
In compliance with the
Canadian Privacy Legislation

some supporting forms
may have been removed from

this dissertation.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the dissertation.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

R e p r o d u c e d with p e r m is s io n o f t h e c o p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

U niversity o f A lberta

A c t iv e Q u e u e M a n a g e m e n t P o l ic y B a s e d o n L if e t im e C l a s s if ic a t io n

by

X udong Wu

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of D o c to r o f Ph ilosophy .

Department of Computing Science

Edmonton, Alberta
Fall 2003

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1*1 National Library
of Canada

Acquisitions and
Bibliographic Services

3 9 5 W ell ing ton S t r e e t
O t ta w a ON K1A 0N 4
C a n a d a

Bibliotheque nationale
du Canada

Acquisisitons et
services bibliographiques

3 95 , ru e W ell ing ton
O t ta w a ON K1A 0N 4
C a n a d a

Your file Votre reference
ISBN: 0-612-88070-2
Our file Notre reference
ISBN: 0-612-88070-2

The author has granted a non
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accorde une licence non
exclusive permettant a la
Bibliotheque nationale du Canada de
reproduire, preter, distribuer ou
vendre des copies de cette these sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
electronique.

L'auteur conserve la propriete du
droit d'auteur qui protege cette these.
Ni la these ni des extraits substantiels
de celle-ci ne doivent etre imprimes
ou aturement reproduits sans son
autorisation.

Canada
R e p r o d u c e d with p e r m is s io n o f t h e co p y r ig h t o w n e r . F u r t h e r r e p r o d u c t io n p ro h ib i ted w i th o u t p e rm is s io n .

U niversity o f A lberta

Library R elease Form

Nam e o f Author: Xudong Wu

T itle o f Thesis: Active Queue Management Policy Based on Lifetime Classification

Degree: Doctor of Philosophy

Year th is D egree Granted: 2003

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright in
the thesis, and except as herein before provided, neither the thesis nor any substantial portion
thereof may be printed or otherwise reproduced in any material form whatever without the
author’s prior written permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U niversity of A lb e rta

F acu lty of G ra d u a te S tu d ies an d R esearch

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A ctive Q ueue M an ag em en t Policy
B ased on L ifetim e C lassification submitted by Xudong Wu in partial fulfillment of the
requirements for the degree of D o c to r o f Ph ilo sophy

>
 —
Dr^Toaiiis Nikolaidis

ll̂ r. i f] ll^ina Traikov/c

Dry Petr Musilek

Dr. Janelle Harms

yctUj 'c/ 2c'c3
Dr. Michael H. MacGregor

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

The unfairness problem in terms of throughput between competing TCP flows has been

studied for at least a decade. The primary causes of this unfairness problem are the negative

impact of mixing long- and short-lived flows and the difference in round trip times (RTTs)

of different flows. Eventually, the unfairness may lead to starvation of particular TCP flows.

To counteract the unfairness, we propose a DiffServ-like active queue management (AQM)

scheme. It essentially involves classification of TCP flows into two classes, namely, long-

and short-lived flows, and application of different control policies to each class. In this

thesis, first, we consider applying the existing analytical throughput models to mixtures

of long-lived TCP flows. This will help us understand the difficulty of the problem and

the reason why the available models do not appear to be sufficient. We first describe our

model-based policy, FairShare, tha t imposes fairness among long-lived flows. The policy is

based on scheduled losses. W ith FairShaxe, max-min fairness can be achieved in single link

environment. We also validate the performance of FairShare in larger networks and with

dynamic background traffic. Subsequently, we illustrate how FairShare can achieve global

max-min fairness. We use statistical studies of real Internet traffic to justify the complexity

and feasibility of FairShare. We discuss general classification schemes based on lifetime

and RTTs. In particular, we propose a scheme, DAS, to dynamically allocate bandwidth

among classes based on measured demands. We thus advocate, that regardless whether the

particular FairShare scheme is used or not, a separation of TCP flows in classes reflecting

their RTT and lifetime membership is beneficial.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgem ents

I owe this thesis to the help, support, guidance and encouragement of several people. My
utmost gratitude goes to my adviser, Professor Ioanis Nikolaidis for his support and guidance
all these years. It has been a privilege to have worked with such a researcher who maintains
high standards for himself and insists the same from others around him. I would like to thank
Professor Jenelle Harms who was once my co-adviser for her guidance and encouragement
and support. I would also like to thank Professor Mike MacGregor for his encouragement
and constructive advices, and Professor Pawel Gburzynski for his support. I am grateful
to the rest of my dissertation committee - Professor Peter Musilek and Professor Ljiljana
Trajkovic for their advice and support in improving the quality of the thesis. My graduate
school experience has been vastly enriched by interactions with my colleagues in the research
group over the past years - Yanxia Jia, Hongjun Zhang, Kui Wu, Qiang Ye, Weiguang Shi,
Chong Wang, Lei Wang, Elvira Akhmetshina, Chong Zhang, Baochun Bai, Yuxi Li, Yuan
Sha, Fulu Li, Junhui Shen, Kun Bai, Juhua Shi, and Ping Xian. I have always enjoyed
and cherished their company. Many thanks to Edith Drummond who handles the graduate
student affairs in the department. I would also like to thank Professor Armann Ingolfsson for
his support and knowledge of stochastic process and optimization techniques I have learned
from him.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

1 Introduction and Background 1
1.1 A Brief Introduction to T C P ... 1

1.1.1 The Original TCP .. 1
1.1.2 The Presence of C o n g estio n .. 2
1.1.3 The Reaction to C ongestion .. 3
1.1.4 The Conservative S t a r t .. 4
1.1.5 The Recovery from Congestion ... 5
1.1.6 TCP V arian ts .. 6
1.1.7 RTT Estimation in T C P .. 7

1.2 Definitions... 9
1.2.1 Max-min Fairness... 9
1.2.2 Goodput and T h ro u g h p u t... 10
1.2.3 Loss (Wired vs. Wireless Environm ent)... 11

1.3 The Basic Problems of T C P ... 11
1.3.1 Phase Effect and R E D .. 12
1.3.2 Fairness Over Flows with Different R T T s .. 14
1.3.3 Long vs. Short TCP Flow s... 17

1.4 Thesis Objective and O u t l i n e .. 18

2 TC P Throughput M odels 20
2.1 Simulation-based M odels .. 20
2.2 Individual Flow Equilibrium Throughput Models .. 23
2.3 Other Approximation M o d e ls .. 28

3 M odel-based Link O riented Fairness 30
3.1 In troduction .. 30
3.2 The FairS hare Scheme... 31

3.2.1 Regulating TCP Flows via Scheduled L o sses ... 32
3.2.2 The A lg o r ith m .. 34

3.3 Simulation S tu d y .. 37
3.4 D iscussion ... 42

4 AQM and Global Fairness O bjectives 44
4.1 In troduction 44
4.2 Distributed Global Fairness ... 45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.2.1 Synchronized A lg o rith m .. 45
4.2.2 Distributed Algorithm and C onvergence .. 49
4.2.3 FairS hare A lgorithm .. 54

4.3 Simulation S tu d y .. 56
4.3.1 Experiment 1 .. 56
4.3.2 Experiment 2 .. 57
4.3.3 Experiment 3 .. 59
4.3.4 Experiment 4 .. 59

4.4 Conclusion... 61

5 T C P L ifetim e &: R T T C lassification 63
5.1 In troduction .. 63
5.2 Lifetime Classification ... 63
5.3 Identifying Long-Lived TCP F lo w s .. 66
5.4 RTT C lassifica tion ... 67
5.5 RTT E stim ation .. 68
5.6 Classification S c h e m e s ... 69

5.6.1 Classification Schemes Based on Simple R u le s .. 69
5.6.2 Dynamic Bandwidth Allocation for Lifetime-Based TCP Classification 70
5.6.3 DAS-BV.. 72
5.6.4 DAS-ED.. 73
5.6.5 DAS-EL.. 75

6 P e rfo rm an ce In v es tig a tio n o f C lassification Schem es 80
6.1 In troduction .. 80
6.2 Evaluation of DAS... 80

6.2.1 Simulation S e tu p ... 80
6.2.2 Experiment R esu lts .. 82

6.3 Investigation of Classification Based on Simple R u le s 88
6.3.1 Simulation S e t u p ... 88
6.3.2 Evaluation R e s u l t s .. 89

6.4 C onclusions... 96

7 Som e R ec e n t R esu lts 98
7.1 In troduction ... 98
7.2 Evaluation of X C P .. 98

7.2.1 XCP Congestion Header and Efficient C o n tro l....................................... 99
7.2.2 XCP Fairness Control .. 100
7.2.3 XCP Performance Under Mixture of R T T s .. 103
7.2.4 XCP Performance Under Mixture of Lifetime and Dynamic Conditions 103

7.3 An Alternate Lifetime-Based S c h e m e ... 106

8 S u m m ary a n d F u tu re W ork 109
8.1 S u m m a r y .. 109
8.2 Future W ork ... I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

1.1 Illustration of TCP: (a) Tahoe and, (b) Reno... 8
1.2 RED Operation.. 14
1.3 Unfairness due to RTT difference: (a) DropTail and (b) RED.......................... 16

2.1 Experimental Topology. .. 21
2.2 Joint and marginal PDF of W\ and W 2 .. 26

3.1 Steady state congestion window behavior in, (a) TCP-Tahoe and, (b) TCP-
Reno.. 33

3.2 The init_long_flow() function... 35
3.3 The tick() function... 36
3.4 The upon_packet_arrival() function... 37
3.5 Throughput achieved by F a irS hare vs. that by DropTail and RED................. 39
3.6 Throughput of the three competing flows under the F airS hare scheme. . . 40
3.7 Throughput of flow 0 bottlenecked at a remote node.. 41

4.1 The find_global_optim al_rates procedure.. 46
4.2 Illustration of the d istribu ted_g lobal_op tim al_ ra tes procedure................... 51
4.3 Topologies in, (a) scenario 1, (b) scenario 2... 57
4.4 Experiment 2, (a) topology and (b) goodput 58
4.5 Experiment 3 (a) topology and (b) goodput... 60
4.6 Experiment 4 (a) topology and (b) goodput... 61

5.1 Pareto Distribution fit on Trace 1 for various thresholds.................................... 65
5.2 The TCP Handshake Exchanges... 67
5.3 RTT Spectrum: Y axis, Frequency, X axis, logl0(RTT/10~5)............................ 77
5.4 DAS-BV upon_packet_arrival()... 78
5.5 DAS-ED upon_packet_arrival()... 78
5.6 D A S -E L u p o n _ p ack e t-a rriv a l()... 79

6.1 The goodput of long and short-lived flows under the DAS schemes (RTT_Ratio=2). 85
6.2 The goodput of long and short-lived flows under the DAS schemes RTT_Ratio=10. 86
6.3 The goodput of long and short-lived flows for DropTail and RED..................... 87
6.4 Short-lived flow load on (a) fairness of long-lived flows, and (b) the response

time of short-lived flows, with or without classification schemes, using DropTail. 89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.5 Short-lived flow load on response time for fixed vs. dynamic (DAS) bandwidth
allocation...

6.6 Short-lived flow load on fairness among long-lived flows for (a) lifetime-based,
(b) RTT-based, and (c) combined, or no classification scheme (MIX-DT, MIX-
RED)..

6.7 Short-lived flow load on the average response time of short-lived flows for (a)
lifetime-based, (b) RTT-based, and, (c) combined, or no classification scheme
(MIX-DT, MIX-RED)...

6.8 Fairness of long-lived flows for (a) lifetime classification, (b) RTT classifica
tion, and, (c) combined, or no classification scheme (MIX-DT, MIX-RED). .

7.1 Fairness Under Different RTTs, (a) XCP, (b) FairShare......................................
7.2 Performance of XCP In a Dynamic Environment, (a), 100 PK T /s , (b),

200PKT/s, (c), lOOOPKT/s...
7.3 Loss Probability vs. Maximum Burst S i z e ..

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List of Tables

2.1 Experimental Configuration.. 21
2.2 Throughput Ratio without Queries Time... 22
2.3 The Throughput Ratio with Queries Time.. 23
2.4 Validation of Equilibrium Throughput: Individual Loss P ro b ab ility 25
2.5 Validation of Equilibrium Throughput: Common Loss P robability 25
2.6 Validation of Equilibrium Throughput: Individual Loss P ro b ab ility 27
2.7 Validation of Equilibrium Throughput: Common Loss Probability 28

4.1 The find_global_optimal_rates procedure.. 48
4.2 The distributed_globaLoptim al_rates procedure.. 50
4.3 The paths of flows in Experiment 2... 57
4.4 Per-flow bandwidth share in Experiment 2.. 59
4.5 Measured vs. predicted bandwidth distribution.. 62

5.1 Pareto distribution parameters (a,/3) capturing the empirical distribution. . . 65

6.1 Short lived flow response times in seconds (RTTJtatio=2).................................. 83
6.2 Short lived flow response times in seconds (RTT_Ratio=10)................................ 83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 1

Introduction and Background

Recent statistical studies of Internet traffic show that the Transmission Control Protocol

(TCP) is still the dominant transport protocol used by many popular and important ap

plications [1, 2, 3]. These applications are e-mail, news, remote login, file transfer, some

streaming audio and video protocols and, most importantly, the World Wide Web. More

over, the studies show that the TCP flows carry the majority of traffic in the Internet. It

is reported that 95% of bytes and 90% of packets are controlled by TCP [1, 2, 3}. The

predominance of TCP determines that efficient use of the network resources depends on

the dynamics of TCP and its particular performance characteristics. To solve the problems

brought by the increasing volume of new applications, it is an urgent and challenging task

to study and improve the performance of TCP to provide QoS guarantees.

1.1 A B rief Introduction to TC P

1.1.1 T he Original T C P

TCP was proposed to provide highly reliable host-to-host connections (in this thesis, we

use connections and flows interchangeable) between hosts in the Internet [4], The basic

transmission unit of TCP is a packet (segment). Packets are obtained by segmenting a

continuous stream of bytes. TCP is assumed to operate on a potentially unreliable packet-

switching communication network. The data delivered in the underlying network can be

corrupted, lost, duplicated, or delivered out of order. Thus, in order to achieve reliability,

TCP assigns a sequence number to each byte transm itted and requires a positive cumulative

acknowledgment (ACK) from the receiver’s side. If the ACK is not received within a timeout

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

interval, the data is re-transmitted. On the other hand, the receiver side uses sequence

numbers to correct the problems caused by out-of-order packets and to eliminate duplicates.

Corrupted data are detected at the receiver by checking the checksum, appended at the

end of each packet by the data link protocol. Because the IP and TCP checksums are not

particularly strong, corrupted packets are discarded permanently at the data link layer. In

the following, for the sake of simplicity and without loss of generality, we assume sequence

numbers and ACKs are applied at the level of packets, rather than bytes. This approximation

is generally accepted by numerous research groups and simulation platforms [5, 6] and causes

no noteworthy inaccuracies. Flow control is another major function of TCP. A TCP sender

maintains a window, which represents the allowed number of bytes that the sender may

send before receiving further permission (acknowledgments convey such permission). The

objective of the window is to match the transmitting rate at the sender side with the reception

and processing rate at the receiver’s side. TCP is a connection-oriented protocol. When two

hosts wish to communicate, they must first establish a connection by initializing the relevant

information on each side via handshake scheme. The connection is explicitly closed after the

termination of data transfer.

1.1.2 T he P resence of C ongestion

The growth of the Internet in the mid 1980s caused severe problems of congestion. In the

landmark paper by Van Jacobson [5], it is reported that 10% of packets arriving at Internet

gateways were dropped. In October of 1986, the data throughput from Lawrence Berkley

Laboratory (LBL) to UC Berkley dropped from 32Kbps to 40 bps. The problem was rooted

in the flawed assumptions behind the interpretation of T C P’s timeouts. Since the number of

hosts hooked on the Internet was relatively small in the 70s, only the flow control mechanism

was implemented in the original design of TCP. The original design was only concerned about

matching the rates at the end hosts, which was addressed by flow control. The bandwidth in

the intermediate links was assumed sufficient and end-points did not know about the available

bandwidth. That is, once the end hosts set up the agreement on the rates via flow control,

the intermediate links always delivered the transm itted data through at that rate. Because

of the sufficiency of bandwidth in intermediate links, the packets were rarely dropped due to

the overflow of buffers in gateways. Thus, when the sender detects any timeout, it interprets

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

that timeout (really, a missing ACK) as a signal of corrupted packets. Consequently, the

sender re-transmits the supposed corrupted packet. After the rapid increase of hosts in the

Internet, the traffic in the Internet experienced explosive growth. The Internet links were no

longer sufficient in terms of bandwidth. Packets that cannot be delivered at the intermediate

link right away are stored at the gateway buffer. Therefore, packets might be discarded if

congestion persists. The congestion problem was beyond the consideration of the original

design of TCP. In particular, with the original design, the TCP senders had no means to

correctly acquire information regarding congestion along the path and what fraction of the

available bandwidth should each flow use. The TCP senders could only interpret the cause of

the increased number of timeouts as corrupted packets. Consequently, TCP re-transmitted

all of the timed out packets again. These retransmissions aggravated the congestion rather

than solve it. Such a problem could lead to the congestion collapse of the entire network.

1.1.3 T he R eaction to C ongestion

The essence of congestion control in TCP comes from re-defining the assumption about

packet losses. A study [5] showed that the packets lost due to bit errors are very rare

(<<1%). On the other hand, the packet losses due to congestion might be over 10%. As

a result, it is natural to modify the assumption on the cause of packets loss to reflect this

fact. The new assumption about packet losses is that all packet losses indicate the presence

of congestion along the path. The lost packets due to congestion overshadow the packets cor

rupted. The new assumption actually reflected the improvement of underlying infrastructure

and problems caused by increased numbers of users in the Internet. The other important

part of the re-designed TCP was the method of detecting lost packets. It could use a simple

design, in which timeout could be the only mechanism of detecting packets loss or packet

errors. However, since congestion occurs very often and accumulates very rapidly, a faster

way of detecting lost packets was needed. In the new design [7, 8], the sequence numbers in

ACKs are utilized to quickly detect lost packets. The scheme is called Fast Retransmission

[7, 8]. The essential idea of the Fast Retransmission mechanism is to infer packet losses from

out-of-order packets received at the receiver side. When packets are not received in the order

of their sequence numbers, it might imply two things: First, the packets with the smaller

sequence number might choose a longer path. Apparently, these packets may need longer

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time to arrive at the receiver host. They may arrive at the receiver side even after the packets

with larger sequence numbers that are sent later. A datagram packet-switched network al

lows this situation. Second, one or more packets could be dropped along the path. In either

case, the sender will notice the occurrence of out-of-order by the sequence numbers of the

ACKs. In fact, the senders cannot differentiate for sure between lost packets and just pure

unlucky out-of-order packets. One thing that the sender knows is tha t if an unlucky packet

causes an out-of-order event, the reordering will take place very soon. Otherwise, the sender

will receive out-of-order packets persistently. Such knowledge is used in the design of Fast

Retransmission. In the proposed mechanism [7, 8], the threshold number of duplicate ACKs

of differentiating lost packets from out-of-order packets is 3, a somehow arbitrary value. It

means tha t if 3 duplicate ACKs are received consecutively, then the sender should infer that

a packet has been lost, with a high level of confidence. Another relevant claim is that the

queue length at intermediate gateways increases exponentially when congestion occurs [5].

In order to respond to such rapid growth of congestion, the traffic should react by throttling

itself very quickly. Specifically, the sender reduces its window size by a multiplicative factor,

for example 50% [5].

1.1.4 T he Conservative Start

In the original TCP design, the end hosts negotiate the desirable rate (advertised window)

for both hosts, and start transmission at that speed, without considering the condition at the

intermediate links. This (old version) design will lead to congestion at the intermediate links

very easily when the total demands of all hosts exceed the link capacity. To avoid transiting

into congestion state constantly, the re-designed TCP senders are more conservative. Using

the Slow Start algorithm, TCP senders start transmission with the minimum possible rate

and increase the rate gradually; thus, “pushing” the load to higher values until a loss occurs

due to the flow attempting to use more bandwidth than available. Initially, the TCP sender

sets the window value to one Maximum Segment Size (MSS). It increases the size of the

window by one for every ACK it receives (exponential increase stage). Thus, the sending

rate, tha t is, the window size over RTT, will quickly reach the available link bandwidth,

that is the fraction of bandwidth apportioned at the moment. The real design of TCP is

a little bit more complex. The window size controlling the sending rate is the minimum of

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the advertised window negotiated by end hosts and the congestion window regulated by the

congestion control algorithm. TCP has another way of increasing the congestion window that

is called Linear Increase. That is, the congestion window size is increased by one for every

round trip time (RTT). Linear increase is much slower that the exponential increase which

doubles the window size every RTT. TCP assumes that the available bandwidth for this

flow is close to the bandwidth it experienced recently. Thus, the Linear Increase algorithm

produces a mild window increase when the current sending rate is close to the (assumed)

available bandwidth.

1.1.5 T he R ecovery from C ongestion

As the description in the above section points out, we know that the sender will reduce its

congestion window by a factor, 50%, on congestion. The most conservative way of reduction

is to reduce the congestion window to 1 and initiate the slow start algorithm (exponential

increase or double the congestion window size for every RTT) from the beginning. The

other, less conservative, way of reduction is to reduce the congestion window by 50% and

start the congestion avoidance algorithm (Linear Increase, or increase window size by one

MSS for every RTT) directly, which is called the Fast Recovery Algorithm [7]. In the first

case, the recovery starts from a smaller window size but has a faster increase rate. While

in the second case, it recovers from a larger congestion window but with milder increase. In

most cases, the second case is faster, but it might be poor when the recovery starts from a

severely congested state. To address such problem, Fast Recovery was proposed [7]. Fast

Recovery and Fast Retransmission are usually combined together. The essential idea of Fast

Recovery is injecting more ACKs in the transmission pipeline than those provided by linear

increase. W ith these extra ACKs, the sender will increase its congestion window faster than

with regular Linear Increase. Such a mechanism is particularly helpful in the case of a

small congestion window. Specifically, a complicated but important mechanism called the

“inflation of congestion window” is implemented. When congestion is detected at the sender

via the Fast Retransmission mechanism (via 3-duplicate ACKs), the congestion window is

reduced by half. This value is stored in a parameter called ssthresh. The lost packet is then

retransmitted. Before the retransmitted packet is acknowledged, the congestion window

is inflated by incorporating the outstanding packets cached at the receiver. At first, the

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

inflated congestion window value is ssthresh+3, and then it increases on every arrival of

duplicate ACKs. The inflated congestion window, that increases exponentially, controls

the sending rate. That is, in the process of retransmitting and confirming the lost packet,

the congestion window increases exponentially. This inflation terminates when the ACK

of the retransmitted packet returns to the sender; the congestion window size resumes to

the value stored in ssthresh. So, by the end of the loss recovery, the links have conveyed

some extra ACKs. Consequently, the congestion window will leap the first few rounds of

small congestion window size very quickly, even if the congestion avoidance algorithm (Linear

Increase) is active. The combination of linear increase and multiplicative decrease, are called

the AIMD scheme and is known to lead to an efficient and fair operating point [10] when

the delay of signaling is assumed to be zero. However, T C P’s operation resembles AIMD

without being exactly the same.

1.1.6 T C P Variants

The first TCP implemented with congestion control mechanism is 4.3 BSD Tahoe [7]. It

includes slow start, congestion avoidance and fast retransmission. Specifically, the TCP

increases its congestion window exponentially when the congestion window is smaller than

ssthresh, while it increases linearly when the congestion window size is larger than ssthresh.

In case of congestion, the congestion window is set to 1 immediately and set ssthresh to

the half of current congestion window size. TCP Tahoe [7] can be described by following

equations (1.1, 1.2).

Slow Start Phase :
cwnd(t) + 1, i f cwnd(t) < ssthresh{t)\

cwnd(t + T) = < (1-1)

C ongestion Avoidance Phase :
cumd(t) + , i f cwnd(t) > ssthresh{t);

where ssthresh(t) is the threshold value at which TCP changes from the slow start phase

to the congestion avoidance phase. In (Equation 1.1), time evolves whenever an acknowl

edgment is received. In addition, when a packet loss is detected through a timeout, cwnd(t)

and ssthresh(t) are updated as follows

,/ . , . . cwndit)cwnd(t + r) = 1; ssth(t + r) —---- . (1-2)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The later improved version is called 4.3 BSD Reno (Equation 1.3). In TCP Reno, TCP

responds to packet loss by reducing its congestion window by half and setting ssthresh to

that value. Subsequently, the TCP sender starts the linear increase (congestion avoidance

control) algorithm. The Slow Start algorithm is initiated in special cases in TCP Reno, such

as at the very beginning of the TCP connection and after timeouts. Therefore, TCP Reno

consists of congestion avoidance, fast retransmission, fast recovery and slow start algorithms.

The detail of Tahoe and Reno are illustrated in Figure 1.1.

cwnd(t + r) = cwnd(t) + cŵ d̂ , if no congestion indication
(1.3)

cwnd(t + r) = cwn̂ t) . + r) = cu,"d(*). if congestion indication

The underlying assumption in TCP Tahoe and TCP Reno is that, most of the time, only

one packet could be lost at most per round trip time. Thus, only one packet is expected to

be retransmitted when a fast retransmission is triggered. However, this assumption does not

always hold. In TCP SACK [9], more precise information on packets received is sent back to

the sender. W ith more accurate information on packets missing, the TCP SACK sender will

arrange retransmissions of all lost packets immediately even if the number of lost packets is

more than 1.

1.1.7 R TT E stim ation in T C P

The sending rate of a TCP session is the ratio of its congestion window over its round trip

time. TCP senders regulate their sending rate by adjusting the window size. RTT estimation

is an essential part for the effectiveness of TCP control algorithms. In the original TCP [5],

a low pass filter is used in estimating the average RTT, where R stands for the estimation

of RTT and M stands for the latest measurement of RTT:

R (1 - a) * R + a * M. (1.4)

Since the suggested value of alpha is 0.1, this algorithm filters out the instantaneous

deviations and derives the long-term value of R. The timeout value (RTO) is set as RTO <—

2 * R [4], In order to account for the increased congestion behaviour, [5] suggested the

following modification of the estimation method. Firstly, the alpha is modified to 1/8 since

this value is close to the original value and more convenient to implement by a shift operation.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cwnd Packet Drop

cwnd=12

congestion avoidance cwnd=ll

thresholds!

'slow start

cwnd=l

t

(a) Tahoe

Packet Drop

cwnd=16

Time Outcongestion ayoidance cwnd=

cwnd=l

threshold^

threshold=5
cwnd=5

Ihresl

'slow start
Fast Recovery

slow startcwnd=l

(b) Reno

Figure 1.1: Illustration of TCP: (a) Tahoe and, (b) Reno.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Secondly, the modified TCP maintains two estimators: the average of RTT and the variance

of RTT. Thirdly, the estimation of RTO, Retransmission TimeOut, accounts for the variance

of RTT, namely

RTO <- E[RTT] + 4 * var(RTT). (1.5)

1.2 Definitions

1.2.1 M ax-m in Fairness

Max-min allocation of bandwidth on a link can be described as an iterative process. Intu

itively, the max-min fairness allocation means that users with small demands get all they

want and uses with larger demands will eventually split the leftover. The formal definition

is: 1. Resources are allocated on the order of increasing demands 2. No user is allocated

resources more than it demands 3. Large users with unsatisfied demands split the remain

ing resources For example, we have 10 resources and 4 users with demands of 1, 2, 4, 6,

respectively. The allocation process is described as follows

Flow 1 Flow 2 Flow 3 Flow 4 Total
Demand (1) (2) (4) (6) (1+2+4+6 >

Iteration 1 1 1 1 1 4 < 10
Iteration 2 1 2 2 2 7 < 10
Iteration 3 1 2 4 4 11>10

Final allocation 1 2 3.5 3.5 10=10

The MAXMIN fairness can be modified to accommodate the screwed demands of band

width. The demands for TCP flows with high bandwidth demands can be assigned a higher

fair share. For example, the demand of flow 1 and 2 is 1:2. The fair share can also assigned

to be 1:2. So, the bandwidth allocated is 1:2 when the both flows cannot be satisfied.

Apart from per-link fairness, the larger issue at stake is whether we can determine the

fair allocation of bandwidth globally, for all the flows present in the network. Whether such

an approach is technically feasible depends, apparently, on the type of fairness. For exam

ple, max-min fairness is difficult to achieve without global information. Approximations to

global max-min fairness have been proposed, e.g., in [37], but the essence of such schemes

is that they depend on the ability to determine the local fairness allocation at each link.

Therefore, even though we make no claim for direct development of a globally fair allocation

scheme, we cover the mechanisms necessary for local fairness, with the understanding that it

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the building block of a global fairness algorithm (in the sense used by Charny [47]) if such

an objective is desired. An alternative would be the totally distributed implementation of a

fairness scheme. Using end-to-end mechanisms [36] it was shown that it is possible to achieve

(p, l)-proportional fairness, but max-min fairness has so far been unimplementable on an

end-to-end basis. Moreover, even the implementable (p, l)-proportional fairness is unattrac

tive because it requires a different end-to-end congestion control protocol, which is neither

TCP nor any other legacy protocol. For this reason, and also because proportional fairness

tends to victimize flows that span over a longer path, we consider max-min fairness only, and

open the potential for mechanisms at the routers to assist in achieving the fair allocation

of bandwidth among flows. This is where Active Queue Management (AQM) schemes be

come useful. Essentially, the thesis proposes AQM schemes that, when used throughout the

network, provide globally fair allocation of bandwidth. This approach is distinctly different

from other proposals where AQM schemes are studied on a single isolated link but never in

a network-wide setting. Indeed, it is unknown whether applying the particular AQM on all

nodes can lead the network to a specific operating point. The existence of such an operat

ing point, as well any features tha t such a point might exhibit, are unknown. The inverse

problem, i.e., desiring a particular operating point for the network and determining an AQM

scheme in order to achieve it, is also rarely discussed. When a particular operating point is

desired, this is caused by the reason tha t it exhibits a particular property, such as fairness.

For example, an operator may have an incentive to drive the operating point of an entire

network to be such that the flows of customers in its own network obtain the lion’s share

of available bandwidth. Clearly, the coexistence of multiple operators will be much better

facilitated, if it is known that by using a particular AQM scheme fairness will be achieved.

1.2.2 G oodput and T hroughput

In this thesis, the two terms, goodput and throughput, are used. The throughput is the

sending rate, including both the successful transmission and retransmission:

Throughput = # Packets Sen t/T im e.

The goodput is the rate of packets received successfully.

Goodput = # Packets Received Success fu lly /T im e .

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since the congestion is frequently encountered nowadays, we have to distinguish between

the two definitions. In some of our experiments, we assume that the TCP sources have

infinite data to send and are always regulated by the TCP congestion avoidance algorithm.

In such environments, TCP flows’ demands for bandwidth are neither their throughput nor

their goodput. Their demands for bandwidth are infinite. Thus, such TCP flows are called

“greedy” in the sense that they will attem pt to consume whatever resources one provided to

them.

1.2.3 Loss (W ired vs. W ireless Environm ent)

In our experiments, loss is only caused by congestion in the network. This assumption holds

in the wired environment. However, in wireless environments, both unreliable transmission

media and congestion can cause packets loss. Therefore, the extra packet losses caused by

the physical layer in wireless environment will affect the overall behaviour of FairShare. For

example, due to excessive packet loss in the wireless environment, TCP sources reduce its

sending rate to a very small value. Thus, from the edge router point of view, the FairShare

policy interprets such TCP sources as those with limited demands that often require no

regulation. In short, FairShare policy does not interact with the wireless losses any different

than how the end-to-end TCP flow does.

1.3 The Basic Problem s of TCP

TCP is a transmission protocol tha t needs little or no support from the core of the network.

This is considered a merit because TCP does not require particular complexity in the in

termediate gateways. The only effort needed is deploying TCP at end hosts. As a result,

TCP was widely deployed and dominates today’s Internet. It nevertheless possesses some

major inherent drawbacks affecting its performance in the environment of increased traffic

volume. The first drawback of TCP is imprecision of congestion signalling. TCP has no

explicit congestion signal defined. It infers congestion by packet loss: that is, it assumes all

packet losses are caused by congestion. This assumption might not always hold, especially

in wireless environments where the noise/signal ratio is high resulting in dropped packets

due to bit errors. Incorrect interpretation of corrupted packets will lead to low utilization.

The second drawback is the imprecision of the congestion signals. Packet losses occur when

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

buffers overflow. Only the TCP flows losing some packets recognize the congestion and

respond by throttling their sending rate. The current mechanism does not guarantee that

all TCP flows are notified when congestion occurs. As a result, some TCP flows will take

advantage by consuming capacity released by other flows. The third drawback of TCP is

the slow processing speed in detecting congestion. As the definition of Fast Retransmission,

TCP infers packet loss by receiving 3 duplicate ACKs and speculates congestion. Again,

the current mechanism reuses the information for the purpose of inferring congestion. The

simplicity is compensated by slower inference time; TCP senders use 3 pieces of indirect

information that could, in principle, be replaced by one single explicit piece of informa

tion. The fourth drawback is the imprecision of information about the available bandwidth.

The congestion signal for TCP is a binary variable, tha t provides no information about the

amount of available bandwidth for the TCP flows experiencing congestions. According to

the equilibrium used in [5], the current mechanism assumes tha t the available bandwidth

for a congested TCP flow converges to a particular value in the long term. TCP speculates

tha t the available bandwidth of the near future is very close to the maximum bandwidth it

received in the recent past. Thus, the congestion window increases cautiously (linearly) to

the speculated size by 1 /cwnd per RTT. This speculation might not be accurate when the

system is extremely dynamic, e.g., when new connections are constantly being set up and

terminated. The fifth drawback is the asymmetric response speed to the congestion. Each

TCP is essentially a closed-loop control system. If TCP flows receive congestion signals,

the congestion signals are transmitted at different speeds. That is, with the difference in

their RTTs, TCP flows react to the congestion with different speed, even if they receive the

congestion signals at the same time instant. This asymmetric behavior, combined with the

imprecision, raises a serious fairness problem that will be addressed extensively in this thesis.

1.3.1 P hase Effect and R ED

In [11], the Phase Effect was reported. Essentially, the traffic of a particular long TCP flow

is periodic. That is, a TCP sender sends a bulk of packets with a period of RTT, although

the sender adjusts the size of the bulk every RTT, and RTT is a random variable rather than

a constant. The study [11] shows that when two TCP flows of different RTTs compete at

a congested link, one TCP flow might lose packets consistently when congestion occurs and

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

end up with a relatively lower throughput. This phenomenon is called “Phase Effect” [11].

To solve the phase effect, [11] suggested to add randomization in the queue management

policies. Random Early Detection (RED) was proposed as the solution of phase effect and a

congestion control mechanism at gateways [12]. RED maintains two variables: the average

queue size Q and packet dropping probability p. The average queue size is obtained by a

low pass filter, which is described by

Q <— (1 — wq) * Q + wq * Qf. (1.6)

where Q stands for the long term average queue size, Ql stands for instantaneous queue

size, and wq is an operation parameter. This average queue size, Q, is an indicator of

congestion. Larger Q, suggests severe congestion, and thus, needs more drastic rate throt

tling. Two preset threshold parameters: m inthresh and m axthresh, are used to define the

magnitude of congestion. W ith Q smaller than m inthresh, the congestion is considered

non-existent. When Q is larger than maxthresh, the congestion is severe and every packet

is lost with a constant loss probability Pmax (Figure 1.2). In the case where Q is between the

two thresholds, the congestion is considered medium. The realistic implementation of RED

also accounts for the packets dropped in the recent past, which is described in the second

equation in (Equation 1.7). Packet dropping is still interpreted as congestion signalling. Ac

cording to the degree of congestion, RED controls the “strength” of signalling by adjusting

the frequency of packet dropping. Technically, the regulation is implemented by adjusting

the dropping probability associated with each arriving packet. Larger dropping probability

suggests more frequent packet drops. Specifically, when the congestion is not present, the

dropping probability is 0. When the congestion is medium, the dropping probability is pro

portional to the difference between the average Q size and minthresh. When the congestion

is severe, the dropping probability is set to its maximum value.

. p v Q —m inthresh
P m ax m axthresh—m inthresh

1 (1.7)
T > = ------- ----------w ^ 1—c o u n tx p f

RED is a policy with useful features. Since congestion can develop very fast and is

disruptive, detecting congestion earlier would be very appreciated for proactive operation.

In addition, the randomization in selecting victims distributes packet losses across all flows.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>p P_max

minthresh maxthresh Q_bar

Figure 1.2: RED Operation.

In this way, TCP flows cannot easily escape from packet losses. Each packet has the same

probability of being dropped regardless of the flows it belongs to. Lastly, the randomization

also improves the fairness between flows. Flows with more packets stored in current queue

are more likely to be victimized. It is natural to expect that the flows consuming more

bandwidth are very likely the ones with more packets in the buffer.

1.3.2 Fairness Over Flows w ith D ifferent RTTs

The fairness problem has been noticed and extensively studied for a long period of time

[11, 12], Specifically, TCP flows with relatively longer RTT received less bandwidth. The

interaction between TCP flows of different RTTs is an extremely difficult problem that

has not been solved yet analytically. We can provide only the qualitative argument. The

regulation of TC P window is operated over the interval of its RTT. Thus, TCP flows with

larger RTTs usually need longer time to respond and recover from congestion. However,

router link scheduling policies like DropTail are work-conserving, tha t is, the link will never

be idle when packets wait for service. As a result, the TCP flows with small RTTs could

finish several rounds of transmission before the packets from TCP flows with longer RTTs

arrive at the bottleneck. Consequently, the increase of congestion window of TCP flows with

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smaller RTTs exceeds the one of TCP flows with larger RTTs.

Flow 1: 8 4 5 6 7 8 9 10
Flow 2: 8 4

We illustrate our argument with a simple example. In this example, we have two flows

competing at a common bottleneck. The RTT of Flow 2 is 6 times of Flow 1. At the time

instant 0, a congestion signal is noticed by both flows when their congestion window is 8.

Both flows respond to the congestion via reducing their congestion window to 4. However,

before the data of flow 2 arrives at the bottleneck, flow 1 has already made 10 successful

transmissions and increased its congestion window to 10.

Drop Packet(s) from Ratio of Next Congestion Window Size
Flow 1 5:4

Flow 1 & 2 5:2
Flow 2 11:2

The DropTail policy could possibly worsen the unfairness. There are 3 possible scenarios

when at most 1 packet is dropped from each flow in case of congestion. Ideally, a packet

from Flow 1, the one tha t consumes most of the bandwidth, should be dropped. However,

if the bandwidth is already close to congestion when packets from Flow 2 arrive, those Flow

2 packets experiencing long journey are the vulnerable candidates of dropping. W ith the

presence of accumulating queue due to congestion, there might be some packets accumulated

in the buffer already. The Flow 2 packets will probably be placed at the end of buffer and

be dropped. Consequently, the scenario 3 could happen very likely in case of incipient

congestion. We do not claim that our analysis is general, but we do get the insight how

DropTail can aggravate the unfairness. As RED introduces a randomization approach in

selecting dropped packets, the next congestion window is easier to predict probabilistically.

Specifically, since each packet is dropped with an identical probability and independently,

for Flow 1, the probability of losing one packet is ancl the probability of not losing

one packet is .. Thus, the expected window size of next time instant is the sum of the

expected window size of both cases. The expected size of the next congestion window size

of both flows are derived as follows:

Expected size of next congestion window
Flow 1: 11*4/14 + 5* 10/14= 6.71
Flow 2: 5* 10/14 + 2*4/14= 4.15

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

35

i

| 20

15at! 10
I

5

0
RTT Ratio fFlow 1 1 Flow 03 RTT Ratio (Row 1 / Row 0>

(a) DropTail (b) RED

Figure 1.3: Unfairness due to RTT difference: (a) DropTail and (b) RED.

From the above example, we can see that although RED might not be able to make an

optimum decision in terms of fairness, it can approach the optimum and avoid the most

unfavorable scenario.

Figure 1.3 demonstrates the ratio of the throughput received by two flows, as a function

of the ratio of their corresponding propagation delay RTTs. The two flows share the same

bottleneck link with a buffer space of 24 packets and a link speed of 100 packets per second

(fixed size packets) but the ratio of the RTTs of the two flows spans an order of magnitude.

Specifically, the RTT of flow 1 is set to 100 msec (approximating the RTT of a flow within the

North American continent), while th a t of flow 0 ranges from 100 msec to lsec (representing

the range from intra-continental to inter-continental traffic). As it can be seen, DropTail

results in a ratio up to 34:1 between the throughput achieved by the two flows (the lesser

throughput received by flow 0) while RED produces1 a ratio up to 14:1. This is precisely what

we wish to avoid. The ideal ratio in this example ought to be 1:1 regardless of the RTT of

the two flows. From the figures (Figure 1.3) we can see that the fairness is improved by using

RED policy at the gateways. However, we can see that the fairness is still far from ideal.

This result is caused by inherent design limitations of RED. Firstly, like DropTail, RED is

work-conserving. RED cannot leave the link idle while packets from flows are waiting in the

queue. Thus, TCP flows with shorter RTT still have more opportunity of consuming more

bandwidth; they consume all bandwidth if packets from long RTT flows have not arrived,

and compete for bandwidth if they could. To achieve the same rate of TCP flows with

shorter RTT, TCP flows with longer RTTs need a larger congestion window to balance the

1RED parameters: m axp = 0.02, minth = 5, max,/, = 15, wq = 0.002.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

relatively longer RTTs. In RED, it is not easy for TCP flows with longer RTTs to reach a

relatively larger congestion window. Secondly, the dropped packets are selected randomly.

Although the principle is reasonable, the probability of making an incorrect decision is still

high. Since the control decision will affect the TCP source behavior in the future, the price

of making incorrect dropping decision is severe in terms of fairness. For the decision that has

a long-term impact, the accuracy of decision is more valuable. Thirdly, the assumption, that

the flows consuming more bandwidth store more packets in the buffer, holds for the long run

only. However, the dropping decision is made over a snapshot of the system state, and the

distribution of packets at a particular time instant. The flows consuming more bandwidth

in the long run might not store more packets in the buffer at any time instant. Fourthly,

the reaction to the congestion is proportional to the difference between the average queue

size and minthresh. This design is acceptable when the queue is not so dynamic. However,

if the average queue size deviates from the minthresh very quickly, RED might not be fast

enough since its reaction is not considering the rate of change of the queue.

1.3.3 Long vs. Short T C P Flow s

Statistical studies on real life traffic [13] also show a wide variety in terms of TCP flow

lifetime distribution. Using a definition [13] of short-lived flows as those lasting shorter than

2 seconds and long-lived flows as those lasting longer than 15 minutes, 45% of flows are

short-lived and a significant fraction of flows are long-lived (1.5%) tha t carry 50% - 60%

of bytes. The measurement results in [13] are important in understanding the behavior

of TCP flows. Essentially, TCP congestion control is designed for long-lived flows, where

TCP sources could adjust their sending rate with the information inferred or received via

feedback. W ith TCP flows lasting a very short amount of time, the senders might not benefit

from the congestion control mechanism. It is reported that short-lived TCP flows are at a

disadvantage when they compete against long-lived TCP flows [14, 15, 16]. Firstly, TCP

flows increase its rate conservatively from the minimum possible value. Thus, short TCP

flows are more likely to experience slow-start increase for their whole lifetime. Secondly,

short TCP flows usually have small congestion windows. Thus, the packet loss might not be

detected by 3-duplicated ACK due to the overly small congestion windows. Time out, which

is much slower mechanism, might be used for packet loss detection. Thirdly, TCP flows use

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

their RTT estimation for time out value. A conservative large initial value for timeout is

utilized before any information available for estimation, via feedback, is made available at

the sender.

1.4 Thesis O bjective and Outline

The objective of our research is to design an efficient and simple policy that could achieve

fairness between competing TCP flows based on rigorously studied mechanisms. The ex

tension of this is the ability to achieve global fairness as well. Our policy is expected to

achieve fairness between TCP flows with different RTTs. One might debate if the absolute

fairness is appropriate. We argue that we could extend our policy easily to the weighted

fairness that could allow any allocation of weights. The point of our research is to regulate

the bandwidth received by TCP flows regardless of their RTTs. Our policy is expected to

also be efficient. The bandwidth is a precious resource in case of congestion. We argue that

it is inappropriate to sacrifice high utilization for fairness allocation. Therefore, both high

throughput and fairness are essential to be achieved. We also expect our policy to be simple

and easy to be deployed. To this end, we avoid policies requiring modification of TCP head

ers. We argue that such polices need global cooperation and are unlikely to be deployed on

Internet. Instead, we move the complexity to the periphery routers since core routers have

significantly more flows and it is prohibitive expensive to keep states of thousands of flows on

the fly. Our policy is based on a model of the behavior of TCP flows. We have noticed and

verified models proposed recently. We indicate that models used for engineering TCP-based

networks are not in presence. For example, they cannot predict the throughput of mixtures

of TCP flows. The outline of this thesis is as follows. In Chapter 2, we validate the existing

TCP throughput models through experiments. F a irS h a re , the model-based policy which

imposes fairness among TCP flows of different RTTs, is described in Chapter 3. We investi

gate the performance of F a irS h a re in terms of global fairness in large and dynam ic network

in Chapter 4. In Chapter 5, we describe our statistical studies supporting classification

schemes and several sub-schemes such as estimating RTT and identifying long-lived flows.

We also describe DAS, a policy tha t can dynamically allocated bandwidth among classes and

our study of classification schemes based on simple rules. The experimental evaluation of

these classification schemes are presented in Chapter 6. We present and evaluate the recent

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

engineering efforts of fairness AQM and classification schemes in Chapter 7. Finally, Chapter

8 summarizes the contribution of this thesis and gives some points for the future work.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 2

TCP Throughput M odels

The unfairness problem in TCP connections has been noticed and widely discussed soon

after the congestion avoidance algorithm was implemented [18, 19, 20, 21, 24, 25]. Naturally,

one way to approach the particular unfair behavior is to quantify it. The hope is that

a rigorous qualification of the unfairness, will lead to better understanding of how severe,

or under what parameter settings, the problem is most severe. Despite years of efforts,

theoretical understanding of the existing Internet protocols, including TCP, is extremely

challenging. It is difficult to select the most suitable framework of theory and making

appropriate simplifications to make the problem mathematically tractable while retaining

the essential features of the network system. Most of the theoretical studies of computer

networks come from the legacy of studies on the telephone communication network. The

prevailing belief in the early 1990s was that certain Markovian processes might be adequate

to model the Internet traffic. However, the particular feedback stemming from the congestion

avoidance algorithm was generally ignored. Although the congestion probing mechanism is

fully accounted for in the studies of the individual TCP flow, the mechanism’s impact on

the equilibrium of competing TCP flows is not fully understood and has been oversimplified.

In this document, we review the most representative models that were proposed to predict

the th ro u g h p u t of com binations of TCP flows, or of individual TCP flows.

2.1 Sim ulation-based M odels

A model based on extensive simulation experiments was proposed in [19]. In this model,

TCP flows with different RTTs were studied. In the study, TCP flows possessed different

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 2.1: Experimental Topology.

RTTs by default. Based on simulations using ns-2 [6], [19] concluded th a t the ratio of TCP

goodput between any two flows is bounded (Equation 2.1). The upper bound is the square of

reciprocal of corresponding RTTs, while the lower bound is half of the upper bound. While

the range of the ratio value is bounded, it is still wide enough to be useful in predicting the

throughput within sufficient accuracy.

0.5 x (^ l) 2 < G o o d P u t l < 2 (2.1)
R T T 2 - Goodputl ~ R TT2 V '

sO-rO 5 Mb, 50 ms
sl-rO 5 Mb, (50, 75, 100, 125, 150,

175, 200, 225, 250 ms}
rO-kO 0.8 Mb, 0 ms

rO-kO Queue DropTail, queue size=24
Packet Size 1Kb

Table 2.1: Experimental Configuration.

In [19], no evidence other than simulations conducted on ns-2 [6] were provided. Thus,

in order to validate the inequality proposed, we have conducted simulations with the same

simple topology (Figure 2.1) used in [19], Two long-lived TCP Reno flows are initiated from

sO and s i, respectively. The sink is kO. By varying propagation delay of sl-rO, the two TCP

flows capture flows with different RTT ratios. Simulations were run for 150 seconds of actual

system activity. The trace of the first 30 seconds was removed in calculating goodput of TCP

flows, in order to remove any transient effects. The simulation parameters are summarized

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in Table 2.1. Each simulation was repeated 5 times to eliminate coincidence of individual

experiment. In the table, P.Delay stands for Propagation Delay and Q.Delay stands for

queueing delay.

RTT=P. Delay
0-5 * (§ ^) 2

G oodput2
G oo dpu tl

(R T T l \ 2
VR T T 2 >

0.50 1.00 1.00
0.22 1.63 0.44
0.12 0.71 0.25
0.08 0.28 0.16
0.06 0.24 0.11
0.04 0.19 0.08
0.03 0.22 0.06
0.02 0.36 0.05
0.02 0.13 0.04
RTT=P.Delay + Q.Delay

0.5 * (§ 1 'h ro u q tip u t'l
T h ro u q h rm tl

(R T T l \2
VR T T 2 >

0.50 1.00 1.00
0.31 1.63 0.61
0.21 0.71 0.41
0.15 0.28 0.30
0.11 0.24 0.22
0.09 0.19 0.18
0.07 0.22 0.14
0.06 0.36 0.12
0.05 0.13 0.10

Table 2.2: Throughput Ratio without Queries Time.

The experiment results are summarized in Tables 2.2 and 2.3. We calculated the ratio

between measured goodputs of the two TCP flows. Note that RTT is the sum of propagation

and queueing delays. Since it was not clear in [19] whether the RTTs reported included the

delay of queueing, in our experiments, RTTs are calculated both ways, that is, with or

without average queueing delay included. As we can see in Table 2, most ratios of goodputs

(bold font) exceed the bound suggested in [19]. In order to lessen the impact of the phase

effect, we also introduce uniform random processing time for packets at the source. However,

our experiment in (Table3) still gave us results that differ from those predicted by the model

in [19].

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

RTT= P. Delay
0 - 5 * (§ l) 2 Th,rouqh,put2

T h ro u q h p u t l
(R T T l \2
\ R T T 2 >

0.50 1.03 1.00
0.22 0.66 0.44
0.12 0.48 0.25
0.08 0.30 0.16
0.06 0.38 0.11
0.04 0.18 0.08
0.03 0.22 0.06
0.02 0.26 0.05
0.02 0.15 0.04
RTT=P. Delay + Q.Delay

0.5* (i f i) 2 1 h ro u q h p u t‘2
T h ro u q h p u t l

(R T T 1 \ 2
V R T T 2)

0.50 1.03 1.00
0.31 0.66 0.61
0.21 0.48 0.41
0.15 0.30 0.30
0.11 0.38 0.22
0.09 0.18 0.18
0.07 0.22 0.14
0.06 0.26 0.12
0.05 0.15 0.10

Table 2.3: The Throughput Ratio with Queries Time.

2.2 Individual Flow Equilibrium Throughput M odels

A long-term equilibrium equation for TCP goodput was proposed in [20]. Unlike throughput,

goodput only counts the packets successfully transmitted. In most scenarios, the packet-

dropping rate is very small and below 1%. As a result, the difference between throughput

and goodput is very small. In the proposed model [20], the goodput of TCP connections is

formulated as a function of the loss probability it experiences. Similar equilibrium equations

were proposed in other papers [21, 24, 27]. The given equation is widely cited and is the

basis of some proposed engineering protocols [23, 28, 29]. This school of thought makes a

core assumption: the loss process experienced by competing TCP flows is a stationary and

independent stochastic process. For the sake of simplicity and without loss of generality, we

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

assume all packets are of constant unit size. The simplest model [20] suggested is:

Goodput = — x L - . (2.2)

We also conducted simulations to validate the proposed equation in the same topology

depicted in Figure 1 and with slightly different parameters. The bandwidth of sO-rO is set

to 8Mb instead of 5Mb. The sO-rO queue size is 30 instead of 24. Table 2.4 summarized the

measured goodput versus the predicted goodput by Equation 2.2. As in the previous section,

the analytical predictions are made both with RTT equal to propagation delay and with RTT

equal to the sum of propagation delay and average queueing delay. As we can see in Table 4,

the predicted goodput by model [20] is not even close to the measured goodput. The most

striking thing is th a t the sum of two predicted goodputs is larger than the capacity of the

congested link. The assumption of the model [20] is tha t each packet is lost with a probability

th a t is independent and follows the identical distribution between different packets, with the

mean denoted by p. In the experiments, we use the post-experiment loss probabilities, that

is, we got the average loss probability p from the trace of the whole simulation period. Since

it is not clear in [20] how the loss probability p is calculated, we have two ways of calculating

p. First, we measure the trace of individual flows and obtain the loss probability for each

individual flow. Therefore, we have different loss probability pi for each flowi. The second

way is calculating a common loss probability for all flows by using the trace of all flows.

We argue the post-experiment loss probability is accurate. Based on the assumption in [20],

each packet experiences an identical independent loss probability. As a result, the n packets

can be formulated in independent experiments with identical “success” probability. The loss

probability we measured is the mean of a sample of n independent identical experiments.

When n is large, the sample mean p is a good approximation of the real population p, namely:

V = — (Pi + Vi + Ps + • • ■ + Pn)- n

Since pi,P 2 ,Ps, ■ ■ ■ ,Pn are independent

E\p] = ~(E \pi\ + E\p2} + E\p3\ + ... + E\pn}).
7%

Since Pi,P2 ,Ps, ■ ■ ■ ,Pn are of identically distributed with the same mean p. Thus,

E\p] = — x np — p

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measured Predicted
RTT=P.Delay RTT=P.Delay+Q.Delay

T1 T2 Lossl Loss2 T1 T2 T1 T2
49.98 50.02 0.0048 0.0046 176.77 180.57 98.21 100.32
43.47 56.12 0.0080 0.0041 136.93 127.51 76.07 83.16
45.98 53.48 0.0074 0.0042 142.37 94.49 79.09 67.49
57.50 42.33 0.0049 0.0057 174.96 64.89 97.20 49.16
74.11 25.60 0.0029 0.0094 227.42 42.11 126.35 33.24
77.44 22.41 0.0027 0.0099 235.69 35.17 130.94 28.62
80.47 19.18 0.0025 0.0116 244.94 28.43 136.08 23.69
78.03 20.23 0.0028 0.0098 231.45 27.49 128.58 23.34
86.93 12.50 0.0025 0.0177 244.94 18.41 136.08 15.87

Table 2.4: Validation of Equilibrium Throughput: Individual Loss Probability.

Measured Predicted
RTT=P.Delay RTT=P.Delay+Q. Delay

T1 T2 Loss T1 T2 T1 T2
49.98 50.02 0.0047 176.77 180.57 98.21 100.32
43.47 56.12 0.0058 136.93 127.51 76.07 83.16
45.98 53.48 0.0057 142.37 94.49 79.09 67.49
57.50 42.33 0.0052 174.96 64.89 97.20 49.16
74.11 25.60 0.0046 227.42 42.11 126.35 33.24
77.44 22.41 0.0043 235.69 35.17 130.94 28.62
80.47 19.18 0.0043 244.94 28.43 136.08 23.69
78.03 20.23 0.0042 231.45 27.49 128.58 23.34
86.93 12.50 0.0044 244.94 18.41 136.08 15.87

Table 2.5: Validation of Equilibrium Throughput: Common Loss Probability.

By plugging loss probability we measured in model [20], we obtain the predicted goodput

of each individual TCP flow (Table 2.4 and 2.5). As we can see, the discrepancy between the

predicted [20] and measured goodput is significant whether we use pooled or individual loss

probability. The failure of model in [20] is not a complete surprise. Actually, the goodput of

two competing TCP flows should not be assumed independent to each other, like the model

[20]. Assuming the congestion windows of two competing flows are W\ and W2, the round

trip time for flow 1 and 2 are RTTi and RTT2, respectively. We also assumes tha t a fraction

of resource is apportioned to flow 1, and (1- alpha) fraction of resources is apportioned to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W 2

 ̂ (wl,w2)

C*RTT2 +B W I

Figure 2.2: Joint and marginal PDF of Wi and i n

flow 2. C and B are link capacity and buffer size at the congested gateway. We have:

Wi < a x B + a x R TT i x C.
(2.3)

W2 < (1 - a) x B + (1 - a) x R T T , x C.

Combing the two equations in (Equation 2.3), we have

Wi W2
+ — ==— = < 1R T T 1 * C + B R T T 2 * C + B

If we assume that W\ and W2 are two independent variables, we have

Wi x (R T T 2 * C + B) + W2 x (R T ^ * C + B) < (RTTi * C + B) x (R T T 2 * C + B)

The joint PDF of Wi and W2 is within a triangle in Figure 2.2.

For the sake of simplicity and without loss of generality, we assume the joint PDF is

uniform. Thus, the joint PDF is the reciprocal of the triangle area, \R fTi7c+B)jRf fT*c+B) ~

The definition of independence between W\ and W2 requires for any uq and w2. the joint

PDF F\Vi,Wi(w u w2) — Fw\(wx) x F\y2(w2). That is, the jo in t PDF equals the product of

marginal PDFs. To prove the dependence, we only need to give one example th a t the above

equation does not hold. For a point (uq, w2) = (f x (RTTi *C + B) , \ x (R TT2 *C + B)), the

joint PDF is zero while the marginal PDFs are \ x (R T T 2 *C + B) and \ x (RTTi *C + B),

respectively. Thus, Wi and W2 are not independent. To make our proof more general, we

could relax the uniform assumption of joint PDF. Although we cannot compute the particular

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

marginal PDF easily, we know the two marginal PDFs at that point are greater than zero.

Thus, our conclusion still holds. The intuitive interpretation of dependence between W\ and

Wi is tha t the value of Wi is affected by the given value of W2. That is, when W2 is given

a large number, W\ is more likely to get a small value. Thus, the equation proposed in [20]

which indicates that the W I has nothing to do with the other flows is inaccurate.

A more complicated model but with the same assumption on loss probability is given

in [21], The timeout behavior is included in the model. However, for the same reason this

model is also not very accurate for predicting throughputs of combination of flows. We also

validated the model (Equation 2.4) in [21] with experiments. The experiment parameters

are the same as experiments above. Since the model in [21] includes the timeout, the model

looks more complicated. However, due to small loss probability, the predicted throughputs

of the two models are very close. From the experiment results (Tables 2.6 and 2.7), we find

the discrepancy between the predicted goodput and measured goodput as well.

Goodput = ------------ p=------------------------------- = ------------------------ (2.4)
R T T x y ^ + RTO x min{ 1,3 x y ^ f) x p x (1 + 32p2)

Simulated Predicted
RTT=P. Delay RTT=P.Delay+Q.Delay

T1 T2 Lossl Loss2 T1 T2 T1 T2
49.98 50.02 0.0048 0.0046 173.04 176.91 97.04 99.18
43.47" 56.12 0.0080 0.0041 132.16 125.20 74.58 82.17
45.98 53.48 0.0074 0.0042 137.78 92.74 77.66 66.59
57.50 42.33 0.0049 0.0057 171.19 63.26 96.02 48.22
74.11 25.60 0.0029 0.0094 224.50 40.39 125.44 32.17
77.44 22.41 0.0027 0.0099 232.87 33.66 130.06 27.62
80.47 19.18 0.0025 0.0116 242.22 27.01 135.24 22.70
78.03 20.23 0.0028 0.0098 228.57 26.33 127.69 22.50
86.93 12.50 0.0025 0.0177 242.22 17.04 135.24 14.84

Table 2.6: Validation of Equilibrium Throughput: Individual Loss Probability.

[21] was used in a comparison between the model (Equation 2.4) and empirical data.

However, since the figures in [21] were plotted in log-scale, the agreement is not so close as

suggested by visual inspection. Considering the way of the data were plotted in [21], the gap

between the model and the empirical data could reach or even exceed 50%.

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Measured Predicted
RTT=P. Delay RTT=P.Delay+Q.Delay

T1 T2 Loss T1 T2 T1 T2
49.98 50.02 0.0047 174.95 174.95 98.10 98.10
43.47 56.12 0.0058 156.72 104.48 88.06 68.75
45.98 53.48 0.0057 158.16 79.08 88.86 56.90
57.50 42.33 0.0052 165.95 66.38 93.14 50.57
74.11 25.60 0.0046 176.91 58.97 99.18 46.76
77.44 22.41 0.0027 183.22 52.35 102.65 42.76
80.47 19.18 0.0025 183.22 45.81 102.65 38.29
78.03 20.23 0.0028 185.47 41.21 103.90 35.09
86.93 12.50 0.0025 181.05 36.21 101.46 31.30

Table 2.7: Validation of Equilibrium Throughput: Common Loss Probability.

2.3 Other Approxim ation M odels

Analytical models to capture the interaction of TCP with router policies have also been

proposed in the past. Of particular interest is Flow-Proportional Queueing (FPQ) [38] with

the objective of controlling TCP by varying the router’s queue length in proportion to the

number of active TCP connections. A key observation made in [38] is that the used equations

make sense if the TCP flows have similar round trip times. This is precisely where our work

differs significantly in terms of assumptions and scope compared to [38], which attempts to

solve the buffer dimensioning problem, not tha t of fairness. In particular, we are in agreement

with the three points raised in the fourth section of [38]. To quote:

“Imposing a constant loss would cause three problems. First, if the number of

connections is small, the loss rate may need to be reduced to allow window sizes

large enough to keep the link busy. Second, the routers th a t are not bottlenecks

should not impose any loss rate. Third, if typical paths through the network

involve multiple bottlenecks, each such bottleneck should impose only its share

of the total desired loss rate.”

As [38] suggests, all three issues can be dealt with, by assuming tha t each router maintains

a count of the active connections sharing each of its links. This is precisely what we do

for the long-lived flows. In particular the router mechanism is built with the intention of

avoiding repeated consecutive losses of the same flow, hence, technically, avoiding timeouts.

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

We remind the reader tha t consecutive losses lead a TCP connection to timeout and a

sequence of timeouts can lead to the adjustment of the timeout interval according to an

exponential backoff scheme, hence severely degrading the throughput of the connection and

jeopardizing the opportunity for a quick recovery (see [39] for a comprehensive analysis of

TC P’s latency in light of losses). The control of the loss instant (and hence the loss rate)

comes at the expense of having to possess sufficient buffer space so that the losses do not

occur from overflows. In terms of an ensemble of mechanisms meant to result in classes of

“best-effort” service, we refer to an early example [41] which illustrates how the inclusion of

traffic profiling devices, and specifically of a time-sliding window (TSW) for each flow, can

be used to drive a tagging algorithm. In essence, [41] uses a similar apparatus to derive,

implicitly, the demands of flows, but the demands are not used towards a specific objective

(e.g. fair allocation) but, instead, guiding the marking of the RED with In/O ut marking

(RIO). Clearly, flows with different RTTs receive different performance. The situation was

recognized in [41], and consequently prescribed constrained use of their proposal within a

certain tight RTT regime (20 to 100 msec) and even then with occasional departure from

the intended share between flows. That is, RIO still results in a probabilistic behavior

with respect to the losses, so the occasional victimization of a flow (i.e. successive losses

and/or timeouts) remains. The logic of the RIO marking scheme presented in [41] is similar

to our approach (whenever the intended allocation is exceeded, as determined by the on

line measurements, packets are marked) but no guarantee exists in [41] that an action will

be taken (it depends on eventual behavior of the RED queues of RIO). In addition, no

identification exists as to whether a flow is constrained due to a bottleneck elsewhere in the

network (hence, the complete link capacity is assumed to be always in demand by the flows),

although one would expect that the latter point is easier to fix.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 3

M odel-based Link Oriented Fairness

3.1 Introduction

In this chapter, we focus on the topic of fairness among long-lived TCP flows crossing a

network link. We note that TCP connections can transmit from a few packets, e.g., short

Web pages transfers, to extremely long sequences of packets, e.g., transfers of long archive

files, resulting in a wide mixture of connection lifetimes. Coming up with a single metric that

captures attributes of fairness across all TCP flow lifetimes does not make much sense. For

example, flows with a few packets to deliver may not require long-run throughput fairness

guarantees, preferring, instead, fair treatment with respect to the average delay performance

for delivering their data. Long lived flows have certainly a legitimate interest in achieving

long-run throughput fairness with respect to other long-lived flows. We will defer the study

of the performance of short-lived flows for Chapter 5.

The proposed scheme is part of a class-based approach tha t groups the short- and long-

lived TCP flows into two separate classes, and performs bandwidth allocation separately

for each class. The separation into classes allows us to consider a Differentiated Services

(DiffServ) environment, whereby each class receives different treatment at the routers. For

the subset of long lived flows, a certain amount of state information will be maintained.

Despite the problems that state information causes to scalability, we note tha t it is not

expected that the state information we propose is particularly burdensome. Indeed, of the

tens of thousands of flows that may be flowing through a core router in the Internet at any

point in time, only a handful of them are long-lived flows, the rest being short by merit

of the fact that they transfer mostly short Web pages. Hence, in absolute numbers, we

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

do not expect the size complexity of per-flow information of long-lived TCP flows to be

significant, simply because the fraction of long-lived flows is small. The same observation

is even more valid for routers close to the periphery of the network. We will present in

Chapter 6 relevant results indicating that only a small fraction of flows qualify as long lived

and therefore require additional state information. Specifically, we introduce FairShare, a

scheme for fairness among long-lived flows. This can be seen as a replacement for DropTail

or RED. Note tha t different traffic classes can (and should) use a different scheme to fulfill

their own objectives. The key property of FairShare is that it explicitly calculates when

a loss is to be inflicted on a flow in order to achieve a particular long-run window size,

and hence, throughput. That is, the loss events are not left to the control of the transient

dynamics of the aggregate traffic (as it happens in DropTail, RED and other schemes) but

to the per-flow observed window size, thus requiring per-flow state.

The rest of this chapter is organized as follows. Section 3.2 presents previous related

works and brings out the differences between tha t and our work. Section 3.3 introduces the

FairS hare scheme by pointing out its individual features. A subsection distills the essence

of FairShare in the form of pseudocode for three functions, an initialization function, a per

packet arrival function, and a periodic monitoring function. Section 3.4 presents simulation

results that illustrate the effectiveness of the scheme, in delivering the desired fairness and

coping with the varying nature of the flows. Section 3.5 discusses and clarifies issues raised

in implementing the scheme.

3.2 The FairShare Scheme

The service considered in this chapter is (externally) DiffServ with class-based bandwidth

reservation. Thus, given a link I with capacity Q , the capacity is split between UDP traffic,

long-lived TCP traffic, short-lived TCP traffic, and routing-related traffic, with capacity,
correspondingly: and , <yP°ute^ where q = ^ U D P + £rL-TCP_j_

c S-TCP+ c R°ute. res ̂0£t];ie chapter deals with how to administer the among

long-lived flows. F a irS hare is the scheme that will perform this function. It is assumed that

the class capacities are quasi-static, that is, they can change but with operator intervention

and at time scales much larger than the average connection lifetime. We believe that this

is a reasonable assumption, in light of the fact tha t operators may wish to, intentionally,

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

restrict the total bandwidth available to long-lived flows in order to provide short response

times to short transfers, as is the case for most Web document transfers. First we discuss

FairShare in the context of a fixed number of competing “greedy” TCP flows. Subsequently,

we clarify how the continuously changing number of long-lived flows is accommodated, as well

as how the no n -“greedy” and bottlenecked behavior of the flows can be identified through

periodic measurements. In the simulation study we will not consider a dynamic number of

connections, because the scheme can be exercised by, equivalently, varying over time the

demands of already admitted long flows.

3.2.1 R egu lating T C P Flows v ia Scheduled Losses

The first step in controlling the long-lived TCP flows is to determine the fair share of capacity

at the bottleneck link for a particular TCP flow, i. Let us denote this share as share* (in rate

units). The share is the element of the allocation vector provided by the fairness algorithm1,

i.e., share* = A*. Shares can be calculated on the basis of a demand vector. The demand

vector is obtained by a measurement process that will be described later in this section. We

will use demand* to describe the measured demand of flow i. Given a calculated share value

share* and the RTT of flow i, r tt* , the desirable long-run window size that would provide

the share* to flow i is simply W ' = rtt*-share* (in bit units).

Figure 3.1.a depicts the evolution of the TCP-Tahoe congestion window. Let us define a

TCP-Tahoe “epoch” as the time interval from the point that the TCP congestion window is

1 until the first packet loss occurs. Here, the y axis is the congestion window size of the TCP

flow and the x axis represents time in RTT units. As we have seen in Figure 3.1.a, a single

epoch of congestion window evolution consists of two periods, ti, the exponential growth

period, and t%, the linear growth period. In steady state, the final window size at the end

of the epoch, which coincides with the end of the linear growth, W , is twice as large as that

of the exponential stage. Because the congestion window increases exponentially before it

reaches we have ^ — 2y, where y stands for the rounds that the TCP-Tahoe flow spends

in exponential growth. Since the congestion window increases only by one per round, the

rounds spent in linear growth is ^ or 2y. In short, the time of one epoch of TCP-Tahoe with

RTT representing the time unit can be presented as y + 2y. The total count of the packets

1 We tacitly assume in the rest that the fairness implemented is max-min fairness, but any fairness objective
could be used in its place.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Congestion Window

W/2

Time (RTT)

(a) TCP-Tahoe

Congestion Window

W/2

(b) TCP-Reno

Figure 3.1: Steady state congestion window behavior in, (a) TCP-Tahoe and, (b) TCP-Reno.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

communicated in one epoch is the sum of packets transferred in the exponential increase

phase, Jo 2Xdx) and those in the linear growth phase, jJ (2 y + x)dx. Based on the congestion

control window evolution algorithm, we can derive equation (3.1), where W ' is the average

congestion window. The numerator of the left side of equation (3.1) is the number of packets

transferred in steady state during one epoch (including both exponential and linear increase

phase). The denominator is the number of rounds within the complete TCP-Tahoe epoch.

w , = J o 2 X (l x + I y (2 v + x) d x , 3 jx
y + 2y

If a packet loss is scheduled at the point where the window size is 2y+1, it will effectively

limit the long-term average flow to approximately W'. By setting, W ' — r tV s h a re ,, a loss

scheduled to occur when the flow’s window is 2y+l effectively controls the long-run through

put of the flow to be consistent with the calculated fair share. Based on this observation,

we claim that we can regulate the long-term flow rate by inflicting losses when the window

of the flow reaches a specific value. Hence, we can use on-line observations of the window

size to derive the loss instants with the intention of preserving a desirable long-term mean.

Equation (3.1) can also be expressed as equation (3.2), but given the lack for an explicit

solution for y to equation (3.2), a table lookup can be implemented to determine the target

window size as soon as the average congestion window size objective is calculated.

^ f + \ (? ? ? = W'(2’ + y) (3.2)

For TCP-Reno, the calculation is straightforward because of the simplicity of the algorithm.

We assume the ideal equilibrium state will be reached and the congestion window of TCP-

Reno will construct a perfect “sawtooth” with a peak at y . Therefore, the time of one epoch
w (W . ,1 - W) —

in terms of RTT is y , and the packets communicated in one epoch is 2 ̂ (Figure 3.1.b).

The average congestion window size is calculated by W ' = y y

3.2.2 T he A lgorithm

In this section, the pseudo-code of the F airS hare algorithm is presented in the form of three

basic functions. A packet is indicated by the variable p. In addition, p.size, p.src, and

p.dst stand, respectively, for the packet size, source and destination. The per-flow variables

maintained for each long TCP flows are as follows:

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in it _long_flow (p):

1. r t t j <— r t t lo o k u p (p.src,p.dst)]
2. count, <— p.size]
3. demand; <— c f^T C P .
4. share <— maxmin(demand,C'p"r̂ <̂ ^>);
5. f la g , <- FALSE;
6. dropevent; <— 0;
7. tick();

Figure 3.2: The init_long_flow() function.

flag ; binary flag indicating whether a loss is due to be inflicted on the flow.

dropeventj timestamp of last loss inflicted on the flow.

counti bytes arriving from the flow within its last RTT.

r t t ; the RTT time of the flow.

demand; the flow demand (average of measured rate).

share; the flow share calculated (“allocated”) by the fairness scheme.

On deciding that the flow is a long TCP flow, init_long_flow (Figure 3.2) is invoked.

First, the RTT value of the flow is determined (line 1) via a mechanism detailed in Chapter

6. In the example code, we will tentatively assume that RTT information is collected and

maintained along with routing information (thus r tt lo o k u p O requires source, and desti

nation information about the particular flow). In addition, the first packet arrival sample

within the current RTT window is recorded (line 2). Because the demand is yet unknown,

it is assumed to be unbounded (“greedy” flow), so, technically, it is sufficient to be set as

high as all the available bandwidth of the class (line 3). The introduction of the new flow

requires the re-calculation of the shares not just for flow i, but the entire share vector for all

long TCP flows (line 4). A grace period of at least one RTT is given (lines 5 and 6) for the

dropping of packets-since we need at least one measurement, i.e., one RTT period before we

can gauge an approximation of the true demands of the flow. The last step is to invoke the

tick function to periodically check the demands of the flow.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tickQ:

1. w hile (1)
2. m <— count; / rtt;;
3. count; <— 0;
4. if (share* < demand; and m > avg2peak(share;)) then
5. fla g ; TRUE;
6. else
7. f la g ; <— FALSE;
8. endif
9. demand; <— m ■ f3 + demand;-(1 — /3)
10. if (]C; demand; > C}j J) then
11. share <— m a x m i n (d e m a n d , ;
12. endif
13. sleep(rtt;) ;
14. endwhile

Figure 3.3: The tick() function.

Essentially, in order to determine the demands of a flow, we first note that the demands

can be limited already due to an upstream bottleneck (at a remote router) or because the

flow does not have enough data to send. The purpose of tick (Figure 3.3) is to perform the

observation of the rate during the last RTT (line 2), thus resetting the counter (line 3). If

the share allocated to the flow is less than its demand, then the flow needs to be regulated

by introducing losses, but this is necessary only when the current rate (translated into its

window value) reached the corresponding maximum value possible as per the TCP window

model of subsection 3.1 (line 4). If this is the case, we signal to the next arrival that it has

to be discarded (line 5). The demand is subsequently calculated (line 9) and if the demands

over all the flows cannot be satisfied with the bandwidth available to the class (line 10). The

next observation will occur an RTT later (line 13). the new shares are calculated (line 11)

Furthermore, function upon_packet_arrival is the substance of operations taking place

when a packet of flow i arrives. The only decision taken is whether the packet ought to

be enqueued or dropped. Dropping the packet is a decision based on (a) whether the tick

function has determined it is time to do so, and (b) if enough time has elapsed since the last

drop, because, otherwise, repeated losses within an RTT time would likely force the TCP

flow to timeout and its throughput to deteriorate substantially.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

upon_packet_arrival(p):

1. now <— tim eQ ;
2. if (f la g j an d d ropeven tq+ rttj < now) th e n
3. dropeventj <— now ;
4. drop(p);
5. else
6. count; <— count; + p.size\
7. en q u eu e (p);
8. en d if

Figure 3.4: The upon_packet_arrival() function.

A relatively minor detail is how connections are terminated. Evidently, this can be

performed using two techniques (both are required in fact to compensate for the case of flows

being rerouted). One is to identify the FIN/FIN-ACK packet exchange, and we will discuss

this in detail at Chapter 6. The second is to add a timer to alert of possible termination after

a sufficiently long period of inactivity. In both cases, it is not enough to deallocate the data

structure of the terminated flow. It is essential tha t the m axm in function be re-invoked

to reassign the share of the terminated flow to the remaining flows. Finally, the control

loop is closed because the observed average rate influences the demand, which influences the

allocation (via the fairness algorithm), which influences the losses (via the calculated share),

which influence the average rate (via the scheduled losses). However, an additional feature

is to be able to identify allocated rates that match the corresponding flow demand because

the demand is sufficiently low, e.g., if the flow is bottlenecked at a remote node. In this case,

we avoid enforcing losses on the flow because it is already constrained at another point in

the network. By the same token, unused bandwidth of a flow’s allocation, due to observed

low demand, is (re)allocated to the rest of the competing flows on the basis of the fairness

criterion used (in our case: max-min).

3.3 Sim ulation Study

The proof-of-concept simulations presented here are based on the ns-2 [6] simulator. The

configurations examined are consistent with the ones used in the majority of the rest of

the literature on the topic. Specifically, we focus on a single bottleneck link with a link

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

rate of 100 packets per second. Three flows traverse the link. We explore the dynamics

and effectiveness of the algorithm by looking at the results of this toy example. The TCP

version used is TCP-Reno (for a discussion of Tahoe’s behavior see the next section). Three

simulation studies were carried out using F airS hare, targeting the scheme’s essential feature

(whether fairness is achieved) and whether the flows are correctly identified as being greedy,

or not, or bottlenecked someplace else along their path to a destination.

The results of the first set are presented in Figure 3.5. Three flows are simulated. The

x axis presents, in logarithmic scale, the ratio of the RTT of flow 0 over that of flow 1.

Flows 1 and 2 have an end-to-end RTT of 0.2 seconds. RTT values for flow 0 range from

0.1 times to 10 times that of Flow 1 (that is, from 0.02 sec to 2 sec). The buffer size we

used is 30 in all experiments concerning DropTail and RED policy. The simulations run for

300 seconds which are sufficient for qualifying long-lived flows. The plots are obtained from

the average of 10 experiments. Due to small variance in our FairShare experiments, we

believe that the plots of averages are good enough for presenting the performance. The rest

of the RED parameters are as in the example at Chapter 1, namely, m axp = 0.02, m inth — 5,

maxth = 15, wq — 0.002. The queue size in FairShare experiments is 300. In reality, most

of this large queue is not used in high occupation. The point of introducing large buffer

in FairShare is that FairShare requires tha t no packet loss will be caused by overflowing

buffer.

W hat can be concluded from Figure 3.5 is tha t FairShare outperforms DropTail and

RED, in that, under FairShare the three competing flows receive each a third of the bottleneck

link bandwidth (33%) regardless of the RTT of each flow. The interesting behavior at the

extreme values of the RTT ratio (above a ratio of 5) is for a completely unrelated reason!

Namely, the simulations were carried out with a receiver advertised window of 48 packets.

W hat this suggests, is tha t even if a large bandwidth-delay product is available, a flow could

not keep in the pipe more than 48 packets. Hence, once the bandwidth-delay product of flow

0 exceeds 48 packets (near the ratio of 5), it simply could not increase its window further.

Naturally, the other two flows, operating at much smaller bandwidth-delay products than

48, can capitalize on flowO’s inability to “fill the pipe”. The results therefore suggest correct

operation of the max-min fair allocation for any RTT. Another striking feature of the first set

of experiments is that one cannot trust RED to always result in better fairness than DropTail

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«bOcb
CD
a
<0

Ph

c

o1)cu
t s-t-*om

50
45
40
35
30
25
20
15
10

5
0

FairShare ---DropTail ...R E D ...
(33.33%)

90.1 1
RTT Ratio ("Flow 0 / Flow 11

(a) Flow 0

<D
bO
+2a<DOFh0)
P h

M
C

4)C1)
o

P3

50
45
40
35
30
25
20
15
10

5
0

FairShareDropTailRED
(33.33%)

90.1 1
RTT Ratio (Flow 0 / Flow 11

(b) Flow 1

50
45
40
35
30
25
20
15
10

5
0

FairShareDropTailRED
(33.33%)

90.1 1
RTT Ratio ("Flow 0 / Flow 11

(c) Flow 2

Figure 3.5: Throughput achieved by FairS hare vs. that by DropTail and RED.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

50
& 45c3
a 40<D
a 35
(£ 30
^ 25
^ 20
^ 15<D A~;
g 10
tl <o J
« 0

Figure 3.6: Throughput of the three competing flows under the FairShare scheme.

as the RTT-dependent behavior of RED reveals.

The next question addressed is whether the behavior of TCP flows can be correctly de

tected when they suddenly become non-greedy. An example of such a case are connections

where long bursty data transfers alternate with periods of moderate (or no) traffic activ

ity. An example is persistent HTTP connections that maintain a single TCP connection for

multiple page transfers spaced apart in time. Moreover, applications of high performance

computing where a single connection is used for occasional large transfers also fit the de

scription. The intention of the algorithm is to correctly infer the fact that a TCP flow

cannot fully utilize the bandwidth assigned by FairShare, and to subsequently, by reducing

the measured demand of the flow, free up bandwidth, i.e. reduce the share of the flow and

increase the share of the remaining flows. The baseline example is as before (i.e., three flows)

initially bottlenecked at the link, with all RTTs equal to 0.2 seconds. The behavior of flows

1 and 2 remains greedy throughout the simulation, i.e., they can exploit as much bandwidth

as is allocated to them. Flow 0 is initially greedy but at time 60 reduces its traffic intensity

drops to 10% of the link’s bandwidth (that is, 10 packets per second), only to return to

its greedy behavior at time 100. As Figure 3.6 reveals (throughput experienced as percent

age of bottleneck link), the initial fair splitting of the link bandwidth (all flows receiving

33.33% in the long run) is adjusted to the new values at time 60. That is 10% for flow 0,

and, as per max-min fairness, 45% for flows 1 and 2. W hat really has happened is that the

reduced demand of flow 0 is calculated at line 9 of tick(), followed by the updated share*

value. Consequently, an r tt* later, line 4 of tick() will avoid completely setting flag* to

40

(4 5 ^

20 40 60 80 100 120 140
Time (sec)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
1)W)cd
c 80<Uo

60
c
3 40
o(D
S 20
ao
PQ o

Figure 3.7: Throughput of flow 0 bottlenecked at a remote node.

TRUE, thus ensuring that, as long as the demand does not increase, subsequent invocations

of upon_packet_arrival() will result in normal enqueueing (no loss) of the flow’s arriving

packet. W hat the behavior of flow 0 demonstrates, which is not visible in the throughput

plot of Figure 3.6, is tha t FairS hare does not inflict losses on a flow which does not exploit

its potentially large window value. That is, greedy flows send as much data as their win

dow will allow, while flows like flow 0 that are non-greedy, may not exploit their window

because of the simple fact th a t they have insufficient volume of data to transmit. If this

(smaller) bandwidth demand can be satisfied by the allocated (as per the fairness algorithm)

bandwidth, no action of regulation, i.e., loss, needs to be imposed on them.

Finally, Figure 3.7 illustrates how FairS hare detects tha t a flow (in this case flow 0) is

bottlenecked at a remote node, and therefore distributes the unusable bandwidth of flow 0

to the other greedy TCP flows. In the example simulations, the remote bottleneck of flow 0

was varied from 10 to 45 packets per second. As soon as the remote bottleneck is more than

33.33, it essentially ceases to be a bottleneck, and the actual bottleneck for flow 0 becomes

the current link. Hence, the throughput received by flow 0 reaches a plateau as soon as the

remote bottleneck reaches the value of 33.33. At all times, the remaining greedy flows exploit

the bandwidth not allocated to flow 0 and sharing it (not shown in Figure 3.7) equally.

Flow 1 + Flow 2 Throughput ■

Flow 0 Throughput

15 25 40
Flow 0 Bottleneck Rate (Remote Node)

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.4 Discussion

While FairShare appears to work as designed, one can observe that, in contrast to DropTail

and RED, we make no mention of the necessary buffer size. Because the losses are scheduled,

rather than being the result of overflows, we wanted to test (by suitably allocating large buffer

sizes) how much buffer is really necessary. We note that because of the regular behavior of a

TCP flow, for a flow with r t t , and currently receiving a share of share*, the ideal long-term

window size will be share*-rtt*, assuming the router is serving the flows providing per-flow

allocation of share*. Since the window size per RTT is measured, it can be inferred that the

difference between the bandwidth-delay product and the actual measured window represents

packets residing at the queue of the bottleneck node. Clearly, if the current node is not the

bottleneck, then the corresponding buffer allocation for the flow is close to zero (in-flow is

smaller than out-flow). If it is the bottleneck (the flow is being regulated by injecting losses)

then any measured window above share*-rtt* suggests accumulation at the queue. The

peak buffer size necessary is therefore £w>tyJ>share*-rtti(li;j ~ share*-rtt*) where W is the

maximum window size (as the notation of subsection 4.2.1). For example,

Flow id Current Win_Size Peak Win_Size (W) RTT Share-RTT Backlogged
1 40 48 1 (s) 36 4
 2___________ 20_________________24___________ 0.5 (s) 18__________ 2

Total: 6

However, we have indications that this approach of per-flow allocation is a far cry from the

actual allocation necessary, because the total allocated buffer can be better utilized if shared,

as a common resource, among all long-lived flows. However, in this case, N , the number

of flows, can significantly impact the transient demands of buffer space. Another detail

is the selection of P, the parameter for calculating the exponentially averaged congestion

window size. In the simulations it was assigned to 0.8. That is, we put more weight to

the current window size to respond relatively quickly to window size adjustments. From

a set of experiments, we found that reasonable values of P are in the 0.6 ~ 0.9 region.

Our scheme works on TCP flows on both Tahoe version and Reno version. In this chapter,

all simulations are on TCP-Reno because of its almost universal use and simplicity. The

difference of how to deal with Reno or Tahoe lies only in the function avg2peak(share*).

For Reno, the returned value is ——| r e *; consistent with the relation of average and peak

window of TCP-Reno in subsection 3.1. avg2peak for TCP-Tahoe is more complicated

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and requires a lookup table. A more interesting problem is how to determine if the flow is

Tahoe or Reno. A possibility is to, exceptionally, monitor the behavior of the flow, upon

the first inflicted loss. If the window size in the following RTT is reduced abruptly (less

than half its previous value) it can be considered to be a candidate TCP-Tahoe flow. While

this can work in principle, it entails the risk that the flow was TCP-Reno that happened to

become non-greedy. Therefore, we can assume the default behavior is TCP-Reno, with the

understanding th a t if after a number of induced losses it exhibits consistently the reduction

of TCP-Tahoe, it will be reclassified as Tahoe. Another issue is dealing with non-cooperating

flows. Our scheme works under the assumption that the sender responds to the packet losses,

and backs off its congestion window, either according to Tahoe or Reno. In order to deal

with non-cooperating end-users, more policing functionality is expected to be needed. It is

an open issue whether any proposed AQM scheme, including RED, can police effectively the

compliance of flows to a certain TCP implementation. We only note that our FairShare

AQM gateways already maintain the state for each flow, and non-cooperating flows could be

singled out on the basis of a measured demand which is consistently non-compliant.

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 4

AQM and Global Fairness O bjectives

4.1 Introduction

The topic of this chapter is how the particular AQM scheme that we proposed in the previous

chapter, FairS hare [43], which achieves max-min fairness on a single link, can be extend,

using elements of an earlier work by Anna Charny [47], to achieve global max-min fairness.

In particular, this chapter provides results th a t allow us to appreciate the efficiency and

stability of a network composed of nodes that implement the FairS hare scheme. In this

chapter, we are still looking into the fairness among long lived flows. Policies for short-lived

flows will be examined later in the thesis.

We tackle the problem from a simulation point of view, using “traditional” as well as less

common topologies. In general, the main challenge of the analysis is the sheer complexity

that is caused by the interaction of different components of the network, the incomplete

information and the heterogeneity of the system. To the already complicated behavior of the

end-to-end dynamics, AQM introduces a non-negligible impact from the router policies that

is different from traditional First-Come-First-Served (FCFS). To cope with the complexity,

we plan to extend the techniques used in [46, 47], which were used to demonstrate convergence

of a network-wide policy to the global optimal value regardless of initial conditions. The

optimal values considered here capture the max-min fair allocation. The basic idea is to

explicitly calculate the optimal value of rates for each long-lived flow and to determine

if FairS hare does indeed achieve this desired target. The remainder of this chapter is

organized as follows. Section 4.2 describes the global fairness algorithm and formal proof of

convergence. Section 4.3 presents the experiments we have conducted on studying the global

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

behavior of FairShare. Conclusions are given in Section 4.4.

4.2 D istributed Global Fairness

Rigorous analysis of global fairness and relevant distributed algorithms to achieve it were

extensively studied in [47]. For a large network configuration with multiple bottleneck links

and multiple flows, a feasible set of flow rate allocation satisfies two conditions: First, the

allocated bandwidth for any flow is a non-negative number. Second, for any link in the

network and the flows passing through link I, the sum of allocated bandwidth for these flows

is smaller than the capacity of Q . A global max-min fair allocation is a feasible allocation

that maximizes the smallest element(s)/allocation(s) subject to the capacity constraints.

Naturally, certain exogenous constraints are also present, namely the ones on which path

is used between each source-destination pair. However, the calculation of the paths is left

outside the scope of this thesis, and it is normally expected to be the task of a separate

routing algorithm.

4.2.1 Synchronized A lgorithm

In [47], a procedure for determining global max-min rates was presented (Figure 4.1). The

algorithm is better understood in its centralized form. It involves the identification of the

most congested link (first level bottleneck), and application of the max-min fairness on

the flows crossing this link. The demand of all flows crossing the first link is then limited

(bounded) by the share they receive in this most congested link. Given the new bounds

for some of the flows, the residual capacity in the remaining links is re-calculated and this,

in turn, changes the share received by other flows. The process is repeated until all flows

have been marked by a certain rate. Note that all flows are assumed to be greedy, but it

is trivial to force the realistic assumption of bounded flows by assuming that each traffic

flow is in troduced via an access link, which is of course bounded, and possibly congested. It

is shown in [47] tha t the process terminates after a limited number of iterations. First we

present three definitions tha t will be used in the later part.

D efin ition 4.1 A network-wide feasible set of rate allocations t] = (rji, ■ ■ ■ ,rjn), V link I

that satisfies

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

find_globaLoptimal_rates:

1. Determine the first level bottleneck link set L, tha t is, the most congested link
because of the small bandwidth or more flows passing through or both.

2. Apply local max-min fairness criteria on the flows passing through L.
3. Mark the flows passing through L as flows with limited demands calculated in the last step.
4. Adjust the capacity of links which are traversed by such flows.

The new available capacity is the remaining after taking out the already
allocated from the original capacity.

5. Repeat from step 1 until all flows are marked with some rates.

Figure 4.1: The find_global_optim al_rates procedure.

• ?7i > 0

• ^ Ci-

D efinition 4.2 Consider vector a = (oi , . . . ,an), let a — (d i , . . . ,an) be a permutation of

a such that if i < j , dj < dj. Vector b is said to be lexicographically greater than a if

either dx < 61; or 3 1 < K < n, so that ai = 6i V l < i < A ' and cCk < bK-

D efin ition 4.3 Vector r] = (rji,. . . ,rjn) is called m ax im um o p tim a l a llocation for net

work N if

• it is a feasible set

• it is lexicographically greater than any other feasible solution

[47] also presented a formal description of the procedure of approaching global optimal

rate. For the sake of brevity, we present here the simplified version of the procedure in

which the backward traffic is not considered. In the description below, we use the following

notation:

• Network N(A, 0) is composed of A, a set of links and ©, a set of flows.

• Ci is the capacity of link I, where I G A.

• fi= {s G 0 : s traverses Z}. The number of the flows in set fi is | /; |.

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

• L = {/ e A :| fi |> 0}. That is, the set of all links I E A which satisfy that at least one

flow in 0 traverses I. In other words, the subset of A is used by at least one flow.

• L= {I e L : = m*nj GL]7̂ f} That is, the set of bottleneck links.

• r/ = -j î, where I e L. That is, the fair rate for flows crossing the bottleneck link I.

• S= { s 6 0 : 3 I E L, s traverses I}. That is, the set of flows which cross at least one

bottleneck link in L.

The procedure might need several iterations to reach global fairness. Thus, for each iteration

i, we have a set of the above variable to denote the status of the algorithm and we will use

subscripts and superscripts between iterations. Specifically:

• L(i), the set of bottleneck links in iterations i.

• S(i), the set of flows which use at least one bottleneck link in iteration i.

• fi(i), the set of flows in the bottleneck link in iteration i.

• r(i), the fair rate of flows crossing bottlenecked link in iteration i.

From the definition of the find_globaL optim al_rates procedure, [47] derived the fol

lowing two theorems about the characteristic of the procedure.

T h eo rem 4.1 The find-globaLoptimaLrates procedure terminates in a finite number of it

erations

P ro o f

For each iteration, at least one bottleneck link will be selected from the reduced network,

that is the remaining network after excluding the sessions appropriately allocated, and the

links already properly shared. All flows crossing this most congested bottleneck link(s) will

be added to S(i), tha t is, S(i) = U}=i S (j) or the set allocated sessions after iteration i.

Thus, at the end of each iteration, the number of flows in S(i) increases at least by one.

The procedure will terminate when all flows in 0 are in S(i) (signifying that i is the last

iteration). So, at most | 0 | iterations are needed to terminate. E n d o f P ro o f

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fmd_global_optimal_rates:

W hile (| S(i) |< | 0 |) :
i = i + 1
GIVEN

L(1),L(2) , . . . , L(i — 1)
5 (l) , 5 (2) , . . . , 5 (i - l)
/ i (l) , / i (2) , . . . , / , (i - l)
r (l) , r (2) , . . . , r (i - 1)

DEFINE
S(i - 1) = 5(1) U 5(2) U . . . U 5(i - 1),
L(i - 1) = 5(1) U 5(2) U . . . U L(i - 1),
The reduced network N (i) consists of link set A — L{i — 1) and flow set © — S(i — 1)
fi(i) = {s G © — S(i — 1) : I G A — L(i — 1), s traverses
Z(i) = {z e A - Z(i - 1) :| /,(*) o}.

L{t)= £ i (!) : i s V e S w w T =

, . _ c .-E ::‘,(rft) i/,fa)i) . .

S(i) = S(i) u S(i - 1)
L{i) = L(i) U L(i - 1)

D one

Table 4.1: The find_global_optim al_rates procedure.

T heo rem 4.2 When the find-globaLoptimaLrates procedure terminates, all flows are as

signed their globally optimal rates.

P roof:

First we note that r (l) < r(2) < . . . < r(m).

Let Hi be the number of flows in 5*. Then the rate allocation obtained by the find_global_optimal_rate

procedure can be written as/3 = (/3(l),/3(2),. . . ,/3(| 0 I) = (r (l) , . . . , r (l) , . . . , r (m) ,. . . ,r(m)).
^ ^ ^ y J

Til Tl m
Let a = (a (l) , a (2) , . . . , ct(| 0 |)) be another feasible rate allocation.

Let a be the permutation of a, so a (l) < a(2) < . . . < a(| 0 |).

Suppose a(l) > r (l) ,

Consider any link I € 5(1), r (l) =

The total throughput across I is

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

a (l) ‘ | fi \> r(l)- | /,(1) |= Q.

The feasibility is violated. Thus, a (l) < r(l) .

I f a (l) < r (l) , then (3 is lexicographically greater than ct.

Suppose, a (l) = r (l) ,

or in more general form, we suppose a(i) — r(i), when V 1 < i < K and a(i) > r(i)

otherwise. For the sake of simplicity and without loss of generality, we consider only the

case of rii = n,2 = . . . = nm = 1. Thus, the total throughput across I is

K - 1 K - 1 m
Y (ad)' I fi(j) I) = Y M i) - I Mi) I) + I Mi) I)
3 = 1 3 = 1 j = K

K—1 m
> Y, Mi)-. I Mi) I) + a(i) ■ Y (I Mi) I)

3 = 1 j = K

K — 1 771
> Y M i)-1 Mi) I) + r(j) ■ Y (I Mi) I) > Q

3 = 1 j = K

The feasibility is violated again. So, for K < i < m, it must be a(i) < r(i). If the inequality

is strict, then (3 is' lexicographically greater than a. Therefore, (3 is lexicographically greater

than any other feasible rate allocation vector a. E n d of P ro o f

4.2.2 D istrib u ted A lgorithm and Convergence

The distributed version of [47] of the above find_global_optimal_rates procedure resembles

the synchronized one, except the procedure has to collect the information about the network

step by step. The distributed approximation procedure includes a method to acquire the

necessary bottleneck rate information via feedback to the traffic sources. It is observed that

in order to calculate the fair allocation, a link needs to know only about the rates of the

flows traversing it. Also, each link asynchronously calculates, and independently maintains

the estimated rate for each flow an advertised rate, according to the local max-min fairness

criteria. Using the feedback mechanism mentioned above, advertised rates for the same

flow at multiple links along the path of the flow are summarized. The source node injects

data at the stamped rate, which is the minimum of all the advertised rates it received on

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the path. The link that corresponds to the minimum advertised rate is the bottleneck for

the particular flow. In addition, the link maintains a recorded rate for each flow, which is

the measured rate within the recent past. For all flows passing through a particular link,

the recorded rate should be close to the advertised rate. This is the concept called M-

consistency in [47]. Anytime after M-consistency is violated, the advertised rate for all flows

should be re-calculated. In other words, M-consistency requires that source nodes conform

to instructions from the gateways before the global optimal rate is achieved. [47] proved

that such a distributed algorithm converges to global optimum within bounded time.

D efin ition 4.4 The marked flows at any time must satisfy the following conditions, referred

as M -C onsistency :

• I f any flow is marked, its recorded rate is less that or equal to the advertised rate.

• The advertised rate is calculated according to (Equation f . l) .

distributed_global_optim al_rates:

P ack et p:
Up, “up-bit” , it is used to indicate that the flow has the potential to increase its rate
pp, packet’s stamped rate.

Source s:
ps, stamped rate of the last feedback packet received,
us, “up-bit” in source

D estin a tio n d:
pd, stamped rate of the last packet received,
Ud, “up-bit” of the last packet received.

L ink I:
Ci, Capacity of the link I,
fi, the set of (known) flows at the link I,
Gi, the set of all marked flows (known) at link I.
For any flow i G Gi,

£j, recorded rate of the flow.
pi, advertised rate of the link, calculated by (Equation 4.1) ,

Table 4.2: The d istribu ted_g lobal_op tim al_ ra tes procedure.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

collect adv ratepacket
colled

reset stamped rate check if anV violation, recalculate adv_rate

rate set the recorded rate

Set the session as the marked

Figure 4.2: Illustration of the d istribu ted_g lobal_op tim al_ ra tes procedure.

Cu i f I f i \ = 0;

Ci - E j e o M j) + m a x j z o M j) , i f \ fi | = | G t | (4 1)Vi =

C; = — i— , otherwise\ f i \ - \ G i \

[47] proved tha t the algorithm 4.2 converges to the global optimal rate within a bounded

time. The proof is as follows.

L em m a 4.1 After any link updates its advertised rate, the marked flows are M-consistent.

P ro o f Lets consider any link update.

Y : the set of flows marked at the beginning of update

pi', the previous advertised rate calculated by (Equation 4.1).

Z\ the subset of Y with stamped rate greater than iq.

After the previous updating, all flows in Z will be unmarked, therefore, the final advertized

rate will be

Cl - E <e(y-S)(&) Cl - Ergyfe) + E iez(€i) > c l - E <ey (6) + E i M
V \ f l \ - \ Y - Z \ \ f i \ - \ Y \ + \ Z \ - \ f i \ — \ Y \ + \ Z \ W

(4-2)

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

End of Proof

L em m a 4.2 After the flow number stabilizes at time t0 and all these flows are known to all

links of the network, for all links I at t > to,

m > i f .

P ro o f Let set Y as the set of flows marked, and p is the final updated advertized rate, by

the Lemma 4.1, all flows marked are M-consistent, thus

V i e y , g < p

, Then,
C l - S o - t e) ^ C i - S a - M . Ci

/ i i - m " i / i i - m i / i
E n d of P ro o f

L em m a 4.3 Let r(i) denote the optimal rate of flows in S(i), where S(i) is the set of flows

whose optimal rate were assigned at iteration i of the find_global_optim al_rates procedure

(Table 4-1), and L (i) is the set of bottleneck links of this iteration, for any t > to,

' Ul(t) < r (l) , A - L (l) ;
(4.3)

, «j(i) > r(l) , V I E L(l);

P ro o f By Lemma 4.2, p >

By Theorem 4.1,
' r (l) = g , i f I € i (l) .

(4.4)

Thus, the statement of this Lemma holds. E n d o f P ro o f

L em m a 4.4 After some time, all flows in S (i) will reach its optimal rate r (l) .

P ro o f Lets use R T T denote the flows with the largest round trip time. By the definition

of d is tribu ted_g lobal_op tim al_ ra tes procedure the packet stamped rate pp will record the

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

smallest advertised rate of links along the path it traversed. Therefore, by the end of the

first R T T , all of the advertised rate are stored in packet stamped rate. Specifically, by the

definition of the S (l) , which is the set of flows experiencing the first level bottleneck, all

packets of any flow in 5(1) will have stamped rate at least as high as r(l) . And any packets

of flows 0 — 5(1), the packet stamped rate should be strictly greater that r\. At the beginning

of the second R T T , the sources set their stamped rate ps to be the same as the packet stamped

rate pp collected in the last R T T . At each link, the recorded rate £ of flows are determined

by the latest stamped rate of flows. By the end of the second R T T , all of the links have

updated the recorded rate £s. In the third R T T , the links re-calculate advertised rate with

the new recorded rate f . The marked flows (or already assigned flows) which has recorded

rate greater than the first round advertised rate will be unmarked. For I G L(1), all of flows

crossing I are in 5(1), and suppose all flows in 5(1) are marked, thus,

Cl Si£S(l) Ci / a e\
(4 5)

By Theorem 4.1, r (l) = Thus,

_ K1)- I f t I -E te s (i)&
w I St I - I S(i) I

£ is the pi of previous R T T . Due to Lemma 4.3, we have pi > r (l) at any time, thus,

f > r(l) . So,
< r (l) . | / , | - r (l) . | 5 (1) | =

w - I f t I - I S(1) | 1 ’
From Lemma 4.3, pi = r(1). So, at the end of the third R T T , the advertised rate for I € 5(1)

is the optimal rate r (l) . At the end of the third R T T , all of sources of flows crossing I are

assigned with a stamped rate, which is equal to the optimal rate. At the fourth R T T , all of

flows in 5(1) will be marked as soon as the first packet with new stamped rate arrives link

/, and will remain marked as long as the set of flows unchanged. So, A*RTT is the upper

bound time to reach global optimum rate for iteration i. E n d o f P ro o f

L em m a 4.5 In the following iterations, all flows in S (i) will reach its optimal rate after

some time.

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro o f Suppose all flows in S (j) , where 1 < j < i, have reached their optimal rate already.

Lets consider a reduced network N (L, 5), L = A — L(i), 5 = 0 — S(i), where

L(i) = 5(1) U L(2) U . . . U L(i).

S (i) = 5(1) U 5(2) U . . . U S(i).

L(i 4-1), is the set of congested link and S(i + 1) is the set of all flows crossing at least

one link in L(i + 1) in this iteration, iteration i + 1. Prom the same argument in Lemma 4.4,

we could prove that the iteration S(i + 1) will converge to r(i + 1) after at most 4*R TT.

E n d of P ro o f

W ith Lemma 4.4 as the induction base and Lemma 4.5 as the induction process, the

statement of the following Theorem 4.3 holds.

T h eo rem 4.3 Given arbitrary initial conditions on the states of the link in the network,

states of sources, destinations, the algorithm d is tribu ted_global_optim al_rates procedure

(Table f.2) will converge to the global optimal rates, as long as the set of flows, their demands

and routes do not change.

The proof presented above does have its limitation. In the proof, the RTT of each flow

is assumed to be constant which does not capture the dynamic of queueing delays. The

limitation comes from the mathematical induction methodology used in the proof. In order

to use mathematical induction, the evolution of the system has to be discretized. The

problem in the proof shares the same problem as those used in the proof of correctness of

software. To my best knowledge, this is the best tha t we can expect so far.

4.2.3 F airS h are A lgorithm

FairS hare implements, indirectly, th e sam e actions as th e d istribu ted global fairness algo

rithm of [47]. The minimum rate over all “advertised” rates is implicitly enforced because

the throughput of a TCP flow is only controlled (via scheduled losses) at the link in which

FairShare has assigned the smallest rate for the given flow over all the links that the flow

traverses. This is because FairShare does not victimize a flow multiple times (no multiple

loss points) given its ability to identify bottlenecks and the behavior of non-greedy flows. The

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

process of determining the share allotment to a particular flow is as per the max-min fairness

criterion, which is exactly the same criterion used in [47] at any bottleneck node. Hence,

with the exception of replacing the explicit rate adjustment with implicit model-based rate

control at a single point (link) for any given flow, the rest of a FairS hare system behaves

identically to the one described in [47].

Lem m a 4.6 F airS hare is an alternative implementation of the distributed_global_optim al_rat<

procedure. (Table f.2).

P ro o f

S tam p ed R a te Stamped Rate at the source is not needed except at the first router along

the path, since the minimum of the advertised rate along the path is the allocated rate

of the source. F airS hare collects the same information via measurement. Because

an upstream bottleneck link may reduce the rate of a flow, a router measures the

minimum of the rates available by the flow crossing through the upstream routers.

Hence, demand; collects the same information that is explicitly collected and made

available by the source in the second R T T iteration (See the proof of Lemma 4.4).

A d v ertised R a te The a d v e rtise d ra te , as seen in (Equation 4.5) is also calculated in

the FairS hare algorithm (Figure 3.3, line 11).

M -C onsistency f la g ; encodes the outcome of the comparison between the share; and

demand;. Because we lack the ability for explicit information to be sent to the source,

the reduction of the rate which would have been experienced by the fact tha t a flow

belongs to Z (See the proof of Lemma 4.1) is now encoded by fla g ; (TRUE if it violates

M-consistency, FALSE if not). Subsequent to this a loss will be inflicted to the TCP

flows and the rate is reduced.

Thus, F a irS hare has implement all of the mechanisms in the find_global_optim al_rates

procedure. It can be considered as an alternative implementation, without modifying packet

headers. E n d o f P ro o f

FairS hare possesses a similar convergence feature as th a t of the find_global_optim al_rates

procedure. A major difference between FairS hare and d istribu ted_g lobal_op tim al_ ra tes

procedure is that with the lack of explicit information, reducing of rate is enforced via losses

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

while an increase is not immediate (as it would be in d is tribu ted_g lobal_op tim al_ ra tes

procedure) but relies on the window inflation logic of a TCP flow under no losses. Reduction

in TCP via losses does not steer the flow to a specific rate, so the window increase dynamics

are essential to move to the intended long term average. Because of this, F airS hare needs

multiple RTT times before the desired allocation are reached. So one can replace the specific

timing of Theorem 4.3 with claim that “eventually” the desired allocation is achieved (which

can take more than A*RTT).

4.3 Sim ulation Study

Early performance results of F a irS hare were presented in Chapter 4. In this section we

demonstrate tha t F airS hare quickly adapts to changes of network load caused by the arrival

of new (and termination of old) flows and by variations in the demands of flows. Different

network topologies are considered. The simulation experiments were conducted using ns-2

[6].

4.3.1 E xperim ent 1

In the first set of experiments, we investigate the impact of the bottleneck location on the

performance of F airS hare, assuming linear topology with multiple hops. The topology is

depicted in Figure 4.3(a), which consists of eight source nodes, eight sink nodes and three

router nodes. Eight TCP Reno flows are initiated from eight pairs of source and sink nodes.

The bandwidth of link between router nodes is 200 packets/sec with delay of 50ms. In the

first scenario, all eight flows are congested at the link rl-r2 (Figure 4.3(a)). In the second

scenario all flows are congested at the link r2-r3 (Figure 4.3(b)). In both scenarios, the

max-min rates of eight flows is expected to be 25. One aspect tha t is examined in these two

topologies is that, in the second scenario, F airS hare on rl-r2 identifies correctly that the

first four flows are bottlenecked elsewhere (on r2-r3) and are not victimized with more losses

at rl-r2. Indeed, in all cases, the goodput achieved by each connection was 25 packets per

second, as an eight-way fair sharing would suggest. The smallest goodput value measured

was 24.92 and the largest 25.08. That is, the desired behavior was achieved within a very

tight range.

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(a)

l ' 50ms S? 50ms r2

200PKT/S

(b)

Figure 4.3: Topologies in, (a) scenario 1, (b) scenario 2.

4.3.2 E xperim ent 2

Our second set of experiments were conducted in the loop topology depicted in Figure 4.4(a).

Four router nodes, r l , r2, r3 and r4, form a loop. The links between router nodes are all of

capacity equal to 100 packets/sec and of propagation delay equal to 10msec. Four TCP Reno

flows, are initiated between the corresponding pair of source and sink nodes. The detailed

paths for each flow are given in Table 4.3.

Flow Path
1 s i—>r 1—>r2—>r3—>kl
2 s2—>r2—>r3—>r4—>k2
3 s3—»r3—>r4—>rl—>k3
4 s4—>r4—>rl—>r2—>k4

Table 4.3: The paths of flows in Experiment 2.

In the experiments, we investigate the performance of our proposed F airS hare policy in

a dynamic environment. That is, the demands of some flows change in the process of the

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

100
Flow 1 -------
Flow 2
Flow 3 * * '■ ’
Flow 4 • • • •

Flow 1 becom es
greedyFlow 3 becom es

n o n -g reed y
Flow

o

,k4
Flow 4. a.

S.
1s2

Flow 3

100 120 140
sec

(a) (b)

Figure 4.4: Experiment 2, (a) topology and (b) goodput.

experiments. The unit of time is seconds. Specifically, Flow 2 and 4 are always greedy, that

is, they have infinite demands during the whole period of the simulation. Flow 1 is greedy

from 0 to 60, then switches to having a limited demand equal to 10 packets/sec, and remains

limited until time 100, at which point it resumes being greedy. In a similar vein, Flow 3 is

greedy from 0 to 70, becomes non-greedy with a limited rate of 20 packets/sec, until time

110, at which point it becomes greedy again. All flows have the same RTT propagation

delay (40msec).

The goodput of each flow is depicted in Figure 4.4(b). From 0 to 60 sec (Phase I), due

to the uniform bottlenecks, every flow receives the same bandwidth, tha t is, 50 packets/sec.

At time 60 and until time 70 (Phase II) the demand of Flow 1 drops to 10 packets/sec, link

r4-rl and link r3-r4 become first level bottleneck links. Consequently, Flow 3 equally share

the capacity on r4-rl and on r3-r4 with Flow 4 and Flow 2 respectively, at 50 packets/sec.

The max-min rates of Flow [1-4] are 10, 50, 50, and 50, respectively.

Then at time 70 and until time 100 (Phase III), the demand of Flow 3 drops to 20

packets/s and the deadlock is broken. Bounded by r4-rl and r3-r4, the throughput of Flow

4 and Flow 1 switch 80 packets/sec. The max-min rates of Flow [1-4] become 10, 80,20, and

80, respectively. At time 100, and until time 110 (Phase IV) Flow 1 resumes to being greedy.

The first level bottlenecks are now rl-r2 and r2-r3. The max-min rates of Flow [1-4] are

50, 50, 20, and 50, respectively. Finally Flow 3 resumes greedy at time 110 (Phase V). The

evolution of the max-min rates is illustrated in Table 4.4. Figure 4.4(b) demonstrates tha t

with a F airS hare policy, flows determine and stabilize at the max-min rates in a dynamic

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

environm ent in a loop topology.

Phase
Flow I II III IV V

1 50 10 10 50 50
2 50 50 80 50 50
3 50 50 20 20 50
4 50 50 80 50 50

Table 4.4: Per-flow bandwidth share in Experiment 2.

4.3.3 E xperim ent 3

In the third set of experiments, we investigate the impact of an interfering flow on the

performance of FairShare. The topology (Figure 4.5(a)) is similar to the one in the previous

experiment (Figure 2.1), except an interfering flow (Flow 5) shares link r2-r3 with Flow 1

and 2. W ith the presence of the Flow 5, link r2-r3 becomes the first level bottleneck, while

link r4-rl is the second level bottleneck. In the experiments, the demands of Flow 5 increase

from 0 to 50. As it is shown in Figure 4.5(b), when the demand of Flow 5 is smaller than

33.33, the goodput of Flow 5 achieves its demands, while Flow 1 and 2 split the remaining

capacity equally. As the demand of flow 5 is larger than 33.33, Flow 1,2 and 5 share the

capacity of link r2-r3 equally. In both scenarios, Flow 3 and 4 are bounded by the second level

bottleneck, on link r4-rl. In summary, with FairShare policy, flows detect the bottlenecks

of different levels and achieve the max-min rates consistently.

4.3 .4 Experim ent 4

In the last experiment we conducted simulations with the most sophisticated configurations

studied in [47]. The topology and link capacities are shown in Figure 4.6(a). Similarly to

the study in [47], the object of this experiment is to investigate the response of our scheme

to dynamic changes in a distributed non-trivial environment. The applications associated

with flows are, again, of ftp style, tha t is, the applications always have data to deliver as

long as the flows are active.

In this experiment, three levels of bottleneck links are presented. In the simulation, all

five flows start at time 0 (Phase I). The transient portion of the results (0-30) have been

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Flow ISecondary bottleneck

Flow 4

Flow 5 Primary bottleneck
.interfering Flow

60
Flow 1
Flow 2
Flow 3 •Fhw*-
Flow 5

50

o 40

30Q.

33.335 20 o U
10

G oodput o f Interfering Flow
o

10 151 20 25 30
Demand of Flow 5 (packets/sec)

35 40 45 510 5

(a) (b)

Figure 4.5: Experiment 3 (a) topology and (b) goodput.

removed. In Phase I, Flow 2, 3 and 4 share the first-level bottleneck link of 5 (r4-r6). Flow 1

is bottlenecked at link 1 (rl-r2). Flow 5 is bottlenecked at link 4 (s5-r4). Thus, the expected

rates of Flow [1-5] by global max-min fairness standard are as follows: 40, 20,20,20, and 60,

respectively.

Subsequently, Flow 3 terminates at time 100 (Phase II). Flow 2 and 4 share bottleneck

5 (r4-r6) equally. As in the previous phase, Flow 1 is bounded by link 1 (rl-r2), and flow 5

is bounded by link 4 (s5-r4). As a result, the expected max-min rates of Flow [1-5] are as

follows: 30, 30,0,30, and 60, respectively.

At time 150, Flow 1 and 2 also terminate (Phase III). In this phase, only two flows, 4 and

5, are active. Consequently, Flow 4 is bounded by link 5 (r4-r6) and Flow 5 is bounded by

link 4 (s5-r4). The max-min rates for flow[l-5] are 0, 0, 0, 60, and 60, respectively. Finally,

Flow 1 resumes at time 200 (Phase IV). In this phase, the bottleneck links are link 3 (r3-r4)

shared by Flow 1 and 4, and link 6 (r4-r5) shared by Flow 1 and 5. Consequently, the

max-min rates for flow[l-5] are 50, 0, 0, 50, and 50, respectively.

In Table 4.5, the status of flows, the expected (analytically) max-mix rates of flows, and

th e measured goodputs from the sim ulation are presented. Figure 4.6(b) shows that with

our FairS hare, all flows quickly determine and stabilize at their max-min share.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.6: Experiment 4 (a) topology and (b) goodput.

4.4 Conclusion

W hat should be emphasized about the use of F airS hare is the fact that, together with the

totally distributed control for max-min fairness, it does not require complicated parameter

tuning. Therefore, unlike schemes like RED whose ability to properly control flows lies in

their accurate parameterization, the presented scheme controls all aspects of its behavior

via self-contained measurement and control without user/operator intervention. To our

knowledge, it is the first time that an AQM scheme is both capable of reaching a global

objective as far as the TCP flow performance is concerned, and avoids the need for external

parameterization. We have presented evidence of what we believe is the first time that

an AQM scheme demonstrates capabilities to predictably force the entire network into a

fairness objective. The solution is the synthesis of a per-link mechanism, in the guise of the

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FairShare algorithm, and a totally distributed rate allocation which is an adaptation of [47].

Through simulation experiments, we have shown that the proposed AQM scheme converges

to the globally max-min fair rates for various network configurations and in dynamic load

environments. The FairS hare policy appears to be self-stabilizing in the presence of dynamic

network changes. The result of our investigation is crucial towards the practical applicability

of global control algorithms for TCP flows in realistic environments.

Flow Active?
Expected
Goodput

Measured
Goodput

Phase I (30-100sec)
1 yes 40 39.40
2 yes 20 19.80
3 yes 20 20.20
4 yes 20 20.11
5 yes 60 58.98

Phase II (100-150sec)
1 yes 30 29.19
2 yes 30 30.77
3 no - -

4 yes 30 29.10
5 yes 60 59.99

Phase III (150-200sec)
1 no - -

2 no - -
3 no - -

4 yes 60 60.00
5 yes 60 60.00

Phase IV (200-250sec)
1 yes 50 49.19
2 no - -
3 no - -

4 yes 50 50.70
5 yes 50 50.82

Table 4.5: Measured vs. predicted bandwidth distribution.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 5

T C P Lifetim e &; RTT Classification

5.1 Introduction

In the previous chapters we examined schemes that deal with long-lived flows. In the cur

rent chapter we will look into the separation of short- and long-lived flows in general. We

will provide statistical study of real traffic in support of classification. Moreover, we will

investigate classification schemes and ways of identifying the bandwidth demands of classes.

The rest of this chapter is organized as follows. In section 5.2, we will describe our

study on real traffic to support lifetime classification. In section 5.3, the detailed scheme of

identifying long-lived flows and their demands are presented. Section 5.4 presents evidence of

supporting RTT classification. A RTT estimation method is given in section 5.5. In section

5.6, we present bandwidth allocation schemes based on simple rules and a more elaborate

control scheme called DAS.

5.2 Lifetim e Classification

The first aspect of the policies studied in this chapter is the reliance on a mechanism that

is able to classify flows depending on their anticipated lifetime. We use a simple mechanism

whereby all flows are assumed, when they start, to be short-lived until the timepoint when

they exceed a certain number of transm itted packets, subsequent to which they are “up

graded” from short to long-lived. Clearly, considering a long-lived flow as short-lived for a

short time period in the beginning of a connection is not as important to the outcome of the

mechanisms presented here because it is unlikely that the TCP dynamics of the particular

flow have reached equilibrium. We are concerned however with the potential of character-

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

izing a flow as long lived and then terminating shortly thereafter, that is, “false positive”

problem. In this case, the control overhead of the resource allocation associated with the

upgrade from short to long-lived would have been invoked in a wasteful manner. We note

tha t previous studies [55, 56] did not show what constitutes a threshold between short- and

long-lived flows or if it exists in all cases. Fortunately, the “false positive” problem is amor

tized by the nature of the heavy-tailed connection lifetime distribution. Once the short-lived

flows are isolated subject to a “reasonable” threshold (e.g., a threshold larger than the av

erage number of packets representing typical short-lived web transfers), the long-lived flows

still posses a heavy-tailed behavior. Thus, a few of connections which carries the majority

of the traffic is always identified as long-lived and stay in the system for a long period of

time in the future. Previous studies, e.g., [50] as well as our analysis of traces of WAN traffic

collected by the University of Auckland [53] indicate th a t the connection lifetimes, especially

once short-lived outliers are isolated, are well modeled by a Pareto distribution.

The cumulative density function (CDF) for a Pareto distribution is

P r{Z < x} = 1 - (-) Q
x

Thus, we have

P r{Z > x} = (^) Q
x

and

P r{Xl > Z > x 2} = (-^)a - (-) °
X \ x 2

if xi = x 2 + e, e expressing our tolerance to “false positive” if x2 is the threshold, then

P r { x i > Z > x2} —> 0 as x 2 —■► 0. That is, the larger the threshold the less likely the “false

positives”. Statistical studies of Internet traffic, e.g., [13], show that most TCP connections

are short-lived, but a small number of connections have lifetimes spanning hours or even

days and carry a high proportion (typically 50% to 60%) of the total carried bytes. We use

five traces, the first two traces collected on December 8th 1999, starting at 12:58:38, the

next two collected on January 25th 2000, starting at 14:36:40, and the last one collected on

January 28th 2000, starting at 16:04:41 (Table 5.1).

In our statistical study, we use the SYN and FIN flags in the TCP handshake protocol

(Figure 5.2) as indications of start and end of a particular TCP connection. The studied

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Long-Lived Classification Threshold
50 packets 100 packets 200 packets

Trace Duration Packets a (3 Short a (3 Short a (3 Short
1 2:18:59 2,727,535 1.74 3.00 50.79% 1.59 2.88 56.56% 1.51 2.81 61.21%
2 2:18:59 16,191,749 1.77 3.49 56.80% 1.86 4.01 61.94% 1.59 3.37 65.30%
3 3:11:28 3,626,938 1.99 4.00 55.65% 1.82 4.02 62.42% 1.54 3.38 67.98%
4 3:11:28 7,278,421 1.76 3.31 58.46% 1.64 3.24 64.08% 1.57 3.20 68.43%
5 24:01:22 10,554,879 1.79 3.50 55.85% 1.86 4.01 61.71% 1.86 4.01 66.65%

Table 5.1: Pareto distribution parameters (a,ff) capturing the empirical distribution.

traces might include HTTP traffic, ftp traffic and other type of traffic as well, but only TCP

connections are extracted and studied in our analysis.

As can be seen in (Figure 5.1), the empirical traces fit Pareto distribution closely. In

the plots, x-axis represents the lifetime of the observed TCP connections in packets, and

y-axis stands for the frequency of the TCP connections of the specific lifetime over the total

observations . The empirical trace fits well with Pareto distribution in all three threshold

values: 50, 100 and 200, respectively. Here, a threshold is the criteria of differentiating long-

from short-lived TCP flows. A TCP flow with packets exceeding the threshold is considered

a long-lived TCP flows.

Trace 1. ThreshoklsSO

5 a* 35 45 SO

Trace t . Threshokl=100

Distribution 1
(I-(2 .88 /x)**1 .59)

Trace I. Thresholti=200

Distribution
(1 - (2.81/x) **1.74)

SO 10U 120 160 ISO 200

(a) Threshold=50 (b) Threshold=100 (c) Threshold=200

Figure 5.1: Pareto Distribution fit on Trace 1 for various thresholds.

The parameters of the specific Pareto-distribution that fit the empirical distribution of

the lifetime of TCP connections are obtained by Chi square test 1. By the definition of the

1Chi square test is used to analyze the difference between the hypothesized distribution and the actual
observed data. The test takes the form of x 2 = i ; where O, is the frequency of the observed
events in the sample data, Ei is the frequency of expected events and K is the number of categories.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pareto distribution, the portion x G [0, b) is not included in the fitting processes. As can

be seen in the plots (Figure 5.1.c), the Pareto distribution fits better with TCP connections

of relatively longer lifetime. Since our interest is drawing a line between long-lived TCP

connections and short-lived connections, fitness of short-lived TCP connections has only

limited impact on our schemes and could be ignored.

For example, the CDF of load/lifetime of Trace 1 (Table 5.1) can be modeled by Pareto

distribution

P r{Z < x } = l - (-) 1-74
x

The percentage of flows classified as long-lived with threshold as 50, 100 and 200 are 0.748%,

0.224% and 0.067%, respectively. Consequently, the percentage if TCP flows last between

50 and 100, 100 and 200 are 0.524% and 0.157%, respectively. Thus, due to the nature of

Pareto distribution, the “false positive” problem is trivial if we set the threshold value large

enough. And larger threshold value could minimize the “false problem” further.

However, minimizing “false positive” is not the only factor affecting our choice of thresh

old value. The currently suggested threshold value should be several times of average traffic

load of HTTP sessions, because HTTP constitutes the majority of short-lived traffic. We

therefore argue tha t a reasonable threshold for separating short from long-lived flows is

50 packets. Note tha t according to this threshold, the qualified long-lived connections are

typically less than 1% of the total TCP connections. For example, in the case of trace 1,

this corresponds to 1746 long-lived flows during 8000 seconds, or about one new long-lived

connection every 4 seconds, a reasonable rate at which to perform special control processing.

5.3 Identifying Long-Lived T C P Flows

Let us assume that a TCP flow starting to send data through the router is initially a short

lived and competes with the rest of the short-lived flows in the bandwidth pool Cs. After a

period of time, if the flow is still active, it is upgraded to long-lived and enter into competition

with the rest of the long lived flows, in the bandwidth pool Q . The threshold of dividing

long- and short-live flows is set to a small multiple of a typical delay of a short Web document

transfer, i.e., on the order of a few seconds. Specifically, we consider a simple mechanism

for determining long-lived flows. Incoming TCP packets are hashed on the values of source-

destination addresses and ports. Upon encountering the first packet of a new flow, the

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

SOURCE D ESTIN A TIO N

3-Way SYN
Handshake

ACK

DATA ACK

Termination FIN

ACK

Figure 5.2: The TCP Handshake Exchanges

corresponding hash table entry stores the current time. Periodically, e.g., once every five

seconds, the entries are checked for any flow that has been active for more than the threshold

amount of time. This flow becomes a long-lived TCP flow. In order to avoid legitimizing

as long-lived flows those flows that have sent no data in the recent past. A scheme such as

the one proposed here was initially proposed by Morris [38]. According to this scheme, upon

arrival of a packet, a bit flag (associated with the flow’s hash entry) is set. A (separate)

periodic process clears the flags periodically. In this case, the upgrade to long-lived flow can

occur only if both the test of sufficient time since the start of the flow has elapsed and if the

bit flag indicates that the connection was recently active.

5.4 RTT Classification

The second aspect of our classification schemes involves identifying the RTT of flows. The

RTT m easurem ents are also used as input to the FairS hare scheme in order to help deter

mine the per-flow target window size for a flow to be able to claim its fair share of the link’s

bandwidth. We decided to group TCP flows of roughly similar RTTs together in separate

classes in order to suppress the negative interaction of TCP flows with drastically different

RTTs. Such RTT-based classification scheme is supported by a previous study [57]. Our

67

SYN/ACK

ACK

ACK
FIN

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

study of the same traces as the ones we used in the previous section shows that RTT values

of TCP flows are indeed widely distributed over several orders of magnitude (Figure 5.3).

Likewise, an accurate model and simulation study should opt for several orders of magnitude

of RTT values when synthesizing TCP traffic workloads. Such simulations have already been

provided in earlier chapters and similarly, we will use traffic with wide spectrum of RTT in

later chapters.

5.5 RTT Estim ation

A necessary ingredient of F a irS hare is information about the RTT of individual flows. In the

most proposed schemes, the RTT estimation is performed with both direction traffics at the

end point. Such mechanisms includes the method of measuring RTT utilizing the standard

p ing utility to collect long-term statistics and the approach used in XCP [49] to introduce

extra TCP headers, with which the source node is forced to disclose its local estimate of RTT.

These approaches are not particularly appealing for three reasons. First, we do not wish to

produce estimates that follow the queue dynamics, that is, we are interested in the inflexible

propagation time component. Second, we do not wish to impose a continuous overhead of

monitoring the RTT to the router. Finally, we do not expect that the endpoints will modify

their implementations of TCP to include RTT information in the headers. The approach we

used is to extract RTT information by sampling the intervals between the first few packets

of a new TCP flow. Such an approach can perform the RTT estimation with one-way traffic,

tha t is, it does not require traffic of both directions passing the same router. Recall that

when a TCP connection starts, a three way handshake (Figure 5.2 takes place. First, the

client sends a packet with SYN flag set. The server responds with a packet with ACK and

SYN set. Then the client responds with an ACK packet. Data packets are to be transferred

after the handshake. To terminate a flow, the client sends a FIN packet. The server sends

an ACK followed by a FIN packet. The client responds with a FIN packet. We sample RTT

three times. The first sample is the interval between SYN and ACK of three-way handshake.

The second sample is the interval of last packet of three-way handshake and the first data

packet. The third sample is the interval between the first data packet and the second data

packet. We take the minimum (to isolate startup and queueing effects as much as possible)

of the samples and use it as the RTT for the particular flow. The technique is similar to one

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

proposed in [48]. [48] also verifies the accuracy of such RTT estimation technique. Thus,

we conclude that the instantaneous RTT we measured is a low cost estimation with decent

accuracy.

5.6 Classification Schem es

5.6.1 C lassification Schem es Based on Sim ple R ules

It has been observed tha t short-lived flows are at a disadvantage when competing against

long-lived flows. Furthermore, T C P ’s unfairness is also due to different RTT values of

different TCP flows. It is natural to investigate whether the classification can be performed

based on a simple rules, and how it can be used in terms of separating the service received

by each class. It is reasonable tha t the two causes of unfair performance between competing

TCP flows, that is, connection lifetime and RTT differences should be dealt with explicitly in

order to produce a well-regulated network. Lifetime-based classification schemes have been

advocated [32, 15, 16] to protect short-lived TCP flows from the negative impact of long-

lived TCP flows. However, they have not been combined with RTT classification schemes.

The first set of classification schemes is composed of lifetime classification scheme and RTT

classification scheme. The classification mechanisms are essentially (a) a threshold-based

classification between short- and long-lived flows and (b) a rough separation of flows in a

few classes of similar RTT values.

We are also interested to compare the classification schemes to the performance of Drop-

Tail and RED. We propose six combinations of classification scheme based on lifetime and

RTT and queue management policy like DropTail and RED. We defer the evaluation exper

iments to next chapter.

Classification Queue Management
LFT-DT Life time DropTail

LFT-RED Life time RED
RTT-DT RTT DropTail

RTT-RED RTT RED
SIX-DT Lifetime + RTT DropTail

SIX-RED Lifetime + RTT RED

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6.2 D ynam ic B andw idth A llocation for L ifetim e-B ased T C P C las
sification

Previously, bandwidth allocation schemes of TCP flows have been studied extensively, e.g.,

in [60, 61, 62]. Lifetime-based classification schemes advocated [15, 16, 32] the protection

of short-lived TCP flows from the negative impact of long-lived TCP flows. However, the

synthesis of lifetime-based classification and bandwidth allocation are, to the best of our

knowledge, considered together for the first time. We also consider the impact of RTT in

the unfairness between TCP flows. However, it is of secondary importance because it is used

only in our FairS hare policy to improve the fairness between long-lived flows, a feature that

can be added but is not crucial to the short- vs. long-lived flows separation. Another reason

for proposing dynamic allocation is the nature of the setup process of short-lived TCP flows,

which can be characterized as a stochastic process with fairly well defined arrival rate which

is independent of control policies at the intermediate routers [50]. A control policy based on

the number of active TCP flows (“call” level policy) is likely to better match the medium to

long term load fluctuations compared to a policy based on the packet (“packet” level) arrival

process. In fact, the latter has been repeatedly shown to be accurately modeled as a self

similar process, which exhibits, among other things, infinite variance, complicating efforts for

long term predictability. W ith the proposed call/connection-level dynamic allocation policy,

an intermediate router measures the number of active TCP flows traversing each link, and

dynamically adjusts the fraction of bandwidth for the class of short lived flows every time

a significant change in the number of TCP flows traversing the links is detected. W ith

the lifetime-based classification in place, the next step is to provide a differentiated service

scheme whereby the available link bandwidth is allocated between the two classes: short

and long-lived flows. The per-class bandwidth allocation is to be dynamically adjusted, on

a periodic basis. The adjustment period is denoted by ta. Therefore, it is assumed that the

link scheduler is at least capable of providing two service classes with distinct bandwidth

allocations and per-class queues. A Weighted Fair Queueing implementation with two (one

per class) DropTail queues fits our assumptions, and it is widely found in modern router

equipment. Within the bandwidth pool allocated for the long-lived flows we can consider

the application of additional schemes to provide fairness between multiple long-lived flows

because, as we have argued, the fairness criteria make sense for long-lived flows more than

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

they do for short-lived flows. In particular, our performance study considers the application

of the F airS hare [43] scheme on the long lived flows. We defer any further discussion

about F airS hare since it has been covered elsewhere [43] and pay more attention to a

dynamic allocation scheme (DAS) of bandwidth between the two classes. The operation of

DAS considers the aggregate traffic demands of the short-lived flows. We distinguish two

basic sources of traffic dynamics: the dynamics of the demand for new connections (number

of active connections, i.e., “call-level” demands) and the dynamics of the arriving packet

stream that belong to various TCP flows and obey the congestion control dynamics of TCP

(packet arrival rate, i.e., “packet-level” demands). DAS, depending on how it is implemented

(see following subsections) may need to monitor both dynamics. However, the changes

to the bandwidth allocation are performed in response to changes of the number of TCP

connections. That is, the intention of DAS is to follow the call-level dynamics of TCP flows.

The traffic load, measured in connections per unit of time (minus the small fraction of

long-lived flows instantiated per unit of time) provides a potent metric for the anticipated

load because it comes close to representing the user behavior. That is, the number of

connections set up per unit of time are predominantly due to the user activity, and are thus

an external demand parameter imposed on the network. DAS is composed of three elementary

mechanisms. The first is keeping track of the number of flows traversing a link, either by

approximating their instantaneous count, or by keeping track of the rate at which new

ones are established and old ones terminated. The second mechanism translates flow level

dynamics to packet traffic dynamics, by utilizing off-line measurements that characterize

the length of the “typical” short-lived TCP flow and which, incidentally, closely matches

the “typical” short HTTP transfer. The third, and final stage is deciding whether the

measured load should trigger a re-allocation (and by how much) of the bandwidth allotted

to the short and long-lived flows. That is, it translates a demand measurement to (re-)

allocation action. For the rest of the document we assume that if the bandwidth alloted to

short-lived flows is Cs and the link bandwidth is C, then the residual, C — C3, is entirely

allocated to the long-lived flows. We note tha t this is a technical assumption we decide

to make to simplify presentation of our scheme. It is conceivable that C — Cs should not

be allowed to be arbitrarily small, in order to avoid starvation of the class of long-lived

flows. Moreover, additional classes may need to be defined to handle other traffic flows, e.g.,

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UDP traffic. We will consider three alternatives to implementing DAS. Each one represents

a different way of keeping track of the connection load and a different means of interpreting

load demands to bandwidth allocation. More importantly, each one represents a different

overhead in terms of state information and a different degree of inaccuracy introduced via

the load measurements. However, as the evaluation section illustrates, all three provide an

improvement over DropTail or RED. While it is true that the improvement relies on being

able to exploit a-priori knowledge of what is a “typical” load by a short-lived TCP flow, our

claim is tha t the statistics of TCP flows are now much better understood. Clear indication

to this end is the abundance of traffic studies for Internet traffic and the development of

ever more accurate measurement techniques. Moreover, network operators are capable of

collecting such statistics and to revise their estimates on live systems. We will present our

experiment results in the next chapter.

5.6.3 DAS-BV

The first version of DAS we consider is based on the Bit Vector (thus DAS-BV) technique of

determining the number of active flows crossing a network link. The technique was proposed

by Morris [29]. According to this scheme, every packet going through the link is parsed.

Flow identification (f lowid) is uniquely generated via a hash function applied on the source

and destination addresses and ports. Packets with the same flow id are considered to be

of the same flow even though the hash is not perfect and hash collision could occur. The

state of each flow is captured by a single bit. It is an indicator of whether the flow was

“active” in the recent past. A bit vector with thousands (to tens of thousands) of entries

is maintained for this reason. The hash function value is in fact the index value to the bit

vector, used to access the bit associated with a flow. If a flow has sent a packet in the recent

past, its corresponding bit is set. The number of Is is read out and the bit vector is reset

(all entries cleared to zero) every tc time units. We note tha t the value tc, should be long

enough to capture all of the competing flows even if they are not active in th e sho rt run, but

also sufficiently short to allow quick adaptation to the changing dynamics. The basic rule

of thumb followed in our work is that tc should be of the order of the worst case round-trip

time delay we expect to find in the network, i.e., in the order of a few seconds. We observe

trends of demand changes, via an exponential averaging scheme. If flowCount denotes the

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

estimator for the number of flows, then at the adjustment instant i, it is calculated as:

f lowCount; = 7 x count; + (1 — 7) x flowCount;_i

where count,; is the most recent measurement as per the bit vector scheme. In order to

reflect the relative error-prone nature of the bit vector counting scheme, 7 is to be set to a

small value, to smooth spikes (in particular downward spikes due to some flows not being

active for some RTTs) of the count samples. The adjustment of bandwidth allocation is

performed at an interval much larger than tc, i.e., ta » tc. The gist of the scheme is to start

with a bootstrap value provided by off-line measurements, which reflects the typical average

load due to short lived flows and track the changes around this average value. Consequently,

the traffic demand, demand;, is determined at adjustment instant i by:

flowCount*
demand; = demand;_i x ------------------

flowCount;_x

whereby demand is bootstrapped to the average demand (in packets per second), and f lowCount;

represents the estimate of f lowCount at the previous adjustment instant (ta time units ago).

The pseudocode of the algorithm executed by DAS-BB upon packet arrival is shown in Figure

5.4. In summary DAS-BV is based on the premise that the total traffic demands are propor

tional to the number of active flows. Thus, tracking the number of active flows, provides the

information we need to adjust the bandwidth allocation. Clearly, the task is both sensitive

to how the demand values are bootstrapped to begin with, as well as the inherent problem

of how new long-term trends make necessary the adjustment of the anticipated average load

on a medium term basis. The study contained herein should be seen as a validation of the

short-term adaptability of DAS-BV and not its long-run (weeks to months) efficacy.

5.6.4 DAS-ED

In the second alternative implementation of DAS, we determine the bandwidth allocation

based on the Explicitly estimated flow Demands (ED). That is, instead of proportional

allocation relative to a bootstapped value, we directly measure the arrival rate (in packets

per second) from the aggregation of all short-lived flows. The measurement includes a small

error factor due to flows that, in retrospect, will be upgraded to long-lived flows. We then

interpret the measured arrival rate as demand. However, we stop short of increasing the

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bandwidth allocation when the packet arrival rate increases. The reason is that TCP, by

its very nature, attem pts to congest the links it traverses if its demands is greater than

the available bandwidth. Thus, instead of providing more bandwidth immediately, we take

into consideration whether the number of flows starting or terminating has changed in the

meantime. In short, an increase of packet arrival rate, accompanied by no change in the

number of flows active on the link, can be safely attributed to the TCP dynamics and

no reallocation of bandwidth takes place. Bandwidth re-allocation takes place when it is

followed by an increase of the rate at which new flows are being set up. Conversely, we

do not decrease the allocation of bandwidth when the packet arrival rate drops, unless it

is followed by a decrease in the number of flows. In other words, we attem pt to closely

track the connection-level dynamics by monitoring flow setup and termination events. We

subsequently change the bandwidth allocation if the direction of the change (increase, or

decrease) is in agreement with the derivative of the flowcount process (positive, or negative).

Otherwise, we maintain the current allocation.

Technically, small rate fluctuation of the packet arrival rate process are inconsequential

and can very well be the result of flows exploiting their TCP dynamics but bottlenecked

a t links on upstream routers. We ignore such fluctuations, and consider only packet rate

changes th a t are above a threshold (in the experiments: + / - 1 0 %) relative to the current

allocation. Moreover, the reliance on a fairly accurate estimator for the f lowCount derivative,

renders the inaccurate Bit Vector technique unattractive. Instead, the change in the number

of active flows within an adjustment interval is derived directly by monitoring the start

and termination of TCP connection, which is extracted from the flow identification number

(flowid), and the flags, SYN and FIN. If, within an adjustment interval, the newly started

flows outnumber recently terminated flows, we draw the conclusion tha t the number of active

flows increases and the router will allocate more bandwidth if indeed the measured packet

rate demand has increased. The inverse occurs when the number of flows increases and

the packet arrival rate decreases. Figure 5.5 provides the outline of DAS-ED. Note that the

demand now closely follows the observedRate, subject to the conditions stated above. That

is: demand^ = observedRate^. The cost of implementing the SYN and FIN identification

is somewhat higher than the Bit Vector, since packets with SYN or FIN set need to be

treated as special and the case of SYN and FIN retransmissions for the same flow needs

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

to be considered. However, the same hash-based approach can be used. We will assume

that, a new SYN (or SYN/ACK), except for re-transmissions of the same, increments the

#newStart counter. Likewise, a new FIN (or FIN/ACK), except for re-transmissions of

the same, increments the #newTerm counter. The counters, after they are consulted, are

zeroed at each adjustment instant. Similarly, the a r r iv a ls counter counts the packets

(more accurately, the bits) arriving in the short-lived flows within the ta period.

5.6.5 DAS-EL

In the third alternative, we design an Explicit-Load (EL) scheme, which tackles the allocation

problem in terms of expected packet rate. The expected rate of packets is estimated by the

product of f lowCount and the average load of short-lived TCP flows AVGLoad. In this case,

the assumption is that AVGLoad is obtained via independent off-line studies on empirical

traces. AVGLoad essentially represents the average number of packets per flow traversing

the link per adjustment interval, ta. Since our scope is limited to short flows, the rate of

packet arrivals is not dependent on the link capacity, because the flows never get close to

expanding their window to high enough values. Rather, the value of AVGLoad is dependent

on the average number of new connections established per unit of time and the average

RTT of the mixed short-lived flows. In the DAS-EL scheme (Figure 5.6), the algorithm of

detecting the number of active flow is similar to tha t of DAS-BV scheme (Figure 5.4), but

with a different parameter value for 7 (closer to 1.0). The allocated bandwidth is adjusted

based on the expected packet rate. We note that the scheme presents the shortcomings of

DAS-BV in that both f lowCount is inaccurately estimated, and the fact that AVGLoad needs

to be determined off-line with sufficient accuracy. Still, it is capable of directly expressing

the load demands as a fraction of the link bandwidth, C. In two of the above scheme, S

is introduced as a sensitivity factor controlling what is the level of change of rate or flow

count that is deemed “significant” to render bandwidth allocation adjustment necessary. In

the following evaluation section, we have also added two o ther factors. F irst, the bandwidth

cannot be allocated at arbitrarily small increments, but in tenths of the link bandwidth,

C. Moreover, to avoid starvation of the long-lived flows, 0.1 x C is reserved at all times

for long-lived flows. That is, the bandwidth demand of the short-lived flows is at all times

bounded above by 0.9 x C. That is, we allocate demand' bandwidth for the short-lived flows,

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

where demand7 = min(0.9 x C, demand).

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fr
eq

ue
nc

y
of

flo
w

s
Fr

eq
ue

nc
y

of
fl

ow
s

RTT SPECTRUM trace!9991208-125838-0
0.2 spectrum

0.15

0.1

0.05

0
loglO(RTT/BASE), BASE=10e-5 sec

RTT SPECTRUM of trace 19991208-125838-1
0.2 spectrum

0.15

0.1

0.05

0
Iogl0(RTT/BASE), BASE=10e-5 sec

(a) Trace 1 (b) Trace 2

RTT SPECTRUM of trace20000125-143640-0
0.2

spectrum

0.15

0.1

0.05

0

logl0(RTT/BASE), BASE=10e-5 sec

RTT SPECTRUM, trace20000125-143640-l
0.2

spectrum

0.15

o.i

0.05

o
Iogl0(RTT/BASE), BASE=10e-5 sec

(c) Trace 3 (d) Trace 4

RTT SPECTRUM of trace20000128-160441-0
0.2

spectrum

0.15

o.i

0.05

0
log 10(RTT/BASE), BASE=10e-5 sec

(e) Trace 5

Figure 5.3: RTT Spectrum: Y axis, Frequency, X axis, logl0(RTT/10 5)
77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

upon_packet_arrival(p):

1. now tim e();
2. if (now > next Adjustment) th en
3. if ((f lowCount > old_f lowCountx(1+5)) O R (flowCount < old_flow C ountx(l-5))) the
4. demand = demand x ;old_flowCount’
5. en d if
6. old_flowCount = flowCount;
7. nextAdjustment=nextAdjustment + ta;
8. en d if
9. if (now > nextUpdate) th en
10. cou n t= su m B itV ector();
11. r e se tB it V ector ();
12. flowCount = countX7 + flowCountx (I - 7) ;
13. nextUpdate = nextUpdate + tc;
14. en d if

Figure 5.4: DAS-BV u p on _packet_arriva l().

upon_packet_arrival(p):

1 . now <— tim e();
2. arrivals++;
3. if (p.SYN) th e n #newStart++; en d if
4. if (p.FIN) th e n #newTerm++; en d if
5. if (now > nextAdjustm ent) th e n
6 . observedRate = arrivals / ta;
7. if ((observedRate>dem andx(l + 5)) A N D (#newStart>#newTerm)) th e n
8 . demand = observedRate;
9. en d if
10. if ((observedRate<dem andx(l — 8)) A N D (#newStart<#newTerm)) th e n
11. demand = observedRate;
1 2 . en d if
13. #newStart = ftnewTerm = arrivals — 0;
14. nextA djustm ent = nextA djustm ent + ta;
15. en d if

Figure 5.5: DAS-ED u p on _packet_arriva l().

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

upon_packet_arrival(p):

1. now <— t im e();
2. if (now > nextAdjustm ent) th e n
3. demand = flowCount x -A- " ° ad;
7. nextA djustm ent = nextA djustm ent + ta\
8 . en d if
9. if (now > nextUpdate) th e n
10. co u n t= su m B itV ec to r();
11. re se tB itV ec to r();
12. f lowCount = count X7 + f lowCount x (I - 7) ;
13. nextU pdate = nextUpdate + tr :
14. en d if

Figure 5.6: DAS-EL upon _packet_arriva l().

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 6

Performance Investigation of
Classification Schemes

6.1 Introduction

This chapter is centered around experiments that investigate the proposed classification

schemes described in the previous chapter. The first classification scheme we investigated is

a dynamic bandwidth allocation scheme which we term DAS (simply standing for Dynamic

Allocation Scheme). Allocating bandwidth between the two classes is performed in such a

way that it reflects the demands of short-lived flows. The load demands of short-lived flows

are inferences based on measurements of the number of newly starting (SYN/SYN-ACK

setup phase) TCP connections multiplied by the typical TCP connection length (in terms

of bits) which can be extracted either off-line or, hardware permitting, on-line over longer

periods of time. The investigation of other classification schemes based on simple rules is

presented as well.

6.2 Evaluation of DAS

6.2.1 S im ulation Setup

In this section, we present the proof-of-concept simulation based on the n s - 2 [6] sim ulator.

To reflect the heterogeneity of Internet traffic, traffic generated in our simulations is a mixture

of TCP flows with various lifetime and RTT values. The topology used in our simulations

is the familiar single-bottleneck “dumbed” topology with the bottleneck link servicing 1 0 0

packets/sec. Source nodes are classified into three sets with different propagation delay,

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C lass_I, C lass_II and C lass_III. The average propagation delay of each class is denoted as

RTT_i. The disparity of the RTTs is described by a single parameter called RTT R atio which

defines the ratio of the average propagation delay of the adjacent classes; the relationship of

propagation delays of different classes can be described as RTTJtatio = Yrf'rj1' = *rtt~Y' • The

propagation delay of a particular connection in the simulation is randomly generated, which

is between -10% and +10% of the average RTT of the Class it belongs to. For example,

when we set up a connection between the C lass_II node Si and k0, the RTT (propagation

delay) of the connection is a random number between 0.9xRTT_II and l.lxRTT_II. Both

short and long-lived TCP flows are simulated. Long-lived flows start from the very beginning

of simulation and can last forever unless they are shut off by the competing TCP flows due

to multiple timeouts. Nine long-lived flows are initiated in total, three for each Class. In

our simulation, short-lived TCP flows are emulated by ftp connections with a pre-configured

small load. The value of the load is a random number with an average of 25 packets per

flow. Short-lived flows stay in in the network until they finish transmission. Short-lived

flows start randomly during the entire simulation period uniformly. The load of short-lived

flows in the simulation is indicated by a parameter, which is referred to as the number of

short-lived flows started per second. For example, if we run a simulation of 100 seconds with

2 short-lived TCP flows starting per second, we have 200 short-live flows and 9 long-lived

flows over the entire simulation period. In our study, any flow will not restart once it is shut

off by other flows. All TCP flows in this study are TCP Reno.

In our experiments, the buffer is split equally between the two classes equally (21 packets

per class). When a DropTail or RED configuration is simulated, the queue size is the sum of

the queue sizes of the two classes (for a total of 42 packets). TCP flows are divided into three

groups according to their round trip propagation delays. We varied the RTT_Ratio from 2

to 10. The two classes are scheduled by the WFQ policy, according to weights that reflect

the demand calculated, as outlined in the previous section. Adjustments of the bandwidth

allocation are restricted in multiples of 10% of the link bandwidth. At a link capacity of

100 packets per second, and 25 packets per flow, the link reaches close to saturation when

the rate of new short-lived connections initiated per unit of time is close to 4 new flows per

second.

In order to allow for a reasonable fraction of long lived flow traffic, the rate at which

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

new short-lived flows arrive is set in the simulations to 1 .2 new flows per second. To create

a response to a transient overload which will be used to evaluate the responsiveness of the

proposed schemes, we increase the arrival rate of new short-lived flows to 4.2 new flows per

second on the 100th second of the simulation. The arrival rate of flows remains at this

overload value until the 1 2 0 th second of the simulation. Subsequently, the arrival rate drops

back to 1.2 new short lived flows per second. Each of the three DAS schemes, as well as

DropTail and RED were compared. In the case of DAS-BV, the parameters were set to: ta —

5 sec., tc = 0.5 sec., a = 0.05, and (3 = 0.1. In the case of DAS-EL, a = 0.9 indicating that

in the exponential averaging of flowCount, the more recent measurements are considered

more valuable in determining the mean. This is allowable because in DAS-EL it is not the

magnitude of the difference of flowCount versus its previous estimate that matters, but

rather its most recent absolute value.

6.2.2 Experim ent R esu lts

The results that summarize our findings in the best way are shown on Tables 6.1 and 6.2.

They correspond to the same scenario (with the overload between 100 and 120 seconds) but

at two different RTTJtatio values, representing (for RTT_Ratio=2) the RTT mix of traffic at

a router in a metropolitan area network and (for RTT_Ratio=10) the RTT mix of the traffic

crossing a continental backbone router. The improvement in the average response time of

short-lived TCP flows in comparison to tha t over DropTail can be clearly seen in Table 6.1.

The response time for a short-lived flow is calculated as the interval from the timepoint tha t

the first packet of the flow is transmitted, until the last packet of the flow is delivered to

the destination. W hat we present in the tables is the average response time over all the

short-lived flows during the entire simulation (except for the first 2 0 seconds because they

constitute our simulator warmup stage).

It should be clear that some of the short-lived flows are initiated when the link is saturated

by the rate at which new short-lived flows arrive. Under DropTail or RED we would expect

that under such peak load the response time of the flows will increase as they attem pt to cross

a congested link. Indeed both the DAS schemes as well as DropTail and RED demonstrate

such behavior. The difference lies in the fact that DAS adapts to the increased load by

increasing the bandwidth allocated to these flows. Hence, it quickly exploits bandwidth

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Scheme
Short Lived Flow Repines Time Long Lived Flow Goodput
Average Variance Average Variance

DAS-BV 3.42 18.01 34.58 526.97
DAS-ED 5.29 35.72 34.74 488.59
DAS-EL 3.74 22.53 34.64 492.61
DropTail 7.66 80.91 34.53 340.60
RED 5.99 49.58 34.48 376.12

Table 6.1: Short lived flow response times in seconds (RTT_Ratio=2).

Scheme
Short Lived Flow Response Time Long Lived Flow Goodput
Average Variance Average Variance

DAS-BV 5.55 41.61 34.44 465.22
DAS-ED 7.57 69.60 34.48 412.86
DAS-EL 5.95 51.03 34.31 405.99
DropTail 14.35 296.37 33.93 290.64
RED 9.31 132.86 33.99 365.36

Table 6.2: Short lived flow response times in seconds (RTT_Ratio=10).

reserves by restricting the bandwidth allocated to long-lived flows. Instead, in DropTail

and RED, under intense load, the long-lived flows, having reached large window size values,

are not accommodating the new short-lived flows, but instead, by occupying the bulk of the

available queue space, force them to losses, timeouts and degradation of the average response

time. RED improves m atters a lot compared to DropTail with respect to the average response

time. However, by not being able to separate the short from the long-lived flows, it still

occasionally victimized short lived flows unwittingly, causing some of them to experience

significantly inflated response times compared to the average response time. That is why,

even though the average response time in RED is improved, its variance is at a fairly high value

(esp. at higher RTTJtatio values, as Table 6.2 reveals). An interesting observation is that

even though DAS “steals” away bandwidth from long-lived flows, the impact of such action

on the long-term goodput of the long-lived flows is minimal. At the same time, DropTail

and RED while not “stealing” away bandwidth from the long-lived flows, they do not insulate

the long-lived from losses either. In fact, the increased packet loss rate of RED in overload

(under large average window occupancy that is) frequently victimizes the long-lived flows.

That is, the reduction of goodput of long-lived flows is unavoidable in order to accommodate

the increased short-lived flow demands. Whereas the reduction of long-lived goodput is

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

accomplished via increased packet losses in the case of DropTail and RED, it is accomplished

by limiting the bandwidth allocation in the case of DAS. The cost is a somewhat increased

goodput variance (calculated over short intervals of less than second) in the case of the DAS

schemes. Nevertheless, the most pressing performance concern of a long-lived flow is the

long term throughput (and fairness) and not the short-term throughput variability. We thus

claim that the increase of goodput variance over small timescales is a small price to pay for

the increased response time of the short-lived flows.

To further appreciate the ability of DAS schemes to adapt to the changing demands of the

short-lived flows, we provide Figures 6.1, 6.2, and 6.3. The overload period is indicated by

the interval between the two vertical blue lines. The re-allocation decisions are made at every

5 seconds. From the simulation results of a typical experiment (Figure 6.1(a)), the surge is

detected by time 105. Likewise, the decrease of the flow demands is detected by time 125.

We note tha t a correctly bootstrapped DAS-BV reacts in the same way as DAS-EL since both

derive the load demands (in packets per second) from the number of active flows. Unlike

DAS-EL which depends on the external independent parameter AVGLoad, DAS-BV depends

on the measurement of the previous interval (and by implication, on its initial bootstrap

value). When the previous measurement is not accurate, it will affect the performance of

subsequent intervals. The DAS-ED scheme uses a different way for obtaining the expected

load although the variation of flowCount still plays a crucial role. The expected load is

based on the packet arrivals of the past adjustment interval. Because all three versions of

DAS outperform both DropTail and RED the selection for the best among them needs to be

performed on the basis of criteria beyond just the improvement of the response time of short

lived flows. In particular we would like to indicate tha t if the load of a system is not well

known, and hence both a good bootstrap value for demand (as used by DAS-BV) and a good

estimate for AVGLoad (as used by DAS-EL) are not available, a good choice is DAS-ED despite

the fact that it is the worst performing among the three. As more precise information about

the load induced by short-lived flows becomes known, an operato r could choose to transition

from DAS-ED to DAS-EL or DAS-ED.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ynam ic A llocation for Short Flows

: i j i - : s h q r t . — ?
• : i 5 J L Q N « » * '«

iHis

0 ' 50 150 200 250 300
T IM E(SEC)

(a) DAS-BV

D ynam ic A llocation for S ho rt F low s
100

80

60

40

20

0
TIM E (S E C)

(b) DAS-ED

D ynam ic A llocation for Short Flow s

SH O RT '
L Q NG j

(c) DAS-EL

Figure 6.1: The goodput of long and short-lived flows under the DAS schemes (RTT_Ratio=2).

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ynam ic A llocation for Short Flows D ynam ic A llocation for Short Flows

SH O R T
EONCS

SH O RT
LO NG

50 100 150 200
TIM E (S E C)

(a) DAS-BV (b) DAS-ED

D ynam ic A llocation for Short Flows

SH O RT
| EO N G

0 50 100 150 200 2 5 0 300
T IM E (SE C)

(c) DAS-EL

Figure 6.2: The goodput of long and short-lived flows under the DAS schemes RTT_Ratio=10.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D ynam ic A llocation for Short Flow s D ynam ic A llocation for Short F low s

T IM E (SE C)

(a) DropTail (RTT_Ratio=2) (b) RED (RTT_Ratio=2)

100

80

60

40

20

0
50 100 150

T IM E (S E C)
200 250 3000 100 150 200 250

T IM E (SE C)

(c) DropTail (RTTJtatio=10) (d) RED (RTTJtatio=10)

Figure 6.3: The goodput of long and short-lived flows for D ropTail and RED.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.3 Investigation of Classification Based on Simple Rules

6.3.1 Sim ulation Setup

As the simulation of DAS, the ns [6] simulator was also used as the simulation platform for

studying classification based on simple rules. The other aspects of the simulation, such as

topology, parameters and traffic combinations, are identical with those in simulations in the

previous section. Note tha t the load introduced by each new short-lived connection implies

that the link will saturate close to an arrival rate of 2.4 short-lived connection requests per

second. When DropTail or RED is simulated without classification schemes, all flows are

mixed together and share the common pool of resources. When classification is used, the

single physical queue is divided into multiple logical sub-queues of equal size, one per class.

The bandwidth is also shared, using a WFQ scheduler capable to allocate bandwidth in a

weighted fashion to each class. Whenever RTT classification is used, three RTT classes are

implemented, corresponding to the three RTT selection ranges of the generated traffic. The

RTT classes share bandwidth equally among them. Lifetime-based classes share bandwidth

in a weighted fashion which is either static or dynamic. A reasonable value for a fixed

allocation obtained from our study of traces suggests an aggregate short-lived flow demand

in the 50% to 70% of the total available link capacity. Although the fraction varies with the

definition of long-lived flows, we argue that 60% is a reasonable approximation for the total

short-lived traffic demand [13]. However, we also study cases where the allocation between

the two classes is dynamic, in which case, the load of short-lived flows is determined by

measurement of how many new connections are started per unit of time. Eight schemes

were investigated via simulations: (a) M1X-DT: DropTail with no classification, (b) MIX-

RED: RED with no classification, (c) LFT-DT: lifetime classification scheme with per-queue

DropTail, (d) RTT-DT: RTT-based classification scheme with per-queue DropTail, (e) SIX-

D T: extensive classification into six classes (lifetime and RTT classification) with per-queue

DropTail, (f) LFT-RED: lifetime classification scheme with per-queue RED, (g) RTT-RED:

RTT-based classification with per-queue RED, (h) SIX-RED: the combination of extensive

classification with per-queue RED. Each simulation represents 150 seconds of simulated time

and the plotted results are averages of 24 runs.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fairness o f Long Lived Flows vs. Short Lived Flow Load (DropTail)

LFT-D T

RTT-DT

MIX-DT

1.5 2 2.5 3
New Short Flows (connections/second)

(a)

Response Time vs. Short Lived Flow Load (DropTail)
22

20 M IX -D T
LFT-DT’
RTT-DT’
SDC-DT

18

1 16
i u

P 12
u
" 10

I

a
1
as

2

8

6

? 4
<

2

0
2 2.5 3

New Short Flows (connections/second)
1 1.5 3.5 4

(b)

Figure 6.4: Short-lived flow load on (a) fairness of long-lived flows, and (b) the response
time of short-lived flows, with or without classification schemes, using DropTail.

6.3.2 E valuation R esu lts

We first investigate the effect of the load caused by short-lived TCP flows. The metrics of

interest are the fairness among long-lived TCP flows, the response time of short-lived TCP

flows, as well as the overall goodput. The fairness across the goodput of long-lived flows is

defined in the usual way, F (x) = [54], with a value of one representing the ideal (fair)

sharing. W ithout separation of long and short-lived TCP flows, an increase in the load due

to short-lived TCP flows may accentuate, but only slightly, the unfairness among long-lived

TCP flows (Figure 6.4(a)). W hat is more striking is the difference in fairness across different

classification schemes.

When no classification (MIX-DT) is used, some long-lived TCP flows are actually shut off

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Response Time vs. Short Lived Flow Load (DropTail)
22

20
MIX-DT-------
LFT-DT.........
SIX-DT*” *'

DAS-DT

s

y 14£
H 12
u

I 10
3 8

6

>
<

4

2

0
41.5 2 2.5 3 3.51

New Short Flows (connections/second)

Figure 6.5: Short-lived flow load on response time for fixed vs. dynamic (DAS) bandwidth
allocation.

completely when the traffic of short-lived TCP flows is extremely high. Lifetime classification

schemes (LFT-DT) provide isolation between long and short-lived TCP flows. Long lived

TCP flows are no longer affected by the intensified competition caused by the larger volume

of short-lived flows. On the other hand, RTT classification does not separate long from

short-lived flows, and hence the fairness between long-lived flows decreases as the number

of short-lived TCP flows increases despite using multiple RTT classes. Finally, the scheme

that uses more extensive classification, SIX-DT, combines the advantages of LFT-DT and

RTT-DT providing the best fairness performance among all the schemes studied here. The

impact on response delay is shown in Figure 6.4(b). In the schemes without isolation between

long and short-lived flows, like MIX-DT and RTT-DT, an upper bound on the bandwidth

allocated to short-lived flows is not enforced. Thus, short-lived flows might acquire, in the

short run, more than 60% of the total bandwidth and therefore experience better response

time. Figure 6.4(b) shows that lifetime classification schemes improve the response time

of short-lived TCP flows when the allocated bandwidth is more than the total demand of

short-lived TCP flows.

Instead of fixed allocation to short-lived flows, or no allocation at all, it certainly makes

sense to track the traffic demand of short-lived flows (e.g., by inspecting the SYNs arriving

per unit of time) and allocate bandwidth in response to the measured load. To avoid totally

pushing our long-lived flows, a a minimum of the link capacity can be reserved at all times

for the exclusive use of long-lived flows. The performance of DAS is captured in Figure 6.5

whereby 10% is left reserved at all times for long-lived flows. DAS possesses the virtues of both

fixed threshold lifetime classification schemes and schemes without classification. In terms

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fairness o f Long Lived Flows vs. Short Lived Flow Load (Lifetime Classification) Fairness of Long Lived Flows vs. Short Lived Flow Load (RTT Classification)

MIX-DT
MIX-RED

RTT-DT
RTT-RED

0.9

I
0.7

0.6
2 2.5 3

New Short Flows (connections/second)
3.5

MIX-DT
MIX-RED

LFT-DT
LFT-RED

x 0.9I

0.7

0.6
2 2.5 3

New Short Flows (connections/second)
3.5

(a) (b)

Fairness of Long Lived Flows vs. Short Lived Flow Load (Lifetime+RTT Classification
1.1

MIX-DT
MIX-RED

SIX-DT
SIX-RED1

0.9

0.8

0.7

0.6
2 2.5 3

New Short Flows (connections/second)
3.51 1.5 4

(c)

Figure 6 .6 : Short-lived flow load on fairness among long-lived flows for (a) lifetime-based,
(b) RTT-based, and (c) combined, or no classification scheme (MIX-DT, MIX-RED).

of fairness among long-lived flows, DAS is comparable to the simple lifetime classification

scheme with fixed threshold and outperforms MIX-DT, while in terms of total throughput

of short-lived flows, DAS is similar to the simple DropTail scheme. The more important

feature however is that, in terms of the average response time for short-lived flows, DAS is

a reasonable compromise (Figure 6.5). When the short-lived flow load is low, DAS performs

like fixed threshold lifetime classification scheme. When the short-lived flow load is near or

above saturation, it performs similarly or better than DropTail.

The comparisons of classification schemes with DropTail and classification schemes with

RED, are shown in Figures 6 .6 , and 6.7. In terms of fairness among long-lived TCP flows,

the simple lifetime classification scheme LFT-DT is a better scheme than simple MIX-RED.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Response Tim e vs. Short Lived Flow Load (Litetime Classification) Response Tim e vs. Short Lived Flow Load (RTT Classification)
30

MIX-DT --------
MIX-RED

L F T -D T
LFT-RED25

20

15

10

5

0
3 3.5 41 1.5 2 2.5

I

>

30
MIX-DT -

MIX-RED ••
RTT-DT -

RTT-RED •25

20

10

0 1 1.5 2 2.5 3 3.5 4
New Short Flows (connections/second) New Short Flows (connections/second)

(a) (b)

Response Time vs. Short Lived Flow Load (Lifetime+RTT Classification)
30

M IX -D T--------
MIX-RF.D

SIX-DT
SIX-RED25

20

15

10

5

0 1 1.5 2 2.5 3 3.5 4
New Short Flows (connections/second)

(c)

Figure 6.7: Short-lived flow load on the average response time of short-lived flows for (a)
lifetime-based, (b) RTT-based, and, (c) combined, or no classification scheme (MIX-DT,
MIX-RED).

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The reason for the improvement by simple MIX-RED over MIX-DT is due to the random

nature of selecting victims in case of congestion. In MIX-RED, flows that have more packets

stored in the buffer at the moment of congestion are more likely to be victimized. Thus, to

some extent, the disparity of throughput between TCP flows is balanced. However, since the

long and short-lived TCP flows are not actually separated, the negative impact of increased

short-lived flows will exceed the control of MIX-RED policy as the traffic of short-lived flows

grows. Thus, when the number of newly arriving short-lived TCP flows is large enough,

the fairness index decreases. On the other hand, in LFT-DT, long-lived flows are isolated

from short-lived flows, and therefore the fairness index is almost unchanged. Moreover, the

benefit of lifetime classification coupled with dynamic allocation of bandwidth between short

and long-lived flows (a-la DAS) results in response times that are generally insensitive to the

fluctuations (admittedly minor) of the fraction of connections tha t turn out to be long-lived.

In DAS, the bandwidth of the short-lived class is allocated based on the demands of short

lived flows. Consequently, the impact of the volume of long-lived flows on the response times

is restricted. That is, it is possible, without sacrificing the fairness among long-lived flows, to

reduce and equalize (lower variance) the response time of short-lived flows. The comparison

of RTT-based classification schemes and RED is described in Figure 6 .6 (b). In general RTT-

based results are always better or comparable to the corresponding RED scheme. Long and

short-lived TCP flows are not separated in either type of scheme. RED uses a random

approach to selecting “winners” when losses are inflicted, while RTT schemes penalize the

flows in an equal fashion within their RTT class but possibly differently across RTT classes.

The balancing capability of simple RED is affected by the RTT Ratio significantly. RED

works better only in the case of small RTT discrepancies between the flows. On the contrary,

the performance of RTT classification is not affected by the RTT Ratio (Figure 6 .8 (b)). In

addition, our experiment shows tha t the combination of any classification scheme and RED

outperforms the original simple classification scheme or simple RED. The reason for the

improvement is due to the relative homogeneity brought by the classification scheme for

the losses experienced by each class of flows (each RTT “group”). RED is not capable

of handling the extremely RTT-heterogeneous flows but apparently works fine regulating

groups of flows with similar RTT values. The improvement in response delay from deploying

RED is minimal (Figure 6.7). The major effect of RED is in equalizing the throughput of

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

competing TCP flows. W ith unchanged resources and number of competitors, the average

bandwidth allocated to each TCP flow is not expected to change a lot. Thus, the average

and the variance of response delay of short-lived TCP flows do not improve significantly. In

addition, the simple RTT classification scheme MIX-RTT brings no significant improvement

either. As we have observed before, lifetime classification schemes including LFT and SIX

perform well when the allocated bandwidth exceeds the demand. RTT classification cannot,

on its own, provide any significant improvement in this sense. Consequently, in terms of

response delay of short-lived flows, the only reasonable solution is allocating more bandwidth,

in a dynamic fashion, tracking the rate of newly arriving short-lived flows. The impact of

RTT disparity on the performance of the schemes is shown in Figure 6 .8 . The fairness of

long-lived flows decreases without RTT-based classification. The observation is actually not

a surprise. The increase of the RTT ratio will increase goodput disparity among TCP flows

competing for the same congested link. It can be seen that fairness can be provided without

expensive per-flow control using RTT-based classification (Figure 6 .8). In fact, with RTT-

based classification, the fairness remains unchanged as the RTT ratio (and hence the RTT

disparity) increases.

In terms of fairness between long-lived flows, MIX-RED performs better than MIX-DT,

but not better than the LFT-DT scheme (Figure 6 .8 (a)). The improvement of MIX-RED

over MIX-DT is caused by random dropping at times of congestion-flows with more packets

stored in the buffer space are more likely to experience packet drops. Thus, some extent of

fairness is achieved. However, the performance of MIX-RED is afflicted by instantaneous

bursts in the traffic. The congestion is essentially detected by the exponential average of

the queue size, which is not fast enough to detect and respond to large bursts of traffic.

In such cases, MIX-RED performs similarly to MIX-DT. In RED the dropping decision is

based on the instantaneous occupancy status of the queue. When the traffic is highly bursty,

the instantaneous queue occupancy does not necessarily reflect the long-term throughput

correctly. The scheme may not make a correct decision in selecting a flow to victimize.

In contrast to RED, LFT-DT is a simple scheme with only one parameter, the bandwidth

allocation between long and short-lived flows. Moreover, in RED when RTTs get even more

dispersed, the fairness index decreases. On the contrary, RTT based classification schemes

like RTT and combined lifetime+RTT, group the flows of similar RTTs into the same class.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Fairness o f Long Lived Flows vs. RTT Ratio (Lifetime Classification)

MIX-DT -
MIX-RED »

LFT-DT •
LFT-RED '

•73 0.9
c

e

0.7

0.6

RTT Ratio

Fairness o f Long Lived R ow s vs. RTT Ratio (RTT Classification)

MIX-DT
MIX-RED

RTT-DT
RTT-RED

x 0.9•as

£■3u.

0.7

0.6

RTT Ratio

(a) (b)

Fairness of Long Lived Rows vs. RTT Ratio (Lifetime+RTT Classification)

M IX -D T-------
MIX-RED

S IX -D T
SIX-RED

* 0.9a
E
u.

0.7

0.6

RTT Ratio

(c)

Figure 6 .8 : Fairness of long-lived flows for (a) lifetime classification, (b) RTT classification,
and, (c) combined, or no classification scheme (MIX-DT, MIX-RED).

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Thus, the fairness of long-lived flows is not affected by the increases of RTT ratio (Figure

6 .8 (b) and 6 .8 (c)) and easily surpasses that of the RED policy especially when the RTT ratio

is large.

6.4 Conclusions

In Section 6.2 we explore the idea of providing improved response time to TCP flows that

have been identified as being short-lived, i.e., have a few packets to send. We argue that such

a separation is valuable on the basis of being a natural match to the performance needs of

short lived flows, that are by far the by-product of interactive applications, e.g., web surfing.

At the same time that we wish to provide an advantage to short-lived flows, we also seek to

not increase dramatically the complexity of routers in order to support such a separation.

Hence, we look into three schemes of different degrees of implementation complexity that

are straightforward to accommodate in todays advanced routers (in particular: requiring

the existence of a WFQ scheduler and a flow classifier module). The second point we make

is that we are increasingly knowledgeable of the traffic characteristics of TCP flows, as a

plethora of statistical studies have confirmed the heavy tailed nature of connection lifetimes,

and, another set of results, provide high fidelity models for the transfer sizes of HTTP

requests/responses. Our ambition is that, similar to the very good understanding that

we have developed over decades for what is the “average phone call duration” , a good

understanding for the connection-level statistics is starting to emerge for TCP traffic as well.

We therefore take into account some very basic statistical characterization of short-lived

TCP flows, and exploit it in the context of dynamic bandwidth allocation. We have found

that the proposed schemes can outperform DropTail and RED. This is not really surprising,

given tha t both DropTail and RED make no explicit attem pt to adapt to the changing load

(expressed as new connections set up per unit of time). W hat appears interesting however

is the observation tha t whereas DropTail and RED use the “sledgehammer” approach of

inflicting losses, as a means of control, an alternative of controlling the bandwidth allocated

to subset of short-lived flows, can result in better response times, while at the same time

avoiding the counterproductive practice of intensifying losses as a means to control the TCP

source behavior. Our study in Section 6.3 shows tha t we need to track the demands of

the short-lived TCP flows if we would like to provide reasonable average response time for

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

short connections (as one would expect e.g. in the case of web traffic). We note that such a

demand-based allocation need not be performed to the detriment of fairness among long-lived

connection. In particular what these points suggest is that a lifetime-based classification

scheme can be used in conjunction with a bandwidth allocation scheme that tracks the

short-lived flow demands. We note that for long-lived flows, fairness might be a much more

important property than response time since the user is already accepting the fact that a

large transfer of data will take a long time. On the other hand, RTT-based classification

schemes, although not relevant to the performance separation of short and long-lived flows,

are crucial in the implementation of fairness within the corresponding classes, especially

when the traffic is so diverse that RED’s potential of achieving a certain level of “fairness” is

exceeded. Thus, classifying all flows into the Cartesian product of RTT and lifetime classes

as well as adopting a dynamic bandwidth allocation (with possible operator intervention

for guaranteeing certain minimum long-lived bandwidth performance) appears to combine

advantages tha t result in a combined scheme that seems to be capable of outperforming

RED and/or overcoming the parameterization problems of RED.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7

Some Recent R esults

7.1 Introduction

The area of studying TCP performance is extremely active. In the last year (2002-2003)

new proposed schemes have been reported. In particular, XCP [31] introduced a control

theory approach in the study of congestion control. New models are also proposed in the

study of lifetime classification schemes [14, 15, 16]. Unlike the models we have described and

evaluated in Chapter 2, these models are relatively new and have not been fully understood.

In this chapter, we describe our study of these new models associated with experimental

results.

7.2 Evaluation of X C P

The design rationale of XCP [31] comes from observations on inherent weakness of current

TCP congestion control design. Firstly, TCP has no specific and explicit congestion signal.

Packet loss is interpreted as a congestion signal. This interpretation is based on the assump

tion tha t congestion causes far more packet loss than an unreliable underlying network. In

fact, this assumption does not always hold in all environments, such as in wireless networks.

The imprecise interpretation on packet loss causes unnecessary throttling of the sending rate

and a waste of precious bandwidth. Secondly, loss as a congestion signal only reflects the

worst congestion scenario. W ith current congestion signalling, the sender is notified only

after the buffers are overflown, which is the worst outcome of congestion. Thus, senders only

provide reaction on severe congestion, rather than act proactively and eliminate congestion

at an early stage. Thirdly, current congestion control is slow. TCP receives only implicit con-

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

gestion signals. Detected timeouts and persistent packet reordering infer congestion signals.

Both mechanisms need more time than explicit congestion signalling. Fourthly, the current

congestion signal is a binary signal. It can only indicate whether congestion occurs or not.

It cannot provide information on the degree of congestion. W ith such imprecise information,

TCP senders have to react conservatively. Instead of sending at a precise available rate,

TCP senders back off drastically and recover cautiously in the presence congestion. This

protocol design leads to oscillatory behavior of individual TCP flows, which is a particularly

undesirable feature when the protocol is used for delivering real time traffic. Lastly, the

loss congestion signal is unreliable. The current mechanism cannot guarantee that all TCP

senders receive congestion signals. The congestion signal does not provide information on

how senders should react to the congestion. Thus, the reaction on congestion is unbalanced;

some aggressive TCP flows might get significantly more bandwidth than their competitors.

7.2.1 X C P C ongestion H eader and Efficient C ontrol

XCP accounts for the weakness of TCP by providing explicit congestion signalling, precise

congestion information, decoupled efficiency control (EC) and fairness control (FC), and

robust design [31]. XCP proposes a specific congestion header as an extension of the TCP

header (optional fields) to carry necessary information for congestion control, the state of

each flow, and feedback from routers. Every packet carries this congestion header. The

definition of congestion header is shown in the following figure. Senders maintain the current

congestion window size and current RTT and transfer them to intermediate routers via

the packet header information. W ith the information from senders, the capacity and link

utilization status, intermediate routers instruct senders by stipulating feedback information

in the congestion header of each packet. The information in congestion headers will be copied

in the acknowledgments (ACKs) and finally delivered back to senders.

cwnd, sender’s current congestion window size
rtt, sender’s RTT value

Feedback, Instruction from the routers

XCP senders update their congestion window by adding the feedback to the current

congestion window (Equation 7.1). The feedback contains the control information from

routers. It is either positive or negative, which means increasing or decreasing congestion

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

window size, respectively. The units of feedback and window size are bits. Although feedback

is mainly used as instruction supplied by the router, senders initialize the feedback at the

start indicating their demands on bandwidth. The XCP sender algorithm is described in the

following formula. The s in the formula (Equation 7.1) is the length of a packet in bits. It

stands for the minimum unit of updating congestion window, which is one packet.

cwnd = max(cwnd + Feedback, s) (7.1)

A unique design feature of XCP is the decoupling efficiency control (EC) and fairness

control (FC) in the router policy. The objective of EC is to maximize the link utilization and

minimize the packet dropping and persistence queue size, which is opposed to the transient

queue size due to the burst nature of window-based mechanism. The algorithm is described

in (Equation 7.2)

= a x d x S - (3 x Q (7.2)

<j) stands for the total feedback generated in the router within the control epoch d, which

is the average RTT of all flows. S is the difference between the sum of demands of all flows

and the link capacity. Q stands for persistent queue size that is exponentially smoothed from

transient queue size. And a and (3 are operational constants. Basically, the total feedback

is proportional to the difference between expected demands of bandwidth of all flows and

the actual bandwidth. To be more accurate, the feedback is also adjusted to account for the

packets stored in the buffer.

7.2.2 X C P Fairness Control

Fairness Control (FC) (Equation 7.3) is the algorithm for apportioning the total feedback,

tha t is obtained in EC, to each individual flows. The basic idea of FC can be described

as follows: In case of positive feedback, that is, the expected total demand is smaller than

actual capacity, the surplus bandwidth is apportioned to all flows equally. The increase of

sending rate is the same regardless of their RTT. In case of negative feedback, tha t is, the

expected total demand exceeds the actual capacity; all flows reduce their sending rate by the

same proportion. Feedback apportioned to the individual flow is uniformly distributed to all

packets from that particular flow. The detailed derivation of the algorithm is described as

follows.

Feedback = — n* (7.3)

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

D erivation o f P ositive Feedback

The derivation of FC policy in the original paper is not explicitly laid out [31]. In order

to analyze the theoretical foundation of XCP, we derived the XCP FC policy in detail. For

the sake of simplicity and no loss of generality, we only analyze the essential part of FC

policy where the effect of bandwidth shuffling [31] is not included. <fi is the total feedback (in

bits) determined by EC policy (Equation 7.2). When ^ > 0, it means that the link is under

utilization, and thus we have spare bandwidth to distribute. In XCP, such spare bandwidth

is distributed in the following way: the spare spare bandwidth should be allocated equally

among the active flows. That is, the rate increase of each flow should be the same. We have

the following relations:

two equations, we also have
a A r 6
A r< = — = —

n nd
We can also transform the rate increase into the congestion window size increase for

particular flow i for a single rtt;.

Acwndi = Ar; * rtt;

P i , the feedback distributed in each packet of flow i is then

feedbacks fo r flow i

Ar = Ari + Ar2 + . . . + Arn

A ri = A r2 = . . . = A rn

Here, A r is the total increase rate (spare bandwidth, ^) in one epoch, and Ar; stands

for the increased rate for flow i. n stands for the number of active flows. From the above

the number o f packets fro m flow i

Acvmdi
current rate * d/packetsize

Acwndi
* d/packetsize

Ari * ftti
cw nd j

r t t i:-*■ * d/packetsize cw n d j
r t t ir1 * d/packetsize

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4> * packetsize rttf2
Pi = ----------- p;----- *n * d2 cwndi

When we set £p = We have

 ^ rtt?
P i — £p * i cwndi

We also have

Ar = Arx + Ar2 + . . .+ - A r n

that is, the total increase rate is the sum of increase rate of all individual flows,

0 y~* plj y> P ^ i y^ P n i

d ~ f h , 1 r t t l r tt '2 " ' ftoL ^

The increase rate of each individual flow is the sum of feedback carried by each flow within

one rtt,
4* v--' P i <*- v '' rtfj
^ a ll packets in epoch d a ll packets in epoch d i

Thus,
e = ___________ t ___________
SP j . r t t i

d * S a /i packets in epoch d cwndi

D e r iv a tio n o f N e g a t iv e F eed b ack

When (f> < 0, congestion has occurred. Thats is, the total demands for bandwidth exceeds

the link capacity. In XCP FC policy, every flow should reduce its rate by a same fraction.

Suppose / is the common reduction factor, we translate the policy into the following formulas:

Ar = Ari + ^ 2 + . . . + Ar„

cw ndi
Arj = rj * t = * t

J rtU
A cw n d i = * r t t i = cw ndi * /

_ Acwndi
1 # ° f packets w ithin d

cwndi * f / * packetsize
ni = = — r,-----, ■ ■ = ---------- ;--------- * r tticw nd ,

r t t i L * d/packetsize d

If W e S e t = p a c k e t s iz e ̂ w g h a y e

ni = in * rtti

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

With similar reasoning as in the above section,

A r = A ri + A r2 + . . . + Ar.n
(j) \ T i l i ^ y - —V 71/Qi i ^ ^ » ' "V TIT li

fh 1 ^ 1 f t a Z 2 ^ 2 "■

^ ^ = £n * (# packets in d)
a ll packets in epoch d 1

A
Sn = d * (# packets in d)

7.2.3 X C P Perform ance U nder M ixture o f R TTs

The idea underlying XCP is interesting. However, it has some major drawbacks. Firstly,

it requires special congestion headers tha t mean a major re-design of packet header. Such

modification needs universal efforts which in not necessarily non-trivial. Secondly, XCP

does need global knowledge of each RTTs and the total number of flows N to obtain d, the

average RTT, which is a critical parameter in XCP. Thirdly, although d is the average RTT,

it might not be safe to assume d as a constant, given the large variance on RTT. Thus, the

robustness of XCP under a mix of widely varying RTTs is questionable. In order to explore

the performance of XCP in large RTT variance, we conducted simulations with the code

provided by [31] under ns2 version 2.1b9 [6]. The simulation topology is the traditional one

used in the paper [31], one congested link with several side links. We vary the difference

between RTTs from 0 to 100ms. Simulation result shows tha t XCP deteriorates as the

difference between RTTs increases.

As we see from the comparison (Figure 7.1), our FairShare policy performs much bet

ter than XCP for environment with large RTT variance, in terms of fairness. Moreover,

our FairShare policy does not need any modification on packet header. The reason of the

robustness of our policy is that our policy is based on a solid, proved deterministic model.

7.2.4 X C P Perform ance U nder M ixture o f L ifetim e and D ynam ic
C onditions

The other weakness of XCP is that it is designed only for long-lived flows. Only long-lived

flows can receive instructions from intermediate routers and adjust their sending rate accord

ingly. Short-lived flows are too short for any feedback instructions; they might terminate

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XCP Performance with Different RTT

£ 1000

Delta of RTT (SEC)

FairShare Performance with Different RTT

Delta of RTT (SEC)

(a) XCP (b) FairShare

Figure 7.1: Fairness Under Different RTTs, (a) XCP, (b) FairShare.

their transmission before any available feedback. The performance of XCP under a mix

of lifetime is also questionable. We study XCP’s performance in experiment of a mix of

long-lived flows and a dynamic number of short flows via simulations. The configuration of

experiments is as following: 9 long-lived flows last the whole duration, while a random num

ber of short-lived flows compete. The load of short-lived flows is a random number uniformly

between 10 and 20. The starting times of short-lived flows are also uniformly distributed in

the simulation duration. The arrival rate of short-lived flows are 2 flows per second while it

reaches 5 short-flows per second between 100 and 120 of simulation period. The arrival rate

short-lived flow spike reflects the inhomogeneous feature of real network traffic. We have

conducted three experiments with different capacity of congested link, 1 0 0 , 2 0 0 and 1 0 0 0

packet/second, respectively. As we can see from the figure (Figure 7.2), XCP is extremely

unstable in such a dynamic environment. Firstly, the apportioned ration of bandwidth does

not reflect the spike of short-lived flows. Moreover, the congested link was in low utilization

in such dynamic environment. The reason for the poor performance is that the design of

XCP does not account for the specific feature of short-lived flows.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

XCP Competing with Dynamic Short Flows: Bandiwdth * 100 PKT/s XCP Competing with Dynamic Short Flows: Bandiwdth a 200 PKT/a
100

80

60

40

20

A : i \ . A-./Wuv
40 60 80 100 120

TIME(SEC)

0
140 1600 20

200

ISO

50

0
40 120 1600 20 60 80

TIME(SEC)
100

(a) 100 (b) 200

XCP Competing with Dynamic Short Flows: Bandiwdth a 1000 PKT/s

shofVt
LONG -

TOTAL

!i

f

I i
f lt fil W
&! IJii! 'i
« H i t I* * ’

0 20 40 60 80 100 120 140 160
TIME(SEC)

(c) 1000

Figure 7.2: Performance of XCP In a Dynamic Environment, (a), 100 PK T /s , (b),
200P K T /s, (c), lOOOPKT/s.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 An A lternate Lifetim e-Based Scheme

Recent measurement of Internet traffic [17]shows tha t the length TCP flows in terms of

lifetime follows a heavy-tailed distribution. That is, a small fraction of long-lived TCP

flows carries a large fraction of total traffic. This unbalance in TCP lifetime calls for a new

design for of the network policy. Short-lived TCP flows are at a disadvantage when they

compete with long-lived TCP flows. Firstly, due to the conservative of TCP congestion

control and small number of transferred packets, short-lived TCP flows usually operate at

the small congestion windows exponential growth stage (slow start). Any packet drop in

this stage has a drastic impact on the sending rate. Packet drops have the largest impact on

TCP flows during exponential growth than during congestion avoidance growth. Secondly,

short-lived TCP flows have only a small number of packets to transfer. They do not have

enough packets for detecting packet loss via the fast retransmission algorithm. On the other

hand, they have to rely on the timeout mechanism, which is slower to respond than fast

retransmission mechanism. Thirdly, short-lived TCP flows have no time to probe its actual

RTT. Thus, its timeout threshold uses the default value, which is much more conservative

than the timeout threshold obtained after several measurements of the RTT. M atta et al

proposed isolation of TCP flows based on lifetime (or size) to protect short TCP flows from

long TCP flows [14, 15, 16]. They proposed to give preferential treatment to short-lived TCP

flows. In their scheme, packets from short-lived TCP flows are processed separately from

those of long-lived TCP flows at intermediate routers, while edge routers classify TCP flows

by their lifetime. Three classification schemes were proposed in [16]. The first one is a pure

random scheme that assigns flows to different classes with equal probability. The second one

makes classification decision on the traffic volume of each flow. The third scheme classifies

flows based on the lifetime of flows. That is, only flows lasting longer than a particular

threshold is classified as long-lived flows.

M atta et al’s research was based on an analytic model of TCP flows [15]. TCP flows are

modeled as Poisson processes, where burst of packets (window) arrives at the Poisson input

rate of 1/RTT. They assumed that all TCP flows have the same burst arrival rate. The

burst size is static; short-lived TCP flows are modeled as processes emitting bursts of size 4,

whereas long-lived TCP flows are those with burst size greater than 4.

The number of packets buffered is modeled as a Markov Chain. By using the station-

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TCP Loss ProbHity vs Max Burst
O.Ot

0.008

2?0.006

0.004

i.002O.i

0
25 400 5 10 15 20 30 35

Figure 7.3: Loss Probability vs. Maximum Burst Size

ary distribution of the total number of packets in the queue, the packet loss probability is

described as follows:

PDropTail(TCP) = lt(K) + 7 ~ 1)^ -= ^ + . . . + 7t(K - B + 1) ^ (7.4)

Basically, Equation 7.4 suggests that the packet loss probability is equal to the sum of

all cases when the sum of stationary queue size and burst size exceeds the total buffer size.

For example, when the stationary queue size is K — i where (i < B), B — i packets out of B

packets will be lost in each burst. Although the argument of M atta et al research is intuitively

reasonable, the analytic model they constructed was not realistic. The assumption on static

window size does not capture the dynamic nature of TCP flows. In order to validate their

model, we conducted our experiments on ns [6]. In the experiments, we adopt the dynamic

window size; tha t is, the window size is controlled by the congestion control mechanism. The

only thing we do is enforce an upper bound on the congestion window size (as is expected

to happened in a real network as well). From the experiment 7.4 results (Figure 7.3), we see

with the increase of burst size, the packet loss probability increases accordingly.

The conclusion derived by M atta et als. is against our understanding of T C P ’s mech

anism. TCP senders adjust their window size according to the packet drop they detected.

TCP senders will react to the packet losses by decreasing their window size. It is unlikely

that packet loss rate increases to about 80% while the sender congestion windows still in

crease. Our experiments show, that the loss probability at first increases with the upper

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

bound of window size. Then, it remains around a stable value regardless of how large of the

upper bound of window size. Although M atta’s classification policy is important, it is far

from complete. The first weakness of M atta’s policy is that the classification scheme replies

on a static threshold. W ith this static threshold, the total bandwidth is apportioned to long-

and short-lived flows. It does not account for the fact that the number of flows in realistic

environment is dynamic. The second weakness is that their policy did not specify how the

long-lived flows are to be controlled. As we have already seen, separation of long-lived flows

from short-lived flows alone did not solve the unfairness against flows with relatively larger

RTT values (see Chapter 6).

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 8

Summary and Future Work

8.1 Summary

Despite years of progress, a deep theoretical understanding of the existing Internet protocols

is extremely challenging. Selecting the most suitable framework of theory and making ap

propriate simplifications to make the problem mathematically tractable while retaining the

essential features of the network system are still difficult problems. Most of the theoretical

studies of computer networks come from the legacy of previous studies of the telephone com

munication network. The prevailing belief in the early 1990s was tha t certain open-looped

Markovian processes might be adequate to model the Internet traffic. However, the inher

ent feedback feature stemming from the congestion avoidance algorithm was misinterpreted;

although the probing mechanism is fully accounted for in the studies of the individual TCP

flow, the mechanism’s impact on the equilibrium of competing TCP flows is not fully un

derstood and has been oversimplified. In addition, although a revolutionary understanding

of self-similarity in LAN traffic, the phenomenon’s physical cause and its implications for

network engineering are still inconclusive. Moreover, the community is divided even on

the benefits of RED, one of the earliest intelligent AQM policies, which has been already

implemented in Cisco’s products and recommended as a standard by IETF.

My first effort with understanding the theoretical foundation of Internet protocols in

volved validating the proposed models of TCP flows based on classical stochastic process.

Independent Markovian processes had been proposed to modify the traffic of individual TCP

flows, and the arrival processes of competing TCP flows were assumed to be independent.

Later, more sophisticated models tha t accounted for the congestion avoidance mechanism

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

were proposed, and the researcher believed that the equilibrium goodput of an individual

TCP flow was the function of its independent loss process. After conducting extensive sim

ulations with a wide spectrum of parameters, We realized tha t the modeling work on TCP

flows is still in an early stage. The oversimplified assumptions about independent arrival

process and loss process do not capture the essential feature of TCP flows. More rigorous

theoretical work has to be done on the suggested equilibrium state, for the mathematical

proof of the existence and uniqueness of the equilibrium point is critical but still unknown.

Although my early work on the theoretical foundation of protocols did not lead to mathe

matical solutions, we developed numerous insights into designing protocols of provisioning

resources. Instead of designing protocols on the invalidated analytical results, we focused

on the DiffServ-like large grain control algorithms. Most of my thesis work was conducted

to study classification schemes at edge routers. My statistical studies on passively sampling

the real life Internet traces confirm the power law distributions of the file size or the lifetime

of TCP flows. Long-lived flows, which consist of less than 5% of the total active flows, carry

more than 50% of the total data. This phenomenon is referred to as “the mice and elephants”

or “dragonflies and tortoises” in some literature. My study confirms tha t propagation delays

of real life TCP flows spread in a wide spectrum, and this discovery validates RTT-based

classification for dealing with the well known unfairness against the TCP flows with rel

atively long RTT. We believe that classification schemes can be better than policies with

complicated parameter tuning such as RED. In my lifetime classification scheme, We classify

TCP flows at the edge routers. TCP flows that last beyond the pre-configured threshold

are classified as long-lived flows. Because of the observed power law, the exact value of the

threshold is not critical. We proposed a policy called F airS hare to regulate the long-lived

flows at the edge routers by using scheduled packet loss on the per-flows basis. W ith the

explicit resource allocation, maxmin fairness among long-lived TCP flows is guaranteed. As

for the short-lived flows, We believe that, instead of complicated management policies, the

most efficient strategy to improve QoS of TCP short-lived flows is simply to allocate more

bandwidth whenever necessarily. We proposed a control policy (DAS) based on the number

of active TCP flows: an intermediate router detects the number of active TCP flows going

through and dynamically adjusts the fraction of bandwidth for the class of short-lived TCP

flows in case of any significant change in the number of active short-lived TCP flows.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8.2 Future Work

As part of future work, the following ideas could be explored:

• Our ultimate goal is to design a set of policies that can provide QoS assurance for

TCP flows of different RTTs in the Internet. To do this, we have to account for

several factors like the large and heterogeneous topology, the dynamic traffic within

the Internet, and the difficulty of deployment. Through simulation experiments, we

have shown that our proposed FairShare scheme converges to the globally max-min

fair rates for various network configurations and in dynamic load environments. The

FairShare policy appears to be self-stabilizing in the presence of dynamic network

changes. However, we still need to conduct rigorous study on the parameterization

issue in the future.

• Design a set of policies tha t can satisfy both long- and short-lived TCP flows is chal

lenging. The congestion scheme in TCP sources presents itself in different ways on

long-lived and short-lived flows. DAS paves a new perspective on policies providing

QoS assurance for short-lived flows. Although DAS outperforms traditional AQM poli

cies, the work on DAS is not complete. We lack a better understanding of how the

proposed schemes behave in a multi-hop multiple bottleneck path environments.

• We have traded the accurate control of TCP flows with the complexity of the poli

cies. In order to perform our policies, we have to maintain several state information

for each of the flows and classes. In general, the efficiency of regulation algorithms

depends on the quality of information required. Excessive information tha t can not be

obtained accurately affects the efficiency of the algorithms negatively and the oppor

tunity of deployment due to complexity. It is interesting to investigate the optimum

design alternatives which achieve the best performance with appropriate quantity of

inform ation.

• We are also interested in various ways of incremental deployment techniques. We are

nevertheless hopeful th a t the classification, and subsequent differentiation between two

classes, is something within the reach of most modern internetworking equipment. In

fact, including a classification scheme based on lifetime properties appears to also be

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

I

within the capabilities of MPLS, thus opening the possibility of controlling not only

the bandwidth allocated to short-lived flows, but also their routing paths.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bibliography

[1] N. Cardwell and S. Savage, and T. Anderson, Modeling the performance of short TCP

connections, Technical Report, Computer Science Department, Washington University,

November 1998.

[2] N. Cardwell and S. Savage, and T. Anderson, Modeling TCP Latency, In Proc. of

INFOCOM ’00, pp.1742-1751.

[3] K. Thompson, G. J. Miller, and R. Wilder, Wide Area Internet Traffic Patterns ,and

Characteristics, IEEE Network, Vol. 11, No. 6 , pp.10-23, November /December 1997

[4] Transmission Control Protocol, DARPA Internet Program, Protocol Specification,

September 1981, RFC 793

[5] V. Jacobson, Congestion Avoidance and Control, ACM Computer Communication

Review, In Proc. of SIGCOMM’8 8 , Stanford, CA, August, 1988, Vol. 18 No.4, pp.314-

329, 1988.

[6] UCB/LBNL/VINT Network simulator - ns (version 2), http://ww w -

mash .cs.berkeley.edu/ns/.

[7] W. Steven, TCP Slow Start, Congestion Avoidance, Fast Retransmit and Fast Recovery

Algorithm, RFC 2001, 1997

[8] V. Jacobson, Modified TCP Congestion Avoidance Algorithm, end2end-in terest m ailing

list, April 30, 1990, ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail.

[9] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, TCP Selective Acknowledgment

Options, RFC 2018, 1996

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www-
ftp://ftp.isi.edu/end2end/end2end-interest-1990.mail

[10] D. Chiu ,and R. Jain, Analysis of the increase and decrease algorithms for congestion

avoidance in computer networks, Computer Networks and ISDN Systems, pp. 1-14,

1989.

[11] S. Floyd ,and V. Jacobson, On Traffic Phase Effects in Packet-Switched Gateways, Jour

nal of Internetworking: Practice and Experience, Vol.3 No.3, pp. 115-156, September

1992.

[12] S. Floyd ,and V. Jacobson, Random Early Detection Gateways for Congestion Avoid

ance, IEEE/ACM Transactions on Networking, Vol.l No.4, pp. 397-413, August 1993.

[13] N. Brownlee ,and K. Claffy, Understanding Internet Traffic Streams: Dragonflies and

Tortoises, h ttp :/ /www.caida.org/outreach/papers/2002/Dragonflies/

[14] S. Yilmaz ,and I. Matta, On Class-based Isolation of UDP, Short-lived and Long-lived

TCP Flows, In Proc. of MASCOTS ’01, Cincinnati, OH, August 2001.

[15] L. Guo ,and I. Matta, The War between Mice and Elephants, In Proc. of ICNP ’01,

CA, November 2001.

[16] I. M atta ,and Lcw.iang Guo, Differentiated Predictive Fair Service for TCP Flows, In

Proc. of ICNP ’00, Osaka, Japan, October 2000.

[17] A. Shaikh, J. Rexford ,and K. Shin, Load-Sensitive Routing of Long-Lived IP Flows, In

Proc. of SIGCOMM ’99, Boston, MA, Spetember, 1999.

[18] S. Shenker, L. Zhang ,and D. Clark, Observations on the Dynamic of a Congestion

Control Algorithm, ACM SIGCOMM Computer Communication Review, Vol.20 No.5,

pp. 137-143, October 1990.

[19] L. Qiu, Y. Zhang, and S. Keshav. On Individual and Aggregate TCP Performance, In

Proc. of ICNP’99, pp. 203, Toronto, Canada, 1999.

[20] M. Mathis, J. Semke, J. Mahdavi ,and T. O tt, The Macroscopic Behaviour of the TCP

Congestion Avoidance Algorithm, Computer Communication Review, Vol.27, No.3, pp.

67-82, July 1997.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.caida.org/outreach/papers/2002/Dragonflies/

[21] J. Padhye, V. Firoiu, D. Towsley ,and J. Kurose, Modeling TCP Throughput: A Simple

Model and its Empirical Validation, In Proc. of SIGCOMM ’98, pp. 303-314, Vancouver,

CA, September 1998.

[22] T. Bu ,and D. Towsley , Fixed Point Approximation for TCP behavior in an AQM

Network, In Proc. of SIGMETRICS ’01.

[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, Equation-Based Congestion Control

for Unicast Applications, In Proc. of SIGCOMM ’00, pp.43-56.

[24] V. Misra, W. Gong, and D. Towsley, Stochastic Differential Equation Modeling and

Analysis of TCP Windowsize Behavior, In Proc. of Performance ’99.

[25] J. Padhye, V. Firoiu ,and D. Towsley, A Stochastic Model of TCP Reno Congestion

Avoidance and Control, UMASS CMPSCI Technical Report 99-02, Feburary 1999.

[26] M. Yajnik, S.B. Moon, J. Kurose ,and D. Towsley, Measurement and Modeling of the

Temporal Dependence in Packet Loss , In Proc. of INFOCOM ’99, pp.345-352.

[27] E. Altman, K. Avrachenkov ,and C. Barakat, A Stochastic Model of TC P/IP with

Stationary Random Loss, In Proc. of SIGCOMM ’00.

[28] R. Morris, Scalable TCP Congestion Control, In Proc. of INFOCOM ’00, Tel Aviv,

March 2000.

[29] R. Morris, Scalable TCP Congestion Control, PhD thesis, January 1999.

[30] R. Morris, TCP Behavior with Many Flows, In Proc. of ICNP ’97, October 1997,

Atlanta, USA

[31] D. Katabi, M. Handley, and C. Rohrs, Internet Congestion Control for High Bandwidth-

Delay Product Networks, In Proc. of SIGCOMM ’02, Pittsburgh, August, 2002.

http: / / ana.lcs.mit.edu/dina/.

[32] V. Paxson ,and S. Floyd, Wide-Area Traffic: The Failure of Poisson Modeling,

IEEE/ACM Transactions on Networking, Vol.3 No.3 pp.226-244, 1995.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[33] M. Crovella ,and A. Bestavros, Self-Similarity in World Wide Web Traffic: Evidence

and Possible Causes, IEEE/ACM Transactions on Networking, Vol.5 No.6 pp.835-846,

1997.

[34] W. Willinger, M. Taqqu, R. Sherman, and D. V. Wilson, Self-Similarity Through High-

Variability: Statistical Analysis of Ethernet LAN Traffic at the Source Level, In Proc.

of SIGCOMM ’95, Cambridge, MA, August 1995, pp. 100-113.

[35] K. Fall and S. Floyd, Simulation-based Comparisons of Tahoe, Reno, and SACK TCP,

Computer Communication Review, Vol. 26 No.3 pp. 5-21, 1996.

[36] J. Mo and J. Walrand, Fair End-to-End Window-Based Congestion Control,

IEEE/ACM Trans, on Networking, Vol.8 , No.5, pp.556-567, 2000.

[37] A. Mayer, Y. Ofek, and M. Yung, Approximating Max-Min Fair Rates via Distributed

Local Scheduling with Partial Information, In Proc. of INFOCOM ’96, San Francisco,

CA, March 1996, pp. 928-936.

[38] R. Morris, Scalable TCP Congestion Control, In Proc. of INFOCOM ’00, Tel Aviv,

Israel, March 2000, pp. 1176-1183.

[39] N. Cardwell, S. Savage, and T. Anderson, Modeling TCP Latency, In Proc. of INFO

COM ’00, Tel Aviv, Israel, March 2000, pp. 1742-1751.

[40] C. Villamizar, and C. Song, High Performance TCP in ANSNET, Computer Commu

nication Review, Vol.24 No.5, 1994.

[41] D. Clark, and W. Fang, Explicit Allocation of Best-Effort Packet Delivery Service,

IEEE/ACM Trans, on Networking, Vol.6 No.4, pp.362-373, 1998.

[42] G. Lo Monaco, A. Feroz, S. Kalyanaraman, and Y. Xia, TCP-Friendly Marking for Scal

able Best-Effort Services on the Internet, Computer Communication Reviews, Vol.31,

No.5, pp.11-19, 2001.

[43] X. Wu, and I. Nikolaidis, Sociable Elephants: Fairness Among Long Lived TCP Flows,

In Proc. of SPECTS ’02, pp. 502-506, July 2002.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[44] X. Wu ,and I. Nikolaidis, On the Advantages of Lifetime and R T T Classification

Schemes for TCP Flows, In Proc. of IPCCC ’03, April 2003.

[45] M. May, J. Bolot, C. Diot, and B. Lyles, Reasons not to deploy RED, In Proc. of the

IEEE/IFIP International Workshop on Quality of Service (IWQoS’99), June 1999

[46] K. Ramakrishnan, R. Jain, and D. Chiu, Congestion Avoidance in Computer Networks

with a Connectionless Network Layer. Part IV: A Selective Binary Feedback Scheme for

General Topologies Methodology, Technical Report DEC-TR-510, Digital Equipment

Corporation, 1987.

[47] A. Charny, An Algorithm for Rate Allocation in a Packet-Switching Network with Feed

back, Master Thesis for EECS&EE, MIT, 1994.

[48] H. Jiang ,and C. Dovrolis, Passive Estimation of TCP Round-Trip Times, ACM

Computer Communication Review, Vol.32 No.3, July 2002.

[49] D. Katabi, M. Handley, and C. Rohrs, Internet Congestion Control for Future High

Bandwidth-Delay Product Environments, In Proc. of SIGCOMM ’02, August 2002.

[50] V. Paxson, Empirically-Derived Analytic Models of Wide-Area TCP Connections,

IEEE/ACM Trans, on Networking, Vol.2 No.4, pp. 316-336, 1994.

[51] M. Christiansen, K. Jeffay, D. Ott, and F.D. Smith, Tuning RED for Web Traffic,

IEEE/ACM Trans, on Networking, Vol.9, No.3, pp. 249-264, 2001.

[52] T. Ye ,and S. Kalyanaraman, Adaptive Tuning of RED Using On-line Simulation In

Proc. of GLOBECOM ’02, Taipei, Taiwan, November 2002.

[53] Auckland-1 I trace data - illustrated, http://w and.cs.w aikato.ac.nz/w and/w its/auck/2/.

[54] D. Chiu ,and R. Jain, Analysis of Increase Decrease Algorithms for Congestion Avoid

ance in Computer Network, Computer Networks and ISDN Systems, pp. 1-14, 1989.

[55] S. Lin ,and N. McKeown, A Simulation Study of IP Switching, In Proc. of SIGCOMM

’97, Cannes, France, September 1997.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://wand.cs.waikato.ac.nz/wand/wits/auck/2/

[56] P. Newman, T. Lyon ,and G. Minshall, Flow Labeled IP: A Connectionless Approach

to ATM, In Proc. of INFOCOM ’96,pp.544-557, San Francisco, CA, March 1996.

[57] M. Allman, A Web Server’s View of the Transport Layer, ACM Computer Communi

cation Review, Vol. 30, No. 5, October 2000.

[58] B. Suter, T. V. Lakshman, D. Stiliadis ,and A. Choudhury Buffer Management Schemes

for Supporting TCP in Gigabit Routers with Per-flow Queueing, IEEE Journals in

Selected Areas in Communications, August 1999.

[59] N. Cardwell, S. Savage ,and T. Anderson, Modeling TCP Latency, In Proc. of INFO

COM ’00, pp. 1742-1751, Tel Aviv, Israel, March 2000.

[60] I. Yeom ,and A.L. N. Reddy, Realizing throughput guarantees in a differentiated services

network, In Proc. of ICMCS ’99, Florence, Italy, June 1999.

[61] N. Seddigh, B. Nandy ,and P. Pieda, Bandwidth Assurance Issues for TCP flows in a

Differentiated Service Network, In Proc. of GLOBECOM ’99, Rio De Janeiro, December

1999.

[62] B. Nandy, J. Ethridge, A. Lakas ,and A. Chapman, Aggregate Flow Control: Improving

Assurances for Differentiated Services Network, In Proc. of INFOCOM ’01, pp. 1340-

1349, Anchorage, Alaska, April 2001.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

