiquidFilter
Beryllium 
insert

StirrerLiquid

Figure 5.3: X-ray view cell with important components marked

for the current work are the ones that are relevant and sufficient for the problem at

hand. Segmentation is implemented using the Statistical Region Merging algorithm

(Nock & Nielsen, 2004) and Edge detection is performed using the algorithm due

to (Elder & Zucker, 1998). Other standard image processing algorithms such as the

Hough transform for line detection are also used.

Section 5.2 describes the various segmentation algorithms analysed in order to

motivate the choice of the Statistical region merging algorithm and section 5.3 simi-

larly motivates the preferred edge detection algorithm. Finally, section 5.4 presents

a few examples, that showcase the performance of the overall algorithm.

5.2 Segmentation

Image segmentation algorithms belong to one of the following three classes as de-

scribed in Chapter 1:

• Thresholding techniques

• Curve evolution techniques

• Region merging techniques

5.2.1 Thresholding techniques

Basic thresholding techniques rely on estimating global thresholds utilizing the his-

togram of an image. As local pixel information is lost in forming the image histogram,
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these techniques cannot provide a correct segmentation in all scenarios. For example,

Fig 5.4 shows an image and its histogram. The initial peak in the histogram corre-

sponds to the dark area in the image and based on trial and error a good threshold

which separates this region from the foreground has been found to be around 20 to

50. The segmentation for some thresholds in this range is shown in Fig 5.5.

(a) An sample image

(b) Histogram

Figure 5.4: Sample histogram of a X-ray view cell image

The segmentation obtained in all the cases is clearly not satisfactory. In fact,

it has been found that no single global threshold gave an acceptable result. Hence,

automatic segmentation algorithm using a global threshold cannot be used to achieve

correct segmentation. For this reason, Otsu’s method has also been observed to give

unsatisfactory results.

In adaptive thresholding, instead of a global threshold, local thresholds are com-

puted for each pixel. These techniques are useful for example, in segmenting images
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(a) Threshold of 25 (b) Threshold of 35 (c) Threshold of 50

Figure 5.5: Segmentation for various hard thresholds

with written text from the background. In X-ray images simple adaptive thresh-

olding results in images with speckle noise. This is because for a large part of the

background, no foreground is present. A combination of adaptive and global thresh-

olding results in an image which highlights the intensity discontinuities in the images

as shown in Fig 5.6. The mean value around each pixel is computed(in a predefined

neighbourhood, N) and the pixel is labelled as foreground if the difference between

the intensity of the pixel and the mean is greater than a single threshold C. Sig-

nificant portion of the boundary is not detected by this method as can been in the

figure.

Figure 5.6: Adaptive and global thresholding combined N = 11, C = 7

5.2.2 Curve evolution methods

In these techniques, a contour is initialized arbitrarily in the image and it is propa-

gated through the use of image and curve forces to the object of interest. The image

forces tend to pull the contour towards the desired object and the purpose of the curve

forces is to maintain smoothness of the contour. The following (“Energy”) functional

considered in (Chan & Vese, 2001) which combines these two types of forces illustrates

the basic idea:
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E(b1, b2, f) = µ · Length(f) + ν · Area(insidef)

+ λ1

∫

inside(f)

|I(x, y)− c1|
2dxdy

+ λ2

∫

outside(f)

|I(x, y)− c2|
2dxdy

Here, f represents the contour; I the image; µ, ν, λ1, λ2 are positive constants and

c1, c2 are the pixel intensity averages inside and outside the contour respectively. The

last two terms in this expression are minimised when the regions inside and outside

the contour are as homogeneous as possible. These correspond to the image forces,

whereas the first two terms are for regularization and correspond to the curve forces.

Early minimization algorithms (Kass et al., 1988) for similar energy functions

were based on the representation of the contour f as a one dimensional map: C :

[0, 1] → R
2. Such a representation was later found to be insufficient to allow for

arbitrary breaking and joining of the contour. This ability is needed, for example,

when multiple objects are present in the image.

The level set method introduced by Osher and Sethian (Osher & Sethian, 1988)

solves this problem by embedding the curve f in a two dimensional function, u:

f = {u = 0}, i.e. f is the zero level set of u. Level set techniques have been

successfully used in computer vision for curve evolution purposes following the work of

Caselles et al., 1997. The energy functional is minimized using calculus of variations to

derive an equation which describes the evolution of the curve f . The evolution drives

the curve towards a local minimum of the energy functional. Based on this a similar

equation for the embedding function u is obtained. Evolution of u is implemented on

the image grid using iterative implicit finite difference schemes (Chan & Vese, 2001).

The image forces in the functional defined before are region based i.e. region

statistics such as the means c1, c2 are computed. Most such functionals only allow

segmenting the object into two regions i.e. to achieve a binary segmentation. This

is problematic in the case of X-ray view cell images, as the number of homogeneous

regions in most cases is not equal to two. Another important class of image forces

arise by considering the edge information present in the image, as was originally

done in Caselles et al., 1997. The edge based methods are not restricted to binary

segmentation and can detect any number of objects which have a prominent boundary.

Both these methods are discussed below.

The evolution of the curve using the minimization algorithm described in (Chan

& Vese, 2001) with the parameters λ = 1.00, µ = 0.1 ∗ 255 ∗ 255, ν = 0.0 on the
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image considered before is shown in Fig 5.7. Clearly, the segmentation obtained is

imperfect. This is mainly due to the fact that the model used is only applicable for

binary image segmentation where the foreground and background have homogeneous

pixel intensities. The foreground region obtained in this segmentation, consisting of

the inside of the contour, is homogeneous whereas the background is not.

(a) Contour in the
Initial stages

(b) Contour after
some iterations

(c) Contour at con-
vergence

Figure 5.7: Curve evolution using Chan-Vese method

Instead of directly using the pixel intensities in the energy functional (which con-

strains the inside and outside regions to be homogeneous), edge information can also

be used to drive the contour. This is done in the classical Geodesic Active Contours

(Caselles et al., 1997). The energy functional in this case is defined as

E(C) =

∫ 1

0

g(|∇I(C(q))|C ′(q)|dq

where, g : [0,+∞) → R
+ is strictly decreasing such that g(ω) → 0 as ω → ∞, ∇

is the gradient operator and I the image. The contour which minimizes this energy

would be located close to the edges of the object. Even though edge information

provides the ability for the segmented regions to be non-homogeneous, these methods

are affected by noise in the image. Implementing the geodesic active contours (using

the GAC++ Matlab toolbox (Papandreou & Maragos, 2007)) on X-ray images did

not result in an acceptable segmentation - the final contour obtained was far away

from the desired object.

In both the region based and edge based segmentation models described above, no

information about the shape being detected is used. In images analysed in the current

work, it is clear that the interest is only in detecting rectangular shapes. (Bresson

et al., 2006) describes an algorithm into which arbitrary shape prior information can

be incorporated. Results on X-ray images even with shape prior information have

not been satisfactory (the code for this implementation can be found at (Bresson

et al., 2006)). This can be attributed to the fact that the energy functional used

in (Bresson et al., 2006) is an extension of the energy functionals used in (Chan

& Vese, 2001) and (Caselles et al., 1997). An additional shape term is added to
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these energy functionals which restricts the active contour from deforming arbitrarily.

Hence, the homogeneity constraint and image noise still affect the final algorithm and

result in an unsatisfactory segmentation.

5.2.3 Region merging methods

The statistical region merging (SRM) algorithm has been described in Chapter 1.

Fig 5.8 shows the result of SRM on the image in Fig 5.1 on the left and a binarized

image on the right. The binary image is obtained by naming the region with the

largest number of pixels as the background. Even though the segmented image is not

accurate inside the left and right parts of the detected object, it successfully detects

these parts as a whole, as can be seen in the binarized image.

Fig 5.9 shows the result of SRM on a different image with the same value of

Q. Here, the distinction between the left part (Beryllium insert) and the right part

(area above the filter) has been lost. In this image, the Beryllium plate supporting the

stirrer has been reduced in thickness which makes SRM over-segment the image. Over

segmentation in SRM is known to occur with a very high probability (≥ 1−O(|I|δ))

and this can be seen in this example.

(a) Result of SRM with Q = 256
on image in Fig 5.1

(b) Binary image achieved by sim-
ple heuristic

Figure 5.8: SRM with Q = 256 and the resulting Binary images

To overcome this difficulty of over merging in SRM, we use SRM with Q = 256

only to detect the overall boundary of the object based on the binary image (using

the basic Hough transform for line detection). This boundary for the image in Fig 5.1

is shown in Fig 5.10.

Once the overall boundary of the object has been detected, the interfaces inside

are detected using an edge detection algorithm.
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(a) Input (b)

Figure 5.9: SRM with Q = 256 on a different image

Figure 5.10: Overall boundary detected using SRM with Q = 256

5.3 Edge detection

Edge detection is the problem of identifying boundaries between dissimilar objects in

an image. All most all edge detection algorithms are based on detecting significant

intensity differences between neighbourhood pixels. Prominent changes in intensity

can be detected by convolving the image with derivative operators. First order deriva-

tive operators as well as second order derivatives can be used for edge detection. In

the case of first order derivatives edges are detected by thresholding and in the case

of second order derivatives, edges are based on zero crossings. The problem with

derivative operators is that they are very sensitive to noise in the image and hence

an important pre-processing step of image smoothing is done first. Smoothing and

differentiation can be combined into a single operator owing to the linearity of the

convolution operation. The expressions for derivative of Gaussian(DoG) filters in the

x and y direction were previously shown in Chapter 1.

If the image being considered is completely free from sensor noise, the above
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derivative estimates (with any value of σ) can be used to establish a criterion for

edge detection. Such an edge detection algorithm might still be imperfect due to

the fact that edges (in a typical image) exhibit a wide range of blur scales. Hence,

computing derivatives at a single scale σ would not suffice. For example, if the image

contains both a blurred and a sharp edge, a high value of σ would be appropriate

to detect the blurred edge but not suitable for localizing the sharp edge. Likewise,

smaller values of σ are preferred for detecting sharp edges. Automatic selection of the

scale parameter based on local variations of intensity in an image has been studied

in (Lindeberg, 1996).

When the image obtained is corrupted by noise, it is no longer appropriate to use

the derivative estimates I ′out, I
′′
out directly. This is due to the fact that differentiation

amplifies the noise in the image and the derivative values obtained would not be

accurate. Basic edge detection algorithms use a unique global scale (σ) for derivative

estimation. For example, in the Canny edge detection algorithm (Canny, 1986), the

gradient at all pixels is computed using the same scale parameter, σ. A problem with

such methods is that some derivative values may be spurious.

Elder & Zucker, 1998 (EZ) describe an algorithm for automatic detection of local

scales at which derivative estimation is not affected by noise up to some statistical

bounds. Such automatic scale detection is important in the present problem because

interfaces in X-ray view cell images tend to exhibit large variance in blur scale and

contrast. Edge detection in the EZ algorithm is based on zero crossings of the second

derivative of the image. The algorithm takes a single input, the variance of the sensor

noise (γ). Based on this variance, a unique minimum reliable scale is computed at

every pixel location by considering the scale at which the magnitude of the derivatives

exceed the magnitude of sensor noise with a high probability. Once the minimum reli-

able scale at each pixel is computed, derivative estimates at these scales are obtained

and zero crossings detected.

Fig 5.11 shows the result of EZ edge detection with σ = 1.5 on the left and with

σ = 0.5 on the right. As σ = 1.5 is high, low contrast edges (e.g. inside the left part

of the object) are not detected. When σ = 0.5, these edges are detected with a slight

increase in edges due to sensor noise.

Based on EZ edge detection with σ = 1.5, the right edge of the Beryllium insert

is detected using simple heuristics. Interfaces in the right sight of the object and

the upper and lower boundaries of phases inside the left object are also detected at

this stage using predefined thresholds. The detected boundaries and interfaces are

shown in Fig 5.12a. Using σ = 0.5, the interfaces inside the left part of the object

110



(a) Edge detection inside the seg-
mented image

(b) Edge detection inside the left
part of the segmented image

Figure 5.11: EZ edge detection with σ = 1.5 and σ = 0.5

are detected. Contextual information, in the form of gradient angles, is used in both

cases to reduce the number of spurious edges due to sensor noise. Fig 5.12b shows

the final image with the detected boundaries and interfaces.

(a) Boundaries and interfaces de-
tected with σ = 1.5

(b) Combined boundaries and in-
terfaces detected with σ = 1.5 and
σ = 0.5

Figure 5.12: Boundaries and interfaces detected with σ = 1.5 and σ = 0.5

5.4 Results

For ease of use in analysis, a simple GUI has been developed based on the open

Qt widget library in C++. This GUI is shown in Fig 5.13. Fig 5.13a shows the

file menu which contains the options to Open, Tune, Save, Exit. The “Tune”

command is used to set up the SRM segmentation parameter Q for accurate location

of the hollow part of view cell. Once this object has been identified, the “Open”

command is used to detect the interfaces inside using a predefined threshold. Inside
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the Settings Dialog in the “Edit” menu, Q (named SRM PARAM) and the edge

detection threshold (named EDGE THRESH RIGHT) can be set. The Edit menu

and the Settings Dialog are shown in Fig 5.13b and Fig 5.13c.

(a) File menu (b) Edit menu

(c) Settings Dialog

Figure 5.13: A simple Graphical User Interface for the Automatic interface and
boundary detection program

A few examples of the algorithm are shown in Figures 5.14, 5.15, 5.16. In each of

these examples, the original image, the result of segmentation and the final result are

shown along with the parameters Q and the threshold used for edge detection.

In a single batch of experiments comprising a test set of 467 images (image shown

in Fig 5.1 belongs to this set), the success rate of the algorithm was about 99.14%.

The failure cases contained images with very low contrast interfaces which could not

be detected by the edge detection algorithm. The performance of the algorithm on

another set of X-ray view cell images (e.g.: Fig 5.4a) generated with a different ex-

perimental setup was also similar. Another important aspect of the overall algorithm

is that the parameters Q and T need only be changed when the experimental setup

used to generate the X-ray view cell images is changed. The complete source code

for the program is available at www.ualberta.ca/ pjampana/research.html.

5.5 Summary

Basic histogram and energy based segmentation methods were found to be insufficient

for accurate overall segmentation of X ray view cell images. The Statistical region

merging algorithm on the other hand give good overall segmentation allowing detec-

tion of the outer boundaries. To detect interfaces and boundaries which could not be

detected using segmentation methods, the Elder Zucker edge detection method has
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(a) Original Image (b) Result of SRM with Q = 32

(c) Final result with an edge
threshold of 50%

Figure 5.14: Interface and Boundary detection - Example 1

(a) Original Image (b) Result of SRM with Q = 32

(c) Final result with an edge
threshold of 50%

Figure 5.15: Interface and Boundary detection - Example 2
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(a) Original Image (b) Result of SRM with Q = 32

(c) Final result with an edge
threshold of 50%

Figure 5.16: Interface and Boundary detection - Example 3
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been used. Low as well as high contrast edges could be extracted using this method

by specifying the sensor noise variance. Results show that the method works well for

a large set of X ray view cell images.
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Chapter 6

Concluding Remarks and Future
Work

6.1 Conclusions

This thesis has successfully demonstrated the development and ability of novel Com-

puter vision based sensors for three relatively diverse engineering applications, two

of which are currently in use in the oil-sands industry. The thesis has also provided

a comprehensive review of the underlying theory for image processing and particle

filtering algorithms.

The main area of research undertaken in this thesis is the problem of automatic

detection of the Bitumen-froth and Middlings interface (Chapters 3, 4). This problem

has been approached using two methods. The first method (Chapter 3), which is based

on a combination of a simple edge detection and a particle filtering procedure has been

developed for the case of a single sight glass. This method has been implemented at

Suncor Energy Inc., in December 2006 and has been working successfully ever since.

The detection of the interface in the case of multiple view glasses has been dis-

cussed in Chapter 4. A novel idea of image differencing for interface detection has

been developed for this purpose. The method is designed to be theoretically simple

and practically robust. The program for interface level detection has been developed

with the help of Matrikon Inc. and installed at Suncor Energy Inc., in August 2008.

The soft sensor has provided excellent results since inception. The cost of equipment

(hardware only excluding installation costs) for one vision sensor is roughly 2000$

which is very small compared to the cost of traditional instruments such as nuclear

density profilers which is approximately 100, 000$.

Another significant work undertaken as a part of the thesis is the problem of

detecting the interfaces in the X-ray view cell images of Bitumen (Chapter 5). The
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algorithm developed is a convenient blend of existing state-of-the art techniques in

computer vision. This method has also been observed to deliver precise results under

a large range of possible X-ray images. A Graphical User Interface has also been

developed for this algorithm for ease in usage.

A substantial amount of research effort has been dedicated towards learning the

basics of measure theory (Chapter 2) to develop the knowledge base for understanding

the proof of the convergence of the particle filters. Particle filters are used in the

development of the interface level detection method in Chapter 3. The two important

concepts of Conditional expectation and Conditional probability have been presented

from set-theoretic foundations. Existing literature has been referenced for finding the

proofs of convergence for the interested reader.

The basics of automatic image analysis have been presented (Chapter 1) as a

foundation for all the custom image analysis algorithms developed in this thesis. The

main areas of Edge detection and Segmentation have been discussed from grass root

levels and many recent methods have been explained in a tutorial manner.

Overall, this thesis presented a few instances when image analysis based sensors

have helped automate crucial chemical processes. This automation is even more

appealing when it is noted that comparable results could not be achieved by any of the

existing (traditional) sensors (consider for example the sensors discussed in Chapter 3

for interface level detection). An advantage of the vision based systems developed,

to be perceived, is the high precision of the estimated quantities in Chapters 3, 4

and 5. This is possible due to the high resolution of the images that can be obtained

even with moderate imaging equipment. Image based sensors are also extremely cost

effective and hence ideal for many industrial/chemical processes for which existing

technologies are not adequate.

6.2 Future Work

Chapter 2 presented the basics of measure theory required to help in deriving the

convergence results of the SIR (Sampling Importance Resampling) particle filter.

Understanding the proof of convergence equips the researcher with a sound theo-

retical background for analyzing many other existing particle filtering algorithms

or even to develop new ones as per the demands of the application. As a future

work, these proofs can be explained and advanced concepts in particle filters (such

as Rao-Blackwellization) might be studied in detail. Such work would benefit future

researchers who can choose an apt filter for solving real world problems. In a much

broader scale, Stochastic Filtering Theory (e.g. Kallianpur, 1980) can be studied in
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its own right as it presents the theoretical basis for all filtering problems.

Chapters 3 and 4 presented computer vision based solutions for challenges faced

in the Oil Sands industry. In this industry, almost all of the important processes are

monitored using video cameras. These video images can be used to build intelligent

vision based systems which extract valuable information about the processes, For

example, consider a video camera placed at the top of the separation cell which

captures the colour and motion of Bitumen-froth. An image based algorithm can be

used to automatically estimate these quantities and correlate them to the quality of

the Bitumen froth, which is a crucial variable for the industry. Even if closed loop

automation is not possible for some processes, the information provided might itself

be of great value as in this example. Hence, by analyzing the videos obtained at the

industry many interesting research opportunities can be found.

Chapter 5 described a stand alone application of computer vision wherein the

information extracted was of significant value for understanding the phase equilib-

rium of Bitumen. Many such applications can be found in various other areas as

described in the introductory chapter (Chapter 1). In particular, medical imaging

has attracted significant attention from the vision community. Some examples are

detecting tumours in MRI scans of the brain, identifying diseased cells in a micro-

scopic blood smear, automatic detection of organs in CT images etc.

Automatic image analysis and Particle filters - the two areas which were treated

in this thesis, provide both theoretical and practical challenges for exciting research

work.
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