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Abstract

Biomarkers for cancer are tests performed on tumoral tissue which extract information from genes

(DNA, deoxyribonucleic acid), product of genes (RNA, ribonucleic acid) and proteins. The informa-

tion obtained from biomarkers (abnormal amount, strutural defect, etc.) is the basis for breast cancer

diagnosis and treatment. Routinely performed Biomarker tests like IHC (immunohistochemistry

which reveals protein expression) and FISH (Fluorescence in situ Hybridization which reveals DNA

expression) are time-consuming and expensive and are not available in many regions of the world.

With the availability of digital microscopy images, several attempts have been made to apply

machine learning to predict biomarker information merely from morphology (i.e. from H&E-stained

histopathology images). Doing so accurately, if achievable, can solve the aforementioned issues of

the biomarker tests.

In the aforementioned task current machine learning methods have low prediction performances

(around 80 in terms of AUC, area under the curve) because of unavailability of large datasets. To

tackle this issue we created an in-house dataset called IHC4BC containing more than 180,000 images.

Thanks to the large dataset, we showed that standard machine learning methods can achieve around

90 AUCs. Moreover, we showed that weakly-supervised training with patient-level labels is not

successful and the acquired patch-level labels in our proposed IHC4BC dataset have been essential

to achieve high prediction performances.

Despite the good prediction performance of the obtained classifiers, our experiments showed that

a high patch-level prediction performance does not mean that a method has successfully localized

all relevant tissue regions, with ”relevant” defined as tissue regions in which a particular gene is
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over-expressed, e.g., HER2 (the Human Epidermal Growth Factor Receptor 2) which is found in

approximately 20% of all breast cancers and associated with a sinister outcome if not identified and

properly treated. Given this limitation of methods in localizing relevant tissue regions, we manually

marked near 900K HER2-positive points on the HER2 subset of the IHC4BC dataset. These

manually-marked points were used to train a strongly-supervised classifier with pixel-level labels

and a state-of-the-art localization method. In our analysis automatic localization is competitive to

pixel-level supervision, and - intriguingly - sometimes even works better. Importantly, our analysis

motivates the adoption of automatic localization with, e.g., 3K by 3K level labels specially for

heterogeneous biomarkers for whom acquiring pixel-level label is not possible.

Although the proposed IHC4BC dataset enabled the classifiers to achieve high prediction

performances, there are failure cases and there are a lot of research questions to be answered. To this

end, we proposed a method called GPEX (Gaussian Processes for EXplainning ANNs) to interpret

artificial neural networks: it provides reliable explanations by performing knowledge distillation

between artificial neural networks and GPs (Gaussian processes). Using our proposed GPEX we

obtain Gaussian processes which are equivalent to trained neural networks. We showed that the

obtained GPs can provide insight about the underlying mechanism of neural network classifiers

trained on publicly available image datasets. An important goal is to identify tissue types which

are missing in our in-house IHC4BC dataset and to add those images to the dataset. This goal is

fulfilled in the setting known as active learning where a pool of unlabeled instances are available,

and an active learner picks up some instances in the pool and asks for their labels. The active

learner is supposed to pick up pool instances which are the most beneficial to a predictor. We

applied GPEX to the HER2 subsubet of our IHC4BC dataset, and showed that in Bayesian active

learning the GPs obtained by our proposed GPEX are a better choice than the commonly-used

dropout and can improve a state-of-the-art Bayesian active learner.
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Chapter 1

Introduction to Anatomic Pathology

Methodology Applied to Cancer

In this chapter we provide basic information about anatomic pathology and the medical challenges

which were addressed by this thesis through the development of novel concepts in the machine

learning field. More than one century after the beginning of microscopic examination of tissue,

histopathology is still the gold-standard tool for cancer diagnosis, prognosis, and treatment. In

Sec. 1.1 we explain general steps to obtain a thin section (4 microns) of tissue from a 3D piece of

tissue amenable to microscopic examination. Such thin sections are colorless and we’ll also explain

these sections are stained to provide a variety of morphological details under the microscope. In

Sec. 1.2 we introduce the H&E staining which is the universal and standard stain which stains the

nuclei as purple and the cytoplasm as pink. Pathologists use H&E staining to appreciate, at low

magnification the two basic types of tissular compartments that are the epithelial compartment

(skin, mucosa, milk ducts, etc.) and the stromal compartment (vessels, fat tissue, muscle, etc). At

higher magnification, H&E can provide sub-cellular information such as nuclear texture, nucleoli,

cytoplasm etc. Since approximately 1980, new techniques have revolutionized the field of anatomic

pathology. Thanks to techniques like IHC (immunohistochemistry) and CISH (chromogenic in situ

hybridization) one can add, to the morphology, molecular spatial information: IHC can reveal any

protein and CISH any gene (DNA). New proteins and genes detection are constantly added to the

armada of Biomarkers which especially improve the therapy guidance in cancer. Sec. 1.3 introduces

the two aforememtioned staining techniques that are IHC) and CISH. In Sec. 1.4 we briefly introduce

digital pathology, which enables the application of machine learning to histopathological images.

Finally, in Sec. 1.5 we introduce OncotypeDXr recurrence-score for breast cancer, which prompted

biomarker status prediction in this thesis.
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1.1 Tissue Preparation

Given a tissue sample, the laboratory sta↵ takes the steps illustrated in Fig. 1.1 to produce an

histological slide which can be evaluated under microscope by pathologists.

• Step 1, Tissue sample: There are di↵erent modalities : Biopsy procedure (needle core biopsy);

Surgery procedure (surgical specimen: stomach, lung, etc.).

• Step 2, Fixation and processing: the specimen is placed in a liquid fixing agent (fixative)

during at least 8 hours [21] which is virtually always formalin. Formalin cross-links proteins,

which helps to maintain their structure and prevent degradation.

• Step 3, The tissue is processed as follows: every single molecule of water within the tissue is

removed and replaced by para�n. Ultimately the tissue is embedded within a mould containing

melted para�n: the mould is cooled down and the final result is a FFPE (formalin-fixed,

para�n-embedded) block that can be sectioned.

• Step 4, The FFPE block is cut to make slides: thin sections of 4 microns are obtained and

placed on a glass slide.

• Step 5, Slide staining: Slices from tissue are colorless and must be stained to reveal morpho-

logical details: the para�n is chemically removed from the 4 microns section, the tissue is

re-hydrated to allow the H&E stain to be performed.

• Step 6, Microscopic evaluation: Stained slide is evaluated under microscope by pathologists.

This evaluation is the gold-standard for cancer diagnosis and treatment.

1.2 H&E Staining

H&E staining (short for Hematoxylin and Eosin staining) stains the cell nuclei as purple and the

cytoplasm as pink. H&E staining is the gold-standard, meaning that any collected tissue is stained

with H&E for the initial diagnosis. Figs. 1.2 and 1.3 illustrate some H&E images. In these images

the cell nuclei are visible as purple circles/dots and extra-cellular material are visible in pink. Fig.

1.2 illustrates H&E-stained images from bone (a), breast (b), lung (c), muscle (d), and skin (e). Fig.

1.3 demonstrates an exemplary use case of H&E stained images: Gleason grading of prostate cancer.

For more details please refer to the caption of Figs. 1.2 and 1.3.
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Figure 1.1: Given tissue sample (step 1), these steps are taken to obtain a slide which is evaluated
by pathologists under microscope (step 6). Images borrowed and modified from [12] and [15].

(a) (b) (c) (d) (e)

Figure 1.2: Examples of H&E-stained images under microscope. Images are borrowed from [16]. In
all images the cell nuclei are visible as purple circles/dots and extra-cellular material are visible
in pink. a) Bone, b) DCIS (Ductal carcinoma in situ ) in breast cancer. c) Lung tissue, d) Mucle
tissue, and e) Skin, basal cell carcinoma.

1.3 Biomarkers

In this section we briefly describe the concept of Biomarker which can identify the statuses of gene

(DNA) gene transcription (RNA) and protein expression. Afterwards in Secs. 1.3.1 and 1.3.2 we

introduce two techniques for staining histopathology images, which mark either proteins or gene

copies.
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Figure 1.3: An exemplary use case of H&E-stained images is Gleason grading of prostate cancer by
pathologist assessment. Regions with Gleason grade 1-3 (1st and 2nd rows) contain well-formed
glands, while grade-4 regions (3rd and 4th row) contain poorly-formed glands. Finally, in grade-5
regions there are only occasional gland formations and other patterns like single cells, solid nests,
etc. are visible. This image is borrowed from [43].

A Näıve Understanding from Genes, Gene Copies and Proteins

The way gene codes are executed (i.e. expressed) is interestingly similar to the way computer

programs are executed. A computer program is initially stored on disk as a code which is not

executable yet. One can think of genes as a non-executable code which is stored on disk. To execute

the program, it is copied into computer’s volatile memory (RAM). Gene code (DNA) is a variable

sequence of four di↵erent nitrogenous bases that are Adenine, Thymine, Cytosine and Guanine.

During gene expression (i.e. execution) a segment of DNA is firstly copied within the nucleus, into

a RNA sequence as follows: adenine in DNA pairs with uracil in RNA, thymine in DNA pairs with

adenine in RNA, cytosine pairs with guanine, and guanine pairs with cytosine.. The RNA is a

messager which transfers the information outside the nucleus toward ribosomes where the code is

used to produce proteins. The latter play crucial roles by serving as the building blocks of cells,

enzymes that catalyze biochemical reactions and regulators of various physiological processes.
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(a) (b)

Figure 1.4: a) An antibody illustrated as a big Y-shaped protein. This antibody binds only to
a a specific antigen, in this figure the antigen colored in orange. b) The basic idea of the IHC
technique. To mark a target protein, an antibody that binds to it is used. The antibody (shown as
the Y-shaped blue protein) is equipped with a receivable signal (the red callout shape in (b)). This
signal would be visible under microscope as a brown color. Figs. a and b are borrowed from [17]
and [18] respectively.

1.3.1 IHC (Immunohistochemistry)

An antibody (Ab) is a large, Y-shaped protein which recognizes a unique 3-dimensional area of

a given protein called the antigen. In other words, each antibody binds to a specific antigen; an

interaction similar to a lock and key [17]. The binding of an antibody and an antigen is depicted in

Fig. 1.4 (a). Antibodies are natural constituents of our immune system. IHC has taken advantage

of this specific antigen/antibody relationship by natural antibodies obtained from mouses or rabbits

exposed to a specific antigen. To mark a target protein (i.e. antigen), the specific antibody that

binds to it is used. The antibody (shown as the Y-shaped blue protein in Fig. 1.4 (b)) is equipped

with a receivable signal (the red callout shape in Fig. 1.4(b)). This signal would be visible under

microscope as a brown color. There are more complicated variants of the IHC technique, and the

purpose of Fig. 1.4 is to only familiarize readers with the concept.

Fig. 1.5 demonstrates how visual IHC assessment is done by pathologists. Firstly two thin tissue-

slices are cut ( 1 and 3 in Fig. 1.5). These cuts are usually a few microns apart. Afterwards,

the slide from the 1st cut is stained using H&E ( 2 in Fig.1.5) and the slide from the 2nd cut

is stained using the IHC technique ( 4 in Fig. 1.5). The tissue-cuts obtained in 1 and 3 are

usually a few microns apart, and therefore they often look similar (as visible in 2 and 4 ). Given
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Figure 1.5: Steps taken for IHC assessment. Two tissue-slices are cut (1 and 3), one is stained with
H&E (3) and one with IHC technique (4). Afterwards, for a tissue-region in the H&E modality
(the red square corresponding to 5) the corresponding region in the other modality (the blue square
corresponding to 6) is found. Consequently, the second modality (6) is inspected to see if brown
signal is present.

a point of interest in the H&E modality (the red squared corresponding to 5 ), a pathologist can

find the corresponding region in the other modality (the blue square corresponding to 6 ). If there

is brown signal in the corresponding region (like the brown signal in 6 ) the target protein exists in

that tissue-region. On the other hand, the absence of brown signal indicates that the target protein

doesn’t exist in that tissue-region.

1.3.2 FISH (Fluorescence in situ hybridization)

The IHC technique introduced in Sec. 1.3.1 targets and marks specific proteins. Presence of proteins

can indicate the expression of the corresponding gene. In this section we introduce another technique

called FISH (Fluorescence in situ hybridization) which targets DNA (instead of proteins). In this

technique, the probes bind to specific sequence of DNA with a high degree of complementarity (a

procedure similar to the DNA transcription: instead of antigens, the utilized probes are sequences of

RNA which match complementary DNA - the target) [22], By targeting DNA, FISH is a perceived

as a complementary technique to IHC. The probes emit a signal which is visible under a fluorescence

microscope (the red and green spots in Fig. 1.6). Chromogenic in situ hybridization (CISH) is

another technique very similar to FISH. It also targets sequences of DNA using complementary
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Figure 1.6: Human lymphocyte nucleus stained with the FISH technique, seen under a fluorescence
microscope. The red and green spots are the signals emitted by the probes. This image is borrowed
from [19].

RNA but the obtained assay can be visualized under light microscope.

1.4 Digital Pathology

1.4.1 History

Pathologists traditionally view glass slides under microscope. Digital pathology is the process of

transforming histopathology slides into digital images using whole-slide scanners and subsequent

analysis of these digitized images [70]. Here we borrow and summarize a short history about digital

pathology from the survey of Ibrahim et al. [70]. Back in 1966 Prewit et al. [103] proposed methods

to capture and analyze microscopic images. But the modern whole-slide imaging technique was

introduced more recently in mid 1990s. The adoption of digitized slide images in real clinical workflow

wasn’t done until recently. In 2017 the seminal study by Mukhopadhyay et al. [96] showed that the

diagnosis made by digitized WSIs (whole-slide images) is nearly as good as the diagnosis made by

looking at the slides under microscope. This study was further used to get FDA approval for Philips

digital pathology system [23]. Several further studies inspected the advantages and disadvantages of

digital pathology. For example Mills et al. [93] showed that using digitized whole-slide images may

initially increase pathologists’ turn-around time, but this overhead in turn-around time gradually

decreases to zero in a six week period.
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1.4.2 Benefits

Digital pathology has several benefits. We summarize some of them here [24][70].

• 1. Turn-around time e�ciency

• 2. Reduced risk of tissue loss

• 3. Enabling telepathology, i.e. transmission of digitized slide images and remote consulatation

• 4. Ability to register di↵erent modalities and show them side-by-side to pathologists

• 5. Enabling retrieval of histopathology images

• 6. Finally, providing machine learning methods with histopathological images

1.4.3 Virtual microscopy

The slides are scanned and stored in a format that lets pathologists view the images using computer

programs. The image formats and viewer programs are designed to simulate viewing the glass slides

under microscope; hence the term ”virtual microscopy” [25]. Under microscope fine-grained patterns

like per-nuclei information are sometimes inspected. Therefore, the slides are usually scanned in a

high-resolution, resulting in huge images. A typical WSI (whole-slide image) can be 100K by 100K

pixels in size and 2-3 gigabytes when stored on disk. Virtual microscopy has to simulate zooming-in

and zooming-out, as done when viewing glass slides under microscope. However, resizing images

on-the-fly demands a lot of computation. To avoid this computation burden, a slide image is stored

in di↵erent magnification levels as shown in Fig. 1.7 so virtual microscopy softwares can directly

read the image in proper magnification-level. Fig. 1.8 illustrates a whole-slide image viewed using

virtual microscopy in di↵erent magnification levels.

1.5 OncotypeDX Recurrences Score for Breast Cancer

The likelihood of distant recurrence (i.e. - according to Oxford dictionary - the development of

secondary malignant growths at a distance from a primary site of cancer) was poorly understood

for specific cohorts of breast cancer patients. In 2004 Paik et al. [100] proposed a genomic assay for

predicting the risk of distant recurrence in these patients. The output from the assay is a number

between 0 and 100, which stratifies patients as follows.

• Recurrence-score between 0 and 18: low risk of distant recurrence at 10 years.

• Recurrence-score between 18 and 30: medium risk of distant recurrence at 10 years.
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Figure 1.7: A WSI (whole-slide image) is stored as a set of images from the glass slide which are
captured from di↵erent magnification levels. The image is borrowed from [20].

(a) (b) (c)

Figure 1.8: A WSI (whole-slide image) seen by a virtual microscopy software. a) The zoom-out
view of the slide. b) The view is zoomed on the red rectangle in ”a” and the blue polygon inside
it, which appear bigger in ”b”. c) The view is zoomed on the red rectangle in ”b”. In ”c” the
magnification-level is high enough to see the cell nuclei. The image is borrowed from [20].

• Finally, recurrence-score higher than 30: high-risk of distant recurrence at 10 years.

The test is commercially known as OncotypeDXr recurrence-score, which is the gold-standard test

to determine whether a breast-cancer patient is either a luminal-A or luminal-B breast-cancer: the

former has a favorable prognosis after surgery and does not require adjuvant chemotherapy and the

latter has higher risk of late recurrence and needs adjuvant chemotherapy. The study of Paik et al.

[100] showed that the computed score is to some degree correlated with the likelihood of distant

recurrence. For more information, please refer to Fig. 1.9 and its caption. The old stratification

discussed above based on the thresholds 18 and 30 is replaced by a new scheme where recurrence

score below 25.5 and above 25.5 are considered as low risk and high risk, respectively. For each

patient the score is obtained as follows:
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Figure 1.9: The predictive power of recurrence-score in predicting likelihood of distant recurrence in
16 years. The three curves correspond to patients with low-risk (i.e. recurrence-score below 18),
intermediate-risk (i.e. recurrence-score between 18 and 30), and high-risk (i.e. recurrence-score
above 30). This figure illustrates that more than 90% of low-risk patients are relieved from distant
recurrence after 10 years. However, for high-risk patients this number is below 70%. The figure is
borrowed from Paik et al. [100].

• 1. Best sample of tumor is selected by a pathologist and is micro-dissected to select as much

as possible only the cancer component and remove the surrounding ”normal” tissue within

the sample.

• 2. Using RT-PCR (Polymerase Chain Reaction) RNA expression from 16 genes (16 cancer-

related genes and 5 reference genes.) in 4 groups (ER, PR, proliferation, and metastatic) are

quantitated and normalized with the expression of the reference gene expression.

• 3. The relative RNA quantity of the 16 cancer-related gene are inserted into a linear formula

to produce a recurrence score. More precisely, the final recurrence-score is a weighted sum of

the numbers obtained for the 16 genes. The weights of the linear formula are obtained in a

data-driven way.
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Chapter 2

Introduction

2.1 Motivation

2.1.1 Predicting Biomarker Status and Recurrence Score from H&E Images

As we discussed in Sec. 1.5 the likelihood and mechanism of distant malignant growths is not readily

obvious from the morphological assessment alone: pathologists can achieve precise diagnoses.; they

can also collect important data, from morphology alone, which can predict with some confidence

patients’ outcome: tumour histological grade, presence of tumoural emboli within small vessels,

presence of tumoural deposit in regional lymph nodes, etc. But precise outcome assessment and

precise therapy guidance is not properly established by a human. It is believed that tumoural

morphology contains an overabundance of morphological details di�cult to grasp and synthesize.

This makes adoption of machine learning appealing to see if ML algorithms can accurately solve

this prediction task. As for predicting biomarker status from H&E images, obtaining the H&E

modality is relatively quick and cheap while using biomarkers is time consuming and expensive.

Therefore, accurately predicting biomarker status only from H&E modality - if achievable - can

bypass genomic tests and quickly provide supplementary gnomic information for a lot of samples

and only from H&E images.

2.1.2 Interpreting Artificial Neural Networks

ANNs (Artificial neural networks) are widely adopted in machine learning. Despite their benefits,

ANNs are known to be black-box to humans, meaning that their inner mechanism for making

predictions is not necessarily interpretable/explainable to humans. ANN’s black-box property

impedes its deployment in safety-critical applications like medical imaging or autonomous driving,

and makes them hard-to-troubleshoot for machine learning researchers.
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2.1.3 Active Learning

In many domains - including the of field of biomedical machine learning - labels are hard and

expensive to acquire. In the pool-based setting, active learning algorithms [120] (a specific case of

experiment design [106]) seek the optimal samples to be labeled in a pool of unlabeled samples.

2.2 Thesis Contributions

2.2.1 Predicting Biomarker Status from H&E Images

Predicting OncotypeDXr recurrence score is not the topic of this thesis, but it motivated our follow

up e↵orts for predicting biomarker status from H&E images.

• In an initial study, it turned out that with slide-level labels for training, the accurate prediction

of recurrence score is not possible at least when roughly 1000 slides are available. Interestingly,

in this setting cell-profiler features [40] outperform the state-of-the-art method CLAM [89]

and our proposed method of Sec. 4 (refer to Appendix A for more information).

• The state-of-the-art WSI classification method CLAM [89] cannot achieve a high prediction

performances when predicting breast cancer recurrence-score from H&E-stained WSIs. One

may relate this incapability to the fact that CLAM [89] uses a resnet [60] backbone which is

pretrained on imagenet [51] and is kept frozen during training. In other words, one may think

if the resnet backbone is trained end-to-end, recurrence-score might be predicted way more

accurately. We ruled out this hypothesis by proposing the end-to-end method of Chap. 4 and

solving the practical challenges of training an end-to-end pipeline for WSI classification.

• As we discussed in Sec. 1.5, OncotypeDXr recurrence score is based on RNA quantitation

from 16 cancer-related genes and 5 reference genes used as refwerence.. Now that predicting

recurrence score is not possible achievable without the need to increase significantly a the

WSI dataset, the natural question is: can a machine learning method predict each of those

parameters used in the RS calculation separately (proliferation, ER, PR etc.)? To this end:

– We showed that with slide-level labels and roughly 100 slides, accurately predicting each

of those parameters is not possible (refer to Fig. 5.8 in Chap. 5).

– Given the failure of training with slide-level labels, we introduced our large dataset with

labels assigned to 3K by 3K images and for four major breast cancer biomarkers.

– With our dataset we showed that it is possible to achieve prediction performances

around and above 90 in terms of AUC (refer to Fig. 5.8 in Chap. 5). The results are

unprecedented for this prediction task. According to the survey by Cifci et al. [45] (sec.
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Limitations) - in the task of biomarker prediction from H&E images - the unavailability

of such datasets is the main gap.

– We showed that achieving a high 3K by 3K level AUC does not mean that the predictor

has correctly localized all relevant tissue regions within a 3K by 3K image (refer to Figs.

5.9, 5.10, 5.11, and 5.12).

– This motivated us to manually mark near 900K spots on HER2 positive regions and

compare a strongly-supervised classifier to a automatic localization method called co-

teaching [58]. Interestingly, although co-teaching has access to only patch-level (as

opposed to pixel-level) labels, in most cases it is competitive to the strongly-supervised

classifier. Intriguingly, in some cases co-teaching [58] performs slightly better than the

strongly-supervised classifier (refer to Sec. 5.5.3 for more information).

– Although this localization ability was studied before by, e.g., Laleh et al. [84] with slide-

level labels, for 3K by 3K level labels our analysis provides novel insights. Importantly,

our analysis motivates the adoption of automatic localization with, e.g., 3K by 3K level

labels specially for heterogeneous biomarkers for whom acquiring pixel-level label is not

possible.

2.2.2 Interpreting Artificial Neural Networks

Attribution-based explanation methods like LIME[115], SHAP[90] and most gradient-based expla-

nation methods like DeepLIFT [35] presume a linear surrogate model. Given a test instance xtest,

this simpler surrogate model is encouraged to have the same output ”locally” around xtest. Because

of this ”local assumptions”, explanations from these methods might be unreliable, and can be easily

manipulated by an adversary model [56, 112]. Moreover, these models may produce discordant

explanations for a fixed model and test instance [78].

We proposed an interpretability method called GPEX with the following contributions:

• Our method finds GPs (Gaussian processes) which are globally faithful to their corresponding

ANNs (artificial neural networks), hence unlike many previous methods we avoid any local

assumption.

• Not many explainer models can globally match the ANN’s output. Among gradient-based

methods, with the best of our knowledge only Integrated Gradients [128] has a weak sense of

ANN’s global behaviour over the input space. Having some conditions on an ANN, another

method called representer point selection [136] finds a ”globally faithfull” explainer model

that, similar to GPs, works with a kernel function. As we demonstrate in Sec. 6.4.4 the

GP kernel that our method finds is superior due to a technical point in the formulation of

representer point selection [136].
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• Theoretical results on ANN-GP analogy impose some restrictions on ANNs under which the

ANN will be equivalent to a GP. These conditions are too restrictive for recently used deep

architectures. Moreover, those theoretical conditions need refinement as new deep architectures

emerge. Nonetheless, in our proposed GPEX our formulation and method do not impose any

restriction on the ANN and the method used to train it.

• Scalability is a major issue in training GPs. To address this issue, we adopted computational

techniques recently used for fast spectral clustering [61] as well as a novel method to learn

the GPs using mini-batches of inducing points and training instances. These computational

techniques allow us to train GPs with hundreds of thousands of inducing points. According to

our analysis, increasing the inducing points has been essential to get a good match between

the trained GPs and ANNs. Indeed, without many inducing points GPs posterior cannot be

a complex function (a function with many ups and downs [133]) and fails to match ANNs’

output.

• With the best of our knowledge, our work is the first method that performs knowledge

distillation between GPs and ANNs. While Borup and Anderson , [38] applied for the first

time knowledge distillation to GPs, our work is distinct by distilling knowledge from an ANN

to a GP. Indeed this is opposed to the self-distillation of [38] that distills knowledge from a

GP to another GP.

• We implement our method as a public python library called GPEX (Gaussian Processes

for EXplaining ANNs). GPEX takes in an arbitrary PyTorch module, and replaces any

ANN submodule of choice by GPs. Our package makes use of GPU-accelaration, and enables

e↵ortless application of GPs without getting users involved in details of the inference procedure.

GPEX can be used by machine learning researchers to interpret/troubleshoot their artificial

neural networks. Moreover, GPEX can be used by researchers working on the theoretical side

of ANN-GP analogy to empirically test their hypotheses.

2.2.3 Active Learning

Due to the black-box issue, the optimal active learning strategy for an ANN is not analytically

known. A workaround is to apply our GPEX method to find a GP which is equivalent to the ANN

thereby reducing the problem to devising an active learning strategy for a GP. To show this:

• We used GPEX in the context of Bayesian experimental design [106]. Precisely, we obtained

GPs using GPEX and used them to model a hypothesis space as required by methods of

Bayesian experimental design [106]. We used a Bayesian experimental design method called

EPIG [126].

14



• We demonstrated that GPEX is a better alternative to the commonly-used dropout [127] in

the context of Bayesian experimental design. We conducted experiments on synthetic data in

Sec. 7.5.3, a subset of our IHC4BC HER2 dataset in Sec. 7.6.1, and a pool of whole-slide

images in Sec. 7.6.2.

• Note that the benefit of using Gaussian processes for active learning has been highlighted in

previous works, e.g. in [67] and [94]. In this thesis our goal is not to show the superiority of

GPEX over those methods. Instead, our aim is to demonstrate that our GPEX - like those

previous approaches - is usable in the context of active learning.
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Chapter 3

Related Works and Background

3.1 Multiple Instance Learning

3.1.1 Problem Definition

In traditional supervised learning, any instance like x 2 X has an associated label y 2 {1, 2, ..., C}.

In MIL (multiple-instance learning) [37] a bag b is a set of instances: b = {x1, x2, ..., xM} and a

label y 2 {1, 2, ..., C} is associated with the bag b. To be noted, in the MIL setting the bag label

y is associated with the entire bag rather than any specific instance of it. Therefore, multiple-

instance learning is sometimes referred to as weakly-supervised learning. In this thesis we use

multiple-instance learning and weakly-supervised learning interchangeably. The whole-slide image

classification task defined in Sec. 4.2 is an instance of multiple-instance learning, because one can

think of a WSI (whole-slide image) as a bag containing several patches, i.e. ”instances” in the context

of multiple-instance learning [37]. The task is to predict the bag-level label (e.g. recurrence-score)

assigned to the WSI.

The MIL setting is sometimes accompanied by an additional assumption referred to as the

standard or basic MIL assumption [37]. The standard MIL assumption states that each instance is

associated with a binary label y 2 {0, 1}. A bag’s label is 1 if and only if at least one of its instances

has an associated label equal to 1. The standard MIL assumption holds for many real-world settings.

For example, let the task be classifying a WSI as positive if there are tumor regions present in

the WIS. In this task the standard MIL assumption holds, because a WSI’s label is positive (i.e.

contains tumor) if and only if at least one patch in it contains tumor.
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3.1.2 Methods in Literature

In this section we review common themes in weakly-supervised methods for histopathology image

classification. The seminal work of Ilse et al. [71] shows that in the MIL setting, any scoring function

for bags like S(.) is invariant to the permutation of bag instances if and only if the scoring function

can be written as S(b) = h
�P

x2b f(x)
�
, where b is a bag, x is a member of the bag, and f(.) and

h(.) are some functions. Given that the bag scoring function (i.e. the bag classifier) should be

invariant to permutation in instances, the above formulation states that any such pipeline contains

an instance encoder f(.) followed by average pooling and a final stage h(.). Despite this theoretical

result, several methods with di↵erent pooling/training strategies are proposed for WSI analysis.

But they usually contain two steps: 1. feature extraction, and 2. feature aggregation.

A common theme in MIL methods is spotting instances (i.e. patches) which are related to the

bag’s (i.e. the WSI’s) label. For example C2C [125], AttMIL [71], and CLAM [89] use an explicit

attention sub-module that suppresses some extracted features in the feature-aggregation stage. Hou

et al. [66] assign a hidden binary variable to each patch, which is 1 if the patch is relevant and is 0

otherwise. Afterwards, Hou et al. [66] optimize the objective using expectation-minimization (EM).

Zhang et al. [138] use a similar EM-based approach which iteratively assigns labels to patches with

the additional assumption of spatial label consistency/smoothness until the label for each patch is

found. Chen et al. [42] lift the standard MIL assumption (the assumption described in Sec. 3.1.1),

and replace it with two assumptions: 1. If a WSI is in class c, at least a certain p-percent of its

patches are in class c (which reproduces the pathologist’s’ approach when they score the grade of a

tumour). 2. WSI labels form an order, similar to the case that a grade-3 WSI can contain tumor

regions of grade 3, 2 or 1. A grade-2 WSI can contain tumor regions of grade 2 or 1 (but not of

grade 3). A grade-1 WSI can only contain tumor regions of grade 1. Afterwards, Chen et al. [42]

propose a training objective function that handles the aforementioned assumptions.

Another common theme in MIL methods is improving the feature extractor (i.e. the 1st stage

of pipeline) by using self-supervised or unsupervised ideas. Since each WSI is huge, in WSI datasets

there is a plethora of unlabeled patches which may benefit unsupervised methods. Sharma et al.

[125] apply K-means clustering to patches, and during training patches are sampled in a way that

each mini-batch contains patches from diverse clusters. CLAM [89] adds a term to the objective that

encourages patch-level cluster formations thereby making their method data e�cient. Rawat et al.

[109] train a self-supervised feature extractor that can match left/right halves of H&E patches. They

call the extracted features ”fingerprints” and show that the extracted fingerprints are reasonably

discriminative for predicting ER, PR, and HER2 statuses from H&E-stained whole-slide images.

Tellez et al. [130] and Shaban et al. [121] adopt multi-task learning for histopathology image

classification and obtain marginal improvements.

Many methods modify the aggregation stage (i.e. the function h(.) introduced above). In
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some prediction tasks if we think of a histopathology image as a bag of patches and permute the

patches, this random permutation may perturb the pattern in the image. In such prediction tasks

the receptive field of the pipeline should be increased so it can take in a big patch or even a WSI

in its entirety. Such methods are referred to as context-aware in literature. This can be done in

di↵erent ways. For example Yan et al. [134] use a Bidirectional Long Short-Term Memory (LSTM)

in the aggregation stage. Huang et al. [69] split a big patch to a 3 by 4 grid. Afterwards, each

element of the grid is fed to a CNN backbone to produce a feature vector. Consequently, the

extracted feature vectors are concatenated and fed to a follow-up classifier. Shaban et al. [121] split

the input image of size 1792 by 1792 to a 8 by 8 grid. Consequently, each element of the grid is

fed to a CNN backbone to obtain a volumetric map. This volumetric map is further fed to some

convolutional layers to produce the final output. Awan et al. [36] split the input image to a 3 by 4

grid. Afterwards, each element of the grid is fed to a CNN backbone to obtain a 3 by 4 volumetric

map. Consequently, the volumetric map is traversed with a 2 by 2 window, and the features in any

2 by 2 window are concatenated to produce a single vector of very high dimension. This vector goes

through dimensionality reduction and a follow up SVM classifier. Other ideas for implementing a

context-aware aggregation stage include using vision transformers, as done by Chen et al. [44] or

using graph convolutional networks as done by Zhou et al. [140]. Finally, our proposed pipeline

(the pipeline explained in Chap. 4) implements the aggregation stage by Fisher vector distribution

encoding.

3.2 Predicting Gnomic/Molecular Information Merely from Mor-

phology

As underlined by Cifci et al. [45] (Sec. Limitations), putting aside genes with known alternations to

morphology, for most genes the results in the literature are not very good. Rawat et al. [109] train

a feature extractor for H&E images in a self-supervised way. Afterwards, they train classifiers on

roughly 1000 TMA cores to predict ER, PR, and HER2 status from H&E images. They achieve slide-

level AUCs of 0.89, 0.81, and 0.79 for ER, PR, and HER2 respectively. Using this sample-e�ciency

technique (self-supervised feature extractor) or similar ones may help improve the performance, but

these techniques cannot make up for the lack of data and usually result in marginal improvement

[130, 62]. Qu et al. [105] seek to predict point mutations and copy number alterations for some

breast cancer genes and obtain 68-85 AUCs for di↵erent genes. Hohne et al. [63] predict BRAF

mutations and NTRK gene fusions with slide-level labels, and achieve 75-85 AUCs. He et al. [59]

use spatial transcriptomics to obtain genomic information for more than 30K H&E regions. They

achieve a range of AUCs up to 90 for di↵erent genes, with most AUCs reside between 70 and 80.

Moreover, for predicting the continuous expression values they achieve correlation coe�cients of

up to 0.50 for di↵erent genes. Zeng et al. [137] train a CycleGAN-like [141] virtual stainer for PR.
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Zeng et al. [137] use unreliable labels obtained by an automatic registration method, followed by a

DAB analysis that - as we will show in Fig. 5.5 - has a lot of failures. Moreover, in their work the

virtual stains are only evaluated using visual criteria like SSIM (structural similarity) and PSNR

(peak signal-to-noise ratio) rather than semi-quantitative methods like H-score. Jackson et al. [72]

obtain nucleus-level labels by destaining/restaining 12 WSIs, and achieve around 90 AUCs to label

each nucleus as SOX10 positive or negative. Shamai et al. [122] seek to predict ER, PR, and HER2

status from H&E TMA cores. The dataset contains around 5000 TMA cores and they achieved

AUCs of up to 85 for PR, Ki67, and HER2 and up to 88 for ER. Tavolara et al. [129] seek to predict

the expression of about 20000 genes in an experimental mycobacterium tuberculosis mice infection.

Some of the genes (but not all) can be predicted with above 90 correlation coe�cient. The gene

predictors are used as an intermediate step to accurately classify each slide as supersusceptible or

not-supersusceptible. In HEROHE challenge [49] the participants aimed to predict HER2 status

given a training set containing 509 WSIs, and could obtains AUCs up to 84. The studies done

by Anand et al. [33] and Liu et al. [87] annotate homogeneous positive or negative regions in

HER2- and Ki67-stained whole-slide images (WSIs), respectively. Afterwards, the corresponding

regions in H&E slides are considered positive or negative. Consequently, machine learning is applied

to distinguish between positive and negative patches extracted from those homogeneous regions.

The shortcoming of this approach is that in the IHC modality, many regions are associated with

heterogeneous expression (especially for PR and Ki67) and all of those regions are discarded. Comiter

et al. [48] apply two VAEs to gene expression vectors and H&E image data. Afterwards, they solve

the unpaired problem via distribution matching in the VAEs’ latent spaces and obtain a range of

correlation coe�cients for di↵erent genes. They main drawback of the study by Comiter et al. [48]

is the limited evaluation on only four held out fixed samples throughout the study.

For the relative rare tumours with specific genomic anomaly associated with distinct morpho-

logical patterns (easily recognized by trained pathologists), the prediction performances are not

surprisingly usually higher. For example for immunotherapy biomarkers like TMB, MSI, TILs or

PD-L1 the AUCs reach and exceed 90 [55]. For example Shamai et al. [123] seek to predict PD-L1

and PD-1 status using about 5000 TMA cores. They achieve around 90 AUC for PD-L1 and a lower

AUC of 85 for PD-1. As another successful example, Kim et al. [79] could predict mutations in

BRAF and NRAS genes with AUCs higher than 90.

3.3 Interpreting Artificial Neural Networks

A common categorization is to divide interpretability methods in 1) attribution methods (including

the perturbation-based methods) and 2) gradient-based methods. Notably, this categorization is

not clear cut and the two aforementioned groups of methods are closely related [28].
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The main idea of attribution methods is to alter the input of a neural network and observe

how the output changes. Let xtest be an image in the test set containing M superpixels. It is

computationally prohibitive to inspect the model’s output for all 2M cases of presence/absence

of each superpixel. To avoid this issue, SHAP [90] assigns M values [�1, ...,�M ] to superpixels.

The �j-s are called Shaply values [90] and for any subset of superpixels like i1, ..., is the value

(�i1 + ... + �is) is a good measure for the contribution of the superpixels i1, ..., is on the ANN’s

decision. The Shaply values are provably the optimal values for cooperative game theory [90]. The

exact computation of SHAP values is hard, but they can be approximated. A method called LIME

[115] was proposed before the adoption of SHAP values in machine learning [90]. Interestingly, it

turned out that LIME [115] is one way of approximating the SHAP values. Given a test instance

like xtest, LIME [115] interprets the ANN’s decision g(xtest) by assuming that g(.) is locally linear

around xtest and takes the local linear approximation as the explanation. Although the Shaply

values are provably the optimal values for cooperative game theory [90], the machine learning setting

is slightly di↵erent. For example, when some superpixels are excluded from an image, it is not clear

what value(s) should fill-in the excluded pixels. More importantly, since SHAP[90] considers a local

explainer model based on perturbed versions of an instance, its explainations are unreliable. For

instance, a model (potentially an adversary model) may behave di↵erently on the dataset instances

and the perturbed ones [112], thereby fooling the explainer model. Ghorbani et al. [56] argue that

if the decision boundary is piece-wise linear, one can perturb a test instance to make it closer to

another linear piece of the decision boundary. By doing so, a local linear explainer will pick the

other linear piece of the boundary, and therefore gets fooled.

The second category of methods to be discussed here are the gradient-based explanation methods.

The simple gradient method computes the gradient of output activation with respect to input pixels.

In a di↵erent viewpoint, the importance of the last layer’s neurons on the ANN’s output is easily

understood as the output is the weighted sum of the neurons in the last layer. Starting from the last

layer, the simple gradient method relates the importance of the `-th layer neurons to the importance

of the (`� 1)-th layer neurons until it reaches the input features. More sophisticated gradient-based

methods like DeepLIFT [35] address the practical limitations of the simple-gradient method, and

are shown to perform better. Gradient-based explanation methods use a backpropagation-like

procedure, and therefore, they are easily applicable to ANNs. An oft-said limitation is that a

group of input pixels may have a negligible immediate e↵ect (i.e. gradient) on output activations,

but removing/adding those pixels simultaneously may have a large e↵ect on output activations.

Moreover, Khakzar et al. [78] show that most gradient-based and perturbation-based methods

mistakenly give a large importance to image regions which by-design have no e↵ect on model’s

output.
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3.3.1 Gaussian Processes for Interpreting ANNs

The equivalence between Gaussian processes and artificial neural networks (ANNs) has received a

lot of interest, because Gaussian process is a white-box model and when it matches an ANN it can

unbox the blackbox of deep learning [98]. This analogy was first discovered in the seminal work of

Neal [97] back in 2007, which showed that under some conditions a single-layer neural network with

random weights converges to a Gaussian process. This result was further extended to ANNs with

multiple layers [92] and ANNs trained with gradient descent on mean-squared error loss [74, 98].

Many works introduce su�cient conditions for making an ANN equivalent to a GP [97, 92, 98]. A

common condition is that the intermediate layers have to be wide (when the intermediate layers

become infinitely wide, in the limit the ANN converges to a GP). Another oft-present condition

is that the activation functions should belong to a specific set of functions [92, 114]. Another

exemplary condition is that Matthews et al. [92] require the training set to be countable (with the

o�cial mathematical definition of being ”countable”), which is violated if data augmentations like

random rotation or color-jitter are applied. Stack of Gaussian processes is also shown to be closely

related to ANNs [32, 54, 114]. The issue is that although a Gaussian process is white-box, stack of

Gaussian processes is not white-box, similar to the case of neural networks where a single linear

layer is white-box, but when linear layers are stacked the ANN becomes a black box.

In the literature of GP-ANN equivalence, the neural tangent kernel [73] has been discovered

more recently in 2018 by Jacot et al. [73] and has become popular to generate an equivalent GP.

Therefore here we briefly introduce the main ideas behind neural tangent kernel and its di↵erences

to the GP kernel that we find via GPEX. For any neural network g(.) with parameters ✓ the neural

tangent kernel is defined as follows:

K(x,x0;✓) = r✓g(x; ✓)
T
r✓g(x

0; ✓), (3.1)

where r is the gradient. For a general neural network, during training the neural tangent kernel

changes as the ANN changes. But interestingly, for a multi-layer perceptron whose all intermediate

layers are infinitely wide and is trained on mean squared error loss, the neural tangent kernel

provably is independant of the random initialization of ✓ and doesn’t change during training [73].

Moreover, for such an ANN we have that [98]

gt(x) = K(x,x1:N )K(x1:N ,x1:N )�1
�
IN⇥N � e

�⌘K(x1:N ,x1:N )t
�
y1:N , (3.2)

where ⌘ is the learning rate, {xn, yn}
N

n=1 is the training set, and t is the training iteration. Note

that in Eq. 3.2 the kernel K(., .) is not dependant on time. Moreover, notice that when t!1, Eq.

3.2 becomes very similar to the equation for Gaussian process posterior mean in Eq. 6.2. Eq. 3.2 is

the basis for using the neural tangent kernel for interpreting and analyzing artificial neural networks.
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In particular, Eq. 3.2 can completely forecast the dynamics of a neural network during training [98].

Moreover, Eq. 3.2 makes the behaviour of the fully-trained ANN completely predictable when it

sees more training data, and Mohamadi et al. [94] make use of this property for look-ahead active

learning. The GP kernel that we find via our proposed GPEX have many distinctions to the neural

tangent kernel. First of all, our GPEX method doesn’t require all intermediate layers to be infinitely

wide and is completely agnostic to the architecture of the ANN and the loss used to train the ANN.

Moreover, the neural tangent kernel is fixed while in GPEX the kernel can vary as, e.g., the ANN is

trained for more iterations or more training data is added. This property makes GPEX a better

choice if one aims to supervise the underlying kernel with, e.g., contrastive learning.

Scalability is a major issue when training GPs, and including a few inducing points may limit the

flexibility of GP’s posterior [133]. Here we review some previous methods to tackle the computational

challenges of training GPs. SV-DKL [111] derives a lower-bound for training a GP with a deep

kernel. In this method, a grid of inducing points are considered in the kernel-space (like the vectors

{(ũ(`)
m , ṽ

(`)
m )}M

m=1 with the notation of this thesis). Afterwards, each input instance is firstly mapped

to the kernel-space and the output is computed based on similarities to the grid points in the

kernel-space. Since the GP posterior is computed via the grid points, SV-DKL [111] is scalable. But

unfortunately the number of grid points cannot be increased to above 1000 even for Cifar10 [83] and

with a RTX 3090 GPU. Therefore, this may limit the flexiblity of the GP’s posterior [133]. A more

recent framework called GPytorch [113] provides GPU acceleration. However, its computational

complexity is quadratic in number of inducing points. Other approaches to improve scalability of

GPs include: considering structured kernel matrices [47], kernel interpolation [132], and imposing

grid-structure on including points [111]. The closest work to our scalability method in Alg. 5 is the

concurrent work of Lin et al. [85] where they compute the output of our Alg. 5 via an iterative

optimization thereby generating samples from GP posterior. However, using the approach of Lin et

al. [85] would not work in our case since we need a di↵erentiable procedure like Alg. 5 as opposed

to an iterative solver.
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Chapter 4

Deep Fisher Vector Encoding for WSI

Classification

4.1 Synopsis

In this chapter we explain our proposed WSI classification method. The distinction of this method

is that it is trained end-to-end and without the basic MIL assumption discussed in Sec. 3.1.1.

Moreover, it is e�ciently evaluated on huge WSI datasets using a subset of patches population.

4.2 Problem Definition: WSI classification

In WSI (whole-slide image) classification the dataset contains a number of WSIs. Each WSI is a

huge image in the order of 100K by 100K pixels. For each WSI a ground-truth label is available. In

other words, in WSI classification we have a dataset D = {[W 1, y1], [W 2, y2], ..., [W |D|, y|D|]} where

Wn is a WSI and yn is a label assigned to it. The label is a categorical variable that tells, e.g.,

whether there is a tumor region over the WSI. As another example, the label can be the result of a

pathologist assessment (e.g. tumor grade, cancer subtype, hormonal status, etc.) on the WSI as a

categorical number. To train and evaluate a machine learning method, as usual the dataset is split

to the train/validation subset for training and the testing subset for evaluation.

WSI classification is notoriously a challenging problem due to many di�culties.

• 1. The size of dataset |D| is usually small and often less than 1000. This is a major challenge,

because even if a machine learning method can encode all essential features of a WSI into a

vector, the classifier placed on top of the vectors (i.e. WSI encodings) would have access to a

small number of labels and may fail due to, e.g., overfitting.
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• 2. The label assigned to a WSI might be related to a small region of it, and it is the method’s

responsibility to localize relevant regions merely from the labels assigned to WSIs. For example

in tumor detection task, the labels merely tell whether there is a tumor region ”somewhere”

over a WSI or not, without providing any spatial information about the location of those

tumor regions. In other words, if relevant regions are sparse, localizing those regions would be

like finding a needle in a haystack.

• 3. Histopathology images contain a lot of variations, which may hinder the adoption of

commonly used ML methods. For example training a variational auto-encoder [81] on H&E-

stained histopathology patches is challenging, and reconstructed images tend to be quite

di↵erent from their corresponding inputs [5]. Or the accuracy gain from self-supervised

pretraining may saturate when as low as 50K unlabeled patches are used during pretraining

[46].

• 4. A WSI is typically as large as 100K by 100K pixels, and the disk size of a typical WSI

dataset may well surpass one terabyte. This is a practical challenge in adoption of machine

learning algorithms on WSIs both during training and during evaluation. Of note, in order to

deploy an algorithm in clinical workflow the evaluation time has to be roughly 1 minute per

WIS, because modern WSI scanners can scan roughly 1 WSI per minute.

4.3 Proposed Method

Let x be a random patch extracted from a WSI. Let f(.) be a function that takes in x and produces

a D-dimensional vector. The vector f(x) is often referred to as a descriptor. We encode the WSI

as the distribution P
�
f(x)

�
. To represent this distribution as a vector, we used Fisher vector

distribution encoding [34]. Fisher vector distribution encoding [34] encodes a distribution P
�
f(x)

�

by concatenating di↵erent statistics from the distribution. Instead of computing simple statistics like

mean and variance, in this approach a set of fixed vectors {v1, ...,vm} in the space of descriptors

are considered and are used to compute some first order and second order statistics. Let sij 2 [0, 1]

be the soft assignment of f(xi) to the fixed vector vj . A set of descriptors {f(x1), ..., f(xn)} are

encoded as
1

n

NX

i=1

FV
�
f(xi) ; v1, ...,vm

�
, (4.1)

where FV : RD+m
! R2m is a function defined as follows:

FV
�
f(xi) ; v1, ...,vm

�
=

h
si1

c1

�
f(xi)� v1

�
, ...,

sim

cm

�
f(xi)� vm

�
,

si1

ĉ1

�
f(xi)� v1

�2
, ...,

sim

ĉm

�
f(xi)� vm

�2i
.

(4.2)
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Figure 4.1: The proposed pipeline [31] based on Fisher-vector distribution encoding [34]. Some
patches (the green rectangles on the left) are fed to a CNN backbone and the blue volumetric
maps are obtained. Each spatial position of the volumetric maps (across the channels) defines a
D-dimensional vector in the space of descriptors (the plot in the middle). Having some fixed anchors
in the space of the descriptors (the orange diamonds), a vector is obtained according to Eq. 4.2.
One can think of the expectation of this vector as ”Encoded WSI”, which is further fed to a linear
classifier to produce the final predicted label for the WSI.

In Eq.4.2, cj and ĉj are some constants. We encode a WSI to a vector as follows:

the vector encoding of a WSI = E
x⇠otsu

foreground

h
FV

�
f(x) ; v1, ...,vm

�i
, (4.3)

where E denotes mathematical expectation and x is a random patch extracted from the WSI’s

foreground obtained by Otsu’s method [99]. After encoding a WSI to a vector by Eq. 4.3, we feed

this vector to a linear classifier to predict the WSI’s label. During training, the expectation of Eq.

4.3 is approximated by firstly extracting a few patches x1, ...,xn from the WSI (using our inhouse

package PyDmed[26]) and then averaging over them as in Eq. 4.1. Therefore our pipeline is trained

end-to-end and the expectation of Eq. 4.3 is computed using a minibatch of samples both during

training and during testing. Fig. 4.1 illustrates the pipeline.

We implemented the function f(x) by a convolutional neural network. As mentioned above,

given a patch x the function f(x) may produce only one descriptor in RD. However, inspired by

the method CBoF [101], we implemented the function f(x) by a fully convolutional module that

produces a volumetric map of shape [D ⇥ V ⇥ V ]. This volumetric map indeed contains V ⇥ V

descriptors in RD.
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her2 contest accuracy precision recall F-score testing-time(s)

Proposed Method 426.42(38.31) 63.33(7.64) 0.75(0.02) 0.63(0.08) 0.61(0.08) 1439.2(21.6)

Proposed Method (sweep) 430(20.64) 62.50(0.08) 0.59(0.07) 0.62(0.08) 0.58(0.07) 12158(120.05)

Baseline Average Pooling 413.21(0.17) 57.14(0.03) 0.55(0.02) 0.57(0.03) 0.52(0.03) 1410(17.2)

Table 4.1: Performance of predicting breast cancer HER2 score. Rows (resp. columns) correspond
to di↵erent methods (resp. performance measures).

auc accuracy precision recall F-score testing-time(s)

Proposed Method 0.92(1.01) 90.82(1.02) 0.88(0.02) 0.90(0.00) 0.89(0.01) 3065(10.53)

Proposed Method (sweep) 0.91(2.02) 91.2(0.89) 0.88(0.02) 0.89(0.72) 0.88(0.01) 26406(16.16)

Baseline Average Pooling 0.90(0.54) 90.38(0.32) 0.86(0.02) 0.89(0.00) 0.87(0.01) 3073(20.50)

Table 4.2: Performance of predicting brain astrocytic (glial) tumor grade. Rows (resp. columns)
correspond to di↵erent tasks (resp. performance measures).

4.4 Experiments

4.4.1 Predicting HER2 and Tumor Grade for Breast/Brain Cancer

We evaluated the method of Sec. 4.3 on 4 tasks, 2 of which are discussed in this section:

• Predicting Breast Cancer HER2 score from IHC (i.e. H-DAB stained) HER2

WSIs: we downloaded the dataset used in Warwick university HER2 contest [104]. This

dataset contains 52 WSIs for training and 34 WSIs for testing. As we didn’t have access to

the labels for WSIs in the testing set (those labels weren’t released by contest organizers),

we considered 60% of the training WSIs for training and the remaining 40% for testing. We

repeated the experiment for three random train/test splits of the dataset. The results are

provided in Tab. 4.1.

• Classifying brain astrocytic (glial) tumor grade from H&E whole slide images:

We downloaded H&E slides from 120 patients from TCGA [3] dataset. For each patient,

we considered the H&E slide which was most recently scanned. The task was to classify

astrocytomas in two groups: grade IV astrocytoma and other lower grades astrocytomas. We

considered 50% of the cases for training and the remaining 50% for testing. Following the

authors of [95], we used the labels reported in the supplementary material of [41]. We repeated

the experiment for three random train/test splits of the dataset. The results are provided in

Tab. 4.2.
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Experimental Setup

For the fully convolutional module of Fig. 4.1, we used a pre-trained Resnet-50 backbone [60]

followed by a convolutional layer that reduces the number of channels (i.e. the dimensionality of the

descriptor space) to 10. Finally we added a batch-normalization layer to this module. In all of our

experiments we set the number of Fisher vector coding centers (i.e. the variable m in Eq. 4.3) to 10.

Moreover, with the notation of [34], we set the parameters of Fisher vector encoding as ⇡k = 0.1

and �k = 0.1. During training we set the batch size to 32, and we trained on each training set for

80000 iterations. We used a RMSprop optimizer with learning rate 0.00001.

Approximating the expectation of Eq. 4.3 by a few samples may result in a large noise in the

approximate gradient, which in turn may cause the optimization to fail. One solution is to increase

the batch size. However, doing so is impractical due to the limited memory of GPU. To tackle this

issue, we used PyTorch’s mechanism for accumulating gradients in a burst of backward passes and

updating parameters at the end of each burst [11]. By doing so, we e↵ectively increased the batch

size to 32 ⇥ 20. In the test phase, we approximate the expectation of Eq. 4.3 by extracting 500

patches from each WSI. We implemented both the training and the testing phase by our developed

package PyDmed [26] (Python Dataloader for MEDical imaging). For more information about the

experimental setup please refer to the publicly available repository [10].

Results

As a baseline, we replaced the Fisher vector encoding stage by an average pooling layer to see how

the prediction performance changes. In Tabs. 4.1 and 4.2 this baseline is referred to as Baseline

Average Pooling. We split each dataset to training/testing sets three times. Tabs. 4.1 and 4.2

provide the average evaluation metric over these three runs. In Tabs. 4.1 and 4.2 the numbers

within parenthesis denote standard deviations. In the second column we report a performance

measure used in Warwick HER2 contest [104]. According to the leader board of the contest [104],

our method outperforms the competitors by a large margin: we obtained the highest combined

score of 430 which is higher than the highest score of 402.5 among the participants in the contest

[104]. For brain tumor grading, our prediction performance is comparable to the results reported in

[95], although our dataset is much smaller (120 WSIs vs. 700 WSIs).

We implemented both training and testing phases by our developed package PyDmed [26]

(Python Dataloader for MEDical imaging). PyDmed tailors the idea of PyTorch’s dataloader to

medical datasets. With PyDmed [26] our training time on more than 2.5 million patches in about 8

hours. Moreover, our testing time is less than one minute per WSI. The reason behind this e�ciency

is to think of each WSI as a population of patches and to estimate the expectation of Eq. 4.3 by

some sampels from the population. The alternative way is to sweep over each WSI in the testing
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phase. In Tabs. 4.1 and 4.2 the latter approach is denoted by Proposed Method (sweep). According

to Tabs. 4.1 and 4.2, this approach dramatically increases the testing time and the prediction

performance remains almost the same.

4.4.2 Unsupervised Domain Adaptation and Recurrence Score Prediction

Besides the two tasks described in Sec. 4.4.1, the proposed method was used in our other studies.

• Double-adversarial unsupervised domain adaption was applied on this pipeline, and the results

were published [135].

• We also adopted this pipeline for predicting breast cancer recurrence-score from H&E-stained

whole-slide images. The experiments were mainly done by Ms. Namitha Guruprasad (the

first author of [57]) and the author of this thesis took part in curating the splits as well as

implementing the cell-profiler baseline. The results are provided in Appendix A. Interestingly

according to Fig. A.1 the proposed method of Sec. 4.3 outperforms the state-of-the-art method

CLAM [89]. Moreover, according to Fig. A.1 the cell-profiler [40] baseline outperforms both

CLAM [89] and our proposed method that we described in this chapter.

4.5 Conclusion

In sum, in this section we presented our proposed method for WSI classification, with the following

major findings:

• The state-of-the-art WSI classification method CLAM [89] cannot achieve a high prediction

performances when predicting breast cancer recurrence-score from H&E-stained WSIs. One

may relate this incapability to the fact that CLAM [89] uses a resnet [60] backbone which is

pretrained on imagenet [51] and is kept frozen during training. In other words, one may think

if the resnet backbone is trained end-to-end, recurrence-score might be predicted way more

accurately. But we ruled out this hypothesis by proposing the end-to-end method of Sec. 4.3

and solving the practical challenges of training an end-to-end pipeline for WSI classification.

• We showed that our proposed pipeline surpasses the participants of Warwick university HER2

contest [104] in HER2 prediction, performs on-par with the method by Momeni et al. [95] in

brain tumor grading, and outperforms CLAM [89] in predicting breast cancer recurrence-score.
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Chapter 5

The Proposed Dataset for Predicting

Breast Cancer Biomarker Status

5.1 Synopsis

In this section we present our dataset for predicting the status of four biomarkers (Ki67, ER, PR,

and HER2) from H&E-stained breast cancer tissue images, and use it to achieve good prediction

performances. As confirmed by other studies, the lack of such a dataset was the main gap for this

prediction task.

5.2 Overview and Motivation

Training a WSI classifier with WSI-level labels could achieve impressive performances in predicting

labels which are related to visual patterns [89, 86]; visually identifiable patterns like metastatic or

tumor tissue regions. However, in the case of our recurrence-score prediction task with a dataset

of roughly 700 WSIs, WSI classification with WSI-level labels is not e↵ective - as seen in the

experiments of Sec. 4.4.2 (the results of Fig. A.1) and also the experiments in Guruprasad et al.

[57]. This incapability of training with WSI-level molecular (i.e. non-visual) labels has also been

reported in other studies, e.g., in the abstract by Shamai et al. [124] for predicting recurrence-score

or in the comprehensive benchmarking by Laleh et al. [84]. These facts motivated us to break down

the recurrence-score prediction problem as follows.

• The OncotypeDXr recurrence-score is a weighted sum of many biomarker statuses, four of

which have a relatively large importance weight: Ki67, ER, PR, and HER2. So instead of

directly predicting the recurrence-score for each WSI, one may think predicting each biomarker
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Figure 5.1: The steps taken to obtain 3K by 3K H&E-IHC pairs from a WSI-pair. Details are
provided in Sec. 5.3.2.

status separately is easier.

• As we discussed above, training a WSI classifier with WSI-level labels may not be e↵ective for

biomarker-related labels. Therefore we collected a dataset containing labels which are related

to a 3K by 3K patch, rather than a huge whole-slide image.

All in all, our experiments showed that training with WSI-level labels is not e↵ective in predicting

each biomarker, but using a large dataset with fine-grained labels results in impressive prediction

performances.

5.3 The Dataset

5.3.1 Tissue and Slide Preparation

All ER, PR, HER2 and Ki67 IHC preparations were performed on unselected sequential 50 breast

biopsies collected in 2022 with strict pre-analytical and analytical controls consisting of 1) absence

of cold ischemia (virtually all biopsy tissue put immediately in formalin fixative after collection), 2)

minimum of 24 hours and a maximum of 48 hours in formalin, 3) utilization of on-slide controls
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Figure 5.2: Examples of H&E-Ki67 pairs in the dataset. Each column corresponds to a H&E-IHC
pair. Row1: H&E, Row2: IHC, Row3:nuclei sementations on H&E, Row4: the result of DAB-analysis
on IHC where blue, yellow, orange, and red colors mark 0 (i.e. negative), 1+ (i.e. weakly stained),
2+ (i.e. moderately stained), and 3+ (i.e. strongly stained) nuclei, respectively.

to ensure successful IHC performance by the IHC instrument and 4) repeating confirmatory IHC

procedure when finding negative tumoral ER and PR in the absence of positive internal controls

(normal mammary ducts). The IHC clones utilized for ER, PR, HER2 and Ki67 were respectively

SP1, PgR 636, SP3 and MIB-1. These IHCs assays were obtained using the automated platforms:

Ventana Ultra (for ER, PR and HER2) and Dako Omnis (Ki67). The slides were scanned at 40X

using the Aperio GT 450 - Automated, High Capacity Digital Pathology Slide Scanner.

5.3.2 Obtaining Pairs of Patches

Fig. 5.1 illustrates how we extract pairs of patches given a pair of H&E and IHC whole-slide

images. Given variability of tissue disposition on glass slide, a single rigid transformation cannot

perfectly register a WSI pair. Therefore, we firstly annotated region-pairs from two given matched
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Figure 5.3: Examples of H&E-ER pairs in the dataset. Each column corresponds to a H&E-IHC pair.
Row 1: H&E, Row 2: IHC, Row 3:nuclei sementations on H&E, Row 4: the result of DAB-analysis
on IHC where blue, yellow, orange, and red colors mark 0 (i.e. negative), 1+ (i.e. weakly stained),
2+ (i.e. moderately stained), and 3+ (i.e. strongly stained) nuclei, respectively. In the first and
fourth columns there are several nuclei which are detected in the H&E modality (row 3) but they
are missed in the IHC modality (row 4). Moreover, in the fifth column in the IHC modality (row 4)
the number of nuclei are overestimated.

WSIs. In Fig. 5.1 this step is labeled as ”extract regions”. Afterwards, we manually registered

each region-pair. In Fig. 5.1 this step is labeled as ”register regions”. Finally, we traversed each

region-pair with a stride of 1500 and extracted patch-pairs. The final result of this step is a set of

patch-pairs each of which are 3000 by 3000 (the pairs shown in the right side of Fig. 5.1).

5.3.3 H-DAB Analysis to Obtain Labels

Each pair contains a H&E patch of size 3000 by 3000 and the corresponding IHC patch of size

3000 by 3000. We ran H-DAB analysis on each IHC image to obtain marker information for the
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Figure 5.4: Examples of H&E-PR pairs in the dataset. Each column corresponds to a H&E-IHC pair.
Row1: H&E, Row2: IHC, Row3:nuclei sementations on H&E, Row4: the result of DAB-analysis on
IHC where blue, yellow, orange, and red colors mark 0 (i.e. negative), 1+ (i.e. weakly stained), 2+
(i.e. moderately stained), and 3+ (i.e. strongly stained) nuclei, respectively.

corresponding H&E patch. We used StarDist [118] to segment the nuclei in the H-DAB patch.

Afterwards, we used the conventional color-deconvolution to extract the brown DAB channel [117].

In the dataset for each IHC image we have included the average DAB channel within every and each

nucleus, so di↵erent numbers like H-Score, percentage, and Allred score can be computed for each

H&E-IHC pair. The total number of nuclei (i.e. the denominator in percentage or H-score) was

obtained from H&E images, since nuclear segmentation was found more reliable when using StarDist

[118] on the hematoxylin stain of the H&E assay compared to the hematoxylin of the H-DAB assay.

Indeed, we noticed that in the H-DAB modality StarDist [118] may miss many negative nuclei or

may mistakenly take artifacts as negative nuclei. Some examples are provided in Fig. 5.3 and its

caption. Therefore, in the dataset, we include the total number of nuclei detected in each H&E

patch, which is a more reliable estimate for the total number of nuclei when computing percentage

(for Ki-67) or H-score (for ER and PR). Figs. 5.2, 5.3, and 5.4 show H&E patches (row 1), the
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Figure 5.5: Examples of the failure of DAB-analysis, discussed in Sec. 5.3.4. Each column
corresponds to a H&E-IHC pair. Row1:H&E, Row2: IHC, Row3: The result of DAB-analysis where
blue, yellow, orange, and red colors mark 0, 1+, 2+, and 3+ nuclei.

Figure 5.6: Examples of H&E-IHC pairs which are discarded during the exhaustive visual inspection.
Each column corresponds to a H&E-IHC pair. Row1: H&E, Row2: IHC. Details are provided in
Sec. 5.3.4
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Figure 5.7: Examples of HER2 pairs in the dataset. Each column corresponds to a H&E-IHC pair.
Row1: H&E, Row2: IHC. In columns 2, 3, and 4 some 3+ patterns exist in the H-DAB modality
and the corresponding regions exist in the H&E modality. So those pairs are labeled as positive
during the exhaustive inspection. On the other hand, the pairs in the 1st and 5th columns are
labeled as negative.

corresponding IHC patch (row 2), the result of nuclei segmentation on H&E (row 3), and the result

of H-DAB analysis (row 4) for Ki67, ER, and PR, respectively. The H-score has a range of 0 to

300 and is computed as follows: (% of weakly stained nuclei * 100) + (% of moderately stained

nuclei * 200) + (% of strongly stained nuclei * 300). The determination of weak, moderate, and

strong intensities was based on two fixed thresholds for DAB optical density mean established by

one pathologist. A single (weak) threshold was established for the Ki67 percentage assessment. In

this study, nuclei were not discriminated between tumoral and non-tumoral for H-score calculation.

5.3.4 Visual Inspection of Pairs and DAB-Analysis

After obtaining corresponding H&E and H-DAB mirrored images and corresponding analytical

labels, not all pairs are valid due to several reasons. So an expert pathologist (co-supervisor) worked

closely with a non-expert (the writer of this thesis) to exclude all invalid pairs from the dataset.

A total of 147404 pairs were exhaustively inspected, out of which 54635 pairs were discarded and

22734 pairs were manually labeled as zero (as we discuss below, some instances like 1st and 2nd

columns of Fig. 5.5 were manually labeled as zero).

Fig. 5.5 illustrates problematic images which provide wrong H-DAB analysis results. Each

column illustrates one example. The rows depict the H&E patch images, H-DAB patch images, and

DAB-analysis images performed on H-DAB, respectively. First column: out of focus non-tissular

artifact; second column green ink; third column yellow ink; and columns 3-5 red/brown inks. These

non-tissular events are mistakenly considered as positive signal by the automatic DAB-analysis. In
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the case of 1st and 2nd columns, apart from the wrong positive signal there are no real positive nuclei

elsewhere. So, in such cases, mirrored images are kept in the dataset but a manual label (H-Score)

of 0 was assigned to the pair. Keeping these images (with proper H-Score) present opportunities for

machine learning model to be exposed to such artifacts. On the other hand, in cases like the one

in the 3rd column, besides the false positive signals, there are some real positive nuclei in the two

o’clock position which made it di�cult to ensure a proper H-score label. Such cases were discarded

from the dataset.

Another reason for discarding a pair is imperfect registration (column 3 of Fig. 5.6) or some

tissue parts being missing in the corresponding modality (columns 1 and 2 of Fig. 5.6). These

cases were discarded from the dataset during the exhaustive visual inspection. Other pairs were

removed, as illustrated in the 4th and 5th columns of Fig. 5.6, when they contain brown pigments

like hemosiderin and melanin identified in both modalities (H&E and IHC), producing false DAB

signal in the corresponding IHC image. During the visual inspection, if there were such signals in

the H&E image, the pair was discarded. For such WSIs not all patches (only the ones with brown

color in H&E) were excluded, to make sure that these cases are not completely discarded from the

dataset. Most patches from the white slide background were discarded. For each region a few white

patches (containing no tissue) were included in the dataset so a machine learning model can learn

to label the white background as negative.

5.3.5 Obtaining Labels for HER2 Pairs

HER2 protein is a membrane-bound receptor and therefore the corresponding DAB signal is

membranous. Thus for HER2 IHC, as a first attempt we chose not to include the 2+ cases due

to poor inter-observer reproducibility [108] for 2+ cases. All H&E-HER2 pairs were inspected

one-by-one. A pair was labeled as positive if any 3+ patterns were present in the IHC modality and

the corresponding regions were present in the H&E modality. In other words, a binary label was

assigned to each H&E-HER2 pair. During the exhaustive inspection, some pairs were discarded

due to the reasons that we discussed in Sec. 5.3.4. For each WSI we had access to pathologist

assessment result as 0, 1+, 2+, or 3+. In this study we did not include equivocal (2+) cases but

instead focused on a binary approach: WSIs labeled as 0 or 1+ (high probability of non-amplified

status) and WSIs labeled as 3+ (high probability of amplified status). We exhaustively inspected

the pairs to confirm the veracity of this binary labeling between HER2 positive and negative cases.

Some example patch pairs are provided in Fig. 5.7. For example, for the pairs in columns 2, 3, and

4 of Fig. 5.7 some 3+ patterns exist in the IHC and the corresponding regions exist in the H&E

modality. So those pairs are labeled as positive, while the pairs in the 1st and 5th columns are

labeled as negative.
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5.3.6 Dataset Statistics

For ER, PR, Ki67, and HER2 59, 60, 60, and 52 (total of 231) WSI pairs were used, respectively. For

ER, PR, Ki67, and HER2 41098, 38914, 31631, and 41098 patch pairs were obtained, respectively,

according to the procedure of Sec. 5.3.2. Among the extracted patch-pairs, for ER, PR, Ki67, and

HER2 10703, 13943, 9886, and 20103 patch pairs were discarded and 4122, 2872, 1756, and 13984

were manually set to 0 during the exhaustive inspection, respectively. Some dataset samples are

illustrated in Figs. 5.2, 5.3, 5.4, and 5.7.

This work and the authorization to publish the anonymized dataset in the public domain

https://ihc4bc.github.io/, received the ethical approval (HREBA.CC-19-0347) from the Health

Ethics Board of Alberta.

5.4 Experiments: Training with 3K-by-3K-Level Labels

5.4.1 Methods

We used the state-of-the-art WSI classification method Clustering-constrained Attention Multiple

Instance Learning (CLAM) [89] whenever experimenting with weak WSI-level labels. When dealing

with patch-level labels, we firstly resized each 3K by 3K patch to 1K by 1K pixels. Afterwards, we

used a pipeline that processes a 1K by 1K patch as follows. A 1K by 1K patch is divided to a 4

by 4 grid whose cells are 250 by 250 pixels. Consequently, each grid cell is fed to a Resnet-18 [60]

backbone to get a volumetric map of shape 512⇥ 8⇥ 8 for each cell of the grid. These volumetric

maps are concatenated to form a volumetric map of shape 512⇥32⇥32, which is fed to a multi-head

self-attention layer (used in vision transformers [53]) followed by a classification head with a linear

layer. We used a publicly available implementation of vision transformers (ViT) [53] in PyTorch

[8]. During training we used the following data augmentations: ±10% jitter to saturation and hue

channels, and ±180 degrees random rotation to images.

5.4.2 Labeling Protocols for Classifiers

In this study we did not use regression to predict the continuous numbers (i.e. H-scores for ER,

PR, and percentage for Ki67). Instead, we used a simple method known as cumulative logits

approach [29] which puts a set of thresholds like T1, T2, ..., TM on the continuous value where

T1 < T2 < ... < TM . Afterwards, for each threshold a separate classifier is considered; classifier 1

predicts whether the continuous value is below T1 or above T1, classifier 2 predicts whether the

continuous value is below T2 or above T2, ..., classifier M predicts whether the continuous value

is below TM or above TM . Using this approach comes with the following issue. Let ✏ be a small
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number. The m-th classifier is supposed to assign a sample with number Tm � ✏ and a sample with

number Tm + ✏ to di↵erent classes. In other words, the gray-zone samples whose number is close to

Tm may confuse the m-th classifier. To avoid this issue, we also tested a slightly modified approach

as follows. Classifier 1 predicts whether the continuous value is below T1 or above T2, classifier 2

predicts whether the continuous value is below T2 or above T3, ..., classifier M � 1 predicts whether

the continuous value is below TM�1 or above TM . We refer to the former and the latter approaches

as ”without gray-zone” and ”with gray-zone”, respectively.

5.4.3 Training Setup

For the weakly-supervised method CLAM [89] we used the default parameter settings available in

the public repository [9]. When training the strongly supervised patch classifiers, we always used

an AdamW [88] optimizer with the AMSGrad [110] flag enabled. We trained with two learning

rates, 0.0001 and 0.00001 and picked the checkpoint with the highest validation AUC. To have a fair

comparison, the training cases shown to the CLAM [89] and the patch classifiers should be as close

as possible. To this end, we firstly select 90 percent of WSIs for training the WSI-classifier CLAM

[89] and the rest for testing. Consequently, the patches from the training/testing whole-slide images

are used as training/testing sets for the patch classifiers. By doing so, the WSI-classifier CLAM [89]

and the patch classifier are provided with the same set of training cases. To make a validation set

for a patch classifier, for each WSI in the training set we randomly selected one of the annotated

regions (like the regions shown in the third column of Fig. 5.1) and considered its patches in the

validation set. For CLAM [89] we randomly selected 5 WSIs as the validation set. Note that due to

class imbalance the random testing/validation splits may become devoid of instances from some

classes. In this study we did not use such splits in the experiments.

5.4.4 Results

Prediction Performances

For each marker we created 5 splits according to the procedure of Sec. 5.4.3. When presenting the

results, each split has its own unique color. For example in Fig. 5.8a the red circles correspond to a

fixed training/testing split which is used by di↵erent methods and labeling protocols. Prediction

performances in terms of AUC are provided in Figs. 5.8a, 5.8b, 5.8c, and 5.8d. In these figures the

first box-plot on the left shows the performance of CLAM [89] in classifying WSIs to two classes.

For HER2 (Fig. 5.8d the box-plot on the left) WSIs from 0 and 1+ cases are labeled as CLAM

[89]’s class 0 and WSIs from 3+ cases are labeled as CLAM [89]’s class 1. For Ki67, ER, and PR

we firstly computed the median of the continuous values in the dataset, which are 3.82 for Ki67

percentage, 42.61 for ER H-score, and 7.373 for PR H-score. Afterwards, we used these median
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(a) Results for predicting Ki67 status. From left
to right, 1st box-plot: CLAM [89] when predict-
ing WSI-level Ki67-percentage below 3.82 ver-
sus above 3.82. 2nd box-plot: patch-level Ki67-
percentage below 3.82 versus above 3.82. 3rd-5th
box-plots: patch-level Ki67-percentage (head 1:
below 5 versus above 10, head 2: below 10 ver-
sus above 15, head 3: below 15 versus above 20).
6th-9th box-plots: patch-level Ki67-percentage
(head 1: below 5 versus above 5, head 2: below 10
versus above 10, head 3: below 15 versus above
15, and head 4: below 20 versus above 20).

(b) Results for predicting ER status. From left to
right, 1st box-plot: CLAM [89] when predicting
WSI-level ER H-score below 42.61 versus above
42.61. 2nd box-plot: patch-level ER H-score be-
low 42.61 versus above 42.61. 3rd-4th box-plots:
patch-level ER H-score (head 1: below 30 versus
above 60, head 2: below 60 versus above 90). 5th-
7th box-plots: patch-level ER-percentage (head
1: below 30 versus above 30, head 2: below 60
versus above 60, head 3: below 90 versus above
90).

(c) Results for predicting PR status. From left to
right, 1st box-plot: CLAM [89] when predicting
WSI-level PR H-score below 7.373 versus above
7.373. 2nd box-plot: patch-level PR H-score be-
low 7.373 versus above 7.373. 3rd-4th box-plots:
patch-level PR H-score (head 1: below 30 versus
above 60, head 2: below 60 versus above 90). 5th-
7th box-plots: patch-level PR-percentage (head
1: below 30 versus above 30, head 2: below 60
versus above 60, head 3: below 90 versus above
90).

(d) Results for predicting HER2 status.
From left to right, 1st box-plot: CLAM
[89] when predicting WSI-level HER2 sta-
tus positive versus negative. 2nd box-plot:
predicting whether 3+ patterns exist in a
patch (positive/high) or not (negative/low).

Figure 5.8: Prediction performances for a) Ki67, b) ER, c) PR, and d) Her2 in terms of ROC-AUC.
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Figure 5.9: Localizations for HER2 predictors trained/evaluated on the split shown by the orange
circle in Fig. 5.8d. Each column corresponds to a H&E-IHC pair. Row 1: IHC, row 2: H&E, row 3:
CLAM [89]’s attention mask, row 4: patch classifier’s sensitivity to pixels. In all heatmaps we used
JET color-map in which high and low values appear in red and blue, respectively.
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Figure 5.10: Localizations for Ki67 predictors trained/evaluated on the split shown by the red circle
in Fig. 5.8a. Each column corresponds to a H&E-IHC pair. Row 1: IHC, row 2: H&E, row 3:
CLAM [89]’s attention mask, row 4: the sensitivity of the classifier labeled as ”ViT, high vs. low”.
rows 5: the average sensitivity of heads of the classifier labeled as ”ViT, with G.Z.”. rows 6: the
average sensitivity of heads of the classifier labeled as ”ViT, without G.Z.”. In all heatmaps we
used JET color-map in which high and low values appear in red and blue, respectively.
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Figure 5.11: Localizations for ER predictors trained/evaluated on the split shown by the purple
circle in Fig. 5.8b. Each column corresponds to a H&E-IHC pair. Row 1: IHC, row 2: H&E, row 3:
CLAM [89]’s attention mask, row 4: the sensitivity of the classifier labeled as ”ViT, high vs. low”.
rows 5: the average sensitivity of heads of the classifier labeled as ”ViT, with G.Z.”. rows 6: the
average sensitivity of heads of the classifier labeled as ”ViT, without G.Z.”. In all heatmaps we
used JET color-map in which high and low values appear in red and blue, respectively.

42



Figure 5.12: Localizations for PR predictors trained/evaluated on the split shown by the red circle
in Fig. 5.8c. Each column corresponds to a H&E-IHC pair. Row 1: IHC, row 2: H&E, row 3:
CLAM [89]’s attention mask, row 4: the sensitivity of the classifier labeled as ”ViT, high vs. low”.
rows 5: the average sensitivity of heads of the classifier labeled as ”ViT, with G.Z.”. rows 6: the
average sensitivity of heads of the classifier labeled as ”ViT, without G.Z.”. In all heatmaps we
used JET color-map in which high and low values appear in red and blue, respectively.
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values to make WSI-level labels for CLAM [89]; if the WSI-level continuous number is below the

median value it belongs to class 0 and otherwise to class 1. We evaluated the performance of the

vision transformer-based (ViT) [53] patch classifier with the same thresholds used for CLAM [89].

The results are provided in Figs. 5.8a, 5.8b, 5.8c, and 5.8d by the box-plots labeled as ”ViT, high

vs. low”. Note that, for example in Fig. 5.8a CLAM [89]’s task is to predict whether the WSI-level

Ki67 percentage is below or above 3.82. But the patch classifier (the box-plot labeled ”ViT, high

vs. low”) predicts whether the patch-level (as opposed to WSI-level) Ki67 percentage is below

or above 3.82. We also experimented with the cumulative logits approach, as explained in Sec.

5.4.2 and in two settings: with gray-zone and without gray-zone. In Figs. 5.8a, 5.8b, and 5.8c the

corresponding box-plots are labeled as ”ViT with G.Z.” and ”ViT without G.Z.”, respectively. We

used the following thresholds on Ki67 percentage: 5, 10, 15, and 20. Moreover, for ER and PR we

used the following thresholds on H-score: 30, 60, and 90.

Localizations

Besides reporting the prediction performances, we inspected to what degree the weakly-supervised

method CLAM [89] and the ViT-based pipeline described in Sec. 5.4.1 can localize relevant regions.

CLAM [89] has an explicit attention mechanism, so for CLAM [89] we traversed a 1K by 1K image

with a sliding window of size 256 and stride of 10, feeding each 256 by 256 patch to CLAM [89]’s

attention sub-module to obtain a heatmap. If the heatmap has a large value at a pixel position,

intuitively CLAM [89] has payed more attention to that pixel position. The ViT-based pipeline

has no explicit attention mechanism, so to highlight the important pixel positions we used an

attribution-based approach as follows. A 1K by 1K patch is traversed with a white patch of size 50

and stride 10, and the average change in pipeline’s output is recorded in the heatmap. Intuitively,

the sliding white patch hides a small region of the input image to see how it a↵ects the pipeline’s

output. Note that there are more sophisticated feature-attribution methods, but they may produce

discordant explanations [78]. In all heatmaps, we used JET color-map in which high and low values

appear in red and blue, respectively. The localizations for HER2, Ki67, ER, and PR are provided in

Figs. 5.9, 5.10, 5.11, and 5.12.

5.4.5 Discussion and Analysis

The performance of the WSI classification method CLAM [89] in Figs. 5.8a, 5.8b, 5.8c, and 5.8d

(the 1st bars from left) shows that training with WSI-level labels is not e↵ective for predicting ER,

PR, Ki67, and HER2 statuses. This observation is consistent with the study done by Laleh et al.

[84]. The best results correspond to the ViT-based pipeline trained on 3K-by-3K labels and with the

gray-zones explained in Sec. 5.4.2 (labeled as ”ViT-with G.Z.” in Figs. 5.8a, 5.8b, 5.8c, and labeled
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as ”ViT, high vs. low” in Fig. 5.8d). In this setting the prediction performances approaches or

exceeds 90 in terms of AUCROC. Interestingly, when the gray-zone is not considered (labels as ”ViT,

without G.Z.” in Figs. 5.8a, 5.8b, 5.8c, and 5.8d) we see a drastic drop in prediction performances.

This shows that when the gray-zones are not considered, the small flaw of assigning di↵erent labels

to patches with H-scores Tm � ✏ and Tm + ✏ (i.e. the issue elaborated upon in Sec. 5.4.2) can

significantly reduce the prediction performance. In our best results (labeled as ”ViT-with G.Z.” in

Figs. 5.8a, 5.8b, 5.8c, and labeled as ”ViT, high vs. low” in Fig. 5.8d) the prediction performances

approach or exceed 90% in terms of AUC for most splits, but we see a drop of performance for some

splits. Since roughly 240 WSIs are used to create the dataset, we hypothesize that in those splits

some tissue-types in the test set happen to be missing in the training set. In other words, one might

still need to expand the dataset to expose machine learning models to more morphological variety

during training.

Besides reporting the prediction performances, we obtained the localization maps from di↵erent

methods according to the procedure of Sec. ”Localizations”. These localization maps are provided

in Figs. 5.9, 5.10, 5.11, and 5.12 for HER2, Ki67, ER, and PR, respectively. In these figures the

five columns show di↵erent (H&E)-(H-DAB) examples: the 1st and 2nd rows depict respectively the

H&E and H-DAB images. Brown regions in an H-DAB image correspond to positive regions and

the corresponding regions in the H&E modality should ideally be highlighted by machine learning

methods. The 3rd and 4th rows respectively illustrate the CLAM [89]’s and the ViT-based pipeline’s

heatmaps. According to these heatmaps, although both pipelines have achieved around 90 AUCs

neither of them can successfully localize the relevant regions. For example, according to the heatmap

in 3rd column and 3rd row of Fig. 5.9, CLAM [89] mistakenly pays attention to the negative region

in the two o’clock position. This observation is consistent with the experiments done by Laleh et

al. [84] in which weakly-supervised methods mistakenly highlight tissue borders or other artefact

when trained to predict molecular information. Another observation is that the heatmaps related

to the ViT-based pipeline (i.e. the heatmaps in the 4th row) are often homogeneous. This might

be due to the fact that the pipeline is by-design good at making use of contextual information.

More precisely, although a CNN normally takes in or ”sees” a relatively small patch, the ViT-based

pipeline explained in Sec. 5.4.1 can see a 1K by 1K patch in its entirety. All in all, although in Figs.

5.9, 5.10, 5.11, and 5.12 the selected checkpoints can achieve around or above 90% AUCs, none of

them can successfully localize relevant tissue regions. Intuitively, during training the pipelines are

never asked to decide if each region is positive or negative, and they merely need to output a label

for a patch or WSI by, e.g., detecting only a small portion of relevant regions.
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5.5 Experiments: Pixel-level Supervision versus Automatic Local-

ization

5.5.1 Acquiring Pixel-level Labels

Near 900K (exactly 881,957) spots were manually annotated on HER2-positive image regions of the

IHC4BC dataset. Fig. 5.13 illustrates sample spots which are manually placed on H&E images by

looking at the corresponding positive regions in the H-DAB modality.

Figure 5.13: Examples of manual annotations on Her2 positive regions. Each column corresponds
to a H&E-IHC pair. Row1: H&E, Row2: H-DAB, Row3: the cyan spots show the manually marked
Her2 positive regions.

5.5.2 Experimental Setup

The research question is: can a state-of-the-art automatic localization method with 3K by 3K level

labels be as good as a strongly-supervised classifier trained with the manual pixel-level spots? To

answer this question we benchmarked two methods

• 1. A simple classifier with Resnet-18 [60] backbone trained on 120 by 120 patches and with

120 by 120 level labels.
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• 2. Co-teaching [58], a sophisticated automatic localization method trained on 120 by 120

patches where the 3K by 3K level labels are assigned to each 120 by 120 patch.

For the simple classifier the 120 by 120 positive patches were extracted by first randomly selecting a

positive spot, then adding ±25 pixels uniform random shift to the pixel location and then extracting

a 120 by 120 patch from that pixel location near the manually marked spot. For both methods

we used color jitter with values 0.2, 0.0, 0.1, and 0.1 for brightness, contrast, saturation, and hue,

respectively. We used Adam optimizer [80] with learning rates 0.0001 and 0.001 for the simple

classifier and co-teaching, respectively. An important hyper-parameter of co-teaching [58] is an

estimate for the noise-rate, which in our setting is equal to the percentage of HER2 negative 120 by

120 patches mistakenly labeled as positive (i.e. negative patches extracted from HER2 positive 3K

by 3K images). To estimate this hyper-parameter, we applied DAB-deconvolution [117] to HER2

positive 3K by 3K images and used the DAB channel to estimate the percentage of HER2 negative

pixels over all 3K by 3K HER2 positive images. This estimate turned out to be 0.45. To have a

solid evaluation, we used leave-one-patient-out evaluation where at each round images from a single

patient are withheld for evaluation. To make a validation set - similar to the setup of Sec.5.4.3

- for each WSI in the training set we randomly selected one of the annotated regions (like the

regions shown in the third column of Fig. 5.1) and considered its patches in the validation set. The

checkpoint with the highest validation performance in terms of AUC is picked as the best checkpoint.

AUC is not usable in the leave-one-patient-out setting, because the left out patient may not have

any HER2 positive images in which case the AUC is not defined. Therefore we used relevance score,

which is simply the predicted probability of the correct class. Note that since we have ground-truth

manual spots, we reported the relevance score over di↵erent 120 by 120 patches from images of test

patients. Also note that negative 120 by 120 patches are only extracted from HER2 negative 3K by

3K patches, because some positive regions of HER2 positive 3K by 3K images may have no manual

spot on them.

5.5.3 Results

Fig. 5.14 shows the truncated violin plots for the leave-one-patient-out analysis where the caption

of each subfigure specifies the anonymous identifier of the patient who is held out for testing (e.g.

”patient 1009”, ”patient 3009”, etc.) The very last subfigure of Fig. 5.14 with caption ”Overall (all

patients)” depicts the violin plot for all relevance scores. Fig. 5.15 illustrates prediction probability

heatmap of the strongly-supervised classifier (columns 3 and 4) and that of co-teaching [58] (columns

5 and 6) for six H&E-H-DAB image pairs. Rows belong to the following patient identifiers which

can be matched to patient identifiers in subfigure captions of Fig. 5.14: 66009, 78009, 501009, 19009,

150009, and 233009.
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Figure 5.14: Leave-one-patient-out evaluation in terms of relevance score.

5.5.4 Discussion and Analysis

According to Fig. 5.14 co-teaching [58] is competitive with the classifier trained with pixel-level

labels, although it only has access to 3K by 3K level labels. Indeed, although in Sec. 5.4.4 we

showed that for the problem at hand automatic localization is not possible with WSI-level labels,

but in Fig. 5.14 we observe that doing so is possible with 3K by 3K level labels. Recall that WSIs

are huge (e.g. 100K by 100K pixels in size), and localization with WSI-level labels is similar to
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Figure 5.15: Sample heatmaps of strongly-supervised classifier and co-teaching [58]. Heatmaps are
shown with the jet colormap with minimum (resp. maximum) value of 0.0 (resp. 1.0). column
1: H-DAB image, column 2: H&E image, column 3: simple classifier’s activation map, column 4:
same as column 3 but overlayed on the H&E image, column 5: activation map from co-teaching,
column 6: same as column 5 but overlayed on the H&E image. Rows belong to the following patient
identifiers which can be matched to patient identifiers in Fig. 5.14: 66009, 78009, 501009, 19009,
150009, and 233009.

”finding a needle in a haystack”. But a 3K by 3K patch is a smaller search space for localization,

and that may explain the success of co-teaching in Fig. 5.14.

In Fig. 5.14 for the majority of patients both methods have performed well. There are cases

where co-teaching has failed but the strongly-supervised classifier has not (e.g. ”Patient 116009” in

the second last row and ”Patient 501009” in the last row of Fig. 5.14). Moreover, there are cases

where both methods have failed (e.g. ”Patient 233009” in the last row of Fig. 5.14). Intriguingly,

there are cases where co-teaching [58] has performed slightly better than the strongly-supervised

classifier (e.g. ”Patient 150009” in the second last row of Fig. 5.14). The heatmaps of Fig. 5.15

provides more insights.
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• The first row of Fig. 5.15: the strongly-supervised classifier has been quite successful (columns

3 and 4 of Fig. 5.15) while co-teaching [58] has totally failed and the heatmap is incorrect

(columns 5 and 6 of Fig. 5.15). This pair belongs to the scatter plot ”Patient 66009” in Fig.

5.14.

• The second row of Fig. 5.15: both methods have reasonable heatmaps, but that of the

strongly-supervised classifier is smoother. This pair belongs to ”Patient 78009” in the 7-th

row of Fig. 5.14.

• The third row of Fig. 5.15: The heatmap of the strongly-supervised classifier is reasonable

(columns 3 and 4) but that of co-teaching only picks a small spot (columns 5 and 6). This

pair belongs to ”Patient 501009” in the last row of Fig 5.14.

• The fourth row of Fig. 5.15: similar to the second row. This pair belongs to ”Patient 19009”

in the third row of Fig.5.14 where the violin plot of the strongly-supervised classifier is slightly

better than that of co-teaching.

• The fifth row of Fig. 5.15: Interestingly the heatmap of co-teaching is better than that of the

strongly-supervised classifier. This pair belongs to ”Patient 150009” in the second last row of

Fig. 5.14 where the violin plot of co-teaching is also slightly better.

• The sixth row of Fig. 5.15: both methods have failed. This failure is also visible in the violin

plots ”Patient 233009” in the last row of Fig. 5.14.

5.6 Conclusion

In this chapter we firstly presented our inhouse dataset called IHC4BC for predicting the status

of four breast cancer biomarkers from H&E histopathology images. We showed that with a large

dataset of 3K by 3K patches it is possible to achieve prediction performances around and above

90 in terms of AUC. Moreover, we showed that doing so is not possible with WSI-level labels and

WSI-level prediction evaluation. Finally, we manually acquired near 900K manual spots on HER2

positive regions and demonstrated that a state-of-the-art localization method achieves competitive

(and intriguingly sometimes superior) performance compared to a strongly-supervised classifier.

Notably, automatic localization was ine↵ective (resp. e↵ective) when using WSI-level (resp. 3K by

3K level) labels.
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Chapter 6

GPEX, a Framework for Interpreting

Artificial Neural Networks

6.1 Synopsis

In this section we propose a method that interprets an ANN (artificial neural network) by distilling

knowledge from the ANN to a GP (Gaussian process) thereby finding globally faithful GPs which

provide reliable interpretations.

6.2 Overview

ANNs (Artificial neural networks) are widely adopted in machine learning. Despite their benefits,

ANNs are known to be black-box to humans, meaning that their inner mechanism for making

predictions is not necessarily interpretable/explainable to humans. ANN’s black-box property

impedes its deployment in safety-critical applications like medical imaging or autonomous driving,

and makes them hard to troubleshoot for machine learning researchers.

Attribution-based explanation methods like LIME[115], SHAP[90] and most gradient-based

explanation methods like DeepLIFT [35] presume a linear surrogate model. Given a test instance

xtest, this simpler surrogate model is encouraged to have the same output ”locally” around xtest.

Because of this ”local assumptions”, explanations from these methods might be unreliable, and

can be easily manipulated by an adversary model [56, 112]. Moreover, these models may produce

discordant explanations for a fixed model and test instance [78].

Considering GPs (Gaussian processes) [107] as the explainer model is beneficial, because: 1.

Gaussian processes are highly interpretable. 2. Researchers have long known that GP’s posterior
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has the potential to match an ANN’s output ”globally”. More precisely, given an ANN and some

requirements on it [98, 50], there might exist a GP whose posterior matches the ANN’s output all

over the input-space X (as opposed to the local explanation models for which the match happens

only locally around a test instance xtest 2 X). Not many explainer models can globally match the

ANN’s output. Among gradient-based methods, with the best of our knowledge only Integrated

Gradients [128] has a weak sense of ANN’s global behaviour over the input space. Having some

conditions on an ANN, representer point selection [136] finds a ”globally faithfull” explainer model

that, similar to GPs, works with a kernel function. As we will elaborate upon in Sec. 6.4.4, the GP’s

kernel that we find via GPEX is superior due to a technical point in the formulation of representer

point selection [136]. In sum, using GPs to explain ANNs is quite promising and has advantages

over other approaches to explain ANNs.

6.3 Proposed Method

6.3.1 Notation

In this section the function g(.) always denotes an ANN. The kernel of a Gaussian process is

denoted by the double-input function K(., .). We assume that the kernel similarity between two

instances xi and xj is equal to f(xi)T f(xj), where f(.) maps the input-space to the kernel-space.

In this chapter u (resp. v) denotes a vector in the kernel-space (resp. the posterior mean) of a

GP. In some sense u and v denote the input and the output of a GP, respectively. We have that:

K(xi,xj) = f(xi)T f(xj) = ui
Tuj . The number of GPs is equal to the number of the outputs from

the ANN. In other words, we consider one separate GP per scalar output-head from the ANN.

We use index ` to specify the `-th GP as follows: K`(xi,xj) = f`(xi)T f`(xj) = ui
(`)Tuj

(`)
. We

parameterize the `-th GP by a set of M inducing points {(ũ(`)
m , ṽ

(`)
m )}M

m=1. The tilde in (ũ(`)
m , ṽ

(`)
m )

indicates that ũ is one of the M inducing points in the kernel space. However, u (without tilde) can

be an arbitrary point in the continuous kernel-space. Notably, the inducing points {x̃(`)
m }

M

m=1 are a

set of fixed instances on which data augmentation is not allowed. But x (without tilde) denotes an

arbitrary vector in the feature-space that can go through data augmentation.

6.3.2 The Proposed Framework

To make our framework as general as possible, we consider a general feed-forward pipeline that

contains an ANN as a submodule. In Fig. 6.1a the bigger square illustrates the general module.

The input-output of the general pipeline are denoted in Fig. 6.1a by X and Y . The general pipeline

has at least one ANN submodule to be explained by our proposed GPEX. Fig. 6.1a illustrates

this ANN by the small blue rectangle within the general pipeline. The input-output of the ANN
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a b

Figure 6.1: a) A general feed-forward pipeline, with an ANN sub-module to be explained by GPEX.
b) Typical behaviour of Guassian process posterior given a set of observed values.

are denoted in Fig. 6.1a by x and v. Note that X and Y can be anything, including without any

limitation, a set of vectors, labels, and meta-information. However, input-output of the ANN (i.e.

x and v) are required to be in tensor format. The exact requirements are provided in the online

documentation for GPEX [14]. Moreover, the general module can have other arbitrary submodules,

which are depicted by the blue clouds. The relations between the submodules, as illustrated by the

dotted-lines in Fig. 6.1a, can also be quite general. Our probabilistic formulation only needs access

to the conditional distributions p(x|X ) and p(Y|x,X ). Similarly, the proposed GPEX is completely

agnostic about the general pipeline and it only requires the ANN’s input-output to be in the tensor

format. Given a PyTorch module, the proposed GPEX tool [4] automatically grabs the distributions

p(x|X ) and p(Y|x,X ) from the main module it is given.

The inducing points {ũ(`)
m , ṽ

`

m}
M

m=1 parameterize the `-th GP. Note that ũ(`)
m = f`(x̃m). A feature

point like x is first mapped to the kernel-space as u(`) = f`(x). Note that the kernel functions

{f`(.)}L`=1 are implemented as separate neural networks, or for the sake of e�ciency as a single

neural network backbone with L di↵erent heads. Afterwards, the GP’s posterior on x depends on

the kernel similarities between u(`) and the inducing points {ũ(`)
m }

M

m=1. More precisely, the posterior

of the `-th GP on x is a random variable v
(`) whose distribution is as follows [107]:

p(v(`)|u(`)
, ũ(`)

1:M , ṽ
(`)
1:M ) = N

⇣
v
(`) ; µv(u

(`)
, ũ(`)

1:M , ṽ
(`)
1:M ), covv(u

(`)
, ũ(`)

1:M , ṽ
(`)
1:M )

⌘
, (6.1)

where µv(., ., .) and covv(., ., .) are the mean and covariance of a GP’s posterior computed as:

µv(u
(`)
, ũ(`)

1:M , ṽ
(`)
1:M ) = K(u(`)

, ũ(`)
1:M )

⇥
K(ũ(`)

1:M , ũ(`)
1:M ) + �

2
gpIM⇥M

⇤�1
ṽ
(`)
1:M (6.2)
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and

covv(u
(`)
, ũ(`)

1:M , ṽ
(`)
1:M ) =K(u(`)

,u(`))�

K(u(`)
, ũ(`)

1:M )⇥
⇥
K(ũ(`)

1:M , ũ(`)
1:M ) + �

2
gpIM⇥M

⇤�1
K(ũ(`)

1:M ,u(`)). (6.3)

Note that Eqs. 6.2 and 6.3 are the closed form GP posterior formulation [107], hence here we do

not provide any derivation or intuitive explanation for them. Since the variables {v(`)m }
M

m=1 and v

are latent or hidden, we train the model parameters by optimizing a variational lower-bound. We

consider the following variational distributions:

q1(v
(`)

|x) = N
�
v
(`) ; g`(x) , �

2
g

�
, q2

�
ṽ
(`)
m

�
= N

�
ṽ
(`)
m ;'(`)

m ,�
2
'

�
. (6.4)

In Eq. 6.4, the function g`(.) is the `-th output from the ANN. Note that as the set of hidden

variables {ṽ
(`)
m }

M

m=1 is finite, we have parameterized their variational distribution by a finite set

of numbers {'(`)
m }

M

m=1. However, as the variables x can vary arbitrarily in the feature space, the

variable u(`) varies arbitrarily in the kernel space. Therefore, the set of values v(`) may be infinite.

Accordingly, the variational distribution for v(`) is conditioned on x and is parameterized by the

ANN g(.).

6.3.3 The Derived Evidence Lower-Bound (ELBO)

The details of the derivation of the lower-bound is moved to Appendix B. In this section we only

introduce the derived ELBO and discuss how it relates the GP, the ANN and the training cost of

the main module in an intuitive way. The ELBO terms containing the GP parameters (i.e. the

parameters of the kernel function f(.)) is denoted by Lgp. According to Eq. B.9 in Appendix B,

Lgp is as follows:

Lgp = �
1

2
E⇠q

⇥ LX

`=1

(µv(u(`)
, ũ(`)

1:M , ṽ
(`)
1:M )� g`(x))2 + �

2
g

covv(u(`), ũ(`)
1:M , ṽ

(`)
1:M )

⇤

�
1

2
E⇠q

⇥ LX

`=1

log(
covv(u(`)

, ũ(`)
1:M , ṽ

(`)
1:M )

�2
g

)
⇤
+
�
const.

�
, (6.5)

where q(.) is the variational distribution that factorizes to the q1(.) and q2(.) distributions defined

in Eq. 6.4. In the first term of Eq. 6.5, the numerator encourages the GP and the ANN to have the

same output. More precisely, for a feature point x we can compute the corresponding point in the

kernel space as u(`) = f`(x) and then compute the GP’s posterior mean based on kernel similarities

between u and the inducing points to get the GP’s mean µv. In Eq. 6.5 the GP’s mean µv is

encouraged to match the ANN’s output g`(x). In Eq. 6.5, because of the denominator of the first
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term, the ANN-GP similarity is not encouraged uniformly over the feature-space. Wherever the GP’s

uncertainty is low, the term covv(u(`)
, ũ(`)

1:M , ṽ
(`)
1:M ) in the denominator becomes small. Therefore,

the GP’s mean is highly encouraged to match the ANN’s output. On the other hand, in regions

where the GP’s uncertainty is high, the GP-ANN analogy is less encouraged. This formulation is

quite intuitive according to the behaviour of Gaussian processes. Fig. 6.1b illustrates the posterior

of a GP with radial-basis kernel for a given set of observations. In regions like [3,1) and (�1,�4]

there are no nearby observed data. Therefore, in these regions the GP is highly uncertain and

the blue uncertainty margin is thick in such regions. Intuitively, our derived ELBO in Eq. 6.5

encourages the GP-ANN analogy only when GP’s uncertainty is low and gives less importance to

regions similar to [3,1) and (�1,�4] in Fig. 6.1b. Note that this formulation makes no di↵erence

for the ANN as ANNs are known to be global approximators. However, this formulation makes

a di↵erence when training the GP, because the GP is not required to match the ANN in regions

where there are no similar training instances. The ELBO terms containing the ANN parameters is

denoted by Lann. According to Eq. B.15 in Appendix B, Lann is as follows:

Lann =�
1

2
E⇠q

⇥ LX

`=1

(µv(u(`)
, ũ(`)

1:M , ṽ
(`)
1:M )� g`(x))2

covv(u(`), ũ(`)
1:M , ṽ

(`)
1:M )

⇤
+ E⇠q

⇥
log p(Y|y,X )

⇤
. (6.6)

In the above objective the first term encourages the ANN to have the same output as the GP.

Similar to the objective of Eq. 6.5, the denominator of the first term gives more weight to ANN-GP

analogy when GP’s uncertainty is low. In the right-hand-side of Eq. 6.6, the second term is the

likelihood of the pipeline’s output(s), i.e. Y in Fig. 6.1a. This term can be, e.g., the cross-entropy

loss when Y contains class scores in a classification problem, or the mean-squared error when Y is

the predicted value for a regression problem, or a combination of those costs in a multi-task setting.

6.3.4 Algorithm

We consider a separate Gaussian process for each output head of an ANN. In other words, given an

ANN we have as many GPs as the number of the ANN’s output heads. To explain an ANN, we find

the explainer GPs by optimizing the objective in Eq. 6.5 w.r.t. to the kernel mappings {f`(.)}L`=1.

To do so, we need to have µv which in turn means we need to have all kernel-space representations

{ũ(`)
m }

M

m=1. However, it is computationally prohibitive to feed thousands of inducing instances (i.e.

images) to the kernel mappings as ũ(`)
m = f`(x̃m) for m 2 {1, 2, ...,M} in each gradient descent

iteration. On the other hand, as the kernel-space mappings {f`(.)}L`=1 keep changing during training,

we need to somehow track how the inducing points {ũ(`)
m }

M

m=1 change during training. To this end,

we put the kernel-space representations of the inducing points in matrices denoted by U. During

training, these matrices are repeatedly updated by feeding mini-batches of inducing instances to the

kernel-mappings.
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Algorithm 1 Method Forward GP

Input: Input instance x, inducing instance x̃, list of matrices U, list of vectors V, current kernel-
space mappings [f1(.), ..., fL(.)].

Output: List of GP posterior means µ, and covariances cov.
1: Initialisation : µ = list(L), cov = list(L). . Create two empty lists of length L.
2: for ` = 1 to L do
3: u = f`(x) . map x to the kernel space of the `-th GP.
4: U`  U[L] . get the inducing points of the `-th GP.
5: V`  V[L] . observed values at the inducing points.
6: if training then
7: U`[x̃.index] f`(x̃) . to pass gradient w.r.t. f`(.)
8: end if
9: µ[`] uTUT

`

�
U`UT

`
+ �

2
gpI

��1
V`. . GP posterior mean formula in Eq.6.2

10: cov[`] uTu� uTUT

`

�
U`UT

`
+ �

2
gpI

��1
U`u. . GP posterior covariance formula in Eq.6.3

11: end for
12: return µ and cov

Algorithm 2 Method Init GPparams

Input: Dataset of inducing instances [x̃1, ..., x̃M ], current kernel-space mappings [f1(.), ..., fL(.)],
the neural network g(.).

Output: List of matrices U, list of vectors V.
1: Initialisation : U = list(L), V = list(L). . Create two empty lists of length L.
2: for ` = 1 to L do
3: V[`] [g(x̃1)[`], ..., g(x̃M )[`])].
4: end for
5: for ` = 1 to L do
6: U[`] [f`(x̃1), ..., f`(x̃M )].
7: end for
8: return U and V

Alg. 4 optimizes the objective of Eq. 6.5 w.r.t. the kernel mappings {f`(.)}L`=1. First, a single

training instance x and a single inducing point x̃ are selected (line 3-4). Afterwards, the procedure

of Alg. 3 is called to update the kernel mappings (line 5 of Alg. 4). To update the kernel mappings,

the GP posterior is computed via the matrices U (line 2 of Alg.3). The ”forward GP” procedure

(called in line 2 of Alg. 3) is provided in Alg. 1, and uses the matrices U to compute GP’s posterior.

Only the rows of U that correspond to the selected inducing point x̃ are computed using the

kernel-mappings, so that the gradient w.r.t. the kernel-mappings can be computed in the backward

pass (lines 6-7 of Alg. 1). In other words, to avoid the infeasible GPU memory requirement when

creating the computation graph, only u = f(x) and ũ = f(x̃) are computed using the actual kernel

mappings, and for the rest of inducing points the current representations in the U matrices are

used. Finally, the matrices U are updated (lines 7-9 of Alg. 4). Of course instead of a single

training/inducing instance, we used a mini-batch of multiple training/inducing instances.
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Algorithm 3 Method Update KernMappings

Input:
Input instance x, inducing instance x̃ , list of matrices U, list of vectors V, current kernel-space
mappings [f1(.), ..., fL(.)].

Output:
New kernel-space mappings [f̂1(.), ..., f̂L(.)], after one step of gradient descent.

1: Initialisation : loss 0.
2: µ, cov  forward GP(x, x̃, U, V) . feed x to GPs, ”forward GP” is defined in Alg. 1.
3: µann  g(x) . feed x to ANN.
4: for ` = 1 to L do
5: loss loss+

(µ[`]�µann[`])2+�
2
g

cov[`] + log(cov[`]). . Eq. 6.6.
6: end for
7: �  @ loss

@ params

�
[f1(.),...,fL(.)]

� . . the gradient of loss.

8: params
�
[f̂1, ..., f̂L]

�
 params

�
[f1, ..., fL]

�
� lr ⇥ � . update the parameters.

9: lr  updated learning rate
10: return [f̂1(.), ..., f̂L(.)]

6.3.5 Making the Algorithm Scalable

One major di�culty of training GPs is the matrix inversion of Eqs. 6.2 and 6.3, which has

O(M3) complexity using standard matrix inversion methods. To address this issue, we adopted

computational techniques recently used for fast spectral clustering [61] as follows. Let A be an

arbitrary M ⇥D matrix where M >> D. Moreover, let b be a M -dimensional vector and let � be

a scalar. The computational techniques [61] allow us to e�ciently compute:

(AAT + �
2IM⇥M )�1 b.

The idea is that AAT and therefore its inverse are of rank D. Therefore, (AAT )�1 has D non-

zero eigenvalues like {�1, ...,�D} and the rest of its eigenvalues are zero. Let the corresponding

eigenvectors be {e1, ..., eD}. To compute (AAT )�1b we can simply project b to the D-dimensional

space of the eigenvectors. By doing so, we avoid the O(M3) computational complexity. Let

{�1, ...,�D} be the non-zero eigenvalues of AAT and let {e1, ..., eD} be the corresponding eigenvec-

tors. From linear algebra, it follows that for AAT + �
2IM⇥M the eigenvalues and the eigenvectors

are {�1 + �
2
, ...,�D + �

2
,�

2
, ...,�

2
} and {e1, ..., eD}, respectively. Note that M �D eigenvalues

are added all of which are equal to �
2. Similarly, from linear algebra it follows that for the

inverse of AAT + �
2IM⇥M the eigenvalues and eigenvectors are {

1
�1+�2 , ...,

1
�D+�2 ,

1
�2 , ...,

1
�2 } and

{e1, ..., eD, eD+1, ..., eM} respectively. Note that although there are M eigenvectors, only the first

D eigenvectors appear in our computations. More precisely, let E 2 RM⇥D be a matrix whose

columns are {e1, ..., eD}. Let ⇤ be a diagonal matrix whose diagonal is formed by {
1

�1+�2 , ...,
1

�D+�2 }.

In the space of the D eigenvectors the linear transformation on any vector like b is equal to E⇤ETb,
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Algorithm 4 Method Explain ANN

Input: Training dataset ds train, the inducing dataset ds inducing, the neural network g(.).
Output: The obtained GPs, i.e., the kernel-space mappings [f1(.), ..., fL(.)], list of matrices U, and

list of vectors V.
1: Initialisation : U, V  Init GPparams(ds inducing) . the procedure of Alg. 2
2: for iter = 1 to max iter do
3: x randselect(ds train).
4: x̃ randselect(ds inducing)
5: [f1(.), ..., fL(.)]  Update KernMapings(x, x̃,U,V). . the procedure of Alg. 3
6: x̃ randselect(ds inducing).
7: for ` = 1 to L do
8: U [`][x̃.index] f`(x̃) . update kernel-space representations.
9: end for

10: end for
11: return [f1(.), ..., fL(.)], U, V

Algorithm 5 Method E�ciently Compute AATinvb

Input: Matrix A of size M ⇥D, vector b of size M ⇥ 1, and positive scalar �.
Output: The vector output = (AAT + �

2I)�1b.
1: Ẽ, �̃ eigendecomp

�
ATA+ �

2I
�
.

2: [ẽ1, ..., ẽD] Ẽ
3: [�̃1, ..., �̃D] �̃
4: [e1, ..., eD] [Aẽ1, ...,AẽD]
5: [�1, ...,�D] [�̃1, ..., �̃D]
6: E [e1, ..., eD]
7: ⇤ diagonal( 1

�1+�2 , ...,
1

�D+�2 )

8: output E⇤ETb+ 1
�2 (b�EETb) . according to Eq. 6.7

9: return output

meaning that multiplication by ET transforms b to the space of the D eigenvectors, multiplication

by ⇤ performs the transformation in that space, and multiplication by E transforms the result back

to the original space. The (M � D) eigenvalues that correspond to the rest of the eigenvectors

are all the same and are equal to 1
�2 . Therefore, there is no need to project b to the space of the

(M �D) eigenvectors because the linear transformation in that space is simply a scaling by 1
�2 . All

in all, we have that

�
AAT + �

2IM⇥M

��1
b = E⇤ETb+

1

�2
(b�EETb). (6.7)

Complexity of computing the right-hand-side of Eq. 6.7 is way lower than the O(M3) requirement

of the standard matrix inversion. We borrowed more computational ideas from the work on fast

spectral clustering [61]. To compute the first D eigenvlaues and eigenvectors of AAT , we worked
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with the D-by-D matrix ATA rather than the M -by-M matrix AAT (recall that D << M),

because given the eigenvalues and eigenvectors of ATA, those of AAT are easily computable [61].

The procedure is explained in Alg. 5. In Alg. 5, lines 1-3 compute the eigenvalues/vectors of the

matrix ATA. Afterwards, lines 4 and 5 compute the first D eigenvalues/vectors of AAT using those

of ATA. Finally, line 8 computes (AAT + �
2I)�1b according to the right-hand-side of Eq. 6.7. To

make the computations faster, we made use of the following equation AAT =
P

m
A[m, :]A[m, :]T ,

where A[m, :] is the m-th row of the matrix A. Thanks to this equation, we compute AAT only

once at the beginning of the training. Afterwards, as each mini-batch alters only some rows of A,

we update the previously computed AAT by considering only the e↵ect of the modified rows.

6.3.6 An Important Note on How to Use Dataset Instances

As we will see in Sec. 6.4.6, the inducing dataset (i.e. ”ds inducing” in Alg. 4) should be as large

as possible so the GP posteriors can be flexible enough to match the ANNs [133]. Therefore a good

practice is to include all training instances (without data augmentation) in ”ds inducing”. But by

doing so the following issue arises. An instance from ”ds train” like x is an augmented version of an

inducing instance x̃. Because x and x̃ are close, their kernel-space representations f(x) and f(x̃)

also become close regardless of parameters of f(.). Consequently, regardless of f(.), GP’s posterior

mean will be roughly equal for both x and x̃. Indeed, in this case Alg. 4 fails to find the kernel

mappings {f`(.)}L`=1. To avoid this issue, we sample x in line 3 of Alg. 4 as follows: x1 and x2 are

randomly selected from ”ds train”, and ↵ ⇠ uniform(�1, 2), and x = ↵x1 + (1� ↵)x2. The rest

of Alg. 4 after line 3 is run as before.

6.3.7 Computing Pixel-level Contributions to Similarities

We first explain the idea of CAM [139], afterwards we modify it for the architectures of our kernel

modules. Let the kernel mapping f(.) be a convolutional neural network that produces a volumetric

map of size C ⇥ H ⇥W followed by a spatial average pooling that produces the C-dimensional

vector in the kernel-space. In this case, K(x1,x2) is as follows:

K(x1,x2) = f(x1)
T
f(x2)

=
� HX

i=1

WX

j=1

z(1)
ij

�
T
� HX

k=1

WX

`=1

z(2)
k`

�

=
HX

i=1

WX

j=1

HX

k=1

WX

`=1

�
z(1)T

ij
z(2)
k`

�
,

(6.8)
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where z(1) and z(2) are the volumetric maps of size C ⇥H ⇥W and the indices (i, j) and (k, `)

index the spatial locations over the volumetric maps. The last term in Eq. 6.8 shows that the total

similarity K(x1,x2) is the sum of the contributions from each pair of positions (i, j) on x1 and

(k, `) on x2. To compute the contribution of a specific location like (i, j) on x1, we sum up the

contributions of (i, j) on x1 and all possible locations {(k, `)}H
k=1

W

`=1 on x2.

The kernel-mappings that we used have a slightly di↵erent architecture than a volumetric

map followed by spatial average pooling. Our kernel mappings produce a volumetric map of size

C⇥H ⇥W followed by a spatial average pooling that produces a C-dimensional vector. Afterwards,

the resulting vector is divided by its `2-norm to produce a vector of norm 1. Consequently, this

vector of norm 1 is fed to a leaky ReLU layer that produces the final kernel-space representation

f(x). For this architecture the pixel contributions can be computed according to an equation similar

to Eq. 6.8 as follows. Our kernel mappings produce the volumetric map z of size C ⇥ H ⇥W

followed by a spatial average pooling that produces the C-dimensional vector a:

a =
HX

i=1

WX

j=1

zij . (6.9)

Afterwards, the resulting vector is divided by its `2-norm to produce the vector b of norm 1:

b = [
a1

||a||2
, ... ,

aC

||a||2
]. (6.10)

Consequently, this vector of norm 1 is fed to a leaky ReLU layer that produces the final kernel-space

representation f(x):

f(x) = leakyReLU(b). (6.11)

We begin with simplifying Eq. 6.11. The leaky ReLU activation function multiplies the input by a

constant and this constant depends on the sign of the input. Therefore, applying the leaky ReLU

activation is equivalent to multiplication by a diagonal matrix ⇤. Therefore,

f(x) = ⇤b. (6.12)

Let x1 and x2 be two images, and z(1) and z(2) be the corresponding volumetric maps. We have

that

a(1) =
HX

i=1

WX

j=1

z(1)
ij

, a(2) =
HX

k=1

WX

`=1

z(2)
k`

. (6.13)
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And

b(1) = [
a
(1)
1

||a(1)||2
, ... ,

a
(1)
C

||a(1)||2
], b(2) = [

a
(2)
1

||a(2)||2
, ... ,

a
(2)
C

||a(2)||2
]. (6.14)

And

f(x(1)) = ⇤(1)b(1), f(x(2)) = ⇤(2)b(2). (6.15)

Now we simplify the similarity K(x1,x2):

K(x1,x2) =
�
⇤(1)b(1)

�
T
�
⇤(2)b(2)

�

=
�
⇤(1)T⇤(2)

��
b(1)

T
b(2)

�
 note that ⇤(1) and ⇤(2) are diagonal, hence this line follows

=

�
⇤(1)T⇤(2)

�

||a(1)||2 ||a(2)||2

� HX

i=1

WX

j=1

z(1)
ij

�
T
� HX

k=1

WX

`=1

z(2)
k`

�

=

�
⇤(1)T⇤(2)

�

||a(1)||2 ||a(2)||2

HX

i=1

WX

j=1

HX

k=1

WX

`=1

�
z(1)T

ij
z(2)
k`

�
.

(6.16)

In sum, as our architecture for kernel-mappings is slightly di↵erent than the one that CAM [139]

assumes (a volumetric map followed by spatial average pooling), instead of Eq. 6.8 we used Eq.

6.16 that we derived above.

6.4 Experiments

6.4.1 Measuring Faithfulness of GPs to ANNs

We firstly examined if the obtained Gaussian processes match the corresponding artificial neural

networks, i.e., if the knowledge distillation of Eq. 6.5 is performed successfully. As seen in Fig. 6.1a

GPEX can replace any arbitrary ANN submodule by Gaussian processes. To test this ability, we

applied GPEX to two types of ANN submodules: 1. a classifier, 2. the attention submodule of a

classifier pipeline.

Experimental Setup

We conducted experiments on four publicly available datasets: MNIST [52], Cifar10 [83], Kather

[77], and DogsWolves [131]. For MNIST [52] and Cifar10 [83] we used the standard split to training

and test sets provided by the datasets. For Kather [77] and DogsWolves [131] we randomly selected
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70% and 80% of instances as our training set. There are L kernel mappings that we denoted by

[f1(.), f2(.), ..., fL(.)]. One can implement this kernel mappings by, e.g., considering L independent

CNNs. However, doing so dramatically increases the computation cost. Therefore, we modeled

the L mappings by a common ResNet-50 [60] backbone. After the common backbone, we placed

L branches. Each branch has two convolutional layers followed by global spatial average pooling

that produce a vector. Each branch ends with an L2 normalizer layer (that sets the L2-norm of

the vector to 1) followed by a leaky-ReLU layer. During our experiments we noticed that the

L2-normalization layer and the final leaky-ReLU layer are essential. Without the L2 normalization

layer, the vectors in the kernel-space can have arbitrarily-small or arbitrarily-big elements, and

this makes the training unstable. We included the last leaky-ReLU layer, because according to GP

posterior mean formula in Eq. 6.1 vectors in the kernel-space go through a linear transformation.

Therefore, without the last leaky-ReLU layer, the pipeline would have two consecutive linear layers.

Throughout our experiments, we set the output of each branch (i.e. vectors in the kernel-space of

each GP) to be 20-dimensional.

We trained a separate convolutional neural network (CNN) on each dataset to perform the

classification task. For MNIST [52], Cifar10 [83], and Kather [77] we used a ResNet-18 [60] backbone

followed by some fully connected layers. DogsWolves [131] is a relatively small dataset, and very deep

architectures like ResNet [60] quickly overfit to the training set. Therefore, we used a convolutional

backbone which is suggested in the dataset website [131]. For all datasets, we set the width (i.e.

the number of neurons) of the second last fully-connected layer to 1024. Because according to

theoretical results on GP-ANN analogy [97, 50] the second last layer of ANN should be wide. We

used an implementation of ResNet [60] which is publicly available online [2]. We trained the pipelines

for 20, 200, 20, and 20 epochs on MNIST [52], Cifar10 [83], Kather [77], and DogsWolves [131],

respectively. For Cifar10 [83], we used the exact optimizer suggested by [2]. For other datasets

we used an Adam [80] optimizer with a learning-rate of 0.0001. The test accuracies of the models

are equal to 99.56%, 95.43%, 96.80%, and 80.50% on MNIST [52], Cifar10 [83], Kather [77], and

DogsWolves [131], respectively. The pipeline with an attention mechanism consists of two ResNet-18

[60] backbones: one extracts a volumetric map containing deep features, and the other produces a

spatial attention mask. For each attention backbone we set the width of the second last layer to

1024, followed by a linear layer and sigmoid activation. When applying our proposed GPEX we

used Adam optimizer [80]. Although the AMSGrad version of this optimizer is often recommended,

for our proposed GPEX we noticed the Adam optimizer [80] without AMSGrad works the best. For

classifier ANN submodules we used a learning-rate of 0.0001 while for the attention submodules we

used a learning rate of 0.00001.
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Figure 6.2: Faithfulness of GPs to ANNs measured by Pearson correlation coe�cient.

Figure 6.3: Scatters for MNIST (classifier).

Results

To measure the faithfulness of GPs to ANNs, we compute the Pearson correlation coe�cient for

each ANN head and the mean of the corresponding GP posterior on unseen test instances. The

results are provided in Fig. 6.2. In Fig. 6.2, the first four groups of bars (i.e. the groups labeled as

Cifar10 (classifier), MNIST (classifier), Kather (classifier), and DogsWolves (classifier)) correspond

to applying the proposed GPEX to the four classifier ANNs trained on the four datasets. According

to Fig. 6.2, our trained GPs almost perfectly match the corresponding ANNs. Only for DogsWovles

[131], as illustrated by the 4-th bar group in Fig. 6.2, the correlation coe�cients are lower compared

to other datasets. We hypothesize that this is because the DogsWolves dataset [131] is relatively

small (2K images in total) which impedes perfect knowledge distillation. In fact, GP posterior

mean can be changed only by moving the inducing points in the kernel-space. Therefore, when very

few inducing points are available the GP posterior mean is less flexible [133]. This is consistent

with our parameter analysis in Sec. 6.4.6. In Fig. 6.2, 5-th, 6-th, and 7-th bar groups show the
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Figure 6.4: Scatters for MNIST (attention).
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minibatch 1 minibatch 2 minibatch 3 minibatch 4

Figure 6.5: Comparing GP and ANN outputs for four batches of the MNIST [52] dataset. The red
rectangles highlight the instances for which the predictions of GP and ANN (i.e. the class with
maximum score) are di↵erent.

minibatch 1 minibatch 2 minibatch 3

Figure 6.6: Comparing GP and ANN (attention submodule) outputs for 3 batches of the MNIST
[52]dataset.

correlation coe�cients between the attention backbones and the corresponding GPs on unseen

test instances. According to Fig. 6.2, our proposed GPEX is able find GPs which are faithful to

attention subcomponents of the classifier pipelines. Each attention submodule produces a mask of

size [h,w]. We flattened the output mask, thereby thinking of the attention submodule as an ANN

with h⇥ w output heads.

Besides reporting Pearson correlations in Fig. 6.2, we depict scatter plots between the posterior

mean of the obtained GPs and corresponding ANNs. The results are provided for MNIST dataset in

Fig. 6.3 (classifier) and 6.4 (attention), and for other datasets in Appendix C, Figs. C.1, C.2, C.3,

and C.4. To get more insights, we selected mini-batches of testing instances and fed each mini-batch

to both ANN and corresponding GPs. The output from ANN (and similarly GPs) is a matrix of

shape batchsize⇥Dv, where Dv is the number of output heads from the ANN. Ideally we should

get two identical batchsize⇥Dv matrices for each mini-batch, because the GPs are supposed to be

faithful to ANNs. The results for MNIST dataset are provided in Fig. 6.5 (classifier) and 6.6, and

for other datasets in Appendix C, Figs. C.5, C.6, C.7, C.8, and C.9.

The red rectangles in Figs. 6.5, C.5, C.6, and C.7 show the test instances for which the GP’s
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Cifar10 [83] MNIST [52] Kather [77] DogsWolves [131]

ANN accuracy 95.43 99.56 96.80 80.50
GPs accuracy 92.26 99.41 93.60 78.75

Table 6.1: Accuracies of ANN classifiers versus the accuracies of the explainer GPs on four datasets.

decision (i.e. the class with the highest score) does not match the ANN’s decision. According

to these figures the disagreement between GPs prediction and ANN prediction mostly happens

when either some output activations are very close to one another or all activations are close to

zero. This is consistent with the scatter plots of Figs. 6.3, C.1, and C.2 in which the scatters are

slightly dispersed for intermediate values. Tab. 6.1 reports the test accuracy of the ANNs and their

corresponding GPs. We see that GPs’ accuracies are slightly lower than those of the corresponding

ANNs. Figs. 6.5, C.5, C.6, and C.7 provide insights about how this small disagreement can be

potentially solved in future research by, e.g., preventing the ANN from having near-zero activations

or having output heads which are very close to one another. Note that we didn’t include all attention

heads in Fig. 6.2 because some pixels in attention masks (e.g. the blob-like scatters in Fig. 6.4) are

always o↵ for di↵erent input instances and are excluded in Fig. 6.2.

6.4.2 Explaining ANNs’ Decisions

Experimental Setup

In Sec. 6.4.1 we trained four CNN classifiers on Cifar10 [83], MNIST [52], Kather [77], and

DogsWolves [131] datasets, respectively. Afterwards we applied our proposed explanation method

to each CNN classifier. In this section, we are going to explain the decisions made by the classifiers

via the obtained GPs found by Alg. 4. We explain the decision made for a test instance like xtest as

follows. We consider the GP and the kernel-space that correspond to the ANN’s head with maximum

value (i.e. the ANN’s head that relates to the predicted label). Consequently, among the instances

in the inducing dataset, we find the 10 closest instances to xtest, like {xi1,xi2, ...,xi10}. Intuitively

the ANN has labeled xtest in that way because it has found xtest to be similar to {xi1,xi2, ...,xi10}.

6.4.3 Results

For MNIST digit classification, some test instances and nearest neighbours in training set are shown

in Fig. 6.7. In this figure each row corresponds to a test instance. The first column depicts the test

instance itself and columns 2 to 11 depict the 10 nearest neighbours. For example, in Fig. 6.7 the

image in row3-col1 depicts a test instance xtest and the images in row3, cols2-11 depict the nearest

neighbours {xi1,xi2, ...,xi10}. According to rows 1 and 2 of Fig. 6.7, the classifier has labeled the
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Figure 6.7: Sample explanations for MNIST dataset.
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Figure 6.8: Sample explanations for Cifar10 dataset.

two images as digit 1 because it has found 1 digits with similar inclinations in the training set (in

Fig. 6.7 in row 1 all digits are vertical but in row 2 all digits are inclined). We see the model has

also taken the inclination into account for the test instances of rows 7, 8, 15, 16, and 17 of Fig.

6.7. In Fig. 6.7, according to rows 3, 4, and 5 the test instances are classified as digit 2 because 2

digits with similar styles are found in the training set. We see the model has also taken the style

into account for the test instances of rows 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, and 17 of Fig. 6.7. For

instance, the test instance in row 6 of Fig. 6.7 is a 4 digit with a short stand and the two nearest

neighbours are alike. Or for the test instances in rows 13, 14, and 15 of Fig. 6.7 the test instances

have incomplete circles in the same way as their nearest neighbours.

Fig. 6.8 illustrates some sample explanations for Cifar10 [83]. Like before, each row corresponds

to a test instance, the first column depicts the test instance itself and columns 2 to 11 depict the
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Figure 6.9: Sample explanations for DogsWolves dataset.

10 nearest neighbours. In Fig. 6.8, the test instances of rows 1, 2, 3, 4, and 5 are captured from

horses’ heads from closeby, and the nearest neighbours are alike. However, in rows 6, 7, 8, 9, 10,

and 11 of Fig. 6.8 the test images are taken from faraway and the found similar training images are

also taken from faraway. Intuitively, as the classifier is not aware of 3D geometry, it finds training

images which are captured from the same distance. In rows 9, 10, and 11 of Fig. 6.8, we see that the

testing images contain riders. Similarly, the nearest neighbours also tend to have riders. Intuitively,

in rows 9, 10, and 11 of Fig. 6.8 the model has made use of the riders or other context information

to classify the test instances as horse.

Besides finding the nearest neighbours, we provide CAM-like [139] explanations as to why xtest

and an instance like xij , 1  j  10 are considered similar by the model (according to the procedure

of Sec. 6.3.7). Fig. 6.9 illustrates some sample explanations for DogsWolves [131] dataset. In

row 1 of Fig. 6.9, the first column depicts the test instance itself and columns 2 to 11 depict the

10 nearest neighbours. The second and third rows highlight the pixels that contribute the most

to the similarities. The second and third rows highlight the pixels of xtest and {xi1,xi2, ...,xi10}

respectively. According to row 3 of Fig. 6.9, the pink object next to the dog’s leg has contributed
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Figure 6.10: Sample explanations for Kather dataset.

the most to the similarities. According to row 2 of Fig. 6.9 regions like the baby in column 3, the

dog colar or costume in columns 4, 5, and 6, human finger in column 9, and the background in

columns 10 and 11 have contributed the most to their similarity to the test instance. These are

patterns that usually happen for dogs images. Indeed, since the training set has been small (1600

images), to detect dogs the model is making use of patterns that normally exist in indoor scenes

and do not normally appear in wolves images. We see a similar pattern for the test instance in row

6 of Fig. 6.9 and also in numerous examples in the supplementary of GPEX paper [65]. Making

use of these patterns leads to misclassifications, as seen in rows 7-9 of Fig. 6.9 where the wolf is

mistakenly classified as dog because of the red regions.
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Fig. 6.10 illustrates some sample explanations for Kather [77] dataset. Similar to Fig. 6.9, in

Fig. 6.10 rows 2, 5, 8, and 11 highlight the contributing regions of nearest neighbours while rows

3, 6, 9, and 12 highlight those of the test instance itself. According to rows 1, 2, and 3 of Fig.

6.10, the similarity is due to the wire mesh formed by cellular membranes described by our expert

pathologist. In rows 4, 5, and 6 of Fig. 6.10 the test image is correctly classified as lymphocytes.

For a pathologist they represent scattered well defined round structures. According to rows 4, 5,

and 6 of Fig. 6.10, the model considers all regions which matches the way pathologists recognize

lymphocytes. Row 7 of Fig. 6.10 shows cancer-associated stroma which is classified correctly. All

10 nearest neighbours are also cancer-associated stroma. Distinguishing between cancer-associated

stroma and normal smooth muscle is a challenging task even for expert pathologists, and they often

look similar. According to rows 7, 8, and 9 of Fig. 6.10, the model cares about both the stroma and

nuclei. The test image in row 10 of Fig. 6.10 gets missclassified. According to rows 10, 11, and 12

of Fig. 6.10 the artificial white holes are considered as glandular lumens by the model and that can

explain why the test instance gets misclassified.

Please refer to GPEX paper [65] and its supplementary for more sample interpretations.

6.4.4 Qualitative Comparision of GPEX and Representer Point Selection

We qualitatively compared the explanations of our proposed GPEX to those of representer point

selection [136]. To run the method we used the publicly available code for representer point selection

provided by authors in the paper [136]. The results are provided in Fig. 6.11 (and Figs. S50-S56

in the supplementary of GPEX paper [65]). In each triple, the first row shows the test instance

and the 10 nearest neighbours found by our proposed GPEX. The second row shows the 10 nearest

neighbours selected by representer point selection [136]. The third row shows the 10 nearest

neighbours according to the kernel-space of representer point selection [136]. The formulation of

representer point selection assigns an importance weight to each training instance. Therefore, some

training instances tend to appear as nearest neighbours regardless of what the testing instance is.

We see this behaviour in rows 2, 5, and 8 of Figs. 6.11. However, for our proposed GPEX the

nearest neighbours can freely change for di↵erent test instances. We see this behaviour in rows 1,

4, and 7 of Fig. 6.11. If we ignore the importance weights in representer point selection [136], the

aforementioned issue in that method happens less frequently, as we see in rows 3, 6, and 9 of Fig.

6.11. However, the issue is that without the importance weights, the explainer model in representer

point selection will not be faithful to the ANN itself.

71



Figure 6.11: Nearest neighbours returned by the proposed GPEX vs. those returned by representer
point selection [136].

Figure 6.12: Evaluating the proposed GPEX, representer point selection [136], and influence
functions [82] in dataset debugging task.
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6.4.5 Evaluating GPEX in Dataset Debugging

Experimental Setup

We compared our proposed GPEX to representer point selection [136] and influence functions [82]

in dataset debugging task. In these experiments we only selected images from Cifar10 [83] that are

labeled as either automobile or horse. To corrupt the labels, we randomly selected 45% of training

instances and changed their labels. Afterwards, we trained a classifier CNN with ResNet18 [60]

backbone with the same training procedure explained in Sec. 6.4.1. In dataset debugging task,

training instances are shown to a user in some order. After seeing an instance, the user checks

the label of the instance and corrects it if needed. One can use explanation methods to bring the

corrupted labels to the user’s attention more quickly. Given an explanation method, we repeatedly

select a test instance which is misclassified by the model. Afterwards, we show to the user the closest

training instance (of course among the training instances which are not yet shown to the user). We

repeat this process for test instances in turn until all training instances are shown to the user. We

compared our proposed GPEX to representer point selection [136] and influence functions [82] in

dataset debugging task. We used an implementation of influence functions [82] based on LiSSA [27]

with 10 steps for each instance. The implementation is publicly available [1]. For representer point

selection [136] we used the implementation by authors which is publicly available [7].

Results

The result is shown in Fig. 6.12. According to the plot on the left in Fig. 6.12, when correcting the

dataset by GPEX, the model accuracy becomes close to 90% after showing about 4000 instances to

user. But when using representer point selection [136] or influence functions [82], this happens when

the user has seen about 7000 training instances. With noisy labels model training becomes unstable.

Therefore, in the plots of Fig. 6.12 we repeat the training 5 times and we report the standard errors

by the lines in top of the bars. According to the plot on the right of Fig. 6.12, after showing a fixed

number of training instances to the user, when using the proposed GPEX more corrupted labels are

shown to the user. Indeed, GPEX brings the corrupted labels to the user’s attention quicker than

representer point selection [136] does. Interestingly, according to the plot in the right hand side of

Fig. 6.12 influence functions [82] is quicker at spotting incorrect labels, but the instances found by

our proposed method are more e↵ective in increasing the accuracy quicker.

6.4.6 Analysing the E↵ect of Number of Inducing Points

To analyze the e↵ect of the number of inducing points (i.e. the variable M in Eq. 6.2) we applied

the proposed GPEX to the classifier CNN that we trained on Cifar10 dataset [83] according to the
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Figure 6.13: Analyzing the e↵ect of the size of inducing dataset.

procedure of Sec. 6.4.1. But this time instead of considering all training instances as the inducing

dataset, we randomly selected some training instances. In Fig. 6.13 the horizontal axis shows the

size of the inducing dataset. For each size, we repeated the experiment 5 times (i.e. split 1-5 in Fig.

6.13). According to Fig. 6.13, to obtain GPs which are faithful to ANNs one needs to have a lot of

inducing points. This highlights the importance of the scalability techniques that we explained in

Sec. 6.3.5 to achieve a good match between GPs and ANNs. This observation is inline with the

known Gaussian process behaviour when modeling a complicated function [133]. Another intriguing

point in Fig. 6.13 is that if we are to select a few training images as inducing points, the correlation

coe�cients highly depend on which instances are selected. More precisely, Fig. 6.13 suggests that

one may be able to reach high correlation coe�cients by selecting a few inducing points from the

training set in a subtle way.

6.5 Conclusion

In this chapter we introduced GPEX, a method for interpreting artificial neural networks. We

empirically showed that this method obtains GPs which are faithful to the given ANNs, and that

the kernel of the obtained GPs is highly understandable to humans and provides reliable insights

about ANNs’ underlying decision mechanism. Furthermore, we compared GPEX qualitatively

to representer point selection [136], and quantitatively to representer point selection [136] and

influence functions [82] in dataset debugging task. Finally, we showed the importance of scalability

in obtaining GPs which are highly faithful to the ANNs at hand.
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Chapter 7

Adopting the Proposed GPEX in

Active Learning

7.1 Synopsis

In this chapter we show that in Bayesian active learning the Gaussian processes obtained by our

proposed GPEX [65] are a better alternative to the commonly used dropout.

7.2 Overview

BED (Bayesian experimental design) [106] is a general framework applicable to many settings:

biological experimental design [68], linear bandit problem [75], and active learning [126, 67]. The

BED setting assumes that there is a ground-truth parameter ✓⇤ which is unknown and is to be

inferred from observations. Moreover, there is a distribution p✓(✓|D) which shows the learner’s

current belief about ✓ after is has seen observations D so far. As more data is collected, D becomes

larger and p✓(✓|D) is ideally expected to become a Dirac delta function over ✓⇤. When an artificial

neural network (ANN) is used as the predictive model, there is no consensus on how to model the

current belief p✓(✓|D), because ANNs are deterministic.

Dropout [127] is commonly used to model p✓(✓|D) as follows. An ANN with dropout [127]

layers is trained on the dataset D. Afterwards, instances of the ANN with random realizations

of the dropout masks are though of as samples from p✓(✓|D). Although dropout is commonly

used for this purpose, there is no theoretical backing for its adoption. More precisely, dropout

[127] was created to implicitly train an ensemble of models thereby mitigating overfitting, rather

than giving some weights or belief to di↵erent models of an ensemble. Some previous studies also
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highlight this incapability of dropout. For example Pop et al. [102] showed that using an ensemble

of ANNs improves the uncertainty estimates provided by Monte Carlo dropout [54]. Of note, using

an ensemble of ANNs increases the computation time by a factor of ensemble size. Moreover, our

experiments in Sec. 7.5 show that using an ensemble of ANNs [102] has a similar shortcoming as

dropout [127] in the simulated setting. Another alternative to dropout is NTK (neural tangent

kernel) [73] which has been adopted in active learning [64, 94]. But our proposed GPEX [65] is

superior to NTK [73], because NTK [73] is only applicable to a multilayer perceptron whose each

and every layer is wide, but our proposed GPEX [65] performs knowledge distillation regardless of

the architecture of the ANN.

At the following we firstly explain how the proposed GPEX [65] can be used to model the current

belief p✓(✓|D). Afterwards, in Sec. 7.5 on simulated data we demonstrate that dropout [127] - when

used to model p✓(✓|D) - can make the active learner biased towards the decision boundary of the

current predictive model, and can make the active learner completely overlook regions on which the

current predictor is mistakenly certain. Finally, in Sec. 7.6 we conduct experiments on our IHC4BC

dataset in active learning setting, and show that the proposed approach in Alg. 6 improves the

state-of-the-art active learning method Expected Predictive Information Gain (EPIG) [126].

7.3 Problem Definition

In active learning [120] a pool of instances P = {x1, ...,xN} is available. Initially for a small

subset of instances in the pool the labels are available. More precisely, initially the dataset

D
(0) = {(xi1, yi1), ..., (xiN0 , yiN0)} is available, where N0 << N . The task of an active learner is to

ask for the labels of some unlabeled instances in the pool in a way that the newly acquired labels are

the most beneficial to a machine learning method. Often there are more than one active learning

cycles or rounds, and in each round the active learner can pick up a limited number of unlabeled

instances in the pool and ask for their labels. Indeed, the dataset of labeled instances increases in

size since the active learner asks for more labels, and we have that: D
(0)
⇢ D

(1)
⇢ D

(2)
⇢ .... Of

note, in all cycles the active learner has access to the pool of unlabeled instances P and it may use

it to, e.g., estimate the distribution of instances.

In active learning there is a dilemma between exploration and exploitation, which is a essential

prerequisite to comprehend the discussion of Sec. 7.5. An active learner often trains a predictor

using the labels that it has seen up to that cycle. Afterwards, the active learner can make use of this

predictor to decide which samples should ideally be labeled next. For example, an active learner

may choose unlabeled instances on which the uncertainty of the trained predictor is the highest. All

in all, an active learner faces a dilemma between exploration and exploitation[39]:

• exploitation: the predictions of the current model at hand are to some degree reliable. So if
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the current predictor is quite certain about the label of an instance x, the label/outcome on

x is presumed known and should not be asked.

• exploration: the current model (i.e. predictor) should not be over-trusted and the la-

bel/outcome on di↵erent samples should be explored.

7.4 Proposed Method

7.4.1 Background: Active Learning for a Linear Regressor

Let X 2 RN⇥D be a matrix containing N observed feature vectors and y 2 RN be a set of continuous

observed values. Also let’s assume that the observations y are generated by a ground-truth and

unknown linear transformation �⇤ as y = X�⇤ + ✏, where ✏ is a noise vector generated from a

normal distribution with zero mean and variance equal to �. Let � be the linear transformation

estimated from the observations and using the standard closed-form linear regression formula. We

have that [116]:

� ⇠ N

⇣
�⇤

, �
2(XTX)�1

⌘
. (7.1)

Interestingly, the variance of the estimator in Eq. 7.1 does not depend on the observations y. In other

words, the optimal samples that minimize the variance of the linear estimator are independent from

measurements and only depend on the instances. This approach is usually referred to as classical

experimental design [106] and most commonly optimizes a functional of the Fisher information

matrix [106].

7.4.2 Active Learning Using GPEX

There are two views of a Gaussian process: weight-space view and function-space view [107]. These

two views are equivalent [107]. More specifically, let f : RD
! RDu be a function that maps an

instance to a kernel space as: u = f(x). Moreover, let K(xi,xj) = uT

i
uj = f(xi)T f(xj) be the

kernel function of a Gaussian process. It is easy to show that the mean of the GP’s posterior

distribution on any x⇤ is equal to �T
f(x⇤), where � 2 RDu is the linear transformation estimated

using the standard closed-form linear regression formula and from the observations in the space of

the u vectors in RDu . Intuitively, the GP is equivalent to a linear regression in the space of the u

vectors. We used this notion to propose Alg. 6. In Alg. 6 a Gaussian process is matched to the

given neural network (line 1 of Alg. 6). Afterwards, random linear transformations are generated in

the kernel-space (line 9 of Alg. 6). According to line 10, the generated random functions are the

kernel-space mapping f(.) followed by the random linear transformations. Of note, in line 1 of Alg.

6 the GP is fitted to the neural network on both labeled and unlabeled samples of the pool, and
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doing so is valid because the active learner has access to both labeled and unlabeled instances in

the pool.

Algorithm 6 GPEX’s part in Bayesian active learning

Input:
P, Pool of labeled and unlabeled instances.
D, Dataset of labeled instances.
g(.), A neural network which is trained on D.
S, The number of generated and returned random functions.

Output:
[ĝ1(.), ĝ2(.), ..., ĝS(.)] List of functions to be considered as samples from the current belief about
the unknown parameter, i.e. samples from p(✓|D) in Bayesian experimental design.

1: GP  GPEX
�
g(.),P

�
. Use GPEX [65] to find a GP that matches g(.) on pool instances P.

2: f(.) GP.kernel module . Consider the kernel mapping of the obtained GP.
3: for n = 1! |D| do . Transform the labeled instances by f(.).
4: un  f(xn)
5: end for
6: Uobs

def
= [u1, ...,u|D|] and y = [y1, y2, ..., y|D|]

7: output = []
8: for s = 1! S do
9: �s ⇠ N

�
(Uobs

TUobs + �
2I)�1Uobs

Ty , �
2(Uobs

TUobs)�1
�

10: output.append
�
�s

T
f(.)

�
. The generated function is f(.) followed by �s

11: end for
12: return output

7.5 Experiments on Simulated Data

7.5.1 Simulated Dataset (Sundog)

The synsthetic dataset, which we refer to as ”sundog”, contains 2-dimensional instances. As shown

in Fig. 7.1a the decision boundary is y = 0.5 · exp(�x2/0.01) that divides the 2-dimensional space

to red regions (class 1) and blue regions (class 0). The instances are generated from three Gaussian

distributions, positioned as seen in Fig. 7.1b. In Fig. 7.1b the decision boundary crosses the two

cluster on the left and right in horizontal direction. But the decision boundary crosses the middle

cluster twice and almost vertically.

7.5.2 Inspecting Active Learning Scores on Simulated Data

We generated a simulated dataset with 1000 instances with the clusters positioned as in Fig. 7.1b.

Afterwards we considered an ANN (here a multi-layer perceptron) with 3 linear layers with 100,
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(a) (b)

Figure 7.1: The simulated dataset. a) the decision boundary splits the 2-dimensional space to
red regions (class 1) and blue regions (class 0). b) Instances are generated from three Gaussian
distribution.

50, and 2 (for 2 classes) neurons. In each layer we placed a dropout [127] layer followed by ReLU

activation. We masked the middle-cluster, and trained the ANN for 1000 iterations with and Adam

[80] optimizer and learning rate of 0.001. Since the cluster in the middle is masked from the ANN

during training, the ANN would understandably learn a horizontal decision boundary. An active

learning method should ideally pick the unseen instances in the middle cluster. But here we show

that random ANNs generated by either dropout [127] or ANN-ensemble [102] all have a horizontal

decision boundary.

In Fig. 7.2 the white points are instances of the simulated dataset, the heatmaps show the

di↵erence between output heads of each neural network. Moreover, the black lines roughly show the

decision boundary, i.e. points where the di↵erence of ANN’s output heads are close to zero. We

trained 5 ANNs (i.e. ensemble of ANNs) which are shown in the 1st row of Fig. 7.2. We see that

all of these ANNs roughly have a horizontal boundary. Afterwards, we trained ANNs with di↵erent

dropout probabilities: 0.2 (2nd row of Fig. 7.2), 0.4 (3rd row of Fig. 7.2), 0.6 (4th row of Fig. 7.2),

and 0.8 (5th row of Fig. 7.2). Subsequently, we showed each ANN’s output for 5 random dropout

mask (rows 2-5 in Fig. 7.2). In Fig. 7.2 we observe that the ANNs generated by either an ensemble

or dropout have a horizontal decision boundary.

To demonstrate how this can be an issue in the active learning setting, we computed the score

given by the state-of-the-art active learning method EPIG [126] and with di↵erent dropout values:

0.2 (Fig. 7.3a), 0.4 (Fig. 7.3b), 0.6 (Fig. 7.3c), and 0.8 (Fig. 7.3d). To compute the EPIG scores

[126] at each x-y position we used 50 random ANNs (i.e. dropout masks). Fig. 7.3 demonstrates
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Figure 7.2: In these plots the white points are instances of the simulated dataset. Moreover, the
heatmaps show the di↵erence between output heads of each neural network, and the black line
roughly shows the decision boundary, i.e. points where the di↵erence of ANN’s output heads are
close to zero. Row 1: An ensemble of 5 ANNs trained on the simulated dataset. Rows 2-5: outputs
from a trained ANN with di↵erent dropout masks, when dropout probability is set to 0.2 (2nd row),
0.4 (3rd row), 0.6 (4th row), and 0.8 (5th row).

(a) dropout prob. 0.2 (b) dropout prob. 0.4 (c) dropout prob. 0.6 (d) dropout prob. 0.8

Figure 7.3: Active learning scores computed by EPIG [126] and dropout, after min-max normalization
and in log-scale.
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(a) (b)

(c) (d)

Figure 7.4: Active learning results on sundog simulated dataset. a) The heatmap shows scores
computed by EPIG [126] and the proposed Alg. 6. c) The heatmap shows the uncertainy of the GP
obtained in Alg. 6. b,d) test accuracy in the active learning setting explained in Sec. 7.5.3 in each
training step and averaged over 10 repetitions. The vertical dashed lines separate active learning
cycles Plots in b and c show the test accuracy among instances with ground-truth class 0 and 1,
respectively.

that even when dropout probability is as high as 0.8 the scores computed by EPIG [126] are highly

biased to the decision boundary of the ANN. In other words, according to Fig. 7.3 EPIG [126] -

when used along with dropout [127] - considers only pool instances which are close to the ANN’s

decision boundary, and ignores the rest of pool instances. But this issue doesn’t happen with

the proposed Alg. 6. To demonstrate this, we computed EPIG [126] scores with the exact same

parameters, but this time instead of dropout we used Alg. 6. The result is provided in Fig. 7.4a.
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We see that the score heatmap in Fig. 7.4a is exploratory, unlike the scores in Fig. 7.3 which are

biased to the current decision boundary.

7.5.3 Active Learning on Simulated Data (Sundog)

We repeated the following experiment 10 times. A sundog dataset with 1000 instances and with the

following specs was generated: left, middle, and right modes were located at [�2.5, 0.0], [0.0, 1.5],

and [2.5, 0.0] and had probabilities 0.4, 0.2, and 0.4, respectively. Moreover, the standard variation

of all Gaussian modes was set to 0.4. Initially 500 instances were randomly selected from left and

right clusters (and not the middle cluster). Afterwards, 10 cycles of active learning were performed

and in each cycle the active learner was asked to pick 10 unlabeled instances from the unlabeled

pool. Initially each active learner was provided with an ANN with 3 linear layers with 100, 50,

and 2 (for 2 classes) neurons and with dropout (probability 0.2) and ReLU activations. In each

cycle each active learner picked 10 instances and the ANN was trained for 10K iterations from the

previous checkpoint and with an Adam optimizer with learning rate 0.001.

Test accuracy on the middle cluster and among class 0 (blue) and class 1 (red) instances are

provided in Figs. 7.4b and 7.4d respectively. In this setting, the middle cluster in Fig. 7.1b has

been unseen to the ANN during training, and therefore the ANN presumes that the middle cluster

belongs to class 1. According to Fig. 7.4b the proposed Alg. 6 selects those instances sooner, and

finally some of the blue instances in the middle cluster get classified as class 0. As seen in Fig. 7.4b

this happens at some point for the other two baselines, but with the proposed Alg. 6 it happens way

sooner. Interestingly, in Figs. 7.4b and 7.4d both versions of EPIG [126] outperform the random

baseline.

7.6 Experiments on IHC4BC HER2 Dataset

7.6.1 A Patch Dataset Created from Manual Annotations

We evaluated the proposed Alg. 6 on a subset of our IHC4BC HER2 dataset [30, 6].The HER2

subset contains images from 52 patients. We randomly selected 36 patients for training and the

rest (16 patients) for testing. In the training and testing sets there were 15 and 6 patients with

some HER2 3+ regions, respectively. Afterwards, we used the manually annotated spots that we

introduced in Sec. 5.5.1 to obtain 224 by 224 patches and their corresponding labels as follows:

• If a 3K by 3K image is labeled as negative in the original IHC4BC dataset, we assume that

there is no 3+ region on the image. Therefore any 224 by 224 patch extracted from that 3K

by 3K image is devoid of 3+ HER2 regions and is labeled as 0. In sum, in this case given the
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(a) (b)

Figure 7.5: Active learning results on a subsmapled dataset from IHC4BC Her2 dataset.

3K by 3K patch we extracted a 224 by 224 patch from a random pixel position and labeled it

as 0.

• If a spot is manually marked on a 3K by 3K image, we assume that there is a 3+ HER2

region in the vicinity of the spot. Therefore, we add a random shift of ±50 pixels on that spot,

extract a 224 by 224 patch from that pixel position, and label it as 1.

For each 3K by 3K image in IH4BC [30] HER2 dataset we obtained one patch and its corresponding

label using the aforementioned procedure. Afterwards, each 224 by 224 patch was normalized with

Imagenet [51] normalization parameters and was fed to a ResNet-18 backbone [60] pretrained on

Imagenet [51] to obtain a 512-dimensional vector for each image.

We repeated the following active learning setup 10 times. An initial labeled pool containing 10

positive and 10 negative patches was considered. Afterwards an ANN was trained on the extracted

512-dimensional features. The ANN has 4 layers with 200, 20, 1024, and 2 (output head) neurons

with ReLU activations and dropout [127] with masking probability 0.5. Di↵erent active learners

were provided with this initial model, and were asked to select 20 instances from the pool and

for 10 active learning cycles. In each cycle the ANN was trained for 1000 iterations, and in the

last 4 iterations the validation accuracy was computed and the best checkpoint was picked as the

best model in that cycle. We used an Adam [80] optimizer with learning rate 0.001. Like previous

section, in each cycle the best model and its corresponding optimizer are saved and used as the

initial model and checkpoint in the next cycle. To further prevent overfitting we trained the ANNs

with an `2 regularization on weights with regularization coe�cient 0.0001.

We evaluated 4 active learning policies using the setting mentioned above: 1. random, 2. network

output entropy, 3. EPIG [126] along with dropout [127], 4. EPIG [126] along with the proposed Alg.
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6. In Fig. 7.5a these four methods are labeled as ”Random”, ”Output Entropy”, ”EPIG-Dropout”,

and ”EPIG-GPEX”, respectively. According to Fig. 7.5a the proposed Alg. 6 outperforms the

other 3 methods, and provides more stable improvements. The benefit of using Gaussian processes

in active learning was also reported in previous studies, for example in Mohamadi et al. [94] and

Holzmüller et al. [64].

7.6.2 A Huge Pool of HER2 Whole-Slide Images

The experiments of Sec. 7.6.1 demonstrated the usability of GPEX for a small subset of the IHC4BC

dataset. In this section we examine if GPEX can be adopted for the real clinical scenario where a

HER2 predictor is trained on the IHC4BC dataset, and the goal is to optimally choose new training

instances from a pool of WSIs. In this section we present two findings:

• In this setting, finding highly-faithful GPs is challenging due to the huge size of the dataset

(300 GB). Notably, recall from Sec. 6.4.6 that GP’s inducing dataset should be large and

diverse. In this section we show that adopting GPEX is still feasible even in this challenging

setting.

• In active learning we show that Alg. 6 is preferable to using GP’s uncertainty, although GP’s

uncertainty is a popular and widely-accepted choice for active learning [76, 119, 116, 91].

Experimental Setup

An important challenge was to include a diverse set of patches as GP’s inducing dataset. To this

end, we extracted 120 by 120 negative patches from IHC4BC HER2 partition, fed them to a ResNet

backbone, and applied kMeans clustering with 17 clusters to the extracted features There was no

tangible increase in Silhouette score with more than 17 clusters. Afterwards, we tried to include

in the inducing dataset the same number of patches from di↵erent cluster thereby encouraging

diversity. To include HER2 positive patches, we extracted 120 by 120 patches with the protocol of

Sec. 5.5.1 and subsampled them. All in all 143,443 images of size 120 by 120 were included in GP’s

inducing dataset. To evaluate the success of knowledge distillation, we selected 895 WSIs which

were never included in the IHC4BC dataset and extracted 30 patches of size 1000 by 1000 from each

WSI and from Otsu’s [99] foreground region. Finally, each 1000 by 1000 patch was observed with a

window size of 120 and stride of 500, and the GP-ANN match was evaluated. A strongly-supervised

HER2 predictor was trained according to the procedure of Sec. 5.5.2. Notably, validation set was

created according to the procedure of Sec. 5.5.2, but unlike Sec. 5.5.2 no patient was held out

for testing because here for testing we used 188 whole-slide images which aren’t included in the

IHC4BC dataset. We applied GPEX with the same setup as Sec. 6.4. Since we have a binary
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classification setting, we used an classifier with a single output head and therefore used a single GP

and kernel-space.

Results

Figure 7.6: Scatter plot of GP’s posterior mean versus the output of the predictor ANN.

minibatch 1 minibatch 2 minibatch 3 minibatch 4

Figure 7.7: Comparing GP and ANN outputs for four batches of images to evaluate the GP-ANN
match discussed in Sec. 7.6.2.

We obtained a GP whose posterior mean closely matches the output of the ANN. According to

Fig. 7.6 when one uses 150K inducing points, the correlation coe�cient is around 0.9384, which is

illustrated in Fig. 7.7 the GP and ANN are reasonably close. We tried to find equivalent GPs with

fewer inducing points than 150K (roughly 10K, 20K, 30K, 40K, and 50K) and interestingly none of

those experiments were successful. This highlights the challenge of applying GPEX to such a huge

dataset, and corroborates the results of Sec. 6.4.6.

We inspected the predictor and the obtained GP on 188 WSIs set aside for testing. The first
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H-DAB H&E Prediction GP’s Uncertainty Score by Alg. 6

Figure 7.8: The HER2 predictor and di↵erent active learning strategies applied to 5 sample WSIs.

observation was that the majority of failures are false positives usually for 1+ and occasionally for

negative cases. Five such cases are shown in Fig. 7.8 where in the third column the prediction is

mistakenly positive. An important question is: can an active learning method automatically detect

this defect by giving a high score to such regions? According to the forth column of Fig. 7.8 the

uncertainty of GP (a popular active learning strategy) mistakenly gives a low score to such regions,

and gives more score to the white background. This negative result is important, because many

works take for granted that GP’s uncertainty is a good active learning strategy [76, 119, 116, 91].

Nonetheless, in the fifth columns of Fig. 7.8 we observe that EPIG [126] along with GPEX correctly
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H-DAB H&E Prediction GP’s Uncertainty Score by Alg. 6

Figure 7.9: The HER2 predictor and di↵erent active learning strategies applied to 5 sample WSIs.

highlights such regions. Interestingly, according to third column of Fig. 7.8 the output activations

for the false positive regions are quite high and close to 1.0. Therefore, output entropy as an active

learning strategy has no way to give a high score to such regions. Finally, we observed that most 3+

regions are correctly identified by the predictor, as seen in Fig. 7.9.
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7.7 Conclusion

In this chapter we conducted active learning experiments on simulated data and a small subset of

the IHC4BC HER2 dataset, and showed that for active learning our proposed GPEX is a better

alternative to the commonly used dropout [127]. Furthermore, we conducted experiments on the

entire IHC4BC HER2 dataset and showed that EPIG [126] along with GPEX is preferable to two

popular active learning strategies: output entropy and GP’s uncertainty. As importantly, we showed

that adopting GPEX is still feasible for such a huge dataset of size 300 GB.
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[130] Tellez, D., Höppener, D., Verhoef, C., Grünhagen, D., Nierop, P., Drozdzal, M.,

van der Laak, J., and Ciompi, F. Extending unsupervised neural image compression with

supervised multitask learning. In Proceedings of the Third Conference on Medical Imaging

with Deep Learning (06–08 Jul 2020), T. Arbel, I. Ben Ayed, M. de Bruijne, M. Descoteaux,

H. Lombaert, and C. Pal, Eds., vol. 121 of Proceedings of Machine Learning Research, PMLR,

pp. 770–783.

[131] Vutukuri, H. Dogs vs Wolves Classification of Dogs and Wolves. https://www.kaggle.

com/harishvutukuri/dogs-vs-wolves, 2019. [Online; accessed 19-Dec-2021].

[132] Wilson, A., and Nickisch, H. Kernel interpolation for scalable structured gaussian processes

(kiss-gp). In International conference on machine learning (2015), PMLR, pp. 1775–1784.

[133] Y. Bengio’s post on gp vs ann https://qr.ae/pvqZn7.

[134] Yan, R., Ren, F., Wang, Z., Wang, L., Zhang, T., Liu, Y., Rao, X., Zheng, C., and

Zhang, F. Breast cancer histopathological image classification using a hybrid deep neural

network. Methods 173 (2020), 52–60.

[135] Yang, Y., Akbarnejad, A., Ray, N., and Bigras, G. Double adversarial domain

adaptation for whole-slide-imageclassification. In Medical Imaging with Deep Learning (2021).

[136] Yeh, C.-K., Kim, J., Yen, I. E.-H., and Ravikumar, P. K. Representer point selection

for explaining deep neural networks. Advances in neural information processing systems 31

(2018).

[137] Zeng, B., Lin, Y., Wang, Y., Chen, Y., Dong, J., Li, X., and Zhang, Y. Semi-

supervised pr virtual staining for breast histopathological images. In Medical Image Computing

and Computer Assisted Intervention–MICCAI 2022: 25th International Conference, Singapore,

September 18–22, 2022, Proceedings, Part II (2022), Springer, pp. 232–241.

[138] Zhang, C., Song, Y., Zhang, D., Liu, S., Chen, M., and Cai, W. Whole slide image

classification via iterative patch labelling. In 2018 25th IEEE International Conference on

Image Processing (ICIP) (2018), pp. 1408–1412.

100

https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
https://www.kaggle.com/harishvutukuri/dogs-vs-wolves
https://qr.ae/pvqZn7


[139] Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Torralba, A. Learning deep

features for discriminative localization. In Proceedings of the IEEE conference on computer

vision and pattern recognition (2016), pp. 2921–2929.

[140] Zhou, Y., Graham, S., Alemi Koohbanani, N., Shaban, M., Heng, P.-A., and

Rajpoot, N. Cgc-net: Cell graph convolutional network for grading of colorectal cancer

histology images. In Proceedings of the IEEE/CVF international conference on computer

vision workshops (2019), pp. 0–0.

[141] Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. Unpaired image-to-image translation

using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference

on computer vision (2017), pp. 2223–2232.

101



Appendices

102



Appendix A

The Proposed Method of Sec. 4.3

Applied for Recurrence Score

Prediction

In this appendix we evaluate the proposed method of Sec. 4.3 in predicting breast cancer recurrence

score from H&E whole-slide images. The experiments of this section were done by Ms. Namitha

Guruprasad (the first author of [57]).

At the time our private recurrence-score dataset contained 558 H&-stained whole-slide images

from 558 patients, and for each patient OncotypeDXr recurrence-score (a number between 0 and

100) was available. We considered the WSI classification problem 4.2 where patients with recurrence-

score below (resp. above) 25.5 were labeled as class 0 (resp. 1). We considered three random splits

to train/testing sets, 75% of patients were included in the training/validation set and the rest were

included in the testing set. To inspect how adding more and more training instances can improve the

prediction performance, we started with an initial training set containing only 10% of patients, and

repeatedly enlarged the training set by including 5% more patients until the training set contains

75% of patients in the whole dataset. This gradual increase in the size of training set is shown in the

horizontal axes of Figs. A.1a, A.1b, A.1c, and A.1d. Three methods were evaluated in this setting:

• The state-of-the-art method CLAM [89], which is labeled as ”CLAM” in Fig. A.1.

• The proposed method of Sec. 4.3 with the parameter settings described in Sec. 4.4, but with

more training iterations (400K). This method is labeled as ”Proposed” in Fig. A.1.

• 13000 patches - each of size 1500 by 1500 pixels - were extracted from WSIs in the recurrence-

score dataset. Afterwards, the cell nuclei in each patch were found by the segmentation
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(a) (b)

(c) (d)

Figure A.1: Three methods evaluated in predicting recurrence-score from H&E-stained whole-slide
images. Prediction performance on the testing set is measured by a) accuracy, b) balanced accuracy,
c) F1-score, macro-averaged, and d) F1-score, weighted-averaged. As seen in the horizontal axes,
initially 10% of patients in the dataset are selected as the training set. Consequently 5% of the
dataset is repeatedly added to the training set to see how the prediction performance is increased.
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method StarDist [118]. After obtaining more than a million nuclei, some commonly used

nuclei features in CellProfiler [40] were implemented in OpenCV and were extracted for each

nuclei. For each nucleus the following shape features were extracted: area, perimeter, form

factor, solidity, eccentricity, and Zerenik feature. Moreover, for each nucleus the following

texture features were extracted both for unwrapped and radially warped nucleus image: total

intensity, mean intensity, variation, and intensity moments. Afterwards the multiple-instance

learning package mil [13] was adopted for WSI classification. In Fig. A.1 this method is

labeled as ”CellProfiler”.

In Fig. A.1 we observed that almost in all settings the proposed method of Sec. 4.3 outperforms

the state-of-the-art method CLAM [89]. Moreover, interestingly in Fig. A.1 we observe that the

hand-engineered CellProfiler [40] features outperform both CLAM [89] and the proposed method of

Sec. 4.3.
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Appendix B

Deriving the Variational Lower-bound

for GPEX

In this section we derive the variational lower-bound introduced in Sec. 6.3.3. We firstly introduce

Lemmas 1 and 2 as they appear in our derivations.

Lemma 1. The KL-divergence between two normal distributions N1(. ; µ1,⌃1) and N2(. ; µ2,⌃2)

can be computed as follows:

KL

⇣
N1 || N2

⌘
=

1

2

⇣
log(

|⌃2|

|⌃1|
) � D + trace{⌃�1

2 ⌃1}

+ (µ2 � µ1)
T⌃�1

2 (µ2 � µ1)
⌘
.⌅

(B.1)

Lemma 2. Let p1 and p2 be two normal distributions:

p1(x) = N
�
x ; µ1,�

2
1

�
,

p2(x) = N
�
x ; µ2,�

2
2

�
.

We have that

Ex⇠p2

⇥
log p1(x ; µ1,�

2
1)
⇤
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(µ1 � µ2)2 + �

2
2

2�2
1

�
1

2
log(�2

1)�
1

2
log(2⇡).⌅

(B.2)

Fig. B.1 illustrates the framework as a probabilistic graphical model. A general feed-forward

pipeline takes in a set of input(s) X and produces a set of output(s) Y. The general pipeline is

required to have at least one ANN as a submodule. The ANN submodule is required to take in

only one input x and to produce only one output v, where x and v are tensors of arbitrary sizes.
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Figure B.1: The proposed framework as a probabilistic graphical model.

As illustrated in Fig. B.1, the ANN’s input x can depend arbitrarily on some other intermediate

variables in the pipeline. This relation is modeled by the conditional distribution p
�
xn|Parent(xn)

�

where Parent(xn) is the set of all variables which are connected to xn. Similarly, as illustrated

in Fig. B.1 the pipeline’s output Y can arbitrarily depend on some intermediate variables in the

pipeline. This relation is modeled by the conditional distribution p
�
Yn|Parent(Yn)

�
. In Fig. B.1

the lower boxes are the inducing points and other variables that determine the GPs’ posterior. More

precisely, in Fig. B.1 the variables {x̃m}
M

m=1 are some inducing points (e.g. some training images).

Vectors in the kernel space are denoted by ũ and u. Moreover, the observed values are denoted by

v and ṽ. Informally, u and v denote the input/output of the GPs. When referring to one of the

M inducing points a ”tilde” is used (as (ũ, ṽ)), however (u, v) corresponds to a point that can be

anywhere in the kernel-space.

The inducing instances {x̃m}
M

m=1 are mapped to the kernel-spaces by the kernel mappings

{f1(.), ..., fL(.)}. In Fig.B.1 the variables {ũm}
M

m=1 are the kernel-space representations of the

inducing points {x̃m}
M

m=1. Moreover, {ṽm}
M

m=1 are the GP’s output values at the inducing points.

Given an instance xn, it is firstly fed to the kernel mappings {f1(.), ..., fL(.)} and the kernel-space

representations un are obtained. Afterwards, the GPs’ outputs on un depend on un as well as all

other inducing points because the inducing points actually determine the GPs’ posterior on all

kernel-space points including un. Therefore, in Fig. B.1 the variable vn is not only connected to

un but it is also connected to the box at the bottom (i.e. all inducing points and other variables

associated with them).

As usual, the variational lower-bound is equal to

L = E⇠q

⇥
log p(all variables)

⇤
� E⇠q

⇥
log q(hidden variables)

⇤
. (B.3)
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The likelihood of all variables in Eq. B.3 factorizes as the product of conditional distributions of

each variable given its parents. Therefore

p(all variables) =
Y

variable t

p
�
t|Parent(t)

�
. (B.4)

In Eq. B.4 only some conditional distributions appear in our derivations which are discussed at the

following.

• The variable xn: the ANN’s input xn can depend arbitrarily on some other intermedi-

ate variables in the pipeline. In our derivations we leave this conditional distribution as

p
�
xn|Parent(xn)

�
.

• The variable un: Given a training instance xn, the kernel-space representations un are

deterministically obtained by feeding the instance to the kernel-mappings [f1(.), ..., fL(.)].

• The variable vn: The ANN’s output is required to depend only on the input, so

p
�
vn|Parent(vn)

�
= p

�
vn|un,xn, {x̃m, ũm, ṽm}

M

m=1

�
. (B.5)

The above distribution is actually the GPs’ posterior at un (i.e. the normal distribution of Eq.

6.1).

• The variable x̃m: the inducing point x̃m can depend arbitrarily on some other intermedi-

ate variables in the pipeline. In our derivations we leave this conditional distribution as

p
�
x̃m|Parent(x̃m)

�
.

• The variable ũm: Given an inducing point x̃m, the kernel-space representations ũm are deter-

ministically obtained by feeding the inducing point x̃m to the kernel-mappings [f1(.), ..., fL(.)].

• The variables v̂m: Given the kernel-space representations {ũ(`)
m }

M

m=1, the variables {ṽ
(`)
1 , ..., ṽ

(`)
M
}

follow a M -dimensional Gaussian distribution with zero mean and a covariance matrix

determined by the GP prior covariance among the variables {ũ(`)
m }

M

m=1.

• The variable Yn: the pipeline’s output Y can arbitrarily depend on some intermediate variables

in the pipeline. In our derivations we leave this conditional distribution as p
�
Yn|Parent(Yn)

�
.
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According to Eq. B.4, the likelihood of all variables factorizes as

p(all variables) =
Y

variable t
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�
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=
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n
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(B.6)

Now we derive the lower-bound L with respect to each parameter separately.

B.0.1 Deriving the Lower-bound With Respect to the Kernel-mappings

In the right-hand-side of Eq. B.6 only the following terms are dependant on the kernel-mappings

[f1(.), ..., fL(.)]:

⇥Y

m

p(ũm|x̃m)⇥
Y

`

p(ṽ(`)m |0,Kprior(ũ
(`)
1:M , ũ(`)

1:M ))
⇤
⇥
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n

p
�
un|xn

�
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Y

`

p
�
v
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n |un,xn, {x̃m, ũm, ṽm}

M

m=1

�⇤
.

(B.7)

Note that in the above equation the terms p(ũm|x̃m) and p(un|xn) are equal to 1 because ũm and

un are deterministically obtained from x̃m and xn. Therefore, in Eq. B.3 the terms containing the

kernel mappings [f1(.), ..., fL(.)] are as follows:

Lf = E⇠q

⇥X

`

log p(v(`)|u,x, {x̃m, ũm, ṽm}
M

m=1)
⇤
+

X
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log p(ṽ(`)
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log q2(ṽ
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KL
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(`)
1:M ) || p(ṽ(`)

1:M |0,Kprior(ũ
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(B.8)
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We simplify the two terms on the right-hand-side of Eq. B.8. The first term is the expected

log-likelihood of a Gaussian distribution (i.e. the conditional log-likelihood of ṽ` as in Eq. 6.1).

Also the variational distribution q(.) is Gaussian. Therefore, we can use Lemma.2 to simplify the

first term:

E⇠q

⇥ LX

`=1

log p(v(`)|u,x, {x̃m, ũm, ṽm}
M

m=1)
⇤
=

LX
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log(2⇡)

i
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(B.9)

Note that the two terms of Eq. B.9 are the two terms which were presented and discussed in Eq.

6.5.

Now we simplify the KL-term on the right-hand-side of Eq. B.8. According to Lemma.1 we

have that

KL

⇣
q2(ṽ

(`)
1:M ) || p(ṽ(`)

1:M |0,Kprior(ũ
(`)
1:M , ũ(`)
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log(
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2
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1:M

�2
gp

,

(B.10)

where ' are the variational parameters of q2(.) as in Eq. 6.4. Therefore, the KL-term of Eq. B.8 is

a constant with respect to the kernel mappings [f1(.), ..., fL(.)] and can be discarded. All in all, the

lower-bound for optimizing the kernel-mappings is equal to the right-hand-side of Eq. B.9 which

was introduced and discussed in Sec. 6.3.3.
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B.0.2 Deriving the Lower-bound With Respect to the ANN Parameters

According to Eq. 6.4 , in our formulation the ANN’s parameters appear as some variational

parameters. Therefore, the likelihood of all variables (Eq. B.6) does not generally depend on the

ANN’s parameters. But according to the general ELBO formulation in Eq. B.3 the ELBO L depends

on ANN’s parameters, because when computing the expectation the variables are drawn from the

variational distribution q(.). We estimated the ELBO of Eq. B.3 by the average over few samples.

More precisely, given a training instance x, we firstly computed the kernel-space representations as:

u(`) = f`(x), 1  `  L. (B.11)

Afterwards, we used the reparametrization trick for Eq. 6.1 to draw a sample for v(`) as follows:

z
(`)
q2 ⇠ N (0, 1),

v
(`)
⇠ µv(u

(`)
, ũ(`)

1:M , ṽ
(`)
1:M ) + z

(`)
q2 covv(u

(`)
, ũ(`)

1:M , ṽ
(`)
1:M ),

(B.12)

where µv(., ., .) and covv(., ., .) are defined in Eqs. 6.2 and 6.3. Moreover, we continue the forward

pass of the original pipeline to get a sample Y. Having drawn x, u, v, and Y from the variational

distribution, we estimate the ELBO of Eq. B.3 by these samples.

L =

E⇠q

⇥
log p(all variables)

⇤
� E⇠q

⇥
log q(hidden variables)

⇤

⇡ log p(all variables)
���
x,u,v,Y

�

MX

m

LX

`

E⇠q2

⇥
log q2(ṽ

(`)
m )

⇤
(B.13)

In the above equation, the second term on the right-hand-side is the entropy of a normal distribution

and it only depends on the variance of the q2 distribution. As we let the variance of q2 be fixed (�2
g

in Eq. 6.4), the second term is a constant. Therefore,

L ⇡ log p(all variables)
���
x,u,v,Y

. (B.14)

Among the likelihood term on the right-hand-side of Eq. B.6 the conditional distribution of all

variables before un (e.g. xn and Xn) are independent of the ANN’s parameters (i.e. the parameters

of the function g(.)). On the other hand, for all variables that appear after un, the conditional
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distribution depends on the ANN’s parameters. Indeed, according to Eq. B.14

Lann ⇡
⇥ LX

`=1

log p(v(`)|u,x, {x̃m, ũm, ṽm}
M

m=1)
⇤���

x,v
+

log p(Y|Parent(Y))
���
x,v,Y

+

� X

other vars after un

log p(t|Parent(t))
����

x,v,Y

�
.

(B.15)

In the above equation, the first term on the right-hand-side is the log-likelihood of the normal

distribution of Eq. 6.1:

log p(v(`)|u,x, {x̃m, ũm, ṽm}
M

m=1) =

�
1

2

⇥ LX

`=1

(µv(u(`)
, ũ(`)

1:M , ṽ
(`)
1:M )� g`(x))2

covv(u(`), ũ(`)
1:M , ṽ

(`)
1:M )

⇤

+
�
some terms independent from g(.)

�
.

(B.16)

In Eq. B.15 the term p
�
Y|Parent(Y)

�
is the likelihood of the output(s) of the whole pipeline as

illustrated by Fig. 6.1a, given the ANN’s output and all other intermediate variables on which the

final output Y depends. This likelihood turns out to be equivalent to commonly-used losses like the

cross-entropy loss or the mean-squared loss. Here we elaborate upon how this happens. Let the

task be a classification, and let Ŷ 2 RL be the pipeline’s output. The final model prediction Y is

done as follows:

Y ⇠ Categorical(ŶK , ..., ŶK) (B.17)

Therefore we have that

p
�
Y|Parent(Y)

�
= (Ŷ1)

I[Y==1]
⇥ ...⇥ (ŶK)I[Y==K]

, (B.18)

where I[.] is the indicator function. So, we have that

log p
�
Y|Parent(Y)

�
=

I[Y == 1] log(Ŷ1) + ...+ I[Y == K] log(ŶK).
(B.19)

Therefore, when the pipeline is for classification, log p(Y|v, etc.) will be equal to the cross-entropy

loss. This conclusion was introduced and discussed under Eq. 6.6. We can draw similar conclusions

when the pipeline is for other tasks like regression, or even a combination of tasks.

In the general pipeline of Fig. B.1 if all stages after v are deterministic (of course except the

final stage which is probabilistic like Eq. B.17), the third term on the right-hand-side of Eq. B.15
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becomes 1. Therefore, the right-hand-side of Eq. B.15 is equal to Eq. 6.6. As we discussed in Sec.

6.3.3, Lann has two terms: the first terms encourages the GP-ANN analogy and the second term

seeks to lower the task-loss.

B.0.3 Deriving the Lower-bound With Respect to q2(.) Parameters

In Eq. 6.4 we considered the variational parameters {'(`)
m }

M

m=1 for the hidden variables {ṽ(`)m }
M

m=1.

The ELBO of Eq. B.3 can be optimized with respect to {'
(`)
m }

M

m=1 as well. But we noticed that

optimizing {'
(`)
m }

M

m=1 is computationally unstable. Therefore, we set {'(`)
m }

M

m=1 according to the

following rule:

'
(`)
m = g`(x̃m),

1  m M, 1  `  L.

(B.20)

We set {'(`)
m }

M

m=1 as above because ṽ
(`)
m is simply the `-th GP posterior mean at the inducing point

x̃m. In other words, to make the GP’s posterior mean equal to the ANN’s output, ṽ(m)
`

should be

equal to the ANN’s (i.e. g(.)’s) output at the m-th inducing point.
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Appendix C

GPEX Results, Additional Figures and

Plots

C.1 Measuring Faithfulness of GPs to ANNs

This section contains additional figures for Sec. 6.4.1.

Figure C.1: Scatters for Cifar10 (classifier).

114



Figure C.2: Scatters for Kather dataset (classifier).
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Figure C.3: Scatters for Cifar10 (attention).
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Figure C.4: Scatters for Kather dataset (attention).
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minibatch 1 minibatch 2 minibatch 3 minibatch 4

Figure C.5: Comparing GP and ANN outputs for four minibatches of Cifar10 [83] dataset. The red
rectangles highlight the instnaces for which the predictions of GP and ANN (i.e. the class with
maximum score) are di↵erent.

minibatch 1 minibatch 2 minibatch 3 minibatch 4

Figure C.6: Comparing GP and ANN outputs for four minibatches of Kather [77] dataset. The red
rectangles highlight the instnaces for which the predictions of GP and ANN (i.e. the class with
maximum score) are di↵erent.

minibatch 1 minibatch 2 minibatch 3 minibatch 4

Figure C.7: Comparing GP and ANN outputs for four batches of DogsWolves [131] dataset. The
red rectangles highlight the instnaces for which the predictions of GP and ANN (i.e. the class with
maximum score) are di↵erent.
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minibatch 1 minibatch 2 minibatch 3

Figure C.8: Comparing GP and ANN (attention submodule) outputs for 3 batches of Cifar10 [83]
dataset.

minibatch 1 minibatch 2 minibatch 3

Figure C.9: Comparing GP and ANN (attention submodule) outputs for 3 batches of Kather [77]
dataset.
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