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WHITE PINE WEEVIL ATTACK ON WHITE SPRUCE: 
A SURVIVAL TIME ANALYSIS 

FANGLIANG HE' AND RENE I. ALFARO 

Canadian Forest Service, Pacific Forestry Centre, 506 West Burnside Road, Victoria, British Colutmbia, Canada V8Z JM5 

Abstract. The survival time of a white spruce tree (Picea glauca (Moench) Voss) with 
respect to the attack by the white pine weevil (Pissodes strobi (Peck)) was defined as the 
number of years until an attack occurred. In this context, resistant trees are those capable 
of delaying attacks rather than preventing attacks. This study investigated the patterns of 
survival times of resistant and susceptible trees in a progeny trial of white spruce in the 
interior of British Columbia, Canada. By doing so, we demonstrated that survival time 
analysis, a technique specifically developed for dealing with clinical medicine and industrial 
reliability tests, was a very useful approach in analyzing resistance of hosts to herbivore 
attack. The results suggested that survivorship of resistant trees was significantly different 
from that of susceptible trees, as expected. The median survival time of susceptible trees 
was -12 yr after seeding, while it was 21 yr for resistant trees. The survival times of white 
spruce trees were identified adequately following a lognormal distribution. Based on the 
estimated hazard functions of the lognormal distribution, the most severe weevil infestation 
was predicted to occur at 19 yr for susceptible trees, and at 26 yr for resistant trees. 
Infestation level was affected by several factors, such as tree height, seasonal temperature, 
and precipitation. An accelerated failure time model was used to evaluate the effect of these 
factors on survivorship. The identification of resistant or susceptible trees by survival times 
is to be incorporated into an integrated pest management program for the white pine weevil 
in British Columbia. 

Key words: accelerated failure time model; censored observationis; lognorimal distribution; milod- 
eling survivorship and hazard rates; pest management; Picea glauca; Pissodes strobi; survival time 
analysis; survivorship; time-to-attack; white pine weevil; white spriuce. 

INTRODUCTION 

Survivorship analysis has been of interest in popu- 
lation ecology for several decades (Morris 1959, 
Caughley 1977, Southwood 1978), but it is only re- 
cently that the statistical methods used to analyze sur- 
vival data of patients in clinical trials and reliability of 
products in engineering have attracted attention of 
ecologists (Muenchow 1986, Pyke and Thompson 
1986, Dixon and Newman 1991, Fox 1993, Newman 
and McCloskey 1996). Ecologists are progressively re- 
alizing that many phenomena in biology and ecology 
can be described by the "time until a given event oc- 
curs," for instance, the time until a flower is visited 
by a pollinator (Muenchow 1986), time to emergence 
of a seed or flowering of a plant (Fox 1993), time to 
respond to a toxicant effect (Newman and McCloskey 
1996), or stand growth until a fire or since a fire (John- 
son and Gutsell 1994). These varieties of time data 
share some common properties, e.g., nonnegativity, 
strongly skewed distribution, and censoring. Therefore, 
"classical" statistical methods (e.g., ANOVA) do not 
readily accommodate these types of data, or their es- 
timation and inferences can be highly biased. A more 

proper treatment of these data may be to apply statis- 
tical methods specifically developed for survival time 
(failure time, time-to-failure, time-to-event) analysis 
(Kalbfleisch and Prentice 1980, Lawless 1982, Cohen 
and Whitten 1988, Lee 1992), as these may allow us 
to study a problem from a new angle and enhance our 
understanding of a phenomenon. An excellent intro- 
duction for the application of survival time statistics 
in ecology can be found in Fox (1993) and Dixon and 
Newman (1991). 

The white pine weevil, Pissodes strobi (Peck), is an 
important North American pest of pine and spruce re- 
generation (see Plate 1). The insect, which has one 
generation per year, oviposits on the apical shoot or 
leader, and the larvae, feeding on the shoot phloem, 
girdle and kill the leader (Alfaro et al. 1995). Affected 
trees sustain growth losses and deformity. Resistance 
or susceptibility of a plant to herbivore attack is usually 
considered a dichotomous characteristic, by which a 
plant is either attacked or not attacked. However, in 
studying spruce (Picea spp.) resistance to the white 
pine weevil in British Columbia, Canada, we have no- 
ticed that several factors can affect the probability of 
weevil attack on a spruce tree, e.g., the resistance level 
of the trees, the dispersal and spatial patterns of the 
pest, tree height, and stand density (VanderSar and Bor- 
den 1977, Alfaro and Omule 1990, Kiss and Yanchuk 
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1991, He and Alfaro 1997). Resistance varies widely 
by host family or tree, with some trees being nearly 
immune in the field, whereas others are relatively sus- 
ceptible (Alfaro et al. 1996). The presence or absence 
of attack, or the number of attacks on a tree, is usually 
used as a measure of resistance or susceptibility of a 
spruce tree. However, this single measure is not reli- 
able. For example, moderately resistant trees can also 
be attacked when weevil food is in short supply; sus- 
ceptible spruce leaders have been destroyed when the 
pest population is high. Thus, a resistant tree may not 
remain free from attack, but will have delayed attacks, 
i.e., a resistant tree will remain unattacked longer than 
a susceptible one. The difference between resistant and 
susceptible spruce trees can be conceived as the dif- 
ference in the period free from attacks. Biologically, 
this attack-free time should more appropriately de- 
scribe the resistant or susceptible status of a host to a 
pest. 

By translating time-to-event into time-to-attack, in 
this study we apply the techniques of survival time 
analysis to describe attack rates by the white pine wee- 
vil on white spruce (Picea glauca (Moench) Voss). The 
time-to-attack, or survival time, is defined here as the 
number of years a spruce tree will grow until an attack 
occurs. Survival time analysis can be useful in pest 
management, because it may help to predict probability 
of plantation failure, understand the conditions that in- 
crease plantation risk, and determine the benefits of 
planting resistant stock. Specifically, the objectives of 
this study are to study the statistical properties of the 
survival times of white spruce trees attacked by white 
pine weevils, to compare survivorships between resis- 
tant and susceptible trees, and to identify hazard factors 
for white spruce. A data set of weevil attack in a white 
spruce progeny trial in British Columbia, Canada, is 
the basis of the study. 

STUDY SITE AND MATERIALS 

In the late 1970s, a large genetic survey of white 
spruce was conducted to identify desirable trees for 
progeny testing and propagation in British Columbia. 
In the spring of 1984, a plantation at elevation 1000 
m near Clearwater, British Columbia, Canada (51042' 
N, 120?03' W) was established with three-year-old 
seedling offsprings of 142 open-pollinated white 
spruce parents. Thirty-two seedlings from each family 
(forming a maternal sibship) were planted with -3 m 
planting distance between trees. Excluding seedlings 
that died right after planting, 139 families (4330 trees) 
were left for subsequent attack observation. The first 
white pine weevil attack in the plantation occurred in 
1986, when seedlings were five years old. In this plan- 
tation, the infestation rate was relatively low before 
1991, but then gradually increased. In 1995, the attack 
rate increased sharply, when 22% of the 4330 trees 
were attacked (Fig. 1). This epidemiology pattern is 
typical of the white pine weevil: it rarely attacks <5- 
yr-old trees, then population increases in an oscillatory 
manner reaching maximum levels, then declines there- 
after. Infestation can last >50 yr, but peak infestation 

PLATE 1. An adult white pine weevil. Pissodes strobi. 
Photograph by Rend Alfaro. 
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occurs when stands are 20-30 years old (Alfaro and 
Omule 1990). In this experiment, we believe the plan- 
tation is entering the high infestation period. 

In 1995, retrospective surveys determined the num- 
ber of weevil attacks in each year during 1986-1995, 
as well as variables that represented attack intensity 
(e.g., the number of weevil attacks on trees), attack 
severity (e.g., mean length of stem killed) and tree 
tolerance to weevil attack (e.g., tree stem form). These 
variables were used in an earlier report to derive a 
resistance rank for each of the 139 families based on 
a principal component scores (Alfaro et al. 1996). The 
scores were used to group families into resistant, in- 
termediate, and susceptible categories, by defining 
those in the first quartile and the third quartile of the 
rank distribution as resistant and susceptible families, 
respectively; other families were labeled as interme- 
diate. The resistant families include 1135 trees, and the 
susceptible families, 1146 trees. Survival times (time- 
to-attack) of the resistant and susceptible trees were 
recorded. 

Climatic data from a nearby weather station (at el- 
evation 720 m) were recorded during 1986-1995. The 
mean daily seasonal air temperature during January- 
March (TEMPl) and April-June (TEMP2), and the 
mean monthly precipitation during January-March 
(RAIN1) and April-June (RAIN2) were used, together 
with tree height in 1986 (HT86), as explanatory vari- 
ables to evaluate how these measurements affect the 
survival times of spruce trees. These seasonal climatic 
data were used, because they are important in the wee- 
vil biological cycle. The January-March period is when 
maximum overwintering mortality occurs, while the 
April-June period is when the weevils emerge from 
overwintering and select the trees for attack. 

SURVIVORSHIP AND HAZARD RATE FOR WHITE 
SPRUCE TREES 

Censored survival times 
Survival time of an individual, denoted by T, is sub- 

jected to random variation. An important feature of 
survival time is that it can be exact or censored. Cen- 
sored time occurs when a tree has been lost or died, 
or when the experiment has been terminated before the 
occurrence of an attack. For the censored time, we do 
not know if an attack would occur in the future, but 
we do know that the minimum survival time is equal 
to the observation period. In this study, the resistant 
group had 259 exact observed times and 876 censored 
times, while the susceptible group had 829 exact times 
and 317 censored times. Survival time, T, is considered 
as a continuous random variable, counted from 1982 
(the time of seeding). The pattern of T can usually be 
characterized by the three functions we now describe. 

Probability density, survival, and hazard functions of 
survival times 

The probability density function (pdf), f(t).-The pdf 
of T is defined as the probability p that a white spruce 

tree is attacked by a white pine weevil in interval t to 
t+ At: 

f (t) = lim p (t ' T < t + At) (1) 

The distribution of f(t) is usually skewed. Exponential, 
Weibull, gamma, and lognormal distributions are com- 
monly used to describe survival times (Lawless 1982, 
Cohen and Whitten 1988, Lee 1992). 

Survival function, S(t).-This function is defined as 
the probability that a tree lives longer than t without 
an attack: 

S(t) = p(T > t). (2) 

Hence, 

S(t) = 1 -p(T ' t) = 1 -F(t) (3) 

where F(t) is a cumulative probability function. 
S(t) is a nonincreasing function. When t = 0, S(t) = 

1, which is the case at the beginning no trees are at- 
tacked; when t - oo, S(t) = 0, i.e., if time lasted long 
enough, all trees would be attacked. 

Hazardfunction, h(t).-The hazard function is a con- 
ditional failure rate that is defined as the probability 
that a tree is attacked during interval t to t + At, given 
that the tree has survived to time t. It is expressed as 
follows: 

h(t) = lim p(t _ T < t + At I T - t) (4) 
LAt---O A 

The function h(t) is an instantaneous or age-specific 
failure rate, which characterizes failure risk during the 
aging process. It can be expressed as a function of F(t) 
or S(t): 

h(t)= f (t) f (t) 
1 - F(t) -S(t)(5 

These three functions are mathematically equivalent 
(by knowing any one of them, we can derive the others), 
but they describe different aspects of survival times. 
If a parametric model can be identified for survival 
times, the three functions can be explicitly expressed 
by t, otherwise, these functions should be evaluated by 
nonparametric approaches in which no explicit forms 
could be given. A nonparametric analysis is usually 
applied before a parametric model is identified, for it 
can provide useful information in choosing a para- 
metric model. 

Nonparametric method: product limit estimate 

If there are no censored observations, survivorship 
can simply be estimated by calculating the proportion 
of trees without attack by time t. However, when cen- 
sored observations occur, the procedure can overesti- 
mate the survivorship, because the exact survival time 
of the censored observations is unknown. When cen- 
sored observations are involved, the product limit (PL) 
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estimate of survival function must be used (Kaplan and 
Meier 1958). The PL method estimates the survival 
function S(t) as a product of t conditional observed 
survival probabilities: 

S(t) = P1 X P2 X ...X P (6) 

where 1, 2, . . , t are distinct times at which attacks 
occur; Pi is the proportion of trees surviving the ith 
year after they have survived i - 1 years, which is 
calculated as pi = (ni - di)lni; where ni is the number 
of trees at risk at time ti, i.e., the number of trees alive 
and uncensored just prior to ti; di is the number of 
attacks at ti. Unless otherwise indicated, all the cal- 
culations in this study were done using S-plus 
(MathSoft 1995). 

The PL estimates of the survivorships for resistant 
and susceptible trees are shown in Fig. 2. As expected, 
the survivorships of resistant and susceptible trees were 
significantly different (Lee 1992:109-112; log-rank 
test: x2 = 599, df = 1, P < 0.001). The median survival 
time for the susceptible trees was -12 yr, with half of 
the susceptible trees attacked 12 years after being seed- 
ed; whereas <15% of the resistant trees were attacked 
at that time. The median survival time for the resistant 
trees was 21 yr. 

Parametric method: lognormal distribution 

A parametric model is more efficient than nonpara- 
metric counterparts in survival pattern description, pa- 
rameter inference, process identification, and generat- 
ing hypotheses. However, choosing a particular para- 
metric model is essentially an empirical task and should 

TABLE 1. Maximum likelihood estimates of the two param- 
eters of the lognormal distribution that models survival 
times for resistant and susceptible white spruce trees. 

Parameter Resistant Susceptible 
2.7602 2.0468 

&f 0.62 12 0.4362 
-2 log-likelihood 1196.19 1551.67 
Note: The "hat" over the parameters [L and a indicates that 

estimated values are given. 

be better based on biological experience. The lognor- 
mal distribution is widely used as a survival time model 
in various situations (Nelson and Hahn 1972, Whitte- 
more and Altschuler 1976). The hazard function of the 
lognormal distribution initially has the value h(t = 0) 
= 0, increases to a maximum with increasing time, and 
then decreases to zero as t becomes large. This feature 
has been considered as an undesirable property in many 
survival time analyses, because the hazard function will 
generally not approach zero at large time, since all the 
objects will eventually fail (Lawless 1982). However, 
it is this "unpleasant" property that renders this model 
suitable in describing the attack survival times of white 
spruce trees, because weevil infestation on spruce fol- 
lows a low-high-low pattern (Alfaro and Omule 1990). 
Another model with a similar hazard shape is the log- 
logistic distribution (Lawless 1982). With our data, we 
found that the fitting of the log-logistic was indistin- 
guishable from the lognormal distribution, although the 
latter was marginally better in terms of the log-like- 
lihood test. Therefore, only the lognormal distribution 
is reported here. 

The lognormal distribution function used here is a 
three-parameter model with time lag = 4 (1982-1985, 
inclusive), indicating that spruce trees were not at- 
tacked until they were 5 years old, i.e., in 1986. The 
pdf and the survival function of lognormal distribution 
are as follows, for t > 4: 

(2fl)1"2u(t 

_ 4) exp -( 

_____4) 

- ) 
] f (t) = 1 [x 1 (log(t -4) - ii) (7) 

and 

S(t) 1 1- (log(t- 4) - (8) 

where F is the standard normal distribution function. 
The hazard function h(t) is related to f(t) and S(t) 
through Eq. 5. 

The parameters p. and u were estimated for resistant 
and susceptible groups, respectively. The maximum 
likelihood estimates (MLE) calculated using S-Plus are 
listed in Table 1. The log-likelihood tests (X2 test; df 
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FIG. 3. Hazard plot for the lognormal dis- 
tribution of the survival times of resistant trees. 2.0 
The two trees (circled) at the lower left corner E 
are the least resistant trees in the resistant group, 4 1.6. 
which cause some curvature in the plot; oth- _ a 
erwise the linearity is very reasonable. The lin- -J 1.2 
ear function is ln(T) = > + aID'(l - e-H"), 
where H(t) is the cumulative hazard rate (Lee 0 8 
1992), and ID' is the inverse of the standard )3I 
normal distribution function (. 0_4 

-2.8 -2.4 -2.0 -1.6 -1.2 -0.8 -0.4 

Quantile of normal distribution, 4r-1 (1 - e-H(t)) 

= 2) suggest that the lognormal distribution constitutes 
an adequate model for the survival times of the white 
spruce trees (Table 1). 

Graphical methods for checking model adequacy can 
be very effective and helpful, particularly when used 
in conjunction with numerical analysis. Therefore, they 
are now advocated in survival analysis (Lee 1992). A 
hazard plot is a major plotting method in survival anal- 
ysis that is similar to the probability plot. It, however, 
plots the observations against the cumulative hazard 
values, instead of cumulative probability values as in 
probability plot. A straight line in the hazard plot sug- 
gests the adequacy of a model. Model parameters can 
approximately be read from the slope and intercept of 
the line. Hazard plots can easily handle censored data. 
The hazard plot for the resistant group of spruce trees 
is presented in Fig. 3 (for the detailed procedure of 
hazard plotting, see Lee [1992]:173-182). No serious 
departure of the hazard plot from linearity was de- 
tected, although there is some curvature at the left cor- 
ner of Fig. 3, caused by two trees that were attacked 
at age 6 yr (in 1987 and three years after the seedlings 
were planted). We knew these two trees belonged to 
the least resistant family in the resistant group. They 
may be considered as outliers taking into account the 
fact that there are 1135 trees in the resistant group. 
Therefore, we considered it reasonable to accept the 

lognormal distribution as the underlying model for the 
survival times of the spruce trees. The intercept (2.728) 
and slope (0.638) of the line in Fig. 3 are the graphical 
estimates of the mean and variance of the lognormal 
distribution that agree very well with the MLEs. The 
hazard plot of the susceptible trees had a similar lin- 
earity. 

The survivorship estimates of the lognormal model 
for the resistant and susceptible spruce trees are shown 
in Fig. 2. This model fits fairly well the survival data 
of the spruce trees in this study. The estimated hazard 
functions of the resistant and susceptible trees are very 
different (Fig. 4). As expected, susceptible trees had 
much higher hazard rates than resistant trees. Resistant 
trees not only had lower hazard rates, but delayed at- 
tacks as well. The highest hazard rate, extrapolated 
from the fitted lognormal distribution, for susceptible 
trees, occurred at age 19 yr with an estimated hazard 
rate = 0.298 (i.e., 29.8% of healthy susceptible trees 
being attacked in that year), whereas for the resistant 
trees it occurred at age 26 yr with an estimated hazard 
rate = 0.085 (i.e., 8.5% of healthy resistant trees being 
attacked in that year). The projection of the hazard 
function for susceptible trees beyond the observation 
period (Fig. 4) describe an epidemiology pattern very 
similar to the one observed by Alfaro and Omule 
(1990). On susceptible trees, the weevil infestation in- 

0.45 . . ' Hazard rate calculated from life table 
0.40 .. Hazard rate of lognormal distribution 

s 0.35 - v Hazard rate extrapolated from 
FIG. 4. Hazard rates of spruce trees resistant C lognormal distribution 

0.30 and susceptible to white pine weevil. The . 0 
smooth dashed lines were calculated from the 0 0.25 1\ S p spruc 
hazard function of lognormal distribution. The Susceptible spruce 2 
solid lines were calculated using the life-table d0 
method (SAS version 8.09, procedure LIF- < 0.15 
TEST). Weevil attacks were observed for the N 0.10 / Resistant spruce 
first 14 yr. Beyond that, the hazard rates were I 
extrapolated from the estimated hazard func- 0.05 
tions of the lognormal distribution. 0 

5 10 15 20 25 30 35 40 45 50 
Survival time (no. years after seeding) 
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creased quickly at the start of the outbreak, then re- 
mained at a high attack rate for several (15-30) years, 
in a stage of relative equilibrium; thereafter attacks 
gradually declined. On resistant trees, attacks rose 
gradually and remained at relatively constant low levels 
in the duration of the outbreak. 

IDENTIFICATION OF RISK FACTORS 

It is of high interest to identify factors that affect or 
explain the survival times of spruce trees to weevil 
attack. This can be done using conventional regression 
techniques, relating survival time, or a transformation 
of survival time, which are dependent variables, to oth- 
er explanatory variables. An appropriate approach for 
our data is an accelerated failure time model, in which 
the explanatory variables multiplicatively affect failure 
time of a tree, or linearly affect the natural logarithm 
of a failure time, ln(T) (Lawless 1982, Fox 1993, New- 
man and McCloskey 1996). This model is written in 
the form 

ln(T) = X,( + us (9) 

where X is an n X p matrix of explanatory variables 
for n observations and p variables, ,( is a p X 1 vector 
of unknown parameters, u is a scale parameter, and ? 
is a n x 1 vector of random errors from a specified 
survival distribution that is independent of X. In our 
case, because T follows a lognormal distribution, ? is 
a standard normal distribution. ,( is estimated using 
maximum likelihood methods. 

Five explanatory variables were included in the re- 
gression: RS (resistance status, an indicator variable; 
RS = 0 for resistant trees, RS = 1 for the susceptible); 
HT86 (the tree height when weevil attack started in the 
plantation in 1986), TEMP1 and TEMP2 (the mean 
daily temperature of first season and second season, 
respectively), RAIN1 and RAIN2 (the mean monthly 
precipitation of first and second season, respectively). 
The maximum likelihood estimates (MLE) of the co- 
efficients 1 show that all variables except TEMP2 con- 
tribute significantly to the survival time of the spruce 
trees (Table 2). 

Because T and ln(T) have a monotonic relationship, 
the interpretation of Table 2 can be directly made on 
T. The resistance status (RS) of a tree as defined a priori 
had significantly negative effect on the survival time 
of spruce trees (Table 2; resistance [RS = 0] had longer 
survival time than the susceptible [RS = 1]). Tree 
height in 1986 (HT86, a height before attack) also had 
a significantly negative association with survival times, 
since shorter trees survived longer. This is consistent 
with the observation that weevils have a preference for 
fast growing trees (VanderSar and Borden 1977), prob- 
ably because slow growing trees have slim phloem in 
the leaders on which weevils feed. The mean temper- 
ature in January-March were all <00C (i.e., TEMP1 
had negative values) except for 1992, in which the 
mean temperature was 1.33?C. The negative coefficient 

TABLE 2. Maximum likelihood estimates of the coefficients 
3 for different risk factors in the accelerated failure time 
model in Eq. 9. 

Standard 
Variable error z P 

Intercept 1.4152 0.2589 5.48 >0.0001 
RS -0.0808 0.0083 -9.76 >0.0001 
HT86 -0.0049 0.0007 -6.54 >0.0001 
TEMPI -0.0507 0.0062 -8.13 >0.0001 
TEMP2 -0.0012 0.0235 -0.05 0.958 
RAINI 0.0571 0.0015 37.45 0.0001 
RAIN2 0.0061 0.0010 5.86 0.0001 

Notes: RS is an indicator variable (0, resistant trees; 1, 
susceptible trees). HT86 is tree height in 1986, at the begin- 
ning of outbreak. TEMP1 and TEMP2 are the mean daily 
temperatures for January-March and April-June, respective- 
ly. RAIN1 and RAIN2 are the mean monthly precipitation in 
the same periods. The parameters were evaluated using com- 
mand "survreg" of S-plus. The scale parameter a = 0.274 
in Eq. 9, and -2 log-likelihood = 858.35. The "hat" over 
the vector fi indicates that estimated values are given. 

for TEMP1 in Table 2 indicates that the cold temper- 
ature of the first season increased the survival time of 
spruce trees. The reason may be that cold weather in 
the first season killed overwintering weevils, thus re- 
duced the weevil populations. No significant effect was 
found for the mean temperature during April-June 
(TEMP2) on survival time of spruce trees in the re- 
gression (Table 2). Increasing precipitation in the first 
and second seasons increased survival time of spruce 
trees, suggesting that wet weather reduces weevil pop- 
ulation in the overwintering stage and may delay ovi- 
position, thereby reducing the hazard of weevil attacks. 

DISCUSSION 

The application of survival time analysis to describe 
the resistance of a host plant to an insect pest is a novel 
approach in pest management. Under this framework, 
tree resistance is interpreted as delayed attacks, not lack 
of attack. This approach is particularly consistent with 
the principle of integrated pest management, in which 
the goal is not to eliminate the weevils from the eco- 
systems, but to reduce the population below an eco- 
nomical threshold (Alfaro et al. 1995). In this study, 
by defining resistance of spruce trees in terms of time- 
to-attack rather than the number of attacks, we dem- 
onstrated that survival analysis could be a useful ap- 
proach to achieve this pest management goal. The 
methods not only allow us to more precisely describe 
the response patterns of hosts to herbivore attack in 
temporal dimension, but to readily and directly quan- 
tify the effects of covariates on time-to-attack. There- 
fore, it provides us with essential information for pest 
control: under what conditions and when outbreaks 
may occur, which covariates are epidemiologically im- 
portant, and how to control them by direct manipulation 
or judicious site selection; the common goal is the 
maintenance of a pest population below a certain level. 
Based on this study, expected survival times of resis- 
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tant and susceptible stock, which may vary by site, 
could be specified at the time of planting of a particular 
stand. Thus, pest management actions and contingency 
plans could be prepared well ahead, avoiding plantation 
failure. 

In this study, we showed that survival times of the 
resistant and susceptible spruce trees were significantly 
different, as expected because the two groups were pre- 
defined in another report (Alfaro et al. 1996), and the 
survival time followed a lognormal distribution. This 
distribution can be used to forecast the weevil hazard 
level for trees and families with different genetic re- 
sistance. This study only included resistant and sus- 
ceptible trees, defined by the two extremes in the re- 
sistance rank distribution for the Clearwater families 
(top and bottom 25% of the distribution; Alfaro et al. 
1996). If intermediate trees were also included, then 
there would be a continuous spectrum for the survival 
times from susceptible (short survival time) to inter- 
mediate (intermediate survival time) to resistant (long 
survival time). This property does not invalidate the 
method, but reflects the continuous nature of the re- 
sistance distribution observed. 

Although tree height, temperature, and precipitation 
were found to have significant effects on time-to-attack 
(Table 2), the survival time of a spruce tree is really 
an outcome of the interaction of ecological factors and 
the tree's resistant mechanisms. Known spruce defens- 
es include variation in the chemical composition of 
feeding stimulants and deterrents (Alfaro et al. 1980), 
differences in resin canal density (Tomlin and Borden 
1994, Alfaro et al. 1997), and production of traumatic 
resin (Alfaro 1995, Tomlin et al. 1998). These mech- 
anisms often occur simultaneously, each one playing 
some role, but the relative importance of each defense 
system varies in different spruce genotypes under dif- 
ferent ecological conditions. Some of these factors and 
mechanisms (e.g., resin canal density) are easily in- 
cluded in the accelerated failure time model (although 
data were not available in this study), but some are not 
(e.g., chemical composition). However, it should be 
kept in mind that survival time is a measurement of a 
host-resistant ability originating from the biology and 
ecology of both the host and pest populations. 

Many ecological processes can be appropriately 
treated following the survival time concept (Muenchow 
1986, Dixon and Newman 1991, Fox 1993), for in- 
stance, the time for an individual to die or for a tree 
to fall down (forming a gap), the time until a seed is 
consumed by a predator, and the time until the recapture 
of a marked animal. However, in other situations, the 
measurement of interest may not necessarily be time, 
but rather a nonnegative variable, such as the sampling 
area until a given species is encountered or cumulative 
physiological temperature until a flower blossoms. This 
latter case is of particular interest, because it takes area 
or cumulative temperature as a random variable, which 
was otherwise considered fixed in traditional studies. 

In addition, in ecological studies, censored observa- 
tions can frequently occur because of loss of experi- 
mental subjects, or because of the relatively short ob- 
servation time relative to the natural occurrence of a 
process. Therefore, survival time analysis should be a 
useful approach in ecology. 
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