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ABSTRACT 

 

Structures at relatively small scales (e.g. nano/micro scale) behave 

differently in comparison to those examined at the macro scale. This is 

mainly because a high surface area to volume ratio is present at this scale 

making physical factors such as surface stress/energy and electromagnetic 

forces much more significant. In particular, surface effects  induced by a 

local environmental change of the region near the surface of solids, greatly 

influence the general behavior of the corresponding bulk material especially 

when the scale of materials become compatible with the nano/micro scale. 

This in turn, suggest that a more accurate and comprehensive description 

of the general behavior of an elastic solid with one or more surfaces can be 

achieved by incorporating a description of the separate surface mechanics 

near each surface of the solid.   

In the dissertation, we examine the effects of first-order surface elasticity in 

linear elastic fracture mechanics. A complete analysis has been performed 

for both plane and anti-plane deformations and for cases in which cracks 

are present in a homogeneous material and subsequently in the interface 

between two dissimilar elastic materials. It is shown that the introduction 

of the effects of first-order surface elasticity results in, in most cases, the 

reduction of the stress singularity at the crack tip from the classical strong 

square root singularity to a weaker logarithmic singularity. In particular, 

the refined model (with first-order surface effects integrated) predicts a 

more realistic description of size-dependent stress distributions commonly 

existing at the small scale structures. In the case of an interface crack 

arising in the interfacial region between two dissimilar materials, the 

refined model removes the classical oscillatory behaviors of the 

corresponding stress distributions leading again to size-dependent and 

stable stresses in the vicinity of the crack.  



 

 

ACKNOWLEDGEMENTS 

 

I would like to extend my deepest gratitude to Dr. Peter Schiavone and 

Chong-Qing Ru for their invaluable guidance, support and kind 

understanding, as a result of which this dissertation has been accomplished. 

 

I am also grateful to all my friends and staffs in the department for their 

everlasting encouragement and supports. Special thanks to my family for 

their consistence love, support and encouragement throughout my studies.  

 

 

 

 

 

CHUN IL KIM 

Edmonton, AB 

April 2012 



TABLE OF CONTENTS

1 INTRODUCTION 1

1.1 SURFACES OF MATERIALS . . . . . . . . . . . . . . . . . . . . . 1

1.2 THE INCORPORATION OF SURFACE ELASTICITY . . . . . . 4

1.2.1 Surface Strain Independent Surface Model . . . . . . . . . . 6

1.2.2 Surface Strain Dependent Surface Model . . . . . . . . . . . 6

1.2.3 Comprehensive Surface Model (bending rigidity incorporated) 7

1.3 INTERFACE CONDITIONS . . . . . . . . . . . . . . . . . . . . . 9

1.4 CRACK PROBLEMS IN THE PRESENCE OF SURFACE ME-

CHANICS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.5 PURPOSE OF STUDY AND DISSERTATION OVERVIEW . . . . 15

2 GENERAL FORMULATION AND PRELIMINARIES 20

2.1 NOTATION AND PROBLEM SETTING . . . . . . . . . . . . . . 20

2.2 SURFACE EQUATION . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3 PLANE & ANTI-PLANE ELASTICITY IN THE PRESENCE OF

SURFACE MECHANICS . . . . . . . . . . . . . . . . . . . . . . . 24

3 THE EFFECTS OF SURFACE ELASTICITY ON AN ELASTIC

SOLID INCORPORATING A MODE-III CRACK 28

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 ANTI-PLANE CRACK PROBLEM WITH SURFACE EFFECTS . 29

3.2.1 Equilibrium Equations and Complex-Variable Formulation . 30

3.2.2 A Traction-free Mode-III Crack Problem with Surface Stress 32

3.2.3 Uniqueness of Results and the Imposition of End Conditions 34

3.3 INVESTIGATION OF THE CAUCHY SINGULAR INTEGRO-

DIFFERENTIAL EQUATION . . . . . . . . . . . . . . . . . . . . 37

1



3.3.1 Solution of Singular Integro-differential Equation by a Col-

location Method . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . 40

3.3.3 Comparison with Known Classical Results . . . . . . . . . . 41

3.3.4 Stress Distributions Near the Crack Tip . . . . . . . . . . . 43

3.4 TOPICS REGARDING NON-UNIFORM SURFACE TRACTION . 45

3.4.1 A Mode-III Crack Problem with Surface Stress . . . . . . . 45

3.4.2 Examples: the cases Pyz(to) = Ato + B: linear loading

and Pyz(to) = At2o +B: parabolic loading . . . . . . . . . . . 47

3.4.3 Decomposition Theory in Surface Elasticity . . . . . . . . . 51

3.4.4 An Analysis of Type 2 Problem in Surface Elasticity . . . . 52

3.4.5 An Analysis of Type 1 and 3 Problems in Surface Elasticity 53

3.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 PLANE-STRAIN CRACK PROBLEMS (MODE-I & MODE-II)

IN THE PRESENCE OF SURFACE ELASTICITY 58

4.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.2 PLANE-STRAIN CRACK PROBLEM WITH SURFACE EFFECTS 59

4.2.1 Complex-Variable Formulation . . . . . . . . . . . . . . . . . 60

4.2.2 Equilibrium Equations on the Crack Surface . . . . . . . . . 62

4.2.3 Plane-strain Crack Problem with Surface Stress . . . . . . . 63

4.2.4 Analysis of End Conditions . . . . . . . . . . . . . . . . . . 67

4.3 ANALYSIS OF THE SINGULAR INTEGRO - DIFFERENTIAL

EQUATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Solution of Singular Integro-differential Equations by a Col-

location Method . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.2 Examples: Mode-I (σ∞yy �= 0, σ∞xy = 0) problem . . . . . . . 75

2



4.3.3 Examples: Mode-II (σ∞yy = 0, σ
∞
xy �= 0) problem . . . . . . . 76

4.4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 76

4.4.1 Determination of the unknown functions f (t) , g (t) , α (t) and

β (t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.2 Stress Distributions Near the Crack Tip . . . . . . . . . . . 81

4.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 THE EFFECTS OF SURFACE ELASTICITY ON A MODE-III

INTERFACE CRACK 86

5.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.2 ANTI-PLANE INTERFACECRACKPROBLEMWITH SURFACE

EFFECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2.1 Equilibrium Equations and Complex-Variable Formulation . 88

5.2.2 A Traction-free Mode-III Interface Crack Problem in the

Presence of Surface Elasticity . . . . . . . . . . . . . . . . . 89

5.3 SOLUTION OF SINGULAR INTEGRO-DIFFERENTIAL EQUA-

TIONS BY A COLLOCATION METHOD . . . . . . . . . . . . . . 95

5.4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 98

5.4.1 Comparison with Known Classical Results . . . . . . . . . . 99

5.4.2 Analysis of the Stress Distribution under the Influence of

Surface Effects . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 THE EFFECTS OF SURFACE ELASTICITY ON AN INTER-

FACE CRACK IN PLANE DEFORMATIONS 108

6.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.2 PLANE-STRAIN INTERFACE CRACK PROBLEM WITH SUR-

FACE EFFECTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3



6.2.1 Governing Equations and Complex Variable Formulation . . 110

6.2.2 A Traction-free Interface Crack Problem in the Presence of

Surface Elasticity . . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 COUPLED SINGULAR INTEGRO-DIFFERENTIAL EQUATIONS119

6.3.1 Mode-II (σ∞yy = 0, σ
∞
xy �= 0) case . . . . . . . . . . . . . . . 120

6.3.2 Mode-I (σ∞yy �= 0, σ∞xy = 0) case . . . . . . . . . . . . . . . . 126
6.4 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 128

6.4.1 Functions f (t) , g (t) , and β (t) . . . . . . . . . . . . . . . . 129

6.4.2 Oscillatory Singularity . . . . . . . . . . . . . . . . . . . . . 133

6.5 SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

7 CONCLUSIONS AND FUTURE WORK 141

7.1 CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

7.2 FUTURE WORK . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

Bibliography 152

4



 

  

LIST OF FIGURES 

 

FIGURE 1: Examples of molecular bonding on surfaces/interfaces . . . .  2 

FIGURE 2: Surface to volume ratios of two different cubes. . . . . . . . . . 4 

FIGURE 3: Schematics of an elastic deformable surface . . . . . . . . . . . . 5 

FIGURE 4: Schematics of suggested surface models . . . . . . . . . . . . . . . 8 

FIGURE 5: Examples of interfaces . . . . . . . .. . . . . . . . . . . . . . . . . . .10 

FIGURE 6: Schematics of crack problems: Mode-I, Mode-II and Mode-III  

crack  . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . 13 

FIGURE 7: Examples of cracks at the nano/micro scale . . . . . . . . . . . 15 

FIGURE 8: Schematics of the problem . . . . . . . . . . . . . . . . . . . . . . 21 

FIGURE 9: The jump condition across the surface. . . . . . . . . . . . . . . 23 

FIGURE 10: Schematics of decoupling of the crack problem . . . . . . . . 27 

FIGURE 11: Schematic of a Mode-III crack problem . . . . . . . . . . . . . 30 

FIGURE 12: Equilibrium on upper crack face under anti-plane shear mo-  

-tion. . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 

FIGURE 13: Convergence of the solution f(t) with respect to number of i-  

-terations(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 

FIGURE 14: Stress di¤erence between the upper and bottom faces, when  

/yz = 0:1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 

FIGURE 15: Stress distribution with respect to surface parameter (Se) w- 

                    -hen /yz =0:1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 

FIGURE 16: Schematic of applied surface traction. A linear surface trait-  

         -ion; B parabolic surface traction . . . . . . . . . . . . . . . . . 47 

FIGURE 17: Near tip stress for linear surface traction case, where B=   

                    = Sb =0:1; -0:1  A=  = Sa  0:1 B. . . . . . . . . . . . .  50 

FIGURE 18: Near tip stress for linear surface traction case, where B=   

                    = Sb =0:1; -0:1  A=  = Sa  0:1 . . . . . . . . . . . . . .  50 



 

  

FIGURE 19: Schematic of the decomposition in mode-III crack problem 52 

FIGURE 20: Stress distribution with respect to surface parameter (Se); w  

                    -hen Pyz=  = 0:1 . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

FIGURE 21: Stress distribution for type 1 and type 3 problems along the  

                    real axis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  55 

FIGURE 22: Schematic of a plane-strain crack problem . . . . . . . . . . . 60 

FIGURE 23: Equilibrium on upper crack face under the plane-strain defo-  

                    rmation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 

FIGURE 24: Convergence of the solution g(t) with respect to number of  

                    iterations (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

FIGURE 25: Convergence of the solution f(t) with respect to number of  

                    iterations (N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  77 

FIGURE 26: The solution of g (t) and )(t  (Mode-I), where, 0.005 <  

                     Se1 < 0.03 /yy =0.3 iterations (N) . . . . . . . . . . . .  79 

FIGURE 27: The solution of f (t) and )(t  (Mode-II), where, 0.003 <  

                    Se2 < 0.1; /xy  = 0.3 iterations (N) . . . . . . . . . . . .  80 

FIGURE 28: Stress distribution with respect to surface parameter ( Se1);  

                    /yy  =0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

FIGURE 29: Stress distribution with respect to surface parameter ( Se2);  

/xy =0.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 

FIGURE 30: Schematic of an interface Mode-III crack problem . . . . .  88  

FIGURE 31: Convergence of the solution f(t) with respect to number of 

iterations(N) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  101 

FIGURE 32: The solution f (t) (Mode-III interface crack), where yz  / 

)( 21 +  = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 

FIGURE 33: The solution )(t (Mode-III interface crack), where yz  / 

)( 21 +  = 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 

FIGURE 34: The solution f (t) with respect to the ratio of 1 / 2 , where  



 

  

)/( 21 +yz =0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 103 

FIGURE 35: Stress distribution ( yz ) with respect to surface parameter, 

where )/( 21 +yz = 0.1 . . . . . . . . . . . . . . . . . . . .  105 

FIGURE 36: The jump of stress ( xz ) across the bi-material interface105 

FIGURE 37: Schematic of a plane-strain interface crack problem . . . .110 

FIGURE 38: Comparison of the results (Mode-III, f (t)) using the direct 

                  and conventional method . . . . . . . . . . . . . . . . . . . . . . 120 

FIGURE 39: The solution of f(t) (Mode-II interface fracture), where xy   

1/  = 0.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 

FIGURE 40: The solution of g(t) (Mode-II interface fracture), where xy   

1/  = 0.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  130 

FIGURE 41: The solution of )(t (Mode-II interface fracture), where   

1/xy  = 0.37 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 

FIGURE 42: Removal of oscillatory singularity f(t)(Mode-II interface fra-  

cture) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

FIGURE 43: Removal of oscillatory singularity g(t)(Mode-II interface fra-  

cture) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  134 

FIGURE 44: The solution of f (t) with respect to surface parameter (Mo- 

 de-II interface fracture), where 1/xy  = 0.37 . . . . . . 135 

FIGURE 45: The solution of g (t) with respect to surface parameter (Mo- 

                    de-II interface fracture), where 1/xy  = 0.37 . . . . . . 135  

FIGURE 46: The solution of g (t) with respect to surface parameter (Mo-  

de-I interface fracture), where 1/yy  = 0.37 . . . . . . . 136 

FIGURE 47: The solution of )(t  with respect to surface parameter (M-

ode-I interface fracture), where 1/yy = 0.37 . . . . . .  136 

FIGURE 48: Stress distribution with respect to surface parameter (Mode- 

 



 

  

II interface crack), where 1/xy = 0.37 . . . . . . . . . . . 138 

FIGURE 49: Stress distribution with respect to surface parameter (Mode-

I interface crack), where 1/yy  = 0.37 . . . . . . . . . . . 139 

 



CHAPTER 1

INTRODUCTION

1.1 SURFACES OF MATERIALS

For the purposes of mathematical modeling, engineering materials can be regarded

as continuous elastic media (i.e. continua) with certain characteristic properties

(much like spring constants) from which the responses of materials can be de-

scribed. Over the years, classical continuum-based prediction models have been

used successfully in the study of the general behavior of various engineering materi-

als such as beams, shells and plates (see, for example, [1—6]). With recent advances

in nanoscience and nanotechnology, there is increasing demand for the modeling

and analysis of structures at the nano/micro scale. In this regard, the classical

continuum theories are again adopted. However, predictions from the classical

prediction models often produce results inconsistent with those of experimental

studies (see, for example, [7—11]). This can be attributed to the fact that, perhaps,

there exist some unknown properties and/or phenomena which are neglected at

the macro scale, yet become significant as the scale of systems become compatible

with the nano/micro scale. The analogy can be further established, a priori, that

the unknown properties must heavily rely on the size of material (i.e. extensive

quantity) not just sorely be intrinsic properties of material (i.e. intensive quan-

tity). With that being said, the best candidates, as far as engineering analyses are

concerned, would include some quantities associated with surface and/or volumes

of materials, for example, surface tension/stress, surface material properties and
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mass of materials which are entirely extensive properties and/or extensive-related

intrinsic properties.

In fact, it is widely accepted that surfaces of materials and/or interfaces between

pairs of solids display properties quite different from those associated with their

interiors. This is mainly due to the fact that atoms of a solid material experience

local environmental differences such as changes in lattice spacing and number of

bonded legs (see Fig.1) as they approach the boundaries of a bulk material [12,13].

Recent studies reveal that these surfaces (the domain responsible for local changes)

have actually non-vanishing thickness (see, for example, [14,15]). In addition, au-

thors in [16—18] provide quantitative measurements of surface properties for some

engineering materials used in the manufacture of nano/micro scale structures (e.g.

nanowires, microcantilevers and nanobeams.).

Interface

Material A Material B

Material Surface

Surface

Body

Figure 1: Examples of molecular bonding on surfaces/interfaces

The forgoing observations [12—18] seem to suggest that surfaces of solid mate-

rials may actually influence the general behavior of adhering bulk materials rather

than just serve as “physical boundaries” of materials. The following question then

arises naturally: how were the conventional theories able to produce satisfactory

results in many engineering problems without considering the role of surfaces (sur-
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face effects)? This can be explained by recognizing the fact that the surface effects

are extensive properties rather than intensive properties. More precisely, it can be

seen from Fig. 2 that surface to volume ratio of macro scale structures is much

smaller than those of sufficiently small scale structures. This further implies that

surface effects are negligibly insignificant for macro scale structures and therefore,

the classical continuum theories (where surface effects are neglected) still provide

quite successful predictions in the analysis of behavior of typical engineering ma-

terials at the macro scale.

However, the role of surfaces must be considerable in sufficiently small scale

structures in which case, surfaces (with associated properties) make a non-trivial

contribution to the general behavior of adhering bulk materials. Further, the

intensity of the effects of surfaces significantly increases as the size of structures

converges to the length scale compatible with nano/micro meters. In other words,

structures at this scale behave differently in comparison to those examined at the

macro scale and the corresponding elastic responses can be size dependent. In

fact, experimental results in [17, 19—23] demonstrate that the elastic modulus of

small structures changes as the diameter of for example, the beam or thickness

of the plate varies, providing direct evidence of the size dependency of elastic

properties at the nano/micro scale. It is therefore, quite natural that the classical

continuum theories often fail to predict behaviors of structures at the nano/micro

scale, since the classical assumptions do not include the contribution of the surface

effects. This, in turn, suggests that a more accurate and comprehensive analysis

can be achieved by incorporating the effect of surface mechanics on the structural

boundaries of the solid in an attempt to account for the increasing surface area to

3



volume ratio of structures, especially those at the nano/micro scale.

100mm
1mm10

0m
m

1m
m

1m
m10
0m
m

][ 2-
610

1
= mm

Volume
Area

][ 2-1= mm
Volume

Area

Figure 2: Surface to volume ratios of two different cubes

1.2 THE INCORPORATION OF SURFACE ELASTIC-

ITY

The incorporation of surface mechanics into mechanical models describing defor-

mation of various elastic structures has drawn an increasing amount of attention in

the literature [24—35]. Especially, with recent advances in nano/micro technology,

the incorporation of surface mechanics into analytical models has provided a con-

tinuum based approach to a class of problems of great interest to theoreticians and

practitioners alike. The concept is significant in a range of engineering problems,

in particular, when the high surface area to volume ratio, present at the small

scale, mean that the effects of the surface can no longer be neglected.

Currently, the two fundamental approaches used in the modeling of the defor-

mation of solids at the small scale (nano/micro) involve either atomistic models or

4



refined continuum models. The former rely on massive atomistic simulation (e.g.

molecular dynamic (MD) simulation), which most often require extensive compu-

tational resources. Nonetheless, these models were used successfully to investigate

problems arising in nanomechanics (see, for example, [36—39]). Refined continuum

models offer the advantages of the continuum setting and associated mathematical

framework. This “refinement” of classical continuum theories to provide a more

accurate and comprehensive analysis of solids with high surface to volume ratio

can be achieved by employing a description of the separate surface mechanics on

the structural boundaries (surfaces) of the solid. Experiments on various elastic

structures (e.g. beams, plates and shells) indicated that predictions from these

continuum models had good agreement with corresponding results obtained from

the atomistic simulations (see, for example, [17,40]). An elastic deformable surface,

in general, can be described by considering surface tension (pre-stress) applied on

the membrane and the variation of surface free energy as the surface deforms (see

Fig. 3). There are three different categories of continuum based models available

in the literature within this subject and we shall briefly mention these surface

models here for the purpose of the present study.

(b) Deformation of an elastic surface

o

(a) Surface tension

o o

A

A
s s

s

Figure 3: Schematics of an elastic deformable surface (R. Thomson et. al. Acta

Metall. (1986))
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1.2.1 Surface Strain Independent Surface Model

This simplified model considers only the surface tension (excluding possibilities of

surface dependency on stresses) leading to resulting models of the corresponding

solid which are mathematically tractable (see Fig. 4(a)). The role of the sur-

face can then be implemented with minimum modification of classical continuum

theory: the “refinement” most often achieved by replacing surface tension by the

equivalent resultant force acting on boundaries (and/or some part of boundaries)

of the corresponding system (see, for example, [41—43]). In this case, classical

constitutive relations still remain valid, yet balance equations change upon the in-

troduction of surface effects. Although, this model leads itself to relatively simple

analysis and thus can accommodate various situations arising in engineering prob-

lems, the assumption sacrifices the rigor and accuracy of a more comprehensive

theory. Consequently, the model often fails to predict some crucial phenomena

such as size-dependent characteristics arising in nano/micro structures (see, for

example, [19—21,44,45]).

1.2.2 Surface Strain Dependent Surface Model

The surface strain dependent surface model, often referred as Gurtin-Murdoch

surface elasticity model followed by Gurtin and co-workers’ early contributions in

this subject (see [26,27,34]), is, perhaps, one of the most important and accessible

refined continuum models. In this model, a surface is regarded as a negligibly

thin elastic membrane adhering to the bulk solid without slipping. The additional

surface stress contributed by the surface strains (see Fig. 4(b)) leads, in most

cases, to highly unusual and nonstandard boundary conditions on the surfaces of
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the bulk solid. Consequently, the corresponding boundary value problems are not

accommodated by existing classical theories and pose challenges not encountered

previously in similar mathematical analysis. Nonetheless, the Gurtin-Murdoch

assumptions were used successfully in a number of studies. For example, authors

in [44,45] employed this model in the study of nanoscale inhomogeneity-matrix sys-

tems and showed the size-dependent elastic fields of the corresponding system. Zhi

and Liying [46] examined piezoelectric nanowires using this model and found that

bending behaviors and stiffness of nanobeams exhibit strong dependency on their

size. Currently, several different versions of the Gurtin-Murdoch model are avail-

able in literatures (see, Ru [47] and the bibliographies contained therein) depend-

ing on their particular purpose of study. Regardless of the choice of each different

version, the Gurtin-Murdoch surface elasticity model, overall, has produced satis-

factory results in the analysis of the behavior of small structures, for example, in

studies of the mechanics of nanocomposites (see, for example, [16,17,31,44,45,48]).

1.2.3 Comprehensive Surface Model (bending rigidity in-

corporated)

The model, in which the bending rigidity is supplemented on top of the previously

mentioned contributions of the surface effects (see Fig. 4(c)), provides the most

comprehensive description of an elastic deformable surface. The framework of the

model has been suggested and further developed by Steigmann and Ogden [32,33].

Applications can be found, for example, in [49] where authors employed a complete

version of the model and examined finite deformations of a pressurized circular

annulus. Schiavone and Ru [50] adopted a linearized version of the model in the

study of boundary reinforcement problems arising in plane elasticity. Although the

comprehensive model provides more realistic descriptions of an elastic deformable
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surface compared to other existing models, only a limited number of studies has

been done in this regards (see, for example, [51,52] ) due to the intrinsic complexity

of the model: the contribution of additional bending effects most often leads to

a system of fourth-order partial differential equations together with the combined

boundary conditions which is even more complicated than the Gurtin-Murdoch

surface elasticity model case. In addition, the bending rigidity of an infinitely

thin elastic membrane is, in most cases, negligibly insignificant, especially those

on the boundaries of nano/micro scaled structures where the thickness of surface

layers usually converges to length scale compatible to the order of a few nanome-

ters. Consequently, the comprehensive model is more or less unfavorable as long

as actual analyses are concerned. However, we note here that this is an interesting

area for future study, particularly when considering a system in which the bending

rigidity of material surfaces is of significant and/or dominant.

o (a) Surface strain independent
surface model

o o

o o

s

(b) Surface strain dependent
surface model

oo

s
sMsM

(c) Comprehensive surface
model

Figure 4: Schematics of suggested surface models
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1.3 INTERFACE CONDITIONS

In the previous sections, we discussed the role of surface mechanics for small scale

structures and feasible ways of incorporating the surface effects into models de-

scribing the general behavior of an elastic solid (i.e. different versions of refined

continuum models in the description of an elastic deformable surface). Within the

prescription of the continuum-based surface elasticity model, the general defor-

mations of an elastic solid now involve the simultaneous responses of two different

elastic media (i.e. a bulk solid and an adhering surface layer). This further requires,

as far as engineering analysis is concerned, the transmission of displacement and/or

stress related information from the bulk solid to the adjoining surface through an

‘interface’ and/or ‘interfacial zone’ between two distinctive bonded media. Here,

we refer to an interface as a limiting case of the interfacial zone as its thickness

tends to zero. In the physical sense, an interface can be regarded as a two di-

mensional boundary (a curved plane) across which material properties experience

sudden change. Extensive research has been done in the field of micromechanics,

chemistry and material sciences on the interface and various approximation mod-

els have been proposed in an attempt to characterize the complex behavior of the

interface, mainly focusing on their role in the means of transmission of physical

information (see, for example, [53—57]). Nevertheless, due to its intrinsic complex-

ity in forming, it is extremely challenging to provide an accurate mathematical

description of the behavior of the interface (interfacial zone). For the purpose of

the present study, we briefly review some examples of interface models most often

adopted in the literature.

A state of coherent interface (also referred as a perfectly bonded interface) as-

sumes that there is perfect lattice matching between two phases (see Fig.5 (a)).

This is often achieved through the introduction of coherency of tangential strain
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in one or both of the phases. In general, coherent interface assumption is rather

conventional, yet studies reveals that [58, 59] the model shows satisfactory physi-

cal correspondence in many cases. There are other categories of interface models

available in literature, for example, an ‘imperfect interface model’. The funda-

mental premise for the imperfect interface model is that there exists partial or

complete lattice mismatching between two phases, namely; semi-coherent and in-

coherent interface condition, respectively. In these interface models, dislocations

are formed at the interface to offset some of the coherency of tangential strain

required to maintain the matching elsewhere (see Fig.5 (b)), otherwise there is no

lattice matching (coherency in strain) available in between (see Fig.5 (c)).

Dislocation

Matching lattice

Interfacial boundary

(a) Coherent interface

(b) Semicoherent interface

(c) Incoherent interface
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Figure 5: Examples of interfaces

Various different scenarios are possible in the description of an imperfect interface.

For example, the imperfect interface can be regarded as an elastic spring-type in-

terface in which the tangential strains/displacements jump across the interface, yet

the amount of jump is directly proportional to their respective interface traction

components (see, for example, [60—62]). This is probably the simplest assump-

tion in capturing the complex nature of an imperfect interface, yet in reality, the

conditions would be much more complicated. For interfaces in solids within the

description of the continuum-based surface elasticity model, a coherent interface

condition means that the equal amount of tangential strains are projected from

the bulk solid to the abutting surface layer, where no atomic bonds break in the

interfacial plane. An imperfect interface condition is related to a deformation with

different tangential strains between the bulk solid and the surface layer [34, 63]],

where atomic bonds may break in between. In the present study, we assume that

the state of interface condition between bulk solid and adhering surface is coher-

ent, since coherent interfaces commonly exist in materials, and they often remain

coherent under a wide range of conditions [64].

1.4 CRACK PROBLEMS IN THE PRESENCE OF SUR-

FACE MECHANICS

The analysis of stresses in an elastic solid incorporating a crack is of fundamental

importance in the understanding of failure and in the general deformation analysis

of engineering materials. In the Linear Elastic Fracture Mechanics (LEFM), due
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to the high stress concentration ratio at crack tip regions (including at the tips

themselves), even for cracks in sufficiently small length scales are well capable of

initiating system failures. Failure often initiates (provided that there exists evi-

dence of cracks in some regions of a material) at loading levels much lower than

a material service load and/or yielding point. Therefore, it is extremely impor-

tant to understand the general behavior of crack tip regions as well as the system

containing one or multiple cracks. Depending on the types of applied loadings

on the boundaries of a solid containing a crack, linear elastic crack problems fall

generally into three different categories, namely; Mode-I, Mode-II and Mode-III

crack problems. Mode-I and Mode-II cracks arise in plane-deformations of a solid

containing a crack subjected to remote tension and in-plane shear, respectively

(see Fig. 5(a)-(b)), whereas a Mode-III crack problem concerns anti-plane defor-

mations where the system experiences out-of-plane remote shear loading (see Fig.

5(c)). Extensive studies have been done in the literature in regard to each category

of crack problems in the context of the LEFM theory including those covering the

non-linear regime (see, for example, [65—69]). The early solutions of such crack

problems obtained from the theory of LEFM showed that the stresses at the crack

tip are found to be infinite reflecting the fact that the crack front is usually taken to

be perfectly sharp, yet in reality, most crack tips are, in fact, blunt with a radius of

convergence of the order compatible with the nanoscale. In the case of an interface

crack problem where a crack initiates on interfaces between two dissimilar mate-

rials, the classical LEFM theory predicts rapid oscillation in both the stress and

displacement fields leading to the possibilities of material interpenetration between

two bonded dissimilar materials. (see, for example, [66, 70]). The aforementioned

results exhibit an apparent discrepancy with real world phenomena and can be at-

tributed to the fact that the classical continuum models produce rather insufficient
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and/or inappropriate descriptions of the behaviors of structures at the sufficiently

small scale (see the discussions in sections 1.2-3).

-
a

a

Mode-I

xy

yy
xy

yy

Mode-II Mode-III

yz

yz

(a) (b) (c)

Figure 6: Schematics of crack problems: Mode-I, Mode-II and Mode-III crack

The size of cracks usually run from a few tenths of a micrometer to a few mil-

limeters. In addition, recent experimental results have claimed that there exists

evidence of cracks at the nanoscale (see Fig. 7). Therefore, it is reasonable to

conclude, based on the developments in the previous sections, that the effects of

surface mechanics can be quite significant on the crack face as well as in the vicin-

ity of the crack. In fact, it was shown using atomistic models that the surface

energy has non-negligible influences in the vicinity of the crack tip [71]. With that

being said, it can be suggested that a more accurate and comprehensive analysis

would include the surface effects corresponding to the either side of crack surfaces

(faces). Indeed, a range of problems from the LEFM theory has been recently

revisited in light of the recognition of the role of surface mechanics (see, for exam-
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ple, [42,43,72—74]). Wu [42] incorporated the surface effects in the study of plane

strain crack problems and found that surface stress can effectively strengthen a

Griffith crack. In [73], the author examined surface grooves with high curvature

with renewed realization of the role of surface mechanics. The corresponding re-

sults indicate that the stress concentration factor at the base of surface grooves

can be improved with the introduction of the surface stress. However, in most of

these published analyses, the incorporation of surface mechanics is oversimplified

in an effort to make the ensuing models of deformation tractable. For example,

surface conditions are limited only to the case when the surface energy is inde-

pendent of the corresponding surface elastic strains (see section 1.2.1). To this

end, authors in [74] examined the contribution of surface effects on the near-tip

stresses of a Mode-III crack using the Gurtin-Murdoch theory (see section 1.2.2)

under several simplifying assumptions including the assumption that the crack tip

is blunt with a radius of convergence of the order compatible with the nanoscale.

Approximated numerical results are presented using asymptotic and finite element

methods. These results, however, are restricted to the vicinity of the crack tip and

do not present a complete solution of the problem at hand.
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Source: Max Planck Institute for Biochemistry

Figure 7: Examples of cracks at the nano/micro scale

1.5 PURPOSEOF STUDYANDDISSERTATIONOVERVIEW

In this dissertation, we recognize the non-negligible contribution of surface effects

in the general behavior of mechanical systems at relatively small scales and subse-

quently formulate, develop and analyze an original theory describing the effects of

first-order (curvature-independent) surface elasticity on the deformation of linearly

elastic isotropic materials containing a crack with sharp edges (tips). In each case,

models are developed and solved for both plane and anti-plane deformations and

for cases in which cracks are present in a homogeneous material and subsequently

in the interface between two dissimilar elastic materials. In the successive analy-

ses, emphasis is placed particularly on examining: whether the refined continuum

model (with surface effects incorporated) does indeed provide a more accurate de-

scription of the corresponding stress fields, and the influences of surface effects on
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the singular stress fields near and at crack tips. It was also of our particular interest

to see if the refined model would resolve some paradoxical results from the classical

LEFM theory (e.g. infinite stresses at crack tips, material interpenetration of two

bonded dissimilar media).

The surface effects (i.e. the variation of surface free energy, surface stresses

and surface material properties) were incorporated using a version of the Gurtin-

Murdoch surface elasticity model [47]. More precisely, since it is well-known that

the thickness of ‘layer’ responsible for surface effects is in the range of a half to a few

nanometers (see, for example, [14, 15]), we assumed that the crack (including its

tips) is ‘surrounded’ by a correspondingly thin surface layer with elastic properties

different from those of the surrounding bulk material. In terms of the Gurtin-

Murdoch model, this translates into the assumption of a surface as a negligibly thin

elastic membrane adhering to the bulk material without slipping. Mathematically,

we modeled the crack as an interval of the x−axis on a typical x − y plane in
R
2 onto which we projected the properties of the surface layer (much like we

project the properties of a thin interphase layer onto the boundary of a fiber in

the mathematical modeling of inclusion problems in composite mechanics (see, for

example, [49,50])). To this end, complex variable methods [6,66,75] are extensively

incorporated which, with several other mathematical techniques (e.g. the theory

of Cauchy integrals [65] and collocation methods [76,77]) were used to ensure that

the corresponding analysis was tractable. A commercial package (Matlab) was also

used to handle the numerical part of the analysis.

The results obtained in this dissertation will advance understanding of the role

of surface mechanics on the general behavior of an elastic solid incorporating a

crack subjected to various types of applied loading. In particular, the complete so-

lutions describing stress fields of the crack systems with respect to different possible
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scenarios (see chapter 3-6) provide physical relevance to corresponding “real-world

problems” and hence will enhance the future analysis and design of mechanical

systems, especially at nono/micro scale.

The dissertation is organized as follows. Chapter 2 discusses general preliminaries

such as notation and problem settings. Especially, we describe how the general

governing equations from the plane and anti-plane elasticity evolve upon the in-

troduction of a first-order theory of surface elasticity. In sequence, the general

equilibrium conditions on either side of crack faces (surfaces) subjected to the

most general forms of remote loading are obtained in order to tackle the proposed

crack problems.

Chapter 3 examines the effects of surface mechanics on an elastic solid with a

Mode-III crack arising in the anti-plane deformations. We note that the introduc-

tion of surface mechanics reduces the degree of singularity at the crack tip: from

the classical strong square root singularity to the weaker logarithmic singularity

and the corresponding solutions do indeed include the classical LEFM solutions

when the surface effects are removed. In addition, the solution of the analogous

problem, with non-uniform surface tractions is also obtained. It is shown that, as

a particular case of the forgoing analysis, the classical decomposition of a Mode-III

crack problem in linear elasticity continues to hold even in the presence of surface

mechanics. Finally, the uniqueness theorem of the corresponding boundary value

problem is developed and examined within the description of a first-order theory

of surface elasticity.

Chapter 4 addresses plane strain deformations of an elastic solid incorporating

a crack under the influences of the effect of surface mechanics on its surfaces. The

complete semi-analytic solution (valid throughout the entire domain of interest

except at the crack tips) is obtained in the case where the corresponding system
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is subjected to uniform remote tension and in-plane shear. It is shown that the

stress fields obtained from our solution exhibit strong dependency on the size of

the crack and, in general, again reduces the order of the singularity at the crack

tip. It is also worth noting that, in the absence of surface tension, in the case

of Mode-I fracture, the corresponding stress distributions continue to exhibit the

strong square root singularity (rather than a weaker logarithmic singularity) even

in the presence of surface effects.

Chapter 5 considers, as a prerequisite for the analysis of a more general class of

crack problems, a Mode-III interface crack arising in the anti-plane deformations of

an elastic solid incorporating a crack and subjected to uniform remote out-plane

tension. We note that the corresponding stress singularity is again reduced to

the weaker logarithmic singularity but more importantly, the stress (σxz) jump

across the bi-material interface upon the introduction of surface mechanics which

is distinguished by the predictions from the classical LEFM theory.

Chapter 6 examines, in the presence of the effects of surface mechanics, the

plane deformations of an elastic bi-material containing a crack on its interface and

subjected to uniform remote loading (tension and in-plane shear) which is, per-

haps, the most detailed and comprehensive description of the corresponding crack

problem. We demonstrate, throughout rigorous analysis, that the incorporation

of surface effects leads to a non-oscillatory solution and thus allows a non-singular

stress field (except at the crack tips) of the corresponding system, in contrast to

the results from LEFM theory where it is predicted that oscillatory behavior is

prevalent at both stress and displacement fields [66,70].

Chapter 7 provides a summary of results obtained and concluding remarks with

some suggestions and comments in regards to the complete removal of logarith-

mic stress singularity at crack tips by employing the high order theory of surface
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elasticity.

Finally, throughout the dissertation, we make use of a number of well-established

symbols and conventions. Thus, unless otherwise stated, Greek and Latin sub-

scripts take the values 1,3 and 1,2,3, respectively, summation over repeated sub-

scripts is understood, (x, z) and (x, y, z) are generic points in the (x, z)−plane and
R
3, respectively. We also note that the notation (x, z) and (x, y, z) may also be

replaced by (x1, x3) and (x1, x2, x3) , respectively, when reference is made to {ei}3i=1
, the standard basis for R3.
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CHAPTER 2

GENERAL FORMULATION AND PRELIMINARIES

2.1 NOTATION AND PROBLEM SETTING

We exam the general deformations of a linearly elastic solids containing a crack

with the renewed interest of the role of surface mechanics. In the following analysis,

the surface mechanics is incorporated using the continuum-based surface/interface

model of Gurtin and Murdoch [26,34,47].

Let us now consider the general deformations of a linearly elastic and homoge-

neous isotropic solid occupying a region in R3 with generators parallel to the z-axis

of a rectangular Cartesian coordinate system. We assume that a cross-section of

the crack (centered at x = 0, y = 0) occupies the region [−a, a], a ∈ R+ of the
x-axis in rectangular Cartesian coordinate system as shown in Fig. 8. We define

a displacement vector u with components denoted by u, v, and w parallel to the

x, y and z-axes, respectively. S (S = S+ ∪ S−) denotes the domain outside of the
crack, where the “+” and “−” sides are designated by the upper (y > 0) and lower
(y < 0) half-domains as depicted in Fig. 8.

Our primary objective here is to incorporate the surface mechanics into the

mathematical model of deformations in an attempt to have a more accurate and

comprehensive description of the general behavior of a linearly elastic solid con-

taining a crack. The Gurtin and Murdoch surface elasticity model (see [26,27,34])

suggests that the role of the surface can be modeled as a pre-stretched thin elastic

membrane (with properties distinct from the surrounding material) firmly attached
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to the abutting bulk material without slipping. In the present case, this can be

achieved by projecting the properties of the surface layer, denoted by λs, μs and

σo, onto the boundary of the crack (i.e. upper and bottom faces of the crack

y = ±0,−a < x < a, see Fig. 8). Here, λs and μs represent the surface Lame’ con-
stants where the index “s” denotes the corresponding quantity resulting from the

effects of surface elasticity and σo is the surface tension applied on the crack faces

(surfaces). It should be noted here that surface Lame constants (λs, μs, σo) have

units of [N/m] whereas the bulk Lame constants (λ, μ) have dimension [N/m2].

In order to define the surface, we introduce the unit normal vector n to the sur-

face with components denoted by n1, n2 and n3 pointing from the “−” side to the
“+” side and k denotes the mean curvature of the surface defined in such a way

as to be positive if the center of curvature is within the “−” side. Finally, the
bulk-crack system under consideration is subjected to an arbitrary remote loading

on its upper and lower boundary.
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(Remote loading)

/1=

Figure 8: Schematics of the problem
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2.2 SURFACE EQUATION

In the absence of body forces, the equilibrium equations and constitutive relations

describing the deformation of a linearly elastic, homogeneous and isotropic (bulk)

solid are given by:

σij,j = 0, σij = λδijεkk + 2μεij, (2.1)

εij =
1

2
(ui,j + uj,i) . (2.2)

where λ and μ are the Lame constants of the material (see Fig. 8), σij and εij

the components of the stress and strain tensors, respectively and ui denotes the

ith component of the displacement vector u in R3. In addition , (),j denotes dif-

ferentiation with respect to xj and δij are the kronecker delta. When the separate

mechanics of the (crack) surfaces are incorporated, the equilibrium condition on the

crack can be described by the equations (see, [26,34,47], for detailed derivations):

σsαβ,βeα + [σijnjei] = 0, (tangential-direction), (2.3)

kαβσ
s
αβ = [σijninj], (normal-direction), (2.4)

and

σsαβ = σoδαβ + 2 (μ
s − σo) εsαβ + (λs + σo) εsγγδαβ + σo∇su. (2.5)

Here, [∗] = (∗)in − (∗)out denotes the jump of the quantity “∗” across the surface
(here “in” and “out” refer, respectively, to the inside and outside of the body)

and kαβ and ni are the components of the principal curvature (k) and the unit

normal vector of the surface (n), respectively. ∇s is a surface gradient defined, for

example, in rectangular Cartesian coordinate system as ∇s =
∂
∂x
i + ∂

∂z
k, where i

and k are the unit normal vectors in the x and z direction, respectively. It is also

noted here that, in the present study, the interface condition between bulk solid

and adhering surface is assumed to be coherent (see the corresponding discussion
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in section 1.3). Therefore, the interfacial strains in Eq. (2.5) can be replaced to

those in the adjoined bulk material, i. e. εsαβ = εαβ .

Bulk solids

Inside Outside

*
in

*
out

[   ]*

[   ] =* *(   )out*(   )
in

Figure 9: The jump condition across the surface

Remark 1 It is well-known that the relation between the surface stresses (σs) and

surface energy ( Γ) can be determined by [30];

σsαβ = σoδαβ +
∂Γ

∂εsαβ
.

In the Gurtin-Murdoch surface elasticity model, it is suggested that the surface

energy (Γ) has the following quadratic function of the surface strain invariants

[26,27,47];

1

2
(λs + σo) (ε

s
αα)

2 + (μs − σo)
(
εsαβε

s
αβ

)
+ σo

1

2
|∇su|2 ,

from which the expression for the surface stresses can be obtained. It should be

noted here that the interface stress-strain law depends on several factors includ-

ing the physical assumptions of the surface/interface elasticity and the geometrical

changes of the surface with initial stress. This means that the stress-strain law

may assume different forms depending on the particular mathematical/physical as-

sumptions adopted. Currently, there is no clear physical evidence in favor of any

specific surface model.
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2.3 PLANE&ANTI-PLANE ELASTICITY INTHEPRES-

ENCE OF SURFACE MECHANICS

The general displacement fields of an elastic solid can be described by a spatial

vector u in R3 with components u, v, and w and each component is, in general, a

function of three independent variables, for example, u(x, y, z), v(x, y, z), w(x, y, z)

in a rectangular Cartesian coordinate system. We note here that each component

of a displacement vector u may have different forms depending on the choice of

particular coordinate system (e.g. cylindrical and spherical coordinate system).

The determination process of an unknown displacement vector u involves solving

a highly complicated system of equations with three unknown components (i.e.

u, v, w) of three independent variables and the corresponding boundary conditions

which most often requires massive computational resources. In fact, there are

not many options available other than employing purely numerical analysis to

deal with the problem of these kinds. Instead, in the small deformation theory

(linear elasticity), the general deformations of an elastic solid can be regarded as

the in-plane deformation (i.e. plane deformation) and the complementary out-of-

plane deformation (i.e. anti-plane deformation), respectively (see, for example,

[5, 6, 65]). This further allows the corresponding analysis to be mathematically

more tractable. More precisely, under the assumptions of linear elasticity, the

complete three dimensional (3D) equations now decouple into two independent

sets of equations for the plane deformation with two unknown functions (in-plane

components, u, v) and anti-plane deformation with one unknown function (out-of-

plane component, w), respectively. In addition, each unknown component is now

a function of two independent variables instead of three independent variables.

Consequently, we now have two independent reduced set of equations instead of

having a complete 3D equation for the unknown displacement vector u. This is
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a huge advantage, as far as mathematical analysis is concerned, and there exist

viable methods in the literature to deal with the reduced systems of equation of

this kind. For example, complex variable methods can be employed in the analysis

in which case, two independent variables can be treated as a one complex variable

“z” where z is defined as z = x+ iy in complex plane (see, [6,65,66]).

In the following, we demonstrate that the above mentioned analogy still holds

true in the present case (with surface effects incorporated) and derive equilibrium

conditions on crack faces (surfaces) in the case of the plane and anti-plane defor-

mations, respectively.

Let us now consider a half-plane infinite in extend along the x−axis, where
n = (0, 1, 0) represents the unit normal vector to the surface (flat surface) and u

again denotes the displacement vector with components (u, v, w) in a rectangular

Cartesian coordinate system. Within the present setting, the Eqs. (2.3-4) can now

be re-written as;

σsxx,x + σ
s
xz,z + [σxy] = 0, (2.6)

σszx,x + σ
s
zz,z + [σyz] = 0, (2.7)

[σyy] = −σo ∂
2v

∂x2
− σo∂

2v

∂z2
. (2.8)

∵ fa = 0 (for traction-free surface condition), kxx = kzz = 0 (for a flat surface).

In the case of the anti-plane deformations, the displacement vector u = (u, v, w)

admits the representation

w = w(x, y), u = v = 0,
∂2w

∂x2
+
∂2w

∂y2
= 0. (2.9)

Applying Eq. (2.9) on Eqs. (2.1-2) , we obtain

εxz =
1

2
(
∂u

∂z
+
∂w

∂x
) =

1

2

∂w

∂x
, εyz =

1

2
(
∂ν

∂z
+
∂w

∂y
) =

1

2

∂w

∂y
,

εxy = εxx = εyy = εzz = 0. (2.10)
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σxz = 2μεxz = μ
∂w

∂x
, σyz = 2μεyz = μ

∂w

∂y
,

σxy = σxx = σyy = σzz = 0. (2.11)

With the assumption of the coherent interface between the bulk solid and the

adjoined surface (εs = ε), Eq. (2.5) can be re-written via Eq. (2.10) as

σsxz = 2(μ
s − σo)εxz. (2.12)

Using the results in Eqs. (2.9), (2.11) and (2.12), the only non-zero components

in Eqs. (2.6-8) are the out-of-plane terms

σsxz,x + [σyz] = 0. (2.13)

It should be noted that only surface strain components are included in Eq. (2.5)

(i.e. strains normal to the surface are excluded). In the case of plane deformations,

the displacement vector u = (u, v, w) now satisfies

u = u (x, y) , v = v(x, y), w = 0. (2.14)

Similarly as in the anti-plane case, we obtain from Eq. (2.5) that

σsxx = σo + 2 (μ
s − σo) εxx + (λs + σo) εxx. (2.15)

In addition, In view of Eqs. (2.1-2) and Eq. (2.14), Eq. (2.6-8) become

σsxx,x + [σxy] = 0, (2.16)

[σyy] = −σo∂
2ν

∂x2
. (2.17)

Clearly, the complete 3D equations (2.6-8) can be decoupled into plane (Eqs.

(2.16-17)) and anti-plane parts (Eq. (2.13)), even when the surface effects are

incorporated. In the case of crack problems with the effects of surface elasticity

the above results mean that the analysis of the general behavior of a bulk-crack
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system can be accomplished by examining: Mode-I and Mode-II crack problems in

plane elasticity and the Mode-III crack problem in anti-plane elasticity, separately

(see Fig. 10).
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Figure 10: Schematics of decoupling of the crack problem (C. I. Kim. IMM.

(2011))
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CHAPTER 3

THE EFFECTS OF SURFACE ELASTICITY ON AN ELASTIC

SOLID INCORPORATING A MODE-III CRACK

3.1 INTRODUCTION

Anti-plane shear deformations are, perhaps, one of the simplest scenarios arising

in the deformation of an elastic solid. Only a single scalar displacement field in

the axial direction is needed in the description of anti-plane shear motion, whereas

two scalar fields are necessary in order to fully account for the in-plane deforma-

tions (see Chapter 2). This further ensures relative mathematical simplicity in the

corresponding analysis (a single differential equation) compared with plane prob-

lems which, most often, require solving coupled systems of differential equations.

Therefore, the anti-plane shear problem offers the advantages of exploring various

possible scenarios arising in the mechanics of materials, yet still maintains a rela-

tively simple mathematical setting. For this reason, problems involving anti-plane

shear deformations of an elastic medium have drawn considerable attention in the

literature within the context of linear and nonlinear elasticity (see [78], and the

bibliographies therein).

In the present Chapter, we re-examine the classical Mode-III crack problem

arising in the anti-plane shear deformation of a linearly elastic solid with the re-

newed realization of the role of surface mechanics on either side of the crack surfaces

(faces). Surface effects are incorporated using the Gurtin-Murdoch surface elas-

ticity model with the crack occupying a finite region of the real axis [79]. Using
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complex variable techniques, we show that the nonstandard boundary conditions

arising from the incorporation of the effects of surface elasticity on the crack face

are reduced to the solution of a Cauchy singular integro-differential equation [65].

The latter is solved using an adopted collocation method [77] leading to an exact

complete solution valid throughout the domain of interest. It is shown that the

introduction of surface mechanics reduces the degree of singularity at the crack tip:

from the classical strong square root singularity [66,67] to the weaker logarithmic

singularity. In addition, we demonstrate that the stress distributions derived from

our analysis show clear signs of size dependency and do indeed tend to classical

LEFM solutions [66, 67] when the surface effects approach zero. The solution of

the analogous problem, when the crack faces are subjected to arbitrary surface

tractions characterized by stress functions described by general polynomials of de-

gree n, is also obtained. Finally, we show that the well-known result from classical

elasticity on the decomposition of the problem concerning a solid with a mode-III

crack, continues to hold when surface effects are included on the crack faces [80].

3.2 ANTI-PLANECRACKPROBLEMWITH SURFACE

EFFECTS

We consider anti-plane deformations of a linearly elastic and homogeneous isotropic

solid occupying a region in R3with generators parallel to the z-axis of a rectangular

cartesian coordinate system. We assume that the cylinder is infinite in extent and

is subjected to uniform remote shear stress. Suppose that the cylinder contains a

single internal crack (with traction-free faces) running the length of the cylinder.

In a typical cross-section, the crack occupies the region [−a, a], a ∈ R
+ of the

x−axis as shown in Fig. 11.
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Figure 11: Schematic of a Mode-III crack problem

3.2.1 Equilibrium Equations and Complex-Variable For-

mulation

The stress and strain expressions for the bulk material can be obtained from Eqs.

(2.1-2) as

σij = λδijεkk + 2μεij, (3.1a)

εij =
1

2
(ui,j + uj,i) . (3.1b)

In the anti-plane shear deformations of an isotropic elastic medium (mode-III crack

problem), we assume that the displacement vector u with components (u, v, w)

satisfies (see also Eq. (2.9))

u = v = 0, w = w(x, y),
∂2w

∂x2
+
∂2w

∂y2
= 0. (3.2)
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From Eq. (3.1b). the strain components are now given by

εxz =
1

2
(
∂u

∂z
+
∂w

∂x
) =

1

2

∂w

∂x
, εyz =

1

2
(
∂ν

∂z
+
∂w

∂y
) =

1

2

∂w

∂y
, (3.3)

εxy = εxx = εyy = εzz = 0.

From Eq. (3.3), the stress components can be written as

σxz = 2μεxz = μ
∂w

∂x
, σyz = 2μεyz = μ

∂w

∂y
, (3.4)

σxy = σxx = σyy = σzz = 0.

If we denote by {ei}3i=1, the vectors of the standard basis for R3 and noting that
in our case the normal to the crack face is aligned with the y− direction, the

equilibrium condition for the crack is given by (see Eqs. (2.6-8) and (2.13) and

corresponding derivations)

σsxz,x + [σyz] = 0. (3.5)

In addition, from Eqs. (2.12) and (3.3-4), the expression for the surface stress can

be obtained in terms of the bulk stress as

σsxz = 2(μ
s − σo)εxz = μs − σo

μ
σxz, (3.6)

where, εsxz = εxzfor a coherent interface. Since w(x, y) is a harmonic function,

we denote by ψ(x, y) its conjugate harmonic function. Introducing the complex

variable z = x+ iy, we can now write

w = Re[Ω(z)], Ω(z) = w(x, y) + iψ(x, y), (3.7)

where Ω(z) is an analytic function of z in the plane S+∪S− = S outside the crack
(see Fig. 11.). From Eq. (3.5), we then have that

dΩ

dz
(z) = Ω′(z) =

∂w

∂x
− i∂w

∂y
=
1

μ
(σxz − iσyz) (3.8)

and

σyz =
μi

2

[
Ω′ (z)− Ω′ (z)

]
, σxz =

μ

2

[
Ω′ (z) + Ω′ (z)

]
. (3.9)
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3.2.2 A Traction-free Mode-III Crack Problem with Sur-

face Stress

Let the lower (y < 0) and upper (y > 0) half-planes be designated the “−” and
“+” sides of the crack. Then, from (3.5), the boundary conditions on the crack

can be written as

∂σsxz
∂x

+ (σyz)
+ − (σyz)− = 0. (3.10)

In general, from Eqs. (3.3), (3.6) and (3.9-10), for the crack [−a ≤ x ≤ a], (y = 0)
subjected to prescribed traction Pyz, the surface condition on the faces can be

written as

(σyz)
+ = Pyz − ∂σ

s
xz

∂x
= Pyz − (μs − σo)∂

2w

∂x2

= Pyz − μ
s − σo
2

[Ω′′ (z) + Ω′′ (z)]+, on the upper face, (3.11a)

(σyz)
− = Pyz +

∂σsxz
∂x

= Pyz + (μ
s − σo)∂

2w

∂x2

= Pyz +
μs − σo
2

[Ω′′ (z) + Ω′′ (z)]−, on the lower face. (3.11b)

As a particular case, we consider the situation when the solid is subjected to a

uniform remote shear stress σyz = σ∞yz and a traction-free crack face (Pyz = 0).

From Eqs. (3.9) and (3.11a-b), the surface condition on either side of the crack

can be formulated as follows (see also Fig. 12)

μi

2

[
Ω′ (z)− Ω′ (z)

]+
= −μ

s − σo
2

[
Ω′′ (z) + Ω′′ (z)

]+
, on the upper face, (3.12a)

μi

2

[
Ω′ (z)− Ω′ (z)

]−
=
μs − σo
2

[
Ω′′ (z) + Ω′′ (z)

]−
, on the lower face. (3.12b)
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Figure 12: Equilibrium on upper crack face under anti-plane shear motion

In anti-plane deformations (mode-III crack) it is clear that w+ = −w− on the
crack face y = ±0,−a ≤ x ≤ a, which leads to a Reimann-Hilbert problem in

terms of the derivatives of the unknown function Ω(z) defined by Eqs. (3.7) and

(3.12a-b) as

μi

2

[
Ω′ (z)− Ω′ (z)

]+
=
μs − σo
2

[
Ω′′ (z) + Ω′′ (z)

]−
, on the upper face, (3.13a)

μi

2

[
Ω′ (z)− Ω′ (z)

]−
=
μs − σo
2

[
Ω′′ (z) + Ω′′ (z)

]−
, on the lower face. (3.13b)

Since it is assumed that the remote stress σ∞yz is uniform, we have σ
+
yz = σ−yz on

y = ±0, x > a2. Then from Eq. (3.9), we have that

[
Ω′ (z)− Ω′ (z)

]+
=

[
Ω′ (z)− Ω′ (z)

]−
.

Noting the equality Ω′ (z)
+
= Ω′(z)− on y = ±0, the above yields

Ω′ (z)+ + Ω′(z)+ = Ω′ (z)− + Ω′(z)−. (3.14)

In addition, on the crack face y = ±0, −a ≤ x ≤ a, we obtain from Eqs. (3.13a-b)
that

μi

2

[
Ω′ (z)+ + Ω′(z)+ − (

Ω′ (z)− + Ω′(z)−
)]
= 0. (3.15)
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Eqs. (3.14-15) suggest we necessarily have that

Ω′ (z) + Ω′(z) = 0, Ω′ (z) = −Ω′(z). (3.16)

Now, adding Eqs. (3.13a) and (3.13b) yields

μi

2
([Ω′ (z)− Ω′(z)]+ + [Ω′ (z)− Ω′(z)]−) = (μs − σo)(Ω′′ (z)− + Ω′′(z)+). (3.17)

Consequently, from Eq. (3.16), Eq. (3.17) takes the following form:

μi(Ω′ (z)+ + Ω′ (z)−) = (μs − σo)(Ω′′ (z)− − Ω′′(z)+) (3.18)

Next, if we write the unknown Ω′ (z) as a Cauchy integral [65], we have that

Ω′ (z) =
1

2iπ

∫ +a

−a

f (t)

t− zdt+
1

μi

[
σ∞yz

]
, (3.19a)

Ω′′ (z) =
1

2πi

∫ +a

−a

f (t) dt

(t− z)2 = −
[
f (t)

t− z
]a
−a
+

1

2πi

∫ +a

−a

f ′ (t) dt
t− z , (3.19b)

where,

f (t) = Ω′ (z)+ − Ω′ (z)− , −a ≤ to ≤ a.

Finally, from Eqs. (3.18) and (3.19a-b), we obtain the following first-order

Cauchy singular integro-differential equation for the unknown f (t) , t ∈ [−a, a] :
μ

π

∫ a

−a

f (t) dt

t− to + 2[σ
∞
yz] = −(μs − σo)f ′(to), −a ≤ to ≤ a, (3.20)

3.2.3 Uniqueness of Results and the Imposition of End

Conditions

From Eqs. (3.2-4), (3.6) and (3.11a-b), the boundary value problem (BVP) in

consideration can be summarized as

Δw (x, y) = 0, in S+ ∪ S− = S (outside the crack),
∂w±

∂y
= ∓

(
μs − σo
μ

)
∂2w±

∂x2
, on y = ±0, −a ≤ x ≤ a,

∂w

∂y
= C, y →∞. (3.21)
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The uniqueness theorem for (3.21) has been studied in [81] and proceeds as follows:

Let assume there exist two separate solutions for the corresponding BVP and

we define the difference as

v (x, y) = w1 (x, y)− w2 (x, y) , (3.22)

where subscript 1 and 2 denote each different solution, respectively. Therefore,

from Eqs. (3.21-22), the BVP for the difference (v (x, y)) can then be obtained as

follows

Δv (x, y) = 0, in S+ ∪ S− = S (outside the crack),
∂v±

∂y
= ∓

(
μs − σo
μ

)
∂2v±

∂x2
, on y = ±0,−a ≤ x ≤ a,

∂v

∂y
= 0, y →∞. (3.23)

Now, we write Green’s Theorem for the difference BVP in exterior domain∫ ∫
S

ΔvdA+

∫ ∫
S

|∇v|2 dA = −
∫
∂S

v
∂v

∂n
ds.

Since Δv (x, y) = 0, we obtain from the above that∫ ∫
S

|∇v|2 dA = −
∫
∂S

v
∂v

∂n
ds, (3.24)

where ∂S = ∂S+ ∪ ∂S− (∂S+: upper crack face, ∂S−: lower crack face see Fig.
11). In the present coordinate system, surface normal vector (n) is aligned with

y-axis and ∂S converges to upper and bottom crack faces on y = ±0, −a ≤ x ≤ a.
Therefore, Eq. (3.24) can be re-written as∫ ∫

S

|∇v|2 dA = −
{∫

∂S+
v+

(
∂v

∂n

)+

ds+

∫
∂S−

v−
(
∂v

∂n

)−
ds

}

= −
{∫ a

−a
v+
∂v

∂y

+

dx+

∫ a

−a
v−
∂v

∂y

−
(−dx)

}
.

Using relations in the second of Eq. (3.23), we obtain from the above that∫ ∫
S

|∇v|2 dA =
(
μs − σo
μ

) {∫ a

−a
v+
∂2v+

∂x2
dx+

∫ a

−a
v−
∂2v−

∂x2
dx

}
.
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Integration by part on the right side of the above, we obtain

∫ ∫
S

|∇v|2 dA

=

(
μs − σo
μ

) {[
v+
∂v+

∂x
+ v−

∂v−

∂x

]a
−a
−

∫ a

−a

[(
∂v+

∂x

)2

+

(
∂v−

∂x

)2
]
dx

}
.(3.25)

Since w+ = w− at x = ±a (displacement continuity), Eq. (3.25) can be re-written
as

∫ ∫
S

|∇v|2 dA+
(
μs − σo
μ

) ∫ a

−a

[(
∂v+

∂x

)2

+

(
∂v−

∂x

)2
]
dx

=

(
μs − σo
μ

) [
v

(
∂v+

∂x
+
∂v−

∂x

)]a
−a
. (3.26)

Next, if we impose condition such that

v
(
v+,x + v

−
,x

)
= 0, at each crack tip (x = ±a), (3.27)

Eq. (3.26) now becomes

∫ ∫
S

|∇v|2 dA+
(
μs − σo
μ

) ∫ a

−a

[(
∂v+

∂x

)2

+

(
∂v−

∂x

)2
]
dx = 0.

The above further implies that

v = Constant, in S, and
dv

dx
= 0, on y = ±0, −a ≤ x ≤ a.

However, since v+ = −v− on y = ±0, −a ≤ x ≤ a, the constant is zero and

solution is unique (i.e. v = w1−w2 = 0, ∴ w1 = w2). Therefore, the conditions in

Eq. (3.27) guarantee unique solution if either v = 0 or v+,x + v
−
,x is zero at the tips.

Consequently, if either displacements (w) or tractions (w+,x+w
−
,x) are prescribed at

the tips then no further conditions can be imposed at the tips. In the present case,

the physics and nature of the problem suggest w = 0 always at the tips (x = ±a).
It is, therefore the case that no further conditions can be imposed.
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3.3 INVESTIGATION OF THE CAUCHY SINGULAR

INTEGRO-DIFFERENTIAL EQUATION

The Cauchy singular integro-differential equation (3.20) closely resembles the well-

known and well-studied classical Prandtl’s singular integro-differential from aero-

dynamics
Γ (x)

B (x)
− 1

2π

∫ 1

−1

Γ′ (t) dt
t− x = f(x), −1 ≤ x ≤ 1,

Γ (1) = Γ (−1) = 0,

where Γ (x) is the unknown function and B (x) and f (x) are known functions

(see, for example, [82] and the references therein). Unfortunately, the differences

between Eq. (3.20) and Prandtl’s equation are sufficiently significant so that the

many existing results on the solution of Prandtl’s equation (numerical or otherwise)

do not accommodate Eq. (3.20). In [83], Frankel discusses a Galerkin approach

for solving a class of singular integro-differential equations similar in form to Eq.

(3.20) but appearing in the study of infrared gaseous radiation and molecular

conduction as well as in elastic contact studies. Frankel’s methods were among

three methods used subsequently in [77] to find numerical solutions of singular

integro-differential equations of the type described by Eq. (3.20). In this section,

we adapt the collocation methods used in [82,83] to find numerical solutions of Eq.

(3.20).

3.3.1 Solution of Singular Integro-differential Equation by

a Collocation Method

Consider Eq. (3.20)

μ

π

∫ a

−a

f (t) dt

t− to + 2[σ
∞
yz] = −(μs − σo)

df (to)

dto
, −a ≤ to ≤ a,
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where f(t) = Ω′ (z)+ − Ω′ (z)− , Ω′ (z) = 1

2πi

∫ a

−a

f (t)

t− zdt+
1

μi
[σ∞yz]. (3.28)

We note here that, since w = 0 at tips, as we discussed in the previous section,

no further condition can be imposed at the tips (t = ±a) in determination of f(t)
(see also [84]).

Now, set
t

a
= x in Eq. (3.28) and obtain

μ

π

∫ 1

−1

f (ax) dx

x− xo + 2[σ∞yz] = −(μs − σo)
df (axo)

d(axo)
, −1 ≤ xo ≤ 1, (3.29)

Rewriting x −→ t, xo −→ to and further defining f(at) = u(t), from Eq. (3.29),

we have that

(μs − σo)
a

du (to)

dto
− μ
π

∫ 1

−1

u (t) dt

to − t = −2[σ
∞
yz], −1 ≤ to ≤ 1. (3.30)

After utilizing the inverse operator T−1, as defined by the relation [77],

T−1ψ (x) =
1

π
√
1− x2

∫ 1

−1
ψ (x) dx− 1

π2
√
1− x2

∫ 1

−1

√
1− t2ψ (t)
t− x dt, x ∈ (−1, 1),

(3.31a)

T
(
T−1ψ

)
= ψ,

and further defining

T (u(x)) =

∫ 1

−1

u (x)

x− tdx = ψ (t) , (3.31b)

we have from Eq. (3.30) that

u (to) =
1

π
√
1− t2o

∫ 1

−1
u (t) dt− 1

μπ
√
1− t2o

∫ 1

−1

√
1− t2
t− to (−2[σ

∞
yz]−

(μs − σo)
a

du (t)

dt
)dt,

to ∈ (−1, 1). (3.32)

Multiplying by
√
1− t2o on both sides of Eq. (3.32) yields

u (to)
√
1− t2o−

1

π

∫ 1

−1
u (t) dt−

(
μs − σo
aμπ

) ∫ 1

−1

√
1− t2
t− to

du (t)

dt
dt =

2[σ∞yz]

μπ

∫ 1

−1

√
1− t2
t− to dt.
(3.33)
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Assume that the function u (to) has an expansion of the form

u (to) =
N∑
m=0

amTm (to) , to ∈ [−1, 1] , m = 0, 1, 2, ..., (3.34)

where Tm (to) represents them th Chebyshev polynomial of the first kind. Further,

dTm (x)

dx
= mUm−1 (x) . (3.35)

Here Um (x)denotes themth Chebyshev polynomial of the second kind. Thus, from

Eqs. (3.34) and (3.35), we find that

du (to)

dto
=

d

dto

(
N∑
m=0

amTm (to)

)
=

N∑
m=0

mamUm−1 (to) , to ∈ [−1, 1] , m = 0, 1, 2, ...

(3.36)

Next, using Eqs. (3.34) and (3.36) in Eq. (3.33) yields

N∑
m=0

[
amTm (to)

√
1− t2o −

1

π

∫ 1

−1
amTm (t) dt−

(
μs − σo
aμπ

) ∫ 1

−1

√
1− t2
t− to mamUm−1 (t) dt

]

=
2[σ∞yz]

μπ

∫ 1

−1

√
1− t2
t− to dt, to ∈ (−1, 1) m = 0, 1, 2, ... (3.37)

In addition, the following properties of the Chebyshev polynomials:

Orthogonality :
∫ 1

−1

Tm (x)Tn (x)√
1− x2 dx =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0, m �= n
π, m = n = 0

π
2
, m = n > 0

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(3.38)

Closed-form integral relations:∫ 1

−1

Un (t)
√
1− t2

t− x dt = −πTn+1 (x) , n = 0, 1, ... (3.39a)

∫ 1

−1
Tm (x) dx =

1 + (−1)m
1−m2

, m = 0, 1, 2, ... (3.39b)

Consequently, by utilizing Eqs. (3.39a-b), Eq. (3.37) reduces to

N∑
m=0

[
amTm (to)

√
1− t2o −

am
π

(
1 + (−1)m
1−m2

)
+

(
μs − σo
aμ

)
mamTm (to)

]

= −2[σ
∞
yz]

μ
T1 (to) .
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We now select the set of collocation points as given by to = toi = − cos( iπ
N
) for

i = 1, 2, ..., N − 1 and thus derive the following system of linear equations

N∑
m=0

am

[
Tm (toi)

√
1− t2oi −

1

π

(
1 + (−1)m
1−m2

)
+

(
μs − σo
aμ

)
mTm (toi)

]

= −2[σ
∞
yz]

μ
T1 (toi) , i = 1, 2, ..., N − 1 (3.40)

Noting the following property of the Chebyshev polynomials of the first kind

Tn (cos θ) = cos(nθ), Eq. (3.40) further reduces to the following compact form

N∑
m=0

am

[
− cos

(
miπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)
−mSe cos(miπ

N
)

]

= 2S cos(
iπ

N
), for 1 ≤ i ≤ N − 1, (3.41)

where, Se =
μs − σo
aμ

, (surface effect), S =
[σ∞yz]

μ
, (remote stress).

The solution of Eq. (3.28) is now reduced to the solution of the system of equations

(3.41) for the constants am. The latter can be achieved using any of the existing

commercial numerical software packages (e.g Matlab, Maple, NAG, etc.) and is

the subject of the next section.

3.3.2 Results and Discussion

In this section, the numerical solution of Eq. (3.41) is performed for a range of

surface parameters obtained from the work of Sharma in [16]. It is found that

the numerical method performs well for problems of this type guaranteeing rapid

convergence (see, for example, Fig. 13)

Se : 0.1 < Se < 0.001

μs = 161.73(J/m2), σo = 1.3(J/m
2), μ = 168(Gpa).
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Figure 13: Convergence of the solution f(t) with respect to number of iterations

(N)

The implication of the numerical solution will be discussed in the next section.

However, we note that since f(t) �= 0 at the crack tips, the solution then must be
singular, although reduces order of singularity.

3.3.3 Comparison with Known Classical Results

To verify the mathematical model, we first reproduce, as a special case of our

analysis, the solution of the classical anti-plane crack problem in which surface

effects are neglected. The latter problem has corresponding analytic solutions

described by [67]:

Ω′ (z) =
1

μ
[σxz − iσyz] =

−iσ∞yzz
μ
√
z2 − a2 .
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Evaluating Ω′ (z) (−a < t < a) , we have that

Ω′ (z)+ =
−iσ∞yzt

μ
√−(a2 − t2) =

−iσ∞yzt
μi

√
(a2 − t2) =

−σ∞yzt
μ
√
a2 − t2 , on the upper face,

(3.42a)

Ω′ (z)− =
iσ∞yzt

μ
√−(a2 − t2) =

iσ∞yzt

μi
√
(a2 − t2) =

σ∞yzt

μ
√
a2 − t2 , on the lower face.

(3.42b)

(We note here that from Eq. (3.8), σyz is zero, yet σxz is non-zero on y = ±0, −a ≤
x ≤ a). Then the stress difference between the upper and lower face can be defined
from Eqs. (3.42a-b) by

Ω′ (z)+ − Ω′ (z)− = −2σ∞yzt
μ
√
a2 − t2 , −a < t < a. (3.43)

Returning to our formulation, the corresponding stress differences are defined in

terms of the function f(t) by (see Eq. (3.28));

Ω′ (z)+ − Ω′ (z)− = f (t) . (3.44)

The values of f(t) are plotted in Fig. 14, where the parameter Se is varied by

changing the dimension of the crack (i.e. 10nm < a < 1μm). It is clear from Fig.

14 that as the surface effect becomes negligible, our solution reduces to that of the

classical case. In particular, our solution predicts finite values of f(t) at the tips, in

contrast to those from the LEFM theory (f(t) is infinite at the tips), which again

suggest that the stresses at the tips are singular a point which we will explain in
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the following section.
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Figure 14: Stress difference between the upper and bottom faces, when σ∞yz/μ = 0.1

3.3.4 Stress Distributions Near the Crack Tip

Based on the numerical solution of f(t) derived in the previous section, the corre-

sponding stress distributions can be found from Eq. (3.19a):

Ω′ (z) =
1

2iπ

∫ +a

−a

f (t)

t− zdt+
1

μi

[
σ∞yz

]
. (3.45)

The Cauchy integral in Eq. (3.45) can be expanded near the crack tip (for example

at t = a) to obtain:

∫ +a

−a

f (t)

t− zdt = f(a) ln r +O(1), r = |z − a| .

The above implies that stresses at the crack tips exhibit a weaker logarithmic sin-

gularity with the bounded values of f(t).
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Figure 15: Stress distribution with respect to surface parameter (Se) when σ∞yz/μ =

0.1

In addition, it is clear, from Fig. 15, that The corresponding stresses increase

when the surface effect becomes negligible (as predicted by the corresponding clas-

sical problem where surface effects are neglected). Since the surface parameter Se

is controlled by variations in the crack length, our results also indicate that the

corresponding stresses are strongly dependent on crack size. Finally, from Fig. 15

we see that stresses relatively far from the crack tips converge to the value 0.1,

which is the magnitude of the applied remote stress. These results agree with the

well-known results from classical elasticity (that the effect of stress concentration

and surface stress/energy is localized).
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3.4 TOPICS REGARDING NON-UNIFORM SURFACE

TRACTION

In many engineering applications, crack surfaces can experience certain types of

non-uniform loading. For example, when a crack initiates in a fiber composite

material [85, 86] or in the case of a sliding crack incorporating a non-uniform

frictional resistance on the crack surface. In the case of the latter, a non-uniform

surface traction can be induced by varying the frictional coefficient or the normal

traction along the crack face [87—89].

In this section, we extend the techniques developed in the previous section to

accommodate the more general class of problems involving a mode-III crack in a

linearly elastic solid in which the faces of the crack are subjected to non-uniform

surface tractions.

3.4.1 A Mode-III Crack Problem with Surface Stress

Let the lower (y < 0) and upper (y > 0) half-planes again be designated the

“−” and “+” sides of the crack. Then, for the crack [−a ≤ t ≤ a], (y = 0)

subjected to an arbitrary surface traction Pyz, of polynomial form (i.e. Pyz(to) =

a0+ a1to+ a2t
2
o · · · antno , a0, a1, a2 · · · an ∈ R) and a traction-free remote boundary

σ∞yz = 0, the surface condition on the faces can be derived from Eqs. (3.3), (3.6)

and (3.9-10) as

(σyz)
+ = Pyz(to)− ∂σ

s
xz

∂x
= Pyz(to)− (μs − σo)∂

2w

∂x2

= Pyz(to)− μ
s − σo
2

[Ω′′ (z) + Ω′′ (z)]+, for upper face, (3.46a)

(σyz)
− = Pyz(to) +

∂σsxz
∂x

= Pyz(to) + (μ
s − σo)∂

2w

∂x2

= Pyz(to) +
μs − σo
2

[Ω′′ (z) + Ω′′ (z)]−, for lower face. (3.46b)
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Since w+ = −w−, from Eqs. (3.7) and (3.46a-b), we obtain the following Riemann—
Hilbert problem in terms of the derivatives of the unknown function Ω(z)

μi

2

[
Ω′ (z)− Ω′ (z)

]+
= Pyz(to) +

μs − σo
2

[
Ω′′ (z) + Ω′′ (z)

]−
, for upper face,

(3.47a)
μi

2

[
Ω′ (z)− Ω′ (z)

]−
= Pyz(to) +

μs − σo
2

[
Ω′′ (z) + Ω′′ (z)

]−
, for lower face.

(3.47b)

For the non-uniform traction case, remote loading is assumed to be zero (σ∞yz = 0),

we again have that (see also Eqs. (3.14-15) and corresponding discussions)

Ω′ (z) + Ω′(z) = 0, Ω′ (z) = −Ω′(z). (3.48)

In addition, adding Eqs. (3.47a-b) yields

μi

2
([Ω′ (z)−Ω′(z)]++ [Ω′ (z)−Ω′(z)]−) = 2Pyz(to) + (μs− σo)(Ω′′ (z)−+Ω′′(z)+),

(3.49)

Therefore, from (3.48), Eq. (3.49) takes the following form

μi(Ω′ (z)+ + Ω′ (z)−) = 2Pyz (to) + (μs − σo)(Ω′′ (z)− − Ω′′(z)+). (3.50)

Now, similar to the uniform remote loading case, we express the unknown function

Ω′ (z) as the following Cauchy integral

Ω′ (z) =
1

2iπ

∫ +a

−a

f (t)

t− zdt, (3.51a)

Ω′′ (z) =
1

2πi

∫ +a

−a

f (t) dt

(t− z)2 = −
[
f (t)

t− z
]a
−a
+

1

2πi

∫ +a

−a

f ′ (t) dt
t− z , (3.51b)

where,

f (t) = Ω′ (z)+ − Ω′ (z)− .

Finally, from Eqs. (3.50) and (3.51a-b), we obtain the following first-order

Cauchy singular integro-differential equation for the unknown f (t) , t ∈ [−a, a] :
μ

π

∫ a

−a

f (t) dt

t− to = 2Pyz(to)− (μ
s − σo)f ′(to), −a ≤ to ≤ a. (3.52)
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The equation (3.52) can be solved numerically by applying the techniques presented

in the previous section. The corresponding stress distributions, in this case, again

exhibit logarithmic singularity corresponding to finite values of f(t) at each tip

(t = ±a). It is therefore, noted that the surface effects reduce the classical strong
square root singularities normally predicted by the LEFM theory at the crack tips.

3.4.2 Examples: the cases Pyz(to) = Ato + B: linear loading

and Pyz(to) = At2o +B: parabolic loading

In this section, we conduct sample analyses for both linear and parabolic-type sur-

face tractions (see, Fig. 16).

B. Parabolic surface tractionA. Linear surface traction

X

Y
BAttP ooyz +=)( BAttP ooyz += 2)(

X

Y

-a a -a a

Figure 16: Schematic of applied surface traction. A linear surface traction; B

parabolic surface traction

From Eq. (3.52), the equations for a mode-III crack problem subjected to both

linear (Pyz(to) = Ato + B) and parabolic (Pyz(to) = At2o + B) surface loading can
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be written as

μ

π

∫ a

−a

f (t) dt

t− to = 2(Ato +B)− (μ
s − σo)f ′(to), −a ≤ to ≤ a, (3.53)

μ

π

∫ a

−a

f (t) dt

t− to = 2(At
2
o +B)− (μs − σo)f ′(to), −a ≤ to ≤ a, (3.54)

The Eqs. (3.53-54) can be solved using the same techniques as in the previous

section. For example, in view of Eqs. (3.29-3.31), we obtain from Eq. (3.53) that

u (to)
√
1− t2o −

1

π

∫ 1

−1
u (t) dt−

(
μs − σo
aμπ

) ∫ 1

−1

√
1− t2
t− to

du (t)

dt
dt

=
2

μπ
(−Ato −B)

∫ 1

−1

√
1− t2
t− to dt. (3.55)

By using well-know Chebyshev polynomials algebraic and integral relation (Eq.

(3.39a)), the right side of (3.55) becomes

2

μπ

(∫ 1

−1

Ato
√
1− t2

t− to dt−
∫ 1

−1

B
√
1− t2
t− to dt

)

=
2

μπ

(∫ 1

−1

−AU1 (t)
√
1− t2

2 (t− to) dt−
∫ 1

−1

BU0 (t)
√
1− t2

t− to dt

)

=
2

μπ

(
−Aπ
2
T2 (to) +BπT1 (to)

)
=
AT2 (to)

μ
+
2BT1 (to)

μ
.

Therefore, we obtain from Eq. (3.55) that

u (to)
√
1− t2o −

1

π

∫ 1

−1
u (t) dt−

(
μs − σo
aμπ

) ∫ 1

−1

√
1− t2
t− to

du (t)

dt
dt

=
AT2 (to)

μ
+
2BT1 (to)

μ
. (3.56)

Assume again that the function u (to) has an expansion of the form

u (to) =
N∑
m=0

amTm (to) , to ∈ (−1, 1) , m = 0, 1, 2, ..., (3.57)

Using successively Eqs. (3.35-36) and (3.57), we obtain from Eq. (3.56) that

N∑
m=0

[
amTm (to)

√
1− t2o −

1

π

∫ 1

−1
amTm (t) dt−

(
μs − σo
aμπ

) ∫ 1

−1

√
1− t2
t− to mamUm−1 (t) dt

]

=
AT2 (to)

μ
+
2BT1 (to)

μ
, to ∈ (−1, 1) m = 0, 1, 2, ... (3.58)
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In view of the properties of the Chebyshev polynomials in Eqs. (3.38-39), Eq.

(3.58) becomes

N∑
m=0

[
amTm (to)

√
1− t2o −

am
π

(
1 + (−1)m
1−m2

)
+

(
μs − σo
aμ

)
mamTm (to)

]

=
AT2 (to)

μ
+
2BT1 (to)

μ
, to ∈ (−1, 1) m = 0, 1, 2, ... (3.59)

By selecting the set of collocation points as given by to = toi = − cos( iπ
N
) for

i = 1, 2, ..., N − 1, we obtain
N∑
m=0

am

[
− cos

(
miπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)
−mSe cos(miπ

N
)

]

= −Sa cos(2iπ
N
)− 2Sb cos( iπ

N
), for 1 ≤ n ≤ N − 1, (3.60)

where, Se =
μs − σo
aμ

, (surface effect), Sa =
A

μ
, Sb =

B

μ
(surface traction).

In addition, by performing the same process, we derive from Eq. (3.54) that

N∑
m=0

am

[
− cos

(
miπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)
−mSe cos(miπ

N
)

]

= =
−Sa
2
cos(

3iπ

N
)−

(
Sa

2
+ 2Sb

)
cos(

iπ

N
), for 1 ≤ n ≤ N − 1. (3.61)

Finally, Eq. (3.53-54) is now reduced to the system of equations in (3.60-61) for

the constants am and can be solved numerically as in the previous section
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Figure 17: Near tip stress for linear surface traction case, where B/μ = Sb =

0.1, −0.1 ≤ A/μ = Sa ≤ 0.1
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Figure 18: Near tip stress for non-linear surface traction case, where B/μ = Sb =

0.1, −0.1 ≤ A/μ = Sa ≤ 0.1
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Figs. 17-18 demonstrate the relation between stress at t/a = ±1.01 and the vari-
ation of the surface traction parameter (Sa = A/μ). It is clear that for both the

linear and parabolic cases, the state of stress reduces to the corresponding case of

uniform surface traction when the surface traction parameter is set equal to zero

(Sa = 0). Further, in case of linear surface traction, an applied load is not sym-

metric about the y−axis (see Fig. 16A) resulting in different stresses, for example,
at t/a = ±1.01 (see Fig. 17), yet exchanging their values as the slop Sa varies
from −0.1 to 0.1. For the parabolic surface traction case, the stress, for example,
at t/a = ±1.01 are identical with the variation of surface traction parameter Sa
(see Fig. 18), since an applied load is symmetric about the y−axis (see Fig. 16B).

3.4.3 Decomposition Theory in Surface Elasticity

In this section, we discuss an interesting result in the theory of elasticity, which

is derived from the particular case of the above mentioned problem (a mode-III

crack subjected to uniform surface traction). In the corresponding problem from

classical elasticity (without surface effects), a traction-free mode-III crack problem

subjected to a uniform remote stress (σ∞yz = σyz) (here referred to as type 1 problem

in Fig. 19) can be uniquely decomposed into a sum of two problems: a plane (with-

out crack) undergoing uniform remote stress (σ∞yz = σyz) and a mode-III crack with

a uniform surface traction (Pyz = −σyz) and stress-free remote boundary (σ∞yz = 0)
(here referred to as type 2 and 3 problems in Fig. 19, respectively). The analogy

is important in a sense that it allows us to treat more complex boundary value

problems by treating type 3 problems instead of directly solving problems of type

1. Here, we demonstrate that the above mentioned decomposition holds true even

with the introduction of surface elasticity on the crack face.
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Figure 19: Schematic of the decomposition in mode-III crack problem

3.4.4 An Analysis of Type 2 Problem in Surface Elasticity

First, we re-examine a type 2 problem in the presence of surface elasticity. The ob-

jective here is to investigate the surface effects on the stress distribution (uniform)

through the entire plane (see Fig. 19). The suggested solution of the problem

requires that Ω (z) needs to be linear in “z” (where, z ∈ C) to ensure uniform
stress distribution at the remote boundary (σ∞yz = σyz ). That is;

Ω (z) = Az +B, ∀ A, B ∈ C,

Ω′ (z) =
dΩ (z)

dz
=
1

μ
[σxz − iσyz] = A = constant (uniform stress distribution).

(3.62)

Eq. (3.62) further implies that the second derivative of Ω (z) remains zero

Ω′′ (z) =
d2Ω (z)

dz2
=
dΩ′ (z)
dz

=
dA

dz
= 0.
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Finally, from the surface Eqs. (3.46a-b), we derive that

(σyz)
+ = −∂σ

s
xz

∂x
= (μs − σo)∂

2w

∂x2
=
μs − σo
2

[Ω′′ (z) + Ω′′ (z)]+ = 0, (3.63a)

(σyz)
− =

∂σsxz
∂x

= (μs − σo)∂
2w

∂x2
=
μs − σo
2

[Ω′′ (z) + Ω′′ (z)]− = 0,∵ Ω′′ (z) = 0.

(3.63b)

Remark 2 Since, through the entire plane (S+ ∪ S− = S), (σyz)+ = (σyz)− = 0,
it is clear from (3.5) and (3.63a-b) that the jump in stress is:

[σyz] = (σyz)
+ − (σyz)− = 0 ⇐⇒

∣∣∣∣∂σsxz∂x

∣∣∣∣ = 0.
Consequently, surface energy effects make no contribution to the stress distribution

of the plane (without crack), which further implies that the stress is continuous and

thus remains uniform through the entire plane.

3.4.5 An Analysis of Type 1 and 3 Problems in Surface

Elasticity

Next, we reconsider the solutions of problems type 1 and 3 with the introduction of

surface elasticity. In classical elasticity, the solutions of type 1 and 3 problems differ

by only a constant which corresponds to the magnitude of the applied remote stress

(see, for example, Fig. 19). Our purpose is to verify that the previously mentioned

analogy still holds true for the case when the surface effects are taken into account.

The formulation of the type 3 problem can be obtained through Eq. (3.52) for

uniform surface traction case (Pyz(to) = Pyz)

μ

π

∫ a

−a

f (t) dt

t− to = 2Pyz − (μ
s − σo)f ′(to), −a ≤ to ≤ a, (3.64)
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which can be solved as in the previous section. The solution can also be obtained

directly from either Eq. (3.60) or (3.61) by simply setting Sa = 0 and Sb = Pyz.

Fig. 20 illustrates the corresponding stress distributions with respect to surface

effect parameters. Stress distributions in this case again demonstrate a weaker

logarithmic singularity, since, from Eq. (3.51), we obtain near the crack tip as

Ω′ (z) =
1

2iπ

∫ +a

−a

f (t)

t− zdt, and∫ +a

−a

f (t)

t− zdt = f(±a) ln r +O(1), r = |z − a| .
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Figure 20: Stress distribution with respect to surface parameter (Se),when Pyz/μ =

0.1

It is clear from Fig. 20 that as the surface effect becomes negligible, our solu-

tion reduces to that of the classical case. Further, from Fig. 20, we see that

stresses relatively far from the crack tips converge to zero,which agrees with the

imposed condition that stress at the remote boundary is zero (σ∞yz = 0). In the
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analysis of decomposition theory, we consider only the following case;

S =
Pyz
μ
= −0.2, Se = 0.01, (for Type 3 problem).

The solution of the type 1 problem is available in the previous section (uniform

remote loading problem), in which case we consider the counter part of type 3

problem as

σ∞yz
μ
= 0.2, Se = 0.01.

In addition, the known classical cases (without surface energy) are also evaluated

using the corresponding analytic solutions described by [65—67] for comparison

purposes;

Ω′ (z) =
1

μ
[σxz − iσyz] =

−iσ∞yzz
μ
√
z2 − a2 , (type 1 problem where σ∞yz �= 0, Pyz = 0),

Ω′ (z) =
1

μ
[σxz−iσyz] = iPyz

μ
(

z√
z2 − a2−1), (type3problemwhereσ

∞
yz = 0, Pyz �= 0).
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Figure 21: Stress distribution for type 1 and type 3 problems along the real axis
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It is clear from Fig. 21 that the solutions of Type 1 and 3 differ by only a constant

(the vertical distance in each case), which is identical to the magnitude of the

applied remote loading (
σ∞yz
μ
= 0.2) for both our case (with surface effect) and the

classical case (without surface effect).

Remark 3 As a direct consequence of the above results (see Fig. 21) and Remark

2, we have that, for the case when the surface elasticity is included, the solution

of type 1 problem is equivalent to the superposition of solutions of type 2 and 3

problem. In other words, the decomposition theory holds true with the introduction

of surface elasticity.

3.5 SUMMARY

In this Chapter, we have examined the effects of surface elasticity in a classical

mode-III crack problem arising in the anti-plane shear deformations of a linearly

elastic solid. It is shown that stress singularity at the crack tip reduces from

the strong square root singularity to a weaker logarithmic singularity with the

introduction of the effects of surface elasticity. In addition, the corresponding

stress fields derived from our analysis exhibit clear signs of size dependency and

do indeed accommodate those in the classical LEFM solutions when the surface

effects are neglected. The uniqueness theorem of the corresponding boundary value

problem is also examined leading to the conclusion that a solution is unique without

imposing any further extra end conditions other than the natural end conditions

(the normal displacement (w) is zero at both crack tips).

In the case of a mode-III crack subjected to non-uniform surface tractions, we

have obtained a complete numerical solution, when the crack faces are subjected to

arbitrary surface tractions characterized by stress functions described by general

polynomials of degree n. In particular, we have proved that, from the particular
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case of our general solution (when the crack faces are subjected to uniform trac-

tion), the decomposition theory in classical elasticity still holds true when surface

elasticity is taken into account on the crack faces. The above results are important

in that, when used in conjunction with the general methodology presented in this

chapter, they essentially lead to the solutions of a class of problems in which the

surface traction is characterized by a much wider and more practically realistic

class of functions.
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CHAPTER 4

PLANE-STRAIN CRACK PROBLEMS (MODE-I & MODE-II) IN

THE PRESENCE OF SURFACE ELASTICITY

4.1 INTRODUCTION

The analysis of the plane-strain deformations of an elastic solid incorporating a

crack (mode-I/mode-II) is of fundamental importance in the understanding of fail-

ure modes and in the general stress analysis of engineering materials. As discussed

in earlier sections, the role of surface elasticity can be quite significant on the

mechanics and mechanisms of fracture, especially when the high surface area to

volume ratio is present at the nano/micro scale.

With that said, in this chapter, we consider the plane-strain deformation of

a linearly elastic solid incorporating a crack in the presence of surface elasticity.

Using the same surface elasticity theory as adopted in the Mode-III crack case, we

model the crack as an interval of the x-axis onto which we project the properties of

the surface layer [90] (much like we project the properties of a thin interphase layer

onto the boundary of a fiber in the modeling of fiber-reinforced composites). The

analysis of our mathematical model involves the use of complex variable methods

to reduce the corresponding (highly non-standard) boundary value problem to

a series of two coupled Cauchy singular integro-differential equations [65]. The

latter is solved numerically using an adapted collocation technique [76] leading to

a complete semi-analytic solution valid within the entire domain of interest (except

at the tips).
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It is shown that the incorporation of surface effects, in most cases, leads to the

reduction of the classical strong square root singularity to a weaker singularity.

In addition, the corresponding stresses derived from our analysis show that the

presence of surface effects results in the elastic response and stress fields being size-

dependent and do indeed converge to the well known classical solutions [65, 66],

in the limit as surface effects are neglected. We note also that the solution of the

corresponding mixed mode crack problem (in which mode-I and mode-II cracks are

considered simultaneously) derived in this chapter is sufficiently general in that, it

incorporates the solutions corresponding to both mode-I and mode-II separately,

when the corresponding far-field stress conditions are applied (remote tension and

in-plane shear for mode-I and mode-II cases, respectively). Finally, the imposition

of end conditions at the crack tips is discussed in order to uniquely determine

a solution of the coupled BVP. This includes the clarification of the role end of

conditions within the maximum number allowed [84].

4.2 PLANE-STRAIN CRACK PROBLEM WITH SUR-

FACE EFFECTS

We consider plane-strain deformations of a linearly elastic and homogeneous isotropic

solid occupying a region in R3 with generators parallel to the z−axis of a rectan-
gular cartesian coordinate system. We assume that a cross-section of the crack

occupies the region [−a, a], a ∈ R+ of the x−axis as shown in Fig. 22.
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Figure 22: Schematic of a plane-strain crack problem

4.2.1 Complex-Variable Formulation

The stress and strain expressions for the bulk material can be obtained from Eqs.

(2.1-2) as

σij = λδijεkk + 2μεij, (4.1a)

εij =
1

2
(ui,j + uj,i) . (4.1b)

In plane-strain deformations of an isotropic elastic medium, we assume that the

displacement vector u with components now denoted by (u, v, ω) admits the rep-
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resentation (see also Eq. (2.14))

u = u (x, y) , v = v (x, y) , ω = 0. (4.2)

In the absence of body forces, the corresponding governing equations of two-

dimensional elasticity are described by by (see [65])

2μ (u+ iv) = κΩ(z)− zΩ′(z)− w (z), (4.3a)

σyy − iσxy = Ω′(z) + Ω′(z) + zΩ′′(z) + w′ (z). (4.3b)

Here Ω(z) and w (z) are analytic functions of the complex variable z = x + iy in

the cut plane S+ ∪ S− = S outside the crack (see Fig. 22.) and κ is defined as;

κ =
λ+ 3μ

λ+ μ
= 3− 4υ (for plane-strain),

where υ is Poisson’s ratio taking values in the range 0 < υ < 1
2
. Thus, κ satisfies

the following inequality

1 < κ < 3. (4.4)

Since the displacements and stresses are continuous across y = 0 , x > |a| (outside
the crack) , from Eq. (4.3b), following [66], we can now define an analytic function

θ (z) in the whole plane cut along L = −a < x < a by

Ω(z)− zΩ′(z)− w (z) = θ (z) . (4.5)

From Eq. (4.5), Eqs. (4.3a-b) can now be re-written as;

2μ (u+ iv) = κΩ(z)− Ω(z)− (z − z) Ω′(z) + θ (z) , (4.6a)

σyy − iσxy = Ω′(z) + Ω′(z) + (z − z) Ω′′(z)− θ′ (z) . (4.6b)

61



4.2.2 Equilibrium Equations on the Crack Surface

In the present case, the normal to the crack face is aligned with the y−direction
(see Fig. 22) the equilibrium condition for the crack is given by (see. Eqs. (2.16-17)

and the corresponding derivation)

σsxx,x + [σxy] = 0, (4.7a)

[σyy] = −σo∂
2ν

∂x2
. (4.7b)

It should also be noted that we retain only the normal component v of the surface

Laplacian of the displacement vector u from Eq. (2.5) (see [47] for details). From

Eqs. (4.7a) and (4.7b), we have

[σyy − iσxy] = iσsxx,x − σo
∂2ν

∂x2
. (4.8)

In addition, from Eqs. (2.15) and (4.1a-b) and (4.2), the expression for the surface

stress can be obtained explicitly in terms of displacements:

σsxx = σo + (2μ
s − σo + λs) ∂u

∂x
,

where, εsxx = εxx for a coherent interface. By taking the derivative with respect to

x, the above expression becomes

σsxx,x =

∂

(
σo + (2μ

s − σo + λs) ∂u
∂x

)
∂x

= (2μs − σo + λs) ∂
2u

∂x2
. (4.9)

Finally, by substituting Eq. (4.9) back into Eq. (4.8), we derive the equilibrium

condition on the surface as

[σyy − iσxy] = iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, where Jo ≡ 2μs − σo + λs. (4.10)
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4.2.3 Plane-strain Crack Problem with Surface Stress

Let the lower (y < 0) and upper (y > 0) half-planes be designated the “−” and
“+” sides of the crack, respectively. If we assume that the faces of the crack are

traction-free, then, from Eq. (4.10), the boundary conditions on the upper and

lower crack faces are given by;

(σyy − iσxy)+ − (σyy − iσxy)− = iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, on the upper face, (4.11a)

(σyy − iσxy)+ − (σyy − iσxy)− = iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, on the lower face. (4.11b)

In the case of the present crack problem, the terms (σyy − iσxy)− in Eq. (4.11a)
and (σyy − iσxy)+ in Eq. (4.11b) are zero, since no material is defined between the
upper and lower crack face (material discontinuity along the cut y = 0,−a < x <
a).

In the more general case when the crack face is subjected to a prescribed

traction Pyy − iPxy, from Eq. (4.11a-b), the boundary conditions on the crack

faces (−a < x < a, y = ±0) can be written as;

(σyy − iσxy)+ = Pyy − iPxy + iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, on the upper face, (4.12a)

(σyy − iσxy)− = Pyy − iPxy − iJo∂
2u

∂x2
+ σo

∂2ν

∂x2
, on the lower face. (4.12b)

We consider here the situation when the solid is subjected to uniform remote

normal and shear stress (σyy = σ∞yy, σxy = σ∞xy) and a traction-free crack face

(Pyy = Pxy = 0) ((see also Fig. 23)).
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Figure 23: Equilibrium on upper crack face under the plane-strain deformation

From Eqs. (4.6b) and 4.12(a-b), the surface conditions on either side of the

crack face can then be formulated as follows;

(σyy − iσxy)+ = Ω′(z)+ + Ω′(z)− − θ′ (z)− = iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, on the upper face,

(4.13a)

(σyy − iσxy)− = Ω′(z)− + Ω′(z)+ − θ′ (z)+ = −iJo∂
2u

∂x2
+ σo

∂2ν

∂x2
, on the lower face.

(4.13b)

Adding and subtracting Eqs. (4.13a) and (4.13b) yields

[
θ′ (z)+ − θ′ (z)−]

= iJo

(
∂2u+

∂x2
+
∂2u−

∂x2

)
− σo

(
∂2ν+

∂x2
+
∂2ν−

∂x2

)
, (4.14a)

[
2Ω′ (z)+ − θ′ (z)+]

+
[
2Ω′ (z)− − θ′ (z)−]

= iJo

(
∂2u+

∂x2
− ∂

2u−

∂x2

)
−σo

(
∂2ν+

∂x2
− ∂

2ν−

∂x2

)
.

(4.14b)

Now, from Eq. (4.6a), we have that

(
∂2u

∂x2
+ i
∂2ν

∂x2

)
=
1

2μ

[
κΩ′′ (z)− Ω′′ (z)− (z − z) Ω′′′ (z) + θ′′ (z)

]
.
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Therefore, by applying the relations Ω′′ (z)+ = Ω′′ (z)−, z = z on y = ±0, we have[(
∂2u+

∂x2
+
∂2u−

∂x2

)
+ i

(
∂2ν+

∂x2
+
∂2ν−

∂x2

)]

=
1

2μ

[
(κ− 1){Ω′′ (z)+ + Ω′′ (z)−}

+
{
θ′′ (z)+ + θ′′ (z)−

}]
, (4.15a)

[(
∂2u+

∂x2
− ∂

2u−

∂x2

)
+ i

(
∂2ν+

∂x2
− ∂

2ν−

∂x2

)]

=
1

2μ

[
(κ+ 1)

{
Ω′′ (z)+ − Ω′′ (z)−}− {

θ′′ (z)+ − θ′′ (z)−}]
. (4.15b)

Consequently, from Eqs. (4.15a-b), Eqs. (4.14a-b) take the following forms

[
θ′ (z)+ − θ′ (z)−]

=
iJo
2μ
Re[(κ− 1){Ω′′ (z)+ + Ω′′ (z)−}

+
{
θ′′ (z)+ + θ′′ (z)−

}
]

− σo
2μ
Im[(κ− 1){Ω′′ (z)+ + Ω′′ (z)−}

+
{
θ′′ (z)+ + θ′′ (z)−

}
], (4.16)

[
2Ω′ (z)+ − θ′ (z)+]

+
[
2Ω′ (z)− − θ′ (z)−]

=
iJo
2μ
Re[(κ+ 1)

{
Ω′′ (z)+ − Ω′′ (z)−}− {

θ′′ (z)+ − θ′′ (z)−}
]

− σo
2μ
Im[(κ+ 1)

{
Ω′′ (z)+ − Ω′′ (z)−}− {

θ′′ (z)+ − θ′′ (z)−}
]. (4.17)

Next, if we express the unknowns Ω′ (z) and θ′ (z) as Cauchy integrals [65], given

the behaviour of θ′ (z) [66] we have that

Ω′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

2
(σ∞yy − iσ∞xy), (4.18)

Ω′′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

(t− z)2 dt

= −
[
f(t) + ig(t)

t− z
]+a
−a
+

1

2πi

∫ +a

−a

f ′(t) + ig′(t)
t− z d,

where,

f(to) + ig(to) = Ω
′ (z)+ − Ω′ (z)− , −a ≤ to ≤ a,

θ′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt, (4.19)
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θ′′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

(t− z)2 dt

= −
[
α(t) + iβ(t)

t− z
]+a
−a
+

1

2πi

∫ +a

−a

α′(t) + iβ′(t)
t− z dt

Here,

α(to) + iβ(to) = θ
′ (z)+ − θ′ (z)− , −a ≤ to ≤ a.

In addition, the boundary values of Ω′ and θ′ (z) on the crack faces (y = ±0, −a <
x < a) can be found as (see [65]):

Ω′ (z)+ =
1

2
(f(to) + ig(to)) +

1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

2
(σ∞yy − iσ∞xy), (4.20a)

Ω′ (z)− = −1
2
(f(to) + ig(to)) +

1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

2
(σ∞yy − iσ∞xy), (4.20b)

θ′ (z)+ =
1

2
(α(to) + iβ(to)) +

1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt, (4.21a)

θ′ (z)− = −1
2
(α(to) + iβ(to)) +

1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt. (4.21b)

Thus, in view of Eqs (4.18-4.21), Eqs. (4.16) and (4.17) can be re-written as

α(to) + iβ(to) =
iJo
2μ
Re

[
(κ− 1)
πi

∫ +a

−a

f(t) + ig(t)

(t− to)2
dt+

1

πi

∫ +a

−a

α(t) + iβ(t)

(t− to)2
dt

]

− σo
2μ
Im

[
(κ− 1)
πi

∫ +a

−a

f(t) + ig(t)

(t− to)2
dt+

1

πi

∫ +a

−a

α(t) + iβ(t)

(t− to)2
dt

]
,

(4.22)

2

πi

∫ +a

−a

f(t) + ig(t)

t− to dt+ 2(σ∞yy − iσ∞xy)−
1

πi

∫ +a

−a

α(t) + iβ(t)

t− to dt

=
iJo
2μ
Re [(κ+ 1) (f ′(to) + ig′(to))− (α′(to) + iβ′(to))]

− σo
2μ
Im[(κ+ 1) (f ′(to) + ig′(to))− (α′(to) + iβ′(to))]. (4.23)

Finally, by separating the real and imaginary parts of Eqs. (4.22-23), we obtain

the following coupled first-order Cauchy singular integro-differential equations for
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the unknowns f (t) , g (t) , α (t) and β (t):

α(to) =
σo
2μ

[
(κ− 1)
π

∫ +a

−a

f(t)

(t− to)2
dt+

1

π

∫ +a

−a

α(t)

(t− to)2
dt

]
, (4.24a)

2

π

∫ +a

−a

f(t)

t− todt+ 2σ
∞
xy −

1

π

∫ +a

−a

α(t)

t− todt = −
Jo
2μ
[(κ+ 1) f ′(to)− α′(to)] , (4.24b)

β(to) =
Jo
2μ

[
(κ− 1)
π

∫ +a

−a

g(t)

(t− to)2
dt+

1

π

∫ +a

−a

β(t)

(t− to)2
dt

]
, (4.25a)

2

π

∫ +a

−a

g(t)

t− todt+ 2σ
∞
yy −

1

π

∫ +a

−a

β(t)

t− todt = −
σo
2μ
[(κ+ 1) g′(to)− β′(to)]. (4.25b)

4.2.4 Analysis of End Conditions

Using a process similar to that used in the chapter 3, the natural end conditions

which guarantee unique solutions of the BVPs for the plane crack problems are

given by (see [84])

(
u+,x + u

−
,x

)
u = 0, σo

(
v+,x + v

−
,x

)
v = 0, at each tip (z = ±a). (4.26)

Eq. (4.26) suggests that two conditions can be imposed at each crack tip, for

example, either displacements (u, v) or tractions (u+,x + u
−
,x, v

+
,x + v

−
,x) can be

prescribed at the tips or the combination of these two. In the Mode-I case, similar

to the Mode-III fracture, the natural displacement fields at the crack tips admit

v (±a) = 0 at each tip. Therefore, only one end condition is admissible at each tip
for the Mode-I case. A similar situations holds true for Mode-II fracture. In this

case u (±a) = 0 at the tips (the number of end conditions is again reduced to one).
Consequently, the number of allowable end conditions is reduced to one, at each

end, in each case. The one interesting exception is the case of Mode-II fracture

in which σo = 0. In this case, not one single end condition can be imposed since,

u (±a) = 0 so that both expressions in Eq. (4.26) are automatically satisfied. We
further note that, in the successive analysis, the admissible end conditions in each
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case are chosen in such a way that the terms involving the derivatives of Cauchy

integrals in Eqs. (4.24a-b) and (4.25a-b) can be reduced to Cauchy-singular rather

than hyper-singular form. More precisely, by imposing (k− 1)g(±a) + β(±a) = 0,
(k−1)f(±a)+α(±a) = 0 at each crack tip, we obtain from Eqs. (4.18) and (4.25a)
that

α(to) =
σo
2μ

[
(κ− 1)
π

∫ +a

−a

f(t)

(t− to)2
dt+

1

π

∫ +a

−a

α(t)

(t− to)2
dt

]

= −σo
2μ

[
(k − 1)f(t) + α(t)

t− z
]+a
−a
+
σo
2μ

[
(κ− 1)
π

∫ +a

−a

f ′(t)
t− todt+

1

π

∫ +a

−a

α′(t)
t− todt

]

=
σo
2μ

[
(κ− 1)
π

∫ +a

−a

f ′(t)
t− todt+

1

π

∫ +a

−a

α′(t)
t− todt

]
, ∵ (k − 1)f(±a) + α(±a) = 0.

Similarly, from Eqs. (4.19) and (4.25a), we obtain

β(to) =
Jo
2μ

[
(κ− 1)
π

∫ +a

−a

g′(t)
t− todt+

1

π

∫ +a

−a

β′(t)
t− todt

]
.

Finally, by imposing the above mentioned natural end conditions, the correspond-

ing hyper singular equations in (4.24a-b) and (4.25a-b) are now reduced to the

following Cauchy-singular integro-differential equations:

α(to) =
σo
2μ

[
(κ− 1)
π

∫ +a

−a

f ′(t)
t− todt+

1

π

∫ +a

−a

α′(t)
t− todt

]
, (4.27a)

2

π

∫ +a

−a

f(t)

t− todt+ 2σ
∞
xy −

1

π

∫ +a

−a

α(t)

t− todt = −
Jo
2μ
[(κ+ 1) f ′(to)− α′(to)] , (4.27b)

β(to) =
Jo
2μ

[
(κ− 1)
π

∫ +a

−a

g′(t)
t− todt+

1

π

∫ +a

−a

β′(t)
t− todt

]
, (4.28a)

2

π

∫ +a

−a

g(t)

t− todt+ 2σ
∞
yy −

1

π

∫ +a

−a

β(t)

t− todt = −
σo
2μ
[(κ+ 1) g′(to)− β′(to)]. (4.28b)

It is of interest to see if other end conditions can be used (other than those men-

tioned above). We will return to this point later in the thesis.
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4.3 ANALYSIS OF THE SINGULAR INTEGRO - DIF-

FERENTIAL EQUATIONS

The series of coupled Cauchy singular integro-differential equations in Eqs. (4.27-

28) are similar in form to equations of the type:

2
φ (x)

dx
− λ

∫ 1

−1

φ (t)

x− tdt = f(x), −1 ≤ x ≤ 1, λ > 0, φ (1) = φ (−1) = 0,

− 1
π

∫ 1

−1

v(y)

(x− y)2dy = g (x) , −1 ≤ x ≤ 1,

where φ and v are the unknown functions and f and g are considered as ‘known’

functions. The first of these equations often arises in the study of molecular con-

duction, gaseous radiation and heat conduction problems while the second type

appears in the analysis of a crack mounted in an infinite strip. In [77, 83], the

authors provide a full analysis of the first equation and derive complete numerical

solutions with the aid of a collocation method. The second equation has been

well-studied in [66, 76, 83, 91] using Chebychev polynomials of the second kind.

Unfortunately, the methods used in the aforementioned studies are not directly

applicable to the current problem since Eqs. (4.27-28) combine characteristics of

both equations.

In this section, inspired by the techniques presented in [76,77], we propose quite

novel approaches and provide complete numerical solutions of Eqs. (4.27-28). We

also note here that the present problem displays strong dependency on the choice

of methods so that other existing methods such as Fourier series methods and

direct Chebychev methods have failed to deliver successful results.
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4.3.1 Solution of Singular Integro-differential Equations by

a Collocation Method

Eqs. (4.28a-b) can be re-written as;∫ +a

−a

g′(t) + 1
(κ−1)β

′(t)

t− to dt =
2μπ

Jo (κ− 1)β(to), (4.29a)

∫ +a

−a

g(t)− 1
2
β(t)

t− to dt = −σ∞yyπ −
πσo
4μ

[(κ+ 1) g′(to)− β′(to)] . (4.29b)

Set
t

a
= x in Eqs. (4.29a-b) and obtain

∫ +1

−1

dg(ax)
d(ax)

+ 1
(κ−1)

dβ(ax)
d(ax)

a(x− xo) (a) dx =
2μπ

Jo (κ− 1)β(axo), (4.30a)

∫ +1

−1

g(ax)− 1
2
β(ax)

a (x− xo) (a) dx = −σ∞yyπ −
πσo
4μ

[
(κ+ 1)

dg(axo)

d(axo)
− dβ(axo)
d(axo)

]
.

(4.30b)

Rewriting x → t, xo → to and further defining g(at) = v(t), β(at) = ξ(t), from

Eqs. (4.30a-b), we have that∫ +1

−1

v′(t) + 1
(κ−1)ξ

′(t)

t− to dt =
2μaπ

Jo (κ− 1)ξ(to), (4.31a)

∫ +1

−1

v(t)− 1
2
ξ(t)

t− to dt = −σ∞yyπ −
πσo
4μa

[(κ+ 1) v′(to)− ξ′(to)] , (4.31b)

where, −1 ≤ to ≤ 1, v(1) = v(−1) = ξ(1) = ξ(−1) = 0.

We utilize the first inverse operator T−1defined in the following manner (see

[92,93]) ;

T−1ψ (t) =

√
1− t2o
π

∫ 1

−1
ψ (t) dt−

√
1− t2o
π2

∫ 1

−1

ψ (t)

(t− to)
√
1− t2dt, to ∈ (−1, 1),

(4.32a)

T
(
T−1ψ

)
= ψ,

and further define

T

(
v′(to) +

1

(κ− 1)ξ
′(to)

)
=

∫ 1

−1

v′(to) + 1
(κ−1)ξ

′(to)

to − t dto = ψ (t) . (4.32b)
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It follows then from Eq. (4.31a) that

v′(to) +
1

(κ− 1)ξ
′(to)

=

√
1− t2o
π

∫ 1

−1

(
v′(t) +

1

(κ− 1)ξ
′(t)

)
dt− 2μa

√
1− t2o

πJo (κ− 1)
∫ 1

−1

ξ(t)

(t− to)
√
1− t2dt, to ∈ (−1, 1).

(4.33)

Similarly, by applying the second inverse operator T−1 as defined by the relation

in [77], we have that

T−1ψ (t) =
1

π
√
1− t2o

∫ 1

−1
ψ (t) dt− 1

π2
√
1− t2o

∫ 1

−1

√
1− t2ψ (t)
t− to dt, to ∈ (−1, 1),

(4.34a)

T
(
T−1ψ

)
= ψ,

T

(
v(to)− 1

2
ξ(to)

)
=

∫ 1

−1

v(to)− 1
2
ξ(to)

to − t dto = ψ (t) . (4.34b)

From Eq. (4.31b) we have that

v(to)− 1
2
ξ(to)

=
1

π
√
1− t2o

∫ 1

−1

(
v(t)− 1

2
ξ(t)

)
dt

− 1

π2
√
1− t2o

∫ 1

−1

√
1− t2
t− to

(
−σ∞yyπ −

σoπ

4μa
((κ+ 1) v′(t)− ξ′(t))

)
dt. (4.35)

Multiplying by
√
1− t2o on both sides of Eq. (4.35) yields

√
1− t2o

(
v(to)− 1

2
ξ(to)

)
− 1

π

∫ 1

−1

(
v(t)− 1

2
ξ(t)

)
dt

=
σo
4μaπ

∫ 1

−1

√
1− t2
t− to ((κ+ 1) v′(t)− ξ′(t)) dt+ 1

π

∫ 1

−1

√
1− t2
t− to σ

∞
yydt, to ∈ (−1, 1).

(4.36)

now we assume approximations for the v and ξ can be written in the form

v(to) ≈ vN(to) =
N∑
m=0

amTm (to) , ξ(to) ≈ ξN(to) =
N∑
m=0

bmTm (to) , m = 0, 1, 2, ...,

(4.37)
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where Tm (to) represents the m th Chebychev polynomial of the first kind. In

addition, the Chevychev polynomials have the following properties:

dTm (x)

dx
= mUm−1 (x) . (4.38)

Here, Um(x) denotes the m th Chevychev polynomial of the second kind. There-

fore, from (4.37) and (4.38), we find that

dvN (to)

dto
=

d

dto

(
N∑
m=0

amTm (to)

)
=

N∑
m=0

mamUm−1 (to) ,

dξN (to)

dto
=

d

dto

(
N∑
m=0

bmTm (to)

)
=

N∑
m=0

mbmUm−1 (to) , to ∈ [−1, 1] , m = 0, 1, 2, ...

(4.39)

Next, in view of Eqs. (4.37) and (4.39), Eq. (4.33) becomes

N∑
m=0

mUm−1 (to)
(
am +

bm
(κ− 1)

)

=

√
1− t2o
π

∫ 1

−1

N∑
m=0

mUm−1 (t)
(
am +

bm
(κ− 1)

)
dt− 2μa

√
1− t2o

πJo (κ− 1)
∫ 1

−1

∑N
m=0 bmTm (t)

(t− to)
√
1− t2dt.

(4.40)

By utilizing the following properties of the Chebychev polynomials:∫ 1

−1
Um−1(t)dt =

1− (−1)m
m

,

∫ 1

−1

Tm(t)

(t− to)
√
1− t2dt = πUm−1 (to) ,

Eq. (4.40) reduces to

N∑
m=0

am

[
mUm−1 (to)−

√
1− t2o (1− (−1)m)

π

]

=

N∑
m=0

bm

[
−mbmUm−1 (to)

(κ− 1) +

√
1− t2o (1− (−1)m)

π (κ− 1) − 2μa
√
1− t2o

Jo (κ− 1) Um−1 (to)
]
.

Consequently, we derive the relation between am and bm as;

bm = am

⎛
⎝ Jo (κ− 1)

[
πmUm−1 (to)−

√
1− t2o (1− (−1)m)

]
Jo

√
1− t2o (1− (−1)m)− πUm−1 (to)

(
mJo + 2μa

√
1− t2o

)
⎞
⎠ ≡K1am.

(4.41)
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Similarly, from Eqs. (4.37) and (4.39), Eq. (4.36) becomes

N∑
m=0

[
Tm (to)

√
1− t2o

(
am − bm

2

)
− 1

π

∫ 1

−1
Tm (t)

(
am − bm

2

)
dt

]
(4.42)

=
N∑
m=0

[
σo
4μaπ

∫ 1

−1

√
1− t2mUm−1 (t)

t− to ((κ+ 1) am − bm) dt
]
+
1

π

∫ 1

−1

√
1− t2
t− to σ

∞
yydt, to ∈ (−1, 1).

Again, the Chebychev polynomials have the following properties:

∫ 1

−1
Tm (t) dt =

1 + (−1)m
1−m2

,

∫ 1

−1

√
1− t2Um−1 (t)
t− to dt = −πTm (to) ,

∫ 1

−1

√
1− t2
t− to dt = −πto.

Therefore, Eq. (4.42) reduces to

N∑
m=0

[(
am − bm

2

) (
Tm (to)

√
1− t2o −

1 + (−1)m
π (1−m2)

)
+
σom

4μa
Tm (to) [(κ+ 1) am − bm]

]
= −σ∞yyto,

(4.43)

where, to ∈ (−1, 1). We now select the set of collocation points as given by to =
toi = − cos( iπN ) for i = 1, 2, ..., N − 1. Further, by evaluating Tm(toi) and Um−1(toi)
with respect to each collocation points, we find that

Tm

(
− cos

(
iπ

N

))
= − cos

(
imπ

N

)
, Um−1

(
− cos

(
iπ

N

))
=
sin

(
miπ
N

)
sin

(
iπ
N

) . (4.44)
Noting the following properties of the Cheychev polynomials of the first kind

Tn (cos θ) = cosnθ and the second kind Un (cos θ) = sin((n+1)θ)/ sin θ, Eq. (4.43)

further reduces to the following system of linear equations

N∑
m=0

[(
am − bm

2

) (
− cos

(
imπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)

)]

+
N∑
m=0

[
−σom
4μa

[(κ+ 1) am − bm] cos
(
imπ

N

)]
= σ∞yy cos

(
iπ

N

)
, (4.45)

where, from Eq (4.41):

bm = K1am, K1=

⎛
⎜⎜⎝

Jo (κ− 1)
[
πm

sin(miπN )
sin( iπN )

−
√
1− (cos( iπ

N
))2 (1− (−1)m)

]

Jo

√
1− (cos( iπ

N
))2 (1− (−1)m)− π sin(

miπ
N )

sin( iπN )

(
mJo + 2μa

√
1− (cos( iπ

N
))2

)
⎞
⎟⎟⎠ ,
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for 1 ≤ i ≤ N − 1.
The same technique can be applied to determine the unknown functions f (t)

and α (t) . After scaling the funtions f(t) and α (t), we derive from Eqs. (4.27a-b)

that ∫ +1

−1

u′(t) + η′(t)
(κ−1)

t− to dt =
2μπ

σo (κ− 1)η(to), (4.46a)

∫ +a

−a

u(t)− 1
2
η(t)

t− to dt = −σ∞xyπ −
Joπ

4μ
[(κ+ 1) u′(to)− η′(to)] , where,−1 ≤ to ≤ 1.

(4.46b)

Next, express unknown functions u (to) and η (to) in the form:

u(to) ≈ uN(to) =
N∑
m=0

cmTm (to) , η(to) ≈ ηN(to) =
N∑
m=0

dmTm (to) , m = 0, 1, 2, ...,

(4.47)

and following the techniques through Eqs. (4.29-4.45), we obtain the following

system of linear equations for the unknown constants cm and dm as;

N∑
m=0

[(
cm − dm

2

) (
− cos

(
imπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)

)]

+
N∑
m=0

[
−Jom
4μa

[(κ+ 1) cm − dm] cos
(
imπ

N

)]
= σ∞xy cos

(
iπ

N

)
, (4.48)

where

dm = K2cm, K2=

⎛
⎜⎜⎝

σo (κ− 1)
[
πm

sin(miπN )
sin( iπN )

−
√
1− (cos( iπ

N
))2 (1− (−1)m)

]

σo

√
1− (cos( iπ

N
))2 (1− (−1)m)− π sin(

miπ
N )

sin( iπN )

(
mσo + 2μa

√
1− (cos( iπ

N
))2

)
⎞
⎟⎟⎠ ,

for 1 ≤ i ≤ N − 1. Consequently, the solution of coupled Eqs. (4.27-4.28) is
now reduced to the solution of the two systems of equations Eqs. (4.45) and Eqs.

(4.48), respectively for the unknown constants am, bm, cm and dm. The latter can

be obtained by using any of the existing numerical software packages (e.g. Matlab,

Maple, NAG, etc.).
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4.3.2 Examples: Mode-I (σ∞yy �= 0, σ∞xy = 0) problem

In view of the remote loading condition, the unknown complex functions Ω′ (z)

and θ′ (z) can be expressed as;

Ω′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

2
σ∞yy, (4.49)

θ′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt. (4.50)

Then, Eq. (4.48) reduces to

N∑
m=0

[(
cm − K2cm

2

) (
− cos

(
imπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)

)]

+
N∑
m=0

[
−Jom
4μa

[(κ+ 1) cm −K2cm] cos

(
imπ

N

)]
= 0.

We found from the above equation that

f(t) = α(t) = 0. (4.51)

Also, Eq. (4.45) yields

N∑
m=0

[(
am − K1am

2

) (
− cos

(
imπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)

)]

+
N∑
m=0

[
−σom
4μa

[(κ+ 1) am −K1am] cos

(
imπ

N

)]
= σ∞yy cos

(
iπ

N

)
. (4.52)

Eqs. (4.52) give a non-zero solution of g (t) and β (t) (see Fig. 24). Therefore,

the unknown complex potential can be determined through Eqs. (4.49-50) as

Ω′ (z) =
1

2π

∫ +a

−a

g(t)

t− zdt+
1

2
σ∞yy, (4.53)

θ′ (z) =
1

2π

∫ +a

−a

β(t)

t− zdt. (4.54)
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4.3.3 Examples: Mode-II (σ∞yy = 0, σ∞xy �= 0) problem

Similarly, the unknown complex functions Ω′ (z) and θ′ (z) can be expressed for

the Mode-II case as;

Ω′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

2
σ∞xy, (4.55)

θ′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt. (4.56)

Since σ∞yy = 0 for Mode-II case, Eq. (4.45) yields

g(t) = β(t) = 0. (4.57)

In addition, Eqs. (4.48) give non-zero solutions for f (t) and α (t) (see Fig. 25)

by solving the following reduced system of linear equations

N∑
m=0

[(
cm − cmK2

2

) (
− cos

(
imπ

N

) √
1− (cos( iπ

N
))2 − 1 + (−1)m

π (1−m2)

)]

+
N∑
m=0

[
−Jom
4μa

[(κ+ 1) cm − cmK2] cos

(
imπ

N

)]
= σ∞xy cos

(
iπ

N

)
.

Finally, from Eqs. (4.55-56) the unknown complex potentials can be determined

as;

Ω′ (z) =
1

2πi

∫ +a

−a

f(t)

t− zdt+
1

2
σ∞xy, (4.58)

θ′ (z) =
1

2πi

∫ +a

−a

α(t)

t− zdt. (4.59)

4.4 RESULTS AND DISCUSSION

In this section, the numerical solution of Eqs. (4.45) and (4.48) is derived for

the two cases when a crack is subjected to a uniform remote tension (Mode -I

crack problem) and a uniform remote in-plane shear (Mode-II crack problem),

respectively. Throughout the analysis, we adopt the following range of surface
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parameters. The listed values are estimated properties of “GaN” obtained from

the work of Sharma & Ganti [16]. GaN is composed of a mixture of nitrified

aluminum (AI), gallium (Ga) and indium (In) and used in the manufacture of a

semiconductor.

Se1 =
σo
2aμ

: 0.0005 < Se1 < 0.05,

Se2 =
Jo
2aμ

: 0.0005 < Se2 < 0.1,

μs = 161.73(J/m2), σo = 1.3(J/m
2), Jo = 400(J/m

2), μ = 168(Gpa).

(4.60)

It is found that the numerical method overall, performs well ensuring rapid con-

vergence (see, for example, Figs. 24-25 ).
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Figure 24: Convergence of the solution g(t) with respect to number of iterations

(N)
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Figure 25: Convergence of the solution f(t) with respect to number of iterations

(N)

The results in Figs. 24-25 clearly indicate that the solutions have non-zero fi-

nite values at the crack tips (e.g. g(t) �= 0). This implies that, similar to the

Mode-III fracture, the corresponding stress fields again must be singular, in the

plane-strain crack case. The implication of the numerical solutions will be further

discussed in the next section.

4.4.1 Determination of the unknown functions f (t) , g (t) , α (t) and

β (t)

We first retrieve, as a special case of our analysis, the solution of the classical

plane-strain crack problem (in which surface effects are neglected) in an attempt
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to verify the mathematical model. From [65,66], we find that

Ω′ (z) =
σ∞yyz

2
√
z2 − a2 , (Mode-I), Ω

′ (z) =
σ∞xyz

2
√
z2 − a2 , (Mode-II),

θ′ (z) = 0, for both Mode-I and Mode-II. (4.61)

Therefore, from Eq. (4.61), we derive the differences:

Ω′ (z)+ − Ω′ (z)− = − σ∞yyt√
t2 − a2 , −a < t < a, (Mode-I),

Ω′ (z)+ − Ω′ (z)− = − σ∞xyt√
t2 − a2 , −a < t < a, (Mode-II). (4.62)

The corresponding solutions for each case are plotted through Figs. (26-27), where

the parameters Se1 and Se2 vary with respect to the dimensions of the crack.
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Figure 26: The solution of g (t) and β (t) (Mode-I), where, 0.005 < Se1 <

0.03, σ∞yy/μ = 0.3.
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Figure 27: The solution of f (t) and α (t) (Mode-II), where, 0.003 < Se2 <

0.1, σ∞xy/μ = 0.3

For the mode-I case, in contrast to the classical case (where β (t) = 0), we have

non-zero solutions for both the functions g(t) and β(t) (see, Fig. 26) and both

values decrease as the surface effects become significant. This is due mainly to

the non-zero contribution of the surface parameters (Jo (related to K1) and Se1)

implemented in Eq. (4.52). In the case of a mode-II crack, we obtain practically

zero distributions for α (t) , except in the vicinity of crack tips. The value of f (t) ,

in this case as well, varies with respect to the surface parameter Se2 (see, Fig.

27) reflecting the effects of surface elasticity. We note here that the solutions pre-

sented in Fig. 26 and 27 exhibit strong dependency on surface material properties

(μs, σo, λ
s) which may differ depending on the particular materials under con-

sideration. For example, for a material where σo >> 0, the solutions (α (t) and
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f(t) in Fig. 27) will closely resemble those in Fig. 26 and vice-versa for a material

with sufficiently small Jo (Jo ≈ 0). Since we currently have very limited sources of
surface material properties (See [16]), no quantitative predictions are possible for

specific materials. However, the method presented here is sufficiently general to

incorporate a wide range of surface parameters in the physical domain. We also

note here that the solutions obtained satisfy the imposed natural end conditions

( i.e.(k − 1)g(±a) + β(±a) = 0, (k − 1)f(±a) + α(±a) = 0). For example, in the
Mode-I case, end values for g(t) and β (t) are estimated as:

g(−1) = 0.8658, β(−1) = −0.9523, when σ∞yy/μ = 0.3, k = 2.1.

The corresponding natural end conditions in this case are given as

(k − 1)g(±a) + β(±a) = 0

which are clearly satisfied by substituting the obtained end values at t = −1.

4.4.2 Stress Distributions Near the Crack Tip

Based on the numerical estimations of α(t), β (t), f(t) and g(t), we can derive a

semi-analytic solution for the mode I and mode II cases via Eqs. (4.53-54) and

Eqs. (4.58-59), respectively. For example on the x−axis, we obtain from Eq. (4.6):

σyy − iσxy = 2Ω′(z)− θ′ (z) .

Therefore, from Eqs. (4.53-54) and Eqs. (4.58-59), the corresponding stress distri-

bution can be expressed as

σyy =
1

π

∫ +a

−a

g(t)

t− zdt+
1

2
σ∞yy −

1

2π

∫ +a

−a

β(t)

t− zdt, (Mode-I), (4.63)
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σxy =
1

π

∫ +a

−a

f(t)

t− zdt+
1

2
σ∞xy −

1

2π

∫ +a

−a

α(t)

t− zdt, (Mode-II). (4.64)

By expanding the Cauchy integrals in Eqs. (4.63-4), we have that

∫ +a

−a

g(t)

t− z = g(±a) ln r +O(1),
∫ +a

−a

β(t)

t− z = β(±a) ln r +O(1),∫ +a

−a

f(t)

t− z = f(±a) ln r +O(1),
∫ +a

−a

α(t)

t− z = α(±a) ln r +O(1), (4.65)

where r = |z − a| . This suggests, together with the bounded end values of g (t),
β (t), f (t) and α (t), the corresponding stress fields, in the plane crack case, again

reduces from a strong square root singularity to a weaker logarithmic singularity

(see the results in Figs. 28-29). However, one interesting exceptional case is found

in the case of Mode-I fracture when σo = 0. In this case, the corresponding stress

distributions continue to exhibit the strong square root singularity at the crack-

tips even in the presence of these surface effects. This can be immediately seen

from Eq. (4.28b) by setting σo = 0 :

2

π

∫ +a

−a

g(t)

t− todt+ 2σ
∞
yy −

1

π

∫ +a

−a

β(t)

t− todt = 0.

The corresponding solution of this integral equation has been well-studied and

indeed demonstrates a strong square root singularity at the crack-tips (see, for

example, [65,66]).
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Figure 28: Stress distribution with respect to surface parameter (Se1), σ∞yy/μ =

0.3
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Figure 29: Stress distribution with respect to surface parameter (Se2), σ∞xy/μ =

0.3

As we see from Figs. (28-29), the solutions in both cases (mode-I & mode-II)
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reduce to those of the classical case when the surface effects become negligible.

Further, the graphs clearly indicate that the surface effects can effectively reduce

the corresponding stress distributions. In this regard, since the surface parame-

ters (Se1, Se2) are controlled by variations of the crack size, our results also

indicate that the corresponding stresses are strongly dependent on crack size. In

fact, size dependency of stress fields in materials are the dominant phenomena

in the deformations of small scale structures such as nano-inhomogeneities, nano-

composite materials and dislocations in sufficiently small-scale structures (see, for

example, [16, 44]). We also note here that, in view of Eqs. (4.18-19) and the as-

sociated derivations in sections 3.1-3.3, the general solution for the mixed mode

problem (mode-I + mode-II) reduces to that of the mode-I and mode-II cases, sep-

arately, even when the surface effects are incorporated (see, the compatible results

from classical fracture mechanics, [65,66]).

Finally, it is of interest to ask whether we may choose particular end conditions

to achieve bounded stresses of the most significant stress components. For example,

in the Mode-I case, the logarithmic singularity in σyy can be removed when

2g(±a) = β (±a)→ [2g(±a) + β (±a)] ln r = 0

(see Eqs. (4.63) and (4.65)). By finding solutions of the corresponding singular

integro differential equations which now involve hyper-singular terms (see Eqs.

(4.24a) and (4.25a)). In this respect it is worth emphasizing that in the case of

Mode-II fracture with σo �= 0; only ONE end condition is required at each crack-tip
to remove the entire singularity (i.e. 2f(±a) = α (±a) ,see also [84]). However, in
these cases, the existence of admissible, bounded solutions is yet to be decided.
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4.5 SUMMARY

Through this Chapter, we have considered the plane deformations of a linearly

elastic solid in the cases where either a Mode-I or Mode-II crack is present and

when the contributions of surface effects are taken into account. Complete semi-

analytic solutions are obtained (valid through the entire domain of interest) by

solving a series of two coupled Cauchy singular integro-differential equations

It is shown that the incorporation of surface effects reduces the degree of sin-

gularity from the classical strong square-root singularity to a weaker logarithmic

singularity in the plane case with one exception when surface tension is removed

(σo = 0) from the Mode-I fracture system. In this case the corresponding stress

fields continue to exhibit the strong square root singularity. The incorporation

of surface effects can effectively reduce the corresponding stress distributions and

results in elastic responses being size dependent. In addition, we found that the

general solution for the mixed mode problem (Mode-I + Mode-II) reduces to those

of the mode-I and mode-II cases, separately, even when the surface effects are in-

corporated. Finally, the analysis of end conditions of the corresponding coupled

BVPs reveals that only one end condition can be imposed, at each crack tip, in

each case (Mode-I and Mode-II, respectively) except Mode-II fracture case with

σo = 0. In this case, not a single end condition can be imposed at each crack tip.
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CHAPTER 5

THE EFFECTS OF SURFACE ELASTICITY ON A MODE-III

INTERFACE CRACK

5.1 INTRODUCTION

The analysis of the problem of a crack at the interface between dissimilar elastic

materials is critical for the understanding of the mechanics and fracture mecha-

nisms of advanced composite materials (for example, laminar and fiber-reinforced

composites) where, for example, a high possibility of material debonding and crack-

ing or sliding at the interface exists. Consequently, this problem has been the

subject of intense research and discussion in the literature.

Throughout this chapter, we consider anti-plane deformations of a linearly elas-

tic solid consisting of two (perfectly) bonded dissimilar isotropic elastic materials

(here represented by two bonded half-spaces) in the presence of a crack along the

material interface. The methodology and techniques developed in the previous

chapters (in the case of homogeneous crack problems) are further extended to the

present case. Most importantly, we project surface properties in a way that each

crack face (upper and lower faces) has its own distinct elastic properties which are

different from those of each of the bulk materials (see [94]).

Using complex variable methods, we reduce the corresponding problem to a

system of coupled Cauchy singular integro-differential equations [65] which is then

solved numerically using an adapted collocation technique [77]. This leads to a

complete semi-analytic solution valid throughout the entire domain of interest.
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We show that the corresponding stress fields again exhibit clear signs of size-

dependency and accommodate the results from both the homogeneous crack case

and the classical solution when corresponding conditions are imposed. In particu-

lar, we show that, among various other interesting phenomena, the stress compo-

nent (σxz) demonstrates a discontinuity across the bi-material interface which is

in contrast to the classical results from linear elastic fracture mechanics [66,92].

5.2 ANTI-PLANE INTERFACECRACKPROBLEMWITH

SURFACE EFFECTS

We examine anti-plane deformations of two bonded dissimilar linearly elastic and

homogeneous isotropic solids occupying a cylindrical region in R3 with generators

parallel to the z−axis of a rectangular Cartesian coordinate system and incorpo-

rating a single crack [−a ≤ x ≤ a], (y = 0) on its interface. We assume that the
elastic bi-material cylinder under consideration is infinite in extent and is subjected

to uniform remote shear stress σyz = σ∞yz (see, Fig. 30).
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Figure 30: Schematic of an interface Mode-III crack problem

5.2.1 Equilibrium Equations and Complex-Variable For-

mulation

From Eqs. (2.1-2), the equilibrium and constitutive equations describing the de-

formation of a linearly elastic, homogeneous and isotropic (bulk) solid are given

by

σij = λδijεkk + 2μεij, (5.1a)

εij =
1

2
(ui,j + uj,i) . (5.1b)

The basic governing equations (including expressions of surface stresses) for an

interface Mode-III crack problem are identical to those in the homogeneous Mode-

III fracture case since an elastic bi-material can be viewed as a combined set of two

distinct elastic materials. Therefore, from Eqs. (3.5-9), we obtain the following for
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the equilibrium conditions on the (crack) surface

σsxz,x + [σyz] = 0, (5.2)

the expression for the surface stress

σsxz = 2(μ
s − σo)εxz = μs − σo

μ
σxz,∵ εsxz = εxz, (5.3)

and complex variable representations of the corresponding displacement and stress

components

w = Re[Ω(z)], Ω(z) = w(x, y) + iψ(x, y), (5.4)

dΩ

dz
(z) = Ω′(z) =

∂w

∂x
− i∂w

∂y
=
1

μ
(σxz − iσyz) , (5.5)

σyz =
μi

2

[
Ω′ (z)− Ω′ (z)

]
, σxz =

μ

2

[
Ω′ (z) + Ω′ (z)

]
, (5.6)

where Ω(z) is an analytic function of z in the domain under consideration (in the

present case, S+ ∪ S− = S exterior to the crack as depicted in Fig. 30)

5.2.2 A Traction-free Mode-III Interface Crack Problem in

the Presence of Surface Elasticity

Let the upper half-plane (y > 0, occupied bymaterial “1”) and the lower half-plane

(y < 0, occupied by material “2”) be designated the “+” and “−” sides of the
crack, respectively. The elastic properties of material “1” and material “2” are,

in general, different. We further consider the situation where the interface under

consideration is perfectly bonded, across which the traction (σyz) and displace-

ment (w) are continuous (note that σxz is not necessarily continuous across the

interface.). Then the displacements and stresses for the upper and lower half-plane

can be expressed as

wS
+

=
1

2

[
Ω1(z) + Ω1(z)

]
, for upper half

(
S+, y > 0

)
, (5.7a)
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wS
−
=
1

2

[
Ω2(z) + Ω2(z)

]
, for lower half

(
S−, y < 0

)
, (5.7b)

σS
+

yz =
μ1i

2

[
Ω′1 (z)− Ω′1 (z)

]
, σS

+

xz =
μ1
2

[
Ω′1 (z) + Ω

′
1 (z)

]
, for upper half

(
S+, y > 0

)
,

(5.8a)

σS
−
yz =

μ2i

2

[
Ω′2 (z)− Ω′2 (z)

]
, σS

−
xz =

μ2
2

[
Ω′2 (z) + Ω

′
2 (z)

]
, for lower half

(
S−, y < 0

)
,

(5.8b)

where, subscripts “1” and “2” represent the quantities from the upper half (S+)

plane and lower half plane (S−), respectively. From Eq. (5.2), the boundary

conditions on the (crack) surface can be written as;

∂σsxz
∂x

+ (σyz)
+ − (σyz)− = 0, on the upper face, (5.9a)

∂σsxz
∂x

+ (σyz)
+ − (σyz)− = 0, on the lower face, (5.9b)

where, in the case of the present crack problem, the terms (σyz)− in (5.9a) and

(σyz)
+ in (5.9b) are zero, since no material is defined between the upper and

lower crack face (material discontinuity along the cut y = 0,−a < x < a). In

addition, from Eq. (5.3), the surface conditions on either side of the crack face

[−a < x < a], (y = ±0) can be formulated as follows

(σyz)
+ = −∂σ

s
xz

∂x
= −(μs − σo)+∂

2w+

∂x2
, on the upper face, (5.10a)

(σyz)
− = +

∂σsxz
∂x

= +(μs − σo)−∂
2w−

∂x2
, on the lower face, (5.10b)

where, (μs − σo)+ �= (μs − σo)−, in general. Adding and subtracting Eqs. (5.10
a-b) yields

(σyz)
+ + (σyz)

− = −(μs − σo)+
(
∂2w+

∂x2

)
+ (μs − σo)−

(
∂2w−

∂x2

)
, (5.11a)

(σyz)
+ − (σyz)− = −(μs − σo)+

(
∂2w+

∂x2

)
− (μs − σo)−

(
∂2w−

∂x2

)
, (5.11b)
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where, from Eqs. (5.7a-b)

∂2w+

∂x2
=
1

2

[
Ω′′1(z)

+ + Ω′′1(z)
+
]
,
∂2w−

∂x2
=
1

2

[
Ω′′2(z)

− + Ω′′2(z)
−]
. (5.12)

The aforementioned assumptions imply that the displacements and stresses are

continuous across the bi-material interface away from the crack (y = 0, |x| > a, ).
Therefore, we derive from Eqs. (5.7-8) that

μ1

[
Ω′1 (z)

+ − Ω′1 (z)
+
]
= μ2

[
Ω′2 (z)

− − Ω′2 (z)
−]
,

Ω1(z)
+ + Ω1(z)

+
= Ω2(z)

− + Ω2(z)
−
, y = 0, x > |a| .

By applying the relations Ω′1 (z)
+
= Ω′1 (z)

− , on y = ±0, we have

μ1Ω
′
1 (z)

+ + μ2Ω
′
2 (z)

+ = μ2Ω
′
2 (z)

− + μ1Ω
′
1 (z)

− , (5.13a)

Ω1(z)
+ − Ω2(z)+ = Ω2(z)− − Ω1(z)−. (5.13b)

Now, in view of Eqs. (5.13a-b), define analytic functions θ (z) and ψ (x) in the

whole plane (S+ ∪ S− = S ) cut along L = −a ≤ x ≤ a , y = 0 as

μ1Ω
′
1 (z) + μ2Ω

′
2 (z) = μ2Ω

′
2 (z) + μ1Ω

′
1 (z) ≡ θ (z) , (5.14a)

Ω′1(z)− Ω′2(z) = Ω′2(z)− Ω′1(z) ≡ ψ (z) . (5.14b)

(Again, with the surface energy θ (z) �= 0, as w+ �= w− on −a < x < a, y =
±0). Therefore, Eq. (5.14a) can be re-written for the upper and lower half planes
as

Ω′2 (z) ≡ −
μ1
μ2
Ω′1 (z) +

1

μ2
θ (z) , for upper half plane

(
S+

)
, (5.15a)

Ω′1 (z) ≡ −
μ2
μ1
Ω′2 (z) +

1

μ1
θ (z) , for lower half plane

(
S−

)
. (5.15b)

From (5.15a-b), Eq (5.14b) becomes

Ω′1 (z) =
μ2ψ (z)

μ1 + μ2
+

1

μ1 + μ2
θ (z) , for upper half plane

(
S+

)
, (5.16a)
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Ω′2 (z) =
μ1ψ (z)

μ1 + μ2
+

1

μ1 + μ2
θ (z) , for lower half plane

(
S−

)
. (5.16b)

Then, by applying Eqs. (5.15-16), Eq. (5.12) can be re-formulated in terms of

ψ (z) and θ (z) as:

∂2w+

∂x2
=
1

2

[
μ2

μ1 + μ2

(
ψ′ (z)+ − ψ′ (z)−)

+
1

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

)]
, (5.17a)

∂2w−

∂x2
=
1

2

[
μ1

μ1 + μ2

(
ψ′ (z)− − ψ′ (z)+)

+
1

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

)]
, (5.17b)

By substituting Eqs. (5.17a-b) back into Eqs. (5.11a-b), we have that

(σyz)
+ + (σyz)

− = − As

μ1 + μ2

(
ψ′ (z)+ − ψ′ (z)−

2

)
− Bs

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

2

)
,

(5.18a)

(σyz)
+ − (σyz)− = − Cs

μ1 + μ2

(
ψ′ (z)+ − ψ′ (z)−

2

)
− Ds

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

2

)
,

(5.18b)

where

As ≡ μ2(μs − σo)+ + μ1(μs − σo)−, Bs ≡ (μs − σo)+ − (μs − σo)−,

Cs ≡ μ2(μs − σo)+ − μ1(μs − σo)−, Ds ≡ (μs − σo)+ + (μs − σo)−.

In addition, now the left-hand side of Eqs. (5.18a-b) can be expressed via Eqs.

(5.8a-b) and (5.15a-b) as;

(σyz)
+ + (σyz)

− =
i

2

[
2μ1Ω

′
1 (z)

+ + 2μ2Ω
′
2 (z)

− − (
θ (z)+ + θ (z)−

)]
,

(σyz)
+ − (σyz)− = i

2

[
θ (z)+ − θ (z)−]

.

Therefore, we obtain from Eqs. (5.16a-b) that

(σyz)
+ + (σyz)

− =
i

2

[
2μ1μ2
μ1 + μ2

(
ψ (z)+ + ψ (z)−

)
+
μ1 − μ2
μ1 + μ2

(
θ (z)+ − θ (z)−)]

,

(5.19a)

(σyz)
+ − (σyz)− = i

2

[
θ (z)+ − θ (z)−]

. (5.19b)
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Consequently, from Eqs. (5.19a-b), Eqs. (5.18a-b) take the following forms

i

[
2μ1μ2
μ1 + μ2

(
ψ (z)+ + ψ (z)−

)
+
μ1 − μ2
μ1 + μ2

(
θ (z)+ − θ (z)−)]

(5.20a)

= − As

μ1 + μ2

(
ψ′ (z)+ − ψ′ (z)−)− Bs

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

)
,

i
[
θ (z)+ − θ (z)−]

= − Cs

μ1 + μ2

(
ψ′ (z)+ − ψ′ (z)−)− Ds

μ1 + μ2

(
θ′ (z)+ + θ′ (z)−

)
.

(5.20b)

Next, if we write the unknowns ψ (z) and θ (z) as Cauchy integrals [65], we have

that

ψ (z) =
1

2iπ

∫ +a

−a

f (t)

t− zdt+
μ1 + μ2
iμ1μ2

[
σ∞yz

]
,

ψ′ (z) =
1

2πi

∫ +a

−a

f (t) dt

(t− z)2 = −
[
f (t)

t− z
]a
−a
+

1

2πi

∫ +a

−a

f ′ (t) dt
t− z , (5.21)

where,

f (to) = ψ (z)
+ − ψ (z)− .

In view of Eqs. (5.20) and (5.21),
(
θ (z)+ − θ (z)−)

need to be purely imaginary.

Therefore, we express the unknown θ as;

θ (z) =
1

2iπ

∫ +a

−a

iα (t)

t− z dt,

θ′ (z) =
1

2πi

∫ +a

−a

iα (t) dt

(t− z)2 = −
[
iα (t)

t− z
]a
−a
+

1

2πi

∫ +a

−a

iα′ (t) dt
t− z , (5.22)

where,

iα (to) = θ (z)
+ − θ (z)− .

In addition, the boundary values of on the crack faces can be obtained as (see [65])

ψ (z)+ =
1

2
f (to) +

1

2iπ

∫ +a

−a

f (t)

t− todt+
μ1 + μ2
iμ1μ2

[
σ∞yz

]
, (5.23a)

ψ (z)− = −1
2
f (to) +

1

2iπ

∫ +a

−a

f (t)

t− todt+
μ1 + μ2
iμ1μ2

[
σ∞yz

]
. (5.23b)

θ (z)+ =
1

2
iα (to) +

1

2iπ

∫ +a

−a

iα (t)

t− todt, (5.24a)
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θ (z)− = −1
2
iα (to) +

1

2iπ

∫ +a

−a

iα (t)

t− todt. (5.24b)

Finally, from Eqs. (5.20-24), we obtain the following Cauchy singular integro-

differential equations for the unknowns f (t) and α(t), t ∈ (−a, a) :
2μ1μ2
π

∫ +a

−a

f (t)

t− todt+ 4 (μ1 + μ2)
[
σ∞yz

]− (μ1 − μ2)α (to)
= −Asf ′ (to)− B

s

π

∫ +a

−a

α (t)

(t− to)2
dt, (5.25a)

α (to) =
Cs

μ1 + μ2
f ′ (to) +

Ds

π (μ1 + μ2)

∫ +a

−a

α (t)

(t− to)2
dt, (5.25b)

As in the analysis of the uniqueness results in section (3.23), the natural bound-

ary conditions guaranteeing a unique solution of the BVPs for the anti-plane crack

problem are given by

(
w+,x + w

−
,x

)
w = 0, at each crack tip. (5.26)

Eq. (5.26) must again be applied for the present BVP. However, in this case,

the mechanics of a Mode-III fracture for an interface crack are different in that,

in general, w (±a) �= 0 at each tip. Consequently, a single end condition (at each
crack tip) can be imposed to satisfy equation (5.26). For example, either f(±a) = 0
or α (±a) = 0 at each tip. In the following analysis, the admissible end condition is
chosen in such a way that the hyper-singular differential equations in (5.25a-b) can

be reduced to Cauchy-singular differential equations. More precisely, by imposing

α (±a) = 0 at each crack tip, we obtain from Eqs. (5.21-22) that

θ′ (z) =
1

2πi

∫ +a

−a

iα (t) dt

(t− z)2 =
1

2πi

∫ +a

−a

iα′ (t) dt
t− z .

Therefore, Eqs. (5.25a-b) are now reduced to the following Cauchy singular integro-

differential equations:

2μ1μ2
π

∫ +a

−a

f (t)

t− todt+ 4 (μ1 + μ2)
[
σ∞yz

]− (μ1 − μ2)α (to)
= −Asf ′ (to)− B

s

π

∫ +a

−a

α′ (t)
t− todt, (5.27a)
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α (to) =
Cs

μ1 + μ2
f ′ (to) +

Ds

π (μ1 + μ2)

∫ +a

−a

α′ (t)
t− todt. (5.27b)

5.3 SOLUTIONOF SINGULAR INTEGRO-DIFFERENTIAL

EQUATIONS BY A COLLOCATION METHOD

The equations appearing in Eqs.(5.27a-b) are coupled first order Cauchy singular-

integro differential equations. Although, similar types of equations have been well-

studied, classical methods for their solution are not directly applicable here without

additional mathematical intervention. In this section, we employ the T−1 operator

from [92, 93] and a collocation method [77] to analyze the problems mentioned

above. By replacing α (to) in Eq. (5.27a) and f ′(to) in Eq. (5.27b) by their

counterparts, we derive the following new system of equations;∫ +a

−a

−2Csμ1μ2
As

f (t) +
(
Ds − CsBs

As

)
α′ (t)

t− to dt

= π

(
μ1 + μ2 −

Cs(μ1 − μ2)
As

)
α (to) +

4πCs (μ1 + μ2)

As
[
σ∞yz

]
. (5.28a)

∫ +a

−a

−2μ1μ2f (t) +
(
Ds(μ1−μ2)
μ1+μ2

−Bs
)
α′ (t)

t− to dt

= π

(
As − C

s(μ1 − μ2)
μ1 + μ2

)
f ′ (to) + 4π (μ1 + μ2)

[
σ∞yz

]
, (5.28b)

Set
t

a
= x in Eqs. (5.28a-b) and obtain

∫ +1

−1

−2Csμ1μ2
As

f (ax) +
(
Ds − CsBs

As

) dα(ax)
d(ax)

a (x− xo) (a) dx (5.29a)

= π

(
μ1 + μ2 −

Cs(μ1 − μ2)
As

)
α (axo) +

4πCs (μ1 + μ2)

As
[
σ∞yz

]
.

∫ +1

−1

−2μ1μ2f (ax) +
(
Ds(μ1−μ2)
μ1+μ2

−Bs
)
dα(ax)
d(ax)

a (x− xo) (a) dx (5.29b)

= π

(
As − C

s(μ1 − μ2)
μ1 + μ2

)
df(axo)

d(axo)
+ 4π (μ1 + μ2)

[
σ∞yz

]
,
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Rewriting x → t, xo → to and further defining f(at) = u(t), α(at) = η(t), from

Eqs. (5.29a-b),

∫ +1

−1

−2Csμ1μ2
As

u(t) +
(
Ds

a
− CsBs

aAs

)
η′(t)

t− to dt

= π

(
μ1 + μ2 −

Cs(μ1 − μ2)
As

)
η(to) +

4πCs (μ1 + μ2)

As
[
σ∞yz

]
. (5.30a)

∫ +1

−1

−2μ1μ2u(t) +
(
Ds(μ1−μ2)
a(μ1+μ2)

− Bs

a

)
η′(t)

t− to dt

= π

(
As

a
− C

s(μ1 − μ2)
a (μ1 + μ2)

)
u′(to) + 4π (μ1 + μ2)

[
σ∞yz

]
, (5.30b)

We now utilize the first inverse operator T−11stdefined in the following manner (see

[92,93]) ;

T−11stψ (t) =

√
1− t2o
π

∫ 1

−1
ψ (t) dt−

√
1− t2o
π2

∫ 1

−1

ψ (t)

(t− to)
√
1− t2dt, to ∈ (−1, 1),

(5.31)

T
(
T−1ψ

)
= ψ,

It follows then from Eq. (5.30a) that

− 2C
sμ1μ2
As

u(to) +

(
Ds

a
− C

sBs

aAs

)
η′(to) (5.32)

=

√
1− t2o
π

∫ 1

−1

[
−2C

sμ1μ2
As

u(t) +

(
Ds

a
− C

sBs

aAs

)
η′(t)

]
dt

−
√
1− t2o
π

∫ 1

−1

(
μ1 + μ2 − Cs(μ1−μ2)

As

)
η(t) + 4Cs(μ1+μ2)

As

[
σ∞yz

]
(t− to)

√
1− t2 dt.

Similarly, by applying the second inverse operator T−12nd as defined by the relation

in [77]

T−12ndψ (t) =
1

π
√
1− t2o

∫ 1

−1
ψ (t) dt− 1

π2
√
1− t2o

∫ 1

−1

√
1− t2ψ (t)
t− to dt, to ∈ (−1, 1),

(5.33)

T
(
T−1ψ

)
= ψ,
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we have from Eq. (5.30b) that

√
1− t2o

[
−2μ1μ2u(to) +

(
Ds(μ1 − μ2)
a (μ1 + μ2)

− B
s

a

)
η′(to)

]
(5.34)

=
1

π

∫ 1

−1

[
−2μ1μ2u(t) +

(
Ds(μ1 − μ2)
a (μ1 + μ2)

− B
s

a

)
η′(t)

]
dt

− 1

π

∫ 1

−1

√
1− t2
t− to

[(
As

a
− C

s(μ1 − μ2)
a (μ1 + μ2)

)
u′(t) + 4 (μ1 + μ2)

[
σ∞yz

]]
dt.

If we assume that the functions u and η have an (approximate) expansion of the

form

u(to) =
N∑
m=0

amTm (to) , η(to) =
N∑
m=0

bmTm (to) , m = 0, 1, 2, ..., (5.35)

where Tm (to) represents the m th Chebychev polynomial of the first kind. By

utilizing properties of the Chebychev polynomials presented in sections 3.3.3 and

4.3.1, the Eqs. (5.32) and (5.34) can then be transformed into the following system

of equations

N∑
m=0

⎡
⎢⎣ amTm (to)

{
2μ1μ2

√
1− t2o +m

(
As

a
− Cs(μ1−μ2)

a(μ1+μ2)

)}
− 2μ1μ2

π
am

(
1+(−1)m
1−m2

)
+bm

(
Ds(μ1−μ2)
a(μ1+μ2)

− Bs

a

) {
(1−(−1)m)

π
−√

1− t2omUm−1 (to)
}

⎤
⎥⎦

= −4to (μ1 + μ2)
[
σ∞yz

]
, (5.36)

where

bm =

am

(
−2Csμ1μ2

As

) [√
1−t2o
π

(
1+(−1)m
1−m2

)
− Tm (to)

]

Um−1 (to)
{(

Ds

a
− CsBs

aAs

)
m+

√
1− t2o

(
μ1 + μ2 − Cs(μ1−μ2)

As

)}
− (1−(−1)m)

√
1−t2o

π

(
Ds

a
− CsBs

aAs

) .
(5.37)

We now select the set of collocation points as given by to = toi = − cos( iπ
N
) for

i = 1, 2, ..., N − 1. In addition, by evaluating Cheychev polynomials of the first
kind Tm(toi) and the second kind Um−1(toi) with respect to each collocation point,

we find that

Tm

(
− cos

(
iπ

N

))
= − cos

(
imπ

N

)
, Um−1

(
− cos

(
iπ

N

))
=
sin

(
miπ
N

)
sin

(
iπ
N

) . (5.38)
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Consequently, in view of Eq. (39), Eqs. (37-38) further reduce to the following

system of linear equations

N∑
m=0

⎡
⎢⎢⎣
−am cos

(
imπ
N

) {
2μ1μ2

√
1− (

cos( iπ
N
)
)2
+m

(
As

a
− Cs(μ1−μ2)

a(μ1+μ2)

)}
− 2μ1μ2

π
am

(
1+(−1)m
1−m2

)
+bm

(
Ds(μ1−μ2)
a(μ1+μ2)

− Bs

a

) {
(1−(−1)m)

π
−

√
1− (

cos( iπ
N
)
)2
m

(
sin(miπN )
sin( iπN )

)}
⎤
⎥⎥⎦

= 4 cos(
iπ

N
) (μ1 + μ2)

[
σ∞yz

]
, (5.39)

where

bm = Kam,

K =

(
−2C

sμ1μ2
As

) ⎡
⎣

√
1− (

cos( iπ
N
)
)2

π

(
1 + (−1)m
1−m2

)
+ cos

(
imπ

N

)⎤
⎦

× [ sin
(
miπ
N

)
sin

(
iπ
N

)
⎧⎨
⎩

(
Ds

a
− C

sBs

aAs

)
m+

√
1−

(
cos(

iπ

N
)

)2 (
μ1 + μ2 −

Cs(μ1 − μ2)
As

)⎫⎬
⎭

−
(1− (−1)m)

√
1− (

cos( iπ
N
)
)2

π

(
Ds

a
− C

sBs

aAs

)
]−1 (5.40)

or 1 ≤ i ≤ N − 1.

5.4 RESULTS AND DISCUSSION

In this section, the numerical solution of Eqs. (5.39-40) is performed for a range of

surface parameters. The listed values are estimated properties of "GaN" obtained

from the work of Sharma and Ganti in [16].

Se =
μs − σo
a(μ1 + μ2)

: 8.65× 10−5 < Se < 0.0865, 10nm < a < 10μm,

μs = 161.73(J/m2), σo = 1.3(J/m
2), μ = 168(Gpa). (5.41)

Throughout the analysis, we have considered the situation where the material

properties of the upper half plane are assumed to be ten times bigger than those
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of the lower half plane (i.e. μ1 = 168(Gpa), μ2 = 16.8(Gpa)), whereas the surface

material properties on upper and lower crack face are set to be equal (i.e. (μs −
σo)

+ = (μs − σo)−). This is only because, we currently have very limited sources
of surface material properties available [16]. However, the method presented here

is sufficiently general in that it incorporates the case in which the surface material

properties from the upper and lower crack face are different ((μs − σo)+ �= (μs −
σo)

−, see Eqs. (5.18a-b) and (5.39-40)) and a wide range of surface parameters in

the physical domain.

5.4.1 Comparison with Known Classical Results

We first examine how the solution obtained here, in the presence of surface effects,

deviates from the solution of the classical interface anti-plane crack problem. The

corresponding analytical solution of the latter problem can be found in [65,66]:

ψ (z) =

(
μ1 + μ2
μ1μ2

) −iσ∞yzz√
z2 − a2 .

Evaluating ψ (z) at (−a < t < a) , we have that

ψ (z)+ =

(
μ1 + μ2
μ1μ2

) −iσ∞yzt√−(a2 − t2) =
(
μ1 + μ2
μ1μ2

) −σ∞yzt√
a2 − t2 , on the upper face,

(5.42a)

ψ (z)− =
(
μ1 + μ2
μ1μ2

)
iσ∞yzt√−(a2 − t2) =

(
μ1 + μ2
μ1μ2

)
σ∞yzt√
a2 − t2 , on the lower face.

(5.42b)

Then the corresponding difference between the upper and lower faces can be defined

from Eqs. (5.21a-b) by

ψ (z)+ − ψ (z)− = f(t) =
(
μ1 + μ2
μ1μ2

) −2σ∞yzt√
a2 − t2 , −a < t < a. (5.43)

Also, in the classical case, θ (z) is found to be zero. Thus, we have that

θ (z)+ − θ (z)− = α (t) = 0. (5.44)
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Returning to our problem, the values of f(t) can be estimated using Eqs. (5.39-40)

and are plotted in Figs. 32 and 34, where the parameter Se is varied by changing

the dimension of the crack (i.e. 20nm < 2a < 20μm ). The adopted numerical

method performs well ensuring rapid convergence (see Fig. 31).
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Figure 31: Convergence of the solution f(t) with respect to number of iterations(N)
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Figure 32: The solution f (t) (Mode-III interface crack), where σ∞yz
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= 0.1
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Figs. 32-33 clearly indicates that our solution reduces to that of the classical
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case as the surface effect becomes negligible. In particular, since we have non-zero

values for f(±a) �= 0 at the crack tip (see Fig 31-32 and 34), the corresponding

stresses (σyz) must be singular there. We have also found that, in contrast to

classical results (see Eq. (5.44)), α (t) has indeed non-zero values (see Fig. 33)

resulting in a noticeable contribution to the stress field especially on the real axis.

In this respect, the corresponding stresses (σxz) are finite at the crack tips because

α (t) is bounded at these points. These will be the subject of the following section.

Finally, our solution accommodates that of the classical result in both single ma-

terial Mode-III and bi-material Mode-III fractures cases (See Fig. 34).
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5.4.2 Analysis of the Stress Distribution under the Influ-

ence of Surface Effects

From Eqs. (5.8a-b) and (5.16a-b), stresses (σyz) on the upper and lower half plane

can be determined by

σS
+

yz =
μ1i

2 (μ1 + μ2)

[
μ2ψ (z) + θ (z)− μ2ψ (z)− θ (z)

]
,

σS
+

xz =
μ1

2 (μ1 + μ2)

[
μ2ψ (z) + θ (z) + μ2ψ (z) + θ (z)

]
, for upper half plane

(
S+, y > 0

)
,

σS
−
yz =

μ2i

2 (μ1 + μ2)

[
μ1ψ (z) + θ (z)− μ1ψ (z)− θ (z)

]
,

σS
−
xz =

μ2
2 (μ1 + μ2)

[
μ1ψ (z) + θ (z) + μ1ψ (z) + θ (z)

]
, for lower half plane

(
S−, y < 0

)
,

where, the complex potentials ψ (t) and θ (t) can be obtained via Eqs. (5.21) and

(5.22) with known solutions of f(t) and α (t). We have found that, in contrast

to the classical case (where surface effects are completely neglected), the major

stress component (σyz) at the crack tips exhibits a weaker logarithmic singularity

rather than the classical strong square root singularity. However, the minor stress

component (σxz), different to those predicted by the classical LEFM theory, is non-

zero and remains finite at the crack tips because α (t) is bounded at the tips (i.e.

α (±a) = 0). These can be immediately seen by expanding the Cauchy integrals
in the corresponding stress expressions. More precisely, We obtain the following

expansions at the crack tips

σ+yz = −
μ1
2
Im

[
μ2

2iπ (μ1 + μ2)
(f (±a) ln r) + 1

iμ1

[
σ∞yz

]
+

1

2π (μ1 + μ2)
(α (±a) ln r) +O (1)

]
,

σ+xz =
μ1
2
Re

[
μ2

2iπ (μ1 + μ2)
(f (±a) ln r) + 1

iμ1

[
σ∞yz

]
+

1

2π (μ1 + μ2)
(α (±a) ln r) +O (1)

]
.

The above further reduces

σ+yz = −
μ1
2

[
μ2

2π (μ1 + μ2)
(f (±a) ln r) + 1

μ1

[
σ∞yz

]
+O (1)

]
,

σ+xz =
μ1
2

[
1

2π (μ1 + μ2)
(α (±a) ln r) +O (1)

]
.
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Clearly σyz exhibit a weaker logarithmic singularity, whereas σxz is finite at the

tips, because f (±a) �= 0 and α (±a) = 0, at the crack tips, respectively. More im-
portantly, the results in Figs. 35-36 illustrate the fact that σyz is continuous across

the bi-material interface, whereas σxz jumps across the interface. The result is in

sharp contrast to the classical fracture mechanics solution and due mainly to the

non-zero contribution of the complex potential θ(z) in the presence of the surface

effects.
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Figure 35: Stress distribution (σyz) with respect to surface parameter, where
σ∞yz
μ1+μ2

= 0.1
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Figure 36: The jump of stress (σxz) across the bi-material interface

Remark 4 In the theory of linear elastic fracture mechanics, σxz is continuous

across the bi-material interface, since its values are zero on either side of the

interface

σ+xz =
μ1

2 (μ1 + μ2)

[
μ2ψ (z) + μ2ψ (z)

]
= σ−xz =

μ2
2 (μ1 + μ2)

[
μ1ψ (z) + μ1ψ (z)

]
= 0,

∵ ψ (z) = Im, on y = ±0, x > |a| .

However, the interface condition under consideration indicates that traction (σyz)

and displacements (w) are continuous across the interface, yet σxz are not nec-

essarily continuous. Perhaps, the continuity in stress (σ+xz = σ−xz) indicates the

symmetrical nature of the problem in which the solution of Mode-III interface crack

problem can be obtained by superposing solutions of two half-plane problems with

distinct material properties on either side of the interface. In the case where the

surface elasticity is present, the symmetry breaks down due to the effect of surface
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mechanics and therefore, the above mentioned statement can no longer be satisfied.

In fact, stress (σxz) on both sides of the interface can be estimated as

σ+xz =
μ1

2 (μ1 + μ2)

[
θ (z) + θ (z)

]
, on y = 0+, x > |a| ,

σ−xz =
μ2

2 (μ1 + μ2)

[
θ (z) + θ (z)

]
, on y = 0−, x > |a| .

This clearly indicates that the estimated stresses differ with the material properties

(μ1, μ2) of the upper and lower half-plane.

Finally, we see from Fig. 35 that stress distributions along the real axis increase

when surface effects become negligible and eventually converge to the classical

result. Further, since the surface parameter Se in Eq. (5.41) is controlled by

variations in the crack length, our results also indicate that the corresponding

stresses are strongly dependent on crack size [16,44].

5.5 SUMMARY

In this chapter, we have incorporated the effects of surface elasticity into a classical

Mode-III interface crack problem arising in the anti-plane shear deformations of a

linearly elastic bi-material. It is shown that the major stress component (σyz) at

the crack tips exhibits a weaker logarithmic singularity rather than the classical

strong square root singularity, even in the case of an interface crack problem. In

particular, we note that the minor stress contributor (σxz) is finite at the crack tips

and jumps across the bi-material interface, in contrast to the classical result from

the LEFM theory. It is also again confirmed that, in the case of an interface crack,

surface effects, acting as reinforcement, effectively reduce the amount of stresses

and lead to the corresponding stress fields being size-dependent.

It is concluded that, in contrast to the homogeneous Mode-III crack problem,

a single end condition can be imposed at each crack tip chosen here as α (±a) =
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0 in order to reduce the corresponding systems of integro-differential equations:

from hyper-singular to Cauchy singular-integro differential equations. Other choice

of end conditions can be made, for example, f(±a) = 0 at the tips, instead of

prescribing α (±a) = 0. This would result in the major stress components (σyz)

remaining finite (yet σxz remains unbounded at the crack tips). However this

requires solving a system of coupled hyper-singular differential equations which

have yet to be studied. The solution and analysis presented in this chapter, are

sufficiently general in that, they accommodate the results both obtained from the

homogeneous material case (in Chapter. 3) by imposing μ1 = μ2 and (μ
s−σo)+ =

(μs − σo)−, and the classical results, when the surface effects are neglected in the
corresponding system.
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CHAPTER 6

THE EFFECTS OF SURFACE ELASTICITY ON AN INTERFACE

CRACK IN PLANE DEFORMATIONS

6.1 INTRODUCTION

Plane-strain deformations of a linearly elastic bi-material incorporating cracks in

its interfacial region has drawn considerable attention from both theoreticians and

practitioners in the fields of composite engineering and fracture mechanics. Tradi-

tional attempts in the modeling and solution of such problems have incorporated

the classical assumptions of LEFM theory which, unfortunately have led to various

inconsistencies, for example, the rapid oscillation in both stress and displacement

fields in the vicinity of the crack further leading to the possibility of material in-

terpenetration between two dissimilar materials (see, for example, [66, 70]). As

discussed earlier, the region near the surface of a solid material experiences lo-

cal environment changes resulting in the deviation of properties as they approach

the boundaries of a bulk material. Consequently, in the case of interface crack

problems, a more accurate analysis can be achieved by incorporating a separate

description of surface mechanics on either side of the crack surfaces (faces).

In this respect, we examine, throughout this chapter, a bi-material crack-matrix

system undergoing plane-strain deformations and subjected to uniform remote

tension and in-plane shear in the presence of surface elasticity. More precisely, we

formulate governing equations in order to include surface effects onto the surfaces

of the interface crack [95] using the Gurtin-Murdoch surface elasticity model [26,
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34, 47]. By employing complex variable methods, we reduce the corresponding

BVP to a coupled system of singular integro-differential equations. This system

is highly complicated in nature so much so that the numerical method adopted

in the previous chapters is not immediately applicable. Instead, we introduce an

effective, yet simple method (referred to here as a ‘direct method’) through which

the corresponding numerical procedure is simplified immensely. The efficiency and

accuracy of the direct method is also cross-checked with the results obtained using

the conventional method. A complete semi-analytic solution (valid in the entire

domain of interest) is then obtained in both Mode-I and Mode-II fracture cases.

It is shown that, among other various interesting phenomena, the introduc-

tion of surface elasticity results in the corresponding stress distribution being size-

dependent and leads to logarithmic singular stresses at the crack tips. In particular,

we show that the addition of surface mechanics on the faces of the interface crack

also eliminates the oscillatory behavior of the corresponding solutions leading to

a smooth and non-oscillatory stress distribution within the entire domain under

consideration.

6.2 PLANE-STRAIN INTERFACE CRACK PROBLEM

WITH SURFACE EFFECTS

We consider plane deformations of a linearly elastic and homogeneous isotropic

bi-material solid incorporating a single traction-free (tractions on the crack faces

are zero. i.e. tyy = txy = 0 on −a ≤ x ≤ a, y = ±0.) interface crack subjected to
uniform remote tension (σyy = σ∞yy, Mode-I) and in-plane shear (σxy = σ

∞
xy, Mode-

II) stresses (see, Fig. 37).

109



-a a

+S

S-

X

Y

xy

),,( o
ssCrack face

),,( 222 kMaterial 2

),,( 111 kMaterial 1

xy

yy

yy

Figure 37: Schematic of a plane-strain interface crack problem

6.2.1 Governing Equations and Complex Variable Formu-

lation

The equilibrium and constitutive equations for a linearly elastic, homogeneous

isotropic material is given by (See, Eqs. (2.1-2))

σij = λδijεkk + 2μεij, (6.1a)

εij =
1

2
(ui,j + uj,i) . (6.1b)

Because the plane-strain deformations of an elastic bi-material solid can be re-

garded as a combined description of two distinct materials occupying each part of
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the bi-material, the governing equations and the corresponding problem settings

from the homogeneous Mode-I and Mode-II fracture problems are still valid in the

present case. Therefore, in the absence of body forces, the corresponding governing

equations of two-dimensional elasticity are given directly from Eqs. (4.3a-b) as:

2μ (u+ iv) = κΩ(z)− zΩ′(z)− w (z), (6.2a)

σyy − iσxy = Ω′(z) + Ω′(z) + zΩ′′(z) + w′ (z), (6.2b)

Here Ω(z) and w (z) are analytic functions of the complex variable z = x + iy in

the cut plane S+ ∪ S− = S outside the crack (see Fig. 37.) and κ is defined as:

κ =
λ+ 3μ

λ+ μ
= 3− 4υ (for plane-strain),

where υ is Poisson’s ratio taking values in the range 0 < υ < 1
2
. Thus, κ satisfies

the following inequality

1 < κ < 3.

In addition, from Eqs. (4.7-9), the equilibrium conditions on the crack surface and

the expression of the surface stress are given respectively as:

[σyy − iσxy] = iσsxx,x − σo
∂2ν

∂x2
. (6.3)

σsxx,x =

∂

(
σo + (2μ

s − σo + λs) ∂u
∂x

)
∂x

= (2μs − σo + λs) ∂
2u

∂x2
. (6.4)

We note here that the coherency assumption between the surface and the adjoined

bulk material is again adopted in the present case so that εsxx = εxx. Finally from

Eqs. (6.3-4), we obtain that

[σyy − iσxy] = iJo∂
2u

∂x2
− σo∂

2ν

∂x2
, where Jo ≡ 2μs − σo + λs. (6.5)
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6.2.2 A Traction-free Interface Crack Problem in the Pres-

ence of Surface Elasticity

Let us now consider an linearly elastic bi-plane where the upper half-plane (y > 0,

occupied by material “ 1”) and the lower half-plane (y < 0, occupied by material

“ 2”) are designated the “−” and “+” sides of the crack, respectively (see. Fig.
37). We note that the elastic properties of material “ 1” and material “ 2” are, in

general, different. Then, from Eqs. (6.2a-b), the displacements and stresses on the

upper (S+) and lower (S−) regions can be written, respectively, as

2μ1 (u+ iv)
S+ = κ1Ω1(z)− zΩ′1(z)− w1 (z),

(σyy − iσxy)S
+

= Ω′1(z) + Ω
′
1(z) + zΩ

′′
1(z) + w

′
1 (z), for upper region (y > 0) .

(6.6a)

2μ2 (u+ iv)
S− = κ2Ω2(z)− zΩ′2(z)− w2 (z),

(σyy − iσxy)S
−
= Ω′2(z) + Ω

′
2(z) + zΩ

′′
2(z) + w

′
2 (z), for lower region (y < 0) ,

(6.6b)

where, again, subscripts “1” and “2” denote the corresponding quantities from the

upper and lower regions, respectively. Here, we confine our interest to the situation

where the interface (y = 0, |x| > a, ) under consideration is perfectly bonded, across
which the tractions (σyy, σxy) and displacements (u, v) are continuous. Then, from

Eqs. (6.6a-b), the stress continuity condition yields

[
Ω1(z) + zΩ′1(z) + w1 (z)

]+
=

[
Ω2(z) + zΩ′2(z) + w2 (z)

]−
.

Noting that Ω′1(z)
+
= Ω1 (z)

− , on y = ±0, we have

Ω1(z)
+ − zΩ′2(z)+ − w2 (z)+ = Ω2(z)− − zΩ′1(z)− − w1 (z)− . (6.7)
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In view of Eq. (11), we define an analytic function θ (z) in the entire plane

(S+ ∪ S− = S) outside the cut L = −a ≤ x ≤ a, y = 0 as:

Ω1(z)− zΩ′2(z)− w2 (z) = Ω2(z)− zΩ′1(z)− w1 (z) ≡ θ (z) . (6.8)

Therefore, we obtain

w1 (z) = Ω2 (z)− zΩ′1 (z)− θ (z) , (6.9a)

w2 (z) = Ω1 (z)− zΩ′2 (z)− θ (z) . (6.9b)

By substituting Eqs. (6.9a-b) back into Eqs. (6.6a-b), the displacements from the

upper and bottom regions can be re-written as:

2μ1 (u+ iv)
S+ = κ1Ω1(z)− Ω2 (z)− (z − z) Ω′1(z) + θ (z) , (6.10a)

2μ2 (u+ iv)
S− = κ2Ω2(z)− Ω1 (z)− (z − z) Ω′2(z) + θ (z) . (6.10b)

Next, applying the displacement continuity condition, Eqs. (6.10a-b) yield

1

μ1
[κ1Ω1(z)− Ω2 (z) + θ (z)]+ = 1

μ2
[κ2Ω2(z)− Ω1 (z) + θ (z)]− .

Since Ω1 (z)
+ = Ω1 (z)

− on y = ±0, we have

(μ1 + μ2κ1) Ω1(z)
+ − μ1θ (z)+ = (μ2 + μ1κ2) Ω2(z)− − μ2θ (z)− . (6.11)

From Eq. (6.11), we again define an analytic function φ (z) in the entire plane

(S+ ∪ S− = S) outside the cut region (L = −a ≤ x ≤ a, y = 0 ) as:

(μ1 + μ2κ1) Ω1(z)− μ1θ (z) = (μ2 + μ1κ2) Ω2(z)− μ2θ (z) ≡ φ (z) . (6.12)

Thus, we find that

Ω1(z) =
φ (z) + μ1θ (z)

(μ1 + μ2κ1)
, Ω2(z) =

φ (z) + μ2θ (z)

(μ2 + μ1κ2)
. (6.13)
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In addition, from Eqs. (6.6a-b) and (6.9a-b), we derive expressions for the stresses

(σyy − iσxy)S
+

= Ω′1 (z) + Ω
′
2 (z) + (z − z) Ω′′1 (z)− θ′ (z) ,

for upper region
(
S+ , y > 0

)
, (6.14a)

(σyy − iσxy)S
−
= Ω′2 (z) + Ω

′
1 (z) + (z − z) Ω′′2 (z)− θ′ (z) ,

for lower region
(
S− , y < 0

)
. (6.14b)

Consequently, the stress and displacement fields for the upper and lower regions

can now be completely described by two complex potentials (φ (z) , θ (z)) which

are analytic in the entire plane (S+ ∪ S− = S) outside the cut (L = −a ≤ x ≤ a,
y = 0 ).

Now, from Eq. (6.5), the boundary conditions on the crack faces (−a < x < a,
y = ±0) can be written as (see Eqs. (4.12-13)):

(σyy − iσxy)+ = iJo∂
2u+

∂x2
− σo∂

2ν+

∂x2
,

(σyy − iσxy)− = −iJo∂
2u−

∂x2
+ σo

∂2ν−

∂x2
.

In view of Eqs. (6.14a-b), we obtain from the above that

(σyy − iσxy)+ = Ω′1 (z)+ + Ω′2 (z)− − θ′ (z)− = iJo
∂2u+

∂x2
− σo∂

2ν+

∂x2
,

on the upper face, (y = +0, −a < x < a), (6.15a)

(σyy − iσxy)− = Ω′2 (z)− + Ω′1 (z)+ − θ′ (z)+ ,= −iJo
∂2u−

∂x2
+ σo

∂2ν−

∂x2
,

on the lower face, (y = −0, −a < x < a). (6.15b)

Adding and subtracting Eqs. (6.15a) and (6.15b) yields

θ′ (z)+ − θ′ (z)− = iJo
(
∂2u+

∂x2
+
∂2u−

∂x2

)
− σo

(
∂2ν+

∂x2
+
∂2ν−

∂x2

)
, (6.16a)
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2
(
Ω′1 (z)

+ + Ω′2 (z)
−)− (

θ′ (z)+ + θ′ (z)−
)

= iJo

(
∂2u+

∂x2
− ∂

2u−

∂x2

)
− σo

(
∂2ν+

∂x2
− ∂

2ν−

∂x2

)
. (6.16b)

From (6.13), Eqs. (6.16b) can be re-written as

2φ′ (z)+

μ1 + μ2κ1
+
2φ′ (z)−

μ2 + μ1κ2
+

(
μ1 − μ2κ1
μ1 + μ2κ1

)
θ′ (z)+ +

(
μ2 − μ1κ2
μ2 + μ1κ2

)
θ′ (z)−

=iJo

(
∂2u+

∂x2
− ∂

2u−

∂x2

)
− σo

(
∂2ν+

∂x2
− ∂

2ν−

∂x2

)
. (6.17)

Now, from Eqs. (6.10a-b), we have that

∂2

∂x2
(
u+ + iv+

)
=

1

2μ1

(
κ1Ω

′′
1(z)

+ − Ω′′2 (z)− + θ′′ (z)−
)
, (6.18a)

∂2

∂x2
(
u− + iv−

)
=

1

2μ2

(
κ2Ω

′′
2(z)

− − Ω′′1 (z)+ + θ′′ (z)+
)
. (6.18b)

Adding and subtracting Eqs. (6.15a) and (6.15b) with the further use of Eq. (6.13)

gives

∂2

∂x2
(
u+ + u− + i

(
v+ + v−

))
=
(μ2κ1 − μ1)φ′′ (z)+
2μ1μ2 (μ1 + μ2κ1)

+
(μ1κ2 − μ2)φ′′ (z)−
2μ1μ2 (μ2 + μ1κ2)

+
κ1

μ1 + μ2κ1
θ′′ (z)+ +

κ2
μ2 + μ1κ2

θ′′ (z)− , (6.19a)

∂2

∂x2
(
u+ − u− + i (v+ − v−))

=
1

2μ1μ2

(
φ′′ (z)+ − φ′′ (z)−)

. (6.19b)

Consequently, from Eqs. (23a-b), Eqs. (20a) and (21) take the following forms

θ′ (z)+ − θ′ (z)− = iJoReP − σo ImP , (6.20a)

2φ′ (z)+

μ1 + μ2κ1
+
2φ′ (z)−

μ2 + μ1κ2
+

(
μ1 − μ2κ1
μ1 + μ2κ1

)
θ′ (z)+ +

(
μ2 − μ1κ2
μ2 + μ1κ2

)
θ′ (z)−

=
iJo
2μ1μ2

Re
[
φ′′ (z)+ − φ′′ (z)−]− σo

2μ1μ2
Im

[
φ′′ (z)+ − φ′′ (z)−]

. (6.20b)

where P = [(μ2κ1 − μ1)φ
′′ (z)+

2μ1μ2 (μ1 + μ2κ1)
+
(μ1κ2 − μ2)φ′′ (z)−
2μ1μ2 (μ2 + μ1κ2)

+
κ1

μ1 + μ2κ1
θ′′ (z)++

κ2
μ2 + μ1κ2

θ′′ (z)−].
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Next, if we express the unknowns φ′ (z) and θ′ (z) as Cauchy integrals [65], we

have that

φ′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

t− z dt+
1

M
(σ∞yy − iσ∞xy),

where M =

(
1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
, (6.21)

φ′′ (z) =
1

2πi

∫ +a

−a

f(t) + ig(t)

(t− z)2 dt = −
[
f(t) + ig(t)

t− z
]+a
−a
+

1

2πi

∫ +a

−a

f ′(t) + ig′(t)
t− z dt.

θ′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt, (6.22)

θ′′ (z) =
1

2πi

∫ +a

−a

α(t) + iβ(t)

(t− z)2 dt = −
[
α(t) + iβ(t)

t− z
]+a
−a
+
1

2πi

∫ +a

−a

α′(t) + iβ′(t)
t− z dt.

In addition, the boundary values of φ′ (z) and θ′ (z) on the crack faces (−a < to <
a, y = ±0) can be found as (see [65]):

φ′ (z)+ =
1

2
(f(to) + ig(to)) +

1

2πi

∫ +a

−a

f(t) + ig(t)

t− to dt+
1

M
(σ∞yy − iσ∞xy), (6.23a)

φ′ (z)− = −1
2
(f(to) + ig(to)) +

1

2πi

∫ +a

−a

f(t) + ig(t)

t− to dt+
1

M
(σ∞yy − iσ∞xy), (6.23b)

θ′ (z)+ =
1

2
(α(to) + iβ(to)) +

1

2πi

∫ +a

−a

α(t) + iβ(t)

t− to dt, (6.24a)

θ′ (z)− = −1
2
(α(to) + iβ(to)) +

1

2πi

∫ +a

−a

α(t) + iβ(t)

t− to dt. (6.24b)

Thus, in view of Eqs. (6.21-6.24), Eqs. (6.20a-b) can be re-written as;

α(to) + iβ(to) = iJoReF − σo ImF , (6.25a)

(f(to) + ig(to))

(
1

μ1 + μ2κ1
− 1

μ2 + μ1κ2

)

+

(
1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
1

πi

∫ +a

−a

f(t) + ig(t)

t− to dt+ 2(σ∞yy − iσ∞xy)

+
(α(to) + iβ(to)) (κ2μ

2
1 − κ1μ22)

(μ1 + μ2κ1) (μ2 + μ1κ2)

− (κ1κ2 − 1)μ1μ2
πi (μ1 + μ2κ1) (μ2 + μ1κ2)

∫ +a

−a

α(t) + iβ(t)

t− to dt

=
iJo
2μ1μ2

Re [f ′(to) + ig′(to)]− σo
2μ1μ2

Im [f ′(to) + ig′(to)] . (6.25b)
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Here,

F = (f ′(to) + ig′(to)) (κ1μ22 − κ2μ21)
2μ1μ2 (μ1 + μ2κ1) (μ2 + μ1κ2)

+
(κ1κ2 − 1)

(μ1 + μ2κ1) (μ2 + μ1κ2)

(
1

2πi

) ∫ +a

−a

f(t) + ig(t)

(t− to)2
dt

+
1

2
(α′(to) + iβ

′(to))
{

κ1
μ1 + μ2κ1

− κ2
μ2 + μ1κ2

}
+{

κ1
μ1 + μ2κ1

+
κ2

μ2 + μ1κ2

}
1

2πi

∫ +a

−a

α(t) + iβ(t)

(t− to)2
dt.

Finally, by separating the real and imaginary parts of Eqs. (6.25a-b), we obtain

the following coupled first-order Cauchy singular integro-differential equations for

the unknowns f (t) , g (t) , α (t) and β (t):

α(to) = −g′(to) σo (κ1μ
2
2 − κ2μ21)

2μ1μ2 (μ1 + μ2κ1) (μ2 + μ1κ2)

+
σo (κ1κ2 − 1)

2π (μ1 + μ2κ1) (μ2 + μ1κ2)

∫ +a

−a

f(t)

(t− to)2
dt

− β′(to)σo
2

(
κ1

μ1 + κ1μ2
− κ2
μ2 + κ2μ1

)

+
σo
2π

(
κ1

μ1 + κ1μ2
+

κ2
μ2 + κ2μ1

) ∫ +a

−a

α(t)

(t− to)2
dt, (6.26a)

− g(to)
(

1

μ1 + μ2κ1
− 1

μ2 + μ1κ2

)

+

(
1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
1

π

∫ +a

−a

f(t)

t− todt

− β(to) (κ2μ
2
1 − κ1μ22)

(μ1 + μ2κ1) (μ2 + μ1κ2)
− (κ1κ2 − 1)μ1μ2
π (μ1 + μ2κ1) (μ2 + μ1κ2)

∫ +a

−a

α(t)

t− todt

= − Jo
2μ1μ2

f ′(to)− 2σ∞xy (6.26b)
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β(to) = f
′(to)

Jo (κ1μ
2
2 − κ2μ21)

2μ1μ2 (μ1 + μ2κ1) (μ2 + μ1κ2)

+
Jo (κ1κ2 − 1)

2π (μ1 + μ2κ1) (μ2 + μ1κ2)

∫ +a

−a

g(t)

(t− to)2
dt

+ α′(to)
Jo
2

(
κ1

μ1 + κ1μ2
− κ2
μ2 + κ2μ1

)

+
Jo
2π

(
κ1

μ1 + κ1μ2
+

κ2
μ2 + κ2μ1

) ∫ +a

−a

β(t)

(t− to)2
dt, (6.26c)

f(to)

(
1

μ1 + μ2κ1
− 1

μ2 + μ1κ2

)

+

(
1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
1

π

∫ +a

−a

g(t)

t− todt

+
α(to) (κ2μ

2
1 − κ1μ22)

(μ1 + μ2κ1) (μ2 + μ1κ2)
− (κ1κ2 − 1)μ1μ2
π (μ1 + μ2κ1) (μ2 + μ1κ2)

∫ +a

−a

β(t)

t− todt

= − σo
2μ1μ2

g′(to)− 2σ∞yy (6.26d)

Similar to the analysis of the uniqueness results in section 4.24, the natural bound-

ary conditions ensuring a unique solution of the BVPs for the plane-strain interface

crack problems are given by

(
u+,x + u

−
,x

)
u = 0, σo

(
v+,x + v

−
,x

)
v = 0, at each tip (z = ±a). (6.27)

It is clear from Eq. (6.27) that the maximum number of admissible end conditions

in the case of a plane interface crack problem is two since, in general, u and v

are non-zero at the crack tips (z = ±a). However, one interesting exception is
found when σo = 0. In this case, the surface elasticity affects only the equilibrium

equation in the x direction, and not that in the y direction. In other words, the

second expression of Eq. (6.27) is automatically satisfied and therefore, only one

end condition can be imposed when σo = 0.
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6.3 COUPLED SINGULAR INTEGRO-DIFFERENTIAL

EQUATIONS

The equations in Eqs. (6.26a-d) comprise a coupled system of singular-integro

differential equations. Solutions of the coprresponding simplified version (non-

coupled and Cauchy singular) of such equations have been well established in the

literature (see, for example, [77,83,91]). In chapters 4-5, we extended the methods

used by the aforementioned authors to the case of a coupled system (two unknowns

with two coupled equations) and provided complete semi-analytic solutions. How-

ever, the methods used (we refer to the methods here as ‘conventional methods’)

involved substantial ‘pre-treatment’ of the equations via either regularization (see,

for example, [83]) or the so-called ‘T−1 transformation’ ( [77]), resulting in a highly

complicated system of equations. The pre-treatment is necessary in order to intro-

duce a weight function (e.g.
√
1− t2) in the corresponding mathematical analysis.

Unfortunately, given the additional complications presented in Eqs (6.26a-d) (four

unknowns with four coupled equations), it is extremely challenging (and numeri-

cally expensive) to solve the corresponding coupled system of differential equations

by using conventional methods.

In the following analysis, we directly introduce a weight function without em-

ploying the T−1 transform (we refer to the method as the ‘direct method’). The

direct method will simplify the corresponding mathematical and numerical process

immensely, since it does not involve additional mathematical pre-treatment. In

this respect, a Mode-III fracture case is re-solved using both methods (the direct

method and conventional method) to determine whether the direct method indeed

produces successful results in comparison to those from the conventional method.
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Figure 38: Comparison of the results (Mode-III, f (t)) using the direct and con-

ventional method

It is clear from Fig. 41 that the direct method produces successful results (in

fact, results obtained from both methods are almost identical) and guarantees

fast convergence (within 30 iterations). We note here that it is still possible to

solve the Eqs. (6.26a-d) by using the conventional method. However, that will

only complicate the mathematical procedure and require massive computational

resources.

6.3.1 Mode-II (σ∞yy = 0, σ∞xy �= 0) case

By setting t/a = t in Eqs. (6.26a-d) and further defining the unknown functions

as (see chapters 4-5 for more details )

f (at) = f (t) , g (at) = g (t) , α (at) = α (t) , β (at) = β (t) ,

120



we obtain from Eqs. (6.26a-b) that

α(to) = g
′(to)

(
Csσo
2aμ1μ2

)
+
Dsσo
2aπ

∫ +1

−1

f(t)

(t− to)2
dt

− β′(to)
(
Fsσo
2a

)
+

(
Esσo
2aπ

) ∫ +1

−1

α(t)

(t− to)2
dt, (6.28a)

− Asg(to) + Bs
π

∫ +1

−1

f(t)

t− todt− Csβ(to)−
Dsμ1μ2
π

∫ +1

−1

α(t)

t− todt

= −
(

Jo
2aμ1μ2

)
f ′(to)− 2σ∞xy, (6.28b)

β(to) = −
(
CsJo
2aμ1μ2

)
f ′(to) +

DsJo
2aπ

∫ +1

−1

g(t)

(t− to)2
dt

+ α′(to)
(
FsJo
2a

)
+

(
EsJo
2aπ

) ∫ +1

−1

β(t)

(t− to)2
dt, (6.28c)

Asf(to) +
Bs
π

∫ +1

−1

g(t)

t− todt+ Csα(to)−
Dsμ1μ2
π

∫ +1

−1

β(t)

t− todt

= −
(

σo
2aμ1μ2

)
g′(to), (6.28d)

where, (
1

μ1 + μ2κ1
− 1

μ2 + μ1κ2

)
= As,

(
1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
= Bs,

(κ2μ
2
1 − κ1μ22)

(μ1 + κ1μ2) (μ2 + κ2μ1)
= Cs,

(κ1κ2 − 1)
(μ1 + κ1μ2) (μ2 + κ2μ1)

= Ds,(
κ1

μ1 + κ1μ2
+

κ2
μ2 + κ2μ1

)
= Es,

(
κ1

μ1 + κ1μ2
− κ2
μ2 + κ2μ1

)
= Fs.

If we assume that surface tension (σo) is equal to zero based on the fact that its con-

tribution to the system is practically negligible (see Fig. 27 and the corresponding

discussion), Eqs. (6.28a-d) now reduce to;

α(to) = 0 (6.29)

−Asg(to) + Bs
π

∫ +1

−1

f(t)

t− todt+ 2σ
∞
xy − Csβ(to) = −

(
Jo

2aμ1μ2

)
f ′(to), (6.30)
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β(to) = −
(
CsJo
2aμ1μ2

)
f ′(to)

+
DsJo
2aπ

∫ +1

−1

g(t)

(t− to)2
dt+

(
EsJo
2aπ

) ∫ +1

−1

β(t)

(t− to)2
dt, (6.31)

Asf(to) +
Bs
π

∫ +1

−1

g(t)

t− todt−
Dsμ1μ2
π

∫ +1

−1

β(t)

t− todt = 0. (6.32)

By taking the derivative with respect to “to”, Eq. (6.32) becomes

f ′(to) = − Bs
Asπ

∫ +1

−1

g(t)

(t− to)2
dt+

Dsμ1μ2
Asπ

∫ +1

−1

β(t)

(t− to)2
dt. (6.33)

Substituting Eq. (6.33) into Eq. (6.31) yields

β(to)

=
Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g(t)

(t− to)2
dt+

Jo
2aπ

∫ +1

−1

(
−CsDs

As
+ Es

)
β(t)

(t− to)2
dt. (6.34)

As discussed in earlier sections, a single end condition can be imposed in the present

case (when σo = 0). In this respect, we choose the admissible end condition in such

a way that the hyper-singular terms in Eq. (6.34) are reduced to Cauchy-singular.

More precisely, by imposing the following condition

(
BsCs
Asμ1μ2

+Ds

)
g(t) +

(
−CsDs

As
+ Es

)
β(t) = 0,

at each crack tip, we obtain from Eq (6.34) and the above that

β(to)

=
Jo
2aπ

[(
BsCs
Asμ1μ2

+Ds

)
g′(t) +

(
−CsDs

As
+ Es

)
β′(t)

]+a
−a

+
Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g′(t)

t− to dt+
Jo
2aπ

∫ +1

−1

(
−CsDs

As
+ Es

)
β′(t)

t− to dt

=
Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g′(t)

t− to dt+
Jo
2aπ

∫ +1

−1

(
−CsDs

As
+ Es

)
β′(t)

t− to dt.
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Consequently, Eq. (6.34) reduces to

β(to)

=
Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g′(t)

t− to dt+
Jo
2aπ

∫ +1

−1

(
−CsDs

As
+ Es

)
β′(t)

t− to dt.(6.35)

Now, motivated by the numerical analysis in [96], that we propose approxima-

tions for solutions in the form

f (t) ≈ fN (t) =
N∑
m=0

1√
1− t2amTm (t) ,

g (t) ≈ gN (t) =
N∑
m=0

√
1− t2bmUm−1 (t) ,

β (t) ≈ βN (t) =
N∑
m=0

√
1− t2CmUm−1 (t) , m = 0, 1, 2, ..., (6.36)

where Tm (t) and Um (t) represent the m th Chebychev polynomial of the first kind

and second kind, respectively. In addition, the Chebychev polynomials have the

following properties:

dTm (t)

dt
= mUm−1(t),

dUm (t)

dt
=
(m+ 1)Tm+1 (t)− tUm (t)

t2 − 1 (6.37)

Therefore, from Eqs. (6.36-37), we find that

f ′N (t) =
N∑
m=0

am

[
tTm (t)

(1− t2)3/2
+
mUm−1 (t)√
1− t2

]
, (6.38a)

g′N (t) =
N∑
m=0

−mbmTm (t)√
1− t2 , β′N (t) =

N∑
m=0

−mCmTm (t)√
1− t2 . (6.38b)

Next, in view of Eqs. (6.36) and (6.38b), Eq. (6.35) becomes

N∑
m=0

√
1− t2oCmUm−1 (to) =

N∑
m=0

Jo
2aπ

[

∫ +1

−1

−mbmTm (t)
(

BsCs
Asμ1μ2

+Ds

)
√
1− t2 (t− to)

dt

+

∫ +1

−1

−mCmTm (t)
(
−CsDs

As
+ Es

)
√
1− t2 (t− to)

dt]. (6.39)
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By utilizing the following properties of the Chebychev polynomials [91]:

∫ 1

−1

Tm(t)

(t− to)
√
1− t2dt = πUm−1 (to) , (6.40)

Eq. (6.39) reduces to

N∑
m=0

√
1− t2oCmUm−1 (to) =

N∑
m=0

Jo
2a
[

(
BsCs
Asμ1μ2

+Ds

)
(−m) bmUm−1 (to)

+

(
−CsDs

As
+ Es

)
(−m)CmUm−1 (to)].

From the above, we derive the relation between am and bm as:

Cm = bm
−mJo

(
BsCs
μ1μ2

+ AsDs

)
2aAs

√
1− t2o +mJo (AsEs − CsDs)

. (6.41)

Similarly, from Eq. (6.36), Eq. (6.32) becomes

N∑
m=0

[
amTm (to)√
1− t2o

+
Bs
Asπ

∫ +1

−1

√
1− t2bmUm−1 (t)

t− to dt

]

=
N∑
m=0

[
Dsμ1μ2
Asπ

∫ +1

−1

√
1− t2CmUm−1 (t)

t− to dt

]
(6.42)

Again, the Chebychev polynomials have the following properties [91]:

∫ 1

−1

√
1− t2Um−1 (t)
t− to dt = −πTm (to) . (6.43)

Therefore, Eq. (6.42) reduces to

N∑
m=0

Tm (to)

[
am√
1− t2o

− bmBs
As
+ Cm

Dsμ1μ2
As

]
= 0.

In view of Eq. (6.41), the above yields

bm = am

As

(
2aAs +

1√
1−t2o

(−CsDs + AsEs)mJo

)

Bs

{
2aAs

√
1− t2o +mJo (−CsDs + AsEs)

}
+mJo (Dsμ1μ2)

(
BsCs
μ1μ2

+ AsDs

) .
(6.44)
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In addition, by using Eq. (6.44), Eq. (6.41) can be re-written as

Cm = am

− 1√
1−t2o

(
BsCs
μ1μ2

+ AsDs

)
mJoAs

Bs

{
2aAs

√
1− t2o +mJo (−CsDs + AsEs)

}
+mJoDsμ1μ2

(
BsCs
μ1μ2

+ AsDs

) .
(6.45)

Finally, with the successive use of Eqs (6.36), (6.38a) and (6.40), we have from Eq.

(6.30) that

N∑
m=0

[amUm−1 (to)

(
Bs +

Jom

2aμ1μ2
√
1− t2o

)

+ am
JotoTm (to)

2aμ1μ2 (1− t2o)3/2
−

√
1− t2oUm−1 (to) (Asbm + CsCm)]

= −2σ∞xy. (6.46)

We now select the set of collocation points as given by to = toi = − cos( iπ
N
) for

i = 1, 2, ..., N − 1. Further, by evaluating Tm(toi) and Um−1(toi) with respect to
each collocation points, we find that

Tm

(
− cos

(
iπ

N

))
= − cos

(
imπ

N

)
, Um−1

(
− cos

(
iπ

N

))
=
sin

(
miπ
N

)
sin

(
iπ
N

) . (6.47)

Then, from Eq. (6.47) together with Eqs. (6.44-45), Eq. (6.46) further reduces to

the following system of linear equations

N∑
m=0

[−am sin
(
miπ

N

) (
Bs +

Jom

2aμ1μ2 sin
(
iπ
N

)
)

− am
Jo cos(

iπ
N
) cos

(
imπ
N

)
2aμ1μ2 sin

2
(
iπ
N

) + am
(
KII
mAs +H

II
m Cs

)
sin

(
iπ

N

)
sin

(
miπ

N

)
]

= 2σ∞xy sin
(
iπ

N

)
. (6.48)

where

bm = amK
II
m , Cm = amH

II
m ,

KII
m ≡

As

(
2aAs +

1

sin( iπN )
(−CsDs + AsEs)mJo

)

Bs
{
2aAs sin

(
iπ
N

)
+mJo (−CsDs + AsEs)

}
+mJo (Dsμ1μ2)

(
BsCs
μ1μ2

+ AsDs

) ,
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HII
m ≡

− 1

sin( iπN )

(
BsCs
μ1μ2

+ AsDs

)
mJoAs

Bs
{
2aAs sin

(
iπ
N

)
+mJo (−CsDs + AsEs)

}
+mJoDsμ1μ2

(
BsCs
μ1μ2

+ AsDs

) .
Consequently, the solution of the coupled Eqs. (6.30-32) is now reduced to the

solution of the system of equations Eq. (6.48) for the unknown constants am, bm

and cm. The latter can be obtained by using any of the existing numerical software

packages (e.g. Matlab, Maple, NAG, etc.).

6.3.2 Mode-I (σ∞yy �= 0, σ∞xy = 0) case

For the Mode-I case, we have from Eqs. (6.28a-d) that when σo = 0

−Asg(to) + Bs
π

∫ +1

−1

f(t)

t− todt− Csβ(to) = −
(

Jo
2aμ1μ2

)
f ′(to), (6.49)

β(to) = −
(
CsJo
2aμ1μ2

)
f ′(to)

+
DsJo
2aπ

∫ +1

−1

g(t)

(t− to)2
dt+

(
EsJo
2aπ

) ∫ +1

−1

β(t)

(t− to)2
dt, (6.50)

Asf(to) +
Bs
π

∫ +1

−1

g(t)

t− todt+ 2σ
∞
yy −

Dsμ1μ2
π

∫ +1

−1

β(t)

t− todt = 0. (6.51)

From Eqs. (6.49-50), we obtain

BsCs
π

∫ +1

−1

f(t)

t− todt+
DsJo
2aπ

∫ +1

−1

g′(t)
t− todt+

EsJo
2aπ

∫ +1

−1

β′(t)
t− todt

= AsCsg(to) + β(to)
(
1 + C2s

)
. (6.52)

In addition, taking derivatives with respect to t0 in Eq. (6.51) yields

f ′(to) = − Bs
Asπ

∫ +a

−a

g(t)

(t− to)2
dt+

Dsμ1μ2
Asπ

∫ +a

−a

β(t)

(t− to)2
dt.

Substituting the above into Eq. (6.50), we have that

Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g(t)

(t− to)2
dt+

Jo
2aπ

∫ +1

−1

(
Es − CsDs

As

)
β(t)

(t− to)2
dt

= −β(to). (6.53)
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Since we imposed the following natural end condition(
BsCs
Asμ1μ2

+Ds

)
g(±a) +

(
−CsDs

As
+ Es

)
β(±a) = 0, (6.54)

Eq. (6.53) becomes

Jo
2aπ

∫ +1

−1

(
BsCs
Asμ1μ2

+Ds

)
g′(t)

t− to dt+
Jo
2aπ

∫ +1

−1

(
Es − CsDs

As

)
β′(t)

t− to dt

= −β(to). (6.55)

With successive use of Eqs. (6.36), (6.38b) and (6.40), Eqs. (6.52) and (6.55)

reduce to
N∑
m=0

Um−1 (to) [−Jom
2a

(
BsCs
Asμ1μ2

+Ds

)
bm

− Cm
{
Jom

2a

(
Es − CsDs

As

)
+
√
1− t2

}
]

= 0,

N∑
m=0

Um−1 (to) [−bm
(
AsCs

√
1− t2o +

DsJom

2a

)

− Cm
{√

1− t2o
(
1 + C2s

)
+
EsJom

2a

}
+ amBsCs]

= 0.

herefore, we establish the following relations for am, bm and Cm as

Cm

[√
1− t2 + Jom

2a

(
Es − CsDs

As

)]
= bm

(
−Jom
2a

) (
BsCs
Asμ1μ2

+Ds

)
. (6.56)

am =
bm
BsCs

(
AsCs

√
1− t2o +

DsJom

2a

)

+
Cm
BsCs

{√
1− t2o

(
1 + C2s

)
+
EsJom

2a

}
. (6.57)

In view of Eqs. (6.36) and (6.43), Eq. (6.51) can be re-written as :

N∑
m=0

[
am
AsTm (to)√
1− t2o

− bmBsTm (to) + CmDsμ1μ2Tm (to)

]
= −2σ∞yy. (6.58)
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Finally, by utilizing the same collocation technique as in the Mode-II case, Eqs.

(6.56-58) can be transformed into the following systems of linear equations

N∑
m=0

[−amAs cos
(
imπ

N

)
+ amK

I
mBs cos

(
imπ

N

)
sin

(
iπ

N

)

− amHI
mK

I
mDsμ1μ2 cos

(
imπ

N

)
sin

(
iπ

N

)
]

= −2σ∞yy sin
(
iπ

N

)
, (6.59)

where

bm = amK
I
m, Cm = H

I
mbm = amH

I
mK

I
m,

KI
m =

BsCs(
AsCs sin

(
iπ
N

)
+ DsJom

2

)
+HI

m

{
sin

(
iπ
N

)
(1 + C2s ) +

EsJom
2

} ,

HI
m =

−Jom
2

(
BsCs
μ1μ2

+ AsDs

)
As sin

(
iπ
N

)
+ Jom

2
(AsEs − CsDs)

.

Therefore, by solving the above equations (Eq. 6.59), the unknowns am, bm and

cm can be completely determined in the Mode-I case.

6.4 RESULTS AND DISCUSSION

In this section, the numerical solution of Eqs. (49-50) and Eq. (59) is derived for

the two cases when a crack is subjected to a uniform remote in-plane shear (mode

-II crack problem) and a uniform remote tension (mode-I crack problem), respec-

tively. Throughout the analysis, we adopt the same range of surface parameters

used previously (Sharma and Ganti [16]).

Se =
Jo
a
: 16× 108 ≤ Se ≤ 16× 1010,

μs = 161.73(J/m2), σo = 1.3(J/m
2), Jo = 400(J/m

2),

168× 107(Pa) ≤ μ1, μ2 ≤ 168× 109(Pa), 2.3 ≤ κ1, κ2 ≤ 2.7 . (6.60)
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For practical purposes, we do not present numerical results here for the most

general cases when the surface material properties corresponding to the upper and

lower faces of the crack are distinct (although the model fully incorporates this

general case for a range of surface parameters). Instead, we simplify the numerical

calculations by assuming that the upper and lower crack faces have identical surface

properties but the bulk materials remain distinct. This is certainly sufficient

to illustrate the effect of surface elasticity on the behaviour of this bi-material

particularly in the vicinity of the crack.

6.4.1 Functions f (t) , g (t) , and β (t)

To verify our model we consider the special case of a homogeneous material (mate-

rial properties from the upper and bottom regions coincide) containing a crack and

reproduce the classical solutions from the LEFM theory (see, for example, [65,66])

followed by the solutions to the corresponding problems which incorporate surface

effects (see Chapter. 4). For a single material crack, we find that

f (t) = Ω′ (z)+ − Ω′ (z)− = − σ∞xyt√
t2 − a2 , g (t) = β (t) = 0, −a < t < a,

(classical LEFM, Mode-II),

f (t) = Non-zero bounded solution (see.Fig. 39), g (t) = β (t) = 0,

(single material crack with surface effects, Mode-II).

In the present case, the unknown functions can be obtained subsequently as:

fN (t) =
N∑
m=0

1√
1− t2amTm (t) ,

gN (t) =
N∑
m=0

√
1− t2bmUm−1 (t) =

N∑
m=0

√
1− t2amKII

m Um−1 (t) ,

βN (t) =
N∑
m=0

√
1− t2CmUm−1 (t) =

N∑
m=0

√
1− t2amHII

m Um−1 (t) , for − 1 < t < 1.
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and the unknown constants am can be determined from Eqs. (6.48). The corre-

sponding solutions for each case are plotted through Figs. (39-41).

-1 -0.5 0 0.5 1
-1.5

-1

-0.5

0

0.5

1

1.5
x 10

12

t/a

f(t
)

Comparison with existing results f(t) (Mode-II interface crack)

Classical case (Single material)
With surface effects (Single material)
μ

1
/μ

2
=1

μ
1
/μ

2
=10

μ
1
/μ

2
=100

-0.65 -0.6 -0.55 -0.5

0

5

10

15

20
x 10

10

Figure 39: The solution of f(t) (Mode-II interface fracture), where σ∞xy/μ1 = 0.37
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Figure 40: The solution of g(t) (Mode-II interface fracture), where σ∞xy/μ1 = 0.37
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Figure 41: The solution of β(t) (Mode-II interface fracture), where σ∞xy/μ1 = 0.37

The results clearly illustrate that our solutions reduce to the classical results

obtained from the literature, as the material properties of the two regions coincide.

More specifically, the estimated value of f(t) increases until it reaches the value

obtained from the cases corresponding to a crack in a homogeneous material. The

solutions of g(t) and β (t) decrease to zero which is compatible with existing results.

This also can be directly shown from Eqs. (6.28) and (6.48) i.e. , by setting

μ1 = μ2 = μ and κ1 = κ2 = κ, we have(
1

μ+ μκ
− 1

μ+ μκ

)
= As = 0,

(κμ2 − κμ2)
(μ+ κμ) (μ+ κμ)

= Cs = 0,
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which yields KII
m = HII

m = 0. Therefore, we find

fN (t) =
N∑
m=0

1√
1− t2amTm (t) (Non-zero),

gN (t) =
N∑
m=0

√
1− t2bmUm−1 (t) =

N∑
m=0

√
1− t2amKII

mUm−1 (t) = 0,

βN (t) =
N∑
m=0

√
1− t2CmUm−1 (t) =

N∑
m=0

√
1− t2amHII

mUm−1 (t) = 0.

Similar analyses can be performed for the Mode-I case illustrating analogous re-

sults. In this case, we have non-zero g(t) and f (t) = β (t) = 0. In addition, our

solutions in Figs. 39-41 also demonstrate the apparent presence of mixed mode

crack tip fields regardless of the type of applied loading. We also note here that

the solutions obtained satisfy the imposed natural end condition:

(
BsCs
Asμ1μ2

+Ds

)
g(±a) +

(
−CsDs

As
+ Es

)
β(±a) = 0.

For example, in the Mode-II case, end values for g(t), f(t) and β (t) are estimated

as:

g(−1) = 1.1932× 109, β (−1) = −2.0289,

when, σ∞xy/μ1 = 0.37, μ1 = 168 × 109 and μ2 = 168 × 108. Therefore, the corre-
sponding natural end conditions in this case can be calculated as

(
BsCs
Asμ1μ2

+Ds

)
1.1932× 109+

(
−CsDs

As
+ Es

)
(−2.0289) = 9. 851 4× 10−13 ≈ 0,

which is clearly satisfied. Finally, the results in Figs. 39-41 indicate that solutions

(f(t), g(t) and β (t)) have non-zero finite values at the crack tips leading to the

corresponding stress fields being weakly singular, in fact logarithmic. We will

discuss more about this point shortly after the next section.
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6.4.2 Oscillatory Singularity

The solutions of interface crack problems in the context of LEFM show rapid

oscillation in both the stress and displacement fields, and indicate the possibility

of material interpenetration which is, of course, physically inadmissible (see, for

example, [66,70]). The oscillatory behavior have previously been avoided by either

imposing mathematical restrictions at the crack tips [97,98] or by considering some

special classes of nonlinear materials (see, for example, [99]). The aforementioned

results have been the subject of intense discussion in the literature.

In the present case, we have found that the oscillatory singularities can also

be eliminated with the incorporation of surface effects. The graphs in Figs. 42-43

clearly indicate that the oscillatory phenomena gradually decays as the effect of

surface elasticity increases. In other words, the stress fields obtained from the

present solution no longer oscillate. The results hold true for both Mode-I and

Mode-II cases (see the non-oscillatory solutions through Figs. 44-47). In addition,

our solution from both fracture cases (Mode-I and Mode-II) varies with respect to

the surface parameter Se reflecting the contributions of surface elasticity.
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Figure 42: Removal of oscillatory singularity f(t)(Mode-II interface fracture)
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Figure 43: Removal of oscillatory singularity g(t)(Mode-II interface fracture)
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Figure 44: The solution of f (t) with respect to surface parameter (Mode-II in-

terface fracture), where σ∞xy/μ1 = 0.37
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Figure 45: The solution of g (t) with respect to surface parameter (Mode-II in-
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terface fracture), where σ∞xy/μ1 = 0.37

-1 -0.5 0 0.5 1
-4

-3

-2

-1

0

1

2

3

4
x 10

11

t/a

g(
t)

Solution of g(t) with respect to surface parameter (Se)

0.7 0.75 0.8 0.85 0.9

2

4

6

8

10
x 10

10

Se=16x10 8

Se=80x10 8

Se=16x10 9

Se=32x10 9

Se=48x10 9

Figure 46: The solution of g (t) with respect to surface parameter (Mode-I inter-

face fracture), where σ∞yy/μ1 = 0.37
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Figure 47: The solution of β (t) with respect to surface parameter (Mode-I inter-

face fracture), where σ∞yy/μ1 = 0.37
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Finally, based on the numerical estimations of g (t) , f (t) , α (t) and β (t), the

stresses on the real axis can be estimated. More precisely, we have from Eqs. (6.13)

and (6.14a) that

(σyy − iσxy) =
(

1

μ1 + μ2κ1
+

1

μ2 + μ1κ2

)
φ′ (z)

+
μ1 + μ2 − μ1μ2κ1κ2

(μ1 + μ2κ1) (μ2 + μ1κ2)
θ′ (z) ≡ Bsφ′ (z) +Xsθ

′ (z) . (6.61)

In view of Eqs. (6.21-22), Eq. (6.61) can be re-written as:

(σyy − iσxy) = Bs
2πi

∫ +1

−1

f(t) + ig(t)

t− z dt+ (σ∞yy − iσ∞xy) +
Xs

2πi

∫ +1

−1

α(t) + iβ(t)

t− z dt,

By separating real and imaginary parts, the above yields

σyy =
Bs
2π

∫ +1

−1

g(t)

t− zdt+
Xs

2π

∫ +1

−1

β(t)

t− zdt+ σ
∞
yy, (6.62a)

σxy =
Bs
2π

∫ +1

−1

f(t)

t− zdt+
Xs

2π

∫ +1

−1

α(t)

t− zdt+ σ
∞
xy. (6.62b)

Therefore, the stress field can be completely determined with given g (t) , f (t) ,

α (t) and β (t). For example, in the mode-II case, we find from Eq. (6.62a-b) that

σyy =
Bs
2π

∫ +1

−1

g(t)

t− zdt+
Xs

2π

∫ +1

−1

β(t)

t− zdt, σxy =
Bs
2π

∫ +1

−1

f(t)

t− zdt+ σ
∞
xy. (6.63)

In particular, by expanding the Cauchy integrals in Eq. (6.63), we obtain the

following expressions at the crack tips (t = ±a)

σyy =
Bs
2π
g(±a) ln r + Xs

2π
β(±a) ln r +O(1),

σxy =
Bs
2π
f(±a) ln r + σ∞xy +O(1),

which clearly indicate that the corresponding stress fields, in the plane interface

crack case (For both Mode-I and Mode-II fractures), exhibit a weaker logarithmic
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singularity at the crack tips with non-zero finite values of solutions (g (t) , f (t) and

β (t) , see Figs. 39-41 and 44-47) at these points. Examples of estimated stresses

are illustrated through Figs. 48-49 with respect to varying surface parameters.

The results recognize the fact that surface effects, acting basically in the same way

as a reinforcement, can effectively reduce the corresponding stress fields (materials

get stiffer as surface effects increase). In addition, since the surface parameters Se

are controlled by variations of the crack size, our results also indicate that the cor-

responding stresses are strongly dependent on crack size. In fact, size dependency

of stress fields in materials are the dominant phenomena in the deformations of

small scale structures such as the nano-inhomogeneity, nano-composite materials

and dislocations in small-scale structures (see, for example, [16,44]).
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Figure 48: Stress distribution with respect to surface parameter (Mode-II inter-

face crack), where σ∞xy/μ1 = 0.37
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Figure 49: Stress distribution with respect to surface parameter (Mode-I interface

crack), where σ∞yy/μ1 = 0.37

6.5 SUMMARY

In this chapter, we have considered, in the presence of surface elasticity, a traction-

free crack between two dissimilar linearly elastic isotropic homogeneous materials

undergoing plane deformations. The bi-material is subjected either to remote ten-

sion (mode-I) or in-plane shear (mode-II). The surface mechanics is incorporated

in both faces of an interface crack using a version of the continuum based sur-

face/interface model of Gurtin and Murdoch. Complex variable methods are used

to obtain a semi-analytic solution valid throughout the entire domain of interest by

reducing the problem to a system of coupled Cauchy singular integro-differential

equations which is solved numerically. In this respect, the direct method is adopted
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avoiding additional mathematical pre-treatment and massive computational re-

sources in the corresponding analysis.

In contrast to the homogeneous plane crack problem, two natural end conditions

can be imposed in the case of an interface plane fracture. However, it is found

that the number of admissible end conditions further reduces to one when surface

tension is removed from the system (i.e. σo = 0). In the corresponding analysis,

we chose an end condition in a way that the degree of singularity of the obtained

system of differential equations reduces from hyper-singular to Cauchy singular.

Our numerical analysis results also indicate that the imposed end condition is well

satisfied.

It is shown that our analysis predicts weakly logarithmic singular stresses at the

crack tips and the corresponding stress fields to be size-dependent. In particular,

we note that, in contrast to classical LEFM results, the incorporation of surface ef-

fects effectively removes the oscillatory behavior of the solution leading to smooth

and non-oscillatory stress distributions in the vicinity of the crack tips. Further,

the corresponding stress fields derived in our analysis demonstrate the apparent

presence of mixed mode crack tip fields regardless of the type of applied loading

and the amount of stresses decrease as the surface effects become significant. Fi-

nally, the solutions obtained from our analysis are sufficiently general in that they

actually reduce to the results from both the homogeneous plane-strain fracture case

(in Chapter. 4) by setting μ1 = μ2 and κ1 = κ2 and the classical LEFM results,

when the surface effects are neglected in the corresponding bulk-crack system.
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CHAPTER 7

CONCLUSIONS AND FUTURE WORK

7.1 CONCLUSIONS

In this dissertation, we address a series of crack problems from the classical the-

ory of Linear Elastic Fracture Mechanics (LEFM) with the renewed realization

of the role of surface elasticity. The general deformations and stress analysis of

an elastic solid incorporating a crack is of fundamental importance in the under-

standing of failure and fracture mechanisms of engineering materials. Traditional

prediction models and solutions from the classical assumptions of LEFM theory,

unfortunately have led to various inconsistencies such as the prediction of a strong

square root stress singularity at the crack tips and, in the case of interface fracture,

the rapid oscillation in both stress and displacement fields in the vicinity of the

crack further leading to the possibility of material interpenetration between two

dissimilar materials.

The primary objective of the present study is to resolve the above mentioned

contradictory results from the classical LEFM theory and provide a more accurate

description for the corresponding bulk-crack systems. In this respect, we focus on

the fact that the region near the surface of a solid material experiences local en-

vironmental changes resulting in the deviation of properties as they approach the

boundaries of a bulk material. Such effects (surface effects) become significant,

when a high surface to volume ratio is present at the small scale. This further

suggests that a more comprehensive and accurate modeling and analysis of a bulk-

crack system would include a separate description of surface elasticity on both sides
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of crack surfaces (faces). In the present study, we have incorporated the effects

of surface elasticity into the analysis of bulk-crack systems using a version of the

Gurtin-Murdoch (curvature-independent) surface elasticity model. It is assumed

that the crack (including its crack tips) is ‘surrounded’ by a negligibly thin elastic

membrane (with elastic properties different from those of the surrounding bulk ma-

terial) firmly attached to the bulk material without slipping. In the mathematical

modeling, we regarded a crack as an interval of the x-axis (y = 0, −a < x < a) on
a typical complex x−y plane in R2. We then imposed the properties of the surface
layer onto the boundaries of a crack (upper (y = +0) and bottom (y = −0) faces
of the crack).

The analysis of our mathematical model involves the use of complex vari-

able methods and the theory of Cauchy integrals to reduce the corresponding

(highly non-standard) BVP to a series of hyper-singular integro-differential equa-

tions. By imposing appropriately chosen natural end conditions, the correspond-

ing hyper-singular integro-differential equations are further deduced to Cauchy-

singular forms. The latter is solved using adapted numerical techniques (e.g. col-

location method and Chebyshev polynomials) leading to a complete (within the

entire domain of interest) semi-analytic solution from which we derived various in-

teresting results of each corresponding crack problem discussed through Chapters

3-6.

Chapter 3 addresses and analyzes the effects of surface elasticity in a classical

Mode-III crack problem arising in the anti-plane shear deformations of a linearly

elastic homogeneous isotropic solid. Since only a single scalar displacement field in

the axial direction is needed in the description of anti-plane shear motion, the anti-

plane problem offers the advantages of exploring various possible scenarios arising

in the mechanics of materials, yet still maintains a relatively simple mathematical
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setting. This also corresponds with our motivation to preferentially challenge a

Mode-III fracture problem in the presence of surface elasticity.

It is shown that the introduction of the effects of surface elasticity results in

the reduction of the stress singularity at the crack tip from the strong square root

singularity to a weaker logarithmic singularity. In particular, the corresponding

stresses derived from our analysis exhibit clear signs of size-dependency and do

indeed accommodate those in the classical LEFM solutions when the surface effects

are removed from the corresponding bulk-crack system. The uniqueness theorem

of the corresponding BVP is also examined leading to the conclusion that either

a traction (w+,x + w
−
,x) or displacement (w) condition is required at each crack

tip to uniquely determine a solution. However, in Mode-III fracture, since w = 0

(displacement condition) is automatically prescribed at each crack tip, the solution

can be uniquely determined without imposing any extra end conditions.

Problems regarding a mode-III crack subjected to non-uniform surface tractions

are also considered in this chapter. In this respect, we have obtained a complete

numerical solution when the crack faces are subjected to arbitrary surface tractions

characterized by stress functions described by general polynomials of degree n. In

addition, it is found that, from the particular case of our general solution (when the

crack faces are subjected to uniform traction), the decomposition theory in classical

elasticity still holds true when surface elasticity is taken into account on both crack

faces. This result is important particularly in that, when used in conjunction with

the general methodology presented in this chapter, they essentially lead to the

solutions of a class of problems in which the surface traction is characterized by a

much wider and more practically realistic class of functions.

Through Chapter 4, we have examined the plane deformations of a linearly

elastic solid in the cases where either a Mode-I or Mode-II crack is present and
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when the contributions of surface effects are taken into account. Problems involv-

ing plane deformations of an elastic solid provide direct physical relevance to those

in real-world problems. However, the governing equations describing the in-plane

motion are much more complicated in comparison to those from anti-plane shear

deformations since two scalar fields are necessary in order to fully describe the

plane deformations. With additional complexity induced by the effects of surface

elasticity, the corresponding plane-strain crack problem results in solving highly

non-standard (and coupled) hyper-singular integro-differential equations. By im-

posing carefully chosen admissible end conditions, the hyper-singular terms in the

corresponding differential equations are reduced to Cauchy singular form. We then

numerically solved the reduced system of coupled integro-differential equations and

obtained complete semi-analytic solutions valid throughout the entire domain of

interest. It is also confirmed that the obtained solutions well satisfy the imposed

end conditions.

Based on the solutions obtained through the analysis in this chapter, we have

demonstrated that the incorporation of surface effects reduces the degree of sin-

gularity from the classical strong square root singularity to a weaker logarithmic

singularity in the plane case with one exception when surface tension is removed

(σo = 0) from the Mode-I fracture system. In this case the corresponding stress

fields continue to exhibit the strong square root singularity even in the presence

of surface elasticity. In particular, the incorporation of surface effects can effec-

tively reduce the corresponding stress distributions and result in elastic responses

being size-dependent. It is also shown that the natural boundary conditions of the

corresponding BVP admit only a single condition at each crack tip, in each case

(Mode-I and Mode-II, respectively) with the exception of the Mode-II fracture case

when (σo = 0). In the Mode-II fracture, not a single end condition can be imposed
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at each crack tip. Finally, we note that the general solution for the mixed mode

problem (Mode-I + Mode-II) reduces to those of the Mode-I and Mode-II cases,

separately, even when the surface effects are incorporated.

In Chapter 5, we have incorporated the effects of surface elasticity into a clas-

sical Mode-III interface crack problem arising in the anti-plane shear deformations

of a linearly elastic bi-material. The analysis of an interface crack between two dis-

similar elastic materials is of fundamental importance in the understanding of the

mechanics and fracture mechanisms of advanced composite materials (for exam-

ple, laminar and fiber-reinforced composites) where, for example, a high possibility

of material debonding and cracking or sliding at the interface exists. The main

objective of this chapter is to examine the effects of surface elasticity on two distin-

guished faces of the interface crack. In this respect, we projected surface properties

in a way that each crack face (upper and lower faces) has its own distinct elastic

properties which are different from those of each of the bulk materials.

Using complex variable methods and adequately chosen end conditions, we

again reduce the corresponding problem to a system of coupled Cauchy singular

integro-differential equations which is then solved numerically using an adapted

collocation technique. We have demonstrated that the corresponding stress distri-

butions again exhibit clear signs of size-dependency and accommodate the results

from both the homogeneous crack case and the classical solution when correspond-

ing conditions are imposed. In particular, it is shown that that the major stress

component (σyz) at the crack tips exhibits a weaker logarithmic singularity rather

than the classical strong square root singularity, even in the case of an interface

crack problem. It is also found that the minor stress contributor (σxz) is finite

at the crack tips and more importantly, jumps across the bi-material interface, in

contrast to the classical result from the LEFM theory.
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In regard to the natural admissible boundary conditions, a single end condition

can be imposed at each crack tip in contrast to the homogeneous Mode-III crack

problem. In this study, we have chosen the end condition to reduce the corre-

sponding systems of integro-differential equations: from hyper-singular to Cauchy

singular-integro differential equations. This further leads to the boundedness of the

minor stress contributor (σxz). In this respect, other choice of end conditions can

be made, for example, f(±a) = 0 at the tips (instead of prescribing α (±a) = 0) in
an attempt to obtain bounded major stress component (σyz) remaining σxz infinite

at the crack tip. However this involves solving a system of coupled hyper-singular

differential equations which have yet to be studied. Finally, it is noted that the

solution and analysis presented in this chapter, are sufficiently general in that,

they accommodate the results both obtained from the homogeneous material case

by imposing μ1 = μ2 and (μ
s − σo)+ = (μs − σo)−, and the classical results, when

the surface effects are neglected in the corresponding bulk-crack system.

Plane-strain deformation of a linearly elastic bi-material incorporating cracks

in its interfacial region is, perhaps, the most comprehensive description of a bulk-

crack system which involves all the complex nature of the mechanics of fracture.

The classical prediction models of such crack problems from the theory of LEFM

often produce results quite apart from real world phenomena such as the rapid

oscillation in both stress and displacement fields near the crack tip leading to the

possibility of material interpenetration between two adjoined dissimilar materi-

als. Chapter 6 addresses the above mentioned inconsistencies and considers, in

the presence of surface elasticity, a bi-material crack-matrix system undergoing

plane-strain deformations and subjected to uniform remote tension and in-plane

shear. More specifically, we refine governing equations to include surface effects on

both faces of the interface crack using Gurtin-Murdoch (curvature-independent)
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surface elasticity model. To this end, a system of coupled Cauchy-singular integro-

differential equations is obtained using Complex variable methods and the theory

of Cauchy integrals which is highly complicated in nature (four unknowns with

four coupled integro-differential equations). Instead of using conventional numeri-

cal method adopted in Chapters 3-5, we introduced an effective, yet simple method

(referred to in this study as a ‘direct method’) through which we obtained a com-

plete semi-analytic solution for both Mode-I and Mode-II fracture cases.

In contrast to the homogeneous plane-strain fracture case, two natural ad-

missible conditions can be imposed at each crack tip in the case of an interface

plane-strain crack problem. However, it is found that the number of admissible

end conditions further reduces to one when surface tension is removed from the

corresponding system (i.e. σo = 0). In this study, we chose an end condition in a

way that the hyper-singular terms in the obtained system of differential equations

reduce to Cauchy singular form. The corresponding numerical analysis results

also indicate that the imposed end condition is well-satisfied. It is shown that,

among other various interesting phenomena, our analysis predicts weakly logarith-

mic singular stresses at the crack tips and the corresponding stress fields to be

size-dependent. In particular, we note that, in contrast to classical LEFM results,

the incorporation of surface effects effectively removes the oscillatory behavior of

the solution leading to smooth and non-oscillatory stress distributions within the

entire domain of interest. Further, the corresponding stress fields derived in our

analysis demonstrate the apparent presence of mixed mode crack tip fields re-

gardless of the type of applied loading and the amount of stresses decrease as the

surface effects become significant. Finally, the solutions obtained from our analy-

sis are sufficiently general in that they accommodate the results from both the

homogeneous plane-strain fracture case (in Chapter. 4) by setting μ1 = μ2 and
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κ1 = κ2 and the classical LEFM results, when the surface effects are neglected in

the corresponding bulk-crack system.

We expect that the results obtained in this dissertation will advance the un-

derstanding of the role of surface mechanics in the mechanics and mechanisms of

fracture of engineering materials subjected to various types of applied loading. In

particular, the complete solutions obtained through Chapters 3-6 with respect to

various possible scenarios provide physical relevance to corresponding real world

problems and therefore will enhance future design and analysis of mechanical sys-

tems, particularly at the nano/micro scale where surface effects are known to be

significant. Finally, the corresponding modeling and development in regard to

the implementation of the theory of surface elasticity into the description of a

matrix-crack system will serve as a guideline for further studies in this subject, for

example, the analysis of the effects of a second-order (curvature-dependent) theory

of surface elasticity in LEFM.

7.2 FUTURE WORK

The most important extension of our work includes the incorporation of a higher-

order (e.g. curvature-dependent) theory of surface elasticity with the possibility

of the complete removal of stress singularities at crack tips. It is shown in this

dissertation that the effects of first-order surface elasticity lead, in most cases, to

the reduction of the classical strong square root singularity of LEFM to a weaker

logarithmic singularity. Although, the degree of singularity is reduced, our model

was not able to predict finite stresses at the crack tips. This is mainly because the

necessary and sufficient requirements for bounded stresses at the crack tip cannot

be satisfied within the present (a first-order) description. More precisely, the maxi-

mum number of admissible end conditions is limited in each case of crack problems.
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Therefore, imposing, in addition, any further end-point conditions overdetermines

the corresponding BVPs. For example, in the homogeneous plane-strain fracture

case (Mode-I and Mode-II), stress components on the real axis (outside of a crack,

y = 0, x > |a|) are given by

σxx + σyy = 4Re [Ω′ (z)] = 2Re
[
1

πi

∫ +a

−a

f(t) + ig(t)

t− z dt+ σ∞yy − iσ∞xy
]
,

σyy − iσxy = [2Ω′ (z)− θ′ (z)]

=

[
1

πi

∫ +a

−a

f(t) + ig(t)

t− z dt+ σ∞yy − iσ∞xy −
1

2πi

∫ +a

−a

α(t) + iβ(t)

t− z dt

]
.

The Cauchy integrals in the above equation can be expanded near the crack tip

(for example z = ±a) to give

σxx + σyy =
2

π
g (±a) ln r + σ∞yy +O (1) ,

σyy − iσxy = 1

2πi
[2(f (±a) + ig (±a))− α (±a)− iβ (±a)] ln r + σ∞yy − iσ∞xy +O (1) ,

where r = |z − a| . Therefore, the necessary and sufficient conditions for the all
stress components to be bounded at the crack tips are that the expressions in the

above equation admit no logarithmic singularity. In other words, the following

three conditions must be satisfied at each crack tip

g (±a) = 0, β (±a) = 0 and 2f (±a) = α (±a) .

Since f(t) = α (t) = 0 for Mode-I case and g (t) = β (t) = 0 for Mode-II case (see

Chapter. 4), the above combined mode conditions can also be rewritten as

g (±a) = 0, β (±a) = 0 for Mode-I case,

2f (±a) = α (±a) for Mode-II case, (7.1)

respectively. However, only a single natural boundary condition is admissible in

the case of homogeneous Mode-I and Mode-II fracture within the description of the

first-order theory of surface elasticity. Consequently, the corresponding solution
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cannot satisfy bounded stresses at the crack tips with the stress singularity reduced

to logarithmic form.

In this respect, in [51] the authors demonstrated that the Steigmann—Ogden

theory of surface elasticity (curvature-dependent surface energy) [32,33] produces a

more accurate description, particularly when a system is subjected to wrinkling and

bending deformation modes. In particular, since a curvature-dependent (second-

order) theory of surface elasticity includes additional descriptions of bending ef-

fects, correspondingly more degrees of freedom can be admitted at the boundaries

of systems. In the case of a bulk-crack system, this means that additional end con-

ditions can be imposed, on top of the natural boundary conditions, and thus may

satisfy necessary and sufficient conditions for bounded stresses. In fact, by using

curvature-dependent theory, in [52] the authors obtained a system of Fredholm

integral equations, in the case of interface plane-strain crack problem. They, then

show that (although, the actual solutions of the corresponding differential equa-

tions are not presented) the expected form of solutions leads to bounded stresses at

crack tips. Consequently, it will be very interesting to readdress the problems con-

sidered in the present work, whether the incorporation of a curvature-dependent

(second-order) theory of surface elasticity indeed admits finite stresses at the crack

tips.

Another interesting extension of the present work is to examine, within the

description of a first-order surface elasticity, whether we may choose particular

end conditions (other than used in the present work) to achieve boundedness of

the most significant stress components. For example, in the Mode-I fracture case,

it is clear from Eq. (4.63) that the logarithmic singularity in σyy can be removed

when 2g (t) = β (t) at each crack tip (t = ±a), with σxx remaining singular. i.e.

(2g (±a)− β (±a)) ln r = 0, when 2g (±a) = β (±a) .
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However, this now involves solving a system of coupled hyper-singular integro-

differential equations (instead of Cauchy singular) since the corresponding hyper-

singular terms can be reduced to Cauchy singular form only when (k− 1)g(±a) +
β(±a) = 0, one which we give up in order to impose 2g (±a) = β (±a) at the
crack tips (note that, in this case, only a single end condition is allowed within the

first-order description). In this respect, it is worth emphasizing that for a Mode-

II fracture with σo �= 0, only one end condition is required at each crack tip to

remove the entire singularity (See. Eq. (7.1)). The determination of the existence

of admissible, bounded solutions of the corresponding non-standard hyper-singular

integro-differential equations will be the key of this practice.
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