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Abstract

The stability of laterally unsupported steel beams is
examined with consideration given to the effects of the type
of load, point of application of the load, and the type of
end restraints supplied. The amount of end restraint
provided is a function of the type of connections used and
of the lateral continuity of the beam. Effective lengths can
be used»to model the effect of the end restraints on the
beam's stability. Effective length factors are given for
single span and cantilever beams. For continuous beams,
methods for determining effective length factors are

described.
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1. INTRODUCTION AND SCOPE

One limit state of a laterally unsupported beam is that
associated with lateral instability. Failure of this kind
occurs either by elastic or inelastic lateral-torsional
buckling. Laterally unsupported beams with sufficeintly
short spans reach their ultimate moments, either the plastic
or yield moments, before instability occurs. This report
deals with beams that are not short enough to reach the
plastic or yield moments and thus fail by lateral-torsional
buckling. The capacity of these beams depends in part on the
geometric and material properties of the beam. Other
important factors include the shape of the bending moment
diagram, the location of application of the load on the beam
cross-section - whether above, at or below the shear center
- and the restraints at the ends of the beam. These last
three factors are dealt with in this report with particular
emphasis on the effect of end restraints and how their
influence can be modelled by effective length factors.

The basic assumptions involved in the derivation of the
elastic critical buckling moment equation and how the shape
of the bending moment diagram, point of load application and
effect of end restraints are reviewed. Examination of the
pertinent equations show how they model the various
influencing factors. The three types of laterally
unsupported beams treated are single span, cantilever, and

continuous beams.



For single span beams a variety of analytical
procedures with various strengths and weaknesses exist in
the literature. Effective length factors can be used to
reflect the degree of end restraint provided and practical
methods for achieving these end conditions are given.

The special dategory of cantilever beams is examined
with a review of the classical solutions as well as code
requirements. Effective lengths corresponding to various
conditions of end restraint at each end of the cantilever
are given.

The term laterally continuous is used to refer to a
beam which is continuous in the lateral plane through a
number of discrete lateral Supports. Several methods for the
analysis of these beams are discussed. |

Finally, examples given in the appendix illustrate some

of the design procedures described in the text.



2. BACKGROUND AND THEORY
2.1 Classical Solution

2.1.1 The Critical Moment Equation

Consider a beam with a doubly symmetric cross-section
such as the I-shaped beam in Fig. 2.1, The coordinate system
is defined as shown in the figure. Let the symbols u, v, and
6 represent the deflection of the beam in the x-direction,
deflection in the y-direction and rotation about the z-axis
respectively. Primed symbols denote differentiation with
respect to z. The load is assumed to act on the beam in the
Y~z plane. The beam has a greater flexural rigidity in the
vertical plane than in the horizontal plane (I, > 1,),
Assume also, that the beam has pinned supports at each end
with respect to lateral bending and with respect to torsion

as given by Egns. [2.1] and [2.2] respectively.
[2.1] u=u"=0 @ z =0, L

[2.2] 0 6" =0 @ =z

]
o
e

No support is provided between the two ends. If the beam is
acted upon by equal and opposite end moments such as those
shown in Fig., 2,2 the differential equations for elastic

lateral-torsional buckling are (Galambos 1968):



Figure 2.1 Coordinate System

=

loading

bending moment diagram

Figure 2.2 Beam Loaded by Equal and Oppésite End Moments



[2.3] EI,u"+ Mo6" = 0
[2.4] EC,6"™ - GJ6" + Mou" = 0
The solution of Eqns. [2.3] and [2.4 ] results in the

following expression for the elastic critical buckling

moment of the beam (Timoshenko and Gere 1961; Galambos

1968) :
[2.5] Moo = %//EIYGJ + w;EZIwa

If the applied end moments reach the value given by
Egn. [2.5] the beam is in a state of unstable equilibrium
and can fail by lateral-torsional buckling.

Two types of deformations are involved in the
lateral-torsional buckling of a beam. The top flange,
stressed in compression, has a tendency to buckle laterally
(in the x-direction). The bottom flange, stressed in
tension, has no tendency to buckle and therefore tends to
restrain the beam from deflecting laterally. The combination
of the tendency to buckle and of restraint in the same beam
~results in a twisting action (McGuire 1968). The resulting
buckled position is shown in Fig. 2.3 (Adams, Krentz and
Kulak 1979). The deflection, v, is due to the vertical loads
and occurs prior to buckling.

When a beam buckles, the deformations, u and 6, can

become extremely large. This results in considerable



position before loading

— ]

position before

buckling
— — position after buckling
— —

Figure 2.3 Buckled Position of Beam Cross-Section
(Adams et. al. 1979)



"softening"” of the beam making it incapable of carrying
additional load (Galambos 1968). It has reached its ultimate

limit state.

2.1.2 The Effect of End Restraints

In the derivation of Egn. [2.5] it was assumed that the
beam considered was laterally simply supported.
Equations [2.1] and [2.2] described this condition in
mathematical terms. Not all beams have simple supports. For
example, the boundary conditions of a laterally fixed-ended

beam are described by the following equations:

[2.6] u=u' =0 @ z =0, L

[2.7] 6

6' =0 @ z =20, L

Considering a beam loaded by equal and opposite end moments
and using the above boundary conditions the governing
differential equations (Egns. [2.3] and [2.4]) can be solved
once again to yield the following expression for the

critical buckling moment (Chajes 1974):

[2.8] Moer = m //EIYGJ + =2E* 1,C,
0.5L (0.5L)?

Clearly,‘the type of end restraint exerted on a beam affects
its stability. The following sections describe various types

of boundary conditions and how they are achieved with



commonly used connections.

2.1.2.1 Torsional Restraint

A beam is said to have a torsionally pinned end
condition if, at the support being considered, twisting
about the longitudinal axis is completely restrained and
warping of the flanges is permitted. This type of support
was described mathematically by Egn. [2.2] for a beam with
torsional pins at both .ends. Figures 2.4(a) and 2.4(c) show
idealized supports which provide torsionally pinned boundary
conditions,

Warping is the type of deformation in which the flanges
bend about the y-axis. The top and bottom flange each bend
in the opposite direction to the other (Kirby and Nethercot
1979). A torsionally pinned support offers no resistance to
this type of deformation. Resistance to warping, therefore,
must be developed by longitudinal stresses in the flanges
along the length of the beam. The term ECw is a measure of
this resistance. Figure 2.5 shows a beam which is
torsionally pinned. Only torsional deformations are shown
(no lateral deflections are included). For clarity, the web
is not shown.

Figure 2.6(a) shows a double angle shear connection.
This is an example of a connection that can be assumed to
provide a torsionally pinned support condition (Galambos
1968). The restraint against twisting at the ends is almost
complete (¢ = 0) and because nothing bears against the

flanges (Fig. 2.6(b)) there is little restraint against
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Figure 2.5 Warping Deformations of Beam Flanges
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0

. o 1
0
l:

(a).side view

(b) plan

Figure 2.6 Double Angle Shear Connection
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12

warping (6" = 0),

The end plate connection shown in Fig., 2.7 can also be
idealized as a torsionally pinned connection. The restraints
are the same as the double angle connection. Rotation of the
end of the beam about the longitudinal axis is approximated
as zero. Warping deformations are unrestricted. A
torsionally fixed end condition exists if rotation of the
beam about its longitudinal axis is completely prevented and
warping of the flanges is not allowed. Equation [2.7] is the
appropriate mathematical expression for the boundary
conditions of a beam torsionally fixed at each end. The
first requirement, 6 equal to zero, is the same as that for
a torsional pin. The second requirement, ' equal to zero,
results in greater stability for a given beam.

Figure 2.8 shows an idealization of a torsionally fixed
end. The beam is acted upon by a concentrated torgue at some
distance from the support. At the support forces are
developed that resist warping of the section. These forces
set up shear stresses in the flanges. The shear stresses
acting in the flanges produce a couple (Fig. 2.9) which
resists the applied torque (McGuire 1968). A welded
connection of a rigid frame (Fig. 2.10) can be considered as
providing fixed boundary conditions (Galambos 1968).
Twisting is almost completely restrained at the ends (6 = 0)
and .warping deformations are impeded (6' = 0) by the

horizontal stiffeners bearing against the column flange.



Figure 2.7 End Plate Shear Connection

13



/]
7
7 T
/]
Y/ Y
/ ————————————————— -4
/]
/]
/]
/
idealized structure
R To
—
— T
pebututugnguisd | I | iefdgohbbntes
e som— T
R

free body diagram

Figure 2.8 Torsionally Fixed End

14



-
| - |
A
To
L -
———

Figure 2.9 Torque Resisted by Flange Shears
(McGuire 1968) |

Figure 2,10 Rigid Connection

15



16

2.1.2.2 Lateral Restraint

A laterally pinned connection exhibits the same
respective characteristics as a connection pinned in the
vertical plane. Lateral deflection of the supported beam is
prevented at the joint while rotation about the vertical
axis is unrestrained. Equation [2.1] is the mathematical.
expression representing the boundary conditions of a
laterally pin-endéd beam. Figures 2.4(a) and 2.4(b) show
idealizations of lateral pins.

The double angle connection of Fig. 2.6 is an example
of a commonly used connection that provides approximately a
laterally pinned boundary condition (Galambos 1968). The
angles provide nearly full restraint to lateral deflection
(u = 0) while offering very little resistance to rotation
about the vertical axis (u" = 0).

A beam is laterally fixed at a joint if rotation about
the vertical axis as well as lateral deflections are
completely restrained. Equation [2.6] mathematically
describes the boundary conditions for a laterally
fixed-ended beam. The supports shown in Figs. 2.4(c) and
2.4(d) provide full lateral fixity.

The rigid frame connection of Fig., 2.10 can be
. idealized as a torsionally fixed end (Galambos 1968). It
almost completely restricts lateral deflections (u =0) and

rotations about a vertical axis (u' = 0).
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2.1.2;3 Effective Length Factors

The form of Egn. [2.8] suggests that the use of
effective length factors may be appropriate for modelling
the effects of restraints on the end of a beam. This
situation is analagous to the column buckling problem where
effective lengths are also used. In Egn. [2.8] the term,
0.5L, outside the radical represents the effective length
with respect to lateral bending. The 0.5L term inside the
radical represents the torsional effective length. A large
number of effective length factors may be used to account
for the various conditions of end restraint (Vlasov 1961;
Galambos 1968). Alternatively, only a few, more generél
factors may be incorporated (Galambos 1968; Structural
Stability Research Council 1976), resulting in greater
convenience but less precision. Effective length factors
have also been used to account for the shape of the bending
moment diagram and the effect of the level of application of

the load (Trahair 1963).

2.1.3 The Effect of the Shape of the Moment Diagram

Equation [2.5] was derived for the case of a beam acted
upon by equal énd opposite end moments (Fig. 2.2).
Obviously, other types of loading conditions are possible
_ but basing the derivation on this particular load case does
.have advantages (Kirby and Nethercot 1979). The first one is
convenience. The differential equations of lateral-torsional

buckling are most easily deri&ed and solved if equal and



18

opposite end moments act on the beam. Secondly, the case
consideréd is the most severe loading condition that can be
applied to the beam. Equation [2.5] will yield conservative
buckling moments when other shapes of the moment diagram
exist. Making appropriate modifications to Egn. [2.5] for
various loading conditions will result in the calculation of
larger critical moments.

Figure 2.11 shows a beam acted upon by two end moments,
not necessarily of the same magnitude or sign. The term «k is
equal to the ratio of the smaller to the larger end moment.
A value of k equal to -1,0 represents the severe loading
case of Fig. 2.2. The severity of this case is exemplified
by the the bending moment diagram which shows the maximum
~bending moment to be acting along the entire length of the
beam. Most loading conditions found in practice will result
in the maximum bending moment acting at only one, two, or
three points along the beam. The lateral-torsional buckling
formula (Egn. [2.5]) can be modified by an equivalent moment
factor (Trahair 1977), m, which accounts for variations in

the shape of the moment diagram:

[2.9] Moer = mg//ﬁIyGJ + n°E%I,C,
L T2

where

[2.10] . om o= 1.75 + 1.05k + 0.3x? < 2,3



loading

Mo

—xM,

bending moment diagram

Figure 2.11 Beam With Moment Gradient

19



20

A good approximation in lieu of Eqn. [2.10] is:

[2.11] 1=0.6 - 0.4x 2 0.4

1
m
Values of the equivalent moment factor are tabulated
(Structural Stability Resarch Council 1976; Trahair 1977;
Kirby and Nethercot 1979) for load cases in which

Egns. [2.10] and [2.11] cannot be used (i.e. a beam loaded
by a uniformly distributed load). The tables, however are
not exhaustive. Equivalent moment factors are not readily
available for some unusual shépes of bending moment
diagrams. In these situations Kirby and Nethercot (1979)

have proposed the following formula:

[2.12] _1_ = 3ML+ 4M3 + 3M1L + 2Mmax
m 12Mmax ’

The variables in Edn. [2.12] are defined in Fig. 2.12.

2.1.4 The Effect of the Level of Applicatiqn of the Load

It would be unusual, in practice, to find a beam loaded
by equal and opposite end moments. In most situations
encountered transverse forces are applied to a beam. The
level of application of these loads on the cross-section of
the beam has an influence on its stability (Timoshenko and
Gere 1961). A load applied to the top flange results in

decreased stability since a torsional force develops as the



- Figure 2.12 Arbitrary Bending Moment Diagram
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beam begins to twist. This torsion causes even more twisting
to take place. A load on the bottom flange increases the
stability since the torsional force developed acts to resist
further twisting., The critical buckling moment formula as it
appears in Egn. [2.9] is accurate for loads applied at the
level of the shear center. For doubly symmetric sections the
shear center coincides with the centroid. Equation [2.9]
does not, however, account for the destabilizing effect of
loads applied to the top flange nor the increased stability
resulting from loads applied to the bottom flange. The
following equation (Structural Stability Research Council

1976) accounts for these effects by including the constant,

C:
[2.13] Moy = mm /EI GJ + m2E*I,Cu(1 + C2) % 7EI,hC
L ’ 7 — 17

Values of C based on the work of Clark and Hill (1962) are
tabulated by the Structural Stability Research Council. The
last term in the éxpression is positive for loads applied at
the bottom flange and negative for loads applied at the top
flange. For loads applied at the shear center, C is zero,

and Eqn. [2.13] reduces to Egn. [2.9].



2.2 Provisions in
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the Canadian Standard

2.2.1 Elastic Lateral-Torsional Buckling

Clause 13.6 of CSA Standard CAN3-S16.1-M78(Canadian

Standards Association 1978) states that for a laterally

unsupported, doubly symmetric beam the factored moment

resistance may be

[2.14] M,
where
[2.15] M,

provided that

[2.16] M,

for class 1 and 2

[2.17] M,

for class 3 and 4

and [2.17] ensure

taken as

= ¢Mu

= //%IYGJ + m*E%1,C,
wL L

< 2M,
3

sections, or

< 2M,
3

sections. The requirements of Eqn. [2.16]

that yielding of the cross-section has not

yet started and thus, the beam fails by elastic

lateral-torsional

buckling. The 2/3 factor is an allowance
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for the premature yielding of the cross-section caused by
the presence of residual stresses. Once this yielding
begins, failure of the beam occurs by inelastic
lateral-torsional buckling. Inelastic buckling will be
discussed in more detail later.

In equation [2.15] the term w is the equivalent moment
factor. It is identically equal to 1/m in Eqn. [2.11]. For

members bent in single curvature

[2.18] w=0.6 + 0.4M,,
M2

For members bent in double curvature

[2.19] w=10.6 - 0.4M,, 2 0.4
My
M /M, is the ratio of the smaller to the larger end moment
acting on the beam. The clause states that if at any point
in the span the bending moment is greater than M2, w is
taken as equal to 1.0, This results in some conservatism.
For instance a uniformly distributed transverse force
(Fig. 2.13) would render an equivalent moment factor of 1.0.
The Commentary (Canadian Institute of Steel Construction
1980) to S16.1-M78 mentions the tabulated values of
equivalent moment factors by the Structural Stability
Research Council. Using these, a value of 0.88 is selected

for the above case.
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loading

M=wlL?
8

bending moment diagram

Figure 2.13 Beam Loaded by a Uniformly Distributed Load
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Equation [2.15] ignores the effects (positive or
negative) of loads applied at levels other than the shear
center. The equation, as it is, implicitly assumes the load
is applied at the shear center. In a situation where a beam
is loaded on the bottom flange, the code requirements are
conservative but for a beam loaded on its top flange the
Standard is unconservative in its provisions. The Commehtary
makes no mention of the position of the load and its effects
on stability. It is suggested that if a designer faces a
'situation where a beam is loaded on the top flange or if he
wishes to take advantage of the stabilizing effect of bottom
flange loading, Eqn. [2.13] should be used.

Another alternative appears in the 1969 version of the
BSI Standard (British Standards Institution 1969). The
requirement is that the effective length of a beam loaded on
its top flange be increased by 20%. This empirical
modification was based on the work of Kerensky, Flint, and
Brown (1956). They showed that for short, deep beams the
critical buckling moments corresponding to top flange
loading were up to 30% less than for beams acted upon by
equal and opposite end moments. They found that increasing
the effective length by 20% would compensate for this loss
of stability. | |

The Canadian Standard bases its requirements on the
buckling of a simply supported beam. That is, the assumed
end conditions are described by Eqns. [2.1] and [2.2]. In

many cases more end restraint is provided than that of a
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simple pinned connection. $16.1-M78 does not account for
this increased stability.

Although increased stability resulting from more rigid
end conditions is conservatively ignored, provision has been
made for the reverse situation. If less than simple support
(u#0, 6§ # 0) is provided at one end of the beam the
critical moment is reduced. Equation [2.15] can be modified
for this effect by setting the equivalent moment factor, w,
equal to 1.0, If, however, the beam is acted upon by a
uniform bending moment (Fig. 2.2) w would be equal to 1.0
anyway. The end condition would not be accounted for. In
this case, Egn. [2.15] appears to be unconservative.
Fortunately, the case of a uniform bending moment is unusual
and the situation described is unlikely to occur.

In $16.1-M78, Egn. [2.15] is taken to apply to HSS's as
well as I-shaped members.. Lateral-torsional buckling is not
likely to be a problem for an HSS beam since an HSS section
has high torsional rigidity. Hence, an HSS beam would have
to be extremeiy long for lateral-torsional buckling to be a
limiting factor in design. A square HSS beam will not buckle
at any(iength since it has equal rigidities in each of the
x-z and y-z planes (see Section 2.1.1. regarding

assumptions).

2.2.2 Inelastic Lateral-Torsional Buckling
Beams in which partial yielding of the cross-section

precedes buckling are said to fail by inelastic
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lateral-torsional buckling (Timoshenko and Gere 1961;
Galambos 1968). Of course, if enough lateral support is
provided or the member is sufficiently short, the plastic or
yield moments can be reached and no lateral-torsional
buckling will occur. With the onset of yielding the section
is weakened and the elastic prbperties of Eqn. [2.15] are no
longer applicable. In S16.1-M78 the relevant empirical

equations are as follows:

[2.20] M, = 1.15¢Mp<1 - O.28ME> < oM,

provided

M, 2 2M,
3

for class 1 and 2 sections. For class 3 and 4 sections

[2.21] M, = 1.15¢My<1 - 0.28Mx> < oM,
M,
provided
M, 2 2M,
3

Equations [2.20] and [2.21] are approximations'of the

inelastic buckling moments of laterally unsupported beams.
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Closed form solutions to determine inelastic buckling
moments taking into account the presence of residual
stresses are not known to exist. Equations [2.20] and [2.21]
represent curves extending from the range of laterally
unsupported lengths where the plastic or yield moments can
be reached to the range where elastic lateral-torsional
buckling governs. Figure 2.14 shows the relationship between
the unsupported length, L, and the factored moment
resistance, M,, for a class 1 or 2 section.

It can be seen that the inelastic buckling equation
depends on the value of the elastic buckling moment, M,. In
this report methods for improving the calculated value of M,
are presented. It is suggested that a more accurate estimate
of My will, in ‘turn, result in a more accurate estimate of

the inelastic buckling moment.

2.2.3 Approximate Nature of the Canadian Standard

The requirements made by S16.1-M78 with regard to
lateral-torsional buckling of laterally unsupported beams
neglect thé effects of loads applied above or below the
shear center. In Section 2.2.1. it was recommended that the
SSRC equation (Egn. [2.13]) be used to deal with this
situation.

The provisions of S16.1-M78 also ignore the effects of
beams having other than pinned end connections. This
conservatism leads to designs which are safe but in some

cases unnecessarily expensive. If the effects of end
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plastic moment

inelastic buckling
(Egn. [2.20])
oM, | '

elastic buckling

(Egqn. [2.14])
20M;

Factored Moment Resistance
w

Laterally Unsupported Length

Figure 2.14 Factored Moment Resistance as a Function of the

Laterally Unsupported Length



restraints are properly modelled, designs which are more

economical, yet safe, can be achieved.
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3. SINGLE SPAN BEAMS

3.1 Solutions in the Literature

A number of authors (Austin, Yegian and Tung 1957;
Trahair 1963,1965,1966; Nethercot and Rockey 1971,1973) have
provided methods for obtaining the elastic lateral-torsional
buckling load of a single span beam. Each method attempts to
account accurately for the effects of the variation in
bending moments along the length of the beam, the level of
application of the load with respect to the shear center,
and the effect of end restraints. Some procedures are more
suitable for design than others.

The critical buckling moment formula can be written in

the following form:

[3.1] M., = YWEI,GJ
L

The term ¢ is called the lateral-torsional buckling
parameter. Austin et. al. (1957) have provided tables of
critical load parameters which can be easily converted to
lateral-torsional buckling parameters. The t;bles are for
beams with variable end restraint about each of the strong
(x) and weak (y) axes. The critical load parameters were
generated by a computer. End restraints rangiﬁg from
unrestricted rotation to complete fixity about the vertical
(y) axis were considered. It was assumed that the supporfs

completely restricted lateral movement as well as twisting

32
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about the longitudinal (z) axis:

'The results were based on the assumption that the torsional
fixity is related to the weak axis restraint. It will be
seen later that this is not necessarily true but in most
cases is a reasonable approximation. Taking account of
strong axis fixity is an indirect means of modelling the
variation of moments along the length of the beam and thus,
an equivalent moment factor is not needed inbthis procedure.
The restraints were aséumed to be symmetric about the
mid-span of the beam (the same restraint at each end).

Only two types of loading were considered. They were a
uniformly distributed load along the length of the beam
(Fig. 2.5) and a concentrated load at mid-span (Fig. 3.1).
The loads were applied at the top flange, shear center, and
the bottom flange with seperate tables generated for each.

The method is not particularily suitable as a design
tool. The critical load parameters are provided for a
variety of connection stiffnesses. Unfortunately, the
designer does not often know the connection stiffness to the
same degree of precision as the tables provide solutions
for. The tables only cover two types of loading conditions

and require symmetry of the end restraints. To be used in
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*

loading

bending moment diagram

Figure 3.1 Beam Acted Upon by a Concentrated Load at

Mid-Span
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design, the method would require more tables which could be
used for unsymmetric end conditions and a greater variety of
load types. This, however, would result in a larger nﬁmber
of tables and their use would be cumbersome.

The results obtained by Austin et. al. are useful for
comparing with the results of other proposed methods
(Trahéir 1965).

Trahair (1963) presented values of effective length
factors for simply supported beams. They Qere to be used in
conjunction with the British Standard (British Standards
Institution 1969). The factors were functions of the shape
of the moment diagram, the level of application of the load
with respect to the shear center, and tﬁe type of end
restraints. An effective length factor was given for each
combination of the above variables.

In two later papers (1965, 1966), Trahair produced
tables of critical load parameters that, like Austin et.
al.'s, are easily converted to lateral-torsional buckling
parameters. He analyzed similar support conditions to those
of Austin et. al. Varying degqrees of restraint about the
strong and weak axes were examined. Torsional fixity,
assumed to be independent of the weak axis restraint, was
also considered. In the 1965 paper, the effect of twisting
of the support was analyzed. Again, symmetry of the end
restraints was assumed.

The loading conditions examined were a uniformly

distributed load, a concentrated load at mid-span, and equal
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and opposite end moments. Seperate tables were generated for
loads applied to the top flange, shear center, and bottom
flange.

As in the method of Austin et. al., a numerical value
must be determined for each type of restraint (vertical,
lateral and torsional). With these one can find the critical
buckling moment of the beam from the appropriate table.

Using this procedure in routine design would not be
practical for the same reasons that prohibit the use of the
method of Austin et. al.

The shape parameter, 22, is defined by the following

equation:

[3.2] Q% = L3GJ
ECyw

In Figs. 3.2 and 3.3 plots of ¢ versus 22 show that the
results obtained by Timoshenko and Gere, Austin et. al., and
Trahair are in close agreement.

Nethercot and Rockey (1971,1973) proposed a method,
based on a finite element solution (Barsoum and Gallagher
1970) which does not require extensive use of tabulated
numerical results nor does it require symmetry of the end
conditions. A variety of loading conditions can be analyzed
when the end conditions are symmetric (1971). Forces can be
applied to the top flange, shear center or bottom flange.
For beams with mixed end conditions (1973) only end moments

can be imposed for the method to be applicable.
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Four types of end restraint are considered. They are
shown in Fig. 2.4,

The basic equation used in the procedure is:

[3.3] M., = 8v/EI,GJ

where

[3.4] y = /1 + n?
L Q7

The term 6, called the lateral buckling coefficient accounts
for the type of load, level of application of the load, and
the type of support provided at the ends of the beam.

Considering Egn.[3.1] it can be seen that

8y =

e

A value of 8 is evaluated for each combination of load type
and support condition. For example, if a uniformly
distributed load is applied to the shear center along the
length of a beam which is restrained at each end by supports

of the type shown in Fig. 2.4(c), then

6 = 1.9 - 1,184 + 0.02
Q2 Q

Using the appropriate beam properties, the critical buckling
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moment can then be evaluated. Other equations for §,
corresponding to different conditions of restraint and
loading, were presented in the original papers. The equation
for & is shown here to demonstrate the degree of complexity
involved with the method. For a beam with simple supports
and equal and opposite moments acting at each end, § is 1.0,
and Eqn. [3.3] reduces to Egn. [2.5].

Nethercot and Rockey compared their method to other
solutions (Winter 1943; Schrader 1943; Horne 1954; Kerensky
et. al 1956; Timoshenko and Gere 1961) and found the results
were indistinquishable.

The following equation can be used to calculate elastic

critical buckling moments of I-beams:

[3.5] M., = mm //EIYGJ + ®2E% 1,Cy
kyL (k,L)?

It is a simplified form of an equation presented by Galambos
(1968). Equation [3.5] is similar to the one used in
S16.1-M78 (Egn. [2.15]) except for the inclusion of two
effective length factors, k, and k,. The terms k,L and k,L
are the effective lengths. Here they model the effect of end
restraints only . Thus, seperate terms account for the type
of loading and the support conditions while the level of
application of the load on the cross-section is ignored.

The two different effective lengths represent the two
types of deformations involved in laterél—torsional

buckling. The term k,L is the effective length with respect
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to lateral deflection, u, while the term k,L is the
effective length with respect to twisting, 6, about the
longitudinal axis. Vlasov (1961) and Galambos (1968) have
tabulated values of k, and k, for the same type of boundary
conditions considered by Nethercot and Rockey (1971,1973).
It is not necessary that the supports be the same at each
end of the beam. The results of Vlasov and Galambos show
that k, is dependent upon both the lateral and the torsional
restraint while k., depends only upon the torsional
restraint.

Equation [3.5] is ideally suited to be used in
conjunction with $16.1~-M78. To take advantage of the
beneficial effects of end restraint it is only necessary to
use the correct values of k, and k, in the equation. The
following sections will examine the limiting conditions of
end restraint and which effective length factors are

appropriate for each.
3.2 Effective Lengths

3.2.1 Effective Lengths With Respect to Torsion

In Section 2.1,2.1 it was stated that double angle
shear connections and end plate connections provide simple
support with respect to torsion. These connections allow
warping to take place while preyenting twisting of the
cross-section about its longitudinal axis. Throughout this

-report, with the exception of cantilevers it will be assumed
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that twisting is prevented at the ends of the beam.

This is an assumption that is commonly made (Austin et. al.
1957; Trahair 1966; Nethercot and Rockey 1971,1973).
S16.1-M78 also makes this assumption (see the Commentary).
Experimental results of Bennetts, Thomas, and Grundy (1982)
showed that some connections do not completely prevent end
twisting. Since real connections are not perfectly rigid
they undergo some rotation about the loﬁgitudinal (z) axis.
The Australian Standard (Standards Association of Australia
1981) makes provisions for the effects of partial restraint
against twisting by stipulating an increase in the effective
length of the beam by 20% (Bennetts et. al. 1982). As stated
before (Sec. 2.2.1) the Canadian Standard accounts for this
by requiring that w be set equal to 1.0.

Schmidt (1965) has shown that if the torsional
stiffness of the support is greater than 20 times the
torsional stiffness, GJ/L, of the supported beam, then end
twisting is effectively prevented. Nethercot and Rockey
(1971) stated that most connections used in practice (the
double angle and end plate connections are examples) will
likely have a torsional stiffness of at least 20GJ/L and
fhus prevent twist. A double angle shear connection with a
.depth 6f the angle approaching the depth of the beam web

should meet this requirement. A beam with no restraint
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against end twisting is unstable and cannot carry any load.

A finding of Bennets et. al. was that, in addition to
rotation of the connection, web distortion can occur
(Fig. 3.4). Another example is shown in Fig. 3.5 (Kirby and
Nethercot 1979). If, at the end of a beam, the web distorts,
twisting is not completely prevented. Web distortion and the
reduction in beam stability caused by it can be prevented by
vertical stiffeners (Kirby and Nethercot 1979).

It was previously stated (sec.2.1.2.1) that welded
connections in rigid frames (Fig. 2.10) can be idealized as
torsionally fixed supports. It was mentioned that warping
deformations are restricted by the horizontal stiffeners
bearing against the column flange. If the stiffeners are not
provided, the connection is not completely fixed with
respect to torsion although some resistance to warping will
be provided by the column flange. The degree of restraint
provided lies somewhere between that of a pin and that of a
fixed connection. A conservative solution would be to
consider it as providing no restraint against warping
(vacharajittiphan and Trahair 1974).

Warping can be prevented by a device of the type shown
in Fig. 3.6 (Ojalvo and Chambers 1977). Channels or angles
can be used to form a tubular shape that extends from the
top flange to the bottom flange of the beam. An HSS can also
be used if a slit is cut down one of its walls. Then the HSS
can be slid into place from the end of the beam. Figure 3.7

shows this type of device used with an unstiffened seated



Figure 3.4 Web Distortion (Bennets et. al. 1982)

Figure 3.5 Web Distortion (Kirby and Nethercot 1979)
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46

|

v
A

|

section A-A

Figure 3.7 HSS Used to Restrain Warping-
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beam shear connection. Warping resistance is provided by the
tube which acts in torsion (Fig. 3.8). The situation is
analagous to a beam which is subjected to equal and opposite
twisting moments at each end. In the analogy the tube is
represented by the beam. It spans from flange to flange. The
warping moments acting on the flanges are represented by
twisting moments at each end of the beam..Since closed
tubular shapes provide high resistances to torsion it can be
seen intuitively how connections of this type would be
effective in resisting warping. The use of this type of
device together with the double angle connection of Fig. 2.6
is a means by which torsional fixity can be achieved without
providing restraint to lateral bending. fhus, weak axis and
warping restraints are not necessarily correlated as Austin
et. al. assumed (Sec. 3.1)

An analytical study by Ojalvo and Chambers indicated
that a tube with a diameter equal to the width of the flange
and with a Qall thickness equal to 6.4 mm (1/4 inch) will
practically prevent warping. Vacharajittiphan and Trahair
(1974) developed a mathematical expression that can be used
to evaluate whether or not warping is prevented by a tubular

device. For warping to be effectively restrained

[3.6] K > 5EI,R
tanh(LR/2)

where



Figure 3.8 Transfer of Warping Moments Through Tubular

Device (0Ojalvo and Chambers 1977)
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[3.71] _ R = /GJ

K is called the elastic rotational stiffness of the element.

For a tubular element (Ojalvo 1975)

[3.8] K = ZGtJt
h

where h is the distance between the centroids of the beam
flanges. The torsional stiffness parameter, G,J,, is that of
the tube. An example of the use of Egns. [3.6] and [3.8] to
evaluate the warping rigidity of a boundary condition is
contained in Appendix A.1.
For the tube to be effective the following fequirements
should be met (Ojalvo and Chambers 1977):
1. The tube must be welded to each flange. This ensures that
the warping moments in the flanges are transferred into the
tube.
2. The channel, angle, or HSS should be welded to the web of
the beam. This ensures that a closed section is formed.
3. In cases where cyclic loading is involved, consideration
must be given to the possibility of a fatigue failure at the
weld between the tube and the tension flange of the beam.
Other types of devices have been considered for use as
warping restraints. Vertical web stiffeners (Fig. 3.9 are
not effective in preventing warping (Vacharajittiphan and

Trahair 1974). Additional web plates (Fig. 3.10) have also



(a) side view

(b) section A-a

Figure 3.9 Vertical Web Stiffeners
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(a) side view

“ iz z]

(c) section A-a

_Figure 3.10 Additional Web Plates
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(b) end elevation
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been studied (Vacharajittiphan and Trahair 1974). These too,
have been shown to be inadequate (Vacharajittiphan and
Trahair 1975; Ojalvo and Chambers 1977). The reason for the
ineffectiveness of these devices can be seen in Figs. 3.9(b)
and 3.10(c). The top views show that these devices make up
open sections and, therefore, are weak torsionally. They
cannot transfer the warping moments developed in the beam
flanges. Another method used to prevent warping is to use
the combination of stiffeners shown in Fig. 3.11. Ojalvo and
Chambers reported that this device is not as effective as a
tube. It requires more material and a greater length of
weld.

For a beam with both ends torsionally pinned
(Egqn. [2.2]) the torsional effective length factor is giQen

by Egn. [3.9] (Vlasov 1961; Galambos 1968):
[3-9] kz= 1.00

This is a reasonable value for use in design. It is the same
as the recommended value found in Appendix B of S16.,1-M78
for the design of columns which are approximated as
pin-ended.

A fix-ended beam (Egn. [2.7]) has a smaller torsional

effective ‘length factor:

k: = 0.492
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Figure 3.11 Stiffener Configuration Used to Restrain Warping
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Galambos suggests that a value of 0.50 is an adequate
approximation. For use in design, a slightly larger value

should be used:

[3.10] k. = 0.65

Again, this is based on the recommendation in Appendix B of

$16.1-M78 for the design of columns. The larger value of

0.65 is used because the smaller value of 0.50 applies for a

perfectly fixed condition. In practice this ideal cannot be

achieved. Thus, the effective length factor is pro-rated.
The effective length factor for a beam torsionally

pinned at one end and torsionally fixed at the other is

k; = 0.693

An approximation of 0.70 is suggested by Galambos. For use

in design:

[3.11] k, = 0.80

As before, this is the same value used for a column with
similar boundary conditions. It is increased above the ideal
value less than in Egn. [3.10] since a fixed condition is

assumed at only one end of the beam.
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3.2.2 Effective Lengths With Respect to Lateral Restraint

As previously described, a lateral pin prevents lateral
deflection of the supported beam at the connection. Also, it
allows unrestricted rotation about a vertical axis. The
first requirement above is commonly assumed to be fulfilled
(Austin et. al. 1957; Trahair 1965,1966; Nethercot and
Rockey 1971,1973). Therevare situations, however, in which
lateral defections do take place. Figure 3.5 shows such a
situation. Partial restraint against lateral deflection can
be accounted for in the same way as is partial restraint
against twisting(see sec.3.2.1).

A beam laterally pinned at both ends will have a
lateral effective length factor, k,, ranging from 0.88 to
1.00, depending on the degree of torsional restraint
provided. Galambos suggests that the following value be used
for all cases of laterally pin-ended beams regardless of the

torsional restraint provided:
[3.12] ky, = 1.00

This value would seem reasonable for design. The
corresponding effective length factor for a pin-ended column
is also 1.00.

 For a beam with laterally fixed ends k, ranges from
0.43 to 0.49. Again, the range is due to different degrees

of torsional restraint. The suggested value by Galambos is:
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kK, = 0.50

Using the corresponding column effective length factor for

design purposes (Canadian Standards Association 1978):
[3.13] k, = 0.65

A beam which is laterally pinned at one end and
laterally fixed at the other will have a lateral effective
length factor in the range of 0.61 to 0.69. Nethercot and
Rockey (1973) have pointed out that Galambos did not include
an effective length for the case where one end is pinned

laterally and fixed torsionally

Vlasov did, however, include this case. His results show k,
is equal to 0.61. Vlasov neglected to include factors for

beams in which

at one end and
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at the other. It seems strange that Galambos, obtaining his
values from Vlasov's, did give an effective length faétor of
0.61 for this case. Regardless, Galambos's suggested values
of 0,70 appears to be a reasonable approximation for all

cases of laterally fixed - laterally pinned beams. Again,
[3.14] k, = 0.80

should be used in design. ‘

It should be noted that the design effecﬁive length
factors for lateral fixity are identical to those for
torsional fixity.

Figures 3.12 and 3.13 show plots of lateral-torsional
buckling parameters obtained using Galambos's effective
length factors. Also shown are parameters obtained by the
finite element method of Barsoum and Gallagher. The curves
indicate that Galambos's effective length factors are safe.
However, the effective length factors are unconservative if
the support conditions are poorly matched to the loading
condition. For example, consider a beam with a large
positive bending moment at the left end and a smaller
negative bending moment acting at the right end (Fig. 3.14).
If a laterally and torsionally fixed support was at the left
end and a latefally and torsionally pinned support was at

the right end the loading condition and the supports would
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bending moment diagram

Figure 3.14 Beam With Large Moment at One End and Small
Moment at the Other End
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be advantageously matched. This is because the larger moment
acts near the stronger support. Conversely, if the supports

were reversed they would not be well matched with the load.

Figures 3.15 and 3.16 show that the effective length factors
of Galambos yield satisfactory results for well matched

beams but not for poorly matched beams.

3.3 Summary and Recommendations

The use of effective length factors to model the
effects of end restraints on single span laterally
unsupported beams is not a complicated process.
Equation [2.15] is modified only slightly to beéome
Eqn. [3.5]. Only two new constants need to be known to
vevaluate M,. Although a variety of effective length factors
are possible, the analysis is greatly simplified if just
three are used. The same three factors can be used for both
lateral effective lengths and torsional effective lengths.
The effective length factors proposed for use with beams are
completely analagous to those used in the design of columns.
No additional tables, graphs, or equations are required.
Only two limiting conditions of end restraint (fixed and
pinned) for each of the torsional and the lateral
deformations involved in beam buckling were considered.
Obviously, many intermediate situations can exist. It is up
to the designer to use his judgement to decide which
idealized support condition can be safely used to

approximate reality. If more precision is desired other
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methods (Austin et. al. 1957; Trahair 1965, 1966) can be used
at the expense of speed and simplicity.

In the design of a structural system involving a
laterally unsupported beam, one should try to match the end
conditions with the applied load. This results in a more
efficient structure. If a beam and the loads applied to it
are poorly matched the effective length factors by Galambos
should not be used.

The application of effective length factors with
Egn. [2.15] of S16.1-M78 will result in elastic critical
buckling moments that are equal to or greater than those
calculated using the present method. Beams which buckle
inelastically will also have computed strengths which are
equal to or greater than those calculated without effective
length factors. This is because the inelastic buckling
strength,‘as calculated in S16.1-M78 (Egn. [2.20] or
[2.21]), is a function of the elastic buckling strength.
These increases in calculated strengths should give a more
accurate representation of the real situation. The increased
accuracy will result in less conservatism and a saving in
cost. An example of the use of effective length factors is

presented in Appendix A.1.



4. CANTILEVERS |
The cantilever beam of Fig. 4.1 is completely fixed at
its support and acted upon by a moment, M,, at its free end
or tip. The expression for the critical buckling moment of

the beam is (Trahair 1977)

[4.1] Moer =7 ‘/EIYGJ + m2E? I,C,
- 2L (20)?

Equation [4.1] implies that the effective length factor of

the beam is 2.0. Figure 4.2 shows the same beam except that
a concentrated force, instead of a moment, acts at the free
end. The force is applied at the level of the shear center.
The critical moment equation is given by Egn. [3.1]

(Timoshenko and Gere 1961).

[3.1] M., = VWEI,GJ
L

The dimensionless lateral-torsional buckling parameter, ¢ is

a function of the shape parameter, Q2.

[3.2] Q% = L2GJ

Timoshenko and Gere -tabulated values of £2 and V. as given

in Table 4.1. Alternatively, they propose the following

O / s Lol of

approximate equation: (071(9 bvr Ler 2o e tu

<
L '/,)

65



66

AN

Figure 4.1 Cantilever Acted Upon by an End Moment

SOUNNN

Figure 4.2 Cantilever Acted Upon by a Concentrated Load



Table 4.1 Lateral-Torsional Buckling Parameters for Tip

Loaded Cantilevers (Timoshenko and Gere 1961)

Q? ¥
0.1 44.3
1 15.7
2 12,2
3 10.7
4 | s.76
6 8.69
8 8.03
10 7.58
12 7.20
14 6.96
16 6.73
24 6.19
32 5.87
40 5.64




[4.2] v = 4,013 (6 Far (orse vetve <

(1 -1/Q)°

4.1 Provisions in S16.1-M78
The Canadian Standard deals with the stability of
cantilevers in an indirect manner. Clause 13.6 states:
"w = 1.0 ... when there is no effective
lateral support for the compression flange
at one of the ends of the unsupported
length"

This describes the condition at the free end of a

68

/

cantilever. Thus, the critical moment of a cantilever beam

is calculated using Egn. [2.15] with w equal to 1.0 and L

equal to the length of the beam. The beam is designed as if

it is simply supported at each end and acted upon by equal

and opposite end moments. The effective length factor is

1.0. It turns out that this simply supported case is more

severe than the cantilever and thus safe designs will

usually result. The exception being unconservative results

are obtained when the beam is loaded on the top flange

(Nethercot 1973).

4.2 Recommendations by the SSRC
The SSRC (1976) recommendations also make use of

equivalent moment factor to model the stability of a

cantilever. If Egn. [2.9] is used, conservative results will

be obtained if m is set equal to 1.3 for a concentrated

~

)
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force on the free end. If a uniformly distributed load acts
on the cantilever, m can be conservatively taken as 2.05.
Again, the effective length factor is 1.0. The above cases
are for loads applied at the shear center. The SSRC does not
describe a procedure to account for loads applied above or
below the shear center. Clark and Hill (1962) suggest that
Egn. [2.13] can be used in these situations. For a
concentrated force acting at the end, C can be taken as
0.64. C is negative for top flange loading and positive for
bottom flange loading. The equivalent moment factor remains
equal to 1.3. A value for C was not given for a uniformly

distributed force.
4.3 Effective Lengths by Nethercot

4.3.1 General Description

" Nethercot (1973) has provided a set of effective length
factors to be used for various types of cantilever beams.
They are detailed in Sections 4.3.2 and 4.3.3. As in the two
previous papers by Nethercot and Rockey (1971 and 1973) the
values are based on results obtained from finite element
solutions. They are valid for beams behaving in the elastic

range. The effective length factors model the effects of the

type of loading, the level of application of the load and.

it o

the type of end restraint provided.

Two types of loading conditions are considered. They

are a concentrated load acting at the free end and a
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uniformly distributed force acting along the length of the
cantilever. Nethercot recommends the use of just one set of
effective length factors for all loading conditions. This
set is based largely on the case of a concentrated force
acting at the free end. It is the more critical of the two
cases and therefore designs based on this situation will be
safe. Employing just one set is simpler than having one for
every possible situation. For the most severe case in which
an end moment acts on the cantilever Eqn..[4.1] should be
used. |
Nethercot's effedtive length factors account for end
restraints at each end of the cantilever. At the suppﬁrt two
types of boundary conditions are considered. They are either
a completely fixed end or else a support over which the
cantilever beam is continuous. At the tip various
combinations of lateral and/or torsional restraints can be
applied with seperate effective 1ength factors corresponding

to each.

4.3.2 Simple Cantilevers

As previously stated, simple cantilevers have
completely fixed supports. This fixity can be achieved by
making rigid connections (Fig. 2.10) or by running the beam

into concrete or masonry walls.

4.3.2.1 Free Ended Simple Cantilevers
It is not likely that a cantilever will have a

completely free end since usually the loading device will
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provide some kind of restraint. Where negligible restraint
is provided a free end should be assumed. Effective length
factors of 0.75 for shear center loading and 1.40 for top

flange loading are suggested by Nethercot.

4.3.2.2 Lateral Deflections Prevented at the Tip

Figure 4.3 shows a plan view of two cantilevers
restrained laterally by cross-bracing. All other
displacements at the tips are unrestricted. For maximum
lateral stability of the beams the braces should be attached
to the compression flanges. The effective length factors for
this situation are 0.65 for shear center loading and 1.40

for top flange loading.

4.3.2.3 Twisting Prevented at the Tip

‘In Fig. 4.4 a plan view of a structure which has
cantilever beams with the tips restrained from twisting is
shown. Twisting action in the cantilevers is prevented by
the strong axis figidity of the cross-beam. The connections
must be able to transfer these moments. An example of the
type of connection needed to facilitate this is also shown.
The effective length factor for these beams should be taken
as 0.55. This is for load applied at any level. When the
load is applied at a point where twisting is prevented
additional torsional forces cannot be produced. Therefore,
no increase nor reduction in stability occurs due to the

level of application of the load. (see sec.2.1.4).
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Plan View

Figure 4.3 Cantilevers Restrained Laterally at Tips
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Plan View

Connection Detail

Figure 4.4 Cantilevers Restrained From Twisting at Tips
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V4.3.2.4 Lateral Deflection and Twisting Prevented at the Tip

Figure 4.5 shows a structure in which the tips of the
cantilevers are prevénted from twisting by the strong axis
rigidity of the cross-beams. Again, the connections must be
able to transfer the bending moments developed at the points
of intersection. Lateral deflection of the tip is prevented
by the axial rigidity of the cross-beams. At some point in
the structure there should be a reaction point for this
axial force. The effective length factor for these

cantilevers is 0.45.

4.3.2.5 Completely Fixed at the Tip

The cantilevers in the structure shown in Fig. 4.6 are
completely fixed (except vertically) at their free end.
Lateral deflection is prevented by the cross-bracing.
Lateral bending is prevented by £he use of heavy cover
plates to facilitate weak axis moment transfer between the
cantilevers and the cross-beam. Twisting is also prevented
by the cross-beam. The tubular device (see connection
details) prevents warping in the cantilever. The effective

length factor for these cantilevers is 0.35.

4.3.3 Cantilevers Continuous at the Support

Figure 4.7 shows a cantilever which has a continuous
support. The far left end is called the root, the continuous
support is the fulcrum, and the far right end is the tip.
Nethercot found that the vertical support condition at the

root has very little effect on the stability of the
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Connection Detail

Figure 4.5 Cantilevers with Twisting and Lateral Deflection

Prevented at Tips
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Figure 4.6 Cantilevers with Tips Fixed Laterally and

Torsionally
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root fulcrum tip

Figure 4.7 Cantilever with Continuous Support
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cantilever beam. He also found that if twisting at the
fulcrum is prevented the lateral support condition at the
root is not influential. Two sets of effective length
factors were derived. For beams in which twisting at the
fulcrum was prevented the effective length factors are 1.0
and 2.6 for shear center and top flange loading
respectively. If, at the fulcruh, twisting is not prevented
the appropriate values are 2.5 and 7.0. Twisting can be
prevented at the fulcrum by using vertical stiffeners

(Fig. 4.8) and ensuring the bottom flange is rigidly
attached to its support. If, at the tip, a brace is placed,
preventing lateral displacements and twist, the cantilever
is laterally continuous. Such a beam can be analyzed using
one of the methods described in Chapter 5 or 6 for the

design of laterally continuous beams.

" 4.,3.4 Additional Comments

Nethercot's effective length factors are given for
loads applied to the top flange and for loads applied to the
shear center. No provisions are made for loads applied to
the bottom flange. This is unfortunate since bottom flange
loading is a common occurance in practice. It would be
useful to have a way of accounting for this beneficial
effect. Timoshenko and Gere (-1961) do not address this
problem for I-shaped beams. Only Clark and Hill's method can
be used but that procedure is limited to simple cantilevers

with free ends.



Figure 4.8 Vertical Stiffeners Used to Prevent Twisting
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The use of effective length factors to model the
effects of the type of load and the level of its application
asvwell as the end restraints provided is philosophically
different from other procedures recommended in this paper.
In the other chapters effective length factors are used only
to modify buckling equations for various ﬁypes of end
restraints. These factors are easily incorporated into
existing design equations. For cantilevers, however, it
seems necessary to account for all three influences with a
single factor. This is because the equivalent moment factor,
as found in its present form (Egns. [2.10], [2.11] or [2.18]
and [2}19]), is not applicable to cantilevers. S16.1-M78, by
requiring that the equivalent moment factor be set equal to
1.0, ensures a safe solution. Setting w equal to 1.0 is an
indirect way of accounting for an effective lengfh factor
which, if modelling end restraints only, is actually greater
than 1.0. The equivalent moment factor, w, if modelling load
type only, is actually less than 1.0. Thus, as presently
used in S$16.1-M78 for the design of cantilevers, w is
actually an empirical constant employed to yield safe
answers; The use of Nethercot's effective length factors for
cantilevers is no more irrational than the method presently
used. In addition, Nethercot's factors reflect the
destabilizing effects of loads applied to the top flange.
They also provide more accurate solutions. Figure 4.9 shows
plots of the lateral buckling parameter as a function of Q2

for a tip loaded simple cantilever (Fig. 4.2). It can be
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seen that strengths calculated using Nethercot's effective
~lengths are much closer to Timoshenko and Gere's solution
than are those by S16.1-M78; In the range where Q2 is .less
than 4 Nethercot's method gives higher strengths than
Timoshenko and Gere's. Beams that fall in this range will
likely fail by inelastic buckling or reach their plastic
moment capacity (Nethercot and Rockey 1971). Nethercot's
effective length factors should not be used for inelastic

beams.,

4.4 Summary and Recommendations

Nethercot's effective length factors appear to be the
best solution available since they yield more accurate
results and provide a way of accounting for loads applied to
the top flange. However, they do have some important
limitations. They can only be used for elastic beams and
they do not account for loads applied to the bottom flange.
Improvements in these areas would be advantageous.

If an expression for an equivalent moment factor for
cantilevers were developed a more rational approach to the
stability of these beams could be used. Effective lengths
could then be based solely on end restraints. For simple
cantilevers, Galambos's effective length factors (1968)
might be applicable while continuous cantilevers would be
treated in a manner similar to continuous beams. It would
not seem unreasonable to extend these procedures to be used

for inelastic cantilevers.



5. CONTINUOUS BEAMS

5.1 Interaction Buckling

Thé preceeding chapters showed how end conditions
influence the stability of a beam. It wés shown that
different types of connections provided various types of
boundary conditions. In this chapter the focus is upon
‘laterally continuous beams where the end conditions provided
are a result of the continuity of the beam.

Consider a simply supported beam, continuous over three
spans. Assume that it carries load in the vertical plane -
say concentrated forces at the middle of each span. The beam
is shown in Fig. 5.1, Assume, also, that each support
provides simple support with respect to lateral-torsional
buckling (i.e. each support prevents twisting and lateral
displacement but not warping). Each length of beam between
two consecutive supports is called a segment. Figure 5.2
schematically shows the plan view of the beam. Under the
action of the applied forces the beam deflects vertically in
the shape shown in Fig. 5.3. On either side of each of the
interior supports are points of contraflexure which define
the points of zero moment. At these points the stresses in
the top flange change from compression to tension. Since
~compression is inherent to buckling problems it may seem
réasonable to use these points of zero moment to define the
effective length of a segment in a laterally unsupported

beam. That, however, is an incorrect conclusion. Figure 5.4
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Figure 5.1 Continuous Beam

p o R B

Plan View

Figure 5.2 Laterally Continuous Beam
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Figure 5.3 Deflection in Vertical Plane of Continuous Beam

Plan View

Figure 5.4 Buckled Shape of Laterally Continuous Beam
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shows the plan view of the buckled shape (Trahair 1977;
Kirby and Nethercot 1979). Notice that there is only one
point of contraflexure near each interior support. The
points of contraflexure in the vertical plane are quite
different from the points of contraflexure in the lateral
plane. It is the latter that define the effective lengths of
the segments.

Figure 5.4 shows how the entire structure buckles when
the critical moment of a segment is reached. This is called
interaction buckling (Trahair 1968b). Some segments provide
restraint for others. This kind of restraint is called
positive restraint. The same segments that provide restraint
for the others are themselves weakened by this interaction.
They are provided with negative restraint by adjacent
segments. In Fig. 5.4Vthe inner segment restrains the two
outer segments. It provides positive restraint while the
outer segments provide negative restraint. The effective
length factor of the inner segment is greater than one while
the outer segments have effective length factors less than
one.

Figure 5.5 shows a simply supported beam with two
forces applied at braced points. The braces are assumed to
completely prevent lateral deflection and twisting ofbthe
beam. That the loads are applied at braced points is not an
unreasonable assumption since the framing through which the
loads are applied usually act as braces as well (Kirby and

Nethercot 1979). It should be noted that the level of
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Figure 5.5 Simply Supported Braced Beam
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application of the load with respect to the shear center is
irrelevant when the loads are applied at braced points. The
effect of the braces is to make the beam continuous in the
lateral plane. Figure 5.2 is the plan view of the laterally
braced beam shown in Fig. 5.5. A beam, therefore, does not
necessarily have to be continuous in the vertical plane to
be continuous in the lateral plane. The concept of
interaction buckling is equally applicable to this type of

beam as it is to a vertically continuous beam.

5.2 Solutions in the Literature

Once the buckling behaviour of a laterally continuous
beam is understood the task is to calculate the locations of
the points of lateral inflection. This has proven to be a
difficult task.

Salvadori (1955) developed a lower bound solution by
assuming that no interaction takes place between adjacent
segments; The effective length factor of each segment is
taken as one. The assumed buckled shape appears in Fig. 5.6.
Note that the inflection points are at the supports. Since
the restraint provided by adjacent segments is ignored the
method gives lower bound solutions for segments which are
actually provided with positive restraint. However, the
method gives upper bound solutions for segments which, in
reality, receive negative restraint (Trahair 1968a). The
design of the beam is based on the lower bound critical

moment. Salvadori's method provides the exact solution when



Plan View

Figure 5.6 Salvadori's Assumed Buckled Shape
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the loading and the span lengths are such that all the
segments buckle independently (Kirby and Nethercot 1979). In
this case there is no interaction between segments - as
Salvadori assumed. This is called zero interaction buckling.
For the maximum buckling strength of the beam to be
utilizied the braces should be positioned so as to
facilitate zero interaction buckling.

The Canadian Standard, S16.1-M78, incorporates the
Salvadori approximation in its provisions for the design of
laterally uﬁsupported beams. The Commentary acknowledges
that this is a conservative solution but states that due to
the difficulty involved in ebaluating boundary conditions no
allowances are made for the effects of lateral continuity.

The tables of critical load parameters produced by
Austin et. al. (1957) and Trahair (1965,1966) can be used
for the design of continuous beams. This requires that the
end restraint supplied by adjacent segments can be
evaluated. Although the stiffness of an unloaded segment or
a buckled segment can readily be evaluated (Trahair 1966),
quite often a segment is loaded to a point between these two
extreme conditions. It is the determination of the restraint
povided by such a segment that is difficult. Trahair
(1968b,1969,1977) developed a method for estimating
approximate cfitical loads by utilizing the already existing
tables. The procedure involves producing an approximate
interaction diagram from which critical load combinations

can be determined. For instance, if a two span continuous
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beam (Fig. 5.7) is loaded by a concentrated force on each
segment the actual interaction diagram would look like the
one shown by the solid line in Fig. 5.8. Trahair's
approximate interaction diagram (boken line) would be
produced by connecting straight lines between points 1, 2
and 3. Points 1 and 2 represent the situations where .one
span is loaded and the other is unloaded. These points can
be found by using existing formulae (Trahair 1966) to
evaluate end restraints and using the results to obtain
critical loads from the critical load parameter tables.
Point 3 is the zero interaction point., At this point both
spans buckle without interaction. It is found by a trial and
error'procedure using formulae developed by Trahair
(1968,1977) along with the critical load parameter tables.
Any combination of loads falling within the interaction
diagram can be safely carried by the beam. Any combination
falling outside of the interaction diagram will cause
lateral-torsional buckling to occur. Salvadori's solution is
shown by the broken-dotted line (Trahair 1968).

Experimental results confirmed that the method has
reasonable accuracy (Trahair 1969). Unfortunately, it is an
unsuitable design tool for the same reasons that prohibit
the use of tables by Austin et. al. and Trahair for the
design of single span beams (Trahair 1977). The tables are
somewhat inconvenient to use and lack generality.

Computer programs (Barsoum and Gallagher 1970; Powell

and Klinger 1970) which utilize the finite element method



Figure 5.7 Two Span Continuous Beam"
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actual shape

———— Trahair's approximation

— - =— : — Salvadori's approximation

Figure 5.8 Buckling Interaction Diagram
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have been used to analyze the buckling of continuous beams.
Very good accuracy has been reported but not every designer
has easy access to such programs. The programs are useful

for researchers who test the accuracy of proposed methods.

5.3 Method of Nethercot and Trahair

Nethercot and Trahair (1976b) developed a procedure for
calculating effective length factors for continuous beams.
In it, a single effective length factor is calculated to
account for both warping and weak axis bending interactions
between segments.

The first part of the procedure is identical to the
practice presently used in Canada. It begins by using the
Salvadori approximation to calculate critical buckling
moments for each segment. If the design is in accordance
with the current Canadian Standard eéch of these critical
moments are compared to thé actual applied moments. Since
the calculated resistance of the segment which governs the
design will be lower bound the solution of the continuous
beam will be lower bound. The Nethercot and Trahair
procedure, attempting to improve on the accuracy to the
Salvadori solution, takes the analysis a step further. The
ratio of the elastic critical moment, M,, to the applied
moment, M,, islcalculated for each segment. The moment

factor, A, is thus defined as:

[5.1] A =

==
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The critical segment is then identified. It is the segment
with the lowest moment facto:, denoted A.. The segments on
either side of the critical segment are called restraining
segments. The moment factor of a restraining segment is
denoted as Ag. The critical segment and the two restraining
segments make up a subassemblage (Dux and Kitipornchai
1982).

The moment factors of the segments making up the
subassemblage are then used to calculate the stiffness, ag,

for each of the restraining segments.

[5.2] ag = n(&) <1 - Ac>
L A

Equation [5.2] is based on an analogy made between the
buckling of laterally continuous beams and the buckling of
columns within a framework. The term n(EI,/L), is the
stiffness of a restraining column where the value of n
depends on the support condition at its far end. The far end
is the end not adjacent to the column which is béing
restrained. If the far end is continuous, n is 2. If it is
pinned, n is 3 and if it is fixed, n is 4. For interaction
buckling of continuous beams the the same values can be
used. Figure 5.9 shows restraining segments with each of the
three types of end conditions described. In the figure the
left end is the far end while the critical segment is
adjacent to the right end. As the loads on restraining

columns approach the buckling load the restraint provided
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approaches zero. The same is true for laterally continuous
beams. The term (1 - A./\;) approximates this effect. It
accounts for the reduction in the stiffness of the -
restraining member due to the loads applied directly to it.
The term reduces to zero when both the critical segment and
the restraining segment buckle without interaction. The

stiffness of the critical segment is given by

[5.3] ac = 2<&>
’ c

Equation [5.3] .gives the stiffness of a sway prevented
compression member. Nethercot and Trahair have extended it
to apply to beams. The sway prevented case is used since it
has been assumed that twisting and lateral deflection are
prevented at the ends of the segment. The stiffnesses are
calculated using lateral bending stiffness terms, EI,, but
without warping stiffness terms, EC,. This is because the
assumption was made that the two are closely related and
that a reduction in warping stiffness can be adequately
approximated by reducing the lateral bending stiffness.
Austin et. al. (1957) made the same assumption.

The next step is to calculate the stiffness ratio,

Gass» for each end of the critical segment

[5.4] Gag = ac
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The two stiffness ratios are then used with the sway
' prevented nomograph (Structural Stability Research Council
1976; Canadian Institute of Steel Construction 1980)
(Fig. 5.10) used in column design to find the effective
length factor, k, of the critical segment (Nethercot and
Trahair used a chart which was equivalent to the sway
prevented nomogréph.) Just one effective length factor is
used insteéﬁ of two as was previously used for single span
beams. This is because of the assumption rega;ding the
similarities between warping and lateral bending
‘interactions. Finally, the effective length factor is used
in calculating the elastic buckling moment of the beam.
Results obtained using Nethercot and Trahair's
procedure have been compared to solutions obtained by finite
element methods (Fig. 5.11). The finite element methods were’
considered to be extremely accurate (Nethercot 1972).
Nethercot and Trahair's method gave "exact" solutions for
beams which were acted upon by a uniform bending moment
(Fig. 2.2). For other cases the method was generally
conservative except for a few instances. Unconservative
solutions resulted for beams which were acted upon by
loadings which produce high moment gradients (x = 1.0). The
beam parameter, K, is a measure of the resistance to
lateral-torsional buckling developed by warping stresses

through the length of the beam.

[5-5] K = T ECw
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. Figure 5.11
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It is related to the shape parameter defined in Sec. 3.1,
Nethercot and Trahair's procedure yielded unconservative
solutions for beams with high beam parameters (K = 3,0).
- Unconservative results were also obtained for beams with

high end restraints (G,,s = 0).

5.3.1 Inelastic Buckling

The method described in the previous section can be
extended to inelastic buckling by making a few simple
modifications (Nethercot and Trahair 1976a). As before, the
first step is to calulate the Salvadori critical buckling
moment for each segment. Since partial yielding of the beam
cross-éection occurs the inelastic buckling moment equation

must be used. For class 1 and 2 sections

[5.6] M, = 1.15Mp<1 - 0.28ME>
M,

This equation is identical to Egn. [2.20] except that M,
replaces M,/¢. The resistance factor is not included until
the final calculation of the beam moment resistance is made.
In the original work by Nethercot and Trahair a different

inelatic buckling equation was used:

[5.7] M, = M, [0.70 + 0.30 1 -~ 0.70Mp /M,
' 0.61 - 0.30k + 0.07k?2

For design in accordance with S16.1-M78 Eqn. [5.6] should be
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used instead.
Moment factors are calculated using the inelastic

critical buckling moment.

[5.8] A =

==

The procedure is then the same as for elastic beams until
the calculation of the segment stiffness is made. At this
step partial yielding of the beam must be accounted for in
the calculation of the stiffness. The reduced stiffness of

the critical segment is approximated by:

[5.9] ac = 2(El, M;
' L M./,

Similarily for the restraining segments:

[5.10] ap = n<§_1_1 M_i> <1 - Ac)
L R

From these, one calculates the stiffness ratios and the
effective length factor in the same way as for elastic
beams. Finally, the moment resistance of the beam is
calculated using the effective length factor with the
performance factor also included. See Appendix A.2 for an
example of the use of Nethercot and Trahair's method.

In a later paper (Nethercot and Trahair 1977) the

calculation of the segment stiffnesses was modified. It was
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found that in many cases the stiffnesses estimated by

Egn. [5.10] were much lower than in the real situation. This
was because quite often the value of M, was much greater
than M;. This resulted in very low reduced stiffnesses of
the restraining segments. To correct this the value of M, is

modified by multiplying it by A /Ag.

[5.11] Mim =M
: %

If the value of M;, is less than or equal to 2/3M, the
reétraiﬁing segment behaves elastically and its stiffness is
calculated by Eqn. [5.2]. If the value of M,, is greater
than 2/3M, the restraining segment is in the inelastic
range. A new value of M, is calculated by substituting M;n
into the inelastic buckling equation and solving for M,. The

new, reduced value of M, is denoted M., .

[5.12] M,, = 0.28M,
1 _Mi/1o15Mp

Equation [5.12] is simply a rearrangement of Egn. [5.6] with
M,, replacing M,. M,, and M, are then used to calculate the

reduced stiffness of the restraining segment

[5.13] aq = nfELy Mg\ (1 - Ac
L Mur XR

The calculation of the reduced stiffness of the critical
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segment, a., is not changed in the modified method.

The modified method seems to be very tedious. In some
cases it is unconservative. Not including the changes will
yield results at least as safe as those with the changes
included. The results will be closer to the "correct"
solution than those obtained using the Salvadori lower bound
approach. Thus, for sake of simplicity, one might not
include the modifications to the restraining segment

stiffness calculations.

5.3.2 Refinements by Dux and Kitipornchai

Dux and Kitipornchai (1980,1982) proposed a method
which was a refinement of the one by Nethercot and Trahair.
It increased the accuracy of the technique but at the cost
of more complexity.

They pointed out that the effective length factor, k,
is a function of the restraint parameters, G,,s, the moment
gradient, k, and the beam parameter, K. Nethercot and
Trahair recognized all these factors but did not incqrporate
all of them. The restraint parameters were accounted for in
the effective length factor chart. The chart, however, is
only "exact" for cases in which k is equal to -1.0. In this
case the effective length factor is independent of K. For
all other situations the effective length factor is is also
a function of K. Dux and Kitipornchai made provisions for
this in their refined procedure. They also recognized and

accounted for the fact that the restraint provided is more
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important at the end of the beam which has the larger
"bending moment (see Sec. 2.3). Again, the chart used in the
Nethercot and Trahair method does not account for this. Dux
and Kitipornchai asserted that the chart is only valid for
cases when k is equal to -1.0 but that it yields
satisfactory results as long as the two restraint parameters
are approximately equal and k is less than zero.

The method proceeds as follows. The Salvadori lower
bound buckling moment for each segment is calculated along
with the moment gradient x, and the beam parameter, K. In
order for k to be determined the moment gradient must be
constant - otherwise the method cannot be used. The critical
segment is identified and the moment factors, \. for the
critical segment, and A, for each of the two restraining
segments, are calculated. A value of A., the moment factor
at subassemblage buckling is.then assumed. The value of A;

lies between A; and the lower of the two values of A,.
}‘c < >‘F < >\Rmin

The next step is to calculate the stiffnesses of the
segments. The critical segment stiffness is calculated from
Egn. [5.3]. The equation for calculating the restraining
segment stiffness is slightly different from that used by

Nethercot and Trahair.

[5.14] ag = n(&) [1 - <AF>2J
L/ Ar
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Using the segment stiffnesses, the stiffness ratios are
calculated using Egn. [5.4].

The stiffness ratios are used to determine the
effective Jength factor but Dux and Kitipornchai employ a
number of charts instead of the single chart used by
Nethercot and Trahair. There are seperate charts for various
values of k and within each chart variations in K are
accounted for. In the original paper 19 charts were
presented (Dux and Kitipornchai 1980). After obtaining the
effective length factor a new buckling moment, Mg, is
calculated from Egn. [5.5]. From this, a new value of A, is
computed.

[5.15] an = M_F_ kc
Muc

Note that M, and A. are the values obtained by the Salvadori
lower bound approach. Next, compare A; and A¢,. If the two
are in close enough agreemént the process stops. If the two
differ significantly the procedure is repeated using the new
value of A¢. Usually 2 or 3 cycles are sufficient.

Dux and Kitipornchai pointed out that there may be some
difficulty in identifying the true critical segment. If,
when calculating the moment factors, A, some segments have
similar values, the critical segment may not be the one with
the lowest moment factor. If one segment has very stiff
adjacent segments it may not be critical even if it has the

lowest moment factor. In this situation, one should check
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each of the segments in question,

The results obtained using the refinements proposed by
Dux and Kitipornchai have been compared to finite intergral
solutions and finite element solutions. Goéd agreement was
found (Fig. 5.12).

The method of Dux and Kitipornchai gives more accurate
results. However, the larger number of charts that it
requires make it awkward to use. Also, these charts are not
easily accessable for Canadian designers at the present
time. For these reasons it is not likely that the method
will gain widespread acceptance.

Dux and Kitipornchai suggested that a cyclic process,
like that used in their method, can be incorporated into the
Nethercot and Trahair procedure. This would result in
reduced estimates of the buckling moments and hopefully
eliminate unconservative solutions. However, és they point
out, there is no guarantee that this will yield a safe
result and it will make already conservative results even

more conservative.

5.4 Summary

Methods for determining buckling loads of laterally
continuous, laterally unsupported beams have been described.
The Salvadori lower bound approach is safe but considered to
be too conservative. Trahair's method (1968b, 1969, 1977) is
too involved and lacking in generality. The method of

Nethercot and Trahair (1976a, 1976b) is simple and rational.
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It conveniently makes use of the nomograph which is widely
used in thg design of columns. The refinements suggested by
Dux and Kitipornchai (1980, 1982) improve on the accufacy
obtained but greatly increase the complexity of the

procedure.



6. NEW METHODS FOR THE ANALYSIS OF CONTINUOUS BEAMS

Two new methods are developed for the calculation of
effective lengths of laterally continuous, laterally
unsupported beams. In each procedure a single effective
length factor is determined to account for both lateral and

torsional restraint.

6.1 Iterative Method

The iterative method can be divided into two
sub-methods. In one, the equivalent momént factor, w, is
kept constant. In the second, the equivalent moment factor
is modified with each iteration. In each of the iterative
methods the objective is to find effective lengths for each
segment, with some effective lengths greater than the actual
segment lengths and others less, such that all segments have
the same ratio of critical to applied moments. The
respective procedures are described in the following

sections,

6.1.1 Constant Equivalent Moment Factor

STEP 1:'The routine, like Nethercot and Trahair's,
begins with the calculation of the Salvadori lower bound
elastic critical buckling moments for each segment of the
beam. Equation [2.15] is used.

STEP 2: The critical segment is identified. It is the
one with the lowest moment factor found from Egn. [5.1] or

[5.8] as appropriate. In situations where My is the same for

110
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each beam segment Egn. [5.1] is sufficient and thus M, need
not be compﬁted.

STEP 3: The critical segment provides adjacent segments
with negative restraint while the adjacent segments, acting
to restrain the critical segment, provide positive
restraint. Since the critical segment is restained by the
other segments its effective length factor, k., is less than

1.0.

ke < 1.0

Conversely the restraining segments have effective length

factors, ki, greater than 1.0.

Knowing this, the designer can assume a value of either the
critical effective length or values of the two restaining
effective lengths, The quantity which is assumed is used in
the following equation to calculate the other:

[6.1] L = k¢Le *+ kayL gy + kgpzLg2

where L¢, Lgy, Lz are the lengths of the critical and the

bounding restraining segments respectively and
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[6.2] L =DLc + Lg + Lg;

The effective length factor should not be less than 0.5. A
value of 0.5 represents a fixed-ended beam.

'STEP 4: With the effective lengths determined in step 3
the designer calculates new critical buckling moments.

STEP 5: Steps 2 through 4 are repeated until the moment
factors are identical for each segment. The iteration is
also terminated if the critical effective length factor
becomes 0.5 and is tending to go below 0.5.

An example of the iterative procedure is presented in

Appendix A.3.

6.1.2 Modified Equivalent Moment Factor

This method is the same as the one described in the
preceeding section except that the equivalent moment factor,
w, is modified with each iteration. A modified value of w is
calculated in step 3 after the estimation of the effective
lengths. Since each segment has a new effective length, a
different portion of the bending moment diagram corresponds
to that effective length. A modified value of w is
calculated from each new effective length. It is likely that
the new portion of the moment diagram will have an odd
shape. If so, it may be neccessary to use Egqn. [2.12] to
calculate w.

See Appendix A.4 for a demonstration of this method.
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6.2 Equivalent Beam Method

The equivalent beam procedure involves transforming the
actual beam to an "equivalent beam" which is easier to
analyze. The method is as follows:

STEP 1: The Salvadori lower bound elastic critical
buckling moments are found for each segment.

STEP 2: The "equivalent length", L., of each segment is
found. It is the length which will result in an identical
buckling moment as that found in step 1 with w set equal to

1.0.

[6.3] Le = w/EI GJ///1 + //1 + 4M,%C,
) (72§Mu 1,(GJ)?

Equation [6;3] was derived by Nethercot (1973). Now the
equivalent beam has a length equal to the sum of the lengths
of the equivalent segments. The equivalent beam is acted
upon by equal and opposite end moments resulting in a value
of 1.0 for w.

STEP 3: Since the equivalent moment factor, the section
properties, and the material properties are the same for
each segment and since the whole beam buckles interactively,
each segment must buckle at the same critical moment. Each
| segment, therefore, must have the same effective length. The
critical effective length is calculated by dividing the
total equivalent length by the total number of segments. The
effective length factor for an individual segment is

computed by dividing the segment equivalent length by the
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critcal effective length. The effective length factor should
not be less than 0.5,

STEP 4: The elastic critical buckling moment, M,, is
then calculated using the effective length calculated in
step 3.

Appendix A.5 has an example of the use of this method.

6.3 Comparison of Methods

6.3.1 Dibley's Tests

An experimental study was undertaken by Dibley (1969)
in which beams of the type shown in Fig. 6.1 were tested.
Point loads were applied at braced points. The beams were
continuous in the lateral plane. The test set-up was such
that a uniform bending moment acted over the central
segment. Nominal section properties of the beams tested are
shown in Table 6.1. Table 6.2 shows the measured values.
In this report 6 different methods of evaluating the
effective lengths of Dibley's beams are compared. They are:
1. An effective length factor of 0.5 is used. This
represents the extreme case of a fixed-ended beam.

2. The iterative procedure with a constant equivalent
moment factor.

3. The equivalent beam method.

4. The iterative procedure with a modified equivalent

moment factor.
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5. Nethercot and Trahair's method.

6. The Salvadori lower bound approach.

The ultimate strengths as predicted by each of these
methods were computed. Ratios of test to predicted strengths
are shown in Table 6.3. The table also indicates which mode
of failure is predicted by the method in question. It can be
seen that the fixed-ended beam approach, giving the shortest
effective lengths, predicts more beams will fail by reaching
their plastic of yield moments. Using effective length
factors of 0.5 resulted in the prediction of inelastic
action in all 30 beams. Conversely, the Salvadori approach
predicted more beams to behave elastically.

Table 6.3 also gives mean values of the test to
predicted ratios for each method as well as the
corresponding coefficients of variation. The mean value for
the Nethercot and Trahair procedure is within 2 per cenﬁ
vhile the proposed methods give mean values ranging from
within 4 to 6 per cent. These values are satisfactory. The
fixed-ended beam approach has a somewhat lower mean value
while the conservative Salvadori method has a very high mean
value. The coefficients of variation are reasonably good for
the Nethercot and Trahair procedure as well as for the
proposed methods but are considered too high in the

Salvadori method.
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6.3.2 Resistance Factors

Resistance factors were calculated for each of the
methods used to predict thé strenths of Dibley's beams.bThe
resistance factor, ¢, can be calculated from the following

expression:
[6.4] ¢ = prexp(-faVy)

where the coefficient of seperation, a, is taken as 0.55
(Galambos and Ravindra 1974) and the safety index, 8, is set
equal to 3.0. The ratio of the mean to nominal resistance,

P, is found from

[6.5] Pr = PpPyPq

where p, is the ratio of the test to predicted strength, py
is the ratio of the measured to nominal material properties,
and p; is the ratio of the measured to nominal geometric

properties. The coefficient of variation of the resistance,

Vi, is found from
[6.6] Vr? = Vo2 + Vy? + Vg2

where the quantities V,, V4, and V; are the coefficients of
variation of the test to predicted strengths, material
properties, and geometric properties respectively. The

values of all the statistical parameters relating to
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geometric and material properties have been determined
previously by Baker and Kennedy (1984) for rolled shapes and
Kennedy and Baker (1984) for welded shapes so it was only
neccessary to determine the parameters relating to the test
to predicted strengths. From these, pp, and V, were
calculated and used to find resistance factors. An
additional factor, the discretization factor, must also be
included when considering rolled shapes. This factor is
introduced by the designer when he selects a beam size equal
to or greater than that needed. Baker and Kennedy (1984)
suggest a mean value, p,, of 1.059 and a coefficient of
variation, V,, of 0.039 be used.

Errors in measurement (Mirza and MacGregor 1982) were
accounted for by reducing the coefficients of variation. The
coefficient of variation for the errors in measurement
varied linearly from 0.00 to 0.04 as the coefficient of
variation for the measured property varied linearly from
0.00 to 0.06. A maximum value of the former quantity was set
at 0.04 if the latter quantity increased above 0.06. The

reduced coefficient of variation, V, was found from
[6.7] VZ = Vo2 - Vey?
where Vo, is the initial (not reduced for errors in

measurement) coefficient of variation and Vem is the

coefficient of variation for the errors in measurement.
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In the inelastic range the significant statistical
parameters of a laterally unsupported beam change with the
length of the beam. For example, with long beams the modulus
of elasticity is important, while for short beams the yield
strength is more important. In this report the resistance
factors were calculated based on the statistical parameters
for short beams as a study showed little variation over the
inelastic range when these changes were considered. The
error associated with this approximation is not appreciable.
The geometric property used was the section modulus (plastic
or elastic as appropriate) while the material property used
was the yield strength.

In the elastic range the significant geometric property
is the moment of inertia while the significant material
property is the modulus of elasticity.

The statistical parameters needed for the above
calculations are listed in Tables 6.4 and 6.5. The results
of the analysis are shown in Tables 6.6 for rolled shapes
and 6.7 for welded shapes. It can be seen that the
resistance factors for the fixed-ended beam method are
inconsistent and low while for the Salvadori method they are
inconsistent and high. For the method in which the effective
length is iterated and the equivalent moment factor is kept
constant the resistance factors are somewhat inconsistent
and in the case of elastic beams considerably different from
the value of 0.90 currently used in S16.1-M78. Nearly

identical results were obtained for the equivalent
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beam method and the iterated effective length / modified
equivalent moment factor method. Reasonable consistency was
obtained. A value of about 0.85 is a good representative
figure for ¢ for both rolled and welded shapes. It is
reasonably close to the value used in S16.1-M78. The results
obtained using Nethercot and Trahair's procedure indicate
that this method can be satisfactorily used with the present

$16.1-M78 value of 0.90 used for the resistance factor.

6.4 Summary and Recommendations

Reanalysis of Dibley's test data (1969) has confirmed
that the Salvadori lower bound approach, currently used in
S16.1-M78, is very conservative. At the other extreme,
considering a laterally continuous beam as fixed at both
ends is unsafe and should not be used. It is also considered
that the iterative method, proposed herein, with a constant
equivalent moment factor is also unsuitable. However, by
modifying the equivalent moment factor with each iteration
the method's accuracy is improved. Based on the data
available from Dibley'slexperiments, the latter procedure
can be used in design with a value of 0.85 used for the
resistance factor. Similarily, the same tests indicate that
the equivalent beam method can also be employed with a
resistance factor of 0.85. A resistance factor of 0.90 is
recommended for the Nethercot and Trahair procedure. The
refinements suggested by Dux and Kitipornchai (1980, 1982)

improve on the accuracy obtained but greatly increase the
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compléxity of the proceduré. The resistance factors
recommended above apply to both rolled and welded shapes.
Most experiments on laterally unsupported beams have
been for those with constant moment gradients over a central
segment (Fukumoto and Masahiro 1977). For this reason it is
difficult to make a full evaluation, based on tests results,
of proposed methods. Experimental studies on laterally
continuous beams with a variety of loading conditions would

be useful.



7. SUMMARY AND RECOMMENDATIONS

Although the requirements set by the Canadian Standard
(CAN3-S16.1-M78 Canadian Standards Association 1978) for the
design of laterally unsupported beams leads to designs which
are safe, it is considered that in some cases the provisions
are too conservative. Exceptions are beams in which the load
is applied above the shear center. For these beams the
Standard does not make allowance for the decreased stability
that is inherent. The use of effective length factors to
model the stabilizing effects of different degrees of
lateral and torsional fixity at the ends of beams leads to
designs which are less conservative and, thérefore, more
economical.

Galambos (1968) has provided effective length factors
which can be used for single span beams. These are
particularily useful since they can easily be used with the
present design equations in S16.1-M78. The effective length
factors are analagous to those used in the design of
columns. With an understanding of the concepts of warping
and lateral bending, the designer can determine what kind of
restraints a particular connection provides and then choose
an appropriate effective length factor. Galambos's effective
length factors should not be used when the end restraints
provided are poorly matched with the applied loads.

Effective length factors which eliminate the use of an
equivalent moment factor have been suggested by Nethercot

for the design of cantilevers. This is philosophically

134
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different from the notion of having seperate factors to
account for loading and end restraints. Unfortunately, no
equivalent moment factor which can be used for cantilevers
has been developed. If one were developed, it is considered
that effective length factors similar to those used for
single span beams could be employed for simple cantilevers
while the methods used for continuous beams could be applied
to continuous cantilevers. Lacking the above, Nethercot's
effective length factors give results that are safe and more
economical than those obtained using the provisions of
S16.1-M78.

End restraints for segments in a continuous beam are
provided by the adjacent segments. The degree of restraint
provided is a function of the applied loads and the span
lengths of each segment. The design procedure prescribed by
the Canadian Standard conservatively ignores the end
restraints that are supplied.

Resistance factors have been derived for various
methods of analyzing laterally continuous beams. Factors
were derived for both rolled and welded shapes. It was found
that the difference between the two sets was not large and
thus one set of resistance factors is recommended for both
rolled and welded shapes.

Nethercot and Trahair (1976a,1976b) have developed a
simple method which can be used to calculate the amount of
restraint provided by adjacent segments. From these values

an effective length factor can be determined. The method is
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not difficult to use. The procedure conveniently utilizes
the nomograph normally applied to column design.
Unfortunately, under certain conditions the method gives
unconservative results. An awareness of these conditions is
necessary for the safe application of the procedure. Dux and
Kitipornchai (1980,1982) refined the method, improving its
accuracy but also making it more cumbersome to use. The
refined method requires an extensive number of charts. For
reasons of simplicity the unrefined method of Nethercot and
Trahair seems more suitable for routine design. A resistance
factor of 0.90 is recommended for use with this design
procedure.

A procedure which involves successively adjusting
assumed effective length factors has been developed in this
report. It was found that the accuracy of this method is
improved if the equivalent moment factor is also
successively adjusted. If the latter routine is followed a
resistance factor of 0.85 should be used. Tﬁe method is not
recommended if the equivalent moment factor is not modified.

In another method developed for the analysis of
‘laterally continuous, laterally unsupported beams the real
beam is replaced by an equivalent beam which is easier to
analyze. A resistance factor of 0.85 should be used with

this method.
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APPENDIX

A.1 Example 1

The following example demonstrates the use of effective
length factors for single span beams. Also included is a
check on the warping stiffness of a tubular dévice made from
a pair of channels.

A laterally unsupported beam spans 10.0 m and supports
a 90 kN load (factored) acting at mid-span (Fig. A.1). The
beam is supported by double angle connections (Fig. 2.6) at

each end.
M, = 225 KkNm

The load is applied to the beam at the level of the shear

center. The beam is a W460x82 section; a class 2 section.

M, = 549 kNm
The properties of the beam are found in the Handbook of
Steel Construction (Canadian Institute of Steel Construction

1980):

18.6 x 10° mm*

-
<
L]

691 x 10° mm*

(o]
]
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90 kN
5m 5m
e
1 % I
225 kNm

Figure A.1 Loading and Bending Moment Diagram for Example 1
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Cw =918 x 10° mm®
E = 200 x 10°® MPa
G =77 x 10® MPa

The beam can be assumed to be pinned with respect to both

lateral bending and torsion.

[3.12] ky = 1.00

[3.9] k. 1.00

From the Structural Stability Research Council (1976):

1.35

3
n

or

w= 0,74

Using Egn. [3.5] and replacing M., by M,:

M, = 219 kNm

This is less than 2/3M,. Thus, the factored moment

resistance is equal to the elastic buckling moment

multiplied by the resistance factor.
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M, = ¢M,

(0.9)(219 kNm)
197 kNm |

The factored resistance is less than the moment due to the
factored loads. The structure is inadequate.

To improve the stability of the structure, pairs of
channels are attached at each end to form tube shaped
devices (Fig. 3.6). The channels used are C310x45's. The
flange widths, b, are 80 mm. The distance between the beam
web and the beam flange is 90.6 mm. This leaves enough room
to place the channel and weld it to the beam. The web depth,
d, of the channel is 305 mm. The torsional constant of the

tube must be computed. From McGuire (1968):

where A is the area enclosed by the middle of the tube wall,
t is the wall thickness, and S is the length of the

perimeter of the tube. For the C310x45's:

t = 13 mm
A= (305 mm - 13 mm)[2(80 mm) - 13 mm]
= 42924 mm?
S = 2(305 mm - 13 mm) + 2[2(80 mm) - 13 mm]
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878 mm

4(42924 mm?)%(13 mm)
878 mm

109.1 x 10° mm*

The distance between the centroids of the beam flanges is

calculated:

Using Eqn. [3.

8]

d -t

460 mm - 16 mm

444 mm

the elastic rotational stiffness of the

tube is calculated:

[3.8]

Now, Egn.[3.6]

[3.6]

where

= 2G,J
TR
h

2(77000 MPa)(109.1 x 10° mm*)
444 mm

37.8 x 10° Nmm

must be satisfied:

K

> 5EI,R
tanh(LR/2)
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[3.7] R = /gg

Using the following relationship the above expression can be

evaluated:

tanh(x) = e*X - e-*
e

Substituting the appropriate values:

5EI,R = 10.1 x 10° Nmm

tanh(LR/2)

This is less than the tube stiffness. It can, therefore, be
assumed that warping is prevented. A new torsional effective

length factor can be used;

[3.10] k, = 0.65

A new value of M, is computed using the new value of ke
M, = 254 kNm

This is less than 2/3M,. The factored moment resistance is

calculated:

[2.14] M, = ¢M,
(0.9) (254 kNm)
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= 229 kNm

The moment resistance is greater than the moment due to the
factored loads. The use of the tubular device to resist
warping has allowed the use of a beam that otherwise would

not be adequate.

A.2 Example 2

The following example demonstrates the unmodified
Nethercot and Trahair procedure for calculating effective
length factors for continuous beams.

A laterally unsupported beam spans 17.0 m. It is loaded
at braced points. The braces prevent twisting and lateral
deflection of the beam. The beam is shown in Fig. A.é. The
loads shown are the factored loads. The beam is a W460x82
section. The properties of this section are given in Example
1.

The braces divide the beam into three segments numbered
T to 3 from left to right. The first step in the analysis is
_ to calculate the Salvadori lower bound estimates of the

segment buckling moments.
segment 1:

4000 mm

r
n
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229 kKNm —rr'F'FFsta kNm

Figure A.2 Loading and Bending Moment Diagram for Example 2



using Egn. [2.15]

this is greater than 2/3M, (recall that M, = 549 kNm)

[5.6]

segment 2:

segment 3:

M,

e
[}

€
]

M,

e
"

M,

1030 kNm

M,y

1.15M,<1 - 0.28Mp>

537 kNm

8000 mm

0.6 + 0.4(229 kNm
288 kNm

0.92

235 kNm < 2/3M,

5000 mm

716 kNm > 2/3M,

)
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M, = 496 kNm

If this beam was being designed according to the
specifications of the present Canadian Standard the above
values of critical moments would be multiplied by the
performance factor to get the moment resistance of the beam.
Segment 2 would not be adequate. Continuity of the beam
makes it stronger than the above calculations indicate.
Continuing on using Nethercot and Trahair's procedure:

Note that segments 1 and 3 are in the inelastic range
while segment 2 is in the elastic range. The moment factors

for each segment are now determined.

segment 1:

[5.8] A= M
M

= 537 kNm
229 kNm

= 2,34

segment 2:

[5.1] A

My
M

= 235 kNm
288 kNm

= 0.82
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segment 3:

[5.8] A= M
M

= 496 KNm
288 kNm

= 1,72

Segment 2 is the critical segment. Segments 1 and 3 are
restraining segments.

segment 1:

Ap = 2,34
segment 2:

Ac = 0.82
segment 3:

Ap = 1.72

The stiffnesses of the segments are calculated:

segment 1:
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[5.10]

]

x

[

=]
/-\

Lm
=
ZFZ
=

—

!
> >
DO

= 3(9.3 x 10® Nmm) { 537 kNm\ /1 - 0.82
1030 kNm 2.34

945 x 10° Nmm

segment 2:

[5.3] ac = 2(§;J>
L
c

= 2(4.65 x 10® Nmm)

= 930 x 10° Nmm

segment 3:

[5.10] ag

") (7 k)

3(7.44 x 10° Nmm)<496 kNm>(1 - o.sz)

N

716 kNm 1.7

809 x 10% Nmm

The stiffness ratios are determined.

For the left end:



ac
Qg

930 x 10° Nmm
945 x 10° Nmm

0.98

for the right end:

The nomograph in Fig. 5.10 is used to calculate the

Gg

Gc

agp

930 x 10° Nmm
809 x 10° Nmm

1.15

effective length factor.

k

0.78
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Using this effective length factor a new critical moment is

calculated for the critical segment:

The moment resistance of the beam is determined:

[2.14]

M,

333 kNm < 2/3M,

oM,
(0.9) (333 kNm)
300 kNm
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This is greater than the maximum moment due to the factored
loads. The beam is adequate.

It was noted in Chapter 5 that the Nethercot and
Trahair procedure was unconservative if a few conditions
were present. One of these was the presence of high end
restraints on the critical segment (G,,s = 0). That is not a
factor in this example. High moment gradients were also
found to lead to unconservative results. For this example
the critical segment is acted upon by a nearly uniform
bending moment distribution. Finally, results from beams
with high beam parameters are suspect. A value of K in the
order of 3.0 or higher should cause some concern. The value
of K in this case turns out to be 0.73. Based on these
considérafions it can be assumed that the analysis was

reasonably accurate.

A.3 Example 3

In this example the iterative procedure for determining
effective length factors is used. The equivalent moment
factor, w, is not modified.

Dibley's test beam no. 13 is analyzed. The test set up
is shown in Fig. 6.1. The length of each outer segment is
1050 mm while the inner segment spans 2090 mm giving a total
length of 4190 mm. The material and geometric properties of

the beam can be obtained from Tables 6.1 and 6.2.
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35.5 x 10° mm®

(@]
£
L]

J=75.7 x 10° mm*
I, = 1.58 x 10° mm*®
E = 205500 MPa
G = 79000 MPa

F, = 516 MPa

The section is class 2.

427 x 10° mm?

3
i

M, 220 kNm

The moment diagram is shown in Fig. 6.1. The Salvadori lower

bound moments are calculated for each segment.

segment 1

L, 1050 mm

0.6

>
n
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using Eqn. [2.15]

My = 759 kNm
segment 2:
L, = 2090 mm
wz = 1.0
M,2 = 128 kNm
segment 3: . same as segment 1

The maximum applied moments are identical for each segment.
Thus, at failure, the critical buckling moment for each span
will also be identical. Since the calculated elastic
buckling moment of the outer segments is larger than the
calculated elastic buckling moment of the inner segment the
outer segments restrain the inner segment. An estimate of
the effective length factors is made. Assume the effective

length factor of the inner segment, k;, is 0.65. Thus:

k2L, (0.65) (2090 mm)

1359 mm

The effective lengths of the outer two segments are
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identical to each other.

k1L1 = k3L3

kL, L - k;L,

2

4190 mm - 1359 mm
2

= 1416 mm

ki = kg

k1 = k1L1
L,

1416 mm
1050 mm

= 1,35
The elastic buckling moments are recalculated using the new

effective lengths.

segments 1 and 3:

kiL; = 1416 mm

Mu1 = 431 kNm
segment 2:

koL, = 1359 mm
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Myz = 279 kNm

Again, it is seen that the buckling moment of the outer
spans is greater than that of the inner span. The inner span
is restrained by the .outer spans. New effective length

factors are assumed,

0.55

try kz

this leads to

ki = ks 1.44

segments 1 and 3:

381 kNm

=2
[
"

segment 2:

Muz 377 kNm

These values are reasonably close. Thus, the elastic

critical buckling moment of the beam is:

M, = 377 kNm
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This is greater than 2/3M,. The unfactored moment resistance
is calculated using Eqn. [2.20].

V

1.15M,,(1 - 0.28ME>
M.

M,
¢

(1.15) (220kNm) |1 - 0.28(220 kNm)
377 kNm

212 KkNm

In Dibley's test the beam failed at a moment of 190 kNm.

Thus, the test to predicted ratio is

190 _kNm = 0.90
212 kNm

A.4 Example 4

Dibley's test beam no. 13 is reanalyzed using the
iterative procedure but with the equivalent moment factor
modified with each iteration.

The first iteration is exactly as in Example 3. For the
second iteration, assume an effective length factor of 0.65
for the inner segment. This is the same value as assumed in
Example 3. Again, the effective lengths will be 1359 mm and
1416 mm for the inner and outer segments respectively.
Figure A.3 shows the bending moment diagram matched against
the new effective lengths. The equivalent moment factors are
calculated from the parts of the bending moment diagram

which correspond to their respective effective lengths.
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I, 1416 mm I, 1359 mm L 1416 mm. I,
A A A 7

Figure A.3 Bending Moment Diagram and Assumed Effective

Lengths
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Referring to Fig. A.4 and using Egn. [2.12]

3M, + 4M; + 3M, + 2Mp .
12Mmax

[2.12]

8|-

3(0.377) + 4(0.674) + 3(1) +2(1)
12(1)

(>
"

= 0.73

The inner segment equivalent moment factor remains equal to

1.0.

segment 1 and 3:

1416 mm

~
)
H

Myy = 354 kNm

segment 2:

ksz = 1359 mm
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M max

0.674 M.,

0.377 M,,,,

i
I
I
|
|
I
|
!
|
I
I
i
[
!
|
—

| 354 mm | 354 mm | 354 mm| 354 mm|
L 1 1 1 1

l, 1416 mm 7'4_
1

Figure A.4 Bending Moment Diagram Corresponding to Effective

Length of Segment 1
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M,z = 279 kNm

The iterative process continues until the elastic buckling
moments are the same for each segment. This occurs when the
effective length factors are 0.60 and 1.40 for the inner and

outer segments respectively.

M, = 326 kNm

This leads to

© LZ

(1.15) (220 kNm) |1 - 0.28(220 kNm)
326 kNm

205 kNm

The test to predicted ratio is

190 kNm = 0.93
205 kNm

A.5 Example 5

The equivalent beam method is now demonstrated. Again,
Dibley's test beam no. 13 is analyzed.

As before, the Salvadori lower bound elastic critical

~moments are found for each segment:

Mu1 = Mu3 = 759 kNl‘ﬂ
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Muz = 128 kNm

Equation [6.3] is used to find the equivalent length of each

segment,

nvEI,GJ 1T + 1 + 4M,

[6.3] Le ‘C
: _ 172§M., I,(GJ?z

segment 1 and 3:

806 mm

[
®
"

segment 2:

L, 2090 mm

Now, the equivalent beam is as shown in Fig. A.5. The total
length of the equivalent beam is 3702 mm. There are three

segments. The critical effective length is

(kL),, = 3702 mm

]
N
w
-9
8
3

The effective length factors are checked to see that they

are at least 0.50.



je——

Lsos| 2090 mm Jlaosl,
/1 71 la ]
J,l( 3702 mm *

Figure A.5 Equivalent Beam for Example 5
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k1 = k; = 1234 mm
806 mm
= 1,53 OK
k; = 1234 mm |
2090 mm
M. is calculated
w= 1,0
(kL),, = 1234 mm
M, = 335 kNm
Finally
M, = (1.15)(220 kNm)|1 - 0.28(220 kNm) | .
(] 335 kNm

207 kNm

The test to predicted ratio is

190 kNm = 0.92
207 KkNm



