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Abstract

This thesis discusses bi-criteria optimization queries in road networks, in par-

ticular queries that allow users to consider trade-offs between alternative so-

lutions. In order to measure the proximity of two nodes in a road network, a

cost optimal path between them is typically computed, for instance, the fastest

path. However, optimal paths can depend on more than one cost criterion.

For example, when planning a bicycle route, minimizing only the distance is

usually not sufficient. The user may also be interested in taking into consider-

ation the incline of the path. Since different criteria might conflict with each

other, typically there is not a single solution (a path in the example given

above) that optimizes all criteria at the same time. Therefore, in this thesis

we rely on the notion of skyline queries to generate a set of interesting solu-

tions such that the user can select the preferred criteria trade-off out of the

returned options. Skyline queries find a set of non-dominated solutions that

are optimal for any arbitrary combination of the considered criteria. An ele-

ment dominates another if it is as good or better in all dimensions and better

in at least one dimension. Within this context, we first consider k-Diverse

Nearest Neighbors Queries. In the original definition of k-nearest neighbor

(k-NN) queries there is no concern regarding diversity of the answer set, even

though in some scenarios it may be interesting. For instance, if one is looking

for restaurants close by, it may be more interesting to return restaurants of

different categories or ethnicities which are nonetheless relatively close. Thus,

differently from a traditional k-NN query, there are two competing criteria
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to be optimized: closeness and diversity. Using skyline queries we can find

diverse k-NNs close to a given query point and that are optimal solutions

for any combination of the weights a user could give to the two competing

criteria. Next, we explore trade-off aware queries in the context of spatial

crowdsourcing. Spatial crowdsourcing is a relatively new platform where re-

questers submit location-specific tasks to be performed by workers that need

to travel to those locations. Examples of these tasks include taking pictures or

performing small repairs. Tasks are assigned to proper workers based on a par-

ticular objective, such as maximizing the number of assigned tasks. Previous

works focus on optimizing a single criterion. We, on the other hand, consider

the scenario where a worker is traveling along a given path, for instance from

work to home, and is willing to perform tasks, that are not far away from the

original path, in exchange for a reward. We assume that the worker wants to

minimize the detour from his/her original path while maximizing the reward

received for performing tasks. We investigate two variants of this problem.

The first one considers an offline setting where all tasks are known before-

hand, whereas in the second variant tasks appear dynamically. We show that

all proposed problems are NP-Hard and present exact (whenever applicable)

and heuristic approaches to solve them. Moreover, within the context of each

problem, we present an experimental evaluation using real datasets and vary-

ing several parameters, and discuss the results obtained. Finally, we conclude

this thesis by presenting a summary of our findings for each proposed problem

and suggestions for future work.
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Preface

This thesis follows a paper-based format. Its body is composed of published

papers and a paper recently submitted for review, as described in more details

below.

Chapter 2 consists of a journal paper [14], which is an extension of a full

paper [13] published at a conference:

• Camila F. Costa, Mario A. Nascimento, Matthias Schubert (2018).Di-

verse nearest neighbors queries using linear skylines. GeoInformatica
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• Camila F. Costa, Mario A. Nascimento (2017). Towards Spatially- and

Category-Wise k-Diverse Nearest Neighbors Queries. In Proc. of the

15th Intl. Symp. on Spatial and Temporal Databases: 163-181. (Winner

of the Symposium’s Best Paper Award)

Chapter 3 has been published as a journal paper [6], which is also an

extension of a short paper [12] published in a conference proceedings:

• Camila F. Costa, Mario A. Nascimento (2020). In-Route Task Selection

in Spatial Crowdsourcing. ACM Transactions on Spatial Algorithms and

Systems 6(2): 7:1-7:45.

• Camila F. Costa, Mario A. Nascimento (2018). In-route task selection

in crowdsourcing. In Proc. of the 26th ACM SIGSPATIAL Intl. Conf.
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Chapter 3 consists of a full paper accepted for publication in the proceed-
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papers which are out of the scope of this thesis [2], [15], [16], and thus are not
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• Elham Ahmadi, Camila F. Costa, Mario A. Nascimento (2017). Best-
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• Camila F. Costa, Mario A. Nascimento (2016). IDA 2016 Industrial

Challenge: Using Machine Learning for Predicting Failures. 15th Intl.

Symp. on Advances in Intelligent Data Analysis: 381-386. (Winner of

the Symposium’s Industrial Challenge).

• Camila F. Costa, Theodoros Chondrogiannis, Mario A. Nascimento,
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“Se avexe não

Toda caminhada começa no primeiro passo

A Natureza não tem pressa

Segue o seu compasso

Inexoravelmente chega lá”

– A Natureza Das Coisas, Flávio José

“Rush not

Every journey begins with the first step

Nature takes its time

On its own pace

Inevitably prevails”

– The nature of things, Flávio José
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Chapter 1

Introduction

When computing a cost-optimal path between two nodes of a road network,

usually only a single criterion is taken into account, for instance, the travel

time or the distance traveled. However, depending on the application, using

a single cost criterion can be too restrictive. For example, when planning an

electric car route, the driver may not only be interested in minimizing the travel

time, but also the energy consumption. Similarly, when riding a bike, the user

may wish to maximize the perception of safety, in addition to minimizing the

travel distance. In order to employ multiple criteria when computing optimal

solutions, a simple way is to combine all criteria and optimize the combined

value. Such strategy requires the user to determine the importance of each

criterion over the others and that the criteria are on the same scale. However,

the user’s preference may not be obvious or clear from the outset and some

criteria may not be combinable, e.g., distance and perception of safety. A

more principled way to deal with such problem is to determine all results

that are optimal under any arbitrary combination of the criteria, which can

be accomplished by using the notion of skyline queries [5]. The result set of

a skyline query contains all non-dominated elements. An element dominates

1



another if it is as good or better in all dimensions and better in at least one

dimension. Figure 1.1 illustrates a classical example [5] where one wants to

find hotels that are both inexpensive and close to the beach. The linked dark

dots represent the result set, i.e., the non-dominated hotels. Once the skyline

set is computed, the user can consider all interesting alternatives w.r.t., his/her

own preferences and choose the one that better suits his/her needs.
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2
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Figure 1.1: Illustration of bi-criteria skyline.

In this thesis, we first propose the use of the skyline operator to solve k-

Diverse Nearest Neighbors queries. k-nearest neighbor (k-NN) [40] queries are

well-known and widely used in a plethora of applications. Given a query point

q, a set of points P and a distance metric, a k-NN query finds the set of k

points P ′ ∈ P such that no other point in P \ P ′ is closer to q than those

in P ′ according to that metric. One potential drawback of k-NN queries is

the fact that the k-NNs are determined based only on their distance to the

query and no assumption is made on how they relate to each other. Providing

homogeneous result sets, i.e., ones where the elements are very similar to each

other, may not add much information to the query result as whole. One such

scenario is document ranking [7], where returning k documents that are close

to the query, but diverse among themselves is likely to increase the amount of

overall information one gathers.

This concern has motivated some research to incorporate diversity into
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similarity searches, i.e., to find elements that are as close as possible to the

query, while, at the same time, being as diverse as possible. The relation be-

tween diversity and closeness has been mainly investigated within the domain

of information retrieval, e.g., [7], [11], recommendation systems, e.g., [58], web

retrieval, e.g., [39] and spatial query processing [33], [59].

We aim to incorporate the notion of diversity into spatial k-NN queries

and investigate (k, r)-DNNs queries. A (k, r)-DNN query returns the k diverse

nearest neighbors no farther than a radius r from a given query point. We

consider three different notions of diversity: spatial, angular and categorical.

For instance, a tourist visiting a city may want to explore points-of-interest

(POIs) that are not too far from his/her location, but that at the same time

cover different parts of the city. Such scenario illustrates spatial diversity. In

the case of angular diversity, a tourist could be interested in visiting attrac-

tions that surround his/her location but are in different directions. Likewise,

consider a user looking for restaurants close by, in which case it may be in-

teresting to return different types of restaurant (maximizing the categorical

diversity) so that the user could make a decision based on diversified options.

Previous works that dealt with similar problems, i.e., balancing closeness

and diversity, rely on a user-provided linear combination of the relative im-

portance of closeness over diversity. We, on the other hand, consider the case

where the user does not need to specify weights for each criterion and aim at

finding all results that are optimal under any linear combination of two com-

peting criteria (i.e., closeness and diversity) by relying on the notion of linear

skyline queries [43].

As our main contribution in the first part of this thesis we propose two

approaches that leverage the notion of linear skyline queries in order to find

the k diverse nearest neighbors within a radius r from a given query point, or
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(k, r)-DNNs for short. Our proposed approaches return a relatively small set

containing all optimal solutions for any linear combination of the weights a

user could give to the two competing criteria, and we consider three different

notions of diversity: spatial, categorical and angular. Our experiments, vary-

ing a number of parameters and exploring synthetic and real datasets, in both

Euclidean space and road networks, respectively, show that our approaches

are several orders of magnitude faster than a straightforward approach.

Next, in the second part of this thesis, we explore trade-off aware queries

in the context of spatial crowdsourcing. Crowdsourcing is a relatively new

paradigm which relies on the contributions of a large number of workers to ac-

complish tasks submitted by requesters, such as image tagging and language

translation. The increasing popularity of mobile computing led to a shift from

traditional web-based crowdsourcing to spatial crowdsourcing [49]. Spatial

crowdsourcing consists of location-specific tasks that require people to phys-

ically be at specific locations to complete them, differently from web-based

crowdsourcing. Some examples of spatial crowdsourcing applications include

ride-sharing services, e.g., Uber [51] and Lyft [38], delivery services, e.g., Do-

orDash [22] and Instacart [30], handyman related jobs, e.g., TaskRabbit [47]

and Handy [26], pet sitting, e.g., Rover [41] and Wag [54], moving services,

e.g., Dolly [21] and Bellhops [4], lawn care services, e.g., LawnLove [37], IT

services, e.g., HelloTech [27], and car repair, e.g., YourMechanic [57].

Tasks are assigned to workers based on a particular objective, such as max-

imizing the number of assigned tasks [32], [48], [56], minimizing the matching

distance between workers and tasks [36], [56] or maximizing a given match-

ing score [42], [45], [50]. Traditionally, published works which assume that a

worker is assigned to multiple tasks, do not typically take into account the

travel cost between tasks, e.g. [32], [42], [45], [48], [50], [56]. However, that
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cost directly affects the number of tasks the worker will be able to perform.

Thus, even if those tasks are spatially close from the worker, they may not

be completed depending, for example, on the worker’s time/distance budget.

Therefore, we consider the more generic problem of finding a task schedule

for a worker, i.e., a feasible sequence of tasks, a problem that has also been

considered in [18]–[20], [35].

In [18], [19], the authors focus on maximizing the number of tasks per-

formed by a single worker assuming that the worker is willing to perform up

to a predefined maximum number of tasks and that he/she must arrive at

the task location before its deadline. [20] presents an extension of [18] which

aims at maximizing the overall number of tasks performed by multiple workers

considering that each task is assigned to up to one worker. The work in [35]

aims at maximizing the number of tasks completed by a single worker in an

online setting, i.e. where tasks appear dynamically.

Differently from [18]–[20] and [35], which aim at optimizing a single crite-

rion, namemly maximizing the number of completed tasks, our goal is to find

a compromise between two competing criteria in the context of task schedul-

ing. More specifically, we consider the scenario where a user has a preferred

path between two locations, for instance from work to home, and is willing

to perform some tasks on the way to his/her destination. Additionally, we

assume that each task is associated with a reward and that the user wants to

maximize the total reward received for performing tasks while minimizing the

detour from the preferred path. Since these are competing criteria, a single

route can not typically optimize them at the same time. Therefore, we propose

the In-Route Task Selection problem, which aims at finding different trade-offs

between reward and detour using skyline queries.

In Chapter 3 we consider the offline version of the In-Route Task Selection
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problem, named IRTS, in which all tasks are known beforehand. As our main

contribution in that chapter we propose exact and heuristic approaches to

solve IRTS. Our experiments, using real city-scale datasets, show that while

the exact approach serves as a benchmark, it does not scale due to the NP-

hardness of the problem. The overall best heuristic approach, on the other

hand, can solve relatively large instances of the IRTS problem within practical

query processing time, e.g., at par with less effective greedy heuristics, while

still producing very good approximate skyline sets, e.g., often yielding less

than 10% relative error w.r.t. the exact solution.

Finally, in Chapter 4 we study the Online In-Route Task Selection (Online-

IRTS) problem, which considers an online setting in which tasks appear dy-

namically. We also investigate the Online-IRTS problem using the paradigm

of skyline queries in order to systematically explore different trade-offs be-

tween earned rewards and path deviation. Because of the online nature of the

problem, i.e., irrevocable decisions about which task to perform have to be

made without knowledge of future tasks, it is not possible to guarantee opti-

mal solutions for the Online-IRTS query. Therefore, we propose two heuristic

approaches, where one is based on local optimizations, and the other one is

based on incremental solutions, along with a method to evaluate the quality of

their solutions w.r.t. the optimal offline solution. Our experiments using city-

scale realistic datasets show that the first approach is more effective whereas

the second is more efficient, allowing one to choose which approach to use

according to his/her priorities.

The remainder of this thesis is structured as follows. In Chapter 2 we

discuss k-Diverse Nearest Neighbors queries. Chapter 3 presents the offline

version of the In-Route Task Selection problem, while Chapter 4 considers

such problem in an online setting. We note that the notation used in Chap-
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ters 2-4, as well as a discussion of related works, are contained within each

corresponding chapter. Finally, Chapter 5 concludes this thesis with a sum-

mary of our findings and suggestions for future work.
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Chapter 2

Diverse Nearest Neighbors

Queries Using Linear Skylines

2.1 Introduction

k-Nearest neighbor (k-NN) queries [40] have been extensively studied by re-

searchers in several areas, such as spatial databases, data mining, information

retrieval, pattern recognition and statistics. Namely, given a query point q

and a set of points P , a k-NN query finds the set of k points P ′ ∈ P such that

no other point in P \ P ′ is closer to q than those in P ′ according to a given

metric.

One potential drawback of k-NN queries is the fact that the k-NNs are

determined based only on their distance to the query, i.e., no assumption is

made on how they relate to each other. Providing homogeneous result sets,

i.e., ones where the elements are very similar to each other, may not add much

information to the query result as whole. One such scenario is document

ranking [7], where returning k documents that are close to the query, but

diverse among themselves is likely to be more interesting as it increases the
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amount of overall information one gathers from the response.

This concern has motivated some researchers to incorporate diversity into

similarity searches, i.e., to find elements that are as close as possible to the

query, while, at the same time, being as diverse as possible. The relation be-

tween diversity and closeness has been mainly investigated within the domain

of information retrieval, e.g., [7], [11], recommendation systems, e.g., [58], web

retrieval, e.g., [39] and spatial query processing [33], [59].

In this chapter, we incorporate the notion of diversity into the realm of

spatial k-NN queries and investigate (k, r)-DNNs queries. A (k, r)-DNN query

returns the k diverse nearest neighbors no farther than a radius r from q.

Next, we present the three different notions of diversity we investigate in this

chapter: spatial, angular and categorical.

In spatial diversity, the diversity between two data points is given by the

distance between them. For instance, a tourist visiting a city may want to

explore points-of-interest (POIs) that are not too far from his/her location,

but wants to have a variety of different parts of the city to choose from. In

the example shown in Figure 2.1a, the distance between points p2 and p3 is

greater than the pairwise distance of any two points. Therefore, the set {p2, p3}

represents the most diverse set for k = 2 when spatial diversity is considered.

q
q

p1[gi]

p2[gi]

p3[gj]
p4[gk]

(a) Spatial

q
q

p1[gi]

p2[gi]

p3[gj]
p4[gk]

(b) Angular

q
q

p1[gi]

p2[gi]

p3[gj]
p4[gk]

(c) Categorical

Figure 2.1: Answer sets for spatial, angular and categorical diversities for
k = 2. (pi[gj] denote that POI pi belongs to category gj). The dotted arc
represents query-defined radius r, hence p4 cannot be part of the solution set.
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In angular diversity, the diversity is modeled by the difference between the

directions of data points with respect to the query point. For instance, a tourist

could be interested in visiting attractions that surround his/her location but

are in different directions. As shown in Figure 2.1b, the points returned when

angular diversity is considered, i.e., {p1, p2}, are not necessarily far away from

each other as the most spatially diverse points, {p2, p3}, but by virtue of being

in different directions also bring in the notion of discovering different regions

in a more principled manner. Regarding categorical diversity, the diversity is

modeled by the difference between categories (or labels) of data points. As

an example, if a user is looking for restaurants close by, it may be interesting

to return different types of restaurant so that the user could make a decision

based on diversified options. As illustrated in Figure 2.1c, although p1 and p2

are the two closest points from q, they belong to the same category gi. Thus,

{p1, p3} would be a more diverse choice.

As we shall discuss shortly, previous works that dealt with similar prob-

lems, i.e., balancing closeness and diversity, suffer from two main shortcomings:

(1) they rely on a particular user-provided linear combination of the relative

importance of closeness over diversity, and (2) they do not provide exact so-

lutions, given the problem is NP-hard [8]. The approaches we propose in this

chapter overcome both such shortcomings. In order to find all results that

are optimal under any given arbitrary combination of two competing criteria

(e.g., closeness and diversity), we rely on the notion of skyline queries [5],

more specifically linear skylines [43]. The result set of a skyline query contains

elements which are not dominated by any other element. In the context of

(k, r)-DNN queries, a solution is not dominated if there is no other solution

with higher closeness and diversity than its own. In order to illustrate the

concept of skyline queries within this context, consider Fig. 2.2a. Each point
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represents a solution with its corresponding closeness and diversity. All the

points shown in gray have lower closeness and/or diversity than the points

shown in black. This means that the gray points are dominated. On the

other hand, the points shown in black represent the skyline, i.e. the set of all

non-dominated solutions. However, skyline queries may return a large amount

of result sets, potentially with similar costs, making the task of choosing the

“right” one a difficult one.
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(a) Conventional skyline
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(b) Linear skyline

Figure 2.2: Illustration of conventional vs linear skylines. The linked dark dots
denote the frontier of non-dominated solutions returned by each approach.

Linear skyline queries have been proposed as a way to reduce the result set

to a more intuitive one. Two important properties of linear skylines are that

(1) they typically return a much smaller subset of the conventional skyline and

(2) the solutions are optimal under any linear combination of the competing

criteria. The linear skyline obtained from the conventional skyline shown in

Figure 2.2a is depicted in Figure 2.2b.

The main contributions of this chapter are two algorithms to find opti-

mal answers for (k, r)-DNN queries using linear skylines. In our proposed

algorithms the candidate subsets are generated in decreasing order of close-

ness to the query point, i.e., increasing order of distance. This facilitates

checking whether a candidate is part of the skyline or not, since all posterior
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subsets must have higher diversity than the previous ones in order to be non-

dominated. Once the distance from q to a data point exceeds the given radius

r, the algorithms stop, that is, only data points within distance r from q are

considered.

Our extensive experiments, that investigate several different parameters

and explore both Euclidean space as well as real data in road networks, show

that our proposed methods find all optimal solutions for any linear combi-

nation of the optimization criteria several orders of magnitude faster than a

straightforward approach.

The remainder of this chapter is structured as follows. In Section 2.2

we present a discussion of related work. Next, we formally define (k, r)-

DNN queries in Section 2.3, and follow with our proposed solutions in Sec-

tion 2.4. The experimental evaluation and results are shown and discussed in

Section 2.5. Finally, Section 2.6 presents a summary of our findings.

2.2 Related Work

The concept of incorporating diversity into similarity search has its origins in

information retrieval. The Maximal Marginal Relevance (MMR) model [7] is

one of the earliest proposals to consider diversity to re-rank documents in the

answer set, where at each step, the element with higher marginal relevance is

selected. A document has high marginal relevance if it is both relevant to the

query and has minimal similarity to previously selected documents.

In [53], Vieira et al survey several other approaches and show that, com-

pared to those, their proposed methods Greedy Marginal Contribution (GMC )

and Greedy Randomized with Neighborhood Expansion (GNE ) are superior.

Thus, we will review only those two methods. Similarly to MMR, GMC con-
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structs the result set incrementally and the elements are ranked based on their

maximum marginal contribution (a concept similar to maximal marginal rel-

evance in [7]). In the GNE approach, a predefined number of result sets is

found and the one that maximizes the optimization function is returned. Dif-

ferently from GMC, in each iteration the element chosen is a random element

among the top ranked ones. For each result set R constructed, the algorithm

then performs swaps between elements in R and elements that offer a great

chance to be more diverse. If any of these swaps leads to a better result, ac-

cording to the optimization function, then it is set as the best solution. We

choose to compare our proposed approaches to GNE because, although it is an

approximate solution, it is the one that presented the highest precision w.r.t.

the optimal solution (obtained through an exhaustive brute-force approach).

Moreover, it is generic and can be applied to all of the three types of diversity

considered in this chapter.

In the context of spatial diversity, several other approaches have been pro-

posed. In Jain et al [31] the goal is to find the k-NNs to a given query point

q such that the distance between any two points is greater than a predefined

minimum diversity. The work proposed by Abbar et al [1] strives to find the

most diverse set within a predefined radius in Hamming space. Note that the

works above do not consider, as we do, the notion of a trade-off between close-

ness and diversity. Zhang et al [59] study the problem of diversified spatial

keyword search on road networks, aiming at maximizing a linear function that

combines both criteria. The keywords are used for filtering data points, i.e.,

only points that contain all query keywords are considered. The diversity be-

tween data points is given by their network distance and the diversity between

keywords is not taken into account in such function.

Regarding angular diversity, Lee et al [34] presented the Nearest Surrounder
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Query, which aims at finding the nearest objects from a query point from

different angles. However, as in [1], [31], no compromise between closeness

and diversity is considered. Kucuktunc et al [33] investigated the diversified

k-NN problem based on angular similarity. The goal was to find a set of

k points that optimizes a linear function which minimizes pairwise angular

similarity and maximizes relevancy of the returned points.

Differently from our proposal, all of the works above focused on a single

type of diversity and none of them supports the categorical diversity considered

in this chapter. Moreover, all the approaches presented above that consider

a trade-off between closeness and diversity, propose approximate solutions to

the problem of optimizing a given linear combination of both criteria. We, on

the other hand, find the set of all optimal solutions for any linear combination

of these criteria, i.e., the linear skyline, discussed next.

The skyline operator was first introduced in [5]. Given a d-dimensional data

set, a skyline query returns the points that are not dominated by any other

point. In the context of (k, r)-DNN queries, a solution S is not dominated

if there is no solution S ′ with higher closeness and higher diversity than S.

One interesting aspect of skyline queries is that the user does not need to

determine beforehand weights for closeness and diversity. The skyline query

provides the user with a set of multiple and equally interesting solutions in

the sense they are all non-dominated, for arbitrary weights. The users then

make their decision based on the returned options. A drawback of skyline

queries is that it may return a large answer set, which may make it difficult

for users to interpret the results and choose the solution that better suits their

preferences. To overcome this problem, [29], [46], [52] have proposed to reduce

the amount of results by focusing on finding the k skyline points that best

diversify the skyline result. Note that in this work we consider diversity as
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one of the criteria to be maximized, while those papers first find the skyline

for any set of criteria and then select the skyline points that are more diverse

among themselves. Shekelyan et al. [43] propose the more pragmatic concept

of linear skyline queries. A linear skyline consists of a relatively small subset

of the conventional skyline which represents optimal solutions under all linear

combination functions of the criteria to be optimized. Thus, in this chapter

we rely on the notion of linear skylines and detail how we use it in the next

section.

2.3 Preliminaries and Problem Definition

The (k, r)-Diverse Nearest Neighbor ((k, r)-DNN) query incorporates diversity

into traditional spatial k-NN queries. Given a set of points P = {p1, p2, . . . pn},

the goal of a (k, r)-DNN query is to find a set of solutions with k points from

P , all within a radius r w.r.t. the query point q, that are at the same time

close to q and as diverse as possible.

Given the set P , we define the closeness of a point pi ∈ P w.r.t the query

q as the complement of their distance d(pi, q) relative to radius r. Thus max-

imizing the closeness of pi w.r.t q is the same as minimizing d(q, pi). When

a road network setting is considered, d(q, pi) is defined as the network dis-

tance, i.e., the length of the shortest path connecting those points. On the

other hand, in the Euclidean space, d(q, pi) is defined as the Euclidean dis-

tance between q and pi. The closeness of an object pi w.r.t q is then defined

as clo(q, pi) = 1 − d(q,pi)
r

. Given the above, the closeness of a subset S ⊆ P

w.r.t. q can be defined as follows.

Definition 2.3.1 (Closeness and distance w.r.t a set). For a given set S ⊆ P ,

the closeness of S w.r.t. q is defined as clo(q, S) = min
si∈S
{clo(q, si)}, i.e., the
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minimum closeness between q and a point in S. Similarly, d(q, S) is defined

as the distance from q to its farthest point in S.

Next, we define the three different notions of diversity considered in this

chapter: spatial, angular and categorical.

Definition 2.3.2 (Spatial Diversity). The spatial diversity between two points

pi, pj ∈ P is given by the distance between them, i.e., divspa(pi, pj) = d(pi, pj).

Spatial diversity is also adopted in [24], [59]. The idea is to find points

that are well spatially distributed and consequently cover different areas. In

Figure 2.1a, the pair (p2, p3) is the most spatially diverse since divspa(p2, p3) is

greater than the diversity of any other pair of points.

Definition 2.3.3 (Angular Diversity). The angular diversity between two

points pi, pj ∈ P w.r.t. q is given by the angle formed by segments q, pi and

q, pj, i.e., divang(pi, pj) = ](pi, q, pj).

For the sake of an example, consider Figure 2.1b. The most diverse pair

with respect to angular diverse is (p1, p2) since the angle formed by them is

greater than the angle formed by any other pair of points.

Regarding categorical diversity, we assume that there is a set of categories

G = {g1, g2, ..., g|G|} and that each point pi ∈ P is labeled with a category

denoted by g(pi) ∈ G. Naturally, categories are non-exclusive, i.e., more than

one point may belong to the same category. We model the diversity between

categories as a matrix M|G|×|G| = (mj,l), and for simplicity, we assume that

0 ≤ mj,l ≤ 1 and that mj,l = 0⇔ j = l.

Definition 2.3.4 (Categorical Diversity). The categorical diversity between a

pair of points pi, pj ∈ P is given by divcat(pi, pj) = mg(pi),g(pj), i.e., the diversity

between their categories.
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The definitions presented above describe how different types of diversity

are calculated for pairs of data points. Let us now present the more general

definition of diversity within a non-singleton set S ⊆ P .

Definition 2.3.5 (Diversity of a set). The diversity of a set S ⊆ P is defined

as the minimum pairwise diversity between the points of S, i.e., div(S) =

min
pi,pj∈S

{div(pi, pj)}, where div is one of the three diversity cases discussed above:

divspa, divang, divcat.

Note that the angular diversity of a set also depends on q, since all com-

puted angles depend on q, unlike the other types of diversity we discuss in this

chapter. Nonetheless, for the sake of clarity we omit q, which is a constant,

from the definition.

Next, we define the notions of conventional and linear skyline domination in

terms of closeness and diversity. In what follows we use si = (div(Si), clo(q, Si))

to denote a vector representing the diversity and closeness of a set Si.

Definition 2.3.6 (Conventional skyline). Let Si and Sj be k-sized subsets of

P . Then, in the context of (k, r)-DNN queries, Si dominates Sj, denoted as

Si ≺ Sj, if

clo(q, Si) > clo(q, Sj) and div(Si) ≥ div(Sj) or

clo(q, Si) ≥ clo(q, Sj) and div(Si) > div(Sj)

That is, Si is better in one criteria and at least as good as Sj in the other one.

(Note that the notion of goodness is w.r.t. the criteria we aim to maximize.)

Thus, the conventional skyline, i.e., the set of all non-dominated subsets, is

given by

{Si ⊆ P s.t. @Sj ⊆ P : Sj ≺ Si, |Si| = |Sj| = k}.
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In order to illustrate the concept of conventional dominance, consider the

points {s1, . . . , s5} shown in Figure 2.2 representing the solutions {S1, . . . , S5}.

The solution S4 is dominated by solution S1, since S1 is both closer to q and

more diverse than S4. Similarly, S5 is dominated by S1, S2 and S3.

A linear skyline consists of the subset of the conventional skyline which is

optimal under all linear combination functions, i.e., for any weights (impor-

tance) that a user could give to either criteria. Next we present the definition

of w-dominance which determines whether a set linearly dominates another

one for a particular weight vector w = (wdiv, wclo), where wdiv and wclo denote

the importance given to the diversity and closeness aspects of the answer sets.

Definition 2.3.7 (Linear w-Dominance). A set Si linearly w-dominates an-

other set Sj, where w ∈ IR2
≥0 and w 6= (0, 0), if and only if wT si > wT sj [43].

For simplicity in the remainder of this chapter, we refer to linear w-dominance

simply as w-dominance.

For instance, in Figure 2.2, the set S1 w-dominates S3 for w = (0.5, 0.5),

since 0.5 × 0.8 + 0.5 × 0.4 > 0.5 × 1 + 0.5 × 0.1. However, this is not a

sufficient condition for determining whether S3 is a linearly dominated set in

the general sense. Note that, for example, S3 w-dominates S1 for w = (1, 0).

As formalized in the following definition, a set is only considered to be linearly

dominated if it is either conventionally dominated or w-dominated for every

possible w.

Definition 2.3.8 (Linear Skyline). Let S be a set of solutions in a two-

dimensional space. A subset S ′ ⊆ S linearly dominates a solution Sj ∈ S,

denoted as S ′ ≺L Sj, if and only if

(∃Si ∈ S ′ s.t. Si ≺ Sj) ∨ (∀w ∈ IR2
≥0 ∃S

i ∈ S ′ s.t. wT si > wT sj)
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The maximal set of linearly non-dominated solutions is referred to as linear

skyline [43].

In other words, a solution Si is linearly non-dominated w.r.t. a set S ′ if it

is not conventionally dominated by any solution in S ′ and there is a vector w

and a solution Sj ∈ S ′ such that Si w-dominates Sj. For the set of solutions

S ′ = {S1, S2, S3, S4, S5} shown in Figure 2.2, S1 and S3 are considered linearly

non-dominated since they are conventionally non-dominated and, as shown

above, S1 w-dominates S3 for w = (0.5, 0.5) and S3 w-dominates S1 for w =

(1, 0). Thus, both solutions satisfy the conditions to be considered linearly non-

dominated. On the other hand, although S2 is conventionally non-dominated,

Notation Meaning

P Set of data points

q Query point

k Answer set size

r Query radius

d(pi, pj) Distance between the data points pi and pj

d(q, S) Distance of the set S w.r.t. q

clo(q, pi) Closeness of an object pi w.r.t q

clo(q, S) Closeness of a set S w.r.t. q

divspa(pi, pj) Spatial diversity between two points pi, pj ∈ P

divang(pi, pj) Angular diversity between two points pi, pj ∈ P

divcat(pi, pj) Categorical diversity between two points pi, pj ∈ P

div(S) Diversity (spatial, angular or categorical) of a set S

Si k-sized subset of P

si Vector representing the diversity and closeness of a set Si

Si ≺ Sj Sj is conventionally dominated by Si

S ′ ≺L Sj Sj is linearly dominated by the set of solutions S ′

Table 2.1: Notation used in Chapter 2.
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there is no weight vector w for which S2 w-dominates either S1 or S3. S4

and S5 are conventionally dominated solutions and thus they are also linearly

dominated.

Finally, the problem addressed in this chapter can be defined as follows.

Problem Definition. Given a query q, a positive integer k, a radius r and a

set of data points P , the (k, r)-DNN query aims at finding the set of all k-sized

linearly non-dominated subsets S ⊆ P within distance r from q.

Throughout this chapter we use the notation presented in Table 2.1.

2.4 Proposed Solutions

As our main contribution in this chapter we present two algorithms that pro-

vide provably optimal solutions to the (k, r)-DNN query using linear skylines.

Both algorithms analyze the candidate subsets in decreasing order of closeness,

which means that the subsequent subsets necessarily need to have a higher di-

versity than the previous ones in order to be non-dominated. This allows us

to establish a lower bound to the diversity of the next non-dominated result

sets. Throughout this chapter, this lower bound is denoted by minDiv. Both

proposed solutions, named Recursive Range Filtering (RRF) and Pair Graph

(PG), use such lower bound to filter out dominated subsets. RRF works re-

cursively by combining a partial solution S ′ with points in a candidate set C,

one at time, that have a higher diversity to S ′ than minDiv. PG strives to

reduce the number of generated combinations by pruning subsets that contain

pairs of elements (pi, pj) ⊆ P such that div(pi, pj) ≤ minDiv and therefore

could not be in a non-dominated solution.

Our proposed approaches are general in the sense that they work for all

the three types of diversity considered in this chapter. However, note that for
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categorical diversity only the closest points from each category are needed in

order to find the whole skyline set. Farther points would lead to solutions with

lower closeness and that would not have higher diversity, since the diversity

between two points is determined by their categories. Therefore, such solutions

would be dominated. This means that the algorithms can stop once the closest

point from each category is found.

RRF and PG are both based on Algorithm 1. They differ in how they

find the set with maximum diversity for a fixed closeness, which is done by the

method findSetMaxDiv used within Algorithm 1. We will start by describing

the general framework of Algorithm 1 and we present the different approaches

for computing findSetMaxDiv when describing RRF and PG in more detail.

Algorithm 1 takes as input a query point q, the set of data points P , the

size of the answer sets k and the radius r. The first subset S generated is the

closest one, i.e., the one with minimum d(q, S) (line 1). The elements si ∈ S

are removed from P and added to the set of previously examined points P ′

(lines 2-3). S is then added to the list LS, which stores linearly non-dominated

solutions in decreasing order of closeness.

Note that S is linearly non-dominated: (1) it is conventionally non-dominated

since no other solution can dominate it in terms of closeness and (2) it w-

dominates any possible solution for w = (0, 1). Therefore, S satisfies the two

conditions to be considered linearly non-dominated, as per Definitions 2.3.7

and 2.3.8 above. Next, minDiv is set to div(S). The variable minDiv repre-

sents the minimum diversity that the subsequent solutions must have in order

to be non-dominated. All subsets S ′ with div(S ′) ≤ minDiv are discarded

since they are dominated solutions and therefore do not belong to LS.

The remaining elements pd ∈ P are examined in increasing order of d(q, pd),

until d(q, pd) exceeds the query radius r (lines 6-10). For each such pd, the
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Algorithm 1: MinDistMaxDiv

Data: Query q, set of data points P , result set size k, radius r
Result: All linearly non-dominated solutions S ⊆ P , |S| = k and

d(q, S) ≤ r
1 S ← k-NN(q, P );
2 P ← P \ S;
3 P ′ ← S;
4 LS.add(S);

5 minDiv ← div(S);
6 while |P | > 0 do
7 pd ← argmin

pi∈P
(d(q, pi));

8 if d(q, pd) > r then
9 return LS;

10 end
11 P ← P \ pd;
12 C ← all pi ∈ P ′ such that div(pd, pi) > minDiv;
13 S ← findSetMaxDiv(args);
14 if S is not null then
15 j ← |LS|;
16 LS.add(S);

17 minDiv ← div(S);
18 while j > 2 & {Sj−1, S} ≺L Sj do
19 Delete Sj from LS
20 j=j-1

21 end

22 end
23 P ′ ← P ′ ∪ pd;

24 end
25 return LS;

method findSetMaxDiv looks for the set S with maximum div(S) > minDiv

such that pd ∈ S and S \ pd ⊆ C. Where C is a list containing all pi ∈ P ′ such

that div(pd, pi) > minDiv (line 12). This step eliminates the elements that

cannot be combined with pd in order to obtain a non-dominated solution. Note

that clo(q, S) = clo(q, pd) since pd is the farthest point from q in S. Also, for a

particular pd, all subsets examined by findSetMaxDiv have the same closeness,

since they necessarily contain pd. This implies that for each pd there is up to

one non-dominated solution, which is the one with the highest diversity.
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If a non-dominated solution S is found by findSetMaxDiv, S is added to

the end of LS (line 16) and minDiv is updated to div(S). As proved in [43],

if S is a conventionally non-dominated solution, then it is also linearly non-

dominated in LS and thus it can be added to that list. After adding S to

LS, some solutions in LS may become linearly dominated and thus must be

discarded. Let Sj be the jth element in LS. Shekelyan et al. [43] showed that

any solution Sj is only linearly dominated in LS if it is dominated by both

of its neighbors Sj−1 and Sj+1. Thus, in order to determine if Sj is linearly

dominated, it is sufficient to check whether {Sj−1, Sj+1} ≺L Sj. Let j be the

size of LS before inserting the new non-dominated solution S. We perform a

left traversal in LS (lines 18-21) and first check whether {Sj−1, S} ≺L Sj holds.

If so, Sj is removed from LS. After that, Sj−1 becomes the left neighbor of

S. Subsequently, we need to examine whether {Sj−2, S} ≺L Sj−1 holds. This

process will be terminated when the first element of LS has been examined or

the current left neighbor of S is a linearly non-dominated set.

In order to check whether {Sj−1, Sj+1} ≺L Sj holds, we follow the proce-

dure proposed in [43]. Intuitively, Sj is linearly dominated by Sj−1 and Sj+1

if the vector sj lies below the line between sj−1 and sj+1. For instance, in Fig-

ure 2.2b, S2 is linearly dominated by S1 and S3 because s2 lies below the line

between s1 and s3. This observation can be formalized as follows. Let n be the

normal vector of the line between sj−1 and sj+1, such that nT sj−1 = nT sj+1,

then {sj−1, sj+1} ≺L sj iff nT sj < nT sj−1 = nT sj+1.

Next, we prove that the set of solutions generated by Algorithm 1 is correct

and complete. For this we assume that the findSetMaxDiv method is correct

and finds the corresponding non-dominated solution for a given pd ∈ P , if

such solution exists. We prove such assumption, i.e., the correctness of the

findSetMaxDiv method used in each of our proposed solutions in the following
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subsections, when RRF and PG are presented. Moreover, we also assume that

the left traversals [43] performed in LS in order to discard linearly dominated

solutions work correctly.

Theorem 1. LS does not contain linearly dominated solutions.

Proof. The first solution S found by Algorithm 1 is the closest one and thus

is not linearly dominated. All subsequent solutions cannot dominate previous

solutions in terms of closeness, since they are found in increasing order of dis-

tance. Therefore, those solutions must have a higher diversity than minDiv,

the highest diversity found so far, in order to be non-dominated. For each point

pd ∈ P , a new solution S is returned by the findSetMaxDiv method only if

div(S) > minDiv. Moreover, findSetMaxDiv finds the corresponding non-

dominated solution for pd, i.e., the one with highest diversity, if such solution

exists. Therefore, since the solutions that are not conventionally dominated

but are linearly dominated are correctly discarded, no linearly dominated so-

lution can be part of LS.

Theorem 2. All linearly non-dominated solutions are in LS.

Proof. Let us suppose by contradiction that there is a linearly non-dominated

solution S that is not part of LS. Assuming d(q, S) = d(q, pd), pd ∈ P

implies that S was not found by the findSetMaxDiv method when pd was the

current element with minimum distance w.r.t. q in P . This is a contradiction

since findSetMaxDiv is guaranteed to find the corresponding non-dominated

solution for any pd ∈ P if such solution exists. (This last statement is proven,

in the context of each proposed method, next)
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2.4.1 Recursive Range Filtering (RRF)

The findSetMaxDiv method used in the Recursive Range Filtering (RRF) so-

lution, which in this context we denote as RRF-findSetMaxDiv to remove any

ambiguity, assumes that pd, the point in P with minimum distance from q, is

part of the non-dominated result set S, if such set exists. Also, as explained

above, pd is the farthest element from q in S. A list of candidates C, con-

taining points that can be combined with the partial set S ′ = {pd} in order

to obtain a non-dominated solution, is given as input to RRF-findSetMaxDiv.

One element ci from C is chosen at a time to also be part of S ′. Elements

that cannot be combined with ci are removed from C and the algorithm is

recursively called for the new partial set S ′ and list of candidates C.

Algorithm 2 shows how the RRF-findSetMaxDiv method works. It takes

as input a partial set S ′, which initially only contains the point pd, a list C of

candidate points that can be combined with S ′, the number n of elements that

need to be added to S ′ to form a set of size k and the current k-sized set with

maximum diversity setMaxDiv, which is initially empty. If n > 1 (line 8),

the candidates ci in C are examined one at a time. More specifically, we check

whether the list of candidates Ci obtained after adding ci to S ′ contains at

least n− 1 points (line 12). If so, the function is recursively called for the new

partial set S ′
i and list of candidates Ci (line 14). Otherwise, it is not possible

to obtain a non-dominated solution S such that S ′
i ⊆ S and therefore S ′

i can

be discarded. Note that we avoid creating the same subset more than once by

not adding previously examined candidate points cj ∈ C such that 1 ≤ j < i

to Ci (line 10). That is because all the possible sets containing S ′ ∪ cj have

already been created, including the ones that contain ci, and adding cj to Ci

would just create duplicates and make the algorithm less efficient.

In the base case (line 1), only one point still needs to be added to S ′.
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We then simply create a solution S for each ci ∈ C and set the one with

highest diversity to setMaxDiv. When no other set of size k can be built, the

algorithm returns setMaxDiv (line 18).

Algorithm 2: RRF -findSetMaxDiv
Data: Partial set S′, list of candidates C, n = k − |S′|, setMaxDiv and minDiv

1 if n=1 then

2 for i from 1 to |C| do
3 S ← S′ ∪ ci;

4 if div(S) > div(setMaxDiv) then
5 setMaxDiv ← S;
6 end

7 end

8 else

9 for i from 1 to |C| − n+ 1 do

10 Ci ← C[i+ 1, . . . , |C|];
11 Ci ← all cj ∈ Ci such that div(ci, cj) > minDiv;
12 if |Ci| ≥ n− 1 then

13 S′

i ← S′ ∪ ci;
14 setMaxDiv ← findSetMaxDiv(S′

i, Ci, n− 1, setMaxDiv,minDiv);

15 end

16 end

17 end

18 return setMaxDiv;

Figure 2.3 illustrates one iteration of Algorithm 2 for k = 4, pd = p6 and

considering spatial diversity. We assume that the points P ′ = {p1, p2, p3, p4, p5}

have already been examined and the following linearly non-dominated so-

lutions have been generated LS = {({p1, p2, p3, p4}, clo = 0.55, div = 0.5),

({p2, p3, p4, p5}, clo = 0.44, div = 1)}. Therefore, at this point minDiv = 1.
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Figure 2.3: RRF-findSetMaxDiv execution for pd = p6, k = 4 and spatial
diversity.
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The method takes as input S ′ = {p6}, C = [p1, p3, p4, p5], n = 3 (i.e., k−1)

and setMaxDiv = ∅. Note that, as shown in Figure 2.3a, p2 cannot be

combined with p6 and thus is not part of C. The first candidate point p1 is

added to S ′, which discards p4 from C, as shown in Figure 2.3b. The algorithm

is then recursively called for S ′ = {p6, p1}, C = [p3, p5]. The candidate point

p3 is added to S ′ and the only remaining candidate is C = [p5], as illustrated in

Figure 2.3c. The base case, where n = 1, is reached and a solution is created for

each point in C. The solution S1 = {p6, p1, p3, p5} with div(S1) = 1.12 is built

and becomes the current setMaxDiv. When the second candidate point of

C = [p3, p5], i.e., p5, is considered to be added to S ′ = {p6, p1} (omitted in the

example), the corresponding candidate set will be empty. As explained above,

this avoids creating the same set S1 twice. Next, the second candidate from

C = [p1, p3, p4, p5], i.e., p3, is added to S ′ = {p6}, creating the new candidate

set C = [p4, p5]. Note that p1 is not added to C because all the possible sets

containing p1 have already been generated. The solution S2 = {p3, p4, p5, p6}

with div(S2) = 1.35 is found and becomes the current setMaxDiv. When p4

and p5 are considered to be added to S ′ = {p6} (omitted in the example), they

are pruned because there are not enough points to be combined with them in

order to create a non-dominated solution that has not been generated yet.

Theorem 3. For any pd, the element in P with minimum distance to q, the

method RRF-findSetMaxDiv finds the corresponding non-dominated solution

S, where d(q, S) = d(q, pd), if such a solution exists.

Proof. Let us assume that S exists and the method does not find it. This

means that at least one si ∈ S, si 6= pd has been discarded by RRF-findSetMaxDiv.

There are two possible cases:

1. div(si, s
′
j) ≤ minDiv holds for at least one s′j ∈ S ′, S ′ ⊆ S \ si.
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This is a contradiction to the assumption that S is a non-dominated

solution and thus div(si, sj) > minDiv for all si, sj ∈ S.

2. There is no subset S ′ ⊆ S \ si such that S ′ ∪ si can be combined with at

least n = k − |S ′| − 1 points.

This is also a contradiction to the fact that S is a solution with k points

and thus S ′ ∪ si can be combined with S \ {S ′ ∪ si}.

Thus, such set S must be found by the method RRF-findSetMaxDiv.

2.4.2 Pair Graph Approach (PG)

The idea behind the PG approach is to combine pairs of elements (pi, pj) such

that div(pi, pj) > minDiv in order to construct sets of size k that can po-

tentially be a non-dominated solution. Two pairs can be combined if they

have an element in common. For instance, set S1 = (pi, pj) can be com-

bined with set S2 = (pj, pl) if div(pi, pj) > minDiv and div(pj, pl) > minDiv,

obtaining the set S3 = {pi, pj, pl} of size three. Similarly, S3 can be com-

bined with a pair (pl, pm) to obtain the set S4 = {pi, pj, pl, pm} of size four

if div(pl, pm) > minDiv. However, note that there is no guarantee that

div(S4) > minDiv, unless div(pi, pl) > minDiv, div(pi, pm) > minDiv and

div(pl, pm) > minDiv.

A non-dominated solution S ⊆ P for which the candidate point pd is the

farthest one from q, can only contain previously examined elements pi ∈ P ′

such that div(pd, pi) > minDiv, i.e., the points in the list of candidates C.

Therefore, the set of pairs P needed for following the aforementioned strategy

are all (pd, pi) for pi ∈ C and all (pi, pj) for pi, pj ∈ C such that div(pi, pj) >

minDiv.

In order to facilitate the construction of sets of size greater than two by
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combining the pairs in P , we build a graph G(V,E), where the set of vertices

is V = C ∪ pd. Also, for each pair (pi, pj) ∈ P with div(pi, pj) > minDiv,

we create an edge (pi, pj) and add it to the set of edges E. The cost of an

edge (pi, pj) is given by div(pi, pj). Note that finding sets of size k can be

accomplished by finding paths with k vertices in G.

Figure 2.4 shows the graph G built for the example shown in Figure 2.3,

i.e., for pd = p6, k = 4 and spatial diversity. Since all the sets of size

k = 4 must contain p6, in order to find paths in G that may represent a

non-dominated solution, we assume that the starting point is p6. Consider

the following possible paths of size 4 starting from p6: PT 1 = (p6, p1, p3, p5),

PT 2 = (p6, p3, p4, p5) and PT 3 = (p6, p1, p3, p4). The diversity of PT 1 is 1.12

because this is the minimum cost of an edge between any two vertices of PT 1.

Since 1.12 > 1 = minDiv, PT 1 is a candidate to be added to skyline. Simi-

larly, the diversity of PT 2 is 1.35, which makes PT 2 a better candidate than

PT 1. However, PT 3 does not have a diversity higher than minDiv since the

elements in PT 3 do not form a clique. More specifically, there is no edge

(p1, p4) in E, and thus div(p1, p4) ≤ minDiv. Therefore, PT 2 represents the

set with highest diversity.

p6

p1p3

p4 p5

1.12
1.6

1.52 2.5

1.12

1.411.6
1.5

1.35

Figure 2.4: Graph G built for the example shown in Figure 2.3.

Algorithm 3 shows all steps of the PG-findSetMaxDiv method. In order

to find paths of a given size k, we use a solution based on Dijkstra’s classical

algorithm. First, all edges (u, v) ∈ E, representing paths of size 2, are added
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to a priority queue (lines 5 to 7). The paths PT in queue are ordered by

decreasing order of an upper bound ub(PT ) that represents an optimistic value

to the diversity of a set of size k that contains the vertices of PT . Let us assume

that the size of PT is p ≤ k and that l = k − p. As exemplified above, in

order to obtain a non-dominated solution of size k that contains the vertices

of PT , PT can only be extended by adding l vertices that are neighbors of all

vertices of PT . LetMN be this set of mutual neighbors. If |MN | < l, then it is

not possible to find a non-dominated solution that contains the vertices of PT ,

therefore PT can be discarded. Otherwise, for each pti ∈ PT let divl(pti,mnj)

be its l-th largest diversity to an elementmnj ∈MN . We refer to the minimum

of these values as divm(PT,MN). Since divm(PT,MN) is an upper bound

to the diversity of PT to l other elements, if divm(PT,MN) ≤ minDiv, PT

can also be discarded. The same occurs if div(PT ) ≤ minDiv. Therefore,

the upper bound ub(PT ) to the diversity of a set S of size k containing the

vertices of PT is given by min{div(PT ), divm(PT,MN)}.

At each step, the path PT with highest ub(PT ) is removed from queue

(line 9) and expanded if it contains less than k vertices (line 12). Let v be

the last vertex in the path PT . For each neighbor u of the vertex v, PT is

extended by adding u. If ub(PT ∪ u) > minDiv then the path (PT ∪ u) is

added to the queue (lines 15 and 16). If PT has size k (line 10), PT is returned.

Note that no other posterior path PT ′ of size k could have higher diversity

than PT . Since PT ′ is not the first set of size k removed from queue, then

ub(PT ′) ≤ ub(PT ), which means that in an optimistic scenario the diversity

of PT ′ is at most equal to div(PT ). If no path of size k is found, the algorithm

returns a null answer.

Theorem 4. For any pd, PG-findSetMaxDiv finds the non-dominated solution

S, where d(q, S) = d(q, pd) and |S| = k, if such a solution exists.
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Algorithm 3: PG-findSetMaxDiv

Data: List of candidates C, result set size k, point pd and minDiv
1 P ← all pairs (pd, pi), pi ∈ C;
2 P ← P ∪ all pairs (pi, pj) ⊂ C, div(pi, pj) > minDiv;
3 G(V,E)← buildGraph(P);
4 queue← ∅ ; // queue stores the paths to be expanded

5 for (v, u) ∈ E do
6 queue.add((v, u));
7 end
8 while |queue| > 0 do
9 PT ← queue.dequeue();

10 if |PT | = k then
11 return PT ;
12 else if |PT | < k then
13 v ← PT [|PT |] ; // v is the last vertex of PT
14 for (v, u) ∈ E do
15 if ub(PT ∪ u) > minDiv then
16 queue.add(PT ∪ u);
17 end

18 end

19 end

20 end
21 return null;

Proof. We divide this proof into two parts. First we prove that the algorithm

does not discard any pair of points necessary for finding S, if S exists. Then

we show that given all the necessary pairs, PG-findSetMaxDiv finds S.

Let us suppose that S exists and the algorithm discards a pair (si, sj) ⊂ S.

There are two possible cases:

1. si = pd or sj = pd

This means that PG-findSetMaxDiv discarded a pair containing pd. Since

S is a non-dominated solution, div(pd, sp) > minDiv for any sp ∈ S, sp 6=

pd. However, all pairs (pd, sp) such that div(pd, sp) > minDiv are main-

tained by our algorithm, a contradiction to the assumption that (si, sj)

was discarded.
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2. si 6= pd and sj 6= pd

The pair (si, sj) is only discarded by the algorithm if div(pd, si) ≤

minDiv and/or div(pd, sj) ≤ minDiv. Since {pd, si, sj} ⊆ S and S

is a non-dominated solution, div(pd, si) > minDiv and div(pd, sj) >

minDiv, a contradiction.

Therefore no necessary pair is discarded.

Next, we need to prove that PG-findSetMaxDiv is able to find S. We do

so, again by contradiction, assuming that S = (s1, s2, ..., si, si+1, ..., sk) exists

and is not found. This means that S is not removed from the queue in the

method. This happens if, during the expansion of a si, 2 ≤ i < k, the partial

solution S ′ = (s1, s2, ..., si, si+1) is not inserted into the queue, which in turn

occurs in the following situations:

1. There is no edge (si, si+1) ∈ E.

This is a contradiction since as proven above, no pair (si, sj) ⊆ S is

discarded by the method and consequently there is an edge (si, si+1) ∈ E.

2. ub(S ′) ≤ minDiv.

Therefore div(S ′) ≤ minDiv and/or divm(S ′,MN) ≤ minDiv. Since

S ′ ⊆ S, div(S ′) ≥ div(S). As S is a non-dominated solution, div(S) >

minDiv and consequently div(S ′) > minDiv, a contradiction. If

divm(S ′,MN) ≤ minDiv then there is no non-dominated solution of

size k that contains the points in S ′. A contradiction to the fact that S

is non-dominated and S ′ ⊆ S.
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2.4.3 Baseline Approach

As a baseline for comparison we use a straightforward, brute-force algorithm

(BF). BF generates all possible subsets S ⊆ P of size k, such that d(q, S) ≤ r,

in an arbitrary order. If S is a conventionally non-dominated solution, we

check whether S is also linearly non-dominated in LS. If so, S is added to LS.

Note that, differently from the previous approaches, S is not necessarily the

last element in LS, since LS is sorted in decreasing order of closeness and S

is found in an arbitrary order. Therefore, after inserting S into LS, we need

to perform a left and a right traversal in LS in order to remove potentially

linearly dominated solutions. Algorithm 4 shows the pseudo-code of the BF

approach.

Algorithm 4: BF - Brute Force
Data: Query q, set of data points P , result set size k, radius r
Result: All linearly non-dominated solutions S ⊆ P , |S| = k and d(q, S) ≤ r

1 C ← all pi ∈ P such that d(q, pi) ≤ r;
2 LS ← ∅;
3 for each set S ⊆ C of k size do

4 if S is not conventionally dominated then

5 j ← position of S in LS;
6 if {Sj−1, Sj+1} 6≺L S then

7 LS.add(S);
8 i = j;
9 while i > 2 & {Si−1, S} ≺L Si do

10 Delete Si from LS;
11 i = i− 1;

12 end

13 i = j + 1
14 while i < |LS| − 1 & {S, Si+1} ≺L Si do

15 Delete Si from LS;
16 i = i+ 1;

17 end

18 end

19 end

20 end

21 return LS;
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2.5 Experiments

We performed experiments using real road networks and synthetically gener-

ated data sets in order to evaluate our methods. We first investigated how PG

and RRF perform in comparison to the brute force solution (BF ) presented

in Section 2.4. Then, we compare how they compare to each other in terms

of efficiency (recall that both are proved exact thus effectiveness is not a con-

cern) w.r.t. a number of parameters. Finally, we show how GNE (discussed in

Section 2.2) compares to our proposed approaches in terms of processing time

as well as quality of the results (recall that GNE ’s results are not guaranteed

to be exact).

The algorithms were developed in Java and the experiments were conducted

on a Linux-based virtual machine with 4 vCPU and 8 GB main memory. All

the graphs shown next present the average results (for 50 runs) in logarithmic

scale. If an algorithm was not able to find the solution in less than 10 minutes,

the computation was aborted and (optimistically and simplistically) assumed

to take 10 minutes.

The real datasets used in our experiments reflect the road networks of

Amsterdam (AMS), Oslo (OSLO) and Berlin (BER), as of March/2017 [3].

We assume that the eateries (restaurants and coffee shops) of those networks

serve as POIs. Table 2.2 summarizes the details of the datasets used in our

experiments.

Amsterdam Oslo Berlin
#vertices 106,599 305,174 428,768
#edges 130,090 330,632 504,228
#POIs 824 958 3,083

diameter (km) 38.8 57.4 72.8

Table 2.2: Summary of the real datasets used in our experiments (bold defines
default values).
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We also evaluated how our proposed approaches scale with problem size

and how they behave under different data distributions within an Euclidean

Space, namely Uniform (default), Gaussian and Clustered. The clustered data

set was created using the generator described in [25] based on multivariate

normal distribution. The dataset generated contains three clusters, each with

roughly the same number of points. We also considered datasets with different

sizes, where each data point represents a POI. Table 2.3 shows the values

examined in our experiments.

|P | (# POIs) 1000, 5000, 25000
Distribution Uniform, Gaussian, Clustered

Table 2.3: Parameters for generating the synthetic datasets and their values
(bold defines default values).

For both real and synthetic datasets, we also varied the size of the answer

sets k and the radius r as a percentage of the network’s diameter, as shown in

Table 2.4. As usual, when varying one parameter the others were kept at their

default values. In both datasets, the query points were assumed to follow the

actual POIs’ distribution, i.e., POIs were selected randomly as query points.

Answer set size (k) 3, 5, 7, 10
Query radius (r) 1%, 5%, 10%, 20%

Table 2.4: Experimental parameters and their values (bold defines default
values).

With respect to the spatial diversity, since the computation of network

distances on the real road networks can be very costly, by default we assume

that the distance between any pair of POIs is pre-computed. Nevertheless, for

the sake of completeness, we also evaluated the effect of this pre-processing

step in the query time.

Regarding categorical diversity, a category was assigned to each POI and

we varied the number of categories from 5 to 100, where the default value is
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20. The categories were evenly distributed among POIs, meaning that each

category has roughly the same number of POIs. The diversity between pairs of

categories was computed as follows. For each category g, we generated a point

in a 2-dimensional space representing g. The diversity between categories was

then given by the Euclidean distance between the points representing them.

Therefore, the closer two points are, the less diverse their categories are. By

doing that, the diversities also exhibit some notion of “transitivity”, that is, if

category A is similar to B and B is similar to C than A cannot be too dissimilar

from C, which is an intuitive property to observe.

2.5.1 Comparison with BF

We evaluated how the baseline approach BF compares to our proposed ap-

proaches in terms of performance. Table 2.5 shows the results obtained for the

spatial diversity1 with all parameters set to their default values. Both of our

approaches are two orders of magnitude faster than BF. We also note that the

performance of BF degrades fast as the parameters increase since it generates

all the possible subsets of size k within distance r from q in order to find the

ones that belong to the linear skyline. As an example, for r > 5%, it fails to

find the skyline set in less than 10 min in most cases.

Approach Real Data [s] Synthetic Data [s]
BF 493.3 16.6
RRF 4.4 0.1
PG 2.8 0.2

Table 2.5: Processing time, in seconds, for all approaches using all default
values.

The result above reflect the default setting where the pair-wise POIs dis-

1Since it finds all possible sets of size k regardless of the diversity considered, BF ’s
processing time does not vary with the type of diversity; hence we omit the results for
those.
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tances for the real dataset were pre-computed. Our preliminary experiments

indicated that there is little difference when those distances are computed at

query time. This suggests that BF ’s processing time is mostly due to the

actual computation of the possible non-dominated sets of size k.

Given that BF is clearly a non-competitive approach, in what follows we

only report the experimental results obtained for our proposed approaches

RRF and PG.

2.5.2 Effect of k

As expected and shown in Figures 2.5, 2.6 and 2.7, the running time of all

solutions increases with k for both real and synthetic datasets and for all three

types of diversity. This is simply because more points need to be evaluated

when forming a set.
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Figure 2.5: Varying the answer set size k for spatial diversity.

We note that all solutions perform better for a synthetic dataset where the

points are uniformly distributed than for the real network. Even though there

are more POIs in the synthetic dataset (5000), due to the data distribution a

range around a point in that dataset tends to include less points than in the

real dataset. Therefore, there are less possible combinations of points to be

examined. Moreover, in the real network, there are several concentrations of

POIs. Although a range around a point p ∈ P will tend to exclude the points
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Figure 2.6: Varying the answer set size k for angular diversity.
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Figure 2.7: Varying the answer set size k for categorical diversity.

closer to p, based on minDiv, points from other clusters will most likely not

be excluded. Thus, there are potentially more candidates to be combined with

p in order to form sets of size k than in a uniform distribution.

As shown in Figure 2.5b, for the spatial diversity RRF outperforms PG

for all observed values for the synthetic dataset. However, this is not always

the case. For the real network, PG tends to outperform RRF, as shown in

Figure 2.5a. When the number of candidate points to be combined with a

given point p is sufficiently large, the pruning strategy employed by PG is

more powerful than the one used in RRF. RRF finds all the possible sets of

size k with diversity higher thanminDiv. The greater the number of candidate

points, the greater the number of potential sets to be generated. On the other

hand, in the PG approach, partial subsets that offer a greater chance to be

part of the solution with maximum diversity are expanded first. Once the first
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solution of size k is found, the algorithm stops.

Regarding angular diversity, PG tends to outperform RRF even for the

synthetic dataset, as shown in Figure 2.6b. This is because when compared

to the spatial diversity, the overall diversity of a set tends to be lower since

it is limited by the maximum angle that can be formed between the points

in the set. With an overall lower diversity, more pairs of points will have

“high” diversity and thus cannot be pruned. As also evidenced in the results

obtained for spatial diversity, PG deals better with the cases where there are

more candidate points to be combined with partial sets in order to obtain a

k-sized non-dominated set.

Unlike the results obtained for spatial diversity, when considering the an-

gular diversity RRF was slightly faster than PG for the real dataset when

k ≥ 7. When new points are added to a set, the diversity of such set tends to

decrease. For angular diversity and considering the real dataset, particularly,

this diversity decreases more sharply. Therefore, the strategy of first exploring

sets with high diversity, employed by PG, may not be very effective for high

values of k since adding new points to such sets may decrease their diversity

significantly and, thus, the estimate provided by PG is not very precise.

Figure 2.7 shows that the execution time for the categorical diversity is

much shorter than when a spatial or angular diversity is considered. This is

because only the closest points from each category are needed in order to find

the skyline set. This experiment also shows that RRF outperforms PG for

most examined values. This can be explained by the fact that RRF is more

efficient when there is a smaller number of candidate points that are diverse

enough to be combined with a partial set in order to obtain a non-dominated

k-sized set, which is the case for categorical diversity.
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2.5.3 Effect of the radius r

Figures 2.8, 2.9 and 2.10 show that the running time of all solutions also

increases with the radius. A larger radius includes more POIs and thus there

is a larger number of subsets that could be part of the skyline, requiring the

algorithms to examine more combinations.

We note that both of our solutions exhibit the same behavior as in the

previous experiment for each type of diversity. For the spatial diversity, PG

tends to outperform RRF for the real dataset, while RRF is faster for the

synthetic dataset. Regarding the angular diversity, PG tends to be more

efficient for both datasets, while RRF is more efficient when the categorical

diversity is considered. We also note that when r is sufficiently small, the

gains from PG ’s pruning are not outweighed by the extra cost of computing

the upper bound to the diversity of partial subsets and the costs involving the

queue operations. This explains why RRF is faster than PG for r = 1% for

all types of diversity.
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Figure 2.8: Varying the radius r for spatial diversity.

2.5.4 Effect of the datasets

Figures 2.11a, 2.12a and 2.13a show the results obtained for different road

networks and for the three types of diversity. The larger the network in terms of
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Figure 2.9: Varying the radius r for angular diversity.
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Figure 2.10: Varying the radius r for categorical diversity.

number of POIs, the greater the number of POIs that will tend to be included

within a radius from the query point. Consequently, more combinations of

points will need to be examined in order to determine the ones that belong

to the linear skyline. This explains why all approaches perform better for

the AMS network and worse for the BER network. The same reasoning can

also be used to explain the results obtained when the number of points in the

synthetic dataset was varied, as shown in Figures 2.11c, 2.12c and 2.13c.

Regarding the distribution of points in the synthetic datasets, the spatial

and angular diversities exhibited the same behavior, as shown in Figures 2.11b

and 2.12b. More specifically, all solutions perform better for the uniform dis-

tribution. Since the data points are more scattered in the space, the neighbor-

hood of a point tends to include less points than in the other two distributions.

The lower the number of points, the faster it is to find the skyline set. In the
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Figure 2.11: Varying the datasets for spatial diversity.

clustered distribution, there is more than one concentration of points, which

means that, although a range around a point will probably eliminate points

in the same cluster, it will most likely not include points from other clusters.

Therefore, since the diversity between points in different clusters will tend

to be high, the number of subsets that can potentially be a non-dominated

solution will also increase, requiring more combinations of points to be gener-

ated and checked. This is also the reason why PG outperforms RRF for the

clustered distribution. Since a Gaussian distribution has only one concentra-

tion of points, it does not suffer from this drawback. This explains why all

approaches perform better for a Gaussian distribution when compared to a

clustered distribution.

Varying the distribution of the points does not have the same effect on the

categorical diversity as on the spatial and angular diversities. The categori-
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Figure 2.12: Varying the datasets for angular diversity.
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Figure 2.13: Varying the datasets for categorical diversity.
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cal diversity is not as sensitive to this parameter as the other diversities, as

shown in Figure 2.13b. This can be explained by the fact that, in the syn-

thetic dataset, the position of points has no relation with the diversity between

them. Consequently, the distribution does not influence the number of candi-

dates (points with high diversity) to be combined with partial sets. The only

parameter that varies with the distribution is the number of points selected

within the given radius. This explains why our approaches are slightly faster

for the uniform distribution.

2.5.5 Effect of the pre-processing (for spatial diversity)

In this experiment we evaluated how pre-computing the network distances

between pairs of POIs influences the processing time. The results are shown in

Figure 2.14. Recall that such pre-processing of pair-wise POI distance is only

used when computing spatial diversities. For the other types of diversity such

distance is irrelevant. The pre-processing time for the AMS, OSLO and BER

networks were, respectively, 40 sec, 2.2 min and 14.5 min. For the RRF and

PG approaches the computation of the pair-wise POI distances corresponds to

63% and 71% of the total time, respectively, confirming that the pre-processing

of distance is worthwhile.
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Figure 2.14: Effect of pre-processing the network distances.
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2.5.6 Effect of the number of categories (for categorical

diversity)

In this experiment we evaluated how our proposed approaches behave w.r.t.

categorical diversity when varying the number of categories from 5 to 100. As

shown in Figure 2.15, the running time of both approaches tends to increase

with the number of categories. Since for categorical diversity only the closest

points from each category are needed, the higher the number of categories,

the higher the number of points that need to be examined in order to find

the skyline set. As shown in Figure 2.15b, although the processing time tends

to increase with the number of categories, our approaches are faster for 100

categories than for 20. When more categories are considered, more diverse so-

lutions are found faster, which increases the pruning power of both approaches,

since sets are pruned based on the highest diversity found so far. For 100 cat-

egories, this greater pruning power outweighs the fact that more points need

to be examined.
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Figure 2.15: Varying the number of categories.

2.5.7 GNE

As mentioned in Section 2.2, GNE provides an approximate result for a given

trade-off between similarity and diversity whereas we obtain the optimal one
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for all linear trade-offs. Nonetheless, for the sake of completeness we evalu-

ated how sub-optimal GNE ’s results are as well as how much faster they are

obtained. We fixed λ, the trade-off between closeness and diversity given as

input to the GNE algorithm, at 0.5. Since GNE requires both criteria to be

on the same scale, we also normalized the diversity criterion by dividing the

corresponding values by the maximum possible value for the given diversity

function. For instance, for divspa, the maximum value is 2 × r, since it is the

maximum possible distance between any two points. Similarly, the maximum

value for divang is 180◦. Since we assume that 0 ≤ divcat ≤ 1, it does not need

to be normalized.

Table 2.6 shows GNE ’s computation time as well as the degree of sub-

optimality (denoted as “gap”) obtained for the three types of diversity con-

sidered in this chapter when all parameters are set to their default values.

Regarding spatial diversity in the real dataset, we also evaluated how GNE

performs when the network distances are computed at query time and when

they are pre-computed. Note that the latter case is not applicable to the

synthetic dataset since no pre-computation is done.

Real Dataset Synthetic Dataset
Diversity Time [s] Gap Time [s] Gap

Spatial (with pre-processing) 0.98 18.43% N/A N/A
Spatial (w/o pre-processing) 12 17.75% 0.64 22.8%
Angular 0.45 6.09% 0.09 2.84%
Categorical 0.26 8.33% 0.06 7.85%

Table 2.6: GNE’s results for the real and synthetic datasets.

With respect to the real dataset, GNE ’s performance degrades significantly

when the network distances are computed at query time. For each pi within

the radius r, GNE finds the (k − 1) more diverse points w.r.t. pi, which

requires multiple network distance computations. We note that in this case

our proposed approaches are able to find the whole linear skyline faster than
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GNE finds a single approximate solution to a given trade-off. On the other

hand, when the distances are pre-computed, GNE performs better than our

approaches. More specifically, the time that PG takes to find the skyline set

is equivalent to running GNE around 3 times. For angular diversity, GNE

is significantly faster than PG, while both of our approaches are faster than

GNE for categorical diversity. Regarding the synthetic dataset, when the

parameters are set to their default values, GNE is up to twice as fast as our

proposed approaches.

It is important to stress that the results above are for GNE to provide an

answer for one trade-off pair. It is not unreasonable to think that a user may

want to try several combinations. Our approaches do not require the user to

choose any trade-off as it finds optimal solutions to all linear ones. Moreover,

even if the user were to know which trade-off he/she would like, GNE is not

guaranteed to find optimal solutions.

In general, the quality of the results produced by GNE are worse for spa-

tial diversity. When compared to the other two types of diversity, in spatial

diversity there are more points that have the potential to lead to more di-

verse sets. This is evidenced in Section 2.5.7 where we show that the number

of non-dominated sets found for spatial diversity is much larger than for the

other diversities. Therefore, the number of points that offer a great chance

to be diverse w.r.t. the previously selected ones is larger, which increases the

chances of GNE making a poor decision. We also note that for the real dataset

the results should ideally be the same regardless of whether the distances are

pre-computed or not, but as one can see in Table 2.6, that is not case for

GNE. This is due to the randomization that takes place within that algorithm

as discussed in Section 2.2.

In angular diversity, the diversity of a set is restricted by the maximum
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angle that can be formed between k points. This means that more pairs of

points will tend to have a diversity more similar to that of the pairs in the

optimal solution, increasing the chance of GNE producing solutions closer to

the optimal ones. Similarly, in categorical diversity the number of points that

could be diverse w.r.t. previously selected points is limited by the the number

of categories. Therefore, GNE is less prone to errors since there are less points

to choose from when this type of diversity is considered.

Conventional Skyline vs Linear Skyline

In order to support the claim that a linear skyline set is significantly smaller

than its corresponding conventional skyline set, we performed an experiment

to compare the size of both sets for the three diversities considered in this

chapter. Table 2.7 shows the results of this experiment. When spatial diversity

is considered, more conventionally non-dominated solutions are found because

there are more points that potentially lead to more diverse sets. In this case,

the linear skyline set is around 90% smaller than the conventional skyline for

the real dataset and 82% smaller for the synthetic dataset.

Real Dataset Synthetic Dataset
Diversity Skyline Linear Skyline Skyline Linear Skyline
Spatial 47 4 28 5
Angular 15 5 11 5
Categorical 6 4 6 3

Table 2.7: Conventional Skyline vs Linear Skyline for the real and synthetic
datasets.

In angular diversity the diversity of sets slowly increases as more points

are examined, however, not as many points lead to more diverse sets as when

the spatial diversity is considered. In categorical diversity the diversity of

sets tends to increase faster than when the other two types of diversity are

considered. Consequently, less points have diversity high enough w.r.t. the
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previously examined points in order to obtain a new non-dominated set. This

explains why fewer conventionally non-dominated sets are found for categor-

ical diversity. Nevertheless, for the real dataset, the linear skyline showed to

be around 67% and 33% smaller for angular and categorical diversities, re-

spectively. While for the synthetic dataset, the linear skyline is around 55%

smaller for the angular diversity and 50% for the categorical diversity. These

figures clearly support our reasoning that by using linear skylines it would be

much simpler for the user to choose a solution.

We also note that the numbers shown in Table 2.7 for the conventional sky-

line tend to be smaller for the synthetic dataset when compared to the default

case of Berlin’s network because when a uniform distribution is considered in

the Euclidean space, less points tend to be included within the same radius,

leading to less non-dominated sets.

2.6 Conclusion

In this chapter we have addressed the (k, r)−DNN query which is a novel

variation of k-NN queries. This query returns sets containing k elements that

are as close as possible to the query point, while, at the same time, being as

diverse as possible. We assume that the user specifies the maximum distance

he/she is willing to travel in order to visit a POI, i.e., the query radius r. We

have considered three different notions of diversity, namely spatial, angular

and categorical. Previously proposed solutions are approximate and require

the user to determine a specific weight for each type of diversity. Our proposed

approaches based on linear skylines find all results that are optimal under any

arbitrary linear combination of the two competing criteria, namely closeness

and diversity.
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We proposed two solutions to (k, r)-DNN queries using the notion of sky-

lines. Recursive Range Filtering (RRF) strives to reduce the number of combi-

nations generated by recursively combining a partial set with candidate points

that are diverse enough to be part of a non-dominated solution. Pair Graph

(PG) works by pruning subsets that contain pairs of points that have low di-

versity and could not be together in a non-dominated solution. Experiments

varying a number of parameters showed that (1) both RRF and PG are orders

of magnitude faster than a straightforward solution, and (2) PG outperforms

RRF when there is a greater number of candidate points that can be combined

with previously selected points, and RRF is more efficient otherwise. Also,

we confirmed that our approaches are more effective than GNE by virtue of

guaranteeing optimal results, as well as more generic since they do not require

the user to set any particular trade-off.
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Chapter 3

In-Route Task Selection in

Spatial Crowdsourcing

3.1 Introduction

Crowdsourcing is a relatively new computing paradigm which relies on the

contributions of a large number of workers to accomplish tasks, such as im-

age tagging and language translation. The increasing popularity of mobile

computing led to a shift from traditional web-based crowdsourcing to spatial

crowdsourcing [49].

Spatial crowdsourcing consists of location-specific tasks, which require peo-

ple to physically be at specific locations to complete them. Examples of these

tasks include taking pictures, answering questions about a certain location in

real time or perform physical chores. Tasks are assigned to suitable workers

based on one or more objectives, such as maximizing the number of assigned

tasks, maximizing a given matching score, minimizing the total amount of

reward paid out by task requesters or maximizing the net reward earned by

workers after deducting traveling costs. In the cases where a worker is assigned
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to multiple tasks, the travel cost between tasks has typically not been taken

into account, e.g., [32], [48], [50]. However, that cost may directly affect the

number of tasks the worker could be able to perform, depending, for exam-

ple, on the worker’s time/distance budget. In this chapter we consider the

particular problem of finding a task schedule for a worker, i.e., a feasible task

sequence, a problem that has also been considered in [18], [20].

Differently from [18], [20], we consider that a worker is traveling a given

path between two given locations and is willing to possibly perform tasks on the

way to the destination, likely deviating from the original path, as long as the

total time spent by him/her does not exceed a given budget. We refer to this

problem as In-Route Task Selection (IRTS). On the one hand, it makes sense to

consider performing tasks that minimize the deviation from the original path to

the location of the tasks plus the time taken for completing them. On the other

hand, considering that each task is associated with a reward, it also makes

sense to maximize the total reward received for performing tasks. Clearly,

intermediary solutions exist as well, i.e., the worker may have his/her own

reasons for prioritizing (or alternatively penalizing) the deviation vs reward

trade-off in different ways. In fact, the novelty and non-trivial complexity of

the IRTS problem, in the context of spatial crowdsourcing, comes from the

fact that there are two competing criteria to be optimized at the same time:

deviation from an intended path and total reward collected.

In this chapter we address two different variants of the IRTS problem. In

the first one, named IRTS-SP, we assume that the worker only specifies the

starting point s and the destination d and that he/she is willing to consider

other paths that deviate as little as possible, in terms of its cost, from the cost

of the shortest path connecting s and d. In the second variant, named IRTS-

PP, we assume that the worker has a preferred path from s to d and is willing
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to consider other paths as long as he/she travels along that one preferred path

for as long as possible. A typical example for the former is when workers rely

on GPS-based routers, whereas the latter is practically relevant in cases where

the worker prefers a path for non-objective reasons, e.g., availability of public

transit, bicycle-friendliness or perceived safety.

The IRTS-SP and IRTS-PP problems can be informally formulated as fol-

lows. (Note that we assume, for both problems, that the worker has a total

temporal budget b, including travel time and completion time for tasks, which

cannot be exceeded.) In the IRTS-SP problem, the worker specifies a starting

point s and destination d, and the goal is to maximize the total reward col-

lected by the worker by performing tasks while also minimizing the difference

between the time cost of the new path connecting s to d, including the time

needed to complete tasks on the way, and the travel time of the shortest path

connecting them. In the context of IRTS-PP, we consider the worker’s pre-

ferred path PP , and also aim at maximizing the total reward earned by the

worker but now minimizing the total deviation from PP . The fundamental

difference between those two variants, which demands different approaches, is

how “detour” is defined. For IRTS-SP, there is no concern about the path

itself, only the path’s cost matters, whereas for IRTS-PP the worker wants to

stick to his/her preferred path as much as possible.

In order to illustrate the IRTS-SP and the IRTS-PP problems, consider

the simple scenario shown in Figure 3.1, where there are three available tasks

T = {t1, t2, t3} associated with their corresponding rewards, $3, $4 and $5, and

time for completion, 2, 4, and 3, respectively. Also, assume that the worker’s

time budget is b = 32.

Let us first consider the IRTS-SP problem and assume that the worker’s

starting location is s and d is his/her destination. The shortest path connecting
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Figure 3.1: Preferred path PP from s to d (in bold), the corresponding shortest
path (dotted red line), and tasks t1, t2 and t3 (denoted by star vertices) with
their corresponding rewards and time for completion. Edge costs denote the
time needed to traverse them.

s to d is SP = 〈s, v6, v7, d〉, represented by a red dotted line, with cost equal

to 15. The path that minimizes the detour incurred from traveling to at least

one task location1 and completing such task(s) is SP1 = 〈s, t1, v8, v6, v7, d〉

with reward $3 and a total cost of 23, hence a detour of 8 units. Recall that

in the context of IRTS-SP, the “detour” is a measure of how much longer the

path is, including the time needed to perform the selected tasks (in this case t1

costing 2 units) w.r.t. the actual shortest path. On the other hand, if the user

wants to maximize his/her reward, the path SP2 = 〈s, v6, v3, t2, v1, t3, v5, d〉

(with reward $9 and detour 15) would be the best option. Let us now consider

other alternative paths. SP3 = 〈s, v6, v7, v4, v1, t3, v5, d〉 yields a total detour of

11 and reward of $5, while SP4 = 〈s, v6, v3, t2, v1, v4, v5, d〉 yields a total detour

of 12 and reward of $4. Finally, SP5 = 〈s, t1, v8, v6, v3, t2, v1, t3, v5, d〉 yields a

total detour of 21 and reward of $12. However, since its cost is 36, which is

greater than b, SP5 is not a feasible option.

Let us now consider the IRTS-PP problem. The path in bold represents

the worker’s preferred path PP = 〈s, v2, v3, v4, v5, d〉. On the one hand, if

1A solution that does not perform any task is of no practical interest.
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the worker wants to minimize the detour from PP incurred from traveling

to at least one task location and completing such task(s), the best path is

PP1 = 〈s, v2, v3, v4, v5, t3, v5, d〉 with reward $5 and detour 7, because the edge

〈v5, t3〉 that does not belong to the preferred path needed to be traversed twice

and t3 takes 3 units of time to be performed. On the other hand, if the user

wants to maximize his/her reward, the path PP2 = 〈s, v2, v3, t2, v1, t3, v5, d〉

(with reward $9 and detour 21) would be the best option. Note that both

paths are feasible since they satisfy the maximum budget b; the total time of

PP1 is 26, while PP2 takes 30 units of time. Clearly there are other alternative

paths. PP3 = 〈s, v2, v3, t2, v3, v4, v5, d〉 yields a total detour of 8 and reward of

$4, PP4 = 〈s, t1, s, v2, v3, v4, v5, d〉 yields a total detour of 8 and reward of $3.

PP5 = 〈s, v2, v3, t2, v3, v4, v5, t3, v5, d〉 yields a total detour of 11 and reward of

$9, however, since PP5’s total cost is 34, which is greater than b, PP5 is not a

feasible option.

As shown above, a single route does not typically optimize both criteria,

i.e., minimize detour and maximize reward at the same time; in the IRTS-SP

(IRTS-PP) case, SP1 (PP1) minimizes detour and SP2 (PP2) maximizes re-

ward. A simplistic way to address this problem is to assign weights to both

criteria and optimize the resulting combination. However, such an approach

would depend primarily on the worker’s preferences, which, besides possibly

not being obvious or clear from the outset, adds an extra parameter to the

problem. Moreover, we believe that not requiring workers to specify before-

hand their preferences is of practical relevance as it empowers them to consider

all interesting alternatives by themselves. In this context, a more principled

way to deal with the IRTS problem is to determine all results that are optimal

under any arbitrary combination of the two criteria. Fortunately, that can be

achieved by using the notion of skyline queries [5]. In generic terms, the result
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set of a skyline query contains objects which are not dominated by any other

one. An object oi is dominated by another object oj if, for each criterion, oi is

at most as good as oj, and, for at least one criterion, oj is strictly better than

oi.

Figure 3.2 illustrates graphically the concept of skyline queries. It shows

the corresponding detours and rewards of the candidate paths considered above

(obtained from Figure 3.1) for both variants IRTS-SP (Figure 3.2a) and IRTS-

PP (Figure 3.2b). The shaded area contains the dominated paths. Let us first

consider the IRTS-SP variant. Paths SP1 and SP2 are not dominated since

they are the ones that minimize the incurred detour and maximize the reward

received by the worker, respectively. Similarly, path SP3 is also non-dominated

since there is no other path with shorter detour and higher reward than its

own. On the other hand, path SP4 is dominated by path SP3. Therefore,

the skyline set for this case contains paths SP1, SP2 and SP3. Let us now

consider the IRTS-PP variant. Path PP2 is non-dominated since it maximizes

the reward the worker could receive considering the specified budget b = 32.

On the other hand, paths PP3 and PP4 are dominated since they yield a

greater detour than that of PP1, but offer a smaller reward. Note that PP1

is non-dominated since there is no other path with smaller detour than its

own. Therefore, paths PP1 and PP2 are not dominated and thus are equally

interesting and should be offered as alternatives to the worker, who can decide

by him/herself how to prioritize the trade-off between deviation and reward.

Our main objective in this chapter is to devise a skyline-based approach in

order to solve both variants of the IRTS problem. A straightforward applica-

tion of the skyline query requires the generation of all possible paths in order

to compute the skyline set. Instead, we exploit properties from each of the

IRTS problems in order to efficiently and incrementally generate, as well as
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SP4

(a) IRTS-SP variant. (b) IRTS-PP variant.

Figure 3.2: Skylines for the example illustrated in Figure 3.1 for variants
IRTS-SP (left) and IRTS-PP (right).

prune paths, thus reducing the search space substantially. In this context, the

main contributions we offer are two-fold. First, we define the IRTS problem

and two variants thereof (IRTS-SP and IRTS-PP). Those are new extensions

of the task scheduling problem in spatial crowdsourcing which empower the

worker w.r.t. trade-offs between competing criteria. Second, after showing

that both IRTS-SP and IRTS-PP problems are NP-hard, we present, for each

one of them, an exact as well as a few heuristic approaches that can be used

to solve city-scale instance problems efficiently.

The remainder of this chapter is structured as follows. In Section 3.2 we

present relevant related works and contrast them to ours. We present the

formal definition of the IRTS problem, showing that both IRTS-SP and IRTS-

PP are NP-hard, in Section 3.3. Our proposed exact and heuristic algorithms,

which form the core of our contribution, are presented in Section 3.4, followed

by their experimental evaluation using real city-scale datasets in Section 3.5.

Finally, Section 3.6 presents a summary of our findings.
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3.2 Related Work

The literature in spatial crowdsourcing presents many different ways to assign

tasks to workers, for instance, maximizing the number of assigned tasks [32],

[48], maximizing a given matching score [10], [45], [50], [60] or minimizing the

total amount of reward paid out by requesters while maximizing the number

of assignments [17].

Kazemi and Sahabi [32] study the maximum task assignment (MTA) prob-

lem in spatial crowdsourcing which aims at maximizing the overall number of

assigned tasks. It considers that a worker only accepts tasks within his/her

spatial region and is willing to perform up to a predetermined number of tasks.

To et al. [48] introduce a framework for crowdsourcing hyper-local informa-

tion. A task can only be answered by workers who are already within a radius

r from the task location at a time when the task is valid. The goal is to

maximize task assignment given a budget, which is the maximum number of

workers that can be selected.

Tong et al. [50] study the Global Online Micro-task Allocation in spatial

crowdsourcing (GOMA) problem, which aims at maximizing a total matching

utility. The utility for a task-worker pair (t, w) is given by the payoff of task

t times the success ratio of w completing tasks. Song et al. [45] propose

the trichromatic online matching (TOM) in real-time spatial crowdsourcing

problem, which aims at matching three types of objects, namely tasks, workers

and workplaces. The goal is to maximize a total utility score representing

the satisfaction of the matching involving the corresponding objects. Zheng

and Chen [60] study the Task Assignment with Mutual Benefit Awareness

(TAMBA) problem. TAMBA aims at maximizing the mutual benefit of the

workers and tasks, which is measured in terms of the expected answer quality

for a worker w and task t, given by the probability of w’s acceptance of t
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multiplied by the expected rating of w’s completing t.

Within the context of reward-based task assignment, Dang and Cao [17]

propose the Maximum Task Minimum Cost Assignment (MTMCA) problem.

MTMCA considers that workers have multiple skills and that each task has a

type. The goal is to maximize the number of assignments and subsequently

minimize the total amount of money spent by the requesters, assuming that the

price of tasks is attributed by workers. The Multi-Skill Spatial Crowdsourcing

(MS-SC) problem is presented in [9]. It aims at assigning multi-skilled workers

to complex spatial tasks such that skills between workers and tasks match

each other, and workers benefits are maximized. Each task is associated with

a budget, which represents the maximum amount the requester is willing to

pay for that task. The workers’ rewards are given by the sum of the remaining

budget of the completed tasks after deducting traveling costs.

Differently from the works above, [18], [20] deal with assigning a task se-

quence to workers and, thus, take the travel cost between tasks into account,

similarly to what we do. In [18], the authors focus on maximizing the number

of tasks performed by a single worker assuming that the worker is willing to

perform up to a predefined maximum number of tasks and that he/she must

arrive at the task location before its deadline. An extension of that problem

is proposed in [20], and it aims at maximizing the overall number of tasks

performed by multiple workers considering that each task is assigned to at

most one worker. As in [18], we focus on the scenario where workers self-select

the tasks they want to perform from a list of published tasks, termed Worker

Selected Tasks (WST) [32] mode. However, differently from [18], [20], we as-

sume that a worker is willing to perform tasks while traveling from a given

starting point to a destination but likely without deviating too much from the

original path (or travel time thereof) he/she was going to take. Additionally,
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we consider that each task is associated with a reward and that the worker also

wants to maximize the total reward received for performing tasks, a notion not

considered in either [18] or [20].

All of the works above focus on either optimizing a single criterion or on

also optimizing a secondary criterion, which serves as a tie-breaker. Cheng

et al. [10] study the reliable diversity-based spatial crowdsourcing (RDB-SC)

problem, which assigns workers to tasks such that tasks can be accomplished

with high reliability and spatial/temporal diversity. Thus, there are two cri-

teria to be optimized simultaneously: reliability and diversity. However, while

still relying on the notion of dominance, they do not find a skyline set, instead

they select the one solution that dominates the most solutions as the best one.

We, on the other hand, aim at providing the worker with all optimal choices

by returning the skyline set of solutions.

The IRTS problem can also be seen as an interesting combination of two

seemingly unrelated problems: In-Route Nearest Neighbor queries and the

Orienteering Problem. The problem of searching for nearest neighbors with

respect to a given (preferred) path has been previously defined as the In-

Route Nearest-Neighbor (IRNN) query [44]. Within the context of multiple

competing criteria in IRNN queries, [2] focuses on the trade-off yielded by

minimizing the detour incurred for visiting a single point of interest (POI)

and also minimizing the total cost of the path at the same time. On the other

hand, [28] aims at minimizing the cost for reaching a POI, as opposed to the

total cost of the path, and the detour incurred. In the Orienteering Problem

(OP) [23], it is given a graph G(V,E), where each vertex v ∈ V is associated

with a positive score, and a budget b. OP aims at finding the route from a

given starting point s that maximizes the total score while the total travel cost

does not exceed b. The main differences between IRTS and IRNN and OP are
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the following. IRNN considers deviating towards one single POI, while IRTS

considers multiple tasks (which can be seen as POIs). In fact, IRTS can be

seen as a generalization of the IRNN problem. The OP problem, on the other

hand, does not consider the notion of trade-off between travel cost and rewards

at all, and in this respect, IRTS can be considered a non-trivial extension to

OP.

3.3 Preliminaries

We assume that the worker’s movement is constrained by an underlying road

network, which is modeled as a directed graph G(V,E,C), where V is a set of

vertices that represent the road intersections and end-points, E is the set of

edges modelling all road segments and C indicates the costs of edges in E. In

our case, the cost of traversing an edge connecting vertices vi and vj is given

by the time it takes to traverse the corresponding road network segment that

connects those vertices and is denoted by c(vi, vj).

We define a path Pi = 〈v
1
i , v

2
i , ..., v

n
i 〉 in G as a sequence of vertices such that

any two consecutive vertices vji and vj+1
i , for 1 ≤ j < n, are directly connected

by an edge (vji , v
j+1
i ) ∈ E. The shortest path from the worker’s starting point

s to his/her destination d is denoted by SP . Likewise, the preferred path of a

worker is denoted by PP .

A worker w is an individual2 who is willing to perform tasks in exchange

for rewards while traveling from his/her origin to the destination. We assume

that the worker has a budget b which represents the maximum time he/she

wishes to spend, including the time required to perform the selected tasks and

the total travel time.

2This is just a practical assumption, nothing in our study prevents considering the worker
to be a device, e.g., a robot or an autonomous vehicle.
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We also assume that all tasks are located on an edge of the network. If a

given task t is not placed on an existing vertex v ∈ V , we replace that edge,

say (vj, vl), in G with two new edges (vj, t) and (t, vl), adjusting the costs of

the affected edges accordingly. Note that this implies that some of the vertices

in the graph are now tasks rather than actual road intersections or the like.

Thus, we further assume that every vertex v has a non-negative reward ρ(v)

and a time for completion δ(v) associated to it, where ρ(v) = 0 and δ(v) = 0

if v does not represent a task.

It is important to note that some vertices traversed in a path may represent

tasks which are not completed, and therefore their cost and reward should not

be considered as part of the path’s overall cost and reward. To address that,

we add a binary variable, π(vji ), to indicate whether a task at a vertex vji ∈ Pi

was completed or not, that is:

π(vji ) =















1 iff vji is a vertex representing a task and is completed

0 otherwise

The reward of a path and travel and detour costs can now be defined as

follows:

Definition 3.3.1 (Reward of a path). Given a path Pi in G, its total reward

is given by the sum of the rewards of the completed vertices (tasks) in it (recall

that vertices which are not tasks or are tasks that have not been completed

do not contribute to the path’s reward), i.e.,

R(Pi) =
∑

v
j
i∈Pi

ρ(vji )× π(vji )

Definition 3.3.2 (Travel Cost). Given a path Pi in G, its travel cost is given
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by the sum of the costs of the edges in it, i.e.,

TC(Pi) =
n−1
∑

j=1

c(vji , v
j+1
i ).

While the definitions of reward of a path and travel cost apply to both vari-

ants of the IRTS problem, each one has its own detour function. More specifi-

cally, IRTS-SP considers the extra traveling cost w.r.t. SP ’s cost, whereas for

the IRTS-PP variant, the detour is calculated w.r.t. the actual edge deviation

from a given preferred path PP ; these notions are formalized next.

Definition 3.3.3 (Displacement Detour and Total Detour w.r.t. the Shortest

Path). Given a path Pi connecting s to d, the displacement detour of Pi w.r.t.

the shortest path SP is defined as the difference between the travel costs of

Pi and SP :

DDSP (Pi, SP ) = TC(Pi)− TC(SP ).

Similarly, the total detour of Pi w.r.t. SP is given by the sum of its displace-

ment detour and the total time required for performing the completed tasks

in Pi, i.e.:

TDSP (Pi, SP ) = DDSP (Pi, SP ) +
∑

v
j
i∈Pi

δ(vji )× π(vji ).

Definition 3.3.4 (Displacement Detour and Total Detour w.r.t. a Preferred

Path). Given a path Pi and a preferred path PP connecting s to d, the dis-

placement detour of Pi w.r.t. PP is defined as the sum of the costs of the

edges in Pi that do not belong to PP . That is:

DDPP (Pi, PP ) =
n−1
∑

j=1

d(vji , v
j+1
i , PP ),
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where d(vji , v
j+1
i , PP ) = c(vji , v

j+1
i ) if (vji , v

j+1
i ) 6⊂ PP or null otherwise. The

total detour of Pi w.r.t. PP is equal to the sum of its displacement detour

and the total time required for performing the completed tasks in Pi, i.e.:

TDPP (Pi, PP ) = DDPP (Pi, PP ) +
∑

v
j
i∈Pi

δ(vji )× π(vji ).

Finally, we present the definition of feasible path, i.e., a path that can be

completed by the worker within the given budget b.

Definition 3.3.5 (Feasible Path). A path Pi is said to be feasible, i.e., of

potential interest to the worker, if its travel time plus the time taken for

performing the tasks in it is not greater than the given budget b. More formally,

a path is feasible if the following condition is satisfied:

TC(Pi) +
∑

v
j
i∈Pi

δ(vji )× π(vji ) ≤ b.

As mentioned earlier, IRTS aims at providing the user with a set of optimal

alternative feasible paths for different trade-offs between detour and reward.

In order to do so, we rely on the notion of skyline queries, which was first

introduced in [5]. Given a d-dimensional data set, a skyline query returns the

points that are not dominated by any other point. In the context of the IRTS

problem, a path Pi is not dominated if there is no other path Pj with smaller

detour and higher reward than Pi. A powerful aspect of skyline queries is

that the user does not need to determine beforehand weights for detour and

reward. The skyline is a set of equally interesting solutions in the sense that

they are all non-dominated, for arbitrary weights. The skyline set found for

the IRTS-SP problem can be formally defined as follows.

Definition 3.3.6 (Skyline). Let P be a set of paths in a two-dimensional cost
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space. A path Pm ∈ P dominates another path Pn ∈ P , denoted as Pm ≺ Pn,

if

TDSP (Pm, SP ) < TDSP (Pn, SP ) ∧ R(Pm) ≥ R(Pn) ∨

TDSP (Pm, SP ) ≤ TDSP (Pn, SP ) ∧ R(Pm) > R(Pn)

That is, Pm is better in one criterion and at least as good as Pn in the other

one. The set of non-dominated paths, i.e. {Pm ∈ P | @Pn ∈ P : Pn ≺ Pm}, is

called a skyline.

We note that the same definition also applies to the IRTS-PP variant by

replacing the detour cost function TDSP (Pi, SP ) with IRTS-PP’s own detour

cost function, TDPP (Pi, PP ), defined above.

The two variants of the IRTS problem considered in this chapter can now

be formally defined as follows. (For ease of reference, Table 3.1 summarizes

the notation used throughout this chapter.)

Problem Definition (IRTS-SP). Given a worker w with his/her starting

location s, destination d, budget b, and a set of available tasks T (embedded in

some vertices of the network G), the IRTS-SP problem aims at finding the set

of all non-dominated paths, w.r.t. TDSP (·, SP ) and R(·), from s to d, that

contains at least one task ti ∈ T and whose total time does not exceed b.

Problem Definition (IRTS-PP). Given a worker w with his/her correspond-

ing preferred path PP between vertices s and d, a budget b, and a set of avail-

able tasks T (embedded in some vertices of the network G), the IRTS-PP prob-

lem aims at finding the set of all non-dominated paths, w.r.t. TDPP (·, PP )

and R(·), from s to d, that contains at least one task ti ∈ T and whose total

time does not exceed b.
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Notation Meaning

SP and PP
The shortest path and the worker’s preferred path, re-
spectively, between

s and d, i.e., the worker’s origin and destination

Pi = 〈v
1
i , v

2
i , ..., v

n
i 〉 A path Pi

vji The j-th vertex in Pi

c(vi, vj) Cost of the edge connecting vi to vj

de(vi, vj) Euclidean distance between vertices vi and vj

π(vji )
A binary flag indicating whether a task at vertex vji is
completed or not

TC(Pi) Travel cost of path Pi

DDSP (Pi, SP )
Displacement detour of path Pi w.r.t. the shortest path
between v1i and vni

TDSP (Pi, SP )
Total detour of path Pi w.r.t. the shortest path between
v1i and vni

DDPP (Pi, PP ) Displacement detour of path Pi w.r.t. PP

TDPP (Pi, PP ) Total detour of path Pi w.r.t. PP

ρ(vj) Reward of a vertex (task) vi

R(Pi) Reward of path Pi

δ(vj) Time for completion of a vertex (task) vi

Pi ≺ Pj Pj is dominated by Pi

P
vi,vj
sp Shortest path between vertices vi and vj (Sec. 3.4)

P
vi,vj
pp

Path between vi and vj which minimizes the detour
w.r.t. PP (Sec. 3.4)

P
[t1i ,...,t

n
i ]

sp
Path from s to d that visits the task sequence [t1i , . . . , t

n
i ]

and minimizes

the travel cost (Sec. 3.4)

P
[t1i ,...,t

n
i ]

pp
Path from s to d that visits the task sequence [t1i , . . . , t

n
i ]

and minimizes

the detour w.r.t. PP (Sec. 3.4)

Pi[vr : vs] Sub-path in Pi between vr and vs (Sec. 3.4)

Table 3.1: Notation used in Chapter 3.
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In the following, we prove that both IRTS-SP and IRTS-PP are NP-Hard,

therefore justifying the need for efficient heuristics in order to solve non-

trivially sized problems.

Theorem 5. IRTS-SP is NP-Hard.

Proof. Solving IRTS-SP involves finding the path from s to d with the highest

reward within the given budget. This is precisely what is returned by the

Orienteering Problem (OP) [23] if we consider that all tasks take 0 units of

time to be performed. Therefore, IRTS-SP is at least as hard as OP. Since OP

is NP-Hard, IRTS-SP is also NP-Hard.

It is worth emphasizing that OP finds only one of the paths belonging

to the skyline set, while IRTS-SP finds all non-dominated paths in terms of

detour and reward.

Next, in order to establish IRTS-PP’s complexity, recall that finding its

skyline set includes finding the path with the highest reward such that its total

time cost is under a given budget b and the detour is minimum. We denote this

IRTS-PP’s sub-problem as the Maximum Reward Minimum Detour (MRMD)

problem and show that MRMD’s decision version is NP-Complete and from

that we can show that the IRTS-PP problem is NP-hard.

Lemma 1. The decision problem of MRMD, i.e., to decide whether there

exists a valid path with reward at least Lr and detour at most Ud ≤ b, is

NP-Complete.

Proof. We prove this theorem by a reduction from the decision version of the

Traveling Salesman Problem (TSP). Given a complete graph G(V,E), where

the cost of an edge (v, u) ∈ E is given by the travel cost between vertices

v, u ∈ V , the TSP aims at finding the shortest possible route from a given

vertex v that visits every vertex in G exactly once and returns to v. The
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decision version of the TSP seeks to answer the following question: Given a

graph G(V,E), is there a tour from a given vertex v ∈ V with cost at most

Tmax?

In order to transform a given TSP problem into an instance of MRMD we

make the following assumptions:

• The starting location v represents the worker’s starting location and all

the remaining vertices represent tasks (and are referred as such in the

following).

• The travel cost of an edge linking task i to task j is defined as in TSP.

Each task taskes 0 units of time to be performed and is associated with

a reward of 1. Additionally, the budget b in MRMD is equal to Tmax.

• The worker’s destination d is equal to v and the preferred path is given

by PP = 〈s, d〉.

• Lr is given by |V | − 1, i.e., the sum of the rewards of all tasks.

The decision problem of the constructed MRMD instance is: Given a

worker and the set of tasks T , can we find a path that includes all the tasks

and whose detour is at most b = Tmax?

We now show that TSP has a Yes-instance if and only if MRMD has a

Yes-instance. A solution to TSP visits every vertex with cost at most Tmax.

This means that all tasks can be completed, maximizing the reward, with cost

at most Tmax. We note that since the only edge in the preferred path is from

v to itself, the detour cost of any path is equal to its travel cost and, thus, it

is up to Tmax. On the other hand, if the MRMD problem has a Yes-instance,

then it completes all the tasks and the detour cost is no greater than b = Tmax.

Thus, the corresponding path is a TSP route with cost no more than Tmax.
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Therefore, since TSP’s decision problem is NP-complete it follows that

MRMD’s decision problem is also NP-Complete.

Theorem 6. IRTS-PP is NP-Hard

Proof. MRMD’s decision problem is NP-complete which implies that MRMD’s

optimization version is NP-Hard. Since solving MRMD is required to solve

IRTS-PP then it follows that IRTS-PP is also NP-Hard.

3.4 Proposed Approaches

In this section we present our solutions to both IRTS-SP and IRTS-PP. A

straightforward approach to solve both of these variants is to find all possible

paths from s to d passing through at least one task, and add the non-dominated

ones to the skyline set. However, such an approach is clearly not practical even

for very small problems. Therefore, for each IRTS variant, we first propose

an exact approach that finds the set of all non-dominated paths by pruning

sub-paths that are provably not part of a complete non-dominated path from

s to d. Next, since the exact approach does not scale to larger instances due

to the NP-hardness of the IRTS problem, we propose some heuristics that

approximate the exact skyline.

3.4.1 IRTS-SP

Exact Solution

IRTS-SP is a simpler problem than IRTS-PP in the sense that, for a given set

of tasks, minimizing the total detour incurred for traveling to the locations of

those tasks is equivalent to minimizing the total travel cost of a path connecting

them. This means that, for a given pair of tasks, we only need to examine
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one path connecting them, namely the fastest one. On the other hand, as we

will show in Section 3.4.2, in order to solve IRTS-PP we may need to examine

multiple paths between pairs of tasks.

Based on the above observation, in order to find the exact skyline for IRTS-

SP, we build a directed graph of tasks GTsp = (Vsp, Esp). The set of vertices

Vsp contains s, d, and a set of feasible tasks that can be completed within the

given budget. Each edge connecting two vertices v and u in Esp represents the

fastest path from v to u in the original graph G and is associated with the

travel cost of such path. The graph of tasks GTsp obtained for the example

shown in Figure 3.1 is illustrated in Figure 3.3.

s

t1

$3, 2
t2

$4, 4
t3

$5, 3

d

3 9
19

18
14

4

12

10

Figure 3.3: Graph GTsp built for the example shown in Figure 3.1. The value
on each edge represents the corresponding travel cost.

Algorithm 5 shows how GTsp is constructed in details. We first compute the

fastest path from s to all tasks ti ∈ T that could be completed within the given

budget (line 3). This step is performed by calling algorithm shortestPathToSet

(explained next) and serves to filter the feasible tasks. Next, for each feasible

task ti, we find the fastest path P
ti,tj
sp connecting it to each task tj that can be

completed after ti within the remaining budget (line 11), i.e., after deducting

the time for traveling to ti and completing it. An edge is created for each such

P
ti,tj
sp and added to the the set of edges (lines 13-16).
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Algorithm 5: GTsp construction

Input: Graph G = (V,E), starting point s, destination d, set of tasks
T = {t1, ..., tm}, and budget b.

Output: Graph of tasks GTsp = (Vsp, Esp).
1 V ′ ← s, d
2 E′ ← ∅
3 Psp ← shortestPathToSet(s, d,G, T, b)
4 T ′ ← all tasks found in Psp
5 for each task ti in T ′ do
6 Vsp ← Vsp ∪ ti

7 P
s,ti
sp ← shortest path from s to ti in Psp

8 e← new edge from s to ti with cost TC(P s,ti
sp )

9 Esp ← Esp ∪ e

10 remainingBudget← b− TC(P s,ti
sp )− δ(ti)

11 Pti
sp ← shortestPathToSet(ti, d,G, T ′ ∪ d, remainingBudget)

12 T ′
i ← all tasks found in Pti

sp

13 for each tj in T ′
i do

14 P
ti,tj
sp ← shortest path from ti to tj in Pti

sp

15 e← new edge from ti to tj with cost TC(P
ti,tj
sp )

16 Esp ← Esp ∪ e
17 end
18 end

19 return (Vsp, Esp)

Complexity Analysis (GTsp construction). In order to build GTsp we

execute shortestPathToSet up to |T | + 1 times in G, i.e., once for s and at

most once for each task in T . Let CSPS be the complexity of shortestPathToSet

(discussed next), the complexity of Algorithm 5 in the worst case is O(|T | ×

CSPS).

Within Algorithm 5, the call to shortestPathToSet (described in Algo-

rithm 6) is used to find the shortest paths from s to every feasible task ti

considering the given budget b (line 3), and then from each such ti to the

destination and to the tasks that can be visited afterward considering the

remaining budget (line 11). shortestPathToSet (Algorithm 6) performs a net-

work expansion based on the classical Dijkstra’s algorithm. We maintain a

queue Q that stores paths which are dequeued in increasing order of travel

cost. For each dequeued path P , we first check if its last vertex v has been
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Algorithm 6: shortestPathToSet

Input: Origin o, final destination d, graph G = (V,E), set of target
vertices Sv, maximum cost maxCost.

Output: Set P of shortest paths from o to the vertices in Sv.
1 CS,P, Q← ∅
2 Q.add(〈o〉)
3 while Q 6= ∅ do
4 P ← Q.dequeue()
5 v ← last vertex of P
6 if CS.contains(v) then
7 continue
8 end

9 CS.add(v)
10 if Sv.contains(v) then

11 if TC(P ) + δ(v) + de(v,d)
maxSpeed

≤ maxCost then

12 P.add(P )
13 end

14 Sv.remove(v)
15 if Sv = ∅ then
16 return P
17 end
18 end
19 for each u neighbor of v in E do
20 if u 6∈ CS then
21 Pu ← extend P with u

22 lb← TC(Pu) +
de(u,d)

maxSpeed

23 if lb > maxCost then
24 continue
25 end

26 Q.add(Pu)
27 end
28 end
29 end
30 return P

found before (line 6). If so, there is another path Pj from s to v that is shorter

than P , thus it is not worth expanding P . If not, we check whether v is one

of the target vertices, i.e., if it belongs to Sv (line 10). If such condition is

satisfied, we estimate the total time of the shortest path from o to d passing

through v as TC(P )+δ(v)+ de(v,d)
maxSpeed

(line 11), where de(u, d) is the Euclidean

distance from u to d and maxSpeed is the maximum speed allowed in the

given network. If such estimate does not exceed maxCost, v can potentially

be completed within the budget and P is added to the result set P (line 12).

Next, v is removed from Sv. If Sv becomes empty, the search stops and P is
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returned since all shortest paths to the target vertices have already been found.

If P is not pruned, it is expanded with each neighbor u of v in E, creating

a new path Pu (lines 19-21). Then, we estimate the total travel cost of the

shortest path from the origin o to the destination d passing through u (line 22)

as lb = TC(Pu) +
de(u,d)

maxSpeed
. If lb > maxCost, it is not worth expanding P u,

since d can not be reached within the given budget. Otherwise, Pu is added to

Q (line 26). Besides the termination condition discussed above, the algorithm

also stops when the queue becomes empty.

Complexity Analysis (shortestPathToSet). Since shortestPathToSet per-

forms a network expansion similar to one in Dijkstra’s algorithm, its complex-

ity in the worst case is O(|E|+ |V | × log|V |).

In the following we prove that shortestPathToSet correctly finds all feasible

tasks T ′ that should be connected to s in the graph GTsp, i.e., each task ti ∈ T

such that TC(P s,ti
sp ) + δ(ti) + TC(P ti,d

sp ) ≤ b, as well as their corresponding

shortest paths. Similarly, we also prove that for every ti ∈ T ′, it finds all

tasks that can be completed after ti considering the remaining budget, i.e.,

each tj ∈ T ′ such that TC(P s,ti
sp ) + δ(ti) + TC(P

ti,tj
sp ) + δ(tj) + TC(P

tj ,d
sp ) ≤ b.

We note that although the actual value of TC(P ti,d
sp ) is not known before

shortestPathToSet is invoked, in this algorithm we use a lower bound, namely

de(ti,d)
maxSpeed

, to estimate such cost, hence no feasible tasks are discarded.

Lemma 2. shortestPathToSet correctly finds the set of feasible tasks to be

connected to s and to each task in GTsp.

Proof. Let us first consider the case where shortestPathToSet is used to find

the set T ′ ⊆ T of feasible tasks from s within Algorithm 5 (line 3). By

contradiction, let us assume that there is a feasible task ti ∈ T , i.e., TC(P s,ti
sp )+

δ(ti)+TC(P ti,d
sp ) ≤ b, that does not belong to T ′. This means that the shortest
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path P s,ti
sp from s to ti was not added to the result set P in shortestPathToSet.

Let us analyze the two possibilities:

1. P s,ti
sp was added to Q

(a) P s,ti
sp was never dequeued.

In this case Q is not empty, but the algorithm terminated before

P s,ti
sp could be dequeued. Therefore, line 14 of Algorithm 6 was

reached for a certain path P , which was examined before P s,ti
sp . This

means that P was the first path found for the last target vertex

remaining in Sv, and paths to every other vertices in Sv have been

previously found. Since paths are examined in increasing order of

cost, this contradicts the assumption that P s,ti
sp is the shortest path

to ti ∈ Sv.

(b) P s,ti
sp was dequeued.

Then, it must have been the case that P s,ti
sp was pruned on line 7 or

11 of Algorithm 6. If line 7 was reached, there is a shorter path P ′

from s to ti, since paths are dequeued from Q in increasing order

of cost, which contradicts the fact that P s,ti
sp is the shortest path

connecting s to ti. In the second case (line 11), P s,ti
sp was pruned

because TC(P s,ti
sp )+δ(ti)+

de(ti,d)
maxSpeed

> b, which is a contradiction to

the assumption that ti is a feasible task and thus TC(P s,ti
sp )+δ(ti)+

TC(P ti,d
sp ) ≤ b, and, consequently TC(P s,ti

sp ) + δ(ti) +
de(ti,d)

maxSpeed
≤ b,

since de(ti,d)
maxSpeed

is a lower bound to TC(P ti,d
sp ).

2. P s,ti
sp was not added to Q

This means that for some vertex u in P s,ti
sp , the shortest path P s,u

sp was

not added to Q. Let v be the vertex visited immediately before u in P s,ti
sp

and assume that P s,v
sp is dequeued. P s,u

sp is discarded if one the following
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conditions is satisfied:

(a) v has been found before

Therefore, v has been found with smaller cost, which contradicts

the assumption that P s,v
sp is the shortest path from s to v and,

consequently, that P s,ti
sp is the shortest path to ti.

(b) The path P s,v
sp is expanded, but lb = TC(Pu) +

de(u,d)
maxSpeed

> b, where

Pu is the path obtained after extending P s,v
sp with u

Since Pu is a subpath of P s,ti
sp and by assumption TC(P s,ti

sp ) +

TC(P ti,d
sp ) ≤ b, then TC(Pu)+TC(P u,d

sp ) ≤ b also holds. As de(u,d)
maxSpeed

is a lower bound to TC(P u,d
sp ), the inequality TC(Pu)+

de(u,d)
maxSpeed

> b

is a contradiction.

Now, let us consider the case where shortestPathToSet is used to find the set

of feasible tasks from each task ti ∈ T ′ within Algorithm 5 (line 11). We

need to prove that shortestPathToSet finds the shortest paths from ti to every

task tj ∈ T ′ such that TC(P s,ti
sp ) + δ(ti) + TC(P

ti,tj
sp ) + δ(tj) + TC(P

tj ,d
sp ) ≤ b.

Therefore, tj is feasible if TC(P
ti,tj
sp )+TC(P

tj ,d
sp )+δ(tj) ≤ b−TC(P s,ti

sp )−δ(ti).

The proof for this case is similar to the one presented above when we consider

that the starting node o given as input to shortestPathToSet is ti, the set of

target vertices is Sv = T ′ and maxCost = b− TC(P s,ti
sp )− δ(ti).

Once GTsp is built as discussed above, we are able to find the exact skyline

containing non-dominated paths, in terms of reward and detour, from s to d.

Algorithm 7 shows the pseudo-code of our solution. It invokes the algorithm

EXCT REC-SP (Algorithm 8), which recursively expands a given path P

until the budget is exceeded. Initially, P contains only the starting point s

(line 1 of Algorithm 7). In each call of EXCT REC-SP , we analyze the

feasible paths that can be obtained by expanding P . We first check whether
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the destination can be reached within the remaining budget from the last

vertex v of P (line 2). If not, P is not further expanded and the recursion

stops. Otherwise, we consider the edges that connect v to any other vertex

u ∈ Vsp (line 5). If the current neighbor u of v is the destination d (line 7), P is

extended with u, generating a new path Pu (line 7). If Pu is not dominated, Pu

is added to the skyline set S and any path dominated by it is removed from S

(lines 9-12). We note that Pu is not further expanded since it is a path to the

destination (line 13). On the other hand, if u is a task (line 15), we first check

if u has already been expanded when constructing P . If not, P is expanded

creating the new path Pu, and EXCT REC-SP is recursively called for Pu and

considering the remaining budget remainingBudget = b − TC(P v,u
sp ) − δ(u),

i.e., the budget after deducting the cost to reach u and to complete it.

Algorithm 7: EXCT -SP

Input: Graph of tasks GTsp = (Vsp, Esp), starting point s, destination d
and budget b.

Output: Set S of non-dominated paths w.r.t. TDSP (·, SP ) and R(·) with
cost up to b.

1 P ← 〈s〉
2 S ← ∅
3 EXCT REC-SP (GTsp, d, b, P,S)
4 return S

In order to check the dominance of a path and update the skyline set S

efficiently (lines 9 and 11 of Algorithm 8), we follow the strategy proposed in

[43]. More specifically, we maintain an ordering of S as a tuple (P1, . . . , PK)

where ∀i < j ∈ 1, .., K, the following conditions hold: TDSP (Pi, SP ) <

TDSP (Pj, SP ) & R(Pi) < R(Pj). In order to determine whether a given

path P is dominated in S we find its left neighbor Pk, which is the closest path

to P w.r.t. TDSP (·, SP ) where TDSP (Pk, SP ) ≤ TDSP (Pi, SP ). If P is

not dominated by Pk then it is not dominated in S and thus it can be inserted

into such set. Determining the left neighbor of P in S can be performed
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Algorithm 8: EXCT REC-SP

Input: Graph of tasks GTsp = (Vsp, Esp), final destination d, budget b,
path to be expanded P and current skyline set S.

1 v ← last vertex of P

2 if TC(P v,d
sp ) > b then

3 return
4 end
5 for each edge e from v in Esp do
6 u← e.toNode
7 if u = d then
8 Pu ← extend P with u
9 if Pu is not dominated in S then

10 S.add(Pu)
11 remove any paths dominated by Pu from S
12 end
13 continue
14 end
15 else
16 if u has already been expanded when constructing P then
17 continue
18 end
19 Pu ← extend P with u

20 remainingBudget← b− TC(P v,u
sp )− δ(u)

21 EXCT REC-SP (GTsp, d, remainingBudget, Pu,S)
22 end
23 end

using a binary search w.r.t. TDSP (·, SP ). Thus, the complexity of checking

whether P has to be inserted into S is O(log |S|). In case P is inserted into

S, we need to check whether it dominates other paths in S, starting with

Pk. If Pk is dominated by P , it is removed from S. Thereafter, we perform

a right traversal in S starting from Pk+1. If P dominates Pk+1, then Pk+1 is

removed from S and Pk+2 becomes P ’s right neighbor. This traversal stops

when P does not dominate its right neighbor or when there is no path left to

be considered. Such operation has a time complexity of O(|S|) in the worst

case. However, our experiments have shown that the results of the dominance

checks (line 9) are negative for the majority of cases, i.e., often yielding cost

O(log |S|) rather than O(log |S|+ |S|).

Figure 3.4 shows the paths explored by EXCT -SP for the graph GTsp

shown in Figure 3.3. The feasible path P1 = 〈s, t1, d〉 is found with cost 23
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and reward $3. Since the cost of the shortest path SP is 15, P1’s detour is

8. As the skyline set S is empty, P1 is added to S. Next, P2 = 〈s, t2, t3, d〉 is

found with cost 30 and reward $9, and is added to S. Then, path P3 = 〈s, t2, d〉

is found with cost 27 and reward $4 and it is also added to the skyline set.

Finally, P4 = 〈s, t3, d〉 is found and added to S, while P3 is discarded since it

is dominated by P4. Thus, the final skyline set returned is S = {P1, P2, P4}.

s

t1

t2 d

t2

t3

d

d

t3

d

3 9 19

12 18 10 14 4

4

$3, 2 $5, 3$4, 4

$5, 3

Figure 3.4: Paths explored by EXCT -SP for the GTsp shown in Figure 3.3.
The feasible paths from s to d are shown in bold.

Complexity Analysis (EXCT -SP ). In the worst case, EXCT -SP

generates all permutations of tasks. Considering the time for checking the dom-

inance of each generated path and for updating the skyline set, EXCT -SP ’s

complexity in the worst case is O(|T |!× (log |S|+ |S|)) = O(|T |!× |S|). How-

ever, we note that the number of tasks in a path is limited by the budget given

by the worker and, in practice, it is very unlikely that such budget is large

enough to include all tasks in the graph. Moreover, as discussed above, the

skyline set will not be updated for the majority of generated paths.

Theorem 7. The skyline set S found by EXCT -SP is the exact one.

Proof. We need to prove that S is complete, i.e., it includes all non-dominated

paths, and also correct, i.e., that no dominated path is part of S.
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First, by contradiction, let us assume that there is a feasible non-dominated

path Pi from s to d that is not part of S. Then there are two cases to be

analyzed:

1. Pi was found by EXCT -SP , but was discarded

This means that the condition on line 9 of Algorithm 8 was not satis-

fied. Therefore, Pi is dominated in S, which is a contradiction to the

assumption that Pi is a non-dominated path.

2. Pi was not found by EXCT -SP

In this case, for some task tj in Pi, the subpath Pi[s : tj] was not found.

Let tk be the task visited immediately before tj in Pi and let us assume

that the subpath Pi[s : tk] was found. When EXCT REC-SP was called

for Pi[s : tk], Pi[s : tj] was not found if one of the following conditions

was satisfied:

(a) TC(P tk,d
sp ) > remainingBudget (line 2)

Therefore, TC(P tk,d
sp ) > b − TC(Pi[s : tk]) −

∑

vl∈Pi[s:tk]
δ(vl) ×

π(vl) and, consequently, TC(Pi[s : tk]) +
∑

vl∈Pi[s:tk]
δ(vl)× π(vl) +

TC(P tk,d
sp ) > b. However, since Pi is feasible, we have that TC(Pi)+

∑

vl∈Pi
δ(vl)× π(vl) ≤ b. Furthermore, once Pi[s : tk] is a sub-path

of Pi, we also have that TC(Pi[s : tk]) + TC(P tk,d
sp ) ≤ TC(Pi) and

∑

vl∈Pi[s:tk]
δ(vl) × π(vl) ≤

∑

vl∈Pi
δ(vl) × π(vl). Thus,

TC(Pi[s : tk]) + TC(P tk,d
sp ) +

∑

vl∈Pi[s:tk]
δ(vl) × π(vl) ≤ b, which

is a contradiction.

(b) There is no edge e ∈ Esp from tk to tj representing the path

Pi[tk : tj].

This can happen in one of the following situations: (I) there is no

edge at all between tk and tj in Esp or (II) the edge connecting tk to
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tj in Esp represents a path P tk,tj different from Pi[tk : tj]. Condition

(I) is a contradiction since Pi is a feasible path, which means that

is possible to visit tj after tk within the budget and thus there is an

edge connecting these vertices in Esp. Regarding (II), since P
tk,tj is

the shortest path connecting tk and tj, TC(P tk,tj) < TC(Pi[tk : tj]).

This means that Pi[tk : tj] could be substituted with P tk,tj in Pi,

generating a new shorter path P s,d, which dominates Pi. This con-

tradicts the assumption that Pi is not dominated.

(c) tj has already been expanded when constructing Pi[s : tk]

Let tl be the task visited after the second time tj is visited in Pi (if

no tasks are visited after tj, tl = d). Since by assumption Pi is not

dominated, there is an edge e ∈ Esp connecting tk to tl whose travel

cost is equal to that of path Pi[tk : tl]. Therefore, unless there is

another non-dominated path Pm with the same reward and cost as

Pi (in this case Pm could substitute Pi in the skyline set), Pi can be

found by following edge e, which contradicts the assumption that

Pi is not found.

Next, we prove that no dominated path is part of S. By contradiction, sup-

pose that there is a dominated path Pd in S. Since as proved above all non-

dominated paths are part of S, Pd can not belong to S since it is dominated

by at least one path in S and all dominated paths are removed from S (line

11 of Algorithm 8). This is a contradiction to the assumption that Pd is part

of S.

Heuristic Solutions

Due to the hardness of the IRTS-SP problem, the exact approach does not

scale to large sized instances. Therefore, we developed a few heuristics that
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approximate the exact skyline, which are presented next.

k-NN Graph Heuristic. In order to avoid generating all possible permu-

tations of tasks, the k-NN Graph Heuristic (kGH-SP ) limits the number of

neighbors of each task ti in GTsp to a given k � |T |, leading to GT k
sp, which is

a smaller version of GTsp. More specifically, when building GT k
sp we only con-

nect a task ti to its k closest tasks, which, intuitively, have a greater chance of

leading to shorter paths. (We defer the discussion on what would be suitable

values for k to use to Section 3.5.)

In order to find the non-dominated paths in this reduced graph we follow

the same procedure as EXCT -SP , with the only difference being the graph

given as input to Algorithm 7, which in this case is GT k
sp (as opposed to GTsp).

Complexity Analysis (kGH-SP). In the worst case, the complexity

for building GT k
sp is the same as the one for building GTsp. With regard to

kGH-SP , when a path P is expanded, up to k new paths of size |P | + 1 are

created. Since initially one path is created for each feasible task in T , the total

number of paths generated in the worst case is O(|T | × k|T |). Let Sapp be the

skyline set computed by kGH-SP . Considering the cost for updating Sapp,

kGH-SP ’s time complexity in the worst case is O(|T | × k|T | × |Sapp|).

Minimum Detour Heuristic. The Minimum Detour Heuristic (MDH-SP )

greedily expands a path in G with its closest feasible task. The pseudo-code of

MDH-SP is shown in Algorithm 9. We first compute the fastest path from s

to all tasks ti ∈ T that could be completed within the given budget by calling

algorithm shortestPathToSet (line 2). Then, for each such ti, we compute the

fastest path P ti,d
sp to the destination by invoking shortestPath (explained next).

Next, MDH REC-SP (Algorithm 10) is invoked for P s,ti
sp , which is expanded
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until the budget is exceeded. Let v be last vertex of P . MDH REC-SP first

extends P with the fastest path from v to d, creating a new path Pu (line 5).

If Pu is not dominated, it is added to the set Sapp and any path dominated

by Pu is removed from Sapp (lines 6 to 9). Next, MDH-SP selects the closest

task u from v that is not in P and can be completed within the remaining

budget by invoking getClosestTask (Algorithm 11, explained next). If such

vertex exists, a new path Pu is created by expanding P with P v,u
sp (line 12)

and MDH REC-SP is recursively called for Pu (lines 12) and considering the

remaining budget, i.e., the budget after deducting the travel cost to u and the

time for completing u. If there is no task that can be completed after v, the

recursion stops. A path P is also not further expanded when TC(P v,d
sp ) > b

(line 2), meaning that the destination can not be reached within the given

budget b in G.

Algorithm 9: Minimum Detour Heuristic (MDH-SP )

Input: Graph G = (V,E), starting point s, destination d, set of tasks T
and budget b.

Output: Set Sapp of non-dominated paths, in terms of detour cost and
reward, from s to d with cost up to b.

1 Sapp ← ∅
2 Psp ← shortestPathToSet(s, d,G, T, b)
3 T ′ ← all tasks found in Psp
4 for each task ti in T ′ do

5 remainingBudget← b− TC(P s,ti
sp )− δ(ti)

6 P
ti,d
sp ← shortestPath(ti, d,G, remaningBudget)

7 P ← P
s,ti
sp

8 MDH REC−SP (G, remainingBudget, P,Sapp)
9 end

10 return Sapp

Complexity Analysis (MDH-SP). In the worst case, MDH-SP in-

vokes shortestPath up to |T | times. Therefore, the complexity of this phase is

O(|T | × CSP ), where CSP is the complexity of shortestPath (analyzed next).

Next, MDH REC-SP is called for each task ti ∈ T ′. For each such task,
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Algorithm 10: MDH REC-SP

Input: Graph G = (V,E), budget b, path to be expanded P and current
skyline set Sapp.

1 v ← last vertex of P

2 if TC(P v,d
sp ) > b then

3 return
4 end

5 Pu ← extend P with P
v,d
sp

6 if Pu is not dominated in Sapp then
7 Sapp.add(Pu)
8 remove any paths dominated by Pu from Sapp
9 end

10 P
v,u
sp ← getClosestTask(v,G, T \ P, b)

11 if u is not null then
12 Pu ← extend P with P

v,u
sp

13 remaningBudget← b− TC(P v,u
sp )− δ(u)

14 EXCT REC-SP (G, remaningBudget, Pu,Sapp)
15 end

MDH REC-SP is recursively called up to |T ′| times, therefore it is invoked

up to |T |2 times in total. In each call of MDH REC-SP , getClosestTask is

invoked once and the skyline set can also be updated. Thus, in the worst case,

the total cost of all calls toMDH REC-SP is O(|T |2×(CGCT+|Sapp|)), where

CGCT is the time complexity of getClosestTask (analyzed next). Therefore,

the total time complexity ofMDH-SP is O(|T |×CSP+|T |
2×(CGCT+|Sapp|)).

shortestPath finds the fastest path between two given vertices v and u in G

by performing an A* search. The network expansion is guided by the heuristic

h(P ) = de(l,u)
maxSpeed

, where P is a path whose last vertex is l. In other words,

the path with the smallest value of lb = TC(P v,l
sp )+

de(l,u)
maxSpeed

is expanded first.

Moreover, we also use the remaining budget as an upper bound to the cost of

the shortest path between v and u and, therefore, if the lower bound lb of a

path P exceeds such budget, P is pruned. For instance, when shortestPath

is invoked in Algorithm 9 (line 6), the remaining budget is the budget after

deducting the cost to reach ti from s and the time for completing ti.
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Complexity Analysis (shortestPath). In the worst case, shortestPath

has the same complexity as shortestPathToSet (Algorithm 6). However, in

practice, shortestPath tends to be much faster than shortestPathToSet since

the network expansion is guided towards a particular destination and it is able

to prune more paths.

In order to find the closest feasible task from a given vertex v we invoke

getClosestTask (Algorithm 11). It first finds a set of candidate tasks that

can possibly be completed after v within the budget (lines 2-6). Next, the

candidates are examined in increasing order of de(v,t)
maxSpeed

and the path Pclo to

the closest task is updated as closer tasks are found. If the current task t has

Algorithm 11: getClosestTask

Input: Vertex v, graph G = (V,E), set of candidate tasks T ′, and budget b.
Output: The closest feasible task ti ∈ T ′ from v that can be completed

within the budget b.
1 candidates← ∅
2 for ti ∈ T ′ do

3 if
de(v,ti)

maxSpeed
+ δ(ti) + TC(P ti,d

sp ) ≤ b then

4 candidates← candidates ∪ ti
5 end
6 end

7 if candidates = ∅ then
8 return null
9 end

10 sort candidates by de(v,ti)
maxSpeed

11 Pclo ← null
12 for i from 0 to |candidates| − 1 do
13 t← candidates[i]

14 if
de(v,t)

maxSpeed
< TC(Pclo) then

15 remaningBudget← b− δ(t)− TC(P t,d
sp )

16 P
v,t
sp ← shortestPath(v, t, G, remaningBudget)

17 if TC(P v,t
sp ) < TC(Pclo) then

18 Pclo ← P
v,t
sp

19 end
20 end
21 else
22 return Pclo

23 end
24 end
25 return Pclo
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a lower bound smaller than the cost to reach the closest task so far (line 14),

its actual travel cost is computed (line 16) by invoking shortestPath. If t is

closer to v than the current closest task, t becomes the closest task and Pclo

is updated (lines 17-19). On the other hand, if the current task t has a lower

bound greater than TC(Pclo) (line 21), then all the other unexamined tasks

also do, and thus Pclo is returned as the path to the closest task (line 22).

Complexity Analysis (getClosestTask). In the worst case,

getClosestTask invokes shortestPath |T ′| times. Therefore, in this case, its

complexity is equal to O(|T ′| × (|E|+ |V | × log|V |)).

Maximum Reward Heuristic. The Maximum Reward Heuristic (MRH-SP )

is similar to MDH-SP except that, instead of expanding a path P with the

closest task from it, it selects the feasible task with the highest reward among

the tasks that are not part of P .

Algorithm 12: getHighestRewardTask

Input: Vertex v, graph G = (V,E), set of candidate tasks T ′ and budget b.
Output: Task t ∈ T ′ with the highest reward that can be completed after

v within the budget b.
1 candidates← ∅
2 for ti ∈ T ′ do

3 if
de(v,ti)

maxSpeed
+ δ(ti) + TC(P ti,d

sp ) ≤ b then

4 candidates← candidates ∪ ti
5 end
6 end

7 if candidates = ∅ then
8 return null
9 end

10 sort candidates in decreasing order of ρ(ti)
11 for i from 0 to |candidates| − 1 do
12 t← candidates[i]

13 remaningBudget← b− δ(t)− TC(P t,d
sp )

14 P
v,t
sp ← shortestPath(v, t, G, remaningBudget)

15 if P
v,t
sp is not null then

16 return P
v,t
sp

17 end
18 end
19 return null
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MRH-SP follows the same procedure as MDH-SP , with the only differ-

ence being the line 8 of Algorithm 10, where the feasible task with the highest

reward should be selected (rather than the closest task). In order to find such

task, we invoke getHighestRewardTask (Algorithm 12). The set of candidate

tasks is selected as in getClosestTask (lines 1-6). Next, the candidates are

examined in decreasing order of reward (lines 7-8). The first task that can

be completed within the given budget is returned (lines 10-11). If there is no

feasible task, the algorithm returns null (line 19).

Complexity Analysis (MRH-SP). In the worst case,

getHighestRewardTask has the same complexity as getClosestTask and thus,

in this case, MRH-SP has the same time complexity as MDH-SP .

3.4.2 IRTS-PP

Exact Solution

IRTS-PP is fundamentally different from IRTS-SP due to the fact that trav-

eling from a task ti to a task tj through the path that yields the minimum

displacement detour w.r.t. PP does not guarantee optimality. For instance,

consider tasks t2 and t3 in Figure 3.1. The path between these tasks that

yields the minimum displacement detour w.r.t. PP is P t2,t3
pp = 〈t2, v3, v4, v5, t3〉,

with a total detour of 4 and cost of 14. P t2,t3
pp leads to the complete path

PP5 = 〈s, v2, v3, t2, v3, v4, v5, t3, v5, d〉 (discussed in Section 3.1), with cost equal

to 34, which is greater than the budget b = 32. Therefore, if we considered

P t2,t3
pp to be the only possible path between t2 and t3, no complete path con-

taining t2 and t3 would be part of the resulting skyline set. However, as shown

in Section 3.1, the shorter path PP2 = 〈s, v2, v3, t2, v1, t3, v5, d〉, with detour 21

and cost 30, does connect t2 to t3 and belongs to the exact skyline.
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As illustrated above, in order to guarantee optimality and find all feasible

and non-dominated paths, it is not sufficient to consider the path P
ti,tj
pp between

two tasks ti and tj that yields the minimum detour w.r.t. PP . We may also

need to explore shorter paths, even though they may yield a greater detour. In

fact, as we will prove shortly, the set of paths that may need to be explored is

limited to the set of non-dominated paths, in terms of travel cost and detour,

between two feasible tasks. To exemplify this, let us consider tasks t2 and t3

again. The shortest path P t2,t3
sp = 〈t2, v1, t3〉 connecting these tasks is non-

dominated and thus it may need to be considered. Another possibility is

path P t2,t3
i = 〈t2, v1, v4, v5, t3〉, with a displacement detour of 7 and cost 14.

However, P t2,t3
i has the same cost as P t2,t3

pp = 〈t2, v3, v4, v5, t3〉, but yields a

greater detour. Therefore, P t2,t3
i is an uninteresting path since it is dominated

by P t2,t3
pp , and thus it can be discarded. On the other hand, both paths P t2,t3

pp

and P t2,t3
sp are non-dominated, in terms of travel and displacement detour costs,

and may need to be considered further as possibly being part of a complete

path from s to d that belong to the exact skyline. As we will show next,

we may not need to compute all non-dominated paths between a given pair

of tasks. Therefore, in order to avoid computing unnecessary non-dominated

paths, we compute them on the fly, i.e., as needed.

Algorithm 13 shows the pseudo-code of the exact approach EXCT -PP .

We first compute the shortest paths from s to all tasks ti ∈ T that could

be completed within the given budget (line 1), and the paths that yield the

minimum detour w.r.t. PP from s to each such task (line 2). The first step

is performed by invoking algorithm shortestPathToSet (Algorithm 6), while

the second one is performed by invoking minDetourPathToSet. minDetour-

PathToSet is similar to shortestPathToSet except that paths are explored in

increasing order of displacement detour w.r.t. PP (rather than travel cost).
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Next, the same process is repeated for each feasible task ti ∈ T ′ (lines 4-8).

In order to exemplify the paths computed from lines 1-8, let us consider the

example shown in Figure 3.1. Table 3.2 shows the shortest paths from s and

each feasible task ti to every other feasible task tj and to the destination. Sim-

ilarly, Table 3.3 shows the corresponding paths yielding the minimum detour.

For instance, P t2,t3
sp has a cost of 10 and yields a displacement detour of 10,

while P t2,t3
pp has a cost of 14 and yields a detour of 4.

Algorithm 13: EXCT -PP

Input: Original graph G = (V,E), preferred path PP , set of tasks T , and
budget b.

Output: Set S of non-dominated paths w.r.t. TDPP (·, PP ) and R(·)
with cost up to b.

1 Ps
sp ← shortestPathToSet(s, d,G, T, b)

2 Ps
pp ← minDetourPathToSet(s, d,G, T, b, PP )

3 T ′ ← all tasks found in Psp
4 for each task ti in T ′ do

5 remainingBudget← b− TC(P s,ti
sp )− δ(ti)

6 Pti
sp ← shortestPathToSet(ti, d,G, T, remainingBudget)

7 Pti
pp ← minDetourPathToSet(ti, d,G, T, remainingBudget, PP )

8 end

9 S ← ∅
10 tree← 〈s〉
11 buildTree(tree, s, d, 〈s〉, 〈s〉, b,S)
12 expandTree(tree,G, d, b, 〈s〉,S)
13 return S

Table 3.2: Fastest paths.

from to cost detour

s t1 3 3

s t2 9 2

s t3 19 2

t1 t2 12 5

t1 d 18 18

t2 t3 10 10

t2 d 14 2

t3 d 4 2

Table 3.3: Paths yielding the minimum
detour w.r.t. PP .

from to cost detour

s t1 3 3

s t2 9 2

s t3 19 2

t1 t2 12 5

t1 d 22 3

t2 t3 14 4

t2 d 14 2

t3 d 4 2
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Subsequently, using the information described above, we build a tree con-

taining task sequences for which we will compute the corresponding non-

dominated paths, in terms of detour and travel costs. More specifically, these

sequences are the ones that can not be completed if one follows the path yield-

ing the minimum detour between each pair of tasks, but that can be completed

by following the corresponding shortest paths. Figures 3.5a and 3.5b illustrate

the task sequences that can be completed by following the paths shown in Ta-

ble 3.2 and Table 3.3, respectively. Note that the only path to d contained in

the tree on the left, but not contained in tree on the right is P = 〈s, t2, t3, d〉,

as illustrated in Figure 3.5c. Therefore, P can be completed by following the

shortest paths between each pair of tasks, but can not be completed if one fol-

lows the corresponding paths yielding the minimum detour. This means that

P needs to be further examined since there may be another path that visits

tasks t2 and t3, in this order, whose total cost does not exceed the budget, but

that yields a smaller detour than that of the shortest path that visits those

tasks.

s

t1

d

t2

t3

d

d

t3

d

(a) Paths that can be com-
pleted by following the short-
est path between each pair of
nodes.

s

t1

d

t2

d

t3

d

(b) Paths that can be com-
pleted by following the path
that yields the minimum de-
tour between each pair of
nodes.

s

t2

t3

d

(c) Path to
be further
examined.

Figure 3.5: Using the information from Tables 3.2 and 3.3 to build a tree
containing paths that need to be further examined.
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Figure 3.6 illustrates how the tree shown in Figure 3.5c is built. While

building such tree, we also compute paths that can potentially be part of the

skyline set S, as explained next. Initially, the tree has only one node, i.e.,

the starting point s (Figure 3.6a). Next, we consider all tasks ti that can be

reached from s within the given budget (as shown in Table 3.2). Let us first

consider task t1. Since the task sequence [t1] can be completed by following

the path P
[t1]
pp yielding the minimum detour between each pair of nodes, no

other path that visits [t1] needs to be explored as it is dominated by P
[t1]
pp . Due

to this reason, P = 〈s, t1, d〉 is not added to the tree. Moreover, since the task

sequence [t1] will not be further explored, we need to check whether P
[t1]
pp is

dominated by other paths in S. Since S is empty, P
[t1]
pp is added to S. Next, t1 is

added as a child of s for further expansion (Figure 3.6b). Then, the algorithm

is recursively called for the sub-tree rooted at t1. No tasks can be completed

after t1 within the given budget, thus t1 is removed from the tree because

no path visiting t1 first needs to be further explored. Next, we consider task

t2. The task sequence [t2] can also be completed by following the path P
[t2]
pp

yielding the minimum detour between each pair of nodes. Since P
[t2]
pp is not

dominated, it is added to S, while P [t1]
pp is removed. Next, t2 is added as a child

of s (Figure 3.6c) and the algorithm is recursively called for the sub-tree rooted

at t2. The task sequence [t2, t3] can be completed by following the shortest

path P
[t2,t3]
sp , but can not be completed if one follows the path P

[t2,t3]
pp yielding

the minimum detour between each pair of nodes. Therefore, P = 〈s, t2, t3, d〉

needs to be added to the tree for further examination (Figure 3.6d). The same

process is repeated for task t3, which is added to tree (Figure 3.6e), while

P
[t3]
pp is added to S, discarding P

[t2]
pp . Finally, the sequence [t3] is removed from

the tree since no path that visits t3 first needs to be further examined. The

resulting tree is shown in Figure 3.6f. Algorithm 14 shows the pseudo-code of
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buildTree and describes each step illustrated above in details.

s

(a)

s

t1

(b)

s

t2

(c)

s

t2

t3

d

(d)

s

t2

t3

d

t3

(e)

s

t2

t3

d

(f)

Figure 3.6: Illustration of the construction of a tree containing paths that need
to be further examined.

Complexity Analysis (buildTree). In the worst case, buildTree ex-

amines all permutations of the tasks in T . Considering the cost of updating

the skyline set, its total time complexity in the worst case is O(|T |!× |S|).

Lemma 3. buildTree finds all feasible non-dominated paths P , in terms of re-

ward and total detour, that can be completed by following the path that yields

the minimum detour between each consecutive pair of tasks in P . Moreover, it

also creates a path in the tree representing each task sequence that can not be

completed in such case, but can be completed by following the corresponding

shortest paths.

Proof. Let us first consider that P is a feasible non-dominated path in which

each sub-path between two consecutive tasks ti and tj is P
ti,tj
pp . By contradic-

tion, let us assume that P is not added to the skyline set S in buildTree. This

can happen in two cases:

1. P is found (line 5) but not added to S

In this case, the condition on line 6 is not satisfied. Therefore, P is domi-
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Algorithm 14: buildTree
Input: Tree tree, origin o, destination d, shortest path Psp from s to o by

following the task sequence to node tree, corresponding path Ppp

that yields the minimum detour, budget b and current skyline set
S.

1 for P
o,ti
sp ∈ Po

sp do

2 if TC(Psp) + TC(P o,ti
sp ) + δ(ti) + TC(P ti,d

sp ) ≤ b) then

3 if Ppp 6= null & Po
pp contains P

o,ti
pp then

4 if TC(Ppp) + TC(P o,ti
pp ) + δ(ti) + TC(P ti,d

pp ) ≤ b) then

5 Pd ← Ppp + P
o,ti
pp + P

ti,d
pp

6 if Pd is not dominated in S then
7 add Pd to S
8 remove any paths dominated by Pd from S
9 end

10 child← tree.addChild(ti)

11 buildTree(child, ti, Psp + P
o,ti
sp , Ppp + P

o,ti
pp ,S)

12 end
13 else
14 child← tree.addChild(ti)
15 child.addChild(d)

16 buildTree(child, ti, Psp + P
o,ti
sp , null,S)

17 end
18 end
19 else
20 child← tree.addChild(ti)
21 child.addChild(d)

22 buildTree(child, ti, Psp + P
o,ti
sp , null,S)

23 end
24 end
25 end
26 if tree is leaf then
27 tree.removeBranchRecursively()
28 end

nated in S, which contradicts the assumption that it is a non-dominated

path.

2. P is not found on line 5 by buildTree

This means that, for some task tj, the sub-path P [s : tj] was not built

by buildTree. Let ti be the task visited immediately before tj in P and

let us assume that the sub-path P [s : ti] was built by buildTree. When

buildTree was called for P [s : ti], P [s : tj] was not built if one of the

following conditions was satisfied:
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(a) TC(Psp[s : ti]) + TC(P
ti,tj
sp ) + δ(tj) + TC(P

tj ,d
sp ) > b (line 2).

Where Psp[s : ti] visits the same tasks as P from s to ti, but follows

the shortest path between each pair of tasks. Since TC(Psp[s : ti]) ≤

TC(P [s : ti]), TC(P
ti,tj
sp ) ≤ TC(P

ti,tj
pp ), and TC(P

tj ,d
sp ) ≤ TC(P

tj ,d
pp ),

then TC(P [s : ti]) + TC(P
ti,tj
pp ) + δ(tj) + TC(P

tj ,d
pp ) > b also holds.

Therefore, TC(P [s : tj]) + δ(tj) + TC(P
tj ,d
pp ) > b. As P [s : tj] is a

sub-path of P and TC(P ) ≤ b, this inequality is a contradiction to

the assumption that P is feasible.

(b) TC(Ppp[s : ti]) + TC(P
ti,tj
pp ) + δ(ti) + TC(P

tj ,d
pp ) > b (line 4).

As explained above, this is a contradiction to the fact that P is a

feasible path in which each sub-path between two consecutive tasks

ti and tj is P
ti,tj
pp .

Now, let us consider that P is a path in which each sub-path between two

consecutive tasks ti and tj is P
ti,tj
pp , but P is not feasible. Moreover, let us

assume that the task sequence ts visited by P can be completed by following

the corresponding shortest path P ts
sp for ts. Therefore, buildTree must create

a path in the tree representing ts. By contradiction, let us assume that ts is

not created in tree. Let ti and tj be two consecutive tasks in P ts
sp visited before

the last visited task tl. Let us further assume that buildTree is invoked for ti

(when ti is the origin o), but it is not invoked for tj. This means that none of

the lines 11, 16 or 22 was reached for tj, which in turn can happen in one of

the following cases:

1. TC(P ts
sp[s : ti]) + TC(P

ti,tj
sp ) + δ(tj) + TC(P

tj ,d
sp ) > b (line 2).

In this case, none of the lines above can be reached. However, this

inequality is a contradiction to the fact that P ts
sp is a feasible path.

2. The condition on line 3 is satisfied and thus line 22 is not reached
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Therefore, P ts
pp[s : ti] 6= null and P ti

pp contains P
ti,tj
pp . Whether the condi-

tion on line 4 is satisfied or not, tj is added as a child of ti (lines 10 and

14) and buildTree is recursively called for tj (lines 11 and 16), which is

a contradiction to the assumption that buildTree is not invoked for tj.

3. The condition on line 3 is not satisfied and thus lines 10 and 14 are not

reached

However, in this case, line 22 is reached. tj is added as a child of ti and

buildTree is recursively called tor tj.

Now, let us assume that tj is the task visited immediately before the last

visited task tl in P ts
sp. When buildTree is called for tj, tl must be added as

a child of tj and d must be added as a child tl, otherwise there will be no

complete path from s to d in tree that visits the task sequence in P ts
sp. The

only case in which d will not be added as a child of tl is when the condition

on line 4 is satisfied. However, this is a contradiction to the assumption that

P is not feasible.

Finally, let us consider the case where the task sequence in P ts
sp. i.e., ts, is

added to tree, but is then discarded (lines 26-28). This means that for some

task ti in ts, its sub-tree is null. However, as shown above, if ti is not the last

task in ts, there will be an edge in the tree connecting ti to next task tj in ts.

Similarly, if ti is the last task in ts, there will be an edge connecting ti to d.

Therefore, in none of the cases above ti is a leaf.

Once the tree is built, the remaining non-dominated paths, in terms of

detour and reward, are computed by invoking expandTree. expandTree fol-

lows a similar procedure as EXCT REC-SP (Algorithm 8), except that it

expands a tree, as opposed to a graph. Algorithm 15 shows the pseudo-code

of expandTree, which recursively expands a given path P until the budget
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is exceeded. Initially P contains only the starting point s (line 9 of Algo-

rithm 13). In each call of expandTree, we analyze the feasible paths that can

be obtained by expanding P following the task sequences in tree. We first

check whether the destination can be reached within the remaining budget

from the last vertex v of P (line 2). If not, P is not further expanded and the

recursion stops. Otherwise, we consider the edges that connect v to any other

node u in the tree (line 5). For each such u, we examine all non-dominated

paths, in terms of travel and detour costs, from v to u (line 6). For each non-

dominated path P i
nd, we check whether its travel cost exceed the remaining

budget (line 8). If so, P i
nd is not further examined. Otherwise, we create a new

path Pu by extending P with the path P i
nd. If the current child u of v is the

destination d (line 12) and Pu is not dominated (line 13), Pu is added to S and

any path dominated by it is removed from S (lines 14-15). We note that Pu is

not further expanded since it is a path to the destination. On the other hand,

if u is a task (line 18), expandTree is recursively called for Pu and considering

the remaining budget remainingBudget = b−TC(P i
nd)−δ(u), i.e., the budget

after deducting the cost to reach u through P i
nd and to complete u.

For the tree illustrated in Figure 3.6f, expandTree will examine the paths

shown in Figure 3.7. The only feasible path, shown in bold, is P = 〈s, t2, t
′
3, d〉

with reward $9 and detour 21. Since it is not dominated in the current skyline

set S, it is added to S, which now contains all non-dominated paths.

Complexity Analysis. In the worst case, expandTree generates all

possible permutations of the tasks in T . However, expandTree may explore

more than one path for each such permutation, since it considers a set of non-

dominated paths connecting two nodes. LetmaxND be the maximum number

of non-dominated paths between any two vertices. The maximum number of
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Algorithm 15: expandTree

Input: Tree to be expanded tree, graph G = (V,E), final destination d,
budget b, path to be expanded P and current skyline set S.

1 v ← last vertex of P

2 if TC(P v,d
sp ) > b then

3 return
4 end
5 for each child u of tree do
6 Pnd ← nonDominatedPaths(v, u,G, PP )
7 for P i

nd in Pnd do

8 if TC(P i
nd) > b then

9 continue
10 end

11 Pu ← extend P with P i
nd

12 if u = d then
13 if Pu is not dominated in S then
14 S.add(Pu)
15 remove any paths dominated by Pu from S
16 end
17 end
18 else

19 remainingBudget← b− TC(P i
nd)− δ(u)

20 expandTree(tree,G, d, remainingBudget, Pu,S)
21 end
22 end
23 end

paths generated by expandTree is given by
∑|T |−2

k=0
(|T |−2)!

k!
×maxND(|T |−k−1) =

O(|T |!×maxND|T |). For each generated path, the skyline set can be updated

once, which has a time complexity of O(|S|). Additionaly, in the worst case, we

have to compute the non-dominated paths between each pair of tasks. Since

there are at most |T |2 such pairs, the total complexity of such computation is

O(|T |2 × CNDP ), where CNDP is the time complexity of nonDominatedPaths

(discussed next).

Lemma 4. expandTree finds all remaining feasible non-dominated paths, in

terms of reward and total detour, that are not found by buildTree.

Proof. Let us consider that P is a feasible non-dominated not found by buildTree.

By contradiction, let us assume that P is also not found by expandTree. There

are two cases to be analyzed:
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2, 9
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2,4

$4, 4

$5, 3$5, 3

Figure 3.7: Paths explored by expandTree for the tree shown in Figure 3.6f.
The feasible paths from s to d are shown in bold.

1. P was built by expandTree, but was discarded

This means that the condition on line 13 of Algorithm 15 was not sat-

isfied. Therefore, P is dominated in S, which is a contradiction to the

assumption that P is non-dominated.

2. P was not built by expandTree

In this case, for some task tj in P , the sub-path P [s : tj] was not built

by expandTree. Let ti be the task visited immediately before tj in P

and let us assume that the sub-path P [s : ti] was built by expandTree.

When expandTree was called for P [s : ti], P [s : tj] was not built if one

of the following conditions was satisfied:

(a) There is no edge connecting ti to tj in tree.

Since P is feasible and was not added to the skyline set S in

expandTree, then there is a path in tree representing the task se-

quence visited by P , as proved in Lemma 3. As ti and tj are visited

in sequence in P , there must be an edge connecting ti and tj in tree,

which is a contradiction to the assumption that such edge does not

exist.

(b) There is no path in P
ti,tj
nd representing the path connecting ti to tj
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in P .

Since all paths in P
ti,tj
nd are non-dominated, in terms of detour and

travel costs, the path P [ti : tj] connecting ti to tj in P is dominated.

This means that there is another path P ti,tj from ti to tj that dom-

inates P [ti : tj]. Thus, by substituting P [ti : tj] with P ti,tj in P we

can obtain a feasible path Pnd which has smaller travel and detour

costs than P and has the same reward, since both paths visit the

same set of tasks. Therefore, P is dominated by Pnd, which is a

contradiction to the assumption that P is a non-dominated path.

In order to compute the required non-dominated paths, in terms of travel

and detour costs, between a pair of nodes within Algorithm 15, Algorithm 16

(nonDominatedPaths) is invoked. If the non-dominated paths between the

given origin o and target t have already be computed, they do not need to

be computed again and the previously computed result is returned (lines 1-2).

Otherwise, if P o,t
sp = P o,t

pp , no further paths need to be computed since any path

between o and t is dominated by P o,t
sp and P o,t

pp , and thus it sufficient to return

P o,t
sp (or P o,t

pp ). If none of the conditions above is satisfied, the corresponding

non-dominated paths are computed. The detour cost of the shortest path P o,t
sp

between the origin o and the target t is used as an upper bound maxDetour

(line 10) to the detour cost of any non-dominated path from o to t. Similarly,

the travel cost of P o,t
pp is used as an upper bound maxCost (line 11) to the

travel cost of any non-dominated path from o to t. Note that any path from o

to t that yields a greater detour than maxDetour or a greater travel cost than

maxCost is dominated by P o,t
sp or P o,t

pp , respectively, thus it can be discarded.

The algorithm maintains a queue Q which stores paths that are dequeued in

increasing order of displacement detour cost w.r.t. PP . At each step, a path
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P is dequeued from Q. If the last vertex v of P has already been found with

smaller cost (line 20), meaning that there is a path Pj from o to v with smaller

cost and detour than P , then P can be discarded. Note that P is dominated

by Pj and it can be safely pruned since, as proved in [43], a sub-path of a

non-dominated path is also a non-dominated path. Therefore, expanding P

does not lead to a non-dominated path from o to t. On the other hand, if

P is a path to t and is non-dominated (lines 26-27), P is added to the set of

feasible non-dominated paths Po,t
nd and all paths dominated by P are removed

from Po,t
nd (lines 28-29). Moreover, in this case, maxCost can also be updated

(line 30) since all subsequent paths must have a smaller travel cost than that

of P in order to be non-dominated. If none of the conditions above applies to

P , it is expanded with each neighbor u of v in E, creating a new path Pu. If

the estimated cost to the destination lb = TC(Pu) +
de(u,d)

maxSpeed
is not greater

than the maximum cost maxCost, Pu is added to Q (line 40). The algorithm

stops when Q is empty (line 14) or when the detour yielded by a dequeued

path P is greater than maxDetour (lines 16-17).

Complexity Analysis (nonDominatedPaths). nonDominatedPaths per-

forms a network expansion similar to the one in shortestPathToSet, except that

each vertex may be inserted into Q and expanded more than once in nonDom-

inatedPaths. In the worst case, nonDominatedPaths finds all simple paths

connecting o and t in G. In a complete graph, a vertex v can be expanded up

to
∑|V |−3

k=0
(|V |−3)!

k!
= e(|V | − 3)! times, i.e., considering all permutations of any

number of vertices. Therefore, taking into account the queue operations, the

complexity in the worst case is O(|V |!×(|E|+|V |×log |V |)). However, we note

that road networks are sparse graphs and therefore the algorithm is expected

to perform much better in practice. Moreover, the detour and travel costs of a
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Algorithm 16: nonDominatedPaths

Input: Origin o, target t, graph G = (V,E) and preferred path PP .

Output: Set Po,t
nd of feasible non-dominated paths, in terms of travel cost

and detour, from o to t.
1 if Po,t

nd has been previously computed then

2 return Po,t
nd

3 end

4 Po,t
nd ← ∅

5 if P
o,t
sp = P

o,t
pp then

6 Po,t
nd ← P

o,t
nd ∪ P

o,t
sp

7 return Po,t
nd

8 end

9 maxDetour ← DDPP (P o,t
sp , PP )

10 maxCost← TC(P o,t
pp )

11 Q, foundCost← ∅
12 Q.add(〈o〉)
13 foundCost.put(o, 0)
14 while Q 6= ∅ do
15 P ← Q.dequeue()
16 if DDPP (P, PP ) > maxDetour then
17 return S
18 end
19 v ← last vertex of P
20 if v has already been found with smaller cost than TC(P ) then
21 continue
22 end
23 else
24 foundCost.put(v, TC(P ))
25 end
26 if v = t then
27 if P is non-dominated then

28 Po,t
nd .add(P )

29 remove any paths dominated by P from S
30 maxCost← TC(P )
31 end
32 continue
33 end
34 for each u neighbor of v in E do
35 Pu ← extend P with u

36 lb← TC(Pu) +
de(u,d)

maxSpeed

37 if lb > maxCost then
38 continue
39 end

40 Q.add(Pu)
41 end
42 end

43 return Po,t
nd
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path from o to t are limited by maxDetour and maxCost, respectively, which

means that it is very unlikely that all simple paths from o to t will be explored

by nonDominatedPaths.

Lemma 5. The algorithm nonDominatedPaths finds all feasible non-dominated

paths, in terms of travel and detour costs, from a given origin o to a target t.

Proof. By contradiction, let us assume that there is a feasible non-dominated

path Pi from o to t that is not found by nonDominatedPaths.

Let us first consider the simple case where P o,t
sp = P o,t

pp (line 5). Since Pi is

not found, then Pi 6= P o,t
sp . Pi is not dominated by P o,t

sp if DDPP (Pi, PP ) <

DDPP (P o,t
sp , PP ). However, since by assumption P o,t

sp = P o,t
pp , then P o,t

sp yields

the same detour as P o,t
pp , which is the minimum possible. Therefore,

DDPP (Pi, PP ) < DDPP (P o,t
sp , PP ) does not hold. Similarly, Pi is not dom-

inated by P o,t
pp if TC(Pi) < TC(P o,t

pp ), which is not possible since P o,t
pp = P o,t

sp .

Therefore, both cases contradict the assumption that Pi is non-dominated.

Now, let us assume that P o,t
sp = P o,t

pp does not hold. Let us analyze the

possible cases:

1. Pi was added to Q

(a) Pi was not dequeued

In this case Q is not empty, but the algorithm terminated before

Pi could be dequeued. This means that for some dequeued path

P , the algorithm reached line 16, meaning that DDPP (P, PP ) >

maxDetour. Since the paths are examined in increasing order of

detour, DDPP (Pi, PP ) > DDPP (P, PP ) > maxDetour. There-

fore, Pi is dominated by the shortest path P o,t
sp , which contradicts

the assumption that Pi is a non-dominated path.
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(b) Pi was dequeued

Therefore, when Pi was dequeued from Q one of the following con-

ditions was satisfied: (a) DDPP (Pi, PP ) > maxDetour or (b)

t was already found with smaller cost. Condition (a) is a con-

tradiction to the assumption that Pi is non-dominated and thus

DDPP (Pi, PP ) ≤ maxDetour. If condition (b) is satisfied, then

there is a path Pj from o to t which is shorter than Pi and yields

a smaller detour, since it was dequeued before. Therefore, Pi is

dominated by Pj, which contradicts the assumption that it is a

non-dominated path.

2. Pi was not added to Q

This means that for some vertex u in Pi, the sub-path Pi[o : u] was not

added to Q. Let v be the vertex visited immediately before u in Pi and

let us assume that the sub-path Pi[o : v] is dequeued from Q. Pi[o : u] is

discarded in one of the following cases:

(a) v was previously found with a smaller cost than that of Pi[o : v]

and thus Pi[o : v] was not expanded.

This means that there is another path from o to v with smaller cost

and detour than Pi[o : v]. Therefore, Pi[o : v] is dominated and,

consequently, Pi is also dominated, which contradicts the assump-

tion that Pi is a non-dominated path.

(b) Pi[o : v] was expanded, but lb = TC(Pi[o : u]) + de(u,d)
maxSpeed

>

maxCost.

Then there is a path Pj, such that TC(Pj) = maxCost, which

was found before Pi[o : u]. Since paths are examined in increas-

ing order of detour, then DDPP (Pi[o : u], PP ) > DDPP (Pj, PP ).
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As de(u,d)
maxSpeed

is a lower bound to TC(P u,d
sp ), then TC(Pi[o : u]) +

TC(P u,d
sp ) > maxCost also holds. This means that TC(Pi) >

maxCost and, thus, Pi is dominated by Pj, which is a contradiction

to the assumption that Pi is a non-dominated path.

Now that all algorithms used within EXCT -PP have been presented, we

analyze its total time complexity and prove that the skyline set returned by

it is the exact one.

Complexity Analysis (EXCT -PP ). In the first phase of the

EXCT -PP algorithm, shortestPathToSet andminDetourPathToSet are in-

voked up to |T | + 1 times each. Each of such calls has a time complexity of

O(|E|+ |V |× log |V |) in the worst case. Therefore, the total complexity of this

phase is O(|T |×(|E|+ |V |× log |V |)). As discussed above, the time complexity

of buildTree and expandTree are O(|T |!×|S|) and O(|T |!×maxND|T |×|S|+

|T |2×CNDP ), respectively. SinceO(|T |×(|E|+|V |×log |V |)) = O(|T |2×CNDP )

and O(|T |! × |S|) = O(|T |! ×maxND|T | × |S|), the total time complexity of

EXCT -PP is O(|T |!×maxND|T | × |S|+ |T |2 × CNDP ) in the worst case.

Theorem 8. The skyline set S found by EXCT -PP is the exact one.

Proof. We need to prove that the set S returned by EXCT -PP includes all

non-dominated paths, i.e., it is complete, and also that no dominated path is

part of S, i.e., it is correct.

By contradiction, let us first assume that there is a feasible non-dominated

path P from s to d not in S. This means that P is not found by buildTree

nor by expandTree. However, as proved in Lemma 3, if P is a path in which

each sub-path between two consecutive tasks ti and tj is P
ti,tj
pp , then P is found
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by expandTree. If this is not the case, P is found by expandTree, as proved

in Lemma 4, since it is feasible and non-dominated. This contradicts the

assumption that P is not found.

Next, we prove that no dominated path is part of S. By contradiction,

suppose that there is a dominated path Pd in S. Since as proved above all

non-dominated paths are part of S, Pd can not belong to S since it is dominated

by at least one path in S and all dominated paths are removed from S. This

is a contradiction to the assumption that Pd is part of S.

Heuristic Solutions

Due to the hardness of the IRTS-PP problem, the exact approach does not

scale to large sized instances. Therefore, we developed a few heuristics that

approximate the exact skyline by prioritizing the path that yields the minimum

detour between tasks. Based on that, we first propose a Detour Oriented

heuristic (DOH). Next, we show how variants of the kGH-SP , MDH-SP

and MRH-SP heuristics, presented in Section 23, can be used for finding

approximate skylines for the IRTS-PP problem.

Detour Oriented Heuristic (DOH). The Detour Oriented Heuristic (DOH)

is based on a graph of tasks GTpp = (Vpp, Epp) similar to GTsp, but where each

edge (in Epp) connecting two vertices v and u represents the path between v

and u that yields the minimum detour w.r.t. PP . Besides containing s and d,

Vpp includes the set of feasible tasks from T that can be completed considering

that one travels between two locations along the path that yields the minimum

detour w.r.t. PP .

In order to build GTpp we follow a procedure similar to one for building

GTsp (Algorithm 5), except that instead of invoking shortestPathToSet on
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lines 3 and 11, we call minDetourPathToSet (also used in EXCT -PP ). As

discussed above, minDetourPathToSet finds the paths yielding the minimum

detour from a given vertex v ∈ V to a set of target vertices. In the context

of GTpp’s construction, it is first used for finding the tasks ti ∈ T that can be

completed with cost up to b by following the path P s,ti
pp from s to ti. Next,

it is used for finding all feasible tasks tj that can be reached from a feasible

task ti with cost up to the remaining budget b−TC(P s,ti
pp )− δ(ti) by following

the path P
ti,tj
pp . The graph obtained for the example shown in Figure 3.1 is

illustrated in Figure 3.8a. We note that, in the worst case, the time complexity

for building GTpp is the same as the one for building GTsp.

DOH finds all feasible paths in GTpp and stores the non-dominated ones

in the approximate skyline set Sapp. Paths are expanded from s and pruned if

their travel cost exceeds the given budget. In fact, in order to find Sapp, DOH

follows the same procedure described in the EXCT -SP algorithm, except that

the graph given as input to Algorithm 7 is GTpp (rather than GTsp), and the

recursion stops when TC(P v,d
pp ) > b (line 2 of Algorithm 8), i.e., when the

destination d cannot be reached within the given budget by traveling along

the path from v (last vertex of P ) to d that yields the minimum detour w.r.t.

PP .

Figure 3.8b shows the paths explored by DOH for the graph GTpp shown in

Figure 3.8a. DOH first finds the feasible path P1 = 〈s, t1, d〉 with detour 8 and

reward $3. Since P1 is not dominated, it is added to the approximate skyline

set Sapp. Next, path P2 = 〈s, t2, d〉 is found with detour 8 and reward $4. Since

its reward is greater than that of P1 and both paths yield the same detour, P2

is added to Sapp and P1 is removed (as it is now dominated by P2). Then, path

P3 = 〈s, t3, d〉 is found with detour 7 and reward $5. Since it dominates P2, it

is added to Sapp and P2 is discarded. We note that DOH does not produce
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exact results. In this example, it does not find path P = 〈s, t2, t3, d〉, which is

part of the exact skyline. The travel cost of P in GTpp is equal to 34, which

exceeds the budget b = 32, meanwhile it would be possible to find a path

including t2 and t3 in the original graph G that does not exceed the budget.

s

t1

$3, 2

t2
$4, 4

t3

$5, 3

d

3,3 2,9
2,19

3,22
2,14

2,4

5,12

4,14

(a) Graph GTpp built for the ex-
ample shown in Figure 3.1. The
values on each edge represent the
corresponding detour and travel
costs, respectively.

s

t1

t2 d

t2

t3 d

t3

d

3, 3 2, 9
2, 19

5, 12 3, 22
4, 14 2, 14 2,4

$3, 2 $5, 3$4, 4

(b) Paths explored by DOH for the graph
GTpp shown in Figure 3.8a. The feasible
paths from s to d are shown in bold.

Figure 3.8: Graph GTpp built for the example shown in Figure 3.1 and paths
explored by DOH for such graph.

Complexity Analysis (DOH). In the worst case, DOH generates all

possible permutations of tasks of size 1 to |T | if each task is connected to

every other task in GTpp. Therefore, its complexity in this case is similar to

EXCT -SP ’s.

kGH-PP, MDH-PP andMRH-PP. We also use variants of the kGH-SP ,

MDH-SP and MRH-SP approaches, presented in Section 23, as heuris-

tics for finding approximate skylines for the IRTS-PP problem. These vari-

ants, denoted kGH-PP , MDH-PP and MRH-PP are similar to kGH-SP ,

MDH-SP and MRH-SP , respectively, except that they consider that the

path taken between two tasks ti and tj is P
ti,tj
pp , rather than P

ti,tj
sp .

More specifically, in kGH-PP the corresponding graph GT k
pp is built by
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connecting each task ti to its k closest tasks in terms of detour, which, intu-

itively, have a greater chance of leading to paths with shorter deviation from

the preferred path PP . In order to find the non-dominated paths in this re-

duced graph, we follow the same procedure as DOH, with the only difference

being the graph given as input to Algorithm 7, which in this case is GT k
pp (as

opposed to GTpp). We note that kGH-PP has the same time complexity as

kGH-SP in the worst case.

In MDH-PP , each path P is expanded with the feasible task that yields

the minimum displacement detour. MDH-PP is similar to MDH-SP (Algo-

rtihm 9) except that the path taken between two tasks ti and tj is P
ti,tj
pp , as

opposed to P
ti,tj
sp . Such paths are computed by invokingminDetourPathToSet

whenever shortestPathToSet and shortestPath are called within Algortihm 9.

Moreover, the vertex u selected on line 8 of Algorithm 10 is the one such

that DDPP (P v,u
pp , PP ) is minimized. We note that in order to find u, it is

not possible to follow the same procedure as getClosestTask (Algorithm 11).

More specifically, de(v,ti)
maxSpeed

is not a lower bound to DDPP (P v,ti
pp , PP ). There-

fore, de(v,ti)
maxSpeed

can not be used for finding promising candidates, as we do in

getClosestTask. Thus, we follow a procedure similar tominDetourPathToSet,

i.e., we examine paths in G in increasing order of displacement detour w.r.t.

PP . The network expansion stops when the first task ti that can be com-

pleted within the remaining budget is found. ti is then returned and used

for expanding the current path P within Algorithm 10. In the worst case,

minDetourPathToSet is invoked by MDH-PP up to |T |+ |T |2 times, there-

fore, in this case, the time complexity of MDH-PP is O(|T |2 × (|E| + |V | ×

log |V |)).

Finally, as in MRH-SP , MRH-PP also selects the feasible task ti with

the highest reward when expanding a path P . However, the travel cost from
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the last vertex v of P to ti is given by the cost of path P v,ti
pp . MRH-PP

follows the same procedure as MRH-SP and both algorithms have the same

time complexity in the worst case.

3.5 Experiments

We evaluated the performance of our approaches, as well as the accuracy of

the approximation algorithms, varying several parameters and using real road

networks. The real datasets used in our experiments reflect the road networks

of Amsterdam (AMS), Oslo (OSLO) and Berlin (BER), as of March/2017 [3].

In order to have a somewhat realistic set of task locations we use the location

of eateries (restaurants and coffee shops) on those networks as locations of

(pseudo) tasks. Table 3.4 summarizes the details of the datasets used in our

experiments and Figure 3.9 illustrates the used road networks and the location

of tasks onto them. The travel time of each edge (v, u) ∈ E is computed

as the Euclidean distance de(v, u) divided by an average speed of 40 km/h.

It is worth emphasizing that, although this is a simplistic assumption, the

approaches proposed in this chapter work for any graph where the travel time

of each edge is a function of its length.

Amsterdam Oslo Berlin

#vertices 106,599 305,174 428,768
#edges 130,090 330,632 504,228
#tasks 824 958 3,083

Table 3.4: Summary of the real datasets used in our experiments (bold defines
default values).

Table 3.5 shows the parameters varied in our experiments, besides the real

datasets. The preferred path’s cost ranges from 15 min to 60 min. We consider

that the shortest path between two locations is selected as the traveler’s pre-
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(a) Amsterdam (b) Oslo (c) Berlin

Figure 3.9: Locations of tasks in Amsterdam, Oslo and Berlin (overlaid on
those cities’ road networks).

ferred path. The worker’s starting point s is randomly selected among all the

vertices of the network. Then, we perform a Dijkstra search to select the desti-

nation d. More specifically, the network is expanded from s and, as soon as the

distance from s to a vertex v removed from the queue exceeds the given travel

time, the expansion stops and v becomes the destination. It is important to

stress that selecting the preferred path as the shortest path connecting s and

d is not a requirement, in fact any path could be used, we resorted to using

shortest paths only for simplicity. While by doing that we do have SP = PP ,

it is also important to note that what differentiates IRTS-SP from IRTS-PP

is not the initial path itself but the notion of detour cost (TDSP (·, SP ) and

TDPP (·, PP ), respectively).

Parameter Range

Cost of the preferred path/shortest path [min] 15, 30, 60
Time budget (in addition to TC(PP ) or TC(SP )) [min] 30, 60, 90
Number of available tasks (|T |) 10, 20, 40, 80
Average task completion time (δ(ti)) 5, 15, 30

Table 3.5: Experimental parameters and their values (bold denotes default
values).

We also assume that the worker has a time budget between 30 min to

90 min besides TC(SP ) or TC(PP ), depending on the IRTS variant being

considered. Inspired by the experiments in [18], we also varied the number of
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tasks |T |, available to the worker, between 10 and 80 tasks selected (randomly

and off-line) among all tasks that can actually be completed within the given

budget. (We note that for all cases evaluated in this chapter there are at least

|T | feasible tasks.) We also varied the average time it takes for completing a

task from 5 to 30 min by following a normal distribution where the average

time for completion is the distribution’s mean. Finally, we assume the rewards

paid out to workers to be proportional to the time it takes for completing the

corresponding task. Nonetheless, there is nothing in the approaches presented

that would prevent one from using an arbitrary reward scheme.

For each set of experiments, we vary the value of one parameter, and fix

the other parameters to their default values. Moreover, we ran 50 cases and

report the average of the results. The experiments were performed in a virtual

machine with Intel(R) Xeon(R) CPU E5-2650 (8 cores @ 2.30GHz) and 16GB

RAM, running Ubuntu.

For each variant of the IRTS problem, we first report the processing time of

all proposed approaches and the relative error [55] of the approximate skylines,

found by the heuristic approaches, w.r.t. the corresponding exact skylines. In

order to illustrate how this relative error is measured, consider Figure 3.10,

which represents the exact and approximate skylines found by the EXCT -PP

and DOH approaches, respectively, for the example in Figure 3.1 and consid-

ering the IRTS-PP variant. The area delimited by the line in bold represents

the area dominated by the exact skyline. Since DOH does not find path PP2,

the skyline set found by it only covers the area delimited by the red dashed

line. Therefore, the colored area represents the area that is dominated by the

exact skyline, but is not dominated by the approximate one. The relative error

measures how large such area is w.r.t. the area dominated by the exact sky-

line. More formally, let ASEXCT
be the area dominated by the exact skyline,
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and, similarly, let ASAPP
be the area dominated by the approximate skyline.

The normalized relative error is given by:

error =
ASEXCT

− ASAPP

ASEXCT

Figure 3.10: Relative error of an approximate skyline w.r.t. the corresponding
exact skyline.

As we shall see in the following, the relative error of our approaches was

never above 25%, in fact the majority of the time it was below 10%, thus all

figures reporting that measure are scaled between 0 and 25% (rather than the

usual 0-100%), in order to offer a more detailed view of its behavior.

In order to further inform the comparison of the quality of the heuristic ap-

proaches w.r.t the exact one, we also evaluated their recall, i.e., the percentage

of non-dominated solutions (the skyline set) found by them, as well as their

precision, i.e., percentage of non-dominated solutions in their result sets. We

note that a low relative error does not necessarily mean a high precision and

recall, since many points in the approximate skyline can be very close but yet

distinct from the ones in the exact skyline, and thus the precision and recall

obtained could be low.

Before presenting all results, recall that the kGH approach has k as an

input parameter. In order to determine which value to use we ran preliminary

experiments using different values of k ∈ {1, 2, 5, 10}. We observed that k = 5
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offers a good trade-off between processing time and quality of the results.

Given those results, we decided to use k = 5 in all experiments that follow.

3.5.1 IRTS-SP

Effect of the road network

As shown in Figure 3.11a, EXCT -SP and kGH-SP are slower for the BER

network. Such network is larger than the other ones, in terms of number of

vertices and edges, which implies that it takes longer to compute the many

shortest paths required by those approaches. On the other hand, MDH-SP

and MRH-SP are slightly slower for the OSLO network. This is due to the

fact that there is a higher concentration of tasks around the same area in

such network (see Figure 3.9b). MDH-SP finds the closest task from a path

by examining tasks in increasing order of Euclidean distance (divided by the

maximum speed). Since tasks are more concentrated, the Euclidean distance

to them will tend to be very similar, requiring MDH-SP to compute more

shortest paths in order to find the actual closest task in terms of travel time.

On the other hand, MRH-SP selects the task with the highest reward when

expanding a path. Since tasks are closer to each other in the OSLO network,

there is a higher chance that the selected task will also be close to the path

and thus the remaining budget will tend to be larger. This, in turn, implies

that more tasks can be visited in sequence, requiring more shortest paths to

be computed.

Figure 3.11b shows that all heuristics present very low relative error, i.e.,

within 12%, when the network is varied. MRH-SP produces worse results

than the other approaches. This is because it finds a smaller set of solutions

(paths) than the other approaches. This implies that the area dominated

by the skyline produced by MRH-SP will tend to be smaller if compared

112



 1

 10

AMS OSLO BER

ti
m

e 
[s

]

network

EXCT-SP
kGH-SP

MDH-SP
MRH-SP

(a) time

 0

 5

 10

 15

 20

 25

AMS OSLO BER

er
ro

r 
[%

]

network

kGH-SP
MDH-SP

MRH-SP

(b) relative error

 0

 20

 40

 60

 80

 100

AMS OSLO BER

p
re

ci
si

o
n
 [
%

]

network

kGH-SP
MDH-SP

MRH-SP

(c) precision

 0

 20

 40

 60

 80

 100

AMS OSLO BER

re
ca

ll
 [
%

]
network

kGH-SP
MDH-SP

MRH-SP

(d) recall

Figure 3.11: Processing time, relative error, precision and recall for IRTS-SP
w.r.t. the network.

to the result produced by the other approaches. We note that this behavior

will be observed repeatedly in other experiments. Moreover, the relative error

of MRH-SP is slightly higher for the BER network. This approach selects

tasks based only on their reward. If the selected task does not lead to a path

belonging to the exact skyline, the created path Pd will be dominated by a path

Pnd. Since the tasks are more scattered in the BER network, the difference

between the travel time of Pnd and of Pd will tend to be large, thus increasing

the difference between the areas dominated by the exact skyline and the one

produced by MRH-SP .

Figures 3.11c and 3.11d show that all heuristic approaches produce better

results, in terms of precision and recall, for the BER network. Since the tasks

are more scattered in that network, less tasks will tend to be reachable from

a particular task within the remaining budget. Therefore, since the heuristic
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approaches for IRTS-SP consider a subset of these feasible tasks, the difference

between the ones considered by EXCT -SP and by the non-exact approaches

becomes smaller, increasing the chances of choosing the ones that lead to non-

dominated paths.

It is also worth noting that kGH-SP is much faster than EXCT -SP while

producing better results than MDH-SP and MRH-SP , especially in terms

of recall. This is because kGH-SP examines more task sequences than the

greedy heuristics, increasing the chance of finding the ones belonging to the

exact skyline.

Effect of the cost of the shortest path

Figure 3.12a shows that, as expected, the processing time of our approaches

increases with the travel cost from s to d since it takes longer to compute the

required shortest paths. However, EXCT -SP is less affected by this parameter

than the other approaches. This is due to the fact that the other approaches

compute the shortest path from each feasible task ti to d by performing an A*

search which guides the expansion towards d. The farther d is, the longer it

takes to compute such shortest paths. On the other hand, in EXCT -SP , the

shortest paths from ti to every other feasible task tj and to d are computed

in a single network expansion which only stops when the budget is exceeded.

The time taken by such expansion increases slightly when the travel cost to d

increases.

The precision and recall of the kGH-SP and MDH-SP approaches de-

crease with the shortest path cost, as shown in Figures 3.12c and 3.12d, re-

spectively. A longer path also means a greater budget, which implies that

paths can be expanded with tasks that are farther away and still be feasible.

However, kGH-SP and MDH-SP prioritize closer tasks and thus may not
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Figure 3.12: Processing time, relative error, precision and recall for IRTS-SP
w.r.t. the shortest path cost.

examine some paths containing tasks that are farther away from each other,

but that can be completed within the given budget.

MRH-SP presents a behavior different than kGH-SP and MDH-SP in

terms of relative error and precision, as shown in Figures 3.12b and 3.12c,

respectively. Since it is driven by reward, it may select tasks that are farther

from the current path. However, as discussed above, the exact skyline may

contain paths in which tasks are farther away from each other (as long as

the reward is high enough). Therefore, in this case, MRH-SP has a higher

chance of producing solutions that are closer (or equal) to the ones in the

exact skyline. This explains why the relative error of such approach tends to

decrease slightly with the cost of the shortest path, while its precision increases

slightly. On the other hand, the number of paths in the exact skyline tends to

increase with the cost of the shortest path. Thus, there is a higher chance that
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more of those paths are not examined by MRH-SP , which affects its recall,

as shown in Figure 3.12d .

Effect of the budget

As expected and shown in Figure 3.13a, the processing time of all approaches

increases with the budget, simply because there are more feasible task se-

quences to be considered within a larger budget. We also note that EXCT -SP

is the most affected solution due to the higher number of permutations of tasks

it examines, which rapidly increases with the number of tasks, as we will show

in the next experiment.
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Figure 3.13: Processing time, relative error, precision and recall for IRTS-SP
w.r.t. the budget.

The error of the greedy heuristics tends to increase with the budget, as

shown in Figure 3.13b, even though it is still below 10% for most cases. A larger

budget means that more tasks can be performed in sequence, however, the
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greedy approaches may not be able to produce some longer paths, in terms of

number of tasks, due to the poor choices they can make. Although MDH-SP

selects the closest task when expanding a path, in a further expansion the

remaining options may not be good, thus consuming a lot of the budget and

not leaving enough time for other tasks to be performed. Similarly, MDH-SP

selects tasks based only on their reward, potentially leading to poor choices in

terms of travel time. Therefore, the difference between the area dominated by

the skylines found by these approaches and the area dominated by the exact

skyline will tend to increase. On the other hand, since kGH-SP explores more

options when expanding a path, it has a higher chance of producing paths that

are more similar to the non-dominated ones, even when the budget increases.

As shown in Figures 3.13c and 3.13d, the precision and recall of all heuristic

approaches decrease with the budget. Intuitively, the higher the number of

feasible task sequences, the greater the chance that some of them will not be

considered by the heuristics.

Effect of |T |

Figure 3.14a shows that the processing time of all approaches increases with

the number of feasible tasks, with EXCT -SP being more affected by that

parameter. This is due to the high number of permutations of tasks that such

approach may check when looking for non-dominated paths, which rapidly

increases with the number of tasks.

Figure 3.14b suggests that the relative error of the results produced by our

heuristics is not significantly affected by the number of tasks, being always

below 10%. As shown in Figures 3.14c and 3.14d, the precision and recall of

all heuristics tend to decrease with the number of tasks. Moreover, kGH-SP

is the most affected approach. This can be explained by the fact that in such
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Figure 3.14: Processing time, relative error, precision and recall for IRTS-SP
w.r.t. |T |.

approach each task is only connected to its k closest tasks in the graph GT k
sp.

However, the number of feasible neighbors of a given task increases with the

number of tasks. This means that more neighbors are not even considered,

and, consequently, more feasible combinations of tasks will not be examined

by kGH-SP .

Effect of the time for completing a task

Figure 3.15a shows that the processing time of all approaches decreases with

the time it takes for completing a task because there are less feasible task

sequences to be examined by each approach. EXCT -SP is the approach most

affected by this parameter due to the high number of task sequences it has to

evaluate, which increases when tasks take a shorter time to be performed.

As shown in Figures 3.15b, 3.15c and 3.15d the quality of results produced
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Figure 3.15: Processing time, relative error, precision and recall for IRTS-SP
w.r.t. the for completing a task.

by our heuristics tends to increase with the time it takes for performing a task.

This is because, the longer the tasks take to be performed, the lower will be

the remaining budget after completing a task. This means that there will be

less tasks that can be completed within such a budget. Therefore, since there

are fewer options to choose from, there is a greater chance of picking a task

that leads to non-dominated paths.

3.5.2 IRTS-PP

Effect of the road network

As shown in Figure 3.16a, although all approaches are affected by the network

in terms of processing time, EXCT -PP , unsurprisingly, is the most affected.

This is due to the high number of task sequences and the multiple paths

between each pair of tasks it examines. Moreover, all approaches are slower
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for the BER network because it takes longer to compute the paths required

by each approach in a larger network.

 1

 10

 100

 1000

AMS OSLO BER

ti
m

e 
[s

]

network

EXCT-PP
DOH

kGH-PP

MDH-PP
MRH-PP

(a) time

 0

 5

 10

 15

 20

 25

AMS OSLO BER

er
ro

r 
[%

]

network

DOH
kGH-PP

MDH-PP
MRH-PP

(b) relative error

 0

 20

 40

 60

 80

 100

AMS OSLO BER

p
re

ci
si

o
n
 [
%

]

network

DOH
kGH-PP

MDH-PP
MRH-PP

(c) precision

 0

 20

 40

 60

 80

 100

AMS OSLO BER

re
ca

ll
 [
%

]

network

DOH
kGH-PP

MDH-PP
MRH-PP

(d) recall

Figure 3.16: Processing time, relative error, precision and recall for IRTS-PP
w.r.t. the network.

As the result obtained for MRH-SP , MRH-PP ’s relative error is worse

for the BER network, as shown in Figure 3.16b. This is also due to the distri-

bution of tasks in such network. We also note that, although in general DOH

produces better results than the other heuristics, in some cases kGH-PP may

be slightly more precise than DOH. This is the case for the BER network,

as shown in Figure 3.16c. DOH generates all non-dominated paths also gen-

erated by kGH-PP , however, its skyline set tends to be larger than the one

produced by kGH-PP since it examines more task sequences. Due to a more

scattered distribution of tasks in the BER network, the distance between some

pairs of tasks may be greater. Since DOH considers only one path between

each pair of tasks, i.e., the one yielding the minimum detour, the travel cost
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of some of those paths may exceed the budget, even though the same task

sequences could be completed by following a shorter path. Therefore, DOH

discards such task sequences, which may be part of he exact skyline, and thus

paths dominated by the corresponding non-dominated paths will remain in its

skyline set, which explains its lower precision. This is also the reason why

DOH’s recall is lower for the BER network. On the other hand, similarly to

the results obtained for IRTS-SP (and for the same reason), the other heuris-

tic approaches produce results with higher precision and recall for the BER

network, as shown in Figures 3.16c and 3.16d, respectively.

Effect of the cost of the preferred path

Figure 3.17a shows that while the processing time of EXCT -PP and DOH in-

creases with the cost of the preferred path, kGH-PP , MDH-PP and

MRH-PP are faster for longer paths. A longer preferred path also means

a larger budget, which implies that more task sequences can be completed.

Moreover, the number of non-dominated paths, in terms of travel and detour

costs, between two tasks tends to increase with the budget. Since EXCT -PP

may compute all such paths and it examines all feasible task sequences, its

performance degrades fast with the cost of the preferred path. As DOH ex-

amines all feasible task sequences that can be completed by following the path

that yields the minimum detour, and the number of such paths increases with

the budget, DOH’s processing time also tends to increase with the cost of the

preferred path.

A larger budget also means that the worker can travel more in exchange

for a shorter detour from the preferred path. As kGH-PP and MDH-PP

prioritize paths that yield shorter detours, they may expand a path with a

task that yields a short detour but not a small travel cost, thus consuming
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Figure 3.17: Processing time, relative error, precision and recall for IRTS-PP
w.r.t. preferred path cost.

more from the budget. The remaining budget may not be large enough to

complete more tasks and thus the path expansion is terminated. On the other

hand, although MRH-PP prioritizes tasks with high reward, more tasks are

feasible when the budget is larger. Therefore, MRH-PP may select farther

tasks and the remaining budget may not be large enough for the path to be

further expanded.

The quality of the results produced by the heuristics tends to decrease with

the cost of the preferred path, as shown in Figures 3.17b, 3.17c and 3.17d. The

number of paths in the exact skyline increases with the travel cost from s to

d. Therefore, there is a higher chance that more of such paths will not be

considered by the heuristics approaches.
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Effect of the budget

As expected and observed in Figure 3.18a, the processing time of all ap-

proaches increases with the budget, simply because there are more feasible

task sequences to be considered within a larger budget. As in the previous ex-

periments, EXCT -PP is the most affected approach due to the higher number

of task sequences and sub-paths it examines.
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Figure 3.18: Processing time, relative error, precision and recall for IRTS-PP
w.r.t. the budget.

The error of the heuristic approaches tends to decrease with the budget,

as shown in Figure 3.18b, being most of the time below 10%. A larger budget

means that the worker can travel more in exchange for a shorter detour from

the preferred path. This benefits the heuristics since they prioritize paths that

yield shorter detours even if they are longer, thus generating paths closer to

the ones in the exact skyline. Figures 3.18c and 3.18d show that, while the

precision and recall increase for DOH as the budget increases, these values
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decrease for kGH-PP , MDH-PP and MRH-PP . This is due to the fact

that the number of tasks that can be completed potentially increases with

the budget. Since kGH-PP only extends a path with k tasks, the number of

feasible tasks not considered by it in such expansion increases with the budget,

thus decreasing the chance of producing paths that belong to the exact skyline.

Similarly, MDH-PP and MRH-PP only extend a path with a single task and

the likelihood of making a poor choice increases with the number of tasks. On

the other hand, DOH considers all tasks that can be completed by following

the path yielding the minimum detour w.r.t. PP , which explains why DOH

performs better.

Effect of |T |

Figure 3.19a shows that, as expected, the processing time of all approaches

increases with the number of tasks, but EXCT -PP is the most affected one.

This is due to the high number of permutations of tasks that this approach

may check when looking for non-dominated paths, which increases rapidly

with the number of tasks.

Figure 3.19b shows that while the relative error of MRH-PP slightly in-

creases with the number of tasks, the error of the other approaches slightly

decreases. This can be explained by the fact that MRH-PP selects tasks

based only on their reward, and the likelihood of choosing a task that leads

to paths farther from the ones in the exact skyline increases with the number

of tasks. On the other hand, since the other heuristics prioritize detour, the

likelihood of producing paths closer to the ones in the exact skyline increases

with the number of task options.

Figure 3.19c shows that the precision of all approaches tends to decrease

with the number of tasks. Due to a higher number of task options, the heuris-
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Figure 3.19: Processing time, relative error, precision and recall for IRTS-PP
w.r.t. |T |.

tics are more likely to produce task sequences that do not belong to the exact

skyline. As shown in Figure 3.19d, DOH’s recall slightly increases with the

number of tasks, while the recall of all other approaches decreases. More

task sequences are examined by DOH when there are more tasks available.

Therefore, the probability of generating paths that belong to the exact skyline

is higher. On the other hand, the number of paths examined by the other

heuristics is limited, and the likelihood of examining feasible task sequences

that belong to the exact skyline decreases with the number of available tasks.

Effect of the time for completing a task

Figure 3.20 shows that the processing time of all approaches decreases with

the time it takes for completing a task because there are less feasible task

sequences to be examined by each approach. EXCT -PP and DOH are more
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affected by this parameter due to the higher number of task sequences they

evaluate, which increases when tasks take a shorter time to be performed.

Additionally, EXCT -PP may also examine multiple paths between pairs of

tasks.
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Figure 3.20: Processing time, relative error, precision and recall for IRTS-PP
w.r.t. the time for completing a task.

As shown in Figures 3.20b, 3.20c and 3.20d the quality of results produced

by our heuristics tends to increase with the time it takes for performing a task.

This is because, the longer the tasks take to be performed, the lower will be

the remaining budget after completing a task. This means that there will be

less tasks that can be completed within such a budget. Therefore, since there

are fewer options to choose from, there is a greater chance of picking a task

that leads to non-dominated paths. However, DOH is only slightly affected by

this parameter, while MRH-PP is drastically affected. Again, this is because

the chance of MRH-PP making a poor choice increases with the number of
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feasible tasks, while DOH examines all feasible task sequences in GTpp.

3.6 Conclusion

In this chapter we presented two variants of the In-Route Task Selection (IRTS)

problem, which is a new and practically relevant problem in the context of spa-

tial crowdsourcing. The IRTS-SP problem considers that the worker’s initial

route is the shortest path connecting his/her starting point and destination,

whereas the IRTS-PP problem considers that the worker has an arbitrary pre-

ferred path instead, likely due to non-objective criteria. In both cases the

worker is willing to consider the trade-off between a limited detour and re-

wards collected by completing tasks during such detour. Given the competing

nature of those two criteria, we investigated this problem using the skyline

paradigm, and after proving the NP-hardness of the problems, we proposed a

few heuristic approaches and also analysed their complexity.

For the case of IRTS-SP, our experimental results, using real datasets at the

city scale, showed that kGH-SP is the best alternative among the heuristics.

It produces consistently better results than the greedy heuristics, while being

only slightly slower. In the case of IRTS-PP, the results showed that the

heuristic guided by the detour’s cost (DOH) can obtain solutions with low

relative error rates. However, even though it is at least one order of magnitude

faster than the exact approach EXCT -PP , its processing time can increase

rapidly with the number of tasks and when tasks take a shorter time to be

completed. In such cases, kGH-PP is a better alternative since it can produce

results closer to the ones produced by DOH, while still being slightly faster

than the greedy heuristics.
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Chapter 4

Online In-Route Task Selection

in Spatial Crowdsourcing

4.1 Introduction

Crowdsourcing is a computing paradigm which relies on the contributions of

a large number of workers to accomplish tasks, such as image tagging and

language translation. The increasing popularity of mobile computing led to a

shift from traditional web-based crowdsourcing to spatial crowdsourcing [49].

Spatial crowdsourcing consists of location-specific tasks, which require peo-

ple to physically be at specific locations to complete them. Examples of these

tasks include taking pictures, answering questions about a certain location in

real time or perform physical chores. Tasks are assigned to suitable workers

based on one or more objectives, such as maximizing the number of assigned

tasks, e.g. [32], [48], maximizing a given matching score, e.g. [45], [50], min-

imizing the total amount of reward paid out by task requesters, e.g. [17] or

maximizing the net reward earned by workers after deducting traveling costs,

e.g. [9].

128



In our previous work [6] we defined a new type of spatial crowdsourcing

query, namely In-Route Task Selection (IRST) query. Consider a city’s road

network, a worker’s given path in such a network, and a static number of

known tasks in the network, each yielding a reward and, likely, a detour from

the worker’s original path. Assuming that it would be in the best interest

of the worker to maximize the rewards collected while minimizing the detour

from the worker’s original path, the IRTS query seeks to find all solutions

that are optimal under any given trade-off between those two criteria. In

this chapter we deal with a similar scenario, but considering a fundamental

difference: tasks appear dynamically. That is, any devised solution has now to

suggest paths to workers without any knowledge of tasks that may appear in

the future. We refer to this new problem as the Online In-Route Task Selection

(Online-IRTS) query.

In order to illustrate the Online-IRTS query consider the simple scenario

shown in Figure 4.1, which contains four tasks with their corresponding release

and expiration time, time for completion and reward. For instance, task t1 is

released at time 0, expires at time 7, requires 1 time unit to be completed and

yields a reward of $1. Let us assume that the worker is at s at time 0 and will

travel towards d, originally using the shortest path, but is willing to deviate

from such path to complete tasks as long as d is reached by time 16. Moreover,

assume that the travel cost for one grid edge is one time unit and the distance

between two points is given by their Manhattan distance. Finally, we denote

the reward associated with a path by R(·) and the time detour of that path

by DT (·), i.e., the difference between the total time taken by the given path,

including its travel time and the time required for completing the tasks in it,

and the cost of the original (shortest) path.

At time 0, there are two tasks available to be performed: t1 and t2. This
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s

d

t1 [0-7],1,$1 t2 [0-8],2,$2

t3 [2-10],1,$3

t4 [3-13],3,$2

Figure 4.1: Sample scenario where the worker’s starting point is s, destination
is d, and tasks t1, t2, t3 and t4 (denoted by star vertices) with their correspond-
ing [release time-expiration] range, time for completion and reward. The travel
cost for one edge on the grid is one time unit.

leads to three possible paths1 shown in the upper half of Table 4.1. Note that

some paths are simply not feasible, thus not considered, e.g., path 〈t2, t1〉 is

not a feasible option because the worker would arrive at t1 at time 8, whereas

t1 expires at time 7. In the context of skylines, path P1 is dominated by

path P2 since P2 offers a higher reward for a shorter detour. Therefore, the

skyline set at time 0 contains paths P2 and P3. This is graphically illustrated

in Figure 4.2a, in which the shaded area contains the dominated paths. It

should be noted, however, that the approach proposed in [6] would completely

ignore tasks that could become available at a later time, i.e., t3 and t4 in the

example above, and would return {P2, P3} as the query’s answer.

In this chapter, we consider tasks that may appear at a subsequent itera-

tion. More specifically, we (1) return the skyline set at time 0 to the worker,

who in turn (2) chooses a path and performs the next task in it, and then we

(3) update the skyline set considering the worker’s selection as well as the new

available tasks. For instance, considering the scenario above, let us assume

that among the paths returned to the worker, i.e. {P2, P3} (recall that P1 is

dominated), he/she prefers path P3 because he/she is interested in the reward

1We make the reasonable assumption that the worker wants to complete at least one
task, otherwise there would be no point in considering the Online-IRTS query.
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Time Potential Path R(·) DT (·)

t = 0
P1 = 〈t1〉 1 5
P2 = 〈t2〉 2 4
P3 = 〈t1, t2〉 3 7

t = 3
(only paths containing t1
need to be considered)

P1 = 〈t1〉 1 5
P3 = 〈t1, t2〉 3 7
P4 = 〈t1, t3〉 4 6
P5 = 〈t1, t4〉 3 8
P6 = 〈t1, t2, t3〉 6 8

Table 4.1: Possible paths considering tasks available at times 0 and 3. R(.)
denotes the reward associated with a path and DT (.) denotes its total time
detour.

P2

P1

P3

(a) Skyline at time 0.

P1

P4

P6

P3 P5

(b) Skyline at time 3.

Figure 4.2: Skyline for the example illustrated in Figure 4.1 at time 0 and at
time 3 (assuming that the worker has travelled to task t1).

offered by such path. After traveling to t1 and completing it at time 3, two

new tasks became available: t3 and t4. Therefore, there are new paths for

the worker to contemplate, as illustrated in the lower half of Table 4.1. At

this point, the worker may choose to go directly to the destination or travel

along the originally selected path P3 or P4, P5 or P6. Clearly, in the context

of skyline queries, and as illustrated in Figure 4.2b, P3 is not an interesting

option anymore since it deviates more from the original path and yields a lower

reward than P4, i.e., it is dominated by P4. Similarly, P5 is also dominated by

P3 and P6. Now, let us assume that, among the remaining paths {P1, P4, P6},

the worker prefers P4. After performing task t3, no new tasks became available

and no existing task can be completed within the remaining budget, therefore
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the worker travels to the destination d on path P4 = 〈t1, t3〉, thus receiving a

total reward of $4 for a time detour of 6 time units w.r.t. the original (short-

est) path. It is important to note that the answer to the Online-IRTS query

is a single route, which is built incrementally; whereas in [6] the solution for

the offline IRTS is a skyline, i.e., a set of routes, oblivious to tasks that may

become available at a later time.

As shown in the example above, even though Online-IRTS uses the notion

of dominated paths as the guideline to offer solutions to the worker, at each

point he/she makes decisions, i.e., choose tasks to complete, that will likely

affect potential future choices. Moreover, since during the process of construct-

ing a path Online-IRTS has no knowledge about tasks that may appear in the

future, we can only compute skylines based on the tasks that are known at

the time a decision has to be made. Therefore, due to those reasons, there

is no guarantee that an “optimal” path is produced, i.e., a path belonging to

the exact skyline set S∗ found by an optimal offline solution that knows all

tasks beforehand. For instance, in the example shown in Figure 4.1 an opti-

mal “omniscient” offline solution would find a skyline set containing all the

paths shown in Table 4.2. The solution returned by the Online-IRTS query,

P4 = 〈t1, t3〉, considering the worker’s choices, is not part of the exact offline

skyline set. Clearly, P4 is dominated by P ∗
2 , which yields a reward of $5 and a

time detour of 5. However, the choice made at time 3, i.e. completing task t3,

cannot be retracted thus leading to a sub-optimal solution w.r.t. the offline

solution.

Given the discussion above, it is important to have some metric to quantify

the quality of a solution for the Online-IRTS query. Let us assume that S∗

contains all optimal paths w.r.t. any combination of the two cost criteria

assuming all tasks and their properties were known beforehand, and that Pi
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Path R(·) DT (·)

P ∗
1 = 〈t3〉 3 1

P ∗
2 = 〈t2, t3〉 5 5

P ∗
3 = 〈t1, t2, t3〉 6 8

P ∗
4 = 〈t2, t3, t4〉 7 10

Table 4.2: Exact skyline set found by an optimal offline solution.

is the obtained answer to the Online-IRTS query. We propose to measure

the quality of Pi by evaluating how much it could be improved w.r.t. the

paths in S∗, as illustrated in Figure 4.3. As discussed above, path P4 is

dominated by path P ∗
2 . The area dominated by P ∗

2 is represented by the

rectangle delimited by the black dashed line. Clearly, such area is larger than

the one dominated by P4, delimited in red. The metric we propose measures

how large the difference between those areas is, i.e., how much room there is

for improvement. Such metric is motivated by the fact that even though the

worker is the one who chooses which task to perform next as he/she progresses

in his/her path, obtaining a final path that dominates a relatively large area

also means that good choices were offered to the worker in each iteration.

P4
P1

P2

P3

P4

*

*

*

*

Figure 4.3: Skyline found by an offline optimal approach vs the path selected
by the worker for the example shown in Figure 4.1.

The main contributions of this chapter, besides the formulation of the

Online-IRTS query itself, are two heuristic approaches that build feasible paths

incrementally, i.e., task after task, with the goal of ultimately approximating a

path in the exact skyline set found by an (omniscient) offline optimal approach.
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The first approach, named Local Optimum Heuristic (LOH), computes locally

optimal sklyines after each task is executed, whereas the second, Incremental

Heuristic (IH), explores a tree of non-dominated paths. Our extensive experi-

ments using realistic city-scale datasets show that while LOH tends to produce

better solutions than IH, it can also be several times slower, thus allowing the

user to make an informed decision on which approach to use depending on

how he/she prioritizes effectiveness or efficiency, and, therefore, being better

served by LOH or IH, respectively.

The remainder of this chapter is structured as follows. In Section 4.2 we

present relevant related works and contrast them to ours. We present some

preliminaries needed to formalize the Online-IRTS problem in Section 4.3.

Our proposed heuristic algorithms, which form the core of our contribution,

are presented in Section 4.4, followed by their experimental evaluation in Sec-

tion 4.5. Finally, Section 4.6 concludes this chapter with a summary of our

findings.

4.2 Related Work

The literature in spatial crowdsourcing presents many different ways to assign

tasks to workers, for instance, maximizing the number of assigned tasks [32],

[48], maximizing a given matching score [10], [45], [50], [60], or minimizing the

total amount of reward paid out by requesters, while maximizing the number

of assignments [17]. In what follows we focus on works more related to the

Online-IRTS query. A more detailed discussion of other works related to the

topic of spatial crowdsourcing in general can be found in Section 3.2.

The works presented in [18], [20] deal with assigning a task sequence to

workers and, thus, take the travel cost between tasks into account, similarly
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to what we do. In [18], the authors focus on maximizing the number of tasks

performed by a single worker, while in [20] they aim at maximizing the number

of tasks performed by multiple workers. The focus on both works is on a single

optimization criteria, whereas we consider two (worker’s reward and detour).

Those works also do not consider an online environment, but rather a static

one where all tasks are known beforehand.

Within the context of multi-criteria optimization, Cheng et al. [10] study

the reliable diversity-based spatial crowdsourcing problem. The main differ-

ences between their work and ours are: (a) they focus on maximizing the

reliability and diversity of tasks, whereas we focus on the worker’s perspective

and aim at maximizing his/her reward while minimizing detour, (b) they aim

at assigning several workers at different times to accomplish each task, whereas

we assign a single worker to a task, (c) they assign a single task to each worker

and thus do not compute a task schedule for workers, as we do, and, finally,

(d) they consider the general direction a worker moves to filter out tasks that

are not in the worker’s travel direction, while in our case the worker specifies

a particular destination and can move freely in the network subjected only to

his/her temporal budget.

The Online-IRTS problem is related to the In-Route Nearest Neighbor

(IRNN) query [44] and the Orienteering Problem (OP) [23]. IRNN queries

search for nearest neighbors with respect to a preferred path. Within the

context of bi-criteria optimization in IRNN queries, [2], [28] aim at finding

optimal trade-offs between the costs incurred for visiting a single point of

interest (POI). The OP problem aims at finding the route from a given starting

point that maximizes a total score while the total travel cost does not exceed

a given budget. The main differences between Online-IRTS and IRNN and

OP are the following. Unlike Online-IRTS, IRNN and OP focus on an offline
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scenario. IRNN considers deviating towards one single POI, while Online-

IRTS considers multiple tasks. Finally, the OP problem does not consider any

notion of trade-off between travel cost and rewards.

Finally, the most similar works to ours are [6], [35]. [6], as mentioned in

the previous section, proposes the (offline) IRTS query in which the skyline

set of paths is computed considering only a set of static and known tasks,

unlike in the Online-IRTS query where tasks are dynamic and skylines are

used to compute a path “on-the-fly.” Although [35] assumes that tasks appear

dynamically, as we do, it aims at optimizing a single criterion, i.e., the number

of completed tasks, while we consider the trade-off between detour and reward.

Another essential difference between Online-IRTS and the problem studied in

[35] is that in [35] the algorithm decides which task the worker should travel

to next, whereas in Online-IRTS at each iteration the worker is provided with

a set of interesting paths for his/her own decision.

4.3 Preliminaries

We assume that the worker’s movement is constrained by an underlying road

network, which is modeled as a directed graph G(V,E,C), where V is a set of

vertices that represent the road intersections and end-points, E is the set of

edges modelling all road segments and C indicates the costs of edges in E. In

our case, the cost of traversing an edge connecting vertices vi and vj is given

by the time it takes to traverse the edge that connects those vertices and is

denoted by c(vi, vj).

We define a path Pi = 〈v
1
i , v

2
i , ..., v

n
i 〉 in G as a sequence of vertices such

that any two consecutive vertices vji and vj+1
i , for 1 ≤ j < n, are directly

connected by an edge (vji , v
j+1
i ) ∈ E. The shortest path from the worker’s

136



starting point s to his/her destination d is denoted by SP .

A worker w is an individual who is willing to perform tasks in exchange for

rewards while traveling from his/her origin s to the destination d. We assume

that the worker departs from s at time τs and has a budget b which represents

the maximum time he/she wishes to spend, including the time required to

perform the selected tasks and the total travel time.

We also assume that all tasks are located on an edge of the network. If

a given task t is not placed on an existing vertex v ∈ V , we replace that

edge, say (vj, vl), in G with two new edges (vj, t) and (t, vl), adjusting the

costs of the affected edges accordingly. Note that this implies that some of

the vertices in the graph are now tasks rather than actual road intersections

or the like. Thus, every vertex v has a non-negative reward ρ(v), a finite

time for completion δ(v), a release time τr(v) ≥ 0 and a finite deadline τd(v)

associated to it, where ρ(v) = 0, δ(v) = 0, τr(v) = 0 and τd(v) = ∞ if v does

not represent a task. It is important to note that some vertices traversed in a

path may represent tasks which are not chosen to be completed, and therefore

their cost and reward should not be considered as part of the path’s overall

cost and reward. To address that, we add a binary variable, π(vji ), to indicate

whether a task at a vertex vji ∈ Pi was completed or not, that is, π(vji ) is set

to 1 iff vji is a task and is completed, or to 0 otherwise.

Given the above, the reward of a path, travel and detour costs, and path

feasibility can now be defined as follows.

Definition 4.3.1 (Reward of a path). Given a path Pi in G, its total reward

is given by the sum of the rewards of the completed vertices (tasks) in it (recall

that vertices which are not tasks or are tasks that have not been completed
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do not contribute to the path’s reward), i.e.,

R(Pi) =
∑

v
j
i∈Pi

ρ(vji )× π(vji ).

Definition 4.3.2 (Travel Cost). Given a path Pi in G, its travel cost is given

by the sum of the costs of the edges in it, i.e.,

TC(Pi) =
n−1
∑

j=1

c(vji , v
j+1
i ).

Definition 4.3.3 (Detour Cost). Given a path Pi connecting s to d, the detour

of Pi w.r.t. the shortest path SP is defined as the difference between the travel

costs of Pi and SP plus the time necessary for performing the completed tasks

in Pi:

DT (Pi) = TC(Pi)− TC(SP ) +
∑

v
j
i∈Pi

δ(vji )× π(vji ).

Definition 4.3.4 (Feasible Path). A path Pi is feasible, i.e., of potential

interest to the worker, if its total time is not greater than the budget b, and if

it satisfies the tasks temporal constraints. That is,

1. TC(Pi) +
∑

v
j
i∈Pi

δ(vji )× π(vji ) ≤ b

2. For each completed task tj in Pi:

a(tj, Pi) ≥ τr(tj) & a(tj, Pi) + δ(tj) ≤ τd(tj)

Where a(tj, Pi) is the arrival time at task tj by following Pi.

As mentioned earlier, we aim at providing the user with a set of interesting

alternative feasible paths for different trade-offs between detour and reward.

In order to do so, we rely on the notion of skyline queries, which was first
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introduced in [5]. Given a d-dimensional data set, a skyline query returns

the points that are not dominated by any other point. In the context of the

Online-IRTS query, a path Pi is not dominated if there is no other path Pj

with smaller detour and higher reward than Pi. A powerful aspect of skyline

queries is that the user does not need to determine beforehand weights for

detour and reward. The skyline is a set of equally interesting solutions in

the sense that they are all non-dominated, for arbitrary weights. A skyline

set found in the context of the Online-IRTS query can be formally defined as

follows.

Definition 4.3.5 (Skyline). Let P be a set of paths in the two-dimensional

space “detour cost vs reward”. A path Pm ∈ P dominates another path

Pn ∈ P , denoted as Pm ≺ Pn, if

(DT (Pm) < DT (Pn) ∧ R(Pm) ≥ R(Pn)) ∨

(DT (Pm) ≤ DT (Pn) ∧ R(Pm) > R(Pn))

That is, Pm is better in one criterion and at least as good as Pn in the other one.

Then, P ’s skyline is defined as the set of non-dominated paths, i.e. {Pm ∈ P

| @Pn ∈ P : Pn ≺ Pm}.

The Online-IRTS problem can now be formally defined as follows. (For ease

of reference, Table 4.3 summarizes the notation used throughout this chapter.)

Problem Definition (Online-IRTS query). Let G be a road network and

assume that tasks appear dynamically in G, where each task is associated with

a unique vertex v (and vice-versa), a non-negative reward ρ(v), a finite time

for completion δ(v), a release time τr(v) ≥ 0 and a finite deadline τd(v). Given

a worker w originally traveling on the shortest path from a starting location s
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to a destination d (both vertices in G), and a time budget b, the Online-IRTS

query informs the worker w of a set of good and diverse feasible path options

towards d, w.r.t. both DT (·) and R(·), at the initial point in time and after

executing each task.

Notation Meaning

G(V,E,C) Directed graph with sets of vertices V ,

edges E and C being costs of edges in E.

SP The shortest path between s and d, i.e.,

the worker’s origin and destination

τs Time the worker departs from s

Pi = 〈v
1
i , ..., v

n
i 〉 A path Pi

v
j
i The j-th vertex in Pi

c(vi, vj) Cost of the edge connecting vi to vj

π(vji ) A binary flag indicating whether a task

at vertex v
j
i is completed or not

TC(Pi) Travel cost of path Pi

DT (Pi) Detour cost of path Pi w.r.t. SP

ρ(vj) Reward of a vertex (task) vi

R(Pi) Reward of path Pi

δ(vj) Time for completion of a vertex (task) vi

τr(vj) Release time of a vertex (task) vi

τd(vj) Deadline of a vertex (task) vi

a(vji , Pi) Arrival time at vertex v
j
i by following Pi

Pi ≺ Pj Pj is dominated by Pi

tt(vi, vj) Travel time of the fastest path from vi to vj

S∗ Optimal offline skyline

Table 4.3: Notation used in Chapter 4.

4.4 Proposed Approaches

In this section we propose two heuristics, named Local Optimum Heuristic

(LOH) and Incremental Heuristic (IH), to solve the On-IRTS problem. Since

the set of all tasks is not known in advance, both heuristics compute skyline
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sets based on the tasks available at the beginning of each iteration. LOH finds

the exact local skyline set in each iteration, while IH finds an approximation

of such set.

4.4.1 Local Optimum Heuristic (LOH)

In each iteration, the Local Optimum Heuristic (LOH) computes the local

optimum skyline SLOC , i.e., the exact skyline considering the worker’s current

location and the tasks available at the beginning of the iteration. SLOC is then

returned to the worker who selects a path P and travels to the next task in

P , which becomes the new source location when computing the local skyline

for the next iteration.

Algorithm 17 shows the pseudocode of the LOH heuristic. First, it com-

putes the exact local skyline considering the tasks available at τs and that the

worker departs from s (line 2). Then, among the paths returned to the worker,

he/she selects a path P (line 3) and travels to the first task ti in P . After

completing ti, a new local skyline is computed considering the worker’s cur-

rent location and the new available tasks at the current time τit (line 15). This

process is repeated until no more paths can be built considering the remaining

budget (line 8) or if the worker chooses to travel to d next (line 10).

In order to find the exact skyline for each iteration (lines 2 and 15), we in-

voke EXCT-LOC which leverages on the exact algorithm EXCT-SP originally

proposed in [6] to solve the (offline) IRTS-SP query. This is feasible because we

are searching for a local solution w.r.t. only what is known at a point in time,

just like the offline version of the IRTS query. The only modification needed

on the original EXCT-SP algorithm is to consider the temporal constraints of

tasks, which did not exist in [6].

Given the worker’s current location sw, the time τit at the beginning of the
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Algorithm 17: LOH

Input: Graph G = (V,E), starting point s, start time τs, destination d and
budget b.

Output: Feasible path Pfinal from s to d
1 Pfinal ← 〈s〉
2 SLOC ← EXCT-LOC(s, d, τs, b, Pfinal)
3 P ← path selected by worker from SLOC
4 i← 1
5 τit ← τs
6 bit ← b
7 sp ← s
8 while P is not null do
9 sw ← i-th task in P

10 if sw = d then
11 break
12 end
13 Pfinal.append(sw)
14 τit ← τit + tt(sp, sw) + δ(sw)
15 bit ← bit − tt(sp, sw)− δ(sw)
16 SLOC ← EXCT-LOC(sw, d, τit, bit, Pfinal)
17 P ← path selected by worker from SLOC
18 i← i+ 1
19 sp ← sw
20 end
21 Pfinal.append(d)
22 return Pfinal

current iteration, and the remaining budget bit, EXCT-LOC (Algorithm 18)

first builds a directed graph of tasks GT = (V T,ET ). The set of vertices

V T contains s, d, and a set of available tasks that can be completed within

the remaining budget bit. Each edge connecting two vertices v and u in ET

represents the fastest path from v to u in the original graph G and is associated

with the travel time tt(v, u) of such path.

GT connects sw to each task ti available at τit such that

τit + tt(sw, ti) + δ(ti) ≤ τd(ti), i.e, ti can be completed before its deadline

after traveling from sw to ti. Moreover, if the current iteration is not the first

one, we also connect sw to d in order to give the worker the choice to travel to

the destination after completing a task. Similarly, GT also connects every pair

of available tasks ti, tj such that τit+tt(sw, ti)+δ(ti)+tt(ti, tj)+δ(tj) ≤ τd(tj).

Every task in GT is also connected to the destination d. The graph of tasks

GT obtained for the first iteration of example shown in Figure 4.1 is illustrated
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in Figure 4.4. Note that there is no direct edge from t2 to t1 because after

completing t2 the worker would arrive at t1’s location at time 8, whereas t1

expires at time 7.

s

t1
[0-7], 1, $1

t2
[0-8], 2, $2

d

2 3

3

8 5

Figure 4.4: Graph GT built for the first iteration of the example shown in
Figure 4.1. The value on each edge represents the corresponding travel cost.

Once the graph of tasks GT = (V T,ET ) is built (line 1 of Algorithm 18),

EXCT-LOC finds the local exact skyline by calling EXCT REC-LOC (Al-

gorithm 19). EXCT REC-LOC recursively expands a given path P , which

initially is the partial path Pw already taken by the worker, until the budget

is exceeded. In each call of EXCT REC-LOC, we analyze the feasible paths

that can be obtained by expanding P . We first check whether the destination

can be reached within the remaining budget from the last vertex v of P (line

2). If not, P is not expanded further and the recursion stops. Otherwise, we

consider the edges that connect v to any other vertex u ∈ V T (line 4). If

the current neighbor u of v is the destination d (line 6), P is extended with

u, generating a new path Pu (line 7). If Pu is not dominated, Pu is added

to the skyline set SLOC and any path dominated by it is removed from SLOC

(lines 8-10). We note that Pu is not further expanded since it is a path to the

destination (line 11). On the other hand, if u is a task (line 12), we first check

if u is already part of P . If not, we check whether u is active at the time at

the worker arrives there and whether it can be completed before its deadline

(line 16). If both conditions are satisfied, P is expanded creating the new
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path Pu, and EXCT REC-LOC is recursively called for Pu and considering

the remaining budget rb = b− tt(v, u)− δ(u), i.e., the budget after deducting

the cost to reach u and to complete it.

Algorithm 18: EXCT-LOC

Input: Graph G = (V,E), starting point sw,destination d, start time τit,
budget bit, and current path Pw taken by the worker.

Output: Set SLOC of non-dominated paths considering the tasks available
at τit.

1 GT ← build graph of tasks considering the tasks available at τit
2 SLOC ← ∅
3 EXCT REC-LOC(GT, d, bit, Pw, τit,SLOC)
4 return SLOC

Algorithm 19: EXCT REC-LOC

Input: Graph of tasks GT = (V T,ET ), destination d, budget b, path to
be expanded P , start time τ , and current skyline set SLOC .

1 v ← last vertex of P
2 if tt(v, d) > b then
3 return
4 end
5 for each edge e from v in ET do
6 u← e.toNode
7 if u = d then
8 Pu ← extend P with u
9 if Pu is not dominated in SLOC then

10 SLOC .add(Pu)
11 remove any paths dominated by Pu from SLOC

12 end
13 continue
14 end
15 else
16 if u is in P then
17 continue
18 end

19 at← τ + tt(v, u)
20 if at ≥ τr(u) & at+ δ(u) ≤ τd(u) then
21 Pu ← extend P with u
22 rb← b− tt(v, u)− δ(u)
23 EXCT REC-LOC(GT, d, rb, Pu, at+ δ(u),SLOC)
24 end
25 end
26 end

Figure 4.5 shows the paths explored by EXCT-LOC for the graph shown

in Figure 4.4. The feasible path P1 = 〈s, t1, d〉 is found with a detour cost of

5 and a reward of $1. As the skyline set SLOC is empty, P1 is added to SLOC .
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Next, P2 = 〈s, t1, t2, d〉 is found with a detour of 7 and a reward of $3, and is

added to SLOC . Then, path P3 = 〈s, t2, d〉 is found with a time detour of 4

and a reward of $2. P3 is added to the skyline set while P1 is discarded since

it is dominated by P3. Therefore, SLOC = {P2, P3}.

s

t1

d t2

d

t2

d

2 3

38

5

5

Figure 4.5: Paths explored by EXCT-LOC for the GT shown in Figure 4.4.

LOH’s Complexity Analysis. Let Ti be the set of active tasks in iter-

ation i. The complexity for building the graph of tasks used in LOH is

O(|Ti| × (|E|+ |V | × log |V |)), since we invoke Dijkstra’s algorithm from each

task in Ti in order to compute the travel times to every other task in such

set. In the worst case, LOH may generate all permutations of tasks of size

1 to |Ti|. Therefore, in such case O(|Ti|!) paths can built in each iteration.

Moreover, the complexity for checking whether each of those paths is domi-

nated is O(log |SLOC |), assuming that the paths are maintained in a list sorted

in increasing order of detour. In case a path is non-dominated, and thus is

inserted into the list, it can take O(|SLOC |) in the worst case for such list to

be updated. Therefore, the total complexity of this phase of the algorithm is

O(|Ti|!× |SLOC |) in the worst case.
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4.4.2 Incremental Heuristic (IH)

Depending on the number of available tasks at a given iteration, the LOH

heuristic may take too long to run since it examines all feasible paths contain-

ing at least one task to determine the non-dominated ones. In light of this,

we developed another heuristic approach, named Incremental Heuristic (IH),

which expands a tree that contains the current non-dominated paths, instead

of expanding the graph of tasks GT . While this renders IH to be faster than

LOH, it may not produce the exact local skyline for a given iteration, which

LOH does.

Similarly to LOH, IH also executes Algorithm 17 to produce the final path

taken by the worker. However, instead of invoking EXCT-LOC in order to

compute the local skyline for the given iteration (lines 2 and 15 in Algo-

rithm 17) it invokes APP-LOC (Algorithm 20). Moreover, IH also maintains

a tree of non-dominated paths that is updated in each call of APP-LOC.

Algorithm 20 shows the pseudocode of APP-LOC which takes as input

a tree of tasks TT rooted at sw, i.e., the worker’s current location. In the

beginning of the first iteration, TT contains only the worker’s starting location

s. Then, each new available task is considered at a time and is inserted at

each feasible position in TT (line 4). In each iteration the set of new tasks NT

contains only available tasks that were not considered in previous iterations.

s

t1

2

(a) Tree after in-
serting t1.

s

t1

t2

t2

2 3

3

(b) Tree after insert-
ing t2.

Figure 4.6: Tree after inserting tasks t1 and t2 at time 0.
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Algorithm 20: APP-LOC
Input: Tree of tasks TT rooted at sw, destination d, start time τit, budget

bit, and current path Pw taken by the worker.
Output: Set SLOC of non-dominated paths considering the tasks available

at τit and updated tree TT .
1 NT ← new tasks available at τit that were not available in the previous

iteration
2 SLOC ← ∅
3 for ti in NT do
4 addTask(TT, ti, d, τit, bit, Pw,SLOC)
5 TT ← remove all dominated paths from TT
6 end
7 SLOC ← updateSkylineSet(SLOC)
8 return SLOC , TT

Figure 4.6 illustrates the tree of non-dominated paths after the insertion

of tasks t1 and t2 in the first iteration of the example illustrated in Figure 4.1.

Algorithm 21 outlines the process of how a task is inserted into the tree. When

inserting t1, the path 〈s, t1, d〉 is generated (line 4) and added to the skyline

set SLOC (line 5-7). t1 is added as a child of s (Figure 4.6a) and since there

is no other position in TT where t1 can be inserted to generate a new path,

the recursion stops (lines 10-12). Next, when inserting t2, the path 〈s, t2, d〉 is

created and added to SLOC , causing the path 〈s, t1, d〉 to be discarded. Since

s already has a child, i.e., t1, the algorithm first tries to insert t2 before t1

(lines 13-19). The path 〈s, t2, t1〉 is generated (line 14) and trimInfeasiblePaths

(Algorithm 22) is invoked. trimInfeasiblePaths removes all paths rooted at the

new node n that become invalid after inserting n. In our example, since t1

can only be completed after its deadline by following the path 〈s, t2, t1〉, such

path is pruned (lines 1-2 of Algorithm 22) and it is not inserted into the tree.

Next, Algorithm 21 tries to insert t2 after t1 (lines 21-27) and generates the

path 〈s, t1〉 (line 22). Then, addTask is recursively called (line 25) for 〈s, t1〉

with t1 as the new root. The path 〈s, t1〉 is extended with t2 and d (line 4)

and is added to SLOC . Since the root of the tree, t1, is a leaf, t2 is added as a

child of t1 (see Figure 4.6b) and the recursion stops (lines 10-12).
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Algorithm 21: addTask
Input: Sub-tree root r, new node n to be inserted, destination d, time τ ,

budget b, path P , and current local skyline SLOC .
Output: Updated r (or null if n could not be inserted)

1 at← τ + tt(r, n)
2 if at+ δ(n) > τd(n) or tt(r, n) + δ(n) + tt(n, d) > b then
3 return null
4 end
5 Pn ← extend P with n and d
6 if Pn is not dominated in SLOC then
7 SLOC .add(Pn)
8 remove any paths dominated by Pn from SLOC
9 end

10 raux ← r
11 naux ← n
12 if r is leaf then
13 r.addChild(naux)
14 return r
15 end
16 for child c of r do
17 Pc ← extend P with n and c
18 τc ← τ + tt(r, n) + δ(n) + tt(n, c) + δ(c)
19 bc ← b− tt(r, n)− δ(n)− tt(n, c)− δ(c)
20 caux ← trimInfeasiblePaths(c, d, τc, bc, Pc,SLOC)
21 if caux 6= null then
22 naux.addChild(caux)
23 end
24 end
25 raux.addChild(naux)
26 for child c of r do
27 Pc ← extend P with c
28 τc ← τ + tt(r, c) + δ(c)
29 bc ← b− tt(r, c)− δ(c)
30 caux ← addTask(c, n, d, τc, bc, Pc,SLOC)
31 if caux 6= null then
32 raux.addChild(caux)
33 end
34 end
35 r.addChild(naux)
36 if raux is not null then
37 return raux
38 end
39 else
40 return null
41 end
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Algorithm 22: trimInfeasiblePaths
Input: New sub-tree root n, destination d, time τ after completing n,

budget b, path P , and current local skyline SLOC .
Output: Updated r (or null if n could not be inserted

1 if τ > τr(n) or tt(n, d) > b then
2 return null
3 end
4 Pd ← extend P with d
5 if Pd is not dominated in SLOC then
6 SLOC .add(Pd)
7 remove any paths dominated by Pd from SLOC
8 end
9 if n is leaf then

10 return n
11 end
12 naux ← n
13 for child c of n do
14 Pc ← extend P with c
15 τc ← τ + tt(n, c) + δ(c)
16 bc ← b− tt(n, c)− δ(c)
17 caux ← trimInfeasiblePaths(c, d, τc, bc, Pc,SLOC)
18 if caux 6= null then
19 naux.addChild(caux)
20 end
21 end
22 return naux

After each new task is inserted into the tree, APP-LOC maintains only the

non-dominated paths from the root to a leaf in TT (line 5 of Algorithm 20).

For instance, if 〈s, t1, t2, d〉 was dominated, the whole sub-tree rooted at t1

(shown in Figure 4.6b) would be removed before the next iteration since the

path 〈s, t1, d〉 is also dominated. Finally, addTask only tests the dominance

of paths that contain at least one task in the set of new tasks NT . However,

there may be other non-dominated paths in the tree that do not contain any

of those tasks. Therefore, we invoke updateSkylineSet (line 6 of Algorithm 20)

to generate such paths and update SLOC accordingly.

Once the local skyline set SLOC produced by APP-LOC is returned to the

worker, he/she chooses a path P from such set and travels to next task ti in

P . Then, the sub-tree rooted at ti becomes the new tree that will be given as

input to APP-LOC (Algorithm 20) in the next iteration. For instance, if the

worker chooses path 〈s, t2, d〉 in the first iteration, the sub-tree rooted at t2
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becomes the new tree in the next iteration, which is then extended with the

new tasks that became available, i.e., t3 and t4.

IH’s Complexity Analysis. In order to compute the travel times between

pairs of tasks in IH we also invoke Dijkstra’s algorithm from each active task

in Ti, as we do in LOH. The complexity for maintaining the local skyline

set SLOC is also the same as in LOH. Even though IH may generate O(|Ti|!)

paths in the worst case, in practice it is consistently faster than LOH, since it

only expands non-dominated paths that remain in the tree. Moreover, when

a task tj is considered for insertion into the tree, if it does not lead to any

non-dominated paths it is discarded and is not considered in future iterations.

4.4.3 Offline Exact Approach

In order to obtain an offline optimal skyline set S∗ we follow the same pro-

cedure as the EXCT-SP algorithm proposed in [6], except that we take into

consideration the active time of tasks, which was not part of the problem set-

ting in [6]. More specifically, when building the graph of tasks used for finding

the non-dominated paths, we consider only the tasks that are active while the

worker is available, i.e., tasks that are released before the worker leaves the

system and that expire after the worker becomes available. Moreover, when

expanding a path with a task ti, we check whether ti has already been released

when the worker arrives and whether it can be completed before it expires. If

such conditions are not satisfied, the path is pruned and not further expanded.

4.5 Experiments

We evaluated the performance of our approaches, as well as their accuracy

w.r.t. the offline optimal solution, i.e., where all tasks, rewards and deadlines
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are known beforehand. In order to mimic a realistic set of task locations we

used the location of eateries (restaurants and coffee shops) on the actual road

networks of Amsterdam (AMS), Oslo (OSLO) and Berlin (BER)2 as locations

of (pseudo) tasks; metadata about those datasets can be seen in Table 4.4 and

Figure 4.7 illustrates them visually. The travel time of each edge (v, u) ∈ E

is computed as the Euclidean distance de(v, u) divided by an average speed of

40 km/h. Note that such an assumption is not a limitation of the proposed

approaches; they work for any connected graph where the cost of each edge is

a function of its length.

Amsterdam Oslo Berlin

#vertices 106,599 305,174 428,768
#edges 130,090 330,632 504,228
#tasks 824 958 3,083

Table 4.4: Summary of the real datasets used in our experiments (bold defines
default values).

(a) Amsterdam (b) Oslo (c) Berlin

Figure 4.7: Locations of tasks in Amsterdam, Oslo and Berlin (overlaid on
those cities’ road networks).

Table 4.5 shows the parameters varied in our experiments, in addition to

the real datasets. The shortest path’s cost, from the worker’s starting location

s to the destination d, ranges from 15 min to 60 min. s is randomly selected

among all the vertices of the network, and then, we perform a Dijkstra-based

search to select d. More specifically, the network is expanded from s and, as

2As of March/2017 [3].
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soon as the travel time from s to a vertex v removed from the queue exceeds the

given shortest path’s cost, the expansion stops and v becomes the destination

d. We also assume that the worker has a time budget between 60 and 240

min and that the time he/she becomes available follows a normal distribution

whose mean is 12pm and standard deviation varies from 120 to 360 min.

Parameter Range

Cost of shortest path 15, 30, 60
Worker’s time budget 60, 120, 240
Worker’s start time std dev 120, 240, 360
Average task completion time 5, 15, 30
Task density [%] 25, 50, 100
Task active time 60, 120, 240
Task release time std dev 120, 240, 360
α policy Incr., Decr., Constant,

N (0.5, 0.2)

Table 4.5: Experimental parameters and their values (bold denotes default
values). All numerical values, except task density, are in min.

In order to evaluate the effect of task density on a given network we ex-

perimented varying the number of tasks between 25% and 100% of all possible

tasks. We also varied the time it takes for completing a task by following a nor-

mal distribution. The distribution’s mean was set to 5, 15 and 30 min, while

the standard deviation was fixed at 1/3 of the respective distribution’s mean.

We assume the rewards paid out to workers to be proportional to the time

it takes for completing the corresponding task. Nonetheless, there is nothing

in the approaches presented that would prevent one from using an arbitrary

reward scheme. We consider that the active time of tasks also follows a normal

distribution. We varied the distribution’s mean from 60 to 240 min and set the

standard deviation to 1/4 of the corresponding mean. Moreover, we assume

that the time the tasks become available is determined by a distribution equal

to one used to determine the worker’s availability.
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Finally, in order to simulate the worker’s choice in each iteration, in our

experiments we select the path that maximizes the following linear combina-

tion of the two criteria: F(P ) = α ×
(

1− DT (P )
maxDT

)

+ (1 − α) ×
(

R(P )
maxR

)

for

0 ≤ α ≤ 1. Therefore, the higher (lower) the value of α the more importance

is given to the detour (reward) of the paths. We adopted 4 policies for how

α behaves as the algorithms progresses: it can increase, decrease, remain con-

stant or vary following a normal distribution. In the cases where α increases or

decreases, we assume that its value is initially set to a random value between

0 and 0.5 (0.5 and 1), and then increases (decreases) exponentially in order to

simulate scenarios where the importance rapidly shifts from reward to detour

(vice-versa), as the worker completes tasks. When α is drawn from a Normal

distribution, we model the case where the worker’s priority changes in a non-

deterministic way. It is important to stress that in those cases, a non-constant

α reflects our basic assumption that the worker can change his/her priorities

with time, hence requiring the use of the skyline paradigm where both criteria

are possibly weighted differently in each iteration. Finally, we also performed

experiments where the value of α is drawn from a U(0,1) distribution before

the first iteration and kept constant afterwards.

For each set of experiments, we vary the value of one parameter, fix the

other parameters to their default values and report the average results of 100

runs. The experiments were performed in a virtual machine with Intel(R)

Xeon(R) CPU E5-2650 (8 cores @ 2.30GHz) and 16GB RAM, running Ubuntu.

Regarding performance, in the following we report the average processing

time per iteration, i.e., how long the worker needs to wait in average for the

local skyline to be computed after he/she finishes a task (or before leaving the

origin). Also, all charts have the same scale in order to facilitate comparisons.

Finally, in order to evaluate the quality of the paths produced by our
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heuristics we measure the relative error of a final path P obtained by them

w.r.t. the paths in the optimal offline skyline S∗. In order to illustrate how this

relative error is measured, let us consider Figure 4.2 again, which shows S∗ and

the final path P4 produced following the choices made by the worker. Path P4

is dominated by path P ∗
2 , and thus the area dominated by P ∗

2 , represented by

the area delimited in black, is larger than the one dominated by P4, which is

delimited in red. The idea behind the relative error metric is that the difference

between those areas reflects how much room there is for improvement as any

other point in that area would dominate the one obtained. Clearly the smaller

this area the better, in fact it is null if the produced path belongs to S∗. Note

that a path P can be dominated by multiple paths in S∗. Let us denote the

set of such paths as Pd and as APd
the area representing the union of the areas

dominated by each path in Pd. Similarly, let AP be the area dominated by

path P , then, the normalized relative error is given by:

error =
APd
− AP

APd

4.5.1 Effect of the road network

As expected and as as shown in Figure 4.8a, the efficiency of our approaches

decreases with the size of the network and the number of tasks in it3. A

greater number of tasks implies that there are more permutations of tasks to

be considered. Moreover, the larger the network, in terms of number of vertices

and edges, the more time is consumed to compute the required shortest paths.

This explains why our approaches are slower for the BER network. The slightly

larger relative error in BER’s case (Figure 4.8b) is due to the network size and

how tasks are distributed (see Figure 4.7c). Tasks will tend to be farther away

3Recall from Table 4.4 that the larger the network the more tasks it may have.
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from each other in such network, and if the worker chooses to travel to a task

that does not lead to a path in S∗, it will be harder to compensate for a “bad

choice” since there will potentially be less feasible tasks that can be combined

with the worker’s current path within the remaining budget.

 0

 20

 40

 60

 80

 100

AMS OSLO BER

T
im

e 
[s

]

network

LOH IH

(a) average time

 0

 0.2

 0.4

 0.6

 0.8

 1

AMS OSLO BER

r
e
la

t
iv

e
 e

r
r
o
r

network

LOH IH

(b) relative error

Figure 4.8: Processing time and error w.r.t. the network.

4.5.2 Effect of task density

Figure 4.9a shows that, as expected, the processing time of our heuristics in-

creases with the task density since there are more permutations of tasks to

be examined. On the other hand, Figure 4.9b shows that when the task den-

sity increases, the relative error of our approaches slightly increases and then

decreases for the OSLO network. Although a greater number of task options

increases the chance of the worker making a poor decision, a lower density

also means that tasks will tend to be farther away from each other, which can

potentially lead to a higher relative error, as discussed in Section 4.5.1.
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Figure 4.9: Processing time and error w.r.t. the task density.
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4.5.3 Effect of the cost of the initial shortest path

Figures 4.10a and 4.10b show that the average processing time of both heuris-

tics, as well as their relative error, tend to decrease with the cost of the shortest

path SP between s and d. This is because the time the worker has to perform

tasks decreases with the increase in cost of the shortest path, since his/her

budget is fixed. Therefore, fewer tasks become feasible within a more limited

budget, which positively affects the processing time and relative error of our

heuristics.

 0

 20

 40

 60

 80

 100

15 30 60

T
im

e 
[s

]

shortest path cost [min]

LOH IH

(a) average time

 0

 0.2

 0.4

 0.6

 0.8

 1

15 30 60

re
la

ti
v
e 

er
ro

r

shortest path cost [min]

LOH IH

(b) relative error

Figure 4.10: Processing time and error w.r.t. SP’s cost.

4.5.4 Effect of the worker’s budget

As shown in Figure 4.11a, and as expected, the processing time of both heuris-

tics increase with the worker’s budget simply because it allows for more fea-

sible paths to be examined, which strongly impacts LOH’s performance. Fig-

ure 4.11b shows that the error w.r.t. S∗ also increases with the worker’s

budget for both approaches. A larger budget means that more tasks can be

performed in sequence, and thus the worker has to make more decisions, and,

consequently, there is a greater chance of the worker making poor choices,

diminishing the chance of generating paths close to the ones in S∗.
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Figure 4.11: Processing time and error w.r.t. the worker’s budget.

4.5.5 Effect of the worker’s starting time

Figure 4.12 suggests that the processing time of our heuristics as well as their

relative error tend to decrease with the standard deviation of the time the

worker becomes available. A smaller standard deviation means that the worker

will tend to become available when more tasks are active (due to how the

release time of tasks is distributed). Therefore, there will potentially be more

tasks to expand a path with, which makes our approaches slightly slower and

slightly less effective, as shown in Figures 4.12a and 4.12b, respectively.

 0

 20

 40

 60

 80

 100

120 240 360

T
im

e 
[s

]

worker start time std dev

LOH IH

(a) average time

 0

 0.2

 0.4

 0.6

 0.8

 1

120 240 360

r
e
la

t
iv

e
 e

r
r
o
r

worker start time std dev

LOH IH

(b) relative error

Figure 4.12: Processing time and error w.r.t. the standard deviation of the
worker’s start time.

4.5.6 Effect of the average time for completing a task

Figure 4.13a shows that the processing time of our approaches decrease with

the average time it takes to perform a task, however, LOH’s performance

is more affected by such parameter. When tasks take a shorter time to be

completed, more of them can be included in the worker’s path within his/her
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budget, therefore there are more feasible paths to be examined, which directly

affects LOH’s processing time. As shown in Figure 4.13b, the error w.r.t. S∗

tends to decrease with the time it takes to complete a task for both heuristics.

With tasks taking longer to be completed, less tasks can be performed in

sequence within the worker’s budget, which positively affects our heuristics.
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Figure 4.13: Processing time and error w.r.t. the time for completing a task.
For completion time 5, LOH’s average processing time is 364 sec.

4.5.7 Effect of the active time of the tasks

As shown in Figure 4.14a the processing time of both approaches increase with

the active time of tasks, however, LOH is significantly more affected by this

parameter. When tasks are active for a longer time, more tasks will tend to

be active while the worker is available and, thus, there are more tasks to be

considered by each heuristic, which strongly affects LOH’s performance. As

shown in Figure 4.14b, IH’s relative error increases with this parameter also

due to a greater number of task options. We note that even though LOH’s

error is only slightly affected for the values examined, it is expected that it

will also tend to increase when tasks are active for a longer time.

4.5.8 Effect of the release time of the tasks

Figure 4.15a shows that the processing time of our heuristics decreases with

the standard deviation of time the tasks become active. With a smaller stan-
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Figure 4.14: Processing time and error w.r.t. the active time of tasks. When
the task active time is 240 min, LOH’s average processing time is 154 sec.

dard deviation more tasks will tend to be available when the worker becomes

active, and thus there will be more tasks to be examined by each approach.

This parameter also slightly affect the quality of the results produced by our

heuristics, as shown in Figure 4.15b, since when fewer tasks are active better

solutions tend to be produced.
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Figure 4.15: Processing time and error w.r.t. the standard deviation of the
tasks’ release time.

4.5.9 Effect of α (trade-off between detour and reward)

Figures 4.16a and 4.16b show how our proposed approaches behave as we vary

the policies on how the worker prioritizes detour or reward. Neither approach

seems to be particularly sensitive to how α varies, except when it decreases,

i.e., when the workers interest shifts from minimizing detour to maximizing

reward as he/she progresses in his/her path. In this case, the worker will travel

to more tasks, as he/she will seek more rewards. Interestingly, even though
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more iterations will be performed, each will tend to require progressively less

processing time as the worker’s budget is consumed after each task, which, in

turn, will tend to limit the number of feasible paths. This explains the shorter

average processing time in this case. On the other hand, more iterations yield

more opportunities for “bad choices”, which leads to a higher relative error.
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Figure 4.16: Processing time and error w.r.t. α.

4.5.10 Summary

The main observations from the experiments above are:

• In line with the complexity analysis of the algorithms (Sections 4.4.1

and 4.4.2), more tasks available imply more permutations of tasks to

be considered. While this affects both approaches’ efficiency negatively,

the effect is more pronounced in LOH’s case than IH’s as IH expands

only non-dominated paths. This effect is greatly compounded when the

worker has more time available, e.g., when his/her time budget is larger

or tasks can be accomplished fast.

• If the worker pursues rewards aggressively, he/she will naturally tend

to perform more tasks, increasing the chances of sub-optimal choices,

which degenerates the effectiveness of both approaches, but affecting IH

slightly more.

• Finally, w.r.t. effectiveness neither approach seemed to be particularly
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affected by the investigated parameters, though IH does not fare as well

as LOH, as IH typically examines less paths, thus potentially missing

some good ones.

4.6 Conclusion

In this chapter we presented the Online-IRTS query, a variant of the In-Route

Task Selection (IRTS) [6] query in which tasks appear dynamically. Online-

IRTS provides the worker with a set of non-dominated paths in an online

manner using the notion of skyline queries. As new tasks become available,

and according to the selections made by the worker in previous iterations,

the skyline set is updated so that the worker can contemplate new interesting

paths yielding different trade-offs between detour and reward.

In order to solve the Online-IRTS query we proposed two heuristic ap-

proaches that build a feasible path incrementally, i.e., task after task, with the

goal of ultimately approximating a path in the offline optimal skyline set. Our

first proposed heuristic, named Local Optimum Heuristic (LOH), builds the

local exact skyline in each iteration considering all available tasks, while the

Incremental Heuristic (IH) expands non-dominated paths in order to build an

approximate local skyline. Our experimental results using realistic datasets

showed that LOH produces paths that yield a relative error up to 36% smaller

than that of the solutions produced by IH, while IH is up to 20 times faster

than LOH.
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Chapter 5

Conclusion

In this thesis we proposed the use of skyline queries to solve bi-criteria opti-

mization problems in road networks. Skyline queries do not require users to

specify weights to each criterion and provide them with a set of interesting

non-dominated options for different trade-offs between the competing criteria.

Based on this, we first investigated (k, r)-Diverse Nearest Neighbors ((k, r)-

DNN) Queries, and then we explored In-Route Task Selection (IRTS) queries,

in the context of spatial crowdsourcing, considering both offline and online

settings.

(k, r)-DNN queries are a novel variation of k-NN queries which return sets

containing k elements that are as close as possible to the query point, while,

at the same time, being as diverse as possible. We assume that the user

specifies the maximum distance he/she is willing to travel in order to visit

a POI, i.e., the query radius r. We have considered three different notions

of diversity, namely spatial, angular and categorical. Previously proposed

solutions are approximate and require the user to determine a specific weight

for each type of diversity. Our proposed approaches based on linear skylines

find all results that are optimal under any arbitrary linear combination of
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closeness and diversity.

We proposed two solutions to (k, r)-DNN queries using the notion of sky-

lines. Recursive Range Filtering (RRF) strives to reduce the number of combi-

nations generated by recursively combining a partial set with candidate points

that are diverse enough to be part of a non-dominated solution. Pair Graph

(PG) works by pruning subsets that contain pairs of points that have low di-

versity and could not be together in a non-dominated solution. Experiments

varying a number of parameters showed that (1) both RRF and PG are orders

of magnitude faster than a straightforward solution, and (2) PG outperforms

RRF when there is a greater number of candidate points that can be combined

with previously selected points, and RRF is more efficient otherwise. Also,

we confirmed that our approaches are more effective than a previously pro-

posed approximate approach, named GNE, by virtue of guaranteeing optimal

results, as well as being more generic since they do not require the user to set

any particular trade-off.

In the second part of this thesis we presented two variants of the offline

IRTS problem, which is defined in the context of spatial crowdsourcing. The

IRTS-SP problem considers that the worker’s initial route is the shortest path

connecting his/her starting point and destination, whereas the IRTS-PP prob-

lem considers that the worker has an arbitrary preferred path instead. In both

cases the worker is willing to consider the trade-off between a limited detour

and rewards collected by completing tasks during such detour. Given the

competing nature of those two criteria, we investigated this problem using

the skyline paradigm, and after proving the NP-hardness of the problems, we

proposed a few heuristic approaches and also analysed their complexity.

For the case of IRTS-SP, our experimental results, using real datasets at the

city scale, showed that kGH-SP , which expands a graph that connects a task
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to its k closest tasks, is the best alternative among the heuristics. It produces

consistently better results than the greedy heuristics, while being only slightly

slower. In the case of IRTS-PP, the results showed that the heuristic guided

by the detour’s cost (DOH) can obtain solutions with low relative error rates.

However, even though it is at least one order of magnitude faster than the

exact approach EXCT -PP , its processing time can increase rapidly with the

number of tasks and when tasks take a shorter time to be completed. In such

cases, kGH-PP is a better alternative since it can produce results closer to

the ones produced by DOH, while still being slightly faster than the greedy

heuristics.

Finally, as our last contribution in this thesis, we investigated the online

version of the IRTS problem, i.e., the one in which tasks appear dynamically.

Online-IRTS provides the worker with a set of non-dominated paths in an

online manner using the notion of skyline queries. As new tasks become avail-

able, and according to the selections made by the worker in previous iterations,

the skyline set is updated so that the worker can contemplate new interesting

paths yielding different trade-offs between detour and reward.

In order to solve the Online-IRTS query we proposed two heuristic ap-

proaches that build a feasible path incrementally, i.e., task after task, with the

goal of ultimately approximating a path in the offline optimal skyline set. Our

first proposed heuristic, named Local Optimum Heuristic (LOH), builds the

local exact skyline in each iteration considering all available tasks, while the

Incremental Heuristic (IH) expands non-dominated paths in order to build an

approximate local skyline. Our experimental results using realistic datasets

showed that LOH produces paths that yield a relative error up to 36% smaller

than that of the solutions produced by IH, while IH is up to 20 times faster

than LOH.
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A direction for future work is to develop approximate approaches to the

(k, r)-DNN query in order to produce good results faster than the exact ap-

proaches proposed in this thesis. Regarding the Online-IRTS problem, we

envision two interesting directions for future work. The skylines sets obtained

at each iteration can be rather large, investigating how to reduce them, for

instance using linear skylines [43], could be of practical value to the worker.

When investigating the offline IRTS query [6], we noted that the problem

was more complex if instead of the shortest path between s and d the worker

wanted to consider a preferred arbitrary path. We believe this extra complex-

ity would apply for the Online-IRTS query as well and thus warrant further

research. Finally, another interesting direction for future work is to investigate

the queries proposed in this thesis within the context of time-dependent road

networks, which considers the more realistic scenario where the travel time

between locations depends on the departure time and traffic conditions.
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