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Abstract

Distributed parameter systems (DPS) are systems that have their evolution

through time and in space. These systems are present in every type of indus-

trial process, from chemical to electrical applications. Thus, proper modeling

and control of DPS are indispensable for the optimization and control of such

processes. Due to their spatiotemporal dynamics, these systems are generally

represented by partial integro-differential equations (PIDEs), which brings is-

sues with the control and monitoring of such applications. This thesis studies

the modeling and control of such systems, specifically the ones modelled by

first and second-order hyperbolic PDEs, not relying on the spatial approxima-

tion generally applied to deal with the PIDEs. First, an alternative model for

transport-reaction processes is analyzed, taking into account the possible iner-

tia present in the transport. Second, the regulator design of a heat exchanger

system in the continuous-time setting is developed, ensuring disturbance re-

jection and proper output tracking. Then, the leap from the continuous to the

discrete-time is taken by studying the regulator design for the sediment-filled

water canal dynamics. Lastly, the optimal constrained controller is developed

in the last chapters to take into account constraints applied to the system.

First, an autothermal reactor operating in an unstable condition is considered.

The simulations show the controller performance and proper convergence to

the desired steady-state. In the subsequent chapter, the constrained control

problem is solved for the alternative model of transport-reaction processes.

The difference in the system response of the commonly used model and the
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proposed model is noticeable. The discrete representation used for the systems

in the discrete-time setting does not consider the early spatial approximation

generally used when dealing with DPS.
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Chapter 1

Introduction

When ”Stirred pots and empty tubes” [1] was written by Aris and Varma, the

mathematical models for ideal reactors and the diffusion-reaction in porous

catalysts were being studied. The researchers were trying to determine the

criteria for the uniqueness, multiplicity, and stability for such systems’ steady-

states. About 40 years later, these mathematical models are still used, as

stirred tanks and tubular reactors are extensively used in chemical and bio-

chemical transformations.

The dynamics of tubular reactors are represented as mathematical mod-

els having both temporal and spatial characteristics, and these processes are

named distributed parameter systems (DPS). Examples of applications include

heavy oil recovery in the petroleum industry, tubular and plug-flow reactor sys-

tems used for chemical production and refinement and heat exchangers used

in various industries. In the same line, in manufacturing industries, phase

transitions and thermal treatment, represented by DPS models, are critical

factors in the fabrication and processing of materials, such as crystal growth

methods for semiconductor production.

The mathematical models of this kind of system are given by partial differ-

ential equations (PDEs), and they belong to the class of infinite-dimensional

systems. Due to the existence of the spatial variable in the mathematical

model, the state estimation and control of distributed parameter systems are

challenging and interesting. Hence, there is a rich and active research interest

in this field that draws upon the well-established classical tools of mathemati-
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cal analysis and employs the recent advancements in computer technology for

process simulation and numerical studies of complex problems.

A PDE includes partial derivatives of a function regarding two or more in-

dependent variables. The distributed nature of the state is the distinguishing

feature of process variables modelled by PDEs in contrast to those represented

by ordinary differential equations (ODEs), for which the process variables

are represented by functions of only a single independent variable. Consider

x(ζ, t), a dependent variable, function of other independent variables: ζ, an

independent spatial variable belonging to a domain Ω ∈ ℜ; t, the indepen-

dent time variable, considered as t ∈ ℜ+. The function x(ζ, t) represents the

system’s state at the time t along with the space domain and is the process

variable of interest.

Linear (or linearized) PDEs can describe many transport-reaction processes

in chemical and materials engineering. The system properties strongly depend

on the type of PDE that models the system. These types of equations have

their classification defined based on the following form:

α
∂2x

∂t2
(ζ, t) + β

∂2x

∂t∂ζ
(ζ, t) + γ

∂2x

∂ζ2
(ζ, t) = F

(
x,
∂x

∂t
,
∂x

∂ζ
, t, z, u

)
(1.1)

If β2 − 4αγ > 0, the PDE is hyperbolic; if β2 − 4αγ = 0, it is a parabolic

PDE; finally, if β2 − 4αγ < 0, the system is represented by an elliptic PDE.

An axial dispersion chemical reactor is described by parabolic PDE, while a

plug flow reactor is modelled by a hyperbolic PDE.

A general representation of a linear PDE with input is given as below:

∂x

∂t
(ζ, t) = A(ζ, t)x(ζ, t) +B(ζ, t)u(t) (1.2)

where A(ζ, t)(·) is the spatial operator, and, for most common chemical pro-

cesses, it can be written as:

A(ζ, t)(·) = ∂

∂ζ

(
D(ζ, t)

∂(·)
∂ζ

)
+ v(ζ, t)

∂(·)
∂ζ

+ k(ζ, t)(·) (1.3)

This generic type of PDE given in (1.2)-(1.3) includes two important trans-

port mechanisms: the diffusion (represented by the diffusion coefficientD(ζ, t))

and convection (represented by the velocity v(ζ, t)). This type of equation
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also accounts for a generation/consumption term, represented by k(ζ, t). The

B(ζ, t) term in (1.2) represents the input operator and depends on the type of

actuation imposed on the system.

In both PDEs and ODEs, the system is not properly posed without speci-

fying the initial conditions. For PDEs, not only the initial conditions (x(ζ, t =

0) = xo(ζ)) are necessary, but also the boundary conditions. These conditions

are generally of three types:

� Dirichlet (also called first-type) boundary condition: specify the func-

tion at the boundary:

ax(ζ = ζo, t) = c (1.4)

� Neumann (or second-type) boundary condition: specify the value of

the spatial derivative at the boundary:

b
∂x

∂ζ
(ζ = ζo, t) = c (1.5)

� Robin (or third-type) boundary condition: specify a linear combina-

tion of the function and its spatial derivative at the boundary:

ax(ζ = ζo, t) + b
∂x

∂ζ
(ζ = ζo, t) = c (1.6)

The type of actuation applied to the system also significantly influences

how to properly design the controller. Generally, three different types of input

can be considered on the controller design for a DPS, as illustrated in Figure

1.1. The first type of actuation, shown on the top of the figure, considers

that the input is distributed throughout the domain and that it is possible

to control the actuation at any point (i.e., u(ζ, t)). Thus, both the inputs

and states belong to infinite-dimensional spaces. Unfortunately, although the

assumption of an infinite-dimensional space is mathematically correct, the

possibility of implementation is near impossible. As illustrated at the top of

Figure 1.1, if we consider a reactor, this assumption would only be realizable

if an infinite number of heat elements were acting on the reactor, making it

possible to manipulate the input at any point.

3



The illustration at the center of Figure 1.1 represents the second type of

input, one that belongs to a finite-dimensional space and acts on the states

in an in-domain distributed manner. A reactor surrounded by a jacket with a

high flow (or heat capacity) heating/cooling fluid inside is an example of this

input type. In this case, the fluid temperature inside the jacket will not change

throughout the domain. Thus, the temperature of the heating/cooling fluid

that enters the jacket remains the same. The inlet temperature to the jacket

is this system input and affects the states due to the temperature difference

between the two fluids.

The last type of input is similar to the second case and represented at the

bottom of Figure 1.1. Instead of considering that the jacket’s temperature is

constant, now it is assumed that both the jacket and reactor’s temperatures

will change throughout the domain and are states of the system. The input

only changes the jacket inlet temperature, which corresponds to the boundary

condition of the jacket’s states. These instances, where the actuation is applied

at the boundary, are called boundary control problems. The input acts only

at the domain boundary and is not spatially distributed. Notice that all the

types of boundary conditions shown above can be considered in boundary

control problems (i.e., c = u(t) in the Dirichlet, Neumann or Robin boundary

conditions).

Due to these characteristics, the DPS regulator design is more complex

than in the finite-dimensional systems (also called Lumped Parameter System

- LPS and generally represented by ODEs). The presence of spatial variables

presents limitations to the controller design accomplished in the LPS setting.

For instance, in some cases, the inputs and outputs can be given as bound-

ary conditions, which adds to design complexity. In general, there are two

approaches taken for controller design and state estimation of DPS, as illus-

trated in Figure 1.2:

1. Early lumping: the DPS is first discretized into an approximate LPS,

leading to a system of ODEs. The LPS control theory is then applied

for the controller design and state estimation. As the resulting system
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x(t, ζ)

u(t, ζ)

x(t, ζ)

u(t)

x(t, ζ)

u(t)

u(t)

Figure 1.1: Types of DPS Inputs: (Top) Infinite-dimensional in-domain input;
(Center) Finite-dimensional in-domain input; (Bottom) Finite-dimensional
boundary input;
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of ODEs depends on the discretization method and the number of the

discretization points, the conditions for controllability, stabilizability and

observability can also vary, which is a drawback of this methodology.

2. Late lumping: the control theory is applied directly to the DPS, and

discretization is used at the final stage for implementation. This method-

ology considers the theory and analysis of PDEs to define the system

properties (controllability, stabilizability, and observability).
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The difference between these methodologies can be seen in the following

example. Considering the following PDE, represented in Figure 1.3:




∂x(ζ, t)

∂t
= A(ζ, t)x(ζ, t) = −v∂x(ζ, t)

∂ζ

x(ζ = 0, t) = u(t)

y(t) = x(ζ = 1, t)

(1.7)

δV

δζ

u(t) y(t)x(t, ζ)

v

ζ = 0 ζ = 1

Figure 1.3: Hyperbolic system (Eq. 1.7) representation

The finite differences method can be used to get a system of ODE that

approximately represents the partial differential equation. Once the finite-

dimensional representation is obtained, standard finite system control defi-

nitions such as controllability, stabilizability, observability and transfer func-

tion representation can be explored. Considering the early and late lumping

methodologies, the results shown in Table 1.1 are obtained for the transfer

function representation, where N represents the number of intervals in the

discretization (i.e., number of total points minus one) and v is the system

velocity.

A(ζ, t) = −v ∂
∂ζ
,

{
x(ζ = 0, t) = u(t)

y(t) = x(ζ = 1, t)

Methodology Transfer Function
Early

Lumping
G(s) = 1

(1+ s
vN )

N

Late Lumping G(s) = e−
s
v

Table 1.1: Tranfer functions obtained using early and late lumping

The transfer function obtained by applying finite differences in the partial

differential equation shows that the system is supposed to have poles at s =

−vN with multiplicity N . The analytical transfer function does not display

any poles; in fact, as expected, it only represents a time delay. It is possible
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to show that as N → ∞ the transfer function obtained with the discretized

system converges to the analytical solution, i.e.:

lim
N→∞

G(s) = lim
N→∞

1
(
1 + s

vN

)N = e−
s
v (1.8)

Therefore, if a large number of discretization points are used, the system of

ODEs obtained by the early lumping methodology approximately well repre-

sents the system. This is one of the drawbacks of the early lumping methods,

as a higher number of discretization points increases the computational cost

to represent the distributed parameter system properly.

This thesis proposal aims to study the modeling and controller design for

DPS without the use of early lumping in the context of chemical systems, con-

sidering the design in both continuous and discrete-time settings. Specifically,

systems that can be modelled by hyperbolic PDEs are studied.

1.1 Literature Review

One of the main goals of any control strategy is to make the system dynamics

behave in a specified, desired manner. Therefore, the classical problem of a

servo-design regulator is defined as the design of the closed-loop control system,

which tracks a prescribed signal, rejects possible disturbances applied to the

system, and guarantees the closed-loop stability with some degree of robustness

[2]. The distributed parameter system class includes a diversity of important

processes in science, and engineering [3]–[5]. In the literature, this type of

system is addressed with two approaches: finite-dimensional approximation of

the distributed system followed by finite-dimensional design and functioning

assessment (the early lumping methodology); and a direct infinite-dimensional

design for the distributed parameter systems followed by finite-dimensional

(numerical solution) implementation [6]–[8].

By following the well-known regulator designs from the finite-dimensional

systems theory, one possible way to design the regulator for the distributed

parameter systems is to use the early lumping approach. Hence, standard

regulator design methods applicable to ODE systems can be realized, and
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several contributions deal with the regulator problem for finite-dimensional

linear systems [9], [10]. However, the early lumping approach also results in a

possible mismatch between the dynamical properties of the original distributed

parameter and the lumped parameter models, which inevitably affects the

designed regulator performances [11].

A more rigorous way to address regulator design in the realm of distributed

parameter processes is to exploit the infinite-dimensional characteristic of the

system, as past contributions in the literature have done: the PI-controller

for distributed parameter systems with constant disturbance was developed

[12]; the use of the geometric theory for the regulation problem for infinite-

dimensional linear systems driven by finite-dimensional exosystems was also

studied [13] and the regulator design was proposed for a class of first-order

hyperbolic PDE systems with space-varying coefficients [14]and for a system

of hyperbolic transport equations [6]. The output and error feedback regulators

design for a linear scalar nonspectral hyperbolic system with boundary and

in-domain actuation was developed [15].

Furthermore, the type of information available for the regulator also deter-

mines its features. For example, given that the full-state information is avail-

able, which rarely happens in practice for a DPS, one can design a full-state

feedback regulator. The spatial and temporal properties of the distributed

parameter systems, coupled with the spatially distributed or boundary actua-

tion and measurement, make it impractical to measure the system states at all

points [16], [17]. The practical design realizations need to account for scenarios

when only output and/or error measurements are available. Thus, using the

states reconstructed by observers, filters, and estimators is interesting [6].

With the early lumping methodology, the observation problem is addressed

with the tools available in the more developed field of finite-dimensional sys-

tems [18], [19]. The infinite-dimensional designs have been conceived by us-

ing different strategies, such as the geometric control method equipped with

manifold theory [4], back-stepping integral transformations [8], variable struc-

ture estimation schemes [20], nonlinear evolution equations [21], open-loop

observers [22], and absolute stability [7]. The infinite-dimensional observer

10



design problem was also addressed with an adjustable-weight Lyapunov func-

tion [23], and the related convergence inequalities were handled with a linear

matrix inequality approach recalled from optimal boundary control design [24].

The optimal constrained state estimation problem has also been addressed by

the use of a sequential, algorithmic optimal constrained state estimator, capa-

ble of dealing with boundary actuation and point measurement [25].

A state-of-the-art controller realization is ultimately digital, therefore, dis-

crete. This motivates the search for a control design that considers the closed-

loop system’s discrete-time nature. Modern control techniques (such as the

model predictive control) generally use a discrete version of the overall system.

Therefore, the traditional numerical time discretization schemes are frequently

considered to transform models and/or controllers for implementation. But,

the accuracy of the discrete system representation may be impacted as the

sampling period is increased, which adversely may affect the overall model

and closed-loop stability [26].

From the linear systems theory, it is known that simple explicit and implicit

Euler time discretization may impact the systems’ stability by mapping sta-

ble continuous to possible unstable discrete counterpart system and vice versa

[27]. This issue becomes even more prominent in the case of controller design

and/or realizations for DPS. Hence, it is essential to explore time discretization

schemes that provide an accurate and reliable transformation of continuous lin-

ear infinite-dimensional systems to the linear discrete-time infinite-dimensional

one. The application of Crank-Nicolson midpoint integration rule [28], a type

of discretization in the systems science also known as Cayley-Tustin time dis-

cretization, has been shown to preserve the intrinsic energy and dynamical

characteristics of the linear distributed parameter system [29], with no spatial

discretization or/and spatial model reduction needs to be applied.

In reality, actuators and sensors have their limits due to physical properties,

or the desired output is required to be within a specific range. This adds

constraints to the control problem. Among modern control designs, if optimal

control is considered and constraints are imposed in the systems’ settings,

advanced control strategies - such as model predictive control (MPC) - can

11



be used to achieve the optimal system response without constraints violation.

MPC incorporates constraints explicitly, is easily formulated as a constrained

optimization problem, and can be solved with standard software. It also can

anticipate future events and take control actions accordingly. This predictive

ability is something classic controllers like PID controllers do not have.

In essence, a linear MPC refers to a class of control algorithms that compute

the controlled variables profiles by utilizing a linear process model to optimize

an open-loop quadratic objective function subject to constraints over a future

time-horizon [30], [31]. Only the first control action of the computed profile is

applied, and this process is repeated at each time interval [32], [33]. In the case

of linear models, the model predictive control utilizes a linear state space or

transfer function representations obtained by modeling or empirical response

of the controlled plant [30]. The outstanding feature of linear model predictive

control is that constrained and multivariable processes can be addressed with

emphasis on a robust algorithm realization that can be implemented online.

The MPC for DPS has to consider the distributed nature, the naturally

present constraints, and limitations on available measurements into its optimal

performance. In particular, there are similarities among constrained optimal

controller design formulations for finite and infinite-dimensional systems. The

differences in the controller synthesis are associated with how the stable and

unstable infinite-dimensional systems are treated. Along the line of similari-

ties, the well-known formulation of the quadratic form optimization functional

on the infinite horizon is used for both infinite, and finite-dimensional systems

[34]. Various development of MPC for distributed parameter systems have

been explored considering distributed actuation [35], boundary actuation [36],

and output and full-state feedback control [37].

1.2 Thesis Outline

This thesis proposal aims to study the modeling and control of DPS without

using early lumping techniques, considering the design in both continuous and

discrete-time settings. Hyperbolic models are the focus of this thesis, which is
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divided as follows:

In Chapter 2, common chemical engineering transport-reaction systems are

modeled by considering the inertia in the transport phenomena. This results

in second-order hyperbolic PDEs, which account for a finite speed of propaga-

tion. The findings provide the derivation of the hyperbolic transport-reaction

partial differential equations and a direct comparison with their corresponding

dissipative parabolic PDEs. The stability analysis of the dynamical systems is

considered and complemented by numerical simulations for typical processes,

such as the heat diffusion in a slab, transport-reaction inside a chemical reac-

tor, and a phase change problem. The results show the effects of the modeling

and/or limits of the approximation used in deriving and considering the hy-

perbolic PDE for transport-reaction systems.

In Chapter 3, the boundary feedback regulator design for heat exchangers

with delayed feedback is developed. Counter-flow/parallel-flow heat exchanger

systems described by a pair of coupled transport hyperbolic partial differential

equations (PDEs) with delayed boundary feedback loop are considered. By ap-

plying a boundary transformation, the coupled transport hyperbolic PDEs and

boundary delay are changed into a corresponding linear infinite-dimensional

system used in the regulator design. The design initially addresses a full state

feedback controller realization augmented by the observer design to simultane-

ously output exponential stabilization and tracking and disturbance rejection

of polynomial and/or harmonic type of reference signals. The simulations

studies demonstrate the proposed design for counter-flow and parallel-flow

heat exchangers, two standard configurations present in industrial practice.

In Chapter 4, the regulator design in the discrete-time setting for the unsta-

ble linearized Saint-Venant-Exner model is addressed. The proposed regulator

ensures the closed-loop stability and proper tracking of polynomial and pe-

riodic reference signals using output feedback in a sample-data setting. The

system discrete representation is achieved by applying the structure-preserving

Cayley-Tustin time discretization, and the direct relation with the regulator

in the continuous-time setting is shown. The regulator design is developed

using the backstepping methodology to provide the closed-loop stability and
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the observer design. At the same time, the Sylvester equations are solved to

achieve proper tracking. Finally, the numerical simulation results show the

regulator’s performance.

In Chapter 5, the design of a model predictive controller for the auto-

thermal reactor with an internal counter-current heat exchanger (ARICHE)

is considered. This system is modelled by a system of quasilinear hyperbolic

PDEs and can exhibit a multiplicity of steady states, which is explored by con-

sidering a parametric analysis of the model. Generally, the unstable steady-

state, which provides optimal conversion and selectivity, is regarded as the

steady-state of interest. The linearization is utilized to obtain a linear sys-

tem of coupled transport-reaction hyperbolic PDEs. The structure-preserving

Caley-Tustin discretization is employed without any spatial approximation

and/or order reduction. The discrete model is utilized in the model predictive

controller (MPC) design, and it successfully addresses the control scenarios

which account for the optimality, stability, and constraints satisfaction.

In Chapter 6, the model predictive controller design is developed for the

type of PDEs studied in Chapter 2. The dynamics of a tubular chemical re-

actor with boundary actuation is assumed to be modelled by a second-order

hyperbolic equation. The discrete Luenberger observer design for state recon-

struction is addressed and integrated with the MPC design. The observer gain

is obtained by solving the operator Ricatti equation in the discrete-time setting

using the bi-orthonormal basis defined for the system operator. At the same

time, the MPC accounts for constrained and optimal control. In addition, the

results for considering both parabolic and hyperbolic equations are presented

and discussed.

Finally, Chapter 7 outlines the results of this thesis and discusses the

present and future research plans.
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Chapter 2

Hyperbolicity of
reaction-transport processes

2.1 Introduction

The heat transport thorough a solid is one of the simplest transport-reaction

processes one can come across in chemical/process engineering. The conduc-

tive transport of heat across the macroscopic scale is generally described by

a parabolic partial differential equation (PDE) obtained by defining the heat

flux given by the Fourier’s law. In Fourier’s law, an initial temperature gradi-

ent in a conductive medium causes an immediate heat flux, thus, any initial

disturbance in the material body is propagated instantly [38]. However, it has

been experimentally shown that, in some cases, the parabolic heat conduc-

tion equation may not accurately describe the process. Materials with non-

homogeneous structures, for instance, present thermal waves that travel with

a finite speed of propagation [39]. A similar behavior is seen when extremely

fast thermal disturbances are induced by a laser [40] or a flash lamp [41].

To deal with the undesirable feature characteristic of the parabolic PDE,

Cattaneo [42] proposed a modified Fourier’s law that took into account the

thermal inertia and, when applied to the energy balance, the resulting PDE is

a hyperbolic equation. This type of equation is physically relevant and has the

desired finite speed of propagation [42], [43]. Furthermore, the hyperbolicity

mathematically ensures the well-posedness of the local Cauchy problems [44].

The hyperbolicity of the transport phenomena has been analyzed in different
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contributions. In particular in King et al. [45], the numerical and analyt-

ical solutions of the hyperbolic heat equation were analyzed in an infinite

space. Similarly, in Novikov [46], the temperature propagation in an infinite

one-dimensional plate with a stationary heat sensor was solved considering

a hyperbolic heat-conduction equation. In Mitra et al. [47], the experimen-

tal evidence of the heat propagation in processed meat demonstrated that

the hyperbolic model is an accurate representation of heat conduction on a

macroscopic level. More recently, a modified equilibrium model of a heat-

conducting, heterogeneous mixture was proposed using the modified flux, and

a set hyperbolic equations was obtained [48]. The study of Nosko [39] proposed

different non-Fourier models to simulate temperatures in materials subjected

to extremely fast thermal disturbances, specifically for the microscopic sliding

contact. In addition, in Abbasi et al. [49], the optimal control in a biological

tissue modeled by a thermal wave equation, i.e., a hyperbolic heat equation,

was proposed.

The modeling feature associated with this delayed flux in the chemical en-

gineering process, for instance in tubular reactors [50], [51]), is interesting as

generally the models of reaction-diffusion nature are represented by parabolic

PDEs originated by assuming that the flux in the mass balance is given by

Fick’s law. As Cattaneo’s and Fick’s (or Fourier’s) laws are equivalent in the

steady-state condition, for some applications, the differences are generally seen

in small timescales. But, for systems characterized by long relaxation times,

such as polymeric fluids, heat and electric conductor at high temperatures,

the difference is noticeable. For mass transfer, where relaxation time might be

several orders of magnitude larger than in heat propagation, the same behav-

ior might hold [52]. This potential has been noticed in the literature, and was

considered to potentially represent anomalous mass transport phenomena [53],

[54].

Furthermore, the Cattaneo-type of flux has been shown to arise from statis-

tical mechanics as well. For example: in Nonnenmacher [55] the nonlinear con-

stitutive laws were derived from the nonlinear Boltzmann equation, which was

then linearized and, in turn, lead to Cattaneo’s modified flux. In Godoy [56],
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the quantum random walk was used to study diffusion in one dimensional crys-

talline nanostructures. A hyperbolic equation was derived to represent the

dynamic in the mesoscopic diffusion regime. The differences between these

classes of PDEs are also important when designing a controller since the devi-

ation in the system’s dynamics might affect the controller’s performance and

the closed-loop stability, as a model-based controller for transport problems

generally considers the parabolic model [36], [57].

In this contribution, the effects of the transport delay in a moving boundary

problem, specifically, a Stefan problem, are also analyzed. This type of system

is a specific class of boundary value problem for partial differential equations

that generally focus on the heat distribution in a body with a phase transition.

A common example of a Stefan problem is the diffusion of heat in ice melting:

the interface between the solid and liquid phase will change its position as the

ice melts [58]. The solution of this type of system needs to take into account

the determination of the moving boundary position as it changes with time

and cannot be determined a priori. Although this type of problem is generally

associated with melting and solidification problems, there are contributions

that address the fluid flow in porous media or even shock waves in gas dynamics

using Stefan-like problems [58].

This chapter analyzes the distinct characteristics of the second-order hy-

perbolic and parabolic PDEs obtained for different mass or heat transport

processes. First, the heat transfer in a finite body with different boundary

conditions is considered. The derivation and stability analysis of the parabolic

and hyperbolic equations are shown. In this case, an open-form analytical so-

lution can be obtained and the comparison between the results is made. Then,

the same characteristics are studied for an axial dispersion reactor considering

open and closed boundary conditions, which is a typical chemical engineering

example. Finally, a moving boundary problem is explored considering the two

types of PDEs and the numerical results of the simulations are discussed.
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2.2 The heat equation

Considering a fluid at rest with constant density and neglecting non-linear

terms in gradients and time-derivatives, the energy balance for the system,

considering only the transport in one dimension, leads to the following equa-

tion:

C∂tT + ∂ζq = 0 (2.1)

where C is material heat capacity per unit of volume. The heat flux (q) can

be defined by the Fourier’s law if only diffusion is considered:

q = −k∂ζT (2.2)

where k is the material thermal conductivity, assumed to be constant in the

space. The energy balance can be rewritten as:

∂tT + ∂ζq = 0 =⇒ ∂tT = α∂ζζT (2.3)

with α = k
ρc

= k
C
, ρ is the material density and c is the material heat capacity

per unit of mass. For an initial value problem (T (ζ, t = 0) = T0(ζ)) in a one

dimensional infinite spatial domain, the solution of this PDE is given as:

T (ζ, t) =
1

(4παt)3/2

∫ ∞

−∞
T (z, 0) exp

(
−(z − ζ)2

4αt

)
dz (2.4)

As long as the initial condition is different from 0, this solution predicts

an instant heat propagation, which is called the Heat Conduction Paradox.

Cattaneo [42] wrote a paper at which the question of the paradox of heat

conduction was addressed. The author modified Fourier’s law, based on the

elementary kinetic theory of gases. It was argued that there is a time-lag

between the start of the particles at their point of departure and the time of

passage through the middle layer. Therefore, if the temperature changes in

time then, the heat flux at a certain time should depend on the temperature

gradient of an earlier time. This assumption leads to the following definition

of a modified heat flux:

q = −k(1− τ∂t)∂ζT (2.5)
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where τ is called the characteristic time. If τ → 0, the following approximation

can be used:

(1− τ∂t)
−1 ≈ (1 + τ∂t) (2.6)

and the energy balance can be rewritten as a second order hyperbolic PDE:

τ∂ttT + ∂tT = α∂ζζT (2.7)

with the understanding that, if τ = 0, the original parabolic PDE from Eq.

2.3 is obtained.

2.2.1 Boundary Conditions

Considering the heat conduction equations shown in Eq. 2.3 and Eq. 2.7,

three different sets of boundary conditions are assumed and will be used in

the following sections:

1.

{
T (0, t) = 0
T (1, t) = 0

(2.8)

2.

{
∂ζT (0, t) = 0
T (1, t) = 0

(2.9)

3.

{
∂ζT (0, t) = 0
∂ζT (1, t) = 0

(2.10)

The first set of boundary conditions (Eq. 2.8) represents two Dirichlet

boundary conditions and assumes the direct control of the temperature on the

boundaries, which physically represent the case when large heat sinks/sources

with constant temperature placed at the boundaries. Eq. 2.10 represents two

Neumann boundary conditions, which assumes the possibility that the flux

can be controlled. Eq. 2.9 has mixed boundary conditions as the types of

boundary conditions at the two boundaries are different.

2.2.2 Eigenvalue Analysis

In this section, a comparison among the eigenvalue distribution of the parabolic

and second order hyperbolic is made to understand how the system dynamics
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are different in these two modeling settings. As the results for the parabolic

have been extensively studied and reported, the outcome for this type of equa-

tion is shown in Table 2.1.

The eigenvalue problem is defined as Aϕ = λϕ, where A is the operator

considered, ϕ is the eigenfunction and λ is the eigenvalue.
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For the second order hyperbolic, the partial differential equation shown in

Eq. 2.7 can be written as:

∂

∂t




T

∂T

∂t


 =




0 1

α

τ

∂2

∂ζ2
−1

τ







T

∂T

∂t


 (2.11)

such that the operator A is defined as:

A =




0 1

α

τ

∂2

ζ2
−1

τ


 (2.12)

thus, as the eigenvalue problem is defined as Aϕ = λϕ, the following system

of equations is solved as:





ϕ2 = λϕ1

α

τ

∂2ϕ1

∂ζ2
− ϕ2

τ
= λϕ2

(2.13)

which leads to the following second order ODE:

d2ϕ1

dζ2
=
λ

α
(λτ + 1)ϕ1 (2.14)

This second order equation has a general solution given as:

[
ϕ
dζϕ

]
= eĀ(ζ−ζ0)

[
ϕ(ζ0)
dζϕ(ζ0)

]
=⇒ Ā =

[
0 1

λ
α
(λτ + 1) 0

]
(2.15)

where ϕ = ϕ1 and λ′ = λ
α
(λτ + 1) and ζ0 = 0. Applying the assumed

boundary conditions gives the following distribution of eigenvalues and eigen-

functions:

1. ϕ1,k(ζ) = ak sin(πkζ), ϕ2,k(ζ) = akλk sin(πkζ) and λk = −1
2τ

±√
1

4τ2
− απ2k2

τ
, for k > 0

2. ϕ1,k(ζ) = ak cos
(
2k+1
2
πζ
)
, ϕ2,k(ζ) = akλk cos

(
2k+1
2
πζ
)
and λk = −1

2τ
±√

1
4τ2

− απ2

τ

(
2k+1
2

)2
, for k ≥ 0

3. ϕ1,k(ζ) = ak cos(πkζ), ϕ1,0(ζ) = a0, ϕ2,k(ζ) = akλk sin(πkζ), ϕ2,0 = a0λk

and λk =
−1
2τ

±
√

1
4τ2

− απ2k2

τ
, for k ≥ 0
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Remark 2.1 : The solution of the eigenvalues problem of the hyperbolic PDEs

results in a different set of eigenvalues when compared to the parabolic equation

(shown in Table 2.1). For the parabolic case, it can be seen that the dynamics

of the heat transport problem contains only negative real eigenvalues that are

distributed apart of each other in a quadratic sense, reflecting the exponential

attenuated dynamical response of the system (the response does not have oscil-

latory behavior). The second order hyperbolic PDE does not have an infinite

set of real eigenvalues as shown above (for the parabolic equation, λk → −∞ as

k → ∞), in fact, for all solutions, the whole set of eigenvalues are constrained

in a region where −1
τ

≤ Re(λn) ≤ 0, as it is shown in Figure 2.1, for α = 0.25

and τ = 0.01. Furthermore, the complex eigenvalues of the hyperbolic equa-

tion will have the same real part (−1/2τ). This infinity number of eigenvalues

with the same real part is manifested in the hyperbolic PDE modeling as the

finite speed of propagation. For the same value of α, the hyperbolic (λH) and

parabolic eigenvalues (λP ) are, for the heat diffusion in a resting body, related

by:

λH(λHτ + 1) = λP (2.16)

Figure 2.1: Parabolic (circle) and hyperbolic (cross) PDEs’ eigenvalues distri-
bution for BC 1 (Eq.2.8) and BC 3 (Eq.2.10). The red values are added for
the third set of boundary condition.
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Limit of the approximation

As the assumption that τ → 0 was used to transform the modeling setting from

hyperbolic to parabolic PDE, one can also expect an upper limit for τ , at which

the hyperbolic equation will not be physically meaningful. By examining the

solutions for the eigenvalue problem, there is a value for τ > τmax at which

all eigenvalues of the hyperbolic equation will be complex eigenvalues with a

common real part but different imaginary parts:

1. 1
4τ2max

− απ2

τmax
< 0 =⇒ τmax =

1
4π2α

2. 1
4τ2max

− απ2

τmax

(
1
2

)2
< 0 =⇒ τmax =

1
π2α

3. 1
4τ2max

− απ2

τmax
< 0 =⇒ τmax =

1
4π2α

Thus, for cases 1 and 2, the system will present only complex eigenvalues if

τ > τmax. Case 3 will always have 2 real eigenvalues λ0,1 = 0, λ0,2 = 1/τ , but

all others will be complex if τ > τmax. Thus, for τ > τmax, the eigenvalues

distributions predict a response of the system with attenuating oscillations,

which might not have physical meaning. However, the finite speed, associated

with the multiplicity of eigenvalues with the same real part, is still present.

2.2.3 Adjoint operators and the orthonormal basis

In the next section, the open-form analytical solutions of the parabolic and

hyperbolic equations are developed. The motivation for this analysis stems

from the need to provide an analytic solution for the unforced system dynamics

evolution. To obtain these analytic solutions, we first derive the adjoint of the

operators, which is used to define an orthonormal base and is then employed

in the analytical solution. To find the adjoint operator, the general definition

of inner product is used:

⟨Ax, y⟩Y = ⟨x,A∗y⟩X (2.17)

where x ∈ X, y ∈ Y , A : X → Y , A∗ : Y → X, and ⟨·, ·⟩Y , ⟨·, ·⟩X are the

inner products.
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Next, the eigenvalue problem of the adjoint operator is considered, as its

eigenfunctions will build the orthonormal base used in the solution. As it can

be noticed from Table 2.1, for all boundary conditions and the adjoint oper-

ator defined for the parabolic PDE, A = A∗ and D(A) = D(A∗). Thus, the

operator is self-adjoint, which implies a spatial symmetry of the dynamics. As

the parabolic operator is self-adjoint the solution of the eigenvalue problem for

A∗ will give the same result as A, thus ψ(ζ) = ϕ(ζ), where ψ(ζ) is the eigen-

function of the adjoint operator. The orthonormal basis can be constructed

with ϕ(ζ) and ψ(ζ), such that:

⟨ϕi(ζ), ψj(ζ)⟩ = δij =

{
0, if i ̸= j
1, if i = j

(2.18)

and with the solutions of the eigenvalue problem for the different boundary

conditions, it is possible to define ak such that the above condition is true. For

the hyperbolic PDE, the operator defined in 2.12, the following is obtained:

〈
A

[
x1
x2

]
,

[
y1
y2

]〉

Y

=

∫ 1

0

[
x2

α
τ
∂ζζx1 − x2

τ

]T [
y1
y2

]
dζ =

∫ 1

0

[
x1
x2

]T
A∗
[
y1
y2

]
dζ = ⟨x,A∗y⟩X

(2.19)

which gives the following adjoint operator (A∗ = AT in Eq. 2.12):

A∗ =




0 α
τ
∂ζζ

1
−1

τ


 (2.20)

with the following boundary conditions:

1.

{
y2(0) = 0
y2(1) = 0

2.

{
∂ζy2(0) = 0
y2(1) = 0

3.

{
∂ζy2(0) = 0
∂ζy2(1) = 0

As A∗ ̸= A, the operator of the hyperbolic PDE is not self-adjoint, thus, the

eigenvalue problem needs to be solved to find the eigenfunctions of the adjoint
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operator. The eigenvalue problem A∗ψ = λψ has the same characteristic

equation as A, thus, the same eigenvalues. Its eigenfunctions, however, are

given by: {
λψ1 = ∂ζζψ2

λψ2 = ψ1 − ψ2

τ

=⇒
{
ψ1 =

1+λτ
τ
ψ2

ψ2 = ae
√
λ′ζ + be−

√
λ′ζ (2.21)

where: λ′ = λ(1+λτ)
τ

and a and b are found using the boundary conditions

defined above, which leads to the following solution:

1. ψ1,k(ζ) = a∗k
1+λkτ
τ

sin(πkζ), ψ2,k(ζ) = a∗k sin(πkζ), with a∗k = ak =√
2τ

1+2τλk
, for k > 0

2. ψ1,k(ζ) = a∗k
1+λkτ
τ

cos
(
2k+1
2
πζ
)
, ψ2,k(ζ) = ak cos

(
2k+1
2
πζ
)
,with a∗k =

ak =
√

2τ
1+2τλk

, for k ≥ 0

3. ψ1,k(ζ) = a∗k
1+λkτ
τ

cos(πkζ), ψ1,0(ζ) = 1+λkτ
τ

a∗0, ψ2,k(ζ) = a∗k cos(πkζ),

ψ2,0 = a∗0, with a
∗
k = ak =

√
2τ

1+2τλk
for k ≥ 0

where the condition a∗k = ak was assumed such that ⟨ϕi(ζ), ψj(ζ)⟩ = δij

and ϕi, ψj form a biorthonormal basis of the hyperbolic PDE.

2.2.4 Analytic Solutions

The analytic solutions of the PDEs are obtained in this section using the

method of separation of variables. In this method, the solution T (ζ, t) is

assumed to be a product of a spatial function Z(ζ) and a temporal function

Θ(t), i.e., T (ζ) = Z(ζ)Θ(t). As before, the solution of the parabolic PDE will

not be shown in detail and is presented in Table 2.1. For the hyperbolic PDE,

substituting T (ζ, t) in Eq. 2.7 and dividing both sides by Z(ζ)Θ(t) leads to:

τ
d2Θ(t)

dt2
1

Θ(t)
− dΘ(t)

dt

1

Θ(t)
= α

d2Z(ζ)

dζ2
1

Z(ζ)
= c (2.22)

where c is a constant that does not depend on time or space. This gives

following ODEs: {
d2Z(ζ)
dζ2

= c
α
Z(ζ)

τ d
2Θ(t)
dt2

+ dΘ(t)
dt

= cΘ(t)
(2.23)

The general solution of the ODE for Z(ζ) is Z(ζ) = ae
√

c
α
ζ + be−

√
c
α
ζ , where

the coefficients are calculated using the boundary conditions:
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1. Zk(ζ) = ak sin(πkζ) with: ck = −απ2k2, for k > 0

2. Zk(ζ) = ak cos
[
π
(
k + 1

2

)
ζ
]
with: ck = −απ2

(
2k+1
2

)2
, for k ≥ 0

3. Zk(ζ) = ak sin(πkζ) with: ck = −απ2k2, for k ≥ 0

Notice that ck is not the same as the system eigenvalues, as the ODE for the

time-dependent part is a second order equation and it can be written as a

system of first-order ODEs:

d

dt

[
Θk(t)
dΘk(t)
dt

]
=

[
0 1
ck
τ

−1
τ

] [
Θk(t)
dΘk(t)
dt

]
(2.24)

The solution is given by:
[
Θk(t)
dΘk(t)
dt

]
=




e
λ−
k

t−e
λ+
k

t
+

(
e
λ+
k

t
+e

λ−
k

t
)√

4ckτ+1

2
√
4ckτ+1

e
λ+
k

t−e
λ−
k

t
+

(
e
λ−
k

t−e
λ+
k

t
)
(4ckτ+1)

4ck
√
4ckτ+1

ck

(
e
λ−
k

t−e
λ+
k

t
)

√
4ckτ+1

e
λ+
k

t−e
λ−
k

t
+

(
e
λ−
k

t
+e

λ+
k

t
)√

4ckτ+1

2
√
4ckτ+1




︸ ︷︷ ︸
Λk(t)

[
Θk(0)
dΘk(0)
dt

]

(2.25)

where λ+k and λ−k are the two possible solutions of λk (λk is the solution

of a second order polynomial - the same shown in section 2.2.2). Using the

principle of superposition, the general solution of the hyperbolic PDE can be

written as: [
T (ζ, t)
dT (ζ,t)
dt

]
=

∞∑

k

Λk(t)

[
Ak
Bk

]
Zk (2.26)

where Λk(t) can be simplified to:

Λk(t) =

[
Λ1,1
k (t) Λ1,2

k (t)

Λ2,1
k (t) Λ2,2

k (t)

]
(2.27)

with:

Λ1,1
k (t) = e−

t
2τ

[
cosh

(
t
τ

√
ckτ +

1
4

)
+

sinh
(

t
τ

√
ckτ+

1
4

)
2
√
ckτ+

1
4

]

Λ1,2
k (t) =

2τe−
t
2τ sinh

(
t
2τ

√
ckτ+

1
4

)
√
4ckτ+1

Λ2,1
k (t) =

2cke
− t

2τ sinh
(

t
2τ

√
ckτ+

1
4

)
√
4ckτ+1

Λ2,2
k (t) = e−

t
2τ

[
cosh

(
t
τ

√
ckτ +

1
4

)
− sinh

(
t
τ

√
ckτ+

1
4

)
2
√
ckτ+

1
4

]

(2.28)
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To find the coefficients Ak and Bk, the initial conditions and the orthogo-

nality of Zk are used. For each Zk we can find a Z∗
k such that ⟨Zk, Z∗

k⟩ = δij:

1. Z∗
k(ζ) = a∗k sin(πkζ) with: ak = a∗k =

√
2, for k > 0

2. Z∗
k(ζ) = a∗k cos

[
π
(
k + 1

2

)
ζ
]
with: ak = a∗k =

√
2, for k ≥ 0

3. Z∗
k(ζ) = a∗k cos(πkζ) with: ak = a∗k =

√
2, for k > 0 and a0 = a∗0 = 1

Thus, if the inner product with respect to Z∗
k(ζ) is taken in both sides of

the solution at t = 0 (thus Λ(0) = I), the following is obtained:

⟨T (ζ, 0), Z∗
m(ζ)⟩ =

∑∞
k Ak⟨Zk(ζ), Z∗

m(ζ)⟩ =⇒ Ak = ⟨T (ζ, 0), Z∗
k(ζ)⟩

⟨dT (ζ,0)
dt

, Z∗
m(ζ)⟩ =

∑∞
k Bk⟨Zk(ζ), Z∗

m(ζ)⟩ =⇒ Bk = ⟨dT (ζ,0)
dt

, Z∗
k(ζ)⟩

(2.29)

where the fact that
〈
Zi(ζ), Z

∗
j (ζ)

〉
= δij was used to simplify the summa-

tion. Thus, given the initial condition, the solution of the hyperbolic PDE can

be written as:

T (ζ, t) =
∑∞

k

[
Λ1,1
k (t) Λ1,2

k (t)
]
[

⟨T (ζ, 0), Z∗
k(ζ)⟩

⟨dT (ζ,0)
dt

, Z∗
k(ζ)⟩

]
Zk =

∫ 1

0

∞∑

k

[
Zk(ζ)Λ

1,1
k (t)Z∗

k(η) Zk(ζ)Λ
1,2
k (t)Z∗

k(η)
] [ T (ζ, 0)

dT (ζ, 0)

] (2.30)

2.2.5 Simulation Results for the Heat Transport

In this section, the simulation results for the heat transport are discussed.

First, as it is not possible to realize an infinite number of eigenvalues in the

solution of the PDEs, the high fidelity approximation is considered and the

approximation error of the initial conditions is analyzed. One thousand eigen-

values (and eigenfunctions) were used in the simulation, and the integrals were

calculated using the trapezoidal rule with one thousand discretization points

in space. The norm of the error in the approximation of the initial condition

is defined as:

||e(0)|| = ||x(0)− xA(0)|| =
√∫ L

0

[x(ζ, 0)− xA(ζ, 0)]
2 dζ (2.31)
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where x(0) are the chosen initial conditions (just T (ζ, 0) for the parabolic;

T (ζ, 0) and ∂tT (ζ, 0) for the hyperbolic) and xA(0) is the approximation (given

by the truncation at t = 0 of the sum for the parabolic PDE shown in Table

2.1 and Eq. 2.30 for the hyperbolic). Table 2.2 shows the values of the initial

errors and the initial conditions chosen. As the initial velocity is considered to

be zero for the hyperbolic PDE, the approximation error depends only on the

initial condition for T , which was set as the same function for the parabolic

and hyperbolic PDEs.

Table 2.2: Initial conditions and initial errors in the approximation
PDE Type Initial condition Initial Error

Parabolic (B.C. 1) T (0) = −ζ2 + ζ 1.6912e-14
Parabolic (B.C. 2) T (0) = −ζ2 + 1 4.4495e-14
Parabolic (B.C. 3) T (0) = −2ζ3 + 3ζ2 6.3790e-14

Hyperbolic (B.C. 1)
T (0) = −ζ2 + ζ

1.6912e-14
∂tT (0) = 0

Hyperbolic (B.C. 2)
T (0) = −ζ2 + 1

4.4495e-14
∂tT (0) = 0

Hyperbolic (B.C. 3)
T (0) = −2ζ3 + 3ζ2

6.3790e-14
∂tT (0) = 0

The simulation results are presented for arbitrary values of α = 1 and

τ = 0.01. The spatial profiles of T (ζ, t) and ∂tT (ζ, t) for the parabolic PDE are

shown in Figure 2.2. Due to the initial conditions, it is easy to see that ∂tT (ζ, 0)

is going to be different than zero for all cases and it is at its maximum at the

beginning. As shown in the previous sections, all the boundary conditions

used result in stable systems.
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The same results are shown for the hyperbolic PDE in Figure 2.3. It is pos-

sible to see that the velocities profiles, i.e., the rates of temperature change, are

completely different from the results presented in the parabolic PDE case. The

system takes some time to reach the maximum velocity, not instantaneously as

was the case for the parabolic. The velocities profiles are initially different, as

the parabolic presents a smooth profile, while the hyperbolic presents sudden

changes. As expected, the PDEs converge to the same steady-state profile,

although the apparent difference is seen in the initial dynamic response. This

difference also shown in Cassol et al. [59], which showed the distinct slope in

the profiles of the hyperbolic and parabolic PDEs.
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Next, a comparison for different initial conditions for the ∂tT (ζ, t), as one

might argue that the previous results show a distinguished difference between

the hyperbolic and parabolic because the initial condition was ∂tT (ζ, 0) = 0.

The system responses, only considering the second set of boundary conditions,

for different initial conditions of ∂tT (ζ, 0), but with the same T (ζ, 0), are

displayed in Figure 2.4. The initial conditions used and the initial error are

shown in Table 2.3.
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The responses show that, as ∂tT (ζ, t) are initially different, the profiles

of T (ζ, t > 0) are distinct at the same time, as expected. For t > 0, the

difference between the values of ∂tT (ζ, t) starts to decrease and the rate of

change converge to the same spatial profile. Thus, the rate of change of the

hyperbolic PDE will be the same after some time, independent of the initial

condition used for ∂tT (ζ, 0).

Figure 2.4: Comparison of the simulation for the Hyperbolic PDE with B.C.
2 and three different initial velocities (time increases with the line width).
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One last comparison is made considering the hyperbolic PDE with different

values of τ , as shown in Figure 2.5. Three different values are considered

(τ = {0.01, 0.1, 1}) and the same initial condition (∂tT (0) = 0) is used. The

responses are distinct from each other, and, as expected, the higher the value

of τ , the slower is the system’s response. But, a higher value of τ may also lead

to a physically unfeasible response, as discussed in Section 2.2.2 and shown

in Figure 2.5 (c) and (d). In this figure, the responses are shown at ζ = 0.5

and the different values of τ are considered. The maximum value for which

the approximation should hold is τmax ≈ 0.0253. For τ = 0.01 the response

exponentially converges to the steady-state without showing oscillations; τ =

0.1 produces a response with oscillations and these oscillations become greater

for τ = 1. This type of behavior is not expected in a finite slab.
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Figure 2.5: Comparison of the simulation results for the Hyperbolic PDE with
B.C. 1 and three different values of τ : (a) Spatial profile for T (ζ, t) at different
times; (b) Spatial profile for∂tT (ζ, t) at different times. Time increases with
the line width. (c) Response of T (ζ = 0.5, t); (d) Response of ∂tT (ζ = 0.5, t).
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2.3 The Axial Tubular Reactor

Considering a fluid, with a constant density and diffusivity (D), moving inside

a tube with velocity (v). The tube has a constant cross-sectional area and

a first-order reaction happens inside of it. The fluid’s velocity is not high

enough to neglect the diffusive effects. If the radial and angular diffusion can

be neglected, the mass balance for the system leads to the following equation:

∂C

∂t
= −∂ζF + r = −∂ζF − kC (2.32)

where F is the mass flux and r is the reaction term (in this case a first-order

reaction with constant specific reaction rate). The mass flux can be given by

the sum of the diffusive term (Fick’s law) and advective term. If only the axial

effects are considered, the flux is defined as:

F = −D∂ζC + vC (2.33)

This leads to the following parabolic PDE:

∂C

∂t
= D∂ζζC − v∂ζC − kC (2.34)

Fick’s law does not consider any inertia, thus, similarly to the heat diffusion,

it is possible to assume that a delay is present in the mass flux as well:

F = −D(1− τ∂t)∂ζC + vC (2.35)

This leads to the following PDE:

∂C

∂t
= D(1− τ∂t)∂ζζC − v∂ζC − kC (2.36)

If τ → 0, then (1− τ∂t)
−1 ≈ (1 + τ∂t), the equation becomes:

τ∂ttC + ∂tC = D∂ζζC − v∂ζC − vτ∂ζtC − kC − kτ∂tC (2.37)

Lastly, one could also argue that the delay is present in both diffusive and

advective terms, leading to:

F = (1− τ∂t)(−D∂ζC + vC) (2.38)
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Substituting in the mass balance gives:

∂C

∂t
= (1− τ∂t) [D∂ζζC − v∂ζC]− kC (2.39)

Using the approximation for τ → 0 gives the following second order hyper-

bolic PDE:

τ∂ttC + ∂tC = α∂ζζC − v∂ζC − kC − kτ∂tC (2.40)

Thus, the two different second-order PDEs take into account different phys-

ical assumptions. If it is considered that the delay on the particles only occur

in their response to a concentration gradient, then the delayed diffusion PDE

shown in Eq. 2.37 would be more appropriate. If the time-lag that happens

until the particles start moving, as proposed by Cattaneo [42], also happens

in the advective transport, then, the total flux is considered to have a delay

and Eq. 2.40 represents this assumption better.

2.3.1 Boundary Conditions

Two types of boundary conditions are considered: closed vessels and open

vessels [51], [60], as represented in Figure 2.6. An open condition means that

dispersion occurs, while a closed condition does not take dispersion into ac-

count. Thus, for closed-closed vessels, represented on the top of Figure 2.6,

there is no dispersion in concentration either upstream (right before the inlet

of the reactor, at ζ = 0−) or downstream (right after the outlet, at ζ = L+). In

an open-open vessel, represented on the bottom of Figure 2.6, the dispersion

occurs both upstream and downstream. Thus, these are different possible sets

of boundary conditions that can be achieved by assuring the continuity of the

flux in the inlet and outlet:
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Figure 2.6: Tubular reactor representation: (top) Closed-Closed boundary
condition; (bottom) Open-Open boundary conditions.

1. Closed-closed: No dispersion in the flux upstream and downstream, thus

F (0−) = vC(0−) and F (L+) = vC(L+). Considering that the reaction

just occurs inside the reactor, C(L+) = C(L−), this leads to the following

boundary conditions:

vC(0−) = vC(0+)−D∂ζC(0
+) and ∂ζC(L

−) = 0 (2.41)

2. Open-Open: dispersion happens upstream and downstream, thus F (0−) =

vC(0−)−D∂ζC(0
−) and F (L+) = vC(L+)−D∂ζC(L

+). For this case,

the continuity of concentration is also considered, such that C(0−) =

C(0+) and C(L+) = C(L−), leading to the following boundary condi-

tions:

∂ζC(0
−) = ∂ζC(0

+) and ∂ζC(L
−) = ∂ζC(L

+) (2.42)

If a delay is considered only in the diffusive term, the boundary conditions

are going to change for the hyperbolic PDE:

1. Closed-closed:

vC(0−) = vC(0+)−D(1− τ∂t)∂ζC(0
+) and ∂ζC(L

−) = 0 (2.43)
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If τ → 0, the boundary condition becomes:

(1 + τ∂t)vC(0
−) = (1 + τ∂t)vC(0

+)−D∂ζC(0
+) and ∂ζC(L

−) = 0

(2.44)

2. Open-Open: F (0−) = vC(0−) − D(1 − τ∂t)∂ζC(0
−) and F (L+) =

vC(L+) − D(1 − τ∂t)∂ζC(L
+). Assuming continuity of concentration,

the following boundary conditions are obtained:

∂ζC(0
−) = ∂ζC(0

+) and ∂ζC(L
−) = ∂ζC(L

+) (2.45)

Therefore, by considering delay in the total flux, the boundary conditions

become:

1. Closed-closed:

vC(0−) =
[
vC(0+)−D∂ζC(0

+)
]
and ∂ζC(L

−) = 0 (2.46)

2. Open-Open: F (0−) = (1− τ∂t) [vC(0−)−D∂ζC(0
−)] and F (L+) = (1−

τ∂t) [vC(L
+)−D∂ζC(L

+)]. With the continuity of concentration:

∂ζC(0
−) = ∂ζC(0

+) and ∂ζC(L
−) = ∂ζC(L

+) (2.47)

2.3.2 Eigenvalue Problem

In this section, the difference in the PDEs’ dynamics is examined by exploring

the differences in their eigenvalues distributions, taking into account the closed

and open boundary conditions defined in the previous section.

Closed-closed Boundary Conditions

1. Parabolic PDE: For the parabolic PDE, the operator A can be defined

as:

Ax = D∂ζζx− v∂ζx− kx = λx (2.48)

with the boundary conditions defined in Section 2.3.1. As defined pre-

viously, the eigenvalue problem is given as the solution of Aϕ = λϕ.

Substituting the operator and solving for ϕ gives the following ODE:

d

dζ

[
ϕ
dζϕ

]
=

[
0 1
λ+k
D

v
D

] [
ϕ
dζϕ

]
(2.49)
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And its general solution is given by:

[
ϕ
dζϕ

]
=

[
f11(ζ, λ) f12(ζ, λ)
f21(ζ, λ) f22(ζ, λ)

] [
ϕ(ζ0)
dζϕ(ζ0)

]
(2.50)

with:

f11(ζ, λ) = e
b
2
(ζ−ζ0)

[
cosh

(
(ζ − ζ0)

√
b2

4
+ a

)
− b

2

sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

]

f12(ζ, λ) =
e
b
2 (ζ−ζ0)sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

f21(ζ, λ) = a
e
b
2 (ζ−ζ0)sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

f22(ζ, λ) = e
b
2
(ζ−ζ0)

[
cosh

(
(ζ − ζ0)

√
b2

4
+ a

)
+ b

2

sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

]

(2.51)

And, in this case, a = λ+k
D

, b = v
D

and ζ0 = 0. Using the closed-closed

boundary conditions defined in Section 2.3.1 with zero inlet flux (i.e.,

C(0−) = 0), the boundary conditions are 0 = vϕ(0)−D∂ζϕ(0) and ∂ζϕ(L) =
0, resulting in the following equations:

{
∂ζϕ(0) =

v
D
ϕ(0)

f21(L, λ)ϕ(0) + f22(L, λ)∂ζϕ(0) = 0

=⇒ ϕ(0)
[
f21(L, λ) +

v
D
f22(L, λ)

]
= 0

(2.52)

If ϕ(0) = 0, the eigenfunction will be the trivial solution, which is not

desired. Thus, f21(L, λ) +
v
D
f22(L, λ) = 0 must hold. Replacing by the

functions given in Eq. 2.51, the following equation is obtained:

tanh

(
L

D

√
v2

4
+D(k + λ)

)
=

−v
√

v2

4
+D(k + λ)

v2

2
+D(k + λ)

(2.53)

Differently from the eigenvalue problem considered in Section 2.2.2 for

the heat equation, this is a transcendental equation and its analytical

solution is not available. Thus, a numerical method is used to find λk.
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2. Hyperbolic PDE - Delayed diffusion: For the hyperbolic PDE there are

two different scenarios for the flux. First, the operator that considers

the delay in the diffusive term is analyzed:

∂
∂t

[
C(t)
∂tC(t)

]
= A

[
C(t)
∂tC(t)

]
=

[
0 1

D∂ζζ−v∂ζ−k
τ

−v∂ζ − k − 1
τ

] [
C(t)
∂tC(t)

] (2.54)

which is equivalent to write the PDE shown in Eq. 2.37 and its boundary

conditions were shown in Section 2.3.1. Thus, the system of equations

obtained is given by:
{
ϕ2 = λϕ1
D
τ
∂ζζϕ1 − v

τ
∂ζϕ1 − k

τ
ϕ1 − 1

τ
ϕ2 − v∂ζϕ2 − kϕ2 = λϕ2

(2.55)

which can be written in the following form:

d

dζ

[
ϕ1

dζϕ1

]
=

[
0 1

(k+λ)(1+λτ)
D

v(1+λτ)
D

] [
ϕ1

dζϕ1

]
(2.56)

The solution of this system has the same structure as Eq. 2.50 with

a = (k+λ)(1+λτ)
D

, b = v(1+λτ)
D

and ζ0 = 0. Applying closed-closed boundary

conditions and the relation ϕ2 = λϕ1, the following conditions need to

be satisfied:
{
∂ζϕ1(0) = v 1+τλ

D
ϕ1(0)

f21(L, λ)ϕ1(0) + f22(L, λ)∂ζϕ1(0) = 0

=⇒ ϕ1(0)
[
f21(L, λ) + v 1+τλ

D
f22(L, λ)

]
= 0

(2.57)

Thus, f21(L, λ) + v 1+τλ
D
f22(L, λ) = 0 is the characteristic equation for

this case. Substituting the functions given in Eq. 2.51, the following

equation is obtained:

tanh

(
L
D

√
v2(1+λτ)2

4
+D(k + λ)(1 + λτ)

)
=

−v(1 + λτ)
√

v2(1+λτ)2

4
+D(k + λ)(1 + λτ)

v2(1+λτ)2

2
+D(k + λ)(1 + λτ)

(2.58)

which is solved with a numerical method. It can be seen that in the

limit τ → 0 the above expression becomes the expression Eq.2.53 which

is related to parabolic spectral characteristics.
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3. Hyperbolic PDE - Delayed total flux: For the delay in the total flux, the

operator is defined as:

∂

∂t

[
C(t)
∂tC(t)

]
= A

[
C(t)
∂tC(t)

]
=

[
0 1

D∂ζζ−v∂ζ−k
τ

−k − 1
τ

] [
C(t)
∂tC(t)

]

(2.59)

which is equivalent to writing the PDE shown in Eq. 2.40, with boundary

conditions presented in Section 2.3.1. The following system is obtained

from the eigenvalue problem:

{
ϕ2 = λϕ1
D
τ
∂ζζϕ1 − v

τ
∂ζϕ1 − k

τ
ϕ1 − 1

τ
ϕ2 − kϕ2 = λϕ2

(2.60)

resulting in:

d

dζ

[
ϕ1

dζϕ1

]
=

[
0 1

(k+λ)(1+λτ)
D

v
D

] [
ϕ1

dζϕ1

]
(2.61)

The solution has the same structure as Eq. 2.50 with a = (k+λ)(1+λτ)
D

,

b = v
D

and ζ0 = 0. Applying the boundary conditions results in the

condition below:
{
∂ζϕ(0) =

v
D
ϕ(0)

f21(L, λ)ϕ(0) + f22(L, λ)∂ζϕ(0) = 0
=⇒

ϕ(0)
[
f21(L, λ) +

v
D
f22(L, λ)

]
= 0

(2.62)

Setting aside the trivial solution, the characteristic equation for this

operator is given by f21(L, λ) +
v
D
f22(L, λ) = 0, which leads to:

tanh

(
L

D

√
v2

4
+D(k + λ)(1 + λτ)

)
=

−v
√

v2

4
+D(k + λ)(1 + λτ)

v2

2
+D(k + λ)(1 + λτ)

(2.63)

Remark 2.2 Although this is a transcendental equation, a direct relation with

the Eq. 2.53, obtained for the parabolic PDE, can be derived:

λP = (k+ λH)(1+ λHτ) =⇒ λH =
−(1 + kτ)±

√
(1 + kτ)2 + 4τλP
2τ

(2.64)

where λP is the eigenvalue of the parabolic PDE and λH is the solution for the

delay in the total flux.
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The eigenvalues distributions for a set of parameters are shown in Figure

2.7, for 0.1 ≤ v ≤ 15. The same behavior seen in the heat transport by

conduction is observed in the case of reactor dynamics. The eigenvalues for

the parabolic PDE are all placed apart in the quadratic manner at the real

axis, while just a finite number of the eigenvalues of the hyperbolic PDE follow

the same trend. These eigenvalues are placed at the real axis within a finite

interval. As the velocity increases, it is expected that the eigenvalues are going

to shift to the left side, as a plug-flow reactor (obtained when v
D
→ ∞) would

be inherently stable. Furthermore, an increase in the velocity also helps to

discern the difference between the delayed diffusion and the delayed total flux.

Although they both have a similar response to the increase in the velocity,

the effects are different. For the total delayed flux (Figure 2.7 (c)), all the

eigenvalues shifted from the real axis to the complex plane. For the delayed

diffusive flux (Figure 2.7 (b)), the shift for the left side of the complex plane

is more evident and the distance between the real eigenvalues decreases as v

increases.
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2.3.3 Simulation Results for the Closed-Closed Bound-
ary Conditions

Lastly, the simulation results for the closed-closed boundary conditions are

shown in Figure 2.8. For this simulation the initial conditions used were

T (ζ, 0) = −3ζ2+6ζ +1, with v = 6, D = 1, k = 2, τ = 0.01 and ∂tT (ζ, 0) = 0

for the hyperbolic. Once more, the difference in the rate of change (∂tT (ζ, t))

is clearly noticeable, as the rate for the parabolic PDE starts at its maximum

at some points. The hyperbolic cases take some time to reach the same rate

as the parabolic and the responses never get to the same magnitude when

compared to the parabolic values. This behavior causes a delay in T (ζ, t) for

the hyperbolic PDE, as expected.
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Open-open Boundary Conditions:

Unlike the closed-closed boundary conditions, the open-open boundary con-

ditions assume that the upstream and downstream flux will have a diffusive

term as well, thus, the movement driven by the gradient of concentration is

added to the front wave that is characteristic of the advective term. The

boundary conditions for the rector generally assume continuity of the total

flux and concentration in the beginning of the reactor (i.e., F (0−) = F (0+)

and C(0−) = C(0+)) and at the end of the reactor (i.e., F (L−) = F (L+) and

C(L−) = C(L+)). The total flux, as considered previously, is different for each

type of PDE and the complete operator (represented by A), that consider both

the transport zones and the reaction zone, can be defined as:

A =



AT 0 0
0 A 0
0 0 AT


 (2.65)

where AT is used to represent the transport happening upstream and down-

stream, such that AT = −∂ζF . A is the operator for the reactions zone (i.e.,

A = −∂ζF − r) and can be one of the operators defined in Equation 2.48, 2.54

or 2.59.

1. Parabolic PDE: the flux for the parabolic is defined as F = vC −D∂ζC,

thus ATC = D∂ζζC−v∂ζC and AC = D∂ζζC−v∂ζC−kC. A transport

zone with length δ is considered before and after the reaction zone (one

could consider two transport zones with different lengths, but, for the

sake of simplicity, the same length is considered in this contribution).

The eigenvalue problem is given by AΦ = λΦ and besides the four

boundary conditions already shown in Section 2.3.1, two more boundary

conditions are necessary. It is assumed that there is no incoming flux at

ζ = −δ, thus F (−δ) = vC(−δ) − D∂ζC(−δ) = 0; and that at the end

(ζ = L+ δ) the concentration does not change further (∂ζC(L+ δ) = 0).

Finally, the eigenfunctions will be the solution of the following differential

equations: 



Ddζζϕ1 − vdζϕ1 = λϕ1

Ddζζϕ2 − vdζϕ2 − kϕ2 = λϕ2

Ddζζϕ3 − vdζϕ3 = λϕ3

(2.66)
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with the boundary conditions:

vϕ1(−δ)−Ddζϕ1(−δ) = 0 ϕ1(0) = ϕ2(0) dζϕ1(0) = dζϕ2(0)
ϕ2(L) = ϕ3(L) dζϕ2(L) = dζϕ3(L) dζϕ3(L+ δ) = 0

(2.67)

Each eigenfunction will have the same structure defined in Eq. 2.50,

with a = λ
D
, b = v

D
and ζ0 = −δ for ϕ1; a = λ+k

D
, b = v

D
and ζ0 = 0

for ϕ2; and a = λ
D
, b = v

D
and ζ0 = L for ϕ3. Applying the boundary

conditions to the solution gives the following equation:

[
f
(3)
21 (L+ δ, λ) f

(3)
22 (L+ δ, λ)

] [ f
(2)
11 (L, λ) f

(2)
12 (L, λ)

f
(2)
21 (L, λ) f

(2)
22 (L, λ)

]

[
f
(1)
11 (0, λ) f

(1)
12 (0, λ)

f
(1)
21 (0, λ) f

(1)
22 (0, λ)

][
1
v
D

]
ϕ1(−δ) = 0

(2.68)

where k in the superscript of f
(k)
ij indicates to which eigenfunction (ϕk)

is the function related to and each component is given by Eq. 2.51.

2. Hyperbolic PDE - Delayed diffusion: the flux is defined as F = vC −
(1− τ∂t)D∂ζC and using the approximation for τ → 0, A is the same as

in Eq. 2.54. Similarly, AT will be defined with the same structure, but

with k = 0. Considering the same transport zone with length δ before

and after the reaction zone, no incoming flux at ζ = −δ and continuity

of concentration at ζ = L+δ, the eigenvalue problem gives the following

system of equations:




ϕ2,l = λϕ1,l
D
τ
dζζϕ1,1 − v

τ
dζϕ1,1 − 1

τ
ϕ2,1 − vdζϕ2,1 = λϕ1,k

D
τ
dζζϕ1,2 − v

τ
dζϕ1,2 − k

τ
ϕ1,2 − 1

τ
ϕ2,2 − vdζϕ2,2 − kϕ2,2 = λϕ2,2

D
τ
dζζϕ1,3 − v

τ
dζϕ1,3 − 1

τ
ϕ2,3 − vdζϕ2,3 = λϕ2,3

(2.69)

where l = {1, 2, 3} in the subscript indicates to which eigenfunction is

ϕ1,l or ϕ2,l assigned to. The boundary conditions for the eigenfunctions

are given as:




v(1 + τλ)ϕ1,1(−δ)−Ddζϕ1,1(−δ) = 0
ϕ1,1(0) = ϕ1,2(0)
dζϕ1,1(0) = dζϕ1,2(0)
ϕ1,2(L) = ϕ1,3(L)
dζϕ1,2(L) = dζϕ1,3(L)
dζϕ1,3(L+ δ) = 0

(2.70)
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The solution will have the same structure as Eq. 2.50, with a = λ(1+λτ)
D

,

b = v(1+λτ)
D

and ζ0 = −δ for ϕ1,1; a = (λ+k)(1+λτ)
D

, b = v(1+λτ)
D

and ζ0 = 0

for ϕ1,2; and a = λ(1+λτ)
D

, b = v(1+λτ)
D

and ζ0 = L + δ for ϕ1,3. And,

by applying the boundary conditions to the solution of the ODEs, the

equation obtained is very similar to Eq. 2.68:

[
f
(3)
21 (L+ δ, λ) f

(3)
22 (L+ δ, λ)

] [ f
(2)
11 (L, λ) f

(2)
12 (L, λ)

f
(2)
21 (L, λ) f

(2)
22 (L, λ)

]

[
f
(1)
11 (0, λ) f

(1)
12 (0, λ)

f
(1)
21 (0, λ) f

(1)
22 (0, λ)

][
1

v+λτ
D

]
ϕ1,1(−δ) = 0

(2.71)

where k in the superscript of f
(l)
ij indicates to which eigenfunction (ϕ1,l)

is the function related to and each component is given by Eq. 2.51 for

a, b and ζ0 given above for each eigenfunction. Then, the eigenfunctions

ϕ2,l can be easily found using the relation ϕ2,l = λϕ1,l.

3. Hyperbolic PDE - Delayed total flux: the flux is defined as F = (1 −
τ∂t)(v − D∂ζ)C, thus, A is defined as in Eq. 2.59 and AT is the same,

with k = 0. With the same previous assumptions regarding the transport

zone and boundary conditions, the new system of equations given by the

eigenvalue problem is:




ϕ2,l = λϕ1,l

D
τ
dζζϕ1,1 − v

τ
dζϕ1,1 − 1

τ
ϕ2,1 = λϕ1,k

D
τ
dζζϕ1,2 − v

τ
dζϕ1,2 − k

τ
ϕ1,2 − 1

τ
ϕ2,2 − kϕ2,2 = λϕ2,2

D
τ
dζζϕ1,3 − v

τ
dζϕ1,3 − 1

τ
ϕ2,3 = λϕ2,3

(2.72)

where l in the subscript indicates to which eigenfunction is ϕ1,l or ϕ2,l

related. The boundary conditions for the eigenfunctions are given as:




vϕ1,1(−δ)−Ddζϕ1,1(−δ) = 0
ϕ1,1(0) = ϕ1,2(0)
dζϕ1,1(0) = dζϕ1,2(0)
ϕ1,2(L) = ϕ1,3(L)
dζϕ1,2(L) = dζϕ1,3(L)
dζϕ1,3(L+ δ) = 0

(2.73)

The solution is given by Eq. 2.50, with a = λ(1+λτ)
D

, b = v
D

and ζ0 = −δ
for ϕ1,1; a = (λ+k)(1+λτ)

D
, b = v

D
and ζ0 = 0 for ϕ1,2; and a = λ(1+λτ)

D
, b = v

D
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and ζ0 = L + δ for ϕ1,3. And, by applying the boundary conditions to

the solution of the ODEs, the equation obtained has the same structure

as Eq. 2.68, with each component given by Eq. 2.51 for the a, b and ζ0

defined above for each eigenfunction.

Remark 2.3 The Closed-Closed boundary conditions can be solved in the same

way as the Open-Open boundary conditions (i.e., considering that there are also

two eigenfunctions related to the transport zones). But, as the transport zones

would be represented by hyperbolic equations and, as the condition in ζ = −δ is
the no incoming flux, the only solution for ϕ1 is ϕ1(ζ) = 0. Thus, the boundary

conditions for ϕ2 are the same as shown in Section 2.3.2 and, as continuity

of concentration is assumed at the end of the reaction zone, ϕ3(L) = ϕ2(L).

As ϕ3(L) is also given by the solution of a first order hyperbolic equation, it

does not have any influence in the system stability. Thus, only the solution

of the eigenvalue problem in the reaction zone (ϕ2) and its boundary condi-

tions are necessary to analyze the system’s stability for closed-closed boundary

conditions. But, for the open-open boundary conditions, the transport zones

influence the system’s stability.

The eigenvalues’ distribution for the same set of parameters used in Section

2.3.2, considering a transport zone of δ = 1, is shown in Figure 2.9 for 0.1 ≤
v ≤ 15. As the open-open boundary conditions consider the transport before

and after the reaction zone, the effects are seen in the eigenvalue distribution,

as the number of eigenvalues increased in the same interval in comparison to

Figure 2.7. The overall behavior is similar to the previously obtained, with

the eigenvalues of the parabolic PDE placed in the real axis, while most of

the eigenvalues of the hyperbolic PDEs are in the complex plane with a finite

number of the eigenvalues in the real axis. When the velocity is increased, the

same behavior for the closed-closed boundary conditions is seen once again,

with the whole set of eigenvalues shifting to the left for all PDEs and some

of the eigenvalues of the hyperbolic PDEs shifting from the real axis to the

complex plane.
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Simulation Results for the Open-Open Boundary Conditions

In this section, the simulation results for the open-open boundary conditions

are discussed. Figure 2.10 shows the time-spatial profiles for T (ζ, t) and

∂tT (ζ, t) for the parabolic and the hyperbolic PDEs, considering delayed dif-

fusive flux and total flux. The same set of parameter used in the simulation of

the closed-closed boundary conditions were considered and δ = 1. The initial

conditions used were T (−δ ≤ ζ ≤ 0, 0) = 0.25(ζ + 1)2 + 6ζ + 1, T (0 ≤ ζ ≤
1, 0) = 0.25ζ2 + 6.5ζ + 7.25 and T (1 ≤ ζ ≤ 2, 0) = −3.5(ζ − 1)2 + 7ζ + 14 and

∂tT (ζ, 0) = 0 for the hyperbolic. As discussed previously, the difference in the

initial rate of change (∂tT (ζ, t)) of the parabolic and the hyperbolic PDEs in

clearly noticeable, as the hyperbolic takes into account the delay, resulting an

initial difference in T (ζ, t) between the PDEs.
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2.4 Heat Equation and Stefan Problem

To analyze the difference between the results obtained by the hyperbolic and

parabolic PDEs, a heat diffusion problem with phase change is also consid-

ered. One of the simplest mathematical model to describe the phase transition

phenomenon is called Stefan problem [61]. If a phase change of a material oc-

curs at a given point, latent heat is released or absorbed and the temperature

of the material at that point remains constant. It is assumed that the phase

change temperature is constant and that the temperature across the material

is continuous. For the sake of simplicity, a one dimensional case is considered

in a material with constant cross sectional area. If the phase change happens

at a point ζ = ϵ(t), then:

TI(ζ = ϵ(t)− δ, t) = TII(ζ = ϵ(t) + δ, t) = TC (2.74)

where δ is a small spatial variation (such that δ → 0), TC is the phase change

temperature and the subscripts I and II are used to represent two different

phases. Therefore, this condition implies that the temperature close to the

phase transition point is continuous and is the same in both phases. The Stefan

condition is obtained by applying a energy balance between two instants t0 and

t1 in a control volume that is going through the phase change. Assuming that

the phase transition point moved from ϵ(t0) to ϵ(t1) and ϵ(t1) > ϵ(t0), the

energy involved in the phase change is given by the volume of the material

that went through phase change between these two instants and the latent

heat required for the transition:

Q = ClatA[ϵ(t1)− ϵ(t0)] (2.75)

where Q is the energy involved in the phase transition, Clat is the latent heat

(per unit of volume) and A is the constant cross sectional area. The amount

of energy released/required in the phase transition should be equivalent to the

heat provided by the heat diffusion in both sides of the interface in this time

interval, that is:

Q =

∫ t1

t0

∫

A

(qI − qII)dAdt = A

∫ t1

t0

(qI − qII)dt (2.76)
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where qI and qII represents the heat fluxes from the phases and it is assumed

that the cross sectional area does not change. Then:

Q = ClatA[ϵ(t1)− ϵ(t0)] = A
∫ t1
t0

(qI − qII)dt =⇒

Clat[ϵ(t1)− ϵ(t0)] =
∫ t1
t0

(qI − qII)dt
(2.77)

Dividing the equation by t1−t0 and setting t1 → t0, finally gives the Stefan

condition:

Clatdtϵ(t) = qI(t, ζ = ϵ− δ)− qII(t, ζ = ϵ+ δ) (2.78)

The system considered here is shown in Figure 2.11, which could represent

the phase transition of water and ice.

ζ = 0 ζ = ε

TC = 0

ζ = 1

Liquid

TI (0≤ζ≤ε, t) ≥ 0

Solid

TII (ε≤ζ≤1, t) ≤ 0

Figure 2.11: Representation of the system with phase transition.

The transition temperature is considered to be TC = 0. An initial tem-

perature of TI(0 < ζ < ϵ(0), 0) ̸= 0 and TII(ϵ(0) < ζ < 1) ̸= 0 is considered

throughout the system. It is also assumed that there are no heat sinks or

sources in-domain and that the temperatures at both ends are at the tran-

sition temperature (i.e., TI(0, t) = TII(1, t) = TC = 0). This implies that,

initially, there are two flows in the system, coming to the interface from each

side of the system, until the temperature in the whole domain reaches the

transition temperature. This is called a two-phase Stefan problem as both

phases have temperature profiles to be determined.

The Stefan condition for the moving boundary, using the Fourier’s law, is

given as:

ϵ̇ = −βI ∂ζTI |ζ=ϵ(t) + βII ∂ζTII |ζ=ϵ(t) (2.79)

57



where βi =
ki
Clat

, with ki as the material thermal conductivity, and ϵ̇ = dϵ
dt
. If

the modified heat flux shown in Eq. 2.5 is used, considering the same τ for

the two phases, the Stefan condition obtained is:

τ ϵ̈+ ϵ̇ = −βI ∂ζTI |ζ=ϵ(t) + βII ∂ζTII |ζ=ϵ(t) (2.80)

where ϵ̈ = d2ϵ
dt2

. Thus, the modified heat flux results in a second order ordinary

differential equation for the moving boundary, while the original Fourier’s law

results in a first order ordinary differential equation. These equations need to

be solved along with the corresponding hyperbolic and parabolic PDEs, Eq.

2.7 and Eq. 2.3, respectively. As the resulting system has a time-dependent

domain, a change of coordinates is applied to the system prior to its solution:

� Liquid domain (Phase I): the following change of coordinates is used:

l =
ζ

ϵ(t)
, for 0 ≤ ζ ≤ ϵ(t) (2.81)

where l ∈ [0, 1] is the new coordinate, which has a fixed domain. This

change of coordinates makes it necessary to redefine the partial deriva-

tives as well. For the spatial derivatives, the following is obtained:

∂ζTI(ζ, t) =
1

ϵ
∂lTI(l, t) (2.82)

∂ζζTI(ζ, t) =
1

ϵ2
∂llTI(l, t) (2.83)

The time derivatives become:

∂tTI(ζ, t) = ∂tTI(l, t)−
l

ϵ
ϵ̇∂lTI(l, t) (2.84)

∂ttTI(ζ, t) = ∂ttTI(l, t)−
2l

ϵ
ϵ̇∂l∂tTI(l, t) + ∂lTI(l, t)

[
2l

ϵ2
(ϵ̇)2 − l

ϵ
ϵ̈

]
(2.85)

Substituting in the parabolic PDE leads to the following non-linear PDE:

∂tTI(l, t) =
l

ϵ
ϵ̇∂lTI(l, t) + αI

1

ϵ2
∂llTI(l, t) (2.86)

And for the hyperbolic PDE:

∂ttTI(l, t) =
2l

ϵ
ϵ̇∂l∂tTI(l, t)− ∂lTI(l, t)

[
2l

ϵ2
(dtϵ)

2 − l

ϵ
ϵ̈

]

+
1

τ

[
−∂tTI(l, t) +

l

ϵ
ϵ̇∂lTI(l, t) + αI

1

ϵ2
∂llTI(l, t)

] (2.87)
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� Solid domain (Phase II): Similarly to the liquid, the change of coordi-

nates used in the solid phase is given by:

s =
ζ − ϵ(t)

1− ϵ(t)
, for ϵ(t) ≤ ζ ≤ 1 (2.88)

such that g ∈ [0, 1] has a fixed-domain. The new spatial derivatives are

defined as:

∂ζTII(ζ, t) =
1

1− ϵ
∂sTII(s, t) (2.89)

∂ζζTII(ζ, t) =
1

(1− ϵ)2
∂ssTII(s, t) (2.90)

And the time derivatives:

∂tTII(ζ, t) = ∂tTII(s, t)−
1− s

1− ϵ
ϵ̇∂sTII(s, t) (2.91)

∂ttTII(ζ, t) = ∂ttTII(s, t)−
2(1− s)

1− ϵ
ϵ̇∂s∂tTII(s, t)+

∂sTII(s, t)

[
2(s− 1)

(1− ϵ)2
(ϵ̇)2 − s− 1

1− ϵ
ϵ̈

] (2.92)

Thus, for the parabolic PDE, the following equation is obtained:

∂tTII(s, t) =
1− s

1− ϵ
ϵ̇∂sTII(s, t) + αII

1

(1− ϵ)2
∂ssTII(s, t) (2.93)

The hyperbolic PDE gives:

∂ttTII(s, t) =
2(1− s)

1− ϵ
ϵ̇∂s∂tTII(s, t)− ∂sTII(s, t)

[
2(s− 1)

(1− ϵ)2
(ϵ̇)2 − s− 1

1− ϵ
ϵ̈

]

+
1

τ

[
−∂tTII(s, t) +

1− s

1− ϵ
ϵ̇∂sTII(s, t) + αII

1

(1− ϵ)2
∂ssTII(s, t)

]

(2.94)

� Moving boundary: Lastly, it is necessary to rewrite the Stefan condition

in the new coordinates. For the parabolic PDE, the moving boundary

dynamics were given by a first order ODE, which becomes:

ϵ̇ = −βI
1

ϵ
∂lTI(l, t)

∣∣∣∣
l=1

+ βII
1

1− ϵ
∂sT (s, t)

∣∣∣∣
s=0

(2.95)

Similarly, for the second order ODE derived from the delayed flux:

τ ϵ̈+ ϵ̇ = −βI
1

ϵ
∂lTI(l, t)

∣∣∣∣
l=1

+ βII
1

1− ϵ
∂sT (s, t)

∣∣∣∣
s=0

(2.96)
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Thus, for the non-delayed flux, Eq. 2.95 must be solved simultaneously

with Eq. 2.86 for the Liquid Phase and Eq. 2.93 for the Solid Phase. Similarly,

for the delayed flux, Eq. 2.96 for the moving boundary, Eq. 2.87 for the Liquid

Phase and Eq. 2.94 for the Solid Phase are numerically solved together.

Simulation results of the Stefan problem

For the results shown in this section, the following system parameters were

used: αI = 0.5, αII = 1, βI = βII = 1 and τ = 0.01 for the hyperbolic case.

The initial conditions were chosen as:

ϵ(0) = 0.5

TI(ζ, 0) = −2ζ
(ζ − ϵ(0))

ϵ(0)2
=⇒ TI(l, 0) = −2l(l − 1)

TII(ζ, 0) = 4
(ζ − ϵ(0))(ζ − 1)

(1− ϵ(0))2
=⇒ TII(s, 0) = 4s(s− 1)

(2.97)

The spatial-time evolution of the parabolic and hyperbolic PDEs, together

with the time evolution of the moving boundary, are shown in Figure 2.12.

It is possible to see some differences between the time evolution of the two

phases for each type of PDE considered. However, the divergence becomes

more noticeable in the evolution of the moving boundary. At a first instance,

the solid phase increases due to the initial temperature profile. But, due to its

higher thermal diffusion, the temperature reaches the transition temperature

faster. Then, in the liquid phase, with a lower thermal diffusion, it takes more

time to reach the transition temperature, thus after some time, this phase

starts to increase up until the steady-state is reached. As the dynamics of the

moving boundary depends completely on the incoming fluxes, a difference in

the behavior of the parabolic is expected and is clearly seen in Figure 2.12 (c).

The overall behavior between the phases, as described above, is still present,

however, as the hyperbolic PDE takes into account a delay, the transitions

take some time to happen.
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2.5 Conclusion

In this chapter the differences between the parabolic partial differential equa-

tions, generally derived from diffusive transport, and the hyperbolic PDEs,

which arise if the delay in the transport is considered were explored. In the

non-delayed diffusion, any initial disturbance in the material body is propa-

gated instantly with maximum rate, which is characteristic of the parabolic

equation. To eliminate this undesirable feature, a delayed flux is considered to

take into account the initial inertia, and, with an approximation, a hyperbolic

equation is derived, which avoids the phenomenon of infinite propagation.

The eigenvalues of the systems were analyzed whenever possible and the re-

sults of numerical simulations were presented to show the distinction between

these two types of equations. All the reaction-transport processes consid-

ered, that is, a one-dimensional heat diffusion, an axial tubular reactor and a

phase change system, presented similar differences between the hyperbolic and

parabolic PDEs. Overall, the properties’ rate of change presented a noticeable

distinction from the hyperbolic and parabolic equation. As a consequence, a

disparity is also seen in the property itself. Specifically for the system with

a phase transition (modeled as a Stefan problem), the type of flux influences

the boundary’s dynamics. Thus, for this system the discrepancy between the

hyperbolic and parabolic PDE modeling was apparent.

This difference in the dynamics can be crucial for some applications in

material processing and subsequently will impinge on the controller design. If

a model based controller is designed, although it can guarantee the closed-loop

stability with some degree of robustness, the controller’s performance would

be affected by the modeling setting, which is a topic for future contributions.
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Chapter 3

Heat Exchanger System
Boundary Regulation

3.1 Introduction

The process industry and large utility plants operations are constantly moni-

tored and analyzed for novel ways to reduce energy consumption and increase

operational profitability. Heat exchangers are ubiquitously present in the pro-

cess industry and included in industrial plants, where they account for heat

recovery and ultimately improvement in process energy efficiency [62]. Also,

they are used to minimize the loss of heat by recovering some of energy from

the process discharge streams and/or applied to recover the heat contained in

a later stages process streams to preheat the earlier stages stream entering the

plant.

A counter current flow and a parallel flow, two heat exchanger system con-

figurations that are frequently found in practice are considered in this contribu-

tion. The counter current configuration has some advantages over the parallel

design since the counter current configuration provides temperature unifor-

mity between the two liquids that minimizes the thermal stresses throughout

the exchanger. In addition, the outlet temperature of the cooled liquid can

approach the most noteworthy temperature of the hot fluid; therefore this

configuration achieves a more uniform rate of energy exchange throughout the

heat exchanger, see Xu et. al. [6]. These systems, which are distributed param-

eter systems (DPS) are commonly modelled by partial differential equations
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(PDEs), and in general are more complex to deal with compared to the lumped

parameter systems, that are commonly modelled by ordinary differential equa-

tions (ODEs). Specifically, heat exchangers are modelled by applying mass,

momentum and energy conservation principles endowed with constitutive re-

lations that render a system of coupled transport hyperbolic PDE equations.

Due to their frequent presence in an industrial setting, most important as-

pects of the dynamical stability and system theoretic properties have been

thoroughly investigated. Namely, if there is no time lag in the boundary feed-

back loop, the exponential stability is shown for the counter-flow type by using

the port-Hamiltonian approach as well as by using the spectral analysis [63],

[64]. Along the same line, if the boundary delay is considered in a dynamical

representation, the stability of this system is explored by transformation of the

time lag dynamics to the corresponding transport equation and by applying

the port-Hamiltonian approach to the transformed system to get necessary

stability conditions for the system for both configurations [65].

One of the main goals of any control strategy is to be able to make the sys-

tem dynamics behave in a specified, desired manner. Therefore, the classical

problem of a servo-design regulator is defined as the design of the closed-loop

control system which tracks a prescribed signal and rejects possible disturbance

signals applied to the system with guarantees on the closed-loop stability with

some degree of robustness. Furthermore, the type of information available in

the regulator design also determines features of the regulator. For example,

given that the full state information is available, which rarely happens in prac-

tice and/or in an DPS setting, one can design a full state feedback regulator.

In effect, more appealing practical design realizations account for scenarios

when only error and/or output measurements are available (in some cases, the

measured output does not account for the regulated output whose behaviour

is enforced), see Xu. et. al. [6]. In general, it is considered in the regulator

design that the desired reference signals to be tracked and the known dis-

turbances to be rejected are generated by an exosystem [2]. Furthermore, by

following the well known regulator designs from the finite dimensional systems

theory, one possible way to design the regulator for the distributed parameter
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systems is to use a lumping approach, which implies that some type of model

approximation or/and model reduction is applied (which converts the PDEs

to sets of ODEs). Hence, standard regulator design methods applicable to

ODE systems can be realized and there are several contributions that deal

with the regulator problem for linear finite-dimensional systems [2], [9], [10].

However, this approach of early lumping also results in a possible mismatch

between dynamical properties of the original distributed parameter and the

lumped parameter models, which inevitably affect the designed regulator per-

formances [11].

A more rigorous way to address regulator design in the realm of distributed

parameter processes is to exploit the infinite-dimensional characteristic of the

system and design in the DPS setting. In particular, the method of design of

output and error feedback regulators for linear scalar hyperbolic PDE infinite-

dimensional system is explored and addresses boundary and in-domain regula-

tion problem for infinite-dimensional nonspectral linear system [15]. Along the

same line, the PI-controller for distributed parameter systems with constant

disturbance was realized by Kobayashi et. al. [12], while the geometric theory

for the regulation problem for infinite-dimensional linear systems driven by

finite-dimensional exosystems was developed in Byrnes et. al. [13]. Further-

more, the geometric theory for the regulator design problem was proposed for a

class of first order hyperbolic PDE systems with space-varying coefficients [14],

while the regulator design through internal model principle for the system of

hyperbolic transport equation was addressed by solving a constrained Sylvester

equation in Xu et. al. [6]. Boundary control problems are, as the name sug-

gests, problems that have a boundary condition as a function of the manip-

ulated variable. Many contributions have addresses this case for hyperbolic

systems, for instance, in Prieur et. al. [66], a Riemann invariants approach

was used to develop a robust boundary controller, in Krstic [67], the bound-

ary control of partial differential equations using the backstepping method is

developed. Along the same line of backstepping design, in Bastin [68], the

boundary stabilization of systems of two balance laws by both full-state and

dynamic output feedback was explored, while in Krstic and Smyshlyaev [69],
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the backstepping methodology was use to stabilize first order linear hyper-

bolic PDE systems. The backstepping method has been generally used to

achieve exponential stabilization in boundary control problems: in Di Meglio

et. al [70], the boundary stabilization controller was designed for a linear

system of coupled first-order hyperbolic PDEs; in Deutscher (2015) [71] back-

stepping methodology was used to simplify the design of output regulators for

a linear parabolic PDE system; and in Deutscher (2019) [72], backstepping

was used to solve the output regulation problem for coupled parabolic partial

integro-differential equations. In the same spirit, in Xu et. al. [73], the out-

put regulation problem for a linear multiple input multiple output system of

hyperbolic partial integro-differential equations was considered also using the

backstepping methodology.

In the early works, in the case of regulator designs for heat exchangers,

an approximate modelling and control of nonlinear processes using a polyno-

mial expansion was applied with PI and PID regulators, but the system was

not considered to be distributed [74], [75]. Recently, the boundary geometric

control was applied to a counter-current heat exchanger, considering a model

based of two coupled hyperbolic PDEs, with the purpose of controlling the

internal fluid temperature by manipulating the jacket temperature at its inlet

boundary, which resulted in good regulation and tracking performances [76].

A control strategy based on the state-feedback using a Kalman filter to recon-

struct the entire state of the system was used in a parallel-flow heat exchanger

to control the internal fluid temperature by manipulating the inlet external

fluid temperature [77]. A repetitive control strategy was implemented in a

tubular heat-exchanger system to deal with intrinsic resonance dynamics when

residence time is variable and achieves fast, well-damped responses in the con-

trol of the outlet fluid temperature [78]. A model based control strategy that

uses the thermal energy in the fluids as a controlled variable instead of the

outlet temperature was used in compact plate heat exchangers to achieve a

robust control that does not rely on the specification of the overall heat trans-

fer coefficient, as it can strongly vary with a specific manufacturer [79]. Along

the line of the heat exchanger dynamics, common configurations of counter or
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cocurrent two flows exchanging heat across the exchanger are inherently stable

systems [6], [14], [80], whereas heat exchangers with reverse flow can lead to

unstable dynamics, so that regulation of more complex and physically relevant

models of reverse flow heat exchanger realizations needs to be addressed.

Motivated by the above considerations, the manuscript main contribution

is the design of output regulators (servo-mechanism) for realistic and complex

heat exchanger systems in both the counter and/or cocurrent flow configura-

tion with boundary returned flow modelled by time lag dynamics which ex-

hibits unstable dynamical behaviour. In particular, we address the modelling

framework by considering the initial setting of heat transport hyperbolic PDEs

endowed by the time lag dynamics representing boundary feedback flow that

is adequately transformed in the boundary infinite-dimensional state space

setting amenable to stability analysis and subsequent regulator design. The

manuscript contribution also accounts for stability analysis of the two config-

urations of the heat exchanger system and is followed by regulator designs.

The full state feedback regulator design is provided as an initial design which

ensures stabilization of the hyperbolic PDE system and also accounts for the

perfect trajectory tracking and/or disturbance rejection of any polynomial

functions and/or harmonic functions tracking and disturbance signals. Fur-

ther, we demonstrate that the important issue of the gain based output feed-

back regulator realization cannot be realized without the observer design, and

therefore the output and error feedback regulator designs are developed (prior

assumes that only output is available to the regulator, while former accounts

for the scenario when only an error between the regulated output and reference

is given). In all three regulator designs presented, the full state, the output

and the error feedback design, the salient feature of solution of the Sylvester

equation for the system of hyperbolic PDEs are realized and presented. Fi-

nally, we demonstrate three different designs and corroborate on the designs

characteristics associated with numerical simulations and presented results.

67



3.2 System Description

The system of 1-D linear hyperbolic partial differential equations PDEs on

domain {t ∈ ℜ+, ζ ∈ [0, 1]}, representing a counter current heat exchanger

system with a delayed boundary feedback is given in the following Figure 3.1

and as system by:





∂θ1
∂t

= −ν1
∂θ1
∂ζ

+ h1 (θ2 − θ1) +Bdd

∂θ2
∂t

= ν2
∂θ2
∂ζ

− h2 (θ2 − θ1) +Bdd

θ1 (t, ζ = 0) = θin(t)

θ2 (t, ζ = 1) = −k θ1 (t− τ, ζ = 1)

θ1 (0, ζ) = θ1,0(ζ), θ2 (0, ζ) = θ2,0(ζ)

θ1 (s, ζ = 1) = ϕ(s), s ∈ (−τ, 0)

(3.1a)

y(t) = θ2(t, ζ = 0), ym(t) = θ2(t, ζ = zm) (3.1b)
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where the heat exchanger states θ1(·, t) and θ2(·, t) ∈ H = L2(0, 1) repre-

sent the state variables (dimensionless fluid temperatures) while the boundary

input is applied at the inlet of θ1 and the output is at the outlet of the θ2.

The space of interest is a Hilbert space H = L2(0, 1) equipped with the norm

∥·∥ =
∫ 1

0
(·) dζ, and h1 and h2 are constant heat exchange coefficients, while ν1

and ν2 are positive and represent the constant transport velocities. This model

can represent a process where the outlet of the first part of the heat-exchanger

(tube) is passed through other stages of the process and then comes back to the

heat exchanger into the second part (shell surrounding tube). Throughout the

other process stages, the temperature of the stream is changed, which could

be represented by the gain k. Furthermore, the time it takes for the stream to

come back to the heat-exchanger can be represented by the time delay τ . In the

special case of a reaction happening inside one section of the heat-exchanger,

the case of an auto-thermal reactor can be considered as analyzed by Bonvin

et. al. [81]–[83]. The disturbance applied, d(t), is applied on the system and

Bd(ζ) is the disturbance input spatial distribution function. The controlled

output y(t) and the measured output ym(t) do not necessarily coincide and in

this work they are taken from different spatial locations along the second heat

exchanger state domain, that is y(t) = θ2(t, z0) and ym(t) = θ2(t, zm).

The boundary applied time delay dynamics associated with the boundary

feedback flow is appropriately represented by a scalar transport equation, and

the stability of the input and disturbance free setting of the (3.1a)-(3.1b) has

been already addressed [65]. In order to address the system response in the

presence of boundary input and disturbance present one needs to account for

design of regulators to guarantee closed-loop stability and reference tracking.
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Hence, we transform the system as follows:




∂θ1
∂t

= −ν1
∂θ1
∂ζ

+ h1 (θ2 − θ1) +Bdd

∂θ2
∂t

= ν2
∂θ2
∂ζ

− h2 (θ2 − θ1) +Bdd

∂ω

∂t
= −µ ∂ω

∂ζ

θ1 (0, ζ) = θ1,0(ζ), θ2 (0, ζ) = θ2,0(ζ)

ω (0, ζ) = ϕ((ζ − 1) 1
µ
)

(3.2a)

y(t) = θ2(t, z0 = 0), ym(t) = θ2(t, zm) (3.2b)

with ω ∈ H = L2(0, 1) being the state variable representing a transport delay,

and ϕ(s) is an arbitrary function that represents the initial conditions asso-

ciated with the time delay (when 0⟨t⟨τ) with µ positive and representing the

constant transport velocity (it is related with the time delay by µ = 1/τ). The

boundary conditions for this configuration are:




θ1 (t, ζ = 0) = θin(t) = u(t)
θ2 (t, ζ = 1) = −k ω (t, ζ = 1)
ω (t, ζ = 0) = θ1 (t, ζ = 1)

(3.3)

where θin(t) is the dimensionless temperature input at the boundary of the first

tube of the heat exchanger and is the manipulated variable (u(t)) considered

in this work, while k is a positive constant that represents the static feedback

gain.

The parallel heat exchanger configuration is described by the following

system of partial differential equations:




∂θ1
∂t

= −ν1
∂θ1
∂ζ

+ h1 (θ2 − θ1) +Bdd

∂θ2
∂t

= −ν2
∂θ2
∂ζ

− h2 (θ2 − θ1) +Bdd

θ1 (t, ζ = 0) = θin(t)
θ2 (t, ζ = 0) = −k θ1 (t− τ, ζ = 1)
θ1 (0, ζ) = θ1,0(ζ), θ2 (0, ζ) = θ2,0(ζ)
θ1 (s, ζ = 1) = ϕ(s), s ∈ (−τ, 0)

(3.4a)

y(t) = θ2(t, z0 = 1), ym(t) = θ2(t, zm) (3.4b)

As it can be seen, the parallel heat exchanger configuration given by (3.4a)-

(3.4b) differs from the counter current configuration (3.2a)-(3.2b) by the flow
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direction, the boundary condition and the second heat exchanger output. This

configuration can also be represented by three linear hyperbolic equations by

transforming the delay dynamics into a scalar hyperbolic PDE:





∂θ1
∂t

= −ν1
∂θ1
∂ζ

+ h1 (θ2 − θ1) +Bdd

∂θ2
∂t

= −ν2
∂θ2
∂ζ

− h2 (θ2 − θ1) +Bdd

∂ω

∂t
= −µ ∂ω

∂ζ
θ1 (0, ζ) = θ1,0(ζ), θ2 (0, ζ) = θ2,0(ζ)
ω (0, ζ) = ϕ((ζ − 1) 1

µ
)

(3.5a)

y = θ2(t, ζ = 1), ym = θ2(t, ζ = zm), (3.5b)

As in the counter current configuration, θ1, θ2 and ω represent the state

variables, ϕ(s) is the arbitrary initial condition of the time delay (when 0⟨t⟨τ),
ν1, ν2 and µ are the constant transport velocities, h1 and h2 are the constant

heat exchange coefficients, d(t) is the disturbance and Bd(ζ) is the disturbance

input. This new set of equations has the following boundary conditions:




θ1 (t, ζ = 0) = θin(t) = u(t)
θ2 (t, ζ = 0) = −k ω (t, ζ = 1)
ω (t, ζ = 0) = θ1 (t, ζ = 1)

(3.6)

Therefore, both configurations can be represented in the unified manner as

boundary control problem on space {t ∈ ℜ+, ζ ∈ [0, 1]}:

ẋ(t) = Ax(t) + B̄dd(t) (3.7a)

y(t) = Cx(t) (3.7b)

ym(t) = Cmx(t) (3.7c)

Bx(t) = u(t) (3.7d)

where x(t, ·) ∈ H = L2(0, 1)3 is the state variables, y(t) ∈ ℜ is the output

variable, ym(t) ∈ ℜ is the measured variable and u(t) ∈ ℜ is the input vari-

able. The spatial operator A is a linear operator with the following domain

D(A) = {h(z) ∈ L2(0, 1)3|h(z) is abs. cont., and
dh(z)

dz
∈ L2(0, 1)3

}
, B ∈

L(H,ℜ) is a linear boundary operator, B̄d ∈ L(ℜ,H) is a linear disturbance

location operator, C ∈ L(H,ℜ) is the output operator and Cm ∈ L(H,ℜ) is
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the measure input operator. Therefore, for the counter current configuration:

A =



−ν1∂ζ − h1 h1 0

h2 ν2∂ζ − h2 0
0 0 −µ ∂ζ


 (3.8a)

CΨ(ζ) = Ψ2(ζ = 0) , CmΨ(ζ) = Ψ2(ζ = zm) ,BΨ(ζ) = Ψ1(ζ = 0) (3.8b)

and for the parallel configuration one obtains:

A =



−ν1∂ζ − h1 h1 0

h2 −ν2∂ζ − h2 0
0 0 −µ ∂ζ


 (3.9a)

CΨ(ζ) = Ψ2(ζ = 1) , CmΨ(ζ) = Ψ2(ζ = zm) ,BΨ(ζ) = Ψ1(ζ = 0) (3.9b)

where ∂ζ(·) is the linear differential operator
∂(·)
∂ζ

and Ψ(ζ) = [Ψ1(ζ)Ψ2(ζ)

Ψ3(ζ)]
T is a vector of three spatial functions, while Bd(ζ) and B̄d(ζ) for both

configurations are defined as:

B̄d(ζ) =



Bd(ζ)
Bd(ζ)
0


 , Bd(ζ) =





0, ζ⟨0.4
1, 0.4 ≤ ζ ≤ 0.6
0, 0.6⟨ζ

(3.10a)

Physically the disturbance can be seen as a heat source that is constantly

adding heat to the heat exchanger. In general, one can consider any location

along the domain and the analysis and results can be adequately adjusted

to account for any disturbance placement and/or type. Furthermore, these

configurations can be represented as regular well-defined distributed parameter

system [80] by:

ẋ(t) = Ax(t) + B̄dd(t), x0 ∈ H (3.11a)

y(t) = CΛx(t) (3.11b)

ym(t) = Cm,Λx(t) (3.11c)

Bx(t) = u(t) (3.11d)

where CΛ ∈ L(H,ℜ) and Cm,Λ ∈ L(H,ℜ) are the Λ-extension of the operators

C and Cm, and are defined as CΛx(t) = limλ→+∞Cλ(λI−A)−1x(t), Cm,Λx(t) =

limλ→+∞Cmλ(λI − A)−1x(t), x(t) ∈ H. Throughout this work, the following

exogenous system as a integral part of the regulator design is considered. The
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importance of exogenous system is that it generates desired output signal

tracking signal and also accounts for the generation of the family of considered

disturbances. In particular, the exogenous system accounts for generation of

polynomial and harmonic reference and/or disturbance signals, and is given

as:

v̇(t) = Sv(t), v(0) = v0 (3.12)

yr(t) = Qv(t) (3.13)

d(t) = Fv(t) (3.14)

where the matrix S is spectral and generates dynamics of the exosystem states,

Q is a matrix that gives the desired output tracking signal yr(t) and F is the

matrix that generates disturbance dynamics. In this manuscript, the tracking

reference signals are given as family of steps, ramps and harmonic periodic

functions. Hence, for these functions the proper exosystem is given by:

S =




0 1 0 0
0 0 0 0
0 0 0 α
0 0 −α 0


 (3.15)

Q is defined accordingly with the desired tracking signals characteristics and

F is associated with the disturbance step signal. Finally, the important for-

mulation of tracking error used in the design is given as:

e(t) = y(t)− yr(t) (3.16)

which implies that output regulator design needs to ensure e(t) → 0 as t→ ∞.

3.2.1 Spectral Properties of the System

The underlying dynamical system which is given by the operator A in (3.11a)

represents a system of heterodirectional coupled hyperbolic PDEs, with bound-

ary and in domain coupling. In general, a scalar hyperbolic PDEs or homodi-

rectional system of hyperbolic PDEs without boundary coupling is character-

ized with the empty spectrum and ultimate dynamical stability on the finite

spatial domain, hence it is of importance to address the operator A features
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in the light of the intrinsic stability of the operator and/or spectral operator

properties. It can be shown that A is a spectral operator and the eigenvalues

and eigenfunctions of A can be found by solving the corresponding eigenvalue

problem given as:

Aϕ = λϕ (3.17)

where ϕ correspond to the eigenfunctions of the system and λ the correspond-

ing eigenvalues. The operator shown in (3.17) can be written as A = V ∂ζ + Â,

where V is a diagonal matrix with the system velocities and Â is a matrix

that contains the system constants, defined in Eq. (3.18), where the sign of ν2

depends on the heat exchanger configuration.

V =




−ν1 0 0
0 ±ν2 0
0 0 −µ


 Â =




−h1 h1 0
h2 −h2 0
0 0 0


 (3.18)

The eigenvalue problem for the error operator is given as:

Aϕ = (V ∂ζ + Â)ϕ = λϕ, (3.19)

for ϕ =



ϕ1

ϕ2

ϕ3


 which belongs to domain of A, which can be written as ∂ζϕ =

V −1(λI − Â)ϕ and has a general solution given as:

ϕ(ζ) =M(ζ)ϕ(ζ = 0) (3.20)
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where M(ζ) is the matrix exponential of V −1(λI − Â) and is given as:

M(ζ) = eV
−1(λI−Â)ζ =



M1,1(ζ) M1,2(ζ) 0
M2,1(ζ) M2,2(ζ) 0

0 0 M3,3(ζ)




M1,1(ζ) = e
a
2
ζ


cosh

(
b
2
ζ
)
+

(
a
2
− h2+λ

ν2

)
sinh

(
b
2
ζ
)

b
2




M1,2(ζ) =
h1
ν1
e

a
2
ζ sinh(

b
2
ζ)

b
2

M2,2(ζ) = e
a
2
ζ


cosh

(
b
2
ζ
)
+

(
a
2
+ h1+λ

ν1

)
sinh
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(3.21)

Using the boundary conditions:





ϕ1 (ζ = 0) = 0
ϕ2 (ζ = 1) = −k ϕ3 (ζ = 1)
ϕ3 (ζ = 0) = ϕ1 (ζ = 1)

(3.22)

The spectral set for this system σ(A) = {λ1, λ2, ...} with λi ∈ C, where C

represents the set of complex numbers, is given by the solution of the following

non-linear algebraic equation:


cosh

(
b

2

)
+

(
a
2
+ h1+λ

ν1

)
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(
b
2

)

b
2


 = − k

h1
ν1

sinh
(
b
2

)
b
2

e−
λ
µ (3.23)

with a and b given in (3.21). The eigenvalue problem can also be solved for

the parallel configuration and has the same general solution as given in (3.20).

With the boundary conditions:





ϕ1 (ζ = 0) = 0
ϕ2 (ζ = 0) = −k ϕ3 (ζ = 1)
ϕ3 (ζ = 0) = ϕ1 (ζ = 1)

(3.24)
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And exponential matrix given as:

M(ζ) = eV
−1(λI−Â)ζ =



M1,1(ζ) M1,2(ζ) 0
M2,1(ζ) M2,2(ζ) 0

0 0 M3,3(ζ)




M1,1(ζ) = e
a
2
ζ


cosh

(
b
2
ζ
)
+

(
a
2
+ h2+λ

ν2

)
sinh

(
b
2
ζ
)

b
2




M1,2(ζ) =
h1
ν1
e

a
2
ζ sinh(

b
2
ζ)

b
2

M2,2(ζ) = e
a
2
ζ


cosh

(
b
2
ζ
)
+

(
a
2
+ h1+λ

ν1

)
sinh

(
b
2
ζ
)

b
2




M2,1(ζ) =
h2
ν2
e

a
2
ζ sinh(

b
2
ζ)

b
2

a = −
(
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)2
− 4λ(λ+h1+h2)

ν1ν2

M3,3(ζ) = e−
λ
µ
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(3.25)

And the spectral set for this system σ(A) = {λ1, λ2, ...} with λi ∈ C is given

by the solution of:

k
h1
ν1

sinh
(
b
2

)
b
2

e
a
2
−λ

µ = −1 (3.26)

with a and b given in (3.25). In the ensuing sections, we will consider a set of

parameters so that the underlying A is unstable with finite number of unstable

eigenvalues.

The eigenvalue problem solution shown in (3.17) for different values of the

boundary feedback gain k gives the spectral eigenvalue distribution of two

heat exchanger configurations and it is shown in Figure 3.2. It is possible

to see that the system becomes unstable as the value of k increases, as the

eigenvalues are shifted to the right complex plane. For the conditions used,

k = 2 results in one pair of unstable complex eigenvalues and k = 2.5 results

in two pairs. The results for the parallel configuration are very similar to the

countercurrent, as k = 2 results in one pair of unstable complex eigenvalues

and k = 2.5 results in two pairs.
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Figure 3.2: Calculated eigenvalues for different values of the boundary feed-
back gain k: (Top) counter current configuration; (Bottom) parallel configu-
ration.
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3.2.2 Boundary Control Transformation

Along the line of the well-posed system description and associate controller

design we consider the following state transformation, which converts the un-

bounded boundary control input operator into a corresponding in-domain op-

erator:

p(t) = x(t) + βu(t) (3.27)

and the system can be rewritten as:

ṗ(t) = ẋ(t) + βu̇(t) = Ax(t) + βu̇(t) +Bdd(t)
= Ap(t) + Aβu(t) + βu̇(t) +Bdd(t)

(3.28a)

y(t) = CΛx(t) = CΛp(t)− CΛβu(t) (3.28b)

In general, in order to decouple states one needs to find β such as Aβ = 0 and

Bp(t) = 0, so that the above system can be reduced and represented as:
{
ṗ(t) = Ap(t) + βu̇(t) +Bdd(t)
p(ζ = 0, t) = 0

(3.29a)

y(t) = CΛp(t)− CΛβu(t) = [−CΛβ CΛ]︸ ︷︷ ︸
Ce

Λ

[
u(t)
p(t)

]
(3.29b)

where A has the same elements as in (3.8a) and (3.9a), but its first boundary

condition is defined as θ1(ζ = 0) = 0. The system can be represented as the

following state space form:
[
u̇(t)
ṗ(t)

]
=

[
0 0
0 A

]

︸ ︷︷ ︸
Ae

[
u(t)
p(t)

]

︸ ︷︷ ︸
xe

+

[
1
β

]

︸ ︷︷ ︸
Be

u̇(t) +

[
0
Bd

]

︸ ︷︷ ︸
Be

d

d(t)
(3.30)

where u̇(t) is the new manipulated variable and the manipulated boundary

input was changed to a correspondent in-domain input.

3.3 Regulator Design

In this section, the regulator design is proposed and the methodology neces-

sary to guarantee simultaneous stabilization and proper output tracking for

the system is explained. First, we consider the design of stabilizing full state

feedback gain based control law. Secondly, motivated with technical limita-

tions to measure full state of the temperature along the heat exchanger system,
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we design a boundary observer which is utilized in the state reconstruction. Fi-

nally, we construct the output regulation equations in the form of the Sylvester

equation which provides a solution to the feedforward gains deployed in the

output regulation and tracking as well as disturbance rejection.

3.3.1 System Stabilization with Output Feedback

The simplest possible way to consider stabilization of the heat exchanger is to

apply gain based output feedback u(t) = Ky(t). Then, the eigenvalue problem

(3.17) for a output feedback control law, shown in (3.31):

u(t) = Ky(t) (3.31)

induces the following form of the boundary condition for both (3.22) and (3.24)

configurations:

ϕ1 (ζ = 0) = u(t) = KCΛϕ (3.32)

where CΛ is the output operator defined in (3.11b) regarding (3.8b) and (3.9b).

For the counter-current configuration (ϕ1(ζ = 0) = KCϕ = Kϕ2(ζ = 0)) the

spectral set of σ(A) is the solution of:

−Kh2
ν2

sinh
(
b
2

)
b
2

−


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+kK
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(
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2
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ν2

)
sinh

(
b
2

)

b
2


 e−

λ
µ = 0

(3.33)

with a and b defined at (3.21).

And for the parallel system (ϕ1(ζ = 0) = KCΛϕ = Kϕ2(ζ = 1)) spectral set
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is given by:

K
h2
ν2

sinh
(
b
2

)
b
2

− k
h1
ν1

sinh
(
b
2

)
b
2

e−
λ
µ

− kKe
a
2


cosh

(
b

2

)
+

(
a
2
+ h2+λ

ν2

)
sinh

(
b
2

)

b
2





cosh

(
b

2

)
+

(
a
2
+ h1+λ

ν1

)
sinh

(
b
2

)

b
2


 e−

λ
µ

+ kK
h1
ν1

h2
ν2

e
a
2
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(
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2

)
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2

)2

= e−
a
2

(3.34)

and a and b defined at (3.25). It will be clear, in the ensuing sections that

parameterK can not ensure stability of the closed-loop system (in both config-

urations), since the spectral properties of the overall system remain invariant

with respect to gain modulation in the output feedback structure.

The eigenvalue problem solution for (3.17) with the boundary condition shown

in (3.32) gives the results shown in Figure 3.3. For both configurations the gain

based output feedback control (that is u(t) = Ky(t)) is not able to stabilize the

system, as the input is not able to shift all the unstable complex pair to the left

plane. In Figure 3.3 (Top), for the counter current configuration, the output

feedback is just able to shift the eigenvalues that are real and has almost no

influence exerted to the complex eigenvalues (the complex eigenvalues do not

change for different values of gain). As the output feedback gain is changed

(K = [−10 : 10]), the real part of the unstable eigenvalue is barely changed, as

shown in the left subplot. For the parallel configuration, the output feedback

has influence on entire spectrum, but it is not possible to find a stabilizing

gain that guarantees that all the spectrum will be placed to the interior of

left complex plane. The right subplot in Figure 3.3 shows that as the output

feedback gain changes, there is always at least one unstable eigenvalue pair in

the system. Therefore, it is not possible to guarantee stability for the system

using the gain based output feedback.
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Figure 3.3: Calculated eigenvalues for different values of the feedback gain K
in: (Top) counter current configuration; (Bottom) parallel configuration.

The simulation results using an output feedback with the feedback gain

K = −1.2 in the counter current configuration are shown in Figure 3.4, and

as expected, the system is unstable and the output grows exponentially.
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Figure 3.4: System output response with feedback gain K = −1.2.

3.3.2 Full-state feedback control

In this section, a full-state feedback controller design is considered as the ini-

tial step in system stabilization. The closed-loop schematic representation for

this scenario is shown in Figure 3.5 and it is considered that all state variables

are available for design and for implementation (which means that we assume

that infinite dimensional states are available and can be directly measured).

The fundamental characteristic of dissipative spectral systems is that the

system eigenspectrum can be separated in finite dimensional unstable state

(XU), and stable infinite dimensional state space complement (XS), which are

related to the corresponding eigenfunctions (ϕi), adjoint eigenfunctions (ψi)

and eigenvalues (λi):

XU = {ψ1, ψ2, ..., ψn}
XS = {ψn+1, ψn+2, ..., ψ∞} (3.35)

where n is the number of unstable eigenfunctions (associated with a set of

unstable eigenvalues). The following theorem is used to guarantee the system

closed loop stability:
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Theorem 3.1 Given a system ẋ = Ax + Bu, x ∈ X and B ∈ L(C, X), and

if the following holds:

� XU is finite dimensional

� T (t)XU ⊂ XS, τ(t)XS ⊂ XS, given X = XU ⊕XS

� The unstable part of the system, XU , is controllable

then the (A+BK) generates an exponentially stable semigroup T (t).

u ẋ = Ax+Bu
y = Cx+Du

❄
x

❄

y

u = Kx+ Lv

✲

Exosystem

System (Plant)

Controller

v̇ = Sv, v(0) = vo
d = Fv
yr = Qv

✲v

✲yr e = yr − y

Figure 3.5: Closed system representation using a full-state feedback.

Proof: The first condition is satisfied by analyzing the eigenvalue distri-

bution shown in Figure 3.2, as the value of k was chosen such that the system

has only a pair of unstable eigenvalues. The second and third conditions can

be proved by analyzing the dynamics of the unstable eigenmodes, which are

the conjugated complex of each other:

XU = {ψ1, ψ2} → λ1 = λ̄2 → ψ1 = ψ̄2 (3.36)
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ẊU(t) = AUXU(t) +BUu(t) =

[
α + jβ 0

0 α− jβ

]
XU(t) +BUu(t) (3.37)

where BU =

[
bU,1
b̄U,1

]
, with bU,1 = ⟨B,ψ1⟩. Thus, it is easy to see that the pair

(AU , BU) is controllable. If (AU , BU) is controllable, then there is a K such

that (AU +BUK) is stable. Then, for any x ∈ XU , T (t)x ∈ XS, where T (t) is

the closed-loop semigroup.

The appropriate value of K for the full-state control law is derived below.

Using the state transformation W = T−1X, we get the following system:

ẆU(t) = ĀUWU(t) + B̄Uu(t) (3.38)

with:

T =




1

2
−1

2
j

1

2

1

2
j


 , ĀU =

[
α β
−β α

]
, B̄U = T−1

[
⟨B,ψ1⟩
⟨B, ψ̄1⟩

]
(3.39)

which yields the following control law:

u(t) = −KWU(t) (3.40)

that leads to the following equation:

ẆU(t) =
[
ĀU − B̄UK

]
WU(t) (3.41)

and it is possible to find values for K that makes subsystem
[
ĀU − B̄UK

]

stable and therefore, the entire system is stabilized in exponential manner.

The stabilizing final control law is given by:

u(t) = −K̄(X(t)) = −KT−1⟨X(t), ψU⟩ (3.42)

where K̄ is an operator that acts on the full-state of the system. Along the

same line, the same procedure could be utilized to design pole placement con-

troller if more unstable eigenvalue pairs are considered.

Figure 3.6 shows results associated with deployment of the full state feedback

control law presented in Eq.(3.42), and as it can be demonstrated the expo-

nential stabilization is achieved with some oscillations which are associated
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with the transients related to initial conditions response contribution. There-

fore, once the stabilization of unstable dynamics is guaranteed, it is possible

to implement an output tracking design for the system.
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Figure 3.6: System stabilization with fullstate feedback: (Top) counter current
configuration; (Bottom) parallel configuration.
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3.3.3 Observer Stability

The results of the previous section imply that the full state feedback control

law is utilized for the stabilization purposes. However, this is simply not feasi-

ble and possible in any realistic application and/or setting. Therefore, the way

to address this problem is to use an observer to reconstruct the state variables

information by considering the output measurement and having in mind that

the heat exchanger outlet is only available output measurement. The recon-

structed states x̂ dynamics associated with the heat exchanger system is the

copy of the system model dynamics and takes into account information given

by the output in affine manner. The type of the Luenberger observer design

considered here has the form given as:

˙̂x(t) = Ax̂(t) +Bu(t) +Bdd(t) + γC(x(t)− x̂(t))(t) (3.43)

Hence, by considering the general representation of the system:

ẋ(t) = Ax(t) +Bu(t) +Bdd(t)
y(t) = Cx(t)

(3.44)

and by subtracting these equations, one can define the observer error as ê(t) =

x(t)− x̂(t):

˙̂e(t) = (A− γCm)ê(t), ê(0) ̸= 0; (3.45)

Therefore, the observer stability depends on the choice of observer gain γ.

We emphasize that the observer gain is spatial operator which is given as

γ = [ ℓ ℓ ℓ ]T . This choice of the observer gain means that the same constant

observer gain is used throughout the system (there is no spatial variation,

although it could be considered). In order to guarantee the observer stability,

it is necessary to choose a ℓ such that observer error (shown in (3.45)) is stable.

The analysis of the observer error dynamics can be used to achieve this goal.

The operator shown in (3.8a) and (3.9a) can be written as A = V ∂ζ + Â,

where V is a diagonal matrix with the system velocities and Â is a matrix

that contains the system constants. The eigenvalue problem for the error

operator is given as:

(A− γCm)ϕ = (V ∂ζ + Â− γCm)ϕ = λϕ, (3.46)
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for ϕ = [ ϕ1 ϕ2 ϕ3 ]T belonging to the domain of A. This equation can be

written as:

∂ζϕ = V −1(λI− Â)ϕ+V −1γCmϕ = V −1(λI − Â)︸ ︷︷ ︸
A∗

ϕ+V −1γϕ2(ζ = ζm) (3.47)

where ζm is the given output location. Hence, the general solution is given as:

ϕ(ζ) =M(ζ)ϕ(ζ = 0) + ϕ2(ζ = ζm)
∫ ζ
0
M(ζ − η)V −1γdη

=M(ζ)ϕ(ζ = 0) + ϕ2(ζ = ζm)A
∗−1[M(ζ)− I]V −1γ︸ ︷︷ ︸

B∗(ζ)

(3.48)

whereM(ζ) is the matrix exponential of A∗ (the same matrix defined in (3.21)

and (3.25)) and B∗(ζ) = [B∗
1(ζ)B

∗
2(ζ)B

∗
3(ζ)]

T . For the counter current config-

uration, the boundary conditions are the same as given in (3.22) and are used

to find ϕ(ζ = 0):
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where Mi,j(ζ) are the elements (functions of ζ) of the exponential matrix

(given in (3.21)). By evaluating the solution at ζ = ζm the following result is

obtained for ϕ2(ζ):

ϕ2(ζ = ζm) = −M2,2(ζ = ζm)ϕ2(ζ = ζm)

[B∗
2(ζ = 1) + kB∗

3(ζ = 1) + kM3,3(ζ = 1)B∗
1(ζ = 1)]

M2,2(ζ = 1) +M1,2(ζ = 1)M3,3(ζ = 1) k

+ ϕ2(ζ = ζm)B
∗
2(ζ = ζm)

(3.50)

Which leads to the following non-linear equation:

1 +M2,2(ζ = ζm)
[B∗

2(ζ = 1) + kB∗
3(ζ = 1) + kM3,3(ζ = 1)B∗

1(ζ = 1)]

M2,2(ζ = 1) +M1,2(ζ = 1)M3,3(ζ = 1) k

−B∗
2(ζ = ζm) = 0

(3.51)

Notice thatM(ζ) is a function of λ, which also makes B∗(ζ) not only a function

of ℓ (the observer gain) but also of λ. If λ is set as λ = 0+αj (where j =
√
−1

and α ∈ ℜ), the Eq.(3.51) can be solved for ℓ. As the system is unstable,

setting ℓ = 0 will result in an unstable observer. Therefore, the value of ℓ

found in (3.51) by setting λ = 0 + αj gives the value of gain ℓ for the case of

observer marginal stability (the eigenvalues cross the imaginary axes at this

ℓ). Figure 3.7 (Top) shows the eigenvalues behaviour for different values of

ℓ. As the value of ℓ is increased, the unstable pair of eigenvalues are shifted

to the left side of the complex plan, however as ℓ increases one pair of stable

eigenvalues are shifted to the right side which makes system unstable again.

Therefore, there is a stability region for the values of gain ℓ for this observer

gain design and the values of ℓ for these stability regions can be calculated by

considering Eq.(3.51).
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Figure 3.7: Calculated eigenvalues of the observer for different values of the
observer gain ℓ: (Top) counter current configuration; (Bottom) parallel con-
figuration.

The same procedure is done with the parallel configurations using the
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boundary conditions given by Eq.(3.24) and the ϕ(ζ = 0) is given as:

ϕ(ζ = 0) =




0

−kϕ2(ζ = ζm)
[B∗

3(ζ = 1) +M3,3(ζ = 1)B∗
1(ζ = 1)]

1 +M1,2(ζ = 1)M3,3(ζ = 1)k

ϕ2(ζ = ζm)
[B∗

1(ζ = 1)− kB∗
3(ζ = 1)M1,2(ζ = 1)]

1 +M1,2(ζ = 1)M3,3(ζ = 1)k




(3.52)

Evaluating the solution at ζ = ζm the following result is obtained:

1 + kM2,2(ζ = ζm)
[B∗

3(ζ = 1) +M3,3(ζ = 1)B∗
1(ζ = 1)]

1 +M1,2(ζ = 1)M3,3(ζ = 1)k
−B∗

2(ζ = ζm) = 0

(3.53)

and if λ is set as λ = 0 + αj, it is possible to find the the stability region for

the observer gains by numerically solving above non-linear equation. Figure3.7

(Bottom) shows the eigenvalues behaviour for changes in ℓ using the parallel

configuration. Similarly to the counter current configuration, as the value of

ℓ is increased, the unstable pair of eigenvalues is shifted to the the left side of

the complex plain, while at the same time with the gain increase one stable

pair is shifted to the right side of the plain, making the system unstable again.

These values of ℓ which makes the system marginally stable are calculated

using Eq.(3.53).

3.3.4 Full-state observer based control

Considering that the observer from the previous section is used to reconstruct

the state variables based on the system output, the closed-loop realization is

represented by Figure 3.8. The regulator only admits as inputs the system

output (or the measured output) and the exosystem states as information. In

this case, the reconstructed states of the system are used in the control law

instead of the system real states, as this information is not available:

u(t) = −K̄(x̂(t)) (3.54)
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u ẋ = Ax+Bu+Bdd
y = Cx& ym = Cmx

❄

✲
y

y/ym

ê = y − ŷ or ê = ym − ŷm
˙̂x = Ax̂+Bu+Bdd+ γê

u = Kx̂+ Lv

✲

ExoSystem

System (Plant)

Regulator

v̇ = Sv, v(0) = vo
d = Fv
yr = Qv

✲v& d

✲

yr

e = yr − y

Figure 3.8: Closed system representation using a observer to reconstruct the
state variables.

The design of the output regulator is based on the assumption that the re-

constructed states x̂ dynamic are the same as the system model (observer part

of the regulator), augmented by the information from the controlled output,

measured output or one can considered also the error signal. If the measured

output or the controlled output are given, the output regulator takes the fol-

lowing form:

˙̂x(t) = Ax̂(t) +Bu(t) +Bdd(t) + γê(t) (3.55a)

ŷ(t) = CΛx̂(t) (3.55b)

ŷm(t) = Cm,Λx̂(t) (3.55c)

where ê(t) represents the error between the given output (y(t) or ym(t)) and

the reconstructed output (ŷ or ŷm):

ê(t) = y(t)− ŷ(t) (3.56a)

ê(t) = ym(t)− ŷm(t) (3.56b)

When the controlled output is considered, the error defined in (3.56a) is utilized

while if the some other output measurement is utilized and does not coincide

with the controlled output the error signal given by Eq.(3.56b) is used.
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Given that converging observer gain is designed and deployed, the error

between the reconstructed output and the actual output decreases, and the

reconstructed states are able to properly describe the system states evolution.

As the reconstructed states are used in the control law, it is also desired

that the observer states converge rapidly to the real states (although a slower

convergence will not affect the system stability).

In addition to the design given in Figure 3.8, frequently in the practice one can

measure just difference among desired and controlled output and not directly

the output signal. Hence, in this case only the error signal is given for the

controller design. In this case, the caveat is that not only the system states

need to be reconstructed, but also the exosystem states, as shown in Figure

3.9:

˙̂x = Ax̂+Bu+BdF v̂ + γ1

[
ê
e

]
(3.57a)

˙̂v = Sv̂ + γ2

[
ê
e

]
(3.57b)

ŷ = CΛx̂ (3.57c)

ŷm = Cm,Λx̂ (3.57d)

u ẋ = Ax+Bu+Bdd
y = Cx& ym = Cmx

❄

✲
y

ê = Qv̂ − ŷ

˙̂x = Ax̂+Bu+BdF v̂ + γ1

[
e
ê

]

˙̂v = Sv̂ + γ2

[
e
ê

]

u = Kx̂+ Lv̂

✲

ExoSystem

System (Plant)

Regulator

v̇ = Sv, v(0) = vo
d = Fv
yr = Qv

✲

yr

e = yr − y

Figure 3.9: Closed system representation using a observer to reconstruct the
state variables with the output error.
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In this case, as there is no output utilized as the input signal to the observer,

and only difference between the tracking error e(t) and the reconstructed error

ê(t) can be used. Again, as in the above analysis, the observer design needs to

ensure convergence of the observer error which induces properly reconstruction

of the system states that is used in the stabilization by full state feedback.

3.3.5 Output Tracking

The servomechanism design philosophy which is embedded in the output reg-

ulator design is to configure control system to achieve that the tracking error

evolution e(t) decays to zero and guarantees the system closed-loop stability.

If the system is inherently stable and the exosystem states are known, the

control law becomes:

u(t) = Lv(t) (3.58)

and it is only necessary to find a feedforward gain L that drives the tracking

error to zero as t→ ∞ and guarantees the stability of the closed-loop system.

Given that the system is already stable, one can find L as the solution for the

following constrained linear Sylvester equations [14] associated with the closed

loop system dynamics:

ΠS = AΠ+BL+BdF (3.59a)

CΛΠ−Q = 0 (3.59b)

where Π is a spatially varying operator (Π = Π(ζ)), Π ∈ L(ℜ, H) and the

solution of the Sylvester equations exists if Π and L exist. If there exists a

bounded linear operator Π such that the Sylvester operator equation (3.59)

holds, then the system (x(t)) and the exosystem (v(t)) are related by the ex-

pression Πv(t) = x(t). Generally, the initial condition of the system and the

exosystem do not satisfy the relation Πv(t) = x(t), however, if the tracking

error given by Eq.(3.16) decays, then the stabilizing dynamics can be obtained

such that the relation holds [14]. If the system is intrinsically unstable, but

stabilizable (as shown in 3.3.2), the control law must account for the stabiliza-

tion:

u(t) = −K̄(X(t)) + Lv(t) (3.60)
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Therefore, one needs to find L that decreases the tracking error and guarantees

the stability of the closed-loop system. With the assumption of approximate

controllability in the distributed parameter setting, and Theorem 3.1 holds,

the (ĀU , B̄U) is exponentially stabilizable (K is chosen in 3.3.2 to make (ĀU −
B̄UK̄) stable), then we can find L that satisfies the constrained Sylvester

equations [14]:

ΠS = (A−BK̄)Π +BL+BdF (3.61a)

CΛΠ−Q = 0 (3.61b)

If the reconstructed state is used, then the following control laws are utilized:

u(t) = −K̄(x̂(t)) + Lv(t) + K̂ê(t) (3.62a)

u(t) = −K̄(x̂(t)) + Lv̂(t) + K̂

[
ê(t)
e(t)

]
(3.62b)

where (3.62a) represents the control law when the output or measured output

are given, and K̂ is a gain based on the error of the reconstructed state and

the actual output measurement. Similarly, Eq.(3.62b) defines the control law

when there is no output and just the error is given, with K̂ as a gain based on

the reconstructed error and the actual error signals.

3.4 Results

In this section, we provide the simulation findings associated with the proposed

designs.

3.4.1 Output Tracking - Stable System

For a condition where the system is stable and the exosystem state is known,

it is necessary to find an appropriate feedforward gain L that drives the track-

ing error to zero. Figure 3.10 and Figure 3.11 show the results for the stable

system in countercurrent and parallel configuration, respectively.
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Figure 3.10: Simulation results for the stabilized counter current operating
configuration: (Top) output and reference signal; (Bottom) system input.
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Figure 3.11: Simulation results for the stabilized parallel operating configura-
tion: (Top) output and reference signal; (Bottom) system input.

Figure 3.10 shows the simulation results for the counter current system
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when different kinds of tracking signals are used. First, the system starts

tracking a ramp, then it is followed by two decreasing steps. The results for

the parallel configuration tracking a periodic function is showed in Figure 3.11.

As both system are stable, it is expected that the output is able to track the

desired signal, as long as a adequate gain L has been used.

3.4.2 Output Tracking - Full-state feedback

As it is demonstrated in previous section given that information of all states

is available, it is possible to use full-state feedback to stabilize the system

and achieve proper tracking. Figure 3.12 shows the output and input profiles

when the tracking function is given by yr(t) = 1 + 0.005t + cos(0.1t). The

spatial profiles of heat exchanger temperatures, θ1 and θ2 are also shown in

Figure 3.12. The system takes some time to stabilize due to the transients

associated with initial conditions and the input on the first heat exchanger

needs to take into account the negative feedback of the delayed boundary,

which means that the input needs to compensate for the temperature change

that is going to happen when the fluid enters the heat exchanger shell after

the delayed feedback.

100



F
ig
u
re

3.
12
:
F
u
ll
st
at
e
fe
ed
b
ac
k
tr
ac
k
in
g
u
si
n
g
th
e
p
ar
al
le
l
co
n
fi
gu

ra
ti
on

:
(T

op
)
S
y
st
em

ou
tp
u
t
an

d
in
p
u
t
p
ro
fi
le
s;

(L
ef
t)
θ 1

ti
m
e-
sp
ac
e
p
ro
fi
le
;
(R

ig
h
t)
θ 2

ti
m
e-
sp
ac
e
p
ro
fi
le
.

101



Although there are some oscillations at the beginning, the controller is able

to maintain stability of the closed-loop system and achieves proper tracking of

the reference signal. In the simulation scenario, we consider that at t = 300,

a step disturbance is applied to the system. This causes a sudden increase

in both variables, as it can be seen on the spatial profiles in Figure 3.12, due

to the energy added to the middle section of both heat exchangers by the

disturbance. As expected, this increase in the system energy also makes the

required input to decrease after the disturbance is applied, shown in the input

profile.

3.4.3 Output Tracking - Observer based

Given that in realistic heat exchanger realizations and settings just the output

or the tracking error information are given, an observer is used to estimate

the states in order to stabilize the system and achieve proper tracking of a

reference signal. First, the measured output is considered to be known and

the output is estimated (y(t) ̸= ym(t)). The results for a tracking signal

yr(t) = 0.005t using the counter current configuration are shown in Figure

3.13. The measured output is given by ym = θ2(ζ = 0.5). It is possible

to see that the actions taken in the beginning are higher than expected, as

the controller is only using the observer states and the system has not been

stabilized. As soon as the reconstructed states are close to the real states,

the controller is able to stabilize the system and achieve proper tracking of

the reference signal. The L2 norm of the observer error for θ1, θ2 and ω

are also shown in Figure 3.13. One can see that the system stabilizes as the

observer error decreases, which demonstrates importance of designing observer

with higher observer convergence rate than the convergence rate of stabilized

system dynamics. As considered in the previous case, the disturbance happens

in the system when t = 700. This increases the system energy, decreasing

the required input necessary to achieve proper tracking. As the observer has

already converged to the system states when the disturbance is made, there is

no visible effects of the disturbance in the observer error, hence the robustness

is achieved as well.
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Figure 3.13: Counter current configuration when a observer based controller
is used (ym ̸= y): (Top) System output and input profiles; (Bottom) L2 norm
of the observer errors.

The same tracking signal used in 3.4.2 for the full-state feedback (yr(t) =

1 + 0.005t + cos(0.1t)) was used also in the parallel configuration, but this

time considering that only the output is given (and not the full-state feedback
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realization as considered previously). This require the use of the observer to

properly estimate the system variables. The system output and input profiles

for this case are shown in Figure 3.14. As expected, in the beginning the

reconstructed states are different from the actual system states, which causes

the oscillations to be higher than what was shown in Figure 3.12 when the

full-state feedback was realized. Figure 3.14 also shows the L2 norm of the

observer error for θ1, θ2 and ω. As the observer error decreases, the controller

is able to keep the system under control and track the desired signal. When

the disturbance happens at t = 300, the system states have already been

properly estimated and there are no noticeable effects of the disturbance on

the observer error. This also produces a quick response of the regulator against

the disturbance and proper tracking is again rapidly established. As in the

previous cases, the energy increase caused by the disturbance reduces the

necessary input required by the system.
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Figure 3.14: Parallel configuration when a observer based controller is used
(ym = y): (Top) System output and input profiles; (Bottom) L2 norm of the
observer errors.

The last case considered, only the tracking error defined in (3.16) is avail-

able. The desired tracking signal yr(t) = 0.005t is used and the counter-current

configuration is considered, as in the previous case when information of the
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measured output was available. Again, it is necessary to use an observer to

estimate the system states and provide the necessary information to the con-

troller to achieve stabilization and proper output tracking. The system output

and input profiles and the L2 norm of the observer error for θ1, θ2 and ω for

this case are shown in Figure 3.15. As only the error is given and the ob-

server needs to reconstruct the system and exosystem states, there are more

oscillations at the beginning. When the observer error decreases, the system

stabilizes and proper tracking is achieved. Compared to results from Figure

3.13, the observer takes longer to properly estimate the system and exosys-

tem states, which also leads the slower controller convergence compered to

the previous cases. When the disturbance happens at t = 500, the observer

has already estimated the system states, thus, the controller is able to rapidly

achieve proper tracking again.
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Figure 3.15: Counter current configuration when a observer based controller is
used (only e(t) is known): (Top) System output and input profiles; (Bottom)
L2 norm of the observer errors.

3.5 Summary and Future Work

In this chapter, the mathematical models of two different configurations of a

heat exchanger system were studied. Both configurations considered a delayed
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boundary feedback between the heat exchangers and the manipulated variable

of the system was applied at the boundary. To deal with these conditions,

the system was transformed. A corresponding in-domain input was used in-

stead of the boundary input and the transport delay was transformed into

a equivalent transport equation. When the unstable system is considered, it

was shown that a output feedback is not sufficient to stabilize the system. For

this reason, a full-state feedback was used in the control law. Unfortunately,

information for all states of a distributed parameter system is hardly available,

and the observer is designed to reconstruct the system states with the infor-

mation from the measured output or the error signal. Finally, the computer

simulations for all cases considered were presented and discussed showing the

controller capability to stabilize the system and achieve output tracking of the

desired signal even with disturbances present in the system.

The regulator design considered guarantees the system stability, proper track-

ing and disturbance rejection, but does not account for any optimal conditions

when it comes to performance, which is an interesting extension to be consid-

ered in future studies.
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Chapter 4

Discrete Output Regulator
Design for the Linearized
Saint–Venant–Exner Model

4.1 Introduction

In many chemical, hydro-geological, petrochemical, and manufacturing pro-

cesses the dynamic models take the mathematical form of partial differential

equations (PDEs). One of these types of models is the Saint–Venant–Exner

(SVE) equations, which consist of non-linear PDEs and are used to model the

dynamics of a sediment-filled water canal with arbitrary values of the bottom

slope, friction, porosity, and water-sediment interaction. Due to their nature,

one of the crucial aspects of these distributed parameter systems is the com-

plexity given by the infinite-dimensional system representation [16], [17], which

is a challenging factor when it comes to the controller/regulator design and

realization.

The primary goal of a regulator is to drive the desired output of a system to

behave exactly as demanded, and at the same time it needs to assure the sta-

bility of the closed-loop system. Using early lumping methods is the simplest

way to design the controller for distributed parameter systems. In these meth-

ods, the PDEs are generally converted to sets of ordinary differential equations

(ODEs), which allows the use of standard control methodology applicable to

ODE systems. But, this also results in some mismatch between the dynamical

properties of the original distributed parameter and the lumped parameter
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models, thus, affecting the controller [11].

Another way to deal with distributed parameter processes is to exploit

the infinite-dimensional characteristic of the system, and there are signifi-

cant research efforts made to solve the regulator design problem for infinite-

dimensional systems [13], [80]. In [14], the generalized geometric methods

were introduced in the regulator design for the first-order hyperbolic PDEs,

and the robust output regulation problems were considered in [84]–[86], while

taking into account infinite-dimensional exogenous systems (an independent

system responsible for the generation of the tracking signal and/or distur-

bance). Specifically for the SVE model, there are several contributions that

take into account the characteristics of the model. In [87], the proportional

and integral output feedback controllers were proposed by using the semigroup

theory. The H∞ optimization framework was applied in [88] to design a con-

troller considers the both water resource management and performance with

respect to the users. And in [89], a Lyapunov approach was used to obtain

the control laws that stabilize the system considering full-state and output

feedback.

More recently, in [90], the exponential stabilization of this model was

achieved by the backstepping design, also considering full-state and output

feedback, where the design of an exponentially stable Luenberger observer was

considered for state reconstruction. The PDE backstepping design has proved

to be of valuable for the boundary stabilization of distributed parameter sys-

tems. Essentially, the technique consists of finding a suitable transformation

that maps the closed-loop system into a stable target system. Due to the

invertibility of the transformation, the original and the target system have

equivalent stability [91], [92]. Other applications and developments along this

line include, for instance, the boundary observer based-control design for a

hyperbolic PDE [93], the boundary observer for a class of time-varying linear

hyperbolic partial integral-differential equations (PIDEs) [94], and control of

general linear heterodirectional hyperbolic ODE–PDE–ODE systems [95].

All the contributions mentioned above were developed in the continuous-

time domain, but, as most modern and state-of-the-art controller realizations
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are digital and discrete, time discretization realizations need to be taken into

account at the final design stage. Although some contributions addressed the

stabilization of PDEs using backstepping with time sampled-data [96], [97],

these were made considering specific scalar equations and the design of a con-

troller in the discrete-time setting was not the objective of these works. Tra-

ditional time discretization schemes (for instance, explicit or implicit Euler)

could be used to obtain a discrete-time representation, but they have the dis-

advantage of reducing the accuracy of the discrete system representation as the

sampling period increases [26]. Moreover, the sampling may impact the overall

model and closed-loop stability when the controller is implemented. Therefore,

a different type of time discretization scheme, that provides a reliable trans-

formation of a continuous linear infinite-dimensional system representation

to a linear discrete-time infinite-dimensional needs to be considered. A dis-

cretization scheme that accounts for this design criteria is the Crank-Nicolson

midpoint integration rule, which can be easily applied to infinite-dimensional

systems [28]. This type of discretization is also known as Cayley-Tustin time

discretization, and it has been shown to preserve the intrinsic energy and dy-

namical characteristics of the linear distributed parameter system [29] without

the application of spatial discretization or/and model reduction.

The unstable linearized SVE model is considered in this manuscript. The

PDE system is given as a system of first-order transport hyperbolic PDE

equations, with in-domain and boundary coupling. Based on this system,

a discrete-time output regulator design is presented and attains the follow-

ing objectives: (1) ensures the stability by output feedback; (2) considers the

stabilization of the problem in the discrete-time setting, obtained by the appli-

cation of the Caley-Tustin time discretization; (3) achieves tracking of periodic

and polynomial signals generated by an exosystem, which is ensured by the so-

lution of the corresponding Sylvester output regulation equations. To properly

design the discrete-time regulator, the relation between the discrete-time and

continuous-time control is developed, such that the closed-loop stability and

proper tracking of the discrete-time representation is assured if the controller

design is known in the continuous-time.

111



The chapter is organized as follows: in Section 4.2, the SVE system model

and its properties are introduced together with the exosystem and control

objectives. In Section 4.3, the system stabilization, observer design, and out-

put regulation in the continuous-time setting are developed. In Section 4.4,

the Caley-Tustin time discretization is applied to the system, and the dis-

crete regulator design is developed. The stability of the closed-loop system is

shown. In Section 4.5, the simulations results are presented and the regulator

performance is discussed. Lastly, in Section 4.6, the final remarks are made.

4.2 Problem Formulation

The Saint–Venant and Exner equations are used to describe the dynamics in a

sediment-filled open channel with rectangular cross-section [90]. Considering

H(t, ζ) to be the water depth, V (t, ζ) as the water velocity and B(t, ζ) as the

depth of the sediment layer above the channel bottom, the dynamics of the

system can be described as the equations below:

∂H

∂t
+ V

∂H

∂ζ
+H

∂V

∂ζ
= 0

∂V

∂t
+ V

∂V

∂ζ
+ g

∂H

∂ζ
+ g

∂B

∂ζ
= gSb − Cf

V 2

H
∂B

∂t
+ aV 2∂V

∂ζ
= 0

(4.1)

As shown in [90], this system can be linearized around a steady-state and the

Cardano-Vieta method can be applied to rewrite it in the characteristic form,

which can be llustrated in Figure 4.1.
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α1

α1 σ12

β2

σ21

β1

ν(ζ, t)

x1(ζ, t)

x2(ζ, t)

u(t)

q2

q1

ρ2

ρ1

ζ = 0 ζ = 1

Figure 4.1: PDE system (Equation (4.2)) representation.

This linearized system is given by the following coupled system of first-order

hyperbolic partial differential equations, in the domain {t ∈ ℜ+, ζ ∈ [0, 1]},
with t representing time and ζ representing the dimensionless spatial variable:

∂ν

∂t
= µ

∂ν

∂ζ
+α1ν +β1x1 +β2x2

∂x1
∂t

=−γ1
∂x1
∂ζ

+α1ν +σ11x1 +σ12x2

∂x2
∂t

=−γ2
∂x2
∂ζ

+α1ν +σ21x1 +σ22x2

(4.2)

ym(t) = ν(0, t)

y(t) = x1(1, t)

With the following algebraic boundary conditions:

ν(1, t) = ρ1x1(1, t) + ρ2x2(ζ = 1, t) + u(t)
x1(0, t) = q1ν(0, t)
x2(0, t) = q2ν(0, t)

(4.3)

These linear hyperbolic PDEs represent the transport of x(ζ, t) = [ν, x1, x2 ]
T

∈ L2(0, 1) (a real Hilbert space); γ1, γ2 and µ are the system’s characteristics

velocities; σij for i = 1, 2 and j = 1, 2, α1, β1 and β2 are the parameters

representing the in-domain interaction between the state variables; and ρ1,

ρ2, q1 and q2 are parameters representing the interaction on the boundaries.

All these parameters are obtained from the characteristic form of the SVE

model [90].
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Usually, the openings of the gates located at the ends of the channel can be

controlled to achieve the stabilization of the water level and flow rate. Thus,

u(t) ∈ ℜ (a real finite space), the system input, is considered to be control

of the downstream gate, represented by the boundary actuation at ζ = 1,

shown in (4.3). Measurements at the upstream (ζ = 0) are considered to be

the system measured output ym(t) ∈ ℜ and are used to reconstruct the states

with a Luenberger observer. The system desired system output y(t) ∈ ℜ
is related to the properties of the water downstream. There are no direct

measurements of this output and the regulator aim is to control it as desired.

Thus, this system output should properly follow a predetermined pattern if

the regulator is properly designed.

This system can be represented as an abstract differential equation:

ẋ(t) = Ax(t) +Bu(t)
ym(t) = Cmx(t)
y(t) = Cx(t)

(4.4)

where A is a linear operator L(L2(0, 1), L2(0, 1)), B is the linear input operator

L(ℜ, L2(0, 1)), Cm is the measured output operator L(L2(0, 1),ℜ) and C is the

desired output operator L(L2(0, 1),ℜ).
In this contribution, the goal is to achieve proper tracking of a reference

signal, while maintaining the system stability. It is considered that the ref-

erence signal yr(t) ∈ ℜ to be tracked by the system output y(t) is generated

as the output of a known finite-dimensional exogenous system (also called

exosystem), which is independent from the system (the exosystem affects the

system dynamics, but not the other way around) and is defined as the following

throughout this work:

ż(t) = Sz(t), t > 0, z(0) ∈ Re (4.5a)

yr(t) = Qz(t), t ≥ 0 (4.5b)

where the matrix S : D(S) : Re → Re gives the dynamics of the exosystem

states and Q is a matrix that gives the desired output tracking signal yr(t).

Assumption 4.1 : The reference signal consists of periodic and polynomial

functions, such that the exosystem dynamics can be represented in the following
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form:

S =

[
J1 0
0 J2

]
, J1 =




0 1 0 . . . 0
0 0 1 . . . 0
0 0 0 . . . 0...
...
...
. . .

...
0 0 0 . . . 0


 , J2 =




0 f1 0 0 . . .

−f1 0 0 0 . . .
0 0 0 f2 . . .
0 0 −f2 0 . . ....

...
...

...
. . .


 (4.6)

notice that J1 and J2 are decoupled block matrices and it is assumed that each fi

is unique. J1 generates a polynomial signal and the size of J1 (n1) determines

the polynomial degree. J2 generates a linear combination of periodic function,

where each fi is responsible for a function with different periodicity. Therefore,

the size of J2 will be n2, and it is an even number.

Remark 4.1 : The block matrix J1 has all eigenvalues equal zero (i.e., σ(J1) =

0) with multiplicity equal to the size of the matrix. J2 on the other hand has

conjugated complex eigenvalues σ(J2) = {±fij}. Therefore, the spectra of S in

Equation (4.5) is σ(S) = σ(J1) ∪ σ(J2) = {0,±fij}. Due to their structures,

J1 is a Jordan block, while J2 is a diagonal block matrix and its eigenvectors

are filled with zeros in all rows except in the ones that correspond to each fi.

The elements in these rows will be [1, −j]T and [1, +j]T for the corresponding

±fij eigenvalues.
This exosystem will generate a linear combination of a polynomial (

∑n1

i=0

ait
i from J1) and periodic functions with frequencies fi (

∑n2/2
i=0 bi sin(fit) + ci

cos(fit) from J2), andQ = [Q1, Q2 ] = [Q1,1, . . . , Q1,n1 , Q2,1, . . . , Q2,n2 ] and the

initial conditions z(0) are defined accordingly to match the desired tracking

signal. Without loss of generality, one can extend the ensuing design to the

case when the exosystem is infinite dimensional [86].

In this contribution, an exosystem that generates a first-order polynomial

in combination a periodic signal with one frequency is considered. Therefore,

the desired reference signal (yr(t)) has a general form given by:

yr(t) = Q1,1z1(0) + (Q1,2 +Q1t)z2(0)︸ ︷︷ ︸
J1

+

[Q2,1 cos(ft)−Q2,2 sin(ft)] z3(0) + [Q2,2 cos(ft) +Q2,1 sin(ft)] z4(0)︸ ︷︷ ︸
J2

(4.7)

with:

J1 =
[
0 1
0 0

]
, J2 =

[
0 f
−f 0

]
(4.8)
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The tracking error e(t) is defined as the difference between the system

output and the tracking signal:

e(t) = y(t)− yr(t) (4.9)

In the continuous-time setting the regulation problem can be defined as

finding a regulator of the form:

u(t) = K[x(t)] + Lz(t) (4.10)

where K(·) is the linear feedback gain operator L(L2(0, 1),ℜ) that is used to

stabilize the system and L is the feedforward gain L(Re,ℜ) that guarantees

proper tracking of the desired signal. Therefore, the regulator should guarantee

the following conditions:

� The closed-loop system is exponentially stable;

� For the closed-loop system, the tracking error e(t → ∞) = 0,∀x(0) ∈
X, z(0) ∈ ℜe;

4.2.1 System Properties

Linearized System Stability

The system stability can be determined by the analysis of the eigenvalue prob-

lem Aψ(ζ) = λψ(ζ), where ψ(ζ) are the eigenvector of the system, in this case

given by ψ(ζ) =
[
ψ1(ζ), ψ2(ζ), ψ3(ζ)

]T
, where ψi(ζ) are the eigenfunctions,

and λ is the system eigenvalues.

Lemma 4.1 : The eigenvalues of the system given by Eq. 4.2 are the solution

of the following non-linear equation:

c(λ) = q1 [M31(1, λ)− ρ1M11(1, λ)− ρ2M21(1, λ)]

+q2 [M32(1, λ)− ρ1M12(1, λ)− ρ2M22(1, λ)]

+ [M33(1, λ)− ρ1M13(1, λ)− ρ2M23(1, λ)] = 0

(4.11)

where Mij are the elements of the exponential matrix given by eV
−1(A∗−λI)ζ,

where V is a matrix with the system velocities and A∗ is the matrix with the

in-domain coupling coefficients.
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Proof: The operator A can be written as A = −V ∂ζ+A∗, where V is a ma-

trix with the system velocities and A∗ is a matrix with the in-domain coupling

coefficients. For the particular system considered (given in Equation (4.2)):

V =



−µ 0 0
0 γ1 0
0 0 γ2


 ;A∗ =



α1 β1 β2
α1 σ11 σ12
α1 σ21 σ22


 (4.12)

Therefore, the eigenvalue problem can be written as:

−V ∂ζψ(ζ) + A∗ψ(ζ) = λψ(ζ) =⇒ ∂ζψ(ζ) = V −1(A∗ − λI)ψ(ζ) (4.13)

which has the following general solution:

ψ(ζ) = eV
−1(A∗−λI)ζψ(ζ = 0) (4.14)

with:

eV
−1(A∗−λI)ζ =



M11(ζ, λ) M12(ζ, λ) M13(ζ, λ)
M21(ζ, λ) M22(ζ, λ) M23(ζ, λ)
M31(ζ, λ) M32(ζ, λ) M33(ζ, λ)


 (4.15)

Finally, applying the boundary conditions of Equations (4.3)–(4.14) with

the definition given in Equation (4.15), the non-linear equation shown in Equa-

tion (4.11) is obtained.

In this contribution, the system parameters as shown in Table 4.1 are

considered. For these values, the eigenvalue distribution is shown in Figure

4.2. With the values considered, it is possible to conclude that the steady-

state considered generates an unstable linearized system. Furthermore, it has

an infinity number of unstable eigenvalues, which would not be easily stabilized

with techniques generally used for linear finite systems, such as pole-placement.

Table 4.1: Values of the parameters considered.
Parameter Value Parameter Value

q1 = q2 1 ρ1 = ρ2 0.5
σ11 = σ21 = β1 0.2 σ12 = σ22 = β2 0.05

α1 0.1 µ 2
γ1 0.5 γ2 1
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Figure 4.2: System eigenvalue distribution for the parameters given in Table
4.1.

Resolvent and Transfer Function

In this section, the system’s resolvent and transfer function are derived, as

they will be used in the following sections. The resolvent is used to generate

the discrete representation of the system, shown in Section 4.4.1. The transfer

function and the resolvent are also necessary to solve the Sylvester equations

related to the output regulation problem, defined in Section 4.3.2.

Lemma 4.2 : The system resolvent is given by:

X(ζ, s) =

eV
−1(A∗−sI)ζ

{[q1
q2
1

]
1
c(s)

∫ 1

0

[g1(1− η, s)g2(1− η, s)g3(1− η, s)] x̄0(η)dη

+

∫ ζ

0

e−V
−1(A∗−sI)ηV −1x̄0(η)

}

︸ ︷︷ ︸
(sI−A)−1x̄0

(4.16)

with gi(1 − η, s) = ρ1M1,i(1 − η, s) + ρ2M2,i(1 − η, s) − M3,i(1 − η, s),

with Mj,i defined as in Equation (4.14) and c(s) is the same function given in

Equation (4.11) (as expected, if s = λ, (sI−A)−1 does not exist). (sI−A)−1B
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and the system transfer function are:

X(ζ, s) = eV
−1(A∗−sI)ζ



q1
q2
1


 1

c(s)

︸ ︷︷ ︸
(sI−A)−1B

U(s);

G(s) =
Y (s)

U(s)
= C(sI − A)−1B = 1

c(s)

(4.17)

Pooof: By applying Laplace Transform in the system defined by Equa-

tion (4.4), the following system is obtained:

{
X(s)− x0 = AX(s) +BU(s)
Y (s) = CX(s)

(4.18)

Using the fact that A(·) = −V ∂ζ(·) + A∗(·) gives the general solution as:

X(ζ, s) = eV
−1(A∗−λs)ζX(s, ζ = 0) +

∫ ζ
0
V −1eV

−1(A∗−λs)(ζ−η)x0(η)dη (4.19)

By applying the boundary conditions shown in Equation (4.3), the general

solution can be written as X(ζ, s) = (sI − A)−1x0 + (sI − A)−1BU(s) where

the operator (sI − A)−1 and the function (sI − A)−1B are the ones shown in

Equations (4.16) and (4.17), respectively.

4.3 Continuous Time Regulator Design

First, the regulator in the continuous time setting is considered, as represented

in Figure 4.3. It is necessary to find a control law that guarantees the closed-

loop stability and proper output tracking using only the measured output

information provided by the plant.
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˙̂x(t) = Ax̂(t) +Bu(t) + LO [y(t)− ŷ(t)]

x̂(t = 0), ẑ(t = 0)

˙̂z(t) = Sẑ(t) + Le [yr(t)− ŷr(t)]

u(t) = Kx̂(t) + Lẑ

Controller

ẋ(t) = Ax(t) +Bu(t)

x(t = 0), z(t = 0)

ż(t) = Sz(t)

u(t)
Plant

y(t)

yr(t)

Figure 4.3: Continuous closed-loop representation.

4.3.1 System Stabilization

The first part of the controller is designed to guarantee the closed-loop stability

of the system given by Equation (4.2) or, in a general form, by Equation (4.4),

such that:

u(t) = Kx(t) + r(t) (4.20)

Which leads to a stable closed-loop system:

ẋ(t) = (A+BK)x(t) +Br(t) = Āx(t) +Br(t)
y(t) = Cx(t)

(4.21)

Thus, it is desired to find a proper operator K(·) that achieves closed-

loop stabilization (Ā = A+BK is stable). To obtain closed-loop stability for

the PDE system, backstepping is applied, as it was developed in [90] for

continuous-time setting and it is shown in Appendix 4.A. Although other

methods could be applied to ensure the closed-loop stability [87]–[89], the

backstepping methodology has been used for boundary control, as it maps the
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closed-loop system to a stable desired target system. Specifically for systems

of hyperbolic PDEs, finite-time stabilization of the closed-loop system can be

achieved by choosing a target system with this type of stability [95]. The fol-

lowing control law is able to map the closed-loop system into the stable target

system (given by Equation (4.86)):

u(t) = K[x(t)] + r(t) = −ρ1x1(t, ζ = 1)− ρ2x2(t, ζ = 1)

+e−
α1
µ

∫ 1

0

[
K1(1, η)e

α1
µ
ην(η, t) +K2(1, η)x1(η, t) +K3(1, η)x2(η, t)] dη + r(t)

(4.22)

where the integral kernels (Ki(ζ, η)) need to satisfy the system of hyperbolic

PDEs given by Equation (4.85).

Remark 4.2 : The target system shown in Equation (4.86) can be represented

in a general form as:
˙̃x(t) = Ãx̃(t) + B̃r′(t)

y(t) = C̃x̃(t)
(4.23)

If the transformation T shown in Equation (4.84) exists, then the closed loop

system (A + BK) can be transformed in the target system. Therefore, the

transformation is such that x̃(t) = Tx(t) and x(t) = T−1x̃(t), and, finally,

T (A + BK)T−1 = Ã. From linear algebra, the following properties of the

transformation of a linear system are guaranteed:

σ(A+BK) = σ(Ã) (4.24a)

[sI − (A+BK)]−1 (·) = T−1
[
(sI − Ã)−1

]
T (·) (4.24b)

[sI − (A+BK)]−1B = T−1
[
(sI − Ã)−1

]
TB = T−1

[
(sI − Ã)−1

]
B̃

(4.24c)

GCL(s) = C [sI − (A+BK)]−1B = CT−1
[
(sI − Ã)−1

]
TB =

C̃
[
(sI − Ã)−1

]
B̃ = G̃(s)

(4.24d)

Therefore, the closed-loop will be stable if the target system is stable (and

the transformation T and its inverse exist).

Lemma 4.3 : The closed-loop system will reach the origin in a finite-time of

t = ts = ϕ1 + ϕ2, with ϕ1 =
1
µ
and ϕ2 = max

{
1
γ1
, 1
γ2

}
and r(t) = 0.
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Proof: From the linear properties shown in Remark 4.2, it is important

to notice that the closed-loop dynamics will not necessarily be exactly the

same as the target system. But, due to the structure of the target system

shown in Equation (4.86), it is easy to see that if r(t) = 0, then r′(t) = 0

and W (ζ, t > ϕ1) = 0,∀ζ ∈ [0, 1], with ϕ1 = 1
µ
. This also implies that

X1(0, t > ϕ1) = X2(0, t > ϕ1) = 0 due to the boundary conditions, which

finally leads to X1(ζ, t > ϕ1 + ϕ2) = X2(ζ, t > ϕ1 + ϕ2) = 0,∀ζ ∈ [0, 1],

where ϕ2 = max
{

1
γ1
, 1
γ2

}
. Therefore, the target system will reach steady-state

(x̃(ζ, t) = 0) in a finite-time of t = ts = ϕ1 + ϕ2. Due the transformation T ,

the closed-loop states will be x(t) = T−1x̃(t)), thus x(ζ, t) = 0,∀ζ ∈ [0, 1] for

t ≥ ts.

Thus, the control law given in Equation (4.22) will stabilize the PDE system

in a finite-time ts. With the system stabilized, it is expected that system’s

properties (such as the resolvent, and consequently, the transfer function) will

change in the closed-loop.

Lemma 4.4 : The closed-loop resolvent is given by:

(sI − Ā)−1(·) =
{
(sI − A)−1+

(sI − A)−1B
[
I −K(sI − A)−1B

]−1
K(sI − A)−1

}
(·)

(4.25)

which leads to the closed-loop transfer function as:

Ḡ(s) = C(sI − Ā)−1B =

G(s)
{
I +

[
I −K(sI − A)−1B

]−1
K(sI − A)−1B

} (4.26)

Proof: The closed-loop resolvent is obtained as follows:

(sI − Ā)−1(·) = (sI − A−BK)−1(·) = (sI − A)−1
[
I −BK(sI − A)−1

]−1

(4.27)

And applying Woodbury identity to the term in brackets gives the resolvent

shown in Equation (4.25). By using the definition of the open-loop transfer

function (G(s) = C(sI − A)−1B), Equation (4.26) is easily obtained.

Therefore, by knowing (sI − A)−1B and the feedback control gain K,

it is possible to easily calculate the closed-loop properties. Although Equa-

tions (4.25) and (4.26) might seem to increase the complexity on finding the
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closed-loop properties, control laws as given in Equation (4.22) will result in

a integral equation if one tries to calculate these properties directly.

4.3.2 Output Regulation

The last step in the design of the regulator in the continuous-time setting

is finding the feedforward gain L that achieves proper tracking of the signal

generated by the exosystem states (z(t)) given by Equations (4.5) and (4.6).

The control law obtained after taking the feedforward gain L into account is

given by Equation (4.10)

u(t) = Kx(t) + Lz(t) (4.28)

Lemma 4.5 : The proper output regulation can be easily achieved by solving

the following Sylvester equation:

ΠS = ĀΠ+BL = (A+BK)Π +BL
CΠ = Q

(4.29)

Proof: First, the error er(t) = x(t)− Πz(t) is defined, and, considering that

u(t) = K [x(t)] + r(t), taking the time derivative gives :

ėr(t) = ẋ(t)− Πż(t) = (A+BK)x(t)− ΠSz(t) +Br(t) (4.30)

If we consider that there is a feedforward gain L, such that r(t) = Lz(t),

and by adding and subtracting (A+BK)Πz(t):

ėr(t) = (A+BK) [x(t)− Πz(t)] + [(A+BK)Πz(t)− ΠSz(t) +BLz(t)]

(4.31)

And by making the term in the second bracket equal zero:

ėr(t) = (A+BK)er(t) (4.32)

which generates a stable system if Equation (4.29) holds. Notice that the

tracking error e(t), defined in Equation (4.9), will be:

Cer(t) = Cx(t) + CΠz(t) = y(t)− yr(t) + [CΠz(t)−Qz(t)] (4.33)

Therefore, if CΠ = Q, then Cer(t) = e(t), and, as er(t) is stable, e(t) will

decrease and proper tracking is achieved.
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Remark 4.3 : From Remark 4.2 and Lemma 4.3, it is possible to say that

er(t) is going to reach the origin at a finite time ts. Thus, y(t) = yr(t) for

t > ts, as e(t) = Cer(t) = 0 for t > ts. Also, as er(t) = 0 for t > ts,

x(t) = Πz(t) and Π can be recognized as a mapping between the system states

and the exosystem states when proper tracking is achieved.

Remark 4.4 : Due to the exosystem structure defined in Assumption 4.1, the

Sylvester equation shown in Equation 4.29 can be separated in two different sets

of equations and solved separately.

Lemma 4.6 : Considering the same number of inputs as of outputs, the so-

lution for the first set of Sylvester equations will be:

L1,i =
[
Ḡ1(0)

]−1

[
Q1,i +

i−1∑
j=1

(−1)i−(j−1)Ḡi−(j−1)(0)L1,j

]

Π1,i =
i∑

j=1

(−1)i−j
[
(0− Ā)−1

]i−(j−1)
BL1,j

(4.34)

for i = 1, ..., n1, where L1 = [L1,1, . . . , L1,n1 ], Π1 = [Π1,1, . . . ,Π1,n1 ] and

Ḡk(0) = C
[
(0− Ā)−1

]k
B, such that Ḡ1(0) = C

[
(0− Ā)−1

]
B = Ḡ(0). And

for the second set of equations, the solution will be:

L2,2i−1 = Re
[
Ḡ(fij)

−1
]
Q2,2i−1 − Im

[
Ḡ(fij)

−1
]
Q2,2i

L2,2i = Re
[
Ḡ(fij)

−1
]
Q2,2i + Im

[
Ḡ(fij)

−1
]
Q2,2i−1

Π2,2i−1(ζ) = Re
[(
fijI − Ā

)−1
B
]
L2,2i−1 − Im

[(
fijI − Ā

)−1
B
]
L2,2i

Π2,2i(ζ) = Re
[(
fijI − Ā

)−1
B
]
L2,2i + Im

[(
fijI − Ā

)−1
B
]
L2,2i−1

(4.35)

for i = 1, ..., n2/2, where L2 = [L2,1, . . . , L2,n2 ] and Π2 = [Π2,1, . . . ,Π2,n2 ].

Proof: For the first set of Sylvester equation it is easy to see that due to the

structure of J1 considered in Assumption 4.1, the following relation must hold:

Π1,i = ĀΠ1,i+1 +BL1,i+1 (4.36)

for i = 1, ..., n1 − 1 and with 0 = ĀΠ1,1 +BL1,1. Applying (0− Ā)−1 on both

sides and isolating Π leads to:

Π1,i+1 = −(0− Ā)−1Π1,i + (0− Ā)−1BL1,i+1 (4.37)
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with Π1,1 = (0− Ā)−1BL1,1, which recursively leads to Π1,i in Equation (4.34).

Applying C in both sides of this last equation, taking into account that CΠ1,i =

Q1,i and isolating for L1,i leads to the result shown in (4.34).

For the second set of Sylvester equations, first, both sides of the equation

are multiplied by the eigenvector of J2, and taking into account that J2ϕJ2 =

λJ2ϕJ2 leads to:

Π2J2ϕJ2 = Π2λJ2ϕJ2 = ĀΠ2ϕJ2 +BL2ϕJ2 (4.38)

From Remark 4.1, the eigenvectors of J2 are all null except at the corre-

sponding row of ±fij, with i = 1, ..., n2/2. Therefore:

Π2ϕJ2 =
(
λJ2I − Ā

)−1
BL2ϕJ2

[Π2,2i−1 Π2,2i] [1 j]T =
(
fijI − Ā

)−1
B [L2,2i−1 L2,2i] [1 j]T

(4.39)

and the equivalence of the complex numbers from both sides of the equations

gives the solution for Π2,2i−1 and Π2,2i. Applying C in both sides, knowing

that CΠ2,i = Q2,i gives the results shown in Equation (4.35).

Remark 4.5 : From the solution shown in Lemma 4.6, it is possible to con-

clude that the solutions of the Sylvester equations Π exist if σ(Ā) ̸= σ(S) =

σ(J1) ∪ σ(J2), such that Ḡ(λS) ̸= ∞. In a similar way, for the feedforward

gains L to exist the eigenvalues S must not be a zero of the transfer function,

as the inverse of the transfer function must exist (which means that Ḡ(λS) ̸= 0,

such that L exist in Equations (4.34) and (4.35)).

For the exosystem shown in Equation (4.8), the solution of the Sylvester

equations will be L = [L1,1L1,2L2,1L2,2 ] and Π = [Π1,1Π1,2Π2,1Π2,2 ], given

by:

L1,1 = Ḡ(0)−1Q1,1

Π1,1(ζ) =
(
0− Ā

)−1
BL1,1

L1,2 = Ḡ(0)−1
[
Q1,2 + Ḡ2(0)L1,1

]

Π1,2(ζ) = −
(
0− Ā

)−1 (
0− Ā

)−1
BL1,1 +

(
0− Ā

)−1
BL1,2

(4.40)

and:

L2,1 = Re
[
Ḡ(f j)−1

]
Q2,1 − Im

[
Ḡ(f j)−1

]
Q2,2

L2,2 = Re
[
Ḡ(f j)−1

]
Q2,2 + Im

[
Ḡ(f j)−1

]
Q2,1

Π2,1(ζ) = Re
[(
f jI − Ā

)−1
B
]
L2,1 − Im

[(
f jI − Ā

)−1
B
]
L2,2

Π2,2(ζ) = Re
[(
f jI − Ā

)−1
B
]
L2,2 + Im

[(
f jI − Ā

)−1
B
]
L2,1

(4.41)
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4.3.3 System Observer Design

The control law defined in Equation (4.22) needs a fullstate feedback measure-

ment across the whole domain. As this is generally not practical or viable, in

this section the observer design for thesystem shown in Equations (4.2) and

(4.3) is considered. The observer dynamics will be given by the following set

of PDE’s:




∂ν̂

∂t
= µ

∂ν̂

∂ζ
+ α1ν̂ + β1x̂1 + β2x̂2 + e−

α1
µ
ζl1(ζ) [ym(t)− ν̂(ζ = 0)]

∂x̂1
∂t

= −γ1
∂x̂1
∂ζ

+ α1ν̂ + σ11x̂1 + σ12x̂2 + l2(ζ) [ym(t)− ν̂(ζ = 0)]

∂x̂2
∂t

= −γ2
∂x̂2
∂ζ

+ α1ν̂ + σ21x̂1 + σ22x̂2 + l3(ζ) [ym(t)− ν̂(ζ = 0)]

ν̂(1, t) = ρ1x̂1(1, t) + ρ2x̂2(1, t) + u(t)

x̂1(0, t) = q1ym(t)

x̂2(0, t) = q2ym(t)

(4.42)

where x̂(ζ, t) = [ ν̂ x̂1 x̂2 ]
T ∈ L2(0, 1) are the reconstructed states and li(ζ)

are the in-domain observer gains. Similarly to the system stabilization shown

in Section 4.3.1 and Appendix 4.A, the backstepping methodology is used

once again to find the appropriate gains for the observer. Other techniques

could be used, but, once again, the backstepping methodology can be used to

ensure finite-time convergence of the observer states to the system states. The

derivation of the observer gains are shown in Appendix 4.B.

The observer dynamics can be written in a general state-space representa-

tion as:

˙̂x(t) = Âx̂(t) + Lo,1 [y(t)− Cmx̂(t)] + Lo,2 [y(t)] +Bu(t) =
˙̂x(t) = Âx̂(t) + Lo,1Cm [x̄(t)− x̂(t)] + Lo,2Cm [x̄(t)] +Bu(t)

(4.43)

where Lo,1 is related to the in-domain observer gains and Lo,2 is related to

the boundary observer gains shown in Equation (4.88). Although Â has the

same in-domain operators as A, it has different boundary conditions, such that

A = Â+ Lo,2Cm.

Lemma 4.7 : The system observer error will reach the origin in a finite-time

of t = to = ϕ2 + ϕ1, with ϕ2 = max
{

1
γ1
, 1
γ2

}
and ϕ1 =

1
µ
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Proof: Due to the structure of the target system shown in Equation (4.91),

it is easy to see that ẽ1(ζ = 0, t > ϕ2) = ẽ2(ζ = 0, t > ϕ2) = 0,∀ζ ∈ [0, 1],

with ϕ2 = max
{

1
γ1
, 1
γ2

}
. This also implies that ẽ3(ζ = 0, t > ϕ2) = 0 due

to the boundary condition. Finally, ẽ3(ζ, t > ϕ1 + ϕ2) = 0,∀ζ ∈ [0, 1], where

ϕ1 = 1
µ
. Therefore, the observer error target system will reach the origin

(ẽ(ζ, t) = 0) in a finite-time of t = to = ϕ2 + ϕ1. As backstepping is just

a linear transformation of the observer error, such that the original observer

error is related to the target system by ê = T−1ẽ(t), ê(t) = 0,∀ζ ∈ [0, 1] for

t ≥ to.

4.3.4 Exosystem Observer

If the exosystem dynamics is known, but its states are not available, it is

possible to reconstruct the states using the reference signal yr(t). As the

exosystem considered here is a finite system (as shown in Equations (4.5) and

(4.6)), the following observer is considered:

˙̂z(t) = Sẑ(t) + Le [yr(t)−Qẑ(t)] = Sẑ(t) + LeQ [z(t)− ẑ(t)] (4.44)

where ẑ is the estimated exosystem state and Le is the observer gain to be

defined. The exosystem observer error is given by êe(t) = z(t) − ẑ(t) and its

dynamics will be:

˙̂ee(t) = (S − LeQ)êe(t) (4.45)

If (S,Q) is detectable, then it is possible to guarantee the reconstruction of

the significant exosystem states and stabilization can be achieved by using

pole-placement.

Exosystem Finite-Time Observer

The observer design from the previous section attains stabilization in a expo-

nential matter. Here, the finite-time observer is considered to obtain a faster

estimation of the exosystem observer. This kind of stabilization was shown

in [98] and used in [99]. For this design, two exosystem observers (ẑ1 and ẑ2)

with different observer gains (Le,1 and Le,2) are considered and the redundant

information from this two observers can be used in combination with previous
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information to get the estimation to converge in a finite-time. This observer

equations are given as:

ẑF (t) =
[
I 0

] [I e(A−Le,1Q)DF

I e(A−Le,2Q)DF

]−1([
ẑ1(t)
ẑ2(t)

]
−
[
e(A−Le,1Q)DF ẑ1(t−DF )
e(A−Le,2Q)DF ẑ2(t−DF )

])

(4.46)

where ẑF (t) is the estimation given by the finite-time observer, DF is the time

delay used, e(A−Le,iQ)DF is the exponential matrix and I is the identity matrix.

With this observer design, ẑF (t) is guaranteed to converge to z(t) when t > DF

as shown in [98].

4.4 Discrete Time Regulator Design

The discrete regulator design is considered in this section. It is necessary

to find a control law for the discrete system that guarantees the closed-loop

stability and proper output tracking. Figure 4.4 represents the closed-loop

controller for the discrete setting. The closed-loop begins at the controller,

where the initial condition for the system and exosystem observers (x̂k=−1 and

ẑk=−1) are used to calculate the first control action uk=0. Then, the action is

applied to the plant and the system measured output and the reference signal

from the exosystem become available (yk=0 and yr,k=0). These output are used

to estimate the system and exosystem states in the observer (x̂k=0 and ẑr,k=0).

Finally, the estimates are used in the control law to calculate the next input

(u1) and the process is repeated.
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x̂k = Adx̂k−1 +Bduk + LOd,1 [yk − ŷk] + LOd,2yk

x̂k=−1, ẑk=−1

ẑk = Sdẑk−1 + Led [yr,k − ŷr.k]

uk = Kd [x̂k + x̂k−1] + Ldẑ

Controller

xk = Adxk−1 +Bduk

xk=−1, zk=−1

zk = Sdzk−1

uk
Plant

yk

yr,k

Figure 4.4: Discrete time closed-loop representation.

The control law used to ensure the system stability and proper signal track-

ing is similar to the regulator equation shown in Equation (4.10) for the con-

tinuous setting considering fullstate feedback:

uk = Kdxk−1 + Ldzk−1 (4.47)

where the first part of the right side of the control law represents the feedback

control used to guarantee the system stability. The second part is responsible

for the output tracking and Ld is a matrix that needs to be found to ensure

proper output tracking.

The discrete output tracking error can be defined as:

ek = yk − yr,k (4.48)

Similar to the controller in the continuous time setting, the discrete regu-

lator should guarantee:

� The closed-loop system is stable;
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� For the closed-loop system, the tracking error ek(k → ∞) = 0,∀xk=0 ∈
X, zk=0 ∈ R;

Before addressing the discrete regulator design, first the proper discrete

representation of the system is considered.

4.4.1 Discrete Representation

Given the system defined in Equation (4.4), one can apply a structure pre-

serving time discretization of the dynamical system. By the application of

the Crank-Nicolson midpoint integration rule, and with the assumption of

piecewise constant input within the sampled intervals, the Cayley-Tustin time

discretization transformation is achieved [28]. The obtained discrete system is

represented as:
xk = Adxk−1 +Bduk

yk = Cdxk−1 +Dduk

ym,k = Cm,dxk−1 +Dm,duk

(4.49)

where δ = 2/∆t, Ad, Bd, Cd, Dd, Cm,d and Dm,d are the discrete time system

operators and are given by:


Ad(·) Bd

Cd(·) Dd

Cm,d(·) Dm,d


 =



−I + 2δ (δI − A)−1 (·)

√
2δ (δI − A)−1B√

2δC (δI − A)−1 (·) C (δI − A)−1B√
2δCm (δI − A)−1 (·) Cm (δI − A)−1B


 (4.50)

and (δI − A)−1 = R(δ, A) is defined as the resolvent operator of the oper-

ator A, which can be found in Equation (4.16), (δI − A)−1B and G(δ) =

C (δI − A)−1B were defined in Equation (4.17) for the specific system consid-

ered.

The operators given by Equation (4.50) are all compact and well-defined

and the issue of boundary (point) actuation or/and observation does not in-

duce mathematical difficulties which are associated with the continuous coun-

terparts, usually leading to unboundness of the boundary (point) actuation

and/or observation.

Assumption 4.2 : A small enough value of ∆t is used such that the discrete

time representation of the system shown in Equation (4.49) is a good approx-

imation of the open-loop system internal dynamics and input/output relation.
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Assumption 4.2 presumes there is a large enough δ (small enough ∆t) such

that the discretization can be applied to unstable systems as well [100] and

is necessary for the development of the discrete regulator in the following ses-

sions. For an unstable open-loop system, the following lemma gives an interval

for which the discrete representation might be a good approximation of the

system:

Lemma 4.8 : In the case of an unstable system, the discrete system (Ad, Bd,

Cd, Dd) will not be a good discrete approximation of the system (A,B,C,D)

if ∆t > 2
s(A)

, where s(A) = sup{Re z : z ∈ σ(A)}.
Proof: For a stable system, s(A) < 0 (all eigenvalues are negative), thus,

as δ = 2
∆t

and ∆t > 0, (δI − A)−1 exists for any value of ∆t. For an unstable

system, s(A) > 0, there will be at least one unstable eigenvalue with a pos-

itive real part. If this eigenvalue is real, δ → s(A) and (δI − A)−1 → ∞, if

∆t→ 2
s(A)

. As the discrete operators shown in Equation (4.49) depend on the

resolvent, ∆t ≥ 2
s(A)

will not result in a good discrete approximation. If the

eigenvalue is complex, the Spectral Mapping Theorem can give an insight on

the behavior of the discrete eigenvalue. If there exists a exact discrete repre-

sentation of A, it’s largest eigenvalue will be λd,E = e
2
δ
λs , such that λs = a+ bj

and Reλs = a = s(A). For the Cayley-Tustin transformation, this relation is

given by λd,CT = δ+λs
δ−λs . If we calculate the modulus of these eigenvalues, we

get:

||λd,E|| = e
2a
δ ; ||λd,CT || =

√
1 +

4aδ + ||λs||2
δ2 − 2aδ + ||λs||2

(4.51)

As expected, if ∆t → 0, δ → ∞ and ||λd,CT || → ||λd,E||. Taking the

derivative with respect to δ yields:

∂||λd,E||
∂δ

=
−2a

δ2
e

2a
δ ;

∂||λd,CT ||
∂δ

=
2a(||λs||2 − δ2)

(||λs||2 − 2aδ + δ2)2||λd,CT ||
(4.52)

For the exact representation, the value of the discrete eigenvalues will

decrease as δ increases (i.e., ∆t decreases). For the Cayley-Tustin trans-

formation it is possible to see that the function will have an turning point

at (δ)Turn = ||λs|| or (∆t)Turn = 2
||λs|| . If δ = 2

∆t
= s(A) ≤ ||λs||, then
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∆t > (∆t)Turn and the functions have different responses, i.e., ||λd,E|| is in-

creasing as ∆t increases, but ||λd,CT || will decrease past the turning point.

Thus, ∆t ≥ 2
s(A)

will not generate a good discrete approximation of the sys-

tem.

Similar to the controller design in the continuous time setting, first the sta-

bilization of the system in the discrete time setting given by Equations (4.49)

and (4.50) is addressed.

4.4.2 Discrete System Stabilization

The design of the discrete regulator is considered in this section. First, it is

shown in Lemma 4.9 that the discrete system can be stabilized.

Lemma 4.9 : If K in the continuous time setting is able to stabilize the

system, then there is a corresponding Kd(·) in the discrete time setting that

ensures the discrete system stability with the control law:

uk = Kdxk−1 (4.53)

with:

Kd =
√
2δ
(
I −K(δI − A)−1B

)−1
K(δI − A)−1 (4.54)

Proof: With the control law considered, the closed-loop discrete system is

given by:

xk = (Ad +BdKd)xk−1 (4.55)

By using the definitions of the operators, the following relation can be

achieved:

xk =
[
− I + 2δ(δI − A)−1

+2δ(δI − A)−1B (I −K(δI − A)−1B)
−1
K(δI − A)−1

]
xk−1

=
{
−I + 2δ(δI − A)−1 [I −BK(δI − A)−1]

−1
}
xk−1 =[

−I + 2δ (δI − A−BK)−1]xk−1

(4.56)

where the Woodbury identity was used to properly manipulate the expres-

sions. The resulting operator is equivalent to the discrete operator obtained

by applying the Cayley-Tustin time discretization in the closed-loop system
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obtained in Section 4.3.1. Using the Cayley-Tustin transformation, the closed-

loop system can be represented in the discrete setting as:

xk = Ādxk−1 =⇒ Ād = −I + 2δ(δI − Ā)−1 = −I + 2δ (δI − A−BK)−1

(4.57)

From [6], [101], it was shown that a stable continuous operator generates a

stable discrete operator, thus, if (A+BK) is stable, then the discrete operator

Ād = −I + 2δ (δI − A−BK)−1 is stable as well. Finally, if the control law

proposed in Equation (4.53) with Kd shown in Equation (4.54), is used, then

the closed-loop discrete operator is equivalent to the operator shown above

and the discrete closed-loop system is stable as well (i.e., Ad +BdKd = Ād).

With the proposed control law, the discrete closed-loop system is given as:

xk = Ādxk−1 +Bdrk

yk = C̄dxk−1 +Ddrk
(4.58)

with:

[
Ād Bd

C̄d Dd

]
=

[
Ad +BdKd Bd

Cd +DdKd Dd

]
=

[[
−I + 2δ (δI − A−BK)−1] Bd√

2δC (Iδ − A−BK)−1 Dd

]

(4.59)

4.4.3 Discrete Output Regulation

After achieving the system stabilization, it is possible to accomplish proper

output tracking. First, the Cayley-Tustin time discretization is applied to the

exosystem, such that the discrete time exosystem is given as:

zk = Sdzk−1

yr,k = Qdzk−1

(4.60)
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with:
Sd = −I + 2δ(δ − S)−1 =




1
2

δ
0 0

0 1 0 0

0 0
δ2 − f 2

δ2 + f 2

2δf

δ2 + f 2

0 0 − 2δf

δ2 + f 2

δ2 − f 2

δ2 + f 2




;

Qd =
√
2δQ (δI − S)−1

(4.61)

Then, it is necessary to find the discrete feedforward gain Ld that is able

to guarantee the proper tracking of the reference signal yr,k. This can be

accomplished by solving the output regulator equations in the discrete-time

setting.

Discrete Regulator Equations

In Section 4.3.2, the regulation equations were solved in the continuous setting.

In this section, the output regulation equations for the discrete time setting are

derived. The following Lemma summarizes the results for the output tracking

if the Cayley-Tustin time discretization is applied.

Lemma 4.10 : If the Cayley-Tustin time discretization is considered, then the

solution of the regulation equation (Sylvester equations) in the discrete setting

is the same as in the continuous setting, i.e., Πd = Π, such that xk = Πd(ζ)zk

when proper tracking is achieved and it is the solution of the following Sylvester

equations in the discrete-time setting:

ΠdSd = ĀdΠd +BdLd

C̄dΠd +DdLd = Qd

(4.62)

with the following relation between L and Ld:

Ld =
√
2δ
(
I −K(δI − A)−1B

)−1
L(δI − S)−1 (4.63)

Proof: The discrete control law that stabilizes the system and ensures the

proper tracking of the discrete signal is given by: with the following relation
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between L and Ld:

uk = Kdxk−1 + Ldzk−1 (4.64)

The discrete error is defined as er,k = xk − Πdzk, which leads to:

er,k = xk − Πdzk = Ādxk−1 +BdLdzk−1 − Πdzk =

Ād [xk−1 − Πdzk−1] +
[
ĀdΠd +BdLd − ΠdSd

]
zk−1

(4.65)

and if the last term in brackets is equal zero, the error system becomes:

er,k = Āder,k−1 (4.66)

which is stable if Ād is stable. This yields the following Sylvester equation:

ΠdSd = ĀdΠd + B̄dLd (4.67)

And the tracking error will be:

ek = yk − yr,k = C̄dxk−1 +DdLdzk−1 −Qdzk−1 =

C̄d [xk−1 − Πdzk−1] +
[
C̄dΠdzk−1 +DdLdzk−1 −Qdzk−1

]
=

C̄dek−1 +
[
C̄dΠd +DdLd −Qd

]
zk−1

(4.68)

which gives the condition:

C̄dΠd + D̄dLd = Qd (4.69)

Lastly, the proof that Πd(ζ) = Π(ζ) for the Cayley-Tustin time discretiza-

tion is derived. First, the discrete Sylvester equation is considered and the

definition of each operator is used:

ΠdSd = ĀdΠd +BdLd =⇒
Πd (δI − S)−1 = (δI − A−BK)−1Πd+

(δI − A)−1B (I −K(δI − A)−1B)
−1
L (δI − S)−1 =⇒

Πd (δI − S)−1 = (δI − A−BK)−1Πd

+(δI − A−BK)−1BL (δI − S)−1 =⇒
(δI − A−BK)Πd = Πd (δI − S) +BL =⇒

ΠdS = (A+BK)Πd +BL

(4.70)
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And for the algebraic condition:

C̄dΠd +DdLd = Qd =⇒
C (δI − A)−1

[
I +B

(
I −K (δI − A)−1B

)−1
K (δI − A)−1

]
Πd+

C
(
I − (δI − A)−1BK

)−1
(δI − A)−1BL (δI − S)−1 =

Q (δI − S)−1 =⇒
C (δI − A)−1 (I −BK (δI − A)−1)−1

Πd

+C (δI − A−BK)−1BL (δI − S)−1 = Q (δI − S)−1 =⇒
C
[
(δI − A−BK)−1Πd + (δI − A−BK)−1BL (δI − S)−1] =

Q (δI − S)−1 =⇒ CΠd (δI − S)−1 = Q (δI − S)−1 =⇒ CΠd = Q

(4.71)

which is the same Sylvester equation and algebraic condition shown in the

continuous-time setting (Equation (4.29)), consequently, Πd = Π.

4.4.4 Discrete System Observer Design

The discrete observer design is considered in this section, as it was developed

in Section 4.3.3 in the continuous time setting. In the continuous setting

(Equation (4.43)), the observer does not have the same operator as the system

(Â is different from A), thus, the discrete observer will also have different

operators Ad, Bd, Cd and Dd when compared to the discrete system. Thus,

the discrete system is observable as well and the discrete observer will take

the following form:

ŷm,k = Ĉm,dx̂k−1 + D̂m,duk + (Mod,1 +Mod,2)yk
x̂k = Âdx̂k−1 + B̂duk + Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k]

(4.72)
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where Bd and yk have been defined previously. The other discrete operators

are given as:
[
Âd(·) B̂d

Ĉm,d(·) D̂m,d

]
=


 −I(·) + 2δ

(
δI − Â

)−1

(·)
√
2δ
[
I + Cm

(
δI − Â

)
Lo,1

]−1

Cm

(
δI − Â

)−1

√
2δ
(
δI − Â

)−1

B
[
I + Cm

(
δI − Â

)
Lo,1

]−1

Cm

(
δI − Â

)−1

B




Mod,1 =
[
I + Cm

(
δI − Â

)
Lo,1

]−1

Cm

(
δI − Â

)−1

Lo,1

Lod,1 =
√
2δ
(
δI − Â

)−1

Lo,1

Mod,2 =
[
I + Cm

(
δI − Â

)
Lo,1

]−1

Cm

(
δI − Â

)−1

Lo,2

Lod,2 =
√
2δ
(
δI − Â

)−1

Lo,2

(4.73)

Notice that Lod,1 and Lod,2 have similar structure to Bd, as the system

measured output ym,k can be considered as an input to the observer as well.

Lemma 4.11 : If the observer gains in the continuous time setting (Lo,1 and

Lo,2) are chosen such that (Â − Lo,1Cm) is stable, then, the discrete observer

given by Equation (4.72) and the operators defined in Equation (4.73) will be

able to reconstruct the states of the discrete system (the discrete observer error

- êk - decreases with time and eventually reaches the origin).

Proof: To prove the observer states convergence to the system states, it

is necessary to analyze the discrete observer error:

êk = xk − x̂k (4.74)

After some algebraic manipulation (shown in Appendix 4.C), the discrete

error can be written as:

êk = (Âd − Lod,1Ĉm,d)êk−1 =

{
−I + 2

[
δI − Â+ Lo,1Cm

]−1
}
êk−1 (4.75)

which is the discrete operator generated by (Â − Lo,1Cm). Thus, if Lo,1 is

chosen such that (Â−Lo,1Cm) is stable, the discrete observer will be stable as

well, as the Cayley-Tustin time discretization cannot map a stable continuous

system to a unstable discrete one.
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4.4.5 Discrete Exosystem Observer Design

The discrete observer design for the exosystem is considered in this section

using the discrete reference signal yr,k. The following finite discrete observer

is considered:
ŷr,k = Q̂dẑk−1 +Medyr,k

ẑk = Sdẑk−1 + Led(yr,k − ŷr,k)
(4.76)

where ẑk is the estimated exosystem state, Sd and Qd have been defined in

Section 4.4.3 (in Equation (4.60)). Led and Med are defined as:

Led =
√
2δ (δI − S)−1 Le

Q̂d =
[
I +Q (δI − S)−1 Le

]−1√
2δQ (δI − S)−1

Med =
[
I +Q (δI − S)−1 Le

]−1
Q (δI − S)−1 Le

(4.77)

Lemma 4.12 : If the exosystem observer gain in the continuous time setting

(Le) is chosen such that (S −LeQ) is stable, then, the discrete observer given

by Equation (4.76) and the operators defined in Equation (4.77) will be able

to reconstruct the states of the discrete exosystem.

Proof: To prove the exosystem observer convergence to the system states,

the discrete error of the exosystem observer is analyzed:

êr,k = zk − ẑk (4.78)

After some algebraic manipulation (shown in Appendix 4.D), the discrete

error can be written as:

êr,k = (Sd − LedQ̂d)êr,k−1 =
{
−I + 2 [δI − S + LeQ]

−1} êr,k−1 (4.79)

which is the operator generated by the discrete representation of (S − LeQ).

Thus, if Le is chosen such that (S − LeQ) is stable, the discrete observer will

be stable as well.

4.4.6 Finite-Time Discrete Exosystem Observer Design

The exosystem discrete dynamics is given by zk = Sdzk−1 and the reference

signal is yr,k = Qdzk−1. If the pair (Sd, Qd) is observable (which can be proved
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by the observability of (S,Q)), then the exosystem states can be estimated in

the discrete setting using the observability matrix:



yr,k
yr,k+1

...
yr,k+e−1


 =




Qd

QdSd
...

QdS
e−1
d


 ẑk−1 = OBSVExoẑk−1 =⇒ ẑk = Sk+1

d ẑk−1

(4.80)

where, OBSVExo is the exosystem observability matrix in the discrete-time

setting. Therefore, after e time steps (and e samples of yr,k) it is possible to

properly estimate zk. For any instance before that, the discrete observer from

Section 4.4.5 can be used.

4.5 Results

In this section, the numerical simulations are shown to demonstrate the appli-

cation of the regulator designed. The system parameters used in the following

results are given in Table 4.1. For the given values the open-loop system is

unstable, as shown in Section 4.2.1. The desired reference signal is given by

the function:

y(t) = 1 + 0.1t+
sin
(
π
2
t
)

2
(4.81)

To generate this signal with the exosystem, the following conditions are

chosen:

Q =
[
1 0 1 0

]
; f =

1

2
; z(0) =

[
1 0.1 0 0.5

]T
(4.82)

First, the simulations for the design of the regulator in the continuous-time

setting are shown.

4.5.1 Continuous Time Regulation

Using the values given in Table 4.1, a numerical simulation was performed in

the continuous time setting to show the system stabilization with the control

law shown in Equation (4.22), in Section 4.3.1. The result is shown in Figure

4.5 and it is possible to see that the system is stabilized at a time close to

t = ϕ1 + ϕ2 = 1
µ
+ max

{
1
γ1
, 1
γ2

}
= 1

2
+ max

{
1
0.5
, 1
1

}
= 2.5, as expected from

the relation between the target and the closed-loop system.
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Next, the results for the output tracking are presented. The result is shown

in Figure 4.6 and the control law from Equation (4.10) is used. As expected

from the finite time stabilization obtained due to the desired target system,

the system output starts to perfectly track the reference signal for a time close

to t = 2.5. The results from Figures 4.5 and 4.6 consider that all the system

states and exosystem states are available.

The measurement of all states is generally not feasible, specially when a

DPS is considered. Thus, the control law shown in Equations (4.22) and (4.10)

might not be used directly. Taking that into account, the observer design for

the system states and the exosystem were considered in Sections 4.3.3 and

4.3.4, respectively. First, the results for the system observer are examined.

Figure 4.7 shows the results for this simulation. As expected, the observer

states are able to reconstruct the system states at a finite time close to t = 2.5

(i.e., the observer error reaches the origin for a time close to t = 2.5).
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Next, the performance of the system observer with the Equation (4.10) is

examined. Instead of using the system states in the control law, the observer

states are used and the result is shown in Figure 4.8. As the observer is able to

properly reconstruct the system states for t > to = 2.5, the controller can just

properly stabilize and achieve proper tracking after that. Thus, the system is

stabilized and the output properly tracks the reference signal at t = to+ts = 5.
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The simulation results shown before still considered that the exosystem

states were available. Next, the results with the exosystem observer, shown

in Section 4.3.4, are explored. Figure 4.9 shows the closed-loop system re-

sponse considering that the exosystem observer will have the poles placed at

σ(S − LeQ) = {−1,−2,−3,−4}. The finite stabilization and system observer

convergence are still achieved, but, as the exosystem observer, in this case, does

not have a finite time convergence, the proper output tracking takes longer to

be obtained (it exponentially converges).

Figure 4.9: System closed-loop response (on the left), using the system and
exosystem observers and the control law given in Equation (4.10). On the
right, the exosystem states and its observer states.

The last case considered in the continuous-time setting is the use of the

finite-time observer to reconstruct the exosystem states. The simulation re-

sults are presented in Figure 4.10. As two observer are necessary to obtain the

finite-time convergence, one observer was designed such that σ(S − Le,1Q) =

{−1,−1.5,−2,−2.5} and the other such that σ(S−Le,2Q) = {−3,−3.5,−4,−4.5}.
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The desired convergence time was set to DF = to + ts = 5. Thus the system

stability and proper tracking, plus the system and exosystem states recon-

struction should be guaranteed for a time close to t = 5. As results show,

although this observer convergence is guaranteed for time close to t = 5, the

drawback is the higher error for the estimation in the beginning, which leads

to excessive control actions and an increase in the output, which might not be

desirable or physically possible.

Figure 4.10: System closed-loop response (on the left), using the system ob-
server, finite-time exosystem observer and the control law given in Equa-
tion (4.10). On the right, the exosystem states and its observer states.

4.5.2 Discrete Time Regulation

After the design of the regulator in the continuous-time setting has been

achieved, the results for the discrete-time settings are considered, using the

design developed in Section 4.4. A sampling time of ∆t = 0.1 is used. First,
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the system stabilization with the control law shown in Equation (4.53), de-

veloped in Section 4.4.2, is shown. The result is presented in Figure 4.11 and

it is possible to see that the system is stabilized, as expected from the rela-

tion between the closed-loop of the discrete representation and the continuous

closed-loop system.
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Figure 4.11: Discrete system stabilization with the control law given in Equa-
tion (4.53), considering zk = 0.

Next, the results for the output tracking in the discrete time setting are

considered. The result is shown in Figure 4.12 and the control law from Equa-

tion (4.53), developed in Section 4.4.3, is used. It is assumed that the system

and exosystem states are known. As expected, the system stabilization is

obtained and the system output is able to perfectly track the reference signal.
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Figure 12. Discrete system stabilization and output regulation with the control law given in Eq. 53, assuming
that zk are known states.
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setting are considered next, using the developed discrete observers designs shown in Section 4.4 and Section 4.5,478
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Figure 4.12: Discrete system stabilization and output regulation with the con-
trol law given in Equation (4.53), assuming that zk are known states.

As in the continuous-time setting, the system observer and exosystem ob-

server designs in the discrete-time setting are considered next, using the de-

veloped discrete observers designs shown in Section 4.4.4 and Section 4.4.5,

respectively. The results for the system observer are considered first in Fig-

ure 4.13. As expected, the observer is able to reconstruct the system states

and using the observer states in the control law shown in Equation (4.53), the

closed-loop of the discrete-time system is stable, achieving proper tracking of

the reference signal.
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Finally, the exosystem observer design in the discrete-time setting is con-

sidered, as shown in Section 4.4.5. Figure 4.14 shows the closed-loop response

of the discrete system using the observer gain of the continuous-time setting

to guarantee the stability of the observer in the discrete-time. As it is possible

to notice, the system stabilization, the system and exosystem observer conver-

gence are achieved, yielding to the proper tracking of the closed-loop system

response.
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Figure 13. Discrete system closed-loop response, using the observer developed in Section 4.4 and the control law
given in Eq. 53.

Finally, the exosystem observer design in the discrete-time setting is considered, as shown in Section 4.5.482

Figure 14 shows the closed-loop response of the discrete system using the observer gain of the continuous-time483

setting to guarantee the stability of the observer in the discrete-time. As it is possible to notice, the system484

stabilization, the system and exosystem observer convergence are achieved, yielding to the proper tracking of the485

closed-loop system response.486

Figure 14. Discrete system closed-loop response (on the left), using the system and exosystem observers and the
control law given in Eq. 53. On the right, the discrete exosystem states and its observer states.

Lastly, the closed-loop response using a finite-time observer design in the discrete time setting based in the487

observability matrix is considered, as examined in Section 4.6. The result is shown in Figure 15 and, as expected,488

the exosystem states are properly reconstructed after four sampling times, as there are 4 states in the exosystem,489

which makes the closed-loop system response better.490

Figure 4.14: Discrete system closed-loop response (on the left), using the
system and exosystem observers and the control law given in Equation (4.53).
On the right, the discrete exosystem states and its observer states.

Lastly, the closed-loop response using a finite-time observer design in the

discrete time setting based in the observability matrix is considered, as exam-

ined in Section 4.4.6. The result is shown in Figure 4.15 and, as expected, the

exosystem states are properly reconstructed after four sampling times, as there

are 4 states in the exosystem, which makes the closed-loop system response

better.
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Figure 15. Discrete system closed-loop response (on the left), using the observability matrix to reconstruct the
exosystem states. On the right, the discrete exosystem states and the observer states.

6. Conclusions491

In this manuscript, the regulator design for the Saint-Venant-Exner model was developed so it would assure492

proper closed-loop stability and output tracking of a reference signal in both continuous and discrete-time setting.493

The backstepping methodology was used in the continuous-time setting to map the closed-loop system to a stable494

target system, thus guaranteeing the system stability. Furthermore, the same method was used to design the495

observer, allowing for the reconstruction of the system states by using just the output. Considering a reference496

signal generated by an exosystem, the output tracking problem was solved. Next, with the stabilization and497

proper tracking achieved in the continuous-time setting, the discrete regulator was explored. The closed-loop498

stability, observer design and the regulator equations were shown to be directly related to their construction in499

the continuous-time, thus ensuring the proper performance of the regulator, as it was possible to observe in the500

simulations.501

For future work, the constrained optimal stabilization and tracking problem could be considered, as the502

regulator designed here did not take into account any physical limitations, neither in the states or the input.503
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Appendix A. System stabilization: backstepping508

First, the state transformation ω(ζ , t) = ν(ζ , t)e
α1
µ ζ is used:509

∂ω
∂ t

= µ
∂ω
∂ζ

+θ1(ζ )x1 +θ2(ζ )x2

∂x1

∂ t
= −γ1

∂x1

∂ζ
+α(ζ )ω +σ11x1 +σ12x2

∂x2

∂ t
= −γ2

∂x2

∂ζ
+α(ζ )ω +σ21x1 +σ22x2

(A1)

ω(1, t) = ρ ′1x1(1, t)+ρ ′2x2(1, t)+ u′(t)
x1(0, t) = q1ω(0, t)
x2(0, t) = q2ω(0, t)
ym(t) = ν(0, t) = ω(0, t)
y(t) = x1(1, t)

where θ1(ζ ) = β1e
α1
µ ζ , θ2(ζ ) = β2e

α1
µ ζ , α(ζ ) = α1e−

α1
µ ζ , ρ ′1 = ρ1e

α1
µ ζ , ρ ′2 = ρ2e

α1
µ ζ and u′(t) = u(t)e

α1
µ ζ .510

Figure 4.15: Discrete system closed-loop response (on the left), using the
observability matrix to reconstruct the exosystem states. On the right, the
discrete exosystem states and the observer states.

4.6 Conclusions

In this chapter, the regulator design for the Saint–Venant–Exner model was

developed so it would achieve proper closed-loop stability and output track-

ing of a reference signal in both continuous and discrete-time setting. The

backstepping methodology was used in the continuous-time setting to map

the closed-loop system to a stable target system, thus guaranteeing the sys-

tem stability. Furthermore, the same method was used to design the observer,

allowing for the reconstruction of the system states by using just the out-

put. Considering a reference signal generated by an exosystem, the output

tracking problem was solved. Next, with the stabilization and proper tracking

achieved in the continuous-time setting, the discrete regulator was explored.

The closed-loop stability, observer design and the regulator equations were

shown to be directly related to their construction in the continuous-time, thus

ensuring the proper performance of the regulator, as it was possible to observe

in the simulations.

For future work, the constrained optimal stabilization and tracking problem
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could be considered, as the regulator designed here did not take into account

any physical limitations, neither in the states nor the input.

4.A System Stabilization: Backstepping

First, the state transformation ω(ζ, t) = ν(ζ, t)e
α1
µ
ζ is used:

∂ω

∂t
= µ

∂ω

∂ζ
+θ1(ζ)x1 +θ2(ζ)x2

∂x1
∂t

=−γ1
∂x1
∂ζ

+α(ζ)ω +σ11x1 +σ12x2

∂x2
∂t

=−γ2
∂x2
∂ζ

+α(ζ)ω +σ21x1 +σ22x2

(4.83)

ω(1, t) = ρ′1x1(1, t) + ρ′2x2(1, t) + u′(t)
x1(0, t) = q1ω(0, t)
x2(0, t) = q2ω(0, t)
ym(t) = ν(0, t) = ω(0, t)
y(t) = x1(1, t)

where θ1(ζ) = β1e
α1
µ
ζ , θ2(ζ) = β2e

α1
µ
ζ , α(ζ) = α1e

−α1
µ
ζ , ρ′1 = ρ1e

α1
µ
ζ , ρ′2 =

ρ2e
α1
µ
ζ and u′(t) = u(t)e

α1
µ
ζ .

The stabilization in the continuous-time setting was developed in [90] and

assumes that the following Volterra transformation exists:

W (ζ, t) = ω(ζ, t)

−
∫ ζ
0
[K1(ζ, η)ω(η, t) +K2(ζ, η)x1(η, t) +K3(ζ, η)x2(η, t)] dη

X1(ζ, t) = x1(ζ, t)

X2(ζ, t) = x2(ζ, t)

(4.84)





µ
∂K1

∂ζ
+ µ

∂K1

∂η
= α(η)K2 + α(η)K3

µ
∂K2

∂ζ
− γ1

∂K2

∂η
= θ1(η)K1 + σ11K2 + σ21K3

µ
∂K3

∂ζ
− γ2

∂K3

∂η
= θ2(η)K1 + σ12K2 + σ22K3

µK1(ζ, 0) = q1γ1K2(ζ, 0) + q2γ2K3(ζ, 0)

K2(ζ, ζ) = − θ1(ζ)

γ1 + µ

K3(ζ, ζ) = − θ2(ζ)

γ2 + µ

(4.85)
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The PDE system given in Equation (4.85) can be solved numerically [102],

[103]. The control law and the Volterra transformation shown in (4.84) map

the system to the following target system:





∂W

∂t
= µ

∂W

∂ζ
∂X1

∂t
= −γ1

∂X1

∂ζ
+
∫ ζ
0
[κ1(ζ, η)W (η, t) +c11(ζ, η)X1(η, t) + c12(ζ, η)X2(η, t)] dη

∂X2

∂t
= −γ2

∂X2

∂ζ
−
∫ ζ
0
[κ2(ζ, η)W (η, t) + c21(ζ, η)X1(η, t) + c22(ζ, η)X2(η, t)] dη

W (1, t) = r′(t)
X1(0, t) = q1W (0, t)
X2(0, t) = q2W (0, t)

(4.86)

where r′(t) = r(t)e
α1
µ
ζ and the coefficients are defined as:

cij(ζ, η) = α(ζ)Kj(ζ, η) +
∫ ζ
η
κi(ζ, ϕ)Kj(ϕ, η)dϕ

κi(ζ, η) = α(ζ)K3(ζ, η) +
∫ ζ
η
κi(ζ, ϕ)K3(ϕ, η)dϕ

(4.87)

4.B Observer Design: Backstepping

The state transformation ω̂(ζ, t) = ν̂(ζ, t)e
α1
µ
ζ is used:





∂ω̂

∂t
= µ

∂ω̂

∂ζ
+ θ1(ζ)x̂1 + θ2(ζ)x̂2 − l1(ζ) [ym(t)− ω̂(ζ = 0)]

∂x̂1
∂t

= −γ1
∂x̂1
∂ζ

+ α(ζ)ω + σ11x̂1 + σ12x̂2 − l2(ζ) [ym(t)− ω̂(ζ = 0)]

∂x̂2
∂t

= −γ2
∂x̂2
∂ζ

+ α(ζ)ω + σ21x̂1 + σ22x̂2 − l3(ζ) [ym(t)− ω̂(ζ = 0)]

ω̂(1, t) = ρ′1x̂1(1, t) + ρ′2x̂2(1, t) + u′(t)

x̂1(0, t) = q1ym(t)

x̂2(0, t) = q2ym(t)

(4.88)

where x̂(ζ, t) = [ ω̂ x̂1 x̂2 ]
T
are the transformed observer states. The observer

error (ê) is defined as ê(ζ, t) = [ ê1 ê2 ê3 ] = [ω − ω̂, x1 − x̂1, x2 − x̂2 ]
T ∈

L2(0, 1), and the observer error dynamics is given as:
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



∂ê1
∂t

= µ
∂ê1
∂ζ

+ θ1(ζ)ê2 + θ2(ζ)ê3 − l1(ζ)ê1(ζ = 0)

∂ê2
∂t

= −γ1
∂ê2
∂ζ

+ α(ζ)ê1 + σ11ê2 + σ12ê3 − l2(ζ)ê1(ζ = 0)

∂ê3
∂t

= −γ2
∂ê3
∂ζ

+ α(ζ)ê1 + σ21ê2 + σ22ê3 − l3(ζ)ê1(ζ = 0)

ê1(1, t) = ρ′1ê2(1, t) + ρ′2ê3(1, t)

ê2(0, t) = 0

ê3(0, t) = 0

(4.89)

which can be represented in a general form as:

˙̂e(t) = (Â− Lo,1Cm)ê(t) (4.90)

Therefore, to design the observer it is necessary to find an appropriate set of

gains L1 that makes Â − Lo,1Cm stable. Considering the error system shown

in Equation (4.89), the following stable target system is desired:





∂ẽ1
∂t

= µ
∂ẽ1
∂ζ

+ θ1(ζ)ẽ2 + θ2(ζ)ẽ3 +
∫ ζ
0
ĝ12(ζ, η)ẽ2(η)dη +

∫ ζ
0
ĝ13(ζ, η)ẽ3(η)dη

∂ẽ2
∂t

= −γ1
∂ẽ2
∂ζ

+ σ11ẽ2 + σ12ẽ3 +
∫ ζ
0
ĝ22(ζ, η)ẽ2(η)dη +

∫ ζ
0
ĝ23(ζ, η)ẽ3(η)dη

∂ẽ3
∂t

= −γ2
∂ẽ3
∂ζ

+ σ21ẽ2 + σ22ẽ3 +
∫ ζ
0
ĝ32(ζ, η)ẽ2(η)dη +

∫ ζ
0
ĝ33(ζ, η)ẽ3(η)dη

ẽ1(1, t) = ρ′1ẽe(1, t) + ρ′2ẽ3(1, t)

ẽ2(0, t) = 0

ẽ3(0, t) = 0

(4.91)

To achieve the target system, the following backstepping transformation is

used:

ẽi(ζ, t) = êi(ζ, t) +
∫ ζ
0
mi(ζ, η)ê1(ζ, t)dη (4.92)

For i = 1, 2, 3, where mi(ζ, η) are the transformation kernels, which can be

found by solving the following set of equations:
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



µ
∂m1

∂ζ
+ µ

∂m1

∂η
= −θ1(ζ)K2 − θ2(ζ)K3

γ1
∂m2

∂ζ
− µ

∂m2

∂η
= α(ζ)m1 + σ11m2 + σ21m3

γ2
∂m3

∂ζ
− µ

∂m3

∂η
= α(ζ)m1 + σ12m2 + σ22m3

m1(1, η) = ρ1m2(1, η) + ρ2m3(1, η)

m2(ζ, ζ) =
α(ζ)

γ1 + µ

m3(ζ, ζ) =
α(ζ)

γ2 + µ

(4.93)

This system can be solved numerically in the domain 0 ≤ η ≤ ζ ≤ 1,

and result in the following equations for the functions ĝi,j, for i = 1, 2, 3 and

j = 2, 3 in Equation (4.91):

ĝi,j = −θj(ζ)mi(ζ, η)−
∫ ζ

η

mi(ζ, ϕ)ĝ1,j(ϕ, η)dϕ (4.94)

And the observer gains li(ζ) will be given as:

li(ζ) = −µmi(ζ, η = 0) (4.95)

4.C Discrete System Observer Stability

It is necessary to show that the observer error can be written as:

êk = xk − x̂k = (Âd − Lod,1Ĉm,d)êk−1 (4.96)

First, the relation between the system discrete operators and the observer

operators is defined. As A = Â + Lo,2Cm the following relation between

(δI − A)−1 and
(
δI − Â

)−1

holds:

(δI − A)−1 =
(
δI − Â− Lo,2Cm

)−1

=
(
δI − Â

)−1

+
(
δI − Â

)−1

Lo,2

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

Cm

(
δI − Â

)−1 (4.97)

Thus, the following relations between the system discrete operators and
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the observer operators will hold as well:

Ad = Âd + Lod,2

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1√
2δCm

(
δI − Â

)−1

Bd = B̂d + Lod,2

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

Cm

(
δI − Â

)−1

B

Cm,d =

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1√
2δCm

(
δI − Â

)−1

=

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1 [
I + Cm

(
δI − Â

)−1

Lo,1

]
Ĉm,d

Dm,d =

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

Cm

(
δI − Â

)−1

B =
[
I − Cm

(
δI − Â

)−1

Lo,2

]−1 [
I + Cm

(
δI − Â

)−1

Lo,1

]
D̂m,d

(4.98)

And the discrete observer error can be written as:

êk = xk − x̂k = Adxk−1 +Bduk

−
(
Âdx̂k−1 + B̂duk + Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k]

)
=

Âd(xk−1 − x̂k−1)

+Lod,2

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1√
2δCm

(
δI − Â

)−1

xk−1

+Lod,2

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

Cm

(
δI − Â

)−1

Buk

− (Lod,1 [ym,k − ŷm,k] + Lod,2 [ym,k])

(4.99)

By the definition of the operators, it is possible to write:

ym,k = Cm,dxk−1 −Dm,duk =

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

[√
2δCm

(
δI − Â

)−1

xk−1 + Cm

(
δI − Â

)−1

Buk

] (4.100)
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and:

[ym,k − ŷm,k] =

−Ĉm,dx̂k−1 − D̂m,duk + (I −Mod,1 −Mod,2)yk =

−Ĉm,dx̂k−1 − D̂m,duk + (I −Mod,1 −Mod,2)

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

[
I + Cm

(
δI − Â

)−1

Lo,1

]
(Ĉm,dxk−1 + D̂m,duk) =⇒

(I −Mod,1 −Mod,2) =
[
I + Cm

(
δI − Â

)
Lo,1

]−1

[
I + Cm

(
δI − Â

)
Lo,1 − Cm

(
δI − Â

)−1

Lo,1 − Cm

(
δI − Â

)−1

Lo,2

]

=
[
I + Cm

(
δI − Â

)
Lo,1

]−1
[
I − Cm

(
δI − Â

)−1

Lo,2

]
=⇒

(I −Mod,1 −Mod,2)

[
I − Cm

(
δI − Â

)−1

Lo,2

]−1

=
[
I + Cm

(
δI − Â

)
Lo,1

]−1

=⇒ [ym,k − ŷm,k] = −Ĉm,dx̂k−1 − D̂m,duk+
[
I + Cm

(
δI − Â

)
Lo,1

]−1
[
I + Cm

(
δI − Â

)−1

Lo,1

]
(Ĉm,dxk−1 + D̂m,duk)

= Ĉm,d(xk−1 − x̂k−1)
(4.101)

Finally, the discrete observer error can be written as:

êk = Âd(xk−1− x̂k−1)−Lod,1Ĉm,d(xk−1− x̂k−1) = (Âd−Lod,1Ĉm,d)êk−1 (4.102)

And this can be linked to the operators in the continuous time setting by:

Âd − Lod,1Ĉm,d =

−I + 2δ
(
δI − Â

)−1

− 2δ

{
I −

[
I +

(
δI + Â

)−1

Lo,1Cm

]−1
}(

δI − Â
)−1

= −I + 2δ

[
I +

(
δI − Â

)−1

Lo,1Cm

]−1 (
δI − Â

)−1

=

−I + 2
[
δI − Â+ Lo,1Cm

]−1

(4.103)

which would be the discrete operator generated by (Â − Lo,1Cm). Thus, if

Lo,1 is chosen such that (Â − Lo,1Cm) is stable, the discrete observer will be

stable as well, as the Cayley-Tustin time discretization cannot map a stable

continuous system to a unstable discrete one.
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4.D Discrete Exosystem Observer Stability

Similarly to the system observer, it is necessary to show that the exosystem

observer error can be written as:

êr,k = zk − ẑk = (Sd − LedQd)êr,k−1 (4.104)

ŷr,k = Q̂dẑk−1 +Medyr,k

ẑk = Sdẑk−1 − Led(yr,k − ŷr,k)
(4.105)

where ẑk is the estimated exosystem state, Sd and Qd have been defined in

Section 4.4.3 (in Equation (4.60)). Led and Med are defined as:

Led =
√
2δ (δI − S)−1 Le

Med =
[
I +Q (δI − S)−1 Le

]−1
Q (δI − S)−1 Le

(4.106)

Lemma 4.13 : If the exosystem observer gain in the continuous time setting

(Le) is chosen such that (S −LeQ) is stable, then, the discrete observer given

by Equation (4.105) and the operators defined in Equation (4.106) will be able

to reconstruct the states of the discrete exosystem.

Proof: To prove the exosystem observer convergence to the system states,

the discrete error of the exosystem observer is analyzed:

êr,k = zk − ẑk (4.107)

After some algebraic manipulation (shown in Appendix 4.D), the discrete

error can be written as:

êr,k = (Sd − LedQ̂d)êr,k−1 =
{
−I + 2 [δI − S + LeQ]

−1} êr,k−1 (4.108)

which is the discrete operator generated by (S − LeQ). Thus, if Le is chosen

such that (S − LeQ) is stable, the discrete observer will be stable as well.

First, the discrete observer error can be written as:
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êr,k = zk − ẑk = Sdzk−1 − Sdẑk−1 − Led(yr,k − ŷr,k)

= Sd(zk−1 − ẑk−1)− Led((I −Med)Qdzk−1 − Q̂dẑk−1) =⇒

(I −Med)Qd =
[
I +Q (δI − S)−1 Le

]−1 [
I +Q (δI − S)−1 Le −Q (δI − S)−1 Le

]
Qd

=
[
I +Q (δI − S)−1 Le

]−1
Qd = Q̂d =⇒

= Sd(zk−1 − ẑk−1)− Led(Q̂dzk−1 − Q̂dẑk−1) = (Sd − LedQ̂d)êr,k−1

(4.109)

And this can be linked to the operators in the continuous time setting by:

Sd − LedQ̂d =

−I + 2δ (δI − S)−1 − 2δ
{
I −

[
I + (δI + S)−1 LeQ

]−1
}
(δI − S)−1 =

−I + 2δ
[
I + (δI − S)−1 LeQ

]−1
(δI − S)−1 = −I + 2 [δI − S + LeQ]

−1

(4.110)

which would be the discrete operator generated by (S − LeQ). Choosing Le

such that (S−LeQ) is stable will make the discrete exosystem observer stable

as well if the exosystem observer shown in Section 4.3.4 is used.
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Chapter 5

Dynamical Analysis and Model
Predictive Control of an
Auto-Thermal Reactor

5.1 Introduction

Transport-reaction distributed parameter system (DPS) models present in

chemical, petrochemical, manufacturing and process industry take the math-

ematical form given by hyperbolic partial differential equations (PDEs). The

main conservation laws are embedded in a modelling variety provided by the

hyperbolicity of the transport systems which is physically relevant and desired

property as action at distance is precluded and physically meaningful finite

speed of phenomena propagation is ensured. On the other hand, a hyper-

bolicity mathematically ensures well-posedness of local Cauchy problems [44].

Along the same line of mathematical representation and analysis, when it

comes to the mathematical setting of transport-reaction distributed parameter

systems, the inevitable difficulty comes from the infinite dimensional nature of

their representation [16], [17] which is a limiting factor when controller designs

and monitoring realizations are considered.

The class of transport-reaction hyperbolic PDEs considered in this work

is given by the model of auto-thermal reactor with internal counter-current

heat exchanger (ARICHE) which is industrially important and energy saving

reactor commonly used for the ammonia synthesis at commercial scale, see the

contributions by Bonvin et. al. [81] The underlying dynamical complexity ar-
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rises from the fact that dynamical instabilities may arise from both microscopic

effects (represented by axial mass and energy dispersion) and macroscopic ef-

fects (heat transfer between the reaction system and the feed stream) coupled

through the feedback transport mechanism. In particular, the ARICHE and

tubular reactor with recycle are only two commonly used reactors which ex-

hibit the macroscopic feedback mechanism. Hence, the issue of stability of

operating these reactors is of permanent interest to the engineering control

community and industrial practitioners. In particular, there were studies on

stability of operating ARICHE [81], [83] and tubular reactor with recycle [104].

Due to intrinsic complexity to some extent the stability of ARCHE has not

been rigorously investigated, while Sano [105] analyzed the important property

of exponential stabilization of the mono-tubular heat exchanger equation with

static output feedback, and the same property was explored by time-delayed

boundary observation utilized in stabilizing control law design [106].

When it comes to the control of distributed parameter systems within a

constrained optimal control setting, there have been several seminal contribu-

tions which address the transport-reaction system setting primarily in Harmon

Ray [107] and Curtain and Zwart [16]. In particular, for transport systems

modelled by a first order hyperbolic systems, there are several contributions

regarding the dynamical analysis and control of these systems, for instance,

the design of an optimal linear quadratic feedback controller [108] and a lin-

ear quadratic controller design for a fixed-bed reactor [109]. Furthermore,

there are contributions related to the model predictive control of hyperbolic

systems using finite dimensional approximation [31] or based on the method

of characteristics to help predict the future output for quasilinear hyperbolic

systems [110]. Similarly, the optimal and model predictive control design are

extended to the class of Riesz spectral systems with a separable eigenspec-

trum, allowing for successful application of algorithms that account for the

input and state constraints [35], [37], [111], [112]. Regarding nonlinear model

predictive control for distributed parameter systems, there are contributions

in the area, for instance, a combination of on-line model reduction and suc-

cessive linearizations have been used [113] and data-based modellng was used
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to design a model predictive control framework [114].

The current trend of digitalization and computer applications in all engi-

neering disciplines motivate to explore modern control designs and the state-

of-the-art controller realizations which are ultimately digital and therefore dis-

crete in their nature. Therefore, the traditional numerical time discretization

schemes are frequently utilized to transform models and/or controllers in the

form suitable for the implementation with the understanding that that the

accuracy of the discrete system representation may be impacted as the sam-

pling period is increasing which adversely may impact the overall model and

closed-loop stability [26]. In addition, it is well known from the linear systems

theory that simple explicit and implicit Euler time discretization of linear dy-

namics may impact the systems stability by mapping stable continuous to

possible unstable discrete counterpart system and vice versa [27]. This issue

becomes even more prominent in the case of controller design and/or realiza-

tions in the setting of distributed parameter systems usually represented in

the infinite dimensional state space settings. Hence, motivated by this, we

explore the time discretization schemes which provide an accurate and reliable

transformation of continuous linear infinite dimensional system to the linear

discrete time infinite dimensional one, by application of Crank-Nicolson mid

point integration rule [28]. This type of discretization in the systems science is

also known as Cayley-Tustin time discretization, and it has been shown that it

preserves the intrinsic energy and dynamical characteristics of the linear dis-

tributed parameter system [29], so that no spatial discretization or/and spatial

model reduction needs to be applied.

Motivated by the modern and well established developments in finite di-

mensional model predictive (MPC) theory applied to linear systems [115],

[116], we extend the finite dimensional MPC setting to the case of distributed

parameter systems modelled by the system of hyperbolic PDEs, and in par-

ticular the structure preserving discretization of continuous hyperbolic PDE

model representation is realized [28], [29], and utilized in the linear MPC

controller design which accounts for constrained stabilization of unstable hy-

perbolic PDEs model and which does ensure the input and state constraints
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feasibility under the assumption of successive feasibility of the formulated finite

dimensional quadratic optimization problem [117].

The chapter is organized as follows: In the System Description Section

the ARICHE model is presented and it is followed by the Nonlinear Analysis

section where parametric studies provided the insight in the rich behaviours

of ARICHE internal dynamics. This is followed by the System Linearization

and Linear System Stability section where insight is provided in linear model

features and stability characterization. Finally, in Model Predictive Control

Design section the linear MPC design is realized and it is followed by simu-

lation studies which demonstrate the successful realization of the constrained

optimization based control design to important industrial reactor example.

5.2 System Description

The feed to an ARICHE, which also serves as the coolant, flows countercurrent

to the effluent stream and is pre-heated by the energy released by the exother-

mic reaction. The feed turns around at the top of the reaction section and is

introduced into the catalyst bed. It is considered that the reactions happen

just inside the catalyst packed bed. The representation of an auto-thermal

reactor is shown in Fig. 5.1 below:
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Figure 5.1: Autothermal Reactor Representation

This autothermal reactor can be described by the following set of non-linear

dimensionless hyperbolic PDE’s [81]:

∂Tj(ζ, t)

∂t
= ρ

∂Tj(ζ, t)

∂ζ
+ ω(T (ζ, t)− Tj(ζ, t))

∂T (ζ, t)

∂t
= −δ∂T (ζ, t)

∂ζ
− λ(T (ζ, t)− Tj(ζ, t)) + βψC(ζ, t)e−

γ
T (ζ,t)

∂C(ζ, t)

∂t
= −1

ϵ

∂C(ζ, t)

∂ζ
− 1

ϵ
ψC(ζ, t)e−

γ
T (ζ,t)

(5.1)

where Tj(ζ, t) is the dimensionless temperature of the fluid through the cooling

jacket, T is the dimensionless temperature of the fluid through the catalyst bed

and C is the dimensionless concentration inside the catalyst bed. Low dimen-

sional models have been validated in the previous contributions and they can

capture the relevant physical and dynamical characteristics of the system [81]–

[83], [118]–[121]. The following boundary conditions are considered:

Tj(ζ = 1, t) = Tf (t) = u(t)
T (ζ = 0, t) = Tj(ζ = 0, t)
C(ζ = 0, t) = 1

(5.2)

Therefore, the temperature of the fluid at the jacket at the bottom (at ζ = 1) is

given by a feed temperature, which also is the manipulated variable considered
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in this manuscript, the temperature at the inlet of the catalyst bed (at ζ = 0)

is equal to the jacket fluid at the same point (as the jacket fluid is fed into

the catalyst bed) and the dimensionless inlet concentration (at ζ = 0) in the

catalyst bed is considered to be constant. The steady-state for this system is

given by the solution of a system of non-linear ordinary differential equations:

∂Tj,ss(ζ)

∂ζ
= −ω

ρ
(Tss(ζ)− Tj,ss(ζ))

∂Tss(ζ)

∂ζ
= −λ

δ
(Tss(ζ)− Tj,ss(ζ)) +

βψ

δ
Css(ζ)e

− γ
Tss(ζ)

∂Css(ζ)

∂ζ
= −ψCss(ζ)e−

γ
Tss(ζ)

(5.3)

and the boundary conditions previously specified as:

Tj(ζ = 1) = Tf
T (ζ = 0) = Tj(ζ = 0)
C(ζ = 0) = 1

(5.4)

This model shows that steady-state solution is dependent on the feed temper-

ature (Tf ). Therefore, in order to obtain the steady-state profiles, a finite-

difference numerical scheme was used with the same set of parameters as in

Bonvin et. al [81]., shown in Table 4.1. In the work of Bonvin et al. [81], it was

shown that the same value of Tf can yield a different steady-states profiles,

and this multiplicity of steady-states generally has one unstable steady-state.

This behaviour can be seen in Fig. 5.2, where there is a range of feed temper-

ature values that can yield a different top temperature steady-states (reactor

temperature at ζ = 0) and bottom conversions (defined as 1− C(ζ = 1, t)).

The different spatial profiles for the variables at each possible steady-state

when the same value of the feed temperature is used can be seen in Fig. 5.3.

For Tf = 550 K, three distinctly different dynamic behaviours can be observed.

The long and short dashes line represents the steady-state with low conversion

(SS3). At this equilibrium state, the initial energy is not substantial enough

to start the reaction and the reactor and jacket have the same temperature

as the feed. The solid line represents the steady-state with high conversion

(SS1). In this case, the initial energy is high enough to start the reaction and

due to the counter-flow between the jacket and the reactor part of this energy
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Figure 5.2: Steady states of reactor temperature at the top and conversion at
the bottom obtained for different values of the input Tf .

goes back to the reactor inlet, increasing reaction extent up to the point where

the reactant is completely consumed in the first portion of the reactor. This

also may cause some concern regarding the safe reactor operations, as there is

a region where the temperature inside is almost 400 K greater than the feed

temperature.

The steady-state of interest is a intermediate between the high conver-

sion and low conversion profiles (represented by the long dash line - SS2). It

presents a reactor temperature that is not as high as the state with high con-

version, while also offering a reasonably high conversion. Unfortunately, this

is an unstable point of operation, and it can be seen as a transition between

the low and high conversion states and without any control action it is not

possible to keep the reactor operating at this condition. Therefore, it is of

interest to implement controller to keep the reactor working at this unstable

operating point.

5.3 Non-linear behaviour analysis

In order to access how variations of the parameters shown in Table 4.1 affect

the system behaviour, a pseudo arclength continuation method is used [122].
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Figure 5.3: Different Steady-States profiles for the same value of Tf = 550
K.
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In Fig. 5.4 is given the pictorial representation how this method provides the

construction of steady state of interest. In the pseudo arclength continuation

method everything is parameterized with respect to the arclength and is based

on the tangent with respect to this arclength at a given initial point. As a

fixed step of the arclength is taken, and with an approximation of the tangent,

a new initial guess of the solution is obtained. This new guess is then used to

solve the system of equations.
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Figure 5.4: Representation of the Pseudo arclength method

Specifically, first it is necessary to solve the following system of equations

to find the value of the tangents of the state variables (x) and the chosen

parameter (µ) in respect to the arclength (s) at a the step (k), as shown in

Equation (5.5): 



Jk

(
dx

ds

)

k

+ fµ,k

(
dµ

ds

)

k

= 0

(
dx

ds

)T

k

(
dx

ds

)

k

+

(
dµ

ds

)2

k

= 1

(5.5)

where Jk is the jacobian matrix (derivatives of the functions in respect to the

states) in the step k and fµ,k is a vector with the derivatives of the equations to

the chosen parameter. In the Eqn. (5.6), it is shown that the approximation
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used to calculate the value of the initial guess for the next step.

(
dx

ds

)

k

≈ xk+1 − xk
∆s

→ xk+1 = xk +

(
dx

ds

)

k

∆s

(
dµ

ds

)

k

≈ µk+1 − µk
∆s

→ µk+1 = µk +

(
dµ

ds

)

k

∆s

(5.6)

where ∆s is the arclength variation used and is a value that must be chosen.

Finally, the new initial guess for the state variables (xk+1) and for the system

parameter (µk+1) is used in the system of equations that needs to be solved. If

the value of ∆s is appropriate, the values found for xk+1 and µk+1 are a good

guess. Furthermore, one extra equation needs to be solved simultaneously with

the system of equations, to guarantee that the solution in the next step does

not overstep with the chosen variation of the arclength. These conditions are

represented in Equation 5.7.





f(xk+1, µk+1) = 0

(xk+1 − xk)

(
dx

ds

)

k

+ (µk+1 − µk)

(
dµ

ds

)

k

= ∆s
(5.7)

For the autothermal reactor, the system of equations that needs to be solved

are given by the steady-states ordinary differential equations (ODE’s) shown

in Eqn.(5.3) when a spatial discretization is applied (in this manuscript, finite

differences were used). This transform the system of ODE’s in a system of

algebraic equations, where the state variables (x) are Tj(ζ), T (ζ) and C(ζ) and

the continuation parameter is the feed temperature (Tf ). For a initial value

of Tf (µk), the partial differential equations shown in Eqn.(5.1) are solved

with spatial discretization until a steady-state is reached in order to obtain an

initial solution of the system of algebraic equation (xk). Then, the arclength

continuation method is applied to get the new initial guesses to the state

variables (xk+1) and the continuation parameter (µk+1). It is possible to solve

the system of algebraic equation without the use of a continuation method,

but the computational cost may not be worth, as it is necessary to find the

steady-state for the three spatially dependent variables. If N discretization

points are used, then there are 3N non-linear equations to be solved. With
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a continuation method, a good initial guess for the solution of this system of

equations can be found.

To investigate how the system parameters shown in Table 4.1 influence the

non-linear behaviour of the autothermal reactor, the continuation method is

utilized with different values of table parameters. The results for variations in

each of these parameters are shown in ensuing section with assumption that

the variations of the parameters are taken around the nominal values given in

Table 4.1.

� Variations in β: this parameter represents the dimensionless heat of re-

action and is given by the ratio of the heat of reaction (∆Hr), mole

fraction in the feed (Yo) and total pressure (P ) by the reference temper-

ature (Tref ), density of the bed (ρb), bed specific heat capacity (cp), gas

constant (Rg) and the average dimensionless temperature in the reac-

tor (Tav). The result of the parameter continuation method applied for

different values of β (0.1β0 ≤ β ≤ 1.5β0, with β0 as the nominal value

given in Table 4.1) is given in Fig.5.5 (Left). The dimensionless heat

of reaction is important for the non-linear behaviour of the autothermal

reactor. A higher value of this parameter increases the the region of

non-linear behaviour and a minimum value is necessary for the system

to exhibits multiplicity of steady-states. This is expected, as an increase

in this parameter would increase the thermal feedback in the system,

which is fundamentally responsible for the reactor instability as shown

in [50], [81].

� Variations in ψ: this parameter is the Damkohler number and is given by

the ratio of the Arrhenius pre-exponential factor (ko) and reactor length

(L) by the reactor bed void fraction (ϵ) and the fluid velocity inside

the packed bed (v). The result of the parameter continuation method

applied for different values of ψ (0.1ψ0 ≤ ψ ≤ 1.5ψ0, with ψ0 as the

nominal value given in Table 4.1) is given in Figure 5.5 (Right). The

Damkohler number also has some influence on the non-linear behaviour,

as with the dimensionless heat of reaction, a higher parameter values also
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increase the region of non-linear behaviour characterized with steady

set multiplicity and a minimum value is necessary for the system to

exhibit multiplicity of steady-states. As the Damkohler number can

be interpreted as the ratio between the reaction rate to the transport

phenomena rate occurring in a system, a higher value of this parameter

can be seen as a longer reaction timescale (higher conversion), which

increases the amount of energy released in the system and, consequently,

a higher thermal feedback.

� Variations in γ: this parameter is the dimensionless activation energy

corresponding to the ratio of activation energy (Ea) by the gas constant

(Rg) and the reference temperature(Tref ). The result of the parameter

continuation method applied for different values of γ (γ0 ≤ γ ≤ 1.2γ0,

with γ0 as the nominal value given in Table 4.1) is given in Fig.5.6 (Left).

The dimensionless activation energy is very important for the on-linear

behaviour, as it shifts the feed temperature values where the steady-

states multiplicity occurs and as a result also changes the reactor bed

temperature profile. Furthermore, if it is set as zero, the non-linearity of

the system disappears and it becomes a linear system with a first order

reaction. The steady-state profile for this special case is shown in Fig.5.6

(Right). The full conversion is always obtained in the exit of the reactor

and the temperature increases linearly with the feed temperature.

� Variations in λ: this parameter is the reactor bed dimensionless heat

transfer coefficient and is defined as the ratio of the overall heat transfer

coefficient (U), the heat transfer area (a) and the reactor length (L) by

the reaction section volume (Vc), reactor bed void fraction, fluid velocity

inside the packed bed (v), density of the bed (ρb) and the bed specific

heat capacity (cp). The result of the parameter continuation method ap-

plied for different values of λ (0.1λ0 ≤ λ ≤ 1.5λ0, with λ0 as the nominal

value given in Table 4.1) is given in Fig.5.7 (Left). Different from the

previous parameters, an increase in the reactor bed dimensionless heat

transfer coefficient reduces the region of non-linearity. As this parameter
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Figure 5.5: Parameter continuation results for: (Top) β = Rβ0 → 0.1β0 ≤
β ≤ 1β0; (Bottom) ψ = Rψ0 → 0.1ψ0 ≤ ψ ≤ 1.5ψ0
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Figure 5.6: Parameter continuation results for: (Top) γ = Rγ0 → 0.8γ0 ≤ γ ≤
1.2γ0; (Bottom) A system with no temperature dependence on the reaction
rate
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is increased, the higher will be the effect of the heat transfer with the

cooling section, which means a higher cooling effect (as the reactor bed

temperature is generally higher than the jacket temperature). There-

fore, the temperature in the bed reactor is cooled down faster and the

temperature feedback decreases, reducing the instability region.

� Variations in ρ: this parameter is the ratio of velocities given by the

quotient of the coolant velocity (vc) by the reactor bed void fraction

(ϵ) and the fluid velocity inside the packed bed (v). The result of the

parameter continuation method applied for different values of ρ (0.6ρ0 ≤
ρ ≤ 1.5ρ0, with ρ0 as the nominal value given in Table 4.1) is given in

Fig.5.7 (Right). Similarly to the λ variations, a decrease in the ratio of

velocities causes an increase in the instability region. This happens due

to the decrease in ρ which increases the residence time of the cooling

fluid, and also increases the overall heat exchange between the reactor

and bed. This increases the magnitude of the thermal feedback in the

system, which yields increase in the operating region characterized by

the unstable dynamics.

� Variations in ω: this parameter is the cooling jacket dimensionless heat

transfer coefficient given by the ratio of the overall heat transfer coef-

ficient (U), the heat transfer area (a) and the reactor length (L) by

the coolant section volume (Vc), reactor bed void fraction, fluid veloc-

ity inside the packed bed (v), density of the fluid (ρf ) and specific heat

capacity of the fluid (cpf ). The result of the parameter continuation

method applied for different values of ω (0.1ω0 ≤ ω ≤ 1.2ω0, with ω0 as

the nominal value given in Table 4.1) is given in Fig.5.8 (Left). In the

same way as ρ, as the cooling jacket dimensionless heat transfer coeffi-

cient is increased, the higher is going to be the effect of the reactor bed

temperature in the coolant temperature, resulting in a higher thermal

feedback and an increase in the instability region.

� Variations in δ: this parameter is the ratio of thermal capacitances de-
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Figure 5.7: Parameter continuation results for: (Top) λ = Rλ0 → 0.1λ0 ≤
λ ≤ 1.5λ0; (Bottom) ρ = Rρ0 → 0.6ρ0 ≤ ρ ≤ 1.5ρ0
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fined as the quotient of the density of the fluid (ρf ) and specific heat

capacity of the fluid (cpf ) by the density of the bed (ρb) and the bed

specific heat capacity (cp). The result of the parameter continuation

method applied for different values of δ (0.7δ0 ≤ δ ≤ 1.5δ0, with δ0 as

the nominal value given in Table 4.1) is given in Fig.5.8 (Right). As δ

decreases, the lower is the ratio between the energy necessary to heat

the cooling jacket and the energy removed from reactor bed, increasing

the overall thermal feedback, thus, increasing the instability region.

� One last case in considered in Fig.5.9, which represents the parameter

continuation results when no cooling jacket is considered. An increase

in the feed temperature increases the conversion in the reactor, which

also induces the temperature to increase in the reactor outlet as well up

to a point where total conversion is achieved. However, as there is no

thermal feedback in the system present, there is no region characterized

by the multiplicity of steady-states. In Dochain (2016) [50], the mul-

tiplicity of equilibrium profiles in tubular reactors was studied, and it

was demonstrated that the multiplicity can happen in a simple tubular

reactor as long as diffusive effects are present (which are responsible for

the back mixing). As this model just considers a convective transport

setting and, in this case, no cooling jacket is used, the thermal feedback

is not possible, hence he multiplicity of steady-states is not seen.

5.4 System Linearization

In order to implement the model predictive controller (MPC) design, a dis-

crete model representation of the system is required. In this work, a Cayley-

Tustin time discretization is applied to the distributed parameter system, and

a linear representation of the coupled hyperbolic PDEs system needs to be

considered. Therefore, the first step to obtain the discrete representation is

the linearization of the model presented in Eq.(5.1). Specifically, the reaction

rate is linearized as it depends on the dimensionless reactor temperature and
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Figure 5.8: Parameter continuation results for: (Top) ω = Rω0 → 0.1ω0 ≤
ω ≤ 1.2ω0; (Bottom) δ = Rδ0 → 0.7δ0 ≤ δ ≤ 1.5δ0
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Figure 5.9: Parameter continuation results for a system without cooling jacket

concentration:

fNL(C, T ) = Ce−
γ
T ≈ fNL(Css, Tss)

+aT (T − Tss) + aC(C − Css)
(5.8)

where Tss, Css represents the dimensionless reactor temperature and concen-

tration at a steady-state of interest, and the linearized coefficients are given

as follow: 



aT = ∂fNL

∂T

∣∣
ss
=
(
Cγe−

γ
T

T 2

)∣∣∣
ss

aC = ∂fNL

∂C

∣∣
ss
=
(
e−

γ
T

)∣∣
ss

(5.9)

Thus, a linear representation of the original model is obtained and the aT

and aC coefficients are averaged over the space. Furthermore, the following

deviation variables are defined:



T̄j = Tj − Tj,ss

T̄ = T − Tss

C̄ = C − Css

(5.10)

Then, it is straightforward to obtain the linearized representation of the orig-
inal system:

∂

∂t



T̄j

T̄

C̄


 =




ρ∂ζ − ω ω 0

λ −λ− δ∂ζ + βψāT +βψāC

0 −ψāT
ϵ

−1

ϵ
∂ζ −

ψāC
ϵ




︸ ︷︷ ︸
A



T̄j

T̄

C̄




(5.11)
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where āT and āC are the spatial averages of the coefficients defined in Eq.

(5.9): 



āT =

∫ 1

0

aT (ζ)dζ
∫ 1

0

dζ

āC =

∫ 1

0

aC(ζ)dζ
∫ 1

0

dζ

(5.12)

And the boundary conditions represented in deviation variables are:

T̄j(ζ = 1, t) = T̄f (t) = Tf (t)− Tf,ss = u(t)

T̄ (ζ = 0, t) = T̄j(ζ = 0, t)

C̄(ζ = 0, t) = 0

(5.13)

5.5 Linear System Stability Analysis

From the linear system representation, it is also possible to access the internal

stability of the operator A by solving the eigenvalue problem associated with

the system:

Aϕ(ζ) = λϕ(ζ) (5.14)

The operator A is defined in Eq.(5.11) with its boundary conditions in Eq.(5.13).

If A is written as A = Ā+ V ∂ζ , where Ā is a matrix with the constant coeffi-

cients of Eq.(5.11) and V is the matrix with system’s velocities and are given

by:

Ā =



−ω ω 0

λ −λ+ βψāT +βψāC

0 −ψāT
ϵ

−ψāC
ϵ


 ; V =



ρ 0 0

0 −δ 0

0 0 −1
ϵ


 (5.15)

Thus, the eigenvalue problem can be written as Aϕ(ζ) = Āϕ(ζ)+V ∂ζϕ(ζ) =

λϕ(ζ) and has a general solution given by:

ϕ(ζ) = eV
−1(λ−Ā)ζϕ(ζ = 0) =M(ζ)ϕ(ζ = 0) (5.16)

where M(ζ) = eV
−1(λ−Ā)ζ is the exponential matrix of V −1(λ − Ā)ζ, for

this system it is a 3x3 matrix with components given as Mi,j(ζ), and ϕ(ζ =
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0) =
[
ϕ1(ζ = 0) ϕ2(ζ = 0) ϕ3(ζ = 0)

]T
. The solution also needs to satisfy

the boundary conditions:

ϕ1(ζ = 1) = 0

ϕ2(ζ = 0) = ϕ1(ζ = 0)

ϕ3(ζ = 0) = 0

(5.17)

By applying these boundary conditions to the general solution, the follow-

ing condition is obtained:

0 = ϕ1(ζ = 0) [M1,1(ζ = 1) +M1,2(ζ = 1)] (5.18)

Therefore, if the system has a non-trivial solution to the eigenvalue prob-

lem, there exists a value for λ such that M1,1(ζ = 1) +M1,2(ζ = 1) = 0. This

is a non-linear equation that is numerically solvable to find the value of λ that

satisfy the previous condition. The solution for the eigenvalue problem gener-

ates two sets of solutions: stable eigenvalues (λS ≤ 0,) associated with a set of

eigenfunctions (ϕS) spanning the stable eigenspace, and unstable eigenvalues

(λU ≥ 0) associated with a set of eigenfunctions (ϕU).

Considering the steady-states obtained when Tf = 550 K (the three possi-

ble profiles presented in Fig.5.3), the eigenvalue distributions shown in Fig.5.10

are obtained. As expected, the distribution from the linearized system that

is originated from a stable steady-state has all the eigenvalues in the left side

of the complex plan (in Fig.5.10 there are two stable steady-states, one is the

stable steady-state with high conversion and the other with low conversion),

therefore the set of unstable eigenvalues and eigenfunctions is empty (λU = {∅}
and ϕU = {∅}).

The unstable steady-state has one real eigenvalue on the right side of the

complex plan, which is responsible for the system instability and the set of

unstable eigenvalues and eigenfunctions (λU = {λ1} and ϕU = {ϕ1}).
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Figure 5.10: Eigenvalue distribution for the three possible steady-states at
Tf = 550 K.

A results of the stability analysis are shown in Table 5.1. This analysis

just takes into account the unstable steady-states found in a inlet temperature

between 500 K ≤ Tf ≤ 600 K. In Bonvin et. al [81], the stability analysis

was made using the model obtained from spatial discretization (orthogonal

colocation was used) of the set of partial differential equations into a set of

ordinary differential equations. It was shown that the eigenvalues converged

as the number of discretization points was increased. In this manuscript, all

the eigenvalues obtained by the stability analysis of the linearized system have

the same order of magnitude as the ones found in Bonvin et. al [81]. As

expected, all the eigenvalues have a negative real part except the unstable one

(λ > 0), which is also the only real eigenvalue in the eigenvalue spectrum. The

difference among results found in this manuscript and in previous contributions

increases when the inlet temperature is close to the blow-off temperature (close

to 475 K). In Bonvin et. al [81], it was mentioned that for temperatures close

to the blow-off temperatures the value of the eigenvalues presented had not

converged for the number of discretization points used, as this is a region that

is difficult to dynamically model. For the other values of the inlet temperature,

the real and imaginary parts of the shown eigenvalues are very close to the

previous work.
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5.6 Boundary transformation and system dis-

cretization

In order to obtain the discrete representation of the system, a linear system

in the following form is considered:

ẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(5.19)

Although the system shown in Eq. (5.11) is linear, its input is applied at

the system’s boundary. A boundary transformation is applied to change this

boundary controlled system into a corresponding in-domain respresentation:

p(t, ζ) = x(t, ζ) + β(ζ)u(t) (5.20)

where x(t, ζ) are the original variables (T̄j, T̄ and C̄ in this case) β(ζ) can be

found by solving Aβ(ζ) = 0. The new system representation is given as:

[
u̇(t)
ṗ(t)

]
=

[
0 0
0 A∗

]

︸ ︷︷ ︸
A

[
u(t)
p(t)

]
+

[
1

β(ζ)

]

︸ ︷︷ ︸
B

u̇(t)
(5.21)

notice that the new manipulated variable is u̇(t) and u(t) is now a state of
the system. The operator A∗ is defined as A shown in (5.11), except for its
boundary conditions:

A∗p(t) →





p1(ζ = 1, t) = 0

p2(ζ = 0, t) = p1(ζ = 0, t)

p3(ζ = 0, t) = 0

(5.22)

Given that the system is represented as in Eqn. (5.19), it is possible to ap-

ply the Cayley-Tustin time discretization to obtain the discrete representation

as follows:
xk = Adxk−1 +Bduk
yk = Cdxk−1 +Dduk

(5.23)

where Ad, Bd, Cd and Dd are the discrete time system operators and are given

by: [
Ad Bd

Cd Dd

]
=

[
−I + 2θ [θ − A]−1

√
2θ [θ − A]−1B√

2θC [θ − A]−1 C [θ − A]−1B

]
(5.24)

and θ = 2/∆t, [θ − A]−1 = R(θ, A) is the resolvent operator of A. The resol-

vent operator is obtained by applying the Laplace transform to unforced (zero
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input) representation of Eq. (5.21), then by applying integration in space and

by implementation of the boundary conditions so that (sI − A)−1 = R(s, A)

is obtained and evaluated at s = δ. For the A operator shown in Eq. (5.21),

the resolvent is given by:

R(s, A)(·) =
[
(·)/s 0
0 R(s, A∗)(·)

]
(5.25)

The operator A∗ can be written as A∗ = Ā + V ∂ζ , with Ā and V defined

the same way as in Eq. (5.15) and the resolvent for this operator (R(s, A∗))

is given by:

R(s, A∗)(·) =

M(ζ)



1
1
0




∫ 1

0

[
M1,1(1− µ) M1,2(1− µ) M1,3(1− µ)

]
(·)dµ

M1,1(ζ = 1) +M1,2(ζ = 1)

−
∫ 1

0

M(ζ − µ)V −1(·)dµ

(5.26)

where M(ζ) is the exponential matrix defined in the same way as in Eq.

(5.16) (M(ζ) = eV
−1(s−Ā)ζ), which is a 3× 3 matrix and Mi,j(ζ) are each of its

elements. If s→ λi, where λi is the solution of the eigenvalue problem defined

in Eq. 5.14, the denominator of the first term on the right side of Eq. (5.26)

goes to zero (M1,1(ζ = 1)+M1,2(ζ = 1) → 0) and the resolvent of A∗ becomes

undefined (R(s, A∗)(·) → ∞), as expected from the resolvent of an operator.

With the resolvent properly determined, it is possible to obtain the discrete

time system representation for the Cayley-Tustin time discretization defined

in Eqs. (5.24) and (5.23). With the discrete time representation the Model

Predicitve Control strategy can be applied to the system, as explained in the

following section.

5.7 Model Predictive Controller Design

The MPC design developed in [116] for the finite dimensional linear time

invariant systems is extended to the setting of infinite dimensional discrete
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setting by considering the following formulation:

minu
∑∞

j=0 ⟨y (ζ, k + j| k) , Qy (ζ, k + j| k)⟩
+ ⟨u (k + j + 1| k) , Ru (k + j + 1| k)⟩

(5.27)

subject to

x (ζ, k + j| k) = Adx (ζ, k + j − 1| k) +Bdu (k + j| k)
y (ζ, k + j| k) = Cdx (ζ, k + j − 1| k) +Ddu (k + j| k)

umin ≤ u (k + j| k) ≤ umax

ymin ≤ y (ζ, k + j| k) ≤ ymax

(5.28)

where inner product ⟨x, y⟩ accounts for the spatial integration. The above

infinite horizon quadratic optimization problem is reformulated to the finite

dimensional (N -horizon length) one as follows:

minuN
∑N

j=0 ⟨y (ζ, k + j| k) , Qy (ζ, k + j| k)⟩
+ ⟨u (k + j + 1| k) , Ru (k + j + 1| k)⟩+〈

y (ζ, k +N | k) , Q̄y (ζ, k +N | k)
〉 (5.29)

where the Q̄ is terminal cost and the stability is enforced by applying the

terminal state constraints which are realized as terminal constraints condition

associated with the finite number of unstable modes. [34] The Q̄ operator is

given by:

Q̄(·) =
∞∑

n=0

∞∑

m=0

−⟨Cϕn, QCϕm⟩
λn + λ̄m

⟨·, ψ̄m⟩ψ̄n (5.30)

And the following constraints condition is imposed in the optimization

problem to enforce stability:

⟨x (ζ,N) , ψU (ζ)⟩ = 0 (5.31)

Therefore, if there is a feasible input given by the optimization problem, the

stabilization is achieved by MPC controller through the asymptotic stabiliza-

tion of the unstable modes with realization of requirement that the unstable

modes are placed at zero by at the end of the horizon. Since, the optimisa-

tion given by constrained quadratic program is feasible in the zero disturbance

case, the feasibility implies stability and optimal stabilizability, in other words

this results extends the well know results from the area of finite dimensional

MPC theory [115], [116].
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5.8 Results

This section shows the results regarding the implementation of the Model

Predictive Control. It is divided in two subsections: one considers that the

discrete linearized model is also used as the plant model; the other considers

the non-linear model presented in Equation (5.1) as the plant model. These

scenarios are shown in Figure 5.11.

MPC

Plant:
Linearized Model

ukxk

MPC

Hold

Plant:
Non-linear Model

Sampler

uk

u(t)x(t)

xk

Figure 5.11: Implementation of the MPC: (Left) The MPC model and the
plant model are the discrete linear model; (Right) MPC uses the discrete
linear model, the plant model is the original non-linear model

5.8.1 Plant: Linear Model

In this section three different scenarios were considered for both stable and

unstable steady-states: the open-loop response, the MPC response without

any constraints and the MPC response with constrained input. An initial

condition different from the steady-states was used in the system. The output

considered in the MPC design was the reactor bed temperature. The MPC

input u(t) evolution is shown in the simulations studies. As the deviation

variable are being used, all variables converge to zero, implying that the system

is converging to the considered steady-state of interest. It is expected that the

MPC achieves a faster response when the optimal constrained stabilization of

already stable steady-state is considered, and it is also expected that MPC is

able to stabilize the system when the unstable steady-state is considered.

For the results shown below, one of the stable steady-states shown in Fig.

5.3 was used (Tf = 550 K). In this case, the stable steady-state with high
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conversion is considered. The choice of steady-state impacts the coefficients

presented in the the operator A shown in Equation (5.11) (consequently the

operator A∗ and β of Equation (5.21) also take appropriate values associated

with selected steady state). Figure 5.12 shows the response for the three

different cases considered. As expected, the open-loop response goes back to

the steady-state without any control action (the open-loop response of the

output is represented by the dotted solid blue line).
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Figure 5.12: Results obtained for one of the stable steady-states.

The output for the MPC without constraints is represented by the solid

blue line and the input for this scenario is represented with the solid black

line. Notice the magnitude of the input used in this case. The control action

at the beginning almost reaches −550 K, which would mean that the feed

temperature required would reach 0 K. For this reason, a case with constrained

input was considered, which is represented by the blue dashed line (output)

and black dashed line (input). The constraint considered for the input in this

case was a maximum variation of 10 % in relation to the feed temperature (a

variation of ±55 K). Its is possible to see that, in the beginning, the input

required is at the lower limit of the constraint and it stays there for some time

until it finally increases and goes back to zero.
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For the cases that the MPC was considered, the steady-state was reached

in almost one fourth of the time required in the open-loop simulation study, as

expected if a controller is used. The spatial profiles of the jacket and reactor

temperatures for the open-loop and constrained MPC response are shown in

Fig. 5.13. It is possible to see that both the jacket and reactor temperature

settle to the steady-state in at most one fourth of the time required to the

open-loop response.
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Figure 5.14: Results obtained for the unstable steady-state.

For the next results shown, the unstable steady-state for Tf = 550 K, shown

in Fig. 5.3, was used. The results for the three different cases considered

(Open-loop, unconstrained MPC and constrained MPC) are presented in Fig.

5.14. As expected for an unstable operating condition, the open-loop response

grows without bound as no control action is taken (the dotted solid blue line

represents this output response). The solid blue line shows output response

for the MPC without constraints and the solid black line represents the input

for this scenario. Once again, the input magnitude required in this case is not

physically feasible. The initial control actions almost reach −800 K, meaning

the feed temperature required is around −250 K, not a feasible condition.

Thus, an input constraint was considered again. For the unstable system,
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a constraint in the input was a maximum variation of 30 % in relation to the

feed temperature, representing a ±165 K variation. The output for this case

is represented by the blue dashed line and the input is the black dashed line.

As in the case of the stable system, for the first moments, the input required

is in the lower limit of the constraint and it stays there for some time until it

finally increases and goes back to zero.

The spatial profiles of the jacket and reactor temperatures for the open-

loop and constrained MPC response are shown in Fig. 5.15. As expected,

in the open-loop response the entire system grows unbounded. As for the

closed-loop response, stabilization is achieved and the whole system reaches

the steady-state.
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5.8.2 Plant: Non-linear Model

In this section the non-linear model was used as the plant model that apply

the actions predicted from the MPC. Two different scenarios were considered:

one using the unstable steady-state for a Tf = 550 K and the high conversion

stable steady-state for the same feed temperature. These results are shown

in Figure 5.16. In both cases, the spatial profile obtained at the end of the

simulation is the steady-states profiles shown in Fig. 5.3. The MPC using

the unstable steady-state takes longer to get to the desired profile than the

one with the stable steady-state. In both scenarios, the controller has some

trouble in the beginning, as the initial conditions are different from the desired

steady-state. As the system gets closer to the linear model steady-state, it is

possible to see that the control actions become more reliable and the system

converges faster.
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5.9 Conclusions

The application of an MPC design to auto-thermal reactor was explored. A

boundary control problem realization was considered and a boundary trans-

formation was used to represent the boundary input as an in-domain input.

The linearized model around a steady-state was used to achieve a linear repre-

sentation of the system and the discrete model of the system was obtained by

applying a Cayley-Tustin time discretization transformation which preserves

the systems characteristics and which does not imply model reduction or ap-

proximation.

The model predictive control strategy was applied for the system consider-

ing stable and unstable steady-states. As expected, the MPC achieves a faster

convergence to the steady-state than the open-loop response if a stable steady-

state is considered. For the unstable steady-state, the controller can achieve

the system stability. The same results were also achieved when constraints

were considered in the system input. When the non-linear model is used as

the plant model and the MPC uses the linearized model, it is still possible to

make the system converges to the desired steady-state profile.
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Chapter 6

Model Predictive Control of a
Second-order Hyperbolic
transport-reaction process

6.1 Introduction

The transport of a material and/or thermodynamics property at the macro-

scopic scale is generally described by a parabolic partial differential equation

(PDE) obtained by defining the flux across the control volume boundary, for

example: by the Fourier’s law, for heat transfer; Fick’s law, for mass trans-

fer; or Newton’s viscosity law, for momentum transfer. In these laws, the

gradient in the medium causes an immediate flux. Thus, any localized initial

disturbance in the material body is propagated instantly [38]. Experimentally,

this assumption does not hold. For instance: materials with non-homogeneous

structure [39], or extremely fast thermal disturbances induced by a laser [40] or

a flash lamp [41] present thermal waves that travel with finite speeds of prop-

agation. Hence, motivated by the discrepancy between the experimental finite

speed of phenomena propagation and the mathematical model - which yields

a parabolic partial differential equation -, Cattaneo modified the heat flux to

take into account the delay due to the transport, resulting in a hyperbolic PDE

for the heat equation, with a finite speed of phenomena propagation [42], [43].

The hyperbolic model of the transport phenomena has been analyzed in differ-

ent prior contributions. For example: in Surov’s work [48], the modified equi-

librium model of a heat-conducting, heterogeneous mixture was proposed using
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the modified flux, and a set of hyperbolic equations was derived. The study by

Nosko [39] proposed different non-Fourier models to simulate temperatures in

materials subjected to extremely fast thermal disturbances, specifically for the

microscopic sliding contact. Finally, in the work of Abbasi and Malek [49], the

optimal control in a biological tissue modeled by a thermal wave equation (a

hyperbolic heat equation) was proposed to address the transport phenomena

properly. Along these lines of work, specifically for the chemical engineering

process, the assumption of a delayed flux can be interesting, as parabolic equa-

tions are generally used to represent the reaction-diffusion systems [50], [51].

The controller design for models given by PDEs has been the objective of

many studies over the years. One approach for the control of PDEs involves

using spatial discretization techniques, converting the PDEs to sets of ODEs,

and applying controller design techniques as one would with finite-dimensional

systems. The problem with this approach is the resulting large dimension of

the controller [107], [123]. When it comes to stabilization of distributed sys-

tems, the complexity associated with the design has been addressed with the

application of different methodologies [67], [95], [108], [124]–[126], but these

contributions only consider the models in the continuous-time setting and do

not take into account an optimal constrained control. Additionally, in the de-

sign of model-based controllers, a difference between the actual physical plant

and the model used in the controller design is challenging, as the deviation in

the system dynamics might affect the closed-loop stability and performance

characteristics [127], [128]. One of the well-known and fairly utilized control

design methodologies in chemical process control that accounts for stabiliza-

tion and constraints satisfaction is the model predictive control (MPC) [30].

There are a few contributions aimed at the design of MPC for PDEs using dif-

ferent methods, such as spatial discretization, controller design for a class of

the Riesz spectral systems with a separable spectrum and piece-wise predictive

feedback control [36], [129], [130]. Contrary to the above contributions, in this

work, a discrete-time representation of the hyperbolic PDE is used to design

the MPC. In particular, a type of Cranck-Nicolson integrator, also known as

the Cayley-Tustin time discretization, is considered, which has been shown to
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preserve the intrinsic energy and dynamical characteristics of the linear dis-

tributed parameter system with finite input and output spaces [29].

Motivated by the above considerations and extending previous results of Xu et

al. [34], the second-order hyperbolic PDE obtained for a tubular reactor with a

delayed flux is considered, which satisfies the conservation laws and its behav-

ior is observed in experimental results. The controller acts at the boundary

of the system and must guarantee closed-loop stabilization, and output/input

constraints satisfaction. Furthermore, only the information given by a mea-

sured output (output feedback) is given to the controller. Thus, an observer

is designed to reconstruct the system states in the discrete-time setting.

To analyze the difference that the modeling assumptions can have on the con-

troller performance on the tubular reactor, this chapter considers both second-

order hyperbolic and parabolic equations as representations of the transport-

reaction system, emphasizing the former type, which is not commonly used. In

the first section, the derivation of the hyperbolic equation for the mass transfer

inside the tubular reactor is shown, considering closed boundary conditions.

Then, the system properties are derived. In the succeeding sections, controller

design is shown, which takes into account an output feedback, differently from

the previous contributions. Thus, the observer design in the discrete-time set-

ting is derived by solving the Ricatti operator equation, such that the states

can be reconstructed only with the output information. Finally, the numerical

simulations show the controller’s performance for both types of PDEs and it is

possible to see that the different models lead to different responses, specially

when an output feedback is used.

6.2 The tubular reactor

Consider a fluid with constant density and diffusivity (D), moving inside a tube

with the constant cross-sectional area and velocity (v), as shown in Figure 6.1.

A first-order reaction happens inside reactor’s tube, and the radial and angular

diffusion effects are neglected. The mass balance for the system leads to the

following balance equation:
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∂C

∂t
= −∂F

∂ζ
+ r = −∂F

∂ζ
+ kC (6.1)

Figure 6.1: Tubular reactor representation.

where F is the mass flux, and r is the reaction term with a constant specific

reaction rate (k). For simplification in the notation, throughout the rest of

this manuscript, ∂t(·) will be used to represent ∂(·)
∂t

, ∂ζ(·), ∂ζζ(·) and ∂tt(·)
for the first partial derivative on space and second derivatives on space and

time, respectively. If the mass flux is given by Fick’s law and the advective

contribution, considering only the axial effects, the following parabolic PDE

is obtained:

∂tC = D∂ζζC − v∂ζC + kC (6.2)

However, Fick’s law does not consider any inertial effects. Thus, it could be

possible to assume that there is a delay in the mass flux across the boundary,

in both diffusive and advective terms, leading to the following flux definition:

F = (1− τ∂t)(−D∂ζC + vC) (6.3)

The mass balance becomes:

∂tC = (1− τ∂t) [D∂ζζC − v∂ζC] + kC (6.4)

If τ → 0, then (1− τ∂t)
−1 ≈ (1 + τ∂t), which gives the following second order

hyperbolic PDE:

τ∂ttC + (1− kτ)∂tC = D∂ζζC − v∂ζC + kC (6.5)

Therefore, this second-order hyperbolic PDE takes into account different phys-

ical assumptions. It considers that there is a time lag that happens until the

199



fluid element particles start moving as a result of the established flux, as pro-

posed by Cattaneo [42] for the heat equation. This time-lag is represented by

the parameters τ , if τ → 0, the propagation phenomena is instantaneous and

the parabolic PDE is obtained. Eq. 6.5 also assumes this time-lag affects the

advective transport as well.

6.2.1 Boundary Conditions

For the boundary conditions, only closed vessels are considered [51], [60]. Thus,

for this type of vessel, there is no dispersion either upstream (right before the

inlet of the reactor, at ζ = 0−) or downstream (right after the outlet, at

ζ = L+). In an open-open vessel, the dispersion occurs both upstream and

downstream. The closed-closed boundary conditions can be represented as:

vC(0−) = vC(0+)−D∂ζC(0
+) and ∂ζC(L

−) = 0 (6.6)

which are known as the Danckwerts’ Boundary Conditions. In this contri-

bution, we consider that the input is applied at the boundary, specifically,

vC(0−) = u(t).

6.2.2 Control Problem

For the hyperbolic PDE with delay in the total flux, the operator A can be

defined as:

∂t

[
C(ζ, t)
∂tC(ζ, t)

]
= A

[
C(ζ, t)
∂tC(ζ, t)

]
=

[
0 1

D∂ζζ(·)−v∂ζ(·)+k
τ

k − 1
τ

] [
C(ζ, t)
∂tC(ζ, t)

]

(6.7)

which is equivalent to writing the PDE shown in Eq. 6.5, with boundary

conditions presented in the previous section.

For simplicity, it is considered that L = 1 and the measurement of C at

the end of the reactor is available (i.e., ym(t) = C(ζ = ζm = 1, t)). The

concentration in the middle of the reactor (y(t) = C(ζ = ζy = 0.5, t)) needs

to satisfy a required constraint. This system can also be represented as an
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abstract state-space representation [A,B,Cm, D] [16]:





ẋ(t) = Ax(t) +Bu(t)
y(t) = Cyx(t)
ym(t) = Cmx(t)

(6.8)

with x(t) = [C(ζ, t), ∂tC(ζ, t)]
C , u is the input to the system (U ∈ ℜ, a finite

real space), ym is the measured output (Ym ∈ ℜ), and y is the constrained

output (Y ∈ ℜ), such that:

B =

[
0
−1
τ

]
δ(ζ − 0); Cy(·) =

∫ 1

0

δ(ζ − ζy)(·)dζ; Cm(·) =
∫ 1

0

δ(ζ − ζm)(·)dζ
(6.9)

where δ(ζ) is the Dirac delta. The space X := C1(0, 1;ℜ2) is equipped with

the inner product ⟨x1, x2⟩X :

⟨x1, x2⟩X =

〈[
C1

∂tC1

]
,

[
C2

∂tC2

]〉

X
=

∫ 1

0

C1(C̄2)dζ +

∫ 1

0

∂tC1(∂tC̄2)dζ

(6.10)

where, x1, x2 ∈ X , C̄2 and ∂tC̄2 are the complex conjugates of C2 and ∂tC2,

respectively. Therefore, A is a linear operator A : D(A) ⊂ X → X , such that

one can define the extension A−1 of A to X−1 : (X , ||(s0 − A)−1 · ||), where s0
belongs to the resolvent of A. Finally, one can define B as a linear operator

B ∈ L(U,X−1) [131].

For the system given by Eqs. 1 and 9, we want to develop a controller

that guarantees stabilization and constraints satisfaction while using only the

information provided by the (finite) output signal. In this contribution, the

second-order hyperbolic PDE and commonly used parabolic PDE are assumed

as models in order to compare the controller performance considering the two

different model settings.

6.3 System Properties

In this section, the specific properties of the state-space representation given

by Eq. 6.8 are defined. These properties are used in the following sections for

the observer and controller design.
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6.3.1 Eigenvalue Problem

The eigenvalue problem for the hyperbolic PDE is solved in Appendix 6.A,

with the boundary conditions defined in the previous section. The resulting

characteristic equation for the second-order hyperbolic is given by:

tanh

(
1

D

√
v2

4
+D(λ− k)(1 + λτ)

)
=

−v
√

v2

4
+D(λ− k)(1 + λτ)

v2

2
+D(λ− k)(1 + λτ)

(6.11)

which is a non-linear algebraic equation and it is solved numerically. The

numerical solution to the above Eq.6.11 yields the value of λi, and the corre-

sponding eigenfunctions are defined as (see Appendix 6.A for details):

ϕi =
[
f11(ζ, λi) +

v

D
f12(ζ, λi)

] [ 1
λi

]
ϕ1,i(0) (6.12)

6.3.2 Resolvent Operator and Transfer function

The resolvent operator and the systems transfer functions are necessary for the

Cayley-Tustin time discretization applied in the ensuing sections. They can

be found by applying the Laplace transformation to the system of equations

shown in Eq. 6.7, which leads to:

s

[
X1

X2

]
−
[
x1(0)
x2(0)

]
=

[
0 1

Ddζζ(·)−vdζ(·)+k
τ

k − 1
τ

] [
X1

X2

]
(6.13)

where X1 = L{T (t)}, X2 = L{∂tT (t)}, x1(0) = T (0) and x2(0) = ∂tT (0).

Thus, the following system of equations can be written:
{
X2 = sX1 − x1(0)
D
τ
dζζX1 − v

τ
dζX1 +

k
τ
X1 − 1

τ
X2 + kX2 = sX2 − x2(0)

(6.14)

by substituting the first equation into the second, the ODE obtained is:

τs2X1 +
[
kτ − sτ − 1 −τ

] [ x1(0)
x2(0)

]
=

DdζζX1 − vdζX1 + kX1 − sX1 + kτsX1

(6.15)

SettingW1 = X1 andW2 = ∂ζX1 leads to the following system of first-order

ODEs:

dζ

[
W1

W2

]
=

[
0 1

(s−k)(τs+1)
D

v
D

] [
W1

W2

]
+

[
0 0

kτ−sτ−1
D

− τ
D

] [
x1(0)
x2(0)

]
(6.16)

202



which has the following solution:
[
W1

W2

]
=

[
f11(ζ, s) f12(ζ, s)
f21(ζ, s) f22(ζ, s)

] [
W1(0)
W2(0)

]

+

∫ ζ

0

[
f11(ζ − η, s) f12(ζ − η, s)
f21(ζ − η, s) f22(ζ − η, s)

] [
0 0

kτ−sτ−1
D

− τ
D

] [
x1(0)
x2(0)

] (6.17)

where fij(ζ, s) is defined as in Eq. 6.50 with λ = s. Considering u(t) = 0, the

boundary conditions are given by:

DW2(0)− vW1(0) = 0 and W2(1) = 0 (6.18)

resulting in:

W1(0) = −

∫ 1

0

f22(1− η, s)
[

kτ−sτ−1
D

x1(0)− τ
D
x2(0)

]

f21(1, s) +
v
D
f22(1, s)

=⇒

W1 = X1 =
[
Γ1(·) Γ2(·)

] [ x1(0)
x2(0)

]
=

[
f11(ζ, s) f12(ζ, s)

] [ 1
v
D

]
W1(0)

+

∫ ζ

0

f12(ζ − η, s)
[

kτ−sτ−1
D

− τ
D

] [ x1(0)
x2(0)

]

(6.19)

with:

Γ1(·) = −f11(ζ, s) +
v
D
f12(ζ, s)

f21(1, s) +
v
D
f22(1, s)

∫ 1

0

f22(1− η, s)
kτ − sτ − 1

D
(·)dη

+

∫ ζ

0

f12(ζ − η, s)
kτ − sτ − 1

D
(·)dη

Γ2(·) = −f11(ζ, s) +
v
D
f12(ζ, s)

f21(1, s) +
v
D
f22(1, s)

∫ 1

0

f22(1− η, s)
−τ
D

(·)dη

+

∫ ζ

0

f12(ζ − η, s)
−τ
D

(·)dη

(6.20)

Finally, the resolvent operator is defined as:

(sI − A)−1x0 =

[
X1

X2

]
=

[
Γ1(·) Γ2(·)

sΓ1(·)− I(·) sΓ2(·)

] [
x1(0)
x2(0)

]
(6.21)

where I(·) is the identity operator. The same approach is taken to find the

transfer function and (sI−A)−1B, by considering x0 = 0 and U(s) ̸= 0. Thus,

the solution of the system of ODEs defined in Eq. 6.16 is given by:
[
W1

W2

]
=

[
f11(ζ, s) f12(ζ, s)
f21(ζ, s) f22(ζ, s)

] [
W1(0)
W2(0)

]
(6.22)
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and the boundary conditions:

DW2(0)− vW1(0) = U(s) and W2(1) = 0 (6.23)

leading to:

W1(0) = −
1
D
f22(1, s)U(s)

f21(1, s) +
v
D
f22(1, s)

= aU(s) =⇒
W1 = X1 =

[
af11(ζ, s) + a v

D
f12(ζ, s)

]
U(s) + 1

D
f12(ζ, s)U(s) =[

af11(ζ, s) +
(
av+1
D

)
f12(ζ, s)

]
U(s) = β(ζ)U(s)

(6.24)

thus:

(sI − A)−1BU(s) =

[
X1

X2

]
=

[
β(ζ)
sβ(ζ)

]
U(s) (6.25)

Finally, the transfer functions are:

G(s) = Cy(sI − A)−1B = X1(0.5) = β(0.5)
Gm(s) = Cm(sI − A)−1B = X1(1) = β(1)

(6.26)

Remark: For the general state-space representation shown in Eq. 6.8,

after finding (sI − A)−1(·) in Eq. 6.21 and (sI − A)−1B in Eq. 6.25, it is

possible to define the state-space operators as:

B =

[
0
−1
τ

]
δ(ζ − 0); Cy(·) =

∫ 1

0

δ(ζ − ζy)(·)dζ; Cm(·) =
∫ 1

0

δ(ζ − ζm)(·)dζ
(6.27)

where B was obtained by using (sI − A)−1(·) defined in Eq. 6.21 such that

the result is the same as (sI − A)−1B in Eq. 6.25. δ(ζ) is the Dirac delta

distribution function and

∫ 1

0

δ(ζ − a)x(ζ)dζ = x(a), for 0 ≤ a ≤ 1.

6.3.3 Adjoint operator and the bi-orthogonal basis

In the MPC scheme, a stability constraint and the terminal cost are used

to guarantee closed-loop stabilization and calculate the cost function after

stabilization. These properties can be derived using a bi-orthogonal basis,

which is derived in this section. To define this basis, first, the adjoint operator

must be obtained, which can be constructed by using the definition of the

inner-product shown in Eq. 6.10:

⟨Ax, y⟩ = ⟨x,A∗y⟩ (6.28)
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where x ∈ X , y ∈ X ∗, A is the operator defined in Eq. 6.7 and A∗ is the adjoint

operator. Using the definition of inner product and expression of operator A

one obtains, as shown in Appendix 6.B:

〈[
x1
x2

]
,

[
D∂ζζy2+v∂ζy2+ky2

τ

y1 −
(
−k + 1

τ

)
y2

]〉
= ⟨x,A∗y⟩ =⇒ A∗ =

[
0

D∂ζζ+v∂ζ+k

τ

1 k − 1
τ

]

(6.29)

with boundary conditions given as:

vy2|1 +D∂ζy2|1 = 0 and ∂ζy2|1 = 0 (6.30)

By solving the eigenvalue problem for the adjoint operator, the following func-

tions are obtained:

ψi =
[
g11(ζ, λi) +

v

D
g12(ζ, λi)

] [λi + 1
τ
− k

1

]
ψ2,i(0) (6.31)

with gi,j given by the expressions shown in Eq. 6.50, with a = (λ−k)(1+λτ)
D

, b =

− v
D

and ζ0 = 0. The derivation of the adjoint operator and its eigenfunctions

is shown in Appendix 6.B.

Taking into account the definition of inner product shown in Eq. 6.10

⟨Aϕi, ψj⟩ = ⟨λiϕi, ψj⟩ = λi⟨ϕi, ψj⟩ =
⟨Aϕi, ψj⟩ = ⟨ϕi, A∗ψj⟩ = ⟨ϕi, λjψj⟩ = λ̄j⟨ϕi, ψj⟩

or
⟨Aϕi, ψ̄j⟩ = ⟨λiϕi, ψ̄j⟩ = λi⟨ϕi, ψ̄j⟩ =

⟨Aϕi, ψ̄j⟩ = ⟨ϕi, A∗ψ̄j⟩ = ⟨ϕi, λ̄jψ̄j⟩ = λj⟨ϕi, ψ̄j⟩

(6.32)

In the first case, for the equality to hold, ⟨ϕi, ψj⟩ = 0 if λi ̸= λ̄j. Thus,

the eigenfunctions are orthogonal to each other, except to the eigenfunction

related to their conjugated eigenvalue. In the second case, ⟨ϕi, ψ̄j⟩ = 0 if

λi ̸= λj and the eigenfunctions are orthogonal to each other, except to the

eigenfunction related to the same eigenvalue. One can choose ϕ1,i(0) in Eq.

6.12 and ψ2,i(0) in Eq. 6.31, such that ⟨ϕi, ψ̄j⟩ = 1.

6.4 Controller Design

The closed-system considered in this contribution is shown in Figure 6.2. In the

closed-loop operation, the controller uses an initial estimate of the plant states
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to calculate an appropriate input that guarantees the stability and constraints

satisfaction up until the end of the control horizon. The input is applied to

the plant and the measured output is obtained. With the new information,

the observer states are updated and used by the MPC to determine the new

input, setting the closed-loop cycle. In the next sections, first, the discrete-

time representation of the system, which is also used in the controller design,

is shown, followed by the system observer design in the discrete-time setting.

Finally, the model predictive control design is presented, using the observer

states to calculate the appropriate input that guarantees the system stability

and constraints satisfaction.

Figure 6.2: Discrete-time closed-loop representation.

6.5 Discrete-time representation

In this section, the discrete representation is obtained for the system. The

Cayley-Tustin discrete-time representation is used, which preserves the intrin-

sic energy, and dynamical characteristics of the system [29].
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6.5.1 System representation

Given the system defined in Eq. 6.8, one can apply a structure-preserving

time discretization of the dynamical system. The so-called Cayley-Tustin time

discretization is derived by applying the Crank-Nicolson midpoint integration

rule and assuming piecewise-constant input within the sampled intervals. The

discrete system is obtained as:

xk = Adxk−1 +Bduk

yk = Cdxk−1 +Dduk

ym,k = Cm,dxk−1 +Dm,duk

(6.33)

where δ = 2/∆t, Ad, Bd, Cd, Dd, Cm,d and Dm,d are the discrete time system

operators and are given by:



Ad(·) Bd

Cd(·) Dd

Cm,d(·) Dm,d


 =



−I + 2δ (δI − A)−1 (·)

√
2δ (δI − A)−1B√

2δCy (δI − A)−1 (·) G(δ)√
2δCm (δI − A)−1 (·) Gm(δ)


 (6.34)

(δI − A)−1 = R(δ, A) is defined as the resolvent operator of the operator A,

found in Eq. 6.21. (δI − A)−1B, G(δ) = Cy (δI − A)−1B and Gm(δ) =

Cm (δI − A)−1B were defined in Eq. 6.25 and Eq. 6.26 for the system con-

sidered, with s = δ. Notice that, although the system in the continuous-time

setting does not have a feedthrough operator (D = Dm = 0), the discrete-

time representation contains feedthrough operators (Dd = G(δ) ̸= 0 and

Dm,d = Gm(δ) ̸= 0).

The operators given by Eq. 6.34 are all compact and well-defined, and

the issue of boundary (point) actuation or/and observation does not induce

mathematical difficulties associated with the continuous counterparts, usually

leading to unboundedness.

Assumption 6.1 A small enough value of ∆t is used such that the discrete-

time representation of the system shown in Eq. 6.33 is a good approximation

of the open-loop system internal dynamics and the finite set of input/output

relations.
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Assumption 6.1 presumes there is a large enough δ (small enough ∆t) such

that the discretization can be applied to unstable systems [34] and is necessary

for the development of the controller in the following sessions. For an unstable

open-loop system, the following lemma gives an interval for which the discrete

representation might be a good approximation of the system:

Lemma 6.1 For an unstable system, the discrete system (Ad, Bd, Cd, Dd) needs

to satisfy ∆t < 2
s(A)

, where s(A) = sup{Re z : z ∈ σ(A)}, in order to properly

represent the (A,B,Cy, D) system dynamics.

The proof of Lemma 6.1 was shown in previous contributions [132].

6.5.2 System observer

Consider the following Luenberger observer in the discrete-time setting for the

system:
ŷm,k = Cm,dx̂k−1 +Dm,duk
x̂k = Adx̂k−1 +Bduk + Lo,d [ym,k − ŷm,k]

(6.35)

where Ad, Bd, Cm,d, Dd have been defined previously and Lo,d is the observer

gain in the discrete-time setting. The observer takes the current values of ym,k

and uk as input and gives the current state estimation x̂k, which the MPC uses

to calculate the next input applied to the system. Thus, the proper observer

gain (Lo,d) needs to be found, such that the observer error dynamics, defined

as êk = xk− x̂k, is stable and x̂k → xk as k → ∞. As shown in Appendix 6.D,

the following discrete Ricatti equation can be solved to find the appropriate

observer gain:

⟨Q̄OA
∗
dx,A

∗
dx⟩ − ⟨Q̄Ox, x⟩

−⟨(RO + Cm,dQ̄OC
∗
m,d)

−1Cm,dQ̄OA
∗
dx,Cm,dQ̄OA

∗
dx⟩ =

−⟨QOCm,dx,Cm,dx⟩
(6.36)

where the observer gain will then be given as Lo,d = A∗
dQ̄OC

∗
m,d(RO + Cm,d

Q̄OC
∗
m,d)

−1 . Solving this equation is the same as solving the equation below:

AdQ̄OA
∗
d − Q̄O − AdQ̄OC

∗
m,d(RO + Cm,dQ̄OC

∗
m,d)

−1Cm,dQ̄OA
∗
d =

−C∗
m,dQOCm,d

(6.37)

which is the discrete Ricatti equation generally used for finite (lumped) sys-

tems. Solving any of these Ricatti equations is analog to solve the following
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discrete Lyapunov equation:

⟨Q̄O(Ad − Lo,dCm,d)
∗x, (Ad − Lo,dCm,d)

∗x⟩ − ⟨Q̄Ox, x⟩ =
−⟨x, (C∗

m,dQOCm,d + Lo,dROL
∗
o,d)x⟩

(6.38)

If Q̄O and QO are positive definite operators, the observer error dynamics

Ad − Lo,dCm,d is stable and the observer states converge to the system states.

By using the bi-orthogonal basis of A, the Ricatti equation can be written as:

λDMλ
D
Nq

o
N,M − qoN,M

−(λDN
∑

i ciq
o
N,i)

T (RO +
∑

i

∑
j c

∗
i q
o
i,jcj)

−1(λDM
∑

i ciq
o
M,i) =

−(Cm,dψN)
TQO(Cm,dψM)

(6.39)

where ci = Cm,dϕi, ϕi are the system eigenfunctions and λDi are the eigenvalues

in the discrete-time setting.

Thus, this system of non-linear equations can be solved to find qoN,M and,

consequently, Q̄O(·) and the observer gain Lo,d = AdQ̄OC
∗
m,d:

Q̄O(·) =
∑Nλ

i

∑Nλ

j qoi,j⟨ϕi, (·)⟩ϕj;
Lo,d(ζ) = AdQ̄OC

∗
m,d(RO + Cm,dQ̄OC

∗
m,d)

−1 =∑Nλ

i

∑Nλ

j (I +
∑

i

∑
j c

∗
i q
o
i,jcj)

−1qoi,jλ
D
j ϕj(ζ)⟨Cm,dϕi, 1⟩

(6.40)

It is important to notice that, for an infinite-dimensional system Nλ → ∞, as

this type of system has an infinite number of eigenvalues. Thus, we consider

an observer gain approximation by using a finite number of eigenvalues. As

the system is linear, a direct relationship between the discrete and continuous

eigenvalues can be obtained. For the Cayley-Tustin time discretization, this is

given by λDi = −1 + 2δ
δ−λi , where λ

D
i and λi are the eigenvalues in the discrete

and continuous-time setting, respectively. Furthermore, as one expects from

a linear system, the eigenfunctions associated with the spatial characteristics

are invariant (the same as in the continuous-time setting).

6.6 Model Predictive Control

The MPC design developed in Muske et al. [30] for a finite-dimensional sys-

tem is a discrete controller design methodology and can be extended to the

infinite-dimensional setting [34]. Regarding the regulator design, the following
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objective function is considered as the basis of the controller design, which

needs to be minimized at each sampling time (k) on an infinite horizon:

min
u

∞∑

j=0

⟨x̂(k + j|k), Qx̂(k + j|k)⟩+ ⟨u(k + l + 1|k), Ru(k + l + 1|k)⟩

s.t.: x̂(k + j|k) = Adx̂(k + j − 1|k) +Bdu(k + j|k),
ŷ(k + j|k) = Cdx̂(k + j − 1|k) +Ddu(k + j|k),
umin ⩽ u(k + j|k) ⩽ umax,
ymin ⩽ ŷ(k + j|k) ⩽ ymax

(6.41)

In this equation, x̂ and ŷ are the system observer states and estimated

output, respectively. R is a positive definite matrix (in this case, a scalar,

as u(t) ∈ ℜ1) that defines the input cost, Q is positive semidefinite operator

associated with the states cost, k + j|k is the future step calculated from the

current time k, umin, umax, ymin and ymax are the minimum and maximum

input and output constraints. The system is assumed to be stabilized by the

end of the control horizon, and the input is zero for j > N (N is the control

horizon). This is achieved by adding a stability constraint to the controller

design. With these considerations, the infinite horizon objective function given

by Eq. 6.41 can be rewritten in a finite horizon:

min
uN

J =
N−1∑

j=0

{⟨x̂(k + j|k), Qx̂(k + j|k)⟩

+⟨u(k + j + 1|k), Rcu(k + j + 1|k)⟩
}

+⟨x̂(k +N |k), Q̄x̂(k +N |k)⟩

s.t.: x̂(k + j|k) = Adx̂(k + j − 1|k) +Bdu(k + j|k),
ŷ(k + j|k) = Cdx̂(k + j − 1|k) +Ddu(k + j|k),
umin ⩽ u(k + j|k) ⩽ umax,
ymin ⩽ ŷ(k + j|k) ⩽ ymax

⟨x̂(ζ, k +N),ΨU ⟩ = 0

(6.42)

where Q̄ is the terminal cost and is necessarily a positive definite operator

if all the unstable eigenmodes are canceled by the end of the horizon. The

bi-orthogonal basis shown in the previous sections can be used to calculate

the terminal cost operator (Q̄), as shown in Appendix 6.C:

Q̄x = −
∞∑

i

∞∑

j

⟨ϕi, Qϕj⟩
λi + λ̄j

⟨x, ψ̄i⟩ψ̄j (6.43)
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This stability condition is derived from the assumption that, given the

biorthonormal basis, for any x ∈ X , the following holds:

x(t, ζ) =
∑∞

i ⟨x(t, ζ), ψ̄i(ζ)⟩ϕi(ζ) =
∑∞

i ai(t)ϕi(ζ) =⇒
ẋ =

∑∞
i ȧi(t)ϕi(ζ) =

∑∞
i ⟨Ax(t, ζ), ψ̄i(ζ)⟩ϕi(ζ) +Bu(t)

=
∑∞

i λiai(t)ϕi(ζ) +Bu(t) =⇒ ȧi(t) = λiai(t) + biu(t)
(6.44)

In the last step, the inner product with ψ̄j(ζ) was taken and bi =< B,

ψ̄i(ζ) >. If < x,ΨU >= 0 (where ΨU is the set of unstable eigenfunctions),

then aU(t) = 0 and x(t) is exponentially stable (ȧi(t) < 0, as ℜ(λi) < 0 for

all λi /∈ {λU} - the set of unstable eigenvalues). As the eigenfunctions are

the same as in the continuous-time setting, the stability condition remains

the same. With the discrete system dynamics, the stability constraint can be

further expanded as:

⟨x(ζ, k +N),ΨU⟩ =
UT
[
[(Ad)

N−1Bd,ΨU ] . . . [Bd,ΨU ]
]
+ ⟨(Ad)Nx(ζ, k|k),ΨU⟩ = 0 =⇒[

[ΨU , (Ad)
N−1Bd] . . . [ΨU , Bd]

]
U + ⟨(Ad)Nx(ζ, k|k),ΨU⟩ = 0

(6.45)

where the transpose was taken and U = [uT (k), uT (k + 1), . . . , uT (k +N)]T is

the vector with the inputs up to the control horizon. Finally, Eq. 6.42 can be

further simplified by using the system dynamics:

min
U

J = 2UTG[x̂(ζ, k|k)]

+UTHU + ⟨x̂(k|k), Q̄x̂(k|k)⟩
s.t.: Umin ⩽ U ⩽ Umax

Y min ⩽ SU + T [x̂(ζ, k|k)] ⩽ Y max

x̂do(k + j|k) = Ado,dx̂do(k + j − 1|k),
SIPU + TIP [x̂(ζ, k|k)] = 0

(6.46)

where H is a matrix with elements hi,j, for i = 1, ..., N and j = 1, ..., N ,

defined below. Y min and Y max are vectors containing the output constraints.

It is considered that the constraints are constant, i.e., ymin(k + j) = ymin for

0 ≤ j < N . The elements of the matrices and operators defined on Eq. 6.46

are given by:

hi,j =





[
Bd, Q̄Bd

]
+R, if i = j[

Bd, Q̄(Ad)
(i−j)Bd

]
, if i > j[

(Ad)
(j−i)Bd, Q̄Bd

]
, if i < j
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G[·] =




[Bd, Q̄Ad(·)]
[Bd, Q̄(Ad)

2(·)]
...

[Bd, Q̄(Ad)
N(·)]


 , T [·] =




Cd(·)
Cd(Ad)(·)

...
Cd(Ad)

N−1(·)




S =




Dd 0 . . . 0
CdBd Dd . . . 0
...

...
. . .

...
Cd(Ad)

N−2Bd Cd(Ad)
N−3Bd . . . Dd




SIP =
[
[Φu, (Ad)

N−1Bd] . . . [Φu, Bd]
]

TIP [·] = ⟨(Ad)N(·), Φ̂u⟩
U =

[
u(k + 1|k)T u(k + 2|k)T . . . u(k +N |k)T

]T
(6.47)

Thus, considering that this optimization problem is feasible for every k, it is

possible to find U for each step, and the values of u(k) are obtained.

6.7 Results

In this section, the simulation results are presented, and the value of the

parameters shown in Table 6.1 were considered. For these values, the open-

loop system presents an unstable behavior for both the second-order hyper-

bolic and parabolic PDEs, as shown in the eigenvalue distribution presented

in Figure 6.3. For the parabolic PDE, the unstable eigenvalue is located at

λU ≈ 0.15, whilst for the hyperbolic equation it is at λU ≈ 0.17. The dif-

ference between the eigenvalues distribution is also noticeable: the parabolic

equation has all its eigenvalues located in the real axis, and their values tend

to −∞; the hyperbolic PDE, on the other hand, has a finite number of real

eigenvalues and its distribution increases in the imaginary axis. The unstable

eigenfunctions are presented in Figure 6.3, such that the stability condition

given by Eq. 6.45 can be set. For the results shown below, the initial con-

dition for ∂tC(t), necessary in the hyperbolic PDE, was considered 0 and

C(t = 0, ζ) = −0.43ζ2 + 0.86ζ + 0.43 for both PDEs. If only the output

feedback is used, the observer initial condition was considered to be zero for

all the states. The states cost Q for the parabolic PDE were considered to be
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QPx = qx, where q is a constant. While for the hyperbolic PDE, it was con-

sidered QH =

[
QP 0
0 0

]
, such that, only x(t) = C(t) will have a direct weight

in the cost function, allowing for the comparison between the two types of

models. The integral terms on the discrete operators were approximated by

be trapezoidal rule, using N = 200 discretization points.

Table 6.1: Parameters used in the simulation.
D v k τ ∆t R q RO N Nλ

0.5 1 1.5 0.1 0.25 40 1 1 200 70

Figure 6.3: (Top): Eigenvalue distribution (left), with a enlarged segment
(right), showing the unstable eigenvalues for the conditions shown in Table
6.1; (Bottom): Eigenfunctions - ϕ (Left) - and eigenfunctions of the adjoint
operators - ψ (Right) - associated to the unstable eigenvalue;

The results shown in Figure 6.4 consider full-state feedback without con-

straints on the input or output. For a fair comparison between the parabolic

and hyperbolic PDEs, the ||x(k)|| only takes into account C(k). The input

sequence starts differently for the PDEs, with a higher input being applied
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to the parabolic model. This is probably due to the speed of propagation; as

in the hyperbolic model, the state has a zero initial velocity. Thus, the flux

has an initial delay, and the x(k, ζ) does not increase at the same rate as the

parabolic case. However, this also means that, for the hyperbolic case, the

input, which is applied at the boundary, will not act in the system as fast as

in the parabolic PDE. This is shown in the ||x(k)|| evolution, where the hyper-
bolic PDE state remains higher for the initial steps. Finally, due to the higher

inputs, the cost function of the parabolic PDE is greater than the hyperbolic

case.

Figure 6.4: Simulations results for the non-constrained MPC with fullstate
feedback: (Top-left) Input sequence; (Top-right) MPC Cost Function; (Bot-
tom) State (C) norm;

In the second case, the full-state feedback is considered with an output

constraint of ymax = 0.75. Due to the initial condition, where y(0) ≈ 0.75, the

controller has to make a significant input action to satisfy the constraint in

the next time step, as shown in Figure 6.5. Due to the different propagation
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speeds between the parabolic and hyperbolic models, the input taken by the

hyperbolic case is higher than the parabolic one. This makes the remaining

input sequence completely different for the two models, with the controller

taking negative inputs for the hyperbolic model and positive for the parabolic

equation. As expected, as the input has a direct effect on the cost function,

due to the greater action taken in the beginning, the cost of the hyperbolic

case is initially higher. Nonetheless, the PDEs are properly stabilized in both

cases. The output profile is shown in the bottom-left of Figure 6.6, and it is

possible to see that the output constraint is satisfied for the full-state feedback

for both hyperbolic and parabolic cases.

Figure 6.5: Simulations results for the constrained MPC with fullstate feed-
back: (Top-left) Input sequence; (Top-right) MPC Cost Function; (Bottom)
State (C) norm;

The next cases consider that only the output feedback is available to the

controller. Thus, the observer designed in the previous section is employed to

reconstruct the system states used in the optimization. The observer conver-

gence, represented by the observer error norm, is shown at the top of Figure
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6.6. Once again, just the norm of the error between C and Ĉ is considered.

The observer error dynamic is independent of the system stability. Thus, the

input sequence does not have any influence on the observer convergence as

long as a proper observer gain has been chosen.

Figure 6.6: Norm of the observer error for x(k) = C(k) for the output feedback
controller (Top) and the system output: (Bottom-Left) Fullstate feedback;
(Bottom-Right) Output feedback.

For both constrained and unconstrained cases, as the initial observer states

are zero, the first input determined by the controller is zero. As the observer

states start to change due to the difference between the measured output (ym)

and the predicted measured output (ŷm), the input starts to increase. As

the observer converges faster for the hyperbolic case, the input for this PDE

increases quicker, leading to a decrease in the state norm (||x(k)||), as shown
in Figure 6.7.

216



Figure 6.7: Simulations results for the non-constrained MPC with measured
output feedback (observer based): (Top-left) Input sequence; (Top-right) MPC
Cost Function; (Bottom) State (C) norm;

In the constrained case with output feedback, umax = 0.15 and ymax =

0.75 were considered. In Figure 6.8 and in the bottom-right of Figure 6.6,

it is possible to see that, as the observer states are used in the optimization

problem, and the measured and constrained outputs are located in different

points of the process (at ζ = 1 and ζ = 0.5, respectively), the output constraint

is not satisfied until the observer states converge to the system states. However,

even with the input constraints, it is possible to stabilize the system, and, after

the observer convergence is achieved, the output constraint is satisfied.
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Figure 6.8: Simulations results for the constrained MPC with measured output
feedback (observer based): (Top-left) Input sequence; (Top-right) MPC Cost
Function; (Bottom) State (C) norm;

Finally, to compare the different results, the total cost (
∑
J(k)) of each

simulation result is shown in Table 6.2. The unconstrained full-state feedback

has the lowest value, and the constrained full-state has the highest due to the

significant actions taken in the initial steps to satisfy the output constraint.

Overall, the cost of the output feedback is higher, even if the input sequences

have the lower values, which is due to the increase in the states evolution

without the proper control action (i.e., ||x(k)|| initially increases and only

starts decreasing as the observer states converge to the system states). For

the constrained case with output feedback, even if the controller takes smaller

actions than the unconstrained cases, the input remains at its limit for longer

period, hence increasing the total cost.
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Table 6.2: Total cost of the optimization problem for the different cases con-
sidered: unconstrained fullstate feedback; constrained fullstate feedback; un-
constrained output feedback; and, constrained output feedback.

PDE Type Unconst. Full. Const. Full. Uncons. Out. Const. Out.
Parabolic 39.27 95.08 63.81 65.64
Hyperbolic 34.52 240.63 46.41 49.04

6.8 Conclusion

In this contribution, the difference in the dynamics of a tubular reactor mod-

eled by a parabolic and a second-order hyperbolic PDEs was considered in the

model predictive controller design. The discrete representation of the system

was obtained by the Cayley-Tustin transformation, used in the controller and

observer design.

In the simulation results, a system with one unstable mode was analyzed,

such that a stability constraint was used to guarantee the system stability at

the end of the control horizon. As an important scenario for practical control

application, the output feedback was considered, and an observer was used to

provide the controller with the state estimates necessary for the optimization

problem. Input and output constraints were considered in the problem, with

the measured output located at a different point from the constrained output.

The control actions obtained for both models - the parabolic and the

second-order hyperbolic equations - were compared. It is observed that there

is a slight difference between the control actions taken by the controller for the

case of the full-state feedback without constraints. However, if constraints are

present in the system, the controller yields distinct actions for the two differ-

ent types of PDEs, even with the full-state feedback. The difference becomes

larger if only a measured output is available and the observer states have to be

used as an estimation for the system states. This is expected, as the different

dynamics between the models would lead to different estimations. Finally,

as the measured output feedback is generally more physically viable than the

full-state feedback, at least for PDE systems, the type of model considered

is essential for the proper closed-loop dynamics and performance satisfaction
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when it comes to operating such a fundamental system as tubular chemical

reactor.

6.A System’s eigenvalues and eigenfunctions

In this section, the derivation for the system’s characteristic equation and its

eigenfunction is shown by defining the eigenvalue problem for the hyperbolic

PDE. The following system is obtained from the eigenvalue problem, Aϕ = λϕ,

where A is the operator, ϕ is the eigenfunction, and λ is the eigenvalue. For

the operator defined in Eq. 6.7, the following system of ODEs is obtained:

{
ϕ2 = λϕ1
D
τ
∂ζζϕ1 − v

τ
∂ζϕ1 +

k
τ
ϕ1 − 1

τ
ϕ2 + kϕ2 = λϕ2

(6.48)

resulting in:

dζ

[
ϕ1

dζϕ1

]
=

[
0 1

(−k+λ)(1+λτ)
D

v
D

] [
ϕ1

dζϕ1

]
=⇒

[
ϕ1

dζϕ1

]
=

[
f11(ζ, λ) f12(ζ, λ)
f21(ζ, λ) f22(ζ, λ)

] [
ϕ1(ζ0)
dζϕ1(ζ0)

] (6.49)

where the fi,j are given by:

f11(ζ, λ) = e
b
2
(ζ−ζ0)

[
cosh

(
(ζ − ζ0)

√
b2

4
+ a

)
− b

2

sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

]

f12(ζ, λ) =
e
b
2 (ζ−ζ0)sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

f21(ζ, λ) = a
e
b
2 (ζ−ζ0)sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

f22(ζ, λ) = e
b
2
(ζ−ζ0)

[
cosh

(
(ζ − ζ0)

√
b2

4
+ a

)
+ b

2

sinh

(
(ζ−ζ0)

√
b2

4
+a

)
√

b2

4
+a

]

(6.50)

with a = (λ−k)(1+λτ)
D

, b = v
D

and ζ0 = 0. Applying the boundary conditions

results in the condition below:
{
dζϕ1(0) =

v
D
ϕ1(0)

f21(1, λ)ϕ1(0) + f22(1, λ)dζϕ1(0) = 0
=⇒

ϕ1(0)
[
f21(1, λ) +

v
D
f22(1, λ)

]
= 0

(6.51)
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Setting aside the trivial solution, the characteristic equation for this oper-

ator is given by f21(1, λ) +
v
D
f22(1, λ) = 0, which leads to:

tanh

(
1

D

√
v2

4
+D(λ− k)(1 + λτ)

)
=

−v
√

v2

4
+D(λ− k)(1 + λτ)

v2

2
+D(λ− k)(1 + λτ)

(6.52)

And the eigenfunctions will be given by:

ϕi =
[
f11(ζ, λi) +

v

D
f12(ζ, λi)

] [ 1
λi

]
ϕ1,i(0) (6.53)

6.B Adjoint operator and its eigenfunctions

Using the definition of A and the inner product shown in Eq. 6.10:

⟨Ax, y⟩ =
〈[

x2
D∂ζζx1−v∂ζx1+kx1

τ
−
(
−k + 1

τ

)
x2

]
,

[
y1
y2

]〉
=

∫ 1

0

x2(ȳ1)dζ +

∫ 1

0

[
D∂ζζx1 − v∂ζx1 + kx1

τ
−
(
−k + 1

τ

)
x2

]
(y2)dζ =

∫ 1

0

x2(ȳ1)dζ +

∫ 1

0

x2

[
−
(
−k + 1

τ

)
ȳ2

]
dζ+

∫ 1

0

[
D∂ζζx1 − v∂ζx1 + kx1

τ

]
(ȳ2)dζ

(6.54)

and the last term of this expression is further expanded by applying integration

by parts:

∫ 1

0

(
D∂ζζx1
τ

)
(ȳ2)dζ =

[
D∂ζx1
τ

ȳ2

]∣∣∣∣
1

0

−
∫ 1

0

(
D∂ζx1
τ

)
(∂ζ ȳ2)dζ =

[
D∂ζx1
τ

ȳ2

]∣∣∣
1

0
−
[
Dx1
τ
∂ζ ȳ2

]∣∣1
0
+

∫ 1

0

x1

(
D∂ζζ ȳ2
τ

)
dζ

∫ 1

0

(−v∂ζx1
τ

)
(ȳ2)dζ =

[−vx1
τ

ȳ2

]∣∣∣∣
1

0

+

∫ 1

0

x1

(
v∂ζ ȳ2
τ

)
dζ

(6.55)

where D, k, v, τ ∈ ℜ is considered. Applying the boundary conditions defined

in Eq. 6.6 for u(t) = 0:

[
D∂ζx1
τ

ȳ2

]∣∣∣
1

0
−
[
Dx1
τ
∂ζ ȳ2

]∣∣1
0
+
[−vx1

τ
ȳ2
]∣∣1

0
=

1
τ

[
− (D∂ζx1|0 − vx1|0)︸ ︷︷ ︸

=0

ȳ2|0 +D∂ζx1|1︸ ︷︷ ︸
=0

ȳ2|1

−Dx1|0∂ζ ȳ2|0 + x1|1(−D∂ζ ȳ2|1 − vȳ2|1)
]

(6.56)
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giving the following boundary conditions of the adjoint operator:

vy2|1 +D∂ζy2|1 = 0 and ∂ζy2|1 = 0 (6.57)

And the inner product can be written as:

〈[
x1
x2

]
,

[
D∂ζζy2+v∂ζy2+ky2

τ

y1 −
(
−k + 1

τ

)
y2

]〉
= ⟨x,A∗y⟩ =⇒ A∗ =

[
0

D∂ζζ+v∂ζ+k

τ

1 k − 1
τ

]

(6.58)

With the definition of the adjoint operator given in Eq. 6.29 and its bound-

ary conditions given in Eq. 6.30, the eigenvalue problem is solved once more to

define the bi-orthogonal basis of the operator. With A∗ψ = λψ, the following

system is obtained:

{
D
τ
∂ζζψ2 +

v
τ
∂ζψ2 +

k
τ
ψ2 = λψ1

ψ1 − 1
τ
ψ2 + kψ2 = λψ2

(6.59)

resulting in:

ψ1 =

(
λ+

1

τ
− k

)
ψ2 (6.60)

and
d
dζ

[
ψ2

dζψ2

]
=

[
0 1

(λ−k)(1+λτ)
D

−v
D

] [
ψ2

dζψ2

]
=⇒

[
ψ2

dζψ2

]
=

[
g11(ζ, λ) g12(ζ, λ)
g21(ζ, λ) g22(ζ, λ)

] [
ψ2(ζ0)
dζψ2(ζ0)

] (6.61)

where gi,j is given by the same expression as in Eq. 6.50, with a =
(λ−k)(1+λτ)

D
, b = − v

D
and ζ0 = 0. Applying the boundary conditions of the

adjoint operator results in the following:

{
dζψ2(1) = − v

D
ψ2(1)

dζψ2(0) = 0
=⇒ ψ2(0)

[
g21(1, λ) +

v

D
g11(1, λ)

]
= 0 (6.62)

Setting aside the trivial solution, the characteristic equation for this operator

is given by g21(L, λ) +
v
D
g11(L, λ) = 0, which leads to the same expression

shown in Eq. 6.11, as expected. The adjoint operator eigenfunctions will be

given by:

ψi =
[
g11(ζ, λi) +

v

D
g12(ζ, λi)

] [λi + 1
τ
− k

1

]
ψ2,i(0) (6.63)
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6.C Solution of the Lyapunov Equation and

the terminal cost operator

If a system is stable, the cost associated with the system starting at an initial

condition x0, until it reaches the origin at t→ ∞ is given by ⟨x0, Q̄x0⟩, where
Q̄ is the solution of the following Lyapunov Equation [16]:

⟨Ax1, Q̄x2⟩+ ⟨Q̄x1, Ax2⟩ = −⟨x1, Qx2⟩ (6.64)

Assuming that Q̄ is defined as Q̄ =
∑

i

∑
j qi,j⟨x, ψ̄i⟩ψ̄j, the elements qi,j of

the operator can be found by setting x1 = ϕN and x2 = ϕM , which leads to:

⟨AϕN , Q̄ϕM⟩+ ⟨Q̄ϕN , AϕM⟩ = −⟨ϕN , QϕM⟩
=⇒ ⟨λNϕN ,

∑
j qM,jψ̄j⟩+ ⟨∑j qN,jψ̄j, λMϕM⟩
= −⟨ϕN , QϕM⟩

=⇒ λN q̄M,N + λ̄MqN,M = −⟨ϕN , QϕM⟩
=⇒ qN,M = − ⟨ϕN ,QϕM ⟩

λN+λ̄M

(6.65)

where the properties of the inner product and the fact that q̄M,N = qN,M were

used. Substituting this in the definition of Q̄ leads to Eq. 6.43. As it was

shown in Xu et al. [34], the solution of the continuous Lyapunov equation,

given by Eq. 6.65 is directly related to the solution of the Lyapunov equation

in the discrete-time setting for the Cayley-Tustin discretization.

6.D Solution of the Ricatti Equation for the

Observer Design

Considering the Luenberger observer shown in Eq. 6.35, and by defining the

observer discrete error as êk = xk− x̂k and the observer measurement error as

êm,k = ym,k − ŷm,k = Cm,d(xk− x̂k) = Cm,dêk, the observer error dynamics will

be given by:

êk+1 = xk+1 − x̂k+1 = Adxk +Bduk+1 − Adx̂k −Bduk+1 − Lo,dêm,k =
Adêk − Lo,dCm,dêk = (Ad − Lo,dCm,d)êk

(6.66)

Thus, a discrete observer gain Lo,d needs to be found such that (Ad −
Lo,dCm,d) generates a stable semigroup. By using the duality between observ-

ability and controllability, and as similarly shown in Curtain [16], the discrete
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Ricatti equation shown in Eq. 6.36 can be solved to find an observer gain that

guarantees that (Ad − Lo,dCm,d)
∗ is stable, which also implies the stability of

(Ad−Lo,dCm,d). From the duality, the solution of the discrete Ricatti equation

minimizes the following quadratic cost:

J =
∞∑

0

⟨Cm,de∗k, QOCm,de
∗
k⟩+ ⟨L∗

o,de
∗
k, ROLo,de

∗
k⟩ (6.67)

where is the dynamics of the observer error in the dual space (i.e., e∗k+1 =

(Ad − Lo,dCm,d)
∗e∗k). From the Lyapunov equation shown in Eq. 6.38, the

minimum of the cost function will be given as Jmin = ⟨e∗0, Q̄Oe
∗
0⟩, where Q̄ is

the solution of the discrete Ricatti equation. Eq. 6.36 can also be written as:

⟨Q̄OA
∗
dx1, A

∗
dx2⟩ − ⟨Q̄Ox1, x2⟩

−⟨(RO + Cm,dQ̄OC
∗
m,d)

−1Cm,dQ̄OA
∗
dx1, Cm,dQ̄OA

∗
dx2⟩ =

−⟨QOCm,dx1, Cm,dx2⟩
(6.68)

for x1, x2 ∈ X ∗. By defining the operator in the bi-orthogonal basis of Ad

(which has the same eigenfunctions of A), Q̄O(·) =
∑

i

∑
j q

o
i,j⟨ϕi, (·)⟩ϕj and

taking x1 = ψ̄N and x2 = ψ̄M , leads to:

A∗
dx1 = A∗

dψ̄N = λ̄DN ψ̄N
A∗
dx2 = A∗

dψ̄M = λ̄DM ψ̄M
Q̄Ox1 = Q̄Oψ̄N =

∑
j q

o
N,jϕj

Q̄Ox2 = Q̄Oψ̄M =
∑

j q
o
M,jϕj

AdQ̄Ox1 = AdQ̄Oψ̄N =
∑

j q
o
N,jλ

D
j ϕj

AdQ̄Ox2 = AdQ̄Oψ̄M =
∑

j q
o
M,jλ

D
j ϕj

CmQ̄OA
∗
dx1 = CmQ̄Oλ̄

D
N ψ̄N =

∑
j q

o
N,jλ

D
NCmϕj

CmQ̄OA
∗
dx2 = CmQ̄Oλ̄

D
M ψ̄M =

∑
j q

o
M,jλ

D
MCmϕj

Cm,dQ̄OC
∗
m,d =

∑
i

∑
j q

o
i,j⟨ϕi, C∗

m,d⟩Cm,dϕj =∑
i

∑
j q

o
i,j⟨Cm,dϕi, 1⟩Cm,dϕj

(6.69)

where the properties of the inner product and the bi-orthogonal shown in the

previous sections were used. Thus, Eq. 6.66 becomes:

⟨∑j q
o
N,jλ

D
j ϕj, λ̄

D
M ψ̄M⟩ − ⟨∑j q

o
N,jϕj, ψM⟩−

⟨(RO +
∑

i

∑
j q

o
i,j⟨Cm,dϕi, 1⟩Cm,dϕj)−1

∑
j q

o
N,jλ

D
NCm,

∑
j q

o
M,jλ

D
MCm⟩

= −⟨QOCm,dψ̄N , Cm,dψ̄M⟩ =⇒
λDMλ

D
Nq

o
N,M − qoN,M

−(λDN
∑

i ciq
o
N,i)

T (RO +
∑

i

∑
j c

∗
i q
o
i,jcj)

−1(λDM
∑

i ciq
o
M,i) =

−(Cm,dψN)
TQO(Cm,dψM)

(6.70)
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6.E Parabolic PDE properties

For the parabolic PDE, the operator A is defined as AC = D∂ζζC−v∂ζC+kC

and the boundary conditions are the same as given in Eq. 6.6. If the same

boundary input (C(0−) = u(t)), measure output and desired output as the

second-order hyperbolic PDE are used, the parabolic properties are defined

as:

(sI − A)−1x0 =
[f11(ζ,s)+

v
D
f12(ζ,s)]

[f21(1,s)+
v
D
f22(1,s)]

∫ 1

0

f22(1− η)
x0(η)

D
−
∫ ζ

0

f12(ζ − η)
x0(η)

D

(sI − A)−1B = [f11(ζ, s)a+ f12(ζ, s)
av+1
D

]; a = −
1
D
f22(1, s)U(s)

f21(1, s) +
v
D
f22(1, s)

Cm(sI − A)−1B = [f11(1, s)a+ f12(1, s)
av+1
D

];

C(sI − A)−1B = [f11(0.5, s)a+ f12(0.5, s)
av+1
D

];
(6.71)

The eigenvalue problem gives the following characteristic equation and

eigenfunctions:

f11(1, λ) +
v
D
f11(1, λ) = 0

ϕ(ζ, λ) = [f11(ζ, λ) +
v
D
f12(ζ, λ)]ϕ(0)

A∗y = D∂ζζy + v∂ζy + ky, D∂ζy(1) + vy(1) = 0& ∂ζy(0) = 0

ψ(ζ, λ) = g11(ζ, λ)ψ(0)

(6.72)

where fi,j is defined in Eq. 6.50 with a = λ−k
D

, b = v
D

and ζ0 = 0, and gi,j

with a = λ−k
D

, b = −v
D

and ζ0 = 0. ϕ(0) and ψ(0) can be chosen such that

⟨ϕi, ψ̄j⟩ = 1 for i = j and ⟨ϕi, ψ̄j⟩ = 0 for i ̸= j.
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Chapter 7

Conclusions and Future Work

7.1 Conclusions

Throughout this thesis, the modeling and control of systems modelled by hy-

perbolic PDEs were analyzed from the continuous to the discrete-time settings.

Chemical transport-reaction processes and a water canal were the systems con-

sidered for the analysis and/or control.

Chapter 2 analyzed the difference in the dynamics between the parabolic

and second-order hyperbolic PDEs, as the latter is generally used as a standard

model for diffusive processes. The second-order hyperbolic PDE considers a

delay in the transport due to the initial inertia, which gives it a finite speed

of propagation seen in experimental results. In the non-delayed diffusion, any

initial disturbance in the material body is propagated instantly with maximum

rate, a characteristic of the parabolic equation. To analyze the differences

between the hyperbolic and parabolic PDEs, a one-dimensional heat diffusion

problem, an axial tubular reactor, and a phase change system were considered

as processes of interest.

For the heat equation and the tubular reactor, the difference in the dy-

namic of the two equations was investigated by performing the eigenvalues

analysis and presenting the results of the numerical simulations. Overall, the

properties’ rate of change showed a noticeable distinction from the hyperbolic

and parabolic equations. For the system with a phase transition (modeled as

a Stefan problem), the type of flux influences the interface’s dynamics.

The difference in the dynamics can be crucial for some applications. If
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a model-based controller is considered, even though it is possible to guaran-

tee some degree of robustness in the closed-loop, the controller’s performance

would be affected.

In Chapter 3, the controller design in the continuous-time setting was de-

veloped assuming two different layouts of a heat exchanger system. Delayed

boundary feedback and a boundary input were considered for both configura-

tions, requiring a system transformation to deal with these conditions. The

transformed system had a corresponding in-domain input instead of the bound-

ary input, and the transport delay was turned into an equivalent transport

equation.

For unstable operation conditions, it was shown that output feedback is

not sufficient to stabilize the system. Thus, a full-state feedback control law

was used. Unfortunately, as the information for all states of a DPS is hardly

available, an observer was designed to reconstruct the system states. The

computer simulations demonstrated the controller’s capability to stabilize the

system, achieve output tracking of the desired signal, and reject the distur-

bances.

The transition from the continuous-time setting to the discrete-time was

made in Chapter 4. The regulator for the Saint-Venant-Exner model was

developed to achieve proper closed-loop stability and output tracking. The

backstepping methodology was used in the continuous-time setting to map the

closed-loop system and the observer error dynamics to stable target systems,

guaranteeing the system stability and observer convergence. A reference signal

generated by an exosystem was considered for the output tracking problem.

With the stabilization and tracking achieved in the continuous-time setting,

the discrete regulator was explored by developing a direct relation to the con-

trol law and observer gain in the continuous-time setting. The simulations

results showed the regulator performance.

Finally, Chapters 5 and 6 considered the optimal constrained control prob-

lem. Chapter 5 analyzed an autothermal reactor with boundary actuation.

The linearized model around a steady-state was used to achieve a linear rep-

resentation of the system, followed by a boundary transformation to represent
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the boundary input as an in-domain input. The model predictive controller

was designed based on the transformed system, and the discrete model was ob-

tained by applying a Cayley-Tustin time discretization transformation. The

control strategy was applied considering stable and unstable steady-states,

where the optimal system response and constraints satisfaction were possible

using the designed controller. When the system’s non-linear model is assumed

as the plant model, and the MPC uses the linearized model, it is still possible

to make the system converge to the desired steady-state profile.

Chapter 6 assessed the effect of the different dynamics of the second-order

hyperbolic and the parabolic PDEs showed in Chapter 2 on the controller

closed-loop performance. The output feedback was considered, and an observer

was used to provide the state estimates. Input and output constraints were

assumed in the control problem. The difference in the control actions taken by

the controller was small if full-state feedback was available and no constraints

were imposed. If constraints were present in the system, the controller yielded

distinct actions for the two different types of PDEs. The difference is notable if

only the measured output is available. Thus, as expected, the model considered

is essential for the proper closed-loop dynamics and performance satisfaction.

7.2 Future Work

This thesis considered the modeling and control of DPS, specifically those

modelled by hyperbolic equations, without using early lumping in both the

continuous and discrete-time settings. There remain many open questions

regarding this subject, and a number of them are briefly mentioned here,

considering the work in production and future possibilities.

The difference in the dynamics analyzed in Chapter 2 is also being con-

sidered for materials under phase-change for problems in two and three di-

mensional cases. This will be done using the enthalpy technique presented in

[133] and [134]. Furthermore, the hyperbolic models used in Chapters 2 and 6

can be extended to other applications such as: cardiac alternans [135], [136],

cryosurgery [137], and phase change with convection [138].
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The regulator design considered in Chapter 3 guarantees the system sta-

bility, proper tracking, and disturbance rejection. Yet, it does not account

for any optimal conditions when it comes to performance, which is a possible

extension to be considered. This could also be coupled to an advanced control

strategy as the MPC design showed in Chapter 5, such that the constrained

optimal stabilization and tracking problem could be considered.

The operators considered were all differential operators. The controller

design taking into account partial integral-differential equations - that arise

from populational balances - is being studied.

The models studied here were all representations of transport-reaction pro-

cesses in one-dimensional spaces. A packed bed reactor - a system that can

be represented by a two-dimensional model - and the controller design for the

system are under study.
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