INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and continuing

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

University of Alberta

CONSTRAINT-BASED ASSEMBLY LINE SEQUENCING

by

Michael E. Bergen

A thesis submitted to the Faculty of Graduate Studies and Research in partial
fulfillment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Fall 2000

b

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre rétérence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-59779-2

University of Alberta

Library Release Form

Name of Author: Michael E. Bergen
Title of Thesis: Constraint-based Assembly Line Sequencing

Degree: Master of Science

Year this Degree Granted: 2000

Permission is hereby granted to the University of Alberta Library to reproduce
single copies of this thesis and to lend or sell such copies for private, scholarly
or scientific research purposes only.

The author reserves all other publication and other rights in association with
the copyright in the thesis, and except as herein before provided, neither the
thesis nor any substantial portion thereof may be printed or otherwise re-
produced in any material form whatever without the author’s prior written
permission.

Michael E. Bergen Y
2 Beaverbend Cres.

Winnipeg, MB
Canada, R3J 0T1

Date: U\/\ Ova 3 ljD\OO(D

Abstract

A wide variety of combinatorial optimization problems have been studied in
recent years. Of particular interest are a class of optimization problems aris-
ing from the manufacturing of vehicles on assembly lines. These problems
consist of sequencing the vehicles that are going to be produced such that
their production is done in an efficient cost effective manner. In this the-
sis we introduce a real-world vehicle sequencing problem that was provided
by TigrSoft, who solved the problem for one of their clients using a greedy
search approach. We began by modeling this problem as a constraint satisfac-
tion problem and from there we devised three different solution techniques for
solving it. These solution techniques include a simple hill-climbing algorithm,
a backtracking algorithm with parameterized soft constraints, and a branch
and bound algorithm that is capable of finding optimal solutions. We were
able to improve results, compared to TigrSoft’s algorithm, using any of these
three solution techniques. For our best method, a branch and bound technique
with a decomposition into smaller sub-problems, we obtained improvements

ranging between 3% and 13% for six real-world problem instances.

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of
Graduate Studies and Research for acceptance, a thesis entitled Constraint-
based Assembly Line Sequencing submitted by Michael E. Bergen in par-
tial fulfillment of the requirements for the degree of Master of Science.

Dr. Peter van Beek (Supervisor)

S

——————
Dr. Fraser Forbes

Dr. Russ Greiner

Date: M(Ik\’) 20’ 2030

To My Parents

A cknowledgements

This research was funded in part by a post graduate scholarship from the Nat-
ural Sciences and Engineering Research Council of Canada (NSERC). Funding
was also provided by TigrSoft Incorporated as well as a collaborative research
and development grant from NSERC.

To begin with, I would like to thank Peter van Beek for being my supervisor.
Without his endless patients, support, and guidance; this thesis would never
have been completed.

Thanks to the people at TigrSoft who made this research project possible.
In particular, thanks to Tom Carchrae for always seeking out answers to my
questions. Thanks to my examining committee members, Fraser Forbes and
Russ Greiner, for their comments and suggestions, and for taking the time to
be on my committee. Thanks also to the people in the AI lab for sharing ideas
and suggestions related to my thesis.

I would like to thank my friends, new and old, for making these last few
years very enjoyable. In particular, thanks to Yoko, Oscar, Lourdes, Dima,
and Maria for all the great times we spent together. Thanks to the Burrs for
sharing their frozen paradise with me. Next time we’ll get it lit on time.

Finally, I would like to thank my family. My parents, for their uncondi-
tional love and support. My brother, Brian, for helping me move to Edmonton
and for always being a good brother.

Contents

1 Introduction

2 Problem Background

2.1 Problem Structure L.
211 Batching L oo
2.1.2 Internal Lot Sequencing
2.1.3 Batch Sequencing
214 Capacity -o
2.1.5 Slot Structure
2.2 Constraintso
2.21 Attributeso Lo
2.2.2 Constraint Classification
223 Assembly Line.
224 Line-Onand Line-Off.
2.2.5 Even Distributiono 0000
2.2.6 Distribution Exception
227 BattingOrder
228 Change-Over
2.29 Change-Over Special Case
2.210 Run-Length
2.3 Original Solution Technique
2.3.1 Assembly Line Assignment
23.2 DayAssignment
2.3.3 Batch and Lot Sequencing
234 Performance
2.4 Example Problem Solution

3 CSP Models

3.1 CSP Definition o
3.2 Batch Representation,
3.2.1 Internal Lot Sequencing
3.2.2 Attribute Functions L.
323 SlotModel.
3.24 BatchModel

3.3 Lot Representation

3.4 CSOP Model 39

4 Solution Techniques 41
4.1 LocalSearch 41
4.1.1 Background 42
4.1.2 Hill Climbing Approach 44

4.2 Loosening Approach 44
4.2.1 Backtracking Background 46
4.2.2 Soft Constraints 46
4.2.3 Restart Scheme 47
4.2.4 Variable and Value Ordering 48
4.2.5 Consistency Propagators 49

4.3 Branch and Bound Approach 58
4.3.1 Evaluation and Heuristic Functions 58
4.3.2 Branch and Bound Scheme 59
4.3.3 Variable and Value Ordering 59
4.3.4 Consistency Propagators 59

4.4 Problem Splitting L L. 60
5 Results 61
5.1 Test Problems, 61
5.2 Greedy Search 62
53 HillClimbing 63
5.3.1 Improvement Over Greedy Search 63
5.3.2 Random Initial Solution 64

5.3.3 Optimized Internal Lot Sequences 65
5.3.4 Multi-day Sub-problems 67

5.3.5 Removing the Even Distribution Constraint 67

5.4 Backtracking with a Loosening Approach 69
5.4.1 Improvement over Greedy Search 70

5.4.2 Soft Constraint Propagation 71
54.3 ValueOrdering 72
5.4.4 Best Solution Selection 73

5.4.5 Optimized Internal Lot Sequences 74
5.4.6 Failure Limits 74
5.4.7 Multi-day Sub-problems 75

5.5 Backtracking with a Branch and Bound Approach 77
5.5.1 Improvement over Greedy Search 77
5.5.2 Reduced Time Limit 78
5.5.3 Optimized Internal Lot Sequences 78
5.5.4 Multi-day Sub-problems 79

5.6 Discussion 80

6 Conclusions and Future Work 82

List of Figures

4.1 6-queens solution

4.2 Propagators on 6-queens problem

5.1 Different relative failure limit constants

List of Tables

2.1
2.2
2.3
2.4
2.5
2.6

3.1
3.2
3.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

5.16
5.17
5.18
5.19
5.20
5.21

Example lots and their batch assignments 10
Example batches 14
Problem constraints and their classification 15
Example even-distribution values 17
Possible batch assignments for example problem 24
Possible solution to example problem 24
Slot attribute functions 29
Batch attribute functions 29
Lot attribute functions 29
Real-world problem instances 62
Greedy search 63
Hill climbing results. 64
Hill climbing with random initial solution 64
Greedy search solution with optimized internal lot sequences . 65
Hill climbing with optimized internal lot sequences 66
Hill climbing with splitsizetwo 68
Hill climbing with split size three 68
Hill climbing with no even distribution and a split size two . . 69
Hill climbing with no even distribution and a split size three . 69
Backtracking with loosening approach 71
Loosening approach with soft propagation 72
Loosening approach with no value ordering 72
Loosening approach with no best solution selection 73
Loosening approach with no value ordering and no best solution

selection L. 74
Loosening approach with optimized internal lot sequences . . . 74
Loosening approach split size two and three results 76
Backtracking with branch and bound approach 78
Branch and bound approach with reduced time limit 79

Branch and bound approach with optimized internal lot sequences 79
Summary ofresults Lo L. 80

Chapter 1

Introduction

A wide variety of combinatorial optimization problems have been studied in
recent years. These problems consist of searching for the best solution from
many possible choices. For small sized problems there are often techniques
that are guaranteed to find an optimal solution within a reasonable amount of
time. However, for problems that come from real-world situations, the size of
the problems often make finding an optimal solution far too complex. Instead,
approximate (sub-optimal) solutions that are computed relatively quickly are
considered acceptable.

For a particular problem, finding any sub-optimal solution may be quite
easy. The challenge is to devise an algorithm that can produce solutions that
are as close as possible to an optimal solution and can be found quickly. Given
two algorithms that solve the same problem, they can be compared based on
the quality of the solution and the complexity of the algorithms. If both
algorithms find solutions within a reasonable amount of time (and space),
then the algorithm that finds the best solution can be considered better.

A particular class of optimization problems arises in the domain of schedul-
ing (see [23] for an overview of constraint-based scheduling). Within the do-
main of scheduling problems are problems that arise from the manufacturing of
vehicles on assembly lines. These problems consist of sequencing the vehicles
that are going to be produced such that their production is done in an efficient
cost effective manner. Each of these problems has unique features depending

on the manufacturing company that they come from. Some of these unique

features include the technology used in the manufacturing process, the types
of vehicles that are manufactured, and the goals of the company.

Of these problems, only a few have been examined by the research com-
munity. One vehicle sequencing problem that has been studied comes from
Chrysler Corporation. The problem was solved using algorithms produced by
ILOG. However, there is little information about this research besides a press
release [18] and a set of presentation slides [7]. The information presented in
the slides indicates a problem with a variety of constraints, and their press
release indicates that Chrysler was able to save $500,000 at a typical assembly
plant by just reducing the number of times paint colours are changed during
the assembly process.

Peugeot-Citroen, Europe’s second largest vehicle manufacturer, also has
plans to use ILOG’s software to enhance the sequencing of vehicles on its
assembly lines [19]. Once again there is no detailed information about this
research, and there is unlikely to be any more in the future.

The majority of research has focused on a particular problem referred to
as the Car Sequencing problem, introduced by Parrello and Kabat in [14]. It
is unclear if this is a real world problem since Parrello and Kabat give no
mention of its origin. The problem consists of sequencing different types of
vehicles that are to be produced on an assembly line. Each vehicle that is
produced requires that certain options be installed (e.g. air conditioning, sun-
roof, and radio). The vehicles are classified by the options that they require.
Each class of vehicles has a production requirement that indicates how many
vehicles that belong to the particular class need to be produced. For each of
the options there is an associated capacity constraint. A capacity constraint
is defined by a ratio (r : s) which indicates that at most r vehicles with a
particular option can be placed in any subsequence of s vehicles. For example,
the sun-roof option might have a capacity constraint ratio of 2:5. This means
that for any subsequence of five vehicles, only two of them can be vehicles that
require a sun-roof.

For problem instances containing up to 200 vehicles, it is often the case

that solutions do not exist. To deal with this, the problem can be defined

2

as an optimization problem. In [14], Parrello and Kabat redefine the capacity
constraints to incur a penalty value whenever a constraint is not satisfied. The
weight of this penalty value depends on the option that the constraint is defined
for (violating a constraint for some options is more expensive than others), how
many vehicles exceed the capacity constraint, and how close these vehicles are
sequenced together (see [14] for a detailed description of how these penalty
values are calculated). For this representation, the optimization problem is
defined as the minimization of penalty values.

The Car Sequencing problem has been solved using a variety of techniques.
Van Hentenryck et al. [22] used a constraint logic programming (CLP) ap-
proach on solvable problem instances (i.e. no optimization was required). The
Car Sequencing problem was modeled with finite domains and in an arithmetic
manner. The CLP language used takes advantage of this model by applying
specialized finite domain, arithmetic, arc consistency propagators to the prob-
lem. Furthermore they introduced specialized combinators (constraints) that
increase the efficiency of the search.

Régin et al. [17] solved the problem using backtracking with a specialized
arc-consistency propagator. The constraints in the problem are all converted
to global cardinality constraints and the propagator described in [16] is applied
to these constraints.

Several local search techniques have been applied to the Car Sequencing
problem. Davenport and Tsang [8] defined a new class of problems called the
Constraint Satisfaction Sequencing Problem, which is essentially a CSP where
the variables all have the same domain values and an all-different constraint is
defined over the variables. They solved the problem using hill-climbing with a
variation of the min-conflicts heuristic and a value swap neighborhood function
(i.e. values are swapped between variables).

Smith et al. [20] modeled the optimization version of the problem as a
non-linear integer program. The model was solved using a general non-linear
program solver, a hill-climbing approach, and a simulated annealing approach.
Overall they found that the simulated annealing approach consistently found

better solutions than the other two approaches.

3

The problem presented in this thesis is a vehicle assembly line sequenc-
ing problem. It is a real-world optimization problem that was provided by
TigrSoft, an Edmonton company that specializes in planning and scheduling
software. The company has already solved the problem using a greedy search
technique and is interested in improving the quality of the solutions. The
problem originates from a client of TigrSoft’s that manufactures vehicles. The
instances of the problem that we study come from a manufacturing plant that
produces approximately 36,000 vehicles in a month, on two assembly lines.
This manufacturing plant is currently using the solution technique provided
by TigrSoft.

The vehicle assembly line sequencing problem consists of choosing the se-
quence that the vehicles should be produced on an assembly line. This problem
is important because the sequencing of the vehicles affects the cost of produc-
tion, the quality of the vehicles produced, and even employee satisfaction.
Choosing an appropriate sequence can improve on all of these criteria. For
example, the cost of production can increase by painting red vehicles immedi-
ately before white ones because it requires that the paint machine be cleaned
thoroughly (otherwise the white vehicle will turn out pink). Also, producing
too many of the same vehicles in a row can cause employees to become bored
and thus the quality of production may decrease.

This thesis describes how we modeled a real-world optimization problem
as a CSP and solved this model using constraint-based algorithms. The prob-
lem instances that were solved consist of one month’s worth of vehicles for
two assembly lines. The modeling of the problem began with an analysis of
TigrSoft’s problem specification. This analysis included converting procedu-
rally defined constraints into a declarative form and determining the scope
of the problem that we would model and solve. The result of this analysis
is a declarative specification of the problem consisting of a description of the
problem structure along with the constraints that make up the problem. The
constraints defined are either hard (must be satisfied) or soft (can be violated
at a cost). Each soft constraint is associated with a penalty value that is in-

curred every time it is violated. Thus the problem is one of optimization on

4

these penalty values.

We then examined different possible ways to model this specification as a
CSP. Of these possible models we selected one to be solved. Three solution
techniques were devised to solve this model: two backtracking techniques and
a local search technique. The first backtracking technique utilizes a param-
eterization of the soft constraints, where the parameter value indicates the
tightness of the constraint. These parameter values are then adjusted with a
restart and relaxation scheme. The second backtracking technique employs a
branch and bound approach, which is guaranteed to find optimal solutions.
Finally, the local search technique is a simple hill-climbing algorithm. All
of these approaches were able to improve on the results of TigrSoft’s greedy
search algorithm.

The contributions of this thesis can be summarized as follows:
e We model a real-world optimization problem as a CSP.

e We demonstrate the ability to solve these problems using three different
constraint-based algorithms. Each of these techniques improves on the

results of TigrSoft’s greedy search algorithm.

e We demonstrate the importance of decomposing the problem into one-
day sub-problems. This decomposition is possible, without significant
loss of solution quality, due to an overly tight constraint that makes the

sub-problems relatively disjoint from one another.

e For most of these one day sub-problems, we prove optimal solutions using

our branch and bound technique.

We begin in Chapter 2 by describing the problem’s structure and con-
straints. Following that, in Chapter 3 we look at possible ways to model the
problem as a CSP. After presenting different ways to model the problem, the
three solution techniques that were applied to one of the models of the problem
are presented in Chapter 4. In Chapter 5, we present the results of applying the

three solution techniques to real-world problem instances and compare these

results with the solutions of the original greedy search algorithm. Finally.

conclusions and future work are presented in Chapter 6.

Chapter 2

Problem Background

The problem addressed in this thesis is the sequencing of vehicles on assem-
bly lines. A typical problem involves sequencing a month’s worth of orders,
consisting of approximately 36,000 vehicles, on two assembly lines. At first
glance, the number of vehicles that need to be sequenced makes the problem
seem huge. However, the problem contains structure that significantly reduces
its complexity.

In Section 2.1, the structure of the problem is presented. Following that, in
Section 2.2, the constraints of the problem are described. Section 2.3 presents
the original solution technique, provided by TigrSoft, that was applied to
this problem. Throughout the chapter, an example problem is also defined
to assist in describing the problem. Section 2.4 provides a solution to this

example problem.

2.1 Problem Structure

In this section, we describe the main input of the problem. This can be
summarized as a set of vehicles that need to produced, the grouping of these
vehicles into lots and batches, and a set of capacity values that restricts how
many vehicles can be produced on each day. In section 2.2 the remaining input
of the problem, the constraints, are defined.

We begin now by describing how vehicles are grouped together into equal
sized units called batches. From there, the problem is redefined as the se-

quencing of batches, by assigning batches to slots.

7

2.1.1 Batching

Probably the most important structure of the problem is that individual vehi-
cles are grouped together into equal sized units called batches. All the problem
instances examined in this thesis have a batch size of sixty (i.e., sixty vehicles
are assigned to each batch). Hence, a typical problem with 36,000 vehicles is
reduced to 600 batches.

Although the batching process is not part of the problem addressed in this
thesis, it defines the main input of the problem. Since the process is somewhat
complex, we will give a brief overview here and will explain important details
of the process throughout the remainder of this chapter.

The batching process converts a set of vehicle orders into a set of batches.
Each order represents a quantity of identical vehicles that needs to be pro-
duced. These quantities vary and can be smaller or larger than the batch size.
Before batches are created, the orders are split into several smaller quantities
of vehicles called lots. There are two important rules that determine the num-
ber of vehicles in a lot (lot size): it must be less than or equal to the batch
size and the lot sizes must be chosen such that all the batches will have sixty
vehicles. It is also preferable that the lots be as large as possible. Since many
of the orders in a typical problem are larger than the batch size, many of the
lot sizes are equal to the batch size. Lots with fewer vehicles than the batch
size are grouped together into batches by putting together similar lots with
quantities that add up to the batch size. Each batch is assumed to take one
hour of time to produce on an assembly line. A typical problem instance has
lots with between one and sixty vehicles, and batches with between one and
ten lots, with the majority of batches having only one lot.

It is important to note that after batching, the lots are not sequenced in a
batch and thus sequencing actually occurs at the lot level. However, the batch
structure imposes a great constraint over how the lots can be sequenced (i.e.
lots that belong to a particular batch must be sequenced together). Because
of this structure, we can define two different problem representations: the lot

representation and the baich representation. We define the lot representation

as the sequencing of lots and the batch representation as the sequencing of
batches and the sequencing of lots within each batch. Since each lot is assigned
to a batch, the lot representation requires that the lots within a batch be
sequenced consecutively. On the other hand, the batch representation splits
the problem into two separate sub-problems which we refer to as the batch
sequencing problem and the internal lot sequencing problem. For the remainder
of this chapter we focus only on the batch representation. In Chapter 3, we
present both representations, and how they can be modeled as a CSP.

Table 2.1 represents an example set of lots and the batches they are assigned
to. This example problem contains both batches with only one lot (Batch
B01) and batches with several lots (Batch B02). Compared to the real-world
problem instances examined in this thesis, the example problem is significantly
simpler. A typical real-world problem instance contains approximately 600
batches, more than twenty attributes, and each batch contains up to ten lots.

Although the number of lots and batches in this example is relatively small,
it is sufficient to describe the structure and constraints that are defined for real-
world problem instances. Throughout the remainder of this chapter, we use

these lots to describe the different components of the problem.

2.1.2 Internal Lot Sequencing

Within each batch is a set of unordered lots that need to be sequenced. There
is only one preferential constraint that always affects the sequencing of lots
within a batch: the lot containing the most vehicles is sequenced last. As
we will see later, the order of the lots within a batch is also influenced by a
few problem instance specific constraints. Satisfying these constraints takes
precedence over placing the largest lot last. Since the majority of constraints
are not influenced by the order of lots in a batch, the remainder of this chapter
will focus on the batch sequencing problem and the internal lot sequencing

problem will be referred to when needed.

Lot | Line | Line Exterior { Sun
Lot | Batch | Size | On | Off | Model | Colour | Roof
LO1 | BO1 60 1 2 M1 B Y
L02 | BO02 20 1 2 M1 R Y
L03 | B02 40 1 1 M1 R N
L04 | BO03 10 1 2 M2 G Y
L0O5 | BO03 20 2 2 M2 R N
LO6 | R03 30 1 2 M2 B Y
L0O7 | B04 10 1 2 M3 R N
L08 | B04 10 1 2 M3 G Y
L09 | B0O4 10 1 2 M3 R Y
L10| B0O4 30 1 2 M3 G N
L11 | BO05 60 1 2 M1 G N
L12 | B06 60 1 2 M1 B Y
L13 | BO7 60 2 2 M1 B Y
L14 | BO0S 60 1 1 M1 B N
L15| B09 60 2 2 M1 G N
L16 | BI10 60 1 2 M2 R Y
L17 | BIl11 60 1 1 M2 R Y
L18 | B12 60 1 2 M2 G N
L19 | B13 60 1 2 M3 R N
L20 | Bi14 60 1 2 M3 G Y

Table 2.1: Example lots and their batch assignments

10

2.1.3 Batch Sequencing

As mentioned earlier, batches all have the same production time of one hour.
Thus batch sequencing can be redefined using slots, where a slot is defined to
be an interval of time over a day with a fixed duration. In other words, a slot
has a date, a start time and an end time, where the difference between the
start and end times is equal to the duration. If we define a set of disjoint slots
each with a duration of one hour, where the number of slots equals the number
of batches, then a sequence of batches can be described as an assignment of
batches to slots.

The benefit of having batches with a homogeneous production time is that
batches can be assigned to slots that are fixed in time. If the production time
differed between batches, a slot would not have an interval of time associated

with it and its position in time would vary for different sequences of batches.

2.1.4 Capacity

As stated earlier, the problem consists of sequencing vehicles on two assembly
lines over a month. As part of the input, a capacity value is assigned to each
combination of day and assembly line. Each capacity value represents the
number of batches that can be produced for a particular day and assembly
line. In other words, the capacity for a day represents the number of slots
assigned to that day. If no vehicle production is desired on a particular day,
then the capacity for that day is zero. The capacities are assigned such that
the sum of all the capacities for each day and assembly line equals the total
number of batches that need to be produced for the month. Hence, there is
no excess capacity.

A typical problem instance consists of two assembly lines each with 20
days of non-zero capacities. Each of these capacities is approximately fifteen
batches, which gives a total capacity of 600 batches.

The example problem presented in Table 2.1 has fourteen batches. These
batches will be sequenced on one assembly line over two days, where each day

is assigned a capacity of seven batches.

11

2.1.5 Slot Structure

Using the definition of slots, we can define the problem structure for the batch
sequencing problem as follows. A solution to the batch sequencing problem

consists of a mapping from batches to slots, where the following is true:

e slots are disjoint from one another and hence are totally ordered,
e cach slot belongs to a day and assembly line,

e the number of slots belonging to a particular day and assembly line is

equal to the capacity for that day and assembly line, and

e every slot must be assigned one and only one unique batch.

By assigning batches to slots, which are already ordered, we get an ordering
of the batches. In essence, the problem consists of finding a bijection from

batches to slots and hence a sequence.

2.2 Constraints

Clearly, finding a solution to the problem we have defined so far is trivial.
However, each problem contains a set of constraints that restricts which se-
quences are acceptable. Before describing these constraints, we introduce the

concept of an attribute followed by a description of different ways to classify

constraints.

2.2.1 Attributes

Constraints rely on information about the problem in order to evaluate a
solution. They need to know, for example, what is similar about two batches
and what is different, how two slots are oriented to one another in the sequence,
and whether they are on the same day and assembly line.

We can represent this information by defining attributes for the three com-
ponents of the problem structure: lots, batches, and slots. An attribute con-

sists of a finite set of values, where each of a component’s elements (a lot, batch

12

&

or slot respectively) is assigned one of the values. For example, engine type
is an attribute of the lots, four cylinder is an attribute value, and every lot is
assigned an engine type attribute value. It is also assumed that for each of
the components, elements can only be assigned one value from each attribute.
For example, the engine type of a lot cannot be both four cylinder and six
cylinder. We now describe typical attributes for the three components of the
problem structure.

Slot attributes remain the same for all problems. These attributes are:
start time (hour), day, and assembly line.

Lots and batches have attributes that remain the same for all problem
instances, as well as attributes that are user definable and thus specific to
each problem instance. Attributes that are common to all problems are: as-
sembly lines that a lot/batch can be produced on, the date a lot/batch must
be produced after (line-on date), the date a lot/batch must be produced by
(line-off date), the number of vehicles a lot/batch contains (size), and in the
case of batches the set of lots it contains. All other attributes are specific to
each problem and are either selected from a set of basic attributes such as
vehicle model, exterior colour, type of engine, and type of transmission; or
are constructed from these basic attributes using set operations such as union,
intersection, and Cartesian-product. For example, two attributes can be com-
bined by taking the Cartesian-product of their attribute values to form a new
attribute.

Table 2.1 lists six lot attributes, three unique to this problem: Model,
Exterior Colour, and Sun-roof. The Model attribute has three values: M1,
M2, and M3. The Exterior Colour attribute has three values: (B)lue, (R)ed,
and (G)reen. The Sun-roof attribute has two values that represent if a lot
has vehicles that require a sun-roof: (Y)es and (N)o. These attributes are all
considered basic attributes.

Since a batch can only be assigned one attribute value for each attribute,
and a batch can contain several lots each with different attribute values, batch
attribute values are derived from the attribute values of its lots. Each attribute

has a different method for deriving batch attribute values.

13

Line | Line Exterior | Sun
Batch | On | Off | Model | Colour | Roof
B01 1 2 M1 B Y
B02 1 1 M1 R N
B03 2 2 M2 B Y
B04 1 2 M3 G N
B05 1 2 M1 G N
B06 1 2 M1 B Y
BO7 2 2 M1 B Y
B08 1 1 M1 B N
B09 2 2 M1 G N
B10 1 2 M2 R Y
B11 1 1 M2 R Y
B12 1 2 M2 G Y
B13 1 2 M3 R N
Bil4 1 2 M3 G Y

Table 2.2: Example batches

Table 2.2 shows the five batch attributes of the example problem. The
batch attributes Model, Exterior Colour, and Sun-roof are all derived by se-
lecting the attribute value that occurs for the most vehicles in the batch. For
instance, in Table 2.1 batch B03 has 10 Green vehicles, 20 Red vehicles, and
30 Blue vehicles. Thus, batch B03 has the batch attribute value Blue.

2.2.2 Constraint Classification

Constraints can be classified as either a batch constraint, or a lot constraint.
Lot constraints rely on lot attributes, and influence the sequencing of lots and
hence the sequencing of batches. Similarly, batch constraints rely on batch
attributes and influence the sequencing of batches with no concern for the
sequencing of lots within a batch. Furthermore, each batch constraint has a
method for deriving the batch attribute values from lot attribute values.
Constraints can also be classified as either soft or hard. A hard constraint
cannot be violated in a solution, while a soft constraint can be violated but
imposes a penalty value for each violation. As part of the input to the problem,
each soft constraint is assigned a penalty value; the higher the penalty value,

the more undesirable the violation. A problem is evaluated by adding up the

14

Lot/Batch | Hard/Soft
Constraint Constraint | Constraint
Assembly Line constraint Batch Hard
Line-on and Line-off constraint Batch Hard
Even Distribution constraint Batch Hard
Distribution Exception constraint Batch Hard
Batting Order constraint Batch Hard
Change-over constraint Lot Soft
Run-length constraint Lot Soft

Table 2.3: Problem constraints and their classification

penalty values incurred by soft constraint violations. The lower the total value,
the better the solution.

The constraints, along with their classifications are listed in Table 2.3. As
the table shows, all batch constraints are hard constraints and all lot con-

straints are soft constraints. We now describe these constraints in detail.

2.2.3 Assembly Line

The problem instances that are examined in this thesis contain two assembly
lines. Each assembly line has unique equipment needed to build certain ve-
hicles. Thus, some vehicles can only be assembled on one of the lines, while
others can be assembled on either line. If a batch contains a lot that can only
be assembled on one of the assembly lines, then the batch must be assembled
on that assembly line. The batching process rules out any possibility of a

batch containing lots that have conflicting line assignments.

2.2.4 Line-On and Line-Off

Bach vehicle that is ordered must be produced sometime during the month.
Some orders have more stringent scheduling requirements and must be pro-
duced during a specific range of days. For example, a particular vehicle’s parts
may only be available after a certain day of the month or an order might need
to be shipped before the end of the month. For this reason, each lot is as-
signed a line-on and line-off day. A lot can only be produced on or after its

line-on day, and on or before its line-off day. A batch’s line-on day is selected

15

by picking the maximum line-on day of its lots. For example, in Table 2.1,
batch B03 has three lots (LO4, L05, and L06) and lot LO5 has a line-on day
of two. Thus, in Table 2.2, batch B03 has a line-on day of two. Similarly, the
line-off attribute value is selected by picking the minimum line-off day of its
lots (see batch B02). The batching process rules out any possibility of a batch

containing lots with conflicting line-on and line-off days.

2.2.5 Even Distribution

It is considered a desirable trait of a sequence that on each day, an assembly line
produces many different types of vehicles. Reasons for this include maintaining
workers skills for making all types of vehicles, reducing boredom of workers,
and producing certain amounts of each type of vehicle prior to any unexpected
assembly line shutdown. To achieve this goal, an even distribution constraint
is defined to spread similar batches evenly over a month.

The even distribution constraint relies on a batch attribute (usually con-
structed from the Cartesian-product of several basic attributes such as model,
and exterior colour) to determine if batches are similar or not. Two batches
are considered similar, if they are assigned the same batch attribute value.
The even distribution constraint spreads the batches by restricting the num-
ber of batches, with a particular attribute value, that can be produced on
each day. Specifically, for each attribute value a numerical distribution value
is designated for each day of the month. These values represent the number of
batches with a particular attribute value that must be produced on each day
and are provided as part of the input of the problem.!

In our example problem, the even distribution attribute is the Cartesian-
product of the model and the sun-roof batch attributes. The distribution val-
ues are listed in Table 2.4. In Table 2.2, there are three batches with attribute
values Model “M1” and Sun-roof “Y” attribute values. The distribution val-

ues defined in Table 2.4 say that two of these batches must be sequenced on

1The even distribution constraint is actually defined in the TigrSoft algorithm as a process
of assigning batches to days. To describe this constraint declaratively we determine these
distribution values based on how TigrSoft’s algorithm assigns batches to days. For a brief
description of TigrSoft’s algorithm, see Section 2.3.

16

Attribute | Distribution
Value Value
M1-Y
M1-N
M2-Y
M2-N
M3-Y
M3-N
M1-Y
M1-N
M2-Y
M2-N
M3-Y
M3-N

wwmwww»—u—w—ﬂwwr—ag
~

IO N] =] O] Ol NN

Table 2.4: Example even-distribution values
the first day and one batch must be sequenced on the second day.

2.2.6 Distribution Exception

In some cases, an even distribution is inappropriate. For instance, when a new
model year is introduced, production teams need time to learn new procedures.
In this case, the distribution of new models needs to be restricted so fewer new
models are produced early in the month. To do this, distribution exception
constraints are defined to restrict the production of certain vehicles during the
month.

Essentially a distribution exception constraint is a more general version of
the even distribution constraint. The distribution exception constraint allows
constraints to be specified that restrict the production of certain batches dur-
ing a particular period in the month. Specifically, a distribution exception
constraint specifies a minimum and maximum number of batches with a par-
ticular attribute value that must be produced on each day during a specified
period of days in the month. Provided the even distribution values are known,
it is possible to emulate the even distribution constraint by using several dis-
tribution exception constraints.

For the example problem, we define a distribution exception constraint on

17

the Exterior Colour attribute value “G” for the first of the two days with a
minimum value of one batch and a maximum value of two batches. Thus,
batches B04, B05, and B12 cannot all be sequenced on the first day since they

all have the attribute value “G”.

2.2.7 Batting Order

Each day, it is desirable that a similar sequencing pattern be followed. One
reason for this is to sequence simple vehicles at the beginning of the day and
gradually progress to more difficult vehicles. This allows the production teams
to warm up before building more complicated vehicles.

The batting order constraint ensures a similar sequencing pattern is fol-
lowed each day by defining a total ordering of an attribute’s values and ap-
plying this ordering when sequencing the vehicles on each day. Specifically, on
each day a batch must be produced before another batch if its attribute value
is ordered before the attribute value of the other batch. For batches with more
than one lot, the attribute value assigned to the most number of vehicles is
chosen to represent the batch.

For the example problem, we define the batting order constraint using the
attribute Model, where the attribute values are ordered as follows: M1 < M2
< M3. This ordering implies that for each day, M1 batches should be produced
first, followed by M2 batches, and then M3 batches.

It is also important to note that since the even distribution constraint for
the example problem is partially defined on the Model attribute, the batting
order constraint can be simplified further. From Table 2.4 we know that
four M1 batches must be sequenced on the first day. Since the batting order
constraint states that all M1 batches must be sequenced first in a day, the
first four slots on the first day must be assigned an M1 batch. This is true
for all days and all batting order attribute values. All the real-world problem
instances examined in this thesis also have this characteristic. Later we see

how this influences the modeling of this constraint within a CSP.

18

2.2.8 Change-Over

The definition of the change-over constraint is complicated. We will first
present an intuitive, simplified version and in the next section discuss the
complicating issues.

In a sequence, transitions from one lot attribute value to another lot at-
tribute value may be undesirable. For instance, painting a white vehicle imme-
diately after a red one is undesirable because the paint machine must be thor-
oughly cleaned before the white vehicle is painted (otherwise the white vehicle
will turn out pink). To avoid such transitions, the change-over constraints are
defined to incur a penalty value every time an undesirable transition occurs.

A change-over constraint is a soft constraint and thus is assigned a penalty
value. It relies on two attributes to evaluate a transition between two se-
quenced lots: one attribute for the former lot (former attribute) and another
attribute for the latter lot (latter attribute). Each change-over constraint has
an attribute value assigned for each of the two attributes: former attribute
value and latter attribute value. Using two attributes, instead of just one,
allows change-over constraints to be defined between different attributes. For
instance, a constraint can be defined that says do not sequence red vehicles
immediately after two-door vehicles.

For the example problem, we define a change-over constraint using the
Exterior Colour attribute with a penalty value of 100. The former attribute
value will be “R” and the latter attribute value will be “NOT R”, where “NOT
R” means all Exterior Colour attribute values except “R”. Thus, sequencing
lot L17 followed by L18 would incur a penalty value of 100, since L17 has value
“R” and L18 has value “NOT R” (“G”).

2.2.9 Change-Over Special Case

We have just defined the change-over constraint as a constraint between two
consecutive lots in a sequence. However, the constraint also includes the fol-
lowing additional rule: if a lot belongs to two violated instances of the same

constraint then only one constraint violation is counted. For example, define

19

a change-over constraint with penalty value 100 and with former attribute
value “M1” from the Model attribute and latter attribute value “R” from the
Exterior Colour attribute. If we sequence L01, L02, and L03 in this order, we
would expect a total penalty value of 200 since LO1 has value “M1”, L0O2 has
values “R” and “M1” and L03 has value “R”. However, L0O2 belongs to both
constraint instances, so only one violation is counted. Thus the total penalty
value for this sequence is only 100.

What if three or more lots are sequenced together that all contain the
values “M1” and “R”? In general, if a change-over constraint with penalty
value p fails n consecutive times then the total penalty value is [n/2] x p. For
example, 11 or 12 consecutive violations of a constraint with penalty value 100
would have a total penalty value of 600, while 10 consecutive violations would
only have 500. Fortunately, this situation does not occur if both the former
and latter attribute values come from the same attribute.

For the problem instances examined in this thesis, there are typically
around forty different change-over constraints defined and the penalty val-
ues for these constraints range between one and a hundred. Most of these
have former and latter attribute values that come from the same attribute.
Typically a few change-over constraints (usually three) are defined using two
different attributes. However violations of these constraints normally are ei-
ther very rare or only occur within a few slots for each day (due to similarity
with the batting order attribute). Because of this, it is highly unlikely that a

change-over constraint is violated consecutively more than three or four times.

2.2.10 Run-Length

It is also desirable that certain attribute values are not repeated too much.
For example, it may be undesirable to consecutively paint too many vehicles
the colour red. Avoiding monotony of an attribute value can improve the
effectiveness of production and quality inspection teams, and avoid part supply
problems. A run-length constraint is a soft constraint that incurs a penalty
value whenever the number of consecutive vehicles with a particular attribute

value exceeds a specified limit (run-length value). One penalty value is counted

20

for each lot that exceeds the run-length value.?

For the example problem, we define a run-length constraint on the Exterior
Colour attribute value “R” with a run-length value of 120 vehicles and a
penalty value of 200. Thus sequencing lots L16, L17, and L19 consecutively
would incur a penalty value of 200 since they all have the attribute value “R”
and in total they contain 180 vehicles.

For the problem instances examined in this thesis, there are usually around
five different run-length constraints defined and the penalty values for these
constraints range between ten and three hundred. Typically, a run-length
constraint is defined on the same or similar attribute value as one of the change-
over constraints. When a run-length constraint and a change-over constraint
are defined on similar attribute values, the constraints are in conflict with each
other and the constraint with the smaller penalty value is usually violated.
In general, when similar attribute values are used, the run-length constraint
is usually defined with a higher penalty value than its related change-over

constraint, and hence is less likely to be violated.

2.3 Original Solution Technique

The original solution technique used on this problem is a greedy search algo-
rithm that was created by TigrSoft. The actual process is complex and can be
summarized by three stages: assign batches to an assembly line, assign batches

in each assembly line to a day, sequence batches and their lots for each day.

2.3.1 Assembly Line Assignment

The first stage is to assign the batches to one of the two assembly lines. To
begin with, many batches can only be produced on one assembly line as defined
by the assembly line constraint. These batches are thus assigned to their
appropriate assembly line. The remaining batches that can be produced on

either assembly line are each assigned to the assembly line with batches that

2For a sequence of lots that violates a run-length constraint, the lots at the end of the
sequence that exceed the run-length value are used to calculate the penalty values.

21

have attributes similar to their own. Thus an assembly line will tend to have

similar batches.

2.3.2 Day Assignment

After the batches have been assigned to an assembly line, the batches within
each assembly line are assigned to a day. This process of assigning batches to
days, is essentially what defines the even distribution constraint. We refer to
this process in the remainder of this section as the even distribution process.

As described in Section 2.2.5 the purpose of the even distribution constraint
is to spread similar batches among the days, where two batches are similar
if they have the same even distribution attribute value. In this section we
describe the process of distributing batches to days. From this distribution of
batches, the distribution values for the even distribution constraint, referred
to in Section 2.2.5, are calculated.

The even distribution process begins by determining an ideal distribution
of the batches that could be satisfied if no other constraints are defined on the
problem. The ideal distribution specifies for each day and even distribution
attribute value, the number of batches with the attribute value that can be
assigned to the day. These values are calculated based on the number of
batches with each distribution attribute value and the capacity of the days.

The even distribution process then attempts to assign each batch to a day
based on the ideal distribution. Because of the line-on and line-off constraint
and the distribution exception constraints, the ideal distribution is unlikely to
be satisfiable. If a batch cannot be assigned to one of the days specified by
the ideal distribution, then it is placed on a different day.

In order to increase the chance of assigning all the batches successfully and
achieving a distribution as close to the ideal distribution as possible, several
heuristics are used. Although these heuristics are complicated by a significant
amount of detail, they can be summarized as an attempt to place priority on
the assignment of highly constrained batches to days with the most available

capacity and the least contention between unassigned batches.

22

2.3.3 Batch and Lot Sequencing

Once the batches are assigned to a day, the batches within each day and the
lots within these batches are sequenced. This sequencing is influenced by
the batting order constraint, the change-over constraints, and the run-length
constraints. The sequencing is accomplished in a greedy search manner by
sequencing the batch that satisfies the batting order constraint and incurs the

least amount of penalty violations.

2.3.4 Performance

The original solution technique produces acceptable schedules, and is fast,
taking only a few seconds to solve a problem instance. However, since a non-
optimal greedy search algorithm is employed, there is likely room to improve

the results using other search techniques such as backtracking or local search.

2.4 Example Problem Solution

A solution to the problem consists of an assignment of batches to slots such
that all the hard constraints are satisfied. The quality of a solution is mea-
sured by the total penalty values that are incurred by violations of the soft
constraints. The lower the total penalty values, the higher the quality of the
solution.

In this section we present a solution to the example problem. Looking at
just the line-on and line-off constraint, the even distribution constraint, and
the batting order constraint; Table 2.5 gives possible batch assignments that
can be made. Table 2.6 gives an assignment of batches to slots that satisfies
all the hard constraints, and hence it is a solution. This solution satisfies the
distribution exception constraint since two batches with the attribute value
“G” are assigned to the first day (B12, B04). The change-over constraint is
violated three times (L17 — L18, L09 — L10, and L05 — L04), while the
run-length constraint is not violated at all. Since the penalty value for each
change-over constraint is 100, the total penalty value for this problem is 300.

Furthermore, this solution is optimal for the given internal lot sequences.

23

Possible

Day | Slots | Batches

1-4 B01, B02, B06, B08
5-6 B10, B11, B12

7 B04, B13

1-3 BO05, B07, B09

4-5 B03, B10, B12

6-7 B04, B13, B14

DI DN DN bt | b

Table 2.5: Possible batch assignments for example problem

Lot | Exterior
Day | Slot | Batch | Lot | Size | Colour
1 1 B06 L12 | 60 B
1 2 B08 L14 | 60 B
1 3 B01 LO1 | 60 B
1 4 B02 L02 | 20 R
1 4 B02 L03 | 40 R
1 3 Bl1 L17 | 60 R
1 6 B12 L18 | 60 G
1 7 B04 L08 | 10 G
1 7 B04 LO07 | 10 R
1 7 B04 L09 | 10 R
1 7 B0o4 L10 | 30 G
2 1 B05 L11 | 60 G
2 2 B09 L15 | 60 G
2 3 BO7 L13 | 60 B
2 4 B10 L16 | 60 R
2 5 B03 LO05 | 20 R
2 5 B03 L04 | 10 G
2 5 B03 L06 | 30 B
2 6 B14 L20 | 60 G
2 7 B13 L19 | 60 R

Table 2.6: Possible solution to example problem

24

Chapter 3
CSP Models

In this chapter we present some possible ways to model the problem as a
constraint satisfaction problem (CSP) as well as a constraint satisfaction op-
timization problem (CSOP). We begin in Section 3.1 by defining the concepts
of a CSP and a CSOP. We then present how the vehicle sequencing problem,
presented in Chapter 2, can be modeled as a CSP and a CSOP. In Section
2.1.1, we defined two possible representations of the problem: the batch rep-
resentation and the lot representation. In this chapter, we model the batch
representation as the sequencing of batches and require that the sequencing of
lots within each batch be dealt with as part of the modeling of the problem
(for example fixing the lot sequence for each batch). In Section 3.2, we present
two possible CSP models for the batch representation: the slot model and the
batch model. In Section 3.3, we present why modeling the lot representation
as a CSP seems unsuitable. In Section 3.4, we describe how the CSP can be

converted into a CSOP.

3.1 CSP Definition

A CSP is composed of a set of variables, a set of possible values for each
variable, and a set of constraints that restrict the possible instantiations of
the variables. Many problems can be modeled as a CSP; for example vision,
temporal reasoning, and scheduling [24]. CSPs provide a framework for sep-
arating the modeling and solving of a problem. Since many techniques have

been devised for solving CSPs in general, once a problem has been modeled

25

as a CSP a variety of general solution techniques can be applied to it. Later
in this thesis, we examine some of the general solution techniques that can be
applied to CSPs. In this section we give a formal definition of a CSP and a
few related concepts. For a thorough description of CSPs, see [21].

The CSP can be defined formally as follows:

Definition 1 An instance of the constraint satisfaction problem consists of a
set of n variables, {z1,...,z,}; their respective domains, {D,, ..., D,}; and
a collection of m constraints, {C,...,Cn}. A domain D; consists of a set
of values, {a1,...,anr}. A variable T is instantiated if it is assigned a value a
Jrom its domain (x < a). A constraint C; is defined over a set of variables
Ziy,y .-, Ti, by aset R where R C D;, x...xD;, . The constraint C; is consistent

if given an instantiation z; < ay,...,T; < ai, the tuple (ai,...,ar) € R.

A partial solution consists of an instantiation of some of the variables such
that any constraint that is defined over a subset of the instantiated variables
Is consistent. A solution is a partial solution where all the variables are in-
stantiated.

The scheme of a constraint is the set of variables that the constraint is
defined over. The arity of a constraint is the number of variables in its scheme.
Constraints can be classified by their arity. Three different classifications are
unary, binary, and n-ary. Unary constraints are constraints with an arity of
one. Since a unary constraint contains only one variable, all domain values that
are not consistent with the constraint can be removed before the search begins.
Binary constraints are constraints with an arity of two. N-ary constraint are
constraints with arity n, where n is assumed to be greater than two.

Since the problem studied in this thesis is an optimization problem (since
it contains soft constraints), a way of modeling optimization problems in terms
of constraints is needed. The partial constraint satisfaction problem (PCSP) is
a general framework for representing an optimization problem with constraints
[9]. A PCSP can be defined as a CSP problem P, a problem space PS where
PS contains the problem P along with “relaxations” of P, and a metric func-

tion on PS where the metric function defines the quality of each problem in

26

PS relative to P. A solution to a PCSP represents a problem P’ € PS along
with a solution to P'. An optimal solution to a PCSP is a solution where P’
has the minimum/maximum metric function value for all the problems in PS
that are solvable.

The PCSP offers a very general framework for modeling optimization prob-
lems, since the set PS can defined in many different ways (e.g. a “relaxation”
can include variables being removed from the problem). A more specific form of
a PCSP is the constraint satisfaction optimization problem (CSOP). In terms
of the definition for PCSPs, a CSOP has a problem space where the variables
are not removed from the problem. A CSOP is defined in [21] as a CSP along
with a function that maps every solution of a CSP to a numerical value. The
function is problem-specific and represents the quality of the solution. The
optimal solution of a CSOP is the solution with the minimal (maximal) func-
tion value. Essentially within a CSOP the CSP contains only hard constraint
while the evaluation function represents all the soft constraints.

For the next two sections, we model the vehicle sequencing problem as a
CSP by presenting the soft constraints as though they are hard. In Section

3.4 we describe how the soft constraints can be modeled within a CSOP.

3.2 Batch Representation

It is well known that if a problem can be modeled as a CSP, then there are
several possible models (see, for example, [3]). For the batch representation
we model the problem as the sequencing of batches, which we call the batch
sequencing problem. Since the batch sequencing problem consists of defining
a bijection from batches to slots, there are two obvious CSP models of this
problem. We either model each slot as a variable and each domain as a set
of batches (called the slot model) or model each batch as a variable and each
domain as a set of slots (called the batch model). Before we examine these
models we first describe how the internal lot sequencing problem is dealt with

and then define attribute functions to simplify our discussion.

27

3.2.1 Internal Lot Sequencing

Since the focus of the batch representation is the sequencing of batches, the
sequencing of lots within each batch needs to be dealt with in some way. There
are several ways to do this.

One way is to pre-order the internal lots before solving the batch sequencing
problem. Selecting a sequence to the lots could be done by using the solution
provided by the original greedy search algorithm, or solving each internal lot
sequencing problem using the lot constraints. Having a fixed ordering of the
lots is simple but potentially reduces the quality of a final solution. What may
seem like a good ordering of the lots within a batch may turn out to cause
unnecessary conflicts when the batches are sequenced.

Another idea is to make explicit all the possible internal lot sequences for
each batch containing more than one lot. For batches with only two lots
this seems reasonable since there can be at most two sequences. However the
problem instances examined have batches with up to ten lots. A batch with ten
lots has potentially more than three million different sequences, significantly
increasing the complexity of the problem.

A hybrid of the last two ideas would be to select a limited number of
possible internal lot sequences. Each possible sequence could be evaluated
and the best sequences selected.

In Sections 3.2.3 and 3.2.4 we briefly discuss how two different models of
the problem are affected by these different methods of dealing with the lot
sequencing problem. Besides this though, we strictly focus in this thesis on a

fixed ordering of lots in each batch.

3.2.2 Attribute Functions

To assist in describing each model, we define attribute functions on the lots,
batches and slots. These attribute functions represent the attributes that
were described in Section 2.2.1 as well as additional functions to assist in our
description of the different CSP models.

Table 3.1 presents the attribute functions for the slots. The value returned

28

| Function | Function Value |
Line(s) the assembly line that slot s belongs to
Day(s) the day that slot s belongs to
Position(s) | the position value of slot s in a sequence

Table 3.1: Slot attribute functions

| Function Function Value
LineOn(b) line-on day of batch &
LineOff(b) line-off day of batch &
Lines(b) a set of assembly lines that batch b can be assigned to
EvenDistAttrib(b) the even distribution attribute value of batch &
DistEzceptAttrib(b) | the distribution exception attribute value of batch b
BatOrdAttrib(b) the batting order attribute value of batch b
FirstLot(b) the first lot sequenced in batch b
LastLot(b) the last lot sequenced in batch &
Lots(b) the ordered set of lots in batch b

Table 3.2: Batch attribute functions

by the Position function (position value) represents an integer, where two slots

cannot have the same

position value if they are assigned to the same assembly

line. A slot is sequenced after another slot if it has a larger position value,

and two slots occur consecutively in a sequence, if their position values differ

by one.

Table 3.2 presents the attribute functions for the batches. Besides these

batch attribute functions, there are lot attribute functions that are defined

for each run-length constraint and change-over constraint. These attribute

functions are presented in Table 3.3.

| Function | Function Value |
RunLenAttrib(l) the run-length attribute value of lot [
ChgOverFormer(l) | the change-over attribute value of the former lot [
ChgOverLatter(l) | the change-over attribute value of the latter lot [
LotSize(l) the number of vehicles in the lot {

Table 3.3: Lot attribute functions

29

3.2.3 Slot Model

In this section we describe the slot model where the variables represent slots
and the domain values represent batches. We begin by defining the variables
and domain values, followed by the constraints. To simplify things, we assume
that there is only one assembly line when defining all the constraints, except

of course for the description of the assembly line constraint.

Variables

For the slot model, the slots are represented by variables and hence the slot
attribute functions are applied to the variables. For this model, we represent

an arbitrary but fixed variable with the letter s.

Domain Values

The domain values for the slot model are the batches and thus the batch
attribute functions are applied to the domain values. We represent an arbitrary
but fixed domain value with the letter b.

In Section 3.2.1, we presented different ways of dealing with the internal lot
sequencing problem. Since the batches are represented by the domain values,
the way we deal with this problem affects the size and structure of the domains.
If the sequence of lots within each batch is fixed, then each batch is represented
in a domain with a single value. If several internal lot sequences are included
for each batch, then each batch is represented in a domain with a value for
each lot sequence included. If all possible internal lot sequences are included,
then a batch with ten lots would be represented with approximately three
million domain values. Clearly, limiting the number of different lot sequences

for each batch seems necessary.

Assembly Line

The assembly line constraint is a unary hard constraint. There is an assembly
line constraint for each variable that represents a slot. Since each slot belongs

to an assembly line, only batches that can be made on that assembly line can

30

be assigned to the slot. An assignment s < b is consistent with an assembly

line constraint if Line(s) € Lines(b).

Line-On and Line-Off

The line-on and line-off constraint is a unary hard constraint, where one in-
stance of the constraint is defined for each variable (slot). Since a batch must
be produced between its line-on and line-off days, batches can only be assigned
to slots that are located between these days. An assignment s < b is consis-
tent with a line-on and line-off constraint if Day(s) > LineOn(b) and Day(s)
< LineOff(b).

Even Distribution

One instance of the even distribution constraint is assigned to each day that
vehicles are produced on. In other words, the scheme for each constraint
instance consists of those variables (slots) that belong to that instance’s day
and hence its arity is equal to the capacity of that day.

Let d be the constraint’s day. Let A be the set of all even distribution
attribute values. Let EvenDist(a, d) equal the number of batches with attribute
value a € A that must be produced on day d. Let & be the arity of a constraint.
Let 51, ..., s represent the variables (slots) on day d. An assignment s; < by,
---, Sk € by is consistent with an even distribution constraint for day d if for

each a € A, |{b;|EvenDistAttrib(b;) = a}| = EvenDist(a,d).

Distribution Exception

Similar to the even distribution constraint, each instance of a distribution
exception constraint is assigned to a production day. In other words, its scheme
is the variables (slots) that belong to that day and its arity is equal to the
capacity of that day.

Let a be the batch attribute value for the distribution exception constraint.
Let d represent a day that the constraint is defined for. Let DistEzceptMaz(d)
(DistEzceptMin(d)) equal the maximum (minimum) number of batches with

attribute value a that can be produced on day d. Let k be the arity of a

31

constraint. Let si,...,s; represent the variables (slots) on day d. An as-
signment sy < by, ..., S + by is consistent with the distribution exception
constraint for day d if DistEzceptMin(d) < |{b;| DistEzceptAttrib(b;) = a}| <
DistEzceptMaz(d).

Batting Order

The batting order constraint is a hard constraint and can be represented as a
binary constraint between all consecutive pairs of variables (slots) that are on
the same day.

Let A be the ordered set of all batting order attribute values, such that
for any a;,a; € A, a; < a; means that a; comes before a; in the batting
order. Let s; and s, represent the variables in a batting order constraint,
where s; precedes s; in the ordering of the variables. An assignment s; < b;
and s; - bo is consistent with a batting order constraint if BatOrdAttrib(b,)
< BatOrdAttrib(bs) in A.

As described earlier, the batting order constraint can be simplified if its
attribute is similar to the even distribution constraint’s attribute. We redefine
the batting order constraint as a unary constraint as follows. Using the even
distribution constraint we define the function BatOrdDist(a,d), which repre-
sents the number of batches with attribute @ € A that can be assigned to
day d. Let si,..., s, represent the variables on a day d, where Position(s;) <
Position(s;) if i < j. Let b be an arbitrary batch and let ay = BatOrdAttrib(b).
Then an assignment s; < b (1 < 4 < k) is consistent if 3", ,, BatOrdDist(a, d)
< Posttion(s;) — Position(s)) +1 < ¥,<,, BatOrdDist(a, d)

Since all the problem instances studied in this thesis have similar attributes
for the even distribution constraint and batting order constraint, we use the

unary definition of the constraint for the remaining chapters.

32

Run-Length

The run-length constraint is a soft constraint that is applied to consecutive
variables (slots) and its arity depends on the constraints definition.! Let
batchsize represent the number of vehicles assigned to a batch. Let r be the
run-length value?. The arity of a run-length constraint equals (r/batchsize)+1.
For example, if a run-length constraint has a limit of 120 vehicles and the batch
size is sixty, then the arity of the constraint is three and an instance of the
constraint is defined for every consecutive set of three variables.

Let k£ be the arity of a constraint. Let a represent the attribute value
of the run-length constraint. Let s,,..., s, represent the variables in a run-
length constraint, where s; precedes s;;; for 1 < ¢ < k— 1. For some arbitrary
assignment s; < by, ..., S < b, let L equal Ui<ick Lots(b;), where the order
of the lots within each batch is maintained and the lots between batches are
ordered with respect to the order of the variables that the batches are assigned
to. Let L* be a partition of L, where each element of L* is a maximal set of
consecutive lots that are all assigned the same attribute value from the run-
length attribute. An assignment s; < by, ..., s¢ < b is consistent with the
run-length constraint if for any L, € L*, if for any | € L, RunLenAttrib(l) = a
then 3 cp, LotSize(l) < r.

Change-Over

As described earlier, the change-over constraint is complicated by the way its
penalty values are counted. We ignore this complication here and deal with
it when describing our solution techniques. Thus we can assume that the
change-over violation between lots have no influence on the violation of lots
around them. Furthermore, we assume that only one domain value represents
each batch. In other words, the internal lot sequences are fixed as part of
the modeling of the problem. Because of these assumptions, we can ignore the

violations between lots within a batch and represent the change-over constraint

'In this definition we ignore how many lots within a batch violate a constraint and only
check if the constraint fails over a set of batches. We take into account this issue when
describing our solution techniques.

2To simplify our definition, we assume that r is divisible by batchsize.

33

as binary constraints between all consecutive pairs of variables (slots).

Let s, and s, represent the variables in a change-over constraint, where
51 precedes s in the ordering of the variables. Let af (a;) represent the
former (latter) lot attribute value of the change-over constraint. An assignment
$1 < by and sy < b, is consistent with a change-over constraint if

ChgOverFormer(LastLot(b,)) # ay or ChgOverLatter(FirstLot(bs)) # a;.

All-Different Constraint

Since the problem involves defining a bijection between slots and batches, a
constraint is needed to insure that the same domain value is not assigned to
two different variables. To do this, an all-different constraint is defined over
all the variables.

Let si,...,s¢ represent all the variables. An assignment s; < by, ...,

Sk <— bg is consistent with the all-different constraint if for all s;, 55, bi # b;.

3.2.4 Batch Model

In this section we describe the batch model where the variables represent
batches and the domain values represent slots. We begin by defining the vari-
ables and domain values, followed by the constraints. Like the slot model, we
assume that there is only one assembly line when defining all the constraints,

except of course for the description of the assembly line constraint.

Variables

For the batch model the batches are represented by variables. Hence the batch
attribute functions are applied to the variables. For this model, we represent
an arbitrary but fixed variable with the letter b.

As with the domain values of the slot model, the variables of the batch
model are influenced by the way the internal lot sequencing problem is dealt
with. If the sequence of lots within each batch is fixed, then each batch is
represented with a single variable. If several internal lot sequences are included
for each batch, then each batch can be represented with several variables, one

for each lot sequence. Similar to the slot model, including all possible internal

34

lot sequences for each batch makes the problem significantly larger. Thus,

limiting the number of different lot sequences for each batch seems necessary.

Domain Values

The domain values for the batch model are the slots and thus the slot attribute
functions are applied to the domain values. We represent an arbitrary but fixed

domain value with the letter s.

Assembly Line

The assembly line constraint is a unary hard constraint. There is an assembly
line constraint for each variable that represents a batch. Since each batch is
assigned a set of assembly lines that it can be produced on, only slots belonging
to this set of assembly lines can be assigned to the batch. An assignment b < s

is consistent with an assembly line constraint if Line(s) € Lines(b).

Line-On and Line-Off

The line-on and line-off constraint is a unary hard constraint, where an instance
of the constraint is defined for each variable (batch). Since a batch must be
produced between its line-on and line-off days, it can only be assigned slots
that are located between these days. An assignment b < s is consistent with a

line-on and line-off constraint if Day(s) > LineOn(b) and Day(s) < LineOff(b).

Even Distribution

For each even distribution attribute value, we define a constraint. The scheme
of a constraint is the variables (batches) assigned the constraint’s attribute
value and its arity is equal to the number of batches with that particular
attribute value.

Let a be the attribute value of the constraint. Let D represent the set of
production days. Let FvenDist(a,d) equal the maximum number of batches
with attribute value a that can be produced on day d. Let k be the arity of a
constraint. Let by,..., b represent the constraint’s variables (i.e. all batches

with attribute value a). An assignment b; < s, ..., bx < s; is consistent

35

with an even distribution constraint for attribute value a if for each d € D,

I{si|Day(s;) = d}| =FvenDist(a,d).

Distribution Exception

A distribution exception constraint is assigned an attribute value and its
scheme consists of the variables (batches) assigned the attribute value. Hence
the arity for a distribution exception constraint is equal to the number of
batches with the distribution exception attribute value.

Let a be the batch attribute value for the distribution exception con-
straint. Let D represent the set of production days. Let DistExceptMaz(d)
(DistEzceptMin(d)) equal the maximum (minimum) number of batches with
attribute value a that can be produced on day d. Let k be the arity of a
constraint. Let by,..., b represent the constraint’s variables (batches). An
assignment b, <— Sy, ..., b < s¢ is consistent with the distribution excep-
tion constraint for attribute value a if for each d € D, DistExceptMin(d)
< |{silDay(s:) = d}| < DistEzrceptMaz(d).

Batting Order

The batting order constraint is a hard constraint and can be represented as
a binary constraints between every pair of variables (batches) with different
batting order attribute values.

Let A be the ordered set of all batting order attribute values, such that
for any a;,a; € A, a; < a; means that a; comes before a; in the batting
order. Let b; and b, represent the variables in a batting order constraint,
where BatOrdAttrib(b,) < BatOrdAttrib(b) in A. An assignment by + s; and
by < s2 is consistent with a batting order constraint if Day(s,) = Day(sy) —
Position(s;) < Position(ss).

As with the slot model, when the batting order attribute is similar to the
even distribution attribute, the batting order constraint can be simplified as a
unary constraint. Let BatOrdDist(a,d) represent the number of batches with
attribute value a € A that can be assigned to day d. Let b be an arbitrary
batch and let a, = BatOrdAtirib(b). Let s,,..., st represent the slots on a

36

day d, where Position(s;) < Position(s;) if ¢ < j. Then an assignment b
+ si (1 <2 < k) is consistent if 3,, BatOrdDist(a,d) < Position(s;) —
Position(s1) +1 < 3,<,, BatOrdDist(a, d).

Run-Length

Similar to the slot model’s run-length constraint definition, we ignore how
many lots within a batch violate a constraint and only check if the constraint
fails over a set of batches. For the batch model, a run-length constraint is
a soft constraint that is applied to every possible minimal sequenced set of
variables (batches) where the number of consecutive vehicles with the run-
length’s attribute value exceeds the run-length value of the constraint.® Let r
represent the run-length value of a constraint and let batchsize represent the
number of vehicles in a batch. If we assume that r is divisible by batchsize
then the arity of an instance of a constraint is (r/batchsize) + 1.

Let k£ be the arity of a constraint. Let by, ..., by represent the order vari-
ables in a run-length constraint, where b; precedes b;,;, 1 <i < k—1. An
assignment by <~ 51, ..., by < s is consistent with the run-length constraint

if for some ¢, 1 <2 < k — 1, Position(s;) # Position(s;11) — 1.

Change-Over

Similar to the slot model change-over constraint definition, we ignore how the
penalty values of the constraint are counted and assume that the sequence of
lots within a batch is fixed. Hence, a change-over constraint can be represented
as a binary soft constraint.

Let ay and a; represent the change-over constraint’s former and latter lot

attribute values, respectively. Let b; and b, represent any two variables in the

3The method for deciding if a sequence of variables (batches) should have a constraint
defined over them is essentially the method described for checking if the run-length constraint
is consistent in the slot model. Furthermore, since the constraint is defined for all possible
minimal sequences of variables that would violate the run-length constraint if sequenced
consecutively, there may be quite a few instances of a constraint that are defined. In
practice, many of these constraints can be combined together. However, we do not describe
this simplification here because it is relatively complex and the main purpose of this section
is to give a declarative statement of the constraint without any serious consideration of how
efficiently it could be implemented.

37

problem. We define a binary constraint on these variables if
ChgOverFormer(LastLot(b,)) = a; and ChgOverLatter(FirstLot(b;)) = a;- An
assignment b; < s; and b, < s, is consistent with a change-over constraint if

Position(s,) # Position(sy) — 1.

All-Different Constraint

Since the problem involves defining a bijection between slots and batches, a
constraint is needed to insure that the same domain value is not assigned to
the two different variables. To do this, an all-different constraint is defined
over all the variables.

Let b1,...,bt represent all the variables. An assignment b, < s, ...,

by «— si is consistent with the all-different constraint if for all b;, bj, si # 5j-

3.3 Lot Representation

In the formulation of a problem as a CSP it is crucial to define what the
variables and values represent. The problem with formulating the lot repre-
sentation as a CSP is that within a problem instance, the size of lots can vary
from one to sixty vehicles. Because of this, it is not clear if sequencing of lots
should be modeled with fixed intervals of time or with slots that have no fixed
interval or time reference.

For example, let the variables represent fixed intervals of time and the
domains values represent the lots. In this case, the size of the interval would
have to be a common divisor of all the lot sizes of the problem. Otherwise,
more than one lot could be assigned to an interval and thus using lots for
domain values would be inadequate. Hence, the best interval size would be
the greatest common divisor of all the lot sizes. Sequencing a lot of size [where
the interval size is ¢ would imply that the lot value would be assigned to {/i
consecutive variables. To ensure this would require a constraint of arity equal
to L/z (where L is the size of the largest lot) to be assigned to all consecutive
set of variables that can contain a lot. Now, a typical problem usually contains

at least one lot of size one and so the number of variables compared to the

38

batch representation would be 60 times greater.

In contrast, let the variables represent slots with no fixed interval or time
reference and the domain value represent the lots. For this model, lots can
be assigned to slots in a similar way as the batch representation. However,
these slots have no attribute that say what day the slot belongs to. The
day that a slot belongs to potentially has to be calculated for every possible
sequence of lots. Since many of the constraints rely on information about a
slot’s position within the month, having to always calculate a slot’s position
makes it difficult to define these constraints. For example, the line-on and
line-off constraint could not be represented as a unary constraint since the day
that a slot belongs to is only determined once the preceding (or succeeding)
slots are assigned lots.

Both of the above models contain positive and negative aspects. What
makes the batch representation attractive is that it takes the positive aspects
of both models and leaves behind most of the negative ones. Furthermore,
since the majority of the constraints are at the batch level, the constraint
definitions are simpler in the batch representation. The only cost of this is the

loss of generality of the problem.

3.4 CSOP Model

In the previous sections, we modeled the soft constraints as hard. In this
section we redefine these constraints within a CSOP model.

As mentioned earlier, a CSOP model is a CSP along with an evaluation
function, where the evaluation function represents the soft constraints. The
evaluation function for the vehicle sequencing problem is a function that evalu-
ates a solution to the hard constraints and returns the total penalty value that
was incurred by the soft constraings. This total penalty value is calculated by
adding up the penalty values incurred by each constraint in the problem. For a
change-over constraint the penalty values are added up as described in Section
2.2.9. Similarly the penalty values for a run-length constraint are added up as

described in Section 2.2.10.

39

In the next chapter we describe three solution techniques. Two of these
techniques used the CSOP model of the problem. The other technique used a
CSP model where the soft constraints are grouped together into parameterized
hard constraints. We describe this CSP model as part of our description of

the solution technique.

40

Chapter 4

Solution Techniques

This chapter describes the three solution techniques we devised to solve the
vehicle sequencing problem: two backtracking techniques, and a local search
technique. Although two models (the slot and batch models) were described in
the previous chapter, the solution techniques that were devised for this thesis
are specifically for the slot model described in Section 3.2.3. The slot model
was selected because it seemed more intuitive (at least from the perspective
of a human solving the problem). However, an open question is whether the
batch model could outperform the slot model using similar algorithms. It
seems reasonable that this question relies significantly on the structure of the
particular problem instances that are solved.

We first describe the local search technique in Section 4.1. In Section 4.2
we present the first backtracking technique that uses a restart and relaxation
approach and in Section 4.3 we present the other backtracking technique that
uses a branch and bound approach. A description of how the problem instances

were decomposed into smaller sub-problems is given in Section 4.4.

4.1 Local Search

The first search technique we look at is local search. We begin by giving an

overview of local search followed by a description of the algorithm we used.

41

4.1.1 Background

Local search is a general approach to solving combinatorial optimization prob-
lems (see [2] for an overview). An instance of a combinatorial optimization
problems is defined by a set of possible solutions L for the problem (referred
to as the solution space) and an evaluation function f : L — R. If we assume
that the problem is a minimization problem, then an optimal solution to the
problem is a solution {* € L where f(I*) < f(l) for alll € L. For a CSOP, the
solution space is all possible instantiations that satisfy all the hard constraints
and f is the evaluation function of the CSOP.

Before describing how local search is applied to optimization problems, we
first define the concept of a neighborhood function. A neighborhood function
N is of the form N : L — P(L), where P(L) is the power set of the solution
space. For any [€ L, N'(I) is a set of other solutions in L that are in some
way near [. We refer to AV (l) as the neighborhood of [.

There are many possible ways to define a neighborhood function. For
instance, for a CSOP the neighborhood of a solution ! might be the set of
solutions where one variable of | has been instantiated with a different value.
In general, the way that the neighborhood function is defined influences the
quality of the solutions that a local search algorithm finds and the cost of
searching the solution space.

To describe local search, we will now present a simple local search algorithm
known as hill-climbing or iterative improvement. Hill climbing begins with an
initial solution [and searches the neighborhood N () for a better solution,
where [; € N () is better if f(I;) < f(l). If better solutions exist then the
algorithm selects one of these solutions (usually either the best one found
or the first one found) and searches the selected solution’s neighborhood for
a better solution. This process continues until no better solution exists for
the current neighborhood that is being examined. The last solution found is
considered a local minimum for the given problem and neighborhood function.

The local minimum that is found by the hill-climbing algorithm is by no

means guaranteed to be a global minimum for the problem. Guaranteeing a

42

global minimum for any problem could be achieved by defining a neighbor-
hood function where A () = L for any [€ L. However, this is equivalent
to generating and testing every possible solution. Thus a good neighborhood
function is one that creates reasonable sized neighborhoods but also allows the
local search to find reasonably good local minimum solutions.

Even with selecting a reasonable sized neighborhood, there is still room for
improving the hill-climbing approach. Several improvements to hill-climbing
have been suggested. Two of these are simulated annealing and tabu search.

Simulated annealing improves on hill-climbing by randomizing the selec-
tion of a solution from a neighborhood. Instead of always picking a better
solution, simulated annealing allows a worse solution to be selected with some
small probability. The probability of a worse solution being selected is de-
creased during the algorithm’s execution. How these probabilities are reduced
is defined by a cooling scheduling. Given an appropriate cooling schedule, it is
possible to find an optimal solution. However, such cooling schedules usually
take exponential time to find an optimal solution. Thus faster cooling sched-
ules that find sub-optimal solutions are usually adopted. For a more thorough
explanation of simulated annealing, see [1].

Similar to simulated annealing, tabu search improves on hill-climbing by
allowing worsening solutions to be selected from a neighborhood. At each
point in the search, the best solution in the neighborhood is selected even if it
is worse than the current solution. This means that when tabu search reaches
a local minimum, it will move from the local minimum to a worse solution in
its neighborhood. To avoid the likely possibility of moving back to the local
minimum in the next iteration (and several iterations after that), tabu search
selectively removes certain solutions from a neighborhood. To determine which
solutions should be removed from a neighborhood, a list (known as a tabu
list) is maintained of solutions that have recently been visited in the search.
If a solution in the current neighborhood is found in the tabu list then it is
removed from the neighborhood. By removing recently visited solutions, the
tabu search can escape local minima and potentially find a new local minimum

that is better and possibly optimal. Since the process of maintaining tabu lists

43

and updating neighborhoods can be impractical, a more advanced version of
tabu search involves maintaining a list of recent moves instead of solutions. A
move is defined as an operation on a solution to obtain a new solution and a
set of possible moves is defined for the problem such that the neighborhood
can be defined as all solutions that can be obtained by apply one of the moves
to the current solution. For a more thorough explanation of move lists and

other tabu search enhancements, see [11].

4.1.2 Hill Climbing Approach

The local search algorithm devised for this thesis is a simple hill-climbing al-
gorithm that is applied to a CSOP model of the problem (described in Section
3.4). Algorithm 1 presents an outline of the hill-climbing algorithm that we
used, where A is the neighborhood function and f is the evaluation function.
The algorithm begins with an instantiation that satisfies all hard constraints.
The default initial solution is the original solution provided by the greedy
search algorithm. The neighborhood of a solution consists of any solution
where two variables’ values have been swapped and no hard constraint is vio-
lated. Of the solutions in the neighborhood, the solution that reduces the total
penalty value the most is selected. This process is repeated until no solution
can be found in the current neighborhood that improves on the quality of the

current solution.

4.2 Loosening Approach

In this section we describe backtracking on a CSP model with a loosening
approach. The algorithm begins with several tight parameterized constraints
and loosens them until a solution is found.

In a problem that contains soft constraints, it is common that some soft
constraints are not satisfied. Since standard backtracking requires the satis-
faction of all constraints, it is possible to treat the soft constraints as hard and
remove some of them from the problem. However, the selection of the best

constraints to remove is difficult.

44

Algorithm 1 Hill climbing algorithm
input: initial-solution
cutput: improved-solution

S <« initial-solution
improvement <— TRUE
while improvement do
improvement <— FALSE
N «— N(S)
for all S’ N do
if f(S’) < f(S) then
S« 5
improvement <— TRUE
end if
end for
end while
return S

To help deal with this, several soft constraint instances can be combined
into a single parameterized hard constraint, where the parameter indicates the
tightness of the constraint. The tightness of the soft constraints can then be
adjusted by changing the constraints parameter value. A problem where the
parameterized constraints are very loose will be relatively easy for backtracking
to find a solution. However, the quality of this solution relates to the tightness
of each parameterized constraint. Thus finding a quality solution requires that
the appropriate parameter values are selected such that the problem is solvable
and the quality of the solution is reasonable.

Within backtracking, it is possible to do this in many ways. Two possi-
ble directions are to start with loose parameter values and tighten until the
problem is not solvable (tightening approach) or start with tight parameter
values and loosen the problem until it is solvable (loosening approach). In
both approaches, the key issue is the selection of which constraints to adjust.
Clearly the constraints with high penalty values should be tightened as much
as possible or loosened as little as possible. Besides this though, more informa-
tion is needed on how adjusting a constraint affects the problem. In the case

of the tightening approach it is preferable to tighten a constraint that leaves

45

the problem solvable. However, it is unclear how to evaluate a constraint’s af-
fect on the problem (besides actually solving the problem). For the loosening
approach it is preferable to loosen a constraint that makes the problem solv-
able. In this case it seems reasonable to select constraints that fail frequently
as candidates to loosen. Because of this we chose to implement a loosening

approach.

4.2.1 Backtracking Background

Before describing the loosening approach and how we parameterized the soft
constraints, we give a brief overview of backtracking. Backtracking search is
a technique that extends partial solutions by instantiating variables one at a
time. The search only instantiates a variable with one of its domain values if it
generates a new partial solution. If at some point in the search instantiating a
variable with any of its values does not lead to a new partial solution, the search
backtracks to the previously instantiated variable. When the search backtracks
to a variable, the algorithm instantiates the variable with a different value and
attempts to extend the new partial solution to a complete solution. If none
of the variable’s domain values successfully extends the partial solution then
the search backtracks to the variable that was instantiated before the current
variable. This process continues until either a solution is found or instantiating
all the domain values of the first instantiated variable does not extend to a
complete solution.

We will now describe propagation techniques that can be used to enhance
the efficiency of backtracking. Following that we look at possible ways of

dealing with soft constraints when backtracking.

4.2.2 Soft Constraints

For the loosening approach, each soft constraint’s instances that belong to
the same day and assembly line are grouped together into a parameterized
hard constraint. Since soft constraint violations can occur between lots that
are sequenced on different days, the last slot of the previous day is included

in each of these parameterized constraints. Although this does not perfectly

46

model the constraints between days, it is sufficient to recognize most constraint
violations that can occur between days.

Let p represent the parameter for an instance of a parameterized constraint.
For a change-over constraint the parameter p represents the maximum number
of change-over violations that can occur. If more than p violations occur,
then the parameterized change-over constraint is not satisfied. Clearly this
method has advantages over simply removing selected soft constraints from
the problem. It decreases the number of possible selections that need to be
made and leaves more decision power to the search algorithm (only the number
of constraint failures is chosen, not the removal of specific constraints).

For a run-length constraint the parameter p represents the maximum run-
length that can occur on the day. For example, if a constraint is defined on
the colour “Red” and its parameter value is 120, then at most 120 vehicles

with the colour “Red” can be sequenced consecutively.

4.2.3 Restart Scheme

For the loosening approach, the selection of which constraint to loosen is im-
portant. This section describes the circumstances when backtracking restarts
and how the parameterized constraints are loosened when a restart occurs.

The backtracking algorithm begins with a problem that is initialized with
tight parameter values. For the problem instances in this thesis, each pa-
rameterized change-over constraint is initialized with a value of zero and each
parameterized run-length constraint, is initialized with the run-length value of
the constraint.

The backtracking algorithm attempts to solve a tight problem and counts
how many times the parameterized constraint fails. A constraint failure limit
is set for each parameterized constraint. The failure limit for a constraint is
set relative to its penalty value. Specifically, the constraint’s penalty value is
multiplied by a fixed constant to calculate its failure limit. Thus, the higher
the penalty value of a constraint, the higher its constraint failure limit will be.

The failure limits are used to limit the effort backtracking spends trying to
find a solution. Specifically, the backtracking algorithm stops searching if any

47

of the parameterized constraints fail more than their failure limit, otherwise it
either searches until it finds a solution or does an exhaustive search and finds
no solution.

In the case that a failure limit is exceeded or no solution is found, a pa-
rameterized constraint is loosened and the backtracking algorithm is restarted.
Which parameterized constraint to loosen is chosen by first selecting the pa-
rameterized constraints with the smallest penalty value that failed at least
once, and of these constraints, the constraint that failed the most is selected.
This method of selecting a constraint to loosen is based on the theory of con-
straint hierarchies [6] since constraints with the smallest penalty value are
always selected. Once a parameterized constraint is selected, it is loosened
by adding a value to the parameter. For a change-over constraint, the pa-
rameter is incremented by one, allowing one additional violation within the
constraint. For a run-length constraint, the parameter is incremented by the
batch size, increasing the run-length by sixty vehicles. Once a constraint has
been loosened, the backtracking algorithm is restarted, and the relaxation and
restart processes is continued until a solution is found. For the remainder of
this thesis, we refer to this process of choosing a constraint to loosen as the

relazation schedule.

4.2.4 Variable and Value Ordering

The variable ordering is based on two factors: the day the variable belongs
to, and the domain size of the variable. The variables are ordered by the day
they belong to and the variables with the lowest day are selected. Amongst
these variables, a variable with the smallest current domain size is selected.
The value ordering is based on the original greedy search solution. For
each variable, the value assigned in the original solution is placed first in
the variable’s domain. Placing the original solution’s batch first provides a

reasonable solution for the backtracking algorithm to improve upon.

48

4.2.5 Consistency Propagators

In this section we begin by describing general propagation techniques that are
used in backtracking. Following that we describe the specialized propagators

that were devised for each different n-ary constraint.

Background

Propagation is the process of removing domain values from the uninstanti-
ated variables during backtracking search. At any point in the backtracking
search, a value can be removed from an uninstantiated variable’s domain if,
given the current instantiation of variables, no solution exists if the value were
instantiated. Given that the removal of the domain value is dependant on the
instantiation of some variables, if the instantiation of any of these variables
changes then the value is reinstated into its variable’s domain. Propagation
improves backtracking search by reducing the domain size of uninstantiated
variables and thus reducing the size of the search space.

Since deciding if every variable’s domain value belongs to a solution can be
computationally expensive, different types of propagation have been devised.
Before describing two different general propagators, we briefly describe the
n-queens problem that we use to describe these propagators. The n-queens
problem consists of placing n queens on an n x n chess board such that no
two queens attack each other. For our purposes, we represent this problem
as a CSP as n variables that represents the columns of the chess board and
n domain values for each variable where each domain value represents where
a queen can be placed in a particular column. Figure 4.1 presents a solution
to the 6-queens problem where variables < 1,2, 3,4,5,6 > have been assigned
the values < B, D, F, A, C, E >, respectively. A constraint is defined for every
pair of variables such that only values (queen locations) that do not attack
each other are accepted. For instance, if variable 1 is assigned the value B,
then the constraint between variable 1 and 2 would allow only values D, E,
and F to be assigned to variable 2.

One type of propagation is forward checking [10]. At each point in the

49

mTm g N0 w »
e}

1 2 3 4 5 6

Figure 4.1: 6-queens solution

search the forward checking propagator examines constraints in which only
one variable in the constraint’s scheme has not been instantiated. All of this
variable’s domain values are checked if they are consistent with the constraint.
If instantiating a value does not make the constraint consistent then that value
is removed from the domain of the variable. In general, forward checking works
well with constraints of small arity (binary for instance) since only a small
number of variables need to be instantiated before propagation can take place
on a constraint.

Figure 4.2 presents an example of forward checking on the 6-queens prob-
lem. For this example, the first three variables were instantiated in the order
of their names (1, 2, and 3). The values (1,2,3) on the chess board represent
the level in the search when the domain values were removed by the forward
checking propagator from the uninstantiated variables. As a result, variable 4
has two remaining domain values (A and F) and variable 5 and 6 only have one
domain value remaining (D). Clearly no solution can be extended from this
partial solution since variables 5 and 6 only have the same value remaining in
their domains. However, at this point in the search forward checking does not
recognize this situation since variables 5 and 6 are both uninstantiated.

A more thorough method of propagation is an arc-consistency propagator.
The propagator described here (known for binary constraints as AC-1 in [12])
is relatively simple and inefficient compared to more recent arc-consistency

algorithms found in [5].

50

A 1 32 A 1 31312
B{Q]|1 1 1 1 1 Bl Q|1 1 1 1 1
C 11 Q12313 C 11 Q23]|3
D 1|3 D 113133
E Q2122 E Ql2|1]2]2
F 2 1 F 2131 3

1 2 3 4 5 6 1 2 3 4 5 6

Forward Checking Arc Consistency

Figure 4.2: Propagators on 6-queens problem

At each point in the search the arc-consistency propagator examines each
constraint and examines the domain values of the uninstantiated variables in
the constraint’s scheme. For each of these domain values, the arc-consistency
propagator exhaustively searches in the remaining uninstantiated variables in
a constraint’s scheme for domain values that if instantiated would make the
constraint consistent. If the propagator does not find such an instantiation,
the domain value is removed from the variable’s domain. This propagation of
each constraint is iterated until no domain values are reduced.

Figure 4.2 presents an example of an arc consistency propagator on the
6-queens problem. For this example, the first three variables were instantiated
in the order of their names (1, 2, and 3). Like the forward checking example,
the values (1,2,3) on the chess board represent the level in the search when
the domain values were removed by the arc consistency propagator from the
uninstantiated variables. Besides the domain values removed by the forward
checking propagator, the arc consistency propagator also removes the remain-
ing values from each of the remaining uninstantiated variables. Thus the do-
mains of all uninstantiated variables are empty and the search can backtrack
since a solution cannot be found if any variable’s domain is empty.

Although an arc-consistency propagator can reduce the domains of unin-
stantiated variables more than a forward checking propagator can, it is com-

putationally more expensive. For some problems, backtracking with a forward

51

checking propagator outperforms backtracking with an arc consistency prop-
agator in terms of CPU time.

To achieve a high level of propagation with limited computation, special-
ized propagators, which take advantage of the constraint’s structure, can be
devised for particular classes of constraints. Examples of constraints for which
specialized propagators have been devised are the all-different constraint [15]
and the cardinality constraint [16].

We now describe the specialized propagators that were devised for the

loosening approach.

Distribution Propagator

Since the distribution exception constraint is a generalization of the even distri-
bution constraint, the same propagator is used on both. The two distribution
constraints are essentially cardinality constraints for which a specialized arc
consistency propagator is described in [16]. The propagator described here is
simpler and does not achieve arc consistency.

Each constraint is assigned a day, an attribute value, a minimum value and
a maximum value. We refer to the batches that are assigned the constraint’s
attribute value as attribute batches. For the even distribution constraints,
the minimum value is assigned the same value as the maximum value (since
the number of attribute batches assigned to a day must equal the maximum
value).

The scheme of the constraint consists of all variables that belong to the
constraint’s day. The propagator first calculates the number of variables in the
constraint’s scheme that are instantiated with an attribute batch. This value
is referred to as the instantiated count and represents the number of attribute
batches that have already been assigned. The number of uninstantiated vari-
ables that have attribute batches remaining in their domain is then added to
the instantiated count to get the available count. This value represents the
possible number of attribute batches that can be assigned to the variables.

The constraint fails if either the instantiated count is greater than the

maximum value or the available count is less than the minimum value.

52

If the instantiated count equals the maximum value, the propagator re-
moves the attribute batches from all uninstantiated variable domains. If the
available count equals the minimum value, the propagator removes all batches
besides the attribute batches from all uninstantiated variable domains that

contain an attribute batch.

Change-over Propagator

The change-over constraint propagator is presented in Algorithm 2. Attribute
functions (Section 3.2.2) are used in this algorithm, as well as two CSP specific
functions: Domain(s) and Assignment(s). The Domain(s) function returns the
current domain values of the slot s, and the Assignment(s) function returns
the batch that is instantiated to slot s. The propagator has the following

input:

e the maximum change-over value (maxchgovr) is the constraint’s param-
eter value and represents the number of soft constraint violations that

can occur in the parameterized constraint,
e the two constraint attribute values: chgformer and chglatter, and

e a set of variables sy, ..., s; that represents the variables in a param-
eterized change-over constraint, where Position(s;) < Position(s;) if
1< 7.
The propagator removes values from the domains of variables and returns a
boolean value that indicates if the constraint has failed.
The propagator calls one function: IntChgOvr (Algorithm 3). This func-

tion has the following input:
e the two constraint attribute values: chgformer and chglatter,
e the current batch that is being examined: b,

o the former attribute value (formerattvalue) of the last lot from the pre-

vious slot, and

53

e the recent failure value (recentfail) that indicates if the constraint failed

between the previous pair of lots.

The IntChgOvr function returns the number of violations found between the
last lot of the previous batch and all the lots within the current batch. Fur-
thermore, the formerattvalue and recentfail variables are passed by reference
to the function, so any changes made to those variables in the function are
reflected in the procedure that called it.

The change-over constraint propagator presented is specifically for con-
straints between specific attribute values. In practice, the constraint can also
be defined for an entire attribute set. For instance, a constraint can be de-
fined on the attribute Exterior Colour, and a violation occurs if the colour
changes between lots. This is equivalent to defining a constraint for each
colour where the former attribute value is a specific colour (“Red”) and the
latter attribute is all colours besides the specified colour (“NOT Red”). How-
ever, it is more efficient to combine all the constraints into one. Thus, the
implemented propagator handles both constraints between specific attribute
values and constraints defined on all the attribute values of a set. It is also
important to note that the unusual penalty evaluation never occurs in the case
where a constraint is defined on a single attribute. For example, a constraint

from “Red” to “NOT Red” cannot occur twice in a row.

Run-length Propagator

The run-length constraint propagator is presented in Algorithm 4. Like the
change-over constraint, attribute functions (Section 3.2.2) are used in this al-
gorithm, as well as two CSP specific functions: Domain(s) and Assignment(s).
These functions are described in the previous section. The propagator has the
following input:

e the maximum run-length value (maxrunlength) is the constraint’s pa-

rameter value and represents the maximum run-length value allowed,

e the run-length attribute value (runlen-attvalue) represents the constraint’s

attribute value, and

54

Algorithm 2 Change-over constraint propagator
input: maxchgovr, chgformer, chglatter, and s; to si
output: updated variable domains

formerattvalue +~ NULL
recentfail «+ FALSE
chgovr « 0
fori=1to k do
if s; is instantiated then
b + Assignmeni(s;)
chgovr <— chgovr + IntChgOur(chgformer, chglatter, b, formerattvalue,
recentfail)
if chgovr > maxchgovr then
FAIL
end if
else
min-int-chgovr <+~ LARGENUMBER
for all b € Domain(s;) do
temp-formerattvalue < formerattvalue
temp-recentfail < recentfail
int-chgovr <« IntChgOuvur(chgformer, chglatter, b, temp-
formerattvalue, temp-recentfail)
if int-chgovr + chgovr > max-chgovr then
remove b from Domain(s;)
end if
if int-chgovr < min-int-chgovr then
min-int-chgovr < int-chgovr
end if
end for
chgovr <— chgovr + min-int-chgovr
formerattvalue + NULL
recentfail «+— FALSE
end if
end for

Algorithm 3 Change-over internal batch violation counter
input: chgformer, chglatter, b, formerattvalue, and recentfail
output: formerattvalue, recentfail, and int-chgovr

int-chgovr < 0
for all 1€ Lots(b) {Lots are selected in the order sequenced} do
if formerattvalue # NULL then
if recentfail = FALSE AND formerattvalue = chgovrformer AND
ChgQOwverLatter(l) = chgovrlatter then
int-chgovr <« int-chgovr + 1
recentfail «- TRUE
else
recentfail «— FALSE
end if
end if
formerattvalue <— ChgOverFormer(l)
end for
RETURN int-chgovr

e a set of variables s, ..., s¢ that represents the variables in a parame-

terized run-length constraint, where Position(s;) < Position(s;) if i < j.

The propagator removes values from the domains of variables and returns a
boolean value that indicates if the constraint has failed.

The run-length constraint propagator presented is specifically for con-
straints between specific attribute values. Similar to the change-over con-
straint, the constraint can also be defined for an entire attribute set. For
example, a constraint can be defined on the attribute exterior colour where
the constraint is violated if any colour is repeated too many times. To im-
prove efficiency, the implemented propagator handles both constraints with a
specific attribute value and constraints defined on all the attribute values of a

set.

All-Different Propagator

Every time a batch is instantiated to a slot, the batch is removed from any
domain that contains it. This propagator could be improved using the all-

different constraint arc consistency propagator described in [15]. Such a prop-

56

Algorithm 4 Run-length constraint propagator

input: maxrunlemgth, runlen-attvalue, and s; to si
output: updated! variable domains

runlength < 0
fori=1to k do
if s; is instantiated then
b + Assignmient(s;)
for all 1 € Lots(b) {Lots are selected in the order sequenced} do
if runlen-attvalue = RunLenAttribute(l) then
runlengt h <— runlength + LotSize(l)
else
runlength « 0
end if
if runlength > maxrunlength then
FAIL
end if
end for
else
if runlength > (maxrunlength — batchsize) then
for all b & Domain(s;) do
intrunlemgth < 0
for all L € Lots(b) {Lots are selected in the order sequenced} do
if rumlen-attvalue = RunlLenAttribute(l) then
intrunlength < intrunlength + LotSize(l)
else
BREAK
end if”
end for
if (intrumnlength + runlength) > maxrunlength then
remove b from Domain(s;)
end if
end for
end if
runlength < «0
end if
end for

o7

agator would remove more domain values but would also be more computa-

tionally expensive.

4.3 Branch and Bound Approach

In this section we describe backtracking on a CSOP model with a branch
and bound approach. For this approach, we begin with a loose bound on the
evaluation function and tighten the bound until no solution is found.
Applying backtracking to a CSOP model requires backtracking to be ex-
tended to incorporate an evaluation function. Two possible approaches are
to include either iterative deepening (ID) or branch and bound (BB) as part
of the backtracking algorithm. Both of these approaches set a bound on the
quality of the solution that backtracking is allowed to find and require a heuris-
tic for estimating the quality of a partial solution to the problem. For both
approaches, backtracking occurs if the quality of a partial solution exceeds the
bound on the solution. The difference between the two approaches is that ID
begins with a tight bound and increases it until a solution can be found, while
BB begins with a loose bound (such that a solution can be found) and tightens

the bound until no solution can be found.

4.3.1 Evaluation and Heuristic Functions

For the branch and bound approach, all the soft constraints are represented by
an evaluation function. The evaluation function takes as its input a solution to
the hard constraints and returns the total number of penalty values incurred
by the soft constraints.

The heuristic function devised is essentially the evaluation function applied
to partial solutions. The heuristic function takes as its input a partial solution
to the hard constraints and returns the total number of penalty values incurred
by the batches that have been sequenced. It is possible that a heuristic function
could be devised that gives an even better estimate of the quality of the partial
solution, for instance counting the number of internal violations for the batches

that have not been sequenced yet. However, this was not done as part of this

58

thesis.

4.3.2 Branch and Bound Scheme

The backtracking algorithm begins with a problem initialized with a loose
bound value. Specifically we set the bound value to the total penalty value
incurred by the greedy search solution. By using this value we begin with a
problem that is guaranteed to have a solution and is reasonably tight.

After backtracking finds a solution, we take the total penalty value for the
solution, reduce it by the largest common divisor of the constraint penalty
values in the problem instance (a value of one for the problem instances we
examine), and set this as the new bound value. The branch and bound al-
gorithm then continues, and backtracks whenever the heuristic function value
of a partial solution exceeds the current bound. If it finds a solution with
the current bound value, we reduce the bound value again. This process is
continued until no solution can be found. In this case, the last solution found

is an optimal solution.

4.3.3 Variable and Value Ordering

The variable ordering for the branch and bound approach is fixed to the or-
dering of the slots in time. This fixed ordering is used to simplify the way the
heuristic function is implemented.

The value ordering is based on the original greedy search solution. For
each variable, the value assigned in the original solution is placed first in the
variables domain. This value ordering is the same as the one used by the

loosening approach.

4.3.4 Consistency Propagators

The distribution propagator and the all-different propagator are the same as
the ones described for the loosening approach. Since the change-over con-
straints and run-length constraints are represented by an evaluation function,

there are no propagators for these constraints.

59

4.4 Problem Splitting

Since the problem is somewhat large, a method for splitting it into smaller sub-
problems is used. This process is done for all three of the solution techniques.

The problem is divided into relatively equal size sub-problems by placing,
for a particular assembly line, a specified number of consecutive production
days in each sub-problem. The specified number of days in a sub-problem
is referred to as the split size. If the split size does not divide the number
of days on an assembly line, a sub-problem is generated with the remaining
days. The sub-problems contain consecutive production days and are solved in
order of the days they contain, where the unsolved sub-problem with earliest
days is solved next. The domain values are selected for each sub-problem by
using the original solution provided by the greedy search algorithm. In other
words, for a particular sub-problem we assign batches that are sequenced by
the greedy search algorithm to the same days as the days within a sub-problem.
Furthermore, since soft constraint violations can occur between sub-problems,
after a sub-problem is solved, the batch that was sequenced last is added to
the beginning of the next sub-problem. This method of splitting does not
completely model the problem, since run-length and change-over constraints
may be influenced by batches that are sequenced before the last batch in the
previous sub-problem, but it makes visible the majority of violations that can
occur between days. It is also important to note that if the split size is one
(one day per sub-problem), the soft constraints are the only n-ary constraints

in the sub-problems.

60

Chapter 5

Results

In this chapter we present the results of applying the three solution techniques
presented in Chapter 4 to the CSP models of six real-world problem instances.
We begin by presenting the six problem instances we used for our experiments
in Section 5.1. In Section 5.2, we show the results for the original greedy
search algorithm on these problem instances. In Sections 5.3, 5.4 and 5.5 we
present the results for the hill-climbing approach, the loosening approach, and
the branch and bound approach, respectively. We conclude the chapter with

a discussion of the results in Section 5.6.

5.1 Test Problems

There are six real-world problem instances examined in this thesis. Each
problem instance represents a month’s worth of orders for a manufacturing
plant with two assembly lines. Table 5.1 shows for each problem instance
the number of lots and batches, the maximum number of lots in a batch, the
maximum number of slots in a day, and the number of different types of dis-
tribution exception, change-over, and run-length constraints. For the change-
over constraints and the run-length constraints, we also present the original
number of constraints as defined in TigrSoft’s problem specifications as well
as the number of combined constraints defined in our problem specification.
The constraints were combined by either representing identical constraints
that were defined for both assembly lines as one constraint, or by combin-

ing certain constraints that are defined on the same attribute. The majority

61

Max. Max. | # of # of # of
Prb || # of # of | Lots in Slots | Dist. Chg-over Run-len
|| Lots | Batches | Batch | in Day | Exc. | Orig. [Cmb. | Orig. | Cmb.
1 807 277 9 15 1 42 13 7 9
2 771 565 8 19 11 42 13 6 5
3 792 651 2 15 2 42 13 7 5
4 836 659 7 17 2 35 11 6 4
) 856 665 7 17 3 35 11 6 4
6 804 586 10 15 3 35 11 6 4

Table 5.1: Real-world problem instances

of change-over constraints that were combined were constraints between in-
dividual colours and all other colours. In other words, individual constraints
restricting change-overs from “X” to “NOT X”, where X can be any colour,

were combined into one change-over constraint.!

5.2 Greedy Search

The original solution technique used to solve the sequencing problem is a
greedy search algorithm, described in Section 2.3. Table 5.2 presents the results
of this algorithm when applied to the test problem instances. The table shows
the total penalty values incurred by the soft constraints as well as the penalty
values incurred between the lots within each batch (internal lot sequences).
Since the internal sequence of lots within each batch is fixed, these internal
violations can be seen as lower bounds on solutions of the problem instances.
On average, about 50% of violations occur between batches and thus only 50%
of the violations can potentially be reduced if the internal lot sequences remain

fixed.

1For all of the problem instances, two of these colour constraints appeared to be defined
wrong in the TigrSoft specification. One was defined from “Colour A” to “ANY LOT”
and the other was defined from “Colour B” to “NOT Colour C”. These constraints appear
to have resulted from data entry errors by the users at the manufacturing company. We
included these two constraints separately as part of our specification.

62

Penalties Internal Lot Sequences

Problem || Chg-over | Run-len | Total || Penalties | Percent
1 6618 1400 | 8018 4191 52%

2 5042 0| 5042 2113 42%

3 3362 50 | 3412 957 28%

4 2098 400 | 2498 1291 52%

5 2556 400 | 2956 1644 56%

6 2618 200 | 2818 1752 62%

Table 5.2: Greedy search

5.3 Hill Climbing

The first solution technique we examined is a hill-climbing algorithm, described
in 4.1. The default settings for this algorithm are as follows.

To begin with, the hill-climbing algorithm used an initial solution provided
by the greedy search algorithm. In Section 5.3.2 we examine the affect that a
random initial solution had on the hill-climbing algorithm.

The sequencing of lots within a batch was fixed based on the sequence of
lots within the original solution. In Section 5.3.3 we look at how optimizing
the internal lot sequences affects the hill-climbing solutions.

The problem by default was divided into single day sub-problems. The
affect of increasing the sub-problem size to include multiple days is presented
in Section 5.3.4. In Section 5.3.5 we look at how the removal of the even
distribution constraint from the problem affected the solutions of multi-day

sub-problems.

5.3.1 Improvement Over Greedy Search

Before examining these different modifications, let us first look at how hill-
climbing improved on the greedy search solutions. Table 5.3 presents a com-
parison of the hill-climbing solutions and the greedy search solutions. The
table shows for the hill-climbing algorithm the penalty values incurred by
both parameterized constraints, the CPU time (in seconds) needed to solve
the problem instances, the number of days improved on, and the difference

and percent decrease in penalty values with respect to the greedy search tech-

63

Prb Penalty Values CPU Improvement
|| Chg-over | Run-len | Total | Time | Days | Diff. | Percent
1 6286 750 | 7036 114 || 18/42 | 982 12%
2 4579 0| 4579 158 || 17/38 | 463 9%
3 3297 50 | 3347 136 || 22/44 65 2%
4 2033 200 | 2233 134 || 18/44 | 265 11%
5 2485 400 | 2885 133 || 21/44 71 2%
6 2360 200 | 2560 139 || 31/40 | 258 9%
Table 5.3: Hill climbing results
Prb Total Penalties CPU Time
HC | HC-RAND | Percent | HC | HC-RAND
1 7036 7623 -8% || 114 220
2 4579 5059 -10% || 158 346
3 3347 3543 -6% || 136 298
4 2233 2269 -2% || 134 367
5 2885 2996 -4% || 133 327
6 2560 2605 -2% || 139 282
Table 5.4: Hill climbing with random initial solution
nique. The percent reduction of penalty values for the problem instances

ranged between 2% and 12% and approximately only half of the sub-problems

are improved on over the greedy search.

5.3.2 Random Initial Solution

The hill-climbing algorithm by default used the greedy search solution as its
initial solution. When the initial solution was replaced by a random one, the
results significantly deteriorated. Table 5.4 compares the influence of a greedy
search initial solution (HC) and a random initial solution(HC-RAND). As the
table shows, when a random initial solution was used, the increase in penalty
values ranged between 2% and 10% and the CPU time on average doubled.
These results clearly indicate the importance of a good initial solution when

using a hill-climbing technique on the problem.

64

Prb Total Internal Penalties Total Penalties

|| Original | Optimized | Percent || Original | Optimized | Percent
1 4191 3868 8% 8018 9468 -18%
2 2113 1857 12% 5042 5091 -1%
3 957 907 5% 3412 3739 -10%
4 1291 1018 21% 2498 2564 -3%
5 1644 1124 32% 2956 3005 2%
6 1752 1525 13% 2818 2981 -6%

Table 5.5: Greedy search solution with optimized internal lot sequences

5.3.3 Optimized Internal Lot Sequences

In this section we present results where the penalty values were minimized
by sequencing the lots within each batch. The optimized lot sequences were
produced by a simple generate and test procedure. For each batch, the lot
sequences with the smallest total penalty value were selected. In the case of a
tie, the sequence with the largest lot sequenced last was selected. Because of
complexity issues we only completely optimized batches with seven or fewer
lots. For batches with more than seven lots, we optimized the first seven lots
in the batch and did not move the remaining lots. The most lots found in a
batch for all the problem instances was ten.

Table 5.5 presents the internal and total penalties of the greedy search
solutions with their original internal lot sequences and with new optimized
internal lot sequences. Although the internal penalties were reduced for all
the problem instances from 5% to 32%, the total penalty values increased
for all the problem instances from 1% to 18%. This was expected though
since reducing penalty values within each batch by rearranging their lots will
not necessarily make the penalties disappear. Instead, the penalty values are
incurred when the batches are sequenced. Furthermore, the greedy search
solution was selected based on the sequence of lots within each batch. Thus
it is not surprising that rearranging the lots reduced the quality of the greedy
search solution.

Table 5.6 presents hill-climbing on batches with the original internal lot

sequences (HC) and with the optimized lot sequences (HC-OPT). The results

65

Prb Total Penalties

HC | HC-OPT | Percent
1 7036 7055 0%
2 4579 4470 2%
3 3347 3409 2%
4 2233 2174 3%
5 2885 2605 10%
6 2560 2577 -1%

Table 5.6: Hill climbing with optimized internal lot sequences

appear mixed, with changes in penalty values ranging between -2% and 10%.
Two possible reasons for these mixed results are as follows.

One possible reason is that hill-climbing with the original lot ordering re-
lies on a reasonable initial solution. As Table 5.5 indicates, when the lots
are reordered, the quality of the original greedy search solution was reduced.
Since the hill-climbing algorithm finds its solution by improving on its initial
solution, it is possible that a worse initial solution will lead to a worse final
solution. This is evident in the fact that the problem instances (problems 2,
4, 5) that had only a small increase in penalty values for their “optimized”
greedy solutions (Table 5.5) are the same problem instances that improved the
most when hill-climbing was applied (Table 5.6).

Another possible reason for mixed results is that the lots within a batch
were rearranged such that the lots that are likely to cause a serious violation
were moved to the edge of the batch. From within a batch no serious violations
appeared, but when the batches were sequenced, these violations reappeared
between the batches. In fact, it may actually increase the number of violations,
since optimizing within each batch may have unforeseen consequences when
the batches are sequenced. However, although rearranging the lots may not
have eliminated the violations (and possibly increased them), it at least gave
the search algorithm a chance to reduce them.

Overall these results demonstrate the potential of reordering the lots within
the batches. However, it is not clear what a good internal lot sequence is

without consideration of the larger problem.

66

5.3.4 Multi-day Sub-problems

In this section we examine the affect of multi-day sub-problems on the hill-
climbing algorithm. Tables 5.7 and 5.8 present the change in penalty values,
the CPU time, and the number of value swaps that occurred between days
for problems with two (HC-2) and three (HC-3) days in each sub-problem,
respectively. For the most part, the penalty values remained unchanged.

A likely reason for this is that, for the problem instances examined, the even
distribution constraint significantly reduced the possibility of improving the
solution by solving multiple days at a time. There are two possible reasons for
this. First of all, the even distribution constraint for all the problem instances
is defined on an attribute that contains more than 200 attribute values. Since
there are only approximately 600 batches in each problem, many attribute
values only have one or two batches associated with them. Since the even
distribution constraint defines for each day and attribute value the number of
batches with the attribute value that can be assigned to the day, many days do
not share batches. Thus when solving small multi-day problems (two or three
days), it is unlikely that the days within a sub-problem will share batches.

Another reason improvements are not likely is that the even distribution
constraint attribute is similar to many of the attributes used by the soft con-
straints. In other words, if two batches are considered similar by the even
distribution constraint then it is likely that the two batches are consider sim-
ilar by the soft constraints. Thus even if two batches are shared by two days,
swapping them may not have any affect on the soft constraint violations.

Evidence for both of these arguments can be seen in the fact that for all six
problem instances, only once was a value swapped between days. Given the
significant increase in CPU time when multi-day sub-problems were solved,

solving single day sub-problems makes sense.

5.3.5 Removing the Even Distribution Constraint

In the last section we showed results indicating that the even distribution

constraint prevents values from being shared between days. In this section we

67

Prb Total Penalties CPU Time Day
HC | HC-2 | Percent || HC | HC-2 || Swaps
1 7036 | 7034 0% || 114 226 0
2 4579 | 4579 0% || 158 317 0
3 3347 | 3292 2% || 136 288 1
4 2233 | 2233 0% || 134 258 0
5 2885 | 2880 0% || 133 239 0
6 2560 | 2560 0% || 139 334 0

Table 5.7: Hill climbing with split size two

Prb Total Penalties CPU Time Day
HC | HC-3 | Percent || HC | HC-3 || Swaps
1 7036 | 7034 0% | 114 441 0
2 4579 | 4579 0% || 158 570 0
3 3347 | 3336 0% | 136 495 1
4 2233 | 2233 0% || 134 416 0
5 2885 | 2881 0% || 133 502 0
6 2560 | 2561 0% | 139 624 0

Table 5.8: Hill climbing with split size three

present results for when the even distribution constraint was removed from
the problem instances. It is important to note that removing this constraint
does not completely undermine the even distribution of batches. Since the
problem instances are split into smaller sub-problems, the even distribution
constraint is implied by the assignment of batches to each sub-problem. For
example, when solving the problem with two day sub-problems, a batch could
move at most one day compared to the greedy search solution of the problem:.
Thus in some sense the batches would remain distributed (as long as the sub-
problems are not too big). However, since we have no algorithmic method for
determining if a distribution is acceptable (except for the solutions provided
by the greedy search algorithm), there is no way to determine if solutions
obtained by removing the even distribution constraint are acceptable (besides
having each solution instance evaluated manually by an expert).

Tables 5.9 and 5.10 present the penalty values, CPU time, and the num-
ber of value swaps that occurred between days for problem instances with no

even distribution constraint and two (HC-NE2) and three (HC-NE3) days in

68

Prb Total Penalties CPU Time Day
HC | HC-NE2 | Percent || HC | HC-NE2 || Swaps
1 7036 6740 4% || 114 692 36
2 || 4579 4421 3% || 158 955 27
3 || 3347 3199 4% || 136 816 34
4 || 2233 2127 5% | 134 1037 46
5 2885 2494 14% || 133 1269 64
6 i 2560 2196 14% || 139 1002 45

Table 5.9: Hill climbing with no even distribution and a split size two

Prb Total Penalties CPU Time Day
HC | HC-NE3 | Percent || HC | HC-NE3 || Swaps
1 7036 6444 8% || 114 1961 39
2 4579 4370 5% || 158 3216 43
3 3347 3256 3% || 136 2658 44
4 2233 2166 3% || 134 3904 74
5 2885 2535 12% || 133 3073 58
6 2560 2169 15% || 139 2665 57

Table 5.10: Hill climbing with no even distribution and a split size three

each sub-problem, respectively. Unlike the results presented in the previous
section, significant improvements were found for each problem instance. Fur-
thermore, the table shows that a significant number of value swaps occurred
between days. This is further evidence of the even distribution constraint’s
influence on the problem. The only down side of removing the constraint is
that the CPU time increased significantly for these experiments. This can be
attributed to the increase in the neighborhood size that occurred as a result
of the even distribution constraint being removed. Overall, these results indi-
cate the potential reduction of penalty values that can be obtained if the even

distribution constraint is relaxed.

5.4 Backtracking with a Loosening Approach

The second solution technique that we examine is backtracking with a loosen-
ing approach, described in Section 4.2. The default settings for this algorithm

were as follows.

First of all, no propagation occurred on the parameterized constraints. We

69

show how propagation on these constraints negatively affected the results in
Section 5.4.2.

Each slot’s domain values were ordered by placing the batch that was
assigned to the slot in the original solution first in the slot’s domain. In
Section 5.4.3 the affect of removing this value ordering is examined.

After solving a sub-problem, the sub-problem solution was compared with
the greedy search solution and the sub-problem solution with lowest penalty
value total was selected. We show how not selecting the best solution to sub-
problems reduced the quality of the overall solution in Section 5.4.4.

The sequencing of lots within a batch was fixed based on the sequence of
lots within the original solution. In Section 5.4.5, we look at how reducing the
penalty values that occur within each batch by reordering their lots influenced
the solutions.

The failure limit for each parameterized constraint was assigned relative to
the penalty value of the constraint. This was done by multiplying the penalty
value of the constraint by a fixed value of 200. Thus a constraint with a
penalty value of 50 would have a failure limit of 10000. In Section 5.4.6 we
examine the influence of different fixed values, and different ways of counting
parameterized constraint failures.

Each problem was also divided into one day sub-problems. In Section
9.4.7 we examine how increasing the number of days within a sub-problem

influenced the solutions that were found.

5.4.1 Improvement over Greedy Search

Before examining all of these different modifications, we first look at how
the loosening approach, with its default settings, improved on results of the
greedy solution technique. Table 5.11 shows the penalty values of the loosening
approach solutions and their improvement over the penalty values of the greedy
search solutions. The table shows the penalty values for both parameterized
constraints, the CPU time (in seconds) of the loosening approach, the number
of days that the loosening approach improved results on, the difference in

penalty values between the greedy search and the loosening approach, and

70

Prb Penalties CPU Improvement

|| Chg-over | Run-len | Total | Time || Days | Diff. | Percent
1 6087 1250 | 7337 916 || 17/42 | 681 8%
2 4640 0| 4640 662 9/38 | 402 8%
3 3307 50 | 3357 63 || 18/44 955 2%
4 2008 300 | 2308 320 || 19/44 { 190 8%
5 2483 400 | 2883 336 || 14/44 73 2%
6 2402 200 | 2602 345 || 17/40 | 216 8%

Table 5.11: Backtracking with loosening approach

the percent change in penalty values over the greedy search technique. The
percent reduction of penalty values for the problem instances ranged between
2% and 8%. Although the majority of penalty values incurred were from
change-over constraints, the loosening approach significantly reduced the run-
length penalty values for two of the six problem instances. The algorithm also

took between six and fifteen minutes to find a solution.

5.4.2 Soft Constraint Propagation

Although specialized propagators were devised for both the change-over con-
straints and run-length constraints, for the most part, they proved to be detri-
mental. Table 5.12 compares the loosening approach with (LN-PROP) and
without (LN) the propagation of parameterized constraints. The increase of
total penalty values for the problem instances ranged between 0% and 6%.
The CPU time (in seconds) used to find a solution decreased significantly
when propagation was used (up to eight times faster). This decrease was ex-
pected, since propagation reduces the search space. However, the increase in
penalty values was not expected. The reason why propagation was detrimental
to finding a good solution seems to relate to the influence of propagation on
constraint failures. Since propagation reduces the domains of variables that
have not been instantiated yet, it reduces the relationship between which con-
straints “caused” the problem to be unsolvable and which constraints actually
failed the most. For example, assume we have two arbitrary parameterized
constraints A and B, where constraint A must be loosened in order for a prob-

lem to be solved and constraint B does not. Then it is possible that constraint

71

Prb Total Penalties CPU Time

LN | LN-PROP | Percent || LN | LN-PROP
1 7337 7628 -4% || 916 624
2 4640 4896 -6% || 662 78
3 3357 3364 0% 63 38
4 2308 2340 -1% || 320 60
9 2883 2917 -1% || 336 77
6 2602 2684 -3% || 345 68

Table 5.12: Loosening approach with soft propagation

Prb Total Penalties CPU Time
LN | LN-NVAL | Percent || LN | LN-NVAL
1 7337 7470 2% |l 916 903
2 4640 4737 -2% || 662 770
3 3357 3370 0% 63 73
4 2308 2334 -1% || 320 319
5 2883 2899 -1% || 336 329
6 2602 2614 0% || 345 373

Table 5.13: Loosening approach with no value ordering

A’s propagator reduces the domains of the uninstantiated variables, but does
not fail, and later in the search constraint B fails because of the domain val-
ues that were removed by A. Hence it is possible that constraint B fails more
frequently than constraint A and thus B is selected over A to be loosened.
Although it is possible that even without propagation constraint B may be
selected over A to be loosened, it seems reasonable that propagation decreases
the relationship between which constraints must be loosened to find a solution

and how often these constraints fail.

5.4.3 Value Ordering

The loosening approach by default used a value ordering that was based on the
greedy search solution. Table 5.13 compares the loosening approach with the
value ordering (LN) and without (LN-NVAL). Overall the removal of the value
ordering decreased the quality of the solutions. Including the value ordering

appears to give the loosening approach a good solution to build on.

72

Prb Total Penalties

LN | LN-NOBS | Percent
1 7337 7491 -2%
2 4640 4692 -1%
3 3357 3418 -2%
4 2308 2315 0%
5 2883 2889 0%
6 2602 2608 0%

Table 5.14: Loosening approach with no best solution selection

5.4.4 Best Solution Selection

When the value ordering was employed, one might expect that the backtrack-
ing algorithm would be guaranteed to do the same or better than the greedy
search algorithm, since the loosening approach (with the appropriate param-
eter settings) can find the greedy search solution backtrack free. However,
this is not the case since the loosening approach’s relaxation schedule is not
perfect. Specifically, the relaxation schedule may loosen the constraints such
that the original solution does not satisfy the constraints but a worse solution
does.

For this reason, after a sub-problem was solved it was compared with the
original solution and the best solution to the sub-problem was selected. Table
9.14 compares the loosening approach with (LN) and without (LN-NOBS)
a best solution selection process. The decrease in solution quality can be
attributed to sub-problem solutions where the imperfect relaxation schedule
missed the original solution and found a worse one.

However, even when the best solution selection process is removed it is
possible that the value ordering may provide a backtrack free solution. Thus
when both the value ordering and the best solution selection process were
removed, the backtracking algorithm had no original solution to fall back on.
This situation (LN-NVAL-NOBS) is presented in Table 5.15. As the results

clearly show, the relaxation schedule was indeed not perfect.

73

Prb Total Penalties

LN | LN-NVAL-NOBS | Percent
1 7337 8718 -19%
2 4640 5353 -15%
3 3357 3441 -3%
4 2308 2532 -10%
5 2883 3069 -6%
6 2602 3028 -16%

Table 5.15: Loosening approach with no value ordering and no best solution
selection

Prb Total Penalties

LN | LN-OPT | Percent
1 7337 7721 -5%
2 4640 4549 2%
3 3357 3443 -3%
4 2308 2265 2%
5 2883 2618 9%
6 2602 2625 -1%

Table 5.16: Loosening approach with optimized internal lot sequences

5.4.5 Optimized Internal Lot Sequences

In Section 5.3.3 we examined the affect of optimizing internal lot sequences
on the hill-climbing technique. In this section we present its affect on the
loosening approach. Table 5.16 compares the loosening approach with the
original internal lot ordering (LN) and with the optimized ordering (LN-OPT).
Similar to the hill-climbing technique the results were mixed, with changes in
penalty values ranging from -5% and 9%. Reasons for this are similar to those

described in Section 5.3.3.

5.4.6 Failure Limits

The failure limits for each soft constraint were set by multiplying each con-
straint’s penalty value by a constant value. The results presented so far fixed
this value to be 200. In this section we examine the affect modifying this
value has on the quality of the solutions. Figure 5.1 presents the influence of

different failure limit constants on the total penalty values for each problem

74

instances. The x-axis represents the different failure limit constants that were
tried and the y-axis represents the percent improvement over the greedy search
results. Each line in the graph, represents either a problem instance or the
average of the problem instances.

As the failure limit constants increased, the CPU time required to solve a
problem increased as well. For some of the problems (problems 1, 2, 3, and
5) the percent improvement remained relatively the same when the failure
limit constant was increased. However, for two problem instances (problems
4 and 6) the percent improvement decreased significantly when the failure
limit constant was increased. This shows that a high constraint failure limit
does not necessarily imply an increase in the quality of a solution and in fact
decreased the quality of the solutions.

We also tried a different method of counting constraint failures. Instead of
counting all constraint failures that occurred in the search, we tried only count-
ing the constraint failures that occurred at the deepest level of the search tree.
In other words, when the backtrack algorithm was able to reach a new level in
the search tree, it only counted constraint failures that occurred at that level
of the tree. The intuition behind this idea is that the constraints that fail at
the deepest part of the search tree are the constraints that should be loosened,
since doing so would allow the search to go deeper. Unfortunately, results

showed that this idea does not improve over the original counting technique.

5.4.7 Multi-day Sub-problems

By default, the problem was split into one day sub-problems. When more
than one day was included in each sub-problem, the results for the most part
decreased slightly in quality. Table 5.17 presents the change in penalty values
and CPU time, compared to the loosening approach on one day sub-problems,
for problems with two (LN-2) and three (LN-3) days in each sub-problem.
Overall the penalty values did not change significantly when the size of each
sub-problem was increased.

The reasons for this are explained in Section 5.3.4. However, unlike the

hill-climbing technique, backtracking did worse on multi-day sub-problems.

75

% Improvement

Average —+—
Problem 1 —-— |
Problem 2 ---x---
Problem 3 —a&—
Problem 4 —-=-—
Problem 5 ---©---
Problem 6 ---e---

1

1000 5000

Figure 5.1: Different relative failure limit constants

Prb || Penalties % CPU Time %
|| LN-2 | LN-3 LN-2 | LN-3
1 2% -2% -258% | -775%
2 0% 0% -319% | -742%
3 1% -1% || -2132% [-5202%
4 3% 3% -230% | -481%
5 -1% -1% -300% | -684%
6 -1% -2% -186% | -555%

Table 5.17: Loosening approach split size two and three results

This probably can be attributed to the relaxation schedule. Increasing the
size of the sub-problems increases the number of constraints in a problem.
This in turn increases the number of constraints that the relaxation schedule

must select from. Thus it is more likely that the relaxation schedule will pick

an inappropriate constraint to loosen.

76

5.5 Backtracking with a Branch and Bound
Approach

We now present results for backtracking with a branch and bound approach,
described in Section 4.3. The default settings for this algorithm were as follows.

Since initial tests of the algorithm proved to be intractable, with one prob-
lem instance taking more than five days without returning a solution, a time
limit of two hours was set for each sub-problem. In Section 5.5.2 we show
results for when the time limit was reduced to one minute.

The sequencing of lots within a batch was fixed based on the sequence of
lots within the original solution. In Section 5.5.3, we look at how reducing the
penalty values that occur within each batch by reordering their lots influenced
the solutions.

Each problem instance was also divided into one day sub-problems. In
Section 5.5.4 we also examine how increasing the number of days within a

sub-problem influenced the solutions that were found.

5.5.1 Improvement over Greedy Search

In this section we compare the branch and bound approach results, with its
default settings, to the greedy search results. Table 5.18 shows the penalty
values of the branch and bound solutions and their improvement over the
penalty values of the greedy search solutions. Specifically, the table shows
the penalty values for both soft constraints, the CPU time (in seconds), the
number of days that the branch and bound approach improved results on, the
percent change in penalty values over the greedy search technique, and the
number of sub-problem solutions that were proved to be optimal solutions.
The percent reduction of penalty values for the problem instances ranged
between 3% and 13%. Of the six problem instances, four of them had all
of their sub-problem solutions proven optimal within the two hour per sub-
problem time limit. The other two problem instances had in total only five
sub-problems with sub-optimal solutions. These five sub-problem solutions

may in fact be optimal, but they were not proven so within the time limit.

7

Prb Penalties CPU Improvement Days
|| Chg-over | Run-len | Total | Time | Days | Percent | Optimized
1 6252 750 | 7002 | 1103 || 28/42] 13% 42/42
2 4528 0| 4528 | 48011 | 24/38 | 10% 34/38
3 3256 50 | 3306 442 || 27/44 3% 44 /44
4 1906 300 | 2206 | 15385 || 39/44 12% 43/44
5 2362 400 | 2762 | 2677 || 36/44 7% 44/44
6 2289 200 | 2489 | 1305 || 36/40 12% 40/40

Table 5.18: Backtracking with branch and bound approach

The CPU time required to solve these problem instances varied signifi-
cantly. The four problem instances that have optimal sub-problem solutions,
took between five and forty-five minutes. The other two problem instances

took between four and fourteen hours to solve.

5.5.2 Reduced Time Limit

Since four of the problem instances were proved optimal in a relatively short
time, we decided to significantly reduce the sub-problem time limit to one
minute. Table 5.19 compares the branch and bound approach with a two
hour (BB) and a one minute (BB-FAST) sub-problem time limit. As the table
shows, only one problem instance’s total penalty values slightly increased when
the one minute time limit was imposed. Of the four problem instance solutions
that were proven optimal with a two hour time-limit, only one of them was
proven optimal with only a one minute time limit. However, the other three
solutions all remained optimal but were not proven so. For the two problem
instances that were not proven optimal with a two hour time limit, similar
solutions were found with a one minute time limit. However, almost haif of
the sub-problem solutions were not proven to be optimal. Overall these results
seem to indicate that, for this problem, finding a solution to a sub-problem is

relatively easy, but proving a solution does not exist is potentially hard.

5.5.3 Optimized Internal Lot Sequences

In Sections 5.3.3 and 5.4.5 we examined the affect of optimizing internal lot

sequences on the other two solution techniques. Table 5.20 compares the

78

Prb Total Penalties BB-FAST Days
BB | BB-FAST | Percent || CPU Time | Optimized
1] 7002 7002 0% 422 40,42
2 4528 4528 0% 1081 23/38
3 3306 3306 0% 443 44/44
4 2206 2218 -1% 1489 26/44
5 2762 2762 0% 1012 38/44
6 2489 2489 0% 959 36/40

Table 5.19: Branch and bound approach with reduced time limit

Prb Total Penalties CPU Time Days
BB | BB-OPT | Percent BB-OPT | Optimized
1 7002 6925 1% 1060 42/42
2 4528 4403 3% 50466 33/38
3 3306 3348 -1% 499 44 /44
4 2206 2137 3% 15464 43/44
5 2762 2479 10% 2901 44 /44
6 2489 2500 0% 1329 40/40

Table 5.20: Branch and bound approach with optimized internal lot sequences

branch and bound approach with the original internal lot ordering (BB) and
with the optimized ordering (BB-OPT). Similar to the other two solution
techniques the results were mixed, with changes in penalty values ranging
from -1% and 10%. In Section 5.3.3, two possible reasons were given for why
these results were mixed. One of the possible reasons was that optimizing the
internal lot sequences can have a detrimental affect on the overall quality of
possible solutions. The branch and bound approach proves this since two of
the problem instances (Problems 3 and 6) have optimal sub-problem solutions

that were worse when the internal lot sequences were optimized.

5.5.4 Multi-day Sub-problems

Like the other two solution techniques, the tightening approach was applied
to problem instances with multi-day sub-problems. In general the branch
and bound approach did significantly worse when applied to multi-day sub-
problems. The reason for this is that the complexity of the problem increased

significantly. Because of this, the two hour time limit was reached for most

79

Prb Penalty Decrease CPU Time

GR| HC|LN| BB|HC|LN| BB
8018 | 12% | 8% | 13% || 114 | 916 | 1103
5042 | 9% | 8% | 10% || 158 | 662 | 48911
3412 | 2% | 2% | 3% || 136 | 63 442
2498 | 11% | 8% | 12% || 134 | 320 | 15385
2956 | 2% | 2% | 7% || 133 | 336 | 2677
2818 | 9% | 8% | 12% || 139 | 345 | 1305

O GV w o |3k

Table 5.21: Summary of results

sub-problems without finding an optimal solution and hence the results were
not near optimal. The time required to obtain these solutions took at least

one day for every problem instance.

5.6 Discussion

In this chapter we have presented the results of three solution techniques. In
this section we review and compare some of the results.

Table 5.21 presents the results of the three solution techniques with their
default settings. As the table shows, the branch and bound algorithm (BB)
found the best results for all problem instances. This was expected since
most of the sub-problem solutions were found to be optimal. The next best
algorithm, in terms of penalty value reduction, was the hill-climbing algorithm
(HC) which found better (or the same) solutions compared to the loosening
approach (LN) for all problem instance.

In terms of CPU time, the hill-climbing algorithm was the best overall,
followed by the loosening approach. The branch and bound algorithm took
significantly more time to find solutions than the other approaches. However
the branch and bound algorithm was also run with a sub-problem time limit
of one minute. With this time limit, the branch and bound algorithm found
nearly identical results as it did with its default time limit of two hours and
only took between 443 and 1489 seconds to obtain these results.

In our discussions with TigrSoft, they explained that solutions with a 5%

reduction in penalty values that could be found in less than 30 minutes (1800

80

seconds) would be considered significant. All three algorithms were capable
of finding solutions to the six problem instances within 30 minutes. For four
of the problem instances (problems 1, 2, 4, and 6) we were able to obtain
more than a 5% reduction in penalty values with any of the three solution
techniques. For the remaining two problem instances we obtained at least a

2% penalty value reduction with any of the three solution techniques.

81

Chapter 6

Conclusions and Future Work

In this chapter we present possible ways to improve and extend the research
presented in this thesis. Following that we conclude with a summary of our
contributions.

The research we have presented in this thesis is a starting point for pos-
sible future work. To begin with, different models of the problem could be
examined. An obvious choice would be to apply our solution techniques to
the batch model (where the variables are batches). Given the structure and
tightness of the constraints, it may be possible that this model will outperform
the slot model that we examined. Furthermore, different ways of handling the
internal lot sequences could be examined. Instead of fixing the lot sequences
within each batch, several possible sequences could be included for each batch.
Another way to improve the model would be to redefine the even distribution
constraint. This would require an investigation of the manufacturing com-
pany’s procedures and goals, since there is no clear declarative definition of
what a good even distribution is.

There are also many improvements that could be made to the three solution
techniques that we devised. To begin with, the hill-climbing algorithm can be
improved by including random walking, random restart, and tabu search or
simulated annealing. Furthermore, different neighborhood functions could be
applied to this problem. For example, instead of swapping values between pairs
of variables, values may be rearranged within sets of three variables. However,

implementing such a neighborhood function for every possible combination of

82

three variables would increase the size of the neighborhoods.

The backtracking algorithms also have room for improvement. The prop-
agation techniques could be improved for both backtracking algorithms. This
would include implementing the all-different and cardinality arc-consistency
propagators described in [15] and [16], respectively. Furthermore, the variable
and value ordering could possibly be improved. This would involve defining
heuristics specific to the problem (see [4] for examples of scheduling heuristics).
The loosening approach can clearly be improved by changing how constraints
are selected to be loosened. Such a change would require analyzing the search
and deducing which constraint needs to be loosened for a solution to be found.
Such an improvement might also allow propagation on soft constraints without
influencing the constraint selection process. The branch and bound approach
can also be improved by introducing a better heuristic. An obvious heuristic
would be to count the internal penalty violations of the batches that have not
been instantiated yet.

There are also several other solution techniques that can be potentially
applied to the vehicle sequencing problem. For instance, Zhao and Goebel
[25] present a depth-first search and best-first repair algorithm for solving
a dispatcher scheduling problem. Essentially this algorithm extends partial
solutions as far as possible. Instead of backtracking, it then applies a repair
algorithm (a form of local search) on the partial solution until a new partial
solution is found that can be extended. If no extendable partial solution can
be found with the repair algorithm, soft constraints are temporarily removed
from the problem until the partial solution can be extended.

Oddi and Smith [13] present another possible approach. They proposed
an iterative sampling algorithm with stochastic variable and value ordering
heuristics and applied this algorithm to an extended version of the job-shop
scheduling problem. Iterative sampling alone involves randomly exploring dif-
ferent paths in a search tree. Including stochastic variable and value ordering
heuristics implies that the exploration of the search tree is guided by infor-
mation provided by the heuristics. For the algorithm described by Oddi and

Smith, the amount of randomness at any point in the search tree is dependant

83

on the information provided by its heuristics. If a heuristic evaluates a partic-
ular choices as being significantly better than any other, then the algorithm is
likely to select that choice. However, if several choices are evaluated as being
almost as good (or the same) as the best choice, then the algorithm’s choice
will be more random.

In this thesis, we have introduced a real-world optimization problem that
we modeled and solved using a constraint-based approach. We presented sev-
eral possible ways to model the vehicle assembly line sequencing problem as a
CSP. For one of these models, we applied three different techniques. All three
of these techniques improved results over TigrSoft’s greedy search algorithm
for all six problem instances. For four out of the six problem instances (prob-
lems 1, 2, 4, and 6) we were able to achieve, for all three solution techniques,
improvements considered significant by TigrSoft. Furthermore, all three tech-
niques were capable of finding solutions within TigrSoft’s thirty minute time
requirement. We also demonstrated the importance of decomposing the prob-
lem into one-day sub-problems. We conjectured that because of the tightness
of the even distribution constraint and its relationship with the other con-
straints, such a decomposition has little affect on the potential quality of an
overall solution. For nearly all of these one-day sub-problems, we proved opti-
mal solutions within a reasonable amount of time using the branch and bound
technique. In even less time, the branch and bound technique was able to find
nearly identical results without proving optimality for many sub-problems.
The local search technique was also able to find relatively good solutions.
Given the simplicity of this algorithm, it is likely that even better results
could be found with a local search approach. The loosening approach was the
least successful of the three algorithms (most likely due to a poor selection of
the constraints to loosen). Improving this approach is likely possible, but the
usefulness of such an improvement is questionable due to the quality of the
solutions obtained by the other two simpler algorithms. Overall for our best
method, the branch and bound technique, we obtained improvements ranging
between 3% and 13% for six real-world problem instances.

Given these results, the most promising improvement appears to be in

84

the problem specification. Redefining the even distribution constraint in such
a way that it does not tightly constrain batches from being shared between
days would allow for the solution quality to be improved even more. The
problem with such a modification is that it is not clear what defines a good
distribution and redefining it would involve an analysis at the business level.
If such a modification was done, it would provide an even more challenging

problem with the potential for improved results.

85

Bibliography

[1]

E. Aarts, J. Korst, and P. Laarhoven. Simulated annealing. In E. Aarts
and Lenstra J. K., editors, Local Search in Combinatorial Optimization,

pages 91-120. John Wiley & Sons Ltd., 1997.

E. Aarts and J. K. Lenstra. Introduction. In E. Aarts and Lenstra J. K.,
editors, Local Search in Combinatorial Optimization, pages 1-17. John
Wiley & Sons Ltd., 1997.

F. Bacchus and P. van Beek. On the conversion between non-binary and
binary constraint satisfaction problems. In Proceedings of the Fifteenth
National Conference on Artificial Intelligence, pages 311-318, Madison,
Wisconsin, 1998.

J. C. Beck, A. J. Davenport, E. M. Sitarski, and M. S. Fox. Texture-
based heuristics for scheduling revisited. In Proceedings of the Fourteenth
National Conference on Artificial Intelligence, pages 241248, Providence,
Rhode Island, 1997.

C. Bessiére and M.-C. Cordier. Arc-consistency and arc-consistency again.
In Proceedings of the Eleventh National Conference on Artificial Intelli-
gence, pages 108-113, Washington, DC, 1993.

A. Borning, B. Freeman-Benson, and M. Wilson. Constraint hierarchies.

LISP and symbolic computation, 5:223-270, 1992.

T. Chase, C. Klepchak, P. Lavery, M. Subramanian, and D. Vergamini.

Centralized vehicle scheduler: An application of constraint technol-

86

[10]

[11]

[12]

[13]

[14]

[15]

[16]

ogy. http://www.ilog.com/products/optimization/tech/research/cvs.pdf,
1998.

A. Davenport and E. Tsang. Solving constraint satisfaction sequencing
problems by iterative repair. In Proceedings of the First International
Conference on the Practical Application of Constraint Technologies and

Logic Programming, pages 345-357, London, 1999.

E. C. Freuder and R. J. Wallace. Partial constraint satisfaction. Artificial
Intelligence, 58:21-70, 1992.

R. M. Haralick and G. L. Elliott. Increasing tree search efficiency for
constraint satisfaction problems. Artificial Intelligence, 14:263-313, 1980.

A. Hertz, E. Taillard, and D. de Werra. Tabu search. In E. Aarts and
Lenstra J. K., editors, Local Search in Combinatorial Optimization, pages

121-136. John Wiley & Sons Ltd., 1997.

A. K. Mackworth. Consistency in networks of relations. Artificial Intel-
ligence, 8:99-118, 1977.

A. Oddi and S. Smith. Stochastic procedures for generating feasible sched-
ules. In Proceedings of the Fourteenth National Conference on Artificial
Intelligence, pages 308-314, Providence, RI, 1997.

B. D. Parrello and W. C. Kabat. Job-shop scheduling using automated
reasoning: A case study of the car-sequencing problem. Journal of Auto-

mated Reasoning, 2:1-42, 1986.

J-C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of the Twelfth National Conference on Artificial Intelligence,
pages 362-367, Seattle, Washington, 1994.

J-C. Régin. Generalized arc consistency for global cardinality constraint.
In Proceedings of the Thirteenth National Conference on Artificial Intel-
ligence, pages 209-215, Portland, Oregon, 1996.

87

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

J-C. Régin and J-F. Puget. A filtering algorithm for global sequencing
constraints. In G. Smolka, editor, Principles and Practice of Constraint

Programming - CP97, pages 32—46. Springer-Verlag, 1997.

ILOG Press Release. ILOG drives productivity improvements at Chrysler.
http://www.ilog.com/success/chrysler/index.cfm, 1997.

ILOG Press Release. Peugeot-Citroen standardizes on ILOG optimization
components. http://www.theautochannel.com:8080/ news/ press/ date/

19990803/ press027663.html, 1999.

K. Smith, M. Krishnamoorthy, and M. Palaniswami. Optimal sequencing
of car models along an assembly line. In Proceedings of the 12th National
Australian Society for Operations Research (ASOR), pages 580-603, Ade-
laide, Australia, 1993.

E. Tsang. Foundations of Constraint Satisfaction. Academic Press, 1993.

P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfaction
using constraint logic programming. Department of Computer Science

Technical Report CS-91-62, Brown University, Providence, RI, 1991.

M. Wallace. Applying constraints for scheduling. In B. Mayoh and J. Pen-

jaam, editors, Constraint Programming. Springer-Verlag, 1994.

M. Wallace. Practical applications of constraint programming. Con-

straints Intelligence, 1:139-168, 1996.

Q. Zhao and R. Goebel. A method for dealing with potentially relaxable
constraints and its application to a dispatcher scheduling system. In
Proceedings of the IJCAI-97 Workshop on Business Applications of Al
pages 83-88, Nagoya Congress Center, Nagoya, Japan, August 23-29 1997.

88

