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Abstract

High dimensional classification has drawn massive attention due to its increasing application in genetic

diagnosis, image or speech recognition and financial analysis. Traditional methods such as Linear Dis-

criminant Analysis (LDA) and Quadratic Discriminant Analysis (QDA), which are optimal Bayes classi-

fiers under normality assumption, sometimes fail in high dimensional space where the number of variables

is considerably greater than the sample size, and thus it is impossible to obtain a good estimation of the

covariance matrix by using the conventional empirical estimator. An alternative approach is Naive Bayes

which instead assumes all features are independent. Although independence is a critical assumption, it

surprisingly does work well in many practical cases. Inspired by the success of Naive Bayes, we aim to

find a balance between Naive Bayes and LDA. Hence, it is reasonable to assume only few correlations

between features exist in high dimension so that we can take advantage of the sparsity and get a better co-

variance estimator. The main contribution of this thesis is that we improved the conventional LDA under

the sparsity assumption by replacing the empirical covariance estimator with a sparse one. We also review

various classification methods specific for high dimensional space. We compared our approach with some

of these methods available in R with both simulation and two real data sets and the result showed that our

method outperformed many baselines.
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Chapter 1

Introduction

As one of the most essential tasks of supervised learning, classification has a wide range of application
in the real world. For instance, we can predict the gender of a person given information such as height,
weight, heart rate or even portrait images. These information are called explanatory variables or features
while gender is called the response variable. In this case gender is a categorical factor and it distinguishes
classification from regression whose response variable is numeric. The gender of one person can only
be either male or female, hence it is called binary classification. There are also cases when the range of
response includes more than two categories and it is called multi-classification. For example, as introduced
in 4.2.1, we need to make diagnosis for a patient if he is suffering from one of four types of cancers
according to his gene expression. In either binary or multi-classification, the sample should be labeled
with only one category. This is different from a similar task labeling where one sample can be labeled
with either no category or multiple ones.

The reason why we need classification, basically same as the importance of supervised learning, lies in
two factors: cost and time. In some cases, it’s really expensive or even impossible to obtain some informa-
tion. One famous example is handwritten digits recognition model by [28]. The cost with respect to both
time and money motivated the invention of this recognition model, before which massive transcription
work could only be done manually. They tried to teach the computer how to recognize numbers so that
the computer can be a substitute with lower cost and liberate people from repetitive and tedious labor. The
second factor time refers to prediction tasks. Sometimes there is a lag between the time we need to know
the category and the time we can know. A good example from [23] is detecting short lifetime batteries.
The lifetime of a battery can never be determined until it fails. However, in order to promise a good quality
standard we must try to make sure all the batteries have long lifetime and filter those unqualified out, of
course, before they turn out unqualified. Hence, we need to set up a model detecting the short lifetime
batteries using features from them.

There are many classification approaches which have achieved huge success such as logistic regres-
sion, linear discriminant analysis (LDA) and k nearest neighbor (kNN). LDA is, in theory, the optimal
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CHAPTER 1. INTRODUCTION

classifier under normality. However, high dimensionality sets a huge barrier to those conventional ap-
proaches, which usually referred to as “curse of dimensionality” [10]. For parametric models, the number
of parameters usually explodes dramatically with the increase of dimensionality. For instance, in LDA,
the number of parameters is kp+ p(p+ 1)/2, which is quadratic with respect to dimension p. Hence,
it becomes challenging to build an effective classification model in high dimensional space with limited
sample size. There are many previous works that tried to improve LDA by feature selection or projection
and many of those assumed the sparsity of correlations among features. Assuming a sparse covariance
structure for the features is a common assumption in high dimensional analysis and taking advantage of
this assumption enables us to derive better estimation of parameters in the classification model and, as a
result, higher accuracy.

In this thesis, we have a review on LDA in section 2 and propose a modification of LDA based on it
with respect to parameter estimation by using sparse covariance estimator in section 2.3. We also discuss
some previous work in section 3 and the relationship among themselves and with our approach. In section
4, we compare our approach with some previous methods mentioned in section 2 as baselines and both
simulation and real high dimensional data set are used.
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Chapter 2

Methodology

In this section, we will first give introduction on conventional discriminant analysis and the limitation
of these methods when sample size is relatively small in high dimensional space. Motivated by these
challenges, we made a reasonable sparsity assumption and improved LDA by using previous work on
sparse covariance estimation [24].

2.1 Discriminant Analysis

2.1.1 Classification task

Assume X is the input space and Y is the output space which, without loss of generality, can be recoded
as Y = {1,2, ...,K} where K is the number of categories. Usually we have a training data set consisting
of n observations or labeled data (Xi,Yi), i = 1, ...,n and Xi ∈ X , Yi ∈ Y and it is assumed that each
observation is independent. The classification task is to find the best classification function g : X → Y

based on the training data (Xi,Yi).
There are many ways to define what the best function is. The most simple metric is accuracy. Given

a new sample (X ,Y ) ∈X ×X , accuracy is defined as the probability of correct classification, and it
can be empirically estimated with another data set, which is usually called test set. The test set must be
independent of training set to avoid over-fitting, but is expected to have same distribution as training set
and population so that our accuracy estimation is valid.

ACC(g) = P(g(X) = Y )≈ # correct prediction in test set
# total test set

3



2.1. DISCRIMINANT ANALYSIS CHAPTER 2. METHODOLOGY

2.1.2 Bayes Classifier

We can also define the best classification function from a different perspective: loss function. The most
commonly used loss function for classification task is the zero-one loss:

L(y,g(x)) =

{
0,g(x) = y

1,g(x) 6= y

This loss function can be interpreted as a indicator function of mis-classification as it returns 1 when
mis-classification happens. Note that we can also choose different losses for different classes [17] espe-
cially in unbalanced cases. Here we only consider consistent loss among all classes. Hence, we look at
the expectation of loss function for a classification function g

W (g|X = x) = EY [L(Y,g(x))]

= L(Y,g(X))P(Y = g(x)|X = x)+L(Y,g(x))P(Y 6= g(x)|X = x)

= P(Y 6= g(x)|X = x)

W (g) = Ex∈X [W (g|X = x)]

= Ex∈X [P(Y 6= g(x)|X = x)]

= P(Y 6= g(X))

= 1−ACC(g)

As we can see, the conditional loss function given X is the mis-classification rate of g, and the expected
loss function over input space X is the expectation of the mis-classification rate. Hence, minimizing the
expected loss function is equivalent to minimizing the mis-classification rate, or in other words, maximiz-
ing the accuracy of classification function g and, if possible, everywhere on input space.

min
g∈G

W (g)≡max
g∈G

P(Y = g(x)|X = x), x ∈X

The optimization problem on the right side is to maximize the posterior P(Y |X), hence it is also
called Maximize A Posterior(MAP). In theory, the solution to the MAP problem above is called the Bayes

Classifier, denoted as
g∗(x) = argmax

g∈G
P(Y = g(x)|X = x)

4



2.1. DISCRIMINANT ANALYSIS CHAPTER 2. METHODOLOGY

By Bayes theorem,

P(Y = k|X = x) =
P(Y = k,X = x)

P(X = x)
=

P(X = x|Y = k)P(Y = k)
P(X = x)

∝ P(X = x|Y = k)P(Y = k)

= fk(x)πk

where fk(x) =P(X = x|Y = k) denotes the conditional density function of x given Y = k and πk =P(Y = k)

denotes the prior probability of Y = k . Hence, Bayes classifier can also be written as

g?(x) = argmax
k∈Y

fk(x)πk

Assuming the classification function space is G = {g : X → Y }, the ideal case is that we can find
the “true” function f such that for any X ∈ X , f (X) = Y . However, it is usually impossible to find
such function for several reasons. Firstly, information given by input features can be barely as much as
that from the output categories. In other words, it is impossible to determine the category based on the
observed features with 100% accuracy. Secondly, in all algorithms, many assumptions are made, which
narrows the function space G where we looking. It is possible that the true function f is not in this
space even if the information we have from the features is enough. For example, in Linear Discriminant
Analysis which will be introduced in the following section, we have strong normality and equal variance
assumption, which result in a linear classification function. Furthermore, training data we use empirically
might mislead us to the function that does not characterize the population best. This happens when the
training data is not representative enough due to either noise or sampling bias. Hence, we can only instead
try to find the “best” or the “closest” one within function space G based on training data.

2.1.3 Linear Discriminant Analysis

The Fisher linear discriminant analysis (LDA) is an extension of Bayes classifier with normality assump-
tion [14] [23], where for each class k, X ∼ N(µk,Σ), then the density function is

fk(x) = (2π)−p/2|Σ|−1/2 exp{−1
2
(x−µk)

T
Σ
−1(x−µk)}

Hence, the classification or discriminant function is:

δLDA(x) = argmax
k∈Y
{ fk(x)πk}

= argmax
k∈Y
{2log(πk)−||x−µk||2Σ)}

5
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where ||x− µk||2Σ = (x− µk)
T Σ−1(x− µk), which is also called the Mahalanobis distance. Assume there

are only two classes in output space, Y = {1,2}. The Bayes classifier assigns X to class 1 if

f1(X)π1 ≥ f2(X)π2

which is equivalent to
log

π1

π2
+(X−µ)T

Σ
−1(µ1−µ2)≥ 0

where µ = 1
2(µ1+µ2). Hence, this is a linear classifier since the discriminant function is a linear function

of input feature X . And we can get the loss function ie.e the expectation of mis-classification rate W (δLDA)

W (δLDA) = Ex∈X [P(Y 6= δLDA(x)|X = x)]

=
∫

x∈X
[P(Y 6= δLDA(x),X = x)]dx

= π1

∫
x∈X

[P(δLDA(x) = 2,X = x|Y = 1)]dx+π2

∫
x∈X

[P(δLDA(x) = 1,X = x|Y = 2)]dx

= π1Ex∈X1 [1(δLDA(x) = 2)]+π2Ex∈X2 [1(δLDA(x) = 1)]

If we assume the balance between two classes i.e. π1 = π2, we have δLDA(x) = argmink∈Y {||x−µk||2Σ)}
and it will assign X as class 1 if f1(X)≤ f2(X). Hence we have

W (δLDA) = Ex∈X1 [1(δLDA(x) = 2)]+Ex∈X2 [1(δLDA(x) = 1)]

= Φ(−
||x−µk||2Σ

2
)

(2.1)

This is the mis-classification rate of LDA and also the Bayes mis-classification rate under normality as-
sumption, the minimum boundary for any classifier.

2.1.4 Quadratic Discriminant Analysis

In LDA we assume the features in every group follow normal distributions with the same covariance
matrix Σ1 = ...= Σk = Σ, while in Quadratic Discriminant Analysis (QDA) we loosen this equal variance
assumption by assuming different the covariance matrices among groups. Hence the density function of
class k is

fk(x) = (2π)−p/2|Σk|−1/2 exp{−1
2
(x−µk)

T
Σ
−1
k (x−µk)}

6
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Then the discriminant function of QDA is

δQDA(x) = argmax
k∈Y

fk(x)πk

= argmax
k∈Y
{2log(πk)−||x−µk||2Σk

− log(|Σk|)}

The mis-classification rate for QDA is really complex and since we mainly focus on linear classifier in this
thesis, we do not have further analysis on QDA.

2.1.5 Empirical covariance estimator

Either in LDA and QDA, we need to get the estimation the parameters for normal distribution of each
group. In section 2.1.2, we showed the equivalence between optimizing loss function and Maximizing A
Posterior (MAP). Here we show the MAP estimation of parameters in LDA.

L(Xi,Yi) = fk(Xi)πk

= (2π)−p/2|Σ|−1/2 exp{−1
2
(Xi−µk)

T
Σ
−1(Xi−µk)}πk

∝ |Σ|−1/2 exp{−1
2
(Xi−µk)

T
Σ
−1(Xi−µk)}πk

l(X ,Y )≈ 1
n

n

∑
i=1

l(Xi,Yi) =−
1
n

n

∑
i=1

log(L(Xi,Yi))

∝−1
2

log(|Σ|)+ 1
n

n

∑
i=1

log(πk)−
1
2
(Xi−µk)

T
Σ
−1(Xi−µk)

∂ l(X ,Y )

∂πk
=

nk

n
1
πk

,
K

∑
k=1

πk = 1

where nk denotes the sample size of group k. Hence, the MLE of πk is nk
n , which is the relative frequency

of group k.
∂ l(X ,Y )

∂ µk
=

1
n ∑

Yi=k
−2Σ

−1(Xi−µk)

=−2Σ
−1
(

∑Yi=k Xi

n
−µk

)

7
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Setting this derivative to zero, we can get the MLE of µk =
∑Yi=k Xi

n , which is the sample mean of group k.

l(X ,Y ) ∝−1
2

log(|Σ|)+ 1
n

n

∑
i=1
−1

2
(Xi−µk)

T
Σ
−1(Xi−µk)

=
1
2

log(|Σ−1|)+ 1
n

n

∑
i=1
−1

2
Trace(Σ−1(Xi−µk)(Xi−µk)

T )

=
1
2

log(|Σ−1|)− 1
2

Trace(Σ−1 1
n

n

∑
i=1

(Xi−µk)(Xi−µk)
T )

∂ l(X ,Y )

∂Σ−1 =
1
2

Σ− 1
2n

n

∑
i=1

(Xi−µk)(Xi−µk)
T

By setting this derivative to zero, we derive the MLE of Σ

Σ̂
MLE =

1
n

n

∑
i=1

(Xi−µk)(Xi−µk)
T

which is the sample covariance or empirical covariance estimator. Since E[Σ̂MLE ] = n
n−k Σ, we can also

scale the MLE to obtain an unbiased estimator

Σ̂
unbias =

n− k
n

Σ̂
MLE =

1
n− k

n

∑
i=1

(Xi−µk)(Xi−µk)
T

In QDA, we have same MLE for πk and µk and similar estimator for covariance matrix Σk

Σ̂
MLE
k =

1
nk

nk

∑
i=1

(Xi−µk)(Xi−µk)
T

In theory, LDA and QDA are the Bayes classifier under their normality assumptions respectively. Empir-
ically, we build our classifier by estimating the normality parameters used in the classification function.
Hence, there are two sources where possible problems that might limit the practical performance of these
methods : normality and parameter estimation. For normality assumption, this is the common assumption
we have in most statistical analysis because of its good properties. We also have approaches for checking
normality [26]. For parameter estimation, the number of parameters in covariance matrix under the nor-
mality assumption in LDA is p(p+1)/2 and in QDA this number should be multiplied by K. In order to
promise accurate estimations, the amount of training data we need grows at least quadratically with the
increase of dimensions while in high-dimensional classification, we usually have training data with rela-
tively limited sample size. The most direct impact is the breakdown of classification rule in either LDA or

8
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QDA due to the singularity of covariance estimator.

rank(Σ̂)≤
n

∑
i=1

rank((Xi−µk)(Xi−µk)
T ) = n

The lda model in MASS package [37] just ignore the potential singularity issue by projecting the original
data into some subspace if the covariance estimator is not full ranked. More specifically, after normalizing
the data, we get the singular value decomposition of the covariance estimator.

Σ̂ =V T
ΛV = (Vr,Vp−r)

(
Λr 0
0 0

)
(Vr,Vp−r)

T =VrΛrV T
r

where Λr is the diagonal matrix consisting of non-zero singular values of Σ̂. Then we project the original
data in to a small r-dimensions space X ′ = Λ

−1/2
r V T

r X and use the Euclidean distance directly in classi-
fication function, which is also the Mahalanobis distance since the covariance matrix after projection is
identity matrix.

Cov(X ′) = Λ
−1/2
r V T

r Σ̂(Λ
−1/2
r V T

r )T = Ir

In order to promise the stability, singular values smaller than the tolerance (1e-04 by default) should be
regarded as zero. Hence, the subspace dimension r might be less than the rank of empirical estimator.
This idea makes sense when we have a good estimation of covariance matrix and we can find a subspace
consisting of dimensions with large variation and dense information. However, based on the limited
sample size, the large variation of covariance estimator make itself unreliable and as a result, projection
based on the this bad estimation is likely to leave the informative features or dimensions out.

2.1.6 Naive Bayes classifier

Another available solution to addressing the singularity issue is Naive Bayes, where not only normality
but also independence of features are assumed at the same time [36]. In other words, it can be considered
as a LDA model with the constraint that the covariance matrix is diagonal.

fk(x) =
p

∏
j=1

p(x j|y = k)

=
p

∏
j=1

1√
2πσ2

k, j

exp(−
(x j−µk, j)

2

σ2
k, j

)

= (2π)−p/2|D|−1/2 exp{−1
2
(x−µk)

T D−1(x−µk)}

9



2.2. BIAS VARIANCE TRADE-OFF IN CLASSIFICATION CHAPTER 2. METHODOLOGY

Figure 2.1: 4 types of sparse covariance matrices. Each pixel represents the correlation and only 20
dimensions are shown for illustration.

where D is the diagonal covariance matrix with only diagonal entries σk, j non-zero. Hence, the number
of parameters in covariance matrix drops significantly from p(p+1)/2 to p and this diagonal covariance
matrix not singular as it is in LDA using empirical estimation.

We may doubt if the independence assumption is reasonable in practice or, in other words, if a diag-
onal matrix is a good estimator of covariance matrix. In high dimensional space where there are a large
amount of features, we expect most of them are independent while some of them might still be highly cor-
related with one another. Although the independence assumption makes it possible to get a non-singular
covariance matrix, some off-diagonal entries are ignored and set as zero directly. Hence, compared with
empirical estimator, the diagonal one we use in Naive Bayes is obviously a biased estimator. However,
the variance of the Naive Bayes estimator is much smaller than the empirical estimator due to many fewer
parameters to estimate.

2.2 Bias variance trade-off in classification

There is a trade-off between bias and variance and we tried a simulation in order to verify the trade-off.
Recall that the discriminant functions for either LDA or Naive Bayes is a linear function with respect to
x, it can be interpreted as defining a hyperplane {x : xT β +β0 = 0}, which splits the input space into two
parts corresponding to two classes. The slope defined by LDA discriminant function is βLDA = Σ−1(µ1−
µ2) while the slope for Naive Bayes is βNB = D−1(µ1 − µ2), and the intercept β0 = logπ1

π2
− 1

2(µ1 +

µ2)
T Σ−1(µ1−µ2). To simplify the simulation, we focus on balanced case i.e. logπ1

π2
= 0 and the data after

normalizing should have zero means i.e. (µ1+µ2) = 0. Hence we can ignore the intercept and focus on the
estimation of slopes. We generated 20 sample (10 for each class) in R100 following multi-variate Gaussian
distribution with µ1 = −1,µ2 = 1 and 4 types of sparse covariance matrices [24]: Tri-Diagonal, Auto-
Regressive, Banded and Random Sparse Matrix as shown in 2.1. We compare how close the estimations
from LDA and Naive Bayes are to the ground truth. Since slope with different scales might determine the
same hyperplane, we use the cosine of slopes as the measurement of similarity or closeness.

The left box-plot in Figure 2.2 shows result from 1000 replicates. As we expect, the variation of

10



2.2. BIAS VARIANCE TRADE-OFF IN CLASSIFICATION CHAPTER 2. METHODOLOGY

Figure 2.2: Cosines between true slope of discriminant hyperplane for samples from 4 different type of
sparse population covariance matrices and the corresponding slopes estimated by LDA and Naive Bayes.
Left one shows the simulation result with small sample size while the right one indicates large sample size

Naive Bayes estimation is much lower than LDA which indicates the stability of Naive Bayes. However,
it is surprising that Naive Bayes also achieved higher similarity on average. In theory we expect that LDA
should achieve unbiased estimation and, as a result, a higher similarity, but it turned out that the “unbiased”
property is not as expected. One reason behind can be the inverse of empirical estimator. With limited
sample size, empirical estimator holds large variation and low rank. Thus, taking inverse of this estimator
leads to large bias and exaggerates the variation, which invalidates the “unbiased” property and results in
bad estimation.

We also did a simulation with large sample size where we generated 200 sample (100 for each class)
and the right box-plot in Figure 2.2 shows result. Still, in the first three cases, Naive Bayes outperformed
LDA, which attributes to the sparsity of covariance matrices. However, the bias variance trade-off is more
clear for a random covariance matrix. Large sample size allows empirical estimator to be more accurate
than diagonal one on average and, as a result, a higher similarity and less bias of LDA than Naive Bayes.

On balance, for either small or large sample size, Naive Bayes outperforms LDA for all three sparse
correlation cases with respect to both bias and variance, which might be attributed to the consistency
between independence assumption in Naive Bayes and the sparsity prior we set in simulation. For random
covariance matrices, there is a trade-off between variance and bias when sample size is large, Naive Bayes
still achieves higher similarity with limited sample size.

Another previous work [17] also tried to explain effect of bias and variance in classification but from
a more straight forward perspective we discussed in section 2.1.2, classification error rate or equivalently
accuracy. Instead of considering the slope of the hyperplane, they focus on the posterior probability p(y|x)
directly. Assume there are only two balanced classes Y = {0,1} and P(Y = 1|X = x) = 1−P(Y = 0|X =

x) .
= f (x). Recall that the Bayes classifier is defined as

g∗(x) = argmax
g∈G

P(Y = g(x)|X = x),

11
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then the Bayes classifier becomes g∗(x) = 1( f (x)≥ 1/2). The classification error rate becomes

P(yB 6= y|x) =

{
P(y = 1|x) i f yB = 0 i.e. P(y = 0|x)> 1/2

P(y = 0|x) i f yB = 1 i.e. P(y = 1|x)> 1/2

= 1( f (x)< 1/2) f (x)+1( f (x)≥ 1/2)(1− f (x))

= min{ f (x),1− f (x)}

Given the training set T , the estimation of f (x) is denoted as f̂ (x|T ). Denote the prediction by f̂ (x|T ) as
ŷ, we have error rate for ŷ as follow

P(ŷ 6= y|x) =

{
min{ f (x),1− f (x)} i f ŷ = yB

max{ f (x),1− f (x)} i f ŷ 6= yB

= | f (x)− (1− f (x))|P(ŷ 6= yB)+min{ f (x),1− f (x)}

= |2 f (x)−1|P(ŷ 6= yB)+P(yB 6= y)

The second term P(yB 6= y) is the irreducible error rate and what we can do is to minimize P(ŷ 6= yB),
which is called “boundary error”, as much as possible. At each input point x, f̂ (x|T ) is a function of T

and can be regarded as a random variable due to the randomness of T . Hence, without any assumption on
the distribution of f̂ (x|T ), we can calculate the “boundary error”

P(ŷ 6= yB|x) = 1( f (x)< 1/2)
∫ +∞

1/2
p( f̂ )d f̂ +1( f (x)≥ 1/2)

∫ 1/2

−∞

p( f̂ )d f̂

In order to have further analysis on this boundary error, they assumed f̂ (x|T ) follows a normal distribution
at point x, with mean and variance defined as usual

E[ f̂ ] =
∫ +∞

−∞

f̂ p( f̂ )d f̂

var( f̂ ) =
∫ +∞

−∞

( f̂ −E[ f̂ ])2 p( f̂ )d f̂

Under the normality assumption, the boundary error rate becomes

P(ŷ 6= yB|x) = φ [
sign( f −1/2)(E[ f̂ ]−1/2)√

var( f̂ )
]

where φ(z) is the right tail probability of the standard normal distribution. The opposite number of nu-
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merator in this function is defined as “boundary bias”.[17]

b( f , f̂ ) =−sign( f −1/2)(E[ f̂ ]−1/2)

Although the normality assumption may be not valid, we can still get some inspiration from this approx-
imation. As observed, the bias is defined differently and the bias and variance do not work in an additive
way as in regression any longer. In order to promise a effective classifier with classification error less than
50%, first we need to make sure the boundary bias is negative, which means ( f −1/2)(E[ f̂ ]−1/2) is pos-
itive or in other words, the expected prediction ŷ should be consistent with yB. With boundary bias being
negative, we can reduce the variance or increase |E[ f̂ ]− 1/2|, either of which leads to a more confident
prediction.

The conclusion above explained why Naive Bayes can achieve better performance to some extend.
With simple independence assumption and less parameters to estimate in the model, Naive Bayes approach
results in f̂NB with considerably less variance than f̂LDA. However, Neither Naive Bayes or LDA is perfect
enough. With large sample size, LDA is likely to achieve estimation with low variance and less bias
to Bayes classifier while Naive Bayes approach can not diminish the bias resulting from independence
assumption no matter whether the sample size is large or not. Hence, it inspired us to find if there is
a balance between these two methods which can achieve both acceptable variance and less bias. One
approach is to recover those off-diagonal entries which are significantly different from zero and remain
the stability of estimation at the same time, so that we can have a better estimation of covariance matrix
than a simple diagonal one and expect to have less bias in average. Some works on covariance estimation
will be introduced in the next section.

2.3 Discriminant Analysis using sparse estimator

2.3.1 Sparsity

Recall that in Naive Bayes, the independence assumption makes all the off diagonal entries in covariance
matrix zero, our aim is to recover those non-zeros entries. A class of sparse matrices enables us to have
further theoretical analysis with its desired properties. The class is defined as below

U (k,σ) = {Σ ∈R p×p : max j=1,...,p

p

∑
i=1

1[σi, j 6= 0]≤ k, σ = in f i< j{|σi, j|> 0}}

In other words, it is assumed that for each column in a sparse covariance matrix, the number of non-
zero entries does not exceed k and it is also true for each row since covariance matrix is symmetric. This
assumption can be interpreted as that each variable is correlated to at most k variables and is independent
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with all the other variables. Also, nonzero entries are bounded away from zero by σ . The Sparsity
assumption is serving as a prior knowledge on covariance matrix. It is more specific and targeted in high
dimensional space compared with LDA where no constraint is imposed on covariance matrix, and more
flexible than Naive Bayes or Independence rule. Under the sparsity assumption, we can do further analysis
on covariance matrix estimation and improve LDA with a better estimator.

2.3.2 Sparse Covariance Estimation using false positive rate

The estimation of covariance matrices in high dimensional space is a focused research area since its wide
application in not only LDA, but also principle component analysis, regression and other areas of statistical
inference. Sparse covariance estimation is a balance between empirical estimator and independence rule,
where we have sparsity assumption on covariance matrix. There are mainly three classes of sparse estima-
tors: shrinkage estimators, which shrink estimated eigenvalues, eigen-vectors or the matrix itself towards
some desired target; regularized estimator with lasso-penalties; thresholding estimator, which threshold
the covariances in the covariance matrix to zero entry-wise. In this thesis, we use one thresholding sparse
estimator proposed by [24], which is not only computationally efficient but also more interpretable.

Many previous works share the idea of thresholding. A generalized thresholding operator, as defined
in [30], is sλ (·) : R→R such that

|sλ (z)| ≤ z, sλ (z) = 0 f or|z| ≤ λ , |sλ (z)− z| ≤ λ

which will apply element-wise to a matrix. There are many types of thresholding operators which will be
discussed later in section 2.3.4. In general, the key to thresholding is the choice of parameter λ . Since
this parameter λ is not interpretable enough, many previous works such as [2][3][30][7] only choose the
“best” λ via cross validation, which is usually time consuming. However, the approach we proposed uses
false positive rate to guide the choice of λ , which is not only time efficient but also more interpretable.

For an estimator Σ̂ ∈R p×p, the false positive rate is

ρ(Σ̂) =
#{σ̂i, j 6= 0|σi, j = 0, i < j}

p(p−1)/2

where σi, j is the i, j th entry of the true covariance matrix Σ and σ̂i, j is the i, jth entry of the estimator Σ̂.
The numerator is the number of false positive entries and the denominator is total number of off diagonal
entries. Naive Bayes is an extreme case with false positive rate zero since all the off diagonal entries are
estimated zero under independence assumption.

Based on the sparsity assumption and thresholding properties in appendix: lemma 5.0.1 and theorem
5.0.2, we can find the sparsest threshold estimator approximately achieving a desired false positive rate.
Given a false positive rate ρ , empirical covariance estimator Σ̂emp and a thresholding operator sλ , the steps

14



2.3. DISCRIMINANT ANALYSIS USING SPARSE ESTIMATOR CHAPTER 2. METHODOLOGY

of our approach is as below.

Inputs : Σ̂emp,sλ ,ρ

Step 0 : Set Σ̂
sp
0 = (Σ̂diag)−

1
2 Σ̂emp(Σ̂diag)−

1
2 to be the empirical estimator normalized to have a diagonal

of ones.

Step 1 : Find η = 2aρ st. η ∈ (0.5,1),a ∈ Z +. Find the η quantile Mη of all off diagonal entries
{σi, j, i < j} in Σ̂

sp
0 .

Step 2 : Calculate rρ = 1
2a ||sMη

(Σ̂sp
0 )− Σ̂

sp
0 ||∞.

Step 3 : Find the largest λ st. ||sλ (Σ̂
sp
0 )− Σ̂

sp
0 ||∞ ≤ rρ .

Step 4 : Return Σ̂sp = (Σ̂diag)
1
2 sλ (Σ̂

sp
0 )(Σ̂diag)

1
2

Output : Σ̂sp

Transformation in Step 0 allows us to do thresholding on correlation matrix rather than covariance matrix
and in step 4 we do the transformation backwards to the original scale. In step 1, we get the threshold for
a false positive rate η ≥ 0.5 as mentioned in lemma 5.0.1 and then step 2 follows the conclusion in 5.0.2
which enables us to get the approximate distance for a threshold estimator achieving desired false positive
rate ρ to the true correlation matrix which is estimated by empirical estimator Σ̂

sp
0 . In Step 3 we search the

sparest estimator that falls within this distance.

2.3.3 LDAS

As we discussed in section 2.1.5, one issue for LDA is the estimation of covariance matrix while section
2.3.2 provides an effective and efficient solution to this issue. Hence, it is natural to combine these two
ideas by replacing the empirical estimator in LDA with the sparse estimator and we name it LDAS. Given
an labeled training data set consisting of n observations (Xi,Yi), i = 1, ...,n and Xi ∈X , Yi ∈Y , we firstly
get the sparse covariance estimate Σ̂ = Σ

sp
ρ with fixed false positive rate ρ ∈ [0,1]. Then use the LDA

classification function with the new sparse covariance estimator.

δLDAS(x) = argmax
k∈Y

2log(πk)−||x−µk||2Σsp
ρ
)

This discriminant function is same as LDA when the false positive rate is set as 1 since no thresholding will
be imposed on covariance matrix entries, and equivalent to Naive Bayes when false positive rate is 0 as
all the off-diagonal elements will be shrunken as zero. Hence, we conclude that this method is a balance
between LDA and Naive Bayes, where we can choose how many off-diagonal elements in covariance
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matrix to keep by adjusting the false positive rate from 0 to 1. With the flexibility of choice on false
positive rate, LDAS is at least competitive to its parents LDA and Naive Bayes and hopefully have better
performance in some cases when neither LDA or Naive Bayes works.

2.3.4 Thresholding operator

The sparsity assumption is necessary for the uniqueness of solution and the key step in estimation sparse
estimator is to find the sparsest estimation by thresholding. [30] concluded a generalized form of thresh-
olding sλ (·) : R→R satisfying the following conditions

1. |sλ (z)| ≤ |z|;

2. sλ (z) = 0 f or |z| ≤ λ ;

3. |sλ (z)− z| ≤ λ

The first condition shows that the thresholding result should be no greater than the original input. The
second one explains how the thresholding functions for input values smaller than thresholds. The third
one indicates that the thresholding will only shrink the input in a limited scale so that large input will not be
effected much after thresholding. If we combine the first and the third one, we will have 0≤ z−sλ (z)≤ λ .
It is also natural to have sλ (z) = sign(z)sλ (|z|) which means the thresholding keeps the original sign of
input, but this condition is not strictly necessary.

The simplest thresholding is hard thresholding rule:

sHard
λ

(z) = z ·1(|z|> λ )

The hard thresholding rule can filters out values that are greater than threshold λ and only shrinks small
values to zeros. Obviously, it satisfies all three conditions above and it only has effect on small values.
One disadvantage is that the thresholding function is not continuous.

Soft thresholding results from lasso penalty and the thresholding function is:

sSo f t
λ

(z) = sign(z) · (|z|−λ )+

In a nutshell, soft thresholding shrinks all the values towards zero by at most λ . Values less than λ will
be shrunk as zero, which is consistent with the second condition in definition of generalized thresholding.
For values great than λ , the shrinkage by soft thresholding is λ ,the maximum amount the third condition
allows, which, however, also makes the thresholding function continuous.

The Smoothly clipped absolute deviation (SCAD) penalty proposed by [15] finds a balance between
hard and soft thresholding. Its thresholding function is continuous and the shrinkage will decease as z
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increases and no shrinkage after a certain value. Besides λ , there is another unknown parameter a (a > 2),
which can be either the suggested value (a = 3.7) in [15] or determined be cross validation along with
tuning λ .

sSCAD
λ

(z) =


sign(z) · (|z|−λ )+, f or |z| ≤ 2λ

(a−1)z− sign(z)aλ

a−2
, f or 2λ < |z| ≤ aλ

z, |z|> aλ

The SCAD is exactly same as soft thresholding for |z| ≤ 2λ and hard thresholding for |z| > aλ . Hence
the key of switching from soft to hard thresholding is the second part for 2λ < |z| ≤ aλ . It can be proved
continuous in z ∈R as follow:

limz→2λ+sSCAD
λ

(z) =
(a−1)2λ −aλ

a−2
= λ = limz→2λ−sSCAD

λ
(z)

limz→aλ−sSCAD
λ

(z) =
(a−1)aλ −aλ

a−2
= aλ = limz→aλ+sSCAD

λ
(z)

The last type of thresholding is adaptive lasso from [39]. The “adaptive” can be reflected by the shrinkage
term λ η+1|z|−η = λ · (λ

z )
η . Compared with soft thresholding rule whose shrinkage is λ , adaptive lasso

imposes smaller penalty on large values (z≥ λ ), and the larger the value is the smaller the penalty will be,
hence, approaching hard thresholding when z→ ∞.

sAd pt
λ

(z) = sign(z) · (|z|−λ
η+1|z|−η)+

From Figure 2.3 we can compare the relationship and the difference among these four types of thresh-
olding functions. The shade area represents where any possible thresholding function defined as 2.3.4 can
be. As shown in the graph, hard and soft thresholding function is the lower and upper bound of the shade
area respectively. Both SCAD and adaptive lasso methods are trying to switch from soft to hard so that
less bias will be imposed on input above the threshold.
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Figure 2.3: Thresholding functions
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Chapter 3

Previous work

3.1 Discriminant analysis

Although LDA is the Bayes classifier under the normality assumption, we cannot promise a good empir-
ical performance without good estimation of parameters, which is the key to determine a classification
function. There are many previous works trying to improve LDA and most of them took advantage of the
properties in high dimensional space such as sparsity to obtain better estimates.

3.1.1 SLDA

The Sparse Linear Discriminant Analysis (SLDA) proposed by [31] was based on the sparsity assumption
of both covariance matrix Σ = {σi, j} and the difference between group means d = µ1−µ2. The idea is to
find better estimation of d and Σ used in LDA with these sparsity assumption in high dimensional space.
The sparse estimator they used for covariance matrix was proposed in [2], where the measure of sparsity
is defined as below

Ch = maxi≤p

p

∑
j=1
|σi, j|h, h ∈ [0,1)

When h = 0, |σi, j|0 = 1 for σi, j 6= 0 ,and |σi, j|0 = 0 for σi, j = 0. Hence, it is still consistent with the
measure we used in defining the sparsity space in section 2.3.1. Then the covariance estimate can be
obtained by imposing hard thresholding on empirical estimator.

Σ̃ = shard
λ

(Σ̂emp) = {σi, j1(|σi, j|> λ1)}, λ1 = M1

√
log p√

n
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where M1 is a positive constant and only off diagonal elements will be thresholded. They also defined the
sparsity measure on d:

Dg =
p

∑
i=1
|di|2g, g ∈ [0,1)

where di is the ith component of d, g is a constant not depending on p. Similarly, this measure can be
regarded as a count of non-zero elements when g = 0. Hence, we can also obtain a sparse estimate of d by
thresholding.

µ̃ = shard
λ

(µ̂) = {µi1(|µi|> λ2)}, λ2 = M2(
log p

n
)α

where M2 is a positive constant and α ∈ (0,1/2).

3.1.2 LPD

SLDA takes advantage of sparsity of both d and Σ and get sparse estimates on them separately. However,
recall that for binary classification task, we will classify an input X as class 1 if

log
π1

π2
+(X−µ)T

Σ
−1d ≥ 0

From the equation we can conclude that in order to determine the classification function, it is not necessary
to estimate both Σ and µ exactly. Instead, we only need the the product of the inverse matrix or precision
matrix Ω = Σ−1 and d, and this is main idea of Linear Programming Discriminant (LDP) [8]. Compared
with estimating Σ and µ separately, the number of parameters that need estimating for product β = Ωd

drops significantly from p(p−1)/2+ p to p.
Ideally we want to find β such that Σβ = d. Since in high dimensional space the sample size is likely to

be less than the dimensions, the empirical estimate of covariance matrix is singular. This results in infinite
solutions for β , in other words, infinite elements in feasible set {β : Σ̂empβ = d̂} . In order to make the
solution unique, naturally, LPD assumes that β is sparse which is similar to the sparsity assumption of Σ

and µ in SLDA, and seeks the most sparse solution from within the feasible set. Since the estimation of
neither Σ or µ can be accurate, we loosen the feasible set to {β : |Σ̂empβ − d̂|∞ ≤ λn}, where λn is a tuning
parameter that measures the acceptable deviation. Hence, the classification rule will change into

log
π1

π2
+(X−µ)T

β̂ ≥ 0

where the estimation β̂ can be obtained by solving the following optimization problem:

β̂ = arg min
β∈R p

{|β |k sub ject to |Σ̂emp
β − d̂|∞ ≤ λn}
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Both SLDA and LDP aim to find the sparsest estimation of parameters in classification function by hard
thresholding. In SLDA the tuning parameter is thresholds while in LDP the tuning parameter is λn, which
can be regarded as tolerance for the difference between new estimation and empirical one. These tuning
parameters might differ among data in different scale, so there is no general conclusion on selection of
tuning parameters and the the only way to determine is cross-validation. Hence, although the drop of the
amount of tuning parameters makes LDP more computationally efficient compared with SLDA, cross-
validation is still unavoidable, which is the bottle neck of computation efficiency.

The difference of assumption also indicates that they focus on different situations. [8] explained the
relationship between assumptions of LDP and SLDA. A vector β is called s− sparse if it has at most
s nonzero entries. Similarly, a matrix Σ is called s− sparse if each row(column) has at most s nonzero
entries. Then we have the following conclusion:

Remark. from [8] If d ∈R p is s1-sparse and Ω ∈R p×p is s2-sparse, then Ωd is at most s1s2-sparse.

Proof. Without loss of generality, we assume the first s1 entries of d are nonzero. Then we can write
d = (d1, ...,ds1 ,0)

T , Ω = {Ω1,Ω2, ...,Ωp} , where Ωi ∈R p. Then the product is Ωd = ∑
s1
i=1 Ωidi. Since

Ωi is s2-sparse, ∑
s1
i=1 Ωidi can be at most s1s2-sparse.

Remark 3.1.2 shows that the sparsity assumption in SLDA is a sufficient condition for that in LDP
when s1s2 is smaller than the dimension p. On the other hand, there are also cases where neither Ω nor d

is sparse but Ωd is. For example, assume that Ω is an orthogonal p-sparse matrix and d is one p-sparse
column of Ω, then Ωd = (0, ...,1, ...0) which is 1-sparse. Hence, the sparsity on Ωd is, to some extend,
more flexible than assuming both Ω and d are sparse.

The sparsity assumptions in these two methods are different from our sparsity assumption on covari-
ance matrix. Obviously, the assumption in SLDA is a special case for our assumption. However, the
assumption in LPD is somehow invalid if the features are screened before feeding into the classifier. LPD
assumes the β is sparse which is the slope the hyperplane determined by the classification rule. Hence,
This sparsity indicates that there are uninformative features and basically LPD is somehow equivalent to
feature selection. Our model, instead, only assumes the sparsity on correlations among features and we
will take the information from all features. Hence, one underlying assumption is that the features we have
are informative, which is totally different from LPD.

3.2 Feature selection

Feature selection is another solution to high dimensional classification. Instead of searching for better
estimation of parameters, feature selection reduces the dimension first and hence, the number of parame-
ters to be estimated. The sparsity of d is also a key assumption in feature selection. In other words, we
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assume that only a small proportion of features are contributing to classification task. This assumption
is sometimes reasonable when we include a variety of features from all possible resources and there are
some redundant features i.e. d j ≈ 0. Even if some features with d j 6= 0 hold some information, it might be
buried in a larger scale of noise. Hence, feature selection is useful and sometimes even necessary in many
occasions.

3.2.1 FAIR

Features Annealed Independence Rule (FAIR) was proposed [13] for feature selection and classification
in high dimensional setting. They measure the importance of features by t-statistics, which is defined as
follow:

Tj =
d j√

S2
1 j/n1 +S2

2 j/n2

, j = 1, ..., p

where S2
k j = ∑Yi=k(Xi j− X̄i j)

2/(nk−1) is the sample variance of jth feature in class k. If we assume that
the variance matrices of two groups are equal, than we will have a t-test with pooled variance:

Tj =
d j

Sp
j
, Sp

j =

√
n1S2

1 j +n2S2
2 j

n1 +n2
j = 1, ..., p

Either way the discriminant function of FAIR is:

δ̂FAIR =
p

∑
j=1

d̂ j(x j−µ j)

σ̂2
j

1(|Tj|> b)

where b is the threshold for feature selection. If the t j exceed the threshold, we consider the correspond-
ing jth feature significantly important and contributing to the classification and keep it in discriminant
function, otherwise we delete this feature. Once important features are screened out, Features annealed
independence rule is to apply independence classifier to the selected features.
Thresholding is also equivalent to selecting mb features with largest |t j|. Hence, we can also sort the
features according to its t value first and the number of features can be determined by the following opti-
mization problem[13]:

mopt = arg max
1≤m≤p

1
λ m

max

[∑m
j=1 d2

j/σ2
j +m(1/n2−1/n1)]

2

nm/(n1n2)+∑
m
j=1 d2

j/σ2
j
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where λ m
max is the largest eigenvalue of the correlation matrix of the truncated features. The empirical

estimate of this optimization with training data is:

m̂opt = arg max
1≤m≤p

1

λ̂ m
max

[∑m
j=1 d̂2

j/s2
j +m(1/n2−1/n1)]

2

nm/(n1n2)+∑
m
j=1 d̂2

j/s2
j

Neither of these two ideas is time efficient. The threshold b can only be determined by cross-validation
while the optimization problem to find the best m can only be solved by exhaustion, which is also time
consuming in high dimensional space. However, these two ideas of features selection can combine to
improve the computation efficiency. An available idea is to screen out all the important features with a
reasonable threshold and find the best mopt among these features.

3.2.2 NSC

[34] proposed the Nearest Shrunken Centroids (NSC) methods which can be used to identify a subset of
features that best separate each class. Compared with FAIR, NCS is able to handle multi-class classifica-
tion task. Denote the mean of jth feature for class k by X̄k

j and the mean of jth feature for overall data by
by X̄ j. If we assume that all classes share same the covariance matrix, then the normalized deviation to
overall centroid for each feature is

dk
j =

X̄k
j − X̄ j√

1
nk
− 1

n(S j + s0)

where s0 is a positive constant and S j is the pooled standard deviation for jth feature.

S2
j =

K

∑
k=1

(nk−1)S2
k j/(n−K) =

K

∑
k=1

∑
Yi=k

(Xi j−Xk
j )

2/(n−K)

The positive constant s0 is included in case of sensibility caused by the denominator S j being too small.
The idea of shrunken centroid method is to shrink this deviation dk

j by soft thresholding. More specifically,
we have

d̃k
j = sso f t

λ
(dk

j ) = sign(dk
j )(|dk

j |−λ )+

We can recover the centroids by shrunken deviation

X̃k
j = X̂ j +

√
1/nk−1/n(S j + s0)d̃k

j

All deviations will be shrunken towards zero by at most λ and as a result, centroids of all groups will
be closer to the overall centroid. Groups with deviations smaller than the threshold λ will be ”deleted”
because the centroids of these groups will be equal to the overall centroid and not contributing to the
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classification function.
The shrinking process is also equivalent to the following form

X̃k
j = s4k

j
(X̄k

j ) = sign(X̄k
j )(|X̄k

j |−4k
j)+

where4k
j = λ

√
1
nk
− 1

n(S j + s0), which is the denominator of d̃k
j . If the data is normalized and all features

have equal standard deviation 1 then 4k
j is same among features, 4k

j =4k. Then we can simplify the
shrinking process further.

X̃k = s4k(X̄k) = sign(X̄k)(|X̄k|−4k)+

The threshold λ can only be selected by cross-validation.

3.2.3 SCRDA

Shrunken Centroids Regularized Discriminant Analysis (SCRDA)[18] is a more general approach com-
pared with NSC. In both FAIR and NSC, we assume the independence of features and conduct either
t-test or shrinking on features independently. However, the independence assumption is not valid most
of time in practice. Hence, in SCRDA we remove the independence assumption and in order to obtain
a non-singular and stable estimate of covariance matrix, we firstly regularize the empirical estimator of
covariance matrix.

Σ̃ = αΣ̂+(1−α)Ip

Regularization can also be conducted on correlation matrix in a same way.

R̃ = αR̂+(1−α)Ip

where R̂ = D̂−1/2Σ̂D̂−1/2, D̂ is the diagonal matrix with diagonal elements of Σ̂. we recover the covariance
matrix estimate by Σ̃ = D̂1/2R̃D̂1/2.

The second step is shrinking. Besides of shrink centroids on original features directly, another two
projection were proposed in [18]: X̄∗k = Σ̃−1X̄k,or X̄k

∗ = Σ̃−1/2X̄k. Then conduct shrinking process on
projected scale and recover the shrunken centroids on original scale. By using projection based on covari-
ance matrix, SCRDA took the correlation of features into consideration and if we assume the correlation
matrix be identical matrix, SCRDA is equivalent to NSC. However, since the shrinkage is imposed on
projected scale, it might not be as useful in features selection as NSC.
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3.3 Projection

A similar idea to feature selection is projection. Rather than screen out important features directly, projec-
tion aims to find the best linear combinations of features to characterize and classify different classes.

3.3.1 PCA

Principle Component Analysis (PCA) aims to find the a set of linear combinations β T
j X of variables with

maximum covariance. Since var(β T X) = β TCov(X)β , assuming the covariance matrix Σ has eigenvalues
λ1 ≥ λ2 ≥ ·· · ≥ λp ≥ 0 and corresponding eigenvectors e1, · · · ,ep, we have optimization problem

max
β j∈R p

{β T
j Σβ j} subject to β

T
j β j = 1

β
T
j βl = 1, l = 1, . . . , j−1

the solution to this problem is β j = e j and the jth principle component is given by

Yj = eT
j X = e j1X1 + e j2X2 + · · ·+ e jpXp

And these components have properties as follow

Var(Yj) = eT
j Σe j = λ j j = 1,2, · · · , p

Cov(Yj,Yl) = eT
j Σel = 0 j 6= l

Among all linear combination of features {a′x|a′a = 1}, the first component has largest variance which
is the largest eigenvalue λ1. Moreover, the principle components gives a list of orthogonal linear com-
binations of features with descending variances. In other words, the principle components is the set of
linearly uncorrelated variables from rotating or reorganizing original dimensions such that the data di-
verge decreasingly on each dimension of principle component. Hence the importance of contribution of
components is also in descending order. Usually, we use the first two or three principle components to
visualize high-dimensional data with maximum divergence. We can also use the data projected on the first
several components in order to decrease dimensions.

Empirically, when the dimensions p is greater than the sample size n, the empirical estimator of covari-
ance matrix is not full rank. In such cases, principle components can be useful to project original data to
a lower dimension space where the features represented by principle components are uncorrelated and the
covariance matrix is diagonal and not singular. LDA can also be implemented with principle components
instead of using original variables to avoid singularity issue.
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3.3.2 HDDA

High dimensional discriminant analysis (HDDA) [6] shares a similar idea to PCA and it can be considered
as a modification of QDA using PCA. Besides of assuming that data from group i follow Multivariate
normal distribution N(µk,Σk) as in QDA, it further imposes some assumptions on eigenvalues of Σk:
except the first dk eigenvalues, all the rest p− dk eigenvalues are same. In other words, assume Qk is
the orthogonal matrix of eigenvectors ek

i of Σk, 4k = QT
k ΣkQk, which is a diagonal matrix containing the

eigenvalues of Σk, should have the following form:

4k =



λ k
1 0

. . .

0 λ k
dk

0

0
bk 0

. . .

0 bk


=

(
Λk 0
0 bkI

)

where λ k
i ≥ bk for i= 1, . . . ,dk < p. In the view of principle components, HDDA assumes that the principle

components can be split into two parts; the first part consisting of first dk principle components with large
variance while the second part includes the rest which can be considered with same small eigenvalues
or variance bk. In other words, Qk = (Qk1,Qk2). Let Q̃k ∈R p×p be made of the first dk columns of Qk

supplemented by zeros, i.e. Q̃k = (Qk1,0) and Q̄k ∈R p×p = Qk− Q̃k = (0,Qk2), then we have

I = QQT = (Q̃k + Q̄k)(Q̃k + Q̄k)
T = Q̃kQ̃T

k + Q̄kQ̄T
k

HDDA defines a projection operator of x on the space spanned by first dk components as follow:

Pk(x) = Q̃kQ̃T
k (x−µk)+µk

Now recall that in QDA the discriminant function is

δQDA(x) = argmax
k∈Y
{2logπk− log |Σk|− ||x−µk||2Σk

}
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Figure 3.1: Distance decomposition figure from [6]

Then under the assumption in HDDA, the Mahalanobis distance term can be decomposed into two parts
as follow:

||x−µk||2Σk
= (x−µk)

T
Σ
−1
k (x−µk)

= (x−µk)
T Qk4−1

k QT
k (x−µk)

= (x−µk)
T (Q̃k + Q̄k)

(
Λk 0
0 bkI

)−1

(Q̃k + Q̄k)(x−µk)

= (x−µk)
T Q̃kΛ

−1
k Q̃T

k (x−µk)+
1
bk (x−µk)

T Q̄kQ̄T
k (x−µk)

= (x−µk)
T Q̃kΛ

−1
k Q̃T

k (x−µk)+
1
bk (x−µk)

T (I− Q̃kQ̃T
k )(x−µk)

= ||µk−Pk(x)||2Ak
+

1
bk ||x−Pk(x)||2

where Ak = Q̃k4−1
k Q̃T

k . Then the discriminant function will be

δHDDA(x) = argmax
k∈Y
{2logπk−

dk

∑
i=1

logλ
k
i − (p−dk) logbk

−||µk−Pk(x)||2Ak
− 1

bk ||x−Pk(x)||2}

The decomposition can be interpreted as shown in Figure 3.1.
In the paper[6], there is also some flexibility on the assumption such as common principle dimensions

i.e. dk = d , common eigenvalues i.e. λ k
i = λ ,bk = b, common eigenvectors i.e. Qk = Q or common

covariance matrix i.e. Σk = Σ among groups. Hence, there are in total 28 variant model listed in the paper.
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For different models under different assumptions, the estimator of parameters might be slightly different.
However, the key parameter in HDDA model is the intrinsic dimension dk. If dk are common among
classes, we can determine the dimension by cross-validation. Otherwise we use ”scree-test” approach
by [9] based on the eigenvalues of within-class covariance matrix Σk. Briefly speaking, we compare the
difference between two subsequent eigenvalues with a threshold t and determine the dimension when the
difference is smaller than threshold. It still needs cross-validation on the training set to determine this
threshold λ .

In summary, this method is a combination of QDA and PCA. However, instead of using the first
several components directly, HDDA tried to take advantage of the remaining components by assuming
equal variance on them. Hence, the true variances of these remaining components, which are empirically
zero as a result of singularity of empirical covariance estimator, will be recovered and no bias is imposed
on the first several components.

3.3.3 Fisher

In either PCA or HDDA, we take advantage of within-class covariance matrix and find the projection
based on the eigen-vectors. Different from previous approaches, Fisher method aims to find projection
that distinguishes classes best by using between-class covariance matrix, which is the covariance matrix
of the group centroids, defined as follow.

ΣB =CovY∈Y (µY ) =
K

∑
k=1

(µk−µ)(µk−µ)T
πk

Fisher’s method seeks a low-dimension projection of the observations such that the between-class variance
is large relative to the within-class variance [11], which is the solution to the following problem

max
β∈R p

{β T
ΣBβ , subject to β

T
ΣW β ≤ 1} (3.1)

If we substitute β̃ = Σ
1/2
W β , where Σ

1/2
W is the symmetric square root of ΣW , then the problem above is

equivalent to the following one

max
β̃∈R p

{β̃ T
Σ
−1/2
W ΣBΣ

−1/2
W β̃ , subject to β̃

T
β̃ ≤ 1} (3.2)

Similar to seeking principle components, we can find a set of orthogonal vectors βk that maximize the
objective function decreasingly and they are called fisher discriminant vectors.
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max
βk∈R p

{β T
k Σ̂Bβk}

subject to β
T
k Σ̂W βk ≤ 1

β
T
k Σ̂W βl = 0, l = 1, . . . ,k−1

(3.3)

Note that the rank of between-class covariance matrix is no greater than K−1. Hence, we can only get no
more than K−1 fisher discriminant vectors.

Empirically, the between-class covariance matrix can be estimated by Σ̂B = 1
n ∑

K
k=1 nkµ̂kµ̂T

k (if the data
are scaled to the center in advance). However, for within-class covariance matrix, same issue happens in
high dimensional space where sample size n is usually less than dimensions p as mentioned earlier. From
3.1 to 3.2 we require the inverse of ΣW while the empirical estimator is singular. Actually, vectors in the
null space of Σ̂W but not in the null space Σ̂B can make the objective function positive infinity.

In order to address the issues caused by singularity of empirical estimator Σ̂W , some modifications have
been introduced. [27] imposed another constrain β T β = 1 on the optimization problem 3.1; [33] required
that β should not be in the null space of Σ̂W , i.e. β T Σ̂W β > 0; [16], [12] assumed the independence
features with diagonal within-class covariance matrix, which can be supported by the conclusion from [1]
who compared the traditional LDA and Naive Bayes classifier.

3.3.4 SDA

Sparse Discriminant Analysis proposed by is a modification on fisher method [11]. It aims to find sparse
discriminant vectors by solving the optimization problem as follow

max
βk∈R p

{β T
k Σ̂Bβk− γ‖βk‖1}

subject to β
T
k Σ̃W βk ≤ 1

β
T
k Σ̃W βl = 0, l = 1, . . . ,k−1

where Σ̃W = Σ̂W +Ω with Ω a positive definite matrix and λ is the tuning parameter for penalty. The
biased estimator Σ̃W was used in [19] to avoid the singularity of empirical estimator.

However, this is not a convex problem. In order to solve this one, they instead apply L1 penalty to
the optimal scoring formula for Fisher’s method. The original optimal scoring criterion takes the form as
follow

max
βk∈R p,θk∈RK

{‖Y θk−Xβk‖2}

subject to
1
n

θ
T
k Y TY θk = 1

θ
T
k Y TY θl = 0, l = 1, . . . ,k−1

(3.4)
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where Y denotes an n×K matrix of dummy variables for K classes i.e. Yik is an indicator for whether
the ith observation is labeled as class k, θk is a scores vector of length K and βk is consistent with that in
Fisher’s method. Then the Sparse discriminant analysis is to impose l1 penalty on 3.4

max
βk∈R p,θk∈RK

{‖Y θk−Xβk‖2 + γβ
T
k Ωβk +λ‖βk‖1}

subject to
1
n

θ
T
k Y TY θk = 1

θ
T
k Y TY θl = 0, l = 1, . . . ,k−1

3.3.5 PLDA

The penalized LDA proposed by [38] is another modification on fisher’s method by imposing penalty
functions on discriminant vectors with a more general and flexible form.

max
βk∈R p

{β T
k Σ̂Bβk−Pk(βk)}

subject to β
T
k Σ̃W βk ≤ 1

β
T
k Σ̃W βl = 0, l = 1, . . . ,k−1

where Σ̃W is a positive definite estimator for ΣW and P(β ) is a convex penalty function. If we substitute
Pk(βk) with γ‖βk‖1 then the objective function is exactly same as SDA. However, different from SDA, the
penalty used in PLDA [38] can be either L1 type

Pk(βk) = λk

p

∑
j=1
|σ̂ jβk j|

or fused lasso proposed by [35]

Pk(βk) = λk

p

∑
j=1
|σ̂ jβk j|+ γk

p

∑
i=2
|σ̂ jβk j− σ̂ j−1βk, j−1|

where λ and γ are tuning parameter for penalty and can be chosen by cross-validation.
The penalty in PLDA is consistent with that in SDA if the data is normalized and σ̂ j = 1. The fused

lasso penalty is designed to take advantage of sparsity in both coefficients βk j and σ̂ jβk j− σ̂ j−1βk, j−1, the
difference between coefficients for two consecutive j− 1th and jth features in one projection dimension
βk, .i.e. “flatness of the coefficient profiles βk j as a function of j”[35], with the scale of these two features
taken into consideration. Hence, this penalty is only used when the features are in a meaningful order with
consistency between sequential features.
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Figure 3.2: Linearly inseparable example

3.4 Nonlinear classification

There are still cases when groups are not linearly separable. A classical example is shown as Figure 3.2.
In this case, the centroids of these two groups overlap while the radius is different. Apparently these
two groups are separable but no linear classifier would work by using raw features. In this section, we
introduce several well known nonlinear classification models and how the non-linearity is achieved.

3.4.1 SVM and Kernels

Support Vector Machine proposed by [5] has achieved massive success and still keeps popular in many
real-world situations especially in high-dimensional classification tasks. The main idea of SVM is to find
the best hyperplane that separates two groups of data. So basically it is still a linear classifier. Assuming
xi ∈R p and yi ∈ {−1,1}, a hyperplane was defined as {x : f (x) = xT β +β0 = 0} where β is a unit vector
i.e. ‖β‖= 1. Then the classification function is g(x) = sign(xT β +β0).

In order to find the “best” hyperplane, we introduce the definition of margin. The functional margin of
an observation (xi,yi) with respect to a hyperplane f (x) = 0 is defined as

Mi = yi f (xi) = yi(xT
i β +β0)

Recall that the geometric distance from a point xi to the hyperplane xT β +β0 = 0 is |xT
i β +β0|/‖β‖, Mi

measures the distance from an observation to the classification hyperplane when ‖β‖= 1. Hence, we aim
to find the hyperplane maximizing the minimum margin, which is equivalent to the optimization problem

31



3.4. NONLINEAR CLASSIFICATION CHAPTER 3. PREVIOUS WORK

Figure 3.3: SVM illustration from [20]

below
max

β∈R p,β0∈R,‖β‖=1
M

subject to Mi ≥M, i = 1, ...,n

Margins of observations from either positive or negative group should be no less than M, so then sum
of two shortest margins from two groups 2M is defined as the margin of the training set with respect to the
hyperplane[29].

Alternatively, we can drop the norm constraint on β and fix M = 1, then the optimization problem is
equivalent to the following form

min
β∈R p,β0∈R

‖β‖

subject to Mi ≥ 1, i = 1, ...,n

When two clusters are not linearly separable or even overlap, a soft constrain is introduced to allow for
some points on the wrong side of the hyperplane. As shown below, the optimization problem is modified
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by introducing the slack variables ξ .

min
β∈R p,β0∈R

‖β‖

subject to Mi ≥ 1−ξi, i = 1, ...,n

ξi ≥ 0, i = 1, ...,n;
n

∑
i=1

ξi ≤ F

where F is a constant controlling the total amount of slackness we allow. By introducing slack variables
ξ , we allow small margins close to the hyperplane with ξ ∈ [0,1] and even negative margins i.e. y f (x)< 0
with ξ ≥ 1. In order to solve the optimization problem, the objective function ‖β‖ is always replaced
with the equivalent one 1

2‖β‖
2 for convenience. Obviously, this is a convex problem and the only local

minimum should be the optimal solution. To find the solution, we firstly get the Lagrangian (Primal) as
follow

L((β0,β ,ξ ),C,α,µ) =
1
2
‖β‖2−

n

∑
i=1

αi(Mi− (1−ξi))−
n

∑
i=1

µiξi +C
n

∑
i=1

ξi (3.5)

where αi,µi,C are Lagrange multiplier for the constrains and ξi are feasible variables and all of them must
be positive. Since the constant is independent of any variables, we usually drop the constant term. By
setting the derivatives w.r.t. β0,β ,ξ to zero we have [20]

0 =
n

∑
i=1

αiyi,

β =
n

∑
i=1

αiyixi,

αi =C−µi,

The equations above along with the following constrains:

αi(Mi− (1−ξi)) = 0

Mi− (1−ξi)≥ 0

µiξi = 0

ξi ≥ 0

C(
n

∑
i=1

ξi−F) = 0

n

∑
i=1

ξi−F ≤ 0
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are called Karuash-Kuhn-Tucker conditions. By the Karuash-Kuhn-Tucker conditions above, we can can-
cel β ,β0 in Mi,C,µi and ξi and obtain the Lagrangian dual as below

L =
n

∑
i=1

αi−
1
2

n

∑
i=1

n

∑
j=1

αiα jyiy jxT
i x j

By maximizing the dual problem subject to Karuash-Kuhn-Tucker conditions, we can find the unique
solution α∗i and the hyperplane {x : f (x) = ∑

n
i=1 α∗i yixT

i x+β ∗0 = 0}. The hyperplane is only determined
by a linear combinations of yixi and those observations with non-zero weights αi 6= 0 is called support
vectors.

So far the optimization is still searching for a linear classifier with the hyperplane defined as {x :
f (x) = xT β + β0 = 0} a linear from with respect to x. The “Kernel trick” makes it possible for linear
boundaries to lie in a higher dimension space and to be nonlinear projected on original space[20]. We
define the basis functions as hm(x) =,m = 1, ...,M and represent all observations in the new space h(xi) =

(h1(xi),h2(xi), ...hM(xi)). The hyperplane in this new space is {x : f ′(x)= f (h(x))=∑
n
i=1 α∗i yih(xi)

T h(x)+

β ∗0 = 0} and the classification function is still g(x) = sign( f ′(x)). As observed from the form of hyper-
plane, the equation is a linear combination of the inner product of h(xi) and h(x), which is called kernel
function.

K (x,y) = h(x)T h(y) (3.6)

There are many types of kernel functions such as polynomial, Gaussian, radial basis[20] and splines[21].
Since we basically using linear classifier in simulation and experiment, we will not go further with the in-
troductions on kernels. But the idea of using kernel trick or in other words basis expansion can be drawn
into our conventional linear classification model.

SVM is also capable of multi-classification and there are three ways based on binary classifiers: “one-
against-all”, “one-against-one”, and Directed Acyclic Graph Support Vector Machines (DAGSVM) [22].
The first one builds K SVM classifiers for K classes respectively with data from k-th class as positive
and from other classes as negative. Then we take the margins as score and we classify a new observation
with the largest margin. The second method constructs K(K− 1)/2 classifiers where each one is trained
on data from two classes pair-wisely. For a new observation, we use the voting strategy: with votes for
all classes initialized as zero, we add one to k-th class’s vote if the result from one of these classifiers is
k-th class, then the conclusion is the class with greatest votes. Though shares the same training steps as
“one-against-one” method with K(K−1)/2 SVM classifiers, the third one DAGSVM is more complicated
and delicate with a tree based decision function.

One thing we need to pay attention to is its sensitivity to prior. As mentioned in [14], SVM is sensitive
to both noise and prior. It tends to label the new observation into the class with more samples. This
is somehow undesirable when we care more about the minority instead of majority. This property is
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illustrated in simulation where we checked the sensitivity of all methods we used.

3.4.2 kNN

kNN is one of the most basic non-linear classifiers and the idea of kNN is relatively simple. Given the
training data, for a new sample, we find the k samples from the training data set that are closest to it. These
samples are called k nearest neighbors [14]. We predict the output value by taking the average of labels
from these nearest neighbors if the label is a numeric variable

δ (X) =
1
k ∑

Xi∈Nk(X)

Yi

or taking the most voted label if it is categorical.

δ (X) = max
j

∑
Xi∈Nk(X)

1(Yi = j)

This means kNN can be used in both regression and classification. However, in high dimensional space,
kNN is not a good choice. This is also the origin of term “curse of dimensionality”[10]. As a non-
parametric model, kNN requires large size sample to “full-fill” its input space the the required sample size
grows exponentially with the increase of dimension.

3.4.3 Neural network

Similar to kNN, Neural network also requires a massive amount of samples. Neural methods have wide
successful applications in high dimensional space and a wide range of variants in different scenarios
such as CNN in image processing and RNN in for sequential data such as texts or time series. The
complex structure and nonlinear activation function of Neural methods make is possible to do non-linear
classification. At the same time, due to the complexity and huge amount of parameters in the model, we
usually require huge data set to train the model and avoid over-fitting. In this thesis, we focus on situations
when the sample size is relatively small. Hence, we won’t discuss the neural methods in details.
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Chapter 4

Numerical Results

In this section, we presented result for simulated and real data sets to illustrate the performance of our
approach. The methods we compare with includes LDA [37], Naive Bayes, HDDA, (SC)RDA, PLDA and
SVM. The measurement we use to evaluate the performance of classifier is accuracy.

4.1 Simulation

In this experiment, we assumed there are two groups X1,X2 ∈R p, p = 100, following multivariate normal
distribution with same covariance as shown in figure 4.1, i.e. X1 ∼ N(0,Σ), X2 ∼ N(t,Σ), where t is a
p dimensional vector with all elements equal and all diagonal entries in Σ are 1. Hence, all features are
expected to contribute equally. In practice, t range from 0 to 3 since we found that all methods would
reach high accuracy after 3. The covariance matrices we used in data generation cover four types of sparse
covariance matrix: Tri-Diagonal, Auto-Regressive, Banded and Random Sparse Matrix as introduced in
section 2.2.

In order to simulate the situation where the sample size is smaller then the dimension p, we only
generate 10 samples from each group with 9 of them (balanced case) composing training set and 1 sample
as test set. We repeated this procedure for multiple times to alleviate the variation caused by randomness
of small sample size.

4.1.1 False positive rate and thresholding operator

We first check the differences among LDAS using different levels of false positive rate. In theory, the
smaller false positive rate will lead to a covariance estimator closer to a diagonal one since the threshold
is larger. The numerical result is consistent with our expectation. The middle plot in Figure 4.2 shows the
accuracy lines for different levels of false positive rate ρ = 0.1,0.05,0.01,0.001. Since the tri-diagonal
matrix is really close to the diagonal matrix with large sparsity, the classifier with smallest false positive
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Figure 4.1: This figure illustrates data generation in first two dimensions. In each dimension the distance
between two centroids is 3.

Figure 4.2: The left graph shows the accuracy of LDAS using different false positive rates with hard
thresholding operator, and the right one shows accuracy using four types of thresholding operators with
false positive rate ρ = 0.05, given data generated with tri-diagonal covariance matrix. The horizontal axis
is the distance between two centroids of two groups (ranging from 0 to 2) and the vertical axis is the
accuracy of classification.
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rate achieved highest accuracy over the range of distance and the accuracy dropped with increase of the
false positive rate.

The plot on the right hand illustrates how type of thresholding operator influences the performance
of LDAS. Given a fixed false positive rate at 0.05, SCAD thresholding operator leaded to the highest
accuracy while the hard one resulted in the worst. This is consistent with Figure 2.3 where the SCAD
introduced little bias for large input and more shrinkage for small values. SCAD or Adaptive LASSO
being the best operator can be considered as a sign of small threshold or, in other words, large positive rate
and we should try smaller false positive rate with hard thresholding operator. For instance, if we compare
the two green lines in the two graphs on the right side, we can observe an approximate level of accuracy
over the whole range, which indicates that using hard thresholding with false positive rate ρ = 0.01 is
approximately equivalent to using SCAD with ρ = 0.05. Figure 4.3 might give us some inspiration about
the reason behind by illustrating the relationship between hard and SCAD thresholding. As we can see, the
hard thresholding function with large threshold is quite close to the SCAD function with small threshold.
If we continue to look at the performance with smaller false positive rate (Figure 4.6), we can find that
as the false positive rate decrease, the best performing operator switch from adaptive LASSO to Hard
thresholding and when Hard thresholding becomes the best one the false positive rate result in the highest
accuracy.We also obtained the same pattern in simulations using other type of sparse covariance matrix in
Figure 2.1. Hence, the rank of accuracy among different operators can be used as a guide for parameter
tuning: we start from a relatively large false positive rate and shrink it until the Hard thresholding operator
achieves highest overall accuracy.

4.1.2 Comparison with other methods

We compared our approach with other previous methods such as LDA [37], Naive Bayes, HDDA, RDA,
PLDA and SVM. Since the simulated data follow a multivariate normal distribution and the expected
classification hyperplane is expected to be linear, we didn’t use any non-linear kernels for SVM to avoid
over-fitting. Figure 4.5 shows how accuracy of each baselines change with increase of centroids distance.
The curves of several strong baselines: PLDA, SVM and Naive Bayes overlap with our approach while
other methods such as RDA and HDDA achieved lower accuracy overall. We also repeated the simulation
with different type of sparse covariance matrix. The result is listed in Appendix.

4.1.3 Sensitivity to prior

The sensitivity of prior refers to that prior always induces a sensitive model to classify the sample as the
group of large size with greater possibility than it should be. It happens when the data set is unbalanced.
If we have control on experiment design, we might take it into consideration and try to avoid unbalanced
cases. However, there are more cases when the experiment is done and we only have access to the final
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Figure 4.3: Relationship between hard and SCAD thresholding

Figure 4.4: Accuracy curves of 4 type of operators given false positive rate at decreasing level.
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Figure 4.5: Accuracy comparison among different methods. The black line indicates the Bayes error

Figure 4.6: Accuracy curves comparison among methods with data generated from three type of sparse
covariance matrices
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result. The reason why we care about this sensitivity origins in two possible cases. In one possible case,
we are interested in every group equally while we have to pour the unbalanced data set into our model
in order to take full advantage of information. This is necessary especially in high dimensional where
the sample size is always limited compared with dimensionality. Another case is when we have a large
control group but a limited size of treatment group due to factors such as financial cost or implementing
difficulty. However, we are more interested in the smaller treatment group and it is crucial to use the model
insensitive to the prior.

Simulations so far are balanced cases where the training sample size for either class is 9. In order to test
the sensitivity to prior, we adjusted the simulation by setting 10 samples for class 1 and 9 samples for class
2 in training set and the test set is an observation from class 2, which is the smaller group. The result is
shown in Figure 4.7. The most sensitive baseline is SVM, whose average accuracy is even less than 20%.
However, as the distance of two centroids increases, the accuracy of SVM gets improved significantly and
catch up other baselines at distance around 1. Similar issue happens when using RDA and PLDA as well,
though less serious than SVM. Both LDA and Naive Bayes are insensitive to prior and when two groups
can not be distinguished from each other i.e. zero distance between two centroids, the accuracy is around
0.5 which is equivalent to random guessing with little influence from prior. Our approach is designed as
the balance between these two methods and insensitive to prior as expected as well.

4.2 Real data

In this section we used two cancer data set which includes thousand of gene expression features. These
two data sets are similar with respect to sample size, dimensionality, number of categories and balance.
However, we observed a considerably different result which will be discussed in the following subsections.

4.2.1 Small Round Blue-Cell Tumor Data

We first considered the data set from the small round blue-cell tumor (SRBCT) micro-array experiment
[25]. Accurate diagnosis of SRBCTs is the key to decisions on treatment options, responses to therapy and
prognoses. However, there are four type of tumors denoted as EWS, BL-NHL, NB RMS and these tumors
are hard to distinguish by light microscopy either manually or automatically. Alternative approaches were
used for this situation and gene expression is one of them. The difficulty of gene analysis lies in the
ultra high dimensionality of gene features. For instance, in the data used in [25] there are 83 SRBCTs
samples of gene expression labeled with one of the four types and also 5 non-SRBCT samples, while each
sample of either group consists of 6567 genes and even after filtering there are still 2308 genes, which
is definitely a massive amount compared with the sample size. The diagnostic model in [25] consists of
PCA for dimension reduction at the first stage and Artificial Neural Network[4] (ANN) for classification.

41



4.2. REAL DATA CHAPTER 4. NUMERICAL RESULTS

Figure 4.7: Accuracy curves comparison among different methods in unbalanced cases.
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The final conclusion seems perfect with all samples correctly classified. However, the model was trained
with data including only four types of SRBCT samples and as a result non-SRBCT patient can not be
classified directly. They also set a 95 percent voting criteria for distinguish SRBCT and non-SRBCT
samples but after implementing this thresholding rule some SRBCT samples was able to detected and the
perfect accuracy was cracked.

Hence, in our experiment, we directly merged the train and test set as a whole which included all
five groups (4 SRBCT groups and 1 non-SRBCT group). We split the whole data set into 10 folds and
implemented 10-folds cross validation and kept all the ten accuracy of ten validation set to diminish the
randomness caused by the train-test splitting. We tried four types of thresholding operators and four level
of false positive rate ρ = 0.1, 0.05, 0.001, 0.001 as we did in simulation to verify the conclusion we got.
Same baselines were tested with same cross validation setting.

The box-plots of accuracy are shown in Figure 4.8. For each box-plot, we implemented the experiment
by randomly selecting part of the feature set (all models shared the same set of features) so that we can
check how dimensionality influence the performance of methods. First, if we look at the box-plots on the
top where only 100 features were selected, we can find some methods already achieved high accuracy,
such as our LDAS method using SCAD thresholding operator and large false positive rate ρ = 0.1,0.05,
adapt operator and smaller false positive rate ρ = 0.015 and hard operator with smallest false positive rate.
This is consistent with what we found in simulation. The hard one is expected to be the best operator that
imposes no values greater then threshold. When either SCAD and adaptive lasso operator outperforms
the hard one, we should turn down the false positive rate to improve the performance of hard one. This
phenomenon is also clear in other three box-plots, where the accuracy of hard operator increased with
smaller false positive rate while SCAD and adaptive ones often dropped at a small false positive rate. There
are also cases when the highest accuracy at smallest false positive rate was from LDAS using adaptive
operator (in the third and forth one) instead of hard one. This is reasonable since with the increase of
dimensionality of input features, we expect more sparsity in covariance matrix, hence a false positive rate
even less than 0.001. In summary, we manage to verify the previous conclusion that we should use smaller
false positive rate until LDAS using hard operator has the best performance. Also, from this experiment
we can also conclude that the higher dimensionality is, the smaller the best false positive rate should be,
i.e. the more sparsity we should assume in covariance matrix.

If we compare our method with the baselines, we can see that using sparse estimator did improve the
traditional LDA, which achieved the lowest accuracy overall. Similar to the result in simulation, Naive
Bayes still have the highest accuracy among baseline methods and PLDA is still competitive to Naive
Bayes. However, in this case SVM turned out not as effective as Naive Bayes. This can be explained by
unbalance.

Compared with the ANN approach in [25], either our approach or Naive Bayes reached competitive
performance with high accuracy and even 100% accuracy in some train-validation splittings. The variation
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of the accuracy in the box-plots resulted from the randomness of train-validation allocation. Hence, even
though ANN was reported to classified all samples correctly, it could be a random but perfect result and
it’s not convincing to claim a general conclusion.

4.2.2 Lung Cancer Dataset

The second data set we used is also related to cancer and gene expressions [32]. There are in total 65
samples covering three type of lung cancers:AD (adenocarcinoma), SQ (squamous), CAD(cell lines ade-
nocarcinoma) and 17 healthy samples labeled NL (normal lung), each of which consists of 9036 gene
features. This data set is similar to the SRBCT data set with respect to sample size and dimensionality
of input space. We did the same 10 folds cross-validation testing with different range of features selected
among the whole dimensions as we did for SRBCT data set; however, We observed a different pattern of
accuracy among different methods. The results are shown in Figure 4.9.

The most obvious and surprising result is that the traditional LDA worked perfectly in all cases what-
ever the the dimensionality is and better than almost all other methods. This is totally different from the
result of either simulation or SRBCT data set. In theory, we expect sparse correlation among features
while simple LDA might “misunderstand” the correlations with a singular covariance estimator with a
limited size of sample. One possible reason behind this surprisingly good result can be that there is a
massive collinearity among these genes features, i.e. the input features lies in a lower dimensional space.
As discussed in section 2.1.5, “lda” model in “MASS” classifies samples in the subspace with projection
basis being eigenvectors of positive eigenvalues of the empirical estimator. The empirical estimator is
always singular when the sample size is less than dimensionality of input space, and dimensionality of
subspace or the number of these eigenvectors must be less than sample size n. However, with some prior
knowledge such as sparsity of correlation or even independence of features, we know that the singular
empirical estimator should not be reliable and that is why we turn to Naive Bayes or our method LDAS.
However, neither sparsity or independence is necessarily true without any prior knowledge. In this case,
it turned out that the data might lie in a lower dimensional space and LDA using the unbiased empirical
covariance estimator worked well by finding a reasonable subspace.

Another possible reason might be the redundant features. Recall that in the simulation we assume
that the centroids of groups differ from each other in all dimensions equally, which is an ideal case where
all the features is informative and valuable as input. Also, in SRBCT data set the 2308 gene features
we used were selected among 6567 genes. However, in practice, without feature selection, there must
be redundant features which take no information or less information than the noise they have. So in
high dimensional space, the first thing we should do is feature selection, which is equivalent to finding a
subspace and reducing dimensionality. Traditional LDA somehow is able to implement feature selection
as we discussed in the last paragraph while Naive Bayes would take all the features directly assuming all
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Figure 4.8: 10-fold cross-validation accuracy box-plots of LDAS with different level of false positive rate
and thresholding operator compared with other different methods with SRBCT data set
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of them are useful. This might explain why Naive Bayes did not work well in this case.
Our approach LDAS also managed to find a balance between LDA and Naive Bayes in this case. As we

can see from the box-plots for hard thresholding operator, using different level of false positive rates did
not make huge difference, though there seems to be a weak descending trend when 500 and 1000 feature
selected. Same as in experiment on SRBCT data set and simulation, hard thresholding operator tend to be
the best among four. Especially in this case when simple LDA was the best baseline, hard thresholding
operator introduced no bias to large covariance estimations and was the closest one to LDA given large
false positive rate.

Table 4.1, which shows 10-folds cross-validation result with 1000 features as an example, provides
more detailed information on classification accuracy for each class respectively. Methods such as SVM
and HDDA tended to classify samples as group of large size and more supporting evidence can be found
after checking the confusion matrices. In other words, these methods are quite sensitive to prior and unable
to detect samples from small groups. This is somehow undesired in many situations. For example, here
we only have 17 healthy samples while there can be a large number of healthy samples i.e. large control
group. If one method is sensitive to prior, treatment group, which is what we usually interested in, can be
hardly recognized.

Our approach is not sensitive to prior, which can be considered inherited from its “parents”: LDA and
Naive Bayes and confirmed by either simulation or real data result. In general, the LDAS performance is
competitive to the best baseline LDA in all groups. Except when using false positive rate as 0.001, the
numbers of correct classification by LDAS for five groups are approximately same as LDA and due to the
small sample size it’s hard to tell if one is significantly different from one another.
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Figure 4.9: 10-fold cross-validation accuracy box-plots of LDAS with different level of false positive rate
and thresholding operator compared with other different methods with lung cancer data set
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Baselines AD(40) CAD(5) NL(17) SQ(20)
LDA 37 4 17 18
SVM 39 0 0 0
NB 32 4 15 17

RDA 35 5 17 15
PLDA 34 4 16 17
HDDA 36 1 3 16
LDAS False positive rate = 0.1
hard 36 4 17 16
soft 17 4 8 5
scad 11 3 8 7
adpt 22 1 10 10

LDAS False positive rate = 0.05
hard 34 4 16 19
soft 22 2 13 15
scad 17 3 9 11
adpt 29 4 15 14

LDAS False positive rate = 0.01
hard 35 4 16 18
soft 35 3 16 18
scad 30 4 15 17
adpt 35 4 16 16

LDAS False positive rate = 0.001
hard 29 4 14 18
soft 36 4 16 18
scad 35 4 16 19
adpt 31 4 15 18

Table 4.1: Number of correct classification for each group given 1000 features in lung cancer data set.
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Chapter 5

Conclusion

We started from the basic background introduction on LDA and the limitation of it in high dimensional
space, which is the motivation of this thesis. Conventional LDA usually results in low accuracy due
to the curse of dimensionality. The performance of LDA relies on the accurate parameter estimation
while without abundant samples, there would be large variance for the estimation and, more specifically,
singularity issue of covariance matrix estimator when the sample size is less than dimensions. By contrast,
Naive Bayes, which can be considered as a simplified LDA under independence assumption, becomes a
strong baseline in many high dimensional classification tasks.

Our method LDAS managed to find a balance between LDA and Naive Bayes by sparse assumption
and from the numeric result we can conclude LDAS ia able to achieve high accuracy by flexible choice on
false positive rate, when the data lies in whether a lower dimensional subspace or not, or in other words,
whether the correlation among features are sparse or not. Though not demonstrated by numeric result, we
expect in some cases our model would outperform both LDA and Naive Bayes.

We also did a literature review over many other high dimensional classifiers, which can be concluded
into two types: modification of LDA under specific assumption and dimension reduction, which includes
feature selection and projection. All of them are aiming to reduce the number of parameters and hence,
complexity of model. This is consistent with section 2.2, which explained that the small variance is the
key factor to low error rate. Our method can be classified as a modification of LDA under the sparsity
assumption on covariance matrix. Compared with other two modification SLDA and LDP, our assumption
is more weak and general. The other dimension reduction based approaches heavily depend on the covari-
ance estimator which holds huge variance while our method can get better covariance estimation under
sparsity assumption.
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Appendices

Concentration inequality

Recall that given n observations, the empirical estimator is Σ̂
emp
MLE =

1
n

∑
n
i=1(Xi− µ̂k)(Xi− µ̂k)

T or Σ̂emp =

1
n−1

∑
n
i=1(Xi−µk)(Xi−µk)

T = n
n−1 Σ̂MLE , which is the unbiased estimator adjusted from MLE. By con-

centration inequalities, we have that

P(d(Σ, Σ̂emp)≥ Ed(Σ, Σ̂emp)+ r)≤ e−ψ(r)

Given the confidence level 1−α , we can find rα such that e−ψ(rα ), then we will have the confidence set
using empirical estimator

C emp = {Σ ∈R p×p : d(Σ, Σ̂emp)≤ Ed(Σ, Σ̂emp)+ rα}

P(Σ ∈ Cemp)≥ 1−α

Now assume we have another estimator Σ̂
′
. We want this new estimate to be close to the empirical esti-

mator in the sense of the above confidence set and therefore we choose a Σ̂
′

such that d(Σ̂
′
, Σ̂emp) ≤ rα .

Consequently, we have that

P(d(Σ̂
′
,Σ)≥ Ed(Σ, Σ̂emp)+2rα)

≤ P(d(Σ̂
′
, Σ̂emp)+d(Σ̂emp,Σ)≥ Ed(Σ, Σ̂emp)+2rα)

≤ P(d(Σ, Σ̂emp)≥ Ed(Σ, Σ̂emp)+ rα)

≤ e−ψ(rα ) = α

Hence, we can have a confidence set by using Σ̂
′
as well

C
′
= {Σ ∈R p×p : d(Σ, Σ̂

′
)≤ Ed(Σ, Σ̂emp)+2rα}

P(Σ ∈ C
′
)≥ 1−α
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In summary, we can build a confidence set for covariance matrix by using another estimator as long as this
new estimator is close enough to the empirical estimator.

Key theory for sparse estimator procedure

Given a false positive rate η ≥ 0.5, we can set λ = Mη = quantile{σi, j, i < j}, which removes 100(1−
η)% of the off diagonal entries, so that a false positive rate of approximately η can be achieved due to the
following lemma.

Lemma 5.0.1. lemma from [24] Let Σ ∈ U (k,σ),η ∈ [0.5,1),Mη be the η quantile{σi, j, i < j}. Let
ˆ

Σ
emp
η denote the corresponding threshold estimator sMη

(Σ̂emp) with i, jth entry denoted as σ̂
(η)
i, j . Then

ρ( ˆ
Σ

emp
η ) =

#{σ̂ (η)
i, j 6= 0|σi, j = 0, i < j}

p(p−1)/2
a.s.−→ η

as d→ ∞ as long as k = O(pν) for ν < 1

This lemma cannot be extended to arbitrary quantiles or false positive rate. However, the following
theorem make it possible to get some properties of a thresholding estimator achieving any desired false
positive rate.

Theorem 5.0.2. theorem from [24] Let Σ ∈ U (k,σ) with k = O(pν) for ν < 1/2. Given a desired false

positive rate ρ in(0,0.5], there exist some η such that η = ρ2a, a ∈ Z +. Let Σ̂
emp
ρ denote the hard

threshold empirical estimator that achieves a false positive rate of ρ . Then,

|η
‖Σ̂emp

ρ −Σ‖∞

‖Σ̂emp
η −Σ‖∞

−ρ| ≤ K1nρ
1/2 p−1/4 +K2nρ

1/4 p−1/2 +o(np−1/2)

where K1,K2 are universal constants.

The upper bound on the left side of the inequality above is approximately zero when p� n. Hence,
by this theorem, we can approximately estimate the distance |Σ̂emp

ρ −Σ‖∞ with |Σ̂emp
η −Σ‖∞, where Σ̂

emp
η

can be obtained by lemma 5.0.1.
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