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Abstract

The mid-Cretaceous Ag-Pb-Zn-Cu-Sn Keglovic deposit, located in the south-central
Yukon, is formed by the superposition of an earlier Pb-Zn skarn system with later Keno Hill-
style Ag-Pb-Zn veins and is the product of complex regional geological processes, which occur
synchronously with mineralization.

The Keglovic deposit is located in the Tay River district, which contains a unique
assemblage of mid-Cretaceous (120-90 Ma) igneous rocks belonging to the Omineca Magmatic
Belt (OMB). The tectonic setting of plutons in the OMB is controversial. All previous attempts
to model the OMB assume that the plutons within it form continental margin-parallel bands,
which migrate systematically inboard (away from the margin) with time. This study
demonstrates that plutonism in the Tay River district spans a period from 109-90 Ma with no
inboard migration, violating this assumption.

Igneous activity in the Tay River district can be divided into three suites. The oldest
plutons are 109-104 Ma S-type granites belonging to the Anvil suite, which derived from
sediment melting in an exhuming thickened crust. This study uses a novel method to correct
discordant U-Pb analyses from xenocrystic zircons from these S-type granites, allowing the
identification of the Hyland Group as the protolith for the Anvil suite magmatism. The second
suite are 100-96 Ma Tay River I-type felsic rocks, which are derived from lower crustal melting
generated by mantle heat input and regional exhumation. The intrusion of the final 96-90 Ma
Tombstone suite represents the waning of the thermal pulse and the end of exhumation.

Plutonism in the Tay River district terminates at 90 Ma.

il



A thermochronological study on these three suites indicates that the intrusion of the two
older suites occurred synchronously with the exhumation of the Tay River district. The oldest
OMB plutonic rocks were emplaced at 12—15 km depth at 10742 Ma. These rocks cooled below
the “°Ar-*’ Ar closure temperature in biotite (365-395°C), which corresponds to a depth of 5.5—
10.5 km, at ~104£2 Ma. They then cooled below the U-Th/He closure temperature in zircon
(195-215°C), which corresponds to a depth of 2.5-4.7 km, before ~99.2 + 3 Ma.

The new definition of suites, based on emplacement age, can be expanded to previously
published data from the northern Cordillera to create a new temporal pattern of pluton evolution.
The oldest S-type plutons form a core in the regions with the thickest crust and a fertile protolith.
Regional I-type plutonism occurs on the peripheries of the Yukon-Tanana terrane. Finally 96-90
Ma plutonism occurs across the whole northern Cordillera. This pattern of plutonism can be
explained by delamination of over-thickened lithosphere beneath the Yukon-Tanana terrane. In
this model, lithospheric delamination drives regional uplift, as well as creating space for
upwelling asthenosphere to transfer heat above the Moho generating lower crustal melts.

The development of mineralization at the Keglovic deposit can now be reexamined
within the context of this enhanced regional geological understanding. A Re-Os model age of
arsenopyrite from within the vein system yields an age of 100+2 Ma indicating that
mineralization occurred synchronously with the exhumation, extensive OMB plutonic activity,
and the delamination event. Carbon, oxygen, sulphur and lead isotope analyses suggest a purely
crustal origin for the mineralizing fluid with no direct magmatic input and that the same fluid
formed both the skarn and the subsequent vein mineralization. The superposition of the
mineralization styles is therefore due to telescoping of a single hydrothermal system as a result

of regional exhumation. Fluid flow and skarn mineralization were controlled by a fault with
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hydrothermal circulation resulting from a high geothermal gradient derived from crustal
thickening, intrusive igneous activity and/or delamination-derived lower crustal heating. The
change in mineralization style from the skarn to the veins occurred due to a combination of
increased volatile content in the fluids — derived from reactions with the host rock - and
decreasing pressure due to regional exhumation. In combination, these two effects led to
effervescence within the fluid, which promoted deposition of the veins.

In summary, the Keglovic deposit is a product of the regional geological evolution of the
Tay River district. Therefore, any future exploration for Keglovic-type deposits will need to

consider the broader geological context of the mineralization.
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Chapter 1: Introduction

The vast and remote Yukon Territory in northern Canada represents one of the great
frontiers for global mineral exploration and has been the focus of prospecting since 1896 when
Skookum Jim Mason discovered gold in Bonanza Creek and sparked the Klondike Gold Rush
(Adney 1994). To this day gold exploration contributes significantly to the economy of the
Yukon with current estimates of available hard rock gold reserves of ~25 million ounces for the
territory (Yukon Government 2014). As well as gold, the Yukon Territory contains a number of
significant deposits of other commodities, especially within the Paleozoic and Mesozoic basinal
sediments that comprise the Selwyn Basin (Figure 1.1; Gordey 2013, Nelson et al. 2013).
Deposit types found within the Selwyn basin include: the Anvil, Howard’s pass and Macmillan
type stratiform sediment-hosted massive sulphide occurrences (Goodfellow 2007, Goodfellow
and Lydon 2007); the Marg volcanogenic massive sulphide deposit (Holbek and Copeland
2000); the Mactung and Cantung tungsten skarns (Dick and Hodgson 1982); the Keno Hill Ag
bearing veins (Beaudoin and Sangster 1992); and a plethora of skarns, veins and porphyries with
variable metallogenic signatures (Deklerk and Traynor 2005).

In the central Yukon, the Anvil district sediment-hosted massive sulphide deposits were
discovered to the North of the town of Faro in the 1950’s and 1960’°s (Tempelman-Kluit 1972,
Jennings and Jilson 1986). Their discovery led to extensive exploration in the area, and the initial
discovery of a small base metal prospect about 45 km to the north of the Anvil district called the
Keglovic deposit. However, the Keglovic prospect contained sulphides in veins and
skarn/carbonate altered rocks, and so was of limited interest to prospectors focused on finding

another SHMS deposit (Cathro 1967, Eaton 2011, Dumala 2013). Interest in this region was re-



kindled in 2010 when Silver Range Resources amalgamated an 1100 km” staked area containing
~22 mineralized zones into the “Keg Property” (Figure 1.1). The Keglovic (or “Keg”) deposit is
the largest of the known mineralized zones on the Keg Property, with an inferred resource of
39.8 million tonnes of 30.25 g/t Ag, containing metal estimates of 38.7 million ounces of Ag,
675 million Ibs of Zn, 228 million Ibs of Pb, and 131 million Ibs of Cu (Dumala 2013).
Preliminary work on the deposit also reported anomalously high In, Sn and Cd (Brand 2011).
However, advanced exploration on the Keglovic deposit in the summers of 2010 to 2013,
including 69 drill holes, was unable to produce a coherent descriptive or genetic model for the
mineralization observed. Key questions that could not be answered included: the source of the
fluids involved in the mineralization; the number and style of mineralization events; and the
nature and age of the causative intrusion. Without fully understanding the genesis of the
Keglovic deposit it is impossible to effectively exploit it or explore for similar types of
mineralization elsewhere. This project aimed to answer these questions and to create a genetic
model for Keglovic style mineralization that can act as a guide to future exploration efforts.
Constraining the genesis of mineralization at the Keglovic deposit requires a detailed
understanding of the regional geology, tectonic setting, and associated magmatism at the time of
deposit formation. The Tay River district, which surrounds and contains the Keg property, is
underlain by one of the highest densities of mid-Cretaceous igneous rocks in Yukon (Figure 1.1;
Pigage 2004, Gordey 2013). The district also contains up to 38 km diameter calderas,
representing the only known mid-Cretaceous extrusives in the Yukon (Gordey 1988). These
intrusive and extrusive igneous rocks belong to the Omineca Magmatic Belt (OMB), an
enigmatic and poorly understood band of plutons that extend along the length of the northern

Cordillera (Figure 1.1). Numerous tectonic models have been proposed for the genesis of the



OMB, including formation due to a flat-slab, back arc extension or a cryptic western dipping
subduction zone (Mortensen et al. 2000, Hart et al. 2004, Mair et al. 2006, Johnston 2008,
Rasmussen 2013).

As well as containing a unique mid-Cretaceous igneous rock assemblage the Tay River
district has experienced a complex Mesozoic tectonic evolution, including >10 km of regional
uplift synchronous with the OMB plutonism, which led Smith and Erdmer (1990) to describe the
region as “atypical of the Cordillera” with potentially “a unique tectonic history or position in
the orogen [northern Cordillera] ”. However, as the plutons in the Tay River district have
traditionally been thought to be uneconomic or barren, the region has received little attention
academically or economically (Pigage and Anderson 1985, Pigage 2004, Cobbett 2015).

Without a complete understanding of the igneous and tectonic evolution of the Tay River
district it is impossible to understand the mineralization at the Keglovic deposit. Therefore, in
this thesis I aimed to constrain the nature of OMB plutonism and volcanism in the Tay River
district as a function of the complex tectonic evolution the region experienced in the mid-
Cretaceous. Only once this regional framework had been created did I attempt to explain the
mineralization observed at the Keglovic deposit.

Throughout this thesis I hope to convince the reader the Keglovic deposit is a product of
the complex regional tectonic and igneous evolution, which occurred synchronously with the
deposit formation. Therefore, in future exploration efforts the geological evolution of a region
and environment of mineral formation needs to be considered, not just the age or geochemistry

of the surrounding igneous rocks.
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Figure 1.1: Map of Yukon showing key geographical and geological features. Selwyn basin extents

from Nelson et al. (2013). OMB bodies within the Selwyn Basin (intrusives in pink and extrusives in

orange) from Rasmussen (2013).



Outline of the thesis

This thesis contains 4 main chapters (Chapter 2 to 5), each addressing a fundamental
question pertaining to the evolution of the OMB and the Keglovic deposit. Chapter 6 concludes
the thesis. A summary of the main topics addressed by Chapters 2-5 is given below.

Chapter 2- The Evolution of Mid-Cretaceous Omineca Magmatic Belt Granites in the
Northern Cordillera: A Product of Mantle Lithosphere Delamination- provides a detailed study
of the mid-Cretaceous rocks within the Tay River district. This chapter uses petrography, U-Pb
geochronological data, whole rock geochemical data, zircon chemistry and isotope chemistry
generated during this PhD project. This data is integrated with compilations of existing data
allowing for the sub-division of the OMB rocks in the district into suites based on time of
emplacement. The petrogenesis of the igneous rocks in the Tay river district is discussed and the
newly outlined pluton sub-divisions are expanded across the northern Cordillera. Finally a brief
descriptive tectonic model is created to explain the newly developed pattern of OMB plutonism
within the Tay River district and across the northern Cordillera.

Chapter 3- Identifying the source of an S-type granite via xenocrystic zirconology-
provides a novel method for identifying the source of an S-type granite from U-Pb LA-ICP-MS
analyses of inherited zircon grains. The method uses the software produced by Reimink et al.
(2016) to correct for Pb loss in the inherited zircons and extract the inherited zircon age spectra
from an S-type granite. By statistically comparing the extracted age spectra to those from
regional sedimentary rocks it is possible to identify the sedimentary melt sources of an S-type
granite. This method is applied to an S-type granite from the Tay River district.

Chapter 4- Thermochronology of Omineca Magmatic Belt granites in the Selwyn Basin:

Evidence for Mid-Cretaceous exhumation of the central Yukon and passage of the northern



Cordillera over the Yellowstone Hotspot in the Late Cretaceous- provides a detailed study of the
thermal and exhumational history of the Tay River district. This chapter uses U-Pb
geochronological data combined with Ar-Ar and U-Th/He analyses to accurately constrain a
previously hypothesised period of uplift that affected the Tay River district in the mid-
Cretaceous.

Finally, based on the understanding of the mid-Cretaceous Tay River district generated
by Chapters 2 to 4, Chapter 5- The Keglovic Deposit: A telescoped Ag-Pb-Zn skarn and vein
deposit, Central Yukon, Canada- provides a descriptive and genetic model for mineralization at
the Keglovic deposit. This chapter uses petrography, isotope studies, Re-Os geochronological
data, microthermometry and whole rock geochemical data to accurately describe the evolution of

mineralization at the Keglovic deposit.



Chapter 2: The Evolution of Mid-Cretaceous Omineca Magmatic
Belt Granites in the Northern Cordillera: A Product of Mantle

Lithosphere Delamination.

INTRODUCTION

The northern Cordillera of the Yukon Territory, Canada and Alaska, USA contains multiple
phases of igneous activity associated with the complex amalgamation of terranes during the
Mesozoic. Mid-Cretaceous (120-90 Ma) plutons in the northern Cordillera are considered one of
the most important magmatic episode in the Cordilleran orogenic belt due to their diverse nature,
regional abundance, and the varied economic resources associated with these magmatic phases
(Hart et al., 2004). Two belts of mid-Cretaceous plutonism have been identified (Armstrong,
1988): the Coast Plutonic Belt (CPB), which is derived from the dehydration of an east dipping
subducting plate (Woodsworth et al., 1991), and the more enigmatic, inboard, Omineca
Magmatic Belt (OMB). This study focuses on the origin of the northern portion of the less well-
understood OMB. Numerous models have been proposed for the formation of the plutons in the
northern OMB including flat-slab, back arc extension and a cryptic western dipping subduction
zone (Rasmussen, 2013; Mortensen et al., 2000; Hart et al., 2004; Mair et al., 2006; Johnston,
2008). All previous models have been based on the assumption that the mid-Cretaceous plutons
form arc-margin parallel bands, which systematically young inboard.

In this paper, we propose a new model for OMB magmatism focusing on mid-Cretaceous
constraints for granite genesis in the Tay River district, to the north of Faro, central Yukon. By

defining plutonic suites by time of emplacement, we then expand this model to the scale of the



northern Cordillera using literature data and propose a new formation mechanism for OMB

magmatism.

Geology Of The Northern Cordillera

The northern Cordillera represents the complex amalgamation of multiple terranes and basins
onto the western margin of the North American craton (Figure 2.1). The eastern most,
parautochthonous, sedimentary rocks were deposited in the Selwyn Basin, which formed during
Proterozoic rifting along the ancestral North American passive margin. The basement to the
Selwyn Basin is likely rifted older crust and cratonic rocks from the North American continent
(Gordey and Anderson, 1993; Lund, 2008). The Selwyn Basin is bound to the north and east by
carbonate-dominated platforms (the Ogilvie and Mackenzie platforms respectively). Sediment
deposition in the Selwyn Basin occurred in three stages. The initial deep-water Selwyn Basin
sedimentary assemblage was deposited from the Late Proterozoic to Middle Devonian. The
deep-water rocks are unconformably overlain by Devono-Mississippian turbidities and
conglomerates of the Earn Group. The final stage of sediment deposition in the Selwyn Basin
occurred from the Mississippian to the middle of the Mesozoic, forming an assemblage of clastic
shelf rocks (Gordey, 2013). Sediment deposition in the Selwyn Basin terminated in the Early to
Middle Jurassic with the onset of the Sevier-Columbian orogeny and amalgamation of exotic
terranes onto the western margin of North America (Nelson et al., 2013; Nelson and Colpron,
2007). The amalgamation of terranes appears to have occurred in two stages. “Intermontane”
terranes (which consist of the Yukon-Tanana and Slide Mountain terranes in Alaska and the
northern Yukon, and the Cache Creek, Stikinia and Quesnellia terranes in the southern Yukon
and northern British Columbia) were initially accreted to the North American margin in, or pre-,

the Early Jurassic (Colpron et al., 1996; Mihalynuk et al., 1994; Hildebrand, 2014; Beranek and



Mortensen, 2011). Intermontane terrane accretion was followed by the accretion of the “Insular”
terranes. Current studies in the northern Cordillera do not agree upon the timing of Insular
terrane accretion. The majority of the literature supports Insular terrane accretion in the Early to
mid-Cretaceous (Evenchick et al., 2007; Nelson et al., 2013), however, there are a number of
studies that indicate Insular terrane accretion occurred post-Late Cretaceous, in the early
Cenozoic period (Hults et al., 2013; Johnston and Canil, 2007). The Intermontane terranes
comprise a set of arcs, remnants of marginal seas and oceanic basins, and continental fragments
that ringed the North American craton in the late Permian to Early Triassic (Nelson et al., 2006).
The close proximity of the Intermontane terranes to the North American craton throughout their
evolution is not generally accepted, with some studies suggesting that the Cache Creek terrane
was derived 1000’s of km from the western North American margin in the Tethys ocean
(Monger and Ross, 1971; Johnston and Borel, 2007). The Yukon Tanana Terrane (YTT)
represents a Paleozoic arc built onto a continental fragment, which was rifted away from the
North American craton during the late Devonian to Permian. The rocks of the Slide Mountain
terrane are the remnants of the rift generated oceanic crust that separated the YTT from North
America in the Paleozoic. Closure of the Slide Mountain Ocean was driven by west dipping
subduction beneath the YTT initiated in the Permian (Creaser et al., 1997; Mortensen, 1992;
Grant, 1997) with the accretion of the YTT with ancestral North American occurring possibly as
early as the late Permian, resulting in the Klondike orogeny (Beranek and Mortensen, 2011). The
timing and nature of YTT accretion is not universally agreed upon; paleomagnetic data and
Permian fauna suggest the Slide Mountain Ocean was not continuous with North America and

did not obduct until the Middle Jurassic (Richards et al., 1993), while other studies suggest the



Late Permian collision represents accretion between an exotic carbonate platform (Cassiar
platform) and the YTT far from the North American margin (Hildebrand, 2009; Johnston, 2008).
The Insular terranes evolved during the Paleozoic, distal to the North American margin,

in the Arctic realm (Colpron et al., 2007). In the Yukon, compressive tectonics and terrane
accretion terminated in the Early to mid-Cretaceous transforming in the Late Cretaceous into a
transtensional stress regime, which was characterized by a number of orogen-scale dextral strike-
slip faults (Nelson et al., 2013). The Tintina fault is the most easterly of these faults. The Tintina
fault accommodated 430km of motion during the early Cenozoic. The more westerly Denali fault

added another 350km of displacement beginning in the early Paleogene (Gabrielse et al., 2006).

Tectonic Setting Of The Mid-Cretaceous Omineca Magmatic Belt

In the generally accepted model for the northern Cordillera, east-directed subduction of the
Farallon plate initiates around the Middle Triassic with the subducting oceanic plate conveying
terranes into the continental margin (Beranek and Mortensen, 2011; Nelson et al., 2013;
Evenchick et al., 2007). During the Early Cretaceous, this continued east-directed subduction,
under the western most accreted terranes, at the continental margin forms the CPB. The oldest,
most westerly, plutons of the CPB were emplaced into the Insular terranes between 160-140 Ma
(Gehrels et al., 2009; Nelson et al., 2013). However, recent seismic tomography work by Sigloch
and Mihalynuk (2013) and Sigloch (2012) suggests west dipping subduction occurred at the
North American margin until at least the mid-Cretaceous, with terrane accretion occurring as the
western margin of North America is overridden by upper plate volcanic archipelagos and
subduction complexes. In this model, subduction occurs beneath the long-lived archipelagos in

almost stationary intra-oceanic trenches.
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Inboard of the CPB arc complex, the previously accreted allochthons had begun to ride up
over the edge of the North American craton, during the Early to mid-Cretaceous periods (Sevier-
Columbian orogeny; Hildebrand, 2009), along a number of NW-vergent thrusts. Lower crustal
detachments between the advancing terranes and the continental basement allowed upper crustal
shortening above the basement, forming 60 km thick crust under and involving the YTT in the
core of the orogen (Pavlis et al., 1993; Staples et al., 2014, 2016, 2013).

Initiation of plutonism in the OMB coincided with a change in tectonic regime. It is generally
thought the change was from sinistral to dextral transpression, at the western margin of cratonic
North America, triggered by a change in relative plate trajectory between the North American
and Pacific plate at ~110 Ma (Nelson et al., 2013; Elston et al., 2002). However, Kent and Irving
(2010) suggest there were actually two changes in relative plate motion around the time of
initiation of plutonism in the OMB: an earlier change from dextral to sinistral transpression in
the Early Cretaceous followed by a return to dextral transpression in the Late Cretaceous
through Eocene. The change in tectonic regime established a large dextral fault system between
115 and 95 Ma in the Teslin region, South Yukon (includes the Teslin and Cassiar faults; Nelson
et al., 2013; Gallagher, 1999; Gabrielse, 1998). This dextral system extended into the Selwyn
Basin propagating into a number of thrusts (Tombstone, Dawson and Robert Service thrusts;
Mair et al., 2006) at the north and eastern contacts of the Selwyn Basin strata with the
epicratonic rocks in the Ogilvie and Mackenzie platforms. Total displacement on this system was
around 250km (Gabrielse et al., 2006). The OMB therefore, formed in a region of previously
thickened crust escaping from the center of the Sevier-Columbian orogen, to the north, in a
dextral tectonic regime (Pavlis, 1989; Staples et al., 2016; Angen et al., 2014) with plutons

intruded during, and in part accommodating, syn-magmatic dextral shearing (Johnston, 1999).

11



Escape tectonics lead to rapid exhumation and extension in the core of the orogeny, with YTT
rocks showing 14-18 km of vertical uplift between ~118 and 105 Ma (Dusel-Bacon et al., 2002;
Staples et al., 2013, 2016; Berman et al., 2007). The rate of erosion kept up with vertical uplift at
this time, leading to the removal of >10 km of the crustal section in the YTT, and neighboring
Selwyn Basin, between ~115-100 Ma (Smith and Erdmer, 1990; Pavlis et al., 1993). Large
volumes of sediment deposited, between ~115-100 Ma, in hinterland and foreland basins in
Interior Alaska (including 5-8 km thick sections of sediments in the Yukon-Koyukuk basin and
12 km thick sections in the Kuskokwim basin), were presumably derived from this rapid erosion
(Miller and Hudson, 1991; Underschultz and Erdmer, 1991; Patton and Box, 1989). The
amphibolitic rocks of the YTT represent exhumed deeply buried continental crust (Pavlis et al.,
1993; Miller and Hudson, 1991). Core complexes exhumed during the mid-Cretaceous have been
identified in the YTT. These complexes show northwest to southeast extension (Mortensen,
1990; Staples et al., 2014; Hansen and Dusel-Bacon, 1998). At the north and northeast edges of
the Selwyn Basin and YTT, the structural overlap generated by exhumation and extension was
accommodated on the Tombstone, Dawson and Robert Service thrust faults. Movement on these
faults ended at 104-100 Ma (Mair et al., 2006), synchronous with the proposed end of regional
vertical uplift of the YTT. Post 100 Ma, dextral displacement in the northern Cordillera was
focused onto a number of crustal scale faults with movement on the Tintina Fault beginning in
the early Cenozoic (Gabrielse et al., 2006). Extension in the core of the OMB continued after
100 Ma with around 60 km of extension between the Tombstone thrust and the McEvoy
platform, parallel to the Tintina fault, occurring between 100 Ma and 67 Ma (Gabrielse et al.,

2006).
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Summary Of The Mid-Cretaceous Igneous Rocks In The OMB

The OMB consists of a band of Cretaceous plutons emplaced mainly between 118 to 90 Ma
(mid-Cretaceous) inboard of the North American continental margin. OMB magmatism follows
a near complete magmatic lull from 135 to 125 Ma in western North America (Woodsworth et
al., 1991; Armstrong, 1988), which Ross et al. (2005) equate with a period of tectonic
quiescence. Plutons of the OMB extend along the whole length of the N. American Cordillera;
this study will focus on the plutons within the Yukon and central Alaska (Figure 2.3).

Previous studies on the OMB have divided the diverse mid-Cretaceous igneous activity into
suites representing regional groupings of plutons with similar emplacement ages, mineral
assemblages and geochemical signatures. To avoid confusion with the temporal division of suites
that will be defined in this paper, the spatial divisions of plutons will be termed “plutonic
regions” . Previous analysis has identified greater than 25 separate plutonic regions (grouped into
13 larger belts) in the Yukon and eastern Alaska, covering both the CPB and the OMB (Figure
2.3; Mortensen et al., 2000; Rasmussen, 2013; Hart et al., 2004; Heffernan, 2004).

Mortensen et al. (2000) concluded that pluton emplacement in the OMB appears to step
northeast, with time, in bands parallel to the western margin of the Cordillera, and that the oldest
plutons in the OMB (114-98 Ma) occur near the Tintina fault within the Yukon-Tanana Uplands,
Anvil, Cassiar and Hyland regions. Inboard - 98-96 Ma - younger plutons (and associated
volcanics) occur within the Tay River and Fairbanks-Salcha regions. The furthest inboard, and
youngest, (98-90 Ma) plutons occur within the Tombstone-Tungsten Belt (TTB), which includes
the Tombstone, Tungsten and Mayo regions (Hart et al., 2004; Rasmussen, 2013; Morris and
Creaser, 2008). Hart et al. (2004) used iron speciation in plutons to make genetic inferences

about pluton formation. Their study tracked an inboard younging trend from the oldest-
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outboard, magnetite series, metaluminous plutons through a band of younger ilmenite series,
slightly peraluminous, plutons to the most inboard- youngest, magnetite series, alkalic plutons.
The mid-Cretaceous plutons of the OMB extend further inboard than any other intrusive

rocks in the Cordillera except for very minor Eocene plutons.

Geology Of The Tay River District

The Tay River district is the focus of this study as it contains one of the highest concentrations of
OMB plutons, and one of the rare examples of OMB volcanic rocks preserved in the northern
Cordillera. The study area encompasses the Tay River and Anvil plutonic regions as identified
by previous workers (Figure 2.3), and appears to have been affected by minimal tectonic activity
since the mid-Cretaceous, with less than 1 km of denudation and less than a five degrees change
in bed dip of mid-Cretaceous volcanic flows in the last 100 Ma (Smith and Erdmer, 1990;
Gordey, 2013), meaning that the OMB igneous rocks have maintained their relative position
since their emplacement. This allows for an accurate assessment of the relationship between
igneous rocks of different ages.

The Tay River district is contained within the Omineca belt, which separates the cratonic
foreland belt from the Intermontane belt (Monger et al., 1982). The district is located to the
northeast of the most easterly allochthonous terranes. The study area is bound to the south by the
Inconnu thrust that places the Slide Mountain and YTT against the North American margin
sediments. The Tintina Fault lies to to the areas southwest (Gordey and Irwin, 1987). The Tay
River district strata consist of deformed sediments of the parauthochthonous North American
passive margin. These sediments have undergone regional lower greenschist facies
metamorphism and have been imbricated and intensely folded during the Mesozoic Sevier-

Columbian orogeny (Pigage, 2004). Thrust imbrication of the sediments has occurred on a
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number of faults, including the Two Pete and Tay River thrusts, which show >2350 m
stratigraphic overlap (Gordey, 2013). Mid-Cretaceous plutonic and volcanic rocks intrude
Precambrian to Triassic Selwyn Basin strata in ~25% of the region (Gordey, 2013). Large mid-
Cretaceous intrusive bodies in the area include the Anvil, Orchay and Marjorie batholiths (Figure
2.4). The South Fork volcanics occur in 8 calderas ranging from 6 to 55 km across, which
contain volcaniclastic deposits up to 1 km thick (Gordey, 1988, 2013).

Previous studies on the regional mid-Cretaceous igneous rocks have divided the area into
a number of suites (Pigage and Anderson, 1985; Gordey, 2013; Pigage, 2004; Gordey, 1988;
Smith and Erdmer, 1990). Pigage and Anderson (1985) mapped the Anvil Batholith as
containing three phases, including the muscovite- biotite bearing Mount Mye and two
hornblende-biotite bearing phases (the Orchay and Marjorie). Gordey (2013) mapped all mid-
Cretaceous intrusive phases as part of the Selwyn Plutonic suite which contained three rock types
based on mineralogy: 1. Granitic rocks with common hornblende; 2. Granitic rocks dominated
by biotite with rare hornblende; and 3. 2-mica (biotite and muscovite) bearing granites. Pigage
(2004) simplified the classification using the scheme of Mortensen et al. (2000); the Anvil suite
contains the two mica granites dated at 109-104 Ma and all other intrusive phases, containing
biotite + hornblende, belong to the Tay River suite (98-96 Ma). The South Fork volcanics are the
extrusive equivalent of the Tay River suite. This study will build upon the previous work done in
the region, and aims to map the temporal changes in the multiple styles of igneous activity within

the Tay River district.

STUDIED SAMPLES AND ANALYTICAL TECHNIQUES

In order to test regional theories on OMB development thirty-four representative samples of

granitic rocks (G1 to G34; Table A1) were collected from a mapping project carried out on the
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Tay River district (Figure 2.4). To remove the post-crystallization affects of alteration
petrographic studies identified the least altered samples for analysis. Unless otherwise reported,
all analyses were conducted at the Canadian Centre for Isotopic Microanalysis at the University

of Alberta, Edmonton, Canada.

U-Pb Zircon Geochronology
Zircons were separated from 10 granitic samples (G1, 3,4,10,11,12,18,20,22,27) using standard
gravimetric and magnetic techniques. From the heavy mineral separate we selected ~ 60 zircons
that were subsequently annealed for 48 hours at 1000°C. The annealed zircons, along with two
grains from a reference material (Zircon 94-35), were mounted in epoxy and then imaged
in secondary electron, cathodoluminescent and backscattered light using a Zeiss Evo-MA-
15 scanning electron microscope (SEM). U-Pb dating was carried out by in situ LA-ICP-MS spot
analysis on approximately thirty grains per sample. Laser ablation sites were selected from the
CL images to avoid mixing -between zircon growth during OMB magmatism and inherited cores
- and to pick parts of the magmatic grain with favourable uranium concentrations.

U-Pb analyses were carried out using a New Wave UP-213 laser coupled to a NuPlasma
Multi-Collector ICP Mass Spectrometer using procedures modified from Simonetti et
al (2005). The laser was operated at 4 Hz pulse rate with a beam spot size of 40 um and a fluence
of ~3 J/cm®. On peak gas and acid blanks (30s) were measured prior to a set of 10 unknown
analyses for each sample, bracketed by analysis of two zircon reference materials: GJ-1 (Jackson
et al.,2004), and 94-35 (Klepeis et al., 1998). Unknowns were normalized to the zircon
reference material GJ-1. Reproducibility of the primary reference GJ-1 is estimated to be ~1% 2
RSD for *’Pb/**Pb and 2-3% 2 RSD for **Pb/**U. The secondary reference (94-35) yields a

weighted regression intercept of 55.96 £ 0.51 Ma (MSWD 0.18, n =37) in Tera Wasserburg
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space. The errors reported in Table A2 are a quadratic combination of the within run standard
error and the external reproducibility of the primary reference GJ1 in terms of standard
deviation. However, there is a growing body of literature (i.e. Marillo-Sialer et al., 2016) that
indicate that the total uncertainty in an in situ U-Pb age measurement is closer to 1-2% even if
the intercept regression errors or weighted average errors are < 1%. Therefore, real uncertainties
on the ages reported in this study are more likely closer to 1-2 Ma, rather than 0.58-1 Ma
suggested by the weighted regression intercept age. Rarely, data points with a large amount of
common lead or where an inclusion had been analyzed were discarded (one point from G10,
G18,G22 & G27). All other data points were plotted on a Tera-Wasserburg plot using the

Isoplot software of Ludwig (2003).

Major And Trace Element Chemistry

Eleven samples of intrusive rocks covering the range of observed granitic rock compositions and
textures in the Tay River district were analyzed for major, trace and rare earth element (REE)
concentrations at Bureau Veritas Mineral laboratories, Vancouver, Canada (Table A3). Major
and selected trace elements were analyzed by X-ray Fluorescence spectroscopy. Trace elements,
including REE, were analyzed by ICP-MS following an aqua regia digestion. As well as the
procedures employed by Bureau Veritas, we submitted: a crush split duplicate of sample G18,
silica blanks and known standards for external quality assurance procedures. The known
standards (OREAs 131a and 134a from the Ore Research and Exploration PTY LTD and Green
River Shale SGR-1 from the USGS) returned values within the accepted limits of published
values for all reported elements. The crush split of G18 showed reproducibility of better than

10% for all elements above the practical lower detection limit. Additional geochemical data from
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mid-Cretaceous igneous rocks in the Tay River district were incorporated from Gordey (2013),

Pigage (2004), Pigage & Anderson (1985) and Rogers (2017).

Zircon LA-ICP-MS Trace Element Chemistry

Twenty eight trace elements were analyzed on annealed mounted zircon separates from five
samples (G1,4,10,18 & 20; Table A4) by laser ablation inductively coupled plasma mass
spectrometry (LA-ICP-MS). The laser used was a RESOlution M-50 193nm excimer laser
system connected, via Nylon tubing, to a sector-field ICP-MS Thermo Element XR2. The laser
was operated at a repetition rate of 8 Hz, energy density 4J/cm?, and with a spot size of 50 pum.
An analysis comprised 40 s of background gas collection, followed by 60 s of ablation. Ablated
aerosols were entrained in a He (1000 ml/min) and Ar (0.8 ml/min) cell gas flow, prior to
entering the ICP-MS torch. The ICP-MS was operated at 1300 W and a torch depth of 3.8 mm.
Argon and He gas flow, torch position and focusing potentials were optimized in order to
achieve optimal (Co, La and Th) signals and low oxide production rates (ThO/Th<0.2%).
Calibration was performed using NIST SRM 612 and NIST SRM 610 in conjunction with
internal standardization using Zr (Wiedenbeck et al., 1995; Hoskin and Schaltegger, 2003;
Belousova et al., 2002). All data were reduced offline using Iolite v3 (Paton et al., 2010, 2011).
The results of the secondary standard (zircon 91500) agree with the reference values within
relative uncertainties of typically 5-10% or better, at the 95% confidence level. The detection
limits are below 0.1 ppm for most elements. Ten to fifteen spots were recorded per sample. The

SEM images were used to ensure no inherited core component of the zircons was ablated.
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Pb, Sr And Nd Isotope Studies

Lead isotopes were measured from primary magmatic K-feldspar grains from three 150um
uncoated petrographic slides of the Anvil suite (Table AS). The slides are described in Rogers
(2017). The three slides used were taken from the same drill core section as G18. The set up was
analogous to the U-Pb measurements; ablation was performed with a New Wave UP-213
laser and measured on a NuPlasma Multi-Collector ICP Mass Spectrometer. The laser was
operated at 20 Hz pulse rate with a beam spot size of 80-100 pum and a fluence of ~10 J/cm®. The
solution was doped with 8 ppb T1. NBS SRMO981was used as a solution/ aspiration standard and
returned values of **Pb/**'Pb equal to 36.69+0.01, *’Pb/***Pb equal to 15.490+0.005, **°Pb/***Pb
equal to 16.935+0.005 and *’Pb/**Pb equal to 0.9146+0.0001 (accepted values Todt et al.,
1996:**Pb/***Pb =36.70, *’Pb/***Pb=15.489, ***Pb/***Pb=16.936 and **’Pb/***Pb= 0.9146). NIST
612 glass was used as an ablation standard and returned average analysis of **Pb/***Pb equal to
36.98+0.02, ’Pb/***Pb equal to 15.507+0.007, **Pb/***Pb equal to17.093+0.009 and *’’Pb/**Pb
equal to 0.9071x0.0002 (accepted values Woodhead and Hergt, (2001): ***Pb/***Pb =37.00,
*7Pb/**Pb=15.51, **Pb/***Pb=17.09 and *"Pb/***Pb= 0.9076).

Strontium and neodymium isotope analysis methods are described by Creaser et al.
(2004) and D’Souza et al. (2016). Ten unweathered granite samples, which had been ground to a
fine powder in an agate mill (G1,3,4,10,11,18,20,21,22 & 27) were dissolved in HF and HNO;_
and Rb, Sr, Sm and Nd purified by standard chromatographic methods. Accuracy was monitored
by use of the SRM987 Sr isotope standard and ShinEtsu Nd isotope standard, and the Sr and Nd
isotope data are presented relative to a value of 0.710245 for Sr and 0.512107 for ShinEtsu.
Based on the U-Pb ages of the granites, time corrections were applied to calculate the *’Sr/**Sr,

and eNd;of each sample, representing the isotopic ratios at the time of granite crystallization.
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The depleted mantle model age (Tp,,) gives an estimate of crustal residence time and is
calculated for each sample (after Goldstein et al., 1984; Nelson and DePaolo, 1984; Arndt and

Goldstein, 1987).

RESULTS

Petrography combined with U-Pb dating defines three distinct suites of plutonic rock present in
the Tay River district. The suites are correlated with the Anvil and Tay River suites as defined by
Pigage (2004) and a newly identified and defined Tombstone suite. Note that in previous studies,
the Tombstone-Tungsten Belt (TTB) (Figure 2.3) collectively referred to the most inboard
regional divisions of plutons in the Selwyn Basin (Tungsten, Mayo & Tombstone regions)
(Rasmussen, 2013), which show highly variable geochemical characteristics and mineralogies.
However, all three suites in the TTB were emplaced between 96- 90 Ma. Therefore, in this study
we use the term ‘Tombstone suite’ to define the plutons identified in the Tay River district in this
temporal range.

Results are presented in three groups corresponding to the three plutonic suite classifications.
Since the South Fork volcanics are the extrusive equivalent of the Tay River suite, results from
the volcanic rocks are presented with the Tay River suite. Previous geochemical data, obtained
from plutons in the Tay River district, are reclassified based on U-Pb age or, when a U-Pb age is
not available, mineralogy (Pigage, 2004; Pigage and Anderson, 1985; Gordey and Irwin, 1987;
Gordey, 1988,2013). Previously published U-Pb dating on zircons and monazite are included in
the definition of the suites. Other dating methods - K-Ar, Rb-Sr and Ar-Ar - are not considered
due to the susceptibility of these systems to open system behavior in regions where post

emplacement thermal/ hydrothermal alteration may have occurred.
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Anvil Suite

Petrography

The Anvil suite consists of seriate hypidiomorphic biotite-muscovite (two mica)
phanerocrystalline granites. The mineralogy of the plutonic suite is homogenous in all samples
analyzed. Samples G1 - G3, G5, G8, G9, G14 - G16, G28, G29, G32 and G34 belong to the
Anvil suite. The rocks are observed in the field as a number of small plugs and laccoliths
commonly elongated in a northwest to southeast orientation. Roof pendants are common. Granite
sills occur in the metasedimentary host rock close to the main intrusive bodies. The cores of
Anvil suite bodies are massive but foliations are present in the granite near the margins. The
presence of coexisting primary magmatic muscovite and biotite defines this plutonic suite.
Biotite forms primary subhedral-euhedral laths, showing strong pleochroism between a pale tan
brown-yellow and a red-brown colour (Figure 2.5B). Pigage (2004) notes that biotite in the host
schists is identical to the grains seen in the Anvil suite. Muscovite occurs as both primary
isolated euhedral magmatic grains (Figure 2.5A) and as secondary anhedral aggregates. The
primary biotite and muscovite grains commonly contain zircon and monazite inclusions and
associated radiation damage haloes. Quartz, microcline, albite and oligoclase make up the
equigranular to seriate groundmass of the samples, occurring as up to 1 cm crystals. K-feldspar
grains form orientated oikocrystic megacrysts (up to 15 cm, commonly 5-8 cm) in some samples.
Myrmekite grains are common (Figure 2.5C) and are diagnostic of this plutonic suite. Allanite
and tourmaline are the last phases to crystallize in highly fractionated samples (Pigage and
Anderson, 1985). Highly peraluminous minerals (garnet and cordierite) are not observed in these
samples but have been reported by other authors in the Anvil suite (Pigage and Anderson, 1985;

Smith, 1989). However, the presence of these peraluminous phases is hypothesized for some
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samples due to rare circular clots of dense highly un-orientated fibrolite and sericite. Foliation in
marginal samples of the Anvil suite is defined by interstitial mica aggregates, coplanar with
recrystallized quartz subgrains. The effect of strain during crystallization is seen in bent
muscovite grains and undulose extinction of quartz subgrains. Chlorite and epidote alteration is

minimal. Secondary hydrothermal biotite, fibrolite and sericite occur rarely on grain boundaries.

U-Pb Dating

Samples G1 & G3 from the Anvil suite were dated. Greater than 95% of zircons separated from
the Anvil suite samples contain inherited cores. In sample G1 the cores are commonly spheroidal
with diameters ranging from 40 to 220 um. Cores typically make up 25+10% (range of 7 to 51%)
of the zircon grain by volume. Magmatic rims on the zircons display well-defined regular zoning
in cathodoluminescent light. The U-Pb data from G1 define a line intercepting the Tera-
Wasserburg curve at 108.14 + 0.97 Ma (20, MSWD=1.3, n=30; Figure 2.6A). Inherited cores
dominate the zircon volume of sample G3, making it impossible to avoid sampling both domains
during in situ analysis and so we do not provide an estimation of emplacement age here.
Previous monazite U-Pb ages for the Anvil suite range from 109.3 to 103.9 Ma (Pigage, 2004).

No other zircon ages exist for the Anvil suite.

Tay River Suite and South Fork Volcanics

Petrography

The Tay River suite consists of porphyritic to seriate, phaneritic to aphanitic biotite-hornblende
bearing granites and granodiorites. Considerable textural and mineralogical heterogeneity exists
within this plutonic suite. Samples G4, G11,G13,G17 - G19, G22, G23, G27 and G32 belong to

the Tay River suite. The rocks are observed in the field as isolated batholiths and also as dykes
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and sills cutting the Anvil suite. These dykes and sills are commonly elongate in an east to
northeast direction (Pigage, 2004). Coexisting euhedral phenocrysts of biotite and hornblende
define this plutonic suite. Hornblende grains are euhedral and show strong absorption colours
ranging from pale green to olive and brown-greens (Figure 2.5E). Biotite phenocrysts are
pleochroic in shades of dark-chocolate brown to pale-straw brown (Figure 2.5F). The suite is
characteristically porphyritic (around 75% of samples analyzed) containing phenocrysts of
biotite, alkali feldspar, plagioclase feldspar, hornblende and quartz in a fine-grained aphanitic
groundmass of quartz and feldspars (Figure 2.5D). Clinopyroxene, associated with hornblende
phenocrysts, is rare. Euhedral phenocrysts are commonly 0.3-0.8 cm, and rarely up to 2 cm in
size. The other 25% of samples display a seriate hypidiomorphic texture with similar phenocryst
sizes, but a microcrystalline groundmass (Figure 2.5E). Myrmekite is absent. Microperthite
exsolution is observed in feldspar phenocrysts.

There is no evidence of a foliation in any of the samples studied or observed in the field.
The only evidence for strain seen in the Tay River suite samples is rare undulose extinction in
quartz grains of the seriate samples. Alteration is more common than in the Anvil suite. The Tay
River suite has chlorite- epidote aggregates altering the hornblendes. Chlorite, carbonates and
sericite (saussuritization) alteration of plagioclase forms turbid phenocrysts. Alteration of
hornblende and plagioclase phenocrysts is more pronounced in the dykes and sills of the Tay
River suite than the isolated batholiths. In the samples taken from dykes and sills, hornblende
and plagioclase phenocrysts have undergone complete hydrothermal alteration to fine grained
mineral aggregates.

The South Fork volcanics consist of intermediate composition extrusive rocks. The

volcanic rocks are thought to have previously been regionally extensive, but erosion has removed
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these deposits with only ~1 km thick caldera fills remaining (Gordey, 1988). Samples G20, G21
and G24 - G26 are examples of the South Fork volcanics. The South Fork volcanics consist of
tuffs, crystal-lithic lapilli tuffs and rare lapillistones interlayered with sparse andesitic
composition lava flows. The South Fork volcanics have the same phyric content as the Tay River
suite (hornblende, biotite, quartz, feldspars and rare pyroxenes) ranging from 0.5 to 5 mm. The
subrounded to rounded crystals commonly form polyminerallic glomerocrysts which are hosted
in a tuffaceous felsic matrix compromising 35 to 60% of the rock. Bent and broken crystal grains
are common (Figure 2.5G). Development of weak eutaxitic textures and fiamme are seen in
some samples (Figure 2.5H). Angular to subround lithic fragments make up less than 5% of the
volcaniclasts consisting of argillites and cherts (Figure 2.5I). Alteration is pervasive with

chlorite-epidote aggregates altering biotite, hornblende and feldspars pyroclasts.

U-Pb Dating
Samples G4, G11, G18, G22 and G27 from the Tay River suite were dated. For each sample 30
spots were measured from the rims of 30 zircon grains. The zircons separated from the Tay River
suite samples contain no evidence of inheritance in SEM images. Regular magmatic zoning is
seen throughout the zircon crystals, which commonly form prismatic to elongate euhedral grains.
The five intercept ages range from 98.00 + 0.62 Ma (G18; 20, MSWD=0.65, n=30) to 99.57 +
0.77 Ma (G27; 20, MSWD=1.11, n=30; Figure 2.6B & 2.6C). The average age is 98.7 £ 0.8 Ma.
Cobbett & Crowley (Pers. Comms) independently dated sample G32 at 95.37 + 0.03 Ma. Four
published U-Pb dates on the Tay River suite range from 96.74 + 0.03 to 99.3 = 1 Ma (Gordey,
2013; Pigage, 2004; Cobbett, 2015)

Sample G20 of the South Fork volcanics was dated and the U-Pb data define a line

intercepting the Tera-Wasserburg curve at 98.81 + 0.83 Ma (20, MSWD=1.07, n=30; Figure
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2.6C). Five published U-Pb zircon dates on the South Fork volcanics range from 96.8 +1 Ma to

97.7 £ 0.3 Ma (Gordey, 2013).

Tombstone Suite

Petrography

The Tombstone suite in the Tay River district is characterized by biotite-bearing granites and
granodiorites. Samples G10, G12, G30, G31 and G33 belong to the Tombstone suite. Rocks are
observed in the field as small, commonly rounded, plugs displaying no elongation. No internal
foliation of the Tombstone suite is observed. The Tombstone suite rocks display equigranular
hypidiomorphic phaneritic textures dominated by (>90%) crystals of microcline, Ca-rich
plagioclase and quartz. Subhedral- anhedral microcline forms characteristic tartan
(polysynthetic) twinning with euhedral to subhedral anorthite grains displaying Carlsbad twins.
Quartz grains are characteristically equigranular and anhedral (Figure 2.5J). Primary biotite
occurs as interstitial, euhedral, laths with characteristic straw-yellow to black-brown pleochroism
(Figure 2.5K&L). The biotite laths commonly form monominerallic aggregates, which are not
seen in the other plutonic suites. Primary magmatic muscovite is absent. Hornblende is rare to
absent from most Tombstone suite samples (<1%). Hydration of primary magmatic and
hydrothermal biotite to chlorite is common within the Tombstone suite rocks as is the breakdown

of feldspars to form turbid plagioclase.

U-Pb Dating
Samples G10 and G12 from the Tombstone suite were dated in this study. For each sample
between 27 and 30 spots were measured from the magmatic rims of the zircon grains. In sample

G10 the U-Pb data points define a line intercepting the Tera-Wasserburg curve at 91.68 + 0.58
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Ma (20, MSWD=1.15, n=27; Figure 2.6D). Sample G12 gave an intercept age of 94.82 + (0.72
Ma (20, MSWD=0.49, n=30; Figure 2.6D) Cobbett & Crowley (Pers Comms) independently
dated sample G33 at 96.61 + 0.03 Ma. Pigage (2004) previously dated a monazite from a sample
in the western Anvil Batholith at 95.3 + 1.3 Ma, but did not recognize it as being from the

Tombstone suite.

Major And Trace Element Geochemistry

On the TAS plutonic diagram (Figure 2.7A; Middlemost, 1994) the intrusive rocks of the Tay
River district range from granite to diorite with rare quartz monzonites (60 to 75 SiO, wt%). A
decrease in SiO, wt% is seen with time from the felsic granites and quartz monzonites of the
Anvil suite to the more mafic granodiorites and diorites of the Tay River suite. The Tombstone
suite samples spread over the whole geochemical range recorded in the region. The South Fork
volcanics cover TAS (Figure 2.7B; Le Maitre, 1989) compositions ranging from andesitic to
dacitic, overlapping with the range seen for the Tay River suite.

The mid-Cretaceous granitic magmas in the Tay River district range from calc-alkaline to
high-K calc-alkaline (Figure 2.7C; Rickwood, 1989) and have a peraluminous aluminum
saturation index (ASI, i.e. A/CNK>1; Barton and Young, 2002). The Anvil suite rocks are
generally strongly peraluminous and high K calc-alkaline. The Tay River suite is weakly
peraluminous and calc alkaline to high-K calc alkaline in composition. Chondrite normalized
REE patterns (McDonough and Sun, 1995) for the different plutonic suites (Figure 2.7D) display
significant variations. The rocks of the Anvil suite have LREE enrichment, a minor negative Eu
anomaly and strong HREE depletion. The REE pattern for the Tay River suite and South Fork
volcanics form a listric shape with MREE depletion and minor HREE depletion and a

pronounced negative Eu anomaly. The Tombstone suite samples have REE patterns identical to
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the Tay River suite. All granitic rocks possess very analogous minor element concentrations
(Figure 2.7E), similar to that found in average upper crustal rocks with U and Th concentration
100 times those found in the average lower crust/MORB and 10,000 Chondrite (Pearce, 1982;
McDonough and Sun, 1995). Table 2.1 shows a number of geochemical parameters for each

suite with Figure 2.7 F-1 showing plots of these parameters.

Zircon Chemistry

Titanium thermometry based on the Ti concentration in zircons was conducted on each suite
following the methods of Ferry and Watson (2007). Silica and titanium activities were assumed
to be equal to one due to the presence of solid quartz and rutile in the rocks sampled. Maximum
uncertainties of 60-70°C at 750°C are introduced to zircon thermometry by unconstrained ag;q,
and ar,, (Ferry and Watson, 2007). Rutile inclusions occur rarely in zircon crystals of sample
G4, G10 and G18. When these inclusions were ablated anomalously high titanium
concentrations, and therefore temperatures, were recorded. These data points were not included
in the average (Table A6). The Anvil suite (G1) gave the lowest average crystallization
temperature estimates of 620+40°C. The Tay River suite samples (G4 and G18) gave higher
average crystallization temperature estimates of 710+45°C, similar to the Tombstone suite
sample (G10) which returned a value of 730+110°C. South Fork volcanics zircons gave
temperatures of 760+100°C (Figure 2.8).

Uranium and thorium concentrations were measured in zircons from each plutonic suite and
the South Fork volcanics (Figure 2.9). The Anvil suite zircons have high uranium concentrations
(x =3700+700 ppm). The Tay River and Tombstone suites have lower U but higher Th than the
Anvil suite. The zircons of the Tay River suite are not as enriched in U (X =400+150 ppm) or

Th. The zircons of the Tombstone suite have minor enrichments in U (X =1410+600 ppm) and
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Th concentrations up to 750 ppm. The Anvil, Tay River and Tombstone suite zircons all contain
<10 ppm Pb. The REE patterns of all the zircon crystals have the same shape; a steeply rising
slope from LREE to HREE with positive Ce anomalies and negative Eu anomalies. Large
variations in chemistry within the grains of an individual sample are seen. Table 2.2 shows the
range of chemistries of each igneous suite for some common parameters of zircon chemistry

(Hoskin and Schaltegger, 2003; Hoskin and Ireland, 2000).

Isotope Chemistry

Whole rock Sr and Nd isotopes, corrected to the age of pluton emplacement (¢Nd, and *'Sr/*Sr,)
both change systematically with time (Figure 2.10; Table 2.3). The Anvil suite gave highly
negative values of eéNd, gy, equal to -20+1 and high *’Sr/*Sr, ., (0.7378-0.7393). The average
depleted mantle model (Tp,,) age for the Anvil suite is 2.20+0.04 Ga. Lead isotopes from the K-
feldspars of the Anvil suite gave average values of ***Pb/***Pb equal to 39.33+0.02, *’Pb/***Pb
equal t015.727+0.006 and **’Pb/***Pb equal to 19.337+0.007. These lead values are just above the
values expected for an upper crustal sediment in the Selwyn Basin at 110 Ma calculated from the
Shale curve (**Pb/***Pb=37.083, *’Pb/**Pb=15.551 and **°Pb/**Pb=17.264; Godwin and
Sinclair, 1982; Andrew et al., 1984).

Tay River suite, South Fork volcanics and Tombstone suite samples give eNd, ., values
ranging from -16.3 to -13.9.*'Sr/**Sr, values for the younger suites cluster around 0.717+0.02.

Depleted mantle model ages average at 2.1+0.2 Ga (range 1.73 to 2.32 Ga).
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DISCUSSION

Regional Distribution Of Suites

Petrography, combined with U-Pb dating, on the granitic rocks of the Tay River district has
identified three plutonic suites: the 109-104 Ma Anvil suite, the 100-96 Ma Tay River suite (and
coeval South Fork volcanics) and the 96-90 Ma Tombstone suite (Figure 2.6E). The suite
interfingering, seen in the Tay River district, does not show any systematic inboard younging
direction (Figure 2.11). Therefore, here we present a new model for OMB magmatism focusing
on granite genesis constraints in the Tay River district. We then expand this model to the scale of

the northern Cordillera using literature data.

Genesis Of Plutonic Suites In The Tay River District

The peraluminous nature of all igneous rocks in the Tay River district, along with the
highly evolved Nd, Sr and Pb isotopic ratios, suggest they all formed from crustal melting, rather
than from primary, mantle-derived, melts.

No isotopic evidence for mixing of mantle and crustal melts is seen in the Tay River
district and there are no mafic intrusives associated with mid-Cretaceous plutonism in the Tay
River district. The zircon REE patterns and presence of inherited cores also indicate a crustal,
rather than mantle, melt source (Table 2.2). A single, assimilating, and fractionally crystallizing
pluton cannot explain the general TAS trend, to more mafic rocks with time. This general trend
combined with the 20 Myr range of intrusion ages in the Tay River district, means that the
source, origin and tectonic history of each suite is likely to be different and the three suites are

not all derived from the same magmatic system.
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Anvil Suite

The 109-104 Ma Anvil suite comprises coexisting biotite and primary-magmatic muscovite
bearing granites and quartz monzonites. Subduction appears to have played no role in the
formation of the Anvil suite as the “subduction signature” is nearly absent (Table 2.1); this is a
useful indicator of a granite’s source, because granites lacking LILE enrichment compared to
HFSEs (Ba/Tay) are derived from a source that has never undergone subduction processes
(Morris and Creaser, 2008). The lack of LILE/HFSE enrichment in the Anvil suite, therefore,
indicates a crustal source for the melt of the Anvil suite. Geochemistry can be used to constrain
the protolith for the Anvil suite. Sylvester (1998) used CaO/Na,O versus Al,0,/TiO, of
peraluminous post collisional granites as an indicator of both temperature (Al,05/Ti0, decreases
with temperature) and chemistry of the melting crust (Figure 2.7F). CaO/Na,O of experimental
melts derived from pelites is <0.3, greywackes is >0.3 and meta-igneous rocks (tonalities) and
psammites equals ~1. The results for the Anvil suite (see Table 2.1) suggest melting from a
greywacke at low temperatures. The eNd, oy, and ¥Sr/**Sr, values measured from the Anvil suite
(-20+1 and 0.7378-0.7393 respectively) indicate a highly evolved, upper crustal, source rock.
The Anvil suite values overlap with the average values for *’Sr/**Sr, o\, and €Nd, gp, OF
Proterozoic sedimentary rocks in the Selwyn Basin (0.765 and -17.9 to -22.7, respectively;
Ghosh and Lambert, 1989; Driver, 1998; Garzione et al., 1997; Boghossian et al., 1996). The
crustal residence age (Tp,,) for the Anvil suite is similar to those reported for cratonic North
America (2.8-2.5 Ga; Theriault and Ross, 1990), suggesting a sedimentary upper crustal source
derived from the craton. Pb isotopes in K- feldspars in the Anvil suite suggest the Pb is derived
from a crustal unit enriched in U and Th compared to the average Selwyn Basin sedimentary

rocks (Godwin and Sinclair, 1982).
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The isotopic and geochemical results from the Anvil suite, along with the large inherited
zircon component, suggest that the granite originates from low temperature melting of a pelite or
greywacke. Minimum temperatures required for fluid absent melting via muscovite and biotite
dehydration range from 800 to 875°C for pelitic rocks (Vielzeuf and Montel, 1994; Patifio Douce
and Johnston, 1991). Pelites melt at lower temperatures (850+20°C) than metagreywackes
(950+30°C) at 1000 MPa (Searle et al., 2009; Vielzeuf and Montel, 1994). Wet melting is not
considered a possibility as H,O saturated conditions do not occur in the mid- to deep crust
(Patifio Douce and Johnston, 1991).

The aureoles of plutons assigned to the Anvil suite contain andalusite, staurolite, garnet,
biotite, muscovite, quartz and plagioclase with local sillimanite (fibrolite) and cordierite forming
concentric isograds to the intrusive rocks (Smith and Erdmer, 1990; Smith, 1989; Pigage and
Anderson, 1985). The aureole mineralogy, combined with the lack of kyanite and the presence of
primary magmatic muscovite, constrains the emplacement depth to 3.5 to 4 kbars, or around 12-
15 km, of overburden. The emplacement temperature can be constrained from the aureole
mineralogy to be 600-620°C (Smith and Erdmer, 1990), consistent with the emplacement
temperature of 620 + 40°C suggested by the Ti concentration of zircons from sample G1.

Pigage (2004) mapped numerous roof pendants in the southeast portion of the Anvil
batholith with mineralogy similar to the aureole, indicating that the present level of exposure is
near the top of the pluton and that 12 to 15 km of overlying crust has been eroded since
emplacement. Burial to ~4 kbars is supported by the broad greenschist facies alteration of the
Tay River district (Gordey, 2013; Pigage, 2004). Adding this amount of denudation to the
current crustal thickness in the Tay River district of 40 + 5 km, as shown from the SNORCLE

lithoprobe survey line 3 (Cook et al., 2004), gives a paleo- mid-Cretaceous crustal thickness of
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50-60 km agreeing with estimates for the proximal YTT (Pavlis et al., 1993; Staples et al., 2016).
The high (La/Yb), and (Sm/Yb)y, combined with HREE depletion, seen in the Anvil suite
suggests garnet in the source and, therefore, supports the presence of thick crust during the
formation of the Anvil suite (Figure 2.7 D, G-H; Kay and Mpodozis, 2001; Kay et al., 1991;
Haschke and Giinther, 2003). The high U concentration of the Anvil suite zircons and highly
radiogenic K- feldspar lead ratios suggest a sedimentary rock enriched in heat producing
elements was involved in the genesis of the Anvil suite. This sedimentary layer, present in
thickened crust, would generate the heat required to melt the metasedimentary source rocks in 30
to 50 Myr following attainment of maximum tectonic thickening (Bea, 2012; Patifio Douce et al.,
1990), which fits with mid-Cretaceous (~115-110 Ma) melt initiation following crustal
thickening derived from accretion of the Intermontane terranes to the western North American
margin, which was complete by the Middle (Mihalynuk et al., 1994; Colpron et al., 1996) to
Early Jurassic (Hildebrand, 2014). Uplift recorded proximal to the Tay River district, in the YTT
starting at ~118 Ma, may have caused decompression melting contributing to Anvil suite
formation (Staples et al., 2013; Dusel-Bacon et al., 2002; Pavlis et al., 1993). Mantle heat input
is not required to generate the earliest mid-Cretaceous melts in the Tay River district, but a
contribution from an external heat source cannot be ruled out.

Marginal samples of the Anvil suite show a strong foliation with minor regions of granite
mylonite. This fabric is interpreted to be due to regional shear stresses during the emplacement
of the Anvil plutonic suite (i.e. D2 as defined by Jennings and Jilson, 1986; Pigage, 2004). The
plutons appear to be associated with major crustal scale (reverse) faults.

In conclusion, the oldest style of mid-Cretaceous plutonism in the Tay River district,

represented by the Anvil suite, is emplaced prior to 100 Ma and derived from low temperature
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melting of sedimentary rocks with upper crustal geochemical signatures (enriched in radiogenic
elements). Internal heating by radiogenic elements in a previously thickened crust, can generate
the heat required to melt the protolith. Concurrent exhumation in the Tay River district, between
~118 and 105 Ma, could have enhanced melting through decompression. The Anvil suite rocks
are characterized by primary magmatic muscovite, 12-15 km emplacement depths, geochemistry
consistent with derivation from a sedimentary protolith and high-grade metamorphic aureoles.
Plutons are commonly associated with crustal-scale dextral transpressional (reverse) faults.
Marginal igneous rocks in Anvil suite plutons commonly show a well-defined foliation. Isotopic
ratios are consistent with derivation from an upper crustal sedimentary source (eNd=-16+4,

¥7S1/*Sr;=0.7350+0.005 and **°Pb/***Pb = ~19.3; *’Pb/***Pb = ~15.70).

Tay River Suite and South Fork Volcanics
The 100-96 Ma amphibole-biotite bearing diorites, granodiorites and granites that characterize
the Tay River suite and coeval South Fork volcanics, show a mineral assemblage, significant
“subduction signature”, I-type geochemical character, MREE depletion and *’Sr/**Sr, y, ratio
consistent with melting of an amphibolite facies igneous source rock (Table 2.1; Clemens, 2003).
These results fit with the evidence that I-type felsic rocks form from amphibolite facies melting
of lower crustal rocks (Chappell and Stephens, 1988), although Miller (1986) noted that I-type
granites can be derived from melting of a juvenile sediment composed of felsic igneous
components.

There is no evidence for the input of mantle melts, so it is not likely that the Anvil suite
source rock mixed with primitive mantle melts during the mid-Cretaceous to form the Tay River
suite melts. Instead the Nd and Sr isotope data indicates an evolved crustal source, potentially, a

mafic peraluminous meta-tonalite, which can contain up to ~30% biotite and muscovite making
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them ideal for the production of granitoid magmas (Patifio Douce and Johnston, 1991). A
tonalitic source fits with the CaO/Na,O of the Tay River plutonic suite. Borg and Clynne (1998)
showed that felsic calc-alkaline rocks, dominated by amphibole + biotite phenocrysts and with a
strong MREE depletion, were produced from relatively high f(H,O) (P[H,0]~2 kbar), but still
water under-saturated melting of amphibolitic lower crustal rocks at ~900°C. Amphibolite
melting is proposed to occur via biotite dehydration at the amphibolite to granulite facies
transition, where biotite, plagioclase and quartz breakdown to form orthopyroxene, garnet, K-
feldspar and melt (Patifio Douce and Beard, 1994). Nair and Chacko (2002) report conditions of
875-1025°C required to stabilize orthopyroxene under middle to lower crustal depths (5-15
kbars) and water under-saturated conditions. Higher temperatures involved in the formation of
the Tay River suite are supported by the high Al,O,/TiO, ratio of the whole rocks and the zircon
titanium thermometry (710+45°C). However, temperatures of ~900°C are not achieved even at
the base of extremely (>70 km) thickened crust (England and Thompson, 1986; Thompson and
Connolly, 1995). Therefore, an external heat source is required to generate the melts that formed
the Tay River suite. External heat can be derived either directly, via conduction from the mantle
to the crust, or through the addition of mantle melts to the lower crust. The high temperatures
required to melt amphibolite are unlikely to be found in the upper crust, so lower crustal
amphibolite facies metatonalite melting, or melting of a juvenile metasediment sourced
dominantly from a metatonalite, are the most probably sources for the Tay River suite magmas.

Potential sources for the Tay River suite and South Fork volcanics could be either a unit
in the lower crust of cratonic North America or the proximal YTT (Morris and Creaser, 2008).
For example, the amphibole facies quartz phyllites and mica-quartz schists of the Nisultin

assemblage in the YTT, which have an average €Nd,, of -12+4 (range-3.8 to -19.3) and a tp,,
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of 1.2 to 2.4 Ga (Grant, 1997). The Nisultin assemblage rocks are composed of the eroded
components of an igneous rock generated from mixing of subduction derived basalt with North
American continental rocks; such a source would explain the geochemical and isotopic
compositions of the Tay River suite (Creaser et al., 1997; Mortensen, 1992). However, as
significant horizontal flow of melt is not common in granitic systems (Petford et al., 1994, 2000;
Clemens and Mawer, 1992), the source for the Tay River suite must underlie the Tay River
district, which would require underplating of the YTT. Currently, no evidence for underthrusting
of the Tay River district has been identified, although it cannot be ruled out, as subcretion within
the Cordillera is supported by the work of Johnston and Canil (2007), Pavlis et al. (1993) and
Staples et al. (2016). Until evidence for subcretion is identified, we suggest that amphibole-
bearing rocks in the lower cratonic crust, underlying the Tay River district, are the more likely
melt source for the Tay River suite.

The Tay River suite was emplaced at shallow crustal levels, as shown by the plutons
close association with the South Fork volcanics, hornsfelsed aureole (<500 m, typically 200 m)
and characteristic porphyritic nature. The Anvil suite and Tay River suite are on the same
stratigraphic level. Therefore, the exhumation of the Anvil suite, from 12-15 km, must have been
complete by the emplacement of the Tay River suite (Smith and Erdmer, 1990), implying
exhumation at >1 kmMa™' between 110 Ma and 100 Ma. Exhumation rates and magnitudes
identical to those seen in the Tay River district have been proposed in the proximal YTT (Staples
et al., 2013; Dusel-Bacon et al., 2002; Pavlis et al., 1993) suggesting a large area of exhumation.
In contrast to the Anvil suite, no foliation or mineral alignment is observed in the Tay River suite
samples, which may indicate a lack of shear stress during Tay River suite emplacement. Dykes

of the Tay River suite, intruded into the Anvil suite, are elongate parallel to north to northeast
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trending Cretaceous normal faults in the Tay River district (Pigage, 2004; Cobbett, 2015),
indicating a syn-genetic origin for the two features. However, the emplacement of the Tay River
suite appears controlled by the same regional crustal-scale reverse faults that controlled the
emplacement of the Anvil suite.

The large-scale calderas (up to 55 km maximum diameter; Gordey, 2013) filled by the
explosive extrusive deposits of the South Fork volcanics, indicate shallow (<5 km) large volume
(>10°km’) magma chambers in regions of thick continental crust (Lipman, 1984). Caldera
formation is also associated with regions with high geothermal gradients and extensional settings
(Jellinek and DePaolo, 2003). The long crustal residence times of magma chambers required to
generate large calderas suggest the eruption of South Fork volcanics occurred post exhumation.

To summarize, the 100-96 Ma Tay River suite rocks are characterized by amphibole
phenocrysts, a commonly porphyritic texture, I-type geochemistry and associated volcanics. Tay
River suite and coeval South Fork volcanics are derived from high temperature melting of a
lower crustal, likely amphibolite facies, metatonalite. The heat required to melt the amphibolitic
source rock was derived from the mantle. Decompression during regional exhumation could
have aided melting, contributing to the large volume of Tay River suite observed. Pluton
emplacement is associated with the same style of structures that control Anvil suite pluton
emplacement, but Tay River suite plutonism occurred at shallower crustal levels in an
extensional setting. The typical isotopic values for the Tay River suite plutons in the Tay River
district cluster around eNd, values equal to -10+5 and *’Sr/**Sr, values equal to 0.715+0.01.
However regionally, as isotopic ratios derive from the melt source they are highly varied; for

example a Tay River-type melt derived from melting of the mafic Cache Creek terrane would
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have a eNd; value equal to 3+1.5 and a ¥Sr/*Sr; value equal to 0.7035 (Morris and Creaser,

2008).

Tombstone Suite

The plutonism that makes up the 96-90 Ma Tombstone suite appears to share characteristics with
the Anvil and Tay River suites, however a paucity of samples limits this study. The large spread
in geochemical characteristics (Figure 2.7I) and isotopic composition displayed by the
Tombstone suite samples suggests a significant period of crustal residence time leading to
assimilation, fractionation, and crustal contamination (AFC processes). Tombstone suite plutons,
resembling Anvil suite style sedimentary protolith melting and Tay River suite style igneous
protolith melting are both documented. Temperatures derived from zircons have a wider spread
than the other plutonic suites, indicating that Tombstone suite pluton emplacement, or
crystallization, occurred over a wider temperature range. Amphibole is rare to absent from the
Tombstone suite. This may suggest a lower temperature melt source than the Tay River suite, or
that amphibole settled as cumulates in lower crustal magma chambers. Rare earth element
patterns and isotopic composition are identical to those of the Tay River suite, indicating the
Tombstone suite may represent fractionation of magma similar to the Tay River suite + crustal
contamination + sediment anatexis derived melt. Regionally compared to the Anvil and Tay
River suites, the Tombstone suite plutons are characteristically low volume, round plugs. Less
than 500 m wide hornfels facies aureoles, composed of biotite, andalusite and K-feldspar in
pelites (Mair et al., 2006), suggest emplacement at shallow depths (<1 to 2 kbar, Spear and
Cheney, 1989). Based on spatial associations, the emplacement of Tombstone suite plutons in the
Tay River district appears to be controlled by normal faults, rather than the thrust faults that

control the previous two plutonic styles (Cobbett, 2015).
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Rare, late-stage, cross-cutting (shoshonite) lamprophyres are reported to occur in association
with the Tombstone suite across the Selwyn Basin (Rasmussen, 2013), although lamprophyres
were not seen in the Tay River district. These late stage dykes are proposed to indicate the
involvement of primary mantle melts due to continued continental extension and rifting, during
and post the emplacement of the Tombstone suite. However, Rasmussen (2013) reports highly
evolved isotopic ratios for the lamprophyres - eéNd, gon,=-8%1, *’Sr/*Sr 400,=0.712+0.02 and
Tpm=1.8 to 2.1 Ga- indicating significant crustal contamination of the primary mantle melts or the
presence of a highly irregular, radiogenic, mantle during their emplacement.

To summarize, the final stage of OMB plutonism in the Tay River district, represented by the
96-90 Ma Tombstone suite, constitues the waning stages of the external thermal pulse that
formed the Tay River suite. Melts may have been generated by melting of an upper crustal
sedimentary source, a lower crustal igneous source, or by continued fractionation of Tay River
suite melts. The inferred long crustal residence times, round shape of the plutonic bodies and
lack of foliation implies a lack of significant syn-intrusive stress. However, the regional
association with late stage lamprophyre dykes and the close association of Tombstone suite
plutons with upper crustal normal faults shows that continental crustal extension was occurring
during the emplacement of the Tombstone suite. In summary, the Tombstone suite is
characterized by: round low-volume plutonic bodies, absence of both muscovite and hornblende,
and common spatial association with normal (extensional) faults in the upper crust. Isotope ratios
are non-diagnostic. Mainly, Tombstone suite plutons are identified by U-Pb zircon and monazite

ages of younger than 96 Ma.
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Reclassifying Regional Plutonism

The aim of this section is to determine if plutons of the northern OMB can all be broadly
classified as belonging to one of the three plutonic suites defined in this study, and if so to map
out the spatial distribution of each suite. To achieve this, key characteristics of each suite are
compared with descriptions of plutons in the literature (USGS, 2015; Yukon Geological Survey,
2014; Hart et al., 2004; Rasmussen, 2013; Dilworth et al., 2007; Heffernan, 2004; Gordey and
Anderson, 1993; Gordey and Irwin, 1987; Joyce, 2002; Morris and Creaser, 2008; Bacon et al.,
1990; Driver et al., 2000; Hudson, 1994; Selby et al., 1999; Aleinikoff et al., 2000; Solie et al.,
2014; Mortensen et al., 2000; Hart, 1995). Using Nd and Sr isotopic ratios to reclassify regional
plutonism is complicated if the plutons derive from crustal anatexis, as these plutons inherit an
isotopic signature from their protolith. Due to this ambiguity, U-Pb ages, geochemical
characteristics, and mineral assemblages of plutonic rocks are primarily used for reclassification
(Figure 2.13) with isotopic ratios, structural associations, aureole mineral assemblages, and
pluton emplacement depths as secondary controls.

Anvil-type two mica granites are associated with the center of the northern OMB in the
Yukon-Tanana Uplands, Anvil, Cassiar and Hyland regions. Plutons of the Anvil-type igneous
bodies have been identified in the Cassiar batholith (Driver et al., 2000), Hyland batholith
(Rasmussen, 2013) and at the Square Lake pluton within the Yukon Tanana inlier to the
northeast of the Tintina Fault (Hudson, 1994). The extent of S-type plutonism may be greater
than seen in outcrop as the batholiths of this suite are emplaced at mid-crustal levels and these
mid-crustal levels may not have been regionally exhumed.

Across the northern Cordillera, the > 150 U-Pb dates analyzed show the same quiescence

in plutonism between Anvil-type and Tay River-type pluton emplacement (104-100 Ma) as
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observed in the Tay River district (Figure 2.13 and Figure 2.6E). An exception is a minor
number of emplacement ages in the Tanacross-Dawson Range region that occurs during this
time.

Large volumes of 100-96 Ma Tay River-type plutons form the dominant components of
the Tay River, Fairbanks-Salcha, Yukon Tanana Uplands and Tanacross-Dawson Range regions.
Tay River-type plutons occur with Anvil-type intrusive rocks within the Anvil, Cassiar, Yukon-
Tanana Uplands and Hyland regions. Close spatial association of Anvil and Tay River-type
igneous rocks have previously been reported in the following: Anvil batholith (Pigage and
Anderson, 1985), Cassiar batholith (Driver et al., 2000), Big Salmon & Nisultin batholiths
(Morris and Creaser, 2008) and the Billings batholith (Rasmussen, 2013). Explosive volcanism
is not only seen in the Tay River district, but occurs in ca. 93Ma (K-Ar age) felsic calderas (Sixty
Mile Butte, Dennison, Middle Fork & West Fork) in the Yukon Tanana Uplands region of
Alaska (Bacon et al., 1990).

Post 96 Ma, Tombstone-type plutonism monopolizes the Tok-Tetlin and TTB (Tungsten,
Mayo and Tombstone) regions. The Livengood region is also assumed to contain multiple
intrusions of the Tombstone style however; no U-Pb dates are currently available for this area of
Alaska. The plutonism in the Tungsten region (part of the TTB) likely reflects highly
fractionated magmas of the Tay River suite (Heffernan, 2004). Dates indicating the presence of
Tombstone style plutons are recorded in the Tanacross- Dawson Range, Yukon-Tanana Uplands,
Anvil, Tay River and Cassiar regions alongside Anvil and Tay River-type plutons. Tombstone-
type plutons may be even more widespread in the OMB than identified in this study; as the small

volume of the Tombstone suite intrusive bodies, in comparison to older plutons, may have
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prevented their identification in less well-studied regions (i.e. Fairbanks-Salcha and Hyland
regions).

The 124 to 106 Ma (Morris and Creaser, 2008) Whitehorse plutonic region is commonly
considered as part of the OMB (Figure 2.3), however, in this study it is not correlated with any of
the types of plutonism seen in the Tay River district. The Whitehorse region is geographically
isolated from other mid-Cretaceous plutonism. To the east the Teslin fault separates the
Whitehorse region from the Cassiar region and to the north a 150-200 km region with no
cogenetic pluton exposures separates the Whitehorse and Tanacross-Dawson Range regions. The
Whitehorse plutonic region has previously been interpreted as the easternmost representation of
mid-Cretaceous arc magmatism (Hart et al., 2004). A mantle derivation for plutons in the
Whitehorse region is indicated by: primitive isotopic ratios (€Nd,y,=+2.3 to -1.2 and
7 Sr/*Sr,0ma averages 0.705), metaluminous chemistry, presence of contemporaneous gabbros
and association with Cu mineralization in the Whitehorse Copper Belt (Hart, 1995; Morrison et
al., 1979). The associated volcanism of the Mount Nansen group is also proposed to be arc
related (Rasmussen, 2013). Therefore, the reclassification of regional OMB plutonism does not
include the Whitehorse region. However, Morris & Creaser (2008) suggest that two plutons
within the Whitehorse region (Surprise Lake batholith and Hayes Peak pluton) lack the
“subduction signature” and show isotopic ratios (eENd, g, =+1.4 to +3.8 and ¥'Sr/**Sr=0.7035)
consistent with a derivation from melting of mafic crust possibly in the Slide Mountain or Cache
Creek terrane with no arc mantle input. Therefore, plutons in the Whitehorse region may be Tay
River-type and generated from lower crustal anatexis. However, for this study it is assumed

plutons of the Whitehorse region are arc related and, therefore, not part of the northern OMB.
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Restoring Eocene dextral displacement on the Tintina Fault (Figure 2.12) demonstrates
that the temporal subdivisions of plutons do not form margin parallel bands as previously
proposed (Figure 2.3). Instead the plutonic suites form a concentric pattern approximately
surrounding the YTT and Intermontane terranes. The two regions of explosive volcanism
correlate geochemical and spatially, but are separated by over 200 km across the YTT (Figure
2.12). Plutons also show symmetry around the YTT i.e. the ~100 to 96 Ma Dawson Ranges
batholith (Joyce, 2002), which correlates geochemically and mineralogical with the Tay River
suite in the Tay River district.

Plutons in the core of the OMB (i.e. in the Yukon-Tanana Uplands, Anvil, Cassiar and
Hyland regions) consist of all three suites and have ages ranging over the whole mid-Cretaceous
magmatic episode (115-90 Ma) (Figure 2.12 & 2.13) i.e. the Goodpaster Batholith in the Yukon-
Tanana Uplands region which shows igneous rocks ranging from a 109-107 Ma biotite-
muscovite bearing granite (Anvil-type) to 95.4-93.7 Ma diorite (Tombstone-type; Dilworth et al.,
2007). Plutonic regions on the peripheries of the Yukon-Tanana inlier show the Tay River and
Tombstone styles of igneous activity with U-Pb ages ranging from 100-90 Ma. The most distal
plutonic regions on both sides of the YTT (TTB, Livengood & Tok-Tetlin regions) are
dominated by Tombstone style plutonism and are characterized by ages mainly between 96 and
90 Ma. Therefore, rather than a systematic migration of plutonism inboard (as previously
proposed), the OMB appears to reflect a sequential increase in the area affected by mid-

Cretaceous igneous activity over time.
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Tectonic Model

The regional distribution of plutonism outlined above is the basis for a new tectonic model for
the OMB. The symmetry of plutonism around the YTT and Intermontane terranes suggests these
terranes were a primary factor controlling the distribution of plutonism across the whole OMB.
Accretion of Intermontane terranes to North America, ended 30-70 Myr before OMB
plutonism began (Johnston, 2008; Nelson et al., 2013; Colpron et al., 1996; Hildebrand, 2014).
The accreted terranes formed up to 60 km thick crust in the core of the YTT and neighboring
terranes during the Early to mid-Cretaceous (Pavlis et al., 1993; Staples et al., 2016). The
amphibolitic rocks of the YTT represent deeply eroded continental crust (Pavlis et al., 1993;
Miller and Hudson, 1991) and record a significant thermal event occurring between 116-112 Ma
(Mair et al., 2006; Day et al., 2002; Mortensen, 1990), followed immediately by ~115- 105 Ma
rapid exhumation (Dusel-Bacon et al., 2002; Staples et al., 2014; Berman et al., 2007) and the

onset of felsic volcanism (Hudson, 1994).

Model For Anvil-Type Plutonism In The OMB

The three primary controls on the generation of Anvil-type granites are: 1.The presence of 50-60
km thick crust; 2.The presence of a fertile upper crustal protolith (likely a deeply buried arkosic
rock); and 3. Related exhumation to promote upper crustal melting via decompression (Figure
2.14A).

Anvil-type granites occur down the core of the Columbia orogen in the Anvil, Cassiar,
Hyland and Yukon-Tanana Uplands regions (Figure 2.14B) dominantly within Selwyn Basin
strata. Emplacement of the Anvil suite occurred during a period of regional dextral shear with
syn-plutonic deformation creating orogen parallel crustal pathways (dextral transpressional

faults) for pluton emplacement (Nelson et al., 2013; Johnston, 1999) i.e. the Cassiar fault which
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is coeval with the Cassiar Batholith. The regional distribution of Anvil-type plutons may be
wider than is currently exposed, as mid-crustal levels have not been regionally exhumed.

The cessation of magmatism between 104 and 100 Ma is proposed to be due to a decrease
in the rate of regional exhumation. A change in tectonism at this time is also demonstrated by the

termination of movement on the Robert service thrust between 103-100 Ma (Mair et al., 2006).

Model For Tay River And Tombstone-Type Plutonism In The OMB

OMB magmatism between 100 and 90 Ma represents the development and death of a thermal
pulse affecting the upper and lower crust across a region of 300 km by 500 km combined with
the termination of regional exhumation and continued continental extension and rifting.

External sources of heat that can provide the temperatures necessary to melt amphibolite
facies igneous rocks in the lower crust could derive from basaltic magma injection (Dufek and
Bergantz, 2005) or asthenosphere upwelling (Houseman et al., 1981; Wang and Currie, 2015;
Collins, 1994). Basalt injection is unlikely to explain the Tay River magmatism as indicated by
the lack of contemporaneous mafic rocks and the evolved isotopic signatures of ~100 Ma to 96
Ma melts.

Regional uplift and exhumation followed by lower crustal melting in the northern
Cordillera can be explained by delamination. The convective removal and subsequent foundering
of previously thickened lithosphere allows asthenosphere to upwell into contact with the lower
crust (GoOgiis and Pysklywec, 2008a; Farmer et al., 2002), yielding a temperature increase at the
Moho and regional uplift due to isostatic rebound (G6giis and Pysklywec, 2008b; Bao et al.,
2014; Garzione et al., 2006). Tectonic and erosional denudation of the uplifting region produces
exhumation (Ring et al., 1999). Isostatic rebound derived uplift occurs synchronously with the

delamination event (Figure 2.14A), while the thermal anomaly can take up to 20 Myr to cause a
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significant (>100°C) temperature increase above the Moho (Figure 2.14C; Wang and Currie,
2015).

The radial nature and scale of the plutonism fits with the convective removal of over-
thickened lithosphere, via delamination, beneath the YTT (Figure 2.14D; Wang and Currie,
2015; Wang, 2015). This suggests that the lithosphere beneath the YTT was unique compared to
the lithosphere underneath the rest of the Cordillera. Preferential delamination of the YTT
lithosphere could have been controlled by edge driven convection, where the YTT lithosphere
met the cratonic lithosphere (Hardebol et al., 2012) or due to eclogitization of the lithosphere
beneath the YTT (Krystopowicz and Currie, 2013). Both of these models differ from the
generally accepted thin-skinned view of the northern Cordillera (Figure 2.2; Cook et al., 2004)
by implying that until the mid-Cretaceous the YTT overlay, and was connected to, its own
unique patch of lithosphere.

Delamination causes a local tensile stress field which, when not opposed by tectonic
stress induced at the proximal plate boundary, gives rise to crustal extension and exhumation
(Ranalli et al., 1986; Bardoux and Mareschal, 1994). The mid-Cretaceous period was defined by
a change in tectonic regime from a compressional stress regime to orogen parallel extension
triggered by a change in relative North American plate trajectory at ~110 Ma (Elston et al., 2002;
Kent and Irving, 2010; Staples et al., 2016). Orogen parallel extension, combined with the local
stress regime derived from delamination, would have allowed exhumation and extension to
proceed at the rapid rates recorded in the Tay River district. Exhumation appears to have lasted
~15 Myr (between 115-100 Ma) corresponding to timescales seen in other areas where

delamination is proposed (Bardoux and Mareschal, 1994; Ducea, 2011). Regional extension
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continued beyond the end of isostatic uplift at 105 Ma, terminating in the Late Cretaceous
(Gabrielse et al., 2006).

Tombstone-type plutons represent the terminal stages of exhumation and the thermal
pulse derived from delamination. The volume of magma decreases significantly at around ~96
Ma (Figure 2.14E). The Tombstone-type plutonism occurs in the same regions as the previous
two stages, as well as in locations distal to the center of delamination and the exhuming YTT
(Figure 2.14F). These plutons have previously only been largely identified in the distal parts of
the system due to their small volumes compared to the 100-96 Ma plutons. However, multiple
dates of ~94+2 Ma have been measured across Yukon.

Across the OMB voluminous mid-Cretaceous plutons are linked to regions where
exhumation and decompression melting have occurred. The inboard limit of plutonism
corresponds with thrust faults (i.e. Robert Service and Tombstone thrusts to the northeast of the
OMB) where exhumation and extension did not occur (Mair et al., 2006). To the south of the
OMB the limit of magmatism corresponds to the southern limit of the delaminating lithosphere.

In the OMB, igneous activity ceased at ~90 Ma due to the end of the enhanced
geothermal gradient derived from delamination, termination of regional uplift and exhumation
and perhaps slowing of regional extension as tectonic forces change towards a purer strike-slip

regime.

Outside The Bounds Of This Study

In previous work, the mid-Cretaceous plutonism assigned to the OMB has been mapped
across a larger area than identified in this study. However, we propose that plutons outside of the
area in this study do not possess the same genetic history as the plutons displayed in Figure 2.3

& 2.12. To the south of the Yukon border, and south of the proposed limit of the thermal
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perturbation, the density of mid-Cretaceous plutons decreases significantly (see Hildebrand
2009, Figure 2.13). Throughout northern British Columbia (B.C), mid-Cretaceous plutonism
defines a thin band parallel to the major dextral faults in the northern Cordillera (Johnston,
1999). Therefore, we suggest only Anvil-type plutons exist in northern B.C, as the region was
not affected by a thermal perturbation. High densities of mid-Cretaceous magmatism exist
straddling the U.S. -Canada border, however, the separation between the southern B.C plutonism
and this study mean they are unlikely to be derived from the same thermal event.

To the north of the study area, OMB plutonism has previously been mapped in a band
stretching across northern Alaska from the hinterland of the Brooks Range, towards the Seaward
Peninsula, and out to St. Lawrence Island (Hart et al., 2004). While this plutonism is cogenetic
with the igneous activity in this study we suggest it may be related to a different set of tectonic
events to those outlined for the central Yukon. The tectonic events forming the northern Alaska
belt involve Late Devonian to Mississippian closure of the Angayucham Ocean by south dipping
subduction, followed by Late Jurassic compression, then north vergent deformation and
extension of the Brooks Range between 145 and 112 Ma (Moore et al., 1994; Nelson et al., 2013;
Fuis et al., 2008), potentially due to opening of the Amerasian basin (Grantz and May, 1983;
Strauss et al., 2013). Therefore, while the genesis of plutons in this region could also be derived
from delamination of overthickened lithosphere created due to terrane accretion, it is unlikely
that the same event generated the plutonism seen in this study. Different genetic origins for the
two clusters of plutonism is supported by an over 100 km gap in plutonism between the two
regions of mid-Cretaceous igneous flair up seen when Eocene fault displacement is corrected

(see Hart et al. 2004, Figure 2.8).
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Implication For Future Regional Metallogenic Exploration

The OMB hosts a number of significant mineral deposits, which show a large variation in

metallogeny (Figure 2.15). However, the dominant deposit styles are W skarns, Au deposits

(both intrusion-related and orogenic-lode systems), distal Ag-Pb-Zn veins and rarer Sn

occurrences (Gordey and Anderson, 1993; Nelson et al., 2013). The new model proposed has

three key implications for exploration.

1.

For deposit types linked to a certain intrusion age or style, our new distribution of the
plutonic styles changes the areas over which exploration for these deposits should occur.
For example intrusion related gold systems (IRGS) in the Tintina Gold Belt are strongly
associated with 92 + 2 Ma plutons of the Tombstone style (Goldfarb et al., 2000; Hart et
al., 2004; Lang and Baker, 2001). The model presented in this paper suggests that
Tombstone style plutonism occurs, not only in the TTB but also across the whole OMB
(Figure 2.15). The genetic link between Tombstone style plutonism and IRGS means that
wherever 92+2 Ma plutons occur there is the potential for gold deposits.

For deposit types associated with a unique tectonic regime, our model has the potential to
change the exploration methodology. For example, W and Sn deposits are associated with
plutons showing high degrees of fractionation and crystallization (Lehmann, 1994;
Newberry and Swanson, 1986), so are more likely to be associated with post exhumation
plutons like those found in the Tungsten region (Heffernan, 2004; Figure 2.15).

Our proposal of mantle heating from below and coeval regional uplift and exhumation
implies a high geothermal gradient during OMB magmatism. A high geothermal gradient
will promote the development of magmatic-hydrothermal systems and could explain

pluton distal deposits and deposits with no genetic link to coeval plutonism (Beaudoin
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and Sangster, 1992; Robb, 2005). For example, the Keno Hill Ag-Pb-Zn veins are
proposed to form from a prolonged hydrothermal cell, but a direct genetic link to a
causative pluton has not been found (Lynch, 1989; Hantelmann, 2013). In our model, the
high regional geothermal gradient would promote the development of large, prolonged,
hydrothermal cells. Orogenic-lode gold deposits, that lack a direct connection to intrusive
rocks, could be similarly explained (Sillitoe and Thompson, 1998). Deposits linked to the
flow of metamorphic fluids (i.e. distal base metal veins and orogenic gold deposits)

would be expected to occur in areas with the highest geothermal gradients (Figure 2.15).

CONCLUSIONS

1. In the Tay River district there are three plutonic suites defined by time of emplacement: the
(110-104 Ma) Anvil, (100-96 Ma) Tay River and (96-90 Ma) Tombstone. All three plutonic
suites are derived from crustal anatexis. The Anvil suite represents upper crustal melting of a
fertile sedimentary protolith due to internal heating by radiogenic elements in a significantly
thickened crust. Concurrent exhumation occurring in the region between ~118 and 105 Ma
caused decompression melting. The Tay River suite and coeval South Fork volcanics result from
mantle derived heat, which caused high temperature melting of a lower crustal metatonalite. The
Tombstone suite represents the waning stages of the thermal pulse. Plutonism in the Tay River
district occurs from 110 Ma to 90 Ma with younger suites intruding the older suites. Therefore,
the previously hypothesized inboard migration and younging of plutonic suites for the Selwyn
Basin does not apply in this region of the northern Cordillera.

2. Mid-Cretaceous plutonism in the northern OMB can be reclassified into the three suite
temporal framework identified in the Tay River district. When Eocene dextral fault

displacements are restored the OMB plutons show a concentric pattern around the YTT. All
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three plutonic styles occur in the core of the OMB. Areas on the peripheries of the YTT comprise
the Tay River and Tombstone-type plutons. Areas distal to the YTT contain only the younger
Tombstone-type plutons. The regional concentric U-Shaped pattern around the YTT shows a
sequential increase in the area affected by mid-Cretaceous igneous activity over time and that the
YTT was a primary control on OMB formation.

3. Delamination of over-thickened lithosphere explains the rate and timing of regional uplift and
the distribution of plutons across the OMB. The delamination event occurred at ~115 Ma. The
foundering lithosphere allowed asthenosphere to upwell into contact with the lower crust. The
less dense asthenosphere caused instantaneous isostatic rebound and uplift of the OMB. Tectonic
and erosional denudation occurred synchronously with the uplift leading to exhumation. Anvil-
type plutonism occurred at this time. The upwelling asthenosphere also transferred heat across
the Moho, causing lower crustal melting around 10-15 Myr after the delamination event
generating the Tay River-type melts. As the thermal pulse wanes volumes of melt decrease.
OMB plutonism terminates at ~90 Ma due to re-equilibration of the mantle derived thermal
pulse.

4. Our pattern of OMB plutonism is consistent with delamination of lithosphere beneath the
YTT. Region specific delamination implies region specific lithosphere, indicating that the YTT
was above unique lithosphere in the mid-Cretaceous. This finding implies that the transition to
thin skinned tectonics in the northern Cordillera did not occur until post the mid-Cretaceous
delamination event. Preferential removal of YTT lithosphere could occur due to eclogitization or
edge driven convection. The pattern of OMB plutonism also indicates that all terranes covered
by the plutonism were accreted to each other prior to the mid-Cretaceous since the suites of

plutons span terrane boundaries.
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Figure 2.5 (Previous Page): Key petrographic features of plutonic and volcanic suites as seen in thin
sections.

Anvil plutonic suite (A-C). A- Primary magmatic muscovite in plane-polarized light (PPL). B-

Biotite pleochroism (PPL). C. Myrmekite in cross-polarized light (XPL).

Tay River Suite (D-F). D. Typical porphyritic samples (PPL). E. Typical seriate sample (PPL). F. Biotite
pleochroism (PPL).

South Fork Volcanics (G-l). G. Deformed crystals (PPL). H. Fiamme (PPL). I. Lithic

Fragment (PPL).

Tombstone Suite (J-L). J. Typical Tombstone suite sample (XPL). K. Biotite

pleochroism (PPL). L. Biotite pleochroism (PPL).

Figure 2.6 U-Pb Dating (Next 2 pages): A to D: Tera-Waserburg diagrams for samples dated in this
study separated by suite.

E: Compilation of all U-Pb ages of Mid-Cretaceous plutons from the literature (outlined boxes) and this
study (shaded boxes). Divided based on plutonic suites identified in this study. V indicates extrusive
samples. (Gordey, 2013; Pigage,2004; Cobbett, 2015).
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Figure 2.7 (Previous Page): Various geochemical discrimination diagrams for the bulk whole rock
geochemistry of igneous rocks in the Tay River district. A: Plutonic samples plotted on the TAS plutonic
diagram from Middlemost (1994). B: Volcanic samples plotted on the TAS volcanic diagram from Le
Maitre (1989). C: K,O (wt%) versus SiO, (wt%) binary plot of all samples. Field boundaries from Le Maitre
(1989). D: Average Chondrite normalized REE plots for the plutonic suites. E: Average MORB normalized
minor elements plots for the plutonic suites. F: CaO/Na,O versus Al,O,/TiO, binary plot for plutonic
samples adapted from Sylvester (1998). G: Chondrite normalized (La/Sm), versus (La/Yb),, binary plot for
plutonic samples. Proposed crustal thickness associated with (La/Yb), variation shown from Kay et al.
(1991) and Haschke and Gunther (2003). H: Chondrite normalized (La/Yb), versus (Sm/Yb), binary plot
for plutonic samples. Showing proposed mineral assemblages in equilibrium with melts associated with
(Sm/YDb),, variation from Kay and Mpodozis (2001). I: Ta (ppm) versus TiO, (wt%) binary plot for plutonic
samples.
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Figure 2.8: Probability density plots (shaded) and kernel density envelopes (outline) for temperatures
calculated by titanium thermometry on zircon grain separates from five samples.
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Figure 2.10: Whole rock 87Sr/86Sri versus eNdT for felsic rocks of the Tay River district separated by
suite and corrected to the age of pluton emplacement. Grey shaded regions show the range of compiled
isotope data for Cretaceous Selwyn Basin plutons - corrected to 100 Ma -

subdivided based on plutonic region. Regional isotopic data from Rasmussen (2013) and references
therein. Black lines represent the Bulk Earth composition (CHUR) relative to Nd and Sr.
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Figure 2.12: Temporal distribution of pluton suites, identified in this study, across the OMB overlain onto
a schematic representation of major tectonic elements with restoration of 430km of dextral movement on
the Tintina fault (modified from the reconstructions of Heffernan, 2004 and Gabrielse et al. 2006).
Plutonic regions shown from Figure 2.3 and tectonic terranes divided by paleogeographic affinity from
Figure 2.1. Position of Robert Service, Tombstone and Dawson thrusts from Mair et al. (2006). Mid-

Cretaceous intrusive (pink) and extrusive bodies (orange) taken from Yukon and Alaskan Geological
Surveys.
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Figure 2.13: Compilation of U-Pb dates and mineralogical description of igneous rocks present in each
plutonic region (see references in text). A: Dates divided based on temporal suites identified in Tay River
district and a distinct amagmatic period between 104-100Ma. B: Identification of regions where magmatic
muscovite and/ or common hornblende are definitely present (black), potentially present (grey) and not
reported (white).
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Figure 2.14 (Previous Page): i, iii and V: Cross sections across the OMB between 115-90Ma. ii, iV and
Vi: Schematic aerial views of pluton distribution for the time periods corresponding to i, iii and V. Tintina
fault restoration based on Figure 2.12. Terrane boundaries and colours from Figure 1. i: 115-104 Ma:
Delamination of thickened cordilleran lithosphere below the Yukon-Tanana terrane creates space for
asthenosphere to upwell into contact with the lower crust. This causes immediate isostatic rebound and
regional exhumation. Decompression melting occurs in radiogenic element enriched sedimentary layers
in already thickened crust forming Anvil-type plutons. Exhumation stops at ~105 Ma. At the northeast of
the OMB vertical exhumation is taken up on the Tombstone and Robert Service thrusts. ii: Anvil-type
granites form in the center of the orogeny including parts of the Anvil, Hyland and Cassiar batholiths. iii:
100-96 Ma: Asthenosphere has gradually heated the lower crust over the past 10 Myr leading to melting
of lower crustal igneous rocks forming Tay River-type melts. Exhumation has slowed and regional
extension continues. Lower crustal melts rise through the crust rapidly pooling in shallow magma
chambers (Tay River-type plutons) which occasionally erupt causing catastrophic caldera formation
(South Fork-type volcanics). iv: Tay River-type plutons occur in the same regions as the Anvil-type but
also occur in a concentric pattern proximal to the YTT. Distribution is strongly controlled by the scale of
the delaminating lithosphere. Plutons include the Dawson Range, Orchay and Marjorie batholiths. v:
96-90 Ma: Lithosphere foundering continues but the thermal perturbation begins to wane as
asthenosphere in contact with the crust cools. This leads to lower volume lower crustal melts. A lack of
exhumation increases crustal residence times leading to high degrees of crustal contamination seen in
Tombstone-type plutons. Contin-ued extension leads to the intrusion of rare lamprophyres assumed to
derive from asthenosphere melts. vi: Tombstone pluton emplacement occurs across the whole OMB
associated with the previous two plutonic styles and as isolated plutons in the most distal parts of the
OMB.
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Table 2.2. Geocehmical Parameters from Zircon LA-ICP-MS

Suite Ce/Ce* | EwEu* | XREE (ppm) | (Sm/La)y | (Lu/Gd)y | ThU
Anvil 16 0.003-0.015 760-1660  04-725 31-134  0.01-0.03
Tay River 1-67  0.007-0.014  660-1990 0.5-320 11-41 0.13-1.2
Tombstone 1-10  0.003-0.038  665-2600 1.5-440 12-52  0.16-0.43
South Fork 1-81  0.003-0.014  390-1280 0.4-17 12-49  0.29-0.59
REFERENCE VALUES
Mantle Affinity* 1-10 ~1 <40 <50 ~1-10 -
Crustal Affinity* 1-100  <<1-<1 1500-2000  57-547 16-74 -
Igneous Zircon* - - - - - 0.4-1.0
Meta™ Zircon* - - - - - 0.01-0.08

* Typical values from Hoskin and Schaltegger (2003) and Hoskin and Ireland (2000).
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Chapter 3: Identifying the source of an S-type granite via

xenocrystic zirconology.

Clastic sedimentary rocks commonly contain detrital mineral grains like zircons that
resist destruction during erosion and diagenesis. The population of detrital zircon grains in a
sedimentary unit is typically derived from multiple sources with different ages that reflect the
provenance of the rock. Therefore, U-Pb dating of a suite of detrital grains can be used to
produce an age spectrum that can be characteristic of a given sedimentary unit (Fedo et al. 2003).
S-type granites are peraluminous felsic rocks, which form as the result of the partial melting of
metasedimentary rocks in the crust. These granites inherit a chemical and isotopic signature (e.g.,
Nd, Sr), as well as zircons from their sedimentary source rocks (Chappell and White 1974).
However, magmatic processes, such as crustal contamination, crystal fractionation and magma
mixing (Clemens 2003), make it challenging to precisely identify the melt source (s) of S-type
granites.

Here, we use U-Pb dating of inherited zircons in an S-type granite to accurately identify
the sedimentary protolith. This approach has previously proven difficult (Keay et al. 1999) as
inherited zircons commonly have discordant ***Pb/***U and **’Pb/**’U ages, having lost Pb
during the melting process. Recently, however, Reimink et al., (2016) published a new method
enabling the extraction of robust ages from a population of discordant zircon analyses. In this
study, we apply this method to discordant U-Pb analyses from xenocrystic zircons extracted from
an S-type granite, in conjunction with Nd-isotope analyses of the granite. Using these data we

are able to accurately constrain the sedimentary protolith that partially melted, and show that
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inherited zircons from this Cretaceous S-type granite preserve a record of multiple rock cycles

dating back to the Archean.

Geological Background

The Anvil region in the central Yukon, Canada provides an ideal natural laboratory for
testing this method: the regional stratigraphy has been well constrained (Pigage 2004, Gordey
2013); detrital zircon spectra (Gehrels et al. 1999, Ross et al. 2005, Hadlari et al. 2009, 2012,
Leslie 2009, Lane and Gehrels 2014) and Nd-isotope compositions (Boghossian et al. 1996,
Garzione et al. 1997) are documented for the sedimentary units in the region; and the study area
contains a large and accessible S-type granite, the Anvil batholith (Pigage and Anderson 1985,
Smith and Erdmer 1990).

The crystalline basement in this part of western Canada is the cryptic Nahanni terrane
(Hoffman 1989, Ross 1991a), which is proposed to comprise 2400 —1850 Ma rocks (Hildebrand
et al. 1987, Villeneuve et al. 1991). A package of supracrustal units, including three sedimentary
Proterozoic supergroups (Wernecke, Delaney 1981, Thorkelson et al. 2001, Furlanetto and
Thorkelson 2009; Mackenzie Mountain, Heaman et al. 1992, Narbonne and Aitken 1995,
Rainbird et al. 1996; and Windermere, Ross 1991b, Narbonne et al. 1994, Nelson et al. 2013)
were deposited on the crystalline basement. These Proterozoic strata are not found in the Anvil
region, but outcrop in the northeastern Yukon (Young et al. 1979, Young 1984) (Figure 3.1). As
paleocurrent data demonstrate that Proterozoic Canadian passive margin sedimentation was
sourced from the east or northeast (Cecile et al. 1997, MacNaughton et al. 2000, Hadlari et al.
2009, 2012) the sedimentary source regions, and consequently the detrital zircon signatures, of
the northeastern Yukon Proterozoic outcrops and unexposed crust in the Anvil region are likely

analogous. These outcropping units described in previous studies (Young et al. 1979, Narbonne
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and Aitken 1995, Leslie 2009) can, therefore, be used to estimate the detrital grain contents of
the unexposed rocks in the Anvil region.

The Proterozoic supergroups are covered by the deep-water sedimentary rocks of the
Selwyn Basin, which were deposited onto the passive western margin of the North American
craton between the late Proterozoic and Jurassic (Pigage 2004, Gordey 2013). The Hyland group,
which is correlative with the upper Windermere Supergroup, was deposited during the initiation
of rifting that formed the Selwyn Basin (Nelson et al. 2013). The Gull Lake and Rabbitkettle
formations overlie the Hyland Group (Figure 3.1). The Gull Lake Formation is the oldest unit
that outcrops in the Anvil region (Pigage 2004). A shift in éNd (1) values, from -10 to -20 for
Cambrian and older strata, to -5 to -10 for Early Ordovician to Permian samples (Boghossian et
al. 1996, Garzione et al. 1997) marks a change in the source region of Selwyn basin sediments
after the deposition of the Gull Lake Formation. Sediment deposition in the Selwyn Basin
continued throughout the Paleozoic, ending in the Jurassic due to the onset of the northern
Cordilleran orogeny (Nelson et al. 2013). Finally, intrusions in the Anvil region were emplaced
in the Cretaceous in a syn- to post-orogenic setting (Hart et al. 2004, Rasmussen 2013).

This study presents zircon and Nd-isotope data from the Anvil plutonic suite (APS),
which forms the southeastern end of the Anvil batholith (Pigage and Anderson 1985) a
Cretaceous plutonic body hosted within the Cambrian sediments of the Gull Lake Formation.
The APS predominantly consists of a peraluminous muscovite-biotite S-type granite (Pigage and
Anderson 1985). U-Pb dating of monazite records crystallization ages of 109—104 Ma (Pigage
2004). The melt that formed the APS is thought to derive from partial melting of a sedimentary
protolith (Smith and Erdmer 1990, Rasmussen 2013) within the unexposed crust of the Selwyn

Basin; however the melt source units(s) have not been identified. By identifying the age
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distribution of the inherited zircons in the APS we can identify not only the source for the S-type
granite, but also show that the APS retains information on the provenance of the zircon grains

and the history of multiple rock cycles in North America.

Decrypting the inherited zircon age spectra of the Anvil plutonic suite

Zircons were separated from two unaltered samples of APS granite and then analyzed
using cathodoluminescence imaging on a scanning electron microscope (Figure Al). Of the 150
imaged zircons, 149 contained inherited cores, interpreted to represent the inherited remnants of
the detrital zircon grains from the clastic sedimentary melt source. The inherited zircon cores
were commonly overgrown by younger rims during magmatic zircon growth. The cores are
commonly round with diameters ranging from 40 to 220 um. Assuming the cores are spheroidal,
they typically make up 25+10% (1SD; range of 7 to 51%) of the zircon grain by volume. U-Pb
dating of 108 inherited cores was conducted via laser ablation- inductively coupled plasma-mass
spectrometry (LA-ICP-MS; Appendix 3). Analyzing such small cores with laser ablation has
traditionally proved difficult, as the size of the analytical volume sampled by the laser can be
larger than the zircon core, leading to mixing between core and rim domains, ultimately creating
a discordant U-Pb analysis that has proven difficult to interpret.

The majority of the 108 U-Pb analyses collected from the inherited zircon cores yield
discordant analyses (Figure 3.2A), and only 20 of the analyses are <10% discordant, a typical
filter in detrital zircon studies (Fedo et al. 2003). However, the modelling methodology of
Reimink et al. (2016) can be used to calculate the most probable lower intercept age for the
discordant zircon analyses from the APS (Figure 3.2B). Using this method, the highest

probability for the lower intercept age from the 108 zircon cores analysed is calculated to equal
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~110 + 4 Ma, which within analytical uncertainty is indistinguishable from the age of
emplacement of the APS (Pigage 2004).

Using this fixed lower intercept age, the upper intercept age spectra (interpreted as the
crystallization ages for the inherited zircons), with associated errors, can be calculated from the
modeling output of Reimink et al. (2016). The 2c errors in individual discordant zircon analyses
are combined with the £4 Myr error in the lower intercept to produce a conservative error
envelope (Figure 3.3). The corrected zircons display dominant age-abundance peaks at ~1830
and ~1920 Ma, with secondary peaks at ~1100, ~1200 and ~2700 Ma. Minor peaks are present at
~1550 and ~2350 Ma. These peaks represent common ages seen in age spectra from sedimentary
samples in western Canada (Leslie 2009, Lane and Gehrels 2014).

In order to evaluate the similarity of potential sedimentary sources and the APS inherited
zircon spectra with some statistical rigor, we used the Kolmogorov-Smirnov (K-S) goodness-of-
fit test. However, the continuous age spectra produced by the modeling output are not suitable,
as the K-S test requires discrete input data. Therefore, we recalculated the upper intercept ages
for each grain by solving the simultaneous equations that describe the discordia lines and the
concordia polynomial (Appendix 3). Analyses proximal to the lower intercept (***Pb/***U<0.05
or *’Pb/***U<0.5) were not corrected as these samples are dominated by lead-loss or magmatic
rim overprinting and therefore, would require large extrapolations to calculate the upper
intercept, resulting in large errors. Seventy-one out of the 108 analyses were corrected back onto
the concordia curve. The age spectrum calculated in this way is nearly identical to the spectrum
produced by the modeling procedure of Reimink et al. (2016), but the modeling procedure is able

to more robustly account for uncertainty.
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To assist in identifying the sedimentary source we also analyzed two whole-rock samples
of unaltered APS granite for their Sm-Nd-isotope composition (Appendix 3). These analyses

returned eNd (110 ma) values of -19.4 and -20.6 for the two APS samples.

Identifying the melt source of the Anvil plutonic suite

The corrected age-probability curve of the APS zircon cores can be compared to the
detrital zircon age distributions from sedimentary rocks present in the region in order to identify
the magma source(s). Three additional constraints can be placed on the age of the APS melt
source:
1. The youngest detrital zircon age in a sedimentary unit yields a probable maximum age for that
host unit (Nelson 2001, Fedo et al. 2003). Since the APS zircons are inherited from their source,
that source was deposited after the youngest inherited core age (in this case 1032 + 40 Ma).
2. The sedimentary melt source is assumed to be stratigraphically below the middle to late
Cambrian sedimentary rocks (Pigage 2004) within which the Anvil Batholith is currently
emplaced. The Gull Lake Formation, which hosts the APS, has been metamorphosed to
greenschist to mid-amphibolite grade (Smith and Erdmer 1990, Pigage 2004, Gordey 2013),
indicating the host strata never attained the temperatures necessary to generate the volume of
melt required to form the APS (Nair and Chacko 2002). As there is no evidence for tectonic
imbrication of sediments around the Anvil Batholith (Pigage 2004), the protolith for the APS
must be Cambrian or older.
3. The sedimentary melt source must have highly evolved €Nd (110 ma), Similar to the APS,

requiring a Cambrian or older protolith (Figure 3.1).
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Therefore, the protolith for the APS was deposited between ~1000 and ~500 Ma.
Consequently, the Rabbitkettle Formation and Wernecke Supergroup cannot be the protoliths for
the APS. This leaves the Mackenzie Mountains Supergroup (MMSG), Windermere Supergroup,
and the correlative Hyland Group, or the Gull Lake Formation as potential protoliths.

The detrital zircon age spectra from potential protoliths is summarized in Figure 3.4 (Gehrels et
al. 1999, Leslie 2009, Hadlari et al. 2012, Lane and Gehrels 2014). The major peaks at ~1830
and ~1920 Ma in the APS zircon cores are missing from both the MMSG samples, precluding
the MMSG Supergroup from being the dominant APS protolith (Leslie 2009). The sample
equivalent to the Gull Lake Formation displays the ~1830 Ma peak, but contains peaks at 719
Ma and 790 Ma (Lane and Gehrels 2014), which are not seen in the APS zircons. The Gull Lake-
equivalent also does not display the minor peak at 2350 Ma seen in the APS zircons. However,
strata from the Windermere Supergroup (Hyland Group and Keele Formation) are similar in their
detrital zircon populations to the APS with close matches in relative peak heights and
abundances of ages.

The K-S test can be used to explore the relationship between zircon age spectra by
identifying if there is a statistically significant difference between two distributions, removing
the subjective bias of a visual comparison. To run the K-S test the 71 discrete corrected data
points (without errors) from the APS can be compared to raw data from both individual
sedimentary units and mixtures of multiple sedimentary units in the region. Possible populations
of zircons derived from more than one lithology were generated by combining random Monte-
Carlo populations from mixtures of zircons in sequential sedimentary units (Table A13).

K-S test comparisons of zircon ages from combinations of the sedimentary units with the

APS, confirm that most of the zircon populations (individual or mixed) cannot be potential
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sources (p-value> 0.1) for the APS. The K-S test shows that only the Windermere Supergroup
(p-value = 0.880; d-statistic=0.11), or mixed zircon populations dominated by zircons from the
Windermere Supergroup and Gull Lake Formation (average p-value from multiple runs=0.34)
have a statistical likelihood of sharing a zircon population with the APS.

Furthermore, the Nd-isotope values measured on the APS (eNd (110 maj= -20+0.6) overlap
with the ratios measured in the Windermere Supergroup (eNd (110 maj= -21£2; Boghossian et al.
1996, Garzione et al. 1997) supporting the Precambrian sediment as the dominant contributor to
the APS melt.

Therefore, whereas mixing between the Windermere Supergroup/Hyland Group, and
other sedimentary units cannot be ruled out, the Nd isotopic values and remarkable correlation
between the Windermere Supergroup and APS zircons suggests that the Hyland Group is the

most probable source for the APS melt.

The story of a continent in a hand specimen

This study demonstrates that correcting discordance in U-Pb analyses of inherited zircon
cores from an S-type granite allows the identification of the source sedimentary unit that partially
melted, constraining that part of the rock cycle. However, the corrected zircon ages reveal more
than just the last stage in which the Hyland Group melted to form an S-type granite; this granite
plug contains a record of events affecting the North American continent over the last 3 billion
years. The peaks at 2870 and 2700 Ma represent growth periods within Archean cratons
(Hoffman 1989), likely derived from the Slave or Hearne provinces (Leslie 2009).
Paleoproterozoic peaks at 2350, 1920 and 1830 Ma derive from the accretionary and continental
orogenies (Villeneuve et al. 1993) that brought together these Archean cratons to form the core

of present day North America. Mesoproterozoic peaks represent zircon grains sourced from the
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east of the North American continent by a river system that transported grains 3000 km, from
their source in the Grenvillian orogen (Rainbird et al. 1992, 1997, Ross and Villeneuve 2003) to
the western passive margin of the North American continent. Grains sourced from across North
America were then deposited in the late Proterozoic as the Hyland Group within the Selwyn
Basin. Basin inversion during the Mesozoic Columbian orogeny (Wheeler and Gabrielse 1972)
buried the Hyland Group to >15 km (Smith and Erdmer 1990) until the clastic sedimentary rocks
reached temperatures that induced partial melting. The melt generated from the Hyland Group
migrated from within the >3 km thick sequence of clastic sediments (Gordey and Anderson
1993, Gordey 2013) into the overlying Gull Lake Formation where the magma cooled and
solidified to form the S-type APS, thus completing the rock cycle. The S-type granite was
gradually exhumed to the surface in the Cretaceous (Gordey 2013) where it presently outcrops as
a felsic intrusion containing the history of nearly 3 billion years of the rock cycle in North

America.

Implications for granite petrology

The ability to identify the exact melt source of an S-type granite has the potential to solve
a number of controversial problems (Clemens 2003) in granite petrology. Applying the method
outlined in this study to identify the sources of other granites could clarify the thermal conditions
of the crust at the time of partial melting (Miller et al. 2003, Kemp et al. 2005), the nature of the
heat sources causing anatexis (Petford and Gallagher 2001), the processes that control the
compositional diversity of granites (Clemens and Stevens 2012), and the kinetics of granitic
plumbing systems within sedimentary basins (Petford et al. 2000). Identifying the melt source of
an S-type granite could also be used to identify the nature of unexposed crust beneath the

igneous body and map the variability of buried, sedimentary, units across a region.
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Figure 3.1: Proterozoic and early Paleozoic stratigraphy of the Anvil region (modified from Lane &
Gehrels, 2014). Ages of units are taken from references in the text. Black diamonds show sedimentary
sample locations. The white boxes show the approximate stratigraphic position of selected formations
and groups discussed in the text. Average sNdmOMa) values for Paleozoic sediments are from Garizone
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Chapter 4: Thermochronology of Omineca Magmatic Belt granites
in the Selwyn Basin: Evidence for Mid-Cretaceous exhumation of
the central Yukon and passage of the northern Cordillera over the

Yellowstone hotspot in the Late Cretaceous.

Introduction

The geology to the north of Faro (Tay River district) in south-central Yukon records a
complex series of events during the late Mesozoic associated with the transition from the
compressional phase of the Sevier-Columbia orogeny to a post-orogenic period. In the Tay River
district this is manifested by the mid-Cretaceous (Aptian to Cenomanian) emplacement of one of
the largest volume pulses of plutonism and volcanism seen in the northern Cordillera (Gordey
2013). It has been suggested by previous workers that synchronously with the igneous activity
the area underwent rapid-exhumation of greater than 10km (Smith and Erdmer 1990, see
Chapter 2). Here, we add to the understanding of the geological evolution of the Tay River
district in the late Mesozoic by using low temperature thermochronology on plutons to constrain
the Cretaceous thermal history of the region. Using these data we derive the nature of, and
potential driving forces responsible for this period of exhumation and igneous activity in the Tay
River district. These regional-scale dynamics have implications for the evolution of the northern

Cordillera and post-compressional orogenies worldwide.
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Geological Setting

Regional Setting

The bedrock geology of the Tay River district (Figure 4.1) comprises sedimentary rocks
originally deposited between the Precambrian and late Triassic in the Selwyn Basin on the rifted,
western passive-margin of cratonic North America (Pigage 2004, Lund 2008, Gordey 2013). The
dominantly deep-water sediments of the Selwyn Basin are flanked to the north, west and east by
coeval carbonates formed on shallow marine platforms (Gordey and Anderson 1993). Sediment
deposition in the Selwyn Basin had terminated by the Jurassic to Cretaceous, due to
allochthonous terrane accretion to the western margin of North America and the subsequent
onset of the Sevier-Columbia orogeny (Mihalynuk et al. 1994, Nelson et al. 2013, Hildebrand
2014). This Mesozoic orogeny is dominantly thought to be thin skinned (Cook et al. 2004, Cook
and Erdmer 2005), with the allochthonous terranes overriding the North American margin, and is
interpreted to have resulted in crustal thickening (Pavlis et al. 1993), exhumation of previously
deeply-buried crust (Colpron et al. 1996), and the formation of a fold and thrust belt at the
eastern margin of the orogen (Ross et al. 2005, Nelson et al. 2013). The strata of the Tay River
district were structurally imbricated and folded during the orogeny (Figure 4.2; Pigage 2004,

Gordey 2013, Cobbett 2015, Yukon Geological Survey 2017).

Mid-Cretaceous Igneous Rocks

Mid-Cretaceous plutonic rocks outcrop across the whole northern Cordillera in two
distinct belts (Armstrong 1988, Woodsworth et al. 1991): the outboard Coastal Plutonic Belt
(CPB) and the inboard Omineca Magmatic Belt (OMB). The plutons within the Tay River

district form part of the OMB; an enigmatic group of plutons that intruded inboard of the

87



continental margin, in a post-orogenic setting. Researchers do not agree on the formation
mechanism for the OMB plutons and there are numerous models for their genesis (Rasmussen,
2013; Johnston, 2008; Hart et al., 2004; see Chapter 2).

The Tay River district contains one of the highest densities of OMB plutons, and some of
the only preserved outcrops of OMB volcanic rocks (Figure 4.2). In Chapter 2 it was shown that
the mid-Cretaceous plutons in the Tay River district were emplaced continuously from 110 to 92
Ma and that these plutons can be divided into three suites based on their age, geochemistry and
petrology. The oldest suite in the Tay River district is the Anvil, followed by the Tay River and
finally the Tombstone suite. Descriptions of each suite can be found in Mortensen et al., (2000);
Hart et al., (2004);Rasmussen, (2013) and in Chapter 2.

Significant exhumation within the Tay River district concurrent with the emplacement of
these plutons has been hypothesized (Tempelman-Kluit 1972, Pigage and Anderson 1985). The
first constraint on exhumation is constrained by the aureole and intrusive rock mineralogy of the
oldest plutons in the region, the 109-104 Ma Anvil suite (Pigage 2004). This aureole consists of
pelitic schists containing an assemblage of andalusite-staurolite-garnet-biotite-muscovite-quartz
and plagioclase with local fibrolite and cordierite, but lacking kyanite (Pigage and Anderson
1985, Smith 1989), indicating emplacement at less than 4 kbar. Some authors (Tempelman-Kluit
1972) have previously argued that the isograds in the pelitic schists are truncated by plutons of
the Anvil suite and, therefore, the mineralogy reported above was the result of regional Devonian
metamorphism rather than Anvil suite emplacement. However, Smith and Erdmer (1990)
mapped biotite, andalusite, staurolite, garnet, and sillimanite isograds within the schists,
concentric to an Anvil suite pluton, consistent with the formation of the mineral assemblage in

the mid-Cretaceous. The Anvil suite igneous rocks contain primary magmatic muscovite (see
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Chapter 2) indicating that mica was a primary magmatic phase in the magmas and, therefore,
emplacement of the Anvil suite occurred at >3.5 kbar. Overall, the aureole mineralogy-
combined with the lack of kyanite and the presence of primary magmatic muscovite- constrains
the Anvil suite emplacement to between 3.5 - 4 kbar, which corresponds to depths of 12-15 km
(Pigage 2004). The intrusion of the Anvil Batholith is believed to coincide with the beginning of
exhumation due to the regional lower greenschist grade, consistent with burial of the Tay River
district to a maximum depth of around 12-15 km (Pigage 2004), and due to comparison with
Staples et al. (2016).

The second geological constraint on the exhumation comes from the 100-96 Ma Tay
River suite and the cogenetic South Fork volcanics (Gordey 1988). The Tay River suite was
emplaced at shallow levels (<1-2 km), as shown by the close spatial association between Tay
River suite plutons and coeval extrusive caldera volcaniclastics (Smith and Erdmer 1990, Pigage
2004 and see Chapter 2). The shallow level of Tay River suite intrusion is supported by an
association with hornfels (Pigage 2004) and the coeval-proximal deposition of sub-aerial coarse
clastic rocks dated by dinosaur prints (Long et al. 2001). However, the Tay River suite and Anvil
suite currently outcrop at the same stratigraphic level and the two suites interfinger within a
number of batholithic bodies. This means that between the Anvil suite emplacement (109-104
Ma) and the Tay River suite emplacement (100-96 Ma), the Anvil suite was exhumed from
~13£2 km to 1.5+0.5 km. This corresponds to a 12+2 km exhumation in 8+4 Ma at a rate of
between ~1 and >3 km/Ma.

After the emplacement of the Tay River suite, the Tombstone suite was intruded across
the Tay River district, between 96-90 Ma (see Chapter 2). Round, small volume, Tombstone

suite plutons are surrounded by hornsfels facies aureoles composed of biotite, K-Feldspar and
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andalusite bearing pelites. This association is consistent with emplacement at shallow crustal
levels (<1- 2 km; Spear and Cheney 1989, Mair et al. 2006). In the 90 Ma after the intrusion of
OMB plutons, the Tay River district appears to have undergone very little geological change: the
100-96 Ma South Fork volcanic flows are still approximately horizontal (Gordey 1988, 2013)
and 1km thick tuffaceous deposits still remain within the calderas, which based on typical North
American caldera fill thicknesses (Lipman 1984) suggests only ~1km of denudation has occurred
since the Turonian (Smith and Erdmer 1990).

The mid-Cretaceous exhumation rates seen in the Tay River district are high, but
consistent with erosional denudation keeping pace with tectonic uplift (Reiners and Brandon
2006). In Chapter 2, both the period of uplift and changes in pluton style could be explained via a
delamination model, proposing that foundering of lithosphere caused uplfit due to isostatic
rebound. Modern studies on asthenosphere flow during post-glacial rebound demonstrate that
this method could produce the uplift rate observed in the Tay River district (Sigmundsson 1991).
However, the magnitude of exhumation seen in the Tay River district (>10 km) is unlikely to
derive from only delamination driven isostatic rebound (Krystopowicz and Currie 2013) and
requires synchronous tectonic exhumation and denudation via brittle and/or ductile thinning of
the crust.

This chapter aims to further constrain the details of the mid-Cretaceous exhumation in the
Tay River district using accurate low temperature thermochronology on the igneous rocks of the
region. Thermochronology is the study of the thermal history of rocks based on a number of
radiogenic isotope systems that display open system behavior above a defined temperature range
- termed the effective closure temperature (T¢; Hodges 2003, Reiners and Brandon 2006). The

date recorded by a thermochronometer indicates the time the system cooled below T¢. Therefore,
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dating a rock via a number of systems with different closure temperatures can elucidate the
thermal history (temperature versus time path; Tt) of that rock. For this study, we have combined
new *’Ar-’Ar dates from biotite or hornblende and U-Th/He dates from zircon separated from
OMB plutons in the Tay River district, with U-Pb zircon ages previously reported in Chapter 2.
The typical approximate effective closure temperatures at cooling rates experienced within a
range of geological environments of these three systems respectively are: 325-375°C, 200-150°C
and 800- 900°C (Figure 4.3; Hodges 2003, Reiners 2005, Reiners and Brandon 2006). Therefore,
combining the three systems will yield a Tt path for the OMB plutons passage through the upper

crust during mid-Cretaceous exhumation.

Methods

To examine the Cretaceous regional exhumation of the Tay River district, nine samples
of unaltered granitic rock characterizing representative samples of each of the Anvil, Tay and
Tombstone suites were selected for analyses (Figure 4.2; Table 4.1). The geological context of
the samples is provided in Chapter 2. Unless otherwise reported, all analyses were conducted at

the Canadian Centre for Isotopic Microanalysis at the University of Alberta, Edmonton, Canada.
Mineral Separation and Imaging

Zircons

Zircons were separated from the samples using standard gravimetric and magnetic settling
techniques to isolate a heavy mineral separate composed of dominantly zircon grains. Imaging of
representative mounted grains from each sample was conducted to characterize parent nuclide

(U) zonation within individual zircon grains. The imaging was conducted in secondary electron,
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cathodoluminescent (CL) and backscattered light, using a Zeiss Evo-MA-15 scanning electron
microscope. While not possible to image the exact grains that are measured for U-Th/He ages,
the imaging of >60 zircons per sample allowed effective characterization of U zonation for the

zircon population of each sample.

Biotite

Biotite was hand picked from crushed samples of eight of the granitic rocks. Sample G18 did not
contain any separable biotite so hornblende was isolated. Contamination of samples, by
secondary (hydrothermal) biotite was a concern. However, detailed petrography carried out on
all samples indicated that primary-magmatic grains displayed a strongly euhedral crystal form in
contrast to the anhedral- “shreddy” form displayed by the secondary-hydrothermal biotite grains.
Petrography also revealed that the primary biotite of each suite displays characteristic colours in
hand specimen and transmitted light (Table 4.1; Figure 2.5). Therefore, primary-magmatic
biotite could be isolated from each sample based on both colour and crystal form. Petrography
also revealed that alteration of primary biotite grains was minimal in each sample. However, the
hornblende phenocrysts in Sample G18 had been extensively replaced by hydrothermal chlorite,
meaning pure hornblende samples could not be isolated. Therefore, the **Ar/*’Ar data from the
hornblende samples will include Ar degassed from the younger chlorite grains making any

Ar/*°Ar dates obtained minimum age estimates (Little et al. 1995).

LA-ICP-MS methodology

In order to further characterize the zonation of parent nuclides within zircon grains, U and Th
concentrations were measured on mounted zircon separates from zircons from an Anvil suite
sample (G1). Measurements were carried out by laser ablation inductively coupled plasma mass

spectrometry (LA-ICP-MS) using a Resonetics M-50 LR laser ablation system coupled to a
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Thermo Neptune Plus Multicollector inductively coupled plasma mass spectrometer following

the methods outlined in Chapter 2.

' 4r-° Ar methodology

*Ar/* Ar analysis was carried out on eight biotite and one hornblende separate (Table 4.2) at the
Nevada Isotope Geochronology Lab (NIGL), University of Nevada, Las Vegas using their in-
house laboratory procedures - described below. At least 100 mg of pure mineral separate was
included for each sample.

During the irradiation stage Ar induced interferences from K and Ca were corrected by
repeated analysis of synthetic K-glass and CaF, within the irradiation packages. Measured
(*°Ar/*° Ar)k values were 7.13 (£ 9.38 %) x 107. Ca correction factors were (‘°Ar/*’ Ar)c, = 2.31
(£ 0.29 %) x 10 and (PAr/*’Ar)ca = 6.27 (£ 0.08%) x 10™* Biotite fluence was monitored by
standard GA-1550, which was assigned an age of 98.50 Ma (Spell and McDougall, 2003).
Excellent reproducibility (0.3 to 0.8 %) of the single crystal GA-1550 biotite fluence monitor
along the length of the irradiation tube indicates that there were no significant neutron fluence
gradients present within individual crystal packets. Total neutron fluence variation along the
length of the irradiation package was <4%.

The furnace step heating method was carried out in an ultrahigh vacuum furnace
(Staudacher et al. 1978), with final measurements of the Ar ratio performed in a MAP 215-50
mass spectrometer. Systematic errors in the mass spectrometer were calibrated via multiple
analysis of atmospheric argon aliquots, which yielded **Ar/*°Ar ratios of 305.28 + 0.08%
(accepted value 295 + 5 (Nier 1950)) during this work. Therefore, a correction factor of 0.9680
(4 AMU) was applied to measured isotope ratios. The sensitivity of the mass spectrometer was

~6 x 10" mol mV™" with the multiplier operated at a gain of 36 over the Faraday. Line blanks
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averaged 3.07 mV for mass 40 and 0.03 mV for mass 36 for laser fusion analyses and 15.45 mV

for mass 40 and 0.06 mV for mass 36 for furnace heating analyses.

U-Th/He methodology

U-Th/He analyses were carried out on separated zircons from all nine samples at the Arizona
Radiogenic Helium Dating Laboratory (ARHDL), University of Arizona, Tuscon. Three to four
single zircon crystal aliquots were measured per sample. Three steps are involved in the
collection of U-Th/He data: Step 1- selection, characterization and preparation of grains, Step 2-
*He extraction and measurement, and Step 3- U-Th measurement (Reiners 2007).

Step 1 involves the collection of grain morphology and size measurements, based on the
methods and terminology of Hourigan et al. (2005). These measurements allow for the
calculation of an a- ejection correction, as well as grain volume and mass, for each individual
grain. Grain picking was biased towards large-euhedral crystals that lacked inclusions, visible
staining, and fractures. Individual selected grains were placed in 1-mm Nb tubing to prevent
volatilization of parent nuclides during direct lasing (Reiners 2005).

Step 2 involves He extraction following the method outlined in Reiners ( 2005; 2007).
Around 15 grains at a time were placed in a Cu planchet that also included 1 blank (empty Nb
tube) and 3-4 Nb packets containing the standard Fish Canyon Tuff zircon interspersed evenly
throughout the unknowns. A CO; laser, run at between 5-15 W, was used to heat samples to
between ~1000-1300°C for 15 minutes under ultrahigh vacuum (<107 Torr). Twenty-minute re-
extracts were performed on all zircons (often multiple times) until “He on the re-extract yielded

less than 1-2% of the accumulated “He volume. Hot blanks gave “He values of <0.1 fmol.
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Step 3 involves the measurement of the concentration of parent nuclides (U and Th) in
the zircons via isotope dilution ICP-MS, following the methods of Reiners and Nicolescu (2006).
Precision on measured U-Th ratios was better than 0.5%.

The internal standard used across all 3 steps was the Fish Canyon Tuff zircon. Analyzes
on 5 grains of the Fish Canyon Tuff zircon during this study returned an average mean U-Th/He

date of 28.0 + 0.73 Ma; the accepted value is 28.3 + 0.26 Ma (Reiners et al. 2002).

Results

Imaging of zircons

SEM imaging of 60 to 80 zircons from each sample demonstrated remarkable
homogeneity of the zircon morphology within each sample and each plutonic suite. However, the
zircon morphologies from differing plutonic suites vary significantly (Figure 4.4). Of the 150
imaged zircons from granites of the Anvil suite (sample G1 & G3), 149 contained inherited cores
surrounded by rhythmically oscillatory-zoned rims; the cores are commonly round with
diameters ranging from 40 to 220um. Assuming the cores are spheroidal, they typically make up
25+10% (range of 7 to 51%) of the zircon grain by volume. The zircons from the Tay River
(sample G4, G11, G18, G22 and G27) and Tombstone suite (G10 and G12) are rhythmical-
oscillatory zoned. Changes in the width of zoning occur in the grains but no significant internal

heterogeneity of zircon morphology was observed.

LA-ICP-MS

Based on the SEM imaging, we used LA-ICP-MS to analyze both the rims and cores of

Anvil suite sample (G1). Mean U concentrations (+ 1) from the Anvil rims and cores,
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respectively are 3700700 ppm and 1400+800 ppm. Mean Th concentrations (£ 15) from the

Anvil rims and cores respectively are 40+£25 ppm and 150£80 ppm.

40,39
Ar-"Ar

The argon produced in each heating step had a high radiogenic yield, thus, there was not
enough spread in the data to create an isochron for any of the samples. Furthermore, the samples
also did not return reliable plateau ages (defined as when 3 or more consecutive steps are
indistinguishable in age at the 2 sigma level and comprise >50% of the total *”Ar released;
Dalrymple and Lanphere 1974, Lee et al. 1991). Samples G1, G3, G4, G11, G12 and G27 form
pseudo-plateaus, allowing age interpretation to be extracted by averaging the step ages within the
pseudo-plateau (Figure 4.5); the interpreted ages for each sample with 1o errors are respectively:
103.5+2.1 Ma, 104.3+2.1 Ma, 98.8+1.7 Ma, 94.9+1.8 Ma, 93.4+1.8 Ma and 103.04+2.2 Ma.
These apparent ages are calculated assuming that the initial argon is atmospheric and, therefore,
provide maximum constraints for the actual age, which would be lower if excess argon was
present. Argon dating of samples G10, G18 and G22 was unsuccessful because the isotopic ages

did not plateau during the stepwise heating of the sample (Figure 4.5).

U-Th/He

U-Th/He was measured from three to four single zircon- grain aliquots for each sample
(Table 4.2). Replicate U-Th/He ages from the same sample yield a 2 sigma standard deviation of
~6-10%, which is greater than the ~3-4% error from analytical processes in U, He, Th and Sm
measurement (Hourigan et al. 2005). The grains from samples G3, G4, G11 and G18 report a

consistent date at the 2 sigma level of reproducibility; the dates with 1o errors are respectively:
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68+4 Ma, 90+4 Ma, 773 Ma and 68+3 Ma. The three-grain aliquots from sample G1 overlap at
+10%, producing a date of 85+8 Ma. The grain aliquots from sample G10, G12, G22 and G27 do
not yield a reproducible date at either £26 or £10% overlap conditions. The alpha ejection
correction applied to calculate the U-Th/He dates relies on homogenous U and Th distribution
within all zircons analyzed. SEM imaging combined with LA-ICP-MS analyses shows that for
certain samples, heterogeneous parent nuclide zonation exists, and this must be corrected for in

order to extract reliable U-Th/He dates (Orme 2015).

Correcting for heterogeneity within grains
Zircon grains from sample G1 and G3 possess inherited cores. The cores have brighter CL than
the rims, suggesting that the cores have suffered less damage due to lower radiogenic element
concentrations, as amorphisation suppresses broad-band CL emission (Nasdala 2003). The LA-
ICP-MS work confirms that the cores have significantly lower effective U content
(eU=U+0.235Th) than the overgrown magmatic rims. The rim thickness (approximately
perpendicular to the c axis) measured from 2D CL images of 57 zircons from the Anvil suite
averages 8+6 pm with a range of 34 to 1 um. Approximating the Anvil suite grains to a circular
morphology (Farley et al. 1996) gives an average grain radius of 75+18 um with a rim width of
30+10 pm. An effective spherical radius cannot be accurately calculated from the 2.D imaging as
only one ay axis dimension is known and in zircons a; does not commonly equal a,.

Assuming heterogeneity in parent nuclide distribution instead of homogeneity in eU in a
single grain leads to an underestimate of the a-ejection correction, as the high eU rim results in
more He rejection than is calculated and therefore, is an overestimate of bulk He retention

(Hourigan et al. 2005). In the Anvil suite zircons the ~2.5 factor rim enrichment can lead to a
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maximum age inaccuracy of about ~10% for typical crystal radii, which occurs when the rim
effective spherical radius equals ~10 um (Orme 2015). Based on the average rim radii, zircon
crystal size and rim to core eU enrichment recorded from the Anvil suite zircons, it is expected
that on average the U-Th/He dates measured will be between 5 and 8% too young (Hourigan et
al. 2005). Therefore, a 6.5+£1.5% correction is applied to the Anvil suite (G1 & G3) zircons

(Table 4.3).

Discussion

Evidence for Exhumation

The simplest explanation of the thermochronological data is that the Ar-Ar and U-Th/He
ages reflect the time at which the pluton cooled below the effective closure temperature of each
mineral system (T.; Figure 4.3). The effective closure depth (Z.) - the depth at which T¢ occurs
for each mineral system - can be modeled in the upper crust at fixed exhumation rates using a
two step process. First we calculate the geotherm for a region of exhuming crust. The exhuming
crust is approximated as a one dimensional thermal field of finite thickness, L, with fixed,
constant, temperatures at the surface and base, Ts and Ty, respectively, and a uniform internal
heat production Hr. A more detailed explanation of the modeling procedure can be found in
Reiners and Brandon (2006). We assume that horizontal velocities do not significantly affect the
model (Batt and Brandon 2002). Material moves through this one-dimensional layer at a constant
speed, equal to the rate of exhumation, €. This model calculates temperature as a function of
depth, T(z), giving geotherms for constant exhumation rates. In models with a rapid constant
exhumation rate the geotherms move to shallower depths, causing the effective closure

temperature of each radiogenic system to shallow (Figure 4.6). Parameters for the model were
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based on typical convergent orogens, as reported by Reiners and Brandon (2006). The thickness
of the layer (L) was set to 40 km based on the current crustal thickness identified in the
Lithoprobe SNORCLE Line 3 (Cook et al. 2004), which transects through the eastern corner of
the study area (Figure 4.1). This Moho thickness is consistent with the global average Moho
depth from Christensen and Mooney (1995). The model was calculated for erosion rates from 0
to 10 km Ma™. Step two involves calculating T, and subsequently Z, for each mineral system
based on the modeled geotherms. Closure temperature depends on cooling rate (Figure 4.4).
Cooling rate for the modeled geotherms can be found by multiplying the change in geothermal
gradient (dT/dz) by the exhumation rate. The T, and Z. are then extracted by solving the Dodson
equation (Dodson 1973) for each mineral system, based on the calculated cooling rate variation
with depth. Repeating this for many closely spaced exhumation rates allow the effective T, and
Z. paths of each mineral system to be calculated (See Chapter 4 Appendix; colored lines on
Figure 4.6).

The model results indicate that in a region exhuming at between 1 and 3 km Ma™' the Z.
of U-Th/He in zircon is between 2.5 and 4.7 km (T, range of 195 to 215°C) and the Z. of Ar-Ar

in biotite is between 5.5 and 10.4 km (T, range of 365 to 395°C).

40 4.3 4y
The U-Pb and *’Ar/*° Ar dates from the Anvil suite are different (G1 and G3; Table 4.2;
Figure 4.5) reflecting the exhumation of the plutonic rock from emplacement at ~12 km depth at

~107+2 Ma, through the **Ar/*’Ar T.and Z. at 104+2 Ma. The majority of Tay River and
Tombstone suite samples (G4, G12, G27) have indistinguishable U-Pb and “’Ar/*’Ar ages,
indicating emplacement of the plutons at crustal levels shallower than the *°Ar/*’Ar Z.. This

observation is consistent with previously established geological constraints on exhumation based
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on aureole mineralogy and U-Pb dating of plutons in the Tay River district. One Tay River
sample (G11) shows a difference between the measured U-Pb and *’Ar/*’Ar ages. Sample G11 is
from a small plug that outcrops in a thrust sheet bound by two regional Jurassic to Cretaceous
thrust faults (Figure 4.2). The difference in the two ages may suggest that the timing or the
magnitude of the exhumation was variable across the thrust faults. However, a broader spread of
data points would be needed to confirm this relationship. An alternative explanation is that the
biotite in G11 was heated during intrusion of proximal Tombstone suite rocks (G12; Figure 4.2)
at 94.8+0.7 Ma causing partial or full argon loss and, therefore, the *°Ar/*’Ar date of sample G11
records this event rather than initial cooling. Partial argon loss in biotite occurs at temperatures
within the partial retention zone (PRZ) of the *’Ar/* Ar system (275 - 350°C for a hold time of 1

Ma; Figure 4.7), which could be achieved in the aureole of an intruding felsic pluton.

U-Th/He

The U-Th/He data are not consistent with the simple exhumation model outlined above.
Geological constraints (Smith and Erdmer 1990, Pigage 2004, Gordey 2013) place the outcrops
sampled in this study at crustal levels shallower than the U-Th/He Z. during the emplacement of
the (99-96 Ma) Tay River and (96-90 Ma) Tombstone suites. However, the zircons from the Tay
River district commonly have U-Th/He dates from the end of the Cretaceous and early Paleogene
periods. This indicates that the zircons in the study area have experienced some form of He loss
significantly after initial cooling. The spread of ages indicate that resetting (due to He loss) was
not complete and suggest a reheating event to temperatures within the U-Th/He system PRZ (100
- 180°C for typical hold times; Baldwin and Lister 1998, Wolf et al. 1998; Figure 4.7). The
spread in U-Th/He dates between samples cannot be explained by the elevation of the samples,

as the spread in outcrop elevation is minimal (range of 800 m from 980 to 1786 m.a.s.1; Table
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4.1). Elevation also cannot explain the significant inter sample single grain aliquot U-Th/He date
variation.

Variations in grain size and/ or radiation damage could explain the significant dispersion
seen in U-Th/He dates of the Tay River district. There is no clear relationship between U-Th/He
date and zircon grain effective spherical crystal radius (ESR; the radius of a sphere with an
equivalent surface-to-volume ratio for each zircon grain; Farley 2002) in the collected data
(Figure 4.8). Therefore, grain size is not a primary control on the U-Th/He date dispersion in the
Tay River district. The primary control on U-Th/He date dispersion in the Tay River district is
most likely variable radiation damage.

Guenthner et al. ( 2013) developed a parameterization for the effect of radiation damage
on He diffusivity. These authors interpreted the amount of radiation damage to correlate to the a-
dose experienced by each grain. They observed a dramatic decrease in He diffusivity with
increasing radiation damage at low a-doses (less than ~2 x10'® a/g; Guenthner et al. 2013),
which corresponds to a T, increase with a-dose (from 140 to 220°C between damage amounts of
~1x10'° o/g and ~1 x10'"® a/g; Guenthner et al. 2014a). Above a certain degree of radiation
damage (corresponding to an a-dose greater than ~2 x10'® a/g) He diffusivity begins to increase
with increasing radiation damage, leading to a decrease in Tc¢ with increasing radiation damage
above this critical value. This behavior was explained by a model that describes the tortuosity of
a He particle’s escape from a zircon crystal and comparison to studies on apatite (Flowers et al.
2009), which is assumed to act the same as zircon (Guenthner et al. 2013). At a-doses less than
~2 x 10" /g a decrease in diffusivity occurs with increasing a-dose - caused by increasing areas

of damage, which increases the tortuosity of a He particles, diffusion from the grain (Flowers et
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al. 2009). However, above a-doses of ~2 x10'® a/g the He diffusivity begins to increase due to
the interconnection of fast diffusing damage zones (Flowers et al. 2009, Guenthner et al. 2013).

The total accumulated radiation damage can be approximated by the eU of each grain.
Given the maximum age (110 Ma) and maximum eU (3200 ppm) of the zircons from the Tay
River district, all samples can be modeled as having accumulated a total a-dose of less than
2x10" a/g.

There is a positive correlation between U-Th/He date and eU in all the zircons from the
Tay River district (Figure 4.9). A positive correlation in zircons with low radiation damage can
result from a thermal pulse reaching maximum temperatures within the zircon U-Th/He PRZ
(Figure 9 from Guenthner et al. 2013). The zircon grains with higher radiation damage
(approximated by higher eU) have higher T, so they experience less He loss than grains with
lower eU. Therefore, the highest eU grains yield the least disturbed (oldest) U-Th/He ages and,
provide the best approximation for the initial time at which the system cooled through the zircon
U-Th/He T¢ and Z.. The oldest U-Th/He date measured in the Tay River district, corrected for
grain heterogeneity, is from a zircon grain from the Anvil suite, which gave a U-Th/He date of
99.2+3 Ma. This date places a minimum age constraint on the time that the Tay River district
was exhumed through the zircon U-Th/He Z,, consistent with the geological constraint that the
Anvil suite was at shallow crustal levels (<1-2 km) by the time of intrusion of the Tay River
suite (99-96 Ma).

Combining the geological constraints from the Anvil and Tay River suites and U-Pb ages
of each plutonic suite from Chapter 2 with the *’Ar/*’Ar and U-Th/He conclusions from this
study allows an accurate model Tt path for mid-Cretaceous exhumation of the Tay River district

to be constructed (Figure 4.10). The constructed Tt path demonstrates that exhumation rates and
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magnitude are consistent with tectonic uplift coupled with erosional denudation; this is consistent
with a model in which the Tay River district was experiencing extensional collapse in the mid-

Cretaceous after the termination of compressional tectonics.

Modeling of U-Th/He data

The U-Th/He data indicate that the Tay River district experienced a complex thermal history,
this study has identified a significant thermal event, which affected the intrusive rocks of the
study area after their initial cooling and exhumation. Properties of the thermal pulse can be
studied by using the ZDRAAM kinetics (zircon radiation- damage and annealing model)
developed by Guenthner et al. (2013, 2014a, 2014b), which are part of the HeFty thermal
modeling software program (Ketcham 2005). The ZDRAAM model combines the damage-
diffusivity parameterization discussed above with a damage annealing model to calculate the
date — eU correlations generated by an individual Tt path (Guenthner et al. 2013).

To study the thermal pulse that affected the Tay River district, a forward-model based
approach was used, which involved inputting specific Tt paths and comparing the output to the
measured Tay River district U-Th/He data, then iteratively altering the Tt paths to achieve the
best fit between modeled and observed date-eU correlation. For each forward model the inputs
are a Tt path, the ESR of the zircon, and the eU of each grain. The constructed forward models
are based around a Tt path, which fits the geological constraints in the Tay River district. In all
input Tt paths initial exhumation derived cooling of the Tay River district below the U-Th/He T,
occurs at ~100 Ma. This is then followed by thermal equilibration with the surface (20°C) at 90
Ma; then by a single thermal pulse reaching a maximum temperature T, which affected the Tay
River district beginning at time t, and persisted for time At (Figure 4.11A). The thermal pulse is

modeled as a rectangle for simplicity, and as it was found that models varying the shape of the
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thermal pulse in Tt space caused only minor variations in the output date-eU correlation
compared with the variations generated by varying T and At. The ESR of all zircons is set to 50
um, based on the mean average of all zircons analyzed in the Tay River district (48+10 (15) pum;
range of 37 to 82um). To account for secondary scatter derived from grain size variation, 5 date-
eU paths were generated for each Tt path, based on the mean grain ESR + one standard deviation
and using the total range of ESR measured in the Tay River district. These curves encompass the
predicted date variation derived from radiation damage combined with the observed grain size
variation. The grain eU was varied from 0 to 3500 ppm to cover the range displayed by Tay
River zircons (250 to 3200 ppm).

Heterogeneous intergranular eU zonation derived from inherited cores - as seen in the
Anvil suite zircons- is likely to cause further secondary scatter in the measured Tay River district
U-Th/He ages (Hourigan et al. 2005, Guenthner et al. 2013). However, we lack the necessary
observations and understanding of how radiation damage is annealed during inherited zircon
assimilation to magma to quantify this scatter. In our forward models we do not consider
inherited helium (Guenthner et al. 2014b, Powell et al. 2016) from the xenocrystic zircon cores
of the Anvil, as assimilation of the inherited older zircon cores into the Anvil suite magma
occurred at temperatures well above the U-Th/He Tc.

Forward models were generated for a range of Tt paths by varying T, t and At. These
models showed that varying the time of pulse initiation, t, had negligible influence on the date-
eU correlation (Figure 4.11D) and that the dominant factors affecting the date-eU correlation are
changes in T and At (Figure 11B,C and E); there is a negative feedback between T and At. The
longer a thermal pulse persists (longer At) the lower the pulse temperature needs to be to

generate the observed date-eU correlation.
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Our model provides an end-member simplest solution that ignores geological
complexities. For example, samples proximal to crustal scale faults (e.g. G10) may experience an
enhanced (hydro-) thermal pulse compared to samples from a dyke (e.g. G4), which may be
insulated by encasement in low-porosity granite. Therefore, a range of t, T and At that best fit the
observed data are suggested, rather than a specific individual Tt path and inverse modeling was
not attempted. The best fit for the observed U-Th/He data is generated from Tt paths involving a
thermal pulse originating in the Late Cretaceous to early Paleocene (t best fit range 80 to 65 Ma),
lasting (At best fit range) 5-15 Ma and reaching a maximum temperature (T best fit range) of 150

to 170°C.

The Big Flush

The modeling carried out in ZDRAAM indicates that the intrusives in the Tay River
district were thermally perturbed in the Late Cretaceous to early Paleocene. Either burial or
significant intrusion of igneous rocks at this time could potentially cause this regional reheating.
However, in the Tay River district neither of these scenarios seems likely. There is no Late
Cretaceous magmatism documented in the Selwyn basin (Rasmussen 2013) except for the
volumetrically minor 67 to 64 Ma McQuesten plutonic suite, which outcrops in the far north of
the Selwyn Basin (Figure 4.12; Murphy 1997, Thiessen et al. 2016). Paleogene volcanism is
recorded in the Tay River district as small-volume rounded Eocene (55-53 Ma) porphyries
(Pigage 2004), however, these intrusions are emplaced after the modeled thermal pulse and are
too small volume to have thermally perturbed the entire Tay River district. Burial also appears

geologically improbable as 5-7 km of burial would be required to heat the Tay River district to
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~150°C and there is no evidence for this amount of post mid-Cretaceous sediment deposition or
the faults required to generate a basin this large (Pigage 2004, Gordey 2013).

In the Late Cretaceous a large thermal event that affected most of central and southern
Yukon, was coeval with eruption of the Carmacks Group flood basalts, which were extruded
across 100,000 km? of the southwest to central Yukon between the Tintina and Denali fault
(Figure 4.12; Johnston et al. 1996, Wynne et al. 1998) between 72 to 69 Ma (Grond et al. 1984,
Lowey et al. 1986, Hart 1995). Widespread resetting of K-Ar ages (Hart 1995) and
remagnetization of older rocks (Wynne et al. 1998) at this time indicate that an extensive
thermal/hydrothermal system was active during Carmacks Group extrusion. Wynne et al. (1998)
termed this regional hydrothermal event the Big Flush. The Carmacks Group volcanics and the
Big Flush have been linked to the passage of North America over the Yellowstone hotspot in the
Late Cretaceous (Johnston et al. 1996). Neither the Carmacks Group volcanics or their thermal
signature have been previously reported north of the Tintina fault (Rasmussen 2013). However,
when Eocene movement on the Tintina fault is restored outcrops of the Carmacks group (and
coeval volcanics in Alaska) are seen within <50 km of the Tay River district (Figure 4.12).
Therefore, we suggest the coincidence between the known thermal event in the central Yukon
and the pulse recorded by the U-Th/He data in the Tay River district are cogenetic; this would
imply that the Big Flush hydrothermal system affected the Tay River district. It is possible that
the Carmacks Group flood basalts could also have extended north of the Tintina fault but have
subsequently been removed by erosion. However, as the thermal pulse reached only 150 to
170°C in the Tay River district it is more likely a distal lower temperature periphery of the
hotspot activity. Data on the scale of hydrothermal alteration associated with continental flood

basalts (CFBs) does not exist. However, global CFBs (Deccan, Karoo, Columbia River;
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Rampino and Stothers 1988, Courtillot and Renne 2003) typically cover equant areas of 2000-
2500 km across, and are proposed to be underlain by thermal anomalies with diameters of the
same order of magnitude (White and McKenzie 1989, Campbell and Griffihs 1990). CFBs are
proposed to develop at the initiation of a plume with subsequent evolution to a narrower - ~200
km wide - chain of volcanic activity as the plume declines (Campbell and Griffihs 1990,
Kumagai et al. 2008). Based on the current outcrop width the Carmacks Group appears to
represent the second stage of the plume’s life.

Late Cretaceous resetting of chronometers by a magmatic hydrothermal event is
identified by Bineli Betsi et al. (2012) within the central Dawson range, to the south of the Teslin
fault (Figure 4.12), who reported a chlorite-altered dyke with zircon U-Pb age of 109 Ma, whole
rock Ar-Ar age of 76 Ma and zircon U-Th/He ages ranging from 89 to 66 Ma. Late Cretaceous
Zircon U-Th/He single grain ages (78 to 72 Ma) are also reported in the Mount Adami Pluton, in
the McQuesten Area, to the southwest of the Tintina Fault (Knight et al. 2013; Figure 4.12). A
resetting event was not identified in this study, due to averaging dispersed U-Th/He dates from
individual aliquots into a single mean date for each sample (i.e a Monzogranite sample
09RAYJR175A, which showed a spread in 5 single grain Zircon U-Th/He dates from 140 to 78
Ma and was assigned a mean age of 113 Ma). However, a Late Cretaceous thermal pulse fits the
observed data.

Therefore, the passage of the Yellowstone hotspot proximal to the Tay River district in
the Late Cretaceous fits with the observed thermal perturbation observed in the ZDRAAM
modeling. As Carmacks Group volcanics are not observed in the Tay River district we suggest
the thermal pulse was linked to the Big Flush hydrothermal system created by the hotspot at this

time.
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Conclusions

Low temperature thermochronology on the mid-Cretaceous rocks of the Tay River district, in the
Selwyn Basin, constrain a period of exhumation. The Anvil suite was exhumed rapidly from the
emplacement site at 12-15 km depth between 109-104 Ma, through the Ar-Ar closure depth (5.5-
10.4 km) at 104+2 Ma and above the zircon U-Th/He closure depth (2.5-4.7 km) before 99.2+3
Ma. This is consistent with previously established geological constraints based on aureole
mineralogy and U-Pb dating of plutons in the Tay River district (Pigage and Anderson 1985,
Smith and Erdmer 1990 and see Chapter 2). The magnitude and rate of exhumation is consistent
with the extensional collapse of previously thickened crust in the mid-Cretaceous, implying that
the Sevier-Columbia orogeny had terminated and the core of the northern Cordillera was
beginning to collapse by the Late Mesozoic.

However, the zircon U-Th/He systematics are complicated by a partial resetting due to a
loss of He after initial cooling in the Late Cretaceous to early Paleogene. Modeling based on the
ZDRAAM kinetics (Guenthner et al. 2013) allows us to conclude that partial resetting of the U-
Th/He dates is due to a thermal pulse with a maximum temperature of 150-170°C that affected
the Tay River region for 5-15 Ma in the Late Cretaceous to Paleocene. This modeled thermal
pulse fits with the proposed passage of the northern Cordillera across the Yellowstone hotspot in
the Late Cretaceous, which led to the extrusion of the Carmacks Group flood basalts across the
southwest-central Yukon between 72-69 Ma. Significant regional resetting of thermally sensitive
systems has been attributed to a big flush generated by the Yellowstone hotspot. This study
represents the most inboard recognition of the big flush and, therefore, has implications for the

distribution of hotspot derived thermal/hydrothermal alteration.
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Figure 4.1: Simplified geological map of the Yukon showing modern terrane geology north of the Tintina
fault based on Nelson et al. (2013) . Tay River district identified by the black rectangle. Extent of OMB
igneous rocks within the Tay River district from Gordey (2013). SNORCLE line 3 shown north of the

Tintina fault from (Cook and Erdmer 2005).
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Figure 4.3: Effective closure temperature (T) as a function of cooling rate for the thermochronometers
applied in this study. Calculated lines are from the CLOSURE program (Brandon et al. 1998, Ehlers
2005, Reiners and Brandon 2006). Effective spherical radius of zircons is 60 ym and cylindrical radius of
biotite and hornblende is 500 pm.
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Figure 4.5 (2 pages from previous): “°Ar/**Ar age spectra for samples from the Tay River district
with one sigma error. Pseudo - plateau steps are shown in black. U-Pb date with one sigma error

from Chapter 2 shown by the grey rectangle.
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Figure 4.6: Thermal profiles derived from a steady- state solution for a one dimensional 40 km thick
layer undergoing a constant exhumation rate, modeled by a fixed steady vertical velocity through the
layer. Thermal parameters are shown on the figure generalized from a typical convergent orogen
(Reiners and Brandon 2006). Colored lines show the continuous closure temperature paths of the
thermochronometers in this study, based on the variable erosion rates modeled and solved to yield
effective closure depths at each erosion rate.
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Figure 4.7: Loss-only partial retention zones (PRZ) for the thermochronometers used in this study
calculated using the CLOSURE program. The PRZ is defined by the steady-state temperatures
associated with 10% and 90% retention for a specified hold time (Brandon et al. 1998, Ehlers 2005,
Reiners and Brandon 2006).
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Figure 4.9: U-Th/He date- eU plot for zircons from OMB plutons in the Tay River district. U-Th/He
dates from Anvil suite are corrected for heterogenous eU. Vertical extent of points indicates the 10
error of the U-Th/He date.

118



Time, Ma

0 108 104 100 96
Tay River
Intrusion
4 Zircon U-Th/He
S
X
£
o
a <
8 B
S
[}
12
Anvil Suite
Emplacement

Figure 4.10: Depth versus time graph showing constraints on the exhumation of the Anvil suite
preceding shallow crustal intrusion of the Tay River suite. Boxes represent range of possible depths

and one-standard deviation errors in age.
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Figure 4.11: A- Variable Tt path showing initial cooling upon exhumation, followed by a thermal pulse
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effect on outputs.

B-E- ZDRAAM forward results (Guenthner et al. 2013) modeled in HeFty (Ketcham 2005) based on
varying the Tt path in A. Black data points are from Figure 10 divided based on suite: Ellipses- Anvil,
Rectangle- Tay River and Hexagon-Tombstone. The fixed and variable parameters are labeled for
each plot. Grain size is set at 50 um. Envelopes show the effect of varying grain size on the 170°C
maximum temperature model that initiates at 70 Ma and has a hold time of 5 Myr (B,D,E) or 10 Myr
(C). The dark grey envelope represents the same model at +10 um while the light grey envelope
represents dispersion due to grain sizes varying from 30 to 80 pm.
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Table 4.3. Anvil suite grain uncorrected and corrected U-Th/He dates

Assuming Homogenous

Assuming Heterogenous

Sample eU el

LD Grain Date o Date o

’ Number (Ma) (Ma) (Ma) (Ma)
1 78.8 1.2 83.9 2.6

G1 2 81.8 1.3 87.1 2.6
3 93.2 1.4 99.2 3.0
1 70.1 1.1 74.7 23

G3 2 63.5 1.0 67.6 2.1
3 69.3 1.1 73.8 2.3

124




Chapter 5: The Keglovic Deposit: A telescoped Ag-Pb-Zn skarn and

vein deposit, Central Yukon, Canada.

Introduction

The polymetallic Keglovic advanced exploration project located in central Yukon,
Canada (Figure 5.1), has an inferred mineral resource of 39.8 million tonnes of 30.25 g/t Ag -
with contained metal estimates of 38.7 million ounces of Ag, 675 million lbs of Zn, 228 million
Ibs of Pb, and 131 million Ibs of Cu (Dumala 2013). Preliminary mineralogical work on the
deposit also reported unusually high concentrations of In, Sn and Cd (Brand 2011). The Keglovic
deposit is the largest of at least 22 mineralized occurrences that form two northwest trending,
parallel arrays on the 1100 km” Keg property (Eaton 2011; Figure 5.1 and 5.2A). The northern
Tay trend, which hosts the Keglovic deposit, contains a linear array of mineralized zones hosted
by metasedimentary rocks, which trend sub-parallel to the major regional thrust faults. The
southern trend is termed the Mount Mye trend and consists of a number of epithermal and
epigenetic veins, mineralized breccias and endo-skarns, hosted almost entirely within plutonic
rocks (Mortensen and Ballantyne 1992, Eaton 2011, Dumala 2013). The Hammer showing, the
largest known mineralization in the Mount Mye trend, was recently studied in detail by Rogers
(2017). The Keglovic deposit is by a substantial margin the largest known mineralized showing
in either trend and has been the focus of an advanced exploration program, which included 69
drill holes (from 2010 to 2013) and the calculation of the inferred mineral resource given above.
The Keglovic deposit is split into two domains (Main and East). The large ore body identified at

Keglovic Main has not been identified at Keglovic East.
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Silver-Pb-Zn mineralization in the Selwyn Basin has previously been mined at the Anvil
Range SEDEX deposits (10 to 45 km south of the Keg property; Shanks and Woodruff 1987)
and in the Keno Hill silver district (Boyle et al. 1970, Lynch 1989, Beaudoin and Sangster 1992).
The Keglovic deposit shares some characteristics with these mineral deposit types, however, the
Keglovic mineralization is sufficiently different and as a result previous authors have reported it
to be unique within Yukon (Brand 2011, Eaton 2011, Dumala 2013). Preliminary geological and
petrographic studies have suggested the Keglovic deposit mineralization occurs both as lenticular
skarns, confined to carbonate-rich horizons and in veins in the host units (Brand 2011), and that
this mineralization formed from multiple mineralizing events (Brand 2011, Dumala 2013). This
study was undertaken to test these hypotheses. Petrography was used to establish the presence of
the multiple mineralization events that are superimposed to form the Keglovic deposit. Once the
events have been defined, the fluid chemistry, temperature of formation, mineralogy, and relative
age of each will be characterized. This allows us to describe the evolution of the mineralization
and fluid chemistry at the deposit through time, and to produce a genetic deposit model for the
Keglovic mineralization. This study also aims to date the mineralization at the Keglovic deposit

and to try to identify why significant mineralization has not been found at Keglovic East.

Regional Geology and Tectonic Setting of the Keg property

The Keg property is hosted by Paleozoic to early Mesozoic sedimentary units imbricated
during the Jurassic-Cretaceous Columbia-Sevier orogeny (Hildebrand 2009, Gordey 2013;
Figure 5.2B). The sedimentary rocks belong to three broad assemblages: the Selwyn Basin, Earn,
and Clastic Shelf (Figure 5.3; Gordey 2013). The Precambrian to Middle Devonian deep water
sedimentary rocks that comprise the Selwyn Basin assemblage were deposited onto the western

passive-margin of North America (Gordey and Anderson 1993). Rifting in the Devono-
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Mississippian caused an abrupt change in depositional regime and the deposition of the Earn
assemblage within fault bounded basins (Gordey and Irwin 1987, Gordey 2013). Rocks of the
Earn assemblage consist of coarse-clastic strata and turbiditic sediments (Campbell 1967). The
Earn assemblage rocks were succeeded by Mississippian to Triassic sediment deposition on a
shallow-marine shelf, forming the Clastic Shelf assemblage. The Clastic Shelf assemblage
comprises three Formations: the Mississippian Tay (MT); the Carboniferous to Permian Mount
Christie (CPMC); and the Triassic Jones Lake. These three formations consist of marl-rich
siliciclastics interbedded with limestone, cherts and shales.

Sediment deposition on the Clastic Shelf terminated in the early to mid-Mesozoic due to
northwest directed compression (Colpron et al. 2007), the convergence of exotic allochthons
with North America (Mair et al. 2006) and the subsequent formation of a fold and thrust belt
within the regional strata (Ross et al. 2005, Nelson et al. 2013). The imbrication of sedimentary
rocks currently observed in the study area formed during this orogeny along a number of
transcrustal thrust faults (Cobbett 2015), which led to significant crustal thickening at this time
(Pavlis 1989, Staples et al. 2016).

Middle Cretaceous uplift and extension have been documented within the Selwyn Basin,
Yukon-Tanana and Alaska (Pavlis et al. 1993, Hudson 1994, Staples et al. 2013, 2016, Chapter
4) associated with post-orogenic collapse of the previously thickened crust. Extensive plutonism
and volcanism occur within the Omineca Magmatic Belt (OMB) synchronous with this tectonic
collapse (Chapter 2). The OMB igneous activity occurs inboard of the continental margin
(Coastal Plutonic Belt arc complex) in the parauthochthonous and autochthonous North
American margin strata between ~118-89 Ma (Hart et al. 2004, Rasmussen 2013). The formation

mechanism and tectonic setting for OMB plutonism and volcanism is disputed. Current theories
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include OMB development due to delamination of over thickened lithosphere (as proposed in
Chapter 2) or due to a flat slab, back arc extension or a cryptic western dipping subduction zone (
Mortensen et al. 2000, Mair et al. 2006, Johnston 2008, Rasmussen 2013).

Following the Sevier-Columbia orogeny, Late Cretaceous to Eocene regional dextral
strike slip motion initiated on the Tintina Fault, which currently displays ~430km of offset

(Gabrielse et al. 20006).

Local Geology and Field Relationships at the Keglovic Deposit

The large ore body identified at Keglovic Main has not been identified at Keglovic East.
As such this study will focus on the mineralization at the Keglovic Main deposit (KMD), which
consists of stratified, massive, skarn beds, ranging from 10 cm to >1 m thick, surrounded and
cross-cut by stockworks of vein/fracture fills, mineralized breccias and disseminated sulphides
(Brand 2011).

Previous studies of the Keglovic deposit have suggested that the mineralization may have
a magmatic-hydrothermal origin and that a large plutonic body may underlie the KMD (Brand
2011, Dumala 2013). However, no evidence for any such plutonic body has been identified in
either drill core or via Airborne Z-Tipper Axis Electromagnetic and Magnetic Surveys conducted
over the Keg property (Dumala 2013). The closest outcrops of intrusive rock to the KMD are ~4
km to the southwest (Figure 5.2B) and belong to the Anvil Batholith, an OMB pluton emplaced
between ~109 — 90 Ma, which consists of three distinct plutonic suites as summarized in Chapter
2. These suites are the 109 — 104 Ma Anvil, 99 — 96 Ma Tay River and 96 — 90 Ma Tombstone.
In Yukon, the Anvil and Tay River suites are generally thought to lack significant mineralization
while the Tombstone suite is associated with a number of intrusion-related gold deposits

(Goldfarb et al. 2000, Mortensen et al. 2000, Hart et al. 2004, Rasmussen 2013). The
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emplacement of the Anvil Batholith created a >5 km metamorphic halo of dominantly
greenschist facies conditions with minor amphibolite grade zones proximal to the intrusion
(Pigage and Anderson 1985, Smith and Erdmer 1990, Pigage 2004). The KMD is also 10 km
south of the 38 km diameter Teddy Caldera (99 — 96 Ma; Figure 5.2B), which is genetically
related to the intrusive Tay River suite (Gordey 1988). Minor 69-65 Ma rhyolite plugs exist on
the Keg property (Gordey 2013) but they are volumetrically insignificant in comparison to the
mid-Cretaceous plutons and calderas. Based on the overall volume of OMB plutons surrounding
the KMD and association of mineralization with Jurassic-Cretaceous thrust faults it is believed
that the KMD mineralization formed in the mid-Cretaceous (Brand 2011); however, no dating of
the mineralization has previously been attempted.

The region around the KMD experienced significant exhumation during the mid-
Cretaceous, as demonstrated by Chapter 4, which outlines a low temperature thermochronology
study that constrained a period of ~10 km vertical exhumation to between ~105 and ~100 Ma at
a rate of between 1 and 3 km Ma™. To accurately understand the mineralization at the KMD the

affect of this exhumation on the style of mineralization needs to be considered.

Methods

Field Mapping and Drill Core logging

Deposit-scale mapping and sampling of the Keglovic deposit (1:5000 scale) was
conducted in the summers of 2013 and 2015. Twenty-five drill holes were re-logged and

sampled, including two approximately perpendicular drill hole transects (Figure 5.4 A).
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Petrography and mineralogy

Over 750 hand specimens and 125 thin sections from the Keglovic deposit were analyzed
using thin section petrography, bench-top cathodoluminescence (CL) and X-ray Diffraction
(performed on an Rigaku Powder X-Ray diffractometer at the University of Alberta) in order to
constrain a paragenesis for mineralization.

Electron microprobe analyses (EPMA; with the Jeol 8900 at the University of Alberta)
allowed for accurate mineral identification and characterization based on relative elemental
abundance using electron dispersive spectrometry (EDS). Wavelength dispersive spectrometry
(WDS) was also performed to identify the major and minor chemistry of the silicate minerals
(garnet and diopside) and sulphide minerals within the KMD. For the WDS the EPMA beam was
operated at an accelerating voltage of 20 kV, a probe current of 20 nA, and a beam diameter of
lum. The concentrations of specific elements were calibrated for the sulphides using in house
standards: galena for Pb and S; silver metal for Ag; indium arsenide for In; gallium arsenide for
As; antimony metal for Sb; sphalerite for Zn; copper metal for Cu; cadmium selenide for Cd and
Se; tin metal for Sn; bismuth telluride for Bi and Te; and iron metal for Fe. For the quantitative
analysis of the silicate minerals, the in house standards used were: rutile for Ti; chromium (III)
oxide for Cr; diopside or grossular for the Si; grossular for the Al and Ca; diopside for the Mg;
sanidine for K; albite for Na; fayalite for Fe; and rhondite for Mn.

The trace and REE element chemistry of the sphalerite from all styles of mineralization
observed at the KMD was analyzed via Laser Ablation ICP-MS at the Arctic Resources
Laboratory, University of Alberta using a RESOlution M-50 193nm excimer laser system
connected to a sector-field ICP-MS Thermo Element XR2. Calibration, accuracy and precision

were calculated using the NIST SRM 612 and 610 standards. Sphalerite analyses followed
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methods outlined in Cook et al. (2009). Zinc and iron concentrations measured independently on
the EPMA were used for internal standardization. USGS BCR 2G was measured as a secondary
reference standard. All data were reduced offline using Iolite v3 (Paton et al. 2010, 2011).
Analytical accuracy based on comparison of the secondary standards with known reference

values is typically 5-20% or better, at the 95% confidence level.

Isotopes. C, O, S and Pb

Carbon and oxygen stable isotopic analyses on carbonates (22 calcite separates) and
sulphur stable isotopic analysis on sulphides (22 separates) were both performed at the Isotope
Science Lab, Department of Physics and Astronomy, University of Calgary. For the C and O
isotopes, standards NBS- 18 and 19 and TAEA CO- 1,8 and 9 were analyzed. Precision and
accuracy for both 8'"°C and §'®0 values are reported as 0.2 %o (15). Sulphur isotope analyses
followed methods adapted from Giesemann et al. (1994). Lab standards IAEA S 1,2 and 3 were
analysed. The precision and accuracy of the 8°*S values are within 0.3 %o (16).

Pb isotopic analyses were performed on 11 galena separates at the Canadian Center for
Isotopic Microanalysis at the University of Alberta. Galena crystals were dissolved in HCI and
HNOs; and the Pb isotope composition was measured on a Nu Plasma Multi-collector ICP-MS in
static analyses mode. Instrumental bias was corrected with the ***TI/*TI spike (Belshaw et al.
1998). The lab standard was NIST SRM981, which has shown 6 month absolute values of **°Pb /
Pb = 16.9373 + 0.0027, **’Pb / ***Pb = 15.4901 = 0.0022, ***Pb / ***Pb = 36.6921 =+ 0.0061
(accepted values from Todt et al. 1996: *°Pb / ***Pb = 16.9356; °’Pb / ***Pb = 15.4891; ***Pb /
2%pp = 36.7005). Reproducibility of Pb isotopes for the SRM981 standard is better than 0.02%.
The standard deviations of the measured Pb isotope values are reported in Table 5.5a. Lead

isotopes from unaltered whole rock samples of sedimentary rocks surrounding the Keglovic
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deposit were analyzed at Bureau Veritas Mineral laboratories, Vancouver Canada via ICP-MS
analysis of a sample after modified Aqua Regia digestion. Precision of the whole-rock lead

isotopes is low with typical standard deviations in the **’Pb/***Pb and ***Pb/***Pb values of 0.6.

Re-Os dating

Precise Re-Os dating on an arsenopyrite separate from the KMD was attempted at the
crustal Re-Os Geochronology Laboratory, University of Alberta following the procedures
outlined in Morelli et al. (2010). The one point obtained did not allow for the calculation of an
isochron age. However, a model age was constructed by assuming an initial '®’Os/"**Os ratio,
which can range from 0.12 for the mantle to 1.0 for the upper crust (Luck and Allegre 1991).

The model age was calculated using the full range of initial Os values.

Microthermometry

Fluid inclusion microthermometry was performed on a Linkam THMSG600
heating/freezing stage (with a working range of -200 to +600°C) mounted on an Olympus BX50
microscope. Calibration was performed before and after analyses using SynFlinc synthetic fluid

inclusions. Accuracy below 0°C was +0.2°C and, above 0°C accuracy was £2°C.

Whole Rock Analysis

Thirty-nine samples, representing the relevant lithologies, alteration styles, and
mineralization styles were analyzed by Bureau Veritas Mineral laboratories, Vancouver, Canada
for major and minor element chemistry (Aqua Regia 250 Extended Package and the Liquid
Fusion 200 package). Major and selected trace elements were analyzed by X-ray Fluorescence
spectroscopy. Trace elements, including REE, were analyzed by ICP-MS following an aqua

regia digestion. As well as the procedures employed by Bureau Veritas, two internal reference
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materials, a blank and a duplicate sample, were analyzed for quality assurance. The known
standards (OREAs 131a and 134a from the Ore Research and Exploration PTY LTD and Green
River Shale SGR-1 from the USGS) returned values within the accepted limits of published
values for all reported elements. The crush split duplicate showed reproducibility of better than
10% for all elements above the practical lower detection limit.

The whole rock analyses conducted in this study were supplemented by the extensive
drill core assays (7950 3m intervals) provided by Archer, Cathro and Associates Ltd. which
include measured concentrations of Ag, As, Au, Cu, Fe, In, Mo, Pb, Sb, Sn and Zn. These drill
core samples were analyzed at the ALS minerals laboratories, Vancouver, Canada. All elements,
except Au, were analyzed by ICP-MS following an aqua regia digestion (package ME-MS41).

Au was analyzed using Fire Assay ICP-MS (package Au-ICP21;Eaton 2011, Dumala 2013).

3D Distribution of the Mineralization

Three-dimensional modeling of the distribution of mineralization at the KMD was carried
out in Leapfrog Geo using the interpolation model included in the software. The geological
model was created from drill core logging of fault zones and changes in lithology. The extensive
drill core assays allowed 3D modeling of the distribution of Ag, As, Au, Cu, Fe, In, Mo, Pb, Sb,

Sn and Zn concentrations.

Results

Field Mapping and Drill Core logging

Host Rock
Lithological logging of the KMD drill holes (Figure 5.4) and 1:5000 scale mapping

(Figure 5.2A) - conducted as part of this study- identified units of the Earn and Clastic Shelf
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assemblages (Figure 5.3). Locally the Earn Group consists of foliated, non-calcareous, variably
graphite and organic-rich, black siltstones and minor cherts, interbedded with chert-rich
mudstones and massive siltstone beds. Rare turbiditic sediments including graded arkosic,
sandstone beds and chert-pebble conglomerates are also present.

The Earn Group is overlain by black to dark-grey coloured, variably organic-rich silty-
limestone, and carbonaceous siltstone of the MT. Interbeds of organic-rich black siltstone occur
on cm to m scales. Evidence of bioturbation, including burrows, and soft sediment deposition,
including flame structures, convolute bedding and sole markings are commonly observed within
beds of the MT. Fine-grained pyrite occurs as euhedral cubes within the MT (Figure 5.5A);
framboidal pyrite was not observed. Bedding varies from 10 cm to ~2 m. The CPMC
unconformably overlies the MT and consists of bedded cherts with characteristic maroon and
lime-green colours. No carbonate is associated with this unit. Laminated black siltstones occur in
the chert units bedded on cm to m scales. Laminations within the siltstone are typically planar
and occur on sub mm scales, although, regions with lenticular laminations and cross-
stratification are found throughout the CPMC.

The youngest strata in the region, from the Triassic Jones Lake Formation, are
lithologically identical to the MT and can only be distinguished by stratigraphic position relative
to the CPMC cherts. Regionally all of the sedimentary units have experienced greenschist facies
alteration (Pigage 2004, Gordey 2013).

Relogging of drill holes on two approximately perpendicular transects shows that the
mineralization at the KMD is hosted predominantly within the carbonate-bearing rocks of the
MT, with minor mineralization in the chert bearing-lithologies of the CPMC. No ore

mineralization is observed within the Earn Group rocks although calcite-quartz-pyrite filled
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fractures do occur. The fractures within the Earn Group do not intersect the main mineralization
at the KMD. Therefore the relative age of these fractures, or whether they are the same age as the
KMD ore, could not be confirmed. The lithological logs also indicate that the Earn, CPMC and
MT units have been imbricated along three thrust faults (Figure 5.4B-C). The top and bottom
thrust faults (Fault-1 and -3 on Figure 5.4 B-C) have been mapped at the surface during this
study and by Gordey (2013) and Cobbett (2015). The middle fault (Fault-2 on Figure 5,4 B-C)
does not break the surface and is interpreted from the drill core logs. However the surface-trace
of this fault has previously been inferred by the presence of a syncline-anticline pair within the
CPMC (fault propagation fold) with fold axis sub-parallel to the surface thrust fault exposures
(Cobbett 2015; Figure 5.2A). The vergence of all three faults was inferred from the orientation of
the syncline-anticline pair associated with Fault-2. The vergence of the faults at the Keglovic
deposit is consistent with regional thrust fault vergence (Gabrielse et al. 2006). This middle fault
(Fault-2) is associated with nearly all the logged stratified sulphides (Figure 5.4). Mineralization

is bounded by the upper and lower thrust faults (Figure 5.4).

Keglovic Calc-Silicate (KCS)

The KMD mineralization is associated with the extensive decalcification of the MT,
which converts silty-limestone beds into calc-silicate and carbonate-silicate beds, via silication
and silicification (Figure 5.5B-C). The alteration can be observed in surface outcrops in an area
of 5 km by 1.5 km area (Figure 5.2B) and at depths from 100 to >400 m in drill cores
(stratigraphic orientation unknown). The KCS typically occurs as a blue-grey to white-pink rock.
Sedimentary structures can be preserved in the less altered beds but in the areas of most

significant alteration, the beds and lithologies have been totally recrystallized. The KCS is very
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fine-grained with a sucrosic texture created by micro- to crypto-crystalline silicification. It was
observed in the field that the carbonate content of the KCS decreases with increasing alteration
(based on reaction of the rock with HCI). However, complete decalcification is rarely observed;
even the most pervasively altered limestone beds showing minor reaction with HCI resulting in a
carbonate-silicate rock (Rosen et al. 2007). When visible, the contact with the unaltered rock is
gradational across 1-3 m. A transect across a gradational metasomatic front between KCS and
MT was sampled (Transect 1). Transect one involves 10 samples from drill hole 11-12 ranging
from 357-387m depth with a visible contact between the two lithologies occurring at 369 m. The
contact appears sharp in hand specimen, although bands of visually unaltered MT (.i.e sample
11-12 357) appear within the KCS indicating the gradational - non-complete - nature of the
metasomatic replacement. Transect one displays a gradual decrease in silica, increase in
carbonate and darkening of the hand specimen colour towards the visibly unaltered MT.
Wollastonite bands occur within the KCS. These bands form linear topographic highs
~2.5 m tall and 3-4 m wide, which trend ~north to south (range 330 to 030) and can be mapped
for up to 200 m. The rock within these bands appears to be >95% wollastonite with <5% by
volume quartz and K-feldspar. The CPMC is less altered than the MT, but displays bleaching

around fractures.

Petrography and Paragenesis

Keglovic Mineralization

Based on the detailed hand specimen and thin section descriptions conducted in this
study, the mineralization at the KMD can be split into four mineralogically and texturally distinct
paragenetic stages, defined by clear crosscutting relationships or the replacement and alteration

of earlier phases (Figure 5.6).
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Stage 1: The first mineralization event in the paragenetic sequence involves the pervasive
replacement of the carbonate-silicate beds within the host-rock KCS by an assemblage of
diopside-1, garnet-1, quartz-1, K-feldspar-1, pyrrhotite-1, galena-1, chalcopyrite-1 and
arsenopyrite-1. This mineral assemblage dominantly replaces the carbonate-rich beds in
stratabound bodies or is found in rare, discrete 1-3 cm veins that crosscut the silt-rich beds in the
KCS. Sulphides dominate this assemblage with ubiquitous, subhedral to anhedral, galena-1 and
pyrrhotite-1 occurring in massive intergrowths commonly associated with chalcopyrite-1 and
arsenopyrite-1 (Figure 5.5D). Arsenopyrite-1 typically occurs as 300 to 500 um in diameter,
euhedral, grains that display angular crystal boundaries when in contact with galena-1 and
pyrrhotite-1 (Figure 5.5D); therefore these phases are interpreted to be in textural equilibrium
and are considered to be coeval in the paragenetic sequence. All silicates are typically euhedral
(Figure 5.5E-F) with representative grain diameters of 0.5-1 mm. Galena-1, pyrrhotite-1 and
chalcopyrite-1 form an oikocryst around the euhedral arsenopyrite-1 and silicates; suggesting
that these sulphides crystallized later in this mineral assemblage (Figure 5.5E). The veins
associated with this stage are curvi-linear features with planar walls. Euhedral diopside-1, quartz-
1 and garnet-1 grains nucleate on the wall rock and grow into the centre of the vein with a comb
texture (Figure 5.5G). Stage 1 sulphides are not seen within the veins. The centres of the veins
are filled with minerals from the later paragenetic stages (see below).

There appears to be a spatial zoning within the replacement Stage 1 mineralization;
samples containing garnet-1 and diopside-1 contain more chalcopyrite-1 than samples with only
diopside-1. Rare stage-1 samples have only galena-1, pyrrhotite-1 and quartz with no calc-
silicate minerals or chalcopyrite-1. The zoning appears linked to regions of fault breccia

development, with garnet-1 and chalcopyrite-1 occurring in samples proximal to certain faulted
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regions, although the complexity of the structures in a single drill core does not allow for
conclusive assessment of the spatial zoning to be made.

EPMA analyses on calc-silicate minerals in the replacement beds and veins identified
garnet-1 as having a grandite composition (range of grossular;o-g7moio, andradite;3_3omol%) and
suggest diopside-1 has an average composition of 59% diopside, 36% hedenbergite and 5%
johannsenite (ranges of Di42-77mol%, Hd20-53mol%» JO1-8molv). Galena-1 hosts the silver in this stage
(0 to 1.22wt%; although the lower values occur in grains retrograded by later mineral
assemblages) and also has high Se (up to 3.2 wt%) and Bi (up to 2.92 wt%) concentrations. The
Ag and Bi concentrations of galena-1 are positively correlated (Table 5.1) suggesting a coupled
substitution mechanism. Pyrrhotite-1 and arsenopyrite-1 have end-member compositions with
negligible trace element concentrations. Chalcopyrite-1 also has a near end-member composition
but EPMA analyses show up to 0.3wt% Sn and 0.16 wt% Ag, likely due to microscopic
intergrowths within the chalcopyrite crystals.

Overall, this stage is associated with Ag and Pb in galena-1, As in arsenopyrite-1, Cu and

Fe in chalcopyrite-1 and Fe in pyrrhotite-1.

Stage 2: a). sulphide formation event b). sulphide retrograding event: Stage 2a consists of a
mineral assemblage of quartz-2, calcite-1, diopside-2, sphalerite-1, chalcopyrite-2, stannite-1 and
pyrite-1. Stage 2a overgrows and rims the Stage 1 mineral assemblage, as well as infilling the
centre of veins lined with the Stage 1 mineral assemblage (Figure 5.5G). The mineralization is
characterized by anhedral sphalerite-1, which co-precipitates ubiquitously with chalcopyrite-2
and commonly with stannite-1 (Figure 5.5H). When sphalerite-1 is in contact with arsenopyrite- 1

the arsenopyrite does not display a euhedral-angular crystal form (Figure 5.5D) indicating
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textural disequilibrium; this is interpreted as suggesting that sphalerite-1 belongs to a later
paragenetic stage than arsenopyrite-1. Diopside-2 occurs as <50 um grains pervasively
overgrowing Stage 1 sulphides and silicates. EPMA analyses identified the range of pyroxene
compositions as being identical to diopside-1. Radial aggregates of diopside-2 grains are seen in
the surrounding wall-rock up to 50 cm beyond the sulphide mineralization. Calcite-1 crosscuts
and fractures garnet-1 and diopside-1 but appears in textural equilibrium with sphalerite-1
(Figure 5.5G). Stage 1 and 2a combine to form beds of near complete massive-sulphide
replacement (and sparser vein infills).

EPMA measurement on sphalerite-1, indicate that this sulphide contains significant Fe
(10.8 to 12.8 wt%), minor Mn (up to 0.62 wt%) and minor Cd (up to 1.06 wt%; Table 5.2a). The
trace element chemistry of sphalerite-1 was also analyzed via LA-ICP-MS (Table 5.2b), which
indicated that sphalerite-1 contains a trace amount of In (200 ppm average). Chalcopyrite-2 and
stannite-1 associated with this mineral assemblage appear to have end-member compositions
from the EPMA analyses. Overall Stage 2a is associated with Zn, Fe and minor In in sphalerite-
1, minor Cu and Fe in chalcopyrite-2 and Sn and Fe in stannite-1.

Stannite-sphalerite geothermometry based on Fe-Zn cation exchange was performed on
pairs of sphalerite-1 and stannite-1 grains that appeared to display textural equilibrium (Table
A20; Shimizu and Shikazono 1985, Bortnikov et al. 1990, Scott and Barnes 1971). Multiple Fe
and Zn concentrations from pairs of intergrown minerals were measured on the EPMA. The
average concentration data from each stannite-sphalerite pair was used to calculate a partition
coefficient and then a temperature of mineral deposition based on the equations in Shimizu and
Shikazono (1985). This method gave an average temperature for sphalerite-1 and stannite- 1

deposition of 300+25 °C.
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Stage 2b consists of quartz-3, apatite and numerous hydrous silicates including
clinochlore, epidote, clinozoisite, tremolite, talc and hornblende. This mineral assemblage
destructively overprints the sulphides deposited in Stage 1 and 2a (Figure 5.5J). Tremolite, talc,
hornblende and clinozoisite occur as up to Smm acicular needles overprinting sphalerite-2
(Figure 5.5J). Clinochlore, epidote and apatite form fine-grained mats intergrown with anhedral
quartz rimming and overgrowing the margins of sulphides from Stage 1 and 2a.

Stage 2b is not associated with significant new sulphide deposition, but records the
alteration of previously deposited sulphides and redistribution of some elements. For example,
galena-1, in contact with Stage 2b minerals, has exsolved bismuth inclusions (Figure 5.5K) and a
complex assemblage of exsolved sulfosalts. The exsolved sulfosalts, identified by EPMA,
include many Ag-bearing phases such as freibergite-1, stephanite, pyrargyrite and cervellite
(Figure 5.5L). EPMA work on the galena-1 suggests that this exsolution leads to a decrease in
the silver content of galena-1. During this stage pyrite-1 is also observed overprinting
pyrrhotite-1.

Overall Stage 2b does not introduce any new metals to the Keglovic deposit but leads to

the redistribution of Ag from the galena lattice to As, Sb and Sn bearing sulfosalts.

Stage 3a to 3c: Stage 3 occurs in discrete 2-25 cm fracture- and void-fills and mm-scale breccias,
which crosscut the KCS and rarely intersect the mineralization generated in Stage 1 to 2b. The
fractures are most numerous in the non-carbonate bearing, calc-silicate beds of the KCS.

Stage 3a consists of a mineral assemblage of calcite-2, quartz-4, pyrrhotite-2,
chalcopyrite-3 and pyrite-2. Stage 3a is characterized by acicular calcite-2 infilling breccias and

voids (Figure 5.7A-C). Rare iron sulphides occur at the margins of the carbonate filled fractures
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(Figure 5.7C) indicating deposition prior to calcite-2. Pyrrhotite-2, pyrite-2 and chalcopyrite-3 all
have end-member compositions and contain negligible trace elements on the EPMA.

This stage does not contribute significantly to the metal budget at the Keglovic deposit.

Stage 3b consists of a mineral assemblage of quartz-4, calcite-3, galena-2, pyrite-3,
arsenopyrite-2, stibnite-1, freibergite-2 and hocartite. Stage 3b is dominated by euhedral quartz-4
grains, with minor euhedral arsenopyrite-2 and subhedral to anhedral galena-2 and pyrite-3,
which are deposited within planar, discrete, fractures (Figure 7 D-E). Stibnite-1 is associated
with arsenopyrite-2 in large fractures (Figure 5.7F). Stibnite-1 and arsenopyrite-2 display angular
grain boundaries in contact with quartz-4 and galena-2, which are inferred to be in textural
equilibrium and, therefore, coeval in this paragenetic stage. Freibergite-2 grains occur on the
contact between galena-2 and other sulphides in this stage. Calcite-3 is minor, occurring on grain
boundaries and is therefore interpreted to crystallize late in this stage. Galena-2 has the same
chemistry as galena-1 with high Se concentrations (up to 1.25 wt %; Table 5.1) and variable Ag
(up to 1.15 wt%) and Bi (up to 2.68 wt%) content. However, galena-2 appears to crystallize in
equilibrium with silver bearing fahlore minerals in Stage 3b, which is not observed in Stage 1.
Arsenopyrite-2, pyrite-3 and stibnite-1 have end-member compositions. Freibergite-2 is typically
a silver-rich tetrahedrite containing 28 wt% Sb and 22 to 30 wt% Ag but no measurable As.

Overall, Stage 3b is associated with Ag and Pb in galena-2, As in arsenopyrite-2, Sb in
stibnite-1, and Ag and Sb in the freibergite-2.

Stage 3¢ consists of sphalerite-2, chalcopyrite-4, cubanite-1 and stannite-2. This mineral
assemblage is observed as intergrowths of the sulphides, infilling the final primary spaces in the

fractures (Figure 5.7G-I). Minor calcite-3 and quartz-4 occur associated with the sulphides.
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Sphalerite-2 contains similar Fe concentrations (6.8 to 11.4 wt%) but typically lower
concentrations of Mn (0.18 to 0.48 wt%) and Cd (0.53 to 0.78wt%) than sphalerite-1 (Table
5.2a). The In concentration of sphalerite-2 measured by LA-ICP-MS is ~3 times lower than
recorded in sphalerite-1 (70 ppm average compared to 200 ppm average; Table 5.2b). Cubanite-1
and stannite-2 contain near pure compositions. Chalcopyrite-4 contains up to 0.2 wt% Sn and up
to 0.3 wt% Ag likely as microscopic inclusions.

Stannite-sphalerite geothermometry conducted on pairs of intergrown sphalerite-2 and
stannite-2 displaying equilibrium textures (via the same method outline in Stage 2) gives an
average temperature of 280+10°C for the deposition of these mineral pairs. (Table A20).

Overall Stage 3¢ is associated with Zn and Fe in sphalerite-2, Cu and Fe in cubanite and

chalcopyrite, and Sn, Cu and Fe in stannite-2.

Stage 4 consists of quartz-5, calcite-4 and zeolite. This mineral assemblage occurs in late
undulose <1 cm fractures which cross-cut all previous mineralization (Figure 5.7J -L). Within
the fractures, mineral grains are typically <0.5 mm and euhedral, suggesting this stage infills late
voids. No sulphide deposition was observed. However, where fractures intersect sulphides,
pyrite-4 replaces pyrrhotite-1 and 2. Iron oxide staining of silicates is also associated with these

late-stage fractures.

Isotopes. C, O, S and Pb

Carbon, oxygen, sulphur and lead isotopes were measured on mineral separates from
each of the paragenetic stages to track the evolution of the mineralizing fluid, metal source and

deposition mechanism(s) with time. Carbon and oxygen isotope data from the visibly unaltered
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carbonates of the MT and separates of calcite-1, 2, 3 and 4 are displayed in Table 5.3 and Figure
5.8. The MT samples have the highest 618OSMOW and 8> Cppg values recorded in the study;
ranging from 13.8 to 21.0 %o and -0.5 to -2.4 %o respectively. 8'* Osmow and 8'°*Cppg values for
the calcite-1 separates range from 9 to 13.6 %o and -4.3 to -7.3 %o respectively. &' *Osmow and
8"3Cppp values for the calcite-3 and 4 separates are similar to calcite-1, with the 5" 0gmow and
8" Cppg values of calcite-3 ranging from 13.1 to 14.2 %o and -4.7 to -6.3 %o and calcite-4 ranging
from 12.9 to 13.6 %o and -5.6 to -7.1 %o respectively. Calcite-2 has different S]BOSMOW and
8"*Cppg values than the other three calcite phases, with values ranging from 1.7 to 7.9 %o and -
2.6 to -6.1 %o respectively

Sulphur isotope data is presented in Table 5.4 and Figure 5.9. Galena-1 was separated
from Stage 1 mineralization. Sphalerite-1 was separated from Stage 2 mineralization. Pyrite-2,
pyrrhotite-2, chalcopyrite-3, pyrite-3, galena-2, arsenopyrite-2 and sphalerite-2 were separated
from Stage 3 mineralization. Stage 1 and 2 minerals have & **Scpr values ranging from -1.0 to
0.1 %o and 0.4 to 5.1 %o respectively. Sulphide separates from Stage 3 returned 8°*Scpr values
ranging from -2.8 to 9.8 %o.

The Pb isotope results are shown in Table 5.5a and 5.5b and Figure 5.10. Lead isotopes
were measured on galena-1 and galena-2 from Stage 1 and Stage 3 mineralization respectively.
Galena-1 has **Pb/***Pb ranging from 39.179 to 39.196, **’Pb/***Pb ranging from 15.699 to
15.703 and **°Pb/***Pb ranging from 19.273 to 19.281. Galena-2 has average “**Pb/***Pb ranging
from 39.129 to 39.197, 2’Pb/***Pb ranging from 15.694 to 15.706 and **°Pb/***Pb ranging from
19.255 to 19.278. Present day lead isotopes from unaltered samples of the Earn Group, CPMC
and MT are indistinguishable and have average ***Pb/**'Pb ~41, *"Pb/***Pb ~16 and **°Pb/***Pb

~ 20 (Table 5b). The precision associated with these measurements is low (typical one standard
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deviation error in **’Pb/***Pb and ***Pb/***Pb of 0.6) and is not sufficient to distinguish between

the different units.

Re-Os dating

Arsenopyrite-2 from Stage 3b was successfully dated using the Re-Os technique. Results
are shown in Table 5.6. An isochron could not be constructed for arsenopyrite-2 as only one Re-
Os analyses was successful. Therefore, a model age was calculated by varying the ['*’Os/'**Os];
from 0.12 (upper mantle value) to 1.0 (crustal value), which encompasses the entire possible
variation in initial osmium natural reservoir values (Luck and Allégre 1991). This method

returned a model age of 100+2 Ma for arsenopyrite-2.

Microthermometry

Microthermometric analyses were performed on fluid inclusion assemblages (FIAs) in
quartz-1, garnet-1, quartz-2 and quartz-4. Fluid inclusions were categorized based on their room
temperature phase assemblages and also their timing relative to the mineral growth. Inclusions
were classified as primary (P), pseudo-secondary (PS) or secondary (S; Roedder 1984).
Inclusions that displayed very irregular shapes or appeared necked were not analyzed due to
potential post-entrapment modification. FIA data are presented in Tables 5.7 and 5.8 and Figure

5.11, and are discussed in the following section based on paragenetic stage.

Stage 1: Rare primary fluid inclusions are observed within euhedral garnet-1 and quartz-1. The

grandite garnets show growth zones in pleochroic light, allowing primary fluid inclusions to be

easily identified. For quartz-1, no discernible growth zones could be seen and inclusions were
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assigned as primary on the basis of their isolation, random orientation (i.e. not forming linear
arrays), size and negative crystal shape. Primary inclusions typically occur as 15 to 30 um
isolated inclusions in quartz-1 and garnet-1 (Figure 5.12A-C).

Primary FIAs from quartz-1 and garnet-1 had identical microthermometric properties and
will, therefore, be discussed together in this section. Primary FIAs from both minerals contained
two-phase aqueous inclusions (~70% liquid water and ~30% vapour by volume at room
temperature). No evidence for CO, was detected in any of these primary inclusions.

First melting temperatures (Tmerr) from Stage 1 primary FIAs had a range from -20 to -
41°C suggesting the dominant solute is NaCl, but some inclusions also contain MgCl, and/or
CaCl, (Davis et al. 1990). The final ice melting temperature (Ti..) for these inclusions ranged
from -3.5 to -1.8°C. These Tj.. measurements can be used to calculate salinities (Wt% NaClgquiv)
using the equation of Bodnar (1993). Calculated salinities for Stage 1 primary FIAs in garnet-1
and quartz-1 are low, averaging 4.0+0.9 wt% NaClgquiy (1SD; range 3.1 to 5.7 wt% NaClgquiv).
Homogenization temperatures (Ty) for Stage 1 FIAs average 347+17°C (1SD; range 318 to
364°C).

Trails of tiny (typically 1-5 pum) secondary inclusions (~95% liquid water and ~5%
vapour by volume at room temperature; Figure 5.12C) crosscut the quartz grains; due to the size
of these secondary inclusions, no data could be collected. Rare, larger, FIAs in secondary trails
have similar average salinities (4.3 wt% Naclequiv) to the primary inclusions but have a

significantly lower average Ty (165 °C).

Stage 2: Stage 2 FIAs occur within quartz-2 associated with sphalerite-1. Primary fluid

inclusions are typically isolated and occur in the center of quartz grains (Figure 5.12D-E). Rare
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growth zones with high fluid inclusion densities are also observed (Figure 5.12F). Primary FIAs
in quartz-2 contained two-phase aqueous inclusions (~90% liquid water and ~10% vapour by
volume at room temperature). No evidence for CO, was detected in any fluid inclusion hosted in
quartz-2.

All primary FIAs from quartz-2 displayed Teit values of ~21°C indicating that the Stage
2 inclusions can be modeled as an H,O-NaCl fluid. These inclusions had Tj. values ranging
from -3.0 to -2.4°C and have an average salinity of 4.3+0.3 wt% NaClgquiy (1SD; Range 4.0 to
4.9 wt% NaClgquiv). Homogenization temperatures for the Stage 2 primary FIAs range from 251
to 292°C.

Secondary inclusions (~95% liquid water and ~5% vapour by volume at room
temperature) are common in quartz-2 crystals occurring as trails crosscutting the grain.
Microthermometric measurements identify two populations of secondary inclusions; one with a
lower average salinity (~2wt% NaClgquiv) and a higher average Ty (255°C), and a second with

higher salinity (ranging from ~3-5wt% NaClgquiv) and lower Ty (ranging from 100-150°C).

Stage 3: Primary FIAs in Stage 3 occur predominantly within quartz-4 as high-density regions of
randomly orientated inclusions within growth zones, although very rare isolated primary
inclusions may be observed (Figure 5.12G-L). At room temperature, FIAs containing liquid
water + vapour; liquid water + carbonic liquid; and liquid water + carbonic liquid + solid halite
are all observed within quartz-4 within the same growth zones.

Upon freezing liquid water + carbonic acid inclusions, solid CO, was formed. This phase
melted within error of -56.6°C, consistent with near pure CO,, although minor depression (to -

57.6°C) may indicate the presence of N, or CHy4 (Jacobs and Kerrick 1981). The primary liquid
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water + carbonic liquid inclusions have Tjc values ranging from -6.6 to -1.5°C (which are
typically lower then the Tj.. expected for a pure CO,-H,0 system; Brown and Lamb 1989,
Diamond 2001, Hedenquist and Henley 1985, Wilkinson 2001).

Clathrate melting (Tmcjam) and carbonic liquid homogenization (Tmc,,) were measured in
some primary FIAs from quartz-4, although it was extremely difficult to observe in most cases.
Clathrate melting temperature was accurately measured in 12 of 16 carbonic liquid bearing FIAs.
Carbonic liquid homogenization was also accurately measured in 12 of 16 carbonic liquid
bearing FIAs. Clathrate melting temperatures range from 7.2 to 11.9°C. The salinity of the H,O-
CO,-NaCl bearing inclusions was calculated from Tm,, data using the equation of Diamond
(1992) to give salinities of less than 5wt% NaCl.q,;v based on the least ambiguous observations.
Some clathrate melting temperatures are above +10°C indicating the presence of another gas as
well as CO; in the inclusion (Brown and Lamb 1989, Diamond 1992, Bakker 1997).
Homogenization of the carbonic phase (Tm,) occurs at temperatures as low as +13°C (range 13
to 24°C) indicating the presence of CH4 within these FIAs (Hollister and Burruss 1976).

Upon further heating these carbonic liquid bearing primary FIAs commonly decrepitated
(at a temperature Tp) before total homogenization occurred. When total homogenization (Ty)
was observed around 50% of the carbonic liquid bearing primary FIAs displayed total
homogenization to a gas phase, making it difficult to observe the true homogenization
temperature. Consequently, a large spread in Ty and Tp from 195 to 350°C is reported.

Primary liquid-rich inclusions containing liquid water + water vapour are observed in the
same FIAs with the vapour-rich aqueo-carbonic liquid bearing inclusions. No evidence for CO,
was detected in these inclusions, however, its presence in trace amount cannot be ruled out.

These inclusions have T ranging from -42 to -21.1°C suggesting the aqueous fluid contains
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NaCl as the major solute with some divalent cations (Mg* or Ca®"). Final ice melting
temperatures from these aqueous inclusions range from -6.1 to -1.4°C indicating salinities
ranging from 2.4 to 9.3 wt% NaClcquiy based on the calculation of Bodnar (1993), although the
presence of any CO, would cause these salinity values to be an overestimate (Hedenquist and
Henley 1985). These primary aqueous inclusions display total homogenization (Ty) to a liquid
phase at temperatures ranging from 162-337°C.

Far less abundant inclusions containing carbonic liquid + liquid water + solid halite were
rarely observed in FIAs with carbonic liquid + liquid water and liquid water + water vapour
inclusions. In these halite bearing inclusions first melting of the solid CO, was within error of -
56.6°C with final ice melting occurring at an average value of -24.5+0.2°C.

Homogenization of the non-solid phases within the halite bearing inclusions occurred at
temperatures ranging from 233 to 255°C. Halite was still present at this temperature.
Decrepitation of the inclusion occurred before halite dissolution in every case, so the salinity of
these inclusions could not be obtained.

Secondary trails of typically <Sum inclusions are observed crosscutting growth zones
within quartz-4. The small size of these inclusions did not permit microthermometric
measurements to be made. Rare, larger, secondary inclusions contain aqueous water + water
vapour and have Ty ranging from -42 to -21.1°C, Tjc. ranging from -3.6 to -1.4°C and total

homogenization temperatures ranging from 158 to 161°C.

Whole Rock Analysis

Bulk rock analysis results are split into major-oxide elements (Table 5.9) and minor and
trace elements (Table A21). Elements that returned values below the limit of quantification

(three times the limit of detection) for all samples were removed from the results. Two transects
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across fronts of alteration were sampled. Transect one (see Host Rock section) spans a
gradational metasomatic contact between MT and KCS. At the contact Si0,, Al,O3 and Fe,O3
decrease from the KCS to MT (from: ~70 to ~35 wt%; ~8 to ~3 wt%; and ~3 to ~1 wt%
respectively), while organic carbon content and CaO concentrations increase (from: ~0 to ~6wt
%; and ~9 to ~30 wt% respectively). The second transect involves 4 samples from 20 cm of drill
core from hole 11-12 at a depth of 234 m. Transect two spans a sharp contact between the KCS
and skarn mineralization. Sample 234-a and -b are from the skarn, while sample 234-c and —d are
from the proximal KCS. SiO; values (average 65 wt%) are consistent with typical KCS values
throughout transect-2 indicating KCS alteration occurred before skarn mineralization. CaO
decreases into the skarn (from ~12 to ~6 wt%) while most metallic (Cu, Sn, Pb, Zn. Ag)
elements and total S increase into the mineralized zone. Indium, Cd, Se and Bi are all more
concentrated within the skarn mineralization compared to the KCS (from: ~0 to ~50 ppm; ~12 to

~750 ppm; ~5 to ~ 65 ppm; and ~5 to ~130 ppm).

3D Deposit Analysis

The distribution of “anomalously high” element concentrations (Ag, Pb, Zn, Sn and Sb)
at the KMD is shown in Figure 5.13 relative to the large scale thrust faults logged in the region.
Anomalously high is defined as representing the top 6-10 % of concentrations from the 7950
drill core assays available. The solid- coloured regions on Figure 5.13 represent regions where
these high assay concentrations are inferred to occur based on interpolation of the drill core assay
data generated using the interpolation software built into Leapfrog Geo. For the interpolation
models the boundary was set to enclose the 3D space covered by the drill core assays. Drill hole
collars are regularly spaced in a grid across the KMD so inter hole compositing was not

necessary. The data was processed using down-hole compositing on a length of 10 m and
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minimum coverage of 30%. These values were chosen to ensure that any 3 m assay interval
containing mineralization was not excluded from the interpolant. The fine scale of compositing is
necessary due to the fine-scale of the mineralization hosted within cm- scale veins and m- scale
beds. The resulting interpolants (Figure 5.13) show that high concentration of Ag, Pb, Zn and Sn
are controlled by the large fault in the region (Fault-2). In comparison high Sb grades occur at a

single depth- horizon.

Discussion

Characteristics of the host-rocks

Logging of the drill hole transects at the Keglovic deposit (Figure 5.4) illustrates that
mineralization is hosted dominantly within the MT with minor mineralization in the CPMC, and
that both formations have been altered prior to mineralization. The very different chemical and
rheological properties of the two sedimentary units present at the KMD have played a primary
role on the distribution and style of mineralization observed.

Half of the carbon and oxygen isotopic data obtained from visually unaltered
carbonaceous MT, yield 8"°Cppp and SISOSMOW values consistent with typical Mississippian
marine carbonates (expected range 8"*Cppg 0 to +2 %o, SISOSMOW +20 to +23 %o; Veizer et al.
1999; Figure 5.8). However, in the whole data set from the host-rocks there is a trend in carbon
and oxygen isotope values to more negative compositions (Figure 5.8). This suggests that some
samples have been affected by post-depositional alteration of the primary MT by an unidentified
source rich in '*C and '°O. The isotopically altered samples are indistinguishable in hand-
specimen and thin section from the unaltered samples. The isotopic alteration is unlikely to be

diagenetic due to the systematic correlation between the 8'°C and §'°0 values, which suggest
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equilibration with another fluid reservoir. The altered MT values have 5"°C and §'*0 values
between typical marine carbonates and calcite-1, suggesting that the fluid that was involved in
the formation of calcite-1 (discussed below) may have affected rocks up to 200 m outside the
zone of visible KCS alteration.

The lead isotopes measured from unaltered, bulk rock samples of the MT, CPMC and
Earn Group have values consistent with typical upper crustal lithologies in the Selwyn Basin.
Lead isotopes in the upper crustal sedimentary units of the Selwyn Basin are modeled on the
shale-curve, which gives expected values at the present day of “**Pb/***Pb ~39.8, **’Pb/***Pb

~15.7 and *"Pb/***Pb ~ 19.5 (Godwin and Sinclair 1982).

Origin of Keg Calc-Silicate alteration

Around the Keglovic deposit mineralization the MT has been regionally altered to form
the KCS rock. The alteration is also seen to a lesser extent within the CPMC. Alteration has
affected at least 2.2 km” of host rock around the KMD. The most pervasive alteration, which
leads to the destruction of sedimentary textures, occurs proximal to faults and fractures within
the KCS. The bands of wollastonite observed in the field indicate high degrees of alteration as a
result of fluid flow along approximately north to south trending fractures, which cut discordantly
across the regional strata. Alteration also appears to have occurred along beds with KCS
alteration of more permeable beds in the host rock (e.g. silty-limestone beds in the MT)
occurring up to 25 m away from visible fractures.

The clear structural control on the alteration and scale of altered rocks suggests the
alteration is metasomatic rather than metamorphic in origin, and that the KCS is the product of
regional-scale hydrothermal circulation that focused up faults and fractures within the crust

before flowing along permeable bedding horizons in the host rock.

151



Bulk rock analyses on alteration transect 1 indicates that the metasomatism of the MT is
associated with a relative increase in Si, Al oxide and Fe oxide concentrations, and with an
associated decrease in carbonate and organic C content. This suggests both silication and
silicification occurred to form the KCS from the MT. The large volumes of Si in this
hydrothermal system could derive from juvenile Si of magmatic origin or Si which has been
leached from underlying or surrounding rocks by circulating hydrothermal solutions (Lovering
1962). Isotopic studies on the Keglovic mineralization (discussed below) will help constrain the

origin of the Si.

Descriptive model for Keg Deposit Mineralization

There are two styles of mineralization in the KMD: an early phase of skarn and carbonate
replacement mineralization (Stage 1 and 2) followed by high-grade vein-hosted Ag-Pb-Zn
mineralization (Stage 3). In this section we will discuss the metal source, temperature,

environment of formation, and fluid origin for each mineralization event.

Stage 1 and 2: Ag-Pb-Zn-Cu-Sn skarn

Stage 1 mineralization occurs, dominantly, as pervasive replacement of the
metasomatized carbonate-silicate beds within the KCS and, in minor fractures, in less carbonate
rich calc-silicate horizons. The presence of grandite and diopside-hedenbergite suggests the
mineralization formed by metasomatism in a skarn environment (Meinert 1992). Lithological
logging (Figure 5.4) illustrated that the stratiform sulphides occur predominantly associated with
the central fault (Fault 2; Figure 5.4), but are not associated with either of the other faults. This is
confirmed by the 3D modeling performed in Leapfrog Geo, which suggests a strong association

between the areas of high Zn, Pb and Ag concentrations (elements associated with Stage 1 and 2
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mineralization) with the central fault (Fault 2; Figure 5.13). The correlation between the central
fault (Fault-2) and mineralization suggests the flow of the mineralizing fluid was controlled by
this structure. Why this structure played a primary role on fluid flow but the other faulted areas
did not remains unclear, although a tectonic reconstruction (Figure 5.14) suggests this middle
fault (Fault-2) may represent a fault with less stratigraphic throw than the other two faults (Fault-
1 and Fault-3; Figure 5.4 and Figure 5.14) mapped in drill core, potentially leading to larger
permeability in the later central feature (Caine et al. 1996, Sheldon and Micklethwaite 2007).

Based on the observed mineral changes in the skarn, a zonation of mineralization is
hypothesised away from the central fault. Garnet and chalcopyrites are found proximal to the
central fault, then pyroxene dominated skarns and finally carbonate replacement style deposits
(CRD; Meinert, 1987) distal to the fault. This zoning represents a gradation from proximal fluid
reaction with the carbonate rocks to distal transport and fluid evolution prior to complete fluid
exhaustion away from the transcrustal fault, and is typical for this type of deposit (Table 5.10;
Einaudi et al. 1981, Meinert 1987, Megaw et al. 1988, Lynch 1989).

Stage 1 and 2 mineralization could not be radiometrically dated but occurred prior to the
102-98 Ma deposition of arsenopyrite-2 (discussed below).

The Pb isotopes indicate a predominantly upper crustal origin for Pb in galena-1 (Figure
5.10; Godwin and Sinclair 1982) but some mixing between an upper crustal Pb reservoir and a
second Pb reservoir cannot be ruled out, as the galena-1 Pb isotopes fall below the upper crustal
shale curve (Beaudoin 1992). This second lead reservoir could be lower-crustal or igneous in
origin. The evolution of lower-crustal lead isotopes in the northern-Cordillera is modeled by the
Bluebell curve (Andrew et al. 1984), which produces expected lead isotope values for the lower

crust at 100 Ma of 18.199 for *°Pb/***Pb and 15.525 for **’Pb/***Pb (Figure 5.10A). The granites
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of the Tay River district show a bimodal distribution of lead isotopes. Lead isotopes from K-
feldspar in the Anvil plutonic suite (see chapter 2) have present day “°°Pb/***Pb values ranging
from 19.328 to 19.350 and **’Pb/***Pb values ranging from 15.720 to 15.741; these values fall
above the shale curve and therefore cannot explain the lead isotopes in the KMD mineralization
(Figure 5.10A). In contrast, the Tay River and Tombstone suites have *’°Pb/***Pb values ranging
from 19.033 to 19.429 and **’Pb/***Pb values ranging from 15.686 to 15.727 (Rasmussen 2013),
which overlap with lead isotope values obtained from the Keglovic galena (Figure 5.10A).
However, Stage 1 and 2 mineralization occurred before the intrusion of the 96-90 Ma Tombstone
suite (see Chapter 2) emplacement. Stage 1 and 2 mineralization at the Keglovic deposit is
potentially synchronously with the Anvil Suite, which contains lead consistent with an upper
crustal origin, or the Tay River suite. Therefore, the lead isotopes values observed in the KMD
mineralization fit better with mixing between an upper crustal Pb source, which derived from the
local country rock or the Anvil suite, and a fluid containing some Pb derived from the lower
crustal rocks or the Tay River suite. The similarity between the Pb isotopes observed in the
KMD galena and the Tombstone suites would therefore occur as the Tombstone suite forms from
lower crustal melting (as proposed in Chapter 2) of the source that provided minor Pb to the
galena at the KMD.

The lack of sulphate minerals and presence of pyrrhotite at the KMD suggest that the
fluid that was transporting this lead was likely reduced (Barnes 1979) and that the Pb within this
fluid is transported as a chlorocomplex (Barrett and Anderson 1988). The source of the other
metals cannot be determined from any of the analytical techniques used in this study. However,
the other metals present at the KMD (Ag, Cu, Sn, As, Sb and Zn) are all soluble when

complexed with chlorine (Seward et al. 2014). Therefore, we suggest that the other metals
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present in the Stage 1 and 2 mineralization share a common source with the Pb and are
transported predominantly complexed with Cl within the same fluid (Barrett and Anderson
1988).

The concentration of Pb in this metal-bearing, reduced fluid needed to be relatively high
(ppb to ppm level) to form the Stage 1 and Stage 2 mineralization; this can only be achieved in a
reduced fluid with negligible dissolved HS™ (Barnes 1979, 1997). Therefore, reduced sulphur was
added to the metal bearing fluid at the site of mineral precipitation. The sulphur isotope
compositions of galena-1 do not indicate a unique sulphur source for Stage 1 mineralization.
Galena-1 yielded a range of sulphur isotope values from -1.0 to 0.1 %o (Figure 5.9). These
sulphide values could derive from a reduced fluid with a contained &°*S value of 0 %o or an
oxidized fluid with a §**S value of +20 %o (Rye 2005, Seal 2006). This range of values could be
derived from a magmatic, mantle or sedimentary source (Ohmoto 1972, Rye and Ohmoto 1974,
Hoefs 1997). However, whole rock powders from the Anvil, Tay River and Tombstone suites
have 8°*S of between 6 to 11.2 %o (Rasmussen 2013, Rogers 2017) suggesting that the plutons
alone cannot be the source for sulphur in galena-1.

Fluid inclusions from garnet-1 and quartz-1 are primarily aqueous fluids with minor
dissolved NaCl, CaCl, and MgCl; (salinities range from 3 to 6 wt% NaClequiv). This salinity is
lower than would be expected for primary magmatic water, which typically ranges from >10
wt% NaClequiv to a highly concentrated brine, due to the strong preference of CI to partitions into
the aqueous phase during H,O separating from a crystallizing magma (Kilinc and Burnham
1972, Shinohara et al. 1989, Cline and Bodnar 1991). The fluid inclusions in garnet-1 and
quartz-1 have salinities similar to seawater (~3.5 wt% NaClequiv) and within the range of

formation and connate waters (0.4 to ~20 wt% NaClequiv; Hitchon and Friedman 1969, Connolly

155



et al. 1990). The salinity values recorded in Stage 1 inclusions could also derive from meteoric
fluids that have been mixed with a more saline fluid or acquired Cl from the local host rock. The
tectonic setting of the Tay River district in the core of an orogen suggests that seawater is
unlikely to have been present during KMD mineralization. Therefore, the fluid inclusion data is
consistent with a fluid that has equilibrated with the surrounding sedimentary rocks (either
connate or formation water) or mixing of meteoric water with a more saline fluid.

Homogenization temperatures of 320 to 360°C provide minimum estimates for the
temperature of garnet and quartz crystallization and is consistent with typical pluton-distal Pb-Zn
skarns (Table 5.10; Meinert et al. 2005).

Silver is contained within the Se-rich galena-1 via a coupled substitution with Bi. The
variable presence of pyrrhotite-1 associated with galena-1 indicates reduced conditions within
certain stratigraphic horizons. The stratigraphic control of pyrrhotite-1 suggests that organic rich
layers in the KCS, potentially representing less altered MT beds or initially more graphitic
lithologies, are creating locally reduced conditions rather than a change in source.

Stage 2 mineralization consists of a sulphide-forming event followed by a sulphide-
overprinting event. Both events occur in the same stratigraphic horizons as Stage 1
mineralization. Oxygen isotopic values for calcite-1 could indicate either a fluid derived from a
magmatic sources (expected 8'*Ogmow values +5.5 to +10.0%o; Sheppard 1986, Taylor and
Sheppard 1986) or from mixing of a fluid in equilibrium with the MT limestone, which has
relatively high 8'*Osmow values (+21%o), with regional meteoric water, which has relatively low
8"* 0smow values in the Cretaceous (<-16%o; Hitchon and Krouse 1972, Ufnar et al. 2001).
Calcite-1 has 8" Cppg values 4-7 %o lower than the MT host rock. This can be explained by

either: interaction of carbon from the host marine limestones with a fluid rich in reduced or
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organic carbon derived from sediments, which would have typical 8'°Cppg values of <-15%o (Rye
and Ohmoto 1974); or carbon derived from a mantle or magmatic source, which would have
typical 8"°Cppg values equal to -442 %o (Rye and Ohmoto 1974, Hoefs 1997). The scatter in

8" Cppg values of around 4 %o observed for calcite-1 is consistent with variable mixing between
two carbon bearing sources rather than carbon sourcing from a single deep-large reservoir, which
would lead to a far tighter cluster in 8'°Cppg values (Beaudoin et al. 1991). Therefore, the carbon
in calcite-1 likely represents mixing between carbon in the host marine limestones and carbon
from a reduced or organic sedimentary rock.

Sphalerite-1 has positive 8°*Scpr values, from 0.4 %o up to +5.1 %o. These values within
the Stage 2 sulphide could be derived from precipitation from HS™ with a similar §**S value to
sphalerite-1 or from the reduction of oxidized sedimentary sulfate with 8°*S values from ~20 to
25 %o. The 8°*S values of sphalerite-1 are too enriched in **S for mantle derived sulphides (0+3
%o; Seal 2006) and too enriched in **S for sulphides derived from the surrounding igneous rocks
(6-11 %o; Rasmussen 2013, Rogers 2017). However, the sphalerite-1 8°*S values are consistent
with sulphide precipitation from the reduction of sedimentary sulphate within typical marine
sediments (Seal 2006).

The suggestion that a fluid bearing organic-carbon mixed with the host limestone (as
indicated by 8"*Cppg values of calcite-1) suggest that sulfate reduction could be occurring by
thermochemical sulphate reduction (TSR; Goldstein and Aizenshtat 1994, Machel 2001), which
would lead to the simultaneous reduction of the sulfate in the sediment and oxidation of the
carbon species within the fluid.

Fluid inclusions from quartz-2 have similar salinities to Stage 1 inclusions ranging from 4

to 5 wt% NaClgquiv but have lower Ty values of around 270+20°C suggesting a similar fluid was
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involved in Stage 1 and 2 but the fluid had cooled in-between these mineral deposition events.
The temperatures obtained from the microthermometry are consistent with the temperature
derived from stannite-sphalerite geothermometry. The similarity between the temperatures
obtained from fluid inclusion homogenization and an independent geothermometer imply that
Stage 2 mineralization occurred under low confining pressures (shallow depths) as there is little
to no pressure correction necessary on the fluid inclusion homogenization temperature
(Wilkinson 2001).

Stage 2b involves hydrous silicate phases retrograding and overprinting the previously
deposited sulphides. During this stage the silver is commonly exsolved from galena-1 leaving a
silver-poor galena. This process also leads to the exsolution of bismuth, which was involved in
the coupled-substitution of silver into the galena lattice. In some galena grains, the site of
deposition of the remobilized silver is not obvious (Figure 5.5K). In other galena grains
exsolutions of complex-silver sulfosalts, tellurides and selenides occur within the retrograded
galena crystals (Figure 5.5L). The minerals formed — pyrargyrite, stephanite, tetrahedrite and
cervelleite — are commonly associated with 250-300°C environments and fluids depleted in
sulphur (Lynch 1989).

Overall, the mineralogy, temperatures and low salinity of the fluids associated with Stage
1 and 2 are consistent with the prograde then retrograde metasomatism seen in a distal Pb-Zn
skarn or carbonate replacement deposit (Einaudi et al. 1981, Meinert 1987, 1992, Meinert et al.
2005). Analogs to Stage 1 and 2 mineralization exist in the distal regions of the Groundhog
Mine in the Central Mining district, New Mexico (Meinert 1987) and within the carbonate
hosted deposits of Northern Mexico (Megaw et al. 1988).

Stage 1 and 2 mineralization appears to have formed from two fluids: a metal and organic
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carbon bearing fluid and a sulphur bearing fluid. The metal-organic carbonic fluid appears to
have sourced metals and carbon predominantly from the upper crust with a minor magmatic or
lower crustal metal input. The flow of this mineralizing fluid appears to have been controlled by
a single fault at the KMD. The second fluid contains S and C in equilibrium with the KCS host
rock (formation water) and appears to have undergone no transport.

Flow of the metal bearing fluid could have been driven by regional geothermal gradients
derived in the Jurassic-Cretaceous orogeny and/or due to intrusion of an intrusive body proximal
to the KMD. Skarn mineralization occurred before 102-98 Ma, potentially synchronously with
the intrusion of the 109-104 Ma Anvil plutonic suite or 100-96 Ma Tay River plutonic suite,
which make up the Anvil Batholith (see Chapter 2). The aureole of the Anvil Batholith extends
up to 5 km into the surrounding country rock (Pigage 2004) and, therefore, could account for
fluid flow at the KMD. However, there is no definitive evidence in the skarn for primary
magmatic fluid input, so any proximal intrusive body acted only as a heat source for fluid flow.
Stage 1 deposition occurred due to reaction between the carbonate bearing wall rock and the
metal-bearing fluid and/ or due to mixing between the fluid concentrated along the fault and
formation waters within the carbonate-silicate beds. Neutralization and addition of S to the fluid,
due to mixing or reaction with the wall rock, caused the activity of bisulfide (HS") to increase
leading to a decrease in the solubility of the metals and, therefore, precipitation of the base-metal
sulphides (Barnes 1979). Stage 2 followed Stage 1 due to the cooling of the fluid and the

potential influx of increased meteoric water.

Stage 3:Ag-Pb-Zn-As-Sb veining
Stage 3 mineralization occurs within planar fractures, which crosscut the surrounding

host rock and rarely overprint the previously deposited skarn mineralization. Re-Os dating of
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Arsenopyrite-2, from Stage 3b, constrains this mineralization event to between 102 and 98 Ma.
Drill core logging suggests that Stage 3 mineralization is not controlled by the same fault that
controls Stage 1 and 2 mineralization, but instead Stage 3 mineralization appears to be
concentrated at one depth (discussed below). This is best demonstrated by the 3D modeling of
the distribution of Sb (Figure 5.13), which is contained within stibnite and the silver sulfosalts
within the Stage 3b assemblage, but not present in large concentrations in any of the other
paragenetic stages.

Stage 3 mineralization appears to have the same metal, carbon and sulphur sources as the
previously deposited skarn. This is demonstrated by: lead isotopes from galena-2, which have a
predominantly upper-crustal source identical to Stage 1 and 2; sulphur isotopic compositions of
sulphides in Stage 3b and 3c, which are similar to those of the sulphides in Stage 1 and 2, and the
carbon and oxygen isotopic composition of calcite-3 which overlaps with the composition of
calcite-1. The temperature of Stage 3 mineral deposition (recorded from sphalerite-2 and
stannite-2 cation exchange) is also similar to the temperature identified in Stage 2. The skarn
and Stage 3 mineralization also have very similar mineral chemistries with galena-2 displaying
almost identical chemistry to galena-1. However, galena-2 appears in equilibrium with silver
bearing fahlore ores (freibergite) rather than retrograding to epithermal style silver sulfosalts.

The major difference observed between Stage 3 mineralization and the previously
deposited skarn is the CO, concentrations and high salinities observed in some of the trapped
primary fluid inclusions and the abundant evidence for phase separation. Textural evidence for
effervescence comes from the acicular needles of calcite-2, which dominate the mineral
assemblage of Stage 3a (Figure 5.7A-C). This style of calcite deposition is commonly attributed

to fluid boiling (Simmons and Christenson 1994). Isotopic evidence for boiling coeval with
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Stage 3 mineralization comes from the carbon and oxygen isotopic composition of calcite-2,
which is shifted compared to the earlier calcite-1, and subsequent calcite 3. The change in
oxygen and carbon isotopic composition could be due either to mixing with a fluid enriched in
13C and '°0, or due to loss of the "*C and '*0 isotopes during kinetically controlled CO,
separation and the subsequent conversion of water to CO; via reaction with the local carbon
bearing host rock (Lynch et al. 1990). CO, generated during boiling has a strong tendency to
incorporate '*O (Bottinga 1968) and therefore CO, loss would lower the bulk §'*0 value and
increase the 8'°C value of the remaining fluid (Lynch et al. 1990). Evidence for effervescence is
also recorded by the primary FIAs in quartz-4, which demonstrate coexistence of vapour rich and
liquid rich fluid inclusion assemblages within the same growth zones, variable fluid salinity, and
a large range in Ty because of cooling due to loss of high enthalpy steam. The vapour phases in
the Stage 3 FIAs consists of CO, with variable amount of CHy, as shown by eutectic depression,
clathrate metastability and a very low CO, homogenization temperature. The increased CO; in
this stage could derive from magma, a mantle source or decarbonation reactions within the
wallrocks (Lowenstern 2001). As the isotopic studies have shown no definitive evidence for
magma or mantle involvement in the Keglovic mineralization we suggest the CO, is derived
from reactions between the mineralizing fluids with the surrounding wall rock. The CH4
observed in the Stage 3 fluid inclusions is likely derived from the reduced or organic-rich
sedimentary rocks, which carbon isotopic analyses suggested are the carbon source for calcite 1
and 3. The increase in salinity observed in some Stage 3 fluid inclusions is due to the strong
partitioning of the salts into the aqueous phase during effervescence (Lynch et al. 1990), with the
rarely observed halite saturation indicating fluid inclusions formed in restricted fractures where

continuous boiling leading to extensive vapour loss has occurred.
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Calcite-1 and calcite-3 have similar carbon and oxygen isotopic values, which are
distinctly different from calcite-2. This suggests that the fluid involved in mineralization is
similar before and after the boiling event and calcite-2 is interpreted to have been a transient
event with conditions returning back to the pre-boiling Stage 1 and 2 environment by Stage 3¢
and 4.

There are two potential mechanisms for generating a brief, spatially localized period of
effervescence; either phase separation of the fluid inclusions due to decreasing confining
pressure (Wilkinson 2001) or mixing between two fluids (Wilkinson 1990). Drill hole logging
and 3D modeling of the location of Stage 3 veins indicates that the mineralization is spatially
confined to a limited depth-horizon which is discordant to bedding and not related to any
observed faults or fractures; this supports a pressure-driven mechanism for effervescence, as
mixing would have needed to be controlled by a particularly permeable bed or structure and
neither has been observed at that depth in the drill core. The ubiquitous effervescence observed
in Stage 3 mineralization indicates that this horizon corresponds to where the volatile pressure in
the fluid becomes greater than the confining pressure. The fluid volatile content appears to vary
in the Stage 3 fluid inclusions, however the phase separation occurs at constant depth indicating
a discrete-abrupt pressure decrease rather than a gradual drop. A mechanism for generating an
abrupt decrease in confining pressure occurs at the transition from lithostatic to hydrostatic
conditions (Meinert and Hedenquist 2003, Tosdal et al. 2009). At this point the total fluid
pressure exceeds the confining pressure due to the overlying rock, leading to fracturing of the
rock, increasing the volume available to the mineralizing fluid and resulting in a dramatic drop in
fluid pressure and the release of the volatile phase in the fluid (Burnham 1985) for fluids with

variable volatile contents.
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Fluid effervescence promotes the precipitation of minerals due to changes in fluid
chemistry (pH and oxidation state) and the drop in temperature associated with fluid boiling
(Drummond and Ohmoto 1985, Barnes 1997). 3An increase in pH derived from CO; loss leads to
calcite-2 precipitation, while quartz-4 precipitates due to the drop in temperature (Barnes 1979).
The sulphide precipitation in Stage 3 likely occurs as a sulphur-bearing fluid (equilibrated with
the host rock) is drawn into the fractures due to the increase in volume (decrease in pressure).
This sulphur bearing fluid mixes with the metal-bearing fluid (which has undergone
effervescence) leading to an increase in the activity of HS™ in the fluid and a decrease in the
stability of the metal complexes and, therefore, precipitation of the base-metal sulphides.

Overall, Stage 3 appears to represent a Ag-Pb-Zn vein system similar to those found in
clastic metasedimentary terranes as defined by Beaudoin and Sangster (1992). Analogs to Stage
3 mineralization include the Keno Hill and Kokanee Range vein systems of western Canada
(Lynch et al. 1990, Beaudoin 1992). The metal, sulphur, carbon and fluid sources for Stage 3
mineralization are the same as for Stage 1 and 2 mineralization, although the contained volatile
content of the fluid appears to have increased. Stage 3 mineralization was promoted by phase
separation within the fluid. Deposition was controlled by pressure and is, therefore, confined to a

specific depth horizon.

Stage 4: Meteoric input and collapse of the hydrothermal system

Little data has been collected on Stage 4, which consists predominantly of an assemblage
of unmineralized calcite, quartz and zeolites. Calcite-4 has carbon and oxygen isotopic signatures
identical to calcite-1 and -3. These are interpreted to indicate that the fluid originated as meteoric

water, which has partially equilibrated with the host rocks. However, the presence of euhedral
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zeolites in open fractures indicate a change to hydrostatic conditions (Utada 2001). The oxidation
of previous sulphides to pyrite, and the iron oxide staining of Stage 1 to 3 silicates and pyrite
also indicates oxidized meteoric water input. Quartz-5 is euhedral and fracture filling.

Overall, this stage appears to represent final cooling and infilling of previously generated

fractures by late stage minerals.

The Keglovic Deposit, a product of regional geological processes.

The KMD is a zoned Ag-Pb-Zn-Cu-Sn skarn-CRD, which is overprinted by a mid-
Cretaceous Ag-Pb-Zn-As-Sb bearing vein system. The mineralization is hosted predominantly
within the MT with minor mineralization in the CPMC. The host lithologies have undergone
widespread decarbonation, silication and silicification to form interbeds of a carbonate-silicate
and calc-silicate (KCS) before the mineralizing events at the KMD. The large volume of silica
involved in the metasomatism is likely sourced from the surrounding rocks, as there is no
evidence in the KMD mineralization for an input from a magmatic fluid. All four paragenetic
stages of mineralization at the KMD appear to have formed from the same fluid. The consistency
of the fluid throughout the paragenetic stages indicates that all the mineralization formed from a
single long-lived hydrothermal cell.

Fluid flow within this meteoric-hydrothermal system could be driven by either a magmatic heat
source, regional geothermal gradient, transcrustal faults connecting deep and shallow fluid
reservoirs or a combination of these factors. Chapter 2 demonstrate that there was considerable
extrusive and intrusive igneous activity in the Tay River district during the mid-Cretaceous,
synchronous with Keglovic deposit formation, including the 110-90 Ma intrusion of the Anvil

Batholith. Therefore, numerous potential magmatic heat sources existed to generate large-scale
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hydrothermal circulation in the upper crust of the Tay-River district. However, there is no
evidence in the KMD mineralization that the igneous activity in the Tay River district provided
components to the mineral deposit.

Fluid flow would also be stimulated by the period of rapid regional exhumation
synchronous with the Keglovic deposit formation (see Chapter 4). This rapid uplift would have
caused shallowing of crustal geotherms promoting fluid flow in the upper crust (Ring et al. 1999,
Reiners and Brandon 2006).

Stage 1 and 2 mineralization followed, generating a Ag-Pb-Zn skarn that developed due
to fluid flow controlled by an out of sequence upper crustal fault (Figure 5.15A). The skarn is
zoned away from the fault, which represents a transition from a fluid dominated system proximal
to the central fault to a country-rock dominated system distal to the central fault. During Stage 1
and 2 mineralization the reaction between the local country rock and mineralizing fluid led to the
accumulation of CO; (released during carbonate replacement) and CHy (derived from the
organic-rich sedimentary rocks) in the fluid. The volatile content of the fluid can be buffered to
very high gas contents due to the nature of the surrounding MT host rock (French 1965,
Nokleberg 1973).

The change to Stage 3 vein-hosted mineralization occurred due to phase separation.
Keglovic deposit mineralization was coeval with regional exhumation (Chapter 4). This
exhumation caused between 1 and 3 kmMa™' shallowing of the hydrothermal system (Chapter 4)
equivalent to a decrease in pressure of ~0.3 to 0.8 KbarMa™. These two factors (increasing
vapour pressure in the fluid and synchronous decreasing external pressure; Figure 5.15B)
eventually led to gas pressure in the fluid exceeding the surrounding confining pressure causing

phase separation. Stage 3 mineralization is found at a single depth suggesting that effervescence
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occurred as the fluid changed from lithostatic to hydrostatic conditions and the surrounding
country rock fractured.

In total, therefore, the mineralization represents the telescoping of a single hydrothermal
system due to regional exhumation (Sillitoe 1994). The highest grades at the KMD occur when
the vein system intersects the previously developed skarn (Figure 5.15B), which occurs where

the fault that controlled skarn mineralization is at the depth where phase separation occurred.

Development of the Keg East Deposit

The same scale of mineralization reported at the KMD has not been found at the
Keglovic East deposit, where only minimal development of Stage 3 mineralization occurs
(Dumala 2013) and no skarn mineralization has been found. The Keglovic East deposit is to the
northeast of the syncline-anticline trace that follows the central fault-2 (Figure 5.2A). This fault
controlled the mineralizing fluid flow that led to skarn development (Stage 1 and 2
mineralization); therefore, the ~1 km separation between the hypothesized trace of the fault and
the site of Keglovic East likely explains the lack of skarn development. Without skarn
development there is no significant accumulation of CO; in the fluid at the Keglovic East
deposit, although minor CO, enriched fluid may be transported from the KMD. The lower CO,
concentration in the fluid led to more restricted phase separation and, therefore, less developed
Stage 3 mineralization. In combination, these effects explain the minimal mineralization found at

the Keglovic East deposit.

Similarities to other mineralization styles in the Yukon

While the Keglovic deposit as a whole may be unique within the Yukon, there are

analogies within the northern Canadian Cordillera to the individual paragenetic stages
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documented here. Firstly, although the Keglovic deposit does occur in proximity to the Anvil Pb-
Zn metallogenic province, the mineralogy and textures observed at the Keglovic deposit do not
resemble the sediment-hosted massive sulphide (SHMS) Pb-Zn deposits of the northern
Cordillera (Lydon 2004, Goodfellow and Lydon 2007). Also, the Keglovic deposit is not the
same age, nor does it form in the same stratigraphic horizon as the Anvil (Late Cambrian),
Howards Pass (Early Silurian) or Macmillan Pass (Late Devonian) SHMS deposits (Goodfellow
2007, Goodfellow and Lydon 2007). However, the proximity of the two metallogenic anomalies
(which is a feature shared by a large number of the Ag-Pb-Zn vein class defined by Beaudoin
and Sangster, 1992) suggests that the metals in the Keglovic deposit could be sourced from
sedimentary crustal rocks enriched in metals due to the Anvil SHMS or SEDEX event.

Stage 1 and 2 mineralization represents a Pb-Zn skarn; this type of mineral deposit is
regularly reported throughout the Yukon (~70 in MINFILE; Yukon Geological Survey 2017).
The known economic anomalies tend to be small in size and are all currently considered sub-
economic, although in some cases they can attain significant grades (Gordey 2013).

Stage 3 mineralization represents an example of a Ag-Pb-Zn vein system in clastic
metasedimentary terranes as defined by Beaudoin and Sangster (1992). Another significant vein
system in this class in the Yukon are the Keno Hill deposits, which are also found within the
Selwyn Basin. Stage 3 of the Keglovic deposit shares many characteristics with the Keno Hill
deposits including: mineralogy; tectonic setting; metal, sulphur and carbon source; and the
hypothesized importance of phase separation in mineral deposition (Table 5.11; Boyle et al.
1970, Lynch et al. 1990, Beaudoin and Sangster 1992, Hantelmann 2013). The major difference

between Keglovic and Keno Hill mineralization is the presence of the skarn at the Keglovic
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deposit. The lack of skarn at Keno Hill potentially derives from the carbonate-poor nature of the
Keno Hill host rock (Keno Hill Quartzite; Boyle et al. 1970, Gordey and Anderson 1993).
Seemingly then, the individual mineralization styles that compose the Keglovic deposit
are reported elsewhere within the Yukon. What makes the Keglovic deposit appear unique is the
telescoped superposition of these individual mineralization events, which is a product of the
concurrent regional exhumation occurring in the region surrounding the Keglovic deposit coeval

with mineralization.

Conclusions

The Keglovic deposit represents the telescoped superposition of a zoned Ag-Pb-Zn-Cu-
Sn skarn-CRD and shallower Ag-Pb-Zn-As-Sb vein mineralization. The skarn mineralization
occurs at temperatures between 350-400°C and is controlled by a regional fault that is a first-
order control on fluid flow. Deposition of minerals within the skarn occurs due to the
replacement of carbonate within limestone horizons of the MT. Metals, carbon and sulphur all
appear to be primarily sourced from the upper crust by a fluid derived from meteoric water
which has equilibrated with local upper crustal sedimentary rocks. The second stage of
mineralization involves the same fluid but with enhanced volatile (CO, and CH4) contents.
Decreasing pressure due to the concurrent regional exhumation causes effervescence within this
fluid, leading to fracturing and the rapid deposition of the vein system. Veins are concentrated in
one depth horizon linked to the pressure at which phase separation occurred. The telescoping of
the later vein system and earlier skarn at the Keglovic deposit is caused by the regional
exhumation synchronous with deposit formation. The vein mineralization observed at the

Keglovic deposit shares a large number of similarities to the Ag mineralization that was mined in
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the Keno Hill district. The Keglovic deposit is associated with plutonic suites generally assumed
to be barren. While the deposit does not form directly from the magmatic fluids it shows that
future exploration cannot be based purely on the occurrence of specific igneous rocks, but needs

to consider the entire regional tectonic setting.
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Figure 5.1: Simplified map of Yukon, showing modern extent of the Selwyn Basin assemblage
rocks north of the Tintina fault based on Nelson et al. (2013). Black shape shows the extent of
the Keg property from Dumala (2013).
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Figure 5.5: Images of KMD host rock, mineralization and paragenetic relationships. A. Visibly unal-
tered carbonaceous-rich limestone beds in MT drill core, crosscut by late quartz bearing fractures,
showing euhedral pyrite cubes. B. KCS handspecimen with minor mineralization. C. Sucrosic texture
of a KCS handspecimen. D. Stage 1 and 2 ore minerals in reflected light (RL). E. Typical massive
skarn mineralogy in plane-polarized light (PPL). F. Stage 1 and 2 mineral relationships in cross-polar-
ized light (XPL). G. Vein hosted Stage 1 and 2a mineralization (PPL). H. Stage 2a skarn mineralization
in PPL. |. Stage 2a skarn mineralization in XPL. J. Tremolite from Stage 2b retrograding sphalerite-1
(PPL). K. Breakdown of galena-1 by Stage 2b minerals to exsolve Bi (RL). L. BSE image showing
breakdown of galena-1 by Stage 2 skarn minerals to exsolve a complex array of sulfosalts.
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Figure 5.7: Images of KMD host rock, mineralization and paragenetic relationships cont. A and B.
Acicular void filling calcite-2 with late quartz and zeolite infill (XPL). C. Acicular void-filling calcite-2
associated with early pyrite and pyrrhotite and late quartz and zeolite infill (XPL). D. Hand specimen
texture of quartz-4 and associated ore minerals in Stage 3b. E. Euhedral quartz-4 surrounded by
Stage 3b and c sulphides (XPL). F. Texture of arsenopyrite-2 and stibnite in Stage 3b (RL). G.
Sphalerite-2 and quartz-4 in Stage 3c (RL). H. Stage 3b and 3c sulphides in equilibrium (RL). I.

Stage 3c sulphides overprinting Stage 3b sulphides (RL). J and K. Late zeolite and quartz fractures
(PPL). L. CL image of late calcite-4.
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Figure 5.8: Plot of 63C vs. '®0 for host rock and mineralization from the Keglovic deposit. The
marine carbonate box is from Veizer et al. (1999). Errors for both 6'*C and 5'®0 are 0.2 %o (10).
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Figure 5.9: Plot showing the range of &3S for Keglovic deposit sulphides with respect to mineralogy
and paragenetic stage. Black circle indicate a mean value. Black line indicates the median.
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Figure 5.10: A. Plot of 27Pb/24Pb vs. 26Pb/24Pb for Keglovic deposit mineralization
and mid-Cretaceous igneous intrusion of the Tay River district. Upper crustal shale
curve is shown for reference from Godwin and Sinclair (1982). Lower crustal blue-
bell curve is shown for reference from Andrew et al. (1984). A mixing line is drawn by
connecting the shale curve and bluebell curve at 100 Ma. Anvil suite lead isotopes
are from Chapter 2. Tay River and Tombstone suite lead isotopes are from
Rasmussen (2013). Red rectangle shows the area expanded in B. B. Plot of
207ph/204Ph vs. 206Ph/204Ph for galena at the Keglovic deposit. Upper crustal

shale curve is shown for reference from Godwin and Sinclair (1982). Errors (10) are
shown by the dimensions of the rectangles. Whole rock lead isotope data from the
Earn Group, MT and CPMC have typical standard deviations for 2°’Pb/?*“Pb and

206Ph/204Ph of ~0.6 and are therefore not displayed in this figure.
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Figure 5.11: Salinity and temperature data from fluid inclusions with respect to paragenetic stage.
Salinity for primary aqueous inclusions calculated from T, .. Salinity from carbonic liquid bearing
inclusions calculated from Tm__ . Salinity for solid halite bearing inclusions not shown due to axis
scale. For carbonic liquid inclusions T, values include T,. For both plots, central box represents
50% of values, white circle indicates mean value, white line indicates median value and whiskers
indicate the range of data.

180



Qtz-4 Growth zones#&
Apy-2

Figure 5.12: Images of typical fluid inclusions from paragenetic Stage 1 (A-C), Stage 2 (D-F) and Stage 3
(G-L).
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Figure 5.13: Images showing the relationship between interpolants of high assay grade zones
and major structures at the KMD. Interpolants and images created in Leapfrog Geo modeling
software. Fault numbers refer to Figure 5.4. Each image is labeled with the cut-off metal
concentration of the interpolant and the percentage of values (n=7950) included within that
cut-off grade.
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Figure 5.14: Suggested schematic tectonic reconstruction for the present day KMD. Panels A to D
represent steps forward in time. Step E shows a modern day cross-section of the KMD from C to C’ on
Figure 5.2A. Fault numbers refer to Figure 5.4 and Figure 5.13. Schematic position of the skarn mineral-
ization at the KMD is shown in green.
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Table 5.3. 5"°C and 8,30 Values for Analyzed Samples

6”CPDB 6wosmow
Sample I.D Phase Stage Area (%o) (%o)
HS-J5 Host Rock -- KMD -2.3 16.4
HS-J1 Host Rock -- KMD -1.2 20.6
HS-J1 Host Rock - KMD -0.6 20.6
HS-AN2 Host Rock - KMD -1.2 171
11-41 69 Host Rock - KMD -2.4 13.8
11-41 246 Host Rock -- KMD -0.5 21.0
11-14 220 Cal-1 2 KME -4.8 9.0
11-41 56 Cal-1 2 KMD -4.2 13.6
HS-BH2 Cal-1 2 KMD -7.3 13.5
11-41 214*t Cal-1 2 KMD -6.5 10.3
11-15 131 Cal-2 3 KMD -5.3 3.0
11-14 108 Cal-2 3 KME -4.2 4.9
11-14 170* Cal-2 3 KME -4.0 1.7
11-14 359 Cal-2 3 KME -2.6 3.4
11-15 163 Cal-2 3 KMD -4.1 4.4
11-15 165 Cal-2 3 KMD 2.7 3.1
11-15 291 Cal-2 3 KMD -3.0 3.0
11-41 102 Cal-2 3 KMD -4.8 5.4
11-41 172* Cal-2 3 KMD -6.1 7.9
11-41 181 Cal-2 3 KMD -4.0 3.9
HS-BG Cal-2 3 KMD -3.5 5.7
11-1517* Cal-3 3 KMD -6.3 14.2
11-15 29* Cal-3 3 KMD -6.1 13.1
11-15 98 Cal-3 3 KMD -4.7 13.6
11-41 149 Cal-4 4 KMD 7.7 12.9
11-14 111 Cal4 4 KME -5.6 13.2
11-14 111 Cal-4 4 KME -5.9 13.6
11-41 131 Cal-4 4 KMD -7.1 13.6

All Samples Calcite
* Samples measured for S isotopes
1 Samples measured for Pb isotopes
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Table 5.4. 5*S values

Sample I.D Phase Stage Area 53;/3‘;”
10-01 707 Gn-1 1 KMD -1.0
11-41 214*t Gn-1 1 KMD 0.1
11-41 214* Sp-1 2-a KMD 0.4
10-01 164 Sp-1 2-a KMD 5.1
10-01 70° Sp-1 2-a KMD 1.0
11-14 103 Py-2 3-a KME 9.8
11-14 170* Py-2 3-a KME -2.8
11-41 172* Po-2 3-a KMD 2.9
11-41 172* Ccp-3 3-a KMD 0.4
11-14 41 Py-3 3-b KME 0.2
11-14 477 Py-3 3-b KME 0.6
11-14 2121 Gn-2 3-b KME 2.1
11-14 47° Gn-2 3-b KME 1.4
11-15 17* Gn-2 3-b KMD 1.1
HS-G ' Gn-2 3-b KMD 1.2
11-15 17* Apy-2 3-b KMD 35
11-15 25 Apy-2 3-b KMD 1.0
11-15 17* Sp-2 3-c KMD 2.7
11-15 25 Sp-2 3-c KMD -0.4
11-15 29* Sp-2 3-c KMD 2.4
11-41 1441 Sp-2 3-c KMD 1.1

Abbreviations from Whitney and Evans (2009).
* Samples measured for C & O isotopes
1 Samples measured for Pb isotopes
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Table 5.11. Keg to Keno Comparison Table

Mineralogy

Depth of
Formation
Tectonic
Setting

Host Rock

Metamorphic
grade

Fluid
Inclusions

S,C,Pb
sources

Keno Hill Stage 3, Keglovic

Galena, sphalerite, pyrite,
pyrrhotite, chalcopyrite,
arsenopyrite, jamesonite,
tetrahedrite, pyrargyrite,
acanthite, stephanite

~ 1.6kbar, ~6km

Galena, sphalerite, pyrite,
pyrrhotite, chalocopyrite,
arsenipyrite, stephanite,

freibergite, hocartite,
stannite, cubanite

Transcurrent dextral fault .
o : Regional thrust
overprinting a regional thrust
Mississippian Limestone/

Mississippian Quartzite Siltstone

Greenschist Greenschist

Temperature; 205 to 365 Temperature; 162 to 337
(average 300). Salinity; 0 to >20 (average 300). Salinity; 0 to
wi% NaCl Equiv. CO2 and CH4 25.4 wt% NaCl Equiv. CO2

bearing. Boiling and and CH4 bearing. Boiling and
immiscibility. immiscibility.

Upper crustal Upper crustal

Keno Hill data from Boyle (1970), Lynch et al. (1990), Beaudoin and
Sangster (1992) and Hantelmann (2013).
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Chapter 6: Conclusions

The primary aim of this thesis was to link the mineralization at the Keglovic deposit to
the tectonic and petrogenetic evolution of the geology in the Tay River district. This thesis first
addressed the regional geology of the Tay River district, before focusing on the Keglovic deposit
mineralization, including identifying distinct paragenetic stages and placing the mineralized
system within a regional context.

Chapter 2 details the results of extensive field mapping, petrography, U-Pb
geochronology and whole rock geochemical analyses focused on the study of the voluminous
mid-Cretaceous plutons and calderas of the Tay River district; and demonstrates that igneous
activity occurred continuously in the district from 110-90 Ma. The igneous activity can be
subdivided into three plutonic suites based on time of emplacement: the 109-104 Ma Anvil, the
100-96 Ma Tay River and the 96-90 Ma Tombstone. The younger suites intrude the older suites
indicating that the previously hypothesized inboard migration and younging of plutonic suites
across the Selwyn Basin (Mortensen et al. 2000, Hart et al. 2004, Rasmussen 2013) does not
apply in this region of the northern Cordillera. It was then shown that the temporal classification
of suites could be expanded to reclassify mid-Cretaceous plutonism across the northern
Cordillera. The reclassified plutonic zones have a concentric pattern around the Yukon-Tanana
Terrane and demonstrate an increase in the area affected by mid-Cretaceous igneous activity
with time. This new pattern of plutonism cannot be explained by any of the previously published
models involving flat slabs, back arc extension or a cryptic western dipping subduction zone

(Mortensen et al. 2000, Hart et al. 2004, Mair et al. 2006, Johnston 2008, Rasmussen 2013) and
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is best explained by delamination of over thickened lithosphere beneath the Yukon-Tanana
terrane at ~115 Ma.

Chapter 3 focused on the development of a method for identifying the sedimentary melt
source of an S-type granite, from the Anvil batholith. A novel method involving correcting
discordant U-Pb analyses from inherited zircons back onto the concordia was applied to decrypt
the age spectrum of discordant zircon cores inherited by the S-type, magma. This method
ultimately showed that the Precambrian — Lower Cambrian (Gordey 2013) Hyland Group is the
likely melt source for the 109 — 104 Ma S-type granites in the Anvil suite.

Chapter 4 examined the evolution of the Tay River district with the aim of
constraining the amount and timing of mid-Cretaceous regional exhumation. U-Pb dating was
combined with low temperature thermochronometry from the mid-Cretaceous rocks of the study
area. The results of Chapter 4 indicate that intrusion of the Anvil and Tay River suites occurred
synchronously with exhumation of the Tay River district. The oldest OMB plutonic rocks,
belonging to the Anvil suite, were emplaced at 12—15 km depth at 10742 Ma. The Anvil suite
sample cooled below the *’Ar-*’Ar closure temperature in biotite (365-395°C), which
corresponds to a depth of 5.5-10.5 km, at ~104+2 Ma. Then subsequently cooled below the U-
Th/He closure temperature in zircon (195-215°C), which corresponds to a depth of 2.5-4.7 km,
before ~99.2 £ 3 Ma. The magnitude and rate of exhumation is consistent with extensional
collapse of previously thickened crust and can be used as support for the delamination hypothesis
outlined in Chapter 2. An unexpected conclusion of Chapter 4 was that the zircon U-Th/He data
indicated a thermal perturbation in the region in the Late Cretaceous to early Paleogene.
Modeling of the thermal perturbation is consistent with derivation from the passage of the

northern Cordillera across the Yellowstone hotspot.
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Finally, Chapter 5 focused on the study of mineralization at the Keglovic deposit,
concluding the Keglovic deposit represents the telescoped superposition of a zoned Ag-Pb-Zn-
Cu-Sn skarn, which transitions outwards into a carbonate replacement deposit, and shallower
Ag-Pb-Zn-As-Sb vein mineralization. Petrography, isotopic data and a microthermometric study
were combined to constrain the fluid chemistry, temperature of formation, mineralogy, and
relative age of each of the mineralization events. Dating (via Re-Os on arsenopyrite) of the
mineralization at the Keglovic deposit showed that mineral deposition occurred at ~100 Ma
concurrent with the igneous activity and regional exhumation outlined in Chapters 2-4. Three
main conclusions come out of this study. 1. That meteoric water that had undergone isotopic
exchange with the host rock, was involved in all stages of mineralization. 2. That all stages of
mineralization at the KMD are created from metals, sulphur and carbon sourced predominantly
from the upper crust. 3. That upper crustal fluid circulation was promoted either by igneous
intrusion (as shown in Chapter 2), lower crustal heating due to delamination (as shown in
Chapter 2), the high geothermal gradient derived from exhumation (as shown in Chapter 4) or a
combination of these factors. Chapter 5 also concludes that the principal cause for the change in
mineralization from the skarn to vein system is effervescence of the fluid and that the phase
separation is promoted by increasing volatile content in the fluid derived from reaction with the
local country rock combined with decreasing confining pressure derived from regional
exhumation. Therefore, the telescoping of mineralization at the Keglovic deposit is a direct
product of the concurrent regional exhumation (constrained in Chapter 4). Overall, Chapter 5
indicates that the individual mineralization events at the Keglovic deposit are comparable with
mineralization seen throughout the northern Cordillera. What makes the Keglovic deposit appear

unique, and therefore worthy of study, is that these events have been telescoped, which is a direct
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consequence of the regional tectonic and igneous events occurring in the Tay River district.
Therefore, future exploration for Keglovic type deposits cannot be based purely on the

occurrence of specific igneous rocks, but needs to consider the entire regional tectonic setting.

Implications of thesis
The conclusions of this thesis have implications for three broad areas: the regional
evolution of the northern Cordillera, mineral exploration within the Cordillera and granite

petrology.

Implications for the regional evolution of the northern Cordillera

Chapter 2 concluded that the new pattern of OMB plutonism identified across the
northern Cordillera is best explained by delamination of over-thickened lithosphere from beneath
the Yukon-Tanana terrane. Lithospheric delamination from specifically below the Yukon-Tanana
terrane implies that this allochthonous block was above non-cratonic lithosphere in the mid-
Cretaceous. However, seismic imaging of the northern Cordillera (Cook et al. 2004, Cook and
Erdmer 2005) indicates that the Yukon-Tanana terrane is presently thrust over the North
American craton. The findings outlined in this thesis imply that the transition to thin skinned
tectonics in the northern Cordillera did not occur until post the mid-Cretaceous delamination
event. Therefore, this constraint must be considered in the development of future models of
northern Cordilleran orogeny.

The second broad implication from Chapter 2 comes from the fact that the pattern of
OMB plutonism indicates that all terranes covered by the plutonism were accreted to each other

prior to the mid-Cretaceous since the suites of plutons span terrane boundaries.
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Chapter 4 concluded that the Tay River district underwent significant mid-Cretaceous
exhumation likely linked to post-orogenic collapse of a potential mid-Cretaceous plateau. The
extent of the exhumation and scale of this plateau has important implications for the nature of
Cordilleran development including the propagation of the fold and thrust belt, exposure of deep-
crust and development of mineral deposits all of which could be influenced by potential crustal
gravity current flow away from the overly thickened lithosphere as inferred in the present day
Himalayan system (Copley and McKenzie 2007).

Chapter 4 also suggests that the Tay River district had been thermally affected by the
Late Cretaceous passage of the Yellowstone hotspot beneath the northern Cordillera. This
represents the most inboard recognition of the Yellowstone hot spot and, therefore, shows that
the distribution of hotspot derived thermal/ hydrothermal alteration in the Cordillera is larger
than previously recognized. It also raises a question as to why the Carmacks Group Flood basalts

are not seen to the north of the Tintina fault, a feature that formed after the basalt extrusion.

Implications for mineral exploration in the northern Cordillera

The new pattern of OMB plutonism defined in this thesis has implications for the
distribution of deposit types linked to certain intrusion ages or styles. For example intrusion
related gold systems (IRGS) in the Tintina Gold Belt are strongly associated with 92 + 2 Ma
plutons of the Tombstone style (Goldfarb et al., 2000; Hart et al., 2004; Lang and Baker, 2001).
The model presented in this thesis suggests that Tombstone style plutonism occurs across the
whole OMB not just in the peripheries as was previously believed, therefore there is the potential
for IRGS across the Yukon.

This thesis also proposed delamination as the cause of OMB plutonism in the northern

Cordillera. Delamination leads to mantle heating from below and coeval regional uplift, which
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would generate a high geothermal gradient during OMB magmatism. A high geothermal gradient
will promote the development of magmatic-hydrothermal systems and could explain pluton
distal deposits and deposits with no genetic link to coeval plutonism (Beaudoin and

Sangster, 1992; Robb, 2005). For example, the Keno Hill Ag-Pb-Zn veins are proposed to form
from a prolonged hydrothermal cell, but a direct genetic link to a causative pluton has not been
found (Lynch, 1989; Hantelmann, 2013). Deposits linked to the flow of metamorphic fluids (i.e.
distal base metal veins and orogenic gold deposits) would be expected to occur in areas with the

highest geothermal gradient.

Implications for granite petrology

Chapter 3 provided a method to identify the exact melt source of an S-type granite. The
ability to identify the protolith of an S-type granite has the potential to solve a number of
controversial areas in igneous petrology. Applying the method outlined in this study to identify
the sources of other granites could clarify the thermal conditions of the crust at the time of partial
melting (Miller et al. 2003, Kemp et al. 2005), the nature of the heat sources causing anatexis
(Petford and Gallagher 2001), the processes that control the compositional diversity of granites
(Clemens and Stevens 2012), and the kinetics of granitic plumbing systems within sedimentary
basins (Petford et al. 2000). Identifying the melt source of an S-type granite could also be used to
identify the nature of unexposed crust beneath the igneous body and map the variability of buried

sedimentary units across a region.

Future Directions

Although I believe this thesis has improved our understanding of the OMB and the mid-

Cretaceous evolution of the northern Cordillera the models developed within these pages need a
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substantial amount of support if they are to be accepted by the rest of the northern Cordilleran
geological community.

Testing of the model developed in Chapters 2 and 4 requires additional detailed U-Pb,
isotopic and petrographic studies of granites from across the OMB gathered within the temporal
classification of suites. For example the Yukon wide prevalence of the volumetrically minor 92
Ma plutons can only be confirmed by detailed mapping and dating of plutonic bodies, as the
presence of Tombstone suite plutons may be masked by the volumetrically more significant
Anvil or Tay River suites.

Thermochronological studies across the Northern Cordillera are needed to define the
areal extent of mid-Cretaceous regional exhumation. These studies will also more accurately
define the dimensions and properties of the Late Cretaceous to Paleogene thermal pulse and
confirm whether it could be linked to the Yellowstone hotspot.

Additionally the method for identifying the melt source of S-type granites developed in
Chapter 3 could be used worldwide. Using the method globally will allow the implications for
granite petrology to be fully explored.

Overall, the continued exploration within the Yukon relies on the speculation there are
still significant mineral deposits to be discovered within the northern Cordillera. The fact these
deposits have remained hidden through over 125 years of exploration in the Territory indicates
discovery will only occur if exploration is based on a detailed understanding of regional
tectonics, geology and igneous petrography. This thesis has hopefully in some small part added
to the understanding of the OMB and therefore will help to contribute to the next great mineral
discovery in the Yukon. However, confirming, developing and defending the theories outlined

within these pages represents a lifetime of work.
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TABLE A1. GRANITE SAMPLE LOCATIONS

Sample UTM UT™M UTM Igneous Suite Sample UTM UTM UTM Igneous Suite
# E N Zone Body # E N Zone Body

Anvil ) Anvil Tay

G1 593582 6909787 8 Batholith Anvil G18 595522 6918027 8 Batholith  River

Anvil . NC Road Tay

G2 592680 6908833 8 Batholith Anvil G19 353406 6897304 9 Pluton  River

Anvil . Connolly  South

G3 587557 6918824 8 Batholith Anvil G20 349370 6897387 9 Caldera  Fork

Anvil Tay Connolly  South

G4 586071 6916583 8 Batholith  River G21 349894 6897506 9 Caldera  Fork

Anvil . Marjorie Tay

G5 596975 6905848 8 Batholith Anvil G22 348143 6890689 9 Pluton  River

Anvil . Marjorie  Tay

G6 598538 6907922 8 Batholith Anvil G23 348222 6889353 9 Pluton  River

Anvil . NC Road South

G7 590582 6908448 8 Batholith Anvil G24 345494 6886194 9 Caldera  Fork

Anvil . NC Road South

G8 590282 6907815 8 Batholith Anvil G25 344927 6885933 9 Caldera  Fork

Anvil . NC Road South

G9 599724 6912611 8 Batholith Anvil G26 344638 6885143 9 Caldera  Fork

Anvil Orchay Tay

G10 584712 6934088 8 Batholith TTB G27 646969 6881669 8 Batholith  River

G11 576538 6948979 8 MinorPlug Y | G28 573038 6933245 8  _AMI AN
River Batholith

G12 565363 6951516 8 MinorPlug TTB | G29 558848 6933152 8 B:tﬂ(‘;'l'ith Anvil
Anvil Tay Anvil

G13 595532 6918142 8 Batholith  River G30 562589 6936244 8 Batholith TTB
Anvil ) Anvil

G14 595532 6918142 8 Batholith Anvil G31 566662 6934014 8 Batholith TTB

G15 595506 6918128 8 Anvil Anvil G32 554195 6954948 8  Minor Plug Tay

Batholith River

G16 595506 6918128 8 B;ﬁr?:llith Anvil G33 549637 6932775 8 MinorPlug TTB

Anvil Tay . .

G17 595506 6918128 8 Batholith  River G34 548710 6936657 8  Minor Plug Anvil
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TABLE A6. Ti THERMOMETRY

. Ti - T . Point  Ti + o .
Point # (ppm) *20 (°C) +20 # (opm) 20 T(°C) *20
SAMPLE G1 SAMPLE G10 CONT.

1 1.1 0.3 575 17 (11 4.6 1.1 678 18
2 2.2 04 621 11 12 4.6 1.0 677 16
3 3.3 0.5 652 10 |13 84 30 995 46
4 3.5 0.5 655 11 14 3.9 0.5 665 10
5 52 1.8 688 25 |[[15 2.2 04 622 12
6 4.1 0.9 669 16 ||SAMPLE G18

7 1.1 0.3 574 17 (1 55 0.8 692 12
8 1.3 0.6 583 25 |2 3.1 04 646 10
9 1.4 0.3 591 15 |3 4.3 0.6 671 11
10 1.3 1.0 584 39 |4 6.8 0.8 711 10
SAMPLE G4 5 4.0 0.6 667 10
1 5.5 0.5 6925 80 ||6 4.0 0.5 666 9

2 9.5 1.4 7411 13.0 ||7 20.7 5.0 819 24
3 6.2 0.5 7027 6.3 ||8 6.1 1.0 701 13
4 5.1 0.5 68.0 82 ||9 4.6 0.7 677 11
5 16.8 0.8 7969 49 ||10 2.8 0.6 638 15
6 4.7 0.8 6798 126 (|11 150 130 1085 113
7 5.0 09 6850 136 ||12 7.0 1.0 713 12
8 4.9 06 6823 89 |13 2110 450 1738 73
9 16700 1200 2952.2 66.7 ||14 10.1 2.5 747 21
10 8.2 1.7 7276 174 ||15 4.8 0.5 681 9

1" 11.6 24 760.0 18.5 ||SAMPLE G20

12 5.3 1.1 689.6 16.1 ||1 6.2 1.1 703 14
13 13.1 4.5 7719 300 |2 160 100 1096 88
14 3.5 0.6 6569 120 ||3 24 0.3 627 10
15 4.5 0.5 6751 94 ||4 34 04 653 9

SAMPLE G10 5 6.5 0.8 706 10
1 2.7 0.5 635 14 |6 3.9 0.5 665 10
2 34 04 654 9 7 14400 1500 2819 88
3 1.3 0.4 585 19 |[8 7.3 1.4 717 16
4 29.0 13.0 857 44 (9 127 85 1058 87
5 4.0 0.6 667 12 ([10 78 36 984 57
6 1.8 04 606 15 (11 155 4.2 789 25
7 10.5 1.6 750 14 12 7.7 1.2 722 13
8 5.5 1.1 693 16 |[[13 16.8 3.1 797 18
9 3.1 0.4 647 10 |14 3.8 0.4 663 9

10 660 240 1387 81 15 21.1 4.1 821 20

Note: Shaded rows represent ablated Rutile inclusion
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Supplemental Methods

U-Pb Analysis

Zircons were separated from two samples of the APS granite (G1 and G3) using standard
gravimetric and magnetic techniques. From the heavy mineral separate, we randomly selected
~150 zircons for further processing. These zircons were subsequently annealed for 48 hours at
1000°C. The annealed zircons, along with two reference grains (Zircon 94-35), were mounted in
epoxy using 25mm round plastic molds. The mounted zircons were imaged using secondary
electron, cathodoluminescence and backscatter electron signals with a Zeiss Evo-MA-
15 scanning electron microscope (SEM). Representative zircons are shown in Figure Al. U-Pb
dating was carried out by LA-ICPMS spot analysis on 108 inherited zircon components. Laser
ablation sites were selected from the SEM images to minimize mixing with the magmatic rims
and to pick parts of the inherited cores with favorable uranium concentrations. U-Pb analyses
were performed using a New Wave UP-213 laser coupled to a NuPlasma Multi-Collector ICP
Mass Spectrometer using procedures modified from Simonetti et al (2005). The laser was
operated at a 4 Hz pulse rate, with a beam spot size of 30 um and a fluence of ~3 J/cm®.
Analyses were taken in groups of ten, bracketed by analysis of zircon reference materials GJ-
1 (Jackson et al., 2004), 94-35 (Klepeis et al., 1998) and, a 30s on-peak gas + acid
blank. Reproducibility of the primary reference GJ1 is estimated to be ~1% 2 SD for *’’Pb/***Pb
and ~3% 2 SD for **Pb/**U. The secondary reference, 94-35, yields a weighted regression
intercept of 55.96+0.54 Ma (MSWD 0.18, n =17) for Mount 1 and 55.54+0.48 Ma (MSWD 0.87,
n=20) for Mount 2 in Tera Wasserburg space (94-35 accepted value is 55.5+1.5 Ma (Klepeis et

al., 1998)).
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The errors reported in Table A7, are a quadratic combination of the within run standard
error and the external reproducibility of the primary reference in terms of standard deviation. All
data points were plotted on a concordia plot (Figure 3.2A) using the Isoplot software of

Ludwig (2003)

Whole Rock Sm-Nd Isotope Methodology

Samarium- Neodymium isotopes were measured via whole rock digestion of un-weathered
samples of G1 and G3 that had been ground to a fine powder in an agate mill. The digestion,
chemical separation, and isotopic analysis methodology followed that outlined by D’Souza et al.
(2016) and references therein. Age corrections, based on the U-Pb age of the granites, were
applied to calculate the eNd; of each sample, representing the isotopic ratios at the time of

granite crystallization. Data presented in Table A8.

Correcting Discordant Points Methodology
The R modeling procedure of Reimink et al. (2016) was used to assess the relative likelihood of
each potential lower intercept age. The code was run with a node spacing of 4 Myr. U-Pb data
from the 108 zircon cores was analyzed. The lower intercept age with the highest likelihood was
~110 Ma, which is consistent with the intrusion age derived from U-Pb dating of 107 + 3 Ma
(Pigage, 2004; Gordey, 2013; Rasmussen, 2013). The output figures from the modeling
procedure, performed on the APS U-Pb data, are shown in Figure A2.

Anchoring the lower intercept at 110 Ma allowed upper intercept probabilities to be
extracted from the modeling procedure (Reimink et al., 2016). Essentially, this entails calculating

the upper intercept ages of all zircon ages anchored at a lower intercept of 110 Ma. In practice,
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this ‘anchored upper intercept’ age spectrum is created by calculating the total probability along
a discrete line in U-Pb Concordia space that has a lower intercept of 110 Ma and an upper
intercept of ¢. This ¢ value in changed in 4 Myr intervals, creating ca. 1,110 distinct lines
between 110 Ma and 4500 Ma. Lines that cross one or more discordant data points (including
full uncertainties) accrue more probability, and end up with higher total probability, or
‘likelihood’ in our terminology. A spectrum is then created from the upper intercept likelihoods
of these lines, which we interpret to be the age spectrum of the inherited zircon population from
the APS granites. This interpretation is valid if discordance in the U-Pb zircon analyses is
created by either Pb-loss from inherited grains during intrusion of the granite or by mixing of
multiple U-Pb age domains (inherited core and magmatic rim) during sampling by the laser
beam. We consider these two explanations for U-Pb discordance in the APS grains to be by far
the most likely; therefore the upper intercept age spectrum represents the age spectrum of the
zircon component inherited during APS granite emplacement. In order to estimate uncertainties
in the inherited fractions of the APS zircon age spectrum, the anchored lower intercept was
varied by £2 Myr (anchored at 108 and 112 Ma) and +4 Myr (anchored at 106 and 114 Ma) to
produce Figure 3.3. This is demonstrated on Figure A4. For Figure 3.3 the conservative error
envelope is taken from 110 + 4 Ma.

Discrete data inputs (zircon ages in this case) are required in order to perform statistical
tests on the corrected APS zircon spectrum; these are not produced by the modeling procedure
outlined above. To extract discrete data the discordant U-Pb analyses are corrected back onto the
concordia, producing discrete corrected concordia ages. This is done by fixing the lower
intercept at 110 Ma (which corresponds to a ***Pb/**U ratio of 0.017 and a *’Pb/**U ratio of

0.112) and solving the equations between the polynomial concordia and a discordia line (defined

253



by the lower intercept and the data point) simultaneously (Figure AS). An iterative solution is
required, which was solved with the “What if Goal Seeker Function” in Excel. While errors on
the discrete corrected concordia ages are not required for the K-S test (see below), they are
calculated for completeness. Errors on the corrected points were calculated by repeating the
calculation (above) for each data point +/- the 10 error in ***Pb/***U. The ***Pb/**U error has a
greater affect on the gradient of the discordia than the *’Pb/***U, so will therefore create a larger
inaccuracy. Results and errors for each stage of the calculation are shown in Table A9.

Data points around the fixed lower-intercept point (***Pb/***U < 0.05 and *’Pb/**°U < 0.5;
grey shading on Table A9) were removed. These filtered results were not corrected as these
analyses are dominated by lead loss or magmatic rim overprinting, and therefore, would require
large extrapolations (introducing large errors) to calculate the upper intercept. In some cases, an
upper intercept could not be calculated for these points (i.e. Grain # 19 and 26 from Sample G1;
Table A9). Seventy-one out of the 108 analyses were corrected back onto the concordia (Table
A10). Figure A6 shows the enhanced clarity in the upper intercept output figure from the

modeling procedure when only the filtered data is run.

Kolmogorov-Smirnov testing between the zircons from individual stratigraphic units and the
APS zircons

The Kolmogorov- Smirnov (or K-S) two-sample test is a statistical test that can be used
to provide validation of the visual comparison of strata age probability diagrams with the APS
zircon age pattern. The K-S test evaluates the null hypothesis that “two distributions are the same
or came from the same parent population”. The output of the K-S test is a value P; in this study if

P is less than 0.05 (i.e >95% level of confidence), then we conclude that the zircons from a
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sedimentary unit cannot produce the pattern seen in the APS zircons. If P is greater than 0.05,
then the null hypothesis cannot be rejected and the sedimentary unit cannot be discarded as the
source of the APS zircons. The K-S test cannot determine if the sedimentary unit is the source,
the test can only eliminate strata that do not contain zircons from the same population as the
APS. A more detailed explanation of the K-S test can be found in Berry et al. (2001) and
DeGraaff-Surpless et al. (2003). Values for the sedimentary units equivalent to those proposed to
be present in the Anvil region (Table A12) are from Lane and Gehrels (2014), Gehrels et al.
(1999) and Leslie (2009) the raw data for the Hyland Group from Ross et al. (2005) could not be
located.

To run the K-S test the data for each unit and the APS were plotted as Cumulative
Distribution Functions (CDF; Figure A7). The K-S test values are calculated, using the CDF, for
the zircons from each stratigraphic unit and the APS zircons using the program developed by
Guynn and Gehrels (2010) (Table A11). The green cells in Table A11 shows that the Keele
Formation (Windermere Supergroup) and Gull Lake Formation equivalent strata have P>0.05
and therefore cannot be rejected as being the source of the APS. The P value for the Keele
Formation compared to the APS, of 0.9994 shows the very high similarity between the zircons in
these two samples. The P value is very sensitive to the number of analyses included for each
sample (Table A12), generally as n goes up P goes down. For most of the samples the number of
analyses is similar except for the Gull Lake Formation equivalent sample, which has nearly twice
as many analyses as the other samples, meaning that P is comparatively lower for this sample
than it would be for a sample with fewer analyses. However, even with the higher number of

analyses the Gull Lake Formation equivalent sample shows a P value greater than 0.05 meaning,
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while the P value may have decreased, the K-S test result is not changed by the larger sample
size.

Therefore, the K-S test confirms the visual interpretation that the Windermere
Supergroup could share a zircon source with the APS. However, the statistical testing also shows
that the Gull Lake Formation, into which the APS is emplaced, cannot be ruled out as a source

for the Anvil zircons.

How to deal with mixing and assimilation

The zircons of the APS may not be derived from a single source; instead the population
seen in the crystallized granite could represent zircons derived from the melting of multiple
sources, or from one source plus assimilation from other units. We can use two methods to
constrain to what extent melting and assimilation have affected the zircon population in the APS:

the K-S test and Nd isotope mixing.

K-S test on zircons from multiple sources
To test whether mixed sedimentary units can produce the populations of zircons recorded
in the APS three simplifying assumptions are made:
1. That the abundance of zircons in each unit is identical; this means that if you assimilate a
volume of unit 1 you will inherit the same number of zircons as you would assimilating
the same volume of unit 2.
2. That the units mix in equal quantities and provide an equal number of zircons to the final

mixture. This assumption follows from assumption one, but indicates that if two units
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mix each unit provides 50% of the total number of zircons and if 5 units mix each units
provides 20% of the total number of zircons e.t.c.

3. That you will only melt sequential sedimentary units in contact with each other. This
means that the melt will not pass through a middle unit without melting it if melt is
generated in the sedimentary sequences above and below that unit.

These three assumptions allow us to more simply model mixing between combinations of
units. Populations of 250 zircon ages were chosen randomly from each sedimentary sample,
creating a representative sample of the zircons ages in each unit and removing the bias due to the
number of analyses in each sample. This was done five times leading to five runs. For each run
the representative samples were mixed in combinations of two sequential units, three sequential
units and all five potential melt sources. Then, 200 grains were randomly selected from each
theoretical mixed zircon population to create a sample that could be compared to the zircon age
pattern recorded in the APS via the K-S test (Table A13). The K-S test was run using the same
method and limits as for the individual strata.

The K-S test shows that most mixed populations of zircons are not statistically capable of
being the source for the APS zircons (i.e. P<0.05). The only mixed zircon populations that
consistently gave P values greater than 0.05 were the mixtures of Windermere Supergroup and
Gull Lake Formation equivalent strata, which are interpreted as the source rock and host rock for
the APS respectively.

Combinations of the Windermere Supergroup samples and Gull Lake Formation
equivalent samples with either the Little Dal Group (MMSG) or Rabbitkettle Formation

equivalent strata returned P values greater than 0.05 in particular runs.
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Overall, these results indicate that while assimilation of the host rock (Gull Lake
Formation) and contribution of low volumes of zircons from either the Little Dal Group or
Rabbitkettle formation, cannot be ruled out; the K-S test does supports the conclusion that the

Windermere Supergroup is the source for the APS.

Mixing from Nd isotopes

Following on from the K-S tests above, we can assume that the zircons in the APS are
derived only from a mixture of the Windermere Supergroup and the current host rock for the
APS (Cambrian Gull Lake Formation and overlying Ordovician to Silurian Rabbitkettle
Formation equivalent strata). Therefore, binary mixing of Nd isotopes can provide constraints on
the amount of assimilation/ mixing that has occurred between the two units (Figure AS8). This
calculation gives the fraction of Nd provided from each end member, there is no evidence to
suggest Nd mixing and zircon mixing should correlate. Therefore, a 50% addition of Nd from
mixing/assimilation may not mean a 50% zircon addition from mixing/assimilation; however,
this method can provide a good, rough, approximation of the degree of importance of
assimilation/mixing in the generation of the APS. For the average Hyland Group sediments no
mixing is necessary to explain the Nd isotopes and concentration of the APS. Individual samples
of the Hyland group can mix with up to ~40+5% Silurian-Ordovician Rabbitkettle equivalent
sediments and up to ~65+15% Gull Lake equivalent strata to generate the Nd values seen in the
APS. It is unlikely that only the isotopically extreme samples produce the melt so the degree of
assimilation is likely to be lower than calculated above.

Neodymium isotopes show that while assimilation/mixing is not necessary to generate

the APS from the Hyland Group (Windermere Supergroup; Figure A9) the assimilation/mixing
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of the host rock into the melt cannot be ruled out. Regionally the amphibolite facies Gull Lake
Formation has not achieved the temperature required to melt, therefore, we assume assimilation
due to intrusion of the APS, rather than magma mixing, was the dominant process. Assimilation
of the Gull Lake formation into melt derived from the Hyland group would change both the Nd
concentration and zircon age spectra of the final crystallized batholith. However, the Nd isotopes
(like the K-S test) cannot be explained by only melting of the Gull Lake Formation implying a

role for Windermere Supergroup (Hyland group) sediments in the generation of the APS.
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Figure A1: Typical zircons from Sample G1 and G3 imaged in cathodoluminescent light on the
Zeiss Evo-MA-15 scanning electron microscope (SEM).
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Figure A2: Output compilation figure from Reimink et al. (2016) showing the dataset from the 108

core analyses.
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Figure A3: Age probability spectra for the zircons from the APS showing the affect of varying
the lower intercept by 2 Myr and 4 Myr increments. Output from modeling procedure of

Reimink et al. (2016).

262



0.6 300
o\
=) W
g (=
~N S
N 2600,
) U
&
<
N 2200
0.4
1800
Data Point, D
1400,
0.2 100
L+o
71]: 207Pb / 235U
—L-0
0 4 8 12 16 20

Figure A4: Schematic illustration of the errors in the upper intercept U derived
from considering errors in both the data point (D, shown by the orange ellipse of 2
o probability) and by varying the fixed lower intercept Lo.
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Figure A10: A) Map of Canada showing the location of the Yukon Territory in grey. B) Map of
Yukon showing geological terranes to the northeast of the Tintina Fault including location of the Anvil
batholith and sedimentary rock samples cited in this study. Adapted from Nelson et al. (2013). C)
Detailed geological map of the Anvil plutonic suite with sample locations. Adapted from Pigage
(2004).
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Table A10. Corrected Ages From APS Inherited Zircon Cores

. Corrected Error in age . Corrected Error in age
Grain#  Age (Ma) (Ma) Grain#  Age (Ma) (Ma)
Sample G1 Sample G3
1 1835 47 1 1102 38
2 2794 47 2 2703 37
3 2284 75 4 1115 42
4 1316 56 5 1824 38
5 1717 44 6 2023 30
7 2867 34 7 2207 40
8 1795 42 8 2323 101
9 1841 48 9 1774 71
11 2775 41 10 1933 47
13 2745 42 11 1930 39
15 1066 53 12 1881 93
16 1913 45 13 1032 53
18 1766 65 14 1121 78
21 2871 59 15 1187 48
22 1093 47 16 1185 118
24 2701 49 17 2617 32
27 1338 42 18 2691 41
28 1937 58 19 1187 54
29 2017 84 20 1186 48
30 1841 44 21 1841 93
31 1845 50 22 2718 44
32 2368 151 23 1370 60
35 2421 52 24 2700 48
25 2616 70
26 1561 90
27 1473 43
28 1935 34
29 1882 29
30 1920 39
31 1829 84
32 1915 36
33 1906 52
34 1835 34
35 1502 42
36 1206 73
39 1619 51
40 1834 40
41 1108 66
42 1182 75
43 1071 56
44 1823 59
45 1385 62
46 1903 45
47 1795 58
49 1986 52
51 3022 42
53 1172 64
70 1811 65
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Table A11. K-S test results

Unit
Rabbitkettle  Gull Lake Windermere
Fm. Fm. SGp
Anvil plutonic Suite 0.000 | 0.139 0.999

Green squares show P values >0.05

Table A12. Strat Correlation Table

Equivalent strata

suite

Strata name in - . Number of

. in the Anvil
original source . analyses

region
Mt. Franklin Fm.| Rabbitkettle Fm. 40
Adam's Argillite | Gull Lake Fm. 116
Hyland Gp.
Keele Fm. (Windermere SGp) 49
Hyland Gp.

Hyland Gp. (Windermere SGp) 90
Little Dal Gp. MMSG 59
Katherine Gp. MMSG 33
Anvil plutonic | i iutonic suite 71
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Supplemental Methods

Modeling the effect of exhumation on thermochronometer T. and Z,

The effective closure depth (Z.)- the depth at which the effective closure temperature (T.)
occurs for each mineral system- can be modeled in an exhuming upper crust via a two step
methods outlined in Reiners and Brandon (2006) and below.

The first step involves modeling the geothermal profile of eroding crust in the region
based on a one dimensional thermal field of infinite thickness, L, with fixed, constant,
temperatures at the surface and base, Ts and Ty, respectively, and a uniform internal heat
production Hr (Reiners and Brandon 2006). We assume that horizontal velocities do not
significantly affect the model (Batt and Brandon 2002). Material moves through this one-
dimensional layer at a constant speed, equal to the rate of exhumation, €. The layer remains at a
constant thickness as erosion rate matches the exhumation rate.

In this model temperature can be calculated as a function of depth, T(z) within the one
dimensional layer for two end member conditions:
1. When erosion approaches zero

(T, —Tg)z Hrz(L—z)

T(z) =T+ I + e (1)

Where « is the average thermal diffusivity of the layer

2.When erosion rates are high such that heat transport due to erosion is important

(2)

tay o0 ()
é

T(z)=T5+(TL—T5+ K
1—exp (—K )
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Parameters for the model were based on typical convergent orogens, as reported by Reiners
and Brandon (2006): k = 27.4 km® Myr ', Hi=4.5°C Myr ' and Ts = 14°C. In areas without

erosion, the surface thermal gradient is ~20°Ckm . The thickness of the layer (L) was set to 40

km based on the current crustal thickness identified in the Lithoprobe SNORCLE Line 3 (Cook
et al. 2004). Therefore Tt is ~800°C. Geotherms were calculated for constant exhumation rates of
0,0.5,1,2,3 and 10 kmMyr™.

The second step is to calculate the T, and Z. for each thermochronometer based on the
modeled geotherms. T, is a function of cooling rate (Figure 4.3), which can be evaluated for a

mineral exhuming through the 1D model. Cooling rate is calculated by differentiation of

equation 1 and 2 to find geothermal gradients within each system (Z—:), which can then be

converted to a cooling rate, T(z) via equation 3:

t=ek @3
(@)=é5- ()

The closure temperature is then extracted via an iterative solution of equation 3 and the
Dobson equation ( Dodson 1973) for which the effect of pressure is taken to be negligible
(equation 4).

. 2 —Ea’
T = %exp(“c) 4)

For U-Th/ He in Zircon E, =169 kJmol " and Q=7.03 x 10°s”! (Reiners et al. 2004, Reiners
and Brandon 2006). For Ar-Ar in biotite E,=197 kJmol™ and Q=733 s (Grove and Harrison
1996, Reiners and Brandon 2006). R is the Regnault or gas constant.

Finally, Z is estimated by inserting the calculated T, into equation 1 or 2 and solving for z.

This process can be repeated for multiple exhumation rates to give the effective closure paths

shown on (Figure 4.6).
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Table A17. Raw Zircon LA-ICP-MS Data

erc.on Grain # U (ppm) |*20 (ppm)| Th (ppm) | *20 (ppm)
Region
1 3710 120 24 1
2 2842 29 32 1
3 3350 55 110 15
4 5194 96 60 2
Ri 5 3920 250 34 2
Ims 6 4327 65 31 1
7 3689 48 48 2
8 3690 130 24 1
9 3020 110 21 1
10 3183 65 25 2
1 2186 68 90 8
2 177 25 47 1
3 925 16 162 6
4 1588 68 137 8
Cores 5 2750 250 320 38
6 759 23 114 8
7 583 50 172 6
8 1790 130 110 4
9 1750 86 165 2
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Table A18. Drill Core Sample Locations

D Drill Depth Area UTME UTMN D Drill Depth Area UTME UTMN

’ Hole (m) Collar*  Collar* ’ Hole (m) Collar*  Collar*
10-0112 10-01 1218 KMD 586396 6940142 11-14170 11-14 169.86 KME 587744 6940265
10-0134 10-01 34.07 KMD 586396 6940142 11-14 182 11-14 182.19 KME 587744 6940265
10-0151 10-01 50.82 KMD 586396 6940142 11-14195 11-14 195.00 KME 587744 6940265
10-0160 10-01 60.00 KMD 586396 6940142 || 11-14199 11-14 199.00 KME 587744 6940265
10-0169 10-01 69.75 KMD 586396 6940142 11-14 212 11-14 212.06 KME 587744 6940265
10-0170 10-01 69.83 KMD 586396 6940142 11-14 245 11-14 24450 KME 587744 6940265
10-01 83 10-01 83.20 KMD 586396 6940142 11-14 306 11-14 306.08 KME 587744 6940265
10-0198 10-01 98.44 KMD 586396 6940142 11-14 308 11-14 307.98 KME 587744 6940265
10-0199 10-01 99.09 KMD 586396 6940142 11-14 327 11-14 327.09 KME 587744 6940265
10-01 105 10-01 104.57 KMD 586396 6940142 11-14 330 11-14 330.51 KME 587744 6940265
10-01 116 10-01 116.20 KMD 586396 6940142 11-14 331 11-14 331.10 KME 587744 6940265
10-01 142 10-01 141.79 KMD 586396 6940142 11-14 335 11-14 33515 KME 587744 6940265
10-01 164 10-01 163.94 KMD 586396 6940142 11-14 341  11-14 340.69 KME 587744 6940265
11-0542 11-05 41.69 KMD 586661 6940139 11-14 346 11-14 345.65 KME 587744 6940265
11-0563 11-05 63.34 KMD 586661 6940139 11-14 354 11-14 353.65 KME 587744 6940265
11-0573 11-05 72.85 KMD 586661 6940139 11-14 359 11-14 359.00 KME 587744 6940265
11-0595 11-05 94.82 KMD 586661 6940139 11-14 367 11-14 367.38 KME 587744 6940265
11-05129 11-05 128.80 KMD 586661 6940139 11-14369 11-14 369.40 KME 587744 6940265
11-05133 11-05 133.02 KMD 586661 6940139 11-1514 11-15 1410 KMD 586816 6940203
11-05135 11-05 135.13 KMD 586661 6940139 11-1518 11-15 17.80 KMD 586816 6940203
11-05136 11-05 135.75 KMD 586661 6940139 || 11-1525a 11-15 25.36 KMD 586816 6940203
11-05 241 11-05 241.43 KMD 586661 6940139 11-1525b 11-15 2540 KMD 586816 6940203
11-05 253 11-05 253.11 KMD 586661 6940139 11-1526 11-15 26.24 KMD 586816 6940203
11-07 224 11-07 224.00 KMD 586661 6940139 11-1529 11-15 29.09 KMD 586816 6940203
11-1228 11-12 27.86 KMD 586331 6940135 11-1552 11-15 5245 KMD 586816 6940203
11-1230 11-12 30.28 KMD 586331 6940135 11-1561 11-15 61.12 KMD 586816 6940203
11-1240 11-12 40.38 KMD 586331 6940135 11-1580 11-15 80.15 KMD 586816 6940203
11-1242 11-12 4165 KMD 586331 6940135 11-1598 11-15 98.09 KMD 586816 6940203
11-1244 11-12 44.00 KMD 586331 6940135 11-15100 11-15 100.07 KMD 586816 6940203
11-1250 11-12 49.89 KMD 586331 6940135 11-15116 11-15 115.84 KMD 586816 6940203
11-12212 1112 212.40 KMD 586331 6940135 11-15117 11-15 116.79 KMD 586816 6940203
11-12240 11-12 240.18 KMD 586331 6940135 11-15129 11-15 128.95 KMD 586816 6940203
11-12266 11-12 266.23 KMD 586331 6940135 || 11-15131 11-15 130.55 KMD 586816 6940203
11-12 347 11-12 347.40 KMD 586331 6940135 11-15142 11-15 142.34 KMD 586816 6940203
11-12351 11-12 351.19 KMD 586331 6940135 11-15165 11-15 164.79 KMD 586816 6940203
11-12376 11-12 376.18 KMD 586331 6940135 11-15182 11-15 182.23 KMD 586816 6940203
11-1430 11-14 30.08 KME 587744 6940265 11-15201 11-15 200.60 KMD 586816 6940203
11-1440 11-14 4055 KME 587744 6940265 11-15291 11-15 291.16 KMD 586816 6940203
11-1441 1114 4116 KME 587744 6940265 11-15385 11-15 385.00 KMD 586816 6940203
11-1446 11-14 46.10 KME 587744 6940265 11-16 224 11-16 224.00 KMD 586323 6940128
11-1447 11-14 46.70 KME 587744 6940265 11-17 156 11-17 156.00 KMD 586455 6940065
11-14103 11-14 103.11 KME 587744 6940265 11-17 160 11-17 160.00 KMD 586455 6940065
11-14108 11-14 107.72 KME 587744 6940265 11-17 201 11-17 201.00 KMD 586455 6940065
11-14 121 11-14 121.03 KME 587744 6940265 11-17 202 11-17 202.00 KMD 586455 6940065
11-14139 11-14 138.60 KME 587744 6940265 || 11-18 136 11-18 136.00 KMD 586323 6940128
11-14 141 11-14 140.69 KME 587744 6940265 11-2225 11-22 25.05 KMD 586499 6940183
11-14 146 11-14 145.82 KME 587744 6940265 11-2244 11-22 4425 KMD 586499 6940183
11-14 152 11-14 151.95 KME 587744 6940265 11-22 109  11-22 109.40 KMD 586499 6940183
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Table A18 Cont. Drill Core Sample
Locations

I.D

Drill
Hole

Depth
(m)

Area

UTM E
Collar*®

UTM N
Collar*

11-22 135
11-22 149
11-22 170
11-22 190
11-22 230
11-22 317
11-23 251
11-27 207
11-27 344
11-29 30
11-29 90
11-29 140
11-29 186
11-29 220
11-29 294
11-29 330
11-36 392
11-37 486
11-37 489
11-38 225
11-38 297
11-38 314
11-40 533
11-40 544
11-41 18
11-41 56
11-41 68
11-41 69
11-41 73
11-41 96

11-41
11-41
11-41

102
106
109

11-41 111

11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41

131
144
149
159
167
172
180
180
214

12-48 300
12-52 385

11-22
11-22
11-22
11-22
11-22
11-22
11-23
11-27
11-27
11-29
11-29
11-29
1129
11-29
11-29
11-29
11-36
11-37
11-37
11-38
11-38
11-38
11-40
11-40
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
11-41
12-48
12-52

134.85
149.05
170.20
189.65
230.43
317.00
251.00
207.00
344.00
29.56
90.24
140.15
185.90
220.00
294.00
329.55
392.00
485.65
488.58
224.68
297.27
314.39
532.60
544.00
18.32
55.70
67.54
69.39
72.90
96.13
102.44
106.19
109.10
111.20
131.06
144.29
148.98
159.10
167.26
172.12
180.01
180.47
213.82
300.00
385.00

KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD
KMD

586499
586499
586499
586499
586499
586499
586549
586485
586485
586045
586045
586045
586045
586045
586045
586045
586310
586532
586532
586693
586693
586693
586449
586449
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586878
586675
586217

6940183
6940183
6940183
6940183
6940183
6940183
6940101
6939968
6939968
6940012
6940012
6940012
6940012
6940012
6940012
6940012
6939897
6939867
6939867
6940682
6940682
6940682
6939817
6939817
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940116
6940044
6939864

*All UTM Zone 8
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Table A19. Handspecimen

Samples
I1.D UTM E* UTM N*
HS-AI 586962 6940613
HS-AN2 587784 6939184
HS-AS 587176 6939517
HS-BD 586036 6939715
HS-BG 586081 6939930
HS-BH2 586228 6940069
HS-CL 587333 6939760
HS-CT 585046 693904
HS-DA 584438 6938651
HS-EJ 585294 6938915
HS-G 586738 6940342
HS-J1 585820 6939330
HS-J5 585820 6939330

*All UTM Zone 8
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