INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

UM®

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

.

.

.

.

University of Alberta

Late Archean decoupling of upper and mid crustal tectonothermal domains in the southeast Slave Province: evidence from the Walmsley Lake area.

By

Scott Roland Cairns

Department of Earth and Atmospheric Sciences

Edmonton, Alberta

Spring 2004

In compliance with the Canadian Privacy Legislation some supporting forms may have been removed from this dissertation.

While these forms may be included in the document page count, their removal does not represent any loss of content from the dissertation.

0-612-96455-8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The Walmsley Lake area of the southeastern Slave Province, NWT, exposes a continuous inclined crustal transect from greenschist through to amphibolite facies metamorphic grade. Two tectonothermal crustal domains are proposed based on disparate tectonic histories and lithologies. Within the upper tectonothermal domain, D₁ deformation reached lower-amphibolite facies prior to 2614 Ma, and associated M₁ metamorphic conditions outlasted D₁. Peak M₂ conditions reached middle-amphibolite facies prior to 2603 Ma, and outlasted D₂ deformation. Deformation style and metamorphic sequencing during these two pre-2600 Ma events are consistent with regional crustal shortening and thickening in the upper tectonothermal domain.

At mid-crustal levels in the lower tectonothermal domain, a third event (D_3-M_3) produced uppermost amphibolite facies metamorphic conditions, transposed preexisting fabrics to shallow dips and produced sub-horizontal fabrics at ca. 2583 Ma. Exhumation of these mid-crustal rocks was accomplished by the orogenic collapse of a thermally weakened, over-thickened, crustal welt.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Preface

Candidates Statement

A version of this thesis has been submitted for publication to the Canadian Journal of Earth Sciences with co-authors C. Relf, K. MacLachlan, and W. Davis.

The Walmsley Lake mapping project comprised a three year, multi-government regional bedrock mapping effort. I worked with this program in the capacity of a senior geological assistant, and as a project leader. In this capacity I prepared, and am lead author on, preliminary and final geological maps for the project. As well I contributed to several interim articles on the geology of the area.

With respect to this thesis, I prepared and authored, with revisions from coauthors, the sections titled: Petrogenetic Constraints on P-T Conditions, Constraints on Pressure – Temperature – Time Paths, Quantitative Thermobarometry, and the Discussion. These sections are based on my field notes, petrology, and microprobe data. Tom Chacko kindly provided cordierite microprobe data for sample 2133 on very short notice.

I prepared and co-authored, sections titled "Introduction and Regional Setting" and "Geology of the Walmsley Lake Area", with considerable input from coauthors Relf and MacLachlan.

I did <u>not</u> carry out the research, prepare, or author the section entitled U-Pb geochronology. Bill Davis and Kate MacLachlan, Geological Survey of Canada, carried out this work.

Acknowledgements

Funding from the C.S. Lord Northern Geoscience Centre, and Geological Survey of Canada's Integrated southeastern Slave Province Targeted Geoscience Initiative supported this research. Additional support was provided by an NSERC research grant to Tom Chacko. Tom Chacko provided helpful reviews of this manuscript.

Table of Contents

Introduction and Regional Setting		
Geology of the Walmsley Lake Area		
Rock Types and Ages	5	
Structural Elements	7	
D1 Structural Elements	7	
D2 Structural Elements	8	
D3 Structural Elements	8	
D4 Structural Elements	9	
Tectonothermal Domains in the Walmsley Lake area		
Upper Tectonothermal Domain	10	
Lower Tectonothermal Domain	11	
Boundary	11	
U – Pb Geochronology	12	
Analytical Techniques	12	
Results of Geochronology	13	
Volcanic Belts	13	
Upper Tectonothermal Domain	15	
Lower Tectonothermal Domain	18	
Petrogenetic Constraints on P-T Conditions	21	
Greenschist-facies Assemblages	21	
Amphibolite-facies Assemblages	22	
Upper Amphibolite-facies Assemblages	23	

Constraints on Pressure – Temperature – Time Paths	24	
Cordierite porphyroblast-fabric relationships	25	
Staurolite porphyroblast-fabric relationships	26	
Sillimanite porphyroblast-fabric relationships	28	
Quantitative Thermobarometry	30	
Thermobarometric Methods	33	
Thermobarometric Results	35	
Upper Lithotectonic Domain	35	
Lower Lithotectonic Domain	36	
Discussion		
Figure Captions and Figures	43	
Tables		
References	70	
Appendix 1 Mineral Chemistry Data	85	
Garnet	86	
Biotite	97	
Plagioclase	102	
Staurolite and Cordierite	106	

List of Figures

.

Figure 1.	Map of the Slave Province	49
Figure 2.	Schematic History of the Slave Province	50
Figure 3.	Simplified Geology map of the Walmsley Lake Area	51
Figure 4.	U – Pb Concordia Plots for Volcanic Rocks	52
Figure 5.	U – Pb Concordia Plots for Upper Lithotectonic Domain	53
Figure 6.	U – Pb Concordia Plots for Lower Lithotectonic Domain	54
Figure 7.	Petrogenetic Grid for Walmsley Lake Sedimentary Rocks.	55
Figure 8.	Textural Photos of Walmsley Lake Porphyroblasts	56
Figure 9.	P – T History of the Aylmer Lake Volcanic Belt	57
Figure 10.	. Garnet Zoning Profiles	58
Figure 11.	P – T loops for the Walmsley Lake Area	59
Figure 12.	Thermobarometry Intersections	60
Figure 13.	. Temporal Evolution of Crustal Conditions	61
Figure 14.	. Schematic of Walmsley Tectonothermal History	62

List of Tables

Table 1.	U-Pb TIMS data	63
Table 2.	Summary of U-Pb Age Interpretations	64
Table 3.	U-Pb Analytical Data (SHRIMP)	65
Table 4.	Mineral Assemblages	66
Table 5.	Selected Mineral Chemistry, garnet, biotite, plagioclase	67
Table 6.	Selected Mineral Chemistry, staurolite and cordierite	68
Table 7.	Summary of P – T Estimates	69

List of Maps

Map 1.	Geology of the Walmsle	y Lake Area	.Back Pocket
--------	------------------------	-------------	--------------

Introduction and Regional Geological Setting

Much work has been done recently to constrain the tectonic evolution of the Slave Province. Several models exist describing the history of the Slave province as a product of; continental rifting and basin closure (Henderson, 1981; Fyson and Helmstaedt 1988; MacLachlan and Helmstaedt 1995), accretion of numerous arc terrains (Kusky 1990; Hoffman 1990), or the accretion of a larger juvenile craton (van der Velden and Cook, 2001). Accompanying this debate, are broader issues such as if modern plate tectonic processes even operated in the Archean (cf. de Wit, 1998; Hamilton 1998).

Previous investigations of the tectonic history of the Province, largely focused in the central Slave, have recorded protracted regional shortening accompanied by calc-alkaline plutonism at ca. 2.62 to 2.60 Ga, followed by widespread intrusion of granites between ca. 2.60 and 2.58 Ga, localized uplift, and the culmination of regional high T/low P metamorphism (e.g. Davis and Bleeker, 1999; Kusky, 1993; Thompson, 1989). Results of recent bedrock mapping in the Walmsley Lake area have been integrated with new geothermobarometric and geochronologic data as part of a multidisciplinary geological study in the southeastern Slave Province. This thesis presents a model for the development of two distinct tectonothermal domains in the Walmsley Lake area, formed at different crustal levels in response to a plutonometamorphic regime similar to that elsewhere in the province. New bedrock

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

mapping, geochronology and thermobarometry data from the southeastern Slave province supports an accretionary tectonothermal model.

The Slave Province is an Archean craton containing a rock record spanning approximately 1.5 billion years of the Earth's Archean history. The distribution of pre 2.85 Ga rocks at surface (Kusky, 1989; Bleeker et al., 1999). and the isotopic signature of Mesoarchean crust at depth (Thorpe, et al., 1992; Davis and Hegner, 1992) indicate basement is restricted to the western and central Slave Province (Figure 1). Supracrustal rocks in the province have been described by numerous workers, most recently Bleeker et al. (1999; and references therein), from whom the following description is largely drawn. Pre 2.85 Ga rocks are overlain by a ca. 2.85 Ga supracrustal succession dominated by guartzite and banded iron formation (the Central Slave Cover Group), which is in turn overlain by parautochthonous, or possibly allochthonous, ca. 2.73-2.70 Ga tholeiitic mafic volcanic rocks, (Kam Group). Tholeiitic basaltic rocks of this age are only known to occur in the western Slave Province. Unconformably overlying the tholeiitic basalts are ca. 2.69 - 2.67 Ga calc-alkaline bimodal volcanic rocks (Banting Group) (Isachsen et al., 1991) and a thick package of interbedded greywacke and mudstone (Burwash Formation). The bimodal calc-alkaline volcanic rocks and greywacke - mudstone package occur across the entire Slave Province. Late Archean Timiskaming-type conglomerates (Jackson Lake Formation) unconformably overly this sequence. Their distribution is restricted to isolated, fault-bounded basins of late Archean (ca. 2.6 Ga) age (King and

Helmstaedt, 1997). The Neoarchean geology of the Slave province is represented schematically in Figure 2.

All Archean rocks in the Slave Province were affected by late Archean metamorphism, deformation and plutonism, which occurred grossly synchronously across the entire Slave Province at ca. 2630-2585 Ma (Davis and Bleeker, 1999). Deformation is characterized by multiple phases of folding, and associated penetrative fabrics, followed by late upright open cross folds (e.g. Fyson and Helmsteadt, 1988; Relf, 1992a; Pehrsson and Chacko, 1997). Syn- to post-deformational plutonism in the Slave Province occurred between ca. 2630-2580 Ma, and evolved from early diorite and tonalite through to monzo- to syenogranite (van Breeman et al., 1992; Davis and Bleeker, 1999). In the southern Slave Province ca. 2630-2610 Ma hornblende - biotite tonalite to granodiorite plutons (Defeat Suite) appear to be divided into two age domains with early, ca. 2630 to 2620 plutons in the Yellowknife area, and later ca. 2620 to 2610 Ma plutons to the north (van Breeman et al., 1992; Davis and Bleeker, 1999). No such age variation has been identified in later 2608-2596 Ma "S-type" Prosperous Suite (Henderson, 1985, van Breeman et al., 1992); or Contwoyto Suite (Davis et al., 1994) plutons.

Neoarchean metamorphism in the Slave Province is generally characterized by the andalusite to sillimanite aluminosilicate transition, which classifies it as a low- pressure, Buchan-type metamorphic sequence (Thompson,

1978; Bethune and Carmichael, 1998). At a regional scale, isograds are spatially associated with granitic plutons, indicating a strong genetic link between metamorphism and plutonism. Within this framework, metamorphism in the western Slave Province has been demonstrated to have a complex, multi-staged history (Bethune and Carmichael, 1998). In the Jennejohn Lake area, west of Yellowknife, the cordierite-in "knotted schist" isograd is diachronous, formed by the coalescence of a thermal aureole (Green and Baadsgaard, 1971; Bethune and Carmichael, 1998) associated with the ca. 2620+/-8 Ma Defeat Suite I-type pluton, (Henderson et al., 1987), and the ca. 2596+/-2 Ma Prosperous Suite, S-type, pluton (Davis and Bleeker, 1999).

The areally extensive metagreywacke / mudstone unit is ideal for studying the metamorphic history of the Slave Province in that these lithologies are remarkably homogeneous in composition (Yamashita and Creaser, 1999; Thompson, 1978; Henderson, 1985; Jackson, 1989). The compositional homogeneity of the greywacke / mudstone unit allows direct comparison of mineral assemblages from far removed locations as a function of P-T conditions. Notwithstanding, some variations in metamorphic mineral assemblages are the result of local bulk compositional variations rather than variations in metamorphic conditions (Relf, 1992b; Pattison and Tracy, 1991).

Geology of the Walmsley Lake Area

Rock Types and Ages

Rocks in the Walmsley Lake area comprise late Archean supracrustal rocks intruded by syn-volcanic to post-deformational plutons. Detailed descriptions of supracrustal and plutonic rocks and their field relationships may be found in MacLachlan et al., (2001a; b; 2002); Renaud et al., (2001; 2002); Renaud, (2003); Cairns, (2003); and Cairns et al., (2003) and the map (back pocket).

Metavolcanic rocks are preserved in three separate belts in the study area (Figure 3). The Aylmer Lake volcanic belt, (Renaud et al., 2001; 2002; Renaud, 2003), is exposed south of Aylmer Lake in the northeastern part of the map area. The belt defines a structural dome of submarine to emergent mafic to felsic calcalkaline volcanic rocks cored by younger plutonic rocks. About 20 kilometres west-southwest of the Aylmer Lake belt, a unit of layered mafic rocks is preserved within a two-mica granite pluton. Although exposure in this area is very poor, geophysical data (Armstrong and Kenny 2001) suggest the unit has significant strike continuity. The unit has been designated the Taylor Lake volcanic belt (Cairns et al., 2003). In the southern part of the study area, the Cook Lake volcanic belt is preserved as a series of arcuate belts of upper amphibolite-facies mafic to felsic volcanic rocks within a composite granodioritic

to tonalitic pluton (MacLachlan et al., 2002). Overlying the volcanic rocks in the northern part of the map area is an extensive unit of interbedded greywacke / mudstone. In the south, these rocks comprise partially-melted paragneisses.

Plutonic rocks in the Walmsley Lake area (Figure 3) comprise early syntectonic biotite-hornblende tonalite to granodiorite, late- to post-tectonic biotitemuscovite ± apatite ± garnet monzogranite, and post-tectonic biotite monzogranite and K-feldspar megacrystic monzogranite.

The early plutons are compositionally and texturally similar to I-type, Defeat suite (Henderson et al., 1987) and Concession suite (Davis et al., 1994) plutons in the Yellowknife and Contwoyto Lake areas, respectively. These plutons are typically composed of numerous compositionally and texturally variable sills that parallel regional foliation.

Two-mica granitoids in the Walmsley lake area (Figure 3) are compositionally and texturally similar to peraluminous, S-type, plutons elsewhere in the Slave Province, e.g. Prosperous suite, (Henderson, 1985), Contwoyto suite, (Davis et al., 1994).

The most abundant granitoids in the Walmsley Lake area comprise a suite of late, non-foliated, metaluminous to weakly peraluminous, equigranular to Kfeldspar-megacrystic granites to granodiorites. These plutons share textural and compositional similarities with the Morose suite (Davidson, 1972; Henderson, 1985) in the Yellowknife area, and the Yamba suite in the Contwoyto Lake area (Davis et al., 1994).

Structural Elements

Structural elements in the study area are described in detail by MacLachlan et al., (2001a, 2002) and Cairns (2003). Key features and timing relationships are summarized below.

D₁ Structural Elements

 F_1 folds have been recognized in biotite-zone metasedimentary rocks in the northwestern part of the Walmsley Lake map area, and north of the Aylmer Lake volcanic belt (Figure 3) (MacLachlan et al., 2001a). In the low-grade greywacke / mudstones, F1 folds are isoclinal and distinguished by reversals in younging direction, where both limbs are overprinted by a later (S₂) foliation. North of the Aylmer Lake belt, F₁ chevron folds are refolded by tight F₂ folds, to produce a type-II (Ramsey, 1967) interference pattern (Renaud et al., 2002).

Above the cordierite isograd, an S_1 cleavage is locally preserved as straight, or locally crenulated, biotite + quartz inclusion trails internal to cordierite porphyroblasts. The relationship between F_1 and S_1 is unknown; both structural elements are locally preserved, but nowhere observed in the same outcrop.

D₂ Structural Elements

 D_2 in the Walmsley Lake area is characterized by a pervasive, steeply dipping north-northeast to north-northwest striking, slatey to schistose cleavage defined by biotite +/- muscovite +/- cordierite (MacLachlan et al., 2001a). This S_2 surface is axial planar to upright isoclinal folds of bedding (F_2). Cordierite, andalusite, and staurolite porphyroblasts have variable relationships to the S_2 cleavage. In F_2 fold noses, porphyroblasts are typically aligned with their long axes parallel to cleavage-bedding intersections and F_2 fold hinges (Renaud et al., 2002; MacLachlan et al., 2001a). Adjacent to massive late-syn to post-tectonic granite plutons and above the sillimanite-in isograd, peak metamorphic porphyroblasts locally overgrow the S_2 fabric.

Granitoids of the early Defeat-like suite commonly define S_2 -parallel dykes a few centimetres to several metres wide within metasedimentary rocks. Locally, they cut S_2 at a low angle.

D₃ Structural Elements

Migmatitic metagreywacke / mudstones in the central Walmsley Lake area commonly contain mesoscopic, overturned to recumbent, tight to isoclinal folds of bedding, S₂, and S₂-parallel granitic sheets. These are designated F_3 , and locally are associated with a shallowly-dipping S₃ axial planar cleavage. S₂ is rarely preserved as a crenulated cleavage in F_3 hinge zones; more commonly, the predominant fabric in migmatized rocks is an S_2/S_3 transposition cleavage (MacLachlan et al., 2002), defined by aligned micas, sillimanite, and veins of anatectic neosome. On average, F_3 axial traces plunge shallowly northnorthwest or south-southeast, and F_3 axial planes dip shallowly west-southwest.

D₄ Structural Elements

 D_4 comprises a conjugate set of map-scale open, upright northeast- and northwest-trending cross folds. A weakly-developed, sub-vertical axial planar S_4 cleavage is locally preserved, and is most easily recognized in recumbently folded (F_3) migmatites where the S_2/S_3 composite fabric is at a high angle to the S_4 cleavage (Cairns, 2003). Mesoscopic- and map-scale dome and basin structures related to D_4 folding are common throughout the map area. At higher grades the dome and basin structure is reflected in the geometry of granitic sheets intruding the sillimanite-bearing and migmatized metasedimentary rocks. At lower grades, F_4 folding is distinguished by the geometry of isograds (MacLachlan et al., 2001a; 2002; Cairns et al., 2003). Despite the noticeable effects of these structures on the regional map pattern, the gentle folding superposed on an already polydeformed terrane precludes constraining the axial traces of F_4 folds in anything but a schematic sense. Late, open, upright crossfolds are reported from many places in the Slave Province, e.g. Contwoyto Lake (Relf, 1992b), Keskarrah Bay, (Jackson, 1989), Indin Lake (Pehrsson and

Chacko 1997), the Nardin Core Complex (Stubley et al., 1995) and the Snare River area (Fyson and Jackson 2003).

Tectonothermal Domains in the Walmsley Lake area

The Walmsley Lake area may be grouped into upper and lower tectonothermal domains based primarily on structural style and metamorphic grade, and to a lesser extent, on lithologic association. The upper domain corresponds to upper crustal levels (5-12 km), and the lower domain to midcrustal levels (12-20 km).

Upper tectonothermal domain

Rocks of the upper tectonothermal domain are restricted to the northern third of the Walmsley Lake area (Figure 3). The domain is dominated by metasedimentary rocks ranging from sub-biotite to sillimanite grade, and is cut by late-syn to post-tectonic, Prosperous-like, granodiorite to syenogranite plutons. The domain preserves two generations of steeply dipping, upright isoclinal folds and associated fabrics (F_1/S_1 and F_2/S_2). The metamorphic history of the upper tectonothermal domain is diachronous, reflecting the superposition of contact metamorphic haloes upon a regional metamorphic gradient (described in more detail below).

Lower tectonothermal domain

Rocks of the lower tectonothermal domain are located in the central and southern parts of the study area, and comprise uppermost sillimanite zone to extensively melted metasedimentary rocks, and abundant granitoids. Sub-horizontal D₃ fabrics and folds are the predominant structural elements in this domain. At this mid-crustal level, the proportion of plutonic to supracrustal rocks is significantly higher than in the upper tectonothermal domain. Intrusive rocks are primarily Defeat-like tonalites to monzogranite and Morose-like plutons.

Boundary between the upper and lower tectonothermal domains

The boundary between the upper and lower tectonothermal domains is difficult to define throughout most of the study area, as it appears to correspond to a transposition of lower grade, steep D_1/D_2 fabrics by shallow D_3 fabrics at high metamorphic grade (~ melt-in) and as such is transitional in nature. Nevertheless, it is fairly well constrained in two places in the study area. On the west side of Back Lake, sillimanite-bearing metasedimentary rocks contain vertical fabrics, and upright isoclinal folds (Figure 3), typical of the upper tectonothermal domain. In contrast, along the east side of the lake, migmatitic layering dips shallowly, plutonic contacts are sub-horizontal, and recumbent F_3 folds are preserved, characteristic of the lower tectonothermal domain. The

transitional domain boundary is constrained to within a kilometre, beneath Back Lake. Fabrics and metamorphic grade within the Aylmer Lake volcanic belt and overlying metasedimentary rocks are characteristic of the upper tectonothermal domain. However, mineral assemblages record a late thermal overprint that can be attributed to M3 (see below), suggesting the lower domain immediately underlies this area. A ca. 100 metre thick, sheared amphibolite occurs at the stratigraphic base of the belt (Renaud, 2003); perhaps this high strain zone separates the upper and lower domains in this area.

U-Pb Geochronology

A number of rocks from across the map area were sampled for TIMS and SHRIMP U-Pb geochronology, to help constrain the timing of deposition, plutonism, and metamorphism in the two tectonothermal domains. Geochronologic data are presented below.

Analytical Techniques

Heavy mineral concentrates were prepared by standard techniques, including crushing, grinding, WilfleyTM table, and heavy liquids. The concentrates were sorted by magnetic susceptibility using a FrantzTM isodynamic separator. Fractions were air abraded following the technique of Krogh (1982). The analytical methods for thermal ionization mass spectrometry (TIMS) analysis of zircon and monazite at the Geological Survey of Canada are summarized by Parrish et al., (1987), and for titanite by Davis et al., (1997). Analytical errors are determined based on the error propagation methods of Roddick (1987), or external error determined by reproducibility of standard zircon solution, whichever is greater. A modified York (1969) regression method was used to calculate discordia upper and lower intercept ages. Detailed descriptions for individual fractions are included in Table 1.

The sensitive high-resolution ion microprobe (SHRIMP) analytical technique for zircon U-Th-Pb age determinations is outlined in detail by Stern (1997) and Stern and Amelin (2003). Zircons were mounted in an epoxy grain mount along with the GSC laboratory zircon reference standard (BR266). The mount was then polished to reveal the grain centers. Analyses were carried out using a primary oxygen ion beam current of 4.2 nA and a sputtering diameter ranging from 10-20 microns. Uncertainty in the normalization of U/Pb ratios to the standard was 1.2 %.

Results of Geochronology

Age of Aylmer Lake and Cook Lake Volcanic Belts

Samples from two of the principal volcanic belts in the area have been dated: 1) a quartz-phyric massive to faintly banded rhyolite crystal tuff (DRA00-K6461) from the "Upper Diverse Volcaniclastic series" (Renaud et al., 2001) of

the Aylmer Lake volcanic belt; and 2) an intermediate garnet-hornblendemagnetite-bearing metavolcanic (DRA01-K08) from the Cook Lake volcanic belt.

DRA00-K6461 (Z6538, Felsic crystal tuff, Aylmer Lake volcanic belt): Zircons recovered from the tuff are dominated by clear, colourless prisms.

Analyses of six multigrain fractions are concordant to slightly discordant (Table 1, Figure 4a). A linear regression through all six fractions gives an upper intercept of 2676 +7/-3 Ma (L1, Table 2, MSWD 1.83), which is interpreted as the crystallization age of this rock. Two multigrain fractions of pale brown to colourless, unabraded titanite fragments are concordant and slightly discordant, with ²⁰⁷Pb/²⁰⁶Pb ages of 2588 +/-5 Ma and 2575 Ma, respectively. The 2588 Ma age of the concordant titanite fraction is interpreted as the time of metamorphic growth and/or recrystallization of titanite.

DRA01-K08 (Z7251, Intermediate metavolcanic, Cook Lake volcanic belt): This sample yielded few zircons of generally poor quality. Analyses were carried out with the SHRIMP ion probe. Zircons consist of oscillatory-zoned prisms typical of igneous grains. Eleven analyses of eleven individual crystals (Table 3, Figure 4b) yielded a weighted mean ²⁰⁷Pb/²⁰⁶Pb age of 2673 +/-8 Ma MSWD 0.79, interpreted as the crystallization age of this sample, with one analyses rejected as a statistically younger outlier. The two ages of volcanic rocks from the two belts are within error of each other and similar in age to well documented calc-alkaline volcanic sequences throughout the Slave province.

*D*₂/*M*₂ in the Upper Tectonothermal Domain

The timing of D_2/M_2 has been bracketed by dating intrusive phases that post-date and pre-date the development of the D₂ fabric. A maximum age is estimated from the Margaret Lake hornblende diorite (DRA00-K4396), an early, sheet-like intrusion, that contains a strong S_2 foliation. A minimum age bracket was determined by dating two massive, elliptical granite plutons that transect, and therefore post-date, S_2 foliation in the northwestern part of the map sheet. The Marlo Lake pluton (DRA00-K2225) is a massive, K-feldspar megacrystic biotite-monzogranite. The Zyena Lake pluton (DRA00-K4395) is a massive, 2mica monzo- to syenogranite pluton with accessory blue-green apatite east of Zyena Lake. The pluton produced retrograde rims on M_2 cordierite, and retrograde muscovite overgrowing the S₂ fabric. A third granite, Reid Lake pluton (DRA00-K4339) is a massive 2-mica monzogranite with accessory purple garnet. The pluton in part transects S_2 cleavage, however the cleavage appears to deflect S₂ parallel to its margins in some regions. Field relationships indicate the Reid Lake pluton may be in part syn-D₂, as a weak foliation is locally preserved within the pluton.

DRA00-K4396 (Z6536, Pre-D₂ Margaret Lake hornblende-diorite):

Analyses of five multigrain fractions of clear brown, prismatic zircons yield slightly discordant (Z1-Z3) to discordant data (Z4-Z5). The three most concordant results have identical 207 Pb/ 206 Pb ages (Table 1, Figure 5a). A linear regression through the three fractions, pinned at the origin, yields an upper intercept of 2614 +/-2 Ma (L5, Table 2, MSWD 0.73), which is interpreted as the crystallization age of this sample. Two other fractions (Z4,Z5) are more discordant and do not define a statistically meaningful regression (MSWD =8.73), indicating a more complex Pb-loss history for these fractions. Development of the D₂ fabric preserved within the pluton must have developed at, or after 2614 +/-2 Ma.

DRA00-K2225 (Z6476, Marlo Lake K-feldspar megacrystic granite): Five single grain fractions of euhedral, pale yellow monazite are near concordant (Table 1, Figure 5b) and have a weighted mean ²⁰⁷Pb/²⁰⁶Pb age of 2588 +/- 1.6 Ma (MSWD 3.4), which is interpreted as the best estimate for the crystallization age of this pluton.

DRA00-K4395 (Z6527, Post- D_2 *Zyena Lake 2-mica granite):* A sample of the Zyena pluton yielded zircon and monazite. Analyses of three multigrain fractions of pale brown, prismatic zircon are strongly discordant (Table 1, Figure 5), and do not regress. The 'best-fit' line through the zircon fractions intersects the concordia at 2606 ± 27/-19 Ma with a lower intercept of 1.0 Ga (MSWD = 67).

The significant scatter about this line indicates complex Pb-loss, or other factors disturbing the U-Pb system in zircon. One multigrain fraction of abraded euhedral, pale yellow monazite, and three single grain fractions of unabraded euhedral, pale yellow monazite yield more concordant results (Table 1, Figure 5c). Regression of three of the four monazite analyses yields an upper intercept age of 2605 +2.9/-2.2 Ma. The fourth monazite plots to the left of this line indicating a younger disturbance to the monazite. A discordia line through fractions Z24 and the two most concordant monazite fractions has an upper intercept of 2603 +/-2 Ma (L3, Table 2, MSWD 2.43), which is interpreted as the crystallization age of this sample.

*DRA00-K4339 (Z6652, Syn-D*₂ *Reid Lake 2-mica granite):* Zircon and monazite were analysed from this pluton. Five single grain fractions of pale yellow, subhedral monazite fragments yield variably discordant dates (Table 1, Figure 5d), with four of the five analyses defining a discordia line with an upper intercept of 2615 +3.5 /-2.2 Ma (L4, Table 2, MSWD 0.97). The fifth fraction has an older ²⁰⁷Pb/²⁰⁶Pb age (>2620 Ma), and is interpreted to include an inherited component. Zircon consists of prismatic grains with broadly zoned cores and higher uranium, oscillatory-zoned rims. SHRIMP analyses of both cores and rims indicate that, with one exception, there is no significant difference in age between rims and cores (Figure 5e, Table 3). A weighted mean age of 2621± 7.4 Ma (MSWD = 1.9, n= 11) is calculated excluding two high U altered rims (reverse discordance), an inherited core with an age of ~ 2.71 Ga, and one young

analyses. The latter was rejected as a statistical outlier (Ludwig, 2001). This age is older but within error of the monazite age. The Tukey's biweight age of 2615 \pm 8 Ma is identical to the monazite age determined by ID-TIMS. The monazite age of 2615 +3.5/-2.2 Ma is interpreted as the best age estimate for crystallization of this granite.

D₃/M₃ Transition Zone and Lower Tectonothermal Domain

Three samples of metasedimentary rocks and two samples of granitoid rocks were collected from the lower tectonothermal domain to assess the timing of plutonism and M_3/D_3 . The metasedimentary samples include: 1) a garnetbiotite psammite (DRA00-K4394), and 2) a migmatized pelite (DRA00-K4276) from the east side of Back Lake. In this area, the main fabric is S₂, however localized recumbent F₃ folds of S₂, indicate that this area has been affected by D₃; 3) a sample of migmatized metapelite (DRA01-K2059) from south of Walmsley Lake within a refolded recumbent F₃ fold that outlines an F₄ structural basin. The migmatite contains an F₃ crenulation cleavage and was sampled to determine the timing of partial melting and D₃ deformation.

The granitoid samples comprise: 1) a two-mica granodiorite with accessory blue-green apatite from the Cook Lake volcanic belt area (DRA01-K14). Petrographically this sample resembles the Zyena pluton from the upper domain. The unit cuts bedding and S_2 in sillimanite-grade metagreywackes, but

contains an S_3 foliation. It was sampled to provide a maximum age for S_3 ; 2) sample 5105, from a large body of massive, biotite monzogranite that contains septa of supracrustal rocks and dominates the southwestern part of the map sheet. Sample 5105 is representative of an abundant biotite monzogranite the unit was sampled to provide the age of peak plutonism in the lower tectonothermal domain.

DRA00-K4394 (Z6528 Garnet-bearing psammite, Back Lake): Three multigrain fractions of pale yellow, subhedral to euhedral monazite are slightly discordant and give a weighted average ²⁰⁷Pb/²⁰⁶Pb age of 2585 +/- 3.5 Ma (MSWD 3.4, Table 1, Figure 6a), interpreted as the time of metamorphic monazite growth.

DRA00-K4267 (Z6702 Migmatized pelite, Back Lake): Three single grain monazite analyses from a sample of partially melted pelite yielded discordant analyses with a spread in ²⁰⁷Pb/²⁰⁶Pb age from 2590 to 2585(Figure 6b, Table 1). The range of ²⁰⁷Pb/²⁰⁶Pb dates indicate the monazites are likely to preserve a complex history, but support a significant post-2590 Ma recrystallization or growth event, possibly associated with the partial melting event. In conjunction with the monazite results from the previous sample a ca. 2585 Ma metamorphism is indicated. *DRA01-K2059 (Z7076, Walmsley Lake migmatite):* Three single grain fractions of pale yellow, euhedral monazite have a weighted average 207 Pb/ 206 Pb age of 2582 +/-1 Ma (MSWD 0.17, Table 1, Figure 6c), interpreted as the time of monazite growth during partial melting and D₃ deformation. A fourth single grain fraction of pale yellow euhedral monazite has an older 207 Pb/ 206 Pb age of 2586 Ma and is interpreted to have an inherited component, likely from an earlier metamorphism or possibly a detrital component.

DRA01-K14 (Z7250, Two-mica granodiorite, Cook Lake volcanic belt): Three single grain fractions of pale yellow, subhedral to euhedral monazite are slightly discordant and have a weighted average 207 Pb/ 206 Pb age of 2602 +/- 2.5 Ma (MSWD 2.1, Table 1, Figure 6d), which is interpreted as the crystallization age of this rock. This provides a minimum age for S₂ in the lower domain similar to that provided by the Zyena pluton in the upper domain, and a maximum age for development of the S₃ cleavage.

*5105 (Z7648, Monzogranite, Goodspeed Lake area):*Monazite and zircon were analysed from this monzogranite. Zircons are dominated by euhedral prismatic grains. Four analyses yield highly discordant ages that do not define a simple discordia (Figure 6e). Three monazite analyses yield concordant ages with 207 Pb/ 206 Pb dates between 2579 and 2582 Ma. The weighted mean of the monazites dates gives an age of 2581 ± 4 Ma (MSWD = 4.9). This is interpreted as the best estimate of the crystallization age of the pluton. Although discordant,

two of the zircon fractions have older ²⁰⁷Pb/²⁰⁶Pb dates (2588, 2603 Ma), possibly indicating inheritance.

Petrogenetic constraints on P-T conditions

Isograds in the greywacke / mudstone sequence are defined based on the appearance of a particular phase in beds of the most pelitic bulk composition. As true pelitic compositions are rare, the isograds do not necessarily correspond to reactions shown on petrogenetic grids developed for pelites. In fact, a given isograd on the map may reflect the first appearance of a phase as the end product of different metamorphic reactions, occurring at different times, at different P-T conditions, in rocks of different bulk compositions, and in response to various geological events. In the following sections the metamorphic reactions attributed to the mineral associations observed in the area are presented.

Greenschist-facies assemblages

The lowest grade metasedimentary rocks contain the assemblage chlorite + muscovite + quartz + plagioclase +/- K-feldspar. Pelitic compositions contain a slaty cleavage with dull cleavage faces. A small inlier with this assemblage was mapped west of Marlo Lake, in the northwestern part of the study area (MacLachlan et al., 2001a) (Figure 3). P-T conditions for this assemblage are constrained to below the biotite-producing reaction: chlorite + K-feldspar \leftrightarrow biotite + muscovite + quartz + H₂O (1)

(Spear and Cheney, 1989).

Pelitic rocks above the biotite-in isograd (Figure 3) contain the assemblage biotite + muscovite + quartz + plagioclase +/- chlorite. The grain size of biotite and muscovite crystals increases up-grade from the biotite-in isograd, from slaty near the isograd, to phyllitic farther upgrade, to schistose near the cordierite-in isograd.

Amphibolite-facies assemblages

The cordierite-in isograd is related to the continuous KFMASH reaction:

chlorite + muscovite + quartz \leftrightarrow cordierite + biotite + H₂O (2)

corresponding to P-T conditions of 550-600°C at 2-3 Kbar (Pattison, 2001) (Figure 7). At slightly higher temperatures, cordierite and andalusite locally coexist, likely produced by the discontinuous reaction:

chlorite + muscovite + quartz \leftrightarrow cordierite + andalusite + biotite + H₂O (3) (Pattison, 2001) (Figure 7).

Immediately upgrade of the sillimanite-in isograd, andalusite and sillimanite co-exist as isolated phases within the rock. A few kilometres upgrade (map view), sillimanite occurs as thin fibrolite mantles overgrowing andalusite. The latter texture argues for the polymorphic transition reaction:

and alusite \leftrightarrow sillimanite (4)

The isolated sillimanite grains found near the sillimanite-in isograd may have formed by a different reaction such as:

cordierite + muscovite + quartz \leftrightarrow biotite + sillimanite +H₂O (5) (Harte and Hudson, 1979).

Upper Amphibolite Assemblages

Migmatites with very low percentages of *in situ* melt have monzogranitic neosome compositions. These migmatites may have formed due to vapourabsent melting from muscovite decomposition, or melt generated from the presence of small amounts of metamorphic pore fluids. Subanatectic metasedimentary rocks at sillimanite grade rarely contain muscovite; therefore vapour-absent melting due to muscovite breakdown cannot be invoked for significant degrees of melt generation. Migmatites with a larger degree of

melting, and evidence of melt migration and escape, commonly have tonalitic to trondhjemitic neosomes. The vapor source for larger degrees of partial melting likely involves biotite decomposition, e.g.:

biotite + sillimanite + quartz \leftrightarrow cordierite + K-feldspar + melt (7)

(Clemens and Vielzeuf, 1987; Pattison and Tracy 1991), (Figure 7).

Evidence for the reaction above includes the common presence of blue cordierite (*var.*iolite) in neosome in migmatites with high melt proportions. This reaction occurs at temperatures above 700° C.

Collectively, the mineral assemblages define a low pressure, high temperature facies series, typical of Slave Province metamorphism.

Constraints on pressure-temperature-time paths

Segments of qualitative pressure-temperature-time (P-T-t) paths can be inferred for the Walmsley Lake area, based on porphyroblast-fabric relationships observed in outcrop and thin section, and P-T constraints using published petrogenetic grids. The upper tectonothermal domain preserves evidence for two tectonothermal events (D_1/M_1 , and D_2/M_2 ; see above). Specific porphyroblast-fabric relationships are described below.

Cordierite porphyroblast-fabric relationships

Cordierite is the most widespread porphyroblast in the upper tectonothermal domain and textural evidence suggests most cordierite was formed during the D_2/M_2 event. Cordierite porphyroblasts typically both overgrow, and are wrapped by the S_2 fabric. Locally, an S_1 fabric, defined by aligned biotite and quartz inclusions, is preserved within cordierite porphyroblasts, oblique to the external fabric (MacLachlan et al., 2001a). Rarely an S_2 crenulation cleavage is preserved in the outer portion of individual porphyroblasts. S_1 cleavage is locally observed within the matrix of these rocks in microlithons between S_2 , although more commonly it is transposed into S_2 . Collectively these relationships suggest protracted growth of cordierite occurring during early, middle, and late to post D_2 (Zwart, 1962).

Several texturally distinct cordierite porphyroblast-fabric relationships coexist in the Reid Lake / Zyena Lake area (Figure 3). One generation of cordierite is stretched ca. 10:1 along S_2 foliation, and does not preserve an internal S_1 cleavage. This early generation co-exists with cordierite porphyroblasts with the more typical porphyroblast-fabric relationships outlined above. The early, ribboned cordierites are interpreted to be M₁ porphyroblasts, indicating amphibolite facies conditions existed prior to D₂ deformation. Along the western shore of Zyena Lake both of these generations of cordierite are rimmed with finegrained retrograde muscovite and chlorite after cordierite (Figure 8a). The "rimmed cordierite" isograd, in map view, parallels the contact of the ca. 2603 Ma Zyena Lake pluton (Figure 3) at a distance of approximately 2 kilometres. These relationships indicate two discreet stages of amphibolite-facies metamorphism with conditions suitable for cordierite growth occurring prior to ca. 2603 Ma. They further suggest that temperatures did not exceed cordierite-forming conditions after ca. 2603 Ma, and likely were below these conditions prior to this time.

Staurolite + cordierite + aluminosilicate porphyroblast-fabric relationships

Metasedimentary rocks overlying the Aylmer Lake volcanic belt have an assemblage quartz + plagioclase + biotite + staurolite + cordierite +/- andalusite +/- sillimanite +/- garnet +/- muscovite. Porphyroblast-fabric relationships in staurolite-bearing metasedimentary rocks suggest a complex paragenesis.

Most staurolite porphyroblasts have inclusion-rich cores, overgrown by inclusion-poor rims. Quartz and opaque inclusions in staurolite porphyroblasts preserve an internal fabric oblique to the external (S_2) fabric and must therefore have grown before D_2 to preserve the S_1 fabric (Figure 8b) (Zwart, 1962). These
staurolite porphyroblasts are variably resorbed, and commonly rimmed by finegrained quartz. Early andalusite porphyroblasts are subhedral to anhedral, preserve an internal S_1 fabric, and typically are rimmed by cordierite. Both andalusite, and the generation of staurolite described above are interpreted to pre-date D_2 and are attributed to M_1 metamorphism. Cordierite porphyroblasts contain an S_2 fabric with the external S_2 fabric gently wrapping the porphyroblast, implying late D_2 growth. Above the sillimanite isograd, sillimanite occurs as very fine-grained fibrolite needles overgrowing, and therefore postdating, S_2 .

Although muscovite, cordierite, staurolite and biotite coexist in some of the staurolite-bearing rocks, Pattison et al., (1999) argued that this does not represent an equilibrium assemblage, but is the product of multiple generations of metamorphism. The paragenesis of the staurolite-bearing metasedimentary rocks provides significant information on the P-T path of these rocks. Following the reasoning of Pattison et al., (1999), early (i.e. peak M₁, syn- to late-D₁) staurolite and andalusite were derived at intermediate pressures by reactions (Figure 9):

muscovite + chlorite + quartz \leftrightarrow staurolite + biotite + water,

and

muscovite + staurolite + chlorite + quartz \leftrightarrow and alusite + biotite + water

respectively.

Decompression of these rocks results in reactions:

staurolite + muscovite + quartz \leftrightarrow and a lusite + biotite + water,

and

and alusite + biotite + quartz + water \leftrightarrow muscovite + cordierite

The latter reaction resulted in growth of late to post D_2 , post-peak M_2 cordierite porphyroblasts. The presence of randomly-oriented sillimanite overgrowing all fabrics suggests post- D_2 ~isobaric heating to temperatures within the sillimanite stability field (Figure 9). The presence of ca. 2588 Ma titanite in the underlying volcanic belt provides evidence for the timing of this late metamorphic event. This age overlaps, within error, with the timing of melt generation and D_3 in the lower tectonothermal domain (ca. 2586 Ma).

Sillimanite porphyroblast-fabric relationships

Within the upper tectonothermal domain, sillimanite occurs in three distinct morphologies: 1) compact fibrolite knots; 2) as fibrolite rims on late syn, and post-

D₂ cordierite and andalusite porphyroblasts; and 3) as individual or mats of needles in association with biotite. Fibrolite knots are light cream coloured, 1 to 4 millimetre dense bundles of randomly or weakly oriented fibrolite needles (Figure 8c). The "fibrolite-knot" morphology of sillimanite is found in a zone rimming a small pluton between Margaret and Munn Lakes, and along the western shore of Back Lake in a zone paralleling the contact of an intrusive migmatite (Figure 3). Sillimanite mantling andalusite and cordierite porphyroblasts occurs as randomly-oriented fibrolite. This morphology is observed in the central Reid Lake area, and on the eastern shore of Box Lake (Figure 3). The remainder of sillimanite in the upper tectonothermal domain occurs as dispersed fibrolite crystals, or tiny mats, growing in random orientations, typically nucleating on the {001} surface of biotite crystals.

All three modes of sillimanite in the upper tectonothermal domain typically overgrow S_2 , and thus are post D_2 . Given its spatial association with post-D2 plutons and with rocks of the lower tectonothermal domain, sillimanite is interpreted to have formed in response to heat advected from late granitoids and from mid-crustal levels.

Within the lower tectonothermal domain, sillimanite occurs as millimetre to several centimeter long mats of fibrolite needles, and as elongate masses of prismatic sillimanite aligned within the main (S_3) foliation or locally parallel to F_3 fold axes. Migrating granitic dykes of locally-derived anatectic melt cross-cut, but

are strongly flattened into the main foliation (Cairns, 2003). Both observations indicate deformation was coincident with peak M₃ conditions in the lower tectonothermal domain. Isotopic (this study) and chemical (Schultz, 2002) monazite ages from anatectic melt pods and restitic metasedimentary rocks, have yielded ages of ca. 2582-2589 Ma; this is interpreted as the age of metamorphic monazite growth in the lower tectonothermal domain.

Quantitative Thermobarometry

Mineral assemblages in the metagreywacke / mudstone package in the study area are suitable for quantitative thermobarometric study. Detailed petrography was performed on approximately 150 thin sections, and samples for thermobarometry were selected based on:

- the presence of a mineral assemblage suitable for quantitative P-T determination (garnet + plagioclase + biotite + aluminosilicate + quartz +/- muscovite +/- staurolite +/- cordierite) (Table 4);
- 2) evidence of equilibrium textures (e.g. lack of embayments);
- a lack (or paucity) of retrograde and/or alteration textures and phases; and

 distribution across the Walmsley Lake area, both geographically and with respect to metamorphic grade.

Microbeam analysis of minerals from selected samples was carried out at the University of Alberta using a JEOL 8900 electron microprobe. Analyses of garnet and plagioclase used an accelerating voltage of 15 kV, a beam current of 15 nA, and a 1 μ m beam diameter. Biotite, muscovite and cordierite analyses were carried out using similar beam conditions but a beam diameter of 5 μ m to prevent sample degradation during analysis. Analytical precision is on the order of 1-2% relative for major oxides, and 10-20% relative for low concentration (<1%) oxides. Microprobe data were reduced using ZAF reduction procedures. Representative garnet, plagioclase and biotite analyses are given in Table 5, representative cordierite and staurolite analyses are given in Table 6.

Quantitative mineral analyses were carried out on garnet-bearing samples from the cordierite to migmatite zone. Mineral assemblages are presented in Table 4. For each sample at least one garnet porphyroblast was analyzed along a rim to core transect, with analyses every 5 μ m for the first 50 μ m, followed by analyses every 10 μ m for the next 100 μ m, then every 50 μ m for the next 500 μ m. For garnet porphyroblasts larger than 1300 μ m, subsequent analyses were taken every 100 μ m to the centre of the garnet. At least three spot analyses per crystal were performed on biotite and plagioclase grains: in contact with; within 1 millimetre of; and >1millimetre from the analyzed garnet porphyroblast. Zoning profiles for Fe, Mg, Ca and Mn show systematic variations in garnet composition from core to rim. Within the upper tectonothermal domain, garnets from cordierite-grade rocks display two styles of zoning. (Figure 10a,b). Lower-grade garnets from the cordierite zone are characterized by core to rim decreases in spessartine and flat Fe/Fe+Mg ratio (Figure 10a). Garnets from well above the cordierite-in isograd show increases in Fe/Fe+Mg ratio and spessartine content within 50 to 100µm of the rim (Figure 10b). We interpret this to be the result of retrograde Fe-Mg exchange between the garnet rim and other ferromagnesian phases. Analytical points used for thermobarometric calculations were taken internal to this zone to minimize these retrograde effects.

Garnets from migmatitic rocks of the lower tectonothermal domain have variable compositional profiles, and complex zoning. Sample 2133 is an atypically large, subhedral garnet characterized by a spessartine-rich, grossular-, pyrope-, almandine-poor core, corresponding to an internal zone with abundant inclusions arranged in a crude, slightly curved, fabric. Elemental profiles within the area with slightly helicoid inclusion trails are similar to those found in sillimanite- and upper cordierite-zone garnets of the upper tectonothermal domain, though the overall abundance of Mn, and to a lesser extent Mg are lower. At the edge of the inclusion-rich core, elemental abundances are quite erratic, possibly reflecting complications associated with prograde garnet growth during M₃ superposed on post-M₂ retrograde effects. Within the inclusion-poor

outer zone, almandine, spessartine and grossular content decrease toward the rim of the garnet, accompanied by an increase in pyrope (Figure 10c). The rim of this garnet records significantly different P-T conditions than those recorded in the core of the garnet, and in lower-grade garnets from other samples. Higher-grade samples show significant spessartine enrichment within 20µm of the rim, suggestive of garnet resorbtion.

At all metamorphic grades, biotite shows little within-sample compositional variation, and no systematic compositional variation with respect to distance from garnet porphyroblasts. Plagioclase similarly shows little intra-sample variation, and only two samples show compositional variation with respect to distance from garnet porphyroblasts. Due to the small number of analyzed points per plagioclase crystal, no information exists on internal zoning within individual plagioclase crystals. Cordierite and muscovite show little within-sample compositional variation.

Thermobarometric Methods

Thermobarometry was carried out on selected samples. The garnetbiotite, Fe-Mg exchange (GARB) equilibrium:

 $Fe_{3}Al_{2}Si_{3}O_{12} + KMg_{3}AlSi_{3}O_{10}(OH)_{2} \leftrightarrow Mg_{3}Al_{2}Si_{3}O_{12} + KFe_{3}AlSi_{3}O_{10}(OH)_{2}$ almandine + phlogopite \leftrightarrow pyrope + annite

was used to obtain a temperature estimate on all samples. The garnetplagioclase-aluminosilicate-quartz (GASP) net transfer equilibrium:

 $Ca_{3}Al_{2}Si_{3}O_{12} + 2Al_{2}SiO_{5} + SiO_{2} \leftrightarrow 3CaAl_{2}Si_{2}O_{8}$ grossular + aluminosilicate + quartz \leftrightarrow anorthite

was used for pressure estimates. Quartz and aluminosilicate involved in this reaction were considered pure phases. Cordierite compositional data from samples 287 and 2133 were used to carry out cordierite equilibria thermobarometry using:

2 $Fe_3Al_2Si_3O_{12}$ + 4 Al_2SiO_5 + 5 $SiO_2 \leftrightarrow$ 3 $Al_3Fe_2Si_5(AlO)_{18}$ 2 Almandine + 4 Andalusite + 5 Quartz = 3 Fe-Cordierite

as a pressure estimate, and

2 Fe₃Al₂Si₃O₁₂ + 3 Al₃Mg₂Si₅(AlO)₁₈ \leftrightarrow 2 Mg₃Al₂Si₃O₁₂ + 3 Al₃Fe₂Si₅(AlO)₁₈ 2 Almandine + 3 Mg-Cordierite = 2 Pyrope + 3 Fe-Cordierite

for temperature.

Pressure and temperature determinations were calculated using TWQ ver. 2.02b (Berman, 1997). Activity-composition models used for TWQ calculations were those of Berman and Aranovich (1996a; 1996b) for garnet, biotite, and cordierite, and Fuhrman and Lindsley, (1988) for plagioclase. To avoid the effects of re-equilibration during cooling, near-rim garnet compositions with the lowest Fe/(Fe+Mg) were selected for thermobarometric analysis (Figure 10). Biotite and plagioclase compositions were numerically averaged for thermobarometric calculations unless a systematic compositional variation was noted. In cases where such a variation was observed, the composition of the plagioclase grain closest to the garnet porphyroblast was used for thermobarometric calculations.

Quantitative thermobarometry on these samples is hampered by mineral composition. The grossular content of garnet is lower than recommended for reliable use of the Garnet - Aluminosilicate - Plagioclase geobarometer (Essene, 1989). The product of $(X_{ars})(X_{an})$ is invariably <0.05, and thus less precise for use in GASP geobarometeric calculations (Todd, 1998). Lower-grade samples are at upper greenschist to lower amphibolite grade, and thus below the range of experimental calibrations for most activity models (e.g. Essene, 1989). Numerous samples were taken from the upper cordierite lower sillimanite zones. Temperatures of these samples all fall well within the sillimanite stability field. Mn enrichment found on the rims of higher-grade samples in the Walmsley Lake area may be indicative of retrograde net transfer reactions (garnet dissolution). Kohn and Spear (2000) warn garnets displaying these features may yield anomalously high temperatures. Despite these limitations, P-T estimates from the dataset appear to provide systematic results, consistent with field observations. Thermobarometric results for samples are summarized in (Table 7) and (Figure 11).

Thermobarometric Results

Upper Tectonothermal Domain

Two samples from the upper tectonothermal domain were selected to constrain the pressure-temperature conditions of the cordierite-in isograd. Sample 0287, from an atypically aluminous bed in semipelitic metasedimentary rocks with the assemblage quartz – biotite – muscovite – plagioclase – andalusite – garnet - cordierite was collected west of Zyena Lake. Geothermobarometric analysis of sample 0287 yielded a GARB / GASP estimate of 510°C at 2.1 kbar, within error of the result 590°C at 3.3 kbar obtained from cordierite equilibria (Figure 12). Sample 0293 was collected from semipelitic metasedimentary rocks proximal to the cordierite-in isograd.

on this sample yielded 560°C and 3.4kbar, in good accord with petrogenetic grid constraints for the cordierite-in reaction (Pattison 2001) (Figure 7).

Several samples from just below the sillimanite-in isograd were analyzed. Samples 0174, 0383, 0396 and 0613 all plot in the temperature range ca. 610 to 620°C; pressures are more variable ranging from ca. 4.5 to 6.3kbar (Figure 11, Table 7). The range in pressures may reflect the universally low grossular content of these garnets, and the resultant uncertainty in activity models for grossular in almandine at low concentrations (Essene, 1989; Todd, 1998).

Geothermobarometry on semipelitic rocks with fibrolitic sillimanite overgrowing biotite (Samples 4085, 0032b, 0220, 1026, 1074, and 2326b) gave P-T estimates of ca. 600 to 640°C and ca. 4.2 to 5.1kbar (Figure 11, Table 7). These data overlap with P-T estimates from the upper cordierite zone.

Lower Tectonothermal Domain

Sample 2133 (Figure 9c) contains the equilibrium assemblage garnet + biotite + cordierite + K-feldspar + sillimanite, indicating uppermost amphibolite-, transitional to granulite facies conditions. Thermobarometric analysis of this sample (Figure 11, Table 7) gives 7.0kbar at 710°C using GARB / GASP and 6.0 kbar at 690 °C from cordierite equilibria (Figure 12).

Discussion

Metamorphism and deformation in the upper tectonothermal domain occurred in two stages of similar style (Figure 13). The earlier event (D_1/M_1) involved regional folding and fabric development at greenschist- to amphibolite-

facies conditions (see above). Its absolute timing is poorly constrained between sediment deposition (ca. 2.66 Ga) and emplacement of the Margaret Lake pluton (2614 +/-2 Ma). The later event (D_2/M_2) is recorded by fabrics formed at mid-greenschist to upper-amphibolite facies conditions. The timing of D_2 is broadly constrained by the 2614 +/-2 Ma Margaret Lake pluton, which contains the D_2 fabric, and the 2603 +/-2 Ma Zyena pluton, whose alteration halo overprints M_2 porphyroblasts (Figure 13).

Locally in the upper tectonothermal domain, evidence exists for late thermal overprinting on peak M₂ assemblages. In some cases, e.g. west of Margaret Lake, late mineral growth is attributed to proximity to Prosperous-like plutons, similar to those documented elsewhere in the Slave Province (e.g. Bethune and Carmichael 1998; Davis and Bleeker, 1999). Elsewhere, e.g. in metasedimentary rocks overlying the Aylmer Lake volcanic belt and along the southeastern shore of Back Lake, the thermal overprint is interpreted to be related to heat advected from the lower tectonothermal domain during M₃ anatexis.

No evidence for D_1/M_1 was observed in the lower tectonothermal domain; however, fabrics associated with D_2/M_2 are locally preserved. Significant reworking during $D_{3/}M_3$ overprinted D_2 fabrics under upper amphibolite facies conditions, to an extent that the predominant fabric preserved in the lower domain is associated with D_3 . Metamorphic monazites pin D_3/M_3 to ca. 2588 -

2583 Ma (this study; Schultz 2002). This age range overlaps within error to the age of the 2581 +/- 4 Ma Goodspeed Lake granite, and is interpreted to be the age of the muscovite-biotite granite that is widespread throughout the lower tectonothermal domain (above; see Figure 13).

When developing models for the tectonometamorphic evolution of the Walmsley Lake area, the following characteristics must be considered:

1) Early progressive crustal thickening was characterized by the development of upright isoclinal folds, penetrative fabrics and diachronous peak thermal conditions following maximum thickening (M₁/D₁ and M₂/D₂);

2) Tight to isoclinal recumbent folds and associated shallow fabrics are restricted to the lower tectonothermal domain, and were accompanied by extensive anatectic melting of metasedimentary rocks (M_3/D_3);

3) The upper and lower tectonothermal domains were apparently decoupled during D₃.

Textural evidence with respect to porphyroblast timing (Figure 9), and peak thermal conditions following fabric development in the upper tectonothermal domain support the clockwise P-T loops proposed in Figure 11. This model is consistent with the metamorphic style described in the western Slave Province, (Bethune and Carmichael, 1998), and is attributed to moderate crustal thickening, heating, and associated plutonism at upper crustal levels (cf. Spear, 1995). The timing of this thickening is constrained to pre-ca. 2614 Ma (D_1) and between ca. 2614 and 2603 Ma (D_2). These may represent two distinct shortening events, or progressive shortening and crustal thickening over a protracted timeframe. Although less well preserved, textural and geochronologic evidence suggest the lower tectonothermal domain was subjected to the same shortening event(s).

Following crustal thickening, rocks in the lower tectonothermal domain were extensively melted, and at ca 2.58 Ga, intruded by abundant muscovitebiotite monzogranite and K-feldspar megacrystic monzogranite. Granites of this age, although present locally, are much less common in the upper tectonothermal domain. Widespread anatexis and associated melt softening in the lower domain likely resulted in distinctly different rheologies in the upper and mid crust, and may explain the distribution of these rocks between these two crustal levels.

Radiogenic heating combined with conductive heating from trapped granitic melts would have caused significant rheologic softening of the lower tectonothermal domain. We propose that the lower domain vertically collapsed under the weight of the overlying upper domain, and in so doing underwent further decompression melting, and became structurally decoupled from the

upper domain. This process is consistent with development of recumbent folds in the lower domain, flattening of originally steep tectonic fabrics, and the superpositon of younger sub-horizontal fabrics. This model is summarized in Figure 14.

The energy required for mid-crustal anatexis may be derived from one or both of two sources: radiogenic heat build-up in over-thickened crust, and/or advection of heat from the mantle due to lithospheric delamination. Either of these models could provide the energy necessary to drive mid-crustal anatexis, rheological softening, and gravity-driven collapse. Derivation of anatectic melt from radiogenic heating is strongly dependent on the radiogenic heat producing element content of the source material. A thickened pile of immature sediments, such as the metasedimentary rocks of the Yellowknife Supergroup, is an ideal, heat-producing element enriched source (Patiño-Douce et al., 1990). The high heat-producing element content of these rocks is corroborated by the analyses of Yamashita and Creaser (1999). Thermal-kinetic modeling indicates that radiogenic heat build up in over thickened crust can produce large volumes of magma at mid and lower crustal levels (Gerdes et al., 2000). Lithospheric delamination has also been invoked as an efficient mechanism of heat transfer to mid-crustal levels (e.g. Nelson, 1992). In this model, some portion of the thickened lithospheric root delaminates and founders in the asthenosphere. Upwelling hot asthenosphere raises the temperature of the lower crust causing melting, and these melts intrude the middle crust, causing melting at mid-crustal

levels (Sandiford, 1989; Nelson, 1992). The absence of mafic mantle-derived magmas at mid-crustal levels in the Walmsley Lake area qualitatively argues against a lithospheric delamination hypothesis, as intrusion of mantle-derived material to mid-crustal levels is expected in this model. While neither mechanism can be discounted given current data, we suggest heat build up in an overthickened, radiogenic element-enriched crust as the most likely cause of anatexis and subsequent collapse and decoupling of the lower tectonothermal domain.

Post-thickening anatexis, rheological softening and extensional flow is proposed as a common mechanism for gravitational accommodation in modern areas of over-thickened continental crust, whether in a collisional (e.g. Himalayas; Beaumont et al., 2001; Hodges, 2000), or an accretionary (e.g. Sevier Hinterland of the Cordillera; Patiño-Douce et al., 1990) tectonic setting. Thermomechanical modeling of modern and paleo convergent orogens indicate mid-crustal detachment is the expected response to even moderate degrees of crustal thickening, whether the crustal heat budget is controlled by mantle influence (Sandiford, 1989; Nelson 1992) or internal radiogenic heating (Gerdes et al., 2000). For example, seismic reflection studies in the Himalayas indicate a zone of partially molten middle crust (Hauck et al., 1998, Royden et al., 1997), which is actively deforming and collapsing in response to continued crustal thickening. The metamorphic and structural topology of the lower tectonothermal domain in the Walmsley Lake area is consistent with the topology predicted from thermo-mechanical modeling, and modern observations of gravitational accommodation in overthickened crust.

Recent deep-penetrating reflection seismic experiments across the southwestern Slave province have identified a structure interpreted as a Neoarchean crustal block at depth beneath the western Slave province. It is proposed the crustal block collided with and indented the western Slave province ca. 2.65 – 2.58 Ga (van der Velden and Cook, 2001). While the surface expression of the Neoarchean suture zone is not presently recognized, isotopic proxies for Mesoarchean crust place this boundary ca. 60 kilometres west of the Walmsley Lake area. Within this tectonic framework, the Walmsley Lake area exhibits a crustal architecture analogous to mid-crustal levels imaged in the forelands of modern continent-continent collisional orogens such as the Himalayan Tibetan Plateau. The Walmsley data supports collisional Neoarchean tectonic assembly of the Slave craton, and is consistent with the idea that Archean tectonic processes operated similarly to modern equivalents.

Figure Captions

Figure 1. Map of the Slave Structural Province showing Walmsley Lake map area and the location of areas mentioned in the text. BRL - Brislane Lake, HL -Healey Lake, JL - Jennejohn Lake, AL - Artillery Lake. Modified from (Fyson, 1996). Isotopic boundaries, Pb- filled circles after (Thorpe et al., 1992), Nd open circles after (Davis and Hengner, 1992; Davis and MacLachlan, in preparation).

Figure 2. Schematic diagram illustrating principal geological events in the Slave Province, after Davis and Bleeker, (1999).

Figure 3. Simplified geological map of the Walmsley Lake area, NTS 75N (after Cairns et al., 2003). Features labeled on map and referred to in text: AL-Aylmer Lake, ArL-Artillery Lake, BL-Back Lake, CL-Cook Lake, FL-Fletcher Lake, KL-Kirk Lake, ML-Margaret Lake, MaL-Marlo Lake, MuL-Munn Lake, RL-Reid Lake, WL-Walmsley Lake, ZL-Zyena Lake, ALVB-Aylmer Lake volcanic belt, CLVB-Cook Lake volcanic belt, TLVB-Taylor Lake volcanic belt. Numbers in squared boxes are thermobarometry sample locations referred to in text. 1) DRA00-K6461, felsic tuff, Aylmer Lake volcanic belt 2) DRA01-K08, intermediate Metavolcanic, Cook Lake volcanic belt 3) DRA00-K4396 Margaret Lake hornblende diorite 4) DRA00-K2225 Marlo Lake K-feldspar megacrystic granite 5) DRA00-4395 2-mica granite, Zyena Lake 6) DRA00-K4399 2-mica granite

Reid Lake 7) DRA00-K4394 Back Lake garnet-bearing psammite 8) DRA01-K2059 Walmsley Lake migmatite 9) DRA01-K5536 Cook Lake 2-mica granodiorite 10) DRA02-5105 Goodspeed Lake biotite monzogranite.

Figure 4. U-Pb concordia plots for volcanic rocks, ellipses reflect 2σ uncertainties. See text for discussion, locations given in figure 2. Z- zircon; M-monazite; T- titanite.

Figure 5. U-Pb concordia plots for upper lithotectonic domain rocks, ellipses reflect 2σ uncertainties. See text for discussion, locations given in figure 2. Z-zircon; M-monazite; T- titanite.

Figure 6. U-Pb concordia plots for lower lithotectonic domain rocks, ellipses reflect 2σ uncertainties. See text for discussion, locations given in figure 2. Z-zircon; M-monazite; T- titanite

Figure 7. Petrogentic grid showing reactions pertinent to Walmsley Lake sediments grid topology after Pattison, (2001). Position of garnet + cordierite equilibria after Spear et al., (1999).

Figure 8. A i) Cordierite porphyroblasts with retrograde very fine-grained chlorite + muscovite rims. Rimmed cordierite porphyroblasts are found within two kilometres in map view of the ca. 2603 Ma Zyena Lake pluton. Metamorphic regime had cooled to chlorite + muscovite forming conditions by this age. ii) Photomicrograph of cordierite porphyroblast with retrograde chlorite + muscovite rim, crossed polars. Scale bar 5 milimetres length. Cordierite porphyroblasts exhibit a moderately well developed crenulation cleavage developed internal to porphyroblast, an external (S₂) fabric wrapping the porphyroblast, and welldeveloped quartz pressure shadows. Growth of cordierite porphyroblast occurred early during D₂.

B i) Compact sillimanite knots in pelitic layers of metasedimentary rocks. ii) Photomicrograph of fibrolitic sillimanite knot (Sil), and cordierite porphyroblast (Crd). Sillimanite randomly overgrows the S₂ fabric, indicating growth post D2. Scale bar is ca. 1 millimetre long; the photo is taken in plane polarized light. C i) Staurolite (St), andalusite (An), and cordierite (Crd) porphyroblasts in semipelitic metasedimentary rocks. Note cordierite rims on early, rounded andalusite porphyroblasts. No rims on late, large andalusite porphyroblasts. The scale card at base of photo has centimetre divisions. ii) Inclusion-rich core of staurolite porphyroblast preserves an S₁ fabric by aligned, elongate quartz inclusions. The outer region of porphyroblast overgrows the fabric of the groundmass. Groundmass preserves an S₁ cleavage crenulated by S₂ (indicated). Photo taken in cross-polarised light, scale bar is approximately 5 millimetres long.

Figure 9. P-T History of the Aylmer Lake Volcanic Belt. Schematic topology of KFMASH univariant reactions (thin dashed lines) and divariant Fe + Mg

exchange reactions (grey shading). Aylmer Lake Volcanic Belt area P-T loop in thick dashed line. (A) early (M_1) staurolite and andalusite porphyroblasts (post D_1). (B) andalusite growth due to decompression. (C) formation of sillimanite haloes on staurolite and andalusite porphyroblasts due to increased thermal regime. (D) growth of late to post D_2 , peak M_2 cordierite porphyroblasts. E) Growth of late, euhedral staurolite overgrowths on cordierite. Topology after (Pattison et al., 1999). Compare with figure 7c.

Figure 10. Representative garnet zoning profiles and back-scatter electron microprobe images in garnets from low, medium and high grade area. A) Sample 0293 collected just above cordierite in isograd. B) Sample 0383 collected from cordierite zone, just below sillimanite-in isograd. Note the retrograde elemental zonation extends almost 150um from the rim. C) Sample 2133 collected well above melt-in isograd. Elemental profiles of sample 2133 are interpreted with respect to garnet characteristics. Inclusion-rich core grew syn-D₂, evidenced by bent inclusion trails (indicated on figure). Less inclusion rich rim grew syn D₃, elemental profiles in rim are compatible with growth during heating and decompression. Thick bars indicate compositional analysis used for thermobarometric calculations, selected as close to the rim as possible to eliminate retrograde Mg and Fe re-equilibration. Bars labeled transect on backscatter images show approximate locations of microprobe analyses. See text for explanation.

Figure 12. A family of P-T loops for the Walmsley lake area. Loops are constrained for various geographic areas of the upper and lower lithotectonic domains. Relative and absolute timing of metamorphic events are indicated. Numbered points indicate peak metamorphic conditions of individual samples from thermobarometry; each point represents the maximum metamorphic conditions for that sample, corresponding to the apex of a P-T-t loop of similar topology to the generalized loops indicated. The general morphology of the loops is deduced from porphyroblast-fabric relationships (see text).

Figure 12. Thermobarometry plots of independent reactions for cordierite + garnet + biotite + plagioclase bearing samples (TWQ ver. 2.02b). The calculation uses the mixing solutions of Fuhrman and Lindsey (1988) for plagioclase, and Berman and Anarovich (1996a) for garnet, cordierite and biotite. Samples 287 and 2133 are from the upper and lower tectonothermal domains respectively Note that the same set of mineral equilibria indicate a systematic difference in pressure and temperature across the domains.

Figure 13. Schematic diagram illustrating timing of plutonism, deformation and crustal thermal evolution during two stages of crustal thickening in upper and lower lithotectonic domains, and subsequent extensional decoupling and collapse of over-thickened crust in lower lithotectonic domain (see text). Sources of geochronological data: Circles, this study, diamonds compiled from: 1- van Breeman et al., 1987, 2- van Breeman and Henderson, 1988, 3- Macfie et al.,

1990, 4- Frith et al., 1991, 5-Henderson and van Breeman, 1992; 6 - Schultz, 2002 source 6 is a statistical chemical date of monazite by electron microprobe.

Figure 14. Cartoon cross-sections of the geological evolution of the Walmsley Lake area. A) A succession of ca. 2.68 - 2.64 Ga supracrustal rocks develop a small juvenile craton. B) Collision of the juvenile craton with the Mesoarchean basement of the western Slave province results in crustal thickening through vertical isoclinal folding of the crust (D₁, D₂). Defeat-like (syn-D₂) and prosperous-like (post-D₂) plutons are intruded at this time. C) Radiogenic heat build up in orogenically thickened crust results in widespread crustal melting at mid-crustal levels. The melt production hastens the gravitational collapse of the orogen (D₃). Depressurization during gravitational collapse causes further melting with lateral flow of melt products. D) Present day erosional surface showing upper tectonothermal domain with upright structures, lower tectonothermal domain with sub horizontal structures, and the transition zone.

Figure 2

2660 2650 2 Age (Ma)

Figure 7

56

Figure 9

Figure 12

reactions 3 and 4 respectively.

3) 2 Almandine + 3 Cordierite - 2 Pyrope + 3 Fe-Cordierite

4) 4 Sillimanite + 5 Quartz + 2 Almandine - 3 Fe-Cordieirtie

Figure 13

```
Figure 14
```


Table 1. L	IP6 TIMS data.						_								
Fraction ¹	Description**	Wt.	U*	Pb"	Pb	Pb	204 Pb ⁶	206 Pb2	±1 SE	207 Pb2	±1 SE	207 Pb2	±1 SE	Apparent Age (Ma)	% Disc
	•	μп	nnm	nnm ¹	Ph	60	205 Ph	23411		23311		206 Ph		206Ph 207Ph +1-3	
		- 2	PP	PP		40		•		•				23411 20105	
														<u> </u>	
DRA-00-K	6451 Ayimer Lake volcanic belt (Z65	38; 63	.926 <u>3°N</u>	108.344	8°E)										
ZI	3,150,Z,Co,Cir,fdIn,oIn,EI,Pr,Abr,M1*	8	42	25	343	33	0.14	0.51810	0.00121	13.053	0.045	0.18273	0.00042	2691.1 2677.8 7.5	-0.61
Z2	3,100,Z,Co,Cir,IFr,fin,Pr,Abr,M3°	6	67	38	1828	8	0.11	0.51419	0.00082	12,941	0.024	0.18253	0.00018	2674.5 2676.0 3.2	0.07
Z3	6.100.Z. pBr.Cir.fdin.oin.Pr.Abr.M1*	10	42	24	5141	3	0.12	0.51118	0.00058	12.852	0.017	0.18234	0.00009	2661.7 2674.3 1.7	0.58
74	10 75 7 Co Cir fdin olo Pr Abr M1*	8	51	29	4334	3	0 12	0.51073	0.00058	12 839	0.018	0.18232	0.00012	2659 8 2674 1 2.2	0.66
75	3 200 Z Co Cir fdia ola El Pr Abr M1°	11	30	17	1284	Ř	0.13	0.51296	0.00080	12 880	0.023	0 18211	0.00014	2669.2 2672.1 2.6	0.13
76	6 100 7 Co Cleffer flo Si De Abe Alka?		61	26	1626	7	0.10	0.51057	0.00000	12 906	0.020	0 19101	0.00017	266512 2672.1 2.0	0.10
20				30	1020		0.13	0.01007	0.00000	11 744	0.022	0.10151	0.00017	2639.1 2010.4 3.1	0.32
17	18,200,1,0Br,CII,AN,NABr,M-IA	60	24	12	517	32	0.07	0.49211	0.00039	11.744	0.020	0.17300	0.00026	2319.6 2361.1 5.1	0.37
T8	40,250,1,pBr,Cir,An,NAbr,M-1A	248	37	19	1140	244	0.05	0.48257	0.00060	11.430	0.019	0.17179	0.00014	2538.4 2575.1 2.8	1.72
DRA01-K	14 Cook Lake granodiorite (Z7250; 6	3.2963	<u>•N 108.3</u>	3519*E)											
MI	1,150,M,pY,Cir,Eu,NAbr,M-0.5A	2	4368	3835	103469	3	0.88	0.49605	0.00053	11.948	0.015	0.17468	0.00007	2596.8 2603.0 1.4	0.29
M2	1,200 M.Co.Cir.Sub.NAbr.M-0.5A	6	3939	10965	92818	8	5,3	0.49616	0.00051	11.938	0.015	0.17451	0.00007	2597.3 2601.3 1.4	0.19
M3	1 300 M Co Cir Sub NAbr M-0 5A	11	2365	9834	74848	11	8.51	0.49568	D 00054	11.925	0.016	0.17449	0.00007	2595.2 2601.2 1.4	0.28
DRA-00-H	2225 Mario I ake Pluton (76476: 63 7	221*N	109 98	RIFL			0.01								
MI	1 75 Marty Cir En Tab Abe M 0 5A		25+05	100266	280004	5	0.21	0 40567	0.00047	11 045	0.014	0 17222	0.00007	2505 2 2580.0 4 4	0.25
MI	1,75,M,P1,Cit,E0,Ta0,A0,M-0.5A		32703	100200	200034		0.31	0,45507	0.00047	11,043	0.014	0.17332	0.00007	2353.2 2309.9 1.4	-0,23
M2	1,100,M,pY,CIr,Eu,1ab,Abr,M-0.5A	3	9831	8/66	294977	3	0.92	0.49353	0.00044	11.787	0.013	0.17321	0.00007	2585.9 2588.9 1.4	0.14
M3	1,75,M,Co,Cir,Eu,Tab,Abr,M-0.5A	1	14654	12484	201566	3	0,83	0.49194	0.00044	11.742	0.013	0.17311	0.00007	2579.1 2588.0 1.4	0.42
M4	1,125,M,pY,CIr,Eu,Tab,Abr,M-0.5A	4	20128	17521	552300	- 4	0.87	0.49315	0.00046	11.765	0.014	0.17302	0.00007	2584.3 2587.1 1.4	0.13
M5	1.100.M.pY.Cir.Eu.Tab.Abr.M-0.5A	2	15727	14048	232945	4	0.93	0.49198	0.00044	11.735	0.013	0.17299	0.00007	2579.2 2586.8 1.4	0.36
DRA-00-H	4395 Zvena Lake Pluton (Z6527: 63.9	9025"	109.67	84"E)											
MI	4 50 M nY Cir Eu Sub Abr M-0 54	4	1231	4207	28446	3	6 76	0 49683	0.00043	11 969	0.013	0 17472	0.00007	2600 2 2603 4 1 4	0.15
141	1 100 M of Alt Ea Mate M 0.64		1022	4017	14006	Ă	7 00	0.40572	0.00046	41.007	0.014	0.17460	0.00000	2505 4 2501 2 14	0.10
M2			1033	4011	14500		1,00	0.45512	0.00043	11.527	0.014	0.17450	0.00000	2555.4 2001.3 1.4	0.20
M3	1,50,M,pY,CIr,Sub,Abr,M-0.5A	1	452	1933	7848	2	8.77	0.49583	0.00053	11.904	0.015	0.17413	0.00007	2595.8 2597.7 1.8	0.09
M4	1,50,M,dY,Cir,Eu,Nabr,M-0.5A	1	4693	10161	29729	5	3.93	0.49018	0.00044	11.725	0.013	0.17348	0.00007	2571.4 2591.5 1.4	0.94
Z5	6,100,Z,Br,Clr,fFr,fin,El,Pr,Abr,M3°	8	177	101	4600	9	0.19	0.48484	0.00055	11.622	0.016	0.17385	0.00008	2548.3 2595.1 1.6	2.18
Z6	4,150,Z,Br,Cir,IFr,fin,Pr,Tab,Abr,M3°	8	577	292	7892	17	0.09	0.46762	0.00058	11.018	0.016	0.17089	80000.0	2473.1 2566.4 1.5	4.37
Z7	4,150,Z,Br,Clr,IFr,fin,El,Pr,Abr,M3*	8	284	147	2511	25	0.19	0.44227	0.00051	10.277	0.015	0.16853	0.00009	2360.8 2543.1 1.9	8.55
DRA-00-	(4339 Reid Lake Granite (76652: 63.7	412°N	109.877	75°E)											
141	1 100 M V Cir fEr fin En Abr M.0 54	0	1015	4725	19336	14	9.75	041040	0.00043	11 061	0.014	0 17650	0.00007	2577 1 2620 2 1 4	1 00
811	4 400 M M Ch (F) (F) (F) AL AL A C	3	1015	4/23	74404	17	5.15	0.43143	0.00045	11.501	0.014	0.17050	0.00007	2577.1 2020.2 1.4	1.35
M2	1,100,M,Y,Cir,1Fr,1in,Fg,Abr,M-0.5A	2	3385	3601	74134	3	1.44	0.49772	0.00045	12.043	0.014	0.1/54/	0.00007	2604.0 2610.5 1.4	0.3
M3	1,100,M,Y,Cir,IFr,IIn,Fg,Abr,M-0.5A	2	2038	2/15	64345	1	1.92	0.49/6/	0.00046	12.039	0.014	0.17544	0.00007	2603.8 2610.3 1.4	0.3
M4	1,125,M,Y,Cir,fFr,fin,Fg,Abr,M-0.5A	5	1688	1782	32725	8	1.29	0.49555	0.00047	11.972	0.014	0.17522	0.00007	2594.7 2608.1 1.4	0.63
M5	1,100,M,Co,Cir,fFr,fin,Fg,Abr,M-0.5A	. 3	2512	3960	48164	5	2.53	0.49244	0.00044	11.847	0.014	0.17452	0.00007	2581.2 2601.5 1.4	0.95
DRA-00-	(4396 Margaret Lake hornblende dio	rite (Z	6536; 63	3.5937°N	109.9124	•E)									
Z1	6.125.Z.oBr.Cir.fdin.oln.Pr.Abr.Dia	23	132	76	24444	4	0.17	0.49753	0.00044	12.063	0.014	0.17585	0.00007	2603.2 2614.1 1.4	0.51
72	5 125 7 pBr Cir (dia ola Br Abr Dia	24	80	46	6047	10	0.19	0 40942	0.00047	12 084	0.014	0 17594	0.00008	2607.0 2614.0 1.5	0.33
77	0 100 Z a Re Cis fdia als De Aba Dia	10	403		10507		0.10	0.40002	0.00048	12.000	0.014	0 17673	0.00000	2600.2 7612.0 4.4	0.00
23	9,100,2,pb1,Ci1,1011,011,P1,A01,D1a	19	103	00	1239/		0.17	0.49693	0.00048	12.009	0.014	0.17573	0.00008	2009.2 2013,0 1.4	0.10
24	6,125,2,pBr,Cir,fin,Pr,St,Abr,NMU*	15	148	82	5704	12	0.14	0.49269	0.00050	11.853	0.015	0.17448	0.00008	2582.3 2601.1 1.5	0.87
Z5	14,125,Z,pBr,Cir,fFr,Ndl,NAbr,NM0°	5	370	181	3404	15	0.11	0.44499	0.00042	10,190	0.012	0.16607	80000.0	2373.0 2518.5 1.7	6.9
DRA-00-	(4394 Back Lake psammite (Z6528; 6	3.7338	"N 109.	4464°E)											
MI	2.75.M.pY.Cir.fin.Eu.Sub.Abr.M-0.5A	2	2102	5387	10241	10	4.85	0.49132	0.00043	11.719	0.013	0.17299	0.00008	2576,4 2586,8 1,5	0.49
M2	3.50 M nY Cir fin Eu Sub Abr M-0.5A	. 1	486	1262	11546	2	4.92	0.49262	0.00048	11.747	0.014	0.17295	0.00008	2582.0 2586.4 1.6	0.21
M3	4 75 M oV Cir fin Eu Sub Abr M-0 54		634	1189	14014		3.22	0 49360	0.00050	11 755	0.014	0 17272	0.00008	2586 2 2584 2 1 5	-0.09
DDAMA W	4267a Mineratized pelka Back Lake	17670	. 62 74	46* N 40	1777°E		U.LL	0.40000	0.00000	11100	0.014	0.11212	0.00000	2000.2 2004.2 1.0	0.00
DRAUU	42012 Miginalized penie, back Lake	120104	1.03.14	40 14 10	404000		0.04	A 40000	0.00044	44 704	0.040	0 47220	0 00007	0500 0 0500 7 4	
MI	1,150,M,DY,CIF,EU,ADF,M-0.5A	3	14900	14696	461200		0.01	0.49222	0.00044	11.761	0.013	0.17330	0.00007	2560.3 2569.7 1.4	, 0.4
M2	1,75,M,pY,Cir,Eu,Abr,M-0.5A	1	7500	7510	166700	2	2 0.01	0.48827	0.00044	11.650	0.013	0.17301	0.00007	2563.6 2587.0 1.4	1.1
M3	1,100,M,pY,Clr,Eu,Abr,M-0.5A	5	9006	4509	351300	4	0.01	0.48924	0.00056	11.654	0.016	0.17276	0.00007	2567.4 2584.6 1.4	0.8
DRA01-K	2059 Walmsley Lake migmatite (Z70)	76; 63.	3360°N	108.496	B*E)										
MI	1,100.M.pY.Cir.Eu.NAbr.M-0.5A	2	7903	7317	159235		1.01	0.49190	0.00046	11.725	0.014	0.17288	0.00007	2578.9 2585.7 1.4	0.32
M2	1.100 M oY Cir Eu NAbr M-0.5A	2	13623	11005	254619	1 3	3 0.74	0.49094	0.00072	11.678	0.019	0.17251	0.00007	2574.7 2582.2 1.4	0.35
10	1 100 M of Cir Eu Nabr M 0 54	- 1	20344	23235	156645		07	0.49124	0.00046	11 695	0.014	0 17252	0.00007	2576 0 2582 2 1/	0.20
141	1 100 M -Y Ck En MADE M 0 54		16030	12222	184360		0.70	0.49078	0.00062	11,670	0.017	0 17246	0.00007	2574.0 2581.7 1/	0.36
EADE DIA	the Magazamatic (77648, 62 000 ml	100 51	24161		104000			0.40010	0.00002	11.070	0.017	0.17440	0.00007	2014.0 2001.1 1.4	0.00
2102 BIO	ute monzogranite (21646; 63.0964*N	109.25	49.61	05044	E0.407 0			0 (0050	0.00040	44 700		0 47007	0.00007	0500.0.0500.0	
MI	M, DT, CILEU, NADL, M-0.5A	1	13893	25311	o0467.2		3.09	0.49358	0.00049	11.730	0.014	0.1/237	0.00007	2586.2 2580.8 1.4	-0.25
M2	M,Co,Cir,Eu,NAbr,M-0.5A	1	7240	12606	45114.4		2.92	0.49231	0.00048	11.710	0.014	0.17251	0.00007	2580.7 2582.1 1.4	0.07
M3	M,pY,Cir,Eu,NAbr,M-0.5A	1	20532	37792	126620) 5	5 3.15	0.49243	0.00046	11.691	0.014	0.17219	0.00007	2581.2 2579.0 1.4	-0.1
Z4	Z,Co,Clr,Eu,Pr,Abr,M0*	1	94	46	751.4	. 5	5 0.21	0.41080	0.00123	9.896	0.031	0.17471	0.00022	2218.6 2603.3 4.7	17.44
Z5	Z.Co.Cir.nFr.Eu.Pr.Abr.NM1*	1	163	98	1853.3	4	0.27	0.48261	0.00094	11.523	0.024	0.17317	0.00012	2538.6 2588.5 2.3	2.33
76	7 Co Cir (Er Eu Pr Abr NM3*		100	60	1212		0.21	0 47994	0.00104	11 333	0.027	0 17126	0.00016	2527 0 2570 0 3	202
77	7 Co Cir /Er Eu Pr Abr Dio		197	00	2022 0		1 0.27	0 44160	0.0004	10 004	0.000	0 16424	0.00010	2357 8 2500 5 3	604
<u></u>	L'W'''''''''''''''''''''''''''''''''''	4	107	30	2033.0		• 0.22	0.44100	0.00002	10.004	0.020	0.10431	0.00015	2001.0 2000.0 3.	0.01

•

² Fractions are number sequentially through the entire manuscript and the letter indicates the mineral type: Z=zircon; T=tilanite; M=monazite.
² Fractions are number sequentially through the entire manuscript and the letter indicates the mineral type: Z=zircon; T=tilanite; M=monazite.
² errors on atomic ratios are 1 std. error of mean , ³ error on ²⁰ Pb⁷⁰⁶Pb age is 2 std error in Ma; * = Radiogenic Pb a = Indude sample weight error of 0.001 mg in concentration uncertainty; c = Common Pb in analysis
^{*} Fractions description atterviations: first figure Is the number of grains, second is the grain size, Mineral type: Z, zircon; M, Monazite; T, titanite; Colour; pBr, pale brown; Co, colourless; pY, pale yellow; Y, yellow; br, brown; Clarity; CIr, clear, Alt, altered; Tb, turbid; Fractures: IFr, few; nFr, numerou; rFr, rare; Inclusions; fin, few; fdln, fluid; nln, numerous; oln, opaque; nln, rare; Morphology: An, Anhedral; Eu, euthedral; El, elongate; Fg, fragment; Pr, prismatic; S1, stubby prism; Sub, subhedral; Tab, tabular, Ndl, needle; Abrasion: Abr, abra ded; NAbr, not abraded; Maphetic properties: M-0.5A, magnetic at 0.5 Amps; M-0.75A, magnetic at 0.75 Amps; Dia, diamagnetic; NM0*, non magnetic at 0* side slope, NM1*, non magnetic at 1* side slope; M3*, magnetic at 3* side slope.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2	. Summary	of U-Pb	age	interpretations

Sample	Lab#	Unit	Method	Min.	Age (Ma)	Int.	LI (Ma)	Treatment	MSWD	Fractions
DRA00-K6461	z6538	Aylmer Lake volcanic belt	ID-TIMS	Z	2676 +7/-3	IC	746 +708/-695	LR	1.83	Z1-6
DRA01-K08	z7271	Cook Lake volcanic belt	SHRIMP	Z	2673 ± 8	IC	-	WM7/6	0.87	n=10
DRA00-K4396	z6536	Margaret Lake diorite	ID-TIMS	Z	2614 +/-2	IC	forced zero	LR	0.73	z1-z3
DRA00-K4395	z6527	Zyena Lake pluton	ID-TIMS	Z & M	2603 ±2	IC	691 ± 215	LR	2.43	M1,M2,Z4
DRA00-K4339	z6652	Reid Lake pluton	SHRIMP	Z	2615 ± 8	IC	-	TB	0.05	n=11
**		11	ID-TIMS	Μ	2615 +3.5/-2.2	IC	1464± 210	LR	0.97	M2-5
DRA00-K2225	z6476	Marlo Lake pluton	ID-TIMS	Μ	2588 ± 1.6	IC	-	WM7/6	3.4	M1-5
DRA00-K4394	z6528	Gt-bt psammite, Back Lake	ID-TIMS	М	2585 ± 3.5	MC	-	WM7/6	3.4	M1-3
DRA01-K2059	z7076	migmatite, Walmsley Lake	ID-TIMS	М	2582 ± 1	MC	-	WM7/6	0.17	M1-3
DRA01-k4267	Zz6702	migmatized pelite, Back Lake	ID-TIMS	Μ	~ 2585	MC		-	-	-
DRA01-K14	z7250	Two-mica granodiorite, Cook Lake	ID-TIMS	М	2602 ± 2.5	IC		WM7/6	2.1	M1-3
5105	z7648	Monzogranite	ID-TIMS	M	2581 ± 4	IC		WM7/6	4.9	M1-3

Abbreviations: Lab# = Geological Survey of Canada Geochronology lab number; Method- ID-TIMS = Isotope dilution thermal ionisation mass spectrometry, SHRIMP = Sensitive high resolution ion microprobe; Mineral - Z = zircon; M = monazite; Int.= interpetation of age data; IC = igneous crystallization; MC = metamorphic crystallization. Treatment: LR =linear regression (modified York (1969); WM7/6 = weighted mean of ²⁰⁷Pb/²⁰⁶Pb ages; TB = Tukey's Biweight (Ludwig, 2000); Fractions = analyses used used in calculation (Table 1); MSWD = mean square of the weighted deviates; .

Table 3. U-Pb analytical data, SHRIMP

Spot name	Spot	υ	Th	<u>Th</u>	Pb*	²⁰⁴ Pb	²⁰⁴ Pb	± 204 Pb	2	²⁰⁸ Pb	± 208 Pb	207 Pb	± <u>207</u> Pb	²⁰⁶ Pb	± <u>206</u> Pb	Соп	²⁰⁷ Pb	± ²⁰⁷ Pb	²⁰⁶ Pb	± ²⁰⁶ Pb	²⁰⁷ Pb	± <u>207</u> Pb) Disc.
	Location	(ppm)	(ppm)	U	(ppm)	(ppb)	²⁰⁶ Pb	²⁰⁶ Pb	f(206) ²⁰⁴	²⁰⁶ Pb	²⁰⁶ Pb	²³⁵ U	²³⁵ U	²³⁸ U	²³⁸ U	Coeff	²⁰⁶ Pb	²⁰⁶ Pb	²³⁸ U	²³⁸ U	²⁰⁶ Pb	²⁰⁶ Pb	(%)
Intermediate	metavolca	inic, Co	DOK L	ake v	/olcai	NIC B	eit (DK	A01-K	<u>08)</u>														
7251-68.1	center	73.8	29.6	0.414	41	2	0.00006	0.00005	0.0010	0.1127	0.0020	12.63	0.19	0.49965	0.00634	0.9028	0,18329	0.00119	2612	27	2683	11	2.6
7251-69.1	center	61.6	40.7	0.682	36	1	0.00003	0.00004	0.0005	0,1885	0.0021	12.36	0.22	0.49093	0.00757	0.9185	0.18255	0.00129	2575	33	2676	12	3.8
7251-67.1	center	69.1	5.1	0.075	36	6	0.00021	0.00004	0.0036	0.0172	0.0016	12.13	0.18	0.50976	0.0064	0.8850	0.17259	0.00123	2656	27	2583	12	-2.8
7251-64.1	center	51.1	33.1	0.669	31	2	0.00008	0.00006	0.0014	0,1826	0.0028	12.87	0.20	0.51559	0.00583	0.8132	0.18100	0.00162	2680	25	2662	15	-0.7
7251-63.1	center	38.2	15.9	0.429	22	1	0.00008	0.00006	0.0014	0.1186	0.0032	12.76	0.25	0.50531	0.00639	0.7329	0.18314	0.00246	2637	27	2682	22	1.7
7251-60.1	center	14.2	5.2	0.378	8	່ 2	0.00029	0.00015	0.0051	0.0984	0.0060	12.13	0.35	0.48862	0,00956	0.7640	0.18011	0.00336	2565	42	2654	31	3.4
7251-38.1	center	46.6	29.6	0.656	28	0	0.00001	0.00001	0.0002	0,1845	0.0086	12.98	0.20	0.51452	0.00676	0.8992	0.18301	0.00126	2676	29	2680	11	0.2
7251-26.1	center	87.5	81.2	0.959	54	2	0.00004	0.00002	0.0007	0.2661	0.0021	12.57	0.20	0.49791	0.00663	0.8836	0.18311	0.00139	2605	29	2681	13	2.9
7251-21.1	center	20.2	9.5	0.488	11	2	0.00023	0.00010	0.0039	0.1325	0.0079	12.44	0.78	0,50046	0.0218	0.7749	0.18032	0.00720	2616	94	2656	68	1.5
7251-57.1	center	74.9	47.5	0.655	45	1	0.00002	0.00004	0.0003	0.1818	0.0025	12.65	0,18	0.5095	0.00568	0.8458	0.18010	0.00139	2655	24	2654	13	0.0
7251-11.1	center	77.7	34.3	0.456	43	2	0.00005	0.00004	0.0008	0.1262	0.0020	12.32	0.19	0.48794	0.00686	0.9363	0.18309	0.00102	2562	30	2681	9	4.5
7251-13.1	center	52.0	36.7	0.729	32	2	0.00009	0.00006	0.0015	0,1999	0.0031	12.91	0.18	0.51926	0.00576	0.8583	0.18031	0.00130	2696	24	2656	12	-1.5
Reid Lake p	luton (DRA	00 - K43	39)																				
6652-7.1	rim	453.8	107.5	0.245	248	1	0.00001	0.00002	0.0001	0.1459	0.0052	12.29	0.18	0.51082	0.00624	0.8925	0.17446	0.00116	2660	27	2601	11	-2.3
6652-8.1	rim	564.5	182.7	0.334	311	11	0.00005	0.00002	0.0008	0.1395	0.0038	12.13	0.16	0.50483	0.00561	0.9109	0.17429	0.00094	2635	24	2599	9	-1.4
6652-12.1	core	100.8	111.1	1.139	62	9	0.00022	0.00010	0.0038	0.1320	0.0045	11.52	0.20	0.47566	0.00627	0.8201	0.17563	0.00178	2508	27	2612	17	4.0
6652-14.1	rim	531.5	63.0	0.123	283	28	0.00012	0.00001	0.0021	0,1961	0.0054	12.36	0.18	0.5064	0.00715	0.9819	0.17703	0.00050	2641	31	2625	5	-0.6
6652-21.1*	core	46.7	29.0	0.640	26	1	0.00006	0.00005	0.0011	0.1286	0.0042	11.42	0.19	0.48354	0.00641	0.8614	0.17134	0.00146	2543	28	2571	14	1.1
6652-32.1*	rim (altered)	1343.3	205.2	0.158	767	14	0.00002	0.00001	0.0004	0.1351	0.0041	13.43	0.15	0.54541	0.00578	0.9623	0.17862	0.00056	2806	24	2640	5	-6.3
6652-34.1	core	76.3	39.1	0.529	43	1	0.00004	0.00002	0.0007	0.1317	0.0037	11.92	0.16	0.49116	0.00565	0.8958	0.17599	0.00108	2576	24	2615	10	1.5
6652-35.1	rim	693.9	83.3	0.124	365	8	0.00003	0.00001	0.0005	0.1375	0.0045	12.27	0.16	0.50472	0.00586	0.9159	0.17628	0.00096	2634	25	2618	9	-0.6
6652-37.1	core	134.1	142.6	1.098	85	9	0.00016	0.00003	0.0027	0.1387	0.0035	12.03	0.17	0.49682	0.00563	0.8798	0.17562	0.00116	2600	24	2612	11	0.5
6652-38.1*	rim (altered)	2458.3	28.1	0.012	1477	42	0.00003	0.00001	0.0006	0,2903	0.0150	14.91	0.22	0.58696	0.00814	0.9711	0.18426	0.00065	2977	33	2692	6	-10.6
6652-40.1	rim?mix?	223,4	96.9	0.448	124	19	0.00020	0.00002	0.0035	0.1432	0.0039	11.95	0.17	0.49226	0.00611	0.9279	0.17610	0.00093	2580	26	2616	9	1.4
6652-51.1	core	131.5	146.1	1.147	82	4	0.00008	0.00002	0.0014	0,1336	0.0033	11.69	0.17	0.48511	0.0054	0.8532	0.17470	0.00130	2549	24	2603	12	2.1
6652-59.1	rim	751.6	159.1	0.219	399	3	0.00001	0.00000	0.0001	0.1362	0.0036	12.22	0.15	0.4989	0.00554	0.9630	0.17765	0.00058	2609	24	2631	5	0.8
6652-66.1	rim	805.0	66.2	0.085	429	12	0.00003	0.00001	0.0006	0.1348	0.0048	12.66	0.16	0.51688	0.00582	0.9429	0.17769	0.00075	2686	25	2631	7	-2.1
6652-72.1*	core	46.2	37.5	0.838	28	1	0.00007	0.00005	0.0013	0.1401	0.0040	12.84	0.19	0.49934	0.00614	0.8726	0.18654	0.00139	2611	26	2712	42	3.7
Notes (see Ster	n, 1997; Stern	and Am	elin, 20	003 fo	r analy	tical de	etails):																

Notes (see Step), 1957, Step and Anneun, 2003 to analytical details). * = analyses excluded frm age calculation in text. Uncertainties reported at 1 σ (absolute) and are calculated by numerical propagation of all known sources of error Calibration standard : BR266 - Age 559.0 Ma; ²⁰⁶Pb/²³⁸U = 0.09059; error 1.0% f206²⁰⁴ refers to mole fraction of total ²⁰⁶Pb that is due to common Pb, calculated using the ²⁰⁴Pb-method; common Pb composition used is the surface blank: 4/6: 0.05770; 7/6: 0.89500; 8/6: 2.1 Discordance relative to origin = 100 * (1-(²⁰⁶Pb/²³⁸U age)/(²⁰⁷Pb/²⁰⁶Pb age))

Table 4. Mineral assemblages by sample. All samples contain quartz, plagioclase, garnet, biotite. Symbol (X) denotes presence of a mineral in the sample, rounded brackets denote <1 modal percent of mineral present in sample, angular brackets indicate the mineral is altered and/or retrograded. Mineral abbreviations after Kretz 1983.

Sample	als	crd	ms	Kfs	st
0287	and	Х	X		
0174	(and)				
0293	(and)				
0383	(and)				
4085	(sil)				Х
0396	(sil)				
0220	(sil)				
0613	(sil)	X			
1026	(sil)	<x></x>			
0032b	(sil)				
2326b	(sil)	X			
1074	(sil)	<x></x>			
2133	(sil)	Х		X	

Table 5. Selected* electron microprobe analyses from theWalmsley Lake Area, analyses used for thermobarometriccalculations.

......

Garnet analyses weight percent oxide

	1074	0032b	1026	2133	4085	2326b	287	293	383	396	613	174 2	220
SiO₂	36.75	37.01	37.11	37.08	36.88	36.92	36.78	36.79	37.29	37.06	37.08	36.8 37 9	7.22
K₂O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0	.00
FeO	33.99	31.83	33.41	32.15	32.54	33.62	26.93	32.63	31.23	28.33	32.28	30.2 32 4	2.55
MgO	3.96	3.48	3.12	6.02	3.16	3.81	2.51	2.55	3.95	3.28	3.57	2.83 3	.67
Al₂O ₃	20.28	21.08	21.26	21.28	21.05	21.17	21.08	21.24	21.67	21.54	21.46	21.1 21 1	.43
CaO	0.97	1.31	0.90	1.72	1.24	0.69	1.59	1.72	1.71	2.40	1.19	2.44 0	.89
MnO	2.56	4.98	4.43	1.13	4.75	3.40	10.73	4.64	4.08	6.65	4.20	6.18 4	.45
TiO₂	0.00	0.04	0.00	0.00	0.00	0.00	0.08	0.02	0.01	0.00	0.02	0.00 0	.00
Total	98.52	99.74	100.2 3	99.39	99.62	99.61	99.70	99.56	99.94	99.26	99.80	99.6 10 9	00.2 0

Biotite analyses weight percent oxide (average)

	1074	0032b	1026	2133	4085	2326b	287	293	383	396	613	174	220
Na ₂ O	0.27	0.28	0.27	0.29	0.40	0.18	0.01	0.15	0.39	0.23	0.28	0.16	0.24
SiO₂	35.86	35.79	34.95	36.61	35.56	33.26	24.40	35.71	37.10	37.05	36.09	35.8 3 0	36.04
K₂O	8.85	9.24	9.20	8.48	9.27	5.36	0.03	9.12	7.88	8.68	9.02	9.00	8.59
FeO	17.54	17.28	18.80	15.47	18.05	19.90	22.71	19.22	16.70	17.20	18.33	18.7 1 5	8.47
MgO	11.14	10.49	9.57	13.20	10.12	12.24	16.30	10.41	13.48	12.16	11.50	11.0 1 8	11.18
Al ₂ O ₃	18.19	18.94	18.79	16.96	19.00	19.49	23.72	19.08	18.08	18.37	19.32	18.8 1 0	9.09
CaO	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.03	0.07	0.08	0.03	0.04	0.06
MnO	0.06	0.11	0.09	0.04	0.09	0.15	0.41	0.07	0.06	0.13	0.08	0.13	0.10
TiO₂	1.73	1.81	2.02	1.90	1.64	1.37	0.07	1.55	1.29	1.95	1.55	1.82	1.76
Cr ₂ O ₃	0.00	0.00	0.00	0.00	0.00	0.11	0.07	0.07	0.10	0.13	0.13	0.06	0.10
F	0.00	0.00	0.00	0.00	0.00	0.12	0.01	0.20	0.22	0.17	0.18	0.17	0.13
CI	0.01	0.01	0.01	0.01	0.02	0.02	0.00	0.01	0.01	0.02	0.01	0.01	0.00
Total	93.65	93.95	93.69	92.95	94.14	92.20	87.73	95.55	95.29	96.09	96.43	95.7 9 4	5.69

Plagioclase analyses weight percent oxide (average)

	1074	0032b	1026	2133	4085	23265	287	293	383	396	613	174	220
Na ₂ O	8.63	8.36	8.73	7.12	8.64	9.73	7.29	7.56	8.34	6.60	8.40	7.70	9.40
SiO ₂	61.65	60.86	61.72	58.01	61.42	63.82	57.28	59.37	61.06	57.58	61.20	59.76	62.99
K₂O	0.08	0.07	0.06	0.06	0.08	0.08	0.18	0.07	0.05	0.27	0.07	0.07	0.11
FeO	0.05	0.10	0.10	0.00	0.07	0.04	0.31	0.15	0.11	0.11	0.05	0.14	0.16
MgO	0.00	0.01	0.00	0.00	0.00	0.00	0.01	0.00	0.00	0.02	0	0.00	0.01
Al₂O ₃	23.73	24.30	23.84	26.25	23,91	23.11	26.26	26.22	25.33	27.27	24.80	26.22	23.25
CaO	4.76	5.43	4.72	7.52	4.93	3.68	7.60	7.48	6.29	8.55	5.78	7.53	4.10
Total	98.90	99.12	99.17	98.97	99.05	100.4 7	98.94	100.85	101.1 8	100.4 1	100.3 1	101.4 2	100.0 3

Analyses were carried out using a JEOL 8900 electron microprobe at the University of Alberta. Analyses were performed using an accelerating voltage of 15kV and a beam current of 15nA. Data were reduced using ZAF correction procedures. Beam diameter was maintained at 3µm (minimum) for garnet and plagioclase, and 5µm for biotite, quantitative spot analyses. Natural minerals were used as standards. Garnet: Ai, Ca, Mg, Si, Roberts Victor garnet; Fe, Rockport fayalite; Mn, willemite. Ti kaersuitite. Plagioclase: Ai, Ca, Lake Country plagioclase; Si, K, sanadine, Na, albite; Biotite: Fe, Mg, K, Si, F Calgary biotite; Ti, Ca, Na, kaersuitite; CI tugtupite; Cr chromite; Mn willemite; AI muscovite.

*The complete dataset is available through the CS Lord Northern Geoscience Centre, Box 1500, Yellowknife, NT, X1A 2L3 cslord_centre@gov.nt.ca

Table 6. Selected electron microprobe analyses for
cordierite and staurolite from the Walmsley Lake
area

4085	287	2133
staurolite	cordierite	cordierite
0.00	0.30	0.30
26.93	47.44	48.30
0.00	0.03	0.02
12.88	7.65	6.19
1.69	7.96	9.32
54.16	33.28	32.96
0.01	0.02	0.01
0.28	0.73	0.07
0.68	0.01	N/A
0.53	N/A	N/A
97.15	97.42	97.19
	4085 staurolite 0.00 26.93 0.00 12.88 1.69 54.16 0.01 0.28 0.68 0.53 97.15	4085 287 staurolite cordierite 0.00 0.30 26.93 47.44 0.00 0.03 12.88 7.65 1.69 7.96 54.16 33.28 0.01 0.02 0.28 0.73 0.68 0.01 0.53 N/A 97.15 97.42

Analyses were carried out using a JEOL 8900 electron microprobe at the University of Alberta. Analyses were performed using an accelerating voltage of 15kV and a beam current of 15nA. Data were reduced using ZAF correction procedures. Beam diameter was maintained at 5 μ m. Natural Minerals were used as standards. Staurolite, AI, Ca, Mg, Si Roberts-Victor garnet, K, Na, Kakanui anorthoclase, Fe, Ti Kakanui hornblende, Mn willemite, Zn gahnite. Muscovite: AI, K, Si, Nain osumilite; Fe, Mg Roberts-Victor garnet, Ti, Ca, Na kaersuitite; Mn willemite. Cordierite: Na, Ca, Ti kaersuitite, AI, Great Sitkin Island anorthite, Si, K Nain osumilite; Mn willemite, Fe, Mg, Roberts-Victor garnet. N/A = not analysed.

······································				
	TWQ 2.02b			
	GARB	GASP	C	ORD
Sample	T (°C)	P (Kbar)	T (°C)	P (Kbar)
Cordierite Zone				
0287	500	2.1	580	3.6
0293	580	4.0	-	-
Upper Cordierite Zone				
0383	600	5.2	-	-
0174	610	6.3	-	-
0396	620	6.0	-	-
0613	620	4.7	-	-
Sillimanite Zone				
0220	625	5.5	-	-
2326b	630	5.0	-	-
1074	640	5.1	-	-
0032b	600	4.3	-	-
1026	620	4.2	-	-
4085	620	5.4	-	-
Migmatite Zone				
2133	710	7.0	700	6.0

Table 7. P-T estimates obtained from TWQ 2.02b Berman (1997) using GARB thermometry and, GASP and cordierite equilibria (CORD) barometry. See text for equilibria and models.

References

Armstrong, J.P. and Kenny, G. 2001. Slave Magnetics Compilation (SMAC). A digital image compilation of publically available total field magnetics data as filed under the Canada Mining Regulations: Northwest Territories and Nunavut, Canada. DIAND NWT Geology Division, EGS Open Report 2001-003.

Beaumont, C., Jamieson, R.A., Nugyen, M.H., and Lee, B., 2001. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature, **414**: 738-742.

Berman, R.G., 1997. TWQ (Thermobarometry with estimation of equilibrium state, Version 2.02b), Geological Survey of Canada, Ottawa.

Berman, R.G., and Aranovich, R.D., 1996a: Optimized standard state and mixing properties of minerals; I, Model calibration for olivine, orthopyroxene, cordierite, garnet, ilmenite in the system FeO, MgO, CaO, Al₂O₃, TiO₂, SiO₂. Contributions to Mineralogy and Petrology, **126**: 1-24.

Berman, R.G., and Aranovich, R.D., 1996b: Optimized standard state and mineral properties; II, Comparisons, predictions and applications. Contributions to Mineralogy and Petrology, **126**: 25-47.

Bethune, K.M. and Carmichael, D.M., 1998. Metamorphism along the Slave portion of the SNORCLE Transect. *In* Lithoprobe, Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) and Cordilleran Tectonics Workshop, 6-8 March, Burnaby. *Compiled by* F. Cook and P. Erdmer. Lithoprobe Report 64: 17-24.

Bleeker, W., Ketchum, J.W.F, Jackson, V.A., and Villeneuve, M.E., 1999. The Central Slave Basement Complex, Part I: its structural topology and autochthonous cover. Canadian Journal of Earth Sciences, **36**: 1083-1109.

Cairns, S.R., 2003. Highlights of the 2002 bedrock mapping component of the Walmsley Lake Targeted Geoscience Initiative, southeastern Slave Province, Northwest Territories. Geological Survey of Canada, Current Research, C-09: 9p.

Cairns, S.R., MacLachlan, K., Relf, C., and Davis, W.J., 2003: A digital atlas of the Walmsley Lake area. CS Lord Northern Geoscience Centre, EGS 2003-04.

Clemens, J.D., and Vielzeuf, D., 1987. Constraints of melting and magma production in the crust. Earth and Planetary Science Letters, **86**: 287-306.

Davidson, A., 1972. Granite studies in the Slave Province; Report of Activities, Part A. Geological Survey of Canada, Paper 1971-1a: 109-115. Davis, W. and Bleeker, W., 1999. Timing of plutonism, deformation and metamorphism in the Yellowknife Domain, southern Slave Province. Canadian Journal of Earth Science, **36**: 1169-1187.

Davis, W.J., McNicoll, V., Bellerive, D., Scott, D.J., 1997. Modified chemical procedures for the extraction and purification of uranium from titanite, allanite and rutile in the Geochronology Laboratory, Geological Survey of Canada. *In* Current Research, Geological Survey of Canada Paper 1997-F, 33-36.

Davis, W.J., Fryer, B.J., and King, J.E., 1994. Geochemistry and evolution of Late Archean plutonism and its significance to the tectonic development of the Slave Craton. Precambrian Research, **67**: 207-241.

Davis, W.J., and Hengner, E., 1992. Neodymium isotopic evidence for tectonic assembly of late Archean crust in the Slave Province, Northwest Canada. Contributions to Mineralogy and Petrology, **111**: 307-313.

de Wit, M. J., 1998. On Archean granites, greenstones, cratons and tectonics: does the evidence demand a verdict? Precambrian Research, **91**: 181-226.

Essene, E. J., 1989. The current status of thermobarometry in metamorphic rocks. *In* Daly, J.S., Cliff, R.A., and Yardley, B.W.D., (eds), Evolution of Metamorphic Belts, Geological Society Special Publication No.43: 245-263.

Frith, R. A., van Breeman, O., and Mortensen, J. K., 1991. U-Pb dating from tonalite and felsic volcanic rocks in the Brislane Lake area of the southern Slave Province. *In* Radiogenic age and isotopic studies: report 4. Geological Survey of Canada, Paper 90-2: 85-90.

Fuhrman, M.L., and Lindsley, D.H., 1988. Ternary-feldspar modeling and thermometry. The American Mineralogist, **73**: 201-216.

Fyson, W. K., 1996. CorelDraw! Diagrams of the geology of the Slave Structural Province. EGS Open File 1996-08, NWT Geology Division, Department of Indian Affairs and Northern Development, Yellowknife, NWT. 3 figures.

Fyson, W.K., and Jackson, V., 2003. Structures in supracrustal and plutonic rocks, Snare River, Archean Slave Province. NWT geology division, Department of Indian Affairs open file report, in press.

Fyson, W.K., and Helmsteadt, H., 1988. Structural patterns and tectonic evolution of supracrustal domains in the Archean Slave Province, Canada, Canadian Journal of Earth Sciences, **25**: 301-315.

Gerdes, A., Wörner, G., and Henk, A., 2000. Post-collisional granite generation and HT-LP metamorphism by radiogenic heating: the Varsican south Bohemian Batholith. Journal of the Geological Society, London, **157**: 577-587.

Green, D.C., and Baadsgaard, H., 1971. Temporal evolution and petrogenesis of an Archean crustal segment at Yellowknife, N.W.T., Canada. Journal of Petrology, **12**: 177-217.

Hamilton, W.B., 1998. Archean magmatism and deformation were not the products of plate tectonics. Precambrian Research, **91**: 143-180.

Harte, B., and Hudson, N.F.C., 1979. Pelite facies series and the temperatures and pressures of Daldrinian metamorphism in E. Scotland. *In* A.L. Harris, C.H. Holland, and B.E. Leake (eds) Geological Society of London Special Publication No. 8, 323-337.

Hauck, M.L., Nelson, K.D., Brown, L.D., Zhao, W., and Ross, A.R., 1998. Crustal structure of the Himalyan orogen at ca. 90° east longitude from project INDEPTH deep reflection profiles. Tectonics, **17**: 481-500.

Henderson, J B., 1989. Geology, Artillery Lake Area, Northwest Territories; Geological Survey of Canada, Open File 2010, 1 sheet. Henderson, J.B., 1985. Geology of the Yellowknife-Hearne Lake area, District of MacKenzie: a segment across an Archean basin. Geological Survey of Canada, Memoir 414, 135p, 1:250 000 map.

Henderson, J.B., 1981. Archean basin evolution in the Slave Province, Canada. *In* Developments in Precambrian geology 4. *Edited by* A. Kröner, Elsvier, Amesterdam, pp. 213-235.

Henderson, J. B. and van Breemen, O., 1992. U-Pb zircon ages from Archean orthogneisses and Proterozoic metasedimentary gneisses of the Thelon Tectonic Zone, District of Mackenzie, N.W.T. *In* Radiogenic and Isotope Studies: Report 6, Geological Survey of Canada, Paper 91-2: 25-33.

Henderson, J.B., James, D.T., Thompson, P.H., 1999. Geology, Healey Lake-Artillery Lake, Northwest Territories-Nunavut; Geological Survey of Canada, Open File 3819, 1 sheet.

Henderson, J. B., van Breemen, O., and Loveridge, W. D., 1987. Some U-Pb zircon ages from Archean basement, supracrustal and intrusive rocks, Yellowknife-Hearne Lake area, District of Mackenzie. *In* Radiogenic and Isotope Studies: Report 1, Geological Survey of Canada, Paper 87-2: 111-121.

Hodges, K.V., 2000. Tectonics of the Himalayan and southern Tibet from two perspectives. Bulletin of the Geological Society of America, V. **112**: 324-350.

Hoffman, P.F., 1990. On accretion of granite-greenstone terranes. *In* Proceedings, NUNA Conference Volume on Greenstone Gold and Crustal Evolution. *Edited by* F. Robert, P.A. Sheahan, and S.B. Green. Geological Association of Canada, pp. 32-45.

Isachsen, C.E., Bowering, S.A., and Padgham, W.A., 1991. U-Pb zircon geochronology of the Yellowknife volcanic belt and subjacent rocks, NWT Canada: new constraints on the timing and duration of greenstone belt magmatism. Journal of Geology, **99**: 55-67.

Jackson, V.A., 1989. Metamorphic and structural evolution of Archean rocks in the Keskarrah Bay area, Point Lake, District of Mackenzie, N.W.T. Unpublished M.Sc thesis, Memorial University of Newfoundland. 313 p.

King, J. E., and Helmstaedt, H., 1997. The Slave Province, Northwest Territories, Canada. In Greenstone belts. Edited by M. de Wit and L.D. Ashwal. Oxford Monograph on Geology and Geophysics 35: 459-479.

Kohn, M.J., and Spear, F., 2000. Retrograde net transfer reaction insurance for pressure-temperature estimates. Geology, **28**: 1127-1130.

Kretz, , R., 1983. Symbols for rock forming minerals. American Mineralogist, **68**: 277-279.

Krogh, T.E., 1982. Improved accuracy of U/Pb ages by the creation of more concordant systems using an air abrasion technique. Geochimica et Cosmochimica Acta 46: 637-649.

Kusky, T.M., 1989. Accretion of the Archean Slave Province. Geology, **17**: 63-68.

Kusky, T.M., 1993. Collapse of Archean orogens and the generation of late to postkinematic granitoids. Geology, **21**: 925-928.

Ludwig, K.R. 2000. Isoplot/Ex ver. 2.2. A Geochronological Toolkit for Microsoft Excel, Berkeley Geochronology Center, Special Publication No. 1a.

Macfie, R.I., van Breeman, O., and Loveridge, W. D., 1990. Late Archean U-Pb zircon age for the Clinton-Colden gabbro-anorthosite intrusion, eastern Slave Province, District of Mackenzie, Northwest Territories. *In* Radiogenic age and isotopic studies: report 3. Geological Survey of Canada, Paper 89-2: 45-48.

MacLachlan, K., Relf, C., Cairns, S.R., Renaud, J., and Mills, A., 2002. New bedrock mapping and preliminary U/Pb geochronology in the Walmsley Lake area, southeastern Slave Province, NWT. Geological Survey of Canada, Current Research 2002-C1: 10p.

MacLachlan, K., Relf, C., Cairns, S.R., Hardy, F., and Davis, B., 2001a. New multidisciplinary geological investigations in the Walmsley Lake area, southeastern Slave Province, NT. Geological Survey of Canada, Current Research 2001-C4: 19p.

MacLachlan, K., Relf, C., and Cairns, S.R., 2001b. Preliminary geology of the Back Lake area, parts of NTS 75N/5, 11, 12, 13, and 14. Geological Mapping Division, Department of Indian Affairs and Northern Development EGS 1995-04: 1 map, 125K.

MacLachlan, K., and Helmstaedt, H., 1995. Geology and geochemistry of an Archean mafic dike complex in the Chan Formation: basis for a revised plate-tectonic model of the Yellowknife greenstone belt. Canadian Journal of Earth Sciences, **32**: 614-630.

McMullin, D., Berman, R., Greenwood, H., 1991. Calibration of the SGAM thermobarometer for pelitic rocks using data from phase equilibrium experiments and natural assemblages. Canadian Mineralogist, **29**: 889-908.

Nelson, K.D., 1992. Are crustal thickness variations in old mountain belts like the Appalachians a consequence of lithosperic delamination? Geology, **20**: 498-502.

Parrish, R.R., Roddick, J.C., Loveridge, W.D., Sullivan, R.W., 1987. Uranium-Pb analytical techniques at the geochronology laboratory, Geological Survey of Canada. *In* Radiogenic Age and Isotope Studies: Report 1, Geological Survey of Canada Paper 87-2, pp. 3-7

Patiño Douce, A.E., Humphreys, E.D., and Johnston, A.D., 1990. Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier hinterland, western North America. Earth and Planetary Science Letters, **97:** 290-315.

Pattison, D.R.M., 2001. Instability of Al_2SiO_5 triple point assemblages in muscovite + biotite + quartz bearing metapelites, with implications. American Mineralogist, **86**, 1414-1422.

Pattison, D.R.M., Spear, F., and Cheney, J.T., 1999. Polymetamorphic origin of muscovite + cordierite + staurolite + biotite assemblages: implications for the metapelitic petrogenetic grid and for P-T paths. Journal of Metamorphic Geology, **17**: 685-703.

Pattison, D.R.M. and Tracy, R.J., 1991. Phase equilibria and thermobarometry of metapelites. *In* Contact Metamorphism ed. Kerrick D.M. Mineralogical Society of America, Reviews in Mineralogy, **26**: 105-206.

Pehrsson, S.J., and Chacko, T., 1997. Contrasting styles of deformation and metamorphism between mid and upper crustal rocks of the western Slave Province, Northwest Territories. Geological Survey of Canada, Current Research 1997-C: pp. 15-25.

Ramsey, J.G., 1967. Folding and Fracturing in Rocks; McGraw-Hill Book Co., New York, New York: 568p.

Relf, C., 1992a. Two distinct shortening events during late Archean orogeny in the west-central Slave Province, Northwest Territories, Canada. Canadian Journal of Earth Sciences, **29**: 2104-2117.

Relf, C. 1992b. Structural and metamorphic history of the Contwoyto Lake area, N.W.T., Implications for the tectonic evolution of the Central Slave Province. Unpublished Ph.D. Thesis, Queens University. 375 p.

Renaud, J., 2003. The stratigraphy and economic potential of the Aylmer Lake volcanic belt, Slave Structural Province, Northwest Territories. M.Sc. Thesis, University of Western Ontario. 350p.

Renaud, J., MacLachlan, K., and Cairns, S.R., 2002. Stratigraphy and structure of the Aylmer Lake volcanic belt and surrounding metasedimentary rocks, Northwest Territories. Geological Survey of Canada, Paper 2002-C2: 11p.

Renaud, J., MacLachlan, K., Relf, C., and Duke, N., 2001. Volcanic stratigraphy and mineral potential of the Aylmer dome, southeastern Slave Province, Northwest Territories. Geological Survey of Canada, Current Research, 2001-C5: 16p.

Roddick, J.C., 1987. Generalized numerical error analysis with applications to geochronology and thermodynamics. Geochimica et Cosmochimica Acta 51: 2129-2135.

Sandiford, M., 1989. Horizontal structures in granulite terrains: A record of mountain building or mountain collapse? Geology, **17**: 449-452.

Schultz, M., 2002. Application of Th-U- total Pb chemical dating by electron microprobe to a polygenetic late Archean terrane, Walmsley Lake area, Slave Province, NWT, Canada. Unpublished B.Sc. thesis, University of Alberta: 39p.

Spear, F.S., 1995. Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Mineral Society of America Monograph, Washington, D.C. 799p. Spear, F.S., and Cheney, J.T., 1989. A petrogenetic grid for pelitic schists in the system $SiO_2 - Al_2O_3 - FeO - MgO - K_2O - H_2O$. Contributions to Mineralogy and Petrology, **101**: 149-164.

Spear, F.S., Kohn, M.J. and Cheney, J.T. 1999. P-T paths from anatectic pelites. Contributions to Mineralogy and Petrology, **134**: 17-32.

Stern, R.A., 1997. The GSC sensitive high resolution ion microprobe (SHRIMP): analytical techniques of zircon U-Th-Pb age determinations and performance evaluation. *In* Radiogenic age and isotope studies: Report 10. Geological Survey of Canada, Current Research 1997-F: pp. 1-31.

Stern, R. A. and Amelin, Y. 2003. Assessment of errors in SIMS zircon U-Pb geochronology using a natural zircon standard and NIST SRM 610 glass. Chemical Geology, 197: 111-142.

Stubley, M., Jaegli, K., Bilben, S., and Tyler, T. 1995. Geology of the Nardin Lake area, south-central Slave Province, Parts of NTS 85P/5, 12; 85O/8, 9 Geological Mapping Division, Indian Affairs and Northern Development, EGS 1995-04.

Thompson, P. H. 1978. Archean regional metamorphism in the Slave Structural Province – a new perspective on some old rocks. *In* Metamorphism in the Canadian Shield. *Edited by* J.A. Fraser and W.W. Heywood. Geological Survey of Canada, Paper 78-10: 85-102.

Thompson, P.H., 1989. An empirical model for metamorphic evolution of the Archaean Slave Province and adjacent Thelon Tectonic Zone, northwestern Canadian Shield. *In* Daly, J.S., Cliff, R.A., and Yardley, B.W.D., (eds), Evolution of Metamorphic Belts, Geologic Society Special Publication No.43: 245-263.

Thorpe, R.I., Cumming, G.L., and Mortensen, J.K., 1992: A significant Pb isotope boundary in the Slave Province and it's probable relationship to ancient basement in the western Slave Province; in Project Summaries, Canada-NWT Mineral Development Agreement 1987-1991; Geological Survey of Canada, Open File 2484: 179-184.

Todd, C.S., 1998. Limits on the precision of geobarometry at low grossular and anorthite contents. American Mineralogist, **83**: 1161-1167.

van Breeman, O., Davis, W.J., and King, J.E., 1992. Temporal distribution of granitoid plutonic rocks in the Archean Slave Province, northwestern Canadian Shield. Canadian Journal of Earth Sciences, **29**: 2186-2199.

van Breeman, O. and Henderson, J. B., 1988. U-Pb zircon and monazite ages from the eastern Slave Province and Thelon Tectonic Zone, Artillery Lake area, N.W.T. *In* Radiogenic age and isotopic studies: report 2. Geological Survey of Canada, Paper 88-2: 73-83.

van Breemen, O., Henderson, J. B., Sullivan, R. W., and Thompson, P. H., 1987. U-Pb zircon and monazite ages from the eastern Slave Province, Healey Lake area, N.W.T. *In* Radiogenic age and isotopic studies: report 1. Geological Survey of Canada, Paper 87-2: 101-110.

van der Valden, A.J., and Cook, F., 2002, Products of 2.65-2.58 Ga orogenesis in the Slave Province correlated with Slave – Northern Cordillera Lithospheric Evolution (SNORCLE) seismic reflection patterns. Canadian Journal of Earth Sciences, **38**: 1189-1200.

Yamashita, K., and Creaser, R.A. 1999. Geochemical and Nd isotopic constraints for the origin of Late Archean turbidites from the Yellowknife Area, Northwest Territories, Canada. Geochimica et Cosmochica Acta, **63**: 2579-2598.

York, D., 1969. Least squares fitting of a straight line with correlated errors. Earth and Planetary Science Letters **5**: 320-324.

Zwart, H.J., 1962. On the determination of polymetamorphic mineral associations, and its application to the Bosost area (central Pyrenees). Geologish Rundschau, **52**: 38-65.

Appendix 1 Mineral Chemistry Data

.

Weight percent oxide

Analysis	SiO	TiO	Al-O-	FeO	MnO	MaO	CaO	Total	
TS0396-201-1-1	37 12	0.012	21 578	27 778	8 523	2 4 37	2 275	99 724	
TS0306-201-1-2	37.074	0.010	01/5	28.009	8 202	2.407	2.210	00 695	
TS0306-201-1-2	26.061	0.000	21.70	20.000	7 997	2.010	2.240	00.38	
TS0390-29(-1-3	30,301	0.000	04 277	20.012	7740	2.044	2.200	33.30	
TS0390-291-1-4	37,001	0.003	21.011	20.01	7 504	2.000	2.233	00.804	
TS0396-2g(-1-5	37.343		21,30	20.340	7.301	2.039	2,333	99.604	
150396-2gt-1-6	37.271		21.391	20.230	7,440	2,94	2.200	99.543	
TS0396-2gt-1-7	37.088	0	21.461	28,116	7.371	2,864	2.286	99.186	
TS0396-2gt-1-8	37.225	i 0	21.602	28.499	7.372	3.001	2.247	99.946	
TS0396-2gt-1-9	36.903	0	21.471	28.383	7.167	3.03	2.335	99.289	
TS0396-2gt-1-10	36.772	0.003	21.376	28.599	7,101	3.113	2.413	99.377	
TS0396-2gt-1-1	36.985	0.002	21.566	28.598	7.152	3.131	2.281	99.715	
TS0396-2gl-1-2	36.985	0	21.499	28.616	6.958	3.131	2.366	99.555	
TS0396-2gt-1-3	37.334	0	21.426	28.459	6.971	3.227	2.279	99.696	
TS0396-2gt-1-4	36.99	0.035	21.597	28.525	6.904	3.286	2.323	99.66	
TS0396-2gt-1-5	36.989	0.014	21.513	28.481	6.844	3.208	2.424	99.473	
TS0396-2gt-1-6	37.057	0.004	21.54	28.332	6.649	3.28	2.402	99,264	
TS0396-2gl-1-7	37,186	0	21.5	28.44	6,631	3.297	2.404	99.458	
TS0396-2gt-1-8	37.21	0.042	21.567	28.321	6.791	3.257	2.415	99.603	
TS0396-2gt-1-9	37.238	0.038	21.674	28.636	6.766	3.242	2.453	100.047	
TS0396-2gl-1-10	37.103	0.018	21.589	28.344	6.692	3.175	2.436	99.357	
TS0396-2gt-1-11	37.126	0.001	21.578	28.515	6.843	3.157	2,505	99.725	
TS0396-2gt-1-12	37.072	0.021	21.486	28.697	6.664	3.067	2.541	99.548	
TS0396-2qt-1-13	37.075	0.026	21.576	28.599	6.749	3,163	2.529	99.717	
TS0396-2at-1-14	37.1	0.052	21.65	28.436	6.633	3.233	2.415	99.519	
TS0396-at1-2-1	37.247	0	21,482	27.697	8.368	2,408	2.502	99.704	
TS0396-011-2-2	37 088	0 0	21 509	27 712	8 017	2 507	2 548	99 381	
TS0396-011-2-3	37 315	0.035	21 352	27 955	7 94	2 645	2 4 4 3	99 685	
TS0396-d11-2-4	37 112	0.038	21.376	27 733	7 878	2 667	2 472	99 276	
TS0396-ot1-2-5	37 226	0.000	21 451	27 912	7 9 1 9	2 678	2 4 16	99 602	
TS0396-011-2-6	37 299	ň	21 617	28 174	7 863	2 744	2 4 3 9	100 136	
TS0396-pt1-2-7	37 251	õ	21 609	28 304	7 607	2 825	2 354	99.95	
TS0396-ot1-2-8	36 944	ñ	21 425	28 333	7 504	2.020	2 412	99 508	
TS0396-01-2-0	37 308	0 005	21.558	28.205	7 /00	2.00	2 /68	00.000	
TS0396-01-2-3	37.028	0.000	21.000	20,230	7 407	2.920	2.400	00 0/5	
TS0396-24-2-10	36,923	ñ	21.000	20.371	7 202	2.303	2 /01	00 416	
TS0396-291-2-1	30.033	0	21.707	20.147	7.005	3.030	2.431	99,410	
TS0396-291-2-2	36.040	0 000	21.072	20.243	7.055	3 104	2.400	00.061	
TS0390-291-2-3	26.554	0.005	21.750	20.433	7 204	2.07	2.000	99,901	
TS0396-291-2-4	30.94	0	21,403	20.211	7 204	2 177	2.102	00.04	
T20390-291-2-3	37.104	0	21,002	20.05	C 067	3 201	2.173	33,34 00.047	
T60206 201 2 7	37 101	Ň	21.003	20.320	6 077	3.201	2.200	00 277	
TS0396-291-2-7	37.101	~	21,330	20.431	6.9//	3.275	2.200	55.377	
TS0390-2gt-2-0	37.231	0 02	21.013	20.05	0.05	3.230	2.3/0	33,330	
TS0395-291-2-5	37.201	0.03	21.432	20.411	6 743	3.335	2.300	35,723	
TE0205 2nl 2 11	37.003	0 001	21.312	20.040	0.743	3.235	2.333	33.32	
T30396-29(-2-11	37.101	0.001	21.419	20.491	0.094	3.207	2.334	99.327	
TS0396-2g(-2-12	37.005	0	21.042	20.392	0.734	3.10	2.340	99.299	
TS0396-291-2-13	37.200	0	21.0	20.012	0.900	3.130	2.403	33.0//	
TE0306 241 2 15	37.401	0	21.042	20.002	0.047	2,999	2.400	100.117	
TS0395-291-2-15	37.349	0	21.4//	20.10	0.001	3.043	2.443	00.133	
150396-2gi-2-16	37.395	0.041	21.4414	20.477	0.031	3.047	2.211	99.512	
TS0396-2gt-2-17	30,974	0.086	21.4334	20.077	0.009	3.038	2.384	99.351	
150396-2gt-2-18	37.173	0	21.541	20.029	0.043	3,006	2.301	99.573	
1 SU388-gi/a-1-1	36.182	0.015	21.094 3	32,581	4.022	2.624	1.146	97,664	
1SU388-gt/a-1-2	36.861	0	21.469	33.008	4.037	2.745	1.169	99.289	
TS0388-gt7a-1-3	36,956	0.022	21.4373	33,533	3.922	2.803	1.162	99.835	
TS0388-gt/a-1-4	36.886	0.027	21.445	33.556	3.876	2.839	1.168	99.797	
TS0388-gl7a-1-5	36.822	0	21.4813	33.394	3.808	2.91	1.214	99.629	
TS0388-gt7a-1-6	36.912	0	21.4893	3.391	3.766	2.924	1.213	99.695	
TS0388-gt7a-1-7	36.773	0	21.49 3	33.549	3.781	2.892	1.191	99.676	
TS0388-gl7a-1-8	36.891	0.011	21.46 3	33.742	3.73	2.985	1.23	100.049	
TS0388-gt7a-1-9	36.887	0.037	21.6013	33.383	3.685	3.005	1.221	99.819	
TS0388-gt7a-1-10	36.849	0.006	21.463 3	3.353	3.752	3.03	1.382	99.835	
TS0388-gl7a-2-1	36.975	0	21.375 3	3.296	3.757	2.975	1.429	99.807	
TS0388-gl7a-2-2	36.859	0.018	21.539 3	3.478	3.714	3.022	1.417	100.047	
TS0388-gl7a-2-3	36.875	0	21.539	33.59	3.631	3.12	1.416	100.171	
TS0388-gl7a-2-4	37.129	0.035	21.6393	3.395	3.716	3.118	1.39	100.422	
TS0388-gt7a-2-5	37.546	0.014	21.424 3	3.417	3.741	3.104	1.25	100.496	
TS0388-gt7a-2-6	37.154	0.013	21.459 3	3.488	3.703	3.2	1.284	100.301	
TS0388-gt7a-2-7	37.353	0.085	21.457 3	3.247	3.793	3.188	1.364	100.487	
TS0388-gt7a-2-8	37.116	0.005	21.482 3	3.123	3.685	3.177	1.333	99.921	

Cation percentage

Si ⁻	Γi Al	Fe	Mn	Mg	Ca	Total
2,9909 0.0	008 2.0493	1.8719	0.5817	0.2927	0.1964	7.9837
2.9893 0.0	001 2.0387	1.8948	0.5603	0.3141	0.1941	7.9914
2.9901 0.0	004 2.0191	1.9156	0.5363	0.3429	0.1955	7.9999
2.9872 0.0	005 2.0299	1.9208	0.5288	0.3372	0.193	7.9975
3,0008	0 2.0251	1.9051	0.5147	0.3401	0,2009	7,9868
3	0 2.0294	1.9008	0.5076	0.3527	0.1947	7.9852
2 9951	0 2 0428	1 8989	0 5042	0 3448	0 1978	7 9836
2 0950	0 20424	1 0119	0 5000	0.3588	0 1031	7 0020
2.0000	0 2.0424	1.9110	0.0003	0.3500	0.1331	7 000
2.9002	0 2.0430	4.0220	0.4502	0.3047	0.2021	0.0105
2.97150.0	002 2.030	1.9320	0.400	0.375	0.209	0.0105
2.9749 0.0	0012.0447	1.9230	0.4873	0.3754	0.1966	8.0028
2.9784	J 2.0408	1.92/3	0.4746	0.3758	0.2042	8.0012
2.9966	J 2.027	1.9103	0.4739	0.3862	0.196	7.99
2,9729 0.0	021 2.0459	1.9173	0.47	0.3937	0.2001	8.002
2.9784 0.0	009 2.0418	1.9179	0.4668	0.3851	0.2091	8
2.9846 0.0	002 2.0449	1,9084	0.4536	0.3938	0.2073	7.9928
2.9893 (2.0372	1.912	0.4515	0.395	0.2071	7.9921
2.9868 0.0	025 2.0406	1.9013	0.4618	0.3897	0.2077	7.9904
2,9791 0.0	023 2.0438	1.916	0.4585	0.3866	0.2103	7.9966
2.9858 0.0	011 2.0478	1.9076	0.4562	0.3808	0.2101	7.9895
2.9812 0.0	001 2.0424	1.915	0.4654	0.378	0.2155	7.9977
2,9836 0.0	012 2.0382	1.9316	0.4543	0.368	0.2191	7,9961
2.978 0.0	016 2.0428	1.9212	0.4592	0.3787	0.2177	7,9992
2,9807.0.0	031 2.0502	1.9107	0.4514	0.3871	0.2079	7.9911
2 9998	2 0303	1 8656	0.5709	0.289	0.2159	7 9805
2 9942 (2 0468	1 8711	0.5483	0 3017	0.2205	7 9826
3 0032 0 0	021 2 0255	1 9917	0.5405	0.3017	0.2107	7 0810
2 0076 0 0	021 2.0200	1 9724	0.5413	0.3173	0.2107	7.0019
2.9970 0.0	20202.0001	1.07.04	0.555	0.3211	0.214	7.0044
2.99/9 (2.0301	1.0799	0.5402	0.3215	0.2004	7.9041
2,969 (2.0419	1.8882	0.5337	0.3278	0.2094	7.99
2.9869 (2.0437	1.6993	0.517	0.3379	0.2024	7.9893
2.9811 0	2.0378	1.912	0.5129	0.3477	0.2085	8
2.9909 0.00	003 2.037	1.8971	0.5031	0.3499	0.212	7.9903
2.9726 (2.0501	1.9048	0.5037	0.357	0.2142	8.0024
2,9688 0	2.0622	1.8974	0.4917 (0.3648	0.2151	8
2.984 0	2.0481	1.9027	0.4841 (0.3628	0.2103	7.992
2.9645 0.00	005 2.0608	1.9076 (0.4947 (0.3712	0.2051	8.0044
2.9859 0	2.0448	1.9115 (0.4932 (0.3699 (0.1864	7.9917
2.9821 0	2.0401	1.9176	0.4914 (0.3798 (0.1867	7.9978
2.9871 0	2.0446	1.91 (0.4724 (0.3819	0.1946	7.9907
2.9894 0	2.0285	1.9159 (0.4762 (0.3934	0.193	7.9964
2,9826 0	2.0408	1.9155 (0.4676	0.3866 (0.2039	7.9971
2,9895 0.00	18 2.0268	1.9064	0.468 (0.3994 (0.2034	7,9953
2.99 0	2.0255	1.9251 (0.4605	0.3893 (0.2069	7,9973
2 9942 0 00	01 2 0331	1 9189 (14566	0.385	1 2014	7 9894
2 9807 0	2 0548	1 9127 (1 4594 (1 3818 (1 2025	7 992
2,0007 0	2.0040	1 0114	0 473 0	1 37/0	2064	7 0031
2.0047 0	2.0400	1.01767	0.473 (7 3674 (1 2120	7.0956
2.3347 0	2.0000	1.01210	1.4037	3.3374	2002	7.0050
3.0021 0	2.024	1.92310	.4040	0.3027	0.400	7.5030
3.0048 0.00	25 2.0300	1.91330	J.4049	0.305	0.190	7.0000
2,9824 0.00	52 2.0378	1.92791	J.4666 (1.36531	1.2061	7.9933
2,9897 0	2.0421	1.93921	J.4526 (J.3605 (J.2052	7.9893
2.9846 0.00	09 2.0509	2.2477	0.281 (0.3226 (0.1013	7.9891
2.9877 0	2.0511	2.2375 (0.2772 (0,3317 (0.1016	7.9869
2.9836 0.00	13 2.0399	2.2641 (0.2682 (0.3373 (0.1005	7.9949
2.9796 0.00	16 2.0418	2.2669 ().2652 (0.3418 (0.1011	7.9981
2.9772 0	2.0472	2.2581 0	0.2608 0	0.3507 (0.1052	7.9992
2.9809 0	2.0455	2.2552 (0.2576	0.352	0.105	7.9963
2.9737 0	2.0484	2.269	0.259 0	.3486 (0.1032	8.0019
2.9734 0.00	06 2.0387 :	2.2744 ().2547 ().3587 (0.1062	8.0068
2.9738 0.00	23 2.0526	2.2508 0).2516 (0.3612 (0.1055	7.9978
2.9732 0.00	04 2.0412 :	2.2506 0	.2564 ().3645 (0.1195	8.0058
2.9831 0	2.0327	2.2466 0	.2567 0).3579 (0.1235	8.0005
2.9686 0.00	11 2.0447	2.255 0	.2534 0	.3628 ().1223	8.0079
2.9665 0	2.0424	2.2599 0	.2474 0	0.3742	0.122	8.0124
2.9746 0.00	21 2.0434	2.2375 0	.2522 0	.3724 ().1194	8.0016
3.0022 0.00	09 2.0192	2.2347 0	.2534 0).3699 (0.1071	7.9874
2,9811 0.00	08 2,0295	2.2471	.2517 0	.3828 (0.1104	8.0035
2,9882 0.00	51 2.0233	2.2244	0.257 0	0.3801 0	.1169	7,995
2,985 0.00	03 2.0364 1	2.2279	0.251 0	3809 0	.1149	7,9964

86

.

Garnet Chemistry

Weight percent oxide	Cation percentage
Analysis SiO ₂ TiO ₂ Al ₂ O ₃ FeO MnO MqO CaO Total	Si Ti Al Fe Mn Mg Ca Tota
TS0388-gl7a-2-9 37.08 0 21.45 33.603 3.94 3.24 1.343 100.656	2.9705 0 2.0254 2.2513 0.2674 0.3869 0.1153 8.016
TS0388-gt7a-2-10 37.127 0.038 21.557 33.199 3.827 3.205 1.453 100.406	2.9748 0.0023 2.0359 2.2247 0.2597 0.3828 0.1247 8.004
I \$0388-gt/a-3-1 37.181 0.024 21.607 33.149 3.792 3.2 1.469 100.422	2.9769 0.0014 2.0391 2.2196 0.2571 0.3819 0.126 8.002
TS0388-gt7a-3-3 37,163 0.027 21.393 32,983 3.96 3.179 1.177 99,882	2,9904 0.0016 2.0291 2.2196 0.2699 0.3813 0.1014 7.993
TS0388-gt7b-1-1 37,343 0.022 21.598 33,785 4.231 2.31 1.142 100.431	2.9992 0.0013 2.0447 2.2694 0.2878 0.2766 0.0983 7.977
TS0388-gt7b-1-2 37.268 0 21.59 33.611 4.026 2.66 1.208 100.363	2.9917 0 2.0428 2.2564 0.2738 0.3183 0.1039 7.986
TS0388-gl7b-1-3 37.204 0.005 21.6 33.777 3.928 2.759 1.236 100.509	2.9839 0.0003 2.042 2.2656 0.2669 0.3299 0.1062 7.994
TS0388-gt/D-1-4 37,356 0.019 21.395 33,669 3.844 2.843 1.181 100.327	2.9984 0.0012 2.0242 2.2615 0.2614 0.3401 0.1016 7.988
TS0388-gi7b-1-6 37,295 0 21.591 33.206 3.73 2.946 1.203 99.971	2.9961 0 2.0445 2.231 0.2538 0.3528 0.1035 7.981
TS0388-gl7b-1-7 37.268 0 21.545 33.675 3.693 2.969 1.205 100.355	2.9887 0 2.0365 2.2585 0.2509 0.355 0.1035 7.993
TS0388-gi7b-1-8 37.187 0 21.653 33.522 3.742 2.991 1.221 100.316	2,9823 0 2.0468 2.2484 0.2542 0.3576 0.1049 7.994
TS0388-gl76-1-9 37,355 0.043 21.567 33,583 3,706 2,998 1,256 100,508	2,9894 0.0026 2.0344 2.2477 0.2512 0.3576 0.1077 7.990 2 9749 0 0002 2 0452 2 2608 0 2496 0 3686 0 1031 8 002
TS0388-gi7b-2-1 37.302 0.002 21.391 33.546 3.651 3.048 1.191 100.131	2.9962 0.0001 2.0253 2.2535 0.2484 0.365 0.1025 7.991
TS0388-gi7b-2-2 37.246 0 21.461 33.493 3.712 3.124 1.244 100.28	2.988 0 2.0293 2.2472 0.2522 0.3735 0.107 7.997
TS0388-gl7b-2-3 37.248 0 21.511 33.434 3.72 3.148 1.211 100.272	2.9872 0 2.0334 2.2424 0.2527 0.3764 0.1041 7.996
TS0388-gl7b-2-4 37,3/2 0.014 21,428 33,616 3,717 3,106 1,322 100,575	2,9906 0.0009 2.0211 2.2497 0.252 0.3705 0.1133 7.998
TS0388-qi7b-2-6 37,286 0.004 21,449 33,453 3,575 3,142 1,3 100,209	2.9912 0.0002 2.0281 2.2445 0.2429 0.3758 0.1118 7.994
TS0388-gt7b-2-7 37.354 0.015 21.52 33.252 3.642 3.097 1.435 100.315	2.9917 0.0009 2.0316 2.2273 0.2471 0.3698 0.1231 7.991
TS0388-gl7b-2-8 37.186 0 21.435 33.343 3.668 3.203 1.46 100.295	2.9828 0 2.0267 2.2368 0.2492 0.383 0.1255 8.004
TS0388-gi7b-2-9 37.135 0 21.59 33.24 3.636 3.163 1.423 100.187	2.9795 0 2.0418 2.2305 0.2471 0.3783 0.1223 7.999
TS0388-gi7b-3-1 37,298 0.022 21.522 33,417 3,741 3,199 1,313 100,512	2,9843 0 2,0292 2,2327 0,2515 0,3828 0,1204 8,000 2,9843 0 0013 2 0298 2 2362 0 2536 0 3816 0 1126 7 999
TS0388-gi7b-3-2 37.152 0.091 21.45 33.173 3.739 3.216 1.165 99.986	2.9857 0.0055 2.0319 2.2296 0.2545 0.3853 0.1003 7.992
TS0388-gi7b-3-2 37,102 0 21.519 33.082 3.829 3.191 1.093 99.816	2.9863 0 2.0415 2.2269 0.2611 0.3829 0.0943 7.993
TS0388-gl7b-3-4 37.127 0.029 21.417 33.401 3.923 3.182 1.071 100.15	2.9838 0.0018 2.0288 2.245 0.2671 0.3812 0.0922 7.999
IS0388-9(70-3-5 37.216 0.042 21.412 33.481 3.955 3.154 1.002 100.262	2.9877 0.0025 2.0261 2.2479 0.2689 0.3774 0.0862 7.996
TS0613-gl6a-1-2 37,26 0.036 21.543 32,454 4,658 3.137 1.218 100,306	2.9861 0.0022 2.035 2.1753 0.3162 0.3762 0.1049 7.986
TS0613-gl6a-1-3 37,403 0.003 21.443 32,14 4,474 3,295 1,15 99,908	3.0015 0.0002 2.0282 2.1571 0.3041 0.3942 0.0989 7.984
TS0613-gl6a-1-4 37.6 0 21.541 32.461 4.518 3.287 1.205 100.612	2.999 0 2.0251 2.1653 0.3052 0.3908 0.103 7.988
TS0613-gl6a-1-5 37.34 0 21.477 32.53 4.395 3.333 1.179 100.254	2.9909 0 2.0278 2.1792 0.2982 0.398 0.1012 7.995
TS0613-qt6a-1-7 37,404 0.02 21.911 32.27 4.259 3.487 1.232 100.583	2.9786 0.0012 2.0566 2.1492 0.2873 0.4139 0.1052 7.992
TS0613-gl6a-1-8 37,501 0.036 21.597 32.479 4.202 3.547 1.206 100.568	2.9893 0.0022 2.0291 2.1652 0.2837 0.4215 0.103 7.994
TS0613-gl6a-1-9 37.563 0.048 21.558 32.388 4.125 3.594 1.234 100.51	2.9936 0.0029 2.0251 2.1587 0.2784 0.427 0.1053 7.991
TS0613-gl6a-1-10 37,282 0 21.522 32.21 4.035 3.632 1.272 99,953	2.9876 0 2.0328 2.1587 0.2739 0.4339 0.1092 7.996
T\$0613-016a-2-2 37,446 0.017 21.693 32,303 4.011 3.673 1.263 100,406	2,9855 0,001 2,0386 2,1539 0,2709 0,4366 0,1079 7,994
TS0613-gt6a-2-3 37.42 0 21.739 32.279 4.013 3.743 1.21 100.404	2.9827 0 2.0425 2.1518 0.271 0.4447 0.1033 7.996
TS0613-gl6a-2-4 37,483 0.005 21.762 32,15 3.984 3.72 1.234 100.338	2.9871 0.0003 2.0441 2.1428 0.2689 0.4419 0.1054 7.990
TS0613-gt6a-2-5 37.337 0 21.583 32.299 3.953 3.754 1.204 100.13	2.9854 0 2.034 2.1599 0.2677 0.4474 0.1032 7.9976
TS0613-gl6a-2-7 37.634 0.015 21.716 32.238 4.07 3.82 1.307 100.8	2,9626 0 2,0345 2,1427 0,2664 0,4606 0,1106 7,9996
TS0613-gl6a-2-8 37.341 0.018 21.732 32.114 3.894 3.859 1.305 100.263	2.9786 0.0011 2.0432 2.1424 0.2631 0.4589 0.1115 7.998
TS0613-gt6a-2-9 37.404 0.002 21.471 32.282 4.036 3.798 1.268 100.261	2.9881 0.0001 2.0218 2.1569 0.2731 0.4523 0.1085 8.0008
TS0613-gt6a-2-10 37.373 0.064 21.71 32.079 3.957 3.825 1.282 100.29	2.9803 0.0038 2.0406 2.1394 0.2673 0.4547 0.1095 7.995
TS0613-gl6b-1-2 37,199 0.018 21.65 32.211 4 698 3.199 1.14 100 115	2 9836 0 0011 2 0468 2 1607 0 3192 0 3825 0 098 7 991
TS0613-gl6b-1-3 37.289 0 21.406 32.096 4.576 3.278 1.176 99.821	2.9973 0 2.0281 2.1576 0.3116 0.3927 0.1013 7.9886
TS0613-gl6b-1-4 37.483 0.025 21.609 32.542 4.572 3.368 1.2 100.799	2.9866 0.0015 2.0294 2.1685 0.3086 0.4 0.1025 7.9972
TS0613-gt6b-1-5 37.438 0.028 21.728 32.628 4.473 3.37 1.19 100.855	2.981 0.0016 2.0392 2.1728 0.3017 0.4 0.1015 7.9978
TS0613-gt66-1-6 37,329 0.018 21,604 32,56 4,307 3,422 1,223 100,463	2,9829 0,0011 2,0348 2,1759 0,2916 0,4077 0,1047 7,998/ 2,9758 0,0017 2,0588 2,1484 0,2926 0,4159 0,0999 7,9933
TS0613-gl6b-1-8 37.316 0 21.479 32.307 4.298 3.493 1.207 100.1	2.9899 0 2.0285 2.1649 0.2917 0.4172 0.1036 7.9959
TS0613-gt6b-1-9 37,357 0 21.497 32.482 4.242 3.551 1.206 100.335	2.9872 0 2.0262 2.1723 0.2873 0.4233 0.1034 7.9998
TS0613-gt6b-1-10 37.234 0.018 21.428 32.33 4.152 3.563 1.202 99.927	2.988 0.0011 2.0268 2.1698 0.2823 0.4262 0.1034 7.9976
TS0613-pi6b-2-1 37,077 0.016 21,464 32,277 4,2 3,572 1,191 99,797 TS0613-pi6b-2-2 37 266 0.026 21 5 32 404 4 187 3,595 1 17 100 148	2,9805 0.001 2,0337 2,1699 0,285 0,428 0,1026 8,0017 2,9844 0,0016 2,0295 2,1703 0,284 0,4292 0,1004 7,9004
TS0613-gl6b-2-3 37.451 0 21.722 32.157 4.12 3.665 1.226 100.341	2.9868 0 2.0419 2.1448 0.2783 0.4357 0.1048 7.992
TS0613-gl6b-2-4 37.322 0 21.705 32.574 4.155 3.666 1.174 100.596	2.9758 0 2.0398 2.1721 0.2806 0.4358 0.1003 8.0044
TS0613-gl6b-2-5 37.195 0.036 21.62 32.357 4.079 3.767 1.239 100.293	2.9731 0.0021 2.0369 2.1631 0.2762 0.4489 0.1061 8.0064
ISU613-966-2-5 37,124 0.019 21.725 32.353 4,119 3.734 1.2 100.274	2.9682 0.0011 2.0474 2.1633 0.279 0.4451 0.1028 8.0069 2.9878 0 2.0369 2.1548 0.2717 0.4393 0.1033 7.003
TS0613-gl6b-2-8 37,376 0 21.56 32,127 4,017 3,653 1,269 100.002	2.9911 0 2.0337 2.1548 0.2717 0.4352 0.1052 7.993
TS0613-gl6b-2-9 37,553 0 21.432 32.298 4.063 3.685 1.177 100.208	3.0001 0 2.0182 2.158 0.275 0.4389 0.1008 7.991
TS0613-gl6b-2-10 37,336 0.022 21.428 32.317 4.082 3.731 1.146 100.062	2.9896 0.0013 2.0224 2.1641 0.2769 0.4453 0.0983 7.998
TS0613-066-2-71 37,455 0.099 21,437 32.072 4,017 3,58 1,219 99,879 TS0613-066-2-12 37 385 0.016 21 62 32 233 4.016 3.651 1.231 100 152	2,9998 0,006 2,0237 2,1483 0,2725 0,4275 0,1046 7,9825 2,988 0,001 2,0368 2,1546 0,2719 0,435 0,1054 7,9935
10010 gios-2-12 01,000 01010 21102 02.200 4.010 0.001 1.201 100,102	2,000 0.001 2.0000 2,1040 0,2110 0,400 0,1004 1,3921

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Weight per	cent	oxid	е					Cation percentage	
Analysis	SiO₂	TiO₂	Al₂O₃ FeO	MnO	MgO	CaO	Total	Si Ti Al Fe Mn Mg Ca 1	Total
TS0613-gl6b-2-13	3 37.342	0.021	21.734 32.366	4.034	3.76	1.278	100.535	2,9754 0,0012 2,0413 2,1568 0,2723 0,4466 0,1091 8	.0028
TS0396-gt1-1-1	37.136	0.046	21.258 28.328	7.805	2.696	2.16	99.429	2,9996 0.0028 2.0239 1.9137 0.534 0.3246 0.1869 7	.9855
TS0396-gt1-1-3	37.072	0.004	21.308 28.46	7 548	2,003	2.127	99.707	2,9543 0,0003 2,0407 1,916 0,528 0,3424 0,1835 7 3,0004 0 2,0325 1,9199 0,5172 0,3297 0,1836 7	.9952
TS0396-at1-1-4	36,974	0.017	21.591 28.686	7.323	2.977	2.133	99.701	2.9764 0.001 2.0487 1.9313 0.4994 0.3573 0.184 7	.9982
TS0396-gt1-1-5	37.36	0.008	21.687 28.656	7.182	3.048	2.113	-100,054	2.9902 0.0005 2.0459 1.9181 0.4869 0.3636 0.1812 7	.9865
TS0396-gt1-1-6	37.3	0	21.429 28.995	7.194	3.096	2.205	100.219	2.9878 0 2.0233 1.9424 0.4881 0.3697 0.1893 8	.0006
TS0396-gt1-1-7	37.328	0.011	21.639 28.678	7.119	3.095	2.219	100.089	2.9875 0.0006 2.0413 1.9195 0.4826 0.3693 0.1903 7.	.9911
TS0396-gl1-1-8	37.393	0.002	21.536 28.654	6.94	3.167	2.197	99.889	2.9958 0.0001 2.0337 1.9199 0.471 0.3783 0.1886 7.	.9875
TS0396-gt1-1-9	37.336	0.005	21.227 28.814	6.989	3.139	2.216	99.726	3.0012 0.0003 2.0113 1.9371 0.4759 0.3761 0.1908 7.	.9928
TS0396-gi1-1-10	37.31	0.018	21.508 29.054	6.905	3.141	2.179	100.115	2.988 0.0011 2.0303 1.946 0.4684 0.3749 0.187 7.	.9958
150396-g11-2-1 TE0306 att 2.2	37.631	0	21.289 28.551	6.921	3.164	2.152	99.708	3.0173 0 2.01191.9145 0.47 0.3781 0.1849 7.	.9767
TS0396-g(1-2-2	37.901	0.021	22.014 20.302	6.710	3.3/3	2.16/	101.183	2,9841 0 2,0953 1,8646 0,4465 0,3952 0,1825 7,	.9662
TS0396-ot1-2-4	37 567	0.021	21 501 28 809	6 814	3.23	2 2 2 3 3	100 154	3 0009 0 2 0245 1 9246 0 4611 0 3847 0 1912 7	0871
TS0396-qt1-2-5	37.48	0.027	21.567 28.731	6.776	3.161	2.193	99.935	2.9992 0.0016 2.0342 1.9228 0.4593 0.377 0.188 7.	.9822
TS0396-gt1-2-6	37.771	0.021	21.379 28.624	6.832	3.243	2,19	100.06	3.0161 0.0012 2.0122 1.9116 0.4621 0.386 0.1874 7.	.9767
TS0396-gl1-2-7	37.612	0	21.481 28.842	6.737	3.305	2.037	100.014	3.0061 0 2.0237 1.9279 0.4561 0.3938 0.1745 7.	.9821
TS0396-gt1-2-8	37.72	0	21.512 29.153	6.744	3.328	2.023	100.48	3.0037 0 2.0191 1.9415 0.4549 0.395 0.1726 7.	.9868
TS0396-gt1-2-9	37.425	0.027	21.46 28.715	6.766	3.316	2.116	99.825	2.9982 0.0016 2.0265 1.9239 0.4592 0.396 0.1816 7	.987
TS0396-gt1-2-10	37.652	0.012	21.419 28.87	6.688	3.415	2.172	100.228	3.0038 0.0007 2.0141 1.9262 0.4519 0.4062 0.1857 7.	.9886
TS0396-gt1-2-11	37.313	0.006	21.322 28.725	6.636	3.382	2.237	99.621	2.9967 0.0004 2.0184 1.9294 0.4514 0.4049 0.1925 7,	,9938
TS0396-gt1-2-12	37.524	0	21.544 28.672	6.479	3.405	2.231	99.855	3.0005 0 2.0305 1.9174 0.4389 0.4058 0.1911 7.	.9843
TS0396-gt1-2-13	37.184	0.012	21.5/1 28./52	6.493	3.307	2.174	99.493	2.9681 0.0007 2.0432 1.9323 0.442 0.3962 0.1872 7.	.9898
TS0396-gt1-2-15	37 347	0.037	21.02 20.033	6 649	3.3/3	2.101	100.233	2 9858 0 002 2 0344 1 9205 0 4503 0 411 0 191 7	.9011
TS0397-at2-1-1	48.677	0	28.46 1.89	0.306	1.104	9.459	89,896	3.6215 0 2.4958 0.1176 0.0193 0.1224 0.754 7	1307
TS0397-gt2-1-2	37.135	0.029	21.428 25.775	9.514	2.01	3,608	99.499	2.9972 0.0018 2.0385 1.7398 0.6505 0.2418 0.312 7.	.9817
TS0397-gt2-1-3	36.703	0.013	21.117 25.813	8.961	2.219	3.522	98.348	2.9957 0.0008 2.0316 1.762 0.6196 0.27 0.308 7.	9878
TS0397-gt2-1-4	36.839	0.054	21.151 26.281	8.699	2.391	3.587	99.002	2.9888 0.0033 2.0226 1.7832 0.5978 0.2891 0.3118 7,	9967
TS0397-gt2-1-5	36.771	0	21.365 26.659	8,343	2.563	3.614	99.315	2.974 0 2.0367 1.8032 0.5715 0.309 0.3132 8.	.0076
TS0397-gt2-1-6	37.036	0.006	21.397 26.286	8.212	2.594	3.556	99.087	2.9922 0.0004 2.0377 1.7761 0.562 0.3124 0.3078 7.	9886
TS0397-gt2-1-7	36.961	0	21.365 26.401	7.983	2.769	3.724	99.203	2.9836 0 2.0328 1.7823 0.5459 0.3332 0.3221 7.	.9999
TS0397-gt2-1-8	37.011	0.015	21.524 26.369	7.715	2.706	3.561	98.901	2.9901 0.0009 2.0496 1.7816 0.528 0.3259 0.3083 7.	.9844
150397-gt2-1-9 TS0397-gt2-1-10	35,416	0	19.911 24.061	6 510	2.638	3.333	92.39	3.044 0 2.0172 1.7295 0.5119 0.3379 0.307 7.	.9475
TS0397-gt2-1-10	36 398	0	20 975 26 246	7.51	2.473	3.905	07.07 07.527	2 9869 0 2 0288 1 8013 0 5221 0 3446 0 3149 7	9789
TS0397-at2-2-2	36,985	0.012	21.555 26.805	7.713	2.967	3.662	99.699	2.9708 0.0007 2.0408 1.8006 0.5248 0.3553 0.3152 8	.0082
TS0397-gt2-2-3	36.978	0	21.568 26.707	7.564	2.99	3.494	99.301	2.9774 0 2.047 1.7985 0.5159 0.3589 0.3015 7.	9993
TS0397-gt2-2-4	37.041	0	21.475 26.927	7.44	3.038	3.519	99.44	2.9797 0 2.0363 1.8116 0.507 0.3643 0.3034 8.	.0023
TS0397-gt2-2-5	36.939	0.006	21.259 26.83	7.25	3.059	3.58	98.923	2.986 0.0004 2.0256 1.8138 0.4964 0.3686 0.3101 8.	0009
TS0397-gt2-2-6	37.05	0	21.49 26.719	7.388	2.989	3.61	99.246	2.9834 0 2.0397 1.7994 0.5039 0.3588 0.3115 7.	9968
TS0397-gt2-2-7	37.231	0	21.551 27.045	7.228	3.111	3,543	99.709	2.9836 0 2.0357 1.8126 0.4907 0.3716 0.3042 7.	9984
TS0397-gt2-2-8	37.18	0.025	21.676 26.945	7.033	3.132	3,632	99.623	2.9789 0.0015 2.047 1.8055 0.4773 0.3741 0.3118 7.	9962
TS0397-gt2-2-9	37.23	0.014	21.455 26.805	7.116	3.085	3.671	99.376	2.9905 0.0009 2.0314 1.8007 0.4841 0.3694 0.3159 7.	9929
TS0397-gt2-2-10	37.237	0.02	21.301 20.730	6.99	3.124	3.00	99.308	2,9896 0,0012 2,0393 1,7943 0,4751 0,3736 0,3164 7,1	9895
TS0397-nt2-3-2	37.14	0.007	21.397 26.988	6.918	3 181	3.506	99.13	2 9904 0 2 0306 1 8173 0 4718 0 3818 0 3025 7 9	9945
TS0397-gl2-3-3	37,036	ō	21.377 27.455	6.801	3.198	3.383	99.25	2.9831 0 2.0296 1.8495 0.464 0.384 0.292 8.	0022
TS0287-gt1-1-1	36.528	0	21 25.708 1	12.262	1.882	1.667	99.047	2.9887 0 2.0252 1.7592 0.8499 0.2295 0.1461 7.	9987
TS0287-gt1-1-2	36.831	0	21.192 26.8 1	11.095	2.26	1.496	99.674	2.988 0 2.0265 1.8184 0.7625 0.2734 0.13 7.	9988
TS0287-gt1-1-3	36.648	0	21.117 27.337 1	10.847	2.378	1.425	99.752	2.9764 0 2.0215 1.8568 0.7462 0.2879 0.124 8.4	0128
TS0287-gt1-1-4	36.769	0.032	21.073 27.002 1	10.474	2.381	1.517	99.248	2.9919 0.002 2.0211 1.8375 0.7219 0.2888 0.1323 7.9	9956
TS0287-gt1-1-5	36.63	0.053	21.331 27.048 1	10.542	2.404	1.505	99.513	2,974 0,0032 2,0413 1,8366 0,725 0,291 0,131 8,	0021
TS0287-gt1-1-6	36.759	0.028	21.188 26.998 1	10.562	2.446	1.563	99.544	2.9831 0.0017 2.0267 1.8324 0.7261 0.2959 0.1359 8.	0018
TS0207-gt1-1-7	30.0/3	0.016	21.14 20.031 1	10,507	2.441	1.623	99.237	2,9842 0,001 2,0275 1,8259 0,7242 0,2968 0,1415 8,0	0011
TS0287-gt1-1-9	36 775	0.005	21.135.27.012	10.05	2,45	1.594	99.033	2 9818 0 0048 2 015 1 8263 0 7372 0 3029 0 1379 8 0	0075
TS0287-gt1-1-10	36.804	0.04	21.322 27.097 1	0 622	2.503	1.518	99.906	2 9764 0 0025 2 0325 1 8327 0 7276 0 3017 0 1316 8	005
TS0287-gt1-2-1	36.844	0.048	21.159 26.487	10.7	2.403	1.555	99.196	2,9947 0.003 2,0271 1,8006 0,7367 0,2911 0,1355 7.9	9887
TS0287-gt1-2-2	36.882	0.004	21.117 26.81 1	0.869	2.472	1.625	99.779	2.9872 0.0002 2.016 1.816 0.7457 0.2985 0.141 8.0	0047
TS0287-gt1-2-3	36,758	0.008	21.18 26.73 1	0.757	2.442	1.625	99.5	2.984 0.0005 2.0266 1.8147 0.7397 0.2955 0.1413 8.0	0023
TS0287-gl1-2-4	36.732	0.017	21.211 26.796 1	0.883	2.348	1.673	99.66	2.98 0.001 2.0283 1.8181 0.7479 0.284 0.1454 8.	0047
TS0287-gt1-2-5	36.749	0.015	21.164 26.628 1	1.036	2.34	1.616	99.548	2.9841 0.0009 2.0257 1.8084 0.7591 0.2833 0.1405 8.0	0021
TS0287-gt1-2-6	36.783	0.032	21.162 26.374 1	0.897	2.299	1.851	99.398	2.9879 0.002 2.0262 1.7917 0.7498 0.2784 0.1611 7.9	9971
1 50287-gt1-2-7	36.881	0.063	21.16/ 26.371 1	1.085	2.36	1.804	99.731	2.9568 0.0038 2.0205 1.7861 0.7604 0.2849 0.1565 7.	.999 0149
1 3020/ ·g(1-2-8	36.76	0.028	21.193 20.003 1	1.235	2.344 2.34	1,833	39.903	2,972 0,0017 2,023 1,8053 0,7707 0,283 0,1591 8.0	0148
TS0287-at1-2-10	35 878	0.072	21.451 24 RRA	9.7	2.04	1.623	97.053	2,5524 0,0042 2,020 1,7655 0,7574 0,265 0,1639 8.0	9995
TS0287-at1-2-11	36.9	0.015	21.054 26.243 1	1.222	2.274	1.917	99.625	2.993 0.0009 2.0129 1.7802 0.771 0.2749 0.1666 7.9	9995
TS0287-gt1-3-1	36.774	0.047	21.313 25.949 1	1.211	2.252	1.893	99.439	2.984 0.0029 2.0385 1.7609 0.7706 0.2724 0.1646 7.9	9939
TS0287-gt1-3-2	36.479	0.061	21.304 25.792 1	1.438	2.165	2.132	99.371	2.968 0.0038 2.0431 1.755 0.7883 0.2626 0.1858 8.0	0066

Weight pe	rcent	oxid	е					Cation percentage	
Analysis	SiO2	TiO₂	Al ₂ O ₃ FeO	MnO	MgO) CaO	Total	Si Ti Al Fe Mn Mg Ca	Total
TS0287-gt1-3-3	36.405	9 0.025	21.238 25.62	3 11.597	2.179	1.722	98.793	2.9772 0.0016 2.047 1.7523 0.8032 0.2656 0.1508	7.9977
TS0287-gt1-3-4	36.568	3 0.021	21.239 25.70	9 11.821	2.289	1.546	99.193		8
1 SU287-gt2-1-1 TS0287-gt2-1-2	36,735	5 0.034 5 A	21.107 25.62	4 12.151	3 000	1.813	99.374	2,9916 0,0021 2,026 1,7452 0,8382 0,2321 0,1581	7.9934
TS0287-gl2-1-2	36.56	0.008	21.244 20.17	7 11.184	2.033	1.588	99.276	2.9787 0.0005 2.0335 1.8048 0.7719 0.2761 0.1386	8.0042
TS0287-gt2-1-4	36.542	2 0.047	21.164 26.78	6 10.817	2.37	1.576	99.302	2.9757 0.0029 2.0314 1.8242 0.7461 0.2877 0.1376	8.0056
TS0287-gt2-1-5	35.842	2 0	20,831 26.75	5 10.263	3 2.265	1.5	97.456	2.9751 0 2.0381 1.8574 0.7216 0.2803 0.1334	8.0059
TS0287-gl2-1-6	36.252	2 0	21,1 27.00	1 10.38	2.418	1.468	98.619	2.9723 0 2.0391 1.8514 0.7209 0.2956 0.1289	8.0082
TS0287-gt2-1-7	35.526	6 0.127	20.398 25.562	2 9.863	2.328	1.437	95,241	3.0011 0.0081 2.0311 1.806 0.7058 0.2932 0.1301	7.9755
TS0287-gt2-1-8	35.652	2 0.025	20.378 25.61	6 9.86	2.353	1.504	95,388	3.0072 0.0016 2.026 1.8071 0.7045 0.2959 0.1359	7.9783
TS0287-gl2-1-9	35.808	3 0	20.493 25.647	7 9.961	2.368	1.488	95.765	3.0078 0 2.029 1.8017 0.7087 0.2965 0.1339	7.9777
TS0287-gl2-1-10	35.635	0.029	20.606 25.88	10.01	2.366	1.593	96.119	2.9882 0.0018 2.0367 1.815 0.711 0.2958 0.1432	7.9917
TS0287-g(2-1-11	35.911	0.027	20.866 26.619	9 10.215	2.428	1.539	97.605	2.9732 0.0017 2.0363 1.8431 0.7164 0.2997 0.1365	8.0069
TS0287-g(2+2+1 TS0287-g(2-2-2	35,90	. 0	21.041 20.72	1 0 10.217	2.390	1.575	97.912		7 969
TS0287-al2-2-3	35.33	, U	20.302 25.534	9.745	2.384	1.532	94.827	2.9992 0 2.0314 1.8128 0.7007 0.3017 0.1393	7.9851
TS0287-gt2-2-4	35.556	0.03	20.518 25.361	9,72	2,346	1.524	95.055	3,0046 0,0019 2,0437 1,7923 0,6957 0,2956 0,138	7.9719
TS0287-gt2-2-5	35.416	0.004	20.336 25.446	9.78	2.354	1.48	94.816	3.0045 0.0002 2.0335 1.8053 0.7028 0.2977 0.1346	7.9786
TS0287-gt2-2-6	35.609	0	20.447 25.693	9.827	2.38	1.491	95.447	3.0023 0 2.032 1.8117 0.7018 0.2992 0.1347	7.9818
TS0287-gl2-2-7	35.606	0	20.501 25.517	9.995	2.408	1.459	95.486	3.0001 0 2.0361 1.7981 0.7134 0.3024 0.1318	7.9819
TS0287-gt2-2-8	35.364	0.035	20.318 25.618	3 9.846	2.451	1.527	95.159	2.9936 0.0022 2.0272 1.8137 0.706 0.3093 0.1385	7.9905
TS0220-gt1-1-1	37.037	0	21.236 32.392	2 5.129	3.141	0.821	99.756	2.9905 0 2.0211 2.1874 0.3508 0.378 0.071	7.9989
TS0220-gt1-1-2	37.194	0	21.133 32.406	5 5.117	3.217	0.818	99.885	2.9983 0 2.008 2.1847 0.3494 0.3866 0.0707	7.9978
TS0220-g(1-1-3	37.046	0.032	21.239 32.522	5.055	3.202	0.837	99.933		8 0043
TS0220-gt1-1-4	37.034	0	21.131 32.020	5 169	3 208	0.003	99.001	2 9844 0 2 0147 2 1909 0 3531 0 3857 0 0795	8 0083
TS0220-gt1-1-6	37.134	0.038	21.064 32.481	5.095	3.131	0.887	99.83	2.9974 0.0023 2.0041 2.1927 0.3484 0.3767 0.0767	7.9983
TS0220-gt1-1-7	36.897	0.06	21.287 32.383	5.218	3.095	0.921	99.861	2.9791 0.0036 2.0259 2.1866 0.3568 0.3725 0.0797	8.0042
TS0220-gt1-1-8	37.215	0.015	21.25 32.563	5.137	3.069	0.98	100.229	2.9925 0.0009 2.0141 2.1899 0.3499 0.3679 0.0844 7	7.9997
TS0220-gt1-1-9	37.176	0.012	21.182 32.391	5.174	3.161	0.975	100.071	2.993 0.0007 2.0101 2.1809 0.3529 0.3794 0.0841 8	8.0012
TS0220-gt1-1-10	37.111	0	21.197 32.403	4.993	3.222	0.95	99.876	2.9918 0 2.0142 2.1847 0.341 0.3873 0.0821 8	8,0012
TS0220-gt1-2-1	37.054	0.018	21.254 32.651	4.821	3.285	0.903	99,986	2.9849 0.0011 2.018 2.1997 0.3289 0.3945 0.0779	8.005
TS0220-gt1-2-2	37.075	0.028	21.367 32.6	4.654	3.476	0.808	100.008	2.9814 0.0017 2.0253 2.1925 0.317 0.4167 0.0696 E	8.0042
TS0220-gt1-2-3	37.076	0.036	21.381 32.592	4.529	3.667	0.888	100,169	2.9756 0.0022 2.0226 2.1875 0.3079 0.4388 0.0764	8.011
TS0220-gt1-2-4	37.122	0 000	21,336 32.234	4.3/4	3.0/0	0.820	99,000		3 0037
TS0220-gt1-2-5	37 142	0.009	21.317 32.471	4.351	3,152	0.027	99.907	2 9861 0 0022 2 0129 2 1738 0 2975 0 4574 0 0754	3 0054
TS0220-at1-2-7	37.155	0	21.316 32.348	4.388	3.73	0.87	99.807	2.9871 0 2.02 2.175 0.2988 0.447 0.0749 8	3.0028
TS0220-gt1-2-8	37.067	0.03	21.2 32.28	4.329	3.854	0.913	99,673	2.9842 0.0018 2.0119 2.1735 0.2952 0.4626 0.0788	8.008
TS0220-gt1-2-9	37.15	0	21.347 32.65	4.297	3.874	0.884	100.202	2.9777 0 2.0168 2.1887 0.2918 0.4629 0.0759 8	3.0138
TS0220-gt1-2-10	37.238	0	21.366 32.471	4.271	3.702	0.821	99.869	2,9905 0 2.0225 2.1808 0.2905 0.4432 0.0707 7	7.9983
TS0220-gt2-1-1	37.225	0	21.226 32.304	5.239	3.013	0.866	99.873	3.001 0 2.0169 2.178 0.3578 0.3621 0.0748 7	7.9907
TS0220-gt2-1-2	36.921	0.023	21.102 32.668	5.151	3.101	0.852	99.818	2,9854 0.0014 2.0112 2.2091 0.3528 0.3738 0.0739	3.0076
TS0220-gt2-1-3	36.952	0.027	21.229 32.381	5.024	3.229	0.857	99.699	2.9851 0.0016 2.0214 2.1877 0.3438 0.3888 0.0742 8	3.0026
TS0220-gt2-1-4	37.111	0	21.29 32.545	4.796	3,307	0.907	99.956	2,98/9 0 2.0204 2.1914 0.3271 0.3959 0.0783 8	0.002 0.0057
TS0220-gt2-1-5	37.093	0.016	21.278 32.499	4.720	3,400	0.070	99.973	2,9645 0,0009 2,0179 2,1666 0,3221 0,416 0,0755 6	10037
TS0220-gl2-1-0	37.364	0.005	21.375 32.415	4 605	3 525	0.873	100 18	2 9949 0 0003 2 0161 2 1766 0 3126 0 4212 0 075 7	.9968
TS0220-gt2-1-8	37.17	0.029	21.331 32.516	4.588	3.667	0.849	100.15	2,9825 0,0017 2.0174 2.182 0,3119 0.4386 0.073 8	3.0071
TS0220-gt2-1-9	37.168	0.046	21.306 32.192	4.54	3.583	0.928	99.763	2.9898 0.0028 2.0201 2.1657 0.3093 0.4297 0.08 7	.9974
TS0220-gt2-1-10	37.222	0	21.426 32.545	4.445	3.673	0.888	100.199	2.983 0 2.0239 2.1813 0.3017 0.4388 0.0762 8	8.0049
TS0220-gt2-2-1	37.228	0	21.255 32.473	4.397	3.69	0.899	99.942	2.9906 0 2.0125 2.1816 0.2992 0.4419 0.0774 8	8.0033
TS0220-gt2-2-2	37.273	0.01	21.132 32.412	4.463	3.675	0.877	99,842	2.9973 0.0006 2.003 2.1798 0.304 0.4405 0.0756 8	8.0008
TS0220-gt2-2-3	36.98	0.071	21.187 32.436	4.384	3,686	0.879	99.623	2.9822 0.0043 2.0139 2.1876 0.2995 0.4431 0.0759 8	.0065
TS0220-gt2-2-4	37.071	0.039	21.124 32.508	4.184	3.74	0.901	99,567	2.9892 0.0024 2.0077 2.1922 0.2858 0.4496 0.0779 8	0048
TS0220-gt2-2-5	37.144	0.018	21.49 32.371	4.232	3.782	0.963	100	2,9/8/ 0,0011 2,0313 2,1/11 0,28/4 0,4521 0,0828 8	0118
TS0220-gl2-2-0	37.100	0.05	21.200 32.072	4.312	3.004	0.930	100.237	2,9809 0,003 2,0082 2,1903 0,2928 0,4943 0,0821 8	0162
TS0244-nt1-1-1	36 947	0.013	21.377 32.013	7 671	2 723	1 138	99 481	2 993 0 2 0301 2 0149 0 5264 0 3288 0 0988 7	7.992
TS0244-at1-1-2	37.075	0.038	21.106 29.905	7.268	2.986	1.234	99.612	2,9967 0.0023 2.0108 2.0215 0.4976 0.3598 0.1069 7	.9957
TS0244-gt1-1-3	36.862	0	21.034 30.391	7.019	3.095	1.226	99.627	2.9847 0 2.0075 2.058 0.4814 0.3736 0.1063 8	.0115
TS0244-gt1-1-4	37.044	0.031	21.201 29.652	7.057	3.099	1.221	99.305	2.997 0.0019 2.0218 2.0063 0.4836 0.3737 0.1058 7.	.9901
TS0244-gt1-1-5	37.162	0.056	21.249 30.124	7.046	3.188	1.212	100.037	2,9891 0,0034 2,0146 2,0264 0,4801 0,3822 0,1045 8	.0003
TS0244-gt1-1-6	36.993	0.043	21.27 30.171	7.08	3.306	1.158	100.021	2,9782 0.0026 2.0183 2.0314 0.4828 0.3968 0.0999	8.01
TS0244-gt1-1-7	37.009	0	21.147 30.005	7.024	3.211	1.123	99.519	2.9919 0 2.015 2.0286 0.481 0.3869 0.0972 8.	.0006
150244-gl1-1-8	37.154	0	21.293 30.298	6.918	3.195	1.088	99.946	2,9906 0 2.0202 2.0395 0,4717 0.3833 0.0938 7.	3 003
150174-gl2-1-1	36.903	0 2	21.418 30.169	6.846 6.64	2.524	2.077	33,937	2,9782 U 2,0374 2,0362 0,468 0,3036 0,1796 8 2,977 0 2,015 2,0365 0,4534 0,3313 0,4990 9	003
TS0174-912-1-2	37 02	0 1 0 2 2 4	21.10 30.1/1	6 427	2.00/	2.193	99,783	2 9937 D 0013 2 0032 2 0469 D 4329 D 3294 D 189 B	.0034
TS0174-ot2-1-4	37.046	0 3	21.166 30.071	6.289	2.69	2.082	99.344	2,999 0 2,0197 2,0359 0,4313 0,3247 0,1806 7.	.9913
TS0174-qt2-1-5	37,103	0.039	21.14 29.993	6.447	2.692	2.151	99.565	2.9982 0.0023 2.0135 2.0269 0.4413 0.3243 0.1862 7.	.9927
TS0174-gl2-1-6	36.832	0.024	21.089 30.068	6.207	2.767	2.33	99.317	2.9861 0.0014 2.0153 2.0388 0.4262 0.3345 0.2024 8.	.0047

Weight per	cent	oxid	е					Cation percentage	
Analysis	SiO ₂	TiO	Al ₂ O ₃ FeO	MnO	MaO	CaO	Total	Si Ti Al Fe Mn Mg Ca	Total
TS0174-gt2-1-7	36.892	0	21.107 30.238	6.18	2.827	2.442	99.686	2.9821 0 2.011 2.0441 0.4231 0.3407 0.2115	8.0125
TS0174-gt2-1-8	37.192	0.06	21.136 30.049	6.291	2.728	2.413	99.869	2.9962 0.0036 2.007 2.0246 0.4293 0.3276 0.2083	7.9967
TS0174-gt2-1-9	37.033	0.064	21.006 30.339	6.385	2.772	2.33	99.929	2.9883 0.0039 1.9979 2.0475 0.4364 0.3335 0.2015	8.009
TS0174-gl2-1-10	36.977	0.028	21.224 30.313	3 6.247	2.729	2.371	99.889	2.9826 0.0017 2.0178 2.0448 0.4268 0.3281 0.205	8.0068
TS0174-gt2-2-7	37,107	0.04	21.129 30.423	6 107	2.607	2.420	99.952	2,997 0.0024 1.9995 2.0427 0.4144 0.336 0.2089	8.0009
TS0174-gt2-2-3	37.167	0.052	21.107 30.629	5.823	2.898	2.461	100.137	2.9886 0.0031 2.0005 2.0598 0.3966 0.3473 0.2121	8.008
TS0174-gl2-2-4	36.998	0.033	21.107 30.705	5.311	3.041	2.542	99.737	2.9838 0.002 2.0064 2.0709 0.3628 0.3655 0.2197	8.0112
TS0174-gt2-2-5	37.031	0.075	21.253 30.588	5.302	3.032	2.505	99.786	2.9818 0.0045 2.0172 2.0599 0.3616 0.364 0.2161	8.0051
TS0174-gt2-2-6	47.668	0.002	16.133 25.095	6 4.275	2.34	2.021	97.534	3.7114 0.0001 1.4806 1.6341 0.282 0.2716 0.1686	7.5485
TS0174-gt2-2-7	37.138	0.032	21.208 30.368	5.25	3.016	2.745	99.757	2.9889 0.002 2.0118 2.044 0.3579 0.3618 0.2367	8.0031
TS0174-gl3-1-2	37 222	0 009	21.205 30.452	6 332	2.402	2 028	99.884 100.263	2 9966 0 0005 1 9938 2 0853 0 4318 0 3229 0 175	7.9934 8.0050
TS0174-at3-1-3	37.019	0.036	21.321 30.592	6.239	2.766	2.021	99,994	2.9825 0.0022 2.0247 2.0612 0.4258 0.3322 0.1745	8.0031
TS0174-gt3-1-4	37.278	0	21.427 30.591	6.048	2.761	2.417	100.522	2.9852 0 2.0224 2.0488 0.4102 0.3296 0.2074 8	8.0036
TS0174-gl3-1-5	37.053	0.007	21.232 30.97	6.064	2.895	2.303	100,524	2.9746 0.0004 2.0091 2.0794 0.4124 0.3465 0.1981	8.0205
TS0174-gt3-1-6	37.436	0	21.458 30.697	5.622	2.836	2.551	100.6	2.9908 0 2.0206 2.051 0.3804 0.3377 0.2183	7.9989
TS0174-gt3-1-7	37.241	0.075	21.074 30.778	5.392	2.984	2.633	100.177	2.9906 0.0046 1.9947 2.067 0.3667 0.3573 0.2266	8.0075
TS0174-g(3-1-8	37.179	0.054	21.275 30.728	5.415	2.967	2.58	100.244	2,9832 0 2,0121 2,062 0,3681 0,3549 0,2304 8	8.0107
TS0174-gt3-1-10	37.083	0.064	21.334 30.592	5.244	3.073	2.606	99.996	2.9789 0.0039 2.02 2.0553 0.3568 0.368 0.2243	8.0072
TS0174-gt3-2-1	37.19	0.004	21.274 30.766	5.259	3.023	2.591	100.107	2.9858 0.0003 2.0132 2.0657 0.3576 0.3618 0.2229	8.0073
T\$0174-gt3-2-2	37.15	0.037	21.313 30.581	5.423	2.98	2.519	100.003	2,985 0.0022 2.0185 2.055 0.3691 0.3569 0.2169 8	8.0036
TS0174-gt3-2-3	37.17	0.048	21.184 30.69	5.518	2.983	2.416	100.009	2.9887 0.0029 2.0077 2.0638 0.3758 0.3576 0.2081	8.0047
TS0174-gt3-2-4	37.112	0.036	21.112 31.019	5.671	2.864	2.375	100.189	2.9856 0.0022 2.0019 2.087 0.3864 0.3434 0.2047	8.0112
TS0202-cH.1-1	12 012	0.023	21.237 30.588	5.893	2.830	2.219	99.758 56 227	2.9831 0.0014 2.0203 2.0646 0.4029 0.3412 0.1919 8	8.0054
TS0293-gt1-1-2	36.747	0.077	20.991 32 946	4.468	2 545	1.763	99.537	2 9846 0 0047 2 0096 2 2379 0 3074 0 3082 0 1534	9.0013 8.0058
TS0293-gt1-1-3	36,72	0.061	21.136 32.597	4.611	2.596	1.668	99.389	2.9828 0.0037 2.0237 2.2145 0.3173 0.3144 0.1452	8.0016
TS0293-gl1-1-4	36.771	0.029	21.158 32.666	4.683	2.656	1.608	99.571	2.9822 0.0018 2.0226 2.2156 0.3217 0.3212 0.1397 8	8.0049
TS0293-gt1-1-5	36.933	0.016	21.219 32.697	4.927	2.727	1.568	100.087	2.981 0.001 2.0187 2.2072 0.3369 0.3282 0.1357 8	8.0087
TS0293-gt1-1-6	36.883	0.045	21.04 31.951	5.243	2.703	1.677	99.542	2.99 0.0028 2.0105 2.1663 0.3601 0.3267 0.1456	8.002
TS0293-gi1-1-7	36.598	0	21.263 32.063	5.289	2.638	1.714	99.565		8.0124
TS0293-gt1-1-9	36.961	0.045	21.193 31.744	5.6	2,583	1.699	99.653	2 9929 0 0028 2 0141 2 1442 0 3841 0 3118 0 1474 7	0.0142 7 9974
TS0293-gt1-1-10	36.684	0.007	21.142 31.438	5.916	2.495	1.744	99.426	2.9814 0.0004 2.0253 2.1369 0.4073 0.3023 0.1518	8.0054
TS0293-gt1-2-1	36.96	0.022	21.226 31.092	6.189	2.533	1.672	99.694	2.9908 0.0013 2.0245 2.1042 0.4242 0.3056 0.1449 7	7.9955
TS0293-gt1-2-2	36.71	0.036	20.967 30.795	6.563	2.501	1.612	99.184	2.9904 0.0022 2.0131 2.098 0.4528 0.3037 0.1407 8	8.0009
TS0293-gt1-2-3	36.726	0	21.142 30.608	6.758	2.482	1.625	99.341		8.001
TS0293-gt1-2-4	36.70	0.03	20.99 30.739	7 083	2.47	1.581	99.438	2,9895 0,0019 2,0116 2,0903 0,4725 0,2994 0,1377 E	B.0029 B.0043
TS0293-at1-2-6	36.656	0.048	21.071 30.196	7.193	2.429	1.521	99,114	2,9875 0.0029 2.0242 2.0582 0.4965 0.2952 0.1328 7	7.9974
TS0293-gt1-2-7	36.441	0.023	21.043 30.058	7.283	2.413	1.622	98.883	2.9795 0.0014 2.028 2.0554 0.5044 0.2941 0.1421	8.0049
TS0293-gt1-2-8	36.588	0.042	21.021 30.041	7.41	2.347	1.6	99.049	2.9864 0.0026 2.0224 2.0507 0.5123 0.2855 0.1399 7	7.9998
TS0293-gt1-2-9	36.754	0.024	20.887 30.15	7.526	2.4	1.642	99.383	2.9922 0.0015 2.0043 2.0528 0.519 0.2912 0.1433 8	8.0043
TS0293-gt1-2-10	36,835	0.004	21.092 29.98	7,505	2.364	1.526	99.306	2,9956 0.0003 2.0218 2.039 0.517 0.2866 0.133 7	7.9934
TS0293-gt1-2-11	36 787	0	21.078 30.106	4 4 2 5	2.3/0	1.479	99.223		7.9909 9.0021
TS0293-qt2-1-2	36,909	0.045	21.176 32.852	4.49	2.667	1.655	99.794	2,9855 0.0028 2.019 2.2224 0.3077 0.3216 0.1434	3.0024
TS0293-gt2-1-3	36,769	0.079	21.153 32.523	4.86	2.766	1.697	99.847	2.975 0.0048 2.0173 2.2007 0.3331 0.3336 0.1471 8	8.0116
TS0293-gt2-1-4	36.911	0.03	21.268 32.426	4.966	2.785	1.661	100.047	2.9782 0.0018 2.0227 2.188 0.3394 0.3349 0.1436 E	3.0086
TS0293-gt2-1-5	36.903	0	21.019 32.29	5.03	2.68	1.684	99.606	2.9915 0 2.0083 2.1891 0.3454 0.3239 0.1462 E	3.0044
150293-gi2-1-5 TS0293-ct2-1-7	36,817	0.034	21.349 31.803	5.227	2.692	1.6/1	99.443	2.9738 0.0021 2.0408 2.1572 0.3591 0.3254 0.1452 8	3.0036
TS0293-gt2-1-7	36.857	0.005	21.111 31.767	5.41	2.581	1.697	99.428	2,9912 0,0003 2,0195 2,1561 0,3719 0,3122 0,1476 7	7.9989
TS0293-gt2-1-9	36.908	0.023	21.408 31.626	5.427	2.641	1.661	99.694	2.9832 0.0014 2.0395 2.1378 0.3716 0.3183 0.1439 7	7.9957
TS0293-gt2-1-10	36.642	0	20.746 31.609	5.571	2.458	1.766	98.792	2,9978 0 2.0006 2,1628 0,3861 0,2997 0,1548 8	3.0018
TS0293gt2-2-1	36.749	0.008	21.094 31.278	5.874	2.45	1.684	99.137	2.9919 0.0005 2.0242 2.1296 0.4051 0.2974 0.1469 7	7.9956
TS0293gt2-2-2	36.472	0	21.008 31.456	5.942	2.448	1.65	98.976	2.9804 0 2.0235 2.1498 0.4113 0.2983 0.1445 8	3.0078
TS0293gt2-2-3	35.332	0.001	20.802 30.606	5.817	2.548	1.535	96.641	2.9564 0.0001 2.0517 2.1418 0.4123 0.3178 0.1376 8	3.0177
TS02930!2-2-5	36,789	0	20.926 31.118	6.267	2.415	1.776	99.322	2.9936 0 2.0071 2.1167 0.432 0.2986 0.1549 R	3.0029
TS0293gt2-2-6	36.567	0.051	21.069 30.786	6.368	2.475	1.64	98.956	2.9841 0.0031 2.0266 2.1011 0.4402 0.3011 0.1434 7	7.9997
TS0293gt2-2-7	36.811	0.013	20.936 31.041	6.522	2.45	1.7	99.473	2.9925 0.0008 2.0061 2.1104 0.4491 0.2968 0.148 8	3.0037
TS0293gt2-2-8	36.426	0.05	21.213 30.877	6.59	2.395	1.674	99.225	2.9694 0.0031 2.0383 2.1051 0.4551 0.2911 0.1462 8	3.0083
TS0293gt2-2-9	36,564	0.013	21.036 30,635	6.643	2.403	1.544	98.838	2.9884 0.0008 2.0265 2.094 0.4599 0.2928 0.1353 7	7.9977
1 S0293gt2-2-10 TS0293gt2-2-14	36.602	0.023	20.882 30.46	6.842 6.800	2.389	1.546	90.944 99.28	3.0033 0.0014 2.0086 2.0789 0.4729 0.2907 0.1352 7 2.9818 0.0006 2.031 2.00 0.4695 0.2929 0.4262	9911 8 002
TS0293gt2-2-12	36,431	0	21.036 30.601	6.825	2,398	1.561	98.852	2,9805 0 2.0285 2.0938 0.473 0.2924 0.1369 8	3.0051
TS0293gt2-2-13	28.847	0.017	18.695 29.433	6.736	1.907	1.566	87.201	2.7557 0.0012 2.1051 2.3516 0.545 0.2716 0.1603 8	3.1905
TS0293gt2-2-14	36.449	0.035	20.952 30.351	6.955	2.364	1.502	98.608	2.9876 0.0021 2.0242 2.0806 0.4829 0.2889 0.1319 7	.9983
TS0293gt2-2-15	36.407	0.057	20.939 30.326	7.018	2.426	1.555	98.728	2,9819 0.0035 2.0215 2.0773 0.4869 0.2962 0.1365 8	3.0038

90

Weight per	rcent	oxid	е					Cation percentage	
Analysis	SiO₂	TiO₂	Al ₂ O ₃ FeO	MnO	MgO	CaO	Total	Si Ti Al Fe Mn Mg Ca	Total
TS0293gt2-2-16	36.681	0.04	21.118 30.487	7.131	2.44	1.558	99.455	2.9821 0.0024 2.0237 2.0729 0.4911 0.2957 0.1357	8.0036
TS0293-gt3-1-1	36.829	0.006	21.099 33.031	4.418	2,58	1.697	99.66	2.986 0.0004 2.0164 2.2398 0.3034 0.3119 0.1475	8.0054
TS0293-g[3-1-2	30./8/	0.002	21.238 32.62/	4.642	2.551	1./15	99.562	2.983 0.0001 2.0299 2.2127 0.3188 0.3083 0.149	8.0019
TS0293-gl3-1-4	36.848	0.059	21.213 32.077	' 5.189	2.639	1.682	99 707	2 9827 0 0036 2 0239 2 1715 0 3558 0 3185 0 1459	8.0047
TS0293-qt3-1-5	36.846	0.007	21.224 32.001	5.49	2.473	1.61	99.651	2,9865 0,0004 2,0276 2,1692 0,3769 0,2988 0,1399	7.9994
TS0293-gl3-1-6	36.465	0.023	21.083 31.616	5.566	2.46	1.623	98.836	2.9807 0.0014 2.0314 2.1614 0.3854 0.2997 0.1422	8.0022
TS0293-gt3-1-7	36.2	0.008	20.936 31.562	5.77	2.54	1.603	98.619	2.971 0.0005 2.0253 2.1664 0.4011 0.3108 0.1409	8.0161
TS0293-gt3-1-8	36.426	0.022	21.052 31.598	5.917	2.547	1.651	99.213	2.9714 0.0013 2.0241 2.1556 0.4088 0.3097 0.1443	8.0152
TS0293-gt3-1-9	36,753	0	21.102 31.405	5,974	2.433	1.642	99,309	2.9895 0 2.0232 2.1364 0.4116 0.295 0.1431	7.9989
TS0293-gl3-1-10	36.618	0.001	21.142 31.199	6.212	2.432	1.761	99.365	2.9794 0.0001 2.0276 2.123 0.4282 0.295 0.1535	8.0069
TS0293gt3-2-1	36.716	0.025	21.036 31.646	5.74	2.576	1.586	99.325	2.9864 0.0015 2.0168 2.1528 0.3955 0.3123 0.1382	8.0035
1 S0293gt3-2-2	36,845	0.036	20.985 31.363	5.931	2.437	1.58	99.177	2.999 0.0022 2.0134 2.135 0.409 0.2957 0.1378	7.9921
TS0293gl3+2+3	36 542	0.003	21.224 31.100	6 307	2.471	1.0/0	99.545	2.9837 0.0002 2.0298 2.1161 0.4269 0.2988 0.1457	8,0012
TS0293gt3-2-5	36 602	0.003	21,100,30,712	6 589	2.555	1.688	90.554	2,9769 0,0030 2,0338 2,0939 0,4355 0,3104 0,144	8.0003
TS0293at3-2-6	36.739	0.021	21.322 31.009	6.821	2.435	1.559	99,906	2.9744 0.0013 2.0347 2.0996 0.4678 0.2938 0.1352	8.0068
TS0293gt3-2-7	36.447	0.008	21.058 30.696	6,938	2.466	1.534	99.147	2.9751 0.0005 2.0261 2.0956 0.4797 0.3001 0.1342	8.0113
TS0293gt3-2-8	36.647	0.014	21.068 30.329	6,949	2.432	1.644	99.083	2.9875 0.0009 2.0244 2.0678 0.4799 0.2955 0.1436	7.9997
TS0293gt3-2-9	36.782	0.062	21.003 30.522	6,948	2.407	1.562	99.286	2.9931 0.0038 2.0145 2.0772 0.4789 0.292 0.1362	7.9957
TS0293gt3-2-10	36.53	0	20.932 30.058	7.072	2.328	1.602	98.522	2.9946 0 2.0225 2.0608 0.4911 0.2845 0.1407	7.9943
TS0293gl3-2-11	36.56	0.042	21.005 30.445	7.136	2.342	1.598	99.128	2.9839 0.0026 2.0207 2.0781 0.4933 0.2849 0.1398	8.0034
TS0293gi3-2-12	36.654	0.043	21.159 30.417	7.152	2.422	1.618	99.465	2.9795 0.0026 2.0273 2.0679 0.4925 0.2935 0.1409	8.0042
TS0383gt1-1-1	37.445	0.013	21.336 31.952	4.294	3.671	1.481	100.192	2.9946 0.0008 2.0112 2.137 0.2909 0.4377 0.1269	7.9992
TS0383ct1-1-2	37.213	0.051	21.094 31.000	4.134	3.030	1.391	100 120	2.981 / U 2.0454 2.1117 0.2801 0.4574 0.1192	7.9955
TS0383gt1-1-4	37 29	0.001	21.503 31.578	4.13	3 954	1.507	99 943		8.0007
TS0383at1-1-5	37.274	0.003	21.519 31.452	4.145	3.924	1.726	100.043	2 9797 0 0002 2 0276 2 1027 0 2807 0 4676 0 1478	500 B
TS0383gt1-1-6	37,144	0	21.44 31.4	4.23	3.953	1.629	99.796	2.9779 0 2.026 2.1054 0.2873 0.4725 0.14	8.0091
TS0383gt1-1-7	37.175	0.031	21.441 31.735	4.199	3.886	1.447	99.914	2.979 0.0018 2.0252 2.1269 0.285 0.4642 0.1242	8.0063
TS0383gl1-1-8	37.164	0.029	21.308 31.378	4.188	3.923	1.546	99.536	2.9862 0.0017 2.0182 2.1087 0.285 0.4699 0.1331	8.0028
TS0383gt1-1-9	37.137	0.027	21.579 31.312	4.271	4.068	1.464	99.858	2.9728 0.0016 2.0361 2.0963 0.2896 0.4855 0.1255	8.0074
TS0383gt1-1-10	37.02	0.024	21.373 31.285	4.261	3.964	1.455	99.382	2.9794 0.0015 2.0274 2.1057 0.2905 0.4756 0.1254	8.0056
TS0383gl1-2-1	37.438	0	21.513 31.208	4.311	3.968	1.498	99.936	2.9914 0 2.0261 2.0854 0.2918 0.4726 0.1283	7.9956
TS0383g(1-2-2	37,202	0.005	21.4/1 31.158	4.374	3.989	1.395	99.594	2.9846 0.0003 2.0304 2.0905 0.2972 0.477 0.1199	8
TS0383g(1-2-3	36.95	0	21.074 30.953	4.555	3,909	1.579	99.914		7.9996
TS0383qt1-2-5	37.288	0.029	21.435 30.633	4.673	3.987	1.571	99.616	2 9886 0 0017 2 025 2 0534 0 3173 0 4764 0 1349	7 9973
TS0383gt1-2-6	37.314	0.073	21.53 30.757	4,541	3,996	1.429	99.64	2.9879 0.0044 2.0321 2.0598 0.308 0.477 0.1226	7.9919
TS0383gt1-2-7	37.032	0.025	21.438 30.886	4.786	4.066	1.563	99.796	2.97 0.0015 2.0266 2.0716 0.3251 0.4861 0.1343	8.0152
TS0383gt1-2-8	37.124	0.015	21.466 30.728	4.813	4.007	1.569	99.722	2.9768 0.0009 2.0289 2.0607 0.3269 0.4789 0.1348	8.0079
TS0383gt1-2-9	37.135	0.013	21.581 30,699	4.834	3.978	1.468	99.708	2.9764 0.0008 2.0388 2.0578 0.3282 0.4753 0.1261	8.0034
TS0383gt1-2-10	37.61	0	21.465 30.502	4.923	3.941	1.472	99.913	3.0028 0 2.02 2.0367 0.3329 0.469 0.1259	7.9873
TS0383gt1-2-11	36.985	0.01	21.583 30.579	4.873	4.005	1.564	99.599	2.9688 0.0006 2.0421 2.0528 0.3313 0.4792 0.1345	8.0093
TS0383gl1-2-12	36.972	0.034	21.447 30.172	4.87	4.006	1.688	99.189	2.9765 0.0021 2.0352 2.0315 0.3321 0.4808 0.1456	8.0038
TS0383g(1-2-13	37.198	0	21,634 30,999	4.985	4.011	1.663	100.49	2.9549 0 2.0325 2.0654 0.3366 0.4765 0.1421	8.019
TS0383gi1-2-14	36 844	0 041	21.410 30.243	4.020	3 944	1.556	90,925	2,9554 0 2,0373 2,0411 0,3299 0,4678 0,1346	7.9962
TS0383a11-2-16	37.035	0.01	21.467 30.704	4.804	3.913	1.558	99.491	2,9769,0,0006,2,0338,2,0641,0,3271,0,4688,0,1342	8.0055
TS0383gt2-1-1	37.088	0.028	21.609 31.659	4.453	3,382	1.468	99.687	2.9812 0.0017 2.0474 2.1283 0.3032 0.4053 0.1264	7.9935
TS0383gl2-1-2	37.088	0.023	21.547 31.663	4.264	3.702	1.493	99.78	2.9766 0.0014 2.0384 2.1253 0.2899 0.4429 0.1284	8.0029
TS0383gt2-1-3	37.333	0.04	21.664 31.677	4.257	3.747	1.536	100.254	2.9795 0.0024 2.0379 2.1144 0.2878 0.4457 0.1313	7.999
TS0383gt2-1-4	37.251	0	21,617 31,507	4.222	3.905	1.46	99.962	2.9794 0 2.0379 2.1075 0.286 0.4656 0.1251	8.0015
TS0383gt2-1-5	37.33	0.011	21.552 31.393	4.126	3.87	1.502	99,784	2.9882 0.0007 2.0334 2.1016 0.2798 0.4618 0.1289	7.9945
TS0383gt2-1-6	37.416	0	21.543 31.469	4.233	3.905	1.424	99.99	2.9899 0 2.0291 2.103 0.2865 0.4651 0.1219	7.9955
TS0383gt2-1-7	37.346	0	21.319 31.418	4.263	4.058	1.466	99.87	2.9898 0 2.0118 2.1035 0.2891 0.4842 0.1258	8.0042
TS0383gt2-1-8	37.376	0	21,458 31,44	4.294	3.871	1.442	99.881	2.9913 0 2.0243 2.1044 0.2911 0.4618 0.1236	7.9966
TS0383g(2-1-9	37 228	0 075	21.040 31.300	4.190	3 035	1.5/0	00.241	2.9822 0 2.0331 2.0919 0.2833 0.476 0.1348	8.0013
TS0383012-2-1	37 241	0.073	21.308 31.177	4.52	4 14R	1 458	99.606	2,9611 0,0045 2,0301 2,066 0,295 0,4697 0,1326	7.9993
TS0383qt2-2-2	37.134	õ	21.688 31.207	4.291	4.036	1,461	99.817	2,9721 0 2,046 2,089 0 2909 0 4815 0 1253	8.004R
TS0383gt2-2-3	37.238	0	21,729 31,269	4.238	3.952	1.467	99.893	2.9771 0 2.0477 2.0907 0.287 0.4709 0.1256	7.999
TS0383g12-2-4	37.222	0	21.523 31.196	4.301	3.962	1.476	99,68	2.9833 0 2.0333 2.0911 0.292 0.4734 0.1268	7.9999
TS0383gt2-2-5	37,389	0.034	21.626 31.341	4.273	4.048	1.525	100.236	2.9799 0.002 2.0316 2.089 0.2885 0.4809 0.1302	8.0021
TS0383gt2-2-6	37.353	0	21.474 31.3	4.226	4.091	1.607	100.051	2.9833 0 2.0215 2.0907 0.2859 0.4871 0.1375	8.0061
TS0383gt2-2-7	37.283	0.056	21.493 31.18	4.288	3.98	1.723	100.003	2.9799 0.0034 2.0248 2.0842 0.2903 0.4742 0.1475	8.0043
TS0383gt2-2-8	37.141	0.023	21.425 31.165	4.225	3.968	1.698	99.645	2.9797 0.0014 2.0261 2.0911 0.2871 0.4746 0.146	8.006
TS2336b-gt1-1-1	36,911	0	21.458 33.786	3.921	3.221	0.703	100	2.9749 0 2.0384 2.2773 0.2677 0.3869 0.0607	8.0059
1 523360-gt1-1-2	36.859	0	21.224 33.876	3.736	3.402	0.719	99.816	2.9769 0 2.0204 2.2882 0.2556 0.4095 0.0623	8.0129
1323300-g11-1-3	30.0/1	0.007	21.311 33.815	3.04/ 3.07	3.4/8	0.744	39,873	2.9738 0.0004 2.026 2.2809 0,2491 0,4182 0.0643	8.0127 9.0074
TS2336b-nt1-1-5	36.835	0.003	21 214 33 466	3.542	3.592	0.0772	99 448	2.5757 0.0002 2.0233 2.2707 0.2464 0.4268 0.0583 2.9788 0.0016 2.0221 2.2634 0.2427 0.433 0.0669	8.0074
	20.000			5.54L	3,002		50.940	2.0100 0.0010 2.0221 2.2034 0.2421 0.403 0.0003	5.0000

Weight per	rcent	oxid	е					Cation percentage	
Analysis	SiO₂	TiO₂	Al ₂ O ₃ FeO	MnO	MgO	CaO	Total	Si Ti Al Fe Mn Mg Ca	Total
TS2336b-gt1-1-6	36,763	0,004	21.207 33.736	3.501	3,587	0.738	99,536	2.9738 0.0003 2.022 2.2823 0.2399 0.4325 0.064	8.0148
TS2336b-gt1-1-7	36,941	0	21.354 33.478	3.428	3.667	0.723	99.591		8.0054
TS2336b-dt1-1-8	30.823	0	21.366 33,613	3,394	3.082	0.723	99.601	2.9722 0 2.0327 2.269 0.232 0.4431 0.0625	8,0115
TS2336b-gt1-1-1	36,919	ő	21.209 33.51	3 403	3.811	0.689	99.61	2.5761 0 2.0245 2.2652 0.2556 0.4499 0.0622 2.9797 0 2.0139 2.2692 0.2356 0.4585 0.0596	8.0135
TS2336b-gt1-2-1	36.208	õ	21.074 33.347	3.274	3.701	0.776	98.38	2.9621 0 2.032 2.2815 0.2269 0.4514 0.068	8.0219
TS2336b-gt1-2-2	37,154	0.058	21.312 33.638	3,329	3,74	0.714	99.945	2.9849 0.0035 2.0181 2.2601 0.2265 0.4479 0.0615	8.0026
TS2336b-gl1-2-3	36.83	0	21.33 33.553	3.369	3.962	0.732	99.776	2.9666 0 2.0251 2.2603 0.2299 0.4757 0.0632	8.0208
TS2336b-gt1-2-4	36.766	0.005	21.318 33.504	3,303	3.947	0.735	99.578	2.9666 0.0003 2.0275 2.2609 0.2258 0.4748 0.0636	8.0195
TS2336b-gt1-2-5	36.89	0	21.28 33.116	3.343	3,983	0.706	99.318	2.9785 0 2.0252 2.2362 0.2286 0.4794 0.0611	8.009
TS2336b-g(1-2-6	37.018	0.003	21.287 33.385	3.224	3.992	0.69	99.599	2.9809 0.0002 2.0205 2.2484 0.2199 0.4792 0.0595	8.0086
TS2336b-gt1-2-7	37.231	0.001	21.251 32.895	3,366	4.012	0.767	99.523	2.9944 0.0001 2.0146 2.2127 0.2293 0.4811 0.0661	7.9984
TS23360-gt1-2-8	36,688	0	21.493 33.4	3,216	4.05	0.741	99,588	2.9574 0 2.0421 2.2517 0.2196 0.4867 0.064	8.0215
TS2336b-g(1-2-9	37.115	0.057	21.424 33.197	3.341	3,900	0.742	99.004	2.9760 0.0034 2.0265 2.2261 0.2271 0.4771 0.0638	8.0047
TS2336b-gt1-2-11	37.066	0.013	21.344 33.207	3,322	4.073	0.70	99.556	2 9824 0 2 0222 2 2201 0 2264 0 4872 0 0682	8 0065
TS2336b-at1-2-12	2 37.137	õ	21.466 33.412	3.301	3.958	0.745	100.019	2.9776 0 2.0287 2.2405 0.2242 0.473 0.064	8.008
TS2336b-gt1-2-13	36.982	Ō	21.306 33.073	3.344	4.133	0.757	99.595	2.9764 0 2.0212 2.2262 0.228 0.4959 0.0653	8.0131
TS2336b-gt2-1-1	36.653	0.016	21.316 33.383	3.658	3.329	0.724	99.079	2.9764 0.001 2.0403 2.2672 0.2516 0.403 0.063	8.0025
TS2336b-gt2-1-2	36.782	0	21.321 33.591	3.713	3.392	0.72	99.519	2.9758 0 2.0332 2.2728 0.2545 0.4091 0.0624 0	8.0078
TS2336b-gt2-1-3	36.879	0.018	21.427 33.668	3.535	3.435	0.674	99.636	2.9768 0.0011 2.0386 2.2728 0.2417 0.4133 0.0583	8.0026
TS2336b-gl2-1-4	36.821	0.03	21.242 33.723	3.502	3.473	0.73	99.521	2.978 0.0019 2.025 2.281 0.2399 0.4187 0.0632	8.0077
TS2336b-gt2-1-5	37.187	0.007	21.494 33.779	3.535	3.653	0.723	100.378	2.9779 0.0004 2.0288 2.2623 0.2398 0.436 0.062	8.0072
TS2336D-gt2-1-6	36.781	0.039	21.477 33.6	3.468	3.613	0,775	99.753	2.9652 0.0024 2.0409 2.2655 0.2368 0.4342 0.0669	8.0119
TS2336b-gt2-1-7	36,222	0.003	21.438 33.983	3,454	3.594	0.091	99.718	2,9547 0,0002 2,0425 2,2972 0,2365 0,433 0,0599	8.024
TS2336b-gt2-1-9	36 641	0.045	21.407 33.715	3 4 4 5	3 759	0.700	99 624	2 9614 0 2 0301 2 2824 0 2359 0 4529 0 0609	8 0236
TS2336b-qt2-1-10	36.711	0.011	21.404 33.65	3.418	3.762	0.711	99.667	2,9627 0,0007 2,0361 2,2712 0,2336 0,4526 0,0615	8.0184
TS2336b-gl2-2-1	36.709	0	21.245 33.757	3,349	3.714	0.714	99.488	2.9694 0 2.0256 2.2837 0.2295 0.4478 0.0619 8	8.0179
TS2336b-gt2-2-2	36.624	0	21.228 33.666	3.289	3.644	0.684	99.135	2.9718 0 2.0303 2.2846 0.226 0.4408 0.0595	8.013
TS2336b-gt2-2-3	36.844	0.042	21.326 33.342	3.284	3.712	0.691	99.241	2.9794 0.0025 2.0327 2.2549 0.225 0.4475 0.0599 8	8.0019
TS2336b-gt2-2-4	36.557	0	21.426 33.861	3.385	3.741	0.743	99.713	2.953 0 2.0401 2.2875 0.2316 0.4504 0.0643 8	8.0269
TS2336b-gt3-1-1	36.857	0	21.415 33.45	3.65	3.494	0.707	99.573	2.9761 0 2.0382 2.2589 0.2496 0.4206 0.0612 8	8.0046
TS2336b-gl3-1-2	36.758	0	21.364 33.302	3.493	3.616	0.785	99.318	2.9737 0 2.0372 2.2532 0.2394 0.4361 0.0681 8	8.0077
TS23360-g(3-1-3	36.789	0	21.498 33.854	3.452	3.616	0.696	99.905		8.0157
TS2336b-ot3-1-5	36 734	0	21.278 33.469	3.203	3,000	0.719	99.130 99.408		5.0078 B 0178
TS2336b-at3-1-6	36.964	ō	21.347 33.421	3.407	3.719	0.729	99.587	2,9803 0 2,0287 2,2536 0,2327 0,447 0,063	8.0053
TS2336b-gl3-1-7	37.2	0	21.391 33.567	3,307	3.681	0.716	99.862	2.989 0 2.0259 2.2556 0.2251 0.4408 0.0616	7.998
TS2336b-gt3-2-1	37.119	0	21.502 33.419	3.163	3.939	0.718	99.86	2.979 0 2.034 2.243 0.215 0.4713 0.0617 8	B.0041
TS2336b-gt3-2-2	36.9	0	21.372 33.581	3.213	3.923	0.693	99.682	2.9721 0 2.029 2.2621 0.2192 0.471 0.0598 8	3.0132
TS2336b-gt3-2-3	37.105	0.033	21.56 33.431	3.345	3.978	0.741	100.193	2.9705 0.002 2.0344 2.2383 0.2268 0.4747 0.0636 E	3.0103
TS2336b-gl3-2-4	37.007	0	21.396 33.405	3.27	3.896	0.7	99.674	2.9783 0 2.0296 2.2484 0.2229 0.4674 0.0604	8.007
1 S2336b-gt3-2-5	37.115	0.028	21.306 33.329	3.205	3.909	0.693	99.585	2.9871 0.0017 2.0212 2.2434 0.2185 0.469 0.0597 8	3.0006
TS23360-gl3-2-0	36.974	0.024	21.423 33.355	3.281	3.928	0.74	99.720	2.9741 0.0015 2.0311 2.2439 0.2235 0.471 0.0637 8	3.0088
TS2336h-ol3-2-8	36,899	0.020	21.504 33.33	3 229	3. 3 94 4.014	0.754	99.727	2,965 0 2,0299 2,2631 0,2198 0,4808 0,0615 8	3.0131
TS2336b-at3-2-9	36.762	0.028	21.508 33.04	3.302	3.87	0.699	99.209	2,9699 0.0017 2.048 2.2323 0.2259 0.466 0.0605 8	3.0043
TS0032bgt2-1-1	36.893	0	20.757 31.936	5.747	2.669	0.972	98.974	3.01 0 1.9962 2.1791 0.3971 0.3245 0.085	7.992
TS0032bgt2-12-1	36.775	0	20.786 32.364	5.73	2.907	1.052	99.614	2.9882 0 1.9908 2.1994 0.3944 0.3522 0.0916 8	3.0166
TS0032bgt2-1-3	36.99	0	20.933 32.477	5.621	2.985	1.058	100.064	2,9892 0 1,99392,1949 0,3848 0,3595 0,0916 8	3.0139
TS0032bgt2-1-4	36.874	0	20.869 32.447	5.547	3.052	1.051	99.84	2.9867 0 1.9923 2.1979 0.3806 0.3685 0.0912 8	3.0173
TS0032bgt2-1-5	36.959	0	20.876 32.417	5.479	3.134	1.063	99.928	2.9887 0 1.9899 2.1924 0.3753 0.3778 0.0921 8	3.0162
150032bgl2-1-6	37.047	0	21.024 32.501	5.466	3.236	1.069	100.343	2.9827 0 1.9952 2.1884 0.3728 0.3884 0.0922 8	3.0197
TS00320gi2-1-7	35.812	U O	20.93 32.292	5.405	3.259	1.054	99.752	2.9807 0 1.99762.18680.37070.39330.0914 8	3.0205 R 044
TS0032bgi2-1-8	36.875	0	21.400 32.219	5 349	3 275	1 143	100.393		0.011
TS0032bgt2-1-3	36.97	0	21.217.32.309	5.205	3.353	1.2	100.254	2.9741 0 2.01192.1777 0.3547 0.4021 0.1035 8	3 0201
TS0032bat2-2-1	37.007	0.067	21.106 32.041	5.158	3.389	1.102	99.87	2,9839 0.004 2.0059 2.1606 0.3523 0.4073 0.0952 8	3.0092
TS0032bgt2-2-21	37.095	0	20.884 32.096	5.228	3.292	1.133	99.728	2.9974 0 1.9891 2.169 0.3578 0.3965 0.0981 8	3.0079
TS0032bgt2-2-3	36.885	0.006	20.961 32.154	5.051	3.418	1.188	99.663	2.9831 0.0004 1.9982 2.1748 0.346 0.4121 0.1029 8	8.0175
TS0032bgt2-2-4	37.076	0	21.068 32.122	5.023	3.424	1.261	99.974	2.9865 0 2.0003 2.164 0.3427 0.4111 0.1088 8	8.0134
TS0032bgl2-2-5	37.014	0.041	21.082 31.828	4.983	3.484	1.308	99.74	2.9851 0.0025 2.004 2.1467 0.3404 0.4188 0.113 8	3.0105
TS0032bgt2-2-6	37.365	0.029	21.247 32.11	5.138	3.474	1.338	100.701	2.9861 0.0017 2.0014 2.1461 0.3478 0.4138 0.1145 8	0114
1 S0032bgt2-2-7	37.252	0	21.124 31.899	5.017	3.489	1.436	100.217	2.9897 0 1.9983 2.1411 0.3411 0.4175 0.1235 B	3.0112
1 SUU320gt2-2-8	37.103	0 :	21,18931,779	5.138 4 016	3.4/2	1.513	100.194	2.9802 0 2.0061 2.1348 0.3495 0.4158 0.1302 8	0167
TS00320912-2-9	37 277	0.003	21.203 31.923	4.910 5.036	3.535	1.502	100.193	2,9709 0,0002 2,0074 2,1442 0,3343 0,4130 0,1362 8	8.0173
TS0032hat2-3-1	36,933	0	20.928 31 243	5.026	3.559	1.389	99,078	2,9936 0 1,9994 2,1179 0,345 0,42 10 0,135 0 2,9936 0 1,9994 2,1179 0,345 0,43 0,1206 8	1.0065
TS0032bqt2-3-2	36,769	0.01	21.178 31.218	5.087	3,52	1,322	99.104	2.9797 0.0006 2.0229 2.1158 0.3492 0.4252 0.1148 8	.0082
TS0032bgt2-3-3	36.805	0	21.123 31.316	5.167	3.558	1.329	99.298	2.9791 0 2.0153 2.1199 0.3543 0.4293 0.1153 8	.0132
TS0032bgt2-3-4	30.87	0	22.076 28.587	4.897	2.814	1.286	90.53	2.7563 0 2.3233 2.1347 0.3704 0.3745 0.123 8	.0822

Weight p	ercent oxide	Cation percentage	
Analysis	SiO₂ TiO₂ Al₂O₃ FeO MnO MgO CaO Total	Si Ti Al Fe Mn Mg Ca Tota	al
TS0032bgl2-3-	5 36.681 0 21.051 30.724 5.277 3.499 1.412 98.644	2.9847 0 2.019 2.0908 0.3637 0.4244 0.1231 8.005	57
TS0032bgl2-3-	5 37.423 0.019 21.314 31.699 5.298 3.588 1.237 100.578	2.9892 0.0012 2.0067 2.1176 0.3585 0.4273 0.1059 8.006	55
TS0032bgl2-3-	7 36.998 0 21.091 31.335 5.381 3.516 1.352 99.673	2,9849 0 2,0057 2,1143 0,3677 0,4228 0,1168 8,012	22
TS0032bgt2-3-4	8 36.994 0 20.849 31.526 5.355 3.515 1.289 99.528	2,992 0 1,9876 2,1324 0,3668 0,4237 0,1117 8,014	92 26
TS0032bgi2-4-	1 37.200 0.047 20.84 31.291 5.309 3.358 1.444 99.495	2 9834 0 1 995 2 1463 0 3629 0 4165 0 1152 8 019	30
TS21330(1-1-1	37 156 0 21 223 32 497 1 441 4 929 1 269 98 515	2,9936 0 2,0155,2,1897,0,0983,0,592,0,1095 7,998	37
TS2133gt1-1-2	37.477 0 21.414 32.416 1.397 5.172 1.283 99.159	2,9943 0 2,0166 2,166 0,0946 0,616 0,1098 7,997	73
TS2133qt1-1-3	37,253 0 21,282 32,345 1,375 5,281 1,233 98,769	2,9893 0 2.0129 2.1707 0.0934 0.6317 0.106 8.004	\$1
TS2133gt1-1-4	37,568 0 21,514 32,343 1,305 5,348 1,288 99,366	2.9918 0 2.0195 2.1541 0.088 0.6349 0.1099 7.998	33
TS2133g(1-1-5	37.619 0 21.495 32.372 1.292 5.422 1.262 99.462	2,9926 0 2.0155 2.1538 0.0871 0.643 0.1076 7.999	97
TS2133gt1-2-1	37.572 0 21.462 32.764 1.215 5.771 1.737 100.521	2,9665 0 1,9974 2,1635 0,0813 0,6793 0,147 8,03	5
TS2133gt1-2-2	37.062 0 21.252 32.154 1.174 5.921 1.69 99.253	2.9606 0 2.001 2.1482 0.0795 0.705 0.1447 8.03	9
TS2133gt1-2-3	37.363 0 21.462 32.155 1.19 5.867 1.702 99.739	2,9665 0 2.0085 2.1351 0.08 0.6944 0.1448 8.029	93
TS2133gt1-2-4	37.083 0 21.282 32.15 1.131 6.018 1.722 99.386	2,9576 0 2.0007 2.1446 0.0764 0.7155 0.1472 8.043	2
TS2133gt1-2-5	37.26 0 21.191 32.155 1.142 5.998 1.75 99.496	2.96/7 0 1.9895 2.1419 0.077 0.7121 0.1494 8.037	ъ •
TS2133gt1-2-6	37.575 0 21.289 32.11 1.229 5.996 1.678 99.877		13
TS2133g(1-2-7	37 578 0 21 533 31 857 1 143 6 003 1 784 99 887		16
TS2133011-2-9	37 823 0 21 438 31 881 1 192 6 033 1 75 100 117	2 9843 0 1.9937 2.1037 0.0797 0.7096 0.148 8.019	9
TS2133ot1-2-10	37.944 0 21.51 31.723 1.149 6.1 1.73 100.156	2,9883 0 1,9968 2,0895 0,0767 0,7162 0,146 8,013	5
TS2133gt1-3-1	37.898 0 21.135 32.04 1.12 6.239 1.816 100.248	2.9889 0 1.9647 2.1133 0.0748 0.7335 0.1535 8.028	17
TS2133gt1-3-2	37.858 0 20.698 31.582 1.144 6.195 1.869 99.346	3.01 0 1.9397 2.1 0.0771 0.7342 0.1592 8.020	2
TS2133gt1-3-3	37.957 0 20.844 31.432 1.204 6.31 1.838 99.585	3.0075 0 1.9466 2.0829 0.0808 0.7453 0.1561 8.019	2
TS2133gt1-3-4	37.781 0 20.905 31.437 1.185 6.312 1.754 99.374	3.0003 0 1.9568 2.0879 0.0797 0.7472 0.1493 8.021	2
TS2133gt1-3-5	38.031 0 20.887 31.284 1.185 6.336 1.882 99.605	3.01 0 1.9485 2.0707 0.0794 0.7475 0.1596 8.015	7
TS2133gt1-3-6	37.556 0 21.503 31.253 1.214 6.151 1.791 99.468	2.977 0 2.0091 2.0718 0.0815 0.7269 0.1522 8.018	5
TS2133gt1-3-7	37.716 0.011 21.842 31.561 1.251 6.162 1.79 100.333	2,9654 0,0007 2,0242 2,0753 0,0833 0,7222 0,1508 8,021	9
TS2133gt1-3-8	37.854 0 21.631 31.466 1.298 6.151 1.896 100.296	2.9773 0 2.0054 2.0698 0.0865 0.7212 0.1598 8.02	~
TS2133gt1-3-9	37.411 0 21.441 31.388 1.29 6.241 1.826 99.597	2,9665 0 2,004 2,0816 0,0866 0,7377 0,1552 8,031	0
TS2133g(1-3-10	37.641 U 21.465 31.507 1.317 6.225 1.923 100,078		4
TS2133g(1-4-1 TS2133g(1-4-2	37 849 0 21 167 31 555 1 668 5 789 1 963 99 991	2 9948 0 1 9741 2 0881 0 1118 0 6829 0 1664 8 018	1
TS2133ot1-4-3	37.779 0 21 237 31 441 1 765 5 691 1 918 99 831	2.9937 0 1.9836 2.0837 0.1184 0.6723 0.1629 8.014	6
TS2133gt1-4-4	37.596 0 21.193 31.436 1.795 5.508 2.042 99.57	2.9903 0 1.9869 2.0911 0.1209 0.6531 0.1741 8.016	4
TS2133gt1-14-5	37.812 0 21.031 31.692 1.867 5.528 1.897 99.827	3.0016 0 1.9678 2.104 0.1255 0.6542 0.1614 8.014	6
TS2133gt1-4-6	37.813 0.007 21.426 31.732 1.874 5.308 1.775 99.935	2.9959 0.0004 2.0009 2.1026 0.1258 0.6269 0.1507 8.003	2
TS2133gt1-4-7	37.749 0.01 21.47 31.596 1.991 5.194 1.734 99.744	2.9962 0.0006 2.0087 2.0974 0.1338 0.6146 0.1475 7.9988	8
TS2133gt1-4-8	37.735 0.054 21.155 31.722 2.052 5.111 1.785 99.614	3.0037 0.0032 1.9849 2.1118 0.1383 0.6065 0.1523 8.000	7
TS2133gt1-4-10	37.566 0.065 21.093 31.767 2.09 5.06 1.864 99.505	2,9973 0,0039 1,9837 2,1197 0,1413 0,6018 0,1594 8,0071	1
TS2133gt1-4-12	37,409 0.044 21,252 30,987 1,978 5,205 1,978 90,653	2 9955 0 0052 1 9916 2 0889 0 1346 0 6178 0 1679 8 0026	, 6
TS2133g(1-4-13	37 801 0 048 21 404 31 404 2 104 5 177 1 979 99 917	2,9961 0,0028 1,9996 2,0817 0,1413 0,6117 0,1681 8,0013	3
TS2133at1-4-15	37.58 0.007 21.388 31.218 2.153 5.2 2.137 99.683	2,9873 0,0004 2,004 2,0754 0,145 0,6162 0,182 8,0103	3
TS2133gt1-4-15	37.671 0.081 21.244 31.437 2.192 5.178 2.158 99.961	2.9897 0.0049 1.9872 2.0866 0.1474 0.6126 0.1835 8.0119	Э
TS2133gt1-4-16	37.692 0 21.255 31.914 2.563 5.068 2.08 100.592	2.9828 0 1.9826 2.1122 0.1718 0.6002 0.1764 8.026	
TS2133gt1-5-1	37.304 0 21.429 31.673 2.515 5.039 2.03 99.99	2,9685 0 2.0099 2.1079 0.1695 0.5977 0.1731 8.0266	3
TS2133gt1-5-2	37.618 0 21.169 31.524 2.609 5.068 2.112 100.1	2.9884 0 1.9822 2.0944 0.1756 0.6002 0.1797 8.0205	5
TS2133gt1-5-3	37.557 0 21.243 31.605 2.627 5.004 1.983 100.019	2.9864 0 1.991 2.1017 0.177 0.5932 0.1689 8.0182	2
TS2133gt1-5-4	37.528 0 21.326 31.434 2.558 5.134 2.023 100.003		5
TS2133g[1-5-5	37.761 0 21.059 31.384 2.415 5.228 2.014 99.872	3,0003 0 1,97332,00360,16260,01930,1713 6,0126	, ,
TS2133g(1-5-0	37 592 0 21 217 31 682 2 238 5 534 1 833 100 096	2 9815 0 1 9834 2 1015 0 1504 0 6543 0 1557 8 0268	3
TS2133gt1-5-8	37.448 0 21.245.31.412 2.277 5.432 1.884 99.698	2,9805 0 1,993 2,0909 0,1535 0,6445 0,1606 8,023	-
TS4085at2-1-1	36.935 0 20.598 32.585 5.43 2.571 1.093 99.212	3.0122 0 1.98 2.2225 0.3751 0.3125 0.0955 7.9979	•
TS4085gt2-1-2	36.507 0 20,816 32,826 5,227 2,553 1,123 99,052	2.9862 0 2.0069 2.2455 0.3621 0.3112 0.0984 8.0103	3
TS4085gt2-1-3	36.889 0 20.95 32.962 5.071 2.696 1.103 99.671	2.9934 0 2.0038 2.237 0.3486 0.3261 0.0959 8.0048	3
TS4085gt2-1-4	36.943 0 21.044 33.172 4.959 2.697 1.168 99.983	2.9891 0 2.007 2.2447 0.3399 0.3254 0.1013 8.0074	1
TS4085gt2-1-5	37.07 0 21.082 33.127 4.772 2.871 1.226 100.148	2,9904 0 2.0046 2.2349 0.3261 0.3453 0.106 8.0073	3
TS4085gt2-1-6	36.852 0 21.12 32.913 4.681 2.928 1.206 99.7	2,9841 0 2.0158 2.2289 0.3211 0.3535 0.1047 8.0082	2
TS4085gl2-1-7	36.439 0.022 20.867 32.502 4.925 2.868 1.288 98.911	2.9784 0.0014 2.0103 2.2217 0.341 0.3495 0.1128 8.0151	
1 S4085gt2-1-8	36.717 0 20.919 32.829 4.899 2.924 1.237 99.525	2,9029 0 2,0031 2,2300 0,3371 0,3541 0,1077 8,0154 2,0874 0,0000 2,0097 2,2174 0,2239 0,3582, 0,105 8,0053	;)
134085g[2-1-9 TS4085-12-1-40	30.034 0.047 21.036 32.712 4.718 2.965 1.221 99.553	2,9071 0,0029 2,0097 2,2174 0,3239 0,3562 0,100 8,0002 2,9791 0,0026 1,993 2,2246 0,3263 0,3632 0,1131 8,0210	
T\$4085nt2-2-1	36.973 0 20.872 32 956 4 755 3 028 1 16 99 744	2.9939 0 1.9921 2.2318 0.3261 0.3655 0.1006 8.01	
TS4085at2-2-2	36,811 0.009 20,945 32,415 4,731 3,034 1,187 99,132	2,9932 0,0006 2,0074 2,2043 0,3259 0,3677 0,1034 8,0025	i
TS4085gt2-2-3	36.924 0.02 20.98 32.586 4.76 3.045 1.296 99.611	2.9901 0.0012 2.0026 2.2069 0.3265 0.3676 0.1124 8.0073	
TS4085gt2-2-4	36.85 0 20.869 32.552 4.735 3.08 1.273 99.359	2.9921 0 1.9973 2.2105 0.3257 0.3728 0.1108 8.0092	
TS4085gt2-2-5	36.934 0.007 20.854 32.549 4.677 3.067 1.274 99.362	2.9973 0.0004 1.9948 2.2091 0.3215 0.371 0.1108 8.0049	
TS4085gt2-2-6	36.881 0 21.045 32.54 4.748 3.16 1.241 99.615	2.9854 0 2.0079 2.2029 0.3255 0.3813 0.1077 8.0107	
TS4085gt2-2-7	36.947 0 20.697 32.352 4.71 3.1 1.186 98.992	3.0074 0 1.9857 2.2024 0.3248 0.3761 0.1034 7.9999	
TS4085gt2-2-8	36.908 0 20.772 32.528 4.761 3.137 1.167 99.273	2,9985 0 1,9891 2,2101 0,3277 0,3799 0,1016 8,0069	

Weight per	rcent oxi	de			Cation percentage	
Analysis	SiO₂ TiC	2 Al ₂ O3 FeO MnO I	MgO CaO	Total	Si Ti Al Fe Mn Mg Ca	Total
TS4085gl2-2-9	36.893 0.00	1 20.762 32.673 4.72 3	3.153 1.154	99.356	2.9963 0.0001 1.9876 2.2193 0.3247 0.3817 0.1004	8.0101
TS4085gl2-2-10	36.725 0	20.732 32.51 4.644 3	3.095 1.158	98.864	2.9963 0 1.9937 2.2183 0.321 0.3764 0.1012	8.0069
1 S4085gt2-3-1	36.831 0	20.694 32.51 4.698 3	3.146 1.06/	98,946	3.0015 0 1.9877 2.2157 0.3243 0.3822 0.0932	8.0046
TS1026ot1-1-1	36.911 0.08	2 20.948 32.39 4.381 3	2.208 1.039	98 567	3 0158 0 005 2 0347 2 1882 0 3584 0 2689 0 091	7 962
TS1026at1-1-2	36.716 0	21.053 32.49 5.035 2	2.469 0.936	98.699	3.0018 0 2.0288 2.2215 0.3487 0.3009 0.082	7 9838
TS1026gt1-1-3	37.05 0.03	4 21.237 32.794 4.832	2.55 0.988	99.485	3.0024 0.0021 2.0285 2.2226 0.3317 0.3081 0.0858	7.9812
TS1026gt1-1-4	36.841 0	21.132 32.723 4.794 2	2.701 1.016	99.207	2.9955 0 2.0252 2.2252 0.3302 0.3274 0.0886	7.9921
TS1026gt1-1-5	36.883 0	20.796 33.507 4.902 2	2.761 0.874	99.723	2.9953 0 1.9906 2.2758 0.3372 0.3343 0.0761	8.0093
TS1026gt1-1-6	36.997 0	20.57 33.723 4.792 2	2.841 0.953	99.876	3.0022 0 1.9675 2.2886 0.3293 0.3437 0.0828	8.0141
TS1026gt1-1-7	36.987 0.01	7 20.69 33.57 4.794 2	2.845 0.916	99.819	3.0002 0.001 1.9781 2.2773 0.3294 0.344 0.0796	8.0096
TS1026gt1-1-8	37,207 0	20.83 33.599 4.735	2.92 0.994	100.285	3.0012 0 1.9804 2.2666 0.3235 0.3511 0.0859	8.0087
TS1026g(1-1-9	37.232 0.05	3 20.09 33.58 4.669 2	2.962 0.937	100,123	3.007 0.0032 1.9696 2.2681 0.3194 0.3566 0.0811	8,005
TS1026011-2-1	37 164 0.00	8 21 269 33 278 4 652 3	3 026 0 865	100.412		8.0078 8.0012
TS1026gt1-2-2	37.222 0	21.133 33.415 4.584 3	3.147 0.905	100.406	2.9918 0 2.0021 2.2462 0.3121 0.3771 0.078	8 0073
TS1026gt1-2-3	37.106 0.00	1 21.255 33.409 4.43 3	3.122 0.903	100.226	2.9862 0.0001 2.0162 2.2487 0.302 0.3746 0.0779	8.0057
TS1026gt1-2-4	37.166 0	21.068 33.267 4.564 3	3.168 0.968	100.201	2.9926 0 1.9996 2.2402 0.3113 0.3803 0.0836	8,0076
TS1026gl1-2-5	37.087 0.00	4 21.257 33.266 4.491 2	2.973 0.944	100.022	2.9903 0.0002 2.0202 2.2432 0.3067 0.3573 0.0816	7.9996
TS1026gl1-2-6	37.223 0	21.372 33.524 4.519 3	3.046 0.982	100.666	2.984 0 2.0195 2.2476 0.3068 0.364 0.0844	8.0063
TS1026gt1-2-7	37.193 0.01	2 21.336 33.491 4.485 3	3.009 0.919	100.445	2.9873 0.0007 2.0199 2.2496 0.3051 0.3603 0.0791	8.0021
TS1026gt1-2-8	37.282 0	21.336 33.558 4.418 3	3.068 0.904	100.566	2.9898 0 2.0168 2.2507 0.3001 0.3667 0.0776	8.0017
TS1026gt1-2-9	37.196 0.04	2 21.311 33.69 4.564 3	3.088 0.915	100.806	2,9804 0.0026 2.0128 2.2577 0.3098 0.3688 0.0785	8.0106
TS1026g(1-2-10 TS1026g(1-3-1	36 715 0 03	J 21.120 JJ.107 4.102 J 1 21 099 33 413 4 13 3	0.077 0.948 0.06 0.952	99.529	2,9949 0,0002 2,0155 2,2464 0,2867 0,3712 0,0822	7,9971
TS1026011-3-2	36.87 0.04	8 21.202 33 466 4 247 2	982 0.931	99 746	2 9828 0 0029 2 0218 2 2644 0 291 0 3597 0 0807	8.0072 8.0034
TS1181at1-1-1	37.011 0	20.554 30.085 6.417 0	0.862 4.627	99.556	3.0171 0 1.975 2.0511 0 4431 0 1048 0 4042	7 9953
TS1181gt1-1-2	36.771 0.00	6 20.478 30.801 5.871 1	1.003 4.708	99.638	3.0011 0.0003 1.97 2.1024 0.4059 0.122 0.4118	8.0135
TS1181gt1-1-3	36.882 0.00	6 20.559 30.958 5.4 1	1.067 4.601	99.473	3.0085 0.0004 1.9767 2.112 0.3731 0.1298 0.4021	8.0026
TS1181gl1-1-4	36.753 0	20.241 31.344 5.062 1	1.157 4.672	99.229	3.0099 0 1.9539 2.1468 0.3512 0.1413 0.41	8.0131
T\$1181gt1-1-5	36.721 0	20.59 31.345 5.004	1.23 4.714	99.604	2.9939 0 1.9787 2.1373 0.3456 0.1494 0.4119	8.0168
TS1181gt1-1-6	37.122 0	20.533 31.545 4.709 1	1.346 4.891	100,146	3.0065 0 1.9601 2.1367 0.3231 0.1625 0.4245	8.0134
TS1181gi1-1-7	37.129 0	20.575 31.847 4.634 1	.407 4.912	100.504	2.9992 0 1.959 2.1515 0.3171 0.1695 0.4251	8.0215
1S1181g(3-1-8	37.115 0	20,542,31,923, 4,47, 1	402 4 905	100.239	3.0046 0 1.9601 2.1612 0.3065 0.1645 0.4184	8.0154
TS1181at1-1-10	36.849 0	20.47931.002 4.001 1	416 4 926	99.000	2 9942 0 1 9686 2 1571 0 3013 0 1715 0 4288	8.0185
TS1181at1-2-1	36.726 0.03	5 20.579 31.884 4.629 1	.381 4.822	100.057	2,9838 0,0022 1,9706 2,1664 0,3186 0,1673 0,4198	8.0210
TS1181gt1-2-2	36.732 0	20.564 31.815 4.668 1	.359 4.757	99.895	2.9882 0 1.9719 2.1646 0.3217 0.1648 0.4146	8.0258
TS1181gt1-2-3	36.823 0	20.649 31.955 4.606 1	.343 4.44	99,816	2.995 0 1.9796 2.1736 0.3173 0.1628 0.3869	8.0152
TS1181gl1-2-4	36.596 0	20.691 32.032 4.871 1	.422 4.251	99.863	2.9801 0 1.986 2.1815 0.336 0.1726 0.371	8.0273
TS1181gt1-2-5	35.577 0	20.342 31.866 4.824 1	.279 4.134	98.022	2.9608 0 1.9954 2.2179 0.3401 0.1587 0.3686	8.0415
TS1181gt1-2-6	37.159 0	20.389 31.89 4.924 1	.362 4.225	99.949	3.0177 0 1.9517 2.1659 0.3387 0.1649 0.3676	8.0065
TS1181gl1-2-7	36.919 0.00	5 20.407 31.677 4.992 1	.361 4.178	99.54	3.0106 0.0004 1.9615 2.1603 0.3448 0.1654 0.3651	8.0082
TS1181g(1-2-8	36.645 0.03	20.369 31.605 4.986 1	345 4.227	99.212	3.0007 0.0022 1.966 2.1644 0.3459 0.1641 0.3709	8.0142
TS1181011-2-9	36,551 0	20.0 31.700 5.00 1.	313 4.144	99.409	2,9090 0 1,9052 2,108 0,3518 0,16 0,3531	8.0177
TS1181ot1-3-1	36.528 0	20.219 31.675 4.772 1	.381 4.284	98.859	3.0026 0 1.959 2.1775 0.3322 0.1693 0.3773	8 0179
TS1181gt1-3-2	36.609 0	20.29 31.256 4.058 1.	.654 4.758	98.625	3.0042 0 1.9626 2.1451 0.2821 0.2023 0.4184	8.0147
TS1181gt1-3-3	36.77 0	20.752 31.725 3.788 1.	.673 5.066	99.774	2.9835 0 1.9847 2.1528 0.2604 0.2024 0.4405	8.0243
TS1181gt1-3-4	34,333 0	19.291 31.41 3,283 2,	.309 4.2	94,826	2.9477 0 1.9523 2.2554 0.2388 0.2956 0.3864	8.0762
TS1181gl1-3-5	36.918 0	20.566 32.073 4.115 1.	.611 4.926	100.209	2.9896 0 1.963 2.1722 0.2823 0.1945 0.4274	8.029
TS1181gt1-3-6	37.059 0.13	5 20.533 32.074 5.621 1.	.208 4.198	100.828	2.9944 0.0082 1.9556 2.1675 0.3847 0.1455 0.3634	8.0194
TS1181gt1-3-7	36.748 0.114		.137 4.093	99.905	3.0014 0.007 1.9384 2.1801 0.3987 0.1384 0.3582	8.0222
TS1181g(1-3-8	30.903 0.05	20.002 32.216 4.545 1.	439 4.032	100.296	2.9912 0.0036 1.9588 2.1839 0.3121 0.1738 0.4023	8.0257
TS1107g(1-1-2	37.006 0.01	21.151 33.891 3.667 3	665 0.844	100.234	2 9756 0 0006 2 0046 2 2791 0 2498 0 4393 0 0727	8.0240
TS1107at1-1-3	36.659 0	21.101 33.022 3.701 3.	.706 0.819	99.008	2.9768 0 2.0196 2.2426 0.2546 0.4486 0.0713	8.0135
TS1107gt1-1-4	37.257 0	21.038 33.526 3.598 3.	.702 0.8	99.921	2.9971 0 1.9948 2.2555 0.2452 0.4439 0.069	8.0055
TS1107gt1-1-5	37.102 0	21.141 33.439 3.637 3.	.734 0.885	99.938	2.9853 0 2.0049 2.2501 0.2479 0.4478 0.0763	8.0123
TS1107gt1-1-6	37.229 0	21.06 33.658 3.603 3.	.822 0.86	100.232	2.988 0 1.9924 2.2593 0.245 0.4573 0.074	8.016
TS1107gt1-1-7	37.169 0	20.938 33.466 3.661 3.	.698 0.865	99.797	2.9958 0 1.9891 2.2558 0.2499 0.4443 0.0747	8.0097
TS1107gt1-1-8	36.93 0	21,129 33.564 3.667 3.	.652 0.889	99.831	2.9784 0 2.0086 2.2639 0.2505 0.4391 0.0768	8.0173
TS1107gt1-1-9	37.537 0	21.347 33.851 3.59 3.	.729 0.921	100.975	2.9887 0 2.0034 2.2541 0.2421 0.4426 0.0786	8.0095
15110/gt1-1-10	37,288 0	∠1,073 33,845 3,56 3,	765 0.882	100,391	2.9048 0 1.9913 2.2693 0.2417 0.4474 0.0758	8.0149
TS1107011-2-1	37 46 0	21.102 33.000 3.000 3.	672 0.000	100.777	2.3340 U 1.3030 2.2397 U.2424 U.4479 0.076 2.9974 0 1.9856 2.2667 0.2464 0.429 0.076	8.0105 8.0009
T\$1107ot1-2-3	36.976 0	21.03 33.604 3.516 3	.729 0.007	99.758	2.9831 0 1.9998 2.2673 0 2402 0 4485 0 0781	8 017
TS1107at1-2-4	37.56 0	20,975 34,049 3,487 3.	,737 0.854	100.662	3.0024 0 1.9763 2.2762 0.2361 0.4453 0.0732	8.0096
TS1107gt1-2-5	37.166 0	20.959 33.831 3.614 3.	839 0.894	100.303	2.9847 0 1.984 2.2722 0.2458 0.4596 0.077	8.0233
TS1107gt1+2+6	37.17 0.013	21.034 33.914 3.434 3.	.707 0.903	100.175	2.9872 0.0008 1.9925 2.2795 0.2338 0.4441 0.0778	8.0157
TS1107gt1-2-7	37.705 0.006	20.812 33.879 3.544 3.	.811 0.9	100.657	3.0125 0.0003 1.9599 2.2637 0.2399 0.4539 0.077	8.0072
TS1107gt1-2-8	36.856 0	21.246 33.15 3.708 3.	.678 0.886	99.524	2.9768 0 2.0227 2.2392 0.2537 0.4428 0.0767	8.012

94

Weight per	cent	oxid	e				Cation percentage
Analysis	SiO ₂	TiO ₂	Al ₂ O ₃ FeO MnO	MgO	CaO	Total	Si Ti Al Fe Mn Mg Ca Total
TS1107gt1-2-9	37.397	0	21.192 33.371 3.616	3.725	0.886	100.187	2.997 0 2.0018 2.2366 0.2455 0.445 0.0761 8.002
TS1107gt1-2-10	37.305	0	21.094 33.516 3.572	3.807	0.901	100.195	2.9923 0 1.9944 2.2484 0.2427 0.4552 0.0775 8.0105
TS1107gt1-2-11	37.251	0	21.151 33.352 3.73	3.72	0.895	100.099	2.9909 0 2.0017 2.2396 0.2537 0.4452 0.077 8.0081
TS1107gt1-2-12	37.027	0	21.194 33.313 3.578	3.778	0.89	99.78	2.982 0 2.0119 2.2438 0.2441 0.4536 0.0768 8.0122
TS110/gt1-2-13	36.833	0	21.13 33.498 3.65/	3.624	0.837	99.579	2.9/7/ 0 2.0134 2.2648 0.2505 0.4367 0.0725 8.0156
TS1107gt1-2-14	37 421	0	20.767 33.763 3.557	3.591	0.864	100 189	3.0026 0 1.9732 2.2733 0.2426 0.4404 0.071 8.0079 3.0026 0 1.9925 2.2601 0.2422 0.4296 0.0743 8.0013
TS1107at1-2-16	37.377	õ	21.12 33.818 3.602	3,668	0.815	100.4	2.9948 0 1.9946 2.2661 0.2445 0.4381 0.07 8.0082
TS1107gt1-2-17	37.223	0.01	21.082 33.805 3.556	3,704	0.835	100.215	2.9891 0.0006 1.9955 2.2703 0.2419 0.4433 0.0719 8.0126
T\$1107gt1-2-18	36.79	0	20,833 33,422 3.617	3.582	0.847	99.091	2.9895 0 1.9954 2.2713 0.249 0.4339 0.0737 8.0128
TS1047gt1-1-1	37.008	0.008	20.872 34.36 3.336	3.212	0.965	99,761	2.9943 0.0005 1.9905 2.325 0.2286 0.3874 0.0837 8.01
TS1047gt1-1-2	37.063	0	20.729 34.527 3.258	3.228	0.957	99,762	3.0001 0 1.9778 2.3373 0.2234 0.3896 0.083 8.0112
IS104/gt1-1-3	37.258	0	20.738 34.6 3.208	3.291	0.99	100.085	3.0046 0 1.9712 2.3336 0.2192 0.3957 0.0856 8.0099
TS1047gt1-1-5	36 821	0	20,05 34,445 3,12	3 458	0.954	99.505	2,9909 0 1,988 2,3196 0,2136 0,4188 0,0841 8,015
TS1047gt1-1-6	37.02	0.015	20.887 34.587 3.06	3.604	0.996	100.169	2,9825 0.0009 1,9835 2,3304 0.2088 0,4328 0,086 8,025
TS1047gt1-1-7	37.282	0	21.038 34.503 3.055	3.695	0.975	100.548	2.9874 0 1.987 2.3122 0.2074 0.4413 0.0837 8.019
TS1047gt1-1-8	37.34	0	20.886 34.552 2.902	3.706	1.014	100.4	2.9957 0 1.9751 2.3183 0.1972 0.4432 0.0872 8.0167
TS1047gl1-1-9	37.267	0	21.136 34.571 2.844	3.693	0.957	100.468	2.9862 0 1.9963 2.3168 0.193 0.4412 0.0822 8.0157
TS1047gt1-1-10	36.839	0.009	20.898 33.92 2.794	3.602	0.931	98,993	2.9921 0.0006 2.0007 2.3041 0.1922 0.4361 0.081 8.0068
TS1047gt1-2-1	37.357	0	20.777 34.422 2.79	3.651	0.947	99,944	3.0074 0 1.9716 2.3176 0.1903 0.4382 0.0817 8.0059
TS1047g(1-2-2 TS1047g!1-2-3	37.423	õ	20.827 34.065 2.639	3.784	0.888	99.626	3.0143 0 1.9772 2.2946 0.1803 0.4448 0.077 7.9991
TS1047gt1-2-4	37.413	ō	20.758 34.134 2.642	3.876	0.878	99.701	3.0125 0 1.9702 2.2987 0.1802 0.4652 0.0757 8.0026
TS1047gt1-2-5	36,751	ō	20.284 33.989 2.559	3,964	0.973	98.52	3.0019 0 1.9529 2.3219 0.177 0.4827 0.0851 8.0215
TS1047gt1-2-6	37.318	0	20.46 34.3 2.504	4.007	0.933	99.522	3.0138 0 1.9476 2.3167 0.1713 0.4824 0.0808 8.0126
TS1047gt1-2-7	37.314	0	20.55 34.213 2.531	3.975	0.909	99.492	3.0129 0 1.9558 2.3104 0.1731 0.4784 0.0786 8.0092
TS1047gt1-2-8	37.33	0.001	20.371 34.296 2.571	4.019	0.898	99.486	3.0167 0.0001 1.9404 2.3179 0.176 0.4842 0.0777 8.013
TS1047gt1-2-9	37.039	0	20.729 34.269 2.501	4.107	0.912	99.557	2.9909 0 1.973 2.3143 0.1711 0.4944 0.0789 8.0226
TS1047g(1-2-10 TS1047g(1-3-1	37.090	0	20.709 33.000 2.0	4.000	0.853	99.07	3.0176 0 1.9718 2.2602 0.1762 0.4882 0.0737 7.0964
TS1047at1-3-2	36.894	ō	20.411 33.864 2.501	4.108	0.957	98.735	3.0022 0 1.9578 2.3046 0.1724 0.4984 0.0835 8.0189
TS1047gt1-3-3	37.225	ō	20.765 33.982 2.624	3.974	0.914	99.484	3.0039 0 1.975 2.2934 0.1793 0.478 0.079 8.0086
TS1047gt1-3-4	37.27	0	20.614 33,888 2.633	3.976	0.93	99.311	3.0121 0 1.9637 2.2905 0.1802 0.479 0.0806 8.0061
TS1047gt2-1-1	36,609	0	21.004 33.822 3.386	3.433	1.052	99.306	2.9733 0 2.0107 2.2973 0.233 0.4156 0.0916 8.0215
TS1047gt2-1-2	36,744	0	20.908 34.052 3.189	3,468	1.014	99.375	2.9815 0 1.9997 2.3108 0.2192 0.4194 0.0881 8.0187
TS1047gt2-1-3	36,923	0	20.71 33.976 3.331	3.423	1.04	99.403	2.9954 0 1.9804 2.3052 0.2289 0.414 0.0904 8.0143
TS1047gt2-1-4	37 091	0	20,79 34,290 3,187	3,536	0.992	99.73	3 0037 0 1 969 2 3069 0 2191 0 4269 0 0861 8 0117
TS1047gt2-1-6	36.718	0.015	20.943 34.033 3.098	3.448	0.923	99.178	2.9831 0.0009 2.0056 2.3124 0.2132 0.4176 0.0803 8.0131
TS1047gt2-1-7	36.846	0.011	20.876 34.472 3.067	3.564	1.006	99.842	2.9787 0.0007 1.9893 2.3307 0.21 0.4295 0.0872 8.0261
TS1047gt2-1-8	37.016	0	21.077 34.377 2.973	3.545	0.938	99.926	2.984 0 2.0028 2.3177 0.203 0.426 0.081 8.0145
TS1047gt2-1-9	36.887	0	21.142 34.349 2.872	3.647	0.922	99.819	2.976 0 2.0105 2.3177 0.1962 0.4386 0.0797 8.0188
TS1047gt2-1-10	37.114	0	21.053 34.429 2.989	3,676	0.965	100.226	2.9833 0 1.9946 2.3144 0.2035 0.4404 0.0831 8.0193
TS1047gt2-2-1	36.580	0	21.141 34.107 2.00	3.608	0.912	99.214	
TS1047gt2-2-2	37.005	õ	21.151 34.166 2.803	3.587	0.932	99.632	2.9865 0 2.0121 2.3061 0.1916 0.4315 0.0796 8.0074
TS1047gt2-2-4	36.938	ō	21.07 34.323 2.755	3.757	0.951	99.794	2.9791 0 2.003 2.3151 0.1882 0.4517 0.0822 8.0194
TS1047gt2-2-5	36,906	0	21.048 34.066 2.716	3.787	0.898	99.421	2.9838 0 2.0058 2.3034 0.186 0.4564 0.0778 8.0132
TS1047gt2-2-6	36.846	0	21.052 33.993 2.742	3.931	0.999	99.563	2.9755 0 2.0039 2.2959 0.1876 0.4732 0.0864 8.0225
TS1047gt2-2-7	37.194	0.029	20.995 34.47 2.622	4.044	0.92	100.274	2.9832 0.0017 1.9848 2.3122 0.1781 0.4835 0.0791 8.0226
TS1047gt2-2-8	37.032	0	21.1 34.232 2.604	4.114	0.945	100.027	2,9755 0 1,9983 2,3003 0,1772 0,4928 0,0813 8,0254
TS1047gt2-2-3	37.181	0	20.996 34.207 2.606	4.065	0.908	100.005	2.9869 0 1.9881 2.2982 0.1773 0.4868 0.0817 8.019
TS1047qt2-2-11	36.89	ō	21.142 34,064 2.544	4,002	0.97	99.612	2.9748 0 2.0096 2.2974 0.1738 0.481 0.0838 8.0204
TS1047gt2-3-1	37.274	0	21.234 34.239 2.469	4.095	0.939	100.25	2.9834 0 2.0032 2.2919 0.1674 0.4886 0.0805 8.015
TS1047gt2-3-2	37.361	0	21,169 34.216 2.491	4.087	1.014	100.338	2.9878 0 1.9954 2.2885 0.1688 0.4872 0.0869 8.0146
TS1047gt2-3-3	37.221	0	21.078 34.191 2.488	4.076	0.978	100.032	2.987 0 1.9937 2.2947 0.1691 0.4876 0.0841 8.0162
TS1047gt2-3-4	37.224	0	21.021 34.168 2.528	4.049	1.08	100.07	2.9874 0 1.9885 2.2933 0.1719 0.4844 0.0929 8.0184
1 S104/gl2-3-5	37.083	0	20.943 33.904 2.556	4.009	1.015	99.57 100.060	2,9892 0 1,9899 2,2856 0,1745 0,4889 0,0877 8,0159
TS1181012-1-1	36.832	0.017	20,402 32,611 4,816	1,283	3,913	99,874	3.0022 0.001 1.9601 2.2231 0.3325 0.1559 0.3418 8.0166
TS1181qt2-1-2	36,662	0.033	20.284 32.685 4.68	1.257	4.047	99.648	2.998 0.002 1.9551 2.2353 0.3242 0.1533 0.3546 8.0225
TS1181gl2-1-3	36,719	0.014	20.212 32.623 4.71	1.379	3.904	99.561	3.0035 0.0009 1.9487 2.2317 0.3263 0.1682 0.3421 8.0214
TS1181gl2-1-4	36,444	0	20.265 32.598 4.571	1.358	3.982	99.218	2.9925 0 1.9613 2.2385 0.318 0.1662 0.3503 8.0268
TS1181gl2-1-5	36.628	0	20.372 32.892 4.679	1.371	4.012	99.954	2.9882 0 1.959 2.2442 0.3233 0.1668 0.3507 8.0322
151181gt2-1-6	35.683	0	20,382 32,992 4,751	1,339	3.928	100.075	2.99 U 1.9582 2.249 U.328 U.1626 U.343 8.0308 2.9958 0.0006 1.9523 2.2563 0.3211 0.1654 0.3350 8.0374
TS1181nt2-1-8	36.67	0.022	20.472 33.345 4.686	1.43	3,919	99,974	2,9915 0,0014 1,9498 2,2561 0,317 0,1739 0,3426 8 0323
TS1181gt2-1-9	36.793	0.021	20.039 33.16 4.567	1.433	3.838	99.851	3.0056 0.0013 1.9295 2.2654 0.316 0.1745 0.3359 8.0282
TS1181gt2-1-10	36,546	0	19.874 33.189 4.544	1.439	3.875	99.467	3.0011 0 1.9236 2.2793 0.3161 0.1761 0.3409 8.0371
TS1181gt2-2-1	36.496	0	20.105 33.405 4.384	1.517	3.881	99,788	2.9872 0 1.9397 2.2867 0.3039 0.1851 0.3403 8.0429

95

Weight per	cent oxid	le		Cation percentage
Analysis	SiO ₂ TiO ₂	2 Al ₂ O ₃ FeO MnO MgO	CaO Total	Si Ti Al Fe Mn Mg Ca Total
TS1181gt2-2-2	36.8 0.004	4 20.011 33.377 4.368 1.55	3.988 100.098	3.0003 0.0002 1.9231 2.2759 0.3016 0.1884 0.3484 8.0379
TS1181gt2-2-3	36.429 0	20.02 32.729 4.207 1.529	4.112 99.026	2.9968 0 1.9412 2.2517 0.2931 0.1874 0.3624 8.0326
TS1181gt2-2-4	37.06 0	20.594 33.143 4.184 1.584	4.165 100.73	2.9924 0 1.96 2.2381 0.2861 0.1907 0.3603 8.0276
TS1181gt2-2-5	36.959 0.028	3 20.234 32.715 4.124 1.557	4.319 99.936	3.006 0.0017 1.9399 2.2254 0.2842 0.1888 0.3764 8.0224
TS1181gl2-2-6	36,865 0.038	3 20.614 32.878 3.986 1.607	4.485 100.473	2.9828 0.0023 1.966 2.2248 0.2732 0.1939 0.3888 8.0318
TS1181gl2-2-7	36.996 0	20.44 32.695 3.945 1.591	4.596 100.263	2.9974 0 1.952 2.2154 0.2708 0.1922 0.399 8.0268
TS1181gt2-2-8	36.478 0	19.851 31.954 3.903 1.607	4.606 98.399	3.0103 0 1.9309 2.2053 0.2728 0.1977 0.4073 8.0244
TS1181gt2-2-9	37.052 0.064	20.251 32.126 3.832 1.584	5.179 100.088	3.0035 0.0039 1.935 2.178 0.2632 0.1914 0.4498 8.0249
TS1181gl2-2-10	36.84 0.062	2 20.36 31.777 3.617 1.626	5.333 99.615	2.9961 0.0038 1.9518 2.1614 0.2492 0.1971 0.4648 8.0242
TS1181gl2-3-1	36.919 0.108	5 20.31 31.573 3.782 1.574	5.462 99.726	2.9992 0.0065 1.9448 2.1451 0.2602 0.1906 0.4754 8.0218
TS1181gt2-3-2	36.959 0.043	3 20.202 31.907 3.727 1.567	4.953 99.358	3.0133 0.0026 1.9414 2.1756 0.2574 0.1905 0.4327 8.0135
TS1181gt2-3-3	35.994 0	19,757 32,355 4,219 1,498	4.375 98.198	2.9897 0 1.9342 2.2476 0.2968 0.1855 0.3894 8.0432
TS1181gt2-3-4	36.648 0	19,669 32.431 4.157 1.493	4.493 98.891	3.0172 0 1.9087 2.233 0.2899 0.1833 0.3964 8.0285
TS1181gt2-3-5	36.823 0	19.72 32.878 4.362 1.514	4.236 99.533	3.0162 0 1.904 2.2523 0.3026 0.1849 0.3718 8.0318
TS1181gl2-3-6	36.665 0	19.834 33.076 4.449 1.446	3.991 99.461	3.0082 0 1.9181 2.2696 0.3092 0.1769 0.3509 8.0329

Appendix 1 Mineral Chemistry

Biotite Data

Weight Percent Oxide

Analysis SiO₂ TiO₂ Al₂O₃ FeO MnO MgO CaO Na₂O K₂O Cr₂O₃ Cl F Total 396-gt2-bt1-1 36.973 2.063 18.116 17.284 0.121 12.081 0.066 0.25 8.451 0.121 0 0.168 95.623 396-gl2-bl1-2 37.163 1.997 18.212 17.168 0.135 12.116 0.07 0.231 8.732 0.116 0.015 0.141 96.034 396-gt2-bt2-1 37.708 1.791 18.2 17.089 0.174 12.397 0.066 0.233 8.679 0.086 0.01 0.143 96.514 396-qt2-bt2-2 37.546 1.912 17.85 16.707 0.117 11.658 0.166 0.206 8.493 0.127 0.034 0.174 94.909 396-gt2-bt3-1 37.375 2.146 18.263 17.562 0.13 12.307 0.071 0.23 8.663 0.095 0 0.115 96.909 396-qt1-bt1-1 36.878 1.898 18.628 17.348 0.142 12.276 0.012 0.207 8.992 0.105 0 0.17 96.584 396-gt1-bt1-2 37.426 1.966 18.785 16.612 0.118 11.805 0.127 0.251 8.342 0.098 0.024 0.188 95.658 396-gt1-bt1-3 36.786 1.946 18.337 17.279 0.113 12.01 0.108 0.264 8.708 0.117 0.021 0.144 95.767 396-gt1-bt2-1 36.9 2.033 18.426 17.377 0.143 12.186 0.092 0.216 8.454 0.141 0.036 0.236 96.133 396-gt1-bt2-2 37.206 2.036 18.304 17.543 0.155 12.264 0.07 8.888 0.241 0.157 0 0.149 96.95 396-gt1-bt2-3 36.704 2.045 18.343 17.434 0.157 12.355 0.067 0.224 8.876 0.159 0.015 0.121 96.446 396-gi1-bi2-4 36.903 2.054 18.53 17.243 0.144 12.215 0.05 0.222 9.094 0.152 0.014 0.183 96.724 396-gi1-bi3-1 36.186 1.611 18.64 17.167 0.112 11.675 0.173 0.183 7.886 0,165 0.049 0.255 93.984 396-gt1-bt3-2 37.105 1.84 18.465 17.095 0.109 12.417 0.054 0.228 9.084 0.152 0.017 0.201 96.678 8.864 396-gt1-bt3-3 36.887 1.898 18.39 17.064 0.154 12.606 0.041 0.216 0,19 0.003 0.137 96.391 388-gt7-bt1-1 35.867 1.568 19.833 19.258 0.062 10.609 0.022 0.229 9.136 0.104 0.018 0.151 96.789 388-qt7-bt1-2 35.765 1.569 19.815 19.215 0.062 10.669 0.012 0.218 8.988 0.077 0 0.189 96.499 388-qt7-bt1-3 35.368 1.779 19.712 18.952 0.077 10.674 0 0.244 9.332 0.124 0.021 0.19 96.388 388-gt7-bt2-1 35.773 1.808 19.474 19.086 0.049 10.62 0.035 0.22 9.091 0.071 0.013 0.17 96.335 388-qt7-bt2-2 35.909 1.716 19.588 19.273 0.074 10.632 0.008 0.224 0.115 0 0.096 96.458 8.863 388-gt7-bt2-3 35.497 1.598 19.521 19.133 0.087 10.755 0.001 0.102 9.169 0.122 0.001 0.153 96.075 388-qt7-bt3-1 35.955 1.631 19.589 19.231 0.053 10.497 0.022 0.227 8.972 0.095 0.018 0.184 96.393 388-gi7-bi3-2 35.856 1.731 19.733 19.321 0.07 10.697 0 0.214 8.97 0.062 0 0.12 96.723 388-gt7-bt3-3 35.818 1.761 19.497 19.151 0.053 10.56 0.009 0.204 0 0.149 96.598 9.358 0.101 388-gt7-bt3-4 35.778 1.75 19.571 19.321 0.065 10.571 0 0.164 8.949 0,092 0.004 0.086 96.314 35.7 1.779 19.651 19.154 0.059 10.509 0.023 0.183 9.192 0 0.173 96.474 388-at7-bt4-1 0.124 388-gt7-bt4-2 36.092 1.456 19.626 18.819 0.081 10.675 0.009 0.194 9.102 0.088 0 0,136 96.221 388-qt7-bt4-3 35.717 1.668 19.944 19.031 0.062 10.517 0 0.243 9.239 0.104 0.004 0.141 96.61 388-gt7-bt4-4 35.781 1.503 19.77 18.635 0.083 10.487 0.047 0.212 9.199 0.07 0 0.074 95.83 613-gl6-bl1-1 36.001 1.261 19.401 18.412 0.048 11.631 0.025 0.199 0.183 95.984 8.749 0.151 0 613-gl6-bl1-2 36.578 1.456 19.582 17.843 0.048 11.532 0.046 0.262 0.149 0 0.141 96.992 9.414 613-gl6-bl1-3 36.48 1.327 19.513 17.971 0.055 11.713 0.014 0.338 8,927 0.129 0.011 0.145 96.56 613-qt6-bt1-4 36.169 1,311 19.197 18.346 0,081 11.832 0 0,368 8.69 0,126 0 0.189 96.229 613-gl6-bl2-1 35.914 1.506 19.237 18.337 0.088 11.396 0.046 0.187 9.13 0.173 0.01 0.123 96.093 613-gt6-bt2-2 36.354 1.387 19.364 18.007 0.08 11.604 0.009 0.227 9,379 0.154 0 0.165 96.661 613-gt6-bt2-3 35.46 1.568 19.185 18.514 0.114 11.297 0.082 0.301 8.889 0.087 0.007 0.145 95.586 613-gt6-bt2-4 36.093 1.725 19.308 18.475 0.089 11.438 0.008 0.337 8,908 0.044 0 0.202 96.542 613-gl6-bl3-1 35.822 1.677 19.229 18.756 0.107 11.492 0.051 0.185 9.013 0.126 0.018 0.203 96.59 613-g16-b13-2 36.484 1.72 19.317 18.368 0.083 11.515 0.037 0.333 8.933 0 0.226 97.052 0.131 613-gt6-bt3-3 35.682 1.63 18.945 18.801 0.079 11.253 0.051 0.216 9.267 0.124 0.017 0.172 96.161 613-gt6-bt4-1 36.203 1.701 19.366 18.367 0.059 11.607 0.021 0.295 9.018 0.108 0.007 0.252 96.896 613-ql6-bl4-2 36.03 1.688 19.458 18.242 0.08 11.39 0.032 0.291 9.069 0.137 0.013 0.159 96.519 613-gl6-bl4-3 35.933 1.766 19.364 18.23 0.081 11.283 0.035 0.344 8.85 0.119 0 0.159 96.097 397-gt2-bt1-1 36.409 1.982 17.192 18.504 0.202 12.189 0.029 0.262 8.883 0.191 0 0.117 95.911

Cation proportions

Ti AI Fe Mn Mg Ca Na Si K Cr CI F Total 5.495 0.2306 3.1736 2.1483 0.0152 2.6766 0.0105 0.0722 1.6023 0.0143 0 0.0791 15.5177 5.504 0.2225 3.1792 2.1265 0.017 2.675 0.0111 0.0664 1.65 0.0136 0.0039 0.0662 15.5354 5.5448 0.198 3.1546 2.1016 0.0217 2.7175 0.0104 0.0665 1.6282 0.01 0.0025 0.0665 15.5223 5.5989 0.2144 3.1375 2.0836 0.0148 2.5914 0.0265 0.0596 1.6158 0.015 0.0085 0.0822 15.4483 5.4922 0.2372 3.1633 2.1583 0.0162 2.6959 0.0112 0.0656 1.624 0.011 0 0.0533 15.5282 5,442 0,2106 3,2402 2,141 0,0177 2,7005 0,0019 0,0591 1,6929 0,0122 0 0,0792 15,5973 5.5237 0.2182 3.2679 2.0504 0.0148 2.5972 0.0201 0.0719 1.5707 0.0114 0.006 0.0876 15.4399 5.4709 0.2177 3.2145 2.1492 0.0143 2.6625 0.0171 0.076 1.6523 0.0138 0.0053 0.0678 15.5614 5.4508 0.2259 3.2083 2.1468 0.018 2.6833 0.0145 0.0619 1.5933 0.0165 0.0091 0.1101 15.5385 5.4731 0.2253 3.1737 2.1581 0.0193 2.6892 0.0111 0.0687 1.6679 0.0183 0 0.0694 15.5742 5.4342 0.2277 3.201 2.1587 0.0197 2.7269 0.0106 0.0644 1.6766 0.0186 0.0039 0.0567 15.599 5.4393 0.2276 3.2192 2.1255 0.018 2.6838 0.0079 0.0635 1.71 0.0178 0.0035 0.0853 15.6014 5.4495 0.1825 3.3088 2.1621 0.0143 2.6211 0.0279 0.0535 1.5152 0.0196 0.0125 0.1212 15.4882 5.4624 0.2038 3.2041 2.1047 0.0136 2.725 0.0084 0.0651 1.7061 0.0177 0.0042 0.0934 15.6085 5.4498 0.2109 3.2025 2.1085 0.0192 2.7764 0.0065 0.0619 1.6709 0.0221 0.0007 0.064 15.5934 5.3375 0.1755 3.4787 2.3967 0.0078 2.3535 0.0035 0.066 1.7346 0.0123 0.0046 0.0712 15.6419 5.3309 0.1758 3.4812 2.3953 0.0078 2.3706 0.0019 0.0629 1.7092 0.0091 0 0.0893 15.6341 5.2908 0.2001 3.4757 2.3711 0.0097 2.3804 0 0.0707 1.7811 0.0147 0.0053 0.0901 15.6897 5.3456 0.2032 3.43 2.3852 0.0062 2.3658 0.0055 0.0639 1.7331 0.0084 0.0032 0.0804 15.6305 5,3601 0,1926 3,4464 2,4061 0,0094 2,3658 0,0013 0,0647 1,6878 0,0136 0 0,0456 15,5934 5.327 0.1804 3.453 2.4014 0.011 2.406 0.0001 0.0297 1.7556 0.0145 0.0004 0.0724 15.6515 5.3639 0.183 3.4446 2.3994 0.0067 2.3345 0.0036 0.0658 1.7076 0.0112 0.0046 0.087 15.6119 5,339 0.1939 3.4632 2.406 0.0089 2.3742 0 0.0617 1.7041 0.0073 0 0.0563 15,6146 5.3486 0.1978 3.4317 2.3916 0.0067 2.3507 0.0014 0.0591 1.7828 0.0119 0 0.0704 15.6527 5.3539 0.1969 3.452 2.4181 0.0083 2.358 0 0.0477 1.7085 0.0108 0.0011 0.0407 15.5961 5.3315 0.1998 3.4591 2.3922 0.0075 2.3395 0.0036 0.0531 1.7514 0.0147 0 0.0817 15.6341 5.3893 0.1636 3.4543 2.3501 0.0102 2.3762 0.0014 0.056 1.734 0.0104 0 0.0644 15.61 5.3253 0.187 3.5049 2.3731 0.0078 2.3374 0 0.0703 1.7573 0.0122 0.0011 0.0666 15.6431 5.3729 0.1697 3.4992 2.3403 0.0106 2.3476 0.0075 0.0618 1.7623 0.0083 0 0.0354 15.6156 5.3683 0.1415 3.41 2.2961 0.006 2.5854 0.004 0.0576 1.6645 0.0178 0 0.0862 15.6375 5,3989 0,1616 3,4068 2,2026 0,006 2,5373 0,0072 0,0749 1,7727 0,0174 0 0,0658 15,6512 5.3987 0.1477 3.4037 2.2242 0.0069 2.584 0.0022 0.0969 1.6855 0.0151 0.0028 0.0677 15.6355 5.3783 0.1466 3.3647 2.2815 0.0103 2.6228 0 0.106 1.6486 0.0148 0 0.089 15.6627 5.3687 0.1693 3.3895 2.2926 0.0111 2.5395 0.0074 0.0542 1.7413 0.0204 0.0025 0.0582 15.6547 5.3904 0.1546 3.3843 2.233 0.0101 2.5648 0.0014 0.0652 1.7742 0.018 0 0.0774 15,6734 5,3344 0.1774 3,4019 2,3293 0,0145 2,5334 0,0133 0,0878 1,7061 0,0103 0,0018 0,0688 15,679 5.3577 0.1926 3.3783 2.2936 0.0111 2.531 0.0013 0.0971 1.687 0.0052 0 0.0951 15.65 5.3294 0.1876 3.372 2.3336 0.0135 2.5487 0.0082 0.0534 1.7107 0.0148 0.0046 0.0954 15.6719 5.3784 0.1907 3.3564 2.2646 0.0103 2.5304 0.0058 0.0951 1.68 0.0152 0 0.1056 15.6325 5.3485 0.1837 3.3471 2.3569 0.01 2.5144 0.0082 0.0626 1.7722 0.0147 0.0042 0.0817 15.7042 5.3484 0.189 3.3723 2.2693 0.0073 2.5563 0.0033 0.0844 1.6997 0.0127 0.0017 0.1177 15.6621 5,3525 0,1886 3,4072 2,2664 0,01 2,5224 0,0052 0,0837 1,7188 0,0161 0,0032 0,0745 15,6486 5,3576 0.1981 3.4032 2.2732 0.0102 2,5077 0.0057 0.0994 1,6834 0.014 0 0.0747 15,6272 5,4653 0.2237 3.0419 2.323 0.0257 2.7276 0.0047 0.0763 1.7012 0.0227 0 0.0553 15,6674

97

Appendix 1 Mineral Chemistry

Biotite Data

Weight Percent Oxide

Analysis SiO₂ TiO₂ Al₂O₃ FeO MnO MgO CaO Na₂O K₂O Cr₂O₃ Cl F Total 397-pl2-bl1-2 36.071 1.822 17.301 19.26 0.238 12.938 0.029 0.225 7.937 0.192 0.001 0.116 96.081 397-912-011-3 36.329 1.777 17.367 18.659 0.168 12.373 0.005 0.304 8.574 0.181 0 0.129 95.812 397-gt2-bt2-1 36.423 1.72 17.361 18.403 0.178 12.425 0.033 0.219 8.981 0.169 0 0.109 95.975 397-ol2-bl2-2 36.861 1.903 17.49 18.548 0.193 12.215 0.036 0.285 8.896 0.147 0.018 0.129 96.663 397-gl2-bl2-3 36.342 1.809 17.32 18.712 0.186 12.253 0 0.2 8.717 0.134 0 0.102 95.732 397-gl2-bl3-1 36.84 1.724 17.499 18.285 0.182 12.214 0.024 0.227 8,946 0.115 0.004 0.157 96.15 397-gt2-bt3-2 36.53 1.814 17.418 18.722 0.197 12.272 0.028 0.241 8.918 0.166 0.027 0.173 96.427 397-gt2-bt3-3 36.338 1.833 17.222 19 0.185 12.187 0.02 0.179 9.098 0.196 0,014 0.198 96,384 287-gt1-bt1-1 24.533 0.076 23.77 22.713 0.432 16.325 0.015 0.02 0.027 0.019 0 0 87.93 287-gt1-bt1-2 24.531 0.1 23.393 22.421 0.429 16.432 0 0.019 0.043 0.221 0.02 87.601 0 287-ot1-bt1-3 24.246 0.105 23.737 22.72 0.383 16.326 0.029 0 0.015 0 0.009 0 87.568 287-gt1-bt2-1 24.408 0.054 23.684 22.273 0.353 16.294 0 0.016 0.042 0.085 0 0 87.209 287-qt1-bt2-2 24.349 0.081 23.451 23.046 0.406 16.058 0.054 0.019 0.038 0.076 0.009 0 87.585 287-qt1-bt2-3 24,424 0.045 23,708 22,482 0.421 16,471 0.021 0 0.024 0.092 0.001 0 87.689 287-gt1-bt3-1 24.364 0.074 24.012 22.917 0.397 16.224 0.008 0 0.03 0 0 88.026 0 287-gt1-bt3-2 24.502 0.084 23.552 22.978 0.408 16.261 0.005 0 0.035 0.159 0 0.016 87.993 287-at1-bt4-1 24.38 0.052 24.053 22.955 0.425 16.29 0.004 0 0.028 0.051 0 0 88.238 287-gt1-bt4-2 24.159 0.055 23.6 22.701 0.422 16.252 0.011 0.01 0,035 0.029 0.034 0 87.3 287-gt1-bt4-3 24,485 0,064 23,927 22,595 0,411 16,352 0,01 0 0.057 0.012 0 0.04 87.936 0174-gt2-bt1-1 35.922 1.832 18.748 18.684 0.157 11.19 0.05 0.146 8.908 0.044 0 0.154 95.77 0174-gt2-bt1-2 35.76 1.737 18.976 18.528 0.128 11.183 0.016 0.167 9,088 0.067 0 0.169 95.748 0174-gt2-bt1-3 36.255 1.807 19.08 18.317 0.094 11.066 0 0.151 9,058 0.062 0 0.126 95.963 0174-gt2-bt2-1 35.97 1.85 18.859 18.366 0.14 11.148 0.001 0.198 9,191 0.073 0 0.218 95.922 0174-gt2-bt2-2 35.956 2.171 18.552 18.412 0.117 10.852 0.034 0.13 9.229 0.127 0 0.226 95.711 0174-gt2-bt2-3 35.347 1.872 18.629 18.652 0.135 11.146 0.087 0.164 8.773 0.052 0 0.168 94.954 0174-gl2-bl3-1 35.959 1.993 18.661 18.59 0.155 11.125 0.022 0.142 9.101 0.068 0.025 0.215 95.959 0174-gt2-bt3-2 35.333 1.768 18.27 20.082 0.104 11.2 0.068 0.102 8.323 0.051 0.007 0.144 95.389 0174-qt2-bt3-3 35.826 2.081 18.708 18.466 0.133 11.141 0.031 0.156 0.096 9.026 0.006 0.12 95.738 0174-gt1-bt1-1 36.17 1.644 18.891 18.301 0.143 11.086 0.024 0.125 9.357 0.037 0 0.198 95.893 0174-qt1-bt1-2 36,169 1,695 18,964 18,55 0,145 11,228 0,037 0,16 9,193 0.023 0 0.134 96.242 0174-gt1-bt1-3 36.021 1.702 18.971 18.265 0.092 11.141 0.022 0.174 9.234 0.056 0.012 0.14 95.768 0174-gt1-bt2-1 35.888 1.61 18.929 18.492 0.126 11.075 0.041 0.154 9.245 0.051 0 0.129 95.686 0174-gt1-bl2-2 36.024 1.606 18.892 18.44 0.112 11.008 0.07 0.195 9.113 0.038 0.006 0.166 95,599 0174-q1-bl2-3 35,689 1,6 18,671 18,311 0,129 11,08 0,024 0,168 9,063 0.05 0 0.15 94.872 0174-g11-b13-1 35.993 1.708 18.913 18.561 0.132 11.068 0.099 0.194 8.879 0.063 0.021 0.202 95.743 0174-qt1-bl3-2 35.34 1.851 18.61 19.042 0.146 11.206 0.04 0.137 8,491 0.006 0.163 95.008 0.046 0174-qt1-bt3-3 35.789 1.98 18.878 18.374 0.124 11.009 0.041 0.15 8.994 0.061 0.01 0.151 95.495 0174-gt3-bt1-1 35.973 1.736 19.035 18.676 0.126 10.924 0.029 0.198 9.235 0.081 0 0.217 96.139 0174-gt3-bt1-2 34.001 1.631 18.418 22.107 0.099 10.975 0.097 0.121 7.844 0.051 0.01 0.221 95.48 0174-013-011-3 35,777 2,051 18,925 18,818 0,17 10,877 0,035 0,146 8,811 0.083 0 0.161 95.786 0174-gl3-bl2-1 36.047 1.733 19.017 18.604 0.145 11.094 0.073 0.195 9.01 0.068 0.23 96.119 0 0174-gt3-bt2-2 36.079 1.814 19.017 18.879 0.156 11.035 0.022 0.196 9.182 0.063 0.004 0.183 96.552 0174-ot3-bt2-3 35.423 1.9 18.943 18.835 0.097 11.009 0.011 0.107 8.934 0.087 0.003 0.141 95.43 0174-gl3-bl3-1 36.193 1.865 18.777 18.563 0.162 11.151 0.003 0.148 9.357 0.025 0.004 0.199 96.362 0174-gl3-bl3-2 35.885 2.033 18.605 18.727 0.144 11.04 0.005 0.189 9,19 0.009 0.01 0.14 95.916 0174-gl3-bl3-3 35.926 1.833 18.585 18.656 0.146 11.149 0.022 0.158 9.064 0.083 0.017 0.149 95.721

Cation proportions

Si Ti Al Fe Mn Mg Ca Na K Cr Cl F Total 5,3993 0,2051 3,0525 2,411 0,0302 2,8869 0,0046 0,0652 1,5158 0,0227 0,0004 0,0549 15,6487 5.4511 0.2006 3.0715 2.3415 0.0214 2.7675 0.0007 0.0883 1.6413 0.0215 0 0.0612 15.6666 5.4617 0.1939 3.0685 2.3079 0.0226 2.7775 0.0054 0.0636 1.7182 0.02 0 0.0517 15.6911 5.4794 0.2128 3.0645 2.3059 0.0243 2.7068 0.0057 0.0823 1.6872 0.0173 0.0046 0.0608 15.6517 5.4637 0.2045 3.0692 2.3527 0.0236 2.746 0 0.0584 1.672 0.0159 0 0.0485 15.6546 5.4962 0.1935 3.0772 2.2815 0.023 2.7165 0.0039 0.0656 1.7029 0.0135 0.0011 0.0743 15.6492 5.4507 0.2035 3.0633 2.3363 0.0249 2.7297 0.0044 0.0696 1.6976 0.0196 0.0067 0.0815 15.6878 5.4393 0.2064 3.0385 2.3785 0.0234 2.7193 0.0031 0.0519 1.7375 0.0232 0.0036 0.0936 15.7183 3.9985 0.0094 4.5666 3.0961 0.0596 3.9664 0.0027 0.0063 0.0057 0.0025 0 0 157138 4.011 0.0123 4.5084 3.0659 0.0594 4.005 0 0.0059 0.0089 0.0286 0 0.0104 15.7158 3.9708 0.0129 4.582 3.1119 0.0531 3.9856 0.0051 0 0.0032 0 0.0024 0 15.727 4.0034 0.0066 4.5789 3.0552 0.0491 3.984 0 0.005 0.0087 0.011 0 O 15.702 3.9964 0.01 4.5367 3.1634 0.0564 3.9289 0.0094 0.0059 0.0079 0.0099 0.0024 0 15.7273 3.9893 0.0055 4.5642 3.071 0.0583 4.0103 0.0037 0 0.005 0.0119 0.0004 0 15.7197 3.9702 0.009 4.612 3.1232 0.0548 3.941 0.0014 0 0.0063 0 15.7179 0 0 3.9978 0.0103 4.5293 3.1354 0.0563 3.9549 0.0009 0 0.0073 0.0205 0 0.008 15.7207 3.9645 0.0063 4.6104 3.1219 0.0586 3.9489 0.0006 0 0.0058 0.0065 0 0 15,7236 3.9714 0.0069 4.5728 3.121 0.0587 3.9824 0.0019 0.0032 0.0074 0.0038 0.0095 0 15,739 3.9849 0.0078 4.5898 3.0754 0.0567 3.9671 0.0017 0 0.0118 0.0016 0 0.0207 15.7175 5.3907 0.2067 3.3161 2.3449 0.0199 2.5031 0.0081 0.0426 1.7054 0.0052 0 0.0732 15.6159 5.3685 0.1961 3.3577 2.3262 0.0163 2.5027 0.0026 0.0487 1.7405 0.0079 0 0.0802 15.6475 5.4166 0.203 3.36 2.2887 0.0118 2.4646 0 0.0439 1.7265 0.0073 0 0.0597 15.5821 5.3835 0.2082 3.3268 2.2989 0.0177 2.4872 0.0001 0.0573 1.755 0.0087 0 0.1032 15.6467 5.3971 0.2451 3.2823 2.3113 0.0149 2.4281 0.0054 0.0378 1.7673 0.0151 0 0.1072 15.6117 5.3551 0.2133 3.3266 2.3633 0.0173 2.5173 0.0141 0.048 1.6956 0.0062 0 0.0803 15.6371 5.3838 0.2244 3.2932 2.3277 0.0197 2.483 0.0036 0.0413 1.7385 0.008 0.0063 0.1016 15.6311 5.3529 0.2014 3.2626 2.5444 0.0133 2.5294 0.0111 0.0299 1.6088 0.0061 0.0018 0.069 15.6307 5.3812 0.2351 3.3122 2.3196 0.017 2.4945 0.0049 0.0455 1.7297 0.0114 0.0014 0.0568 15.6093 5.4149 0.1851 3.3336 2.2914 0.0181 2.474 0.0039 0.0363 1.7872 0.0044 0 0.0939 15.6428 5.402 0.1904 3.3385 2.317 0.0183 2.4999 0.006 0.0463 1.7517 0.0027 0 0.0634 15,6363 5.4013 0.1919 3.353 2.2905 0.0116 2.4904 0.0036 0.0505 1.7666 0.0067 0.0032 0.0662 15.6355 5.3965 0.182 3.3549 2.3255 0.0161 2.4825 0.0066 0.045 1.7736 0.0061 0 0.0613 15.6501 5.4116 0.1814 3.3451 2.3167 0.0143 2.4651 0.0113 0.0567 1.7465 0.0046 0.0014 0.0789 15.6336 5.4059 0.1823 3.3335 2.3196 0.0165 2.5018 0.004 0.0494 1.7513 0.006 0 0.0721 15.6424 5.3929 0.1924 3.3401 2.3258 0.0168 2.472 0.0159 0.0563 1.6973 0.0074 0.0053 0.0956 15.6178 5.3512 0.2107 3.3214 2.4114 0.0188 2.5294 0.0065 0.0404 1.6402 0.0054 0.0014 0.0782 15.615 5.3815 0.2239 3.3459 2.3106 0.0157 2.4677 0.0066 0.0439 1.7255 0.0072 0.0025 0.0719 15.6029 5.3794 0.1952 3.3551 2.3358 0.0159 2.4352 0.0046 0.0574 1.762 0.0096 0 0.1027 15.6529 5.1963 0.1874 3.3178 2.8256 0.0128 2.5004 0.0158 0.0359 1.5294 0.0062 0.0025 0.1068 15.7369 5.369 0.2315 3.3474 2.3617 0.0216 2.4332 0.0056 0.0424 1.6869 0.0098 0 0.0764 15.5855 5.3814 0.1946 3.3463 2.3228 0.0184 2.4688 0.0117 0.0566 1.7161 0.0081 0 0.1085 15.6334 5.3773 0.2033 3.3408 2.3532 0.0197 2.4516 0.0035 0.0566 1.7459 0.0075 0.0011 0.0862 15.6467 5.3447 0.2156 3.3688 2.3768 0.0124 2.4761 0.0017 0.0312 1.7198 0.0104 0.0007 0.0675 15.6257 5.3998 0.2093 3.3021 2.3162 0.0205 2.4801 0.0004 0.0428 1.7811 0.0029 0.0011 0.094 15.6503 5.3894 0.2296 3.2935 2.3522 0.0183 2.4718 0.0008 0.055 1.7609 0.0011 0.0025 0.0665 15.6417 5,3996 0,2073 3,2926 2,3451 0,0186 2,4981 0,0035 0,0461 1,7381 0,0098 0,0043 0,071 15,6342
Biotite Data

Weight Percent Oxide

SiO₂ TiO₂ Al₂O₃ FeO MnO MgO CaO Na₂O K₂O Cr₂O₃ Cl F Total Analysis 2236bg11-bl1-1 31.633 1.855 18.786 21.055 0.159 13.729 0.185 0.174 3.573 0.087 0.045 0.188 91.38 2236bqt1-bt1-2 35,233 2,092 18,848 19,102 0,061 10,48 0,039 0,323 8,492 0,076 0,029 0,182 94,873 2236bgt1-bt1-3 33.685 1.868 18.82 19.276 0.133 12.229 0.048 0.227 6.039 0.112 0.001 0.143 92.521 2236bgt1-bl2-1 26.379 0.058 21,415 27.119 0.275 13.546 0.064 0 0.055 0.07 0.013 0.032 89.01 2236bot1-bt2-2 31.909 1.469 19.16 20.682 0.149 13.732 0.243 0.141 3.894 0.101 0.007 0.125 91.557 2236bqt1-bl2-3 32.174 1.834 18.948 21.887 0.122 12.118 0.038 0.104 5.615 0.086 0.027 0.205 93.066 2236bgt1-bt3-1 35.221 2.093 18.786 19.664 0.101 10.553 0.011 0.263 8.515 0.076 0 0.139 95.363 2236bgt1-bl3-2 35.609 2.107 19.068 18.933 0.045 10.961 0.069 0.361 8.33 0.078 0 0.122 95.632 2236bgt1-bt3-3 35.927 2.094 18.978 19.002 0.097 10.349 0.015 0.361 8.914 0.072 0.017 0.206 95.941 2236bgt2-bt1-1 26,464 0.016 21.322 25,517 0.264 14.57 0.087 0.081 0.03 0.062 0.037 0.041 88.466 2236bgt2-bt1-2 24.989 0 22.943 27.175 0.421 12.592 0.03 0.015 0.073 0 0.031 0 88.262 2236bqt2-bt1-3 62.39 0.059 18.123 0.042 0.036 0 0.125 16.26 0 0.017 0 97.049 n 2236bgt2-bt2-1 31.014 1.813 18.876 19.582 0.175 14.151 0.147 0.136 2.688 0.188 0.035 0.131 88.873 2236bgt2-bt2-2 33.66 1.668 19.212 19.884 0.086 11.665 0.099 0.234 6.67 0.171 0 0.219 93.476 2236bgt2-bt2-3 30.531 1.435 19.976 21.535 0.137 12.32 0.18 0.204 0.193 0.064 0.125 91.385 4.752 2236bgt2-bt3-1 32.195 1.542 19.043 19.66 0.152 13.134 0.099 0.193 4.873 0.188 0.006 0.176 91.186 2236bgt2-bt3-2 32.463 1.383 19.104 19.17 0.15 13.417 0.043 0.17 4.928 0.176 0.013 0.202 91.131 2236bqt2-bt3-3 28,162 0.209 20.29 21.038 0.237 17,179 0.077 0.038 0.364 0.18 0 0 87.774 0.123 0.007 0.159 92.792 2236bgl3-bl1-1 33.317 1.71 19.289 19.467 0.145 12.966 0.013 0.197 5.468 2236bql3-bl1-2 31.72 1.369 19.118 19.558 0.138 14.485 0.106 0.111 3.326 0.099 0.041 0.161 90.155 2236bat3-bt1-3 29.301 0.342 19.98 19.82 0.218 17.035 0.012 0.052 1.067 0.117 0 0.033 87.963 2236bqt3-bt2-1 28,785 0.409 20,308 22,905 0.273 14,896 0.047 0.036 1.306 0.092 0.001 0.046 89.085 2236bqt3-bt2-2 35,571 2.141 19.03 18.46 0.077 10.796 0.036 0.25 8,589 0.132 0 0.158 95.173 2236bgt3-bt2-3 35.76 2.097 19.296 19.08 0.059 10.423 0.005 0.313 8.696 0.092 0.001 0.118 95.89 2236bqt3-bt3-1 35,465 1,948 18,933 18,775 0,056 10,582 0,09 0,258 8,288 0.105 0.01 0.136 94.587 2236bgt3-bt3-2 35.222 2.098 18.967 18.908 0.041 10.314 0.07 0.303 8.453 0.114 0.006 0.131 94.571 0383-qt1-bt1-1 36.806 1.117 17.845 17.21 0.031 13.688 0.07 0.479 7.847 0.092 0 0.204 95.303 0383-gl1-bl1-2 37.029 1.236 18.066 16.753 0.079 13.542 0.061 0.376 7.936 0.075 0.007 0.16 95.251 0383-gt1-bt1-3 36.95 1.455 17.908 16.761 0.054 13.496 0.053 0.384 7.896 0.088 0.028 0.177 95.169 0383-qt1-bt2-1 37.579 1.188 18.34 16.122 0.057 13.506 0.053 0.436 7.645 0.07 0 0.257 95,145 0383-gt1-bt2-2 37.684 1.251 18.259 16.474 0.063 13.619 0.099 0.386 7.995 0.092 0.01 0.192 96.041 0383-qt1-bt2-3 37.391 1.122 18.35 16.707 0.079 13.584 0.052 0.428 8.077 0.091 0.013 0.239 96.029 0383-qt1-bt3-1 37,556 1,292 18,258 16.6 0,058 13,562 0,062 0,399 8,296 0.086 0.004 0.229 96.305 0383-qt1-bt3-2 37,055 1.301 17,843 17,171 0.084 13,558 0.017 0.399 7,808 0.093 0.013 0.216 95,464 0383-qt1-bt3-3 35.687 1.134 17.98 17.672 0.072 13.83 0.054 0.324 7.019 0.095 0.006 0.179 93.976 0383-qt2-bt1-1 37.422 1.347 18.172 16.472 0.016 13.7 0.097 0.411 7.618 0.121 0.025 0.2 95.511 0383-gt2-bt1-2 37.037 1.224 18.149 16.575 0.069 13.485 0.157 0.413 7.735 0.104 0.025 0.232 95.101 0383-gl2-bl2-1 37.114 1.471 18.043 16.398 0.065 13.181 0.1 0.37 8.014 0.18 0.008 0.22 95.069 0383-gt2-bt2-2 37.283 1.333 18.251 16.248 0.086 13.232 0.054 0.294 8.136 0.149 0.014 0.294 95.247 0383-gt2-bt2-3 37.165 1.45 18.073 16.842 0.052 13.374 0.071 0.386 7.843 0.105 0 0.204 95.479 0383-gt2-bt3-1 37.172 1.344 17.903 16.545 0.041 13.145 0.066 0.419 8.117 0.116 0.011 0.167 94.974 0383-qt2-bt3-2 37.083 1.414 17.916 16.487 0.087 13.242 0.067 0.454 8.178 0.09 0.003 0.227 95.151 0383-gt2-bt3-3 36.706 1.223 18.02 16.942 0.047 13.435 0.098 0.32 7.732 0.103 0 0.262 94.778 0220-gt1-bt1-1 36.207 1.874 18.856 18.483 0.104 10.993 0.095 0.275 8.444 0.069 0.014 0.105 95.472 0220-gt1-bt1-2 35.943 1.708 19.243 18.444 0.132 11.064 0.057 0.272 8.63 0.078 0.001 0.154 95.661 0220-gt1-bt1-3 36.329 1.872 19.136 18.771 0.133 11.006 0.087 0.228 8.518 0.091 0.017 0.102 96.243 Cation proportions

Si Ti Al Fe Mn Mg Ca Na K Cr Cl F Total 4,9391 0.2178 3,4574 2,7494 0,0211 3,1953 0,031 0,0526 0,7118 0,0108 0,0119 0,093 15,4912 5.3429 0.2386 3.369 2.4226 0.0078 2.3691 0.0063 0.0949 1.6429 0.0092 0.0075 0.0874 15.5982 5.1958 0.2167 3.4217 2.4866 0.0174 2.8118 0.008 0.068 1.1884 0.0136 0.0004 0.0697 15.4981 4.3269 0.0072 4.1403 3.7202 0.0382 3.3122 0.0113 0 0.0116 0.0091 0.0035 0.0165 15.597 4.9714 0.1721 3.5187 2.6949 0.0197 3.1893 0.0405 0.0427 0.774 0.0124 0.0019 0.0618 15.4994 4,9988 0,2143 3,47 2,844 0,016 2,8067 0,0063 0,0314 1,1129 0,0105 0,007 0,1008 15,6187 5.333 0.2383 3.3528 2.4901 0.0129 2.382 0.0017 0.0773 1.6449 0.0091 0 0.0666 15.6087 5,3464 0,2379 3,3745 2,3773 0,0058 2,4532 0,0112 0,105 1,5955 0,0093 0 0,0581 15,5742 5.385 0.236 3.353 2.382 0.0123 2.3124 0.0024 0.105 1.7046 0.0085 0.0042 0.0976 15.6031 4,3323 0,002 4,1142 3,4936 0,0366 3,5555 0,0153 0,0256 0,0062 0,008 0,0102 0,0212 15,6207 4.1478 0 4.4887 3.7723 0.0592 3.1157 0.0052 0.0049 0.0154 0 0.0087 0 15.618 8,1945 0.0058 2,8057 0,0047 0,004 0 0 0,0318 2,7247 0 0,0038 0 13,775 4.9281 0.2167 3.5353 2.6023 0.0236 3.352 0.0251 0.042 0.545 0.0236 0.0095 0.0661 15.3694 5,165 0,1925 3,4747 2,5517 0,0112 2,6683 0,0163 0,0697 1,3058 0,0207 0 0,1064 15,5823 4.8258 0.1706 3.7216 2.8467 0.0184 2.9029 0.0305 0.0624 0.9582 0.0241 0.0172 0.0625 15.6409 5.0334 0.1813 3.5092 2.5706 0.0201 3.0609 0.0165 0.0584 0.9719 0.0232 0.0015 0.0872 15.5342 5.0591 0.1621 3.5094 2.4986 0.0198 3.117 0.0073 0.0514 0.9798 0.0217 0.0033 0.0994 15.5289 4.5396 0.0253 3.8551 2.8361 0.0323 4.1281 0.0133 0.012 0.0748 0.0229 0 0 15.5395 5.1115 0.1973 3.4882 2.4978 0.0189 2.9654 0.0021 0.0586 1.0703 0.0149 0.0018 0.0773 15.5041 4,9701 0,1613 3,5308 2,5629 0,0184 3,3834 0,0178 0,0338 0,6648 0,0122 0,0108 0,08 15,4463 4.6853 0.0412 3.7658 2.6506 0.0295 4.0605 0.002 0.0161 0.2177 0.0148 0 0.0167 15.5002 4.6271 0.0495 3.8478 3.0794 0.0372 3.5696 0.008 0.0113 0.2678 0.0117 0.0004 0.0234 15.5332 5.3592 0.2426 3.3794 2.326 0.0099 2.4247 0.0059 0.073 1,6509 0.0157 0 0.0753 15.5626 5.3637 0.2366 3.4114 2.3934 0.0076 2.3305 0.0007 0.0909 1.6641 0.0109 0.0003 0.0559 15.566 5.3785 0.2222 3.3844 2.3813 0.0072 2.3923 0.0147 0.0758 1.6036 0.0126 0.0025 0.0654 15.5405 5.3559 0.2399 3.3994 2.4046 0.0053 2.338 0.0115 0.0894 1.6399 0.0137 0.0014 0.0632 15.5622 5.4725 0.1249 3.1274 2.14 0.0039 3.0339 0.0111 0.1382 1.4885 0.0108 0 0.0959 15.6471 5.496 0.1379 3.1606 2.0795 0.0099 2.9963 0.0098 0.1081 1.5028 0.0088 0.0018 0.0753 15.5869 5,4884 0,1625 3,1353 2,0821 0,0068 2,9884 0,0084 0,1106 1,4964 0,0104 0,007 0,0833 15,5796 5.538 0.1316 3.1857 1.987 0.0071 2.967 0.0083 0.1247 1.4373 0.0081 0 0.1196 15.5145 5.5279 0.138 3.157 2.021 0.0078 2.978 0.0156 0.1098 1.4962 0.0107 0.0024 0.0889 15.5533 5.4947 0.1239 3.1784 2.0532 0.0099 2.9758 0.0082 0.1219 1.5144 0.0105 0.0031 0.111 15.6051 5.5059 0.1425 3.1551 2.0353 0.0072 2.9639 0.0097 0.1134 1.5518 0.0099 0.001 0.106 15.6017 5.4913 0.145 3.1167 2.1282 0.0105 2.9952 0.0027 0.1146 1.4762 0.0109 0.0032 0.101 15.5956 5.3825 0.1287 3.1965 2.2292 0.0092 3.1095 0.0088 0.0949 1.3506 0.0113 0.0014 0.0854 15.608 5.511 0.1492 3.1543 2.0286 0.002 3.0074 0.0153 0.1173 1.4313 0.0141 0.0063 0.0933 15.5301 5.4896 0.1364 3.1707 2.0546 0.0086 2.9795 0.0249 0.1187 1.4627 0.0122 0.0063 0.109 15.5733 5.5072 0.1642 3.1557 2.035 0.0082 2.9156 0.0158 0.1064 1.5172 0.0212 0.0021 0.1034 15.552 5.5089 0.1481 3.1787 2.0079 0.0108 2.9145 0.0086 0.0843 1.5337 0.0175 0.0035 0.1375 15.5541 5.4964 0.1613 3.1505 2.0831 0.0066 2.9486 0.0113 0.1106 1.4798 0.0123 0 0.0956 15.5561 5.5321 0.1505 3.1405 2.0592 0.0051 2.9162 0.0106 0.1209 1.5411 0.0137 0.0028 0.0787 15.5715 5,5075 0.158 3,1364 2,0478 0,011 2,9317 0,0107 0,1306 1,5496 0,0106 0,0007 0,1066 15,6013 5.4694 0.137 3.1648 2.1113 0.0059 2.9842 0.0157 0.0925 1.4698 0.0122 0 0.1235 15.5863 5.43 0.2113 3.3332 2.3182 0.0132 2.4577 0.0152 0.0799 1.6155 0.0082 0.0035 0.0496 15.5355 5.3823 0.1923 3.3964 2.3098 0.0168 2.4698 0.0091 0.0788 1.6486 0.0092 0.0003 0.0729 15.5863 5.4101 0.2097 3.359 2.3378 0.0168 2.4432 0.0138 0.0657 1.6184 0.0107 0.0042 0.048 15.5374

Biotite Data

Weight Percent Oxide

Analysis SiO₂ TiO₂ Al₂O₃ FeO MnO MgO CaO Na₂O K₂O Cr₂O₃ Cl F Total 0220-qt1-bt2-2 36.395 1.594 19.439 18.109 0.106 11.057 0.021 0.212 9.175 0.124 0 0.137 96.311 0220-qt1-bt2-3 36.115 1.767 19.033 18.823 0.097 11.028 0.026 0.212 8.577 0.085 0 0.092 95.816 0220-gt1-bt3-3 35.881 1.877 19.058 18.748 0.136 11.145 0.028 0.241 8.713 0.098 0 0.086 95.975 0220-qt1-bt3-1 36.108 1.768 19.195 18.428 0.099 11.176 0.027 0.269 8.815 0.11 0 0.141 96.077 0220-gt1-bt3-2 35.943 1.892 19 18.763 0.104 11.248 0.004 0.252 8.492 0.09 0 0,126 95.861 0220-qt1-bt3-3 36,212 1,618 19,154 18,19 0,121 11,217 0,048 0,26 8.32 0.096 0.014 0.164 95.342 0220-qt2-bt1-1 35,455 2.01 18,955 18,544 0.061 11,225 0.021 0.157 8.924 0.116 0.001 0.036 95.49 0220-gt2-bt1-2 36.227 1.752 18.911 18.404 0.1 11.328 0.028 0.212 8.684 0.099 0.011 0.174 95.855 0220-ql2-bl1-3 36.158 1.727 19.11 18.249 0.075 11.379 0.039 0.233 8.723 0.111 0.003 0.156 95.896 0220-gl2-bl2-1 35.912 1.798 18.998 18.363 0.078 10.947 0.04 0.214 8.588 0.115 0 0.162 95.147 0220-qt2-bt2-2 35,951 1.874 19,061 18,53 0.051 11,094 0.071 0.239 8.289 0.129 0 0.102 95.348 0220-gt2-bt2-3 34.99 1.664 18,949 18,711 0.081 11.299 0.111 0.205 7.936 0.103 0 0.142 94.131 0220-gt2-bt3-1 36.571 1.613 19.292 17.95 0.069 11.495 0.1 0.241 8.766 0.091 0 0.143 96.271 0220-gt2-bt3-2 35.952 1.624 18.947 18.909 0.07 11.136 0.088 0.242 8.591 0.07 0.014 0.102 95.699 0220-ql2-bl3-3 36,388 1.599 19,223 18,057 0.101 11,42 0.135 0.269 8.368 0.09 0.014 0.151 95.748 0244-gt1-bt1-1 35,681 1.836 19,418 17,864 0,12 11,152 0 0.192 9.003 0.081 0 0.125 95.419 0244-qt1-bt1-2 36.003 1.877 19.385 18.378 0.128 11.284 0.019 0.165 9.107 0.106 0.008 0.114 96.524 0244-gt1-bt1-3 35.7 1.719 19.526 18.013 0.129 10.808 0.056 0.231 9.071 0.088 0 0.19 95.451 0244-qt1-bt2-1 35.395 1.632 19.446 17.922 0.186 10.734 0.078 0.18 8.597 0.079 0.012 0.157 94.349 0244-gl1-bl2-2 35.952 1.586 19.488 17.926 0.171 11.176 0.081 0.229 8.792 0.078 0 0,196 95.592 0244-gl1-bl2-3 35,975 1,781 19,454 17,985 0,117 10,993 0,115 0,183 8,864 0.124 0 0.146 95.676 0244-ot1-bt3-1 35,585 1.72 19,434 18,108 0,195 11,007 0,041 0,212 9,174 0.089 0 0.16 95.658 0244-gt1-bt3-2 35.928 1.726 19.391 18.057 0.155 11.07 0.005 0.292 9.134 0.103 0.029 0.156 95.973 0293-gt1-bt1-1 35,497 1.519 18,975 18,862 0,076 10,415 0,012 0,199 9,183 0.07 0 0.254 94.955 0293-qt1-bt1-2 36,172 1,517 19,138 18,857 0,055 10,611 0,02 0,207 9,214 0.088 0.003 0.281 96.044 0293-gt1-bt1-3 35.517 1.492 19.084 18.923 0.063 10.468 0.048 0.141 9.082 0.101 0.01 0.14 95.008 0293-gl1-bl2-1 36,194 1,376 19,157 19,182 0,067 10,362 0,049 0,196 9.101 0.066 0.008 0.244 95.897 0293-qt1-bt2-2 35.806 1.506 19.218 19.112 0.078 10.37 0.036 0.149 9.17 0.043 0.019 0.233 95.638 0293-gi1-bi2-3 35.875 1.558 19.183 19.002 0.048 10.476 0.054 0.112 9.101 0.087 0.007 0.192 95.612 0293-gt1-bt3-1 35.866 1.686 18.858 19.302 0.075 10.337 0.06 0.181 9.042 0.078 0 0.167 95.582 0293-gt1-bt3-2 36.391 1.653 18.986 18.927 0.078 10.446 0.069 0.137 8.871 0.085 0 0.151 95.73 0293-gl1-bl3-3 35.471 1.506 18.944 19.079 0.088 10.387 0.024 0.138 8.967 0.091 0.007 0.171 94.799 0293-gt2-bt1-1 36.103 1.634 19.127 19.637 0.103 10.533 0.03 0.177 9.126 0.066 0.001 0.2 96.653 0293-gt2-bt1-2 35.741 1.496 19.117 19.534 0.097 10.51 0.024 0.156 9.223 0.09 0.004 0.239 96.129 0293-gt2-bt1-3 35.782 1.496 18.82 19.045 0.059 10.654 0.04 0.126 9.099 0.045 0.008 0.25 95.317 0293-qt2-bt2-1 35,719 1.38 18,849 19,25 0.056 10,367 0.076 0.1 8.838 0.068 0 0.24 94.842 0293-qt2-bt2-2 35,924 1,585 19,098 19,226 0,067 10,521 0,026 0,128 9.293 0.075 0.024 0.203 96.08 0.065 0.014 0.145 95.461 0293-gt2-bt2-3 35.627 1.349 19.352 19.125 0.035 10.449 0.008 0.151 9,205 0293-gt2-bt3-1 35.621 1.553 19.273 19.048 0.08 10.516 0.05 0.147 9.204 0.092 0.007 0.176 95.691 0293-ql2-bl3-2 35.51 1.687 18.992 18.992 0.071 10.3 0 0.146 9.16 0.074 0.026 0.192 95.063 0293-gt2-bt3-3 35.444 1.574 19.097 18.777 0.048 10.335 0.022 0.19 0.09 0.019 0.193 94.948 9.244 0293-ql3-bt1-1 35,558 1,554 18,992 19,404 0,067 10,362 0,031 0,124 0.077 0.007 0.228 95.782 9.476 0293-gt3-bt1-2 35,795 1.688 19,2 19,902 0.074 10.173 0.025 0.191 9.179 0.083 0.008 0.192 96.427 0293-gt3-bt1-3 35.374 1.554 19.289 19.492 0.094 10.398 0 0.138 9.138 0.048 0.003 0.209 95.648 0293-gt3-bt2-1 35,22 1.584 19,091 19,795 0,086 10,426 0,007 0.045 0.015 0.196 95,554 0,175 9 0293-gt3-bt2-2 35.084 1.643 19.005 19.542 0.083 10.116 0.04 0.152 8.829 0.08 0.025 0.18 94.697

Cation proportions

Si Ti Al Fe Min Mig Ca Na K Cr F Total Cì 5,4125 0,1782 3,4074 2,2523 0,0133 2,4512 0,0033 0,0611 1,7407 0,0146 0 0.0645 15.5991 5.4086 0.199 3.3598 2.3576 0.0123 2.4619 0.0042 0.0616 1.6388 0.0101 0 0.0437 15.5577 5.3737 0.2114 3.3643 2.3481 0.0172 2.4881 0.0044 0.07 1.6647 0.0116 0 0.041 15.5946 5.3872 0.1983 3.3756 2.2994 0.0125 2.4857 0.0044 0.0778 1.6779 0.0129 0 0 0663 15 5981 5.3775 0.2129 3.3507 2.3477 0.0132 2.5086 0.0006 0.0731 1.6209 0.0107 0 0.0598 15.5758 5,4185 0,1821 3,3782 2,2763 0,0153 2,502 0,0076 0,0755 1,5884 0,0114 0,0035 0,0777 15,5365 5.3476 0.228 3.3699 2.3392 0.0078 2.5238 0.0034 0.046 1.7173 0.0138 0.0004 0.0171 15.6143 5.4088 0.1967 3.328 2.298 0.0126 2.5213 0.0045 0.0614 1.6541 0.0117 0.0028 0.0822 15.5821 5,3949 0,1938 3,3608 2,2772 0,0095 2,5308 0,0062 0,0673 1,6605 0,0131 0,0007 0,0734 15,5882 5.4027 0.2034 3.3688 2.3105 0.0099 2.4551 0.0064 0.0624 1.6484 0.0136 0 0.0769 15.5581 5.3963 0.2116 3.3723 2.326 0.0065 2.4824 0.0114 0.0695 1.5873 0.0153 0 0.0482 15.5268 5.3273 0.1906 3.4005 2.3825 0.0105 2.5644 0.0181 0.0605 1.5416 0.0124 0 0.0685 15.577 5,4224 0,1799 3,3716 2,2258 0,0087 2,5406 0,016 0,0693 1,6582 0,0107 0 0,0672 15,5704 5.3968 0.1833 3.3525 2.3739 0.009 2.4919 0.0141 0.0706 1.6453 0.0083 0.0035 0.0483 15.5975 5.4189 0.1791 3.3742 2.2489 0.0127 2.5351 0.0215 0.0777 1.5898 0.0106 0.0035 0.0712 15.5432 5.3566 0.2073 3.4362 2.2429 0.0153 2.4958 0 0.0558 1.7244 0.0096 0 0.0595 15.6034 5.3556 0.21 3.3989 2.2864 0.0161 2.5022 0.0031 0.0475 1.7284 0.0125 0.0021 0.0538 15.6166 5,3585 0.194 3,4545 2,2613 0,0164 2,4184 0,0089 0,0672 1,7372 0,0105 0 0,0901 15,6171 5.3656 0.1861 3.4746 2.2722 0.0239 2.4257 0.0127 0.0529 1.6627 0.0095 0.0032 0.0753 15.5645 5.3742 0.1783 3.4336 2.2411 0.0217 2.4904 0.013 0.0664 1.6766 0.0092 0 0.0929 15.5974 5.3799 0.2003 3.4291 2.2493 0.0148 2.4506 0.0184 0.053 1.6911 0.0146 0 0.069 15.5702 5.3422 0.1942 3.4388 2.2735 0.0247 2.4633 0.0066 0.0617 1.757 0.0106 0 0.0758 15.6484 5.3679 0.1939 3.4148 2.2562 0.0196 2.4656 0.0008 0.0846 1.741 0.0121 0.0074 0.0735 15.6374 5.3806 0.1731 3.3901 2.3911 0.0097 2.3533 0.0019 0.0584 1.7758 0.0084 0 0.1216 15.664 5.4063 0.1705 3.3716 2.357 0.007 2.3642 0.0032 0.0599 1.757 0.0104 0.0007 0.133 15.6409 5.3864 0.1702 3.4114 2.4 0.0081 2.3666 0.0078 0.0416 1.7573 0.0121 0.0025 0.0671 15.6312 5.4247 0.155 3.3843 2.4044 0.0085 2.315 0.0079 0.057 1.7402 0.0078 0.0021 0.1157 15.6226 5.3874 0.1704 3.4082 2.4049 0.01 2.3259 0.0058 0.0434 1.7602 0.0052 0.005 0.1111 15.6375 5.3965 0.1762 3.4013 2.3905 0.0061 2.3491 0.0087 0.0327 1.7466 0.0103 0.0018 0.0911 15.6109 5,4098 0,1913 3,3528 2,435 0,0096 2,3242 0,0096 0,0531 1,7401 0,0094 0 0,0795 15,6144 5,4557 0.1863 3,3549 2,3731 0.01 2,3346 0.0111 0.0399 1,6968 0.01 0 0.0714 15,5438 5.391 0.1722 3.3936 2.425 0.0114 2.3532 0.0038 0.0406 1,7386 0.0109 0.0018 0.082 15.6241 5.3872 0.1834 3.3641 2.4506 0.0131 2.343 0.0049 0.0513 1.7374 0.0078 0.0004 0.0946 15.6378 5.3655 0.1689 3.3828 2.4524 0.0124 2.352 0.0039 0.0455 1.7663 0.0107 0.0011 0.1135 15.675 5.4002 0.1698 3.3478 2.4038 0.0075 2.3968 0.0065 0.0369 1.7519 0.0054 0.0021 0.1191 15.6479 5.4159 0.1574 3.3687 2.441 0.0071 2.3433 0.0123 0.0293 1.7096 0.0082 0 0.1149 15.6078 5,3885 0,1788 3,3766 2,4118 0,0086 2,3526 0,0042 0,0371 1,7784 0,0089 0,006 0,0963 15,6478 5.38 0.1532 3.4446 2.4153 0.0045 2.3521 0.0013 0.0443 1.7734 0.0077 0.0036 0.0695 15.6495 5.3648 0.1759 3.4214 2.3993 0.0103 2.361 0.008 0.043 1.7686 0.0109 0.0018 0.0838 15.6489 5.3818 0.1923 3.3928 2.4072 0.0091 2.3271 0 0.0429 1.7712 0.0089 0.0068 0.0921 15.6322 5.3768 0.1795 3.4146 2.3822 0.0062 2.3372 0.0036 0.056 1.789 0.0107 0.005 0.0924 15.6532 5,3658 0,1763 3,3782 2,4489 0,0086 2,3311 0,005 0,0363 1,8244 0,0092 0,0018 0,1089 15,6945 5.3667 0.1903 3.3931 2.4956 0.0095 2.2736 0.004 0.0554 1.7557 0.0099 0.0021 0.0911 15,647 5.3393 0.1764 3.4316 2.4605 0.012 2.3395 0 0.0404 1.7596 0.0058 0.0007 0.0997 15.6656 5,3304 0,1803 3,4056 2,5055 0,011 2,3523 0,0012 0,0513 1,7378 0,0054 0,0039 0,0938 15,6786 5.3503 0.1885 3.4161 2.4924 0.0107 2.2996 0.0065 0.045 1,7178 0.0096 0.0065 0.0869 15.6299

Biotite Data

Weight Per	cent Oxide											Catio	n proj	portio	ns									
Analysis	SiO ₂ TiO ₂	Al ₂ O ₃	FeO Mr	١O	MgO CaO	Na₂O	K₂O	Cr ₂ O ₃	CI	F	Total	Si	Ti	A	Fe	Mn	Mg	Ca	Na	к	Cr	Cl	F	Total
0293-gl3-bl2-3	24.255 0.08	23.11	24.489 0.1	12	14.895 0.017	0.013	0.014	0.052	0.017	0	87.05	4.0303	0.01	4.5263	3 3.4031	0.0158	3.6895	0.003	0.0043 ().0029	0.0068	0.0047	0	15.6967
0293-gt3-bt3-1	29.825 0.117	22.223	22.663 0.1	24	12.931 0.049	0.717	0.552	0.041	0.011	0.011	89.257	4.7323	0.014	4.1562	2 3.0073	0.0167	3.0584	0.0083	0.2205 ().1118	0.0052	0.003	0.0055	15.3392
0293-gt3-bt3-2	24.488 0.103	23.632	24.192 0.0	93	15.225 0.013	0.004	0.126	0.036	0.006	0.056	87.949	4.013	0.0127	4.5648	3 3.3156	0.0129	3.7193	0.0023	0.0014 (0.0263	0.0046	0.0016	0.029	15.7035
0293-gt3-bt3-3	35,794 1.546	19.231	19.186 0.0)48	10.511 0.034	0.173	8.881	0.055	0	0.154	95.548	5.3902	0.1751	3,4135	5 2.4163	0.0062	2.3596	0.0055	0.0506 1	1.7062	0.0066	0	0.0733	15.6031
1181gt1bt1-1	34.319 3.889	15.75	25.89 0.2	208	6.038	0.094	9.587		0.036		95.803	2.6702	0.2271	1.5577	7 1.6732	0.0137	0.6957		0.014).9494		0.0047		7.8057
1181gt1bt1-2	33.867 3.709	15.715	26.089 0.1	197	6.11	0.069	9.209		0.036		94,993	2.6584	0.2185	5 1.568	1.701	0.013	0.7101		0.0104 ().9202		0.0048		7.8045
1181gt1bt1-3	34.232 3.544	15.781	26.072 0.1	187	6.128	0.102	9.759		0.007		95.81	2.6691	0.2073	3 1.564	1 1.6885	0.0123	0.7075		0.0152 (0.9685		0.0009		7.8335
1181gt1bt2-1	34.37 3.388	15.621	26.016 0.	19	6.189	0.162	9.633		0.04		95.6	2.6833	0.1985	5 1.5502	2 1.6871	0.0125	0.7155		0.0243 (0.9573		0.0053		7.8341
1181gt1bt2-2	34.209 3.31	15.609	26.117 0.1	167	6.313	0.178	9.775		0.044		95.712	2.6726	0.1941	1.550	1 1.6949	0.0111	0.7303		0.0267 (0.9721		0.0058		7.8578
1181gl1bl2-3	33.704 2.563	16.188	25.789 0.1	162	6.696	0.004	9.821		0.091		94.997	2.6483	0.1511	1.616	7 1.6831	0.0107	0.779		0.0006 (0.9822		0.0121		7.8839
1181gt1bt3-1	33.577 2.946	15.928	26.229 0.	187	6.192	0.131	9.825		0.045		95.05	2.6474	0.1743	3 1,596	3 1.7178	0.0124	0.7229		0.0199	0.986		0.0061		7.8832
1181gt1bt3-2	33.565 2.974	15.783	25.995 0.1	176	6.273	0.139	9.681		0.081		94.649	2.6534	0.1764	1.585	9 1.707	0.0117	0.7343		0.0211 (0.9742		0.0109		7.8749
1181gt1bt3-3	33.412 3.015	15.843	26.443 0.1	173	6.389	0.166	9.942		0.089		95.452	2.6296	0.178	1.584	9 1.7287	0.0115	0.7446		0.0252	0.996		0.0119		7.9104
1047gt1bt1-1	36.207 1.745	18.215	i 17.438 0.0	034	11.22	0.257	8.94		0.024		94.075	2.7125	0.0981	1.733	3 1.0845	0.0022	1.2447		0.037	0.8521		0.003		7.7674
1047gt1bt1-2	35.898 1.755	18.041	17.308 0.0	057	11.264	0.321	9,139		0.014		93.794	2.7038	0.0991	1.726	5 1.0823	0.0036	1.2564		0.0465	0.8758		0.0018		7.7953
1047gt1bt1-3	35.416 1.661	18.223	17.929 0.0	045	11.106	0.237	8.191		0.043		92.841	2.6882	0.0945	5 1.756	8 1.1298	0.0029	1.2482		0.0347	0.791		0.0056		7.7517
1047gl1bl2-1	35.535 1.472	18.127	18.026 0.0	059	10.95	0.251	9.183		0.047		93.639	2.6919	0.0836	5 1.744	2 1.1337	0.0038	3 1.2283		0.0366	0.8851		0.0061		7.8134
1047gt1bt2-2	35.81 1.598	18.622	17.652 0.	055	11.074	0.245	9.103		0.01		94.167	2.6864	0.0899	9 1.774	2 1.0993	0.0035	51.2301		0.0354	0.8687		0.0012		7.7887
1047gt1bt2-3	36.03 1.725	17.9	17.594 0.	031	11.466	0.273	8.426		0		93.445	2.7148	0.0975	5 1.713	2 1.1006	0.002	1.2794		0.0396	0.8078		0		7.755
1047gt1bt3-1	35.514 1.899	17.747	18.033 0.0	049	11.333	0.268	8.641		0		93.484	2.6896	0.1079	9 1.707	3 1.1339	0.0032	2 1.271		0.039	0.8327		0		7.7847
1047gt1bt3-2	34.738 1.874	17.609	18.828 0.0	046	11.393	0.223	8.055		0.014		92.777	2.6583	0.1076	5 1.711	8 1.1963	0.003	1.2911		0.0329	0.7843		0.0018		7.7872
1047gt1bt3-3	35.59 1.989	17.941	17.437 0.	044	11.365	0,337	8.543		0.001		93.247	2.6915	0.1128	8 1.723	5 1.0948	0.0028	3 1.2728		0.049	0.822		0.0002		7.7695
1047gt2bt1-1	35.882 1.674	17.941	17.214 0	.03	11.393	0.308	8.667		0.004		93.112	2.7134	0.095	1.723	3 1.0807	0.0019	1.2758		0.0448	0.8339	•	0.0005		7.7693
1047gt2bt1-2	36.407 1.662	18.42	17.232 0.	092	11.012	0.27	9.055		0		94.15	2.7223	0.0932	2 1.749	4 1.0697	0.0058	3 1.2192		0.0389	0.8614		0		7.76
1047gt2bt1-3	36.142 1.579	18,434	16.611 0.	059	10.755	0.209	9.329		0.006		93.123	2.729	0.0894	4 1.767	9 1.0412	0.0037	1.2024		0.0304	0.8961		0.0007		7.7609
1047gt2bt2-1	35.877 1.71	18,501	17.137 0.	075	10.787	0.256	9.287		0		93,63	2.7034	0.0966	5 1.770	7 1.072	0.0048	3 1.2035		0.0372	0.8903		0		7.7785
1047gt2bt2-2	36.208 1.786	18.391	17.321 0.	066	10.822	0.298	9.164		0		94.056	2.7148	0.1004	4 1.751	5 1.0781	0.0042	2 1.2015		0.0429	0.8741		0		7.7675
1047gt2bt2-3	35.906 1.649	18.462	2 17.245 0.	063	10.743	0.269	8.967		0.015		93.316	2.7104	0.093	4 1.77	1.0806	6 0.004	1.2007		0.0391	0.8611		0.002		7.7614
1047gt2bt3-1	36.167 1.815	18.135	5 17.853 0.	078	11.264	0.247	8.677		0.013		94.246	2.7072	0.1019	9 1.724	3 1.1094	0.0049	9 1.2486		0.0356	0.8264		0.0016		7.76
1047gt2bt3-2	36.176 1.879	18.414	17.172 0.	044	11.243	0.284	9.201		0.035		94.44	2.7001	0.105	2 1.745	7 1.064	0.0028	3 1.2426		0.0408	0.8737		0.0044		7.7794
1047gt2bt3-3	35.897 1.707	18.375	3 17.667 0.	066	11.401	0.254	8.816		0.013		94.196	2.689	0.095	9 1.748	6 1.0987	0.004	1.2646		0.0366	0.8402		0.0016		7.7794
1107gt1bt1-1	35,151 2.338	19.638	3 17.689 0	.06	9.468	0.127	10.07		0		94.549	2.6395	0.131	6 1.872	5 1.1024	0.003	3 1.0522		0.0183	0.9626	i	0		7.7829
1107gt1bt1-2	35.293 2.608	20.075	5 17.629 0.	066	9.243	0.152	9.858		0		94.924	2.6318	0.145	8 1.900	7 1.0911	0.004	1 1.02		0.0217	0.9351		0		7.7503
1107gl1bt1-3	35.55 2.491	19.606	5 18.152 0.	073	9.141	0.043	10.032	2	0.001		95.089	2.6555	0.139	5 1.859	7 1.1254	0.004	5 1.0106	i	0.0062	0.9532	2	0.0002		7.755
1107gt1bt2-1	34.871 2.771	19.144	4 18.105 0.	104	9.015	0.126	9.917	_	0		94.053	2.6408	0.157	3 1.841	1 1.138	0.006	5 1.0104		0.0183	0.9554		0		7.7681
1107gt1bt2-2	34.801 2.603	18.97	18.45 0.	095	8.903	0.06	10.077	7	0.001		93.96	2.6458	0.148	4 1.831	6 1.1644	0.006	1 1.0018		0.0087	0.9746	i	0.0002		7.7816
1107g11b12-3	34.603 3.121	19.38	5 18.613 0.	102	8.496	0.069	9.725		0		94.114	2.622	0.177	3 1.865	2 1.170	0.006	5 0.9527		0.01	0.9374	•	0		7.7418
1107gt1bt3-1	34.959 3.053	19.17	1 18.487 0.	104	8.525	0.079	10.017	7	0.007		94.4	2.6425	6 0.173	3 1.840	3 1.1599	0.006	6 0.9537	,	0.0115	0.9632	2	0.0009		7.7516
1107gt1bt3-2	35.218 3.258	19.47	5 18.01 0.	.112	8.605	0.093	9,969		0		94.74	2.6421	0.183	2 1.855	4 1.1214	0.007	1 0.9554		0.0135	0.9513	3	0		7.7295
1107gt1bl3-3	34.412 2.983	18.574	4 19.056 0.	126	9.005	0.124	9.642		0		93.922	2.6252	20.170	6 1.799	7 1.206	3 0.008	1 1.0168	\$	0.0181	0.9358	3	0		7.7812
1107gt1bt3-4m	i 34.787 3.195	19.272	2 17.654 0.	108	8.659	0,106	9,835		0		93.616	2.6392	2 0.181	7 1.856	57 1.111	7 0.006	9 0.9722	2	0.0155	0.9491		0		7.7331

Biotite data from microprobe session Jan 2001, analyses lacking data for CaO, Cr2O3, and F analyzed Jan 2002.

Reproduced with permission of the copyright owner.
Further reproduction prohibited without permission.

Plagioclase Chemistry

Weight percent oxide

Cation ratio

Analysis	SiO ₂	Al ₂ O ₂	FeO	MaO	CaO	Na ₂ O	K₂O	Total	Si	AI	Fe	Ma	Са	Na	к	Total
ts396-gt1-plag1-1	57.569	27.276	0.229	0.002	8.706	6.761	0.092	100.635	2.5658	1.4329	0.0085	0.0001	0.4158	0.5843	0.0052	5.0127
ts396-gt1-plag1-2	57.682	26.791	0.318	0.185	6.659	6.32	1.597	99.552	2.599	1.4228	0.012	0.0124	0.3215	0.5522	0.0918	5.0117
ts396-gt1-plag1-3	57.355	27.584	0.107	0.036	9.013	6.427	0.156	100.678	2.5546	1.4481	0.004	0.0024	0.4301	0.5551	0.0088	5.0031
ts396-gt1-plag1-4	57.468	27.216	0.058	0	8.884	6.607	0.039	100.272	2,5676	1.4333	0.0022	0	0.4253	0.5724	0.0022	5.003
ts396-gt1-plag2-1	57.444	23.766	0.442	0.226	2.165	5.449	4.092	93.584	2,7382	1.3353	0.0176	0.0161	0.1106	0.5037	0.2488	4.9704
ts396-gt1-plag2-2	58.459	26.915	0.097	0	8.158	7.032	0.071	100.732	2.5954	1.4085	0.0036	0	0.3881	0.6053	0.004	5.005
ts396-gt1-plag2-1	57.344	27.434	0.037	0	8.867	6.741	0.054	100.477	2.5586	1.4428	0.0014	0	0.4239	0.5832	0.0031	5.0131
ts396-gt1-plag2-2	57.572	27,37	0.042	0	8.849	6.636	0.049	100.518	2.5657	1.4377	0.0016	0	0.4226	0.5734	0.0028	5.0038
15395-gt1-plag2-3	58.834	26,823	0.037	0.006	8.149	7.135	0.076	101,06	2.6028	1.398/	0.0014	0.0004	0.3863	0.6121	0.0043	5.0061
Is396-ot1-plag3-2	57 872	27 318	0.034	0.005	8 832	6 824	0.064	100,572	2,3049	1 4902	0.002	0.0004	0.4155	0.5/72	0.0044	5.0057
1s396-ci1-clac3-3	57 595	27 382	0.000	0.005	8 878	6 748	0.004	101	2.0000	1.4292	0.0032	0.0004	0.42	0,3073	0.0036	5.0124
ts396-ot2-plao1-1	57.216	27.499	0.213	0.005	9.075	6.595	0.052	100.655	2,5516	1 44 55	0.0014	0.0003	0.4234	0.5024	0.0034	5 0124
ts396-qt2-plaq1-2	57.591	27.676	0.151	0.002	9.047	6.469	0.069	101.005	2.556	1.4478	0.0056	0.0002	0.4302	0.5765	0.0039	5.0005
ts396-gt2-plag1-3	57.63	27.806	0.184	0.006	8.92	6.481	0.085	101.112	2.5545	1.4528	0.0068	0.0004	0.4236	0.557	0.0048	5.0005
ts396-gt2-plag1-4	57.529	27.389	0.233	0.012	8.925	6.527	0.064	100.679	2.5621	1.4378	0.0087	0.0008	0.4259	0,5636	0.0037	5.0026
ts396-gt2-plag2-1	57.614	27.418	0.17	0	8.882	6.606	0.057	100.747	2.5634	1.4379	0.0063	0	0.4234	0.5699	0.0032	5.0041
ts396-gt2-plag2-2	58,435	27.961	0.116	0.012	9.118	6.761	0.05	102.453	2.5576	1.4425	0.0042	0.0008	0.4276	0.5738	0.0028	5.0093
ts396-gt2-plag2-3	57.536	27.343	0.099	0	9.035	6.738	0.07	100.821	2.5606	1.4344	0.0037	0	0.4308	0.5814	0.004	5.0149
ts396-gt2-plag2-4	57.681	27.533	0.1	0	8.921	6.72	0.069	101.024	2.5601	1.4404	0.0037	0	0.4243	0.5783	0.0039	5.0108
ts396-gt2-plag3-1	57.36	27.585	0.048	0	9.086	6.466	0.055	100.6	2.5554	1.4485	0.0018	0	0.4337	0.5586	0.0031	5.0012
ts396-gt2-plag3-2	58.145	27.01	0.051	0	8.409	6.815	0.048	100.478	2.588	1.4171	0.0019	0	0.401	0.5882	0.0028	4.9991
ts396-gt2-plag3-3	57.438	27.631	0.08	0	8.98	6.551	0.052	100.732	2.5556	1.4491	0.003	0	0.4281	0.5651	0.003	5.004
ts396-gt2-plag3-4	57.388	27.763	0.036	0	9.048	6.457	0.045	100.737	2.5523	1.4554	0.0013	0	0.4312	0.5569	0.0025	4.9997
15396-gt2-plag4-1	57.123	27.149	0.064	U A	8.942	6.67	0.081	100.029	2.5616	1,435	0.0024	0	0.4297	0.5799	0.0047	5.0134
15396-gt2-piag4-2	57.345	27.252	0.009	0	8,97	6.599	0.071	100.346	2.5624	1.4354	0.0003	0	0.4295	0.5804	0.0041	5.0122
15350-912-plag4-3	57 196	27.44	0.04	0 010	0.0/3	6.593	0.061	100.427	2.0004	1.4440	0.0015	0 0012	0.4240	0.5587	0.0035	5,0183
1s613-nl6-nlan1-1	61 157	21.421 24 844	0.1045	0.015	5 731	8 427	0.000	100.200	2.000	1.4400	0.0010	0.0013	0.4252	0.3709	0.0038	5.0000
ts613-gt6-plag1-2	61.029	24.6	0.041	0.003	5.834	8.378	0.074	99 959	2 7122	1 2886	0.0015	0 0002	0.2778	0.7233	0.0043	5.0065
ts613-qt6-plaq1-3	61.115	24.799	0.03	0	5.964	8.37	0.063	100.341	2,7065	1.2945	0.0011	0	0.283	0.7187	0.0035	5.0074
ts613-g16-plag1-4	61.191	24.732	0.07	0	5.737	8,38	0.074	100.184	2.7123	1.2921	0.0026	Ō	0.2725	0.7202	0.0042	5.004
ts613-gt6-plag2-1	61.443	24.735	0.033	0.011	5.707	8.484	0.056	100.469	2.7151	1.2883	0.0012	0.0007	0.2702	0.7269	0.0031	5.0055
ts613-gt6-plag2-2	61.035	24.772	0.051	0.006	5.748	8.313	0.069	99.994	2.7099	1.2964	0.0019	0.0004	0.2734	0.7157	0.0039	5.0016
ls613-gt6-plag2-3	61.064	24.937	0.051	0	5.806	8.318	0.076	100.252	2.705	1.3021	0.0019	0	0.2756	0.7144	0.0043	5.0034
ts613-gt6-plag2-4	61.242	25.175	0.121	0.005	5.894	8.246	0.053	100.736	2.7002	1.3083	0.0045	0.0003	0.2784	0.7049	0.003	4.9997
ts613-gl6-plag3-1	61.114	24.755	0.031	0.007	5.883	8.448	0.063	100.301	2.7076	1.2928	0.0011	0.0005	0.2793	0.7257	0.0036	5.0107
ts613-gt6-plag3-2	61.337	24.82	0.054	0.004	5.717	8.476	0.097	100.505	2.7108	1.293	0.002	0.0002	0.2707	0.7264	0.0055	5.0087
ts613-gt6-plag3-3	61.359	24.895	0.062	0.001	5.761	8.376	0.104	100.558	2.7098	1.2959	0.0023	0.0001	0.2726	0.7173	0.0058	5.0039
ts613-gt6-plag3-4	61.457	24.584	0.023	0.005	5.663	8.554	0.064	100.35	2.7192	1.2821	0.0009	0.0003	0.2685	0.7339	0.0036	5.0085
(5613-gl6-plag4-1	61.281	24.689	0.026	0	5.771	8.491	0.041	100,299	2.7134	1.2885	0.001	0	0.2738	0.729	0.0023	5.008
ts613-ot6-plag4-2	61.34	24.091	0.035	0.002	5.640	0.331	0.08	100.126	2.718	1.2896	0.0013	0.0001	0.2681	0.7158	0.0045	4.9974
16613-016-01ag4-3	60 830	24.104	0.055	0 014	5.055	9.092	0.043	100.305	2.7 104	1 2049	0.002	0 0000	0.27	0.7374	0.0024	5.0139
ts3r8-ol8-olao1-1	61 545	24.55	0.009	0.014	5 573	8 581	0.075	100.17	2,0553	1 2805	0.0022	0.0009	0.2031	0.735	0.0045	5.0007
ts388-gt8-plag1-2	62,232	23.988	0.169	0.01	4 888	9.059	0.056	100.392	2 7495	1 2492	0.0062	0.0000	0.2000	0.755	0.0033	5.0155
ts388-gl8-plag1-3	62.102	24.042	0.135	0.001	5.11	8.735	0.054	100.179	2.7478	1.2539	0.005	ō	0.2423	0.7495	0.0031	5.0017
Is388-gt8-plag1-4	61.193	24.554	0.106	0	5.648	8.593	0.069	100,163	2.715	1.2841	0.0039	Ō	0.2685	0.7392	0.0039	5.0147
ts388-gt8-plag1-5	61.188	24.513	0.2	0	5.636	8.461	0.059	100.057	2.717	1.283	0.0074	0	0.2681	0.7285	0.0033	5.0073
ts388-gt8-plag1-6	61.778	24.139	0.158	0	5.111	8.837	0.082	100,105	2.7386	1.2613	0.0059	0	0.2428	0.7596	0.0047	5.0129
ts388-gt8-plag2-1	60.95	24.444	0.042	0	5.679	8.552	0.064	99.731	2.7154	1.2836	0.0016	0	0.2711	0.7388	0.0036	5.0142
ts388-gt8-plag2-2	61.433	24.617	0.044	0.003	5.673	8.466	0.05	100.286	2.719	1.2842	0.0016	0.0002	0.2691	0.7266	0.0028	5.0036
ts388-gt8-plag2-3	62.724	23.811	0.089	0	4.719	9.109	0.066	100.518	2.7639	1.2367	0.0033	0	0.2228	0.7783	0.0037	5,0087
ts388-gt8-plag2-4	62.242	23.768	0.065	0,019	4.616	9.115	0.096	99.921	2.7597	1.2421	0.0024	0.0013	0.2193	0.7836	0.0054	5,0139
ts388-gt8-plag2-5	61.334	24.64	0.103	0	5.515	8.631	0.099	100.322	2.716	1.2861	0.0038	0	0.2617	0.7411	0.0056	5.0143
15388-gt8-plag2-6	61.24	24.593	0.062	0.001	5.586	8.582	0.064	100.128	2.7163	1.2858	0.0023	0.0001	0.2655	0.7381	0.0036	5.0117
15366-gto-plag3-1	61.929	24.145	0.047	0.009	5.009	8,895	0.068	100.102	2.7427	1.2604	0.0017	0.0006	0.2377	0.7638	0.0039	5.0108
ts388-gt8-ptag3-2	61 152	23.091	0.021	0.01	5.140	0./00	0.003	99.71	2.7470	1.2024	0.0008	0 0007	0.2452	0.75/3	0.0036	5.0068
ts388-nt8-ntan3-4	61 822	24.187	0.020	0.01	5.194	8783	0.071	100 105	2.1109	1 2630	0.001	0.0007	0.2709	0.7540	0.004	5,0030
ts388-gt8-plaga4-1	61.04	24.602	0.155	0.034	5.655	8.541	0.133	100.16	2,7101	1.2875	0.0057	0.0023	0.269	0.7353	0.0036	5 0174
ts388-gt8-plao4-2	61,284	24,707	0.095	0	5.669	8.672	0.06	100.487	2,7109	1.2882	0.0035	0	0.2687	0.7439	0.0034	5.0187
ts388-gt8-plag4-3	61.177	24.739	0.064	0.008	5.626	8.47	0.05	100.134	2.7125	1.2929	0.0024	a000.0	0.2673	0.7282	0.0028	5.0068
ts388-gt8-plag4-4	61.292	24.481	0.03	0	5.369	8.607	0.08	99.859	2.7235	1.2822	0.0011	0	0.2556	0.7415	0.0045	5.0085
ts287-pl1-1	57.394	26,597	0.147	0.005	7.976	7.363	0.066	99.548	2.5843	1.4116	0.0055	0.0003	0.3848	0.6428	0.0038	5.0332
ts287-pl1-2	57.532	26.172	0.109	0.001	7.669	7.488	0.083	99.054	2.6009	1.3946	0.0041	0	0.3715	0.6564	0.0048	5.0324
ts287-pl1-3	57.688	26.403	0.145	0.005	7.698	7.517	0.089	99.545	2,5959	1.4004	0.0055	0.0003	0.3712	0.6559	0.0051	5.0344
ts287-pl2-1	57.475	26.365	0.147	0	7.86	7.174	0.089	99.11	2.5959	1.4036	0.0056	0	0.3804	0.6283	0.0051	5.019
ts287-pi2-2	57.352	26.626	0.166	0	8.083	7.067	0.06	99.354	2.5853	1.4147	0.0063	0	0.3904	0.6177	0.0035	5.018
ts287-pl2-3	57.937	26.589	0.126	0	8.063	7.259	0.089	100.063	2.5934	1.4028	0.0047	0	0.3867	0.6301	0.0051	5.0229
(s28/-pl3-1	58.426	26.332	0.165	0	1.477	7.526	0.063	99,989	2.6127	1.388	0.0062	0	0.3583	0.6526	0.0036	5.0215

Plagioclase Chemistry

Weight perce	ent oxide			Cation ratio		
Analysis	SiO ₂ Al ₂ O ₃ FeO Mg	O CaO	Na ₂ O K ₂ O Total	Si Al Fe Mg Ca	Na	K Total
ts287-pl3-2	57.75 26.33 0.159	7.811	7.295 0.095 99.44	2,6001 1,3973 0,006 0 0,376	8 0 6369	0.0055 5.0227
ts287-nl3-3	58 533 25 863 0 161 0 0	2 7 355	7 73 0 068 99 73	2 6251 1 3672 0 006 0 0013 0 353	5 0 6723	0.0030 5.0204
te287-pl4-1cpt-	55 559 24 918 1 709 0 0	1 7 3 2 5	7 272 0 092 06 99	2.500 1.2604 0.0555 0.0003 0.255	0.0725	0.0033 5.0234
19201-pi4-10ill-	53.563 24.516 1,705 0.0	04 7.323	7.273 0.082 96.88	2.5909 1.3694 0.0666 0.0002 0.365	9 0.65/5	0,0049 5,0554
ts287-pi4-1cnt-t2	54.241 26,942 0.504 0.1	03 6,483	6.297 1.322 95.892	2.5438 1.4893 0.0198 0.0072 0.325	3 0.5726	0.0791 5.0377
ts287-pl4-1cnt-t3	57.49 26.03 0.185 0	7.434	7.499 0.095 98.733	2.6065 1.391 0.007 0 0.361	2 0.6592	0.0055 5.0304
ts397-pl1-1	45.061 35.304 0.044 0	18.438	3 1.111 0.038 99.996	2.0785 1.9195 0.0017 0 0.911	3 0.0993	0.0022 5.0126
Is397-pl1-2	45.336 35.5 0.016 0.0	09 18.385	5 1.144 0.009 100 399	2 0811 1 9207 0 0006 0 0006 0 904	3 0 1018	0.0005 5.0096
te397-p11-3	45 42 35 244 0.034 0.0	18 363	1 205 0 043 100 318	2 0975 1 9092 0 0013 0 0005 0 004	0 1075	0.0025 5.0120
13007-pi 1-0	45.42 55.244 0.054 0.0			2.0075 1.5052 0.0013 0.0006 0.504	2 0.1075	0.0025 5.0129
15597-piz-1	45.238 34.978 0.158 0.0	30 10.724	1.023 0.819 99.036	2.1037 1.9173 0.0061 0.0066 0.833	1 0.0923	0.0486 5.008
ts397-pl2-2	40.226 37.08 0.14 0.0	43 16.682	2 0.921 0.023 95.115	1.9506 2.1194 0.0057 0.0031 0.866	3 0.0866	0.0015 5.0338
ls397-pl2-3	45.389 35.271 0.031 0	18.534	1.119 0.032 100.376	2.0853 1.91 0.0012 0 0.912	\$ 0.0997	0.0019 5.0106
ts397-pl3-1	45.232 35.183 0.051 0.0	9 18.219	1.216 0.02 99.93	2.0864 1.9128 0.002 0.0006 0.900	5 0.1087	0.0012 5.0122
ts397-pl3-2dark	43 64 34 165 0 206 0 0	12 17 832	1 072 0 035 96 952	2 0777 1 9173 0 0082 0 0001 0 909	7 0.000	0.0021 5.0141
te307-pl3-3	45,64 04,100 0,200 0,0	10 400	1 252 0.000 100 404	2.0964 4.000 0.0002 0.0001 0.003	0.035	0.0021 5.0141
00000 -010-0		10.405	1.232 0.022 100,494	2.0604 1.909 0.0008 0 0.906	5 0.1114	0.0013 5.0156
2000-gi1-pi1-1	64.174 23.235 0.339 0.0	18 3.705	9.8/1 0.053 101.385	2.8009 1.1953 0.0124 0.0005 0.173	3 0.8353	0.0029 5.0206
2336b-gt1-pl1-2	63.818 23.349 0.103 0	3.71	9.699 0.083 100.762	2.7985 1.2068 0.0038 0 0.1743	0.8247	0.0047 5.0129
2336b-gt1-pl1-3	64.172 23.065 0.038 0	3.798	9.826 0.064 100.963	2.8085 1.1898 0.0014 0 0.178	0.8339	0.0035 5.0153
2336b-gt1-pl1-4	64.168 22.875 0.135 0	3.584	9.818 0.061 100.641	2.8161 1.1833 0.0049 0 0.168	5 0.8355	0.0034 5.0117
2336b-ot1-ol2-1	63,694 23,166 0.03 0	3.771	9.586 0.071 100.318	2 8036 1 2019 0 0011 0 0 1779	0.8181	0.004 5.0066
2336b-d11-d2-2	63 753 23 111 0 049 0	3 643	9 601 0 081 100 238	2,0000 1,2010 0,0011 0 0,1710	0.0101	0.0045 5.0054
20000-911-912-2	03.755 23.111 0.049 0	3.043	9.001 0.001 100,238	2.8074 1.1996 0.0018 0 0.1715	0.6196	0.0045 5.0051
23360-gt1-pi2-3	63.939 23.232 0.033 0	3.832	9.601 0.064 100,701	2.8038 1.2008 0.0012 0 0.18	0.8164	0.0036 5.0058
2336b-gt1-pl3-1	63.955 22.694 0.014 0	2.831	9.887 0.22 99.601	2.8298 1.1835 0.0005 0 0.1342	2 0.8482	0.0124 5.0087
2336b-gt1-pl3-2	64.058 22.793 0.027 0.00	3 3.45	9.83 0.076 100.237	2.8201 1.1828 0.001 0.0002 0.1627	/ 0.8391	0.0043 5.0103
2336b-qt1-pi3-3	63,735 23,299 0.03 0.00	4 3.841	9.695 0.073 100.677	2,7976 1,2054 0,0011 0,0003 0,1807	0.8251	0.0041 5.0143
2336b-at2-ol1-1	63 953 23 094 0 018 0	3 702	9 457 0 06 100 284	2 8123 1 197 0 0007 0 0 174/	0.8064	0.0034 4.9943
2336b-pt2-pl1-2	63 809 23 029 0 0	3 663	9735 0.067 100 202		7 0.0004	0.0007 5.044
2000-giz-pi1-z		3.002	9.735 0.067 100.302	2.0088 1.1949 0 0 0.1721	0.8309	0.0037 5.011
2336b-gt2-pt1-3	64.122 23.033 0.026 0	3,613	9.635 0.043 100.472	2.815 1.1919 0.0009 0 0.1699	0.8201	0.0024 5.0003
2336b-gt2-pl2-1	63.795 23.029 0.033 0.00	6 3.784	9.622 0.069 100.338	2.8077 1.1947 0.0012 0.0004 0.1784	0.8211	0.0039 5.0075
2336b-gt2-pl2-2	63.615 23.082 0.014 0	3.687	9.618 0.068 100.084	2.806 1.2 0.0005 0 0.1743	0.8226	0.0038 5.0073
2336b-gl2-pl2-3	63.924 23.047 0.074 0.0	3 3.641	9.806 0.085 100.607	2.8073 1.193 0.0027 0.0019 0.1713	0.835	0.0048 5.016
2336b-ot2-pl3-1	45,745 30,458 4,51 5,06	7 0.034	0.09 10.15 96.06	2 2415 1 7591 0 1848 0 3701 0 0018	0.0085	0 6349 5 2007
2336h-012-013-2	49 845 27 969 4 837 3 3	1 0 186		2 4196 1 6003 0 1064 0 2430 0 0003	0.0000	0.6043 5.2001
20000-yiz-pi0-2	49.040 21.909 4.031 3.31	1 0.100	0.08 9.9 98.188	2.4196 1.6003 0.1964 0.2439 0.0097	0.0075	0.6131 5.0905
23300-gi2-pi3-3	50.093 28.253 4.513 3.3	0.157	0.079 9.924 96.35	2.4221 1.6102 0.1825 0.2401 0.0081	0.0074	0.6122 5.0827
2336b-gt3-pl1-1	63.311 23.27 0.031 0	3.708	9.812 0.079 100.211	2.7932 1.2101 0.0011 0 0.1753	0.8394	0.0045 5.0237
2336b-gl3-pl1-2	63.808 22.944 0.002 0	3.679	10.004 0.066 100.503	2.8068 1.1896 0.0001 0 0.1734	0.8533	0.0037 5.0269
2336b-gt3-pt1-3	63,559 23,261 0 0.00	1 3.729	9.89 0.087 100.527	2.7956 1.2059 0 0.0001 0.1757	0.8435	0.0049 5.0257
2336b-at3-pl2-1	63.607 23.241 0.016 0.00	8 3.846	9.722 0.069 100.509	2 7971 1 2047 0 0006 0 0005 0 1812	0.829	0.0039 5.0171
23365-ol3-pl2-2	64 069 23 253 0 026 0	2 762	9 697 0 099 100 007	2 8044 1 1007 0 001 0 0 1765	0.020	0.0055 5.0101
2000-90-912-2		3.703	9.057 0.039 100.907		0.823	0.0035 5.0101
23360-gi3-pi2-3	63.714 23.198 0.006 0	3.822	9.552 0.077 100.369	2.8029 1.2029 0.0002 0 0.1802	0.8148	0.0043 5.0054
2336b-gt3-pl3-1	63.623 23.12 0 0	3.708	9.648 0.09 100.189	2.8042 1.2011 0 0 0.1751	0.8246	0.0051 5.0101
2336b-gt3-pl3-2	64.183 23.048 0 0	3.515	9.868 0.102 100.716	2.8133 1.1908 0 0 0.1651	0.8387	0.0057 5.0137
2336b-gt3-pl3-3	63.654 22.986 0.024 0	3.78	9.632 0.088 100.164	2.807 1.1948 0.0009 0 0.1786	0.8236	0.0049 5.0098
0383-qt1-plaq1-1	61,236,25,347, 0.24, 0.00	4 6.256	8,288 0,053 101 424	2 6878 1 3113 0 0088 0 0003 0 2942	0 7054	0.0029 5.0107
0383.ot1.plao1-2	61 169 25 208 0 127 0	6 272	8 481 0.061 101 318	2.6698 1.3061 0.0047 0.0005	0.7004	0.0020 0.0.01
0202 old plagt-2	C1 001 05 011 0 000	0.272	0.401 0.001 101.010	2.0000 1.0001 0.0047 0 0.2904	0.7229	0.0034 5.0214
0303-gt1-piag1-3	61.201 25.311 0.062 0	6.241	8.512 0.051 101.378	2.68761.3101 0.0023 0 0.2937	0.7248	0.0028 5.0214
0383-gt1-plag2-1	61.051 25.173 0.032 0.01	1 6.239	8.211 0.056 100.773	2.6934 1.309 0.0012 0.0007 0.2949	0.7024	0.0031 5.0047
0383-gt1-plag2-2	61.462 25.246 0.042 0	6.189	8.383 0.042 101.364	2.696 1.3053 0.0015 0 0.2909	0.713	0.0023 5.009
0383-gt1-plag2-3	60.979 25.414 0.04 0	6.522	8.263 0.043 101.261	2.6811 1.3171 0.0015 0 0.3073	0.7045	0.0024 5.0139
0383-qt1-plaq3-1	60,853 25,332 0,193 0.00	4 6.389	8.257 0.069 101.097	2.6814 1.3157 0.0071 0 0002 0 3017	0.7054	0 0039 5 0155
0383-ot1-olao3-2	61,558 24,945 0,108 0	5.724	8 651 0 071 101 057	2 7077 1 2933 0 004 0 0 2698	0 7378	0.004 5.0167
0383-pt1-plap3-3	61 083 35 443 0 093 0	6 207	8 354 0 048 101 336		0.7440	0.007 5.0107
0000-911-91890-0	01.005 25.442 0.052 0	0.007	0.004 0.048 101.020	2.0033 1.3174 0.0034 0 0.2909	0.7110	5.0027 5.0155
US63-giz-piag1-1	60.889 25.283 0.245 0	6.195	8.256 0.044 100.912	2.6859 1.3146 0.009 0 0.2928	0.7062	0.0025 5.0111
0383-gt2-plag1-2	60.911 25.366 0.133 0	6.367	8.297 0.042 101.116	2.6822 1.3166 0.0049 0 0.3004	0.7084	0.0024 5.0149
0383-gt2-plag1-3	60.62 25.52 0.19 0.00	6 6.499	8.287 0.054 101.176	2.671 1.3254 0.007 0.0004 0.3068	0.7081 (0.0031 5.0219
0383-gl2-plag2-1	61.155 25.203 0.212 0	6.3	8.436 0.066 101.372	2.6879 1.3056 0.0078 0 0.2967	0,7189	0.0037 5.0207
0383-qt2-plaq2-2	60.93 25.49 0.127 0	6.256	8.25 0.051 101.104	2.6816 1.3223 0.0047 0 0.295	0.7041 (0.0029 5.0107
0383-ot2-plag2-3	60 547 25 632 0 092 0 00	2 6 54	8 313 0 026 101 152	2 6676 1 3311 0 0034 0 0002 0 3087	0.7102	0.0014 5.0227
	CO.051 25.002 0.002 0.00		0.010 0.020 101.102	2.0070 1.0011 0.0004 0.0002 0.0007	0.7102	5.0014 5.0221
0303-912-91893-1	61.054 25.422 0.031 0.00	9 0.190	8.422 0.053 101.187	2.6847 1.3176 0.0011 0.0006 0.2919	0.7181	0.003 5.0171
0383-gt2-plag3-2	61.293 25.276 0.028 0	6.311	8.293 0.05 101.251	2.6922 1.3086 0.001 0 0.297	0.7063 (0.0028 5.0079
0383-gt2-plag3-3	61.026 25.269 0.037 0	6.409	8.211 0.053 101.005	2.6881 1.3119 0.0013 0 0.3025	0.7013	0.003 5.0082
0293-gt1-plag1-1	59.249 26.434 0.193 0	7.724	7.48 0.064 101.144	2.6192 1.3774 0.0071 0 0.3659	0.6412 (0.0036 5.0145
0293-gt1-plag1-2	59.25 26.458 0.15 0.00	7 7.683	7.508 0,066 101.122	2,6192 1,3786 0,0055 0,0005 0,3639	0.6435 (0.0037 5.015
0293-ot1-plan1-3	58 989 26 408 0.09 0	7 675	7 466 0 069 100 697	2 6181 1 3815 0 0033 0 0 365	0.6426	0.0039 5.0144
0293-oi1-plac2-1	59 394 25 774 0 000 0 02	3 7 75	7 683 0 070 400 204		0.0720 1	0.0045 5.0144
0200-911-91892-1	50.004 20.004 0.000 U.U3	. 1.20	7.003 0.019 100.304	2.0434 1.3521 0.0033 0.0024 0.3457	0.003 (0.0040 0.0144
0293-gt1-plag2-2	58.291 26.301 0.051 0.00	2 7.505	7.559 0.061 100.77	2.62/3 1.3737 0.0019 0.0001 0.3564	0.6494 (J.0035 5.0124
0293-gt1-plag2-3	59.77 26.171 0.118 0	7.498	7.528 0.081 101.166	2.6375 1.3612 0.0043 0 0.3545	0.6441 (0.0046 5.0062
0293-gt1-plag3-1	59.02 26.131 0.066 0.01	1 7.512	7.632 0.087 100.459	2.6258 1.3703 0.0024 0.0007 0.3581	0.6584 ().0049 5.0206
0293-gt1-plag3-2	58.854 26.445 0.093 0	7.871	7.404 0.078 100.745	2.6128 1.3838 0.0034 0 0.3744	0.6373 (0.0044 5.0161
0293-gt1-plao3-3	59,182 26,334 0.094 0	7.649	7,421 0.065 100.745	2.624 1.3762 0.0035 0 0.3634	0.638	0.0037 5.0089
0293-nt2-ntan1-1	59.304 26 369 0 378 0	7 547	7.601 0.049 101 24P	2 6207 1 3735 0 014 0 0 2574	0.6513 /	0027 50106
0293-012-01201-2	59,096,26,666,0,256,0	7 907	7 422 0 020 404 205		0.6356 4	10022 50440
0202 -02 -11 2	50.000 20.000 0.200 U	1.007	7.722 0.033 101.203	2.01 1.3002 0.0094 0 0.3694	0.0300 (JUUZZ JU148
ozao-giz-piag1-3	50.340 Z0.232 U.203 0.00	0 1.043	7.543 0.052 100.687	Z.0184 1.3765 0.0075 0.0005 0.3638	0.6497	0.003 5.0195

Plagioclase Chemistry

Weight perc	ent oxide						Catio	on rati	0					
Analysis	SiO ₂ Al ₂ O ₃ FeO	MaO	CaO	Na ₂ C) K ₂ O	Total	Si	AI	Fe	Ma	Ca	Na	к	Total
0293-gt2-plag2-	1 59.068 26.746 0.171	0.005	7.66	7.361	0.062	101.073	2.6114	1.393	7 0.0063	0.000	3 0.3628	0.631	0.0035	5.009
0293-gt2-plag2-	2 59.231 26.602 0.135	5 0	7.697	7.43	0.07	101.165	2.6165	5 1.385	0.005	0	0.3643	0.6364	0.0039	5.0113
0293-gt2-plag2-	3 60.492 25.72 0.187	0	6.522	8.127	0.072	101.12	2.6659	1.336	0.0069	0	0.308	0.6945	0.0041	5.0155
0293-gt2-plag3-	1 59.427 25.831 0.175	0.001	7.587	7.48	0.055	100.556	2,6399	1.352	0.0065	6 0,000 [.]	0.3611	0.6443	0.0031	5.0075
0293-gt2-plag3-	3 59.358 26.25 0.225	0.004	7.382	7.447	0.074	100.664	2,6317	1.300	3 0.0065	0.000	0.3408	0.6402	0.0042	5.0038
0293-gt3-plag1-	59.428 26.183 0.28	0.007	7.605	7.502	0.054	101.059	2.6288	1.3652	2 0.0103	0.0005	5 0.3605	0.6435	0,003	5.0118
0293-gt3-plag1-	2 60.48 25.24 0.186	0,001	6.526	7.988	0.073	100.494	2.6801	1.3184	0.0069	0.000	0.3099	0.6864	0.0041	5.0059
0293-gt3-plag1-	3 59.032 26.263 0.119	0.003	7.708	7.32	0.077	100,522	2.6235	5 1.3758	3 0.0044	0.0002	2 0.3671	0.6308	0.0044	5.0062
0293-gt3-plag2-	1 59.664 26.192 0.116	0.008	7.41	7.472	0.048	100.91	2.6377	1.3648	3 0.0043	0.0005	5 0.351	0.6405	0.0027	5.0016
0293-gt3-plag2-2	2 59.366 20.556 0.113	0.017	7.677	7,493	0,065	101.37	2,6184	1.3801	0.0042	0.0011	0.3655	0.6406	0.0036	5.0135
0293-gt3-plag3-1	59.158 26.441 0.121	ō	7.805	7.469	0.081	101.075	2.6173	1.3789	0.0032	0	0.3020	0.6408	0.0046	5.0127
0293-gt3-plag3-2	2 58.777 26.406 0.117	Ó	7.487	7.561	0.062	100.41	2.6162	1.3854	0.0043	0	0.3571	0.6526	0.0035	5.0192
0293-gt3-plag3-3	60.439 25.371 0.096	0	6.542	8.063	0,076	100.587	2,6759	1.324	0.0035	0	0.3103	0.6922	0.0043	5.0103
0174-gl3-plag1-1	59.433 26.152 0.26	0	7.531	7.833	0.055	101.264	2.6266	1.3623	0.0096	0	0.3566	0.6712	0.0031	5.0294
0174-gt3-plag1-2	2 59.325 26.287 0.197	0	7.696	7.682	0,055	101.242	2.6218	1.3693	0.0073	0	0.3644	0,6583	0.0031	5.0242
0174-gt3-plag1-3	59.86 26.222 0.138	0.004	7.529	7.687	0.073	101.422	2,035	1.3636	0.0051	0.0003	0.3504	0.656	0.0039	5.0166
0174-gt3-plag2-2	60.082 26.196 0.137	0.002	7,383	7.766	0.068	101.634	2.6398	1.3566	0.005	0.0002	0.3476	0.6616	0.0038	5.0146
0174-gt3-plag2-3	59.702 26.16 0.176	0	7.341	7.631	0.051	101.061	2.6373	1.3621	0.0065	0	0.3475	0.6536	0.0028	5.0099
0174-gl3-plag3-1	59.545 26.145 0.135	0.011	7.351	7.737	0.051	100.975	2.6339	1.3632	0.005	0.0007	0.3484	0.6636	0.0029	5.0178
0174-gt3-plag3-2	59.515 25.918 0.051	0.001	7.324	7.662	0.078	100.549	2.6418	1.3561	0.0019	0.0001	0.3483	0.6595	0.0044	5.0121
0174-gt3-plag3-3	59.649 25.82 0.026	0.003	7.358	7.687	0.061	100.604	2.6459	1.35	0.0009	0.0002	0.3497	0.6611	0.0035	5.0114
0174-ot2-plag1-1	59.125 26.333 0.079	0.007	7.713	7.471	0.075	100.796	2.6215	1.3762	0.0029	0.0003	0.3664	0.6423	0.0043	5.0136
0174-gt2-plag1-3	59.345 26.423 0.093	0.008	7.612	7.474	0.074	101.029	2.6237	1.377	0.0034	0.0005	0.3606	0.6407	0.0042	5.0101
0174-gt2-plag2-1	60.045 26.194 0.156	0.003	7.345	7.693	0.057	101.493	2.6408	1.3579	0.0057	0.0002	0.3461	0.6561	0.0032	5.0101
0174-gt2-plag2-2	59.632 26.351 0.064	0	7.556	7.572	0.068	101.243	2.63	1.3699	0.0024	0	0.3571	0.6476	0.0038	5.0108
0174-gt2-plag2-3	58.985 26.355 0.043	0.009	7.728	7.448	0.067	100.635	2.6192	1.3794	0.0016	0.0006	0.3677	0.6413	0.0038	5.0136
0174-gt2-plag3-1	59.175 26.302 0.11	0.006	7.587	7.704	0,067	100.951	2,6213	1.3733	0.0041	0.0004	0.3601	0.6650	0.0038	5.0247
0174-gt2-plag3-2	59.309 26.292 0.026	Ő	7.663	7.586	0.076	100.952	2.6252	1.3717	0.0002	0	0.3634	0.651	0.0043	5.0166
0220-gt1-plag1-1	63.069 23.746 0.334	Ō	4.607	9.341	0.07	101.167	2.7656	1.2273	0.0122	Ō	0.2165	0.7942	0.0039	5.0198
0220-gt1-plag1-2	63.424 23.549 0.072	0.004	4.356	9.353	0.073	100.831	2.7828	1.2179	0.0026	0.0002	0.2048	0.7957	0.0041	5.0082
0220-gt1-plag1-3	63.485 23.346 0.114	0	4.082	9.541	0.096	100.664	2.7901	1.2094	0.0042	0	0.1922	0.813	0.0054	5.0144
0220-gt1-plag2-1	63.155 23.373 0.062	0.005	3.894	9.489	0.054	100.032	2,7898	1.217	0.0023	0.0003	0.1843	0.8127	0.0031	5.0096
0220-gt1-plag2-2	63.456 23.475 0.07	0	4.03	9.643	0.065	100.739	2,7865	1.215	0.0026	0	0.1896	0.821	0.0035	5.0184
0220-gt1-plag2-3	57.295 21.634 1.443	0.128	3.792	8.087	0.777	93.156	2.7507	1.2242	0.0579	0.0092	0.1951	0.7528	0.0476	5.0375
0220-gt1-plag3-2	63.864 23.32 0.096	0.004	3.943	9.789	0.067	101.083	2.7949	1.2029	0.0035	0.0003	0.1849	0.8307	0.0038	5.021
0220-gt1-plag3-3	64.356 22.656 0.096	0	3.439	9.898	0.051	100.496	2.8263	1.1728	0.0035	0	0.1618	0.8428	0.0029	5.0101
0220-gt2-plag1-1	62.947 23.452 0.113	0.006	4.357	9.334	0.067	100.276	2.7788	1.2203	0.0042	0.0004	0.2061	0.799	0.0038	5.0127
0220-gt2-plag1-2	63.441 23.117 0.068	0.002	3.919	9.366	0.078	99.991	2.8018	1.2034	0.0025	0.0002	0.1855	0.8021	0.0044	5
0220-gi2-plag1-3	63.408 23.438 0.021 63.522 23.508 0.056	0	4.132	9.408	0.069	100.476	2.7892	1.2152	0.0008	0	0.1948	0.8025	0.0039	5.0064
0220-gt2-plag2-1	63.263 23.183 0.042	0.005	4.059	9.548	0.075	100.175	2.7929	1.2063	0.0016	0.0003	0.1900	0.8173	0.0042	5.0147
0220-gt2-plag2-3	63.318 23.189 0.072	0	4.118	9.442	0.063	100.202	2.7939	1.206	0.0027	0	0.1947	0.8079	0.0036	5.0089
0220-gt2-plag3-1	62.385 23.613 0.09	0	4.445	9.317	0.044	99.894	2.7663	1.2341	0.0033	0	0.2112	0.801	0.0025	5.0185
0220-gt2-plag3-2	63.042 23.209 0.035	0	3.938	9.514	0.09	99.828	2.7918	1.2115	0.0013	0	0.1869	0.817	0.0051	5.0137
0220-gt2-plag3-3	62.941 23.254 0.1	0	4.266	9.444	0.068	100.073	2.7842	1.2125	0.0037	0	0.2022	0.81	0.0038	5.0164
0224-gt1-plag1-1	61.536 24.561 0.159 61.536 24 537 0 112	0.05	5 411	8,712	0.121	100.185	2.7203	1.2723	0.0059	0 0033	0.2563	0.7468	0.0049	5.0168
0224-gt1-plag1-3	61.383 24.488 0.061	0	5.432	8.675	0.081	100.12	2.7222	1.28	0.0023	0	0.2581	0.7459	0.0046	5.0132
0224-gt1-plag2-1	61.486 24.474 0.033	0.005	5.563	8.801	0.08	100.442	2.7203	1.2763	0.0012	0.0003	0.2637	0.755	0.0045	5.0213
0224-gt1-plag2-2	62.199 24.212 0.03	0	5.135	8.813	0.106	100.495	2.7439	1.259	0.0011	0	0.2427	0.7539	0.006	5.0066
0224-gt1-plag2-3	61.594 24.439 0.098	0.009	5.488	8.811	0.102	100.541	2.7227	1.2733	0.0036	0.0006	0.26	0.7552	0.0058	5.0213
0224-g[1-plag3-1	61.484 24.28 0.013	0	5.3/3	8.65	0.08	99.88	2.7311	1.2/12	0.0005	0	0.2557	0.745	0.0046	5.0082
0224-gt1-plag3-2 0224-gt1-plag3-3	61.37 24.431 0.012	0	5.428	8.651	0.086	99.978	2.7245	1.2019	0.0018	0	0.2582	0.7442	0.0049	5.0112
4085pi1-1	61.72 23.935 0.202	ō	4.879	8.685	0.087	99.508	4.1232	1.8847	0.0113	ō	0.3492	1.125	0.0074	7.5008
4085pl1-2	61.168 23.938 0.106	0	4.893	8.77	0.09	98.965	4.111	1.8963	0.006	0	0.3523	1.1428	0.0078	7.5163
4085pl2-1	61.485 23.754 0.029	0	4.984	8.796	0.077	99.125	4.124	1.8779	0.0016	0	0.3582	1.144	0.0066	7.5124
4085pl2-2	61.662 23.858 0.052	0	4.899	8.761	0.092	99.324	4.1257	1.8815	0.0029	0	0.3512	1.1366	0.0079	7.5059
4085pi2-3	61.815 23,909 0,037 61.39 24.007 0.052	U O	4.855	0.791	0.118	98 932	4.12/1	1.8815	0.0021	U n	0.34/3	1.1381	0.0046	7 4823
4085pl3-2	60.966 24.014 0.037	õ	4.917	8.584	0.062	98.58	4.1089	1.9077	0.0021	õ	0.3551	1.1218	0.0053	7.501
4085pl3-3	61.126 23.893 0.05	0	5.013	8.319	0.042	98.443	4.1208	1.8986	0.0028	0	0.3621	1.0875	0.0036	7.4755
1026pl1-1	61.779 23.795 0.114	0	4.657	8.641	0.071	99.057	4.1385	1.8788	0.0064	0	0.3343	1.1223	0.006	7.4864
1026pl1-2	61.914 23.801 0.104	0.007	4.559	8.682	0.079	99.146	4.1423	1.8769	0.0058	0.0007	0.3268	1.1263	0.0067	7.4855
1026pi1-3	61.646 23.756 0.056	0	4.675	8.735	0.05	98.918	4.1361	1.8787	0.0032	0	0.3361	1.1364	0.0043	7.4949
i uzupiz• i	01.401 Z3.301 0.07b	U	4.014	0.001	0,000	30,344	4.1222	1.0310	0.0043	v	0.3403	1.1307	0.0040	1.4331

Plagioclase Chemistry

	ont ovido			Cotion ratio			
weight perc			O T-1-1		0-		Tatal
Analysis	SIU ₂ Al ₂ U ₃ FeU MgU		O Total	SI AI Fe Mg	Ca	Na K	Iotal
1026pi2-2	61.648 23.73 0.098 0.007	4.583 8.849 0.0	61 98.976	4.1358 1.8765 0.0055 0.000	7 0.3294 1	1.1511 0.0052	7.5043
1026pi2-3	61.791 23.947 0.046 0.005	4.828 8.826 0.0	39 99.482	4.1258 1.8846 0.0026 0.000	5 0.3454 1	1.1427 0.0033	7.505
1026pl3-1	61.805 23.993 0.199 0.008	4.73 8.788 0.04	45 99.568	4.1243 1.8872 0.0111 0.000	8 0.3382 1	1.1371 0.0039	7.5027
1026pl3-2	61.939 23.89 0.074 0	4.805 8.555 0.0	63 99,326	4.1371 1.8808 0.0041 0	0.3439	1.108 0.0053	7.4792
1026013-3	61.528 23.774 0.093 0	4.795 8.834 0.0	78 99,103	4.1266 1.8795 0.0052 0	0.3447 1	1.1488 0.0066	7.5114
00320011-1	60.928 24.323 0.295 0	5.327 8.367 0.0	// 99.31/ PO 00.065	4.0851 1.9222 0.0166 0	0.3827 1		7.501
0032001-2	60.714 24.41 0.091 0	5.319 8.442 0.00	74 00 063	4.0793 1.9332 0.0051 0	0.3029 1	0.0076	7.5079
0032001-3	60,909 24 2 0,0E7 0,01	5,413 0,034 0,0	74 99.003	4.0897 1.9231 0.0033 0.000	1 0,35 1	0.0000	7.000
0032bpl2-1	61 006 24 199 0 065 0 002	5442 8347 0.07	76 09 137	4,0037 1,0141 0,0036 0,000	0.0000	0.0001	7 4956
0032bpl2-2	60 812 24 486 0.064 0.014	5499 8332 0.00	59 99 276	4 0767 1 9348 0 0036 0 001	10395 1	0.0001 0.0000	7 5006
0032bpi2-0	60 726 24 366 0 106 0 005	5484 8 288 0 0	56 99 031	4 0807 1 9299 0 0059 0 0004	503949 1	0799 0.0048	7 4966
0032bpl3-1	60 897 24 306 0 061 0 007	5457 8.366 0.05	52 99 146	4 0866 1 9226 0 0034 0 0007	703924 1	0886 0.0044	7 4987
0032bpl3-3	60.771 24.184 0.029 0.007	5.556 8.35 0.09	6 98,993	4.0867 1.9169 0.0016 0.0007	0.4003 1	0.00888 0.0082	7.5033
2133plint1-1	58.463 25.757 0.113 0	7.536 7.509 0.04	18 99.426	3.9425 2.0473 0.0064 0	0.5445 0	0.9819 0.0042	7.5269
2133plint1-2	58.606 25.756 0.089 0	7.416 7.552 0.00	58 99.487	3.948 2.0451 0.005 0	0.5353 0	.9865 0.0058	7.5258
2133plint2-1	58.752 25.744 0.17 0	7.572 7.343 0.06	53 99,644	3.9511 2.0407 0.0095 0	0.5457 0	.9576 0.0054	7.5101
2133plint2-2	58.024 26.052 0.21 0	7.822 7.279 0.04	16 99.433	3.9172 2.073 0.0118 0	0,5658 0	.9529 0.0039	7.5247
2133plint3-1	58.02 25.789 0.187 0	7.852 7.116 0.04	3 99.007	3.9306 2.0593 0.0106 0	0.57 0	.9347 0.0037	7.509
2133pi1-1	58.401 25.319 0.182 0.075	7.219 7.066 0.20	6 98.468	3.9695 2.0285 0.0103 0.0076	0.5258 0	.9312 0.0178	7.4908
2133p11-2	57.951 25.59 0.043 0	7.637 7.228 0.03	39 98.488	3.9423 2.0519 0.0025 0	0.5567 0	.9534 0.0034	7.5103
2133pl1-3	57.748 25.606 0.038 0	7.563 7.162 0.04	7 98.164	3.9401 2.0593 0.0022 0	0.5529 0	.9475 0.0041	7.5061
2133pl2-1	58.045 25.52 0 0	7.715 7.047 0.06	67 98.394	3.9497 2.0468 0 0	0.5625 0	.9297 0.0058	7,4945
2133pl2-2	58.01 26.253 0.003 0	7.524 7.117 0.06	62 98.969	3.9231 2.0927 0.0001 0	0.5452 0	.9333 0.0053	7.4998
2133pl2-3	58.068 26.26 0 0	7.514 7.119 0.10	01 99.062	3.9239 2.0916 0 0	0.5441 0	.9328 0.0087	7.5011
2133pl3-1	58.314 26.384 0.001 0	7.335 7.354 0.07	5 99.463	3.9244 2.0929 0 0	0.5289 0	.9596 0.0064	7.5123
2133pl3-2	58.076 26.164 0.014 0	7.36 7.067 0.07	3 98.754	3.9327 2.0884 0.0008 0	0.534 0	.9279 0.0063	7.4901
2133pl3-3	58.251 26.105 0.014 0	7.513 6.854 0.07	5 98.812	3.94 2.0813 0.0008 0	0.5445 0	.8989 0.0065	7.472
1181pi1-1tch	58.478 26.182 0.152 0	7.728 7.056 0.10	5 99.701	3.9299 2.0739 0.0086 0	0.5565 0	.9195 0.009	7.4975
1181pl1-2	58.36 25.966 0.049 0	7.507 6.953 0.12	2 98.955	3.9447 2.0688 0.0028 0	0.5437 0	.9113 0.0104	7.4818
1181pl1-3	58.311 26.303 0.046 0	7.692 7.135 0.14	3 99.63	3.9219 2.0852 0.0026 0	0.5543 0	.9305 0.0123	7.5069
1181pi2-1	58.567 25.928 0.035 0	7.444 7.246 0.12	2 99.342	3.9465 2.0593 0.002 0	0.5375 0	.9467 0.0105	7.5025
1181012-2	59.155 25.472 0.082 0.044	6,753 7,326 0.26	99.099	3.9883 2.0242 0.0046 0.0044	0.4879 0	.9578 0.0229	7.4901
1181012-3	58.433 25.948 0.024 0	7.326 6.919 0.16	9 98.819	3.952 2.0685 0.0014 0	0,5309 0	.9073 0.0145	7.4746
1181013-1	58.368 26.092 0.011 0	7.378 7.212 0.13	99.198	3.938 2.0749 0.0006 0	0,5334 0	.9434 0.0118	7.5022
1181013-2	58.625 26.081 0.025 0.004	7.37 7.143 0.10	3 99,428	3.945 2.0687 0.0014 0.0004	0.5314 0.	.9321 0.0155	7.4940
1047pl3-3	58,567 25,781 0,041 0,01	F 20 9 402 0 07	8 00 01	4 0791 1 9374 0 0035 0 0005	0.3108 0.	.9245 0.0244	7.4027
1047 p11-11-2	61 72 24 203 0 053 0	5.067 8.517 0.05	6 99 616	4 1147 1 9019 0 003 0	0.3619 1	101 0.0048	7 4873
1047pi1-2	61 881 23 996 0 034 0	4 883 8 624 0 08	8 99 506	4 1285 1 887 0 0019 0	0.3491 1	1156 0.0075	7 4897
104702-1	61,806,23,823,0,034 0	4,762 8,412 0.08	7 98.924	4.1417 1.8817 0.0019 0	0.3419 1	.0931 0.0074	7.4678
1047012-2	61,859 23,684 0.016 0	4.692 8.715 0.08	6 99.052	4,1438 1,87 0,0009 0	0.3368 1	.132 0.0074	7.4909
1047pi2-3	62.096 23.607 0.067 0	4.624 8.679 0.08	1 99.154	4.1534 1.8612 0.0038 0	0.3314 1.	.1257 0.0069	7.4824
1047pl3-1	61.773 23.805 0.02 0.004	4.847 8.592 0.07	1 99.112	4.136 1.8787 0.0011 0.0004	0.3478 1.	1155 0.0061	7.4857
1047pl3-2	61.959 23.547 0.032 0	4.476 8.653 0.07	8 98.745	4.1581 1.8626 0.0018 0	0.3219 1	.126 0.0067	7.4771
1047pl3-3	61.783 23.724 0.042 0	4.592 8.745 0.08	1 98.967	4.142 1.8747 0.0023 0	0.3298 1.	1368 0.0069	7.4925
1047pl1-1-1tch	61.171 24.346 0.238 0	5.023 8.538 0.04	5 99.361	4.0946 1.9209 0.0133 0	0.3602 1.	.1081 0.0038	7,5009
1047pl1-1-2	61.46 24.082 0.092 0	4.751 8.701 0.06	5 99.146	4.117 1.9014 0.0051 0	0.341 1.	1302 0.0052	7.4999
1047pi1-1-3	61.777 23.52 0.077 0.001	4.728 8.872 0.10	3 99.078	4.1429 1.8592 0.0043 0.0001	0.3398 1.	1537 0.0088	7.5089
1047pi1-2-1	61.455 23.567 0.021 0	4.675 8.865 0.08	1 98.664	4.1372 1.87 0.0012 0	0.3372 1.	1572 0.007	7.5099
1047pl1-2-2	61.66 23.315 0.01 0	4.801 8.732 0.103	3 98.621	4.1516 1.8503 0.0005 0	0.3463 1	1.14 0.0088	7.4976
1047pl1-2-3	61.758 23.174 0.052 0	4.573 8.909 0.08	7 98.553	4.1606 1.8402 0.0029 0	0.3301 1.	.1637 0.0075	7.5051
1047pl1-3-1	61.852 23.405 0.009 0	4.677 8.83 0.12	8 98.901	4.1524 1.852 0.0005 0	0.3364 1.	1494 0.011	7.5017
1047pi1-3-2	61.444 23.314 0.02 0.004	4.481 8.325 0.09	8 97.686	4.1641 1.8624 0.0011 0.0004	0.3254 1	.094 0.0085	7.456
1047pl1-3-3	61.528 23.614 0.009 0	4.734 8.19 0.08	7 98.162	4.1507 1.8777 0.0005 0	0.3422 1.	0713 0.0075	7.45
1107pl1-1	61.397 24.095 0.21 0	5.014 8.036 0.16	98.912	4.1198 1.9057 0.0118 0	0.3605 1.	0455 0.0137	7.4571
1107pl1-2	61./06 24.13 0.172 0	4.811 8.382 0.200	5 99.407	4.1222 1.9 0.0096 0	0.3444 1.	0857 0.0175	7.4795
1107pl1-3	61.887 23.976 0.093 0.001	4.814 8.1 0.197	99.068	4.14 1.8906 0.0052 0.0001	0.3451 1.	0507 0.0168	7.4485
1107pl2-1	61.833 23.791 0.065 0.018	4.645 8.448 0.20	99.001	4.1428 1.8788 0.0036 0.0018	0.3335 1.	0975 0.0172	7.4752
1107012-2	01.09 23.836 0.049 0.001	4.704 8.167 0.23	5 98.742	4.1417 1.8863 0.0028 0.0001	0.3427 1.	0032 0,0201	7.457
110/pi2-3	01.190 23.829 0.113 0.015	4.08 8.505 0.21	5 98,553 7 09 7	4,1247 1.8931 0.0064 0.0015	0,338 1.	0,0185	7.4938
1107013-1	01.010 20.047 0.048 0.015 -	4./11 0.34/ 0.21/	90./ 3 09 694	4.1340 1.0093 0.0027 0.0015	0.3353 1.	00/0 0.0100	7 4733
1107013-2	61.377 23.605 0.055 0.008	4.001 0.303 0.213	08 804	A 1440 1 8642 0 0023 0 0000	0.3320 1.	1/02 0.0103	7 5050
i turpia•a	01.710 20.00 0.008 0.006	4.040 0.020 0.19	90.090	4.1445 1.0042 0.0033 0.0006	0.5213 1.	1732 0.0104	1.0009

·

Staurolite

	Weight percent oxide									Cation ration									
Analysis	SiO2	TiO₂	AI_2O_3	FeO	MnO	MgO	CaO	ZnO	Total		Si	Ti	Al	Fe	Mn	Mg	Са	Zn	Total
4085grain1	26.961	0.672	53.988	12.672	0.287	1.725	0	0,569	96.874	1.	9702	0.0369	4.6501	0.7744	0.0178	0.1879	0	0.0307	7.6681
4085grain2	26.448	0.674	54.441	12.801	0.309	1.572	0	0.517	96.762	1.	9369	0.0371	4.6994	0.784	0.0192	0.1716	0	0.0279	7.6761
4085grain3	26.815	0.662	54.052	12.865	0.294	1.594	0.02	0,493	96.795	1.	9625	0.0364	4.6629	0.7874	0.0182	0.1739	0.0016	0.0267	7.6696
4085grain4	27.255	0.59	53.88	12.78	0.299	1.672	0.001	0.458	96.935	1	.989	0.0324	4.6347	0.78	0.0185	0.1819	0.0001	0.0247	7.6613
4085grain5	27.058	0.606	54.259	12.99	0.296	1.661	0	0.52	97.39	1.	9686	0.0332	4.6531	0.7904	0.0182	0.1802	0	0.0279	7.6716
4085grain6	26.654	0.576	54.37	12.93	0.264	1.732	0.023	0.497	97.046	1.	9466	0.0316	4.6803	0.7897	0.0163	0.1885	0.0018	0.0268	7.6817
4085grain7	26.895	0.676	54.485	12.776	0.25	1.76	0	0.544	97.386	1.	9553	0.0369	4.6689	0.7768	0.0154	0.1908	0	0.0292	7.6734
4085grain8	27.138	0.797	54.274	12.91	0.282	1.782	0.015	0.574	97.772	1.	9669	0.0434	4.6366	0.7826	0.0173	0.1926	0.0012	0.0307	7.6713
4085grain9	26,91	0.651	54.107	13.144	0.242	1.718	0.002	0.557	97.331	1.	9614	0.0357	4.6485	0.8012	0.0149	0.1867	0.0002	0.03	7.6787
4085grain10	27.134	0.889	53.718	12.944	0.261	1.706	0.003	0.557	97.212	1.	9783	0.0487	4.6166	0.7893	0.0161	0.1854	0.0002	0.03	7.6646

Cordierite

Weight percent oxide											Cation ration									
Analysis	SiO₂	TiO₂	Al ₂ O ₃	FeO	MnO	MgO	CaO	Na₂O	K₂O	Total	Si	Ti	Al	Fe	Mn	Mg	Са	Na	к	Total
Comment																				
2133 1.1	48,334	N/A	32.75	6.303	0.073	9.349	0	0.274	0.028	97.111	4.9965	N/A	3.9904	0.5449	0.0064	1.4407	0	0.0548	0.0037	11.0375
2133 1.2	48.33	N/A	32.772	6.235	0.073	9,222	800.0	0.205	0.027	96.872	5.004	N/A	3.9995	0.5399	0.0064	1.4233	0.0008	0.0411	0.0035	11.0185
2133 1.3	48.514	N/A	32.981	6.251	0.067	9.256	0.01	0.233	0.026	97.338	4.9993	N/A	4.006	0.5387	0.0058	1.4218	0.0011	0.0465	0.0034	11.0226
2133 1.5	48.495	N/A	33.017	6.197	0.079	9,266	0.019	0.251	0	97.324	4.9969	N/A	4.0099	0.534	0.0069	1.4232	0.0021	0.0501	0	11.0231
2133 2.1	48.22	N/A	33.095	6.243	0.099	9.446	0.025	0.363	0.026	97.517	4.9673	N/A	4.0184	0.5378	0.0087	1.4506	0.0027	0.0725	0.0034	11.0615
2133 2.2	48.504	N/A	32.976	6.253	0.067	9.497	0	0.362	0.047	97.706	4.9851	N/A	3.9949	0.5375	0.0058	1.4551	0	0.0721	0.0061	11.0566
2133 2.3	48.247	N/A	32.864	6.246	0.083	9.5	0	0.353	0.021	97.314	4.9793	N/A	3.9978	0.5391	0.0073	1.4616	0	0.0706	0.0028	11.0585
2133 2.4	48.171	N/A	32.773	6.313	0.081	9.372	0	0.328	0	97.038	4.9854	N/A	3.9979	0.5465	0.0071	1.4459	0	0.0659	0	11.0487
2133 2.5	48.361	N/A	32,909	6.232	0.07	9.312	0.067	0.331	0.024	97.306	4.9895	N/A	4.002	0.5377	0.0061	1.4322	0.0074	0.0663	0.0032	11.0444
2133 3.1	48.207	N/A	32.836	6.128	0.065	9.319	0.028	0.294	0.016	96.893	4.9907	N/A	4.007	0.5305	0.0057	1.4382	0.0032	0.0589	0.0021	11.0363
2133 3.2	48.109	N/A	33.035	6.232	0.073	9.358	0	0.263	0.01	97.08	4.9737	N/A	4.0255	0.5388	0.0064	1.4421	0	0.0527	0.0014	11.0406
2133 3.3	48.176	N/A	32.912	6.278	0.059	9.298	0	0.26	0.005	96.988	4.9849	N/A	4.0141	0.5433	0.0052	1.4342	0	0.0521	0.0007	11.0346
2133 3.4	48.033	N/A	32.959	6.231	0.082	9.288	0.002	0.232	0.109	96.936	4.9757	N/A	4.0243	0.5398	0.0072	1.4343	0.0002	0.0467	0.0144	11.0426
2133 3.5	48.174	N/A	32.898	6.22	0.076	9.374	0.01	0.246	0.025	97.023	4.9829	N/A	4.011	0.5381	0.0067	1.4454	0.0012	0.0493	0.0033	11.0379
2133 4.1	48.42	N/A	32.99	5.968	0.071	9.329	0.018	0.341	0.001	97.138	4.9953	N/A	4.0117	0.5149	0.0062	1.4347	0.002	0.0682	0.0002	11.0332
2133 4.2	48.367	N/A	33.26	6.067	0.053	9.181	0.014	0.368	0.009	97.319	4.9828	N/A	4.0388	0.5227	0.0046	1.4099	0.0016	0.0735	0.0011	11.035
2133 4.3	48.43	N/A	33.012	5.989	0.074	9.17	0.026	0.408	0.023	97.132	4.9984	N/A	4.0159	0.5169	0.0065	1.4108	0.0029	0.0816	0.0031	11.0362
2133 4.4	48.382	N/A	33.252	6.097	0.1	9.15	0.039	0.307	0	97.327	4.9844	N/A	4.0379	0.5253	0.0087	1.4053	0.0043	0.0613	0	11.0273
287-gt2-cd1-1	47.282	0.005	33.456	7.851	0.79	8.138	0.039	0.329	0.04	97.93	4.9061	0.0004	4.0918	0.6813	0.0694	1.2587	0.0043	0.0661	0.0053	11.0834
287-gt2-cd1-2	48.055	0	33.51	7.464	0.738	8.16	0.005	0.29	0.025	98.247	4.9515	0	4.0699	0.6432	0.0644	1.2533	0.0005	0.058	0.0033	11.0441
287-gt2-cd1-3	47.427	0.025	33.25	7.583	0.75	8.067	0.02	0.295	0.016	97.433	4.9346	0.002	4.0778	0.6598	0.0661	1.2513	0.0022	0.0594	0.0021	11.0553
287-gl2-cd1-4	45.12	0.032	31.554	6.969	0.685	7.526	0.018	0.274	0.003	92.181	4.9524	0.0026	4.0823	0.6397	0.0637	1.2314	0.0022	0.0584	0.0004	11.0332
287-gl2-cd1-5	47.827	0	33.386	7.666	0.753	8.136	0.012	0.316	0.028	98.124	4.942	0	4.0663	0.6625	0.0659	1.2533	0.0013	0.0633	0.0037	11.0583
287-gl2-cd2-1	47.627	0.02	33.444	7.713	0.707	7.841	0.053	0.319	0.027	97.751	4.9402	0.0015	4.0888	0.6691	0.0621	1.2124	0.0059	0.0642	0.0036	11.0478
287-gt2-cd2-2	47.817	0	33.556	7.822	0.713	8.062	0.017	0.305	0.02	98.312	4.9338	0	4.081	0.675	0.0623	1.24	0.0018	0.061	0.0026	11.0576
287-gt2-cd2-3	47.539	0	33.321	7.909	0.728	7.941	0.033	0.294	0.009	97.774	4.9353	0	4.0774	0.6867	0.064	1.2288	0.0037	0.0591	0.0012	11.0563
287-gl2-cd2-4	47.811	0	33.32	7.762	0.684	8.103	0.032	0.294	0.047	98.053	4.945	0	4.0621	0.6714	0.06	1.2494	0.0036	0.059	0.0062	11.0568
287-gt2-cd2-5	47.386	0	33.839	7.588	0.711	7.553	0.043	0.287	0.018	97.425	4.9263	0	4.1465	0.6598	0.0626	1.1705	0.0048	0.0578	0.0024	11.0307
287-gi2-cd2-6	48.001	0.007	33,397	7.851	0.716	8.039	0.002	0.309	0,054	98.376	4.9499	0.0005	4.0594	0.6771	0.0625	1.2357	0.0003	0.0618	0.0071	11.0543

NOTE TO USERS

Oversize maps and charts are microfilmed in sections in the following manner:

LEFT TO RIGHT, TOP TO BOTTOM, WITH SMALL OVERLAPS

This reproduction is the best copy available.

UMľ

.

.

۰.

Geoscience Centre Open File 2003 ke Area, NTS 75N.

, K., Relf, C., Renaud, J., and Davis, W.

2003-04. Preliminary Geology Ma

GANA

CO

600000

FOLOGICALS

Legend

Quaternary

Undifferentiated Quaternary cover.

Proterozoic

Diabase Dykes: Medium-grained, massive, locally brecciated mafic dykes. Correlated by orientation; north-northwest striking, 1.27 Ga Mackenzie swarm (LeCheminant and Heaman, 1989); north-northeast striking 2.02 Ga Lac de Gras swarm (LeCheminant et al., 1996); east-northeast striking 2.23 Ga Mackay swarm (ibid).; north-east striking 2.21 Ga Malley swarm (ibid.). Compositional and textural diversity is present within dykes of similar orientation suggesting other, unrecognized, magmatic events may be present. Width of dykes may be exaggerated on map.

Lamprophyre Dyke: Fine-grained, massive, brown to grey biotite + clinopyroxene
+ orthopyroxene porphyritic dike. Contains carbonate occelli and extensive carbonate on fractures. South of Walmsley Lake, width exaggerated.

Pyroxenite: Massive, coarse-grained (to 3 centimetres), brown to greenish black pyroxenite. East of Back Lake.

Archean

Plutonic Rocks

Granitic pegmatite: Pink to white, with up to 10% muscovite +/- biotite +/- tourmaline +/- garnet +/- apatite, locally contains radiate aggregates of acicular sillimanite crystals up to 10 centimetres long. Generally massive with transitional contacts with Agbm.

Morose-like plutonic rocks

K-feldspar megacrystic granite: Medium-grained, white, massive, biotite-bearing, contains K-feldspar megacrystis up to 7centimetres. Outcrops characterized by subhorizontal and subvertical, metre-scale joints which parallel contacts with surrounding metasedimentary rocks. Includes the ca. 2589 Ma "Marlo Lake granite" (MacLachlan and Davis, unpublished data).

Biotite monzogranite: Pink weathering, weakly to moderately foliated, medium-grained, locally K-feldspar porphyritic, biotite (<10%) monzogranite. Typically forms tabular intrusions parallel to foliation and depositional layering in host metagreywacke. Locally cuts regional foliation at a high angle. Includes the ca. 2586 Ma "Goodspeed Lake granite" (Davis, Unpublished data)

Prosperous-Like plutonic rocks

Aga

Apatite-bearing granite: Fine- to medium-grained leucocratic, white monzogranite with biotite + muscovite (up to 8% combined). Characterized by accessory apatite (greenish blue). Pegmatitic phases contain rare blue lazulite. Ranges from massive to weakly foliated. Includes the ca. 2603 Ma Zyena Lake granite (MacLachlan and Davis, unpublished data).

Agbm

Biotite +/- muscovite granite: Massive to moderately foliated, pink to white monzoto syenogranite with up to 10% combined biotite and muscovite. Characterized locally by accessory apatite (turquoise/greenish blue), garnets (red to purple), and rare lazulite

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

		- 7080000	Agg Defeat-li	to sy by ac (blue area the n local Macl Garn to wh conta Inclu ike plu
				from tonal withi
				S2 fo
0 5 10				Horn
Kilometres				the n
eγ				Tron biotit quar
Bedding: younging unknown, upright, overturned				Horn
Pillow: younging unknown, overturned Foliation: Unknown generation, aligned inclusions in porphyroblasts or preserved in volcanic rocks (S1), peak metamorphic minerals in metasedimentary rocks (S2), commonly shallowly-dipping, and/or a crenulation (S3), upright crenulation of S3, (S4).				defoi Com lithol Diori diorit
Joint dinning to right				(Mac
Axial Plane: in granite/unknown generation (FU), dominant upright fabric below melt-in conditions (F2), fold of F2 axial plane or S2 fabric (F3), fold of F3 axial plane or S3 fabric (F4).	-	7060000	Syn-vold	canic ir Meta well-
Fold Hinge: in granite/unknown generation (FU), syn-S2 fold (F2), fold of S2 (F3), fold of S3 (F4).				varia
Z-Fold Hinge: in granite/unknown generation, (FU).				subo
S-Fold Hinge: in granite/unknown generation (FU), fold of S2 (F3 or F4).				subh
Intersection Lineation: unspecified generation				norn on si
Outcrop examined.				varie
Limit of Mapping				orthe
Geochronology sample site and label.				
Fault: sense unknown			Supi	racr
Fold axis (assumed, known or inferred) with plunge direction if known:			Agse	Inje
syncline (synform), anticline (antiform), overturned antiform, overturned synform.				Neos
Fold Axis Labels J - unknown generation. - fold of bedding transected by S2 cleavage. - fold with axial planar S2 cleavage. - fold of S2 cleavage, with locally developed axial planar S3 cleavage. - fold of S3 axial plane or S3 cleavage. - early fold, F1 or F2 but of uncertain generation.			Asa	biotil com Anat occu dyke

	to syenogranite with up to 10% combined biotite and muscovite. Characterized locally by accessory apatite (turquoise/greenish blue), garnets (red to purple), and rare lazulite (blue), the latter most common in pegmatitic phases. In the northern part of the map area, this unit is commonly mantled by pegmatite. In the central and southern parts of the map area, this unit is characterized by tabular intrusions which parallel S2, and locally transect bedding. Includes "Goodspeed Lake granite" ca 2585 Ma (Davis and Maclachlan, unpublished data)
Agg	Garnet-bearing granite: Massive, biotite + muscovite (up to 10% combined), pale pink to white monzogranite with small (up to 1 centimetre) red to purple garnets. Commonly contains screens several metres to 10's of metres thick of metasedimentary rocks. Includes the ca. 2612 Ma Reid Lake granite (MacLachlan and Davis, unpublished data).
Defeat-lik	ce plutonic rocks
Atg	Tonalite to granodiorite: Medium-grained, multiphase unit, ranging from quartz diorite to granite, but predominantly biotite +/- hornblende tonalite to granodiorite. Cognate enclaves of more mafic material common within felsic phases. Contains a weak to strong, moderate to shallowly-dipping S2 foliation. Contacts with host supracrustal rocks are commonly sheeted parallel to bedding and S2, over 10's of metres.
	Hornblende Granodiorite: Coarse- to medium-grained biotite, hornblende (up to 5%) monzogranite to granodiorite. Biotite occurs on the margins of horneblende crystal and is of low abundance in the freshest looking areas.
	Trondhjemite: Coarse- to medium-grained trondhjemite with up to 5 modal percent biotite. Characterized by coarse (up to 1 centimetre), brown to yellow anhedral quartz grains and accessory brown titanite. East of Back Lake.
	Hornblende tonalite: Leucocratic, fine- to medium-grained, variably deformed, well-foliated biotite +/- hornblende (up to 3%) tonalite to diorite. Commonly forms tabular intrusions, spatially associated with supracrustal lithologies.
	Diorite: Medium-grained, hornblende +/- biotite-bearing, moderately-to strongly-foliated, diorite to quartz diorite. Includes the "Anarin hornblende diorite", ca. 2614 +5/-2 Ma, (MacLachlan et al. 2001).
Syn-volca	anic intrusive rocks
	Metagabbro sills: Medium- to coarse-grained, hornblende-plagioclase sills with well-developed chill margins against host mafic volcanic rocks. Composition is variable ranging from gabbroic, leucogabbroic, to locally, anorthositic.
	Gabbro to gabbronorite: Medium- to coarse-grained hornblende gabbro, with subordinate gabbro norite and anorthosite. Plagioclase (labradorite) occurs as subhedral to euhedral crystals up to 7 centimetres in length in coarse-grained domains. Hornblende occurs as small intercumulus crystals, and as large polikiolitic overgrowths on small plagioclase and orthopyroxene crystals. The modal percentage of hornblende varies from 2 to 85%; anorthosite makes up only ca. 5% of the unit. Locally the unit contains up to 5% combined orthopyroxene and clinopyroxene with orthopyroxene > clinopyroxene.

Supracrustal Rocks

AUSC

Injection migmatite: Consists of 20-80% psammitic to pelitic paleosome, layered with granitoid neosome ranging from centimetres to 10's of metres in thickness. Neosome includes biotite +/- hornblende quartz diorite to granodiorite (Agd, Atg), biotite monzogranite (Agbt), and leuco-monzo to syenogranite sheets that parallel compositional layering and foliation (S2). Locally may contain in-situ leucosome.

Anatectic greywacke-mudstone: Partially melted metasedimentary rocks. Leucosome occurs as millimetre or greater scale, foliation-parallel granitic lenses and cross-cutting dykes within sillimanite + biotite +/- muscovite -bearing pelitic layers.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

	aykes within simmanite + blotte +/- muscovite -bearing penticnayers.
Ass	Sillimanite-grade greywacke-mudstone: Psammitic to pelitic, primary sedimentary features rarely preserved. Sillimanite occurs as 3 mm to 1 cm fibrolite aggregates, fibrolite overgrowths on cordierite and andalusite (near the sillimanite-in isograd), or coarse-grained (>1 cm) blades. Bladed sillimanite is typically syn-D2, flattened within the S2 plane or aligned along the bedding/S2 intersection lineation. Dense fibrolite knots occur proximal to some late granitic (Agbm) plutons, and typically overgrow the S2 fabric. Cordierite +/- andalusite +/- garnet are locally present in the sillimanite zone.
Asst	Staurolite-bearing greywacke-mudstone: Staurolite, cordierite +/- andalusite +/- sillimanite schist. Assemblage occurs adjacent to volcanic lithologies. Primary structures, such as graded bedding and flames, are locally preserved. Cordierite porphyroblasts range from strongly flattened, within the S2 plane, aligned along the bedding/S2 intersection lineation, or randomly-oriented, overgrowing the S2 fabric. Staurolite porphyroblasts typically overgrow the S2 foliation. Andalusite and garnet are locally present in pelitic and iron-rich psammitic layers, respectively.
ASC	Cordierite-grade greywacke-mudstone: Beds range from tens of centimetres to metres in thickness. Primary structures, such as graded bedding and flames, locally preserved. Cordierite porphyroblasts range from strongly flattened, within the S2 foliation, aligned parallel the bedding/S2 intersection lineation, or randomly-oriented, overgrowing the S2 fabric. Andalusite and garnet are locally present in pelitic and iron-rich psammitic layers, respectively.
AGe .	Biotite-grade greywacke-mudstone: Beds range in thickness from millimetres to metres. Primary features include graded bedding, millimetre-scale cross-beds. Flames and rip-up clasts. Contains chlorite + muscovite + biotite porphyroblasts up to 2 mm. West of Marlo Lake.
	Chlorite-grade greywacke-mudstone: Beds range in thickness from millimetres to metres. Primary features include graded bedding, millimetre-scale cross-beds, flames, rip-up clasts. Contains assemblage chlorite + muscovite. West of Marlo Lake.
	Feldspathic meta-arenite to meta-quartz arenite: White, moderately- to poorly-sorted, medium- to (rarely) coarse-grained, with sub-angular to sub-rounded grains. Massive feldspathic arenite to quartz arenite. Southeast of Walmsley Lake.
	Banded hornblende +/- garnet amphibolite: Layering ranges from centimetres to metres in thickness, and is defined by variations in abundance of melanocratic (hornblende +/- garnet) and leucocratic (plagioclase + quartz) minerals. Origin of this unit is unknown, but internal compositional layering and association with sedimentary rocks suggests a supracrustal origin.
Avf	Undifferentiated felsic to intermediate, volcanic and volcaniclastic rocks: Alymer Volcanic Belt (AVB): includes carbonate-bearing, bimodal, fragmental rocks, dacitic lapilli and crystal tuff, rhyolite crystal tuff, and related volcaniclastic sedimentary rocks. Silicate facies iron-formation is locally interbedded within rhyolite crystal tuff and related volcaniclastic metasedimentary rocks. Includes ca. 2676 Ma rhyolite flow (MacLachlan et al., 2002). Cook Volcanic Belt (CVB): Fine-grained intermediate and felsic volcaniclastic rocks, interbedded on a scale of centimetres to metres. Contains plagioclase +/- hornblende +/- garnet +/- biotite +/- quartz +/- pale brown amphibole (anthophyllite?).
Abif	Silicate-sulphide iron formation (AVB only): Two amphibole sulphide-rich, pyrrhotite> pyrite iron-formation.
Avd	Intermediate volcaniclastic rocks (AVB only): Pillowed andesite and mixed mafic to felsic lapilli tuff and volcanoclastic breccia. Cummingtonite-bearing pillowed flows, andesitic to dacitic tuffs and lapilli tuff with biotite bearing fragments. Brecciated coarse mixed mafic to felsic angular fragmental tuffs interpreted as debris flows.
-	Intermediate volcanic rocks: AVB: Grey-green, fine- to medium-grained pillowed andesite with interstratified 5 to 10 metre thick massive andesite flows. Andesite variably carbonate-altered and locally garnetiferous. CVB: Grey-green,

	<u>n an ann an staiste thar an an an</u> 1	pyrite in
Agbi		Avd folsio la
A Contraction of the second		andesiti
		mixed n
		Interme andesit
		Andesit
		fine- to units a
		Mafic v
		massive
		cores. i
		and disc
		volcanic
		thin inte
		Isograds: orn
		🔨 / Biotite-i
		Cordier
		Zoned cordieri
		Sillimar
	-7000000	Melt-in:
		A Trace o
X		∽ presen¢
		Areas with ab
		Metase
		Metase
		Amphib
		Acknowledgeme
		Geological mappin
		assistants J. Arms
		E. Little, L. Ootes, H. Falck greatly im
a la		and Gerle Gold Lin
63°00' N 108°00' N	N	References
	v	LeCheminant and
		LeCheminant et a
		MacLachlan et al
640000		

Intermediate volcaniclastic rocks (AVB only): Pillowed andesite and mixed mafic to felsic lapilli tuff and volcanoclastic breccia. Cummingtonite-bearing pillowed flows, andesitic to dacitic tuffs and lapilli tuff with biotite bearing fragments. Brecciated coarse mixed mafic to felsic angular fragmental tuffs interpreted as debris flows.

Avd

Intermediate volcanic rocks: AVB: Grey-green, fine- to medium-grained pillowed andesite with interstratified 5 to 10 metre thick massive andesite flows. Andesite variably carbonate-altered and locally garnetiferous. CVB: Grey-green, fine- to medium-grained pillowed flows interstratified with 5 to 10 metre thick massive units, and well-layered intermediate volcaniclastic horizons.

Mafic volcanic rocks: AVB: Variably strained, intercalated pillowed and massive basalt, includes correlative, highly strained, banded-amphibolite. CVB: black weathering, variably strained, pillowed flows with epidote-rich rims and cores, intercalated with dark green to black, fine-grained amphibolite horizons and discontinuously banded rocks interpreted as highly strained pillows. Taylor Volcanic Belt: Variably strained, intercalated pillowed and massive mafic volcanic, includes correlative, highly strained, banded-amphibolite with minor, thin intermediate to felsic composition layers.

lsograds: ornament on high temperature side

Biotite-in: First appearance of biotite in pelite. West of Marlo Lake.

Cordierite-in: First appearance of cordierite in pelite.

Zoned Cordierite: Secondary alteration rims of muscovite and chlorite on cordierite porphyroblasts. West of Zyena Lake.

Sillimanite-in: First appearance of sillimanite in pelite.

Trace of melt-in isograd through granitoid rocks based on the presence of melt in pelitic enclaves.

Areas with abundant (>15%) supracrustal xenoliths

Metasedimentary xenoliths

Metasedimentary and amphibolite xenoliths

Amphibolite xenoliths

Acknowledgements

Geological mapping, and enthusiastic field assistance was provided by E. Martel, A. Maynes, A. Mills, C. Parks, A. Parmenter, N. Pietrzak, C. Pueschel, M. Schultz, and A.Simmons. Visiting mappers and assistants J. Armstrong, W. Bleeker, S. Buse, N. Duke, J. French, F. Hardy, A. Hawkes, J. Hiembach, E. Little, L. Ootes, Y. Preston, and J. Spratt also aided mapping. Careful reviews by V. Jackson and H. Falck greatly improved this map. Navigator Resources, Diamondex Resources, DeBeers Canada, and Gerle Gold Limited are thanked for thier contribution of data, and logistical support.

References

LeCheminant and Heaman, 1989: Ear. Planet. Sci. Let., 96, pp.38-48. LeCheminant et al., 1996, GSC Open File 3228, pp. 161-169. MacLachlan et al., 2001: Yellowknife Geoscience Forum Abstract. MacLachlan et al., 2002: GSC Curr. Res. 2002-C1