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Abstract 

 

PCI Bus is perhaps the most successful Bus design, both on the technical and the marketing levels. From 

the earlist general PCI Bus to current powerful PCI-E Bus, we can see that PCI Bus has become the 

most popular Bus system throughout the world.  

 

Our project is consisted of three sections: source coding, GUI design and implementation, and testing. 

Finally, we will give some analysis and statistics according to the data generated by the PCI Multi -Bus 

simulator. 

 

In the coding section, I firstly introduce the development history of PCI Bus and then I introduce two 

important new PCI Bus, including PCI-X and PCI-E. Finally, I introduce our simulator’s design and 

implementation. As for the development eviroment, I use Linux Red Hat OS, G++ compiler, and OOP 

technology to do the coding work. On the other hand, we can use the generated data to plot by 

GNUPLOT tool under Linux OS and get a good statistical result. 

 

Till now, my coding work goes smoothly. Although there still exists some bugs not being found, I believe 

that this simulator will become better and better gradually in the future. 
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1. Computer Bus 

It is widely recognized that the computer system bus affects the system characteristics in several  

important ways: 

(1) The bus bandwidth and transfer parameters place a limit on the system performance. 

(2) The system bus is an interface that connects hardware components produced by different 

vendors and provides interoperability. 

(3) The wide variety of configuration options supported by increasingly complex and sophisticated 

I/O devices make manual configuration a difficult and error-prone task. Support for software 

based automatic configuration has become a necessity. 

(4) When multiple processors share a bus with common resources, some form of support for 

multi-processing is required to arbitrate the use of shared resources. 

 

Even though memories are getting faster, CPUs get faster and quicker. Although the memory burst 

speed can be increased by using interleaving, the initial latency cannot be reduced, and in fact 

becomes the dominant factor in bus usage. This is just one of a number of parameters, other than 

demand for raw bus bandwidth, that have changed in recent years and must be considered in 

modern system bus design. 

 

From historical perspective aspect till now, we can review all kind of computer busses such as ISA, 

Micro Channel, EISA, NuBus, Future Bus+, VME64, PCI, PCI-X and PCI Express Bus. Today I 

here introduce more detail about PCI, PCI-X and PCI Express Busses, as for other busses, I will 

not introduce. Figure 1 shows us the PCI family history. 

 

 

Figure1. PCI Family History 

 

2. Introduction to PCI Bus 

2.1 PCI Bus Application 

The PCI Local Bus has been defined with the primary goal of establishing an industry standard, 
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high performance local bus architecture that offers low cost and allows differentiation. While the 

primary focus is on enabling new price-performance points in today's systems, it is important that 

a new standard also accommodates future system requirements and be applicable across multiple 

platforms and architectures. Figure2 shows the multiple dimensions of the PCI Local Bus. 

 

While the initial focus of local bus applications was on low to high end desktop systems, the PCI 

Local Bus also comprehends the requirements from mobile applications up through servers. The 

PCI Local Bus specifies 3.3 volt signaling requirements. 

 

The PCI component and add-in card interface is processor independent, enabling an efficient 

transition to future processor generations and use with multiple processor architectures. Processor 

independence allows the PCI Local Bus to be optimized for I/O functions, enables concurrent 

operation of the local bus with the processor/memory subsystem, and accommodates multiple high 

performance peripherals in addition to graphics (motion video, LAN, SCSI, FDDI, hard disk 

drives, etc.). Movement to enhanced video and multimedia displays (i.e., HDTV and 3D graphics) 

and other high bandwidth I/O will continue to increase local bus bandwidth requirements. A 

transparent 64-bit extension of the 32-bit data and address buses is defined, doubling the bus 

bandwidth and offering forward and backward compatibility of 32-bit and 64-bit PCI Local Bus 

peripherals. A forward and backward compatible PCI-X specification (see the PCI-X Addendum to 

the PCI Local Bus Specification) is also defined, increasing the bandwidth capabilities of the 33 

MHz definition by a factor of four 

 

The PCI Local Bus standard offers additional benefits to the users of PCI based systems. 

Configuration registers are specified for PCI components and add-in cards. A system with 

embedded auto configuration software offers true ease-of-use for the system user by automatically 

configuring PCI add-in cards at power on. 

 

 

Figure2. PCI Local Bus Applications 

 

2.2 PCI Bus Architecture 

The PCI (Peripheral Component Interconnect) local bus [(PCISIG, 1995), (Shanley, 1995), 

(Kendall, 1994)] is a high speed bus. The PCI Bus was proposed at an Intel Technical Forum in 

December 1991, and the first version of the specification was released in June 1992. The current 

specification of the PCI bus is revision 3.0, which was released on February 3, 2004. 
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Since its introduction, the PCI bus has gained wide support from all the computer industry. Almost 

all PC systems today contain PCI slots, as well as the Apple and IBM Power-PC based machines, 

and the Digital Alpha based machines. The PCI standard has become so popular it influenced the 

creation of more than one related standard based on leveraging PCI technology.  

 

The PCI Bus is designed to overcome many of the limitations in previous buses. The major 

benefits of using PCI are: 

(1) High speed 

The PCI bus can transfer data at a peak rate of 132MBytes/sec using the current 32 bit data 

path and a 33MHz clock speed. Future implementations featuring a 64 bit data path and 

66MHz clock speed may transfer data as fast as 524MBytes/sec. Even at its basic mode, PCI 

delivers more than tenfold the performance levels offered by its predecessor in the PC world, 

the ISA bus. 

 

(2) Expandability 

The PCI bus can be expanded to a large number of slots using PCI to PCI bridges. The bridge 

units connect separate small PCI buses to form a single, unified, hierarchical bus. When traffic 

is local to each bus, more than one bus may be active concurrently. This allows load balancing, 

while still allowing any PCI Master on any bus to access any PCI Target on any other PCI bus. 

 

(3) Low Power 

Motherboards can lower their power requirement by reducing the clock rate as low as 0Hz 

(DC). All PCI compliant cards are required to operate in all frequency ranges from 0Hz to 

33MHz. 

 

(4) Automatic Configuration 

All PCI compliant cards are automatically configured. There is no need to set up jumpers to set 

the card's I/O address, IRQ number, or DMA channel number. The PCI BIOS software is 

responsible for probing all the PCI cards in a system, and assigning resources to every card, as 

required. 

 

(5) Future expansion 

The PCI specification can support future systems by incorporating features such as an optional 

64 bit address space, and 133MHz bus speed. The specification defines enough reserved fields 

in all the bus definitions (configuration space registers, bus commands, addressing modes), 

that any unforeseen enhancement will not hinder compatibility with present systems. 

 

(6) Portability 

By incorporating the (optional) OpenBoot standard, any device with OpenBoot Firmware can 

boot systems containing any microprocessor and O/S. Even without OpenBoot, it is common 

to see drivers for many video cards and SCSI controller for multiple CPU architectures and 

operating systems. 
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(7) Complex memory hierarchy support 

The PCI Bus supports advanced features such as bus snooping to allow cache coherency to be 

kept even with multiple bus masters, and a locking mechanism to support semaphores. 

 

(8) Interoperability with existing standards 

The PCI Bus allows interoperability with existing ISA cards by supporting subtractive 

decoding of addresses (allowing addresses not decoded by PCI cards to be routed to an ISA 

backplane). The standard also supports the fixed legacy addresses for VGA cards and IDE 

controllers (required for system boot). Another feature supporting backward compatibility 

allows different devices to respond to different I/O byte addresses even if they share the same 

64 bit word. 

 

PCI is a local bus, sometimes also called an intermediate local bus, to distinguish it from the CPU 

bus. The concept of the local bus solves the downward compatibility problem in an elegant way. 

The system may incorporate an ISA, EISA, or Micro Channel bus, and adapters compatible with 

these buses. On the other hand, high-performance adapters, such as graphics or network cards, 

may plug directly into PCI. PCI also provides a standard and stable interface for peripheral chips. 

By interfacing to the PCI, rather than to the CPU bus, peripheral chips remain useful as new 

microprocessors are introduced. The PCI bus itself is linked to the CPU bus through a PCI to Host 

Bridge. 

 

Figure3 shows a typical PCI Local Bus system architecture. This example is not intended to imply 

any specific architectural limits. In this example, the processor/cache/memory subsystem is 

connected to PCI through a PCI bridge. This bridge provides a low latency path through which the 

processor may directly access PCI devices mapped anywhere in the memory or I/O address spaces. 

It also provides a high bandwidth path allowing PCI masters direct access to main memory. The 

bridge may include optional functions such as arbitration and hot plugging. The amount of data 

buffering a bridge includes is implementation specific. 

 

 

Figure3. PCI System Architecture 
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The basic PCI transfer is a burst. This means that all memory space and I/O space accesses occur 

in burst mode; a single transfer is considered a “burst” terminated after a single data phase. 

Addresses and data use the same 32-bit, multiplexed, address/data bus. The first clock is used to 

transfer the address and bus command code. The next clock begins one or more data transfers, 

during which either the master, or the target, may insert wait cycles. 

 

PCI supports posting. A posted transaction completes on the originating bus before it completes on 

the target bus. For example, the CPU may write data at high speed into a buffer in a CPU-to-PCI 

bridge. In this case the CPU bus is the originating bus and PCI is the target bus. The bridge 

transfers data to the target (PCI bus) as long as the buffer is not empty, and asserts a not ready 

signal when the buffer becomes empty. In the other direction, a device may post data on the PCI 

bus, to be buffered in the bridge, and transferred from there to the CPU via the CPU bus. If the 

buffer becomes temporarily full, the bridge de-asserts the target ready signal. 

 

In a read transaction, a turnaround cycle is required to avoid contention when the master stops 

driving the address and the target to begin driving the data on the multiplexed address/data bus. 

This is not necessary in a write transaction, when the master drives both the address and data lines. 

A turnaround cycle is required, however, for all signals that may be driven by more than one PCI 

unit. Also, an idle clock cycle is normally required between two transactions, but there are two 

kinds of back-to-back transactions in which this idle cycle may be eliminated. In both cases the 

first transaction must be a write, so that no turnaround cycle is needed, the master drives the data 

at the end of the first transaction, and the address at the beginning of the second transaction. The 

first kind of back-to-back occurs when the second transaction has the same target as the first one. 

Every PCI target device must support this kind of back-to-back transaction. The second kind of 

back-to-back occurs when the target of the second transaction is different than the target of the 

first one, and the second target has the Fast Back-to-Back Capable bit in the status register set to 

one, indicating that it supports this kind of back-to-back. 

 

For arbitration, PCI provides a pair of request and grant signals for each PCI unit, and defines a 

central arbiter whose task is to receive and grant requests, but leaves to the designer the choice of 

a specific arbitration algorithm. PCI also supports bus parking, allowing a master to remain bus 

owner as long as no other device requests the bus. The default master becomes bus owner when 

the bus is idle. The arbiter can select any master to be the default owner. 

 

PCI provides a set of configuration registers collectively referred to as “configuration space.” By 

using configuration registers, software may install and configure devices without manual switches 

and without user intervention. Unlike the ISA architecture, devices are re-locatable - not 

constrained to a specific PCI slot. Regardless of the PCI slot in which the device is located, 

software may bind a device to the interrupt required by the PC architecture. Each device must 

implement a set of three registers that uniquely identify the device: Vendor ID (allocated by the 

PCI SIG), Device ID (allocated by the vendor), and Revision ID. The Class Code register 

identifies a programming interface (SCSI controller interface, for example), or a register-level 

interface (ISA DMA controller, for example). As a final example, the Device Control field 

specifies whether the device responds to I/O space accesses, or memory space accesses, or both, 
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and whether the device can act as a PCI bus master. At power-up, device independent software 

determines what devices are present, and how much address space each device requires. The boot 

software then relocates PCI devices in the address space using a set of base address registers 

 

2.3 Introduction to PCI Bridge architecture 

A PCI-to-PCI bridge provides a connection path between two independent PCI buses. The primary 

function of the bridge is to allow transactions to occur between a master on one PCI bus and a 

target on the other PCI bus. PCI-to-PCI bridges provide system and expansion board designers the 

ability to overcome electrical loading limits by creating hierarchical PCI buses. 

 

Figure4 illustrates two typical applications for a bridge. The first application is the use of a bridge 

to create a second PCI bus segment to which additional PCI connectors are added. This bus 

segment is labeled in the figure as PCI Bus 1. In this example, the primary interface of bridge 1 is 

connected to PCI bus 0 while its secondary interface is connected to PCI bus 1. The second 

application example is the use of a bridge to create a PCI bus segment on an expansion board that 

allows multiple PCI devices to reside on a single expansion board. In this example, the primary 

interface of bridge 2 is connected to PCI bus 1 and its secondary interface is connected to PCI bus 

2. Note that the number assigned to the bridge corresponds to the number of the bus segment 

spawned by the bridge. In this example, the host bridge is considered to be bridge number 0 and 

spawns PCI bus segment 0. 

 

 

Figure4. Typical PCI Bridge Application 

 

A bridge allows transactions between a master on one PCI interface and a target on the other 

interface as illustrated in Figure5. The target interface on one bus is connected to the master 

interface on the other bus. The blocks between the data path of the primary and secondary 

interfaces provide any necessary transaction address and data buffering. The target block 
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connected to the primary PCI interface must support PCI configuration space. The bridge basically 

consists of four state machines¾two masters and two targets. Each of the master and target 

interface state machines must adhere to the requirements of the PCI Local Bus Specification. 

 

 

Figure5. PCI Bridge Block Diagram 

 

The PCI Local Bus Specification requires all devices, including a PCI-to-PCI bridge, to implement 

a 256-byte configuration register address space. The first 64 bytes in each device’s PCI 

Configuration Space must adhere to a standard configuration header format. The remaining 192 

bytes of the Configuration Space may be used for additional capabilities as defined by the 

Capabilities Pointer or for device-specific purposes. 

 

The 64-byte header format for a bridge is defined in Figure6. The first 16 bytes of the bridge 

header implement the common format for all devices as required by the PCI Local Bus 

Specification. The next 48 bytes of the device’s Configuration Space are Header Type specific. A 

Header Type value of 1 indicates that the device follows the bridge register layout, which is  

defined in this specification. The following sections define the basic behavior of configuration 

registers and how reset affects them. Then a brief review of the common registers is presented,  

followed by a detailed specification of the bridge specific registers. 

 

Presently, The PCI Bridge Architecture defines two kinds of PCI-to-PCI Bridge (P2PB). The first 

one is transparent P2PB by which all devices work under synchronous clock, the other is 

un-transparent P2PB by which all devices can work under different clock cycle. In our simulator, 

we just simply simulate transparent P2PB situation. 

 

3. Simple introduction to PCI-X Bus 

3.1 PCI-X 1.0/2.0 

PCI-X (Peripheral Component Interconnect Extended) is a computer bus and expansion card 

standard designed to supersede PCI. It is essentially a faster version of PCI, running at twice the 

speed, and is otherwise similar in physical implementation and basic design. PCI-X basically uses 

the same PCI architecture, the same base protocols, the same BIOS, the same connector, the same 

driver models as PCI. Presently, PCI-X has itself been replaced in modern designs by the 

similar-sounding PCI Express, which features a very different logical design. Figure7 shows us 

http://en.wikipedia.org/wiki/Computer_bus
http://en.wikipedia.org/wiki/Expansion_card
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
http://en.wikipedia.org/wiki/PCI_Express
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PCI-X different modes and speeds. 

 

PCI-X was developed jointly by IBM, HP, and Compaq. PCI-X is a revision to the PCI standard 

that doubles the clock speed (from 66 MHz to 133 MHz) and hence the amount of data exchanged 

between the computer processor and peripherals. Standard PCI supports up to 64-bit at 66 MHz 

(though anything above 32-bit at 33 MHz is only seen in high-end systems) and additional bus 

standards move 32 bits at 66 MHz or 64 bits at 133 MHz. The theoretical maximum amount of 

data exchanged between the processor and peripherals with PCI-X is 1.06 GB/s, compared to 532 

MB/s with standard PCI. PCI-X is generally backward compatible with PCI, meaning that, a 

PCI-X card can be installed in a PCI slot provided it has the correct voltage keying for the slot and 

(if inserting in a 32 bit slot) nothing obstructs the overhanging part of the edge connector. PCI and 

PCI-X cards can be intermixed on a PCI-X bus, but the speed will be limited to the speed of the 

slowest card (for this reason and the voltage compatibility issue most systems with PCI-X will 

have a normal PCI bus as well) . PCI-X improves the fault tolerance of PCI allowing, for example, 

faulty cards to be reinitialized or taken offline. Figure8 shows us that PCI-X is more efficient 

protocol than PCI 

 

 

Figure6. PCI-to-PCI Bridge Configuration Register 

 

IBM, HP, and Compaq designed PCI-X for servers to increase performance for high bandwidth 

devices such as Gigabit Ethernet, Fibre Channel and Ultra3 SCSI cards, and to allow processors to 

be interconnected in clusters. Figure9 shows us networking is moving to 10 Gigabit technologies. 

Compaq, IBM, and HP submitted PCI-X to the PCI Special Interest Group (Special Interest Group 

of the Association for Computing Machinery) in 1998. PCI SIG approved PCI-X, and it is now an 

open standard that can be adapted and used by all computer developers. PCI SIG controls 

technical support, training and compliance testing for PCI-X. IBM, Intel, Microelectronics and  

http://en.wikipedia.org/wiki/IBM
http://en.wikipedia.org/wiki/Hewlett-Packard
http://en.wikipedia.org/wiki/Compaq
http://en.wikipedia.org/wiki/64-bit
http://en.wikipedia.org/wiki/Server_%28computing%29
http://en.wikipedia.org/wiki/Fibre_Channel
http://en.wikipedia.org/wiki/SCSI
http://en.wikipedia.org/wiki/Computer_cluster
http://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://en.wikipedia.org/wiki/Open_standard
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Figure7. PCI/PCI-X Modes and Speeds 

 

 

Figure8. PCI-X is more efficient protocol than PCI 

 

Mylex plan to develop chipsets to support PCI-X. 3Com and Adaptec intended to develop PCI-X 

peripherals. Figure10 shows us PCI-X 2.0 can provide enough bandwidth to support all 

applications. 

 

In 2003 PCI SIG ratified PCI-X 2.0 which adds 266 MHz and 533 MHz variants. These variants 

give roughly 2.15 GB/s and 4.3 GB/s throughput, respectively. PCI-X 2.0 makes additional 

http://en.wikipedia.org/wiki/3Com
http://en.wikipedia.org/wiki/Adaptec
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protocol revisions that are designed to help system reliability and add error correction ECC to the 

bus to avoid resends. To deal with one of the most common complaints of the PCI-X form factor, 

the 184 pin connector, 16-bit ports were developed to allow PCI-X to be used in devices with tight 

space constraints. Similar to PCI-Express, PtoP functions were added to allow for devices on the 

bus to talk to each other without burdening the CPU or bus controller. 

 

 

Figure9. Networking is moving to 10 Gigabit technologies 

 

Despite the various theoretical advantages of PCI-X 2.0 and its backward compatibility with 

PCI-X and PCI devices, it has not been implemented on a large scale (as of 2006). This lack of 

implementation is primarily because hardware vendors have chosen to integrate PCI-Express 

instead. Currently, the PCI-X workgroup is developing PCI-X 1066 which will double PCI-X 533 

bandwidths, maintain backward compatibility, and include new hardware/software extensions. 

Figure11 shows the PCI-X roadmap. 

 

 
Figure10. PCI-X 2.0 can provide enough bandwidth to support all applications 

http://en.wikipedia.org/wiki/Error-correcting_code
http://en.wikipedia.org/wiki/Central_processing_unit
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3.2 Difference between PCI-X and PCI-E 

PCI-X is often confused with PCI-Express, commonly abbreviated as PCI-E or PCIe. While they 

are both high-speed computer buses for internal peripherals, they differ in many ways. The first is 

that PCI-X is a parallel interface that is directly backward compatible with all but the oldest (5 volt) 

PCI devices. PCIe is a serial bus that offers no compatibility with older buses. In the future PCI-X 

and PCI buses may run off a PCIe bridge, similar to the way ISA buses ran off PCI buses in some 

computers. This should not be confused with compatibility. PCIe also matches PCI-X and even 

PCI-X 2.0 in maximum bandwidth. PCIe x1 offers 250 MB/s in both directions, and currently 

supports up to an x32 standard at 8 GB/s. 

 

 

Figure11. PCI-X roadmap 

 

PCI-X has a number of technological and economical disadvantages to PCI-Express. The 64-bit 

parallel interface requires inherently difficult trace routing, because as with all parallel interfaces, 

the signals from the bus must arrive simultaneously or within a very short window, and noise from 

adjacent slots may cause interference. The serial interface of PCIe suffers fewer such problems 

and therefore requires less complex and less expensive designs. PCI-X buses, like PCI, are 

half-duplex bidirectional whereas PCIe buses are full-duplex bidirectional. PCI-X buses run only 

as fast as the slowest device; PCIe devices are able to independently negotiate the bus speed 

 

4. Simple introduction to PCI-E Bus 

PCI Express, officially abbreviated as PCI-E or PCIe, is a computer expansion card interface 

format. It was designed as a much faster interface to replace PCI, PCI-X (abbreviated from PCI 

eXtended) for interface cards as well as AGP interfaces for graphics cards. PCIe is based around 

serial links called lanes. The PCIe 1.1 specification supports x1 (pronounced "by one"), x2, x4, x8, 

x16, and x32 lanes. In each lane, the most common version PCIe 1.1 carries 250 MB/s in each 

direction. Every lane of the PCIe is a dual simplex link; simultaneously receiving and transmitting. 

The PCIe 1.1 bus runs at 2.5 GHz. Since an explicit clock is not used, rather the clock is recovered 

from the data stream a special encoding called 8b/10b is used. This coding ensures that there are a 

sufficient number of transitions with a single character (of 10 bits) to properly and reliably recover 

http://en.wikipedia.org/wiki/PCI-Express
http://en.wikipedia.org/wiki/Half-duplex
http://en.wikipedia.org/wiki/Full-duplex
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Expansion_card
http://en.wikipedia.org/wiki/Peripheral_Component_Interconnect
http://en.wikipedia.org/wiki/PCI-X
http://en.wikipedia.org/wiki/Accelerated_Graphics_Port
http://en.wikipedia.org/wiki/Megabyte
http://en.wikipedia.org/wiki/Simplex_communication
http://en.wikipedia.org/wiki/Hertz
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Clock_signal
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the clock. The astute reader will notice that there are 4 times more combinations than characters 

used. Some of these additional characters are either discarded due to an insufficient number of 

edges within the 10 bit packet to extract the clock. Others are used to encode error commands. 

Some may be used to provide "DC balancing" so that the wire doesn't acquire an electrical charge. 

The remainder are simply not used. Therefore, each lane transmits 250 MB/s. The most number of 

lanes supported is x32, so 250MB/s x 32 x 2 (bi-directionality) is 16GB/s for a theoretical 

maximum transfer rate. 

 

PCI-E uses fabric topology. A fabric is composed of point-to-point Links that interconnect a set of 

components – an example fabric topology is shown in Figure12. This figure illustrates a single 

fabric instance referred to as a hierarchy – composed of a Root Complex (RC), multiple Endpoints 

(I/O devices), a Switch, and a PCI Express-PCI Bridge, all interconnected via PCI Express Links. 

Each of the components of the topology is mapped in a single flat address space and can be 

accessed using PCI-like load/store accesses transaction semantics. 

 

 
Figure12. PCI-E fabric topology 

 

A Switch is defined as a logical assembly of multiple virtual PCI-to-PCI Bridge devices as 

illustrated in Figure13. All Switches are governed by the following base rules. 

(1)Switches appear to configuration software as two or more logical PCI-to-PCI Bridges. 

(2)A Switch forwards transactions using PCI Bridge mechanisms; e.g., address based routing.  

(3)Except as noted in this document, a Switch must forward all types of Transaction Layer Packets 

between any set of Ports. 

(4)Locked Requests must be supported as specified in Section 6.5. Switches are not required to 

support Downstream Ports as initiating Ports for Locked requests. 

(5)Each enabled Switch Port must comply with the flow control specification within this 

document. 

(6)A Switch is not allowed to split a packet into smaller packets, e.g., a single packet with a 

256-byte payload must not be divided into two packets of 128 bytes payload each. 

(7)Arbitration between Ingress Ports (inbound Link) of a Switch may be implemented using round 

http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Clock_signal
http://en.wikipedia.org/wiki/Bi-directional
http://en.wikipedia.org/wiki/Transfer_rate
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robin or weighted round robin when contention occurs on the same Virtual Channel. This is  

described in more detail later within the specification. 

(8)Endpoint devices (represented by Type 00h Configuration Space headers) may not appear to 

configuration software on the switch's internal bus as peers of the virtual PCI-to-PCI Bridges 

representing the Switch Downstream Ports. 

 

 

Figure13. Logical Block Diagram of a Switch 

 

4.1 PCI-E Bus hardware protocol 

PCI Express is a layered protocol, consisting of a Transaction Layer, a Data Link Layer, and a 

Physical Layer. Each of these layers is divided into two sections: one that processes outbound (to 

be transmitted) information and one that processes inbound (received) information, as shown in 

Figure14.The Physical Layer is further divided into a logical sublayer and an electrical sublayer. 

The logical sublayer is frequently further divided into a Physical Coding Sublayer (PCS) and a 

Media Access Control (MAC) sublayer (terms borrowed from the IEEE 802 model of networking 

protocol). 

 

 
Figure14. High level layering diagram 

 

http://en.wikipedia.org/wiki/Layered_protocol
http://en.wikipedia.org/wiki/IEEE_802
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PCI Express uses packets to communicate information between components. Packets are formed 

in the Transaction and Data Link Layers to carry the information from the transmitting component  

to the receiving component. As the transmitted packets flow through the other layers, they are 

extended with additional information necessary to handle packets at those layers. At the receiving 

side the reverse process occurs and packets get transformed from their Physical Layer 

representation to the Data Link Layer representation and finally (for Transaction Layer Packets) to 

the form that can be processed by the Transaction Layer of the receiving device. Figure15 shows 

the conceptual flow of transaction level packet information through the layers. 

 

 

Figure15. PCI-E Packet Flow Through the Layers 

 

The PCI-E physical Layer interface is known by the acronym PIPE which stands for "Physical 

Interface for PCI Express". At the electrical level, each lane utilizes two unidirectional Current 

Mode Logic (CML) pairs at 2.5 Gbit/s. Transmit and receive are separate differential pairs, for a 

total of 4 data wires per lane. 

 

A connection between any two PCIe devices is known as a "link", and is built up from a collection 

of 1 or more lanes. All devices must minimally support single-lane (x1) link. Devices may 

optionally support wider links composed of 2, 4, 8, 12, 16, or 32 lanes. This allows for very good 

compatibility in two ways: A PCIe card will physically fit (and work correctly) in any slot that is 

at least as large as it is (e.g. an x1 sized card will work in any sized slot), and a slot of a large 

physical size (e.g. x16) can be wired electrically with fewer lanes (e.g. x1 or x8) as long as it 

provides the power and ground connections required by the larger physical slot size. In both cases, 

PCIe will negotiate the highest mutually supported number of lanes. It is not possible to place a 

physically larger PCIe card (e.g. a 16x sized card) into a smaller slot, even though the two would 

be signal-compatible if it were possible. 

 

PCIe sends all control messages, including interrupts, over the same links used for data. The serial 

protocol can never be blocked, so latency is still comparable to PCI, which has dedicated interrupt 

lines.Data transmitted on multiple-lane links is interleaved, meaning that each successive byte is 

sent down successive lanes. The PCIe specification refers to this interleaving as "data striping." 

While requiring significant hardware complexity to synchronize (or deskew) the incoming striped 

data, striping can significantly increase the throughput of the link. Due to padding requirements, 

striping may not necessarily reduce the latency of small data packets on a link. 

 

http://en.wikipedia.org/w/index.php?title=Current_Mode_Logic&action=edit
http://en.wikipedia.org/w/index.php?title=Current_Mode_Logic&action=edit
http://en.wikipedia.org/wiki/Differential_pair
http://en.wikipedia.org/wiki/Skew
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As with all high data rate serial transmission protocols, clocking information must be embedded in 

the signal. At the physical level, PCI Express utilizes the very common 8B/10B encoding scheme 

to ensure that strings of consecutive ones or consecutive zeros are limited in length. This is 

necessary to prevent the receiver from losing track of where the bit edges are. In this coding 

scheme every 8 (uncoded) payload bits of data are replaced with 10 (encoded) bits of transmit data, 

consuming an extra 25% of the overall electrical bandwidth. 

 

Many other protocols (such as SONET) use a different form of encoding known as "scrambling" 

to embed clock information into data streams. The PCI Express specification also defines a 

scrambling algorithm, but it is used to reduce EMI (Electromagnetic interference) by preventing 

repeating data patterns in the transmitted data stream. 

 

First-generation PCIe is constrained to a single signaling rate of 2.5 Gbit/s. The PCI Special 

Interest Group (the industry organization that maintains and develops the various PCI standards) 

plans future versions adding signaling rates of 5 and 10 Gbit/s. 

 

The PCI-E Data Link Layer implements the sequencing of the Transaction Layer Packets (TLPs) 

that are generated by the Transaction Layer, data protection via a 32-bit cyclic redundancy check 

code (CRC, known in this context as LCRC) and an acknowledgment protocol (ACK and NAK 

signaling). TLPs that pass an LCRC check and a sequence number check result in an 

acknowledgment, or ACK, while those that fail these checks result in a negative acknowledgment, 

or NAK. TLPs that result in a NAK, or timeouts that occur while waiting for an ACK, result in the 

TLPs being replayed from a special buffer in the transmit data path of the Data Link Layer. This 

guarantees delivery of TLPs in spite of electrical noise, barring any malfunction of the device or 

transmission medium. ACK and NAK signals are communicated via a low-level packet known as 

a data link layer packet, or DLLP. DLLPs are also used to communicate flow control information 

between the transaction layers of two connected devices, as well as some power management 

functions. 

 

The PCI-E transaction layer implements split transactions (transactions with request and response 

separated by time), allowing the link to carry other traffic while the target device gathers data for 

the response. 

 

PCI Express utilizes credit-based flow control. In this scheme, a device advertises an initial 

amount of credit for each of the receive buffers in its Transaction Layer. The device at the opposite 

end of the link, when sending transactions to this device, will count the number of credits 

consumed by each TLP from its account. The sending device may only transmit a TLP when doing 

so does not result in its consumed credit count exceeding its credit limit. When the receiving 

device finishes processing the TLP from its buffer, it signals a return of credits to the sending 

device, which then increases the credit limit by the restored amount. The credit counters are 

modular counters, and the comparison of consumed credits to credit limit requires modular 

arithmetic. The advantage of this scheme (compared to other methods such as wait states or 

handshake-based transfer protocols) is that the latency of credit return does not affect performance, 

provided that the credit limit is not encountered. This assumption is generally met if each device is 

http://en.wikipedia.org/wiki/8B/10B_encoding
http://en.wikipedia.org/wiki/SONET
http://en.wikipedia.org/wiki/Scrambler_%28randomizer%29
http://en.wikipedia.org/wiki/Radio_frequency_interference
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Acknowledge_character
http://en.wikipedia.org/wiki/Negative-acknowledge_character
http://en.wikipedia.org/wiki/Modular_arithmetic
http://en.wikipedia.org/wiki/Modular_arithmetic
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designed with adequate buffer sizes. 

 

First-generation PCIe is often quoted to support a data rate of 250 MB/s in each direction, per lane. 

This figure is a calculation from the physical signaling rate (2.5 Gbaud) divided by the encoding 

overhead (10bits/byte.) This means a 16 lane (x16) PCIe card would then be theoretically capable 

of 250 * 16 = 4 GB/s in each direction. While this is correct in terms of data bytes, more 

meaningful calculations will be based on the usable data payload rate, which depends on the 

profile of the traffic, which is a function of the high-level (software) application and intermediate 

protocol levels. Like other high data rate serial interconnect systems, PCIe has a protocol and 

processing overhead due to the additional transfer robustness (CRC and Acknowledgments). Long 

continuous unidirectional transfers (such as those typical in high-performance storage controllers) 

can approach >95% of PCIe's raw (lane) data rate. These transfers also benefit the most from 

increased number of lanes (x2, x4, etc.) But in more typical applications (such as a USB or 

Ethernet controller), the traffic profile is characterized as short data packets with frequent enforced 

acknowledgments [citation needed]. This type of traffic reduces the efficiency of the link, due to 

overhead from packet parsing and forced interrupts (either in the device's host interface or the PC's 

CPU.) This loss of efficiency is not particular to PCIe. 

 

4.2 PCI-E 2.0 

PCI-SIG announced the availability of the PCI Express Base 2.0 specification on 15 January 

2007.[2] PCIe 2.0 doubles the bus standard's bandwidth from 2.5 Gbit/s to 5 Gbit/s, meaning a x32 

connector can transfer data at up to 16 GB/s in each direction. PCIe 2.0 is still compatible with 

PCIe 1.1, so older cards will still be able to work in machines with this new version. 

 

5. PCI Multi-Bus Simulator 

In modern computer system, the CPU and memory communicate used in every fast system bus, 

for example, the network cards use DMA transfers over the PCI bus to place incoming data in 

buffers and in main memory or to transmit data from buffers in the main memory. In this paper, 

we just focus on the general PCI buses’ operation without consideration of PCI-X/PCI-E situation. 

We simulate not only the single PCI bus operation, but PCI multi bus simple operation by 

PCI-to-PCI Bridge to evaluate the simulator’s performance. 

 

Most of modern computer systems are built up using a transaction-based I/O buses to transfer data 

between devices and memory or directly from one device to another. During the period of 

designing this PCI Multi-bus simulation system, it is rather import to check that PCI bus and 

PCI-to-PCI Bridge (P2PB) are able to transfer data to and from the attached devices at the rate 

required for correct operation of the device. This section describes a simulator for the evaluation 

of the use of PCI bus and P2PB. This simulator is based on the PCI Local Bus Specification and 

P2PB Architecture Specification. 

 

The PCI bus is controlled by complex protocol which permits several different forms of 

transaction as follows: 

(1) Data Transfer transaction focuses on transferring data between PCI Bus devices or between 

PCI Bus devices and main memory. 

http://en.wikipedia.org/wiki/Universal_Serial_Bus
http://en.wikipedia.org/wiki/Ethernet
http://en.wikipedia.org/wiki/Wikipedia:Citing_sources
http://en.wikipedia.org/wiki/PCI-SIG
http://en.wikipedia.org/wiki/January_15
http://en.wikipedia.org/wiki/2007
http://en.wikipedia.org/wiki/PCI_Express#_note-PCIExpressPressRelease#_note-PCIExpressPressRelease
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(2) Configuration transaction focused on data transferred to configure relative devices or to 

determine the properties of devices. 

(3) Special Cycle transaction focuses on sending messages/information to several destinations. 

(4) Interrupt Acknowledge transaction focuses on the relative operation during the process of 

interrupt acknowledge. 

 

Our simple simulator just deals with regular data transfer transactions on the single PCI bus or 

multiple PCI bus by P2PB. It can simulate the operation of both the 32bit/64bit versions of PCI 

bus at synchronous clock frequencies: 33MHz, 66MHz, or 133MHz. On the other hand, this 

multi-Bus simulator can simply simulate 6~8 Buses’ transactions. 

 

5.1 Data Transfer Transactions-Read/Write Transaction 

From hardware perspective, the local bus specification describes the principles of Read 

transactions and Write transactions. 

 

The timing diagrams in this section show the relationship of significant signals involved in 32-bit 

transactions. When a signal is drawn as a solid line, it is actively being driven by the current 

master or target. When a signal is drawn as a dashed line, no agent is actively driving it. However, 

it may still be assumed to contain a stable value if the dashed line is at the high rail. Tri-stated 

signals are indicated to have indeterminate values when the dashed line is between the two rails 

(e.g., AD or C/BE# lines). When a solid line becomes a dotted line, it indicates the signal was 

actively driven and now is tri-stated. When a solid line makes a low to high transition and then 

becomes a dotted line, it indicates the signal was actively driven high to pre charge the bus and 

then tri-stated. 

 

Figure16 illustrates a read transaction and starts with an address phase which occurs when 

FRAME# is asserted for the first time and occurs on clock 2. During the address phase, AD[31::00] 

contain a valid address and C/BE[3::0]# contain a valid bus command. 

 

 

Figure16. PCI bus Basic Read Operation 
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The first clock of the first data phase is clock 3. During the data phase, C/BE# indicate  which byte 

lanes are involved in the current data phase. A data phase may consist of wait cycles and a data 

transfer. The C/BE# output buffers must remain enabled (for both read and writes) from the first 

clock of the data phase through the end of the transaction. This ensures C/BE# are not left floating 

for long intervals. The C/BE# lines contain valid byte enable information during the entire data 

phase independent of the state of IRDY#. The C/BE# lines contain the byte enable information for 

data phase N+1 on the clock following the completion of the data phase N. This is not shown in 

Figure16 because a burst read transaction typically has all byte enables asserted; however, it is 

shown in Figure17. Notice on clock 5 in Figure17, the master inserted a wait state by de-asserting 

IRDY#. However, the byte enables for data phase 3 are valid on clock 5 and remain valid until the 

data phase completes on clock 8. 

 

The first data phase on a read transaction requires a turnaround-cycle (enforced by the target via 

TRDY#). In this case, the address is valid on clock 2 and then the master stops driving AD. The 

earliest the target can provide valid data is clock 4. The target must drive the AD lines following 

the turnaround cycle when DEVSEL# is asserted. Once enabled, the output buffers must stay 

enabled through the end of the transaction. (This ensures that the AD lines are not left floating for 

long intervals.) 

 

One way for a data phase to complete is when data is transferred, which occurs when both IRDY# 

and TRDY# are asserted on the same rising clock edge. (TRDY# cannot be driven until 

DEVSEL# is asserted.) When either IRDY# or TRDY# is de-asserted, a wait cycle is inserted and 

no data is transferred. As noted in Figure16, data is successfully transferred on clocks 4, 6, and 8 

and wait cycles are inserted on clocks 3, 5, and 7. The first data phase completes in the minimum 

time for a read transaction. The second data phase is extended on clock 5 because TRDY# is 

de-asserted. The last data phase is extended because IRDY# was de-asserted on clock 7. 

 

The master knows at clock 7 that the next data phase is the last. However, because the master is 

not ready to complete the last transfer (IRDY# is de-asserted on clock 7), FRAME# stays asserted. 

Only when IRDY# is asserted can FRAME# be de-asserted as occurs on clock 8, indicating to the 

target that this is the last data phase of the transaction. 

 

Figure17 illustrates a write transaction. The transaction starts when FRAME# is asserted for the 

first time which occurs on clock 2. A write transaction is similar to a read transaction except no 

turnaround cycle is required following the address phase because the master provides both address 

and data. Data phases work the same for both read and write transactions. 

 

In Figure17, the first and second data phases complete with zero wait cycles. However, the third 

data phase has three wait cycles inserted by the target. Notice both agents insert a wait  cycle on 

clock 5. IRDY# must be asserted when FRAME# is de-asserted indicating the last data phase. 

 

The data transfer was delayed by the master on clock 5 because IRDY# was de-asserted. The last 

data phase is signaled by the master on clock 6, but it does not complete until clock 8.  Note: 
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Although this allowed the master to delay data, it did not allow the byte enables to be delayed. 

 

Generally speaking, a transaction on the PCI bus involves an address phase, in which an address is 

transferred followed by a sequence of one or more data phases, in each of which a data item is 

transferred. Each transaction is initiated by a bus device acting as master and involves another 

participant known as the target. Data transfers may be oriented towards the master or towards the 

target, with the corresponding transactions respectively being denoted read and write transactions. 

The address specified at the start of the transaction is the address within the target of the first data 

item transferred. 

 

 

Figure17. PCI bus Basic Write Operation 

 

The PCI bus may be implemented in a 32bit or 64 bit version. In the 32 bit version, an address is 

represented by 4 bytes, which are transmitted in a single bus clock cycle, and each data item can 

be from 0 to 4 bytes, which are likewise transmitted in a single bus clock cycle. In the 64 bit 

version, an address is represented by 8 bytes and each data item by from 0 to 8 bytes, which are 

transmitted in a single clock cycle. According to the PCI bus specification, the number of data 

bytes to be transferred in a given data phase is specified by byte enable bus signals presented 

immediately prior to the actual transfer of data and may vary from one data phase to the next 

within a burst transaction. The simulator makes the simplifying assumption that the first (N-1) 

data phases of an N data phase transaction involve transfer of data with the maximum width (4 

bytes or 8 bytes) for the bus version concerned and that only the final transfer may involve fewer 

bytes, to allow for data transfers whose length is not an integral multiple of 4 or 8 bytes 

respectively. 

 

The PCI bus specification allows the target to delay the transfer of a data item by inserting wait 

states, each lasting one clock cycle, in any data phase. In more detail, the first data phase of a 

transaction can be extended to at most 16 clock cycles and each subsequent data phase to at most 8 

clock cycles. The simulator allows the user to specify a maximum number of wait states for each 

device. Note that these wait states are specified for the device as master, although strictly speaking 
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they describe the behavior of the device’s target in the system under consideration. The user can 

also specify whether the actual number of wait states used in each data phase is selected 

deterministically or stochastically. With deterministic selection, exactly wait states are inserted in 

every data phase. With stochastic selection, the simulator will for each data phase select a random 

whole number as the number of wait states to be inserted. These features make it possible to 

simulate the behavior of devices with slow response and of targets such as main memory, which 

may exhibit access contention. 

 

5.2 PCI Bus device’s early termination 

As for hardware implementation, I here just give simple description and will not write too much 

about it. The PCI bus specification allows bus transactions to be terminated before the data 

transfers tackled by the master at the start of the transaction. Our simulator will terminate the data 

transfer transaction according to several situations mentioned below: 

(1) New master wants to gain control right of the bus and the PCI bus arbitrator grants the bus to 

this new master. This situation is dealt with by the simulator according to the PCI bus 

specification for arbitration using rotating or fixed priority or time quantum scheme. The 

simulator implements the rules for dealing with the master’s latency timer whose initial value 

is gave by the user. A single idle state lasting one clock cycle is always inserted on the bus 

between the current transaction and its next transaction. The simulator does not support fast 

back-to-back access without inserted idle states. 

(2) Target device can not respond within the limit of 8 or 16 clock cycles set by the rules for 

insertion of wait states. The target must send disconnection information to the master which 

must terminate or end the transaction. The master may subsequently try to restart the 

transaction after a delay which is at least about two bus clock cycles. In our simulator, this 

situation is assumed not to occur. 

(3) Target device can not respond to master device, not support a burst mode transaction 

requested by the master device, sends a STOP signal to terminate the current transaction, or 

determines that the address to be used in the next data phase lies outside the range of 

addresses available to it. Our simulator will not simulate this situation and also not simulate 

errors such as data errors, address parity errors and any other system errors. 

 

5.3 Relative parameters of Device, Data Generation, Input, Output, and Bus 

In this simulator, every device can work as a PCI Bus master which can initiate either read or 

write data transfer transaction by using specified block data. A device is defined as PCI Bus’s 

logical device to work according to the PCI Bus specification. If a physical device which can both 

read and write is to be simulated, or if the device uses several different block sizes or buffer size, 

then two or more PCI Bus devices need to be defined. Every device has several basic characters 

mentioned in table 1. 

Name character Function 

Priority Positive integer giving the priority of the device during bus arbitration by 

using fixed device’s priority. For rotating and time quantum priority 

arbitration, the value is ignored. 

Transaction type There are two kind of transactions: Read, Write 

Buffer size Positive integer giving the size in bytes of the buffer which the device as 
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master will try to fill or empty during each transaction. If no new devices 

are active during the transaction, all the data will be transferred in a single 

burst. If pre-emption occurs before the end of the transaction, the rest of the 

buffer will be transferred in on or more following secondary transactions. 

Maximum data rate The maximum data rate is that the device can reach. If the contents of the 

buffer have not been completely transferred by the time the next buffer full 

is generated, the user is warned that a data overrun situation has occurred. 

Maximum wait states The maximum number of wait states which can be inserted in each data 

phase by the device’s target in the system. 

Wait state generator process Stochastic if the number of wait states is selected randomly from the 

interval [0...nw] for each data transfer phase, or Deterministic if the number 

of wait states is exactly nw in each data transfer phase. (0<= nw<=8) 

Latency timer The initial value is used for the latency timer at the start of each new 

transaction of relative the device 

Table1. Device parameters introduction 

 

As for the input parameters, they are used to set general parameters of the simulation and general 

bus parameters. When the simulator source code runs, it will show us some dialogue for the 

setting parameters’ input and we will typed in interactively. The relative input parameters shown in 

table 2. 

Input parameters Type content 

Number of masters A positive integer, the number of PCI Bus’s logical devices. 

Number of clock cycles  

in simulation 

A positive integer, the length of the simulation clock cycles 

Throughput plot required(y/n) If yes, the simulator will plot 2D diagram with bus throughput and applied 

load parameters. (y/n responses are not case sensitive) 

…… …… 

Data rate plot required(y/n) If yes, the simulator will plot 3D diagram with bus utilization and time at 

all kinds of applied loads. (y/n responses are not case sensitive) 

Histogram of transfer times plot 

required(y/n) 

If yes, the simulator will plot 3D histogram of transfer time at all kinds of 

applied load. (y/n responses are not case sensitive) 

Table2. relative input parameters 

 

If a throughput plot is wanted, the user will input a name for the file to contain data for sending to 

gnuplot. If a data rate plot is wanted, the user will give a name for the file to contain data for 

sending to gnuplot, and for the size in clock cycles of the time slot to be used to sample the 

utilization of the bus. There are relative points appear in the gnuplot diagram for corresponding 

time slot. Choosing a smaller value will create a more accurate diagram in which the bus 

utilization changes with time, but it will create a big file to be generated. If a histogram of transfer 

times is wanted, the user will input a name for the file to contain data for sending to gnuplot and 

also for the number of histogram bins corresponding to the relative unit normalized transfer time, 

which is the time taken to transfer a buffer of data for corresponding device if no pre-emption 

appears and no wait states are inserted during the period of transfer. 
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As for general bus parameters, they are showed in table 3 as follows: 

Name content 

Frequency (MHz) PCI Bus clock frequency, f, has 3 options: 33, 64, or 133 MHz 

Data size (Bytes) Size of data objects has two options: 4 or 8 bytes 

Arbitration (f, r, or t) If f, bus arbitration works according to fixed priority 

If r, bus arbitration works with a rotating ( round robin) 

arbitration scheme 

If t, bus arbitration works with time quantum or time slot 

scheme 

Table3. General bus parameters 

 

Output from the simulator consists of some standard information directed to the standard output 

stream stdout and a number of optional forms of output, as selected by the user during the initial 

dialogue. Table 4 shows us the relative standard output parameters. 

Name content 

The amount of generated data It is generated by all of the PCI Bus devices during the simulation period 

The amount of transferred data  It is actually transferred on the PCI Bus during the period of simulation.  

The average burst lengths It is the average burst lengths of data transferred by each of PCI Bus device 

Table4. Relative standard output parameters 

 

In this section, I simply introduce some basic input and output information. As for others, I will 

not give more details because of the paper space. 

 

5.4 Introduction to design and implementation of simulation software 

Our simulator is developed by C/C++/G++ and top-down method. It works or executes under 

Redhat Linux platform. As for the software architecture, It is consists of three sections: head file 

which mainly focuses on the definition of parameters and declaration of functions, main program 

which shows us the definition of relative functions and main function, and plot program which call 

relative gnuplot commands to draw corresponding diagrams according to users’ requirements. 

 

5.4.1 Head file section 

I here just give some simple introduction to these three sections. Firstly, as for the head file section, 

we call some regular C/C++ library file: 

#include <stdlib.h> 

#include <stdio.h> 

#include <math.h> 

#include <ctype.h> 

#include <unistd.h> 

#include <iostream> 

#include <cstdlib> 

…… 

 

Then, define constant value and parameters (table 5 shows some of parameters): 

Parameter  name content 

#define IDLE  0 

#define ADDRESS  1 

These 4 constant values are used to implement data transfer transaction 

operation including addressing, inserting overload, and data transfer. 
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#define WAIT  2 

#define DATA  3 

Double  f; PCI bus clock frequency (MHz) 

Int width; PCI bus data width (Bytes) 

Int arb; PCI bus arbitration scheme 

Int nm; Number of PCI bus masters 

…… …… 

Int buff_size[]; Buffer size for master 1..n (Bytes) 

Int read_write[]; R or W tranction type for master 1..n 

Char rw_both[]; Both R/W transaction type for master 1..n 

Int status_selection[] Wait state selection for master 1..n 

Int LT[]; Latency timer value  

Int PB[] PCI bridge selection 

Int PBAbus1[] Bus0 device accesses Bus1 devices 

Int PBAbus0[] Bus1 device accesses Bus0 devices 

…… …… 

Long int sim_total; Total simulation time (clock cycles) 

Long int t; Current t; 

Long int slot_width; Width of time slot for activity graph 

Long int slot_current; Time for end of current time slot 

Long int slot_data Amount of data transferred at start of slot 

…… …… 

Int pre_empt; It will be true, if a new PCI bus master has requested bus 

Int throughput_plot; If throughput file is required, it will be true 

Int rate_plot; If data rate plot is required, it will be true 

Int verbose; If users want detail of transfer, it will be true 

Char tqvalue; Time quantum scheme’s temporary parameter 

Table5. Define constant value and parameters 

 

Finally, I declare some of relative functions and define relative Classes (table 6 as follows) 

Class/Function name content 

Class  device; class device{ 

 public: 

  void pparams_bus1(FILE *fp); 

         void pparams_bus2(FILE *fp); 

         void pparams_bus3(FILE *fp); 

            …… 

  void pparams_bus0_bus1(FILE *fp); 

  void pparams_bus1_bus0(FILE *fp); 

        …… 

  ~device();  }; 

Class arbitrator; class arbitrator{ 

 public: 
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  int arbitrate (int current); 

  void timequatum (); 

  ~arbitrator(); 

}; 

Class bus; class bus{ 

 public:   

  void businit(); 

  void PCI_Bridge_Bus1(); 

Void PCI_Bridge_Bus2(); 

Void PCI_Bridge_Bus3(); 

Void PCI_Bridge_Bus4(); 

             ……. 

Void PCI_Bus0_acces_Bus(int v1, int v2) 

Void PCI_Bus1_acces_Bus0() 

Void PCI_Bus1_acces_Bus2() 

Void PCI_Bus1_acces_Bus(int v1,int v2) 

Void PCI_Bus2_acces_Bus(int v1,int v2) 

    …… 

  ~bus(); 

}; 

Class graph; 

…… 

class graph{ 

 public: 

  void draw_graph(); 

  ~graph(); 

}; …… 

Table6. Define relative functions and Classes. 

 

5.4.2 Implementation of data transfer transaction -- main function section 

Under single bus situation, our multi-Bus simulator works according to the steps as follows: 

(1) PCI bus initialization operation including setting the default bus frequency, bus width, bus 

arbitration parameter and so on. 

(2) Users will enter relative value of parameters according to the screen mentions interactively. 

the relative parameters including number of master, number of clock cycles of simulation, 

number of points on applied load axis, which kind of plot wanted by users, bus frequency, bus 

width, bus arbitration and so on. 

(3) Start to enter device’s parameter value according to the prompts including number of master, 

priority of master, buffer size, transaction type(read, write, or both of them), device’s max.  

data rate, maximum wait clock cycles, latency timer’s clock cycles, etc. 

(4) After input relative system parameters, the program executes a big loop which implements the 

whole data transfer transaction. This big loop is consists of four parts:                     

Part 1: Do some initialization before data transfer transaction start including: 

      → storing device’s data production rate to the corresponding array 

      → storing mean interval between buffers arrival instants to the corresponding array 

      → storing the time of arrival of first buffer full for each device to array 
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      → setting the remaining data in every device’s buffer is zero to corresponding array 

      → setting every device’s burst length is zero to corresponding array 

      → setting accumulated number of burst is zero to corresponding array 

      → some of other initialization 

Part 2: If a new buffer full of data is due for a device, checking that current buffer is empty, 

insetting data, and deciding instant when next buffer is due 

Part 3: If there are one or more devices with data in their buffers, then select the device with 

highest priority to do data transaction operation according to the arbitration algorithm 

Part 4: When the device with highest priority start to transfer data, we use switch() statement 

to implement the whole data transfer process including IDLE operation to do 

overhead operation before transferring data, ADDRESS operation to transfer address, 

WAIT operation to execute wait state action during data transfer, and DATA operation 

to transfer data item with general method and burst method 

All these parts mentioned above used by every device, when they get bus control right. 

(5) During the data transfer process, the system will output related data and result to 

corresponding file for plotting. On the other hand, we can see the real time output on the 

computer screen. 

(6) Finally, at the end of the execution of software, the system will call GNUPLOT automatically 

and start the plot of throughput, data rate, and histogram according to users’ requirement. 

 

5.4.3 Implementation of arbitration scheme 

About arbitration scheme, we try to use fix priority algorithm, rotating priority algorithm, and time 

quantum algorithm and red robin algorithm. Below is simple introduction to these three 

algorithms. 

 

Fix priority algorithm: it is simple and just arbitrates several devices according to their fixing 

priority. The device with high priority device always gets the bus control right for data transfer 

operation. For example, device 1’s priority is 2, device 2’s priority is 3, and device 3’s priority is 4, 

when they request to control bus simultaneously, the arbitration scheme will decide which one will 

get the bus control right according to their priority’s value, the smaller the better. 

 

Rotating priority algorithm: the arbitration scheme will not consider every device’s priority and 

just according to a sequence to operate. For example, when device 1 finish its data transaction, 

device 2 request the data transfer, when arbitrator finds its buffer not empty, the arbitrator will 

give device 2 the bus control right. Or else, device 2 will have no right to control bus and 

arbitrator will check device 3 for data transaction operation. 

 

Time quantum algorithm: the arbitrator will give every device the same time quantum to transfer 

their data. The time quantum is a constant which equals 16 clock cycles. If a device’s operation 

time is smaller than time slice (or time quantum), it will finish data transaction smoothly. Or else, 

the arbitration scheme will stop it, push its relative parameters into a stack for protection when its 

operation does not finish in a fixed time slice and select next device to use bus for data transfer 

operation according to corresponding algorithm. 
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Red robin algorithm: this algorithm is almost the same as time quantum algorithm. On the other 

hand, it is a little bit simple than the time quantum algorithm and I did not use it in my source code, 

but I can add it according to the special requirement. 

 

In our simulator, we mainly use former two arbitration algorithm. As for time quantum algorithm, 

we just use it do some simple compare testing as supplement. 

 

5.4.4 Implementation of plotting graph 

This simulator not only simulate the PCI bus data transfer transaction, but can collect relative data 

to draw three kinds of 2D/3D diagrams including throughput plot, data rate plot, and histogram 

plot. If the users want a file containing data for a throughput plot be produced, then an output file 

containing data suitable for gnuplot will be generated. This file shows us the details of simulation 

and of the devices attached to the bus. The actual data to be plotted consist of (Generated data, 

Transmitted data) pairs, (dg, dt), is fit for plotting by the gnuplot plot command. Figure 18 shows a 

throughput plot as an example. 

 

Figure18. Throughput plot 

 

If users want a file containing data for a data rate plot be produced, then an output file containing 

data suitable for reading into gnuplot will be generated. The final data to be plotted consisted of 

(Time, Load, PCI_Bus utilization) triplets, (t, l, u), is fit for plotting as a 3D plot by the 

GNUPLOT relative command. Figure19 shows us the example of 3D data rate plot. 

 

Figure19. 3D data rate plot 
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If users want a file containing data for a histogram produced, then an output file containing data 

suitable for reading into gnuplot will be generated. The relative data to be plotted is composed of 

(Transfer time, Load, Samples) triplets, (t,l,n), fit for plotting as a 3D plot via the gnuplot relative 

command. Figure20 shows us a 3D histogram plot. In this example, because there are several 

devices, the data file contains several samples columns, one for each device. When display the file, 

user must select the desired samples column by using gnuplot command as follow: 

Gnuplot> load “name of file.gnp” 

Gnuplot> splot “name of data file” using 1:2:4 notitle 

 

In this example, the suing 1:2:4 parameter to the splot command specifies that time value are 

selected from column 1, load from column 2 and samples from column 4 of the file. Transfer 

times for several devices can be plotted on the same histogram by suing several file and using 

specification in the splot command. For example: 

Gnuplot> load “name of file.gnp” 

Gnuplot> splot “name of data file” using 1:2:3, “name of data file” using 1:2:6 

 

Give the histograms for device 1 (column 3) and 4 (column 6). 

 

Figure20. 3D histogram plot 

 

5.4.5 Implementation of multi PCI bus simulation 

Peripheral Component Interconnect (PCI) is a stardard that describes how to connect the 

peripheral components of a system together. In order to design and implement our multi-Bus PCI 

simulator, we need to know not only the PCI loacal Bus specification, but PCI-PCI(P2P) Bridge 

specification. Because the PCI Buses and PCI-PCI Bridges are the glue connecting the system 

components together. 

 

In figure21, we can see that the CPU is connected to PCI Bus0 and PCI Bridge connects the 

promary Bus to the secondary PCI Bus, PCI Bus1. In PCI Bridge specification, PCI Bus1 is 

described as being downstream of the PCI-PCI Bridge and PCI Bus0 is upstream of the Bridge. 

The SCSI and Ethernet devices are connected to the secondary PCI Bus. Physically the Bridge, 

secondary PCI Bus and two devices would be contained on the same PCI card. The PCI -ISA 

Bridge supports older, legacy ISA devices. 
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Figure21. Example PCI Based System 

 

If we want to design and implement a PCI multi-Bus hardware product, we must spend lots of 

time thinking over PCI address space assignment, PCI configuration header, PCI I/O, and PCI 

memory address. On the other hand, we also deal with PCI-PCI Bridges’ PCI configuration cylces, 

PCI Bus numbering, PCI I/O and PCI memory windows. Under Linux system, the kernel PCI data 

structures diagram looks like Figure 22. Each PCI device (including the P2P Bridges) is descirbed 

by a pci_dev data structure. Every PCI Bus is described by a pci_bus data structure. The result is a 

tree structure of PCI buses each of which has a number of child PCI devices attached to it. As a 

PCI bus can only be reached using a PCI-PCI Bridge (except the primary PCI bus, bus 0), each 

pci_bus contains a pointer to the PCI device (the PCI-PCI Bridge) that it is accessed through. That 

PCI device is a child of the the PCI Bus's parent PCI bus. 

 

 

Figure22. Linux Kernel PCI Data Structures. 
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When Linux looks for downstream PCI Buses, it must configure the intervening P2P Bridges’ 

secondary and subordinate Bus numbers. As for the hardware aspect, P2P Bridges need to know 

the primary Bus number, secondary Bus number, subordiante Bus number, PCI I/O and PCI 

memory windows for P2P Bridges to pass PCI I/O, PCI memory or PCI configuration address 

space reads/writes across them. How does Linux to deal with this problem which is at the time 

when you wish to configure any given PCI-PCI Bridge you do not know the subordiante Bus 

number for the Bridge, you do not know if there are further P2P Bridge downstream and you do 

not know what number will be assigned to them. The answer is to depthwise recursive algorithm 

and scan each Bus for any P2P Bridges assgining them numbers as they are found. As each 

PCI-PCI bridge is found and its secondary bus numbered, assign it a temporary subordinate 

number of 0xFF and scan and assign numbers to all PCI-PCI bridges downstream of it. This all 

seems complicated but the worked example below makes this process clearer. 

 

Here I give a simple example for the Linux P2P Bridge nubmering process. There are 4 basic steps 

to simply describe the whole process: 

Step1: in Figure23, The first Bridge scan would find Bridge1. The PCI bus downstream of 

Bridge1 would be numbered as 1 and Bridge1 assigned a secondary bus number of 1 and a 

temporary subordinate bus number of 0xFF. This means that all Type 1 PCI Configuration 

addresses specifying a PCI bus number of 1 or higher would be passed across Bridge1 and 

onto PCI Bus1. They would be translated into Type 0 Configuration cycles if they have a 

bus number of 1 but left untranslated for all other bus numbers. This is exactly what the 

Linux PCI initialisation code needs to do in order to go and scan PCI Bus1. 

 

 

Figure23. Setp1 of Linux P2P Bridge nubmering 

 

Step2: Linux uses a depthwise algorithm and so the initialisation code goes on to scan PCI Bus 1. 

Here it finds PCI-PCI Bridge2. There are no further PCI-PCI bridges beyond PCI-PCI 

Bridge2, so it is assigned a subordinate bus number of 2 which matches the number 

assigned to its secondary interface. Figure24 shows how the buses and PCI-PCI bridges are 

numbered at this point. 



Design and Implementation of PCI Multi-Bus Simulator 

 

 30 

 

 

Figure24. Setp2 of Linux P2P Bridge nubmering 

 

Step3: The PCI initialisation code returns to scanning PCI Bus 1 and finds another PCI-PCI 

Bridge, Bridge3. It is assigned 1 as its primary bus interface number, 3 as its secondary bus 

interface number and 0xFF as its subordinate bus number. Figure25 shows how the system 

is configured now. Type 1 PCI configuration cycles with a bus number of 1, 2 or 3 wil be 

correctly delivered to the appropriate PCI buses. 

 

 

Figure25. Setp3 of Linux P2P Bridge nubmering 

 

Step4: Linux starts scanning PCI Bus 3, downstream of PCI-PCI Bridge3. PCI Bus 3 has another 

PCI-PCI bridge (Bridge4) on it, it is assigned 3 as its primary bus number and 4 as its 

secondary bus number. It is the last bridge on this branch and so it is assigned a 

subordinate bus interface number of 4. The initialisation code returns to PCI-PCI Bridge3 

and assigns it a subordinate bus number of 4. Finally, the PCI initialisation code can assign 

4 as the subordinate bus number for PCI-PCI Bridge1. Figure26 shows the final bus 

numbers. 
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Figure26. Setp4 of Linux P2P Bridge nubmering 

 

These 4 steps refers to not only hardware but also software, they are rather complex to be 

implemented. Because our PCI multi-Bus simulator is completely implemented by software under 

Linux Red Hat, it just do some simple operation and transaction. Figure27 shows the simple 

system structure. We try to design and implement 6~8 PCI Buses (including Bus0) and 5~7 P2P 

Bridges. Our Buses structure looks like star style (Bus1~Busn are extended from Bus0). 

 

 

Figure27. PCI Bus and P2P Bridge structure of simulator 

 

Under multi PC Bus situation, Besides the single PCI bus’ relative functions, I add several new 

ones such as Bridge_Bus1(), Bridge_Bus2()…Bridge_Bus6(), Bus0_access_Bus(), 

Bus1_access_Bus()…. Bus6_access_Bus(). These functions deal with the data transfer transaction 

among Bus0, Bus1, Bus2…Bus6 devices. I here simply introduce these functions. 
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PCI_Bridge_Bus1(): this function is used to implement data transaction among bus1’s devices. 

According to one of arbitration scheme, when PCI Bridge1 gets the bus0 control right, it will 

check if bus1’s devices want data transfer transaction. If one or more bus1’s devices want it, the 

Bridge1 will let them do the relative operations and when they finish, Bridge1 will release the 

bus0’s control right and bus0’s other device will get the bus0’s control right to do corresponding 

operation. In this function, we will call PCI_Bus1_access_Bus () function which will let Bus1’s 

devices access any other Buses’ devices. On the other, PCI_Bridge_Bus1() can extend its new 

subordinate Buses according to our original design, although this function is still not started to be 

implemented. 

 

PCI_Bridge_Bus2(): this function is used to implement data transaction among bus2’s devices. 

According to one of arbitration scheme, when PCI Bridge2 gets the bus0 control right, it will 

check if bus2’s devices want data transfer transaction. If one or more bus2’s devices want it, the 

Bridge2 will let them do the relative operations and when they finish, Bridge2 will release the 

bus0’s control right and bus0’s other device will get the bus0’s control right to do corresponding 

operation. In this function, we will call PCI_Bus2_access_Bus () function which will let Bus2’s 

devices access any other Buses’ devices. On the other, PCI_Bridge_Bus2() can extend its new 

subordinate Buses according to our original design, although this function is still not started to be 

implemented. 

 

PCI_Bridge_Bus3(),PCI_Bridge_Bus4(),PCI_Bridge_Bus5(), and PCI_Bridge_Bus6() have the 

same design idea and here I will not give more details. 

 

PCI_Bus0_access_Bus1(): This function focuses on bus0’s device accessing bus1’s devices. When 

one of bus0’s devices (except Bridge) wants to access bus1’s devices, we make this bus0’s device 

and all bus1’s devices as a new group. In this new group, we can use different arbitration 

algorithm to implement data transfer transaction among these devices. When corresponding data 

transaction finish, this new group will disintegrate automatically. 

 

PCI_Bus0_access_Bus(): This function can implement that Bus0’s non-Bridge devices access any 

other Buses’ devices such as Bus1, Bus2, Bus3…Bus6 and so on. The accessing process almost 

the same as PCI_Bus0_access_Bus1(). 

 

PCI_Bus1_access_Bus0():This function focuses on bus1’s device accessing bus0’s devices. When 

one of bus1’s devices wants to access bus0’s devices (except Bridge), we make this bus1’s device 

and all bus0’s devices (un-including Bridge) as a new group. In this new group, we can use 

different arbitration algorithm to implement data transfer transaction among these devices. When 

corresponding data transaction finish, this new group will disintegrate automatically. 

 

PCI_Bus1_access_Bus():This function can implement that Bus1’s non-Bridge devices access any 

other Buses’ devices such as Bus0, Bus2, Bus3…Bus6 and so on. The accessing process almost 

the same as PCI_Bus1_access_Bus0(). From PCI_Bus0_access_Bus(), we can know Bus2, Bus3, 

Bus4, Bus5 and Bus6’s accessing process. 
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All these functions mentioned above are the main ones in the multi PCI bus simulator. Figure28 

shows the source code executive process and you can get the simulation process according to the 

diagram. As for others, I do not give more details. 

 

 

Figure28. Simulator function diagram 

 

 

As for the whole PCI Multi-Bus simulator, I just introduce the basic content of design and 

implementation. If you want more detail, please review my source code. On the other hand, this 

simulator is just used for PCI Bus research and it still exists lots of logic bugs which causes many 

problems. Therefore, this simulator maybe can’t give you accurate simulation of PCI bus data 

transfer transaction and all these stuffs are just used as reference. However, I believe that this 

simulator will become more and more robust in the coming future under further development. 
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APPENDIX 

//Part of source code of PCI Multi-Bus Simulator 

Call head file: pcibridge.h” 

#include “pcibridge.h” 

 

Define classes’ object: 

device device_object; 

bus bus_object; 

arbitrator arbitrator_object; 

graph graph_object; 

Test test_object; 

 

Defnine relative function: 

//these function mentioned below used to enter 

//Bus1,Bus2…Bus6’s device information to 

//relative file. 

Device::pparams(FILE *fp) 

Device::pparams_bus1(FILE *fp) 

Device::pparams_bus2(FILE *fp) 

Device::pparams_bus3(FILE *fp) 

Device::pparams_bus4(FILE *fp) 

Device::pparams_bus5(FILE *fp) 

Device::pparams_bus6(FILE *fp) 

Device::pparams_bus0_bus1(FILE *fp) 

Device::pparams_bus1_bus(FILE *fp) 

Device::pparams_bus2_bus(FILE *fp) 

 

// arvitration function defination 

Int arbitrator::arbitrate(int current) 

//Bus initialization function 

Void bus::businit() 

http://en.wikipedia.org/wiki/PCI-X
http://en.wikipedia.org/wiki/PCI_Express#_note-2
http://tldp.org/LDP/tlk/dd/pci.html
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Void bus::PCI_Bridge_Bus1(){ 

  for (int r1=0;r1<=nm1;r1++){ 

      if (bus1_access_bus[r1]==0){ 

       bus_object.PCI_Bus1_acces_Bus(0,nm);     //access the BUS0's devices 

         }; 

      if (bus1_access_bus[r1]==2){ 

       bus_object.PCI_Bus1_acces_Bus(2,nm4);    //access the BUS2's devices 

         }; 

      if (bus1_access_bus[r1]==3){ 

       bus_object.PCI_Bus1_acces_Bus(3,nm5);    //access the BUS3's devices 

         }; 

      if (bus1_access_bus[r1]==4){ 

     bus_object.PCI_Bus1_acces_Bus(4,nm6);    //access the BUS4's devices 

         }; 

      if (bus1_access_bus[r1]==5){ 

       bus_object.PCI_Bus1_acces_Bus(5,nm7);    //access the BUS5's devices 

         }; 

      if (bus1_access_bus[r1]==6){ 

       bus_object.PCI_Bus1_acces_Bus(6,nm8);    //access the BUS6's devices 

         }; 

   }; 

 

  // Perform simulation for increasing fractions of max. data rate 

  printf("\n----------\nSimulation results:\n"); 

  printf("\n    Generated data  Transmitted data   "); 

  printf("Average burst lengths (data cycles)");  

  fflush( stdout );     

 

// PCI BuS1 device start to R/W operation 

  ……………. 

} 

 

Void bus::PCI_Bridge_Bus2() 

Void bus::PCI_Bridge_Bus3() 

Void bus::PCI_Bridge_Bus4() 

Void bus::PCI_Bridge_Bus5() 

Void bus::PCI_Bridge_Bus6() 

 

void bus::PCI_Bus0_acces_Bus(int v1, int v2) 

void bus::PCI_Bus1_acces_Bus0() 

void bus::PCI_Bus1_acces_Bus2() 

void bus::PCI_Bus1_acces_Bus(int v1,int v2) 

void bus::PCI_Bus2_acces_Bus(int v1,int v2) 
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void bus::PCI_Bus3_acces_Bus(int v1,int v2) 

void bus::PCI_Bus4_acces_Bus(int v1,int v2) 

void bus::PCI_Bus5_acces_Bus(int v1,int v2) 

void bus::PCI_Bus6_acces_Bus(int v1,int v2) 

 

void graph::draw_graph() 

Functions’ defination of all Time Quatum Class and objects (omited here!) 

 

Main(){ 

Bus_object.businit(); 

 

Input bus0’s devices parameters: 

Nm/simtot/…/priority/buffer size/Max. data rate/wait states/stochastic or determ/latency timer/… 

 

// Copy data to data throughput plot file if required 

  if (tplot) {  

device_object.pparams(tfile); 

          fprintf(tfile,"# Generated data  Transmitted data\n"); 

         }; 

 

  // Copy data to data rate plot file if required  

  if (rplot){ 

  device_object.pparams(rfile); 

          fprintf(rfile,"#    Time      Load     Bus utilisation\n"); 

         }; 

 

  // Copy data to histogram file if required  

  if (xhisto){ 

 device_object.pparams(hfile); 

           fprintf(hfile,"#Transfer time    Load     Samples\n"); 

         }; 

 

Input bus1’s devices parameters: 

Input bus2’s devices parameters: 

Input bus3’s devices parameters: 

Input bus4’s devices parameters: 

Input bus5’s devices parameters: 

 

// prepare to display data transaction info on the computer screen 

  printf("\n----------\nSimulation results:\n"); 

  printf("\n    Generated data  Transmitted data   "); 

  printf("Average burst lengths (data cycles)");  

  fflush( stdout ); 
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  for (idr=1; idr<=ndr; idr++){  

      for (i=1; i<=nm; i++){  

         if (PB[i]==1){ 

            printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

            bus_object.PCI_Bridge_Bus1();    //run the BUS1's devices           

         }; 

         if (PB[i]==2){ 

          printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

          bus_object.PCI_Bridge_Bus2();     //run the BUS2's devices ... master number is nm4 

         }; 

         if (PB[i]==3){ 

          printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

          bus_object.PCI_Bridge_Bus3();     //run the BUS3's devices...master number is nm5 

         }; 

         if (PB[i]==4){ 

          printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

          bus_object.PCI_Bridge_Bus4();    //run the BUS4's devices...master number is nm6 

         }; 

         if (PB[i]==5){ 

          printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

          bus_object.PCI_Bridge_Bus5();    //run the BUS5's devices...master number is nm7 

         }; 

         if (PB[i]==6){ 

          printf("\n BUS0 device %d (PCI Bridge) gets the Bus control right!\n\n",i); 

          bus_object.PCI_Bridge_Bus6();    //run the BUS6's devices...master number is nm8 

         }; 

 

         if (PBAbus[i]!=0){ 

            printf("\n BUS0 device %d is communicating with BUS%d devices!\n\n",i,PBAbus[i]); 

          if (PBAbus[i]==1){ 

             bus_object.PCI_Bus0_acces_Bus(1,nm1);    //access the BUS1's devices 

             }; 

          if (PBAbus[i]==2){ 

             bus_object.PCI_Bus0_acces_Bus(2,nm4);    //access the BUS2's devices 

             }; 

          if (PBAbus[i]==3){ 

             bus_object.PCI_Bus0_acces_Bus(3,nm5);    //access the BUS3's devices 

             }; 

          if (PBAbus[i]==4){ 

             bus_object.PCI_Bus0_acces_Bus(4,nm6);    //access the BUS4's devices 

             }; 

          if (PBAbus[i]==5){ 

             bus_object.PCI_Bus0_acces_Bus(5,nm7);    //access the BUS5's devices 

             }; 
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          if (PBAbus[i]==6){ 

             bus_object.PCI_Bus0_acces_Bus(6,nm8);    //access the BUS6's devices 

             }; 

          if (PBAbus[i]==7){ 

             bus_object.PCI_Bus0_acces_Bus(7,nm9);    //access the BUS7's devices 

             }; 

          if (PBAbus[i]==8){ 

             bus_object.PCI_Bus0_acces_Bus(8,nm10);    //access the BUS8's devices 

             };  

           } 

        else{ 

           printf("\n BUS0 device can not access this BUS, because it is not exist!\n"); 

         }; 

         … … 

        }; 

          ... … 

      while (t < simtot){ 

         // implement Bus0’s data transfer transaction including Read and Write 

………..} 

// 2D/3D plotting 

graph_object.draw_graph(); 

}  // end of main() 

 

 

 

 

 

 


