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Abstract

In this thesis, we investigate the effectiveness of theoretical descriptions of

angular momentum loss in stars due to the presence of magnetic fields, a pro-

cess commonly known as magnetic braking. The most widely used description

of magnetic braking is the so-called Skumanich prescription, which can effec-

tively describe the angular momentum evolution of stars similar to our Sun,

but results in significant discrepancies in both more evolved stars and binary

systems. First I will review some of the current fundamentals of binary sys-

tems and binary evolution along with a derivation of the Skumanich magnetic

braking. Following this review, I introduce a boosted Skumanich prescription

which includes the effects of stellar wind loss and convective turnover time.

While this magnetic braking prescription more effectively reproduces observed

persistent low-mass X-ray binaries than the commonly used Skumanich pre-

scription, the most effective form of the boosted Skumanich prescription uses

ad-hoc wind and convection boosting. The second magnetic braking prescrip-

tion introduced is the Convection and Rotation Boosted (CARB) magnetic

braking that explicitly accounts for both the wind and convection leading to a

more physical description of magnetic braking. After demonstrating the effec-

tiveness of CARB magnetic braking, I use a comprehensive grid of simulated

ii



systems to determine the formation rates of progenitor binaries necessary to

reproduce observed LMXBs. The progenitor search of observed LMXBs also

revealed gaps in the observed parameter space where I propose some observed

LMXBs with incomplete observed quantities may lie. Finally, I summarize the

key results of this work and propose future work on this topic of research.
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Preface

This thesis is original work by Kenny Van in collaboration with Professor

Natalia Ivanova and Professor Craig Heinke at the University of Alberta. It is

based substantially on the following papers: Van et al. (2019); Van and Ivanova

(2019) and Van and Ivanova (2021).

Chapter 2 of this thesis contains text published as “Low-mass X-ray bina-

ries: the effects of the magnetic braking prescription”, Van, K. X., Ivanova,

N., & Heinke, C. O. 2019, MNRAS,737483, 5595, doi: 10.1093/mnras/sty3489.

In this work, I definitively show that the most commonly used magnetic brak-

ing prescription cannot effectively reproduce our sample of observed low-mass

X-ray binaries (LMXBs). I derived the modified magnetic braking scheme,

simulated the binaries, analysed the data and wrote the paper. N. Ivanova

planned the project, supervised the work, and contributed to the writing of the

paper. C. Heinke provided suggestions and edits to the paper.

Chapter 3 is work that has been published as “Evolving LMXBs: CARB

Magnetic Braking”, Van, K. X., & Ivanova, N. 2019, ApJL, 886, L31,735, doi:

10.3847/2041-8213/ab571c. In this work I derive an improved magnetic braking

scheme that more effectively accounts for convective turnover time and magne-

tized winds. I show that this improved magnetic braking scheme can effectively

reproduce our sample of persistent LMXBs. I derived the improved magnetic

braking scheme, simulated the binaries, analysed the data and wrote the paper.

N. Ivanova planned the project, supervised the work, and contributed to the

writing of the paper.

Chapter 4 of the thesis contains work submitted to ApJ as “Constraining

Progenitors of Observed LMXBs Using CARB Magnetic Braking”, Van, K. X.,
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& Ivanova, N. 2021. In this work I apply the improved magnetic braking scheme

derived in Chapter 3 and use it to generate a large grid of simulated systems.

I then compare this simualted grid to observed persistent LMXBs to calculate

progenitor rates. I simulated the binaries grid, analysed the data, calculated

the rates and wrote the paper. N. Ivanova planned the project, supervised the

work, and contributed to the writing of the paper.

Chapter 5 summarizes the conclusions from the two published works, “Low-

mass X-ray binaries: the effects of the magnetic braking prescription”, Van, K.

X., Ivanova, N., & Heinke, C. O. 2019, MNRAS,737483, 5595, doi: 10.1093/m-

nras/sty3489, “Evolving LMXBs: CARB Magnetic Braking”, Van, K. X., &

Ivanova, N. 2019, ApJL, 886, L31,735, doi: 10.3847/2041-8213/ab571c and the

submitted work ‘Constraining Progenitors of Observed LMXBs Using CARB

Magnetic Braking”, Van, K. X., & Ivanova, N. 2021.
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Chapter 1

Introduction

1.1 Low Mass X-ray Binaries

A binary system consists of two stars gravitationally bound to each other orbit-

ing about a centre of mass. These systems were initially proposed by Michell

(1767) and introduced in a catalogue by Herschel (1802). While binary sys-

tems have been studied for over 200 years, only recently, with advancements in

observational techniques and modelling tools, has the understanding of stellar

and binary evolution drastically increased. Understanding binary systems is

paramount in understanding stellar evolution with stellar multiples being com-

mon (Abt and Levy, 1976; Abt, 1983; Mason et al., 2009; Sana and Evans,

2011; Chini et al., 2012; Almeida et al., 2017) and a significant fraction of mas-

sive stars experiencing mass transfer (MT) at some point during their lifetime,

drastically impacting their evolution (Sana et al., 2012).

Binary interactions are often postulated to be a mechanism in producing

exotic signals or stellar systems. In exotic binary systems such as the compact

binary systems detected by the Laser Interferometer Gravitational-Wave Ob-

servatory (LIGO), MT is necessary to explain the production and evolution of

the system (The LIGO Scientific Collaboration et al., 2019, 2020a,b). Of par-

ticular interest here are low mass X-ray binaries (LMXBs) which are systems

1



consisting of a compact object such as a black hole (BH) or a neutron star

(NS), accreting material from a donor star.

1.2 Accretion in LMXBs

In LMXBs, X-ray radiation is produced when material is accreted onto the

compact object. Based on the configuration of the system such as the type of

compact object and binary separation, the material accreted can be a result

of stellar winds or due to MT from the donor star onto the compact object,

a process that is known as Roche Lobe overflow (RLOF). Wind MT occurs

when the companion loses material through stellar winds and the compact

object accretes this material. This method of mass transfer normally occurs in

binaries with a neutron star or black hole and a high mass, or red giant, donor.

RLOF, on the other hand, occurs when the radius of the donor star exceeds the

region where material remains gravitationally bound to it. When this occurs,

material may flow from the donor to the accretor. In this work where I focus

on NS LMXBs, RLOF will be the only mechanism of MT used in this work.

1.2.1 Roche Lobe Overflow

The Roche lobe of a star is the region around a star where material is gravi-

tationally bound to that star. The effective gravitational potential of a binary

system assuming a circular orbit, constant angular velocity and in the corota-

tion frame is given by the following equation (Eggleton, 2006):

ΦR(x, y, z) = − GMd√
[x+(Ma

M )a]
2
+y2+z2

− GMa√[
x−
(

Md
M

)
a
]2

+y2+z2
− GM

2a3
(x2 + y2), (1.1)

Here G is the gravitational constant, Ma and Md denotes the mass of the

accretor and donor respectively. M = Ma + Md is the combined mass of the
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binary and a is the binary separation. Equation 1.1 is in Cartesian coordinates

with the origin at the center of mass of the binary. A graphical representation

of the Roche potential in the x − y plane is shown in Figure 1.1 showing a

surface of equipotential and the L1 Lagrange point. The L1 Lagrange point is

the first intersection between the effective potentials of the donor and accretor

and is the location of mass transfer when RLOF occurs. Depending on which

star fills their respective Roche lobe, there are three different classes of binary

system as described in Kopal (1955):

1. Detached Systems: Neither star has filled their Roche lobe and the stars

are primarily interacting gravitationally. The stars may still transfer

material through winds but no material should be transferred through

RLOF.

2. Semi-Detached Systems: One of the two stars have filled their Roche lobe

and RLOF is occurring. The donor star is transferring mass through the

L1 Lagrange point to the accretor.

3. Contact Systems: Both stars have filled their respective Roche lobes and

the stars are in physical contact with one another.

In this work I focus on semi-detached systems where a donor star will be trans-

ferring mass to a neutron star.

While Equation 1.1 describes the surface of effective gravitational potential,

the volume-equivalent radius of the Roche lobe that crosses the L1 Lagrange

point was approximated in 1D by Eggleton et al. (1973) as

RRL

a
≈ 0.49q2/3

0.6q2/3 + ln (1 + q1/3)
, (1.2)

where RRL is the Roche lobe radius, q is the ratio of the donor mass to the

accretor mass Md/Ma and a is the binary separation. I will be using subscripts

d and a to denote the donor and accretor respectively throughout this work.
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Figure 1.1: A schematic view of Roche lobes in the x − y plane. The system
consists of a 1.4M� accretor and a 1.0M� donor with an initial orbital period of
2 days. The two different lines show two different surfaces of equal gravitational
potential.

1.2.2 Mass Transfer Stability

After mass transfer starts, the lifetime and stability of this process is directly

related to the timescale over which it occurs. Depending on how the donor,

the accretor and the Roche lobe change due to mass transfer, the mass transfer

can occur over different timescales (Hjellming and Webbink, 1987; Soberman

et al., 1997). The timescale of mass transfer is defined by three mass-radius

relations, these quantities represent the response of the star’s radius to mass

loss:

ξeq =

(
d lnR

d lnM

)
eq

, ξRL =

(
d lnR

d lnM

)
RL

, ξad =

(
d lnR

d lnM

)
ad

. (1.3)

These relations define the mass-radius relations of stars in thermal equilibrium,

the Roche lobe, and for a star losing mass adiabatically. Inequalities between

these three relations define the timescale and type of mass transfer occurring

in a binary system.

1. Stable Mass Transfer (ξRL ≤ ξeq): The donor star remains in thermal
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equilibrium through mass transfer. RLOF is driven by the nuclear evo-

lution of the donor which expands its radius and occurs on the nuclear

timescale. For a main sequence star burning hydrogen, this timescale can

be given by:

τnuc ≈ 0.007
Mcorec

2

L
≈ 1010 M

M�

L�
L

yrs. (1.4)

2. Thermal Timescale Mass Transfer (ξeq < ξRL ≤ ξad): Mass transfer in

this regime remains stable and is driven by the thermal readjustment

of the donor star. While the star is no longer in thermal equilibrium,

mass transfer is still stable and self regulating. In thermal timescale

mass transfer, the mass transfer will saturate at a value regulated by the

thermal timescale of the donor

Ṁmax ≈ −
Md

τKH

, (1.5)

with τKH being the thermal or Kelvin-Helmholtz time scale:

τKH =
Etherm

L
≈ GM2

2RL
≈ 1.5× 107

(
M

M�

)2
R�
R

L�
L

yrs. (1.6)

If the mass transfer rate is lower than Ṁmax then the donor star will

expand and increase the mass transfer rate. If the mass transfer rate is

initially larger than Ṁmax then the donor star shrinks and suppresses the

mass transfer rate.

3. Dynamically Unstable Mass Transfer (ξad < ξRL): Dynamically unstable

mass transfer occurs when the donor star cannot readjust quickly enough

to keep the star within its Roche Lobe. Depending on the entropy pro-

file of the star, it is possible that the donor star will expand as it loses

mass (Woods and Ivanova, 2011; Pavlovskii and Ivanova, 2015). In this

scenario, the radius expands with mass loss causing the mass transfer

rate to grow resulting in a runaway effect. Systems with very high mass
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transfers may even lose mass through other Lagrange points resulting in

a common envelope event (see Ivanova et al., 2013; Ivanova and Nandez,

2016, for more information on common envelope events).

These three types of mass transfer timescales can generally describe the

different types of RLOF a binary system may undergo. It is possible for binary

systems that initially experience stable mass transfer to increase and later ex-

perience dynamically unstable mass transfer (Webbink et al., 1983; Hjellming

and Webbink, 1987). This delayed unstable mass transfer occurs when the

mass transfer is initially stable, but due to mass loss, it is possible to expose

a region of the star where the entropy increases with increasing mass. These

regions respond to mass loss by expanding outwards leading to runaway mass

transfer. Numerically simulating these processes is complex and numerically

intensive. In this work we use Modules for Experiments in Stellar Astrophysics

(MESA) numeric code (Paxton et al., 2011, 2013, 2015, 2018, 2019). MESA is a

very robust code that uses advanced techniques to avoid crashing. The MESA

code will reduce a simulation’s time step when the system encounters physically

complex situations. If the time steps get too small, the MESA simulation will

end stopping the stellar evolution prior to the user defined stopping condition.

In binary systems, this can occur even at thermal timescale mass transfer if

the donor star enters a physically complex phase of its evolution. My research

focuses on stable and thermal timescale mass transfer in long living LMXBs.

1.2.3 Mass Transfer Efficiency

Once RLOF occurs and material flows from the donor through the L1 Lagrange

point, a fraction of the mass may be deflected away from the accretor resulting

in less mass accreted. The fraction of the material lost from the donor and

is accreted by the compact object is known as the MT efficiency. An analytic

description of the MT efficiency is not known but in the context of NSs, there is
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observational evidence that a significant amount of the mass lost by the donor

isn’t accreted (Antoniadis et al., 2012, 2016). Additionally, a fraction of the

material accreted onto the neutron star is also converted to binding energy

further reducing the efficiency. Depending on the equation of state used to

describe the neutron star, the amount of mass that is not converted to binding

energy can also vary between fBE ≈ 0.85− 0.90 (Lattimer and Prakash, 2007)

with 10% − 15% converted to energy. The exact value that I employ in my

stellar simulations will be described in the respective chapters.

1.2.4 Eddington Limit

A well established upper limit on the mass accretion rate is the Eddington limit.

The Eddington limit is the maximum luminosity a star can have before the

radiation pressure exceeds the gravitational force pulling the material inwards.

With luminosity directly related the the mass accretion rate, it can be shown

that the Eddington limit sets an upper limit to accretion as well. If the accretion

rate Ṁd exceeds the Eddington-limited MT rate ṀEdd, the excess Ṁd − ṀEdd

cannot be accreted on to the compact object, and is lost from the system. For

the Eddington limited MT rate on a NS I use,

ṀEdd =
4πcRa

κe

≈ 3.4

1 +X
× 10−8M� yr−1.

(1.7)

Ra = 11.5km is the radius of the accretor, κe is the opacity due to Thomson

electron scattering, κe = 0.2(X + 1) cm2 g−1, where X is the hydrogen mass

fraction in the material transferred from the donor. It is important to note

that Equation 1.7 assumes spherical symmetry and in reality, some systems

exceed the Eddington limit resulting in ultra-luminous X-ray sources (Colbert

and Mushotzky, 1999). One well known ULX with a NS accretor is M82 X-2
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which had an observed luminosity of ≈ 1.8×1040 erg s−1 (Bachetti et al., 2014).

This source is observed to have a mass accretion rate approximately two orders

of magnitude larger than the Eddington limit predicted in Equation 1.7. The

NS in M82 X-2 is predicted to have a moderately strong magnetic field which

would suppress the opacity. With a lower opacity, the Eddington limit would

increase to sufficiently high values to explain the luminosity observed for this

system (Karino and Miller, 2016).

1.3 Angular Momentum Loss Mechanisms

During the evolution of a neutron star LMXB, MT would only occur if the donor

star overfills its Roche lobe, RRL ≤ Rd. For this to occur, either the radius of

the donor must increase or the Roche lobe must shrink. From Equation 1.2 we

see that before RLOF, q should remain largely constant as the mass of the stars

is only affected by wind mass loss. Stellar winds do not play a significant role

on the masses of stars during the main sequence if these stars are intermediate

or low-mass stars. This implies that in LMXBs, where the donor star is on the

main sequence and it is not massive, the start of RLOF is only dependent on

the evolution of the orbital separation due to the orbital angular momentum

loss. The angular momentum of a binary system is related to the masses and

the binary separation through the following equation

J2 = G
M2

dM
2
a

Md +Ma

a(1− e2). (1.8)

The change in orbital separation can then be given by

J̇

J
=
ȧ

a
+ 2

Ṁd

Md

+ 2
Ṁa

Ma

− Ṁd + Ṁa

Md +Ma

− 2
ėe

1− e2
. (1.9)

Here J is the angular momentum, e is the orbital eccentricity and the other

variables are the same as those defined above. Prior to RLOF, the primary
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mechanism to shrink the binary separation is through the loss of angular mo-

mentum. The angular momentum of a binary system is lost through gravita-

tional radiation, mass lost from the system or via magnetic braking.

1.3.1 Gravitational Radiation

Among the angular loss mechanisms, gravitational radiation is the most well

understood and predictable. Gravitational radiation is the process where an-

gular momentum is lost through the production of gravitational waves. The

historic example of gravitational radiation is the Hulse-Taylor binary (Weisberg

and Huang, 2016) with more recent examples of gravitational waves detected

by LIGO (The LIGO Scientific Collaboration et al., 2019, 2020a,b). Assuming

a circular orbit, the loss of angular momentum through gravitational radiation

is given by (Faulkner, 1971; Kraft et al., 1962; Landau and Lifshitz, 1975)

J̇GR = − 32

5c5

(
2πG

P

)7/3
(MdMa)

2

(Md +Ma)2/3
. (1.10)

Here P is the orbital period of the binary. Gravitational radiation is more

important for short period, high mass binary systems as seen in Equation

1.10. In the case of NS LMXBs, the effects of gravitational radiation are

overshadowed by magnetic braking or mass loss until the periods are shorter

than 3 hours.

1.3.2 Mass Loss

As explained in Section 1.2, there is clear observational evidence that the NS

in LMXBs does not accrete all of the material lost from the donor star. In

addition to possible stellar winds, the mass lost from inefficient MT will carry

angular momentum away from the binary. Any material lost through winds

will carry the specific angular momentum of the star where the wind originated.

The material that is lost from the system due to inefficient mass transfer or the
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Eddington limit will carry specific angular momentum of the accretor. Angular

momentum loss due to mass loss can be described by:

J̇ML = Ṁd,loss

(
Ma

Md +Ma

a

)2

Ω + Ṁa,loss

(
Md

Md +Ma

a

)2

Ω (1.11)

Here Ṁd,loss and Ṁa,loss denote the mass loss from the donor or accretor that

does not remain in the system respectively. In general, this mechanism of

angular momentum loss is less well understood than gravitational radiation due

to uncertainties in wind mass loss rates and MT efficiency. Both mass transfer

efficiency and wind mass loss rates are topics of ongoing research (Antoniadis

et al., 2012, 2016; Renzo et al., 2017). The strength of this mechanism depends

entirely on the amount of mass lost from the system which is an area of ongoing

research. In LMXBs with an initially non-massive main sequence donor, mass

loss from the systems would not be significant until RLOF occurs as the wind

mass loss rate in these types of stars is relatively small.

1.3.3 Magnetic Braking

The loss of angular momentum with gravitational radiation operates primarily

in short-period systems. At the same time, unless one of the stars loses lots

of mass through winds while widening the system, the angular momentum loss

through mass loss only plays a significant role once RLOF begins. In relatively

wide non-mass transferring systems with intermediate or low-mass donors, the

dominant mechanism of angular momentum loss that lead to the shrinkage of

the orbital separation is different, and is known as magnetic braking. Magnetic

braking is the process where material remains locked in corotation with the

star’s surface out to large radii due to the magnetic field. Since the radius to

which the matter is in corotation is substantially larger than the star’s radius,

the amount of angular momentum lost can be appreciable, despite the amount
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of the mass loss being small. Magnetic braking is the main angular momentum

loss mechanism for NS LMXBs with large periods prior to RLOF.

Unfortunately, unlike gravitational radiation that was derived from first

principles (Kraft et al., 1962; Landau and Lifshitz, 1975), no such analytic so-

lution to magnetic braking exists. The physical description of magnetic braking

depends on the magnetic field geometry, the type of wind from the star and

the relation between the magnetic field strength and the physical properties of

the star (Weber and Davis, 1967; Mestel, 1968; Mestel and Spruit, 1987). The

angular momentum is lost through magnetic braking when material leaves the

system through the Alfvèn surface. The Alfvèn surface represents the max-

imum radius where the material remains locked in corotation with the star.

Beyond this value, the ram pressure pushing the material out of the system ex-

ceeds the magnetic pressure binding the material to the system (Mestel, 1968;

Mestel and Spruit, 1987):

1

2
ρAv

2
A '

B(r)2

8π
. (1.12)

ρA and vA are the density and velocity of the material at the Alfvèn surface.

B(r) describes the magnetic field strength as a function of radius. In the

simplest case, B(r) can represent a radial magnetic field given by:

B(r) = Bs
R2
s

r2
. (1.13)

The subscript s denotes the value of that variable at the surface of the star.

This gives a mathematical description of an Alfvèn surface in a system with a

radial magnetic field:

4πR4
AρAv

2
A = B2

sR
4
s, (1.14)

Assuming an isotropic wind and enforcing mass continuity, the wind mass loss

rate is:
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ṀW = 4πR2ρsvs,

= 4πR2
AρAvA,

(1.15)

By combining Equations 1.14 and 1.15, the radius of the Alfvèn surface is:

R2
A =

B2
sR

4

ṀWvA
. (1.16)

The amount of angular momentum lost through an isotropic wind leaving

a spherically symmetric Alfvèn surface can be given by:

J̇MB = −4πΩ

∫ π/2

0

ρAvAR
2
A(RA sin θ)2 sin θdθ

' −8

3
πΩρAvAR

4
A,

' −2

3
ΩṀWR

2
A,

∝ ΩB2
sR

4
s

(1.17)

The surface magnetic field strength can be related to other physical proper-

ties of the star through the Rossby number (Parker, 1971; Noyes et al., 1984;

Ivanova, 2006). These relations allows for the following equation:

Bs

Bs,�
=

R0

R0,�
,

Bs

Bs,�
=

Ω

Ω�

τconv

τ�conv

.

(1.18)

Combining Equations 1.17 and 1.18 gives

J̇MB ∝ R4Ω3. (1.19)
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Assuming a radial magnetic field and isothermal winds results in an equa-

tion for magnetic braking that has the same functional dependence as the well-

known “Skumanich” prescription, which is to the date is the most commonly

used parameterization of magnetic braking. This empirical prescription was

originally built on the observation that the equatorial spin of slowly rotating,

G-type main sequence stars decreases with age (Skumanich, 1972).

ve ≈ f × 1014t
−1/2
0 cm s−1. (1.20)

ve is the equatorial rotation speed, f is a constant that ranges from 0.73−1.78,

and t0 is the amount of time the star has spent on the main sequence. Verbunt

and Zwaan (1981) used the relationship between the age of the star and its

equatorial spin to derive a magnetic braking prescription.

J̇ = −5× 10−29f−2MdR
4
dΩ

3. (1.21)

While the functional dependence can be explained by the specific choice

of the magnetic field geometry and wind properties, the calibration constant

comes from the empirical comparison between observations of slowly rotating

solar-type stars and theoretical stellar models. It is worth mentioning that

both the functional dependence and the calibration constant were derived for

the case of low-mass main-sequence slowly rotating stars. The initial rotation

for rapidly rotating stars in this prescription does not affect the outcome much.

Rappaport et al. (1983) found significant uncertainties in applying this pre-

scription to binary systems and further parameterized the equation to its most

commonly seen form:

J̇MB, sk = −3.8× 10−30MdR
4
d

(
Rd

R�

)γMB

Ω3 dyne cm. (1.22)
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Here Ω is the angular velocity of the donor star in units of s−1 and γMB is

a dimensionless parameter commonly ranging from 0-4 with γMB = 4 corre-

sponding to the Skumanich scaling for Equation 1.22. While this is the most

common magnetic braking prescription, this does not mean the equation ef-

fectively models the magnetic braking for all systems. It has been shown that

numerical studies of LMXBs using the Skumanich prescription result in calcu-

lated MT rates that differ from observations by up to an order of magnitude

(Podsiadlowski et al., 2002).

These discrepancies in the Skumanich prescription have led to different re-

search groups applying different assumptions and improvements in deriving

many different magnetic braking schemes. Justham et al. (2006) assumes a

dipolar magnetic field and an irradiation driven wind to derive a magnetic

braking scheme for Ap/Bp donor stars in a binary system. Other studies such

as Ivanova (2006) have also assumed a dipolar field but in that work, they

relate the magnetic field strength of the donor to internal properties such as

the turnover time in pre-main sequence stars. More recently, Pavlovskii and

Ivanova (2016) tested both radial and dipolar magnetic fields with isothermal

winds and varied the strength of the magnetic field with convective turnover

time. Pavlovskii and Ivanova (2016) applied this magnetic braking scheme to

reproduce the well studied LMXB, Sco X-1. With such dramatically differ-

ent stellar systems, it is uncertain if these magnetic braking prescriptions will

effectively reproduce binaries beyond what they were designed for. The previ-

ously mentioned works focus on magnetic braking in binary systems, there has

also been significant advances in the simulations of single stars as well using

different magnetic field topologies ranging from monopoles (Kawaler, 1988) to

dipoles (Matt et al., 2012) and more recently allowing the Alfvèn surface to

change with rotation (Réville et al., 2015). This work focuses on improving the

currently used magnetic braking prescription by using a more physically mo-

tivated derivation and using the improved prescription to reproduce observed
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LMXBs with a wide range of observed properties.

1.4 Simulating Binary Systems

Depending on the initial configuration of the binary system, a wide range of

possible exotic systems can be produced. With additional complications in

the physics during evolution, there are a significant number of uncertainties in

modelling and studying both binary and isolated systems. However, due to the

wide gamut of exotic stellar systems that are a result of binary interactions,

studies in the field of stellar evolution have led to significant advancements in

numerical models of these systems. X-ray binaries in general have been used

as laboratories for theorists to test and verify stellar models using numerical

simulations (Faulkner, 1971; Rappaport et al., 1983; Webbink et al., 1983; Joss

and Rappaport, 1984; Podsiadlowski et al., 2002; Justham et al., 2006).

In regards to simulating LMXBs, there are two different approaches for

gaining insight into these systems using numerical simulations. One approach

is to study a well documented observed system and generalize the theories to

other binaries (Eggleton, 1983; Justham et al., 2006; Pavlovskii and Ivanova,

2016; Podsiadlowski and Rappaport, 2000; Verbunt and Zwaan, 1981). The

other approach is to employ a technique known as population synthesis where

a set of initial assumptions is applied to a large number of stellar systems in the

parameter space of interest. The results of population synthesis are commonly

used to generate statistical properties of those stellar systems (Fragos et al.,

2008; Kalogera and Webbink, 1998; Kobulnicky and Fryer, 2007; Rappaport

et al., 2005) or generate formation rates of exotic stellar systems using different

initial conditions (Belczynski et al., 2018, 2020; Bruzual and Charlot, 2003).

In this work, I employ a reverse population synthesis technique where we infer

initial progenitor properties using our simulated results.
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1.5 Objectives

The objectives of this research are to demonstrate the ineffectiveness of the

Skumanich magnetic braking scheme and to derive an improved prescription.

This will be done using Modules for Experiments in Stellar Astrophysics (MESA)

(Paxton et al., 2011, 2013, 2015, 2018, 2019), a commonly used 1D stellar

evolution code where I can easily test the magnetic braking prescriptions in a

parameter space search. The main goals of these simulations are the following:

1. Clearly show that the default Skumanich magnetic braking scheme cannot

effectively reproduce a well studied sample of observed LMXBs.

2. Derive an improved magnetic braking scheme using improvements in the

understanding of the Alfvèn radius and the effects of convection on the

magnetic field.

3. Using the improved prescription, simulate a comprehensive grid of binary

systems to calculate progenitor formation rates of observed persistent

LMXBs.

1.6 Methodology

To determine if a magnetic braking scheme is effective, I need to perform a

comprehensive parameter space search to conclusively show if the prescription

can or cannot reproduce observed LMXBs. This requires a large number of

simulated systems to ensure that complete coverage of relevant properties is

done. While there are different numerical approaches to stellar simulations,

this work uses a 1D grid based numerical code MESA. 1D stellar evolution codes

assume spherical symmetry and can be less physically accurate than higher

dimensional codes. 1D codes require significantly less computing power and

because this work focuses on the broad effects that differences in magnetic
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braking have on the evolution of a binary system, the use of a 1D stellar code

like MESA is the best balance between computational cost and accuracy.

The MESA stellar evolution code is a robust, well documented and easily

modifiable stellar evolution code. Throughout this work I use version 10398 in

Chapter 2 and version 11701 in Chapters 3 and 4. A MESA simulation requires

the user to define a variety of initial conditions such as initial donor mass and

binary period, the two properties that I explore in the parameter space search.

The exact details of the MESA options used will be presented in Chapters 2, 3

and 4 with an example in Appendix B. With the modular implementation of

MESA, a user can easily make modifications or additions to the included physics

in the code. This allows me to easily include the Eddington limit as described

in Equation 1.7 and implement any modified magnetic braking prescriptions.

These implementations are shown in Appendix A.

In this work, I generate a grid of simulated binaries that represents a rea-

sonable range of initial periods and donor masses using the different magnetic

braking schemes presented. After generating the simulated results, the simu-

lated systems are compared to well studied observed LMXBs to determine if the

observed systems can be reproduced using a given magnetic braking scheme. I

focus on the mass ratio, period, and mass transfer rates of the LMXBs when

making this comparison. By drawing cuboids using these three observed prop-

erties and their errors, I can determine if an observed LMXB can be reproduced

by the magnetic braking prescription used and how long lived these simulated

LMXBs are. This is primarily done in Chapters 2 and 3 where I derive improved

magnetic braking prescriptions and test their effectiveness.

In Chapter 4 I employ what I call reverse population synthesis. Standard

population synthesis techniques apply initial assumptions to produce a large

population of stellar systems. The results of this technique are often used to

predict expected populations of stellar objects. In the reverse case, I make no

initial assumptions to the distribution of systems and instead use the results to
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infer the initial conditions. After the grid of simulated results is produced using

the improved magnetic braking scheme, I use this technique to calculate the

progenitor formation rate. Another result of producing a comprehensive grid

of simulated LMXBs is being able to find structure in the viable progenitors in

the observed systems as well as determining gaps in where we expect to find

more observable systems.

In summary, throughout this work, I will be deriving improved magnetic

braking schemes and applying them to large grids of binaries with a wide range

of initial donor masses and binary periods to generate a comprehensive grid of

results. I will then compare this grid of simulated systems to observed LMXBs

to test the effectiveness of a prescription. Chapter 2 will contain a comprehen-

sive list of LMXBs and define our criteria for systems used to comparison to the

simulated results. I will also briefly describe the conditions for what is consid-

ered a persistent or transient LMXB in this Chapter. In Chapter 2 I derive the

first modified magnetic braking scheme which applies additional scaling factors

to the Skumanich prescription and present the results using this model. Chap-

ter 3 will contain the derivation of my convection and rotation boosted (CARB)

magnetic braking prescription and the initial tests on our sample of observed

LMXBs. In Chapter 4 I will apply the CARB magnetic braking scheme to a

comprehensive grid of initial masses and periods to calculate possible progeni-

tor production rates using the reverse population synthesis technique. Finally,

Chapter 5 will summarize my results and present future considerations and

prospects using the improved magnetic braking prescriptions.
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ABSTRACT

We present a population study of low- and intermediate-mass X-ray binaries

(LMXBs) with neutron star accretors, performed using the detailed 1D stellar

evolution code MESA. We identify all plausible Roche-lobe overflowing binaries

at the start of mass transfer, and compare our theoretical mass transfer tracks

to the population of well-studied Milky Way LMXBs. The mass-transferring

evolution depends on the accepted magnetic braking (MB) law for angular

momentum loss. The most common MB prescription (”Skumanich MB”) orig-

inated from observations of the time-dependence of rotational braking of Sun-
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type stars, where the angular momentum loss rate depends on the donor mass

Md, donor radius Rd, and rotation rate Ω, J̇ ∝ MdR
γ
dΩ

3. The functional form

of the Skumanich MB can be also obtained theoretically assuming a radial mag-

netic field, isotropic isothermal winds, and boosting of the magnetic field by

rotation. Here we show that this simple form of the Skumanich MB law gives

mass transfer rates an order of magnitude too weak to explain most observed

persistent LMXBs. This failure suggests that the standard Skumanich MB law

should not be employed to interpret Galactic, or extragalactic, LMXB popu-

lations, with either detailed stellar codes or rapid binary population synthesis

codes. We investigate modifications for the MB law, and find that including a

scaling of the magnetic field strength with the convective turnover time, and a

scaling of MB with the wind mass loss rate, can reproduce persistent LMXBs,

and does a better job at reproducing transient LMXBs.

Key words: methods: numerical – binaries: general – stars: evolution –

stars: magnetic field – X-rays: binaries.

2.1 Introduction

Low mass X-ray binaries (LMXBs) with a neutron star (NS) accretor are among

the most well-studied binary systems in astrophysics. Over 100 of them have

been observationally identified in the Milky Way over the last 50 years, while

a plethora of binary parameters – mass ratios, orbital periods, mass transfer

(MT) rates, and donors’ effective temperatures in some cases – have been de-

termined for several of them. For many years, X-ray binaries have posed as an

enticing problem for theorists, providing grounds to verify ways to model bi-

nary stellar evolution (Faulkner, 1971; Rappaport et al., 1983; Webbink et al.,

1983; Joss and Rappaport, 1984; Podsiadlowski et al., 2002). The applications

of theoretical models of LMXBs are not limited to only our Galaxy, but have

also been applied to interpret the observed populations of X-ray binaries in
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other galaxies (e.g., Fragos et al., 2008; Tremmel et al., 2013), and even to

estimate their feedback on reionization of the early universe (e.g., Fragos et al.,

2013)

Understanding and interpreting LMXBs can be split into two distinct stages:

the formation and life of a binary system with a NS before the start of the MT,

and the evolution of the binary system during the MT. Before the onset of the

MT, the evolution of the binary is expected to proceed through a a common

envelope phase and a supernova explosion (Bhattacharya and van den Heuvel,

1991). Supernova natal kicks, supernova explosion mechanisms, and widely

used pulsar kick distributions, while observationally derived, are not fully un-

derstood (Fryer et al., 2012; Hobbs et al., 2005). The outcomes of common

envelope events are highly uncertain as well (for a review, see Ivanova et al.,

2013).

In this paper, we focus on the evolution of LMXBs during MT. The driving

mechanism of the MT phase is the donor’s response to the mass and angular

momentum loss. In short period systems, the dominant channel of angular mo-

mentum loss is gravitational radiation, which is well understood theoretically

and has been confirmed by observations (Weisberg and Huang, 2016; LIGO

Scientific Collaboration and VIRGO Collaboration, 2016; LIGO Scientific Col-

laboration and Virgo Collaboration, 2017). In cases with longer orbital periods,

magnetic braking (MB) is the dominant angular momentum loss mechanism

(Rappaport et al., 1983).The strength of MB affects the evolution of LMXBs

by increasing or decreasing the angular momentum loss of the binary. In cases

where the angular momentum loss is greater, the binary will tend to shrink

and thus undergo more aggressive MT. The default assumption for MB is to

adopt the ”Skumanich” empirical law where the angular momentum loss scales

with donor mass Md, donor radius Rd, and rotation rate Ω, J̇ ∝MdR
γ
dΩ

3 (Sku-

manich, 1972). In theoretical models, this empirical law is used by employing

the parameterized prescriptions for MB stated by either Verbunt and Zwaan
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(1981) or Rappaport et al. (1983). Numerical studies of LMXB populations

have shown systematic mismatches between simulated results and observations.

Observed MT rates have been found differing from the predicted rates in sim-

ulated systems by up to an order of magnitude (Podsiadlowski et al., 2002).

Despite obtaining more detailed data on LMXBs, the discrepancies remained

prevalent. For instance, Sco X-1 cannot be explained by the ”Skumanich” law.

To match the observations of Sco X-1, the rate of angular momentum loss has

to be boosted, for example by taking into account the effect of stellar wind loss

Pavlovskii and Ivanova (2015).

We are taking this analysis a step further by including the effects of the

convective turnover time, as well as considering a non-isothermal stellar wind

§ 2.2.2. We apply different MB laws to a grid of 2136 binary systems spanning

reasonable initial conditions, for a circularized binary system with a NS, where

MT starts within 10 Gyr § 2.2.1. We describe the principal properties of the

simulated MT systems in § 2.4 and have compiled a table with updated prop-

erties of some observed NS LMXBs (see § 2.3). The observational data is then

used to constrain the MB laws in § 2.5.

2.2 Numerical Method

2.2.1 Setting up and evolving the population of binaries

We consider the set of initial binary systems as follows:

• The masses of donors range from Md = 1.0M� to Md = 7M�. The grid in

donor masses uses steps of 1M� for donors with masses ≥ 5M�, 0.5M�

for donors between 3M� and 5M�, 0.2 M� for donors between 2.4M�

and 3M�, and 0.1M� for donors with masses ≤ 2.4M�. This is the mass

of the donors at ZAMS. The adopted metallicity is Z = 0.02.

• The initial binary orbital periods range from the periods at which the
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donor stars would overflow their Roche lobes at ZAMS, to the maximum

orbital period at which they would start the MT while they are on the red

giant branch. We define the initial period as the period at ZAMS of the

donor star; which is not the same as the period that a binary would have

at the start of the MT. There can be a large difference between when the

initial period at the donor stars ZAMS and at the onset of RLOF. The

mesh for the initial orbital periods has a fixed step of 0.05 in log10(P ).

All orbits are circular.

• With the initial mesh of seed masses and periods, we ran 2136 simulations

for each considered MB scheme (see § 2.2.2).

• The compact companions are NSs with mass Ma = 1.4M� and radius

Ra = 11.5 km.

All calculations for the single stars and mass transferring binaries were

performed using the one-dimensional stellar evolution code MESA ∗ (Modules

for Experiments in Stellar Astrophysics), revision 10398 and the August 2018

release of the MESASDK †. MESA is a modern open-source set of stellar libraries

as described in Paxton et al. (2011, 2013, 2015, 2018). The donors are evolved

using default assumptions as in MESA. In particular, we use the mixing length

α = 2, no semiconvection, and no overshooting. MESA uses mixing length theory

as described in Cox and Giuli (1968). We adopt a grey atmosphere boundary

condition and use the OPAL opacity tables for solar composition (Grevesse and

Noels, 1993)‡.

The donor stars are evolved using Reimer’s wind mass loss prescription

(Reimers, 1975):

∗http://mesa.sourceforge.net
†http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
‡The inlists files can be found at the MESA marketplace website: http://cococubed.

asu.edu/mesa_market/
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Ṁw
d = η × 4× 10−13 R

R�

L

L�

M�
M

M�yr−1, η = 1 (2.1)

η is a scaling factor or efficiency of wind loss. In our calculations we use η = 1.

When the donor star overfills its Roche lobe we calculate MT; we do not

consider any other forms of MT. For the Roche lobe radius, we use the fitting

formula for the volume equivalent one-dimensional star’s radius, as provided

by Eggleton (1983):

RL

a
=

0.49q2/3

0.6q2/3 + ln(1 + q1/3)
. (2.2)

Here RL is the Roche lobe radius of the donor star with mass Md, a is the

orbital separation between the two stars, and q = Md/Ma is the mass ratio of

the two stars. To calculate the MT via the Lagrange point between the two

stars L1, ṀL1
d , we employ the “Ritter” mass loss scheme, as implemented in

MESA (see Ritter, 1988, for details of this MT prescription). We consider that

the MT may be non conservative. If ṀL1
d exceeds the Eddington-limited MT

rate ṀEdd, the excess ṀL1
d −ṀEdd cannot be accreted on to the compact object,

and is assumed to be lost from the system. For the Eddington limited MT rate

on a NS we use,

ṀEdd =
4πcRa

κe
≈ 3.4

1 +X
× 10−8M� yr−1 (2.3)

Here κe is the opacity due to Thomson electron scattering, κe = 0.2(X+1) cm2

g−1, where X is the hydrogen mass fraction in the material transferred from

the donor.

The angular momentum of the system is lost through gravitational radia-

tion, or through MB, or is carried away with the mass lost from the system.

The mass lost from the donor due to wind mass loss leaves with the specific

angular momentum of the donor. Note the orbital evolution is calculated be-

fore the start of the MT as well. If the MT rate exceeds ṀEdd, the material
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exceeding the Eddington limit is lost with the specific angular momentum of

the accretor. The angular momentum loss due to gravitational radiation is

found using the standard formula (Faulkner, 1971):

J̇GR

J
= −32

5

G3

c5

MdMa(Md +Ma)

a4
(2.4)

2.2.2 Magnetic braking

We calculate the MT sequences considering several prescriptions for the angular

momentum loss via MB. The first prescription considered uses the formulation

from Rappaport et al. (1983):

J̇MB,Sk = −3.8× 10−30MdR
4
�

(
Rd

R�

)γmb

Ω3dyne cm (2.5)

Here, Rd is the radius of the donor, γmb is a dimensionless parameter from 0 to

4 and Ω is the angular velocity of the donor. The stars are kept in corotation

with the binary as the angular velocity is calculated using the binary period.

With γmb = 4, Equation 2.5 describes the standard Skumanich law as derived

by Verbunt and Zwaan (1981), and is the most commonly used form for MB

in calculations of LMXB evolution.

The Skumanich law was scaled to describe main sequence stars similar to

our Sun. In systems with donors different from the Sun, the increased rate of

mass loss with the stellar wind, as well as magnetic field strength that does

not scale directly with the angular velocity of the star, will play a role in

the MB calculation (Mestel, 1968; Mestel and Spruit, 1987; Kawaler, 1988).

To determine the effects of these additional terms, we follow similar steps as

Pavlovskii and Ivanova (2015). We start with the formulation given by Mestel

and Spruit (1987) which parameterizes the amount of angular momentum lost

from the system through mass leaving through the Alfvèn surface. The Alfvèn

surface is the surface where the ram pressure is equal to the magnetic pressure
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(Mestel, 1968; Mestel and Spruit, 1987):

1

2
ρAv

2
A '

B(r)2

8π
. (2.6)

ρA and vA denote the density and velocity of the wind as it crosses the

Alfvèn surface. B(r) is the poloidal magnetic field strength as a function of

radius. This value encompasses the structure of the magnetic field of the star.

In the simplest case where the magnetic field is radial, and Bs is the surface

magnetic field strength, then:

B(r) = Bs
R2
s

r2
. (2.7)

Throughout this work, we will only be using a radial magnetic field, but it

should be noted that other magnetic field structures are possible. In the con-

text of magnetic braking however, the Alfvèn surface represents the maximum

radius where the stellar wind is locked in corotation with the surface of the

star, beyond this point the mass is assumed to be lost (Mestel, 1968; Mestel

and Spruit, 1987). The equation which describes the angular momentum loss

through an Alfvèn surface is:

J̇MB = −4πΩ

∫ π/2

0

ρAvAR
2
A(RA sin θ)2 sin θdθ

' −8

3
πΩρAvAR

4
A,

' −2

3
ΩṀWR

2
A.

(2.8)

Here it is assumed that the Alfvèn surface, RA does not depend on θ, the

polar angle, and that the wind coming from the star is isotropic. Should the

system be rapidly rotating the scaling of the magnetic braking to the rotation

rate will change as so-called dead zones may form (see discussion in Ivanova,

2006). It is important to note the Mestel and Spruit (1987) parameterization
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can account for “dead zones” where material is trapped in magnetic fields lines

and not lost through the Alfvèn surface. The material confined within the

dead zone remain in corotation within the dipole field and is not lost from the

system. We don’t include the effects of dead zones in this work and as such

may over estimate the amount of material lost and thus the angular momentum

loss in tight binaries. The wind mass loss rate, if isotropic can be described

using the following equation:

ṀW = 4πR2ρsvs,

= 4πR2
AρAvA,

(2.9)

Combining equations 2.6 and 2.7 gives us:

4πR4
AρAv

2
A = B2

sR
4, (2.10)

Including the wind mass loss equation as given in equation 2.9, equation 2.10

becomes:

ṀWR
2
AvA = B2

sR
4,

R2
A =

B2
sR

4

ṀWvA
.

(2.11)

Under the assumption of isothermal winds, the wind reaches a sonic wind

velocity at the Alfvèn surface of vA = cw (Mestel and Spruit, 1987) where cw

is a constant value. Combining equations 2.8 and 2.11 gives the following MB

scaling equation:

J̇MB ∝ ΩB2
sR

4. (2.12)

Equation 2.12 interestingly, does not contain any scaling with the stellar
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wind, despite the wind strength being a fundamental physical property of MB.

The assumption of isothermal winds does not apply to giant stars. In the case

of giant stars with cooler temperatures, winds may be accelerated by a variety

of mechanisms, this requires a different self-consistent description of the wind

velocity (Suzuki, 2007). In the case of a radial field and a nonthermal wind

where the wind moves at speeds on order of the escape velocity,

v2
A =

2GM

R
, (2.13)

We get the following scaling:

J̇MB ∝ ṀWΩB4
sR

4. (2.14)

The strength of the surface magnetic field, Bs, scales with the dynamo number

ND (Parker, 1971). The dynamo number is related to physical values in the

MB through the Rossby number, R0 (Noyes et al., 1984),

Nd ≈ R−2
0 ,

Nd ≈ Ω2τ 2
conv.

(2.15)

Here τconv is the turnover time of convective eddies,

τconv =

∫ Rs

R

dr

vconv

. (2.16)

R and Rs are the bottom and the top of the outer convective zone respectively,

while vconv is the local convective velocity. We follow a simple approximation

made by Ivanova (2006) where Bs ∝ N
1/2
d . This allows us to adopt the scaling

relations:
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Bs

Bs,�
=

R0

R0,�
,

Bs

Bs,�
=

Ω

Ω�

τconv

τ�conv

.

(2.17)

Work by Aurière et al. (2015) has shown a general correlation between the

semi-empirical Rossby number and the observed magnetic field strength of a

star. Aurière et al. (2015) also noted that dwarf stars have a steeper relation

between these properties than giant stars. In general, dwarf stars have been

found to have shorter rotation periods with strong magnetic fields. As such,

the relation used likely underestimates the strength of the magnetic field in

dwarf stars. Rewriting the magnetic field scaling in Equation 2.12 gives us the

following:

J̇MB ∝ ΩB2
sR

4,

∝ Ω3τ 2
convR

4.
(2.18)

The radial isothermal approximation results in the Skumanich scaling with

Ω3R4 if we ignore the convective turnover time τconv. The radial non-thermal

approximation from Equation 2.14 becomes

J̇MB ∝ ṀWΩB4
sR

4

∝ ṀWΩ5τ 4
convR

4.
(2.19)

Rewriting the Skumanich law to include the additional terms for wind ṀW,

convective turnover time τconv and rotation rate Ω, the general MB equation

we use will be
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J̇MB,boost = J̇MB,Sk

(
Ω

Ω�

)β (
τconv

τ�,conv

)ξ(
ṀW

Ṁ�,W

)α

. (2.20)

The value used to normalize the convective turnover time, τ�,conv = 2.8 ×

106 s, was found by evolving a 1M� star at Z=0.020 to 4.6 Gyrs. Similarly, the

solar wind value Ṁ�,W = 2.5 × 10−14M� yr−1 (Carroll and Ostlie, 2006), and

Ω� ≈ 3× 10−6 s−1 is the angular frequency of the Sun using an orbital period

of 24 days.

The power ξ can vary, where ξ = 0 describes the same simplified assump-

tions for which the Skumanich law is valid with α = 0 and β = 0 (i.e., radial

magnetic field and isothermal winds). ξ = 2 is the case described in equation

2.18 which results in the convection boosted Skumanich case. ξ may be as

high as 4 for the case of winds from giants where the velocity of the wind grows

linearly with distance; we note that in this case, the dependence on the angular

velocity will also have to be modified to Ω5, vs. the Skumanich law’s factor of

Ω3. Therefore in this case, ξ = 4, β = 2 and α = 1.

We will use these additional scaling terms and define different MB cases for

the tested grid of binaries:

1. “Default”: We use the default MB scheme described by Rappaport et al.

(1983), without the additions mentioned in Pavlovskii and Ivanova (2015).

γmb = 4 in this case, and all subsequent cases.

2. “Convection-boosted”: We adopt the scaling found in Equation 2.18,

which is the Skumanich law, scaled by the convective turnover time

(τconv)ξ. The value of ξ = 2 will be used in this prescription.

3. “Intermediate”: We use the convection-boosted MB scheme and apply

an additional wind scaling term, linear in wind mass loss rate (α = 1).

4. “Wind-boosted”: This MB scheme uses the scaling values from Equa-

tion 2.19. This prescription includes all three scaling terms shown in
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Case β ξ α
1 - Default Skumanich 0 0 0
2 - Convection Boosted 0 2 0
3 - Intermediate 0 2 1
4 - Wind Boosted 2 4 1

Table 2.1: The different scaling values used in Equation 2.20 for the various
cases.

Equation 2.20 with β = 2, ξ = 4 and α = 1.

These systems are evolved to 10 Gyrs, or until the donor star loses its en-

velope and detaches. If the simulation encounters dynamically unstable MT,

which MESA was not designed to adequately model, the system will likely en-

counter numerical issues and stop. We do not consider irradiation effects on

the companion star during its evolution (see §6).

2.2.3 Verification against a previous study

Of particular importance is the binary system Scorpius X-1 as this system

allows us to compare our results to the work of Pavlovskii and Ivanova (2016).

In Pavlovskii and Ivanova (2016), the authors used a modified MB prescription

where α = 1, β = 0, and ξ = 0, with an MB gamma γmb of 3. In this work, we

tested all MB prescriptions described in §2.2.1 and used an MB gamma γmb of

4. To ensure the changes to MB were correctly implemented, the comparisons

between models used in Pavlovskii and Ivanova (2016) were rerun.

Sco X-1 is an LMXB, observed to have a mass ratio in the range from 0.28

- 0.51, favouring a value of ≈ 0.30 (Mata Sánchez et al., 2015; Steeghs and

Casares, 2002). The NS is constrained to have a mass of < 1.73 M� (Mata

Sánchez et al., 2015). The period of Sco X-1 is 18.8951 hours, and the MT rate

is estimated to be at least ∼ 2.2× 10−8 M�yr
−1 (Watts et al., 2008; Pavlovskii

and Ivanova, 2016). Observations of this system provided upper limits on the

spectral class of the donor of K4 or later, with the luminosity class IV, and the

implied effective temperature less than 4800 K.
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The models tested in Pavlovskii and Ivanova (2016) were composed of a

donor at ZAMS with masses ranging from 0.9 to 1.8M�, and a NS varying from

1.24 to 1.6M�. They assumed solar metallicity and Reimer’s wind prescription.

That study, to find the mass transferred the L1 Lagrange point, ṀL1
d , used the

method described in Pavlovskii and Ivanova (2015), while we use the “Ritter”

prescription. The method of Pavlovskii and Ivanova (2015) is important for

determining the initial MT stability in systems with a very high mass ratio,

and the use of the “Ritter” prescription should not play a role in the test

of Sco X-1, or in finding long-lived LMXBs. Pavlovskii and Ivanova (2016)

considered the case of standard MB and wind-boosted MB, adopting γmb = 3

for both. This is the default value for γmb in MESA§. Pavlovskii and Ivanova

(2016) find the default prescription of MB gives insufficient mass transfer to

reproduce the observed mass transfer rate of Sco X-1, by at least an order of

magnitude. To produce the observed properties of Sco X-1 (within ≈ 10%

estimated uncertainty), a modified MB law must instead be used.

In this test only, for comparison purposes, we have run similar MT sequences

with γmb = 3. We considered one of the sets of binary companion masses

presented in Pavlovskii and Ivanova (2016): a 1.3M� NS and a 1.0 M� donor.

The test run for the default MB was done using an initial period of 2.7 days,

while for the test of the wind-boosted MB we used an initial period of 7.6 days.

Both initial periods were taken from systems in Pavlovskii and Ivanova (2016).

The binary systems were evolved until they had similar orbital periods as Sco

X-1. The MT tracks of the two systems are shown in Figure 2.1. They are

similar to those shown in Figures 1 and 2 of Pavlovskii and Ivanova (2016).

The results of the simulations with the two MB prescriptions as well as the

observed values are listed in Table 2.2.

As can be seen, we confirm that the modified MB prescription better re-

§We note this value was chosen to be default by the MESA core developers groups, to
make a test comparison to results published in the past, and is not motivated by physics; we
remain convinced that the standard Skumanich law should be used with γmb = 4.
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Table 2.2: Sco X-1 Test Properties

Quantity Observed Boosted MB Default MB Ref.
Mass Ratio 0.28 - 0.51 0.42 0.28 (1,2)
Period [Hours] 18.89551 18.90 18.90 (3)
MT [M�yr−1] 2.2× 10−8 2.1× 10−8 1.1× 10−9 (3)
Effective Temperature [K] < 4800 4718 4627 (1,2)
Donor Mass [M�] 0.28 - 0.70 0.56 0.50 (1,2)
NS Mass [M�] < 1.73 1.33 1.79 (1,2)

Notes. The calculated values are taken at the point where the period of the
simulated binary is ≈ 18.89551 hours. (1) Steeghs and Casares (2002); (2)
Mata Sánchez et al. (2015); (3) Watts et al. (2008)

produces the observed value of the MT rate in Sco X-1. We will return to the

case of Sco X-1 in section 2.5 to review which MB prescriptions can reproduce

Sco X-1.

2.3 Observational Data for NS LXMBs
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Figure 2.1: The results of the two models tested to verify our results to repro-
duce the observed system Sco X-1. The upper curve in the plot is the evolution
using the modified MB, and the lower curve is the evolution using the default
MB. The star on the plot represents the approximate location of Sco X-1 based
on observations with the colour of the star corresponding to the observed mass
transfer rate. The colour bar denotes the MT rate of the binary system with
the observed MT of Sco X-1 observed as log10(M�/yr−1) ≈ −7.7. The modified
MB can reproduce the appropriate MT observed in Sco X-1 while the default
MB cannot.
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Source Flags Md Mass Ratio Period Distance Average Mass Transfer Reference

(M�) (Md/Ma) (Hours) (kpc) (M� yr−1)

4U 1820-303 Per, GC, UC − − 0.183 S87 7.9± 0.4 H13 1.2± 0.6× 10−8
H13 S87, H13

4U 0513-40 Per, GC, UC 0.045 0.03∗ 0.283 Z09 12.1± 0.6 H13 1.2± 0.6× 10−9
H13 Z09, H13

2S 0918-549 Per, UC 0.024− 0.039 Z11 0.02− 0.03∗ 0.290 S01 5.4± 0.8 H13 2.6± 1.5× 10−10
H13 Z11, H13

4U 1543-624 Per, UC 0.03 W04 0.02∗ 0.303 W04 7 H13 1.3+1.8
−1.2× 10−9

H13 W04, H13

4U 1850-087 Per, GC, UC 0.04 H96 0.03∗ 0.343 H96 6.9± 0.3 H13 2.2± 1.1× 10−10
H13 H96, H13

M15 X-2 Per, GC, UC 0.02− 0.03 D05b 0.02∗ 0.377 D05b 10.4± 0.5 H13 3.8± 1.9× 10−10
H13 D05b, H13

IGR J17062-6143 T, PSR, UC 0.0155− 0.0175 S18b 0.01∗ 0.633 S18b 7.3± 0.5 K17 2.5× 10−11
K17 K17, S18b

XTE J1807-294 T, PSR, UC − − 0.670 M03 8 +4
−3.3 H13 < 1.5+1.9

−1.2× 10−11
H13 M03, H13

4U 1626-67 Per, PSR, UC < 0.036 H13 0.02∗ 0.700 C98a 8+5
−3 H13 8.0+14

−6 × 10−10
H13 C98a, H13

XTE J1751-305 T, PSR, UC − − 0.710 M02 8+0.5
−1.3 H13 5.1+2.6

−2.9× 10−12
H13 M02, H13

XTE J0929-314 T, PSR, UC ' 0.01 G02 0.007 0.730 G02 8+7
−3 H13 < 9.7+25

−7.7× 10−12
H13 G02, H13

4U 1916-053 Per, UC 0.064± 0.01 H13 0.046 0.833 W81 9.3± 1.4 H13 6.3± 3.7× 10−10
H13 W81, H13

Swift J1756.9-2508 T, PSR, UC ≤ 0.022 K07 0.02 0.912 K07 8± 4 H13 1.7+2.3
−1.5× 10−11

H13 K07, H13

NGC 6440 X-2 T, PSR, GC, UC ' 0.0076 B15 0.005 0.955 A10 8.5± 0.4 H13 1.0± 0.5× 10−12
H13 A10, B15, H13

HETE J1900.1-2455 T, PSR 0.016− 0.07 K06a 0.01− 0.05∗ 1.39 W08 4.7± 0.6 W08 4.63× 10−11
W08 K06a, W08

1A 1744-361 T 0.07− 0.22 B06 0.07?∗ 1.62± 0.37 W08 6± 3 W08 2.22× 10−11
W08 B06, W08

IGR J17379-3747 T, PSR > 0.056 S18a > 0.04∗ 1.88 S18a ∼ 8.5 S18a ∼ 4× 10−11
S18a S18a, S18c

SAX J1808-3658 T, PSR 0.04+0.02
−0.01 W13 0.04∗ 2.01 C98b 3.4− 3.6 C12 1.73× 10−11

C12 C98b, C12, W13

XB 1832-330 T,GC − − 2.1 E12 10.0 P01 ∼ 3× 10−10
E12 P01, E12

IGR 00291+5934 T, PSR 0.039− 0.16 D17 0.02− 0.11 2.46 G06 2.6− 3.6 C12 1× 10−12
D17 C12, G05, D17

4U 1822-00 Per, M − − 3.20? S07 6.3± 2 S07 9.0+8.0
−5.0× 10−10

S07 S07

4U 1636-536 Per 0.29− 0.48∗ 0.21− 0.34 W16 3.79 W08 6± 0.5 W08 1.25× 10−9
C12 C12, W08, W16

EXO 0748-676 T 0.1? D14a 0.07?∗ 3.82 D14a 7.1± 1.2 D14a < 4.4× 10−10
C12 C12, D14a

4U 1254-69 Per 0.45 C68b 0.33− 0.36 C13 3.93 W08 13± 3 W08 1.77× 10−9
W08 C86b, C13, W08

4U 1728-16 (GX 9+9) Per 0.4 K09b 0.29 K09b 4.20 L07 5? K06b 2.91× 10−9
C97 C97, K06b, L07

XTE J1814-338 T 0.19− 0.32 W17 0.123+0.012
−0.01 W17 4.27 W08 8± 1.6 C12 < 5.99× 10−12

C12 C12, W08, W17
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4U 1735-444 Per ≤ 0.58 0.05− 0.41C06 4.65 W08 8.5± 1.3 W08 6.31× 10−9
C12 C06, C12, W08

4U 1746-37 Per, GC −− − 5.16 B04 11.6 B04 1× 10−9
B04 S01, B04

2A 1822-371 Per, M 0.47± 0.04 I15 0.28 I15 5.57 B17 2.5 B17 ∼ 2× 10−8
B17 B17, I15

XTE J2123-058 T 0.76± 0.22 C02 0.49± 0.1 C01 5.96 W08 9.6± 1.3 W08 < 7× 10−12
C12 C02, C12, S03a, W08

X 1658-298 T 0.3− 0.8 P18 0.21− 0.57∗ 7.12 D14a 12± 3 W08 1× 10−9
W08 D14a, P18, W08

2A 0521-720 (LMC X-2) Per, M − − 8.16 L07 50± 2 A09 4× 10−8
C12 C12, A09, L07

SAX J1748.9-2021 T, GC 0.12− 1 S16 0.09− 0.71∗ 8.76 S16 8.5± 0.4 S16 ∼ 7× 10−11
W08 S16, W08

IGR J18245-2452 T, GC > 0.17 P13 0.12∗ 11.0 P13 5.5 P13 . 1.0× 10−10
P13 P13

GRS 1747-312 T, GC −− − 12.36 I03 9.5 V18 1× 10−10
V18 B04, V18

4U 1456-32 (Cen X-4) T 0.31± 0.27 D05a 0.18± 0.06 D05a 15.1 L07 1.2± 0.2 C12 4× 10−11
C12 C12, D05a, L07

AC 211 (X2127+12) Per, GC ∼ 0.1 V04 ∼ 0.1 V04 17.1 I93 10.4 C68b ∼ 7× 10−9
I93 C86, I93, V04

H 1617-155 (Sco X-1) Per, M 0.28− 0.70 S15 0.28− 0.51 S15 18.9 W08 2.8± 0.3 S15 3× 10−8
C12 C12, S15, W08

4U 1908+005 (Aql X-1) T − − 18.9 W08 4.55± 1.35 W08 6× 10−10
C12 C12, W08

4U 1624-49 Per − − 20.9 B00 15+2.9
−2.6 X09 4.6× 10−9

B09 B09, L05, X09

3A 1702-363 (GX 349+2) Per 0.78∗ ∼ 0.56 I09 21.9± 0.4 I09 5± 1.5 C12 2.37± 1× 10−8
C12 C12, I09, W08

2A 1655+353 (Her X-1) T 2.03± 0.37 1.45 40.8 L07 6.1+0.9
−0.4 L14 1.3× 10−8

C12 C12, L07, R11

4U 2142+38 (Cyg X-2) Per, M 0.56± 0.07 P16 0.34± 0.01 P16 236.3 W08 10.55± 4.45 W08 3.0× 10−8
C12 C12, M18, W08

GRO J1744-28 T, M 0.2− 0.7 D15 0.15− 0.5∗ 284.0 L07 8? D15 ∼ 1× 10−8
D14b D15, D14b, L07
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Table 2.3: The periods and mass transfer rates are either taken directly from the listed reference, or calculated using values
from that reference. Any value with a ? attached is a rough estimate of that value. If possible, the mass fraction or
companion mass is taken directly from the source. If a companion mass or mass fraction can be calculated, this is done
assuming a neutron star mass of 1.4M�. These calculated values are denoted by a ∗ and are simply an approximation. We
include any errors that could be taken directly from the reference paper. In cases where an error was not listed but can be
calculated, we did so. The error in the mass transfer rate is calculated by looking at the errors in distances, flux, or luminosity
from the listed reference. The second column notes systems that are persistent (Per), transient (T), with a neutron star
of mass exceeding 1.6M� (M), systems with pulsars (PSR), systems in globular clusters (GC), and ultra compact systems
(UC). References: A09 - Agrawal and Misra (2009), A10 - Altamirano et al. (2010), B00 - Ba lucińska-Church et al. (2004),
B04 - Ba lucińska-Church et al. (2004), B06 - Bhattacharyya et al. (2006), B09 - Balman (2009), B10 - Bayless et al. (2010),
B15 - Bult et al. (2015), B17 - Bak Nielsen et al. (2017), C86a - Charles et al. (1986) C86b - Courvoisier et al. (1986), C97
- Christian and Swank (1997), C98a - Chakrabarty (1998), C98b - Chakrabarty and Morgan (1998), C02 - Casares et al.
(2002), C06 - Casares et al. (2006), C12 - Coriat et al. (2012), C13 - Cornelisse et al. (2013), D05a - D’Avanzo et al. (2005),
D05b - Dieball et al. (2005), D14a - D’Aı̀ et al. (2014), D14b - Degenaar et al. (2014), D15 - D’Aı̀ et al. (2015), D17 - De
Falco et al. (2017), E12 - Engel et al. (2012), G02 - Galloway et al. (2002), G05 - Galloway et al. (2005), H96 - Homer et al.
(1996), H07 - Heinke et al. (2007), H10 - Harris (2010), H13 - Heinke et al. (2013), I93 - Ilovaisky et al. (1993), I03 - in’t
Zand et al. (2003), I09 - Iaria et al. (2009), I15 - Iaria et al. (2015), J10 - Jain et al. (2010), K06a - Kaaret et al. (2006),
K06b - Kong et al. (2006), K07 - Krimm et al. (2007), K17 - Keek et al. (2017), L05 - Lommen et al. (2005), L07 - Liu et al.
(2007), M02 - Markwardt et al. (2002), M03 - Markwardt et al. (2003), M18 - Mondal et al. (2018), P01 - Parmar et al.
(2001), P13 - Papitto et al. (2013), P16 - Premachandra et al. (2016), P17 - Patruno (2017), P18 - Ponti et al. (2018), R11
- Rawls et al. (2011), S01 - Sidoli et al. (2001), S87 - Stella et al. (1987), S03a - Shahbaz et al. (2003), S07 - Shahbaz et al.
(2007), S15 - Mata Sánchez et al. (2015) S16 - Sanna et al. (2016), S18a - Sanna et al. (2018), S18b - Strohmayer et al.
(2018a), S18c - Strohmayer et al. (2018b) W81 - Walter et al. (1981), W04 - Wang and Chakrabarty (2004), W08 - Watts
et al. (2008), W13 - Wang et al. (2013), W16 - Wisniewicz et al. (2016), W17 - Wang et al. (2017), V04 - van Zyl et al.
(2004), V18 - Vats et al. (2018), X09 - Xiang et al. (2009), Z09 - Zurek et al. (2009), Z11 - Zhong and Wang (2011)
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To compare our results to observations, we have compiled a list of up-to-

date properties of some Milky Way NS LMXBs. See Table 2.3 for a list of

systems, relevant data, and references.

The systems with periods shorter than 80 minutes are ultra-compact X-

ray binaries (UCXBs), where the donor star must be partly or completely

degenerate. Our binary evolution method may not necessarily be the dominant

method to produce these systems, but we keep them in the consideration.

Within the table there are also systems labelled as GC systems, which are

systems found in globular clusters. Binaries formed within a globular cluster

are not likely to be produced from primordial binaries, but instead are more

effectively produced via dynamical encounters between binaries, as well as via

physical collisions between NSs and subgiants (Verbunt, 1987; Ivanova et al.,

2005, 2008).

The other flags shown in the second column denote if the source is a persis-

tent or transient system. Persistent systems are those where bright (LX > 1035

erg/s) X-ray emissions have been consistently seen whenever X-ray monitor-

ing missions have observed these systems, over a 40-60 year timespan. Tran-

sient systems have large changes in their X-ray emission, typically exceeding

LX = 1036 erg/s at some points (outbursts) and declining below LX = 1035

erg/s at other times (quiescence). There are several systems currently thought

to be persistent which could instead be in a long-term outburst state (lasting

>50 years), and may be reclassified as transient systems in the future.

Meyer and Meyer-Hofmeister (1981) predicted the existence of a critical MT

rate separating the persistent and transient systems. The disc instability model

(DIM) predicts under what circumstances an accretion disk will experience

instabilities (see Lasota, 2001, for a review of DIM). Stability in the context

of the DIM means an accretion disc does not experience outbursts; a stable

disc that remains hot will produce a persistent X-ray binary. The criterion for

stability is given by Coriat et al. (2012):
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Ṁcrit = kP b
hr g s−1 (2.21)

Here, Phr is the period of the system in hours. For the non-irradiated case,

k = (2.6±0.9)×1016, and b = 1.76. If there is irradiation of the accretion disc,

and the accretor is a NS, b = 1.59 and k = (2.9± 0.9)× 1015. Systems that lie

above the DIM line are expected to be persistent while systems below the line

are transient.

Here, we only consider the systems where the MT rate is known. If the cited

papers do not provide the MT rate but instead provide the X-ray luminosity,

Lx, we find Ṁ using

Ṁ =
LXRa

GMa

. (2.22)

Observationally, an upper limit for NS mass has been found to be 2.01±0.04M�

(Antoniadis et al., 2013), our calculations will be done assuming the mass of

the NS is Ma = 1.4 M� with a radius of Ra = 11.5 km (Özel and Freire, 2016).

The key properties of interest for this work are the mass ratio q = Md/Ma, the

period p and the average mass transfer rate Ṁ .

2.4 Principal Results

2.4.1 Evolutionary Tracks

Here we present the results for the 2136 binary models of each MB prescription

by plotting the evolutionary tracks grouped by donor mass on subplots in

figures 2.2 - 2.5. These figures show the donor mass and period evolution of

each simulated binary over the course of its lifetime. Mass in these figures

is meant as a proxy for time as the donor stars all decrease in mass over the

course of the binary evolution. The binary population simulations each required

on order of hours to days to finish, totalling approximately thirty core years of
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simulation time. For comparison purposes, we overlay the observed data points

from Table 2.3 on the plots. Sco X-1 is denoted with a star in the subplots as

it was our test case from 2.2.3.

We can see that our choice of initial conditions affects the resulting evolu-

tionary track of the system. In general, the more massive the donor star, the

higher the MT rate. The choice of initial period results in changes that are

less monotonic in comparison. Many systems starting with short periods may

initiate Roche lobe overflow (RLOF) immediately, while longer period systems

may lose significant mass through winds before this.

The separation between systems which evolve to longer orbital periods dur-

ing their evolution, and those in which the orbital periods shrink, is known as

the bifurcation period (Podsiadlowski et al., 2002; van der Sluys et al., 2005).

As the initial donor mass increases, the bifurcation period also increases until

we encounter systems undergoing dynamically unstable MT. We will refer to

a binary with the orbital period near the end of its evolution larger than the

period at the start of RLOF as growing in period, while systems with a shorter

period near the end of their evolution are shrinking. One can see that most of

the observed LMXBs are located in the region of shrinking systems. Specifi-

cally, in the case using the default Skumanich law, several of them are in the

parameter space where the shrinking and growing systems bifurcate.

Default

The default Skumanich MB results are shown in Figure 2.2. This MB pre-

scription produces a clear bifurcation in periods through the low and interme-

diate mass donors. The bifurcation period at RLOF is ∼ 1 day and shows

a distinct split in periods as no binaries pass through the region q < 0.4,

1 . log10(P ) . 2.5. The sharp transition seen in the low mass high period sys-

tems is a result of the binary reaching a stopping conditions given in Section

2.2.1.
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Figure 2.2: A collection of subplots showing the evolution through mass transfer
for all initial periods, shown on the grid of initial donor masses and mass
ratios. The data shown is only after the onset of RLOF with the colour bar
indicating log10(MT). The evolutionary tracks evolve from the right of the
subplots leftwards as the donor loses mass through mass transfer. At higher
donor masses and low periods, there exist a subset of systems which abruptly
terminate their tracks as they begin to transfer mass dynamically. The points
on the plot represent observable systems, with errors found in Table 2.3. Circles
are transient systems, and triangles are persistent systems. The single star
point is the binary Sco X-1 used to test the validity of our numeric results.
The range of periods in each plot is the same, but the range of donor masses
differs. The abrupt cutoff at higher periods is a result of the star reaching the
end of its life.
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Figure 2.3: A similar figure to 2.2 using case 2, convection boosted MB from
Table 2.1. The general behaviour of these simulated systems is similar to that
of the systems following the Skumanich law, in Fig. 2.2.

42



Figure 2.4: A similar figure to 2.2 using case 3, intermediate MB from Table
2.1. Note that the mass transfer rates are substantially higher than in the
previous cases, Figs. 2.2 and 2.3.
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Figure 2.5: A similar figure to 2.2 using case 4, wind boost MB from Table 2.1.
Here the mass transfer rates are extremely high.
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Convection Boosted

From Figure 2.3, we cannot see many differences between the default MB and

the “convection boosted” MB. One difference between the default and convec-

tion boosted MB schemes is that evolutionary tracks run through the region

q < 0.4, 1 . log10(P ) . 2.5. The additional systems passing through this re-

gion cause some ambiguity in determining bifurcation periods in systems with

initial donor masses M . 1.5M�, since the binaries near the bifurcation period

show very little change in period over their evolution.

Intermediate

The “Intermediate” case includes the additional scaling factor which accounts

for the effects of wind mass loss as seen in equation 2.20. Figure 2.4 shows

the behaviour of the binary systems with this MB prescription. The additional

wind scaling plays a significant role in wider binary systems. The stronger MB

scheme brings the binary systems together on a shorter timescale. In these

systems, the MB and total angular momentum loss are consistently an order

of magnitude higher than the default case. Therefore, the system loses enough

angular momentum due to MB that gravitational radiation comes into play

once MB stops.

Wind Boosted

The “wind boost” case shown in figure 2.5, includes the effects of the convec-

tive turnover time and accounts for the rotation rate of the star. In this case,

the individual values of magnetic field strength as calculated using equation

2.17, the turnover time, and the wind mass loss rates are all within reasonable

ranges. The magnetic field, which reaches a maximum of 100G shown in Fig-

ure 2.6, is within the range expected for giant stars (Aurière et al., 2015). The

convective turnover time is also similar to those calculated by Pavlovskii and

Ivanova (2015) for systems that are predicted to reproduce Sco X-1. It appears

45



0.2 0.4 0.6 0.8 1.0 1.2
Mass (M )

10 1

100

101

102

103

104

Pe
rio

d 
lo

g 1
0(

hr
)

20

40

60

80

100

B/
B

Figure 2.6: A figure showing the evolutionary tracks of a binary system consist-
ing of a 1.2M� initial mass donor with a 1.4M� NS at a variety of initial periods
using the wind boosted MB. The colour bar shows the magnetic field strength
of the donor star at a given point in the binary evolution. The magnetic field
is given in units of the solar magnetic field, which is ∼ 1G.

that the individual properties are all within reasonable ranges. However, the

combination of all these boost factors produces MB that is too strong, resulting

in MT that consistently exceeds 1M� yr−1. MT at these rates results in evolu-

tion on a dynamical timescale, and as such the results from this highly boosted

MB should not be trusted. It is likely that this prescription has reached and

exceeded a saturation limit that is not accounted for in this work (Mestel and

Spruit, 1987). It has been shown that in cases where the rotation rate is high,

additional magnetic field structure effects must be included to dampen the an-

gular momentum loss (Ivanova and Taam, 2003). For completeness, we include

the results from the wind-boosted case, but since the MT rate is so high, it is

unlikely these simulations accurately describe reality.
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2.4.2 Binary Properties

Figure 2.7 shows evolutionary tracks in the donor mass-period plane with the

colour of each point representing the neutron star mass at that point. If a

system experiences MT below the Eddington limit, the accretor mass can grow

significantly. The significant increase in mass is a common outcome for default

Skumanich MB, and the convection boosted cases, where most of the LMXBs

evolve to contain a NS more massive than 2M�. A “stronger MB”, such as

our intermediate case, produces fewer systems where NS masses have increased

significantly, due to the MT exceeding the Eddington limit for portions of the

evolution. The lack of substantial accretion of material onto the NS is even

more apparent in the wind-boosted case where there is no significant increase

in mass despite the large decrease in donor mass. However, the wind-boosted

systems generally die too quickly – most simulations don’t reach the relevant M,

P range for the majority of observed binaries. From observations there is a lack

of NS detected near 2.0M� with the most massive detected at 2.01 ± 0.04M�

(Antoniadis et al., 2013). The results shown in the default and convection

boosted case suggest that all short period binaries contain a NS with a mass

exceeding 2.0M�, whereas observations have found that these systems contain

NS accretors in the range of 1.4M�. This preliminary result strongly supports

the stronger MB prescriptions over the weaker convection boost and default

cases.

Measurement of the surface chemical composition is possible in select bi-

nary systems. In binary systems involving white dwarf accretors, the surface

chemical abundances can constrain the possible formation channels, with high

N/C > 10 or N/O & 10 implying a helium donor (Nelemans et al., 2010). Un-

certainties in model spectra for UCXBs result in unreliable abundance ratios

(Werner et al., 2006). The existence of strong C and O lines but weak He and

N lines imply a helium donor star. However, in many cases more detailed ob-

servations are necessary to classify the possible donors (Nelemans et al., 2010).
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Figure 2.7: A scatter plot showing the changes in NS mass during the evolution
of our systems. The lower hashed area shows the periods corresponding to
ultra compact sources. The default and convection boosted cases suggest that
all short period binaries contain a massive NS.
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Figure 2.8: The surface C/N abundance mass fraction of the donor star. The
initial C/N ratio of a star is ∼ 3.36 or ∼ 0.53 on the log scale.
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Figure 2.9: The surface N/O abundance mass fraction of the donor star. The
initial N/O ratio of a star is 0.108 or ∼ -0.96 on the log scale.
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Figures 2.8 and 2.9 show the C/N and N/O surface ratios from the simulated

systems, respectively. In our donors, the initial C:N:O ratio is 0.37:0.108:1.0.

This change of abundance indicates where the donor star is in its evolution.

In systems with a lower-mass donor, M ∼ 1M�, the donors show high N

abundances as the donor star is stripped of C and O. In binaries with more

massive donors, M & 1.5M�, the CN and CNO cycles can result in substantial

changes in chemical composition. These significant changes can be observed in

the material that is being transferred in these compact binaries.

2.4.3 Relative Densities

Figure 2.10 shows the data plotted in the period-MT plane with the colour

bar representing a normalized frequency. Here we can see which systems are

more or less likely to appear in each respective bin. We calculate frequency as

follows:

1. τmntot is the total evolution time of a binary system, as defined by the initial

m-period and n-mass.

2. τmnij is the time that a system defined by the initial m-period and n-mass

spends in an i-period bin and a j-MT rate bin.

3. fmnij = τmnij /τmntot is the fraction of time (or frequency) that a particular

system (given by an initial mn) appears in a bin defined by a particular

i-period and j-MT rate.

4. fij = max (fmnij ) the frequency plotted in Fig. 2.10, is the maximum

frequency of all systems to appear in a particular i,j bin.

The frequency gives an indication of where the evolutionary tracks spend

the maximum amount of time during the evolution in the period-MT plane.

This frequency however, does not necessarily represent a likelihood of detecting
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a binary in said bin as we have neglected effects of how likely a binary is to

form and the number of systems which may cross through a bin. This is done

to avoid equating regions where many systems cross into a bin for short periods

of time to regions where one system spends a large fraction of its lifetime. For

example, using this method, a bin where one binary spend 107 years out of its

total lifetime within the parameter space results in a much higher frequency

than a bin where 1000 binaries each spend 104 years.

We see the densest regions of the figure are at short periods, with low MT

rates. These systems correspond to the binaries that have shrinking periods

over the course of their evolution, including ultra-compact binaries. In general,

the higher the MT rate, the lower the frequency; this is not surprising as it is

difficult to maintain high MT rates. In the default MB, there is a gap in the sim-

ulated density between 0.5 . log10(P/hr) . 1.0 and log10(Ṁ/M�yr−1) . −11.

While there are no observed systems in this range, this gap begins to get pop-

ulated once convection is accounted for and is filled in with the “intermediate”

prescription. In general, as the MB boost is increased, the MT rate at lower

periods is also increased. The “convection boost”, “intermediate” and “wind

boost” cases appear to more effectively reproduce the systems with periods

log10(P/hr) ∼ 1 and MTs near the Eddington limit. These systems include GX

9+9, 4U 1735+444, and 2A 1822-371, which do not overlap with any simulated

systems in figure 2.10. Sco X-1, on the other hand, appears to be reproducible

in figure 2.10, as there is significant overlap with the simulated systems in the

period-MT plane. We argue, however, that to reproduce an observed LMXB,

in addition to the period and MT rate, we must also match the mass ratio of

the system.

2.5 Comparison to the observed population of

LMXBs
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Figure 2.10: The relative probability of finding a system at a given point in our
parameter space, assuming a the initial distribution of binaries from section
2.2.1. The symbols on the plot represent the observed systems with their given
errors (see Table 2.3). Circles are transient systems and triangles are persistent
systems. The single star point is the binary Sco X-1. The two grey dashed lines
represent the critical MT rates for thermal-viscous accretion stability using an
NS mass of 1.4M� (Coriat et al., 2012). These two lines are denoted with “DIM
non irr” for the critical MT rate without the effects of irradiation while “DIM
irr” is the critical MT rate with the effects of irradiation. Binaries that lie
above the line are predicted to be persistent LMXBs while systems below are
transient. The left hashed area represents the period range for ultra-compact
sources.
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System Name log10(P ) q log10(Ṁa)
Ultra-compact XRBs
4U 0513-40 [-0.57, -0.52] [0.01, 0.06] [-9.2, -8.6]
2S 0918-549 [-0.56, -0.51] [0.01, 0.06] [-9.8, -8.6]
4U 1543-624 [-0.54, -0.49] [0.01, 0.06] [-9.1, -8.6]
4U 1850-087 [-0.48, -0.43] [0.01, 0.06] [-10.0, -8.4]
M15 X-2 [-0.44, -0.39] [0.01, 0.06] [-9.7, -9.1]
4U 1626-67 [-0.17, -0.12] [0.01, 0.06] [-9.7, -8.6]
4U 1916-053 [-0.10, -0.05] [0.03, 0.08] [-9.6, -8.9]

4U 1636-536 [0.56, 0.61] [0.15, 0.40] [-9.1, -8.6]
GX 9+9 [0.60, 0.65] [0.20, 0.33] [-8.7, -8.2]
4U 1735-444 [0.65, 0.70] [0.29, 0.48] [-8.4, -7.9]
2A 1822-371 [0.73, 0.78] [0.26, 0.36] [-7.8, -7.3]
Sco X-1 [1.26, 1.31] [0.15, 0.58] [-7.8, -7.3]
GX 349+2 [1.33, 1.38] [0.39, 0.65] [-8.0, -7.3]
Cyg X-2 [2.35, 2.40] [0.25, 0.53] [-7.7, -7.2]

Table 2.4: The binned properties of selected persistent NS LMXBs. The periods
are in hours, the mass accretion rate Ṁa is in M� yr

−1. The default bins’ ranges
are 0.05 in log10 P and 0.5 in log10 Ṁ , centred around the measured observed
values. Ranges are increased if observational uncertainties are larger than the
default ranges. The ranges for mass ratios, if those were not provided with an
error, are such that they could accommodate the plausible error in NS mass,
from 1.4 M� to the range in 1.2− 2 M�.

System Name log10(P ) q log10(Ṁa)
HETE J1900.1-2455 [0.12, 0.17] [0.01, 0.06] [-10.5, -10.0]
1A 1744-361∗ [0.19, 0.24] [0.05, 0.18] [-11.7, -10.7]
SAX J1808-3658 [0.28, 0.33] [0.02, 0.07] [-11.0, -10.5]
IGR 00291+5394 [0.37, 0.42] [0.02, 0.13] [-11.8, -11.3]
EXO 0748-676∗ [0.56, 0.61] [0.05, 0.10] [-9.3, -8.3]
4U 1254-69 [0.57, 0.62] [0.23, 0.38] [-9.0, -8.5]
XTE J1814-338∗ [0.61, 0.66] [0.10, 0.27] [-11.2, -10.2]
XTE J2123-058∗ [0.76, 0.81] [0.27, 0.82] [-11.2, -10.2]
X 1658-298 [0.83, 0.88] [0.15, 0.67] [-9.1, -8.6]
SAX J1748.9-2021 [0.92, 0.97] [0.06, 0.83] [-10.3, -9.8]
IGR J18245-2452 [1.02, 1.07] [0.09, 0.14] [-10.2, -9.7]
Cen X-4 [1.16, 1.21] [0.02, 0.48] [-10.6, -10.1]
Her X-1 [1.59, 1.64] [0.83, 2.00] [-8.1, -7.6]
GRO J1744-28 [2.43, 2.48] [0.25, 0.53] [-8.2, -7.7]

Table 2.5: The adopted ranges of selected transient NS LMXBs. Quantities
are as in Table 2.4 except in systems with a * symbol. The mass transfer bins
in these systems use the upper limit listed, and span log10 Ṁ = 1.0.
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Default Convection Boosted Intermediate Wind Boost

System Name τmax [years] Asys/Atot τmax [years] Asys/Atot τmax [years] Asys/Atot τmax [years] Asys/Atot

4U 0513-40 3.23× 106 4.75× 10−4 1.24× 106 7.91× 10−4 4.00× 106 1.90× 10−3 0 0

2S 0918-549 4.09× 106 4.75× 10−4 2.30× 106 7.91× 10−4 4.40× 106 2.06× 10−3 0 0

4U 1543-624 4.83× 106 6.33× 10−4 4.80× 106 6.33× 10−4 7.91× 106 2.06× 10−3 0 0

4U 1850-087 8.33× 106 6.33× 10−4 8.83× 106 1.11× 10−3 1.28× 107 2.06× 10−3 0 0

M15 X-2 1.21× 107 6.33× 10−4 1.11× 107 1.27× 10−3 1.41× 107 2.22× 10−3 0 0

4U 1626-67 6.76× 107 9.50× 10−4 1.06× 108 1.58× 10−3 7.48× 107 6.33× 10−4 0 0

4U 1916-053 1.85× 107 1.58× 10−4 1.21× 107 3.17× 10−4 3.76× 107 4.75× 10−4 0 0

4U 1636-536 1.22× 108 4.23× 10−2 6.24× 107 1.91× 10−2 4.39× 107 7.74× 10−2 1.22× 105 2.06× 10−3

GX 9+9 0 0 3.38× 107 1.60× 10−2 3.73× 107 5.89× 10−2 1.85× 104 1.27× 10−3

4U 1735-444 0 0 1.48× 107 5.70× 10−3 9.83× 106 2.26× 10−2 0 0

2A 1822-371 0 0 0 0 5.26× 106 3.39× 10−2 0 0

Sco X-1 0 0 1.69× 107 3.48× 10−3 1.75× 106 3.91× 10−2 2.71× 103 2.37× 10−3

GX 349+2 4.09× 105 7.91× 10−4 1.50× 107 6.17× 10−3 1.91× 105 2.37× 10−3 0 0

Cyg X-2 1.65× 106 8.39× 10−3 2.56× 106 1.74× 10−2 2.00× 105 1.28× 10−2 0 0

HETE J1900.1-2455 5.61× 108 6.61× 10−2 3.05× 108 4.57× 10−2 5.87× 108 1.01× 10−1 0 0

1A 1744-361∗ 1.99× 106 1.58× 10−4 3.51× 107 1.58× 10−4 6.80× 107 7.91× 10−4 0 0

SAX J1808-3658 5.49× 107 6.33× 10−4 1.05× 108 6.33× 10−4 1.66× 108 1.74× 10−3 0 0
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IGR 00291+5394 0 0 0 0 1.88× 108 4.75× 10−4 0 0

EXO 0748-676∗ 0 0 4.09× 107 2.53× 10−3 0 0 0 0

4U 1254-69 5.23× 107 1.28× 10−2 1.06× 106 7.91× 10−4 1.70× 107 1.65× 10−2 0 0

XTE J1814-338∗ 0 0 0 0 0 0 2.60× 105 1.27× 10−3

XTE J2123-058∗ 0 0 0 0 1.40× 103 1.58× 10−3 2.25× 102 2.53× 10−3

X 1658-298 1.19× 108 1.30× 10−2 2.85× 107 8.23× 10−3 1.55× 107 4.91× 10−3 2.26× 104 3.17× 10−3

SAX J1748.9-2021 7.55× 108 6.33× 10−4 3.08× 108 1.27× 10−3 4.92× 107 1.39× 10−2 8.96× 104 2.69× 10−3

IGR J18245-2452 8.91× 108 6.33× 10−4 0 0 3.82× 107 2.37× 10−3 0 0

Cen X-4 0 0 1.14× 108 1.58× 10−4 3.53× 107 1.58× 10−2 4.32× 103 1.11× 10−3

Her X-1 7.38× 106 1.27× 10−3 9.97× 106 1.27× 10−3 5.68× 105 1.42× 10−3 4.75× 105 2.69× 10−3

GRO J1744-28 5.85× 106 8.70× 10−3 5.48× 106 1.31× 10−2 6.98× 104 5.70× 10−3 0 0

Table 2.6: For each observed system (and thus parameter space bin), we give the maximum amount of time, τmax, that any
simulated system spends in a given bin, and the fraction of the parameter space of simulated binaries which resemble the
observed system, Asys/Atot. Our bins are defined in tables 2.4 and 2.5. The total parameter space Atot spans the mass range
from 1 ≤ M/M� ≤ 7 and the period range from −0.5 ≤ log10(P/days) ≤ 4. The ∗ denotes systems where only an upper
limit for the mass transfer rate is given.
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We describe a set of binary systems that have an observationally determined

MT rate, orbital period, and mass ratio (see Table 2.3, not all observed systems

can be used). We bin each binary system within a range of period, MT and

mass ratio, with the observed values used as the central bin values. These bins

are then used to analyze the systems, and the adopted range for P , Ṁ and

q are described in Tables 2.4 and 2.5. The “observational” bin sizes are large

enough to accommodate the anticipated observational errors.

The likelihood of a given MB scheme being correct depends on how ef-

fectively it can reproduce the observed binary systems. To find this value, we

check if a simulated MT system passes through any of the “observational” bins.

If a simulated system passes through one of the observational bins, we can find

the total time that the system spent τnij in that “observational” bin. Here, n

stands for the number of the “observational” bin, and ij describes the initial

orbital period and the initial mass of the donor. We then find the size of the

initial parameter space in the initial orbital periods and the donor masses, the

parameter space from which the systems could evolve through the particular

“observational” bin n.

In Table 2.6 we provide the maximum amount of time, τnmax that any of

the simulated systems can spend in the n observational bin of interest, and the

fraction of the initial parameter space that can produce the observed systems.

These results are separated by MB prescription, with the wind-boosted case

producing clearly ineffective results. With the high MT rate, the simulated

parameter space overlaps with very few observed data points in 2.5 and 2.10.

This high boost rate is likely invalid, and including a dampening factor should

yield more realistic results.

The most striking result is that the default Skumanich MB law cannot re-

produce most of the persistent systems - in fact, no observed persistent LMXBs

with orbital periods between about 4.5 and 23 hours can be produced once we

account for mass ratio. The main reason is that MB is not strong enough to
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drive the observed MT rate. In principle, in addition to convection or wind-

boosted MB laws, one can invoke also another alternative MB law to explain

systems like Sco X-1 - as was done, e.g., by Chen (2017), who considered initial

donors of 1.5−2.5M� star and applied the MB law derived from Justham et al.

(2006). The best fitting progenitor systems from Chen (2017) have 1.6−1.8M�

donors with a 300G fossil magnetic field. It would, however, be rather intrigu-

ing if most of the observed persistent systems must be descendants of low-mass

A stars with magnetic fields about an order of magnitude weaker than that of

Ap stars, but 100 times larger than that of regular stars.

A significant result is that while we can create UCXBs, the initial parameter

space to form these systems, and the lifetimes of the systems in those data bins,

suggest that binary systems with a NS accretor and a non-perturbed donor are

unlikely to be the main progenitors. They are instead likely to be produced

either in globular clusters via physical collisions of a NS with a red giant Ivanova

et al. (2005), or as a result of common evolution in the field, where the MT

can start either from a cooled-down stripped core or, conversely, from a hot

stripped core (Heinke et al., 2013). While the UCXBs have low MT rates, the

short time spent in the observed bin is due to the simulated binary having an

MT rate near the boundary of the bin.

As the MB strength increases, the number of persistent systems that can

be reproduced increases. The binaries that could not be reproduced by the

default MB prescription, GX 9+9, 4U 1735-444 and Sco X-1, are those that

Podsiadlowski et al. (2002) found had MT rates much higher than their sim-

ulations reached. The convection-boosted MB is necessary to reproduce these

persistent systems. Similarly, the available evidence indicates that the MT rate

of 2A 1822-371 is super-Eddington (Bak Nielsen et al., 2017). For 2A 1822-371,

the convection-boosted case is still insufficient to reach the high MT observed.

The wind-boosted case pushes the MT rate high enough to reproduce this sys-

tem at an appropriate period. The mass ratio however, does not match with
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the observed binary.

The reproducibility of a transient binary is affected by the choice of MB pre-

scription. Unfortunately, unlike persistent systems, a clear trend isn’t apparent

from one prescription to another. Instead, different systems are reproduced by

different MB prescriptions, and with the uncertainties in determining an aver-

age MT in these systems, we cannot use the transient binaries to reliably draw

any conclusions without a clear trend. One result that can be seen from the

reproducibility of the transient systems in Table 2.6 is that the systems that

are most difficult to reproduce are those where the MT rate is only constrained

by an upper limit. The intermediate case reproduces the largest number of

observed transient systems with only EXO 0748-676 and XTE J1814-338 not

being reproduced.

The wind-boosted MB simulations cannot reproduce the majority of the

observed binaries regardless of whether they are persistent or transient. The

wind-boost prescription gives very short lifetimes for all reproduced binaries

(which makes their detection unlikely), and cannot reproduce the UCXBs. This

suggests that the simulated wind-boosted case is exceeding some saturation

point for MB and the systems are losing too much angular momentum too

quickly.

2.5.1 Other effects

Irradiation may play a significant role in driving winds from the donor star

(Ruderman et al., 1989), and in causing the donor star to expand to a larger

radius than expected for its orbital period (Podsiadlowski, 1991). Such an

increase in donor radius due to irradiation may cause cycles of increased MT

rates (up to a factor of ∼30), followed by a decrease to below-average MT

rates (e.g. Hameury et al., 1993). The detailed physics of such irradiation-

driven MT cycles have not yet been established, but current work suggests

that these cycles should require small convective timescales in the donor, and
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thus may operate on systems with periods between 4 and 15 hours (Büning

and Ritter, 2004). Irradiation-induced MT cycles could potentially produce

the large observed MT rates in some of our transient and persistent systems in

this period range, but should not be relevant for longer-period systems such as

Sco X-1. Whether irradiation-induced MT can play a significant role depends

on as-yet-undetermined details of the heating efficiency of the irradiating flux,

and the fraction of time at the increased MT rate.

We have difficulty reproducing two transient systems (EXO 0748-676 and

XTE J1814-338), both with orbital period near 4 hours, with any of our MB

schemes. Our best MB scheme, the “intermediate” case, predicts MT rates

higher than observed for these 2 systems. It is possible that irradiation-driven

MT cycles might alter these systems’ evolution enough to match their observed

characteristics (although such MT cycles are thought to cut off around 4 hours,

Büning and Ritter 2004). An alternative possibility is that these systems may

turn on as millisecond radio pulsars intermittently, during which they eject

all mass transferred from their companion (Burderi et al., 2002, 2003), as the

transitional millisecond pulsars appear to do (Archibald et al., 2009; Papitto

et al., 2013). If so, the time-averaged MT rate onto their NSs would be lower

than we calculate. There is indeed evidence that these two systems may be

transitional millisecond pulsars. XTE J1814-338 is known to show accretion-

induced X-ray pulsations (Markwardt and Swank, 2003). Its donor star also

shows evidence of irradiation by an unknown energy source, which may be spin-

down energy from a radio pulsar (Baglio et al., 2013; Wang et al., 2017). EXO

0748-676 has not shown detected X-ray pulsations (despite sensitive RXTE X-

ray observations). However, a careful study during quiescence showed that no

accretion disk was present, which may indicate that a transitional millisecond

pulsar had turned on, and is ejecting transferred mass (Ratti et al., 2012).

60



2.6 Conclusions

In this work, we have examined how different MB prescriptions affect the evo-

lution of LMXBs. The observational data to which we compare our simulations

is given in section 2.3. By systematically studying the parameter space of in-

terest, we cover a range of possible seed masses and periods for these binary

systems. The results of comparing our simulations to the observations are given

in sections 2.4 and 2.5. The key results of this work are:

• Using ”weaker” MB schemes such as the default Skumanich prescription,

and even the ”convection boosted” case described in this work, results in

an overabundance of highly massive NS accretors.

• The highest density region in our parameter space, as seen in figure 2.10,

is the region of short periods and low MT rates. This high-density region

is found in all MB prescriptions.

• In the default, convection boosted and intermedaite MB prescriptions, all

UXCBs of interest can be reproduced. Although, τmax is small suggesting

these systems are difficult to form using this method.

• The ”default” MB scheme reproduces results similar to Podsiadlowski

et al. (2002). This weak MB scheme cannot reproduce some observed

persistent systems in our simulations; these simulated binaries differ from

observed binaries by up to an order of magnitude in MT rate.

• The ”convection-boosted” prescription reproduces persistent systems much

better than the default scheme, as it successfully simulates the properties

of GX 9+9, 4U 1735-444 and Sco X-1. It cannot, however, reproduce

the suspected super-Eddington system 2A 1822-371 (Bak Nielsen et al.,

2017).
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• Once we account for wind in the MB scheme, we can reach high enough

MT rates to reproduce 2A 1822-371. Super-Eddington MT rates are

achieved in the ”intermediate” MB prescription.

• The intermediate prescription produces the largest number of observed

transient LMXBs. Only EXO 0748-676 and XTE J1814-338 cannot be

reproduced. These two systems only have an upper limit for mass transfer

rate which my be the reason why these systems are difficult to reproduce.

• Including the effects of a non-thermal wind in our ”wind boost” case

results in very high MB. The high angular momentum loss results in MT

rates that exceed 1M� yr−1. The ”wind boost” case likely has reached

and exceeded a saturation point with MB, and additional effects must be

considered to dampen the angular momentum loss for this scheme.

The systematic mismatches between observed and predicted NS LMXB

properties seen in previous work such as Podsiadlowski et al. (2002) are again

found in our work when the default MB prescription is used. These discrepan-

cies between observations and simulations begin to disappear, however, once we

include the effects of convective turnover time and non-isothermal winds. With

these changes, the MT rates approach those seen in observed systems, and our

simulations more effectively reproduce the samples of persistent, and transient,

binaries. With these results in mind, numerical studies of LMXBs that begin

their calculations at long periods should no longer use the Skumanich prescrip-

tion for MB as it does not adequately reproduce observed systems. Instead,

the studies need to include additional effects in their MB schemes.

A clear extension of this work would be to include saturation effects in the

MB prescription (Mestel and Spruit, 1987). One source of decreasing the MB

strength that is not accounted for in this work, is the change in the magnetic

field structure as the period of the system changes. It has been shown that in

short period binaries a so-called ’dead zone’ is produced, trapping wind mate-
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rial (Mestel and Spruit, 1987; Ivanova and Taam, 2003). This trapped material

cannot escape the system, reducing the angular momentum loss through MB.

Additionally, the inclusion of irradiation-induced wind and more complex mag-

netic field structures, such as a dipolar field similar to what is done in Justham

et al. (2006), is possible.

Possibilities for future analysis with the simulations produced for this work

include the possibility of determining viable progenitors of observed LMXBs.

Using the reproducibility search for observed systems in section 2.5, we can find

a rough parameter space that produces progenitors for each of our LMXBs of

interest for a given MB prescription. Finding the possible progenitors will act

as a ”reverse population synthesis” method, where instead of providing initial

conditions, we use observed binaries and their progenitors to infer what the

initial conditions may have been. The reverse population synthesis method

cannot, however, be used with the simple Skumanich law, where many persis-

tent systems are not reproduced.
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ABSTRACT

The formation of low-mass X-ray binaries (LMXBs) is an ongoing challenge

in stellar evolution. One important subset of LMXBs are the binary systems

with a neutron star (NS) accretor. In NS LMXBs with non-degenerate donors,

the mass transfer is mainly driven by magnetic braking. Discrepancies between

the observed and predicted mass transfer (MT) rates have been previously iden-

tified. Theoretical predictions of the MT rates are too low, by an order of mag-

nitude or more. Recently, we showed that with standard magnetic braking, it is

not possible to find progenitor binary systems such that they could reproduce –

at any time of their evolution – most of the observed persistent NS LMXBs. In

this Letter we present a modified magnetic braking prescription, CARB (Con-
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vection And Rotation Boosted). CARB magnetic braking combines two recent

improvements in understanding stellar magnetic fields and magnetized winds –

the dependence of the magnetic field strength on the outer convective zone, and

the dependence of the Alfvèn radius on the donor’s rotation. Using this new

magnetic braking prescription, we can reproduce the observed mass transfer

rates at the detected mass ratio and orbital period for all Galactic persistent

NS LMXBs with detailed information on donors. For the systems where the

effective temperature of the donor star is known, CARB theory agrees with

observations as well.

Keywords : methods: numerical — binaries: general — stars: magnetic field —

stars: evolution — X-rays: binaries

3.1 Introduction

Understanding the evolution of stars in binary systems relies heavily on the

adopted laws of angular momentum loss which affect the change in orbital

separation. One of the ways to lose angular momentum in a binary system

is through magnetic braking (MB) (Verbunt and Zwaan, 1981). In this con-

cept, the donor loses its angular momentum through a magnetized wind, and

then, through tidal friction, replenishes the donor’s angular momentum us-

ing the orbital angular momentum. MB is the dominant angular momentum

loss mechanism in binaries wider than a few hours in orbital period, whereas

gravitational radiation dominates in close binaries (Rappaport et al., 1983).

More recently, circumbinary disks have been shown to effectively remove an-

gular momentum and reproduce ultra compact binaries (Ma and Li, 2009b).

Unfortunately, circumbinary disks appear to be rare in LMXBs and there are

significant uncertainties in the disk parameters (Ma and Li, 2009b). Addition-

ally, our work includes systems with wider periods that UCXB., As such, we

will be focusing only on MB.
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The choice of the adopted MB prescription has large overarching effects on

the evolution of the binary – stronger MB will shrink a binary faster, resulting

in a higher mass transfer (MT) rate. The most widely-used assumption in

stellar simulations is the “Skumanich” MB (Skumanich, 1972); its application

to binary systems is usually the form provided in Rappaport et al. (1983). The

standard MB law, as well as some of its modifications, fails to reproduce the

observed persistent NS LMXBs (Van et al., 2019). Examples of some modified

MB schemes include those which focus on a subset of LMXBs such as Ap/Bp

donors (Justham et al., 2006), or dampen the MB strength at high rotation

rates (Sills et al., 2000; Ivanova and Taam, 2003).

Some advances in understanding the characteristics of the magnetized wind

from a star were made recently. First, Réville et al. (2015) has included the

effect of stellar rotation on the Alfvèn radius. Secondly, the convective turnover

time has been linked to the strength of the surface magnetic field (Parker, 1971;

Noyes et al., 1984; Ivanova, 2006). In §2, we derive the new CARB (Convection

And Rotation Boosted) MB which takes into account both advances. In §3, we

use the new MB to evolve the grid of progenitor binaries, in a similar manner

as done in Van et al. (2019). In §4, we compare the results of the simulations

with the observed persistent NS LMXBs. Finally, in §5 we summarize our key

results in this letter.

3.2 Magnetic Braking

The loss of the angular momentum due to magnetic braking is derived following

steps similar to those outlined in Van et al. (2019).

First, we assume spherical symmetry, which results in the angular momen-

tum lost being

J̇MB = −2

3
ΩṀWR

2
A. (3.1)
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ṀW denotes the wind mass loss rate, Ω is the rotation rate, and RA is the

Alfvèn radius. Assuming a radial magnetic field,

(
RA

R

)2

=
B2
sR

2

4πR2
AρAv

2
A

=
B2
sR

2

ṀWvA
. (3.2)

Here R is the radius of the star, Bs is the surface magnetic field strength, va is

Alfvèn velocity, and ρa is the density of the wind at the Alfvèn radius. Total

mass loss with the wind is ṀW = 4πR2
AρAvA. The velocity of a normal stellar

wind, when it reaches the Alfvèn radius, can be found from energy conservation,

and expressed using the surface escape velocity vesc:

vA
vesc

=

(
R

RA

)1/2

. (3.3)

In the case when the star and its attached magnetic field rotate, the regular

stellar wind can also be additionally accelerated by the time it reaches the

Alfvèn radius. This acceleration was tested by Matt et al. (2012) and was

shown to have a non-negligible effect. Réville et al. (2015) parametrized the

additional acceleration by replacing the surface escape velocity with a modified

velocity, which includes the effects of rotation. Using this variable instead in

Equation 3.2 gives us

(
RA

R

)3

=
B4
sR

4

Ṁ2
W

× 1

v2
esc + 2Ω2R2/K2

2

, (3.4)

where K2 = 0.07 in this equation is a constant obtained from a grid of simula-

tions by Réville et al. (2015). K2 sets the limit where the rotation rate begins

to play a significant role. In this approach, the Alfvèn radius shrinks as the

rotation rate increases, weakening the angular momentum loss in fast rotating

binaries. Plugging this form of the Alfvèn radius into the angular momentum

equation gives a new prescription for angular momentum loss,

J̇MB = −2

3
ΩṀ

−1/3
W R14/3B8/3

s

(
v2

esc + 2Ω2R2/K2
2

)−2/3
. (3.5)
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Substituting a convective turnover scaling relation for the magnetic field strength

of the star (see Van et al., 2019, for a discussion as to why this is justified), we

get the modified magnetic braking prescription used in our simulations,

J̇MB =− 2

3
Ṁ
−1/3
W R14/3

(
v2

esc + 2Ω2R2/K2
2

)−2/3

× Ω� B
8/3
�

(
Ω

Ω�

)11/3(
τconv

τ�,conv

)8/3

.

(3.6)

The magnetic field strength on the surface of the Sun is on average Bs = 1 G

with a rotation rate and convective turnover time of Ω� ≈ 3 × 10−6 s−1 and

τ�,conv = 2.8 × 106 s, respectively. Both solar values used here were found

using the same method from Van et al. (2019). The value used for τ�,conv is

similar to those found by Ma and Li (2009a) and Landin et al. (2010) of 28.4d

and 38.2d respectively. While our value deviates slightly from those found in

other works, what is important is that our calculations are self-similar between

different stars: the method used to calculate the normalization factor and the

turnover time of each of our simulated systems is the same.

3.3 Evolution through the mass transfer

We follow the method described in Van et al. (2019) and test the MB on

progenitor binaries seeded on a grid of periods and donor masses. The initial

periods range from −0.4 ≤ log10(P/day) ≤ 4 in steps of ∆ log10(P ) = 0.05.

The initial donor masses range from 1.0 ≤ Md/M� ≤ 7.0 with a variable

step size. The donor mass has steps of ∆Md = 0.1M� when Md ≤ 2.4M�,

∆Md = 0.2M� for 2.4 < Md/M� ≤ 3, ∆Md = 0.5M� when 3 < Md/M� ≤ 5

and ∆Md = 1.0M� for any initial donor mass exceeding 5M�. The stars have

initial metallicity Z = 0.02. All NSs start with a seed mass of MNS = 1.4M�.

The chosen grid encompasses all binaries that could start the mass transfer at
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Figure 3.1: The evolution of MNS during the mass transfer. The η value denotes
the MT efficiency. The triangle symbols represent persistent LMXBs (data from
Van et al., 2019).

some point of their evolution.

To evolve the initial binaries, we use the stellar code MESA∗ (Modules for

Experiments in Stellar Astrophysics) revision 11701 (Paxton et al., 2011, 2013,

2015, 2018, 2019) and May 2019 release of MESASDK†‡ .

Here, we refine the method described in Van et al. (2019) by taking into

account the efficiency of the mass transfer. The rate of the mass gain of the

NS ṀNS is proportional to the rate of the mass accretion Ṁacc, but is less than

that due to conversion of some accreted mass into gravitational binding energy:

ṀNS = ṀaccfBE . (3.7)

Here fBE is the so-called binding energy factor. Depending on the equation of

the state of the NS, fBE ≈ 0.85 − 0.90 (Lattimer and Prakash, 2007). Some

∗http://mesa.sourceforge.net
†http://www.astro.wisc.edu/~townsend/static.php?ref=mesasdk
‡The modifications to MESA to include modified MB will be available on the MESA

marketplace.
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fraction of the material accreted onto the NS will be converted to gravitational

binding energy and is controlled by fBE.

In addition, not all mass transferred through L1 has to be accreted by the

NS – it may be reduced by a number of effects, for example, the propeller

effect is a mechanism where the magnetic field deflects away accreting material

(Romanova et al., 2018). Indirect evidence for the accretion inefficiency comes

from observations of millisecond pulsars. If the accretion rate was the same as

the mass transfer rate Ṁtr, many of these binaries are expected to contain high

mass neutron stars. However, the observations do not support this (Antoniadis

et al., 2012, 2016). An analytic description of the efficiency of mass transfer is

not currently known. Antoniadis et al. (2012) calculated that accretion onto

the pulsar PSR J1738+0333 had an efficiency ε ∼ 0.1 − 0.3, while a more

recent statistical study looking at a number of pulsars estimated that their

accretion efficiency was between ε ∼ 0.05 − 0.2 (Antoniadis et al., 2016). We

will combine the efficiency and the binding energy factor into one value η. The

material accreted by the NS is less than that transferred,

Ṁacc = ηṀtr .
(3.8)

In Figure 3.1 we demonstrate how the choice of η affects the mass of the final

NSs. With η = 1, NSs in most systems become more massive than 2M�, once

Md < 0.4M�. While MNS is predicted to extend up to ≈ 2.1− 2.2M� no NSs

have accurately and reliably measured masses exceeding 2.0M� (Antoniadis

et al., 2013; Cromartie et al., 2019; Rezzolla et al., 2018). The rarity of high

mass NSs appears to contradict our results when assuming high efficiency. With

η = 0.2, the maximum mass of the NS is of order MNS ∼ 1.8M�. This value

is within the range of 1.1 . MNS/M� . 2 for observed NSs (Özel and Freire,

2016). For our study in this Letter, we therefore adopt η = 0.2.
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The efficiency factor will have a variety of effects on the binary system. The

increased mass ejected from the system will increase the amount of angular

momentum lost and limit how quickly MNS grows. The efficiency controls how

much material is accreted onto the compact object, which sets the luminosity of

the system. The mass transfer efficiency is not constant throughout the entire

evolution, and as a rough approximation we will estimate that the luminosity

of our system can be approximated by L = 0.6GṀtrMNS/RNS. We increase

the size of our MT bins used in the analysis to compensate for the uncertainty

in MT efficiency. If the η parameter used here were applied to the results

from Van et al. (2019), the overall ability of a system to reproduce an observed

LMXB would remain unchanged or decrease as the MT rate required to explain

the observed X-ray luminosity may be increased.

3.4 Comparison with the observed population

of LMXBs

It has been shown that the results of the MT simulations can be misleading in

determining the legitimacy of adopted MB prescriptions if only two parameters

are compared between simulated and observed systems (Pavlovskii and Ivanova,

2016). At least three parameters – for example, the period, the MT rate and

the mass ratio – are necessary for determining if a given MB prescription is

effective. The effective temperature of the donor could also play a significant

role in discriminating the adopted MB laws (Justham et al., 2006).

It is hard to visualize the compatibility of three or more parameters in the

same figure. In Figure 3.2, we show the maximum relative probability for any

of the simulated MT systems to have a specific MT rate and orbital period,

as well as the MT rates and orbital periods of observed persistent NS LMXBs

(data is taken from Van et al., 2019). This relative probability, or frequency, is

calculated using the following steps:
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Figure 3.2: The relative probability of finding a system in a given bin in period-
MT space. Each bin spans a width and height of 0.1 in log10(P ) and log10(Ṁacc).
The symbols used are the same as in figure 3.1. The two grey dashed lines
represent the critical MT separating persistent and transient systems for MNS =
1.4M� as described by the disk instability model (DIM) (Coriat et al., 2012).
The lower line includes the effects of irradiation while the upper line does not.
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1. τmntot is the total evolutionary time of a binary system for an initial mass

m and initial period n.

2. τmnij is the amount of time the initial m,n binary spends in an observed

i, j period and MT bin.

3. fmnij = τmnij /τmntot is the frequency with which a given combination of mass

and period appears in an observed bin of interest.

4. fij = max (fmnij ) is the maximum frequency from all the simulated bina-

ries, and is plotted in Figure 3.2.

Within this period-MT parameter space, all of the observed persistent NS

LMXBs appear to be reproducible by the simulated MT systems. This appar-

ent match does not guarantee that the simulated systems will reproduce the

observed systems when additional parameters are included.

Let us briefly describe the methodology for the comparison in 3-parameter

space (for details, see Van et al., 2019). Each observed system is assigned

a 3-dimensional cuboid, where the cuboid is roughly centred in the observed

properties. The size of of the cuboid in period is δ log10 P = 0.05 and the size

of the cuboid in mass ratio and MT rate depend on the uncertainty with which

the observed value was determined, see Table 3.1.
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System Name log10(P/hr) q log10(Ṁa) τmax (years) Asys/Atot fLMXB

4U 0513-40 [-0.57, -0.52] [0.01, 0.06] [-9.0, -8.4] 5.87× 106 1.72× 10−3 4.38× 10−2

2S 0918-549 [-0.56, -0.51] [0.01, 0.06] [-9.6, -8.4] 5.63× 106 1.72× 10−3 4.38× 10−2

4U 1543-624 [-0.54, -0.49] [0.01, 0.06] [-8.9, -8.4] 5.85× 106 1.54× 10−3 4.38× 10−2

4U 1850-087 [-0.48, -0.43] [0.01, 0.06] [-9.8, -8.2] 1.58× 107 2.92× 10−3 8.82× 10−2

M15 X-2 [-0.44, -0.39] [0.01, 0.06] [-9.5, -8.9] 2.43× 107 2.92× 10−3 5.37× 10−2

4U 1626-67 [-0.17, -0.12] [0.01, 0.06] [-9.5, -8.4] 7.39× 107 2.92× 10−3 1.05× 10−1

4U 1916-053 [-0.10, -0.05] [0.03, 0.08] [-9.4, -8.7] 6.14× 107 1.03× 10−3 8.86× 10−2

4U 1636-536 [0.56, 0.61] [0.15, 0.40] [-8.9, -8.4] 2.32× 107 5.49× 10−3 5.85× 10−2

GX 9+9 [0.60, 0.65] [0.20, 0.33] [-8.5, -8.0] 1.39× 107 4.46× 10−3 9.11× 10−2

4U 1735-444 [0.65, 0.70] [0.29, 0.48] [-8.2, -7.7] 1.11× 107 4.97× 10−3 1.44× 10−2

2A 1822-371 [0.73, 0.78] [0.26, 0.36] [-7.6, -7.1] 5.95× 106 6.69× 10−3 7.06× 10−2

Sco X-1 [1.26, 1.31] [0.15, 0.58] [-7.8, -7.1] 5.42× 106 1.20× 10−3 4.32× 10−3

GX 349+2 [1.33, 1.38] [0.39, 0.65] [-7.8, -7.1] 1.21× 107 4.46× 10−3 4.25× 10−3

Cyg X-2 [2.35, 2.40] [0.25, 0.53] [-7.5, -7.0] 7.99× 104 1.72× 10−3 6.65× 10−4

Table 3.1: The binned properties of observed persistent NS LMXBs taken from Van et al. (2019). This table is adapted
from Table 4 from Van et al. (2019). Again the periods are in hours and the mass accretion rate Ṁa is in M� yr

−1. The bin
ranges were chosen to span the errors in the given observed property with the bins centred on the observed values. τmax is
the maximum amount of time a given simulated system spends in the observed bin of interest. Asys/Atot is the fraction of
our tested parameter space that can reproduce the system of interest. These two quantities give an indication to how long
a simulation appears similar to an observed LMXB and how many systems could reproduce these properties.
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We can find the maximum time that an individual simulation spends in a

bin of interest, τmax, and what fraction of their MT evolution they spend in the

given bin, fLMXB. We also can find the fractional area of the initial parameter

space that reproduces the binary Asys/Atot. These three numbers can indicate

how plausible it is to produce the observed NS LMXBs. The value of τmax

indicates how long a system can remain in this state, and thus how likely it is

to be detected. Asys/Atot shows how stringent the initial parameter space is for

reproducing a given LMXB. A larger Asys/Atot implies that many systems can

reproduce an observed system. Atot spans our entire parameter space of seed

masses and periods. In our case Atot = 29.1475. For example, we find that Cyg

X-2 only has 2 progenitor systems, these two progenitor systems span a total

area of Asys = 0.05 which results in Asys/Atot = 1.72× 10−3.

As has been shown by Van et al. (2019), once the constraint on the mass

ratio is added, none of the previously used MB prescriptions can produce all

of the observed persistent NS LMXBs, despite considering all possible initial

binaries. For the non-reproducible systems, Asys/Atot = 0. In Table 3.1 we

present the results for the CARB MB prescription. It is fascinating that with

the modified MB prescription, all persistent LMXBs can be reproduced.

We can further constrain the progenitors by looking at the effective tem-

perature of the donor star. Determining the temperature of the companion is

difficult, and this value is not known for most observed LMXBs. The systems

where the donor’s spectral type have been measured tend to be the widest

LMXBs; Sco X-1, GX 349+2 and Cyg X-2. This additional fourth observed

parameter will provide additional constraints to the progenitor mass and period

combinations that result in binaries that can match all observed properties.

Sco X-1 was found to have a donor star that was later than K4 (Mata

Sánchez et al., 2015). This gives an approximate upper limit to the donor tem-

perature to be . 4800 K. By matching our three previous properties of interest

– period, mass ratio and MT – while constraining the donor temperature, we
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can further limit systems that reproduce Sco X-1. An example progenitor of

Sco X-1 has a 1.1M� donor with an initial period of 2.82 days. This system si-

multaneously matches the period, mass ratio, MT and effective temperature of

Sco X-1. When this progenitor evolves to the observed mass ratio and period,

the MT rate and effective temperature of the binary are 2.3×108 M� yr−1 and

4685 K respectively.

Cyg X-2 was found by Cowley et al. (1979) to have an A5-F2 donor star. A5-

F2 spectral type stars have an approximate temperature range of 7000 - 8500

K. When comparing this to our MT systems, we find that the only progenitors

that reproduce Cyg X-2 are binaries with an initial period between P ≈ 2.24−

2.51 days and an initial donor mass of M = 3.5M�. The mass transfer rates

and effective temperatures of the 2.24 day progenitor are 2.9 × 10−8 M� yr−1

and 7265 K.

GX 349+2 is a system where the spectral class of the donor is given, but the

literature related to this property is not in agreement. Penninx and Augusteijn

(1991) found the donor of GX 349+2 to be a G5-M2 giant whereas Wachter

and Margon (1996) finds the donor could be a B2 main sequence donor. Our

simulated results have a temperature ranging from ≈ 4800 − 5500 K which

correspond to a K3-G5 donor star. An example progenitor of GX 349+2 is

a binary with an initial donor mass of M = 1.1M� and a seed period of

3.98 days. This progenitor has a MT rate of 8.2 × 10−8 M� yr−1 and an

effective temperature of 4845 K.

3.5 Conclusions

We revised the MB prescription to include the effect of the donor’s rotation

on the wind’s velocity, following Matt et al. (2012) and Réville et al. (2015),

as well as the effects of the donor’s convective eddy turnover timescale and

the donor’s rotation on the generation of the surface magnetic field, following
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Parker (1971); Noyes et al. (1984); Ivanova (2006); Van et al. (2019).

The new CARB MB prescription was applied to test the evolution of all

binaries with a NS and non-degenerate donors that could experience the mass

transfer at some point in their evolution. The modelled MT systems were

compared to the observed persistent NS LMXBs. Our simulations were required

to match with observations in three parameters – the MT rate, the orbital

period and the mass ratio, with the effective temperature being used as a

fourth parameter in select binaries. Previously, it has been shown that the most

commonly used MB prescription, also known as Skumanich MB (Rappaport

et al., 1983), is not capable of reproducing most of the persistent NS LMXBs

with orbital periods larger than about an hour. With our modified MB, we can

reproduce all observed persistent NS LMXBs.

We note that the “Intermediate” prescription considered in Van et al. (2019)

reproduced all of the LMXBs of interest as well, although that description was

not explicitly derived – it was created by adding ad-hoc wind boosting and

ad-hoc convection boosting. Both of these factors are taken into account in a

more physical way in the modified MB prescription presented here. Addition-

ally, once the effective temperature is accounted for with the “intermediate”

prescription, Sco X-1 could no longer be reproduced. The number of possible

progenitors of Cyg X-2 also significantly drops, to only one system.

Our simulations do not include additional effects such as irradiation, or

atypically strong magnetic fields similar to those found in Ap stars. While

these effects might be invoked to explain a specific individual system, they

could not be used to explain the evolution of the entire population of MT

binaries. The inclusion of rotational effects on the Alfvèn radius, and magnetic

field dependence on convective turnover time, resulted in CARB MB being

able to reproduce all of the observed persistent NS LMXBs. We unequivocally

recommend the use of the CARB MB prescription instead of the Skumanich

MB, to model both Galactic and extragalactic NS LMXBs.
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Once the governing angular momentum loss law is constrained, our next

step will be to recover and constrain the properties of the plausible progenitor

systems, and the required formation rates of these progenitors to produce the

observed numbers of LMXBs. We also intend to expand our sample size to

include BHs and any additional well constrained NSs available. This will be a

topic of our future research.
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ABSTRACT

We present a new method for constraining the mass transfer evolution of

low mass X-ray binaries (LMXBs) - a reverse population synthesis technique.

This is done using the detailed 1D stellar evolution code MESA (Modules for

Experiments in Stellar Astrophysics) to evolve a high-resolution grid of binary

systems spanning a comprehensive range of initial donor masses and orbital

periods. We use the recently developed Convection And Rotation Boosted

(CARB) magnetic braking scheme. The CARB magnetic braking scheme is the

only magnetic braking prescription capable of reproducing an entire sample of

well studied persistent LMXBs – those with their mass ratios, periods and mass

transfer rates that have been observationally determined. Using the reverse
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population synthesis technique, where we follow any simulated system that

successfully reproduces an observed LMXB backwards, we have constrained

possible progenitors for each observed well-studied persistent LMXB. We also

determined that the minimum number of LMXB formations in the Milky Way

is 1500 per Gyr if we exclude Cyg X-2. For Cyg X-2, the most likely formation

rate is 9000 LMXB per Gyr. The technique we describe can be applied to any

observed LMXB with well-constrained mass ratios, period and mass transfer

rate. With the upcoming GAIA DR3 containing information on binary systems,

this technique can be applied to the data release to search for progenitors of

observed persistent LMXBs.

Keywords : methods: numerical — binaries: general — stars: magnetic field —

stars: evolution — X-rays: binaries

4.1 Introduction

Low mass X-ray binaries (LMXBs) are binary systems that consist of a star

that is overfilling its Roche Lobe – the donor, and of a compact companion,

a neutron star (NS) or a black hole (BH) – the accretor. NS LMXBs are

among the most studied binary systems in astronomy, with large catalogues

dedicated to their observations (e.g., Ritter and Kolb, 2003; Liu et al., 2007).

The data presented in these catalogues can allow for the derivation of quantities

such as the mass transfer (MT) rates, mass ratios of the two stars, binary

orbital periods and, in some cases, the donors’ effective temperatures inferred

from observations. These properties are essential for theoretical studies of

the formation and evolution of LMXBs and are regularly used to compare

theoretically obtained systems to the observed ones (Bhattacharya and van

den Heuvel, 1991; Podsiadlowski et al., 2002; Van et al., 2019).

There are two very different approaches to gaining insight in the theoretical

studies of LMXBs. One approach is to study a specific observed system (Eggle-
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ton, 1983; Justham et al., 2006; Pavlovskii and Ivanova, 2016; Podsiadlowski

and Rappaport, 2000; Rappaport et al., 1995; Verbunt and Zwaan, 1981). The

other approach is to model a larger population of binaries simultaneously, using

assumptions for the initial properties of the initial systems, and their evolu-

tion. This approach is known as population synthesis and is commonly used

to analyze the statistical properties of a type of system (Breivik et al., 2020;

Fragos et al., 2008; Kalogera and Webbink, 1998; Kobulnicky and Fryer, 2007;

Rappaport et al., 2005). Population synthesis codes have been used to calcu-

late formation rates for a wide range of exotic stellar systems using different

initial conditions (Belczynski et al., 2018, 2020; Bruzual and Charlot, 2003).

In standard population synthesis studies, initial conditions such as the initial

mass distribution and the stellar birth rates control the formation and evo-

lution of stellar systems. Depending on the type of systems studied, various

other parameters may be adjusted, such as the wind mass-loss rates, accretion

luminosity equations, and common envelope prescriptions. The validity of pop-

ulation synthesis is in the accuracy of these initial conditions and parameters

or prescriptions used.

In this work, we will be employing a reverse population synthesis technique.

Instead of applying a set of initial conditions to analyze the obtained systems

during and after their evolution, we will use our simulated results to infer the

initial progenitor properties.

The theoretically obtained LMXBs will be used to constrain the possible

progenitor conditions of our observed systems and estimate the required forma-

tion rate of a given progenitor. In Section §4.2 we review the simulation setup

– the grid of binaries we used and conditions used to evolve the systems. Sec-

tion §4.3 presents the viable progenitors of each subgroup of LMXBs. Section

§4.4 presents the estimates for the formation rate of the progenitor binaries. In

Section §4.5 we take a closer look at the gaps in our parameter space that do

not result in any observed LMXBs and discuss why these binaries aren’t seen,
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and we provide the predictions on where future LMXBs may be detected.

4.2 Model

The detailed numerical setup of how we model a population of LMXBs was

described in Van et al. (2019). Below we provide the most crucial points or

changes relevant to the presented study.

4.2.1 Population Grid

Following Van et al. (2019) and Van and Ivanova (2019), we create an initial

grid of NS LMXBs with a range of initial periods and masses while using a

higher-resolution grid as compared to the previous studies. The parameters of

the mesh are:

• Initial donor masses are in the range 0.95 ≤Md/M� ≤ 7.00.

• Initial binary period are in the range −0.6 ≤ log10(P/day) ≤ 4.0.

We use a non-uniform mesh density for the initial donor mass and period,

see Table 4.1 for the distribution. With the adopted mesh density, we model a

total of 14836 binary systems.

All donors are placed in binary systems with a NS accretor that has an

initial mass of Ma = 1.4M� and radius Ra = 11.5 km. A binary system at

any point in its evolution can also be characterized by the derived quantity

q = Md/Ma, which is the mass ratio between the donor and accretor. All

donors are initially at their zero-age main sequence. For all simulations, we

adopt the default MESA metallicity of Z = 0.02, while solar metallicity has been

suggested to be lower at Z� ≈ 0.13 (Asplund et al., 2009)∗. The chosen grid of

systems covers all binaries that can start mass transfer at some point during

∗We have verified that reducing the metallicity by a factor of two does not significantly
affect the results presented elsewhere in this paper.
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Md range ∆Md/M� log10(P ) range ∆ log10(P/day)
0.95 – 4.00 0.05 -0.6 – 1.64 0.02
0.95 – 4.00 0.05 1.65 – 4.0 0.05
4.00 – 7.00 0.10 -0.6 – 1.64 0.02
4.00 – 7.00 0.10 1.65 – 4.0 0.05

Table 4.1: The grid sizes for mass and orbital periods for different ranges of
initial donor masses and initial orbital periods.

their evolution, with lower mass donors unlikely to contribute to the population

of LMXBs during a Hubble time.

The simulations were performed using the one-dimensional stellar evolution

code MESA† (Modules for Experiments in Stellar Astrophysics) revision 11701

(Paxton et al., 2011, 2013, 2015, 2018, 2019), and May 2019 release of MESASDK

(Townsend, 2019). The wind mass loss scheme used in our donor star is the

“Reimers” wind mass prescription (Reimers, 1975) with no additional boosting

factors included. We also allow for the evolution of the radial velocity in our

donor star.

For our binary parameters, we use a modified Eddington limit appropriate

for NSs and an improved magnetic braking prescription. Both the magnetic

braking prescription and the modified Eddington limit will be described in

further detail in Sections 4.2.2 and 4.2.3 respectively. Beyond these changes in

our simulation parameters, the other properties are done using MESA defaults.

The MESA EOS is a blend of the OPAL (Rogers and Nayfonov, 2002),

SCVH (Saumon et al., 1995), PTEH (Pols et al., 1995), HELM (Timmes and

Swesty, 2000), and PC (Potekhin and Chabrier, 2010) EOSs.

Radiative opacities are primarily from OPAL (Iglesias and Rogers, 1993,

1996), with low-temperature data from Ferguson et al. (2005) and the high-

temperature, Compton-scattering dominated regime by Buchler and Yueh (1976).

Electron conduction opacities are from Cassisi et al. (2007).

Nuclear reaction rates are a combination of rates from NACRE (Angulo

†http://mesa.sourceforge.net
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et al., 1999), JINA REACLIB (Cyburt et al., 2010), plus additional tabu-

lated weak reaction rates (Fuller et al., 1985; Oda et al., 1994; Langanke and

Mart́ınez-Pinedo, 2000). Screening is included via the prescriptions of Salpeter

(1954); Dewitt et al. (1973); Alastuey and Jancovici (1978) and Itoh et al.

(1979). Thermal neutrino loss rates are from Itoh et al. (1996).

The orbital evolution of the binary systems is governed by the total angular

momentum loss through three main mechanisms. These mechanisms include

angular momentum loss due to magnetic braking (see §4.2.2), through angular

momentum loss via mass loss from the system (see §4.2.3), and in very short pe-

riod systems, angular momentum loss due to gravitational radiation (Faulkner,

1971). Our simulations do not account for any additional effects the compact

object may have on the donor star, such as irradiation or tidal heating.

When the donor star overfills its Roche lobe (for a one-dimensional approx-

imation of the Roche lobe radius, see Eggleton, 1983), the material will flow

from the donor to the accretor through the L1 Lagrange point between the two

stars. The rate of mass transfer (MT) is calculated using the “Ritter” prescrip-

tion in MESA (for more information on the MT prescription, see Ritter, 1988).

The details on the accretion rate and the Eddington limit will be described in

section §4.2.3.

The simulated LMXBs all start with an NS already formed and the donor

star at zero-age main sequence (ZAMS). All simulations continued for 10 Gyrs,

or until the donor star detaches and no longer transfers mass to the NS. In

some cases, the simulation would experience dynamically unstable mass trans-

fer which MESA is not designed to simulate. These simulations would likely

encounter numerical issues and stop. Some of the systems were initially placed

at such a short period that they overfill, sometimes significantly, their Roche

lobe at the start of simulations while surviving this initial MT. We did not

discard these systems but discuss them separately with caution.
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4.2.2 Magnetic Braking

We use the Convection and Rotation Boosted (CARB) magnetic braking (see

Van and Ivanova, 2019, for the derivation). The angular momentum loss from

a star with radius R, rotating with a rate of ω at its surface, is:

J̇MB =− 2

3
Ṁ
−1/3
W R14/3

(
v2

esc +
2Ω2R2

K2
2

)−2/3

× Ω� B
8/3
�

(
Ω

Ω�

)11/3(
τconv

τ�,conv

)8/3

.

(4.1)

ṀW denotes the wind mass loss rate, vesc is the surface escape velocity, τconv

is the convective turnover time, B is the surface magnetic field strength, and

K2 = 0.07 in this equation is a constant obtained from a grid of simulations by

Réville et al. (2015). K2 sets the limit to the rotation rate required to play a

significant role in damping the magnetic braking. The solar values adopted to

normalize Equation 4.1 are B� = 1 G for Sun’s surface magnetic field strength,

and Ω� ≈ 3× 10−6 s−1 for Sun’s surface rotation rate. For convective turnover

time we use τ�,conv = 2.8× 106 s. This value was obtained by evolving a 1M�,

Z = Z� star to 4.6 Gyrs and using the following equation:

τconv =

∫ Rs

R

dr

vconv

. (4.2)

R and Rs are the bottom and the top of the outer convective zone respectively,

while vconv is the local convective velocity (for more details, see Van et al.,

2019).

4.2.3 Accretion rate

Following Van et al. (2019) and Van and Ivanova (2019), we consider non-

conservative MT, where we limit the mass accretion rate by the Eddington-

limited maximum accretion rate. If the MT rate exceeds the Eddington limit,
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the excess is not considered to be accreted by the compact object but is counted

as lost from the system with the accretor’s specific angular momentum. The

Eddington-limited mass accretion rate ṀEdd is:

ṀEdd =
4πcRa

κe
≈ 3.4

1 +X
× 10−8M� yr−1 (4.3)

Here, κe is the Thomson electron scattering opacity, κe = 0.19(X+1) cm2 g−1,

X is the hydrogen mass fraction in the material transferred from the donor.

In addition to the Eddington limit, we also impose MT efficiency η which

represents a mass transfer efficiency. An analytic description of η is not cur-

rently known, but previous work has shown that this efficiency can range be-

tween ∼ 0.05 − 0.3 in pulsars (Antoniadis et al., 2012). Previously, Van and

Ivanova (2019) showed that an efficiency η = 1 would result in neutron star

masses consistently exceeding 2M� and an efficiency of η = 0.2 results in a

more reasonable upper mass value of ∼ 1.8M� (for an explanation see Van

and Ivanova, 2019). Combining the Eddington limit and the mass transfer

efficiency, the material accreted by the NS is

ṀNS = min(ṀEdd, ηṀtr) (4.4)

Ṁtr is the mass lost by the donor via its L1 Lagrange point due to Roche lobe

overflow. The amount of material accreted onto the NS determines the observed

luminosity of the system. We do not set an upper limit on the mass loss rate of

the donor and only limit the accretion rate of the NS. It is important to note

material accreted onto the disc that moves closer to the compact object but is

not accreted onto the compact object itself will also contribute to the luminosity

of the system. Along with MT efficiency η not being constant throughout the

evolution, we estimate that the luminosity of our systems can be described by

the equation:
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L =
0.6GṀtrMNS

RNS

(4.5)

To account for these uncertainties, the sizes of our MT bins are large enough

to compensate during analysis.

4.2.4 Persistent Systems

To compare the simulated systems to the observed systems, we must determine

if the simulated system is observable. Specifically, we only compare to the sys-

tems which are observationally classified as persistent LMXBs. To discriminate

whether the modelled system would be deemed persistent or transient from ob-

servations, we use the disc instability model (DIM). The DIM states that there

exists a critical mass transfer rate that separates persistent and transient sys-

tems at a given period (Meyer and Meyer-Hofmeister, 1981). In systems where

the accretion is too low, the created accretion disc experiences a buildup of ma-

terial. The system will then experience outbursts separated by the periods of

quiescence caused by increases and decreases in temperature, and thus appears

as a transient system. Conversely, if the accretion rate is high for this orbital

period, the accretion disc is in a constantly bright state, appearing persistent

(see Lasota, 2001, for a review of DIM). In this paper, we use the stability

criteria from Coriat et al. (2012):

Ṁcrit = kP b
hr

(4.6)

Phr is the orbital period of the binary system in hours. The most lenient

classification that predicts the largest number of persistent systems requires an

irradiated disc with a neutron star accretor. The condition for an irradiated disc

instability results in the lowest Ṁcrit for any given orbital period. The condition
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of instability for an irradiated accretion disc is described by Equation 4.6 with

b = 1.59 and k = (2.9±0.9)×1015g s−1. In our calculations we will be using the

lower limit of k = 2.0× 1015g s−1 from Coriat et al. (2012) in determining the

critical mass transfer rate to capture the largest number of simulated persistent

systems. Any MT system that exceeds this critical transfer rate is classified in

our simulations as a persistent LMXB. This MT rate is the amount of mass

flowing through the L1 point.

4.2.5 Relating the observed LMXBs to the simulated

LMXBs

For our analysis, we split the sample of observed binaries based on the orbital

period (see Table 4.2). Ultra-compact X-ray binaries (UCXBs) are LMXBs

defined to have an orbital period of shorter than 80 minutes. Systems with

periods less than 4 hours are often classified as short period LMXBs. Our

sample only contains one binary with a period of about ten days, Cyg X-2,

which we define as a long period binary. We define LMXBs with orbital periods

ranging from 10 hour to approximately 1 day as medium period systems for the

analysis in this paper.

To determine the progenitors of the observed LMXBs of interest, we must

simultaneously match the orbital period, the MT rate, and the mass ratio of our

simulated system with one of the observed systems. We treat each observed,

persistent LMXB not as occupying a single point in this three-dimensional

space but as occupying a cuboid in this space. Each cuboid is centred at one of

the observed LMXBs. The lengths of the cuboid edges are taken to be equal to

the uncertainties in each of the observed quantities for this observed LMXB. In

the case of the mass ratio and mass transfer rates, these are the observed errors

in each quantity while the length of log10(P ) represents a reasonable range for

the value. See Table 4.2 for details on the adopted cuboids in the period, mass
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ratio, and MT rate space. These centres of each cuboid and the errors in each

dimension are taken from Van and Ivanova (2019).

For LMXBs with additional observed properties, we can further constrain

the number of possible progenitors. In the case of Sco X-1 and Cyg X-2,

there are observation values for the effective temperatures of the donor star.

Observations by Mata Sánchez et al. (2015) found that the donor star in Sco

X-1 was later than a K4. This observation constrains the donor star’s effective

temperature to have an upper limit of Teff . 4800 K. Cyg X-2, on the other

hand, is better constrained as the observations by Cowley et al. (1979), which

limit the effective temperature to 7000 . Teff/K . 8500. With these additional

observed quantities, we can compare the effective temperature of our simulated

systems to these observed constraints to limit the viable progenitors.

4.2.6 Progenitor search

To analyze the progenitor population, we start with finding the total observed

time τobserved, which is defined as the total amount of time that a seed progenitor

binary spends while appearing similar to any of the observed binaries, e.g., it

passes through any of the cuboids. We then find the amount of time a simulated

binary spends as a persistent binary predicted by Equation 4.6, τpersistent. Their

ratio is:

fobs =
Time matching any observed system

Time satisfying persistent condition
=

τobserved

τpersistent

, (4.7)

The amount of time our simulations spend as a persistent system exceeds the

amount of time it appears similar to any of the observed binaries. This ratio

gives us an idea of how likely it is that a progenitor will be able to produce

an observed system. If a progenitor has a very high ratio, this means that the

system spends a significant fraction of its persistent lifetime appearing similar

to an observable LMXB. We will also define an additional parameter fobs,i:
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System Name log10(P/day) q log10(Ṁtr) τmax (years) Asys/Atot

UCXB
4U 0513-40 [-1.95, -1.90] [0.01, 0.06] [-9.0, -8.4] 1.08× 107 1.37× 10−3

2S 0918-549 [-1.94, -1.89] [0.01, 0.06] [-9.6, -8.4] 1.12× 107 1.41× 10−3

4U 1543-624 [-1.92, -1.87] [0.01, 0.06] [-8.9, -8.4] 1.44× 107 1.44× 10−3

4U 1850-087 [-1.86, -1.81] [0.01, 0.06] [-9.8, -8.2] 2.34× 107 1.69× 10−3

M15 X-2 [-1.82, -1.77] [0.01, 0.06] [-9.5, -8.9] 3.22× 107 1.76× 10−3

4U 1626-67 [-1.55, -1.50] [0.01, 0.06] [-9.5, -8.4] 9.33× 107 2.25× 10−3

4U 1916-053 [-1.48, -1.43] [0.03, 0.08] [-9.4, -8.7] 5.82× 107 7.40× 10−4

Short period
4U 1636-536 [-0.82, -0.77] [0.15, 0.40] [-8.9, -8.4] 2.53× 107 4.05× 10−3

GX 9+9 [-0.78, -0.73] [0.20, 0.33] [-8.5, -8.0] 1.66× 107 3.91× 10−3

4U 1735-444 [-0.73, -0.68] [0.29, 0.48] [-8.2, -7.7] 1.07× 107 4.23× 10−3

2A 1822-371 [-0.65, -0.60] [0.26, 0.36] [-7.6, -7.1] 6.15× 106 5.32× 10−3

Medium period
Sco X-1 [-0.12, -0.07] [0.15, 0.58] [-7.8, -7.1] 9.42× 106 1.66× 10−3

GX 349+2 [-0.05, 0.00] [0.39, 0.65] [-7.8, -7.1] 1.58× 107 4.37× 10−3

Long period
Cyg X-2 [0.97, 1.02] [0.25, 0.53] [-7.8, -7.0] 8.36× 105 2.30× 10−3

Table 4.2: The binned properties of the observed LMXBs used to compare to
simulated systems and diagnostic properties used to analyze the results. The
binned properties are period in days, mass transfer rate in Ṁtr is in M� yr−1

and the mass ratio. The bin ranges are centred on the observed values and span
the errors in the given observed property. The two diagnostic properties are the
maximum amount of time a given simulated system spends in the observed bin
of interest, τmax and Asys/Atot is the fraction of our tested parameter space that
can reproduce the system of interest. These two quantities indicate how long a
simulation appears similar to an observed LMXB and how many systems could
reproduce these properties. The period, mass ratio and mass transfer rate bins
are taken from Table 4 from Van et al. (2019).
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fobs,i =
Time matching a specific observed system

Time satisfying persistent condition
(4.8)

Using this definition fobs,i ≤ fobs. We will use fobs,i in figures where we will be

looking at progenitors of a single observed LMXB and fobs for figures where we

determine the progenitor of multiple LMXBs.

4.3 Analysis

We present the progenitors of the observed systems in Figure 4.1. While the

initial parameter space spans a significant range in mass and period, the viable

progenitors are constrained to a small area of the parameter space. Specifically,

only the binary systems with the initial donor masses between 0.95M� and

4.5M� and with the orbital periods between 0.4 days and 16 days have been

found to contribute to any of the existing persistent LMXBs with only a portion

of the simulated systems initiating mass transfer and ending the simulation as

a detached system as seen in Figure 4.3. The progenitors of the individual

types of LMXBs form distinct groups. Below, we will examine each of them in

detail.

We anticipate that in field binaries, some companions are still in the pre-

main sequence stage when NS formation takes place‡. For that reason, we also

analyze the constraints on the progenitor space due to the minimum period

which a binary could have when the progenitor-donor is 10 million years old

(an NS could have been created between 7 and 25 million years after the two

stars started their formation, depending on the initial mass of the initially

more massive star). Specifically, at the age of 10 million years, only stars more

massive than 2M� have reached the ZAMS (see Figure 4.1). At the same

time, pre-MS stars with about 1.6M� separate the stars with radiative and

convective outer zones, resulting in a bump in the plausible initial periods.
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Figure 4.1: The progenitors of the observed LMXBs split into distinct classes
based on the periods of the currently observed systems as denoted in Table 4.2.
Some observed systems share common progenitors; to show this, the individual
grid points are semitransparent. The black dashed line denotes the shortest
initial period with which the initial binary would start as a detached system.
The red dashed line denotes the shortest initial period which the detached
binary can have when the progenitor is 10 million years old. The systems on
the left of the black dashed line started their evolution while having an initial
Roche lobe overflow.
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Figure 4.2: The progenitors of the four types of the observed LMXB. The colour
shows fobs,i, the fraction of time the modelled system shows up as one of the
observed LMXB, as compared to the time it can be observed as any persistent
LMXB, see Equation 4.7). The black and the red dashed lines are as in Figure
4.1.
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Figure 4.3: The left figure shows the outcome of the entire simulation with a
given progenitor donor mass and orbital period. The black dashed line denotes
the largest initial orbital period where the simulated binary starts with an
overfilled Roche lobe. The white regions denote regions where the simulated
systems experience numerical issues with MESA, as they experience exponential
growth in mass transfer exceeding the thermal mass transfer rate by at least
two orders of magnitude. This takes place after a period of stable thermal
timescale mass transfer, but the eventual outcome of these mass transferring
systems – a merger or a binary – is not clear. The right figure shows the thermal
timescale fractions for a simulated binary. The grey colour denotes where the
thermal timescale fractions exceed 10, and the white denote regions where no
mass transfer occurs.
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4.3.1 Ultra Compact Systems

By splitting our sample of observed binaries into the period ranges given in Ta-

ble 4.2, we can determine if there are specific ranges in our parameter space that

reproduce a subset of the observed systems. The progenitors which reproduce

the observed UCXBs are shown in Figure 4.2.

In LMXB evolution, for each donor and accretor combination, there is a

critical value of the initial orbital period known as the bifurcation period. The

bifurcation period separates the binaries where mass transfer leads to shrinking

orbital separations and those where the orbital period increases, at least until

the donor detaches and MT no longer occurs. The progenitors of UCXBs in the

field accordingly are considered to have the initial periods below the bifurcation

period for their companions (Nelson et al., 1986; Nelson and Rappaport, 2003;

Podsiadlowski et al., 2002). The bifurcation periods’ values are also a function

of the accepted magnetic braking. Our results for UCXBs progenitors are in

complete agreement with their standard formation scenario.

The entire group of UCXBs progenitors comes from a very narrow portion of

the parameter space with very few viable initial periods for a given initial donor

mass. The initial period of UCXBs has the largest possible range for donors

with lower masses spanning up to log10(P/days) ≈ 0.2. As the mass increases,

this period range decreases to log10(P/days) ≈ 0.02. From the maximum

amount of time spent in an observed bin listed in Table 4.2, we see that the

modelled systems spend a significant amount of time appearing similar to the

observed UXCBs. Having a large fobs is expected, as these binaries are highly

evolved systems near the end of the donor stars’ life, and the evolution of

UCXBs slows down almost exponentially with time.

The two UCXBs, 4U 1626-67 and 4U 1916-053 have longer detected periods

than the other five ultra-compact systems. These two systems have been found

to require more complex stellar evolution, such as enhanced angular momen-

tum loss at shorter periods, an evolved main sequence donor with finely tuned
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initial parameters for either magnetic braking, or common envelope evolution

(Heinke et al., 2013; Podsiadlowski et al., 2002). Our progenitors that success-

fully reproduce 4U 1626-67 and 4U 1916-053 are all main sequence stars that

have not evolved enough to produce a significant amount of helium in their

cores. Our formation channel is an alternative evolutionary channel, where the

updated magnetic braking results in the donor star having sufficiently high an-

gular momentum loss at periods less than 80 minutes and drive up the MT rate.

In our simulations, reproducing these two UCXBs also requires fine-tuning in

the sense that the initial progenitor space is very small, with a narrow region

of possible donors more massive than 1.50M� contributing. The other UCXBs

do not contain any progenitors with with initial masses exceeding 1.50M�.

4.3.2 Short Period

The progenitors of the short period systems span a much larger period and mass

range than the ultra-compact systems, with a larger fraction of the progenitor

space resulting in an observed binary (see Figure 4.2). Initial donor masses that

form our short period systems range from 0.9M� to 3.6M�, with the periods

between 0.45 day and 2.5 days (−0.34 ≤ log10(P/days) ≤ 0.40). Unlike the

UCXB systems, there is no clear pattern or structure in the initial parameter

space needed to reproduce all of the observed short LMXBs. Plotting the

progenitors for each observed short LMXB system individually demonstrates

their distinct differences (see Figure 4.4).

The progenitors of 4U 1636-536 and GX 9+9 appear to belong to very

confined progenitor groups. The masses are confined to 2.25 ≤ M/M� ≤ 3.60

and 2.55 ≤ M/M� ≤ 3.60, respectively, and the initial periods spans are

−0.12 ≤ log10(P/days) ≤ 0 and −0.18 ≤ log10(P/days) ≤ −0.04, respectively.

These two LMXBs, 4U 1636-53 and GX 9+9, share progenitors with initial

masses ranging from 2.70 ≤M/M� ≤ 3.55 and log10(P/days) = −0.06.

The progenitors of 4U 1735-444 are split into two distinct groups based on

96



the mass, with the higher mass group ranging from 2.50 . M/M� ≤ 3.50 and

the lower mass group spanning 0.95 ≤M/M� ≤ 1.50. The overall period range

of these progenitors span −0.38 ≤ log10(P/days) ≤ 0.38. For more massive

progenitor systems, the fraction of systems appearing similar to 4U 1735-444

is higher, but the time they spend in this state ranges from 104 years to 108

years. The lower mass progenitors have a smaller range between 104 and 106

years.

The progenitor binaries of 2A 1822-371 are very similar to the progenitors of

4U 1735-444 and form the group that is adjoined to the progenitors of 4U 1735-

444 at similar initial orbital periods. Their masses range 0.95 ≤M/M� ≤ 2.90

and the periods range −0.34 ≤ log10(P/days) ≤ 0.40. For both 4U 1735-444

and 2A 1822-371 (but especially for the latter one), many progenitors may

not exist in nature: the donors either experience RLOF at ZAMS or when

the NS was formed (see Figure 4.4). Observationally determining the effective

temperature of the donors could greatly constrain the possible progenitors, as

the higher mass donors group have higher temperatures at Teff ∼ 5000K than

the low mass donors with Teff ∼ 3900K.

A key attribute that can be seen in Figure 4.4 is the smooth transition

from one observed LMXB’s progenitors to another with overlap between sys-

tems. The higher mass progenitors with M ≈ 2.5M� can, depending on the

period of the binary system, produce all four of our short period LMXBs. At

this initial donor mass 4U 1735-444 can be reproduced with an initial sepa-

ration of log10(P/days) = −0.36. As the initial period increases to −0.32 ≤

log10(P/days) ≤ −0.28, we effectively reproduce 2A 1822-37.

4.3.3 Medium Period

The progenitors of medium period LMXBs form a narrow strip in the initial

period for each initial mass that spans over a large region of the periods (see

Figure 4.2). Separating the progenitors of the two observed medium period
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Figure 4.4: The short period systems from Figure 4.2 split into the individual
systems. The colour shows fobs, the fraction of time the modelled system shows
up as one of the observed LMXB, as compared to the time it can be observed
as any persistent LMXB. The black and the red dashed lines are as in Figure
4.1.
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Figure 4.5: The ratio between observed and persistent times of the two medium
period LMXBs. Similar to Figure 4.1, the black and red dashed lines show the
shortest period where an initial binary would start as a detached system and the
shortest initial period which the detached binary can have when the progenitor
is 10 million years old respectively.

LMXBs in Figure 4.5, we see that Sco X-1 has the continuous range of possible

progenitor masses, up to about 2 M�, whereas GX 349+2 can have more mas-

sive progenitors, but not continuous in all masses above 2 M�. The progenitors

of Sco X-1 span nearly the same mass range as the low mass portion of GX

349+2 at slightly shorter, while almost adjacent, periods. Specifically, the Sco

X-1 progenitors have initial mass and period ranges of 1.05 ≤ M/M� ≤ 1.95

and −0.04 ≤ log10(P/days) ≤ 0.56. The low mass progenitors of GX 349+2

have similar masses, 1.05 ≤ M/M� ≤ 2.20. GX 349+2 has two gaps in the

progenitor parameter space, one at 2.25 ≤M/M� ≤ 2.30 and another between

2.75 ≤M/M� ≤ 3.55. The lower mass gap is due to these systems not reaching

the observed period, instead, these progenitors converge to an ultra-compact

separation. The gap between 2.70M� and 3.55M� is due to the simulated

binary not reaching sufficiently high mass transfer rates.

We anticipate that Sco X-1 is more limited in our parameter space than

GX 349+2 as we used the additional constraint on the donor’s effective tem-
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perature. Without the effective temperature constraint, the mass range for Sco

X-1 progenitors extends up to 2.55M�, while with the effective temperature

constraint, the upper mass limit remains at 2.0M�. We discuss effective tem-

perature more in section 4.3.5. If the effective temperature would be measured

for the donor in GX 349+2, the mass of its progenitors could be constrained

more, and either high mass or low mass formation channel could be ruled out.

The progenitors of GX 349+2 with the initial masses 2.35 ≤M/M� ≤ 2.70

and the period of log10(P/days) = 0.12 overlap with the progenitors of the

UCXB 4U 1626-67, implying that GX 349+2 may evolve to a UCXB system.

This small parameter space is the only initial parameter space with progenitors

resulting in two LMXB systems with drastically different parameters during two

different phases of mass transfer.

4.3.4 Long Period

Cygnus X-2 is the only system in the long period category of our observed

LMXBs. It is also one of the LMXBs with the observed effective temperature.

This binary system stands out as there is a significant jump in the period

from GX 349+2 to Cyg X-2 where the two LMXBs have observed periods

of ≈ 22 hours and ≈ 10 days respectively. The progenitor parameter space

area that can produce Cyg X-2 is comparable to the other observed systems

(see Figure 4.2). However, the maximum amount of time a simulated system

spends in the appropriate bin (been similar to the observed LMXB) is much

shorter. Specifically, the longest living binary spends less than 106 years in the

bin, but because the evolution is very rapid, the fractional time as defined in

Equation 4.8 is large. The progenitor’s initial space has less of a clear pattern,

unlike the LMXBs we discussed previously. While the progenitors of Cyg X-2

almost form a strip, with the initial period increasing as the initial donor mass

increases, there are gaps in the masses for plausible progenitors. The gaps

in our progenitor space with initial masses below M = 4.0M� do not reach
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sufficiently high mass transfer rates whereas the systems with M ≥ 4.0M�

have mass transfer rates that exceed 10−7M�yr−1 when at the appropriate

mass ratio and period values. There is also an outlier at M = 4.4M� and

log10(P/days) = 0.58. It is possible that the interruptions in the progenitor

space is due to the quantization of our parameter space and additional fine

tuning may be required in finding the viable progenitors in these gaps. It has

been previously proposed that Cyg X-2 requires an intermediate-mass donor

star (Podsiadlowski and Rappaport, 2000), and our results fully confirm that

only this formation scenario can work.

4.3.5 Effective Temperature

For Sco X-1 and Cyg X-2, we have an additional constant, the effective tem-

perature, to limit the number of possible progenitors. Sco X-1 was found to

have a donor star that has a spectral class later than K4 giving an approximate

upper limit of Teff . 4800 K (Mata Sánchez et al., 2015). Cyg X-2, on the other

hand, ranges between an A5 to F2 spectral type, giving it a temperature range

of 7000 − 8500 K (Cowley et al., 1979). The inclusion of effective tempera-

ture as an additional constrain has significant effects on the possible progenitor

systems, as can be seen in Figure 4.6.

Mata Sánchez et al. (2015) places an upper limit on Sco X-1’s effective

temperature at 4800 K. This temperature constraint limits the progenitor mass

to Mi . 2.0M� and narrows the width in initial periods at a given mass. The

effective temperature plays a significantly larger role in limiting the progenitors

of Cyg X-2 as seen in Figure 4.6. Without the effective temperature, the

number of viable progenitors for Cyg X-2 drastically increases and the viable

initial masses can span the entire parameter space. Due to the defined range

in Teff for Cyg X-2, the excluded progenitors can have a wide range of possible

values. The cluster of progenitors at log10(P/ days) ≈ 1.3 at lower masses

results in LMXBs that appear similar to Cyg X-2 but the donor stars of these
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Figure 4.6: The progenitors of Sco X-1 and Cyg X-2 when the effective tem-
perature is included in black and excluded in red. The black and red dashed
lines are identical to those in Figure 4.1.

systems have significantly lower effective temperatures at Teff ≈ 4500K. The

progenitors below Mi ≤ 3.5M� also do not reach sufficiently high temperatures

with Teff decreasing with progenitor mass. The progenitors with initial masses

exceeding Mi ≥ 4.0M� on the other hand, consistently exceed the observed

temperature with values of Teff ≥ 9000 K.

4.3.6 Wider Bins

To determine the effect of the uncertainties in observed properties, we extend

the size of our observed bins to encompass more significant errors. In particular,

we focus on testing the period values for UCXBs and probe how varying the

mass transfer rate changes our results. For UCXBs, we combine our bins to be

−2 . log10(P/day) . −1.4, 0.01 . q . 0.08, and −12 . log10(Ṁa) . −7.5.

For our non-UCXB systems, we only vary the anticipated mass transfer rates.

The extended values are given in Table 4.3.

The progenitors that can create the LMXBs within the extended bins are

shown in Figure 4.7. The most significant changes, as compared to our standard
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Figure 4.8: A sample of the high mass progenitors of UCXB systems found
when using the wider bins. The red squares show the locations of the observed
LMXBs using the wider bins. The colour bar shows the mass transferred Ṁtr

.
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System Name log10(Ṁa)
4U 1636-536 [-9.50, -7.50]
GX 9+9 [-9.25, -7.50]
4U 1735-444 [-8.95, -7.50]
2A 1822-371 [-8.35, -7.00]
Sco X-1 [-8.45, -7.00]
GX 349+2 [-8.45, -7.00]
Cyg X-2 [-8.40, -6.90]

Table 4.3: This table shows the extended mass transfer rate bins we use to
determine the effect of our bin choices. The mass transfer rate is in units of
M� yr−1. The lower bound of our mass transfer rate is set to either −9.5 or
10% the observed value, whichever is higher. The upper limit is then set to
−7.5 or 0.5 dex above the observed value. The asymmetry in the limits is due
to the Eddington limit which we do not expect most of these systems to exceed.

bins, can be seen in the progenitors of UCXBs and the short period systems.

There is little change in the medium and no changes to the long period pro-

genitors. In the case of UCXBs, previous studies and our narrower bins predict

that UCXBs could only be produced by systems with initial periods near the

bifurcation period (Podsiadlowski et al., 2002). Using the wider bins, the pos-

sible progenitors extend well beyond the area near the bifurcation period and

have significant overlap with short period progenitors.

Examining the evolution of the models with high initial masses M ≥ 2.0M�,

we find that they can reach appropriately low mass ratios to match with ob-

served UCXBs. However, the mass transfer rates from the progenitors found

using the wider bins drop below log10(Ṁtr) = −10 when the simulated binary

reaches ultra-compact periods and no longer satisfy the condition for a persis-

tent LMXB using Equation 4.6. These simulations instead reproduce transient

UCXBs, which are outside the scope of this work. Additionally, these binaries

can only shrink to periods of log10(P/days)− 1.6 prior to expanding to longer

periods as seen in Figure 4.8.

Similarly, the progenitors found using the wider bins with initial masses

below M < 2.0M� also reach appropriate low mass ratios and periods to match
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with UCXBs but similar to the high mass progenitors, do not reach sufficiently

high mass transfer rates to satisfy Equation 4.6. Again, the mass transfer

rates drop below log10(Ṁtr) = −10 resulting in the simulated systems better

matching with transient UCXBs. This can be seen in Figure 4.9.

For the short period LMXBs, the extended MT bin results in a significant

widening of the viable progenitors’ initial periods. The new progenitors produce

systems with periods and mass ratios similar to the observed systems, but the

mass transfer rates exceed our standard bins at log10(Ṁtr) ≈ −7.5, extending

the parameter space of 4U 1636-536, GX 9+9 and 4U 1735-444 as these systems

have lower MT limits using the standard bins. The observed mass transfer rate

appears to be the main constraint in reproducing short period LMXBs.

4.4 Rate Estimates

In this Section, we will discuss the progenitor formation rates. Unfortunately,

due to the small number of observations, only an estimate can be done. We

consider each of the existing observations as a binomial process. In a simple

case, if all the progenitors would be formed only in one “bin” ij, the total

number of systems Nf,ij that needs to be formed per unit of time T for each

given observed system k is related to the expected number of observations Nk
obs

as

Nk
obs = Nk

f,ij

τ kij
T

= Γkijτ
k
ij . (4.9)

Here ij are the seed mass and period combination that produces the system

k, τ kij is the time spent in the observed bin of interest, and Γkij = Nk
f,ij/T is the

formation rate of a given observed system k from the bin ij. In Figure 4.10 we

present Γkij for each progenitor bin (calculations are made assuming that each

Nk
obs = 1). If the bin produces two or more observed binaries, we provide the

value of the formation rate that is associated with the largest τ kij.

For each observed system k, with the adopted expected observation number
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Figure 4.9: A sample of the low mass progenitors of UCXB systems found when
using the wider bins. The red squares and colour bar are the same as in Figure
4.8.
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Figure 4.10: The minimum formation rate of the observed LMXBs, (see Equa-
tion 4.9). The labelled sections in the plot denote specific regions of the param-
eter space where the simulations do not overlap with any observed LMXBs.
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System Name log10(Pi) Mi Γmin Γavg

UCXB
4U 0513-40 0.08 1.2 92 363
2S 0918-549 -0.12 1.4 89 216
4U 1543-624 0.38 1.05 69 432
4U 1850-087 0.16 1.15 43 124
M15 X-2 0.36 1.05 31 96
Combined 5 UCXBs 0.28 1.1 123 203

4U 1626-67 0.06 2.3 11 339
4U 1916-053 0.12 2.6 17 760

Short period
4U 1636-536 0.0 3.4 40 736
GX 9+9 -0.08 3.3 60 530
4U 1735-444 -0.16 3.45 93 2879
2A 1822-371 -0.32 1.75 163 1317

Medium period
Sco X-1 -0.02 1.65 106 317
GX 349+2 0.04 2.2 63 1039

Long period
Cyg X-2 0.34 3.5 1196 170631

Combined
With Cyg X-2 – – 2827 125913
Without Cyg X-2 – – 1452 8766

Table 4.4: The table shows the initial period and mass resulting in the minimum
formation rate. The subscripts min and avg denote the minimum and average.
The rate Γ in units of systems per Gyr as calculated using equation 4.9. The
period is the initial orbital period of the progenitor binary in log10(days) and
the mass, Mi, is the initial mass of the donor in M�. The two combined rows
at the bottom shows the average minimum and maximum calculated formation
rates when we randomly select a progenitor for our observed LMXBs.
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Nk
obs = 1, we can find the bin that produces the binary with the longest τ kij.

Suppose all k-LMXB formations result from the progenitors coming from this

bin only. In that case, the associated total formation rate will be the small-

est of various realizations of LMXBs total formations rates, produced either

individually or by any combination, of all the bins that produce the system k.

These formation rates, Γkmin, are provided in Table 4.4.

In the case when m initial bins, with equal areas, are equally plausibly

forming the observed system k, the binomial distribution can be written as

Nk
obs = Nk

f

1

m

∑
m

τ kij
T

= Γkav

1

m

∑
m

τ kij . (4.10)

Γkij is the average formation rate of a given observed system k from all possible

bins ij. Our bins are not equally sized. In the case when the progenitors

are formed in m initial bins, and the probability of creation of the progenitor-

system k is uniformly distributed over the initial parameter space in mass and

period,

Nk
obs = Γkav

1

∆Ak

∑
m

τ kijdA
k
ij . (4.11)

Here ∆Ak =
∑

m dA
k
ij is the total size of the progenitor region that produces

the observed system, and dAkij is the size of the specific bin. The average

formation rates Γkav that take into account the sizes of the specific bins are

provided in Table 4.4.

We note of course that there is no guarantee that the seed binaries are

uniformly distributed in mass and period space, after a supernova event, and

after likely a common envelope event, which both strongly affected their previ-

ous evolution and birth masses and periods, and hence the average formation

rates are just for a reference, to understand the possible spread in the expected

formation rates, as compared to the minimum formation rates of the same

systems. In general, both the minimum and average formations rates do not
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vary strongly between the different type of LMXBs, except for Cyg X-2. Below

we analyze these numbers for individual observed systems, as well as for the

population as a whole.

4.4.1 UCXBs

We find that the average formation rates for UCXBs are the lowest among all

type of LMXBs. This is expected, as UCXBs with the observed parameters

can live for a long time. For example, to produce systems similar to M15 X-2,

an average formation rate of 96 systems per Gyr can explain its existence, the

smallest average rate amongst our calculations. The progenitors that lead to

the minimum formation rates are different for all the UCXBs with no clear

trend in the initial properties that produce the minimum rate for the observed

LMXBs.

The five UCXBs with the shortest period are very similar to each other.

Anticipating this similarity, we consider a cuboid that encompasses all five

systems and obtain the formation rates using for this cuboid that Nobs = 5. The

cuboid spans a period range of −1.95 ≤ log10(P/day) ≤ −1.77, mass ratio of

0.01 ≤ q ≤ 0.06 and mass transfer rate of −9.8 ≤ log10(Ṁacc/M�yr−1) ≤ −8.2.

Due to the combined UCXB cuboid spanning a wider range in both period

and mass transfer rate, the amount of time a simulation spends in this bin of

interest is increased, resulting in a lower required formation rate. The minimum

formation rate for the combined 5 systems is 123 systems per Gyr, and the

average formation rate is 203 per Gyr. This is the rate required to form all 5

systems.

Among our observed UCXBs, a subset of them are detected within globular

clusters. 4U 0513-40, 4U 1850-087, and M15 X-2 are observed within globular

clusters and because of this, we note additional caveats in regards to the calcu-

lated formation rate. Unlike UCXBs in a low density environment, UCXBs in

a high density environment like a globular cluster may be formed through dy-
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namical encounters or physical collisions (Verbunt, 1987; Ivanova et al., 2005,

2008). Bildsten and Deloye (2004) calculated the expected UCXB formation

rate through dynamical encounters as one per 2×106 years per 107M� of glob-

ular clusters. This roughly translates to ∼ 500 UCXBs formed in 109 years

per 107M� if the formation rate remains largely constant. It is unclear if the

formation rate within globular clusters can be compared to the values we have

calculated in Table 4.4.

Two UCXBs with the longest periods, 4U 1626-67 and 4U 1916-053, stand

apart. To form them, a new evolutionary channel is required. It appeared that

the minimum number of formations of progenitor systems required to explain

their observations is the lowest on overall, only about a dozen in the Galaxy per

Gyr. The average formation rate for 4U 1626-67 is similar to the other UCXBs,

but 4U 1916-053 is the largest among UCXBs. For both of these higher period

UCXBs, the lowest formation rate progenitors come from systems with initial

periods Mi . 1.4M� with higher calculated rates coming from binaries where

the initial mass Mi & 1.5M�.

4.4.2 Short and Medium Period

The formation rates for short and medium period LMXBs are comparable to

that of UCXBs. The minimum formation rates are between 40 and 163 systems

per Gyr. The average rates are a factor of 2-3 larger than for UCXBs ranging

from 300 − 3000 systems per Gyr. This suggests that whatever process in

nature creates the progenitor binaries that later appear as short or medium

LMXBs, more of such progenitors might be necessary to be created than for

UCXB progenitors, albeit not dramatically. There is a possible trend in the

value for the minimum formation rate for short period systems, such that the

calculated rate is larger for longer period LMXBs. Medium period LMXBs

do not follow that trend, however. The progenitors of one of the short period

systems 2A 1822-371, is the only one that intersect with the black dashed line
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and neglecting the progenitors left of this dashed line results in a calculated

formation rate of 164 systems per Gyr.

4.4.3 Long Period

The observed binary Cyg X-2 is the most anomalous system in the calcula-

tions. The progenitor mass, the progenitor period, and the required progenitor

formation rates are all significantly higher than any other system. With the

average progenitor rate of Γmin & 1.7 × 105 systems per Gyr, the formation

rate needed to make Cyg X-2 is nearly two orders of magnitude larger than

any other observed LMXB. The minimum formation rate is substantially more

reasonable, Γmin = 1196 per Gyr. The high value of the minimum formation

rate indicates that this system was unlikely formed by a random progenitor

that can make Cyg X-2 (see Figure 4.2), and has likely been formed by the

progenitor resulting in the minimum rate, specifically, with the initial mass

of M = 3.5M� and the initial orbital period of log10(P/days) = 0.34. As is

discussed below in section 4.5, systems formed in the parameter space near

this point would create LMXBs that are overall similar, but a bit different,

to Cyg X-2. It is also plausible that Cyg X-2 is just a random realization of

such progenitors, and is not itself indicative of a specific intensive pre-LMXB

formation channel. As shown in section 4.3.5, effective temperature plays a sig-

nificant role in constraining the progenitors of high initial mass or high initial

period binaries. From Figure 4.10 we see the general trend that as the initial

progenitor mass increases, the calculated rate also increases. Additionally, the

progenitors of Cyg X-2 appear to have an optimal initial period for each given

mass such that the formation rate is the lowest at that period and is increasing

as the progenitor deviates more from the initial period.
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4.4.4 Combined Rates

The summed minimum rate required to produce the observed sample of LMXBs

is only about 3000 binaries per Gyr. In comparison, the average rate is not very

useful as it is dominated by Cyg X-2 and requires significantly more systems per

Gyr, most of which are donors with initial masses above 3.5M�. The obtained

formation rates encompass many orders of magnitude, making it difficult to

make predictions of the actual formation rate.

Beyond UCXBs, it is unlikely that every observed LMXB is produced using

the progenitor that results in the lowest rate. To obtain a more realistic value,

we randomly select one successful progenitor per observed LMXB to determine

a combined rate. We do this random calculation 10000 times to find a distribu-

tion of possible values. The randomized calculated rates are presented in the

bottom two rows of Table 4.4. Unfortunately, randomly selecting a progenitor

for each system (and hence using the whole range of possible rates) led to the

predicted rate being dominated by the progenitor of Cygnus X-2. We reiter-

ate that the formation rates calculated for Cygnus X-2 are significantly larger

than those required for other observed LMXBs with the minimum rate being

an order of magnitude larger than any other calculated rate and the average

being two orders of magnitude larger (see Table 4.4). In both cases where we

calculate a rate with and without Cygnus X-2, the minimum number of formed

pre-LMXB systems is on a similar order of magnitude with a few thousand

systems formed per Gyr but the average rate is significantly larger when Cyg

X-2 is included. This minimum value is larger than the absolute minimum

progenitor formation rate as it is calculated by randomly selecting progenitors.

While the total number of systems that are formed with an NS can be much

higher than our minimum number, as these systems do not need to be limited

to the progenitor space, we stress that the minimum number that we have ob-

tained (2827 with Cygnus X-2 and 1452 without Cygnus X-2) is the minimum

number of successful NS binary formation events that can explain the observed
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Region
A Difficult to produce progenitor LMXBs.
B Should produce LMXBs with

−0.75 . log10(P/days) . −0.25,

q . 1, log10(Ṁ/M� yr−1) ∼ −7.5
C Should produce LMXBs similar to Sco X-1.
D Early portion of evolution short lived.

End of evolution has no mass transfer.
Intermediate portion should be detectable

with log10(Ṁ/M� yr−1) ∼ −8.5
E High mass ratio progenitors do not satisfy

condition from equation 4.6 for persistent
systems.
Low mass ratio systems should be observable.

F and G High mass transfer rates result in short lived
binaries.

Table 4.5: A summary of the different regions of our parameter space and a
summary of how observable a system from this region is.

population of LMXBs generated by randomly selecting progenitors. Our aver-

age values (125913 with Cygnus X-2 and 8766 without Cygnus X-2) are more

likely to represent the formation rate that nature has to provide.

4.5 Unobserved Systems

Only part of the entire parameter space leads to the production of the observed

LMXBs, see Figures 4.1 and 4.10. That space is not continuous, and there are

gaps in the parameter space – the binaries originating from those gaps did not

produce a binary comparable to the sample of observed LMXBs we considered.

In this Section, we investigate what happens to the binaries that started their

evolution in the “gaps”. To take a closer look, we split the “unsuccessful” pa-

rameter space into seven distinct regions, see Figure 4.10. Region “A” denotes

the portion of parameter space where the progenitor binaries will start with

very short periods, Pi . 0.5 days. The three regions between the UCXB, short

period, and medium LMXBs are denoted by “B”, “C”, and “D”. Regions “F”

115



and “G” represent regions with initial periods P . 10 days and P & 10 days

with high initial masses, Mi & 3.0M� respectively. The region “E” is for seed

systems with a long initial period and initial masses below 3.0M�. Below, we

examine these regions to determine if these LMXBs have properties that result

in systems that, in theory, could be observable.

4.5.1 Region “A”: Short Initial Periods

The short initial period region of our parameter space is primarily on the left

of the black dashed line in Figures 4.1 and 4.10, with only a small part of this

region located to the right of the dashed line, for donors with Mi . 1.3M�.

To reiterate, the black dashed line denotes the initial periods for which the

simulated system with this donor mass is at its RLOF at the start of the

simulation. Any system with a shorter initial period overfills the Roche lobe

at the donor’s ZAMS. For the binaries with Mi . 1.3M�, there is a portion of

the parameter space where the system has to evolve from ZAMS to start the

mass transfer, and we will focus on this parameter space.

In Figure 4.11, we show the sample of the systems with the short initial

periods and low masses. The simulated systems that have progenitors in this

region of our parameter space result in binaries that only partially match with

observed LMXBs. In general, the simulated systems have mass transfer rates

that exceed the observed rates of 4U 1636-536, GX 9+9 and 4U 1735-444.

2A 1822-371 on the other hand, has sufficiently high mass transfer rates to

match with the simulated systems, but the observed period of 2A 1822-371

exceeds the simulated periods. These short initial period, low initial mass

progenitors produce LMXBs that have high mass transfer rates similar to 2A

1822-371 and similar mass ratios, but with shorter periods. Additionally, these

simulated systems spend between 107 to 108 years transferring mass. We can

make an estimate of a formation rate required to produce one observable LMXB

with log10(P/days) ∼ −0.7, q ∼ 0.3 and −7.5 ≤ log10(M� yr−1) ≤ −9 using
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Figure 4.11: A subset of simulated systems with a short initial period, Pi . 0.5
days. The color of the lines indicates the mass transfer rate of a given simulation
at that point. The red boxes show the mass ratio and period bins of the four
observed short period LMXBs in Table 4.2. The black points show portions of
the evolution where the binary does not experience RLOF.
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Equation 4.9. With the number of possible progenitors in this region of our

parameter space resulting in a system with similar properties, we calculate a

progenitor formation rate of a few hundred per 109 years. Therefore, we may

expect that there are observable binaries that have not been detected in this

region of the parameter space. The limiting factor in our ability to detect these

systems would be the formation rate of the progenitors.

4.5.2 Region “B”: Mi ∼ 1.5M�, Pi ∼ 1 day

This region of our parameter space is denoted by the letter “B” in Figure

4.10 and lies between the progenitors of UCXBs and 2A 1822-371. The evo-

lutionary tracks of the subset of the progenitor binaries can be seen in Figure

4.12. The simulated systems initially experience high mass transfer rates, ex-

ceeding log10(Ṁ/M� yr−1) & −7, with their orbital period remains almost

unchanged and is around log10(P/days) ∼ −0.3 until the mass ratio flips. This

initial phase of evolution is very short-lived and is therefore difficult to detect.

Once the systems have reached a mass ratio of ∼ 1, the evolution slows down,

and the binaries are now long-lived. During this phase the mass transfer rate

ranges between −7.5 ≤ log10(Ṁ/(M� yr−1)) ≤ −9, while the orbital period

of the binary decreases from ∼ 10 hours to ∼ 2 hours. During this long pe-

riod of evolution, the mass transfer rate consistently satisfies the condition for

a persistent LMXB and should be observable. A binary with a period ∼ 8

hours and mass ratio ∼ 0.5 spend approximately 107 years transferring mass

log10(Ṁ/(M� yr−1)) ≈ −8. We predict that a minimum formation rate of a

few hundred systems per Gyr in this region of the parameter space is necessary

to produce an observable LMXB.
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Figure 4.12: A subset of simulated systems from the region denoted as ”B” in
Figure 4.10.
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4.5.3 Region “C”: Mi ∼ 2.0M�, Pi . 0.5 days

The simulations in region “C” of our parameter space have initial periods that

exceed the bifurcation period but are not long enough to produce the medium

period systems. The simulated systems in this region of our parameter space

have very low mass transfer rates in the early stages and the end of their

evolution, but significantly higher mass transfer rates in the middle of the

evolution with the binary eventually detaching at the end of its evolution (see

Figure 4.13). These simulated systems all converge in a similar region of the

parameter space with orbital period, P ∼ 15 hr with mass ratios in the range

of 0.2 . q . 0.8 and mass transfer rate log10(Ṁ/M� yr−1) ∼ −7.7. These

properties would result in an LMXB that is very similar to Sco X-1, but with a

shorter period. The example systems that are shown in Figure 4.13, all spend

on the order of 107 years in a persistent state with mass transfer rates exceeding

10−8M� yr−1. Similar to Sco X-1, we would also predict a formation rate on

the order of a few hundred systems per Gyr if the mass ratio bin remained wide.

Further constraining the mass ratio to a range between 0.4 . q . 0.7 where

the mass transfer rate is highest at log10(Ṁ/M� yr−1) ∼ −7.5, the formation

rate would need to increase to a few thousand systems per Gyr to produce and

observed system.

4.5.4 Region “D”: Mi ∼ 3.0M�, Pi ∼ 1 day

This region of our parameter space is denoted by the letter “D” in Figure 4.10

and lies between the progenitors of UCXBs and GX 9+9. The evolutionary

tracks of this subset of progenitors can be seen in Figure 4.14 and appears

very similar to those in Figure 4.12 with these two regions forming a self-

similar family of evolutionary tracks. These simulated systems also initially

experience mass transfer rates that exceed log10(Ṁ/M� yr−1) & −7 while the

orbital period remains at around P ≈ 1 day with their orbital period remains
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Figure 4.13: A subset of simulated systems from the region denoted as ”C”
in Figure 4.10. The red boxes show the bins for the UCXB and short period
observed binaries.
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Figure 4.14: A subset of simulated systems from the region denoted as“D”
in Figure 4.10. The red boxes show the bins for the UCXB and short period
observed binaries.

122



almost unchanged and is around log10(P/days) ∼ −0.2. This high mass transfer

rate is short-lived and difficult to detect until the systems reach a mass ratio

of ∼ 1, where mass transfer slows down and the binaries are now long-lived.

Despite the mass transfer rate slowing down, they still remain large enough to

be considered as persistent. The mass transfer rates decrease to values between

−8.0 . log10(Ṁ/M� yr−1) . −9.0 while the period decreases from ∼ 1 day

to ∼ 2 hours. Following the simulations in region “B”, these progenitors also

finish their evolution by detaching and becoming unobservable.

4.5.5 Region “E”: Pi & 1.5 days, Mi . 3.0M�

The binaries with Pi & 1.5 days and Mi . 3.0M� are in region “E”, see Figure

4.15. Binaries with high initial masses and long initial periods are covered in

region “G”. The binaries in region “E” initiate RLOF when the periods shrink

to ∼ 1.3 days and during mass transfer the mass ratio decreases from 1 to

∼ 0.1 prior to detaching. The orbital period remains well constrained during

this time at ∼ 1 day. The mass transfer rates of these binaries are above the

critical value necessary to be deemed a persistent system in accordance with

Equation 4.6. The key difference between these simulated systems and the

viable progenitors of Sco X-1 and GX 349+2 is that the simulated systems in

region “E” have periods that are too large to match with our medium period

systems. The simulated systems spend ∼ 5× 106 years with log10(P/day) ∼ 1

day, 0.2 ≤ q ≤ 0.7 and −9 . log10(Ṁ/M� yr−1) . −7 suggesting a very high

minimum formation rate of a few thousand systems in this region per Gyr is

necessary to produce an observable LMXB.

4.5.6 Regions “F” and “G”: High Initial Mass

For binaries with high initial donor masses in region “F” and “G”, these sys-

tems initially experience rapid mass transfer over 10−7M� yr−1. With such
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Figure 4.15: A subset of our parameters space such that the progenitor binaries
have initial periods longer than 1.5 days and initial masses less than 3.0M�
(region “E”). The red boxes show the mass ratio and periods of the two observed
medium period LMXBs in Table 4.2.
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Figure 4.16: A subset of simulated systems with the initial donor masses ex-
ceeding at least 3.5M�, and more massive than Cygnus X-2 progenitors for
each given initial orbital period.

significant mass transfer rates, the binary rapidly evolves to lower mass ra-

tios, larger orbital periods, and smaller MT rates. Using Equation 4.6, we find

that once the orbital period is a few days or more, to be classified as a persis-

tent binary, the required mass transfer rate must be log10(Ṁ/M� yr−1) & −7.

However, a binary can not live long at such a high MT rate. These conflicting

properties – a short time while having a “persistent” MT rate and longer time

while “transient” – are the likely reasons why persistent binaries with large

orbital periods are difficult to detect.

4.5.7 Uniform Initial Parameter Space Hypothesis

As follows from the considerations for various “unobserved” regions above,

there are regions that can also produce persistent systems. We do not have

good guidance on the initial distribution of the seed binaries, which are them-

selves the results of the primordial binaries being evolved through a supernova,

and likely a common envelope event. However, at the very least, we can test

what happens if the seed binaries were formed uniformly in log10 P −M pa-
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rameter space. We considered the random uniform birth of seed binaries in

the log10 P −M parameter space. Further, we check if they can be observed

(at the same fixed moment of time) based on their lifetimes as persistent sys-

tems. We made 1000 realizations that would consist of 14 persistent LMXBs.

Out of our 1000 random realizations, over half don’t produce any persistent

systems that match with an observed LMXB. On average, . 0.57 LMXB in

such realizations would be consistent with the observed sample of the persistent

LMXBs. The maximally consistent realization resulted in 3 LMXBs similar to

the observed sample. Out of our 1000 realizations, 16 random progenitor sets

result in 3 LMXBs similar to the observed sample. Averaging over these 16

sets, 2.3 matched with short period systems, 0.3 matched with medium period

and 0.4 matched with long systems. None of our random samples could repro-

duce an UCXB. The other persistent systems produced in these sets are most

commonly found to originate from the regions ‘B’, ‘D’, ‘F’ and ‘G’. Using this

random sampling with 1000 realizations, we produce zero progenitor systems

from the region ‘C’ in our parameter space. The modelled but unobserved

persistent LMXBs come from relatively high mass donors Mi & 2.5M�. This

suggests that uniform distribution of donors in mass in pre-LMXB binaries,

after a supernova and presumably a common envelope event, is not likely in

nature. We also note that the calculated number of LMXBs produced in a

realization depends on the critical mass transfer rate in Equation 4.6. By re-

ducing this value by a factor of ∼ 2 to k = 1.1× 1015, this changes the number

of LMXBs consistent with the observed sample to 0.56 which is not a signifi-

cant change despite the change in critical mass transfer rate. Similarly, when

increasing using the maximum value of k = 3.8 × 1015 the value changes to

0.58.
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4.6 Conclusion

Using the CARB MB from Van and Ivanova (2019) we obtained the possible

progenitors of the observed persistent LMXBs with known orbital periods, mass

ratio, and mass transfer rates. This was done by searching through the entire

space of theoretically possible MT systems to infer possible initial conditions of

the observed ones. Our results show that the viable progenitors of the observed

LMXBs are located in a small part of the plausible parameter space, see Figure

4.10. The pattern of the progenitors’ origins splits the persistent LMXBs that

we analyze into distinct groups based on their currently observed periods.

Using these progenitors, we can calculate the minimum and the average

formation rates, using the amount of time each progenitor spends appearing

similar to an observed LMXB. The minimum formation rate is the value cal-

culated using the simulated system that spends the largest amount of time

matching an observed LMXB whereas the average formation rate uses random

distribution among all plausible progenitors. The minimum formation rates

for nearly all observed LMXBs are in the range of a few dozens to a hundred

systems per Gyr in the Milky Way, while the average formation rates are in

the range of a hundred to a few thousand systems per Gyr in the Milky Way.

Cyg X-2 is an outlier with a significantly higher range than all other systems.

Without Cyg X-2, we find that the absolute minimum number of pre-LMXB

binaries that needs to be formed per Gyr in the Milky Way to explain the ob-

served sample of persistent LMXBs is about 1500 per Gyr. At the same time,

a most expected number of seed binaries formation is about 9000 LMXBs per

Gyr.

The key properties of the progenitors are as follows:

• All UCXB systems have progenitors slightly below the bifurcation period.

This period range is very narrow with the obtained minimum formation

rates ranging between 11 to 92 systems per Gyr and the average formation

127



rates ranging from 96 to 760 systems per Gyr.

• Short period LMXBs with periods on the order of a few hours have initial

progenitor periods shorter than the bifurcation period with initial masses

ranging from ∼ 1M� to ∼ 3.5M�. The short period LMXBs have the

minimum formation rates similar to UCXBs, but our calculations predict

the average formation rates much larger than for UCXBs. The average

formation rates range between 530 and 2879 progenitor systems per Gyr.

• Medium period LMXBs with periods ranging from tens of hours have

initial periods slightly larger than the bifurcation period at lower masses,

and share common progenitors with UCXBs at masses exceeding ∼ 2M�.

The minimum formation rates for medium period systems are very similar

to UCXBs and short period systems, ranging from 63 to 106 systems per

Gyr. The average formation rates are also similar, ranging from 317 to

1039 systems per Gyr.

• Cyg X-2, our only LMXB with an observed period on the order of tens of

days, is an outlier. Unlike the other LMXBs we tested, progenitor space

for Cyg X-2 lacks a clear structure. The rates necessary to reproduce

Cyg X-2 are significantly higher than any other LMXB and dominates

our calculations with the minimum formation rate ranging from ∼ 1200

to ∼ 1.4 × 106, and the average rate of over 1.7 × 105 systems per Gyr.

The high calculated formation rate indicates that Cyg X-2 is difficult to

reproduce.

Of equal importance as our results showing the viable progenitors to ob-

served LMXBs, is finding gaps in our progenitor parameter space where no

observed systems have been detected. The main regions of interest are regions

“B”, “C”, and “D” in Figure 4.10. These progenitors’ properties lie between

the systems that produce observed LMXBs but have not resulted in any observ-

able systems. This implies one of two possibilities, these progenitor properties
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are difficult to create in nature and no observed LMXBs exist, or these systems

exist and simply have not been observed. Based on the properties of the sys-

tems from these progenitor regions, we have identified some observed LMXBs

with partial observations that may match our simulations, examples of such

systems are given in Table ??.

Testing the scenario where seed binaries are uniformly formed in our param-

eter space, we check if this random distribution results in observable persistent

LMXBs. Randomly generating 1000 realizations of progenitor systems that

result in 14 persistent LMXBs, we find that over half don’t produce any per-

sistent systems that match with an observed LMXB and none of our 1000

realizations produce any UCXBs. Our random sampling also produces no pro-

genitors from region ‘C’ in our parameter space. The random sampling suggests

that the unobserved persistent LMXBs would likely come from higher mass

donors Mi & 2.5M� and so we can conclude that LMXBs seed binaries can not

be formed uniformly in the donor mass. To explain the observed number of

UCXBs, the initial distribution of periods of LMXB seed binaries can not be

uniform either.

It is difficult to directly compare LMXB formation rates found in previous

studies using population synthesis codes and rates found using our method.

Our results determine a formation rate of LMXB progenitors that have already

completed a common envelope event and supernova to avoid uncertainties with

these events. Forward population synthesis codes on the other hand start with

primordial binaries and must evolve through both and therefore include all

uncertainties associated with common envelope events and supernova natal

kicks. Due to huge sensitivity to these two events, it is not surprising to find

overproduction of luminous X-ray binaries in the Galaxy up to a factor of a

hundred, as compared to the observed LMXBs, with some variations of how

a common envelope event is treated (e.g., Pfahl et al., 2003). van Haaften

et al. (2015) performed a population synthesis study focused on shorter period
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System log10(P ) log10(Ṁa) Region
4U 1746-37 -0.67 -9.0 D
2A 0521-720 -0.47 -7.4 B
4U 1624-49 -0.06 -8.3 C

Table 4.6: Examples of possible LXMBs that would be produced in the gaps
in our progenitor space. All three systems lack an observation for mass ratio
and the mass transfer rates are approximate values. The mass transfer rate is
in units of log10(M� yr−1). The period is in units of log10(day). References:
A09 - Agrawal and Misra (2009), B04 - Ba lucińska-Church et al. (2004), B09 -
Balman (2009), C12 - Coriat et al. (2012), L05 - Lommen et al. (2005), L07 -
Liu et al. (2007), S01 - Sidoli et al. (2001), X09 - Xiang et al. (2009)

LMXBs with progenitor properties ranging between 0.7 ≤ Md/M� ≤ 1.5 and

0.5 ≤ Pi/days ≤ 2.75. Their simulations predict ∼ 40 persistent LMXBs which

is within a factor of two of the observed number of persistent LMXBs in the

bulge. While the number of LMXBs systems per moment of time is comparable

to ours, we cannot compare these results to our rates as van Haaften et al.

(2015) does not explicitly compare their simulations to any observed systems,

or provide the formation rates of the pre-LMXB systems per Gyr. Shao and Li

(2015) perform a comprehensive population synthesis study where the initial

donor masses ranged from 0.3 ≤Mi/M� ≤ 6 and period 0.2 ≤ Pi/days ≤ 1000

to find an I/LMXB birthrate in the range of 9× 10−6 − 3.4× 10−5yr−1. Their

rate is compatible with the formation rate of binary millisecond pulsars that are

predicted to descend from I/LMXBs. We find that overall our formation rates

are comparable to theirs. However, we note that while their binary birthrate

matches with both our rates and that expected for binary millisecond pulsars,

the population of I/LMXBs in Shao and Li (2015) have mass transfer rates

that are systematically lower than observations leading the authors to predict

missing physics in the modelling of angular momentum loss in binaries.

Further observations of these systems to constrain the properties and, more

importantly, determine an approximate value for mass ratio would confirm

if the proposed systems in Table ?? match our simulations. Additionally, if
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we had more systems with well-constrained periods, mass transfer rates and

mass ratios, we would be able to further compare our simulated results to

observed LMXBs. As the number of observed LMXBs with defined mass ratios,

periods and mass transfer rates increases, any progenitor in our parameter

space that fails to match with an observed system implies that binaries with

that specific initial mass-period configuration are not likely formed from the

primordial binaries. With the upcoming Gaia DR3 containing binary systems,

we expect the number of observed LMXBs we can compare to will greatly

increase, allowing us to probe the progenitor parameter space more effectively.
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Chapter 5

Conclusion

Through this work, I have thoroughly shown the weaknesses of the commonly

used Skumanich magnetic braking prescription and propose two alternative pre-

scriptions, a boosted Skumanich and CARB magnetic braking, that are more

physically motivated. This change in magnetic braking will play an important

role in both stellar and binary simulations as our improved schemes more ef-

fectively reproduce observed systems. I was able to use these two magnetic

braking schemes to produce comprehensive grids of simulated LMXBs to show

their effectiveness. However, the most effective form of the boosted Skumanich

was created by adding ad-hoc wind and convection terms. These two factors are

taken into account more physically when formulating the CARB prescription.

For CARB magnetic braking, I was also able to calculate possible progenitor

formation rates.

5.1 Modified Skumanich

In Chapter 2 I derived a modified Skumanich magnetic braking scheme which

could be scaled to include the effects of convection and additional winds. By

generating a large grid of simulated LMXBs using the modified Skumanich

prescription I was able to compare the results to the observed LMXBs seen in
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Tables 2.4 and 2.5. The key result from this work was that the commonly used

magnetic braking prescription, the Skumanich prescription, cannot effectively

reproduce the sample of observed LMXBs. I found that using the default pre-

scription, there were systematic mismatches between simulated and observed

mass transfer rates up an order of magnitude. When the effects of isothermal

winds or convective turnover times were accounted for in the magnetic braking

scheme, the mass transfer rates began to approach the observed values and

the simulated results more effectively reproduced the observed LMXBs. These

results clearly showed that additional physics should be accounted for when

determining the angular momentum loss due to magnetic braking in LMXBs.

5.2 CARB Magnetic Braking

The most effective form of the boosted Skumanich prescription was the “inter-

mediate” case which used an ad-hoc wind and convection boosting. In Chapters

3 and 4, I derived an improved magnetic braking prescription that explicitly

accounts for these effects. Using improvements in determining the effects of

stellar rotation on the Alfvèn radius and linking the convective turnover time

to the strength of the surface magnetic field I derived an improved magnetic

braking scheme. This magnetic braking scheme which I called CARB magnetic

braking, was used in numerical simulations to produce a grid of simulated re-

sults. This grid was compared to observed persistent LMXBs and was able to

effectively reproduce the sample of systems. Additionally, I also showed that

the effects of mass transfer efficiency must be included in these simulations

otherwise an over-abundance of NSs with M ≥ 2.0M� will be produced.

Using the CARB magnetic braking scheme I conducted a rigorous parameter

space search and inferred possible progenitor conditions. The simulated results

showed that the progenitors of observed persistent LMXBs span a small part of

our plausible progenitor space. By using the amount of time a given simulated
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binary spends appearing similar to an observed LMXB I was able to calculate

the minimum and average formation rates. The calculated minimum formation

rate per Gyr in the Milky Way to reproduce the sample of observed LMXBs is

about 2500 systems per Gyr with the progenitors of Cyg X-2 dominating this

value with a calculated rate of 1200 systems per Gyr.

Another key result in our progenitor search for observed LMXBs was the

gaps in our parameter space that resulted in no observed systems. The main

points of interest were the gaps between the viable progenitors in regions “B”,

“C” and “D” in Figure 4.10. These regions are found between progenitors of

well studied, observed LMXBs which implied one of two possibilities, either

that these systems are difficult to produce and no observable LMXBs from

these regions exist, or these systems exist and have not been observed. Table

4.6 gave examples of LMXBs with properties that match with the simulated

systems produced from these gaps in our progenitor space but at the time of

writing, the mass ratio of these LMXBs had not been determined making it

impossible to confirm if these observed binaries match with simulations.

5.3 Future Work

With the CARB magnetic braking derived, tested and confirmed to effectively

reproduce the sample of observed persistent LMXBs, expanding the LMXBs

tested would be the clear next step. Whether this is in testing transient bi-

naries or moving towards black hole LMXBs, both systems are an additional

opportunity to test the effectiveness of the prescription. A table showing a set

of well studied BH LMXBs is shown in Appendix C.1. In the near future when

the Gaia binary catalogue is released with data release 3 (Gaia Collaboration

et al., 2020), there will be an abundance of well studied LMXBs. This del-

uge of systems will require well constructed pipelines and tools to explore the

data set. Applying the CARB magnetic braking scheme to this dataset would
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help both in testing the prescription and in better refining the progenitor rate

value. Currently, a major limiting case is the number of observed LMXBs

being compared, as this number increases, the effectiveness of the progenitor

rate calculation improves. Beyond theory, we have provided three LMXBs with

properties that are candidates for the parameter space gaps. Follow-up obser-

vations of these binaries to determine the mass ratios of these systems would

help populate the progenitor parameter space.
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Appendix A

Custom MESA Routines

In the appendix I include the changes I made to MESA to include the additional

physics in my research. To use these changes or additions, the user must make

changes to the appropriate subroutine in run binary extras.f and properly

point to these subroutines within the simulation. These changes were applied

to MESA versions 10398 and 11701, but should be applicable to other versions

of MESA as well. With continuous development of the MESA code, some variable

names may change from one version to another but the overall physics should

be applicable.

A.1 Implementation of Eddington Limit

1 subrout ine mdot edd rout ine ( b inary id , mdot edd , i e r r )

2 use cons t de f , only : dp

3 i n t ege r , i n t e n t ( in ) : : b i n a r y i d

4 r e a l (dp ) , i n t e n t ( out ) : : mdot edd

5 i n t ege r , i n t e n t ( out ) : : i e r r

6 type ( b i n a r y i n f o ) , po in t e r : : b

7 i e r r = 0

8 c a l l b ina ry pt r ( b inary id , b , i e r r )

9 i f ( i e r r /= 0) then

10 wr i t e (∗ ,∗ ) ’ f a i l e d in b ina ry pt r ’
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11 re turn

12 end i f

13

14 ! changing mdot edd from d e f a u l t MESA from BH to NS

15 ! x c t r l ( 5 ) i s the rad iu s o f the NS

16

17 ! mdot edd = 4∗ pi ∗ c l i g h t ∗b% s1% x c t r l (5)/&

18 ! (0 .2∗(1+b% s1% s u r f a c e h 1 ) )

19 ! hard coding in the rad iu s o f 11 .5km in to the

20 ! equat ion r e s u l t s in the next l i n e .

21 mdot edd = 2.1666 d18 / ( 1 . d0 + b% s1% s u r f a c e h 1 )

22 end subrout ine mdot edd rout ine

A.2 Boosted Skumanich Magnetic Braking

1 subrout ine jdot mb rout ine ( b inary id , i e r r )

2 i n t ege r , i n t e n t ( in ) : : b i n a r y i d

3 i n t ege r , i n t e n t ( out ) : : i e r r

4 i n t e g e r : : k , nz

5 type ( b i n a r y i n f o ) , po in t e r : : b

6 type ( s t a r i n f o ) , po in t e r : : s

7 r e a l (dp) : : turnover t ime , enve lope edge

8 r e a l (dp) : : dr , t o t r , mb, jdot mb

9 r e a l (dp) : : eta , wind fac , s a t u r a t e f a c

10 r e a l (dp) : : t t boos t , wind boost

11 r e a l (dp) : : v e l r a t i o , tau l im

12 r e a l (dp) : : rsun4 , two p i d iv p3 , rad4

13 i e r r = 0

14 c a l l b ina ry pt r ( b inary id , b , i e r r )

15 i f ( i e r r /= 0) then

16 wr i t e (∗ ,∗ ) ’ f a i l e d in b ina ry pt r ’

17 re turn

18 end i f
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19

20 s => b% s donor

21 nz = s% nz

22 eta = s% x c t r l (1 )

23 wind fac = s% x c t r l (2 )

24 v e l r a t i o = s% x c t r l (3 )

25 tau l im = s% x c t r l (4 )

26 s a t u r a t e f a c = s% x c t r l (5 )

27

28 t o t r = 0 .0

29 turnover t ime = 0 .0

30 enve lope edge = 0 .0

31 enve lope edge = max( s% conv mx1 bot r , s% conv mx2 bot r )

32

33 do k = nz , 1 , −1

34 i f ( s% mixing type ( k ) == convec t ive mix ing ) then

35 i f ( s% r ( k ) . gt . enve lope edge ) then

36 i f ( k < s% nz ) then

37 dr = ( s% r ( k ) − s% r ( k + 1) )

38 e l s e

39 dr = ( s% r ( k ) − s% R center )

40 end i f

41 i f ( s% conv ve l ( k ) . gt . v e l r a t i o ∗ s% csound ( k )

42 . and . s% tau ( k ) . gt . tau l im ) then

43 turnover t ime = turnover t ime + ( dr/ s% conv ve l ( k ) )

44 t o t r = t o t r + dr

45 end i f

46 e l s e

47 turnover t ime = turnover t ime

48 t o t r = t o t r + dr

49 end i f

50 end i f

51 end do

52

53 ! b% jdot mb = 0
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54 rsun4 = rsun ∗ rsun ∗ rsun ∗ rsun

55 two p i d iv p3 = ( 2 . 0∗ pi /b% per iod )∗ ( 2 . 0∗ pi /b% per iod )∗&

56 ( 2 . 0∗ pi /b% per iod )

57

58 mb = −3.8d−30∗b% m(b% d i )∗ rsun4 ∗ &

59 pow cr ( min (b% r (b% d i ) , b% r l (b% d i ) )/ rsun ,

60 b% magnetic braking gamma )∗ &

61 two p i d iv p3

62

63 ! use the formula from rappaport , verbunt , and j o s s .

64 ! apj , 275 , 713−731. 1983 .

65 i f (b% h a v e r a d i a t i v e c o r e (b% d i ) . or . b% keep mb on ) &

66

67 ! 2 . 8 d6 i s turnover time in seconds f o r a MESA

68 ! model us ing i n i t i a l mass o f 1 . 0 s o l a r masses ,

69 ! s o l a r meta l i c i t y , at age 4 .6 Gyr . This i s

70 ! approximately turnover time o f the Sun .

71

72 wind boost = (b% mdot system wind (b% d i ) / ( −1.6 d12 ) ) ∗∗ wind fac

73 t t b o o s t = ( turnover t ime / 2 .8 d6 ) ∗∗ eta

74

75 jdot mb = ( wind boost ) ∗ ( t t b o o s t ) ∗ mb

76

77 ! tak ing the per iod o f the sun to be 24 days

78 ! => 10 ∗ P < Psun , P < 2 .4 days

79 ! 2 . 4 days = 207360 seconds

80 i f (b% per iod < 207360) then

81

82 ! use the formula from Ivanova & Taam 2003 f o r qu i ck ly r o t a t i n g s t a r s

83 rad4 = b% r (b% d i ) ∗ b% r (b% d i ) ∗ b% r (b% d i ) ∗ b% r (b% d i )

84 b% jdot mb = ( −6.0 d30 ∗ rad4 / rsun4 ) ∗ 10 ∗∗ ( 1 . 7 ) ∗ &

85 (2073600 / b% per iod ) ∗∗ s a t u r a t e f a c ) ∗ &

86 t t b o o s t ∗ wind boost

87 e l s e

88 b% jdot mb = jdot mb
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89 end i f

90

91 i f (b% e v o l v e b o t h s t a r s . and . b% inc lude acc r e to r mb . and . &

92 (b% h a v e r a d i a t i v e c o r e (b% a i ) . or . b% keep mb on ) ) then

93 b% jdot mb = b% jdot mb − &

94 3 .8 d−30∗b% m(b% a i )∗ rsun4 ∗ &

95 pow cr (min (b% r (b% a i ) , b% r l (b% a i ) )/ rsun ,

96 b% magnetic braking gamma )∗ &

97 two p i d iv p3

98 end i f

99 end subrout ine jdot mb rout ine

A.3 CARB Magnetic Braking

1

2 subrout ine jdot mb rout ine ( b inary id , i e r r )

3 i n t ege r , i n t e n t ( in ) : : b i n a r y i d

4 i n t ege r , i n t e n t ( out ) : : i e r r

5 i n t e g e r : : k , nz

6 type ( b i n a r y i n f o ) , po in t e r : : b

7 type ( s t a r i n f o ) , po in t e r : : s

8 r e a l (dp) : : turnover t ime , tt temp , t t t emp sca l ed

9 r e a l (dp) : : t t o l d , t t d i f f

10 r e a l (dp) : : ve l , v e l r a t i o , v e l d i f f

11 r e a l (dp) : : upper l im , lower l im , s c a l e d v e l

12 r e a l (dp) : : eps nuc l im , eps nuc

13 r e a l (dp) : : dr , tau l im , delta mag chk

14 r e a l (dp) : : rsun4 , two p i d iv p3 , two p i d iv p2 , K2

15 r e a l (dp) : : t t r a t i o , t t4

16 r e a l (dp) : : r o t r a t i o , ro t4

17 r e a l (dp) : : rad4

18 r e a l (dp) : : v esc2 , v mod2

19 r e a l (dp) : : a l fven no R , R al fven

169



20 r e a l (dp) : : jdot mb old , jdot mb new

21 r e a l (dp) : : conv env r , conv env m , s o n i c c r o s s t i m e , mag f i e l d

22 common/ o ld va r / t t o l d

23 l o g i c a l : : conv env found

24 i e r r = 0

25 c a l l b ina ry pt r ( b inary id , b , i e r r )

26 i f ( i e r r . ne . 0) then

27 wr i t e (∗ ,∗ ) ’ f a i l e d in b ina ry pt r ’

28 re turn

29 end i f

30

31 ! wr i t e (∗ ,∗ ) ” ”

32 ! wr i t e (∗ ,∗ ) ”==================”

33 ! wr i t e (∗ ,∗ ) ’ doing jdot ’

34 ! wr i t e (∗ ,∗ ) ”==================”

35 ! wr i t e (∗ ,∗ ) ” ”

36

37 ! INITIALIZE THE VARIABLES

38

39 s => b% s donor

40 nz = s% nz

41 v e l r a t i o = s% x c t r l (1 )

42 tau l im = s% x c t r l (2 )

43

44 conv env found = . f a l s e .

45

46 turnover t ime = 0 .0

47 tt temp = 0.0

48 t t t emp sca l ed = 0 .0

49

50 eps nuc l im = 1 .0 d−2

51 v e l d i f f = 0 .0

52 s c a l e d v e l = 0 .0

53

54 ! INITIAL TURNOVER TIME CALCULATION
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55 ! beg inning o f do loop to c a l c u l a t e convec t ive turnover time

56 do k = nz , 1 , −1

57

58 eps nuc = s% eps nuc ( k )

59 ! check i f the c e l l we are l oop ing through

60 ! s a t i s f i e s our convect ion c r i t e r i a

61 i f ( ( s% gradr ( k ) . gt . s% grada ( k ) ) . and .

62 ( eps nuc . l t . eps nuc l im ) ) then

63 ! t o g g l e the boolean to begin i n t e g r a t i o n

64 conv env found = . t rue .

65 end i f

66

67 ! only ente r t h i s por t i on i f the convec t ive boolean i s t rue

68 ! t h i s loop w i l l go from the innermost c e l l that i s convec t i ve to

69 ! the s u r f a c e . This i s to t ry and smooth through any numeric i s s u e s

70 ! with convec t i ve zones appear ing and d i sappear ing in MESA.

71 i f ( conv env found ) then

72

73 ! loop to c a l c u l a t e the s i z e o f the c e l l , the innermost c e l l

74 ! needs s p e c i a l c o n s i d e r a t i o n as i t i s above the core

75 i f ( k . l t . s% nz ) then

76 dr = ( s% r ( k ) − s% r ( k + 1) )

77 e l s e

78 dr = ( s% r ( k ) − s% R center )

79 end i f

80

81 ! determine the convec t ive v e l o c i t y i n s i d e each given c e l l

82 i f ( s% mixing type ( k ) == convec t ive mix ing ) then

83

84 ! need to ensure that the convec t ive v e l o c i t y i s with in

85 ! our de f ined l i m i t s , i f they are out s i d e o f the se l i m i t s

86 ! s e t them to be the max/min value a l lowed .

87 ve l = s% conv ve l ( k )

88 l ower l im = v e l r a t i o ∗ s% csound ( k )

89 upper l im = 1 .0 ∗ s% csound ( k )

171



90

91 i f ( v e l . l t . l ower l im ) then

92 ve l = lower l im

93 e l s e i f ( v e l . gt . upper l im ) then

94 ve l = upper l im

95 end i f

96

97 ! i f the c e l l i s n t de f ined by MESA to be convec t i ve take the

98 ! c onvec t ive v e l o c i t y to be equal to sound speed

99 e l s e

100 ve l = s% csound ( k )

101 end i f

102

103 ! F ina l check i n v o l v i n g the opac i ty o f the g iven c e l l . I f the

104 ! c e l l i sn ’ t near the s u r f a c e ( low tau ) then inc lude i t in our

105 ! i n t e g r a t i o n

106 i f ( s% tau ( k ) . gt . tau l im ) then

107 s o n i c c r o s s t i m e = s o n i c c r o s s t i m e + ( dr / s% csound ( k ) )

108 conv env r = conv env r + dr

109 conv env m = conv env m + s% dm( k )

110 tt temp = tt temp + ( dr / ve l )

111 end i f

112 end i f

113

114 end do ! end o f do loop to c a l c u l a t e convec t i ve turnover time

115

116 ! r e s e t the boolean j u s t in case

117 conv env found = . f a l s e .

118

119 ! TURNOVER TIME CHECK, THIS IS TO TRY AND AVOID LARGE CHANGES

120

121 ! s imply s e t the turnover time to the i n t e r n a l v a r i a b l e c a l c u l a t e d above

122 turnover t ime = tt temp

123

124 i f ( s% model number . gt . 1) then

172



125 ! c a l c u l a t e the v a r i a b l e s used to check i f our system i s r a p i d l y

126 ! evo lv ing

127 t t d i f f = abs ( t t o l d − tt temp ) / t t o l d

128 delta mag chk = s% dt / t t o l d

129

130 ! wr i t e (∗ ,∗ ) ” t t d i f f = ” , t t d i f f

131 ! wr i t e (∗ ,∗ ) ” delta mag = ” , delta mag chk

132 ! wr i t e (∗ ,∗ ) ” turnover t ime = ” , turnover t ime

133 ! wr i t e (∗ ,∗ ) ” t t o l d = ” , t t o l d

134

135 ! check i f t imes teps are very smal l or i f the r e l a t i v e

136 ! change i s very l a r g e

137 i f ( t t d i f f . gt . de lta mag chk ) then

138 wr i t e (∗ ,∗ ) ” l a r g e change , ad ju s t i ng acco rd ing ly ”

139 turnover t ime = t t o l d + ( tt temp − t t o l d ) &

140 ∗ min ( ( s% dt / t t o l d ) , 0 . 5 )

141 mag f i e ld = ( turnover t ime / 2 .8 d6 ) ∗ (2073600 . / b% per iod )

142

143 end i f ! end o f t imestep / r e l a t i v e change check

144 end i f

145

146 ! remember the cur rent va lue s to be used as comparison in the next s tep

147

148 t t o l d = turnover t ime

149

150 ! MAGNETIC BRAKING CALCULATION

151

152 b% jdot mb = 0

153 rsun4 = pow4( rsun )

154

155 c a l l c h e c k r a d i a t i v e c o r e (b)

156

157 two p i d iv p3 = ( 2 . 0∗ pi /b% per iod )∗ ( 2 . 0∗ pi /b% per iod )∗ ( 2 . 0∗ pi /b% per iod )

158 two p i d iv p2 = ( 2 . 0∗ pi /b% per iod )∗ ( 2 . 0∗ pi /b% per iod )

159
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160 K2 = 0.07 ∗ 0 .07

161

162 ! use the formula from rappaport , verbunt , and j o s s .

163 ! apj , 275 , 713−731. 1983 .

164 i f (b% h a v e r a d i a t i v e c o r e (b% d i ) . or . b% keep mb on ) then

165

166 jdot mb old = −3.8d−30∗b% m(b% d i )∗ rsun4 ∗ &

167 pow cr ( min (b% r (b% d i ) , b% r l (b% d i ) ) &

168 / rsun , b% magnetic braking gamma )∗ &

169 two p i d iv p3

170

171 t t r a t i o = turnover t ime / 2 .8 d6

172 t t4 = pow4( t t r a t i o )

173 ! wr i t e (∗ ,∗ ) ” t t4 = ” , t t4

174

175 r o t r a t i o = (2073600 . / b% per iod )

176 rot4 = pow4( r o t r a t i o )

177 ! wr i t e (∗ ,∗ ) ” rot4 = ” , rot4

178

179 rad4 = pow4(b% r (b% d i ) )

180 ! wr i t e (∗ ,∗ ) ” rad4 = ” , rad4

181

182 v e s c2 = 2 .0 ∗ s tandard cgrav ∗ b% m(b% d i ) / b% r (b% d i )

183 v mod2 = v esc2 + 2 .0 ∗ two p i d iv p2 ∗ b% r (b% d i ) ∗&

184 b% r (b% d i ) / K2

185 ! wr i t e (∗ ,∗ ) ”G = ” , s tandard cgrav

186 ! wr i t e (∗ ,∗ ) ”M = ” , b% m(b% d i )

187 ! wr i t e (∗ ,∗ ) ”R = ” , b% r (b% d i )

188 ! wr i t e (∗ ,∗ ) ” v e s c2 = ” , v e s c2

189 ! wr i t e (∗ ,∗ ) ”v mod2 = ” , v mod2

190

191 a l fven no R = rad4 ∗ rot4 ∗ t t4 / (b% mdot system wind (b% d i ) ∗&

192 b% mdot system wind (b% d i ) ) ∗ ( 1 . 0 / v mod2 )

193

194 R al fven = b% r (b% d i ) ∗ a l fven no R ∗∗ ( 1 . d0 /3 . d0 )
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195

196 jdot mb new = ( 2 . 0 / 3 . 0 ) ∗ ( 2 . 0∗ pi /b% per iod ) ∗ &

197 b% mdot system wind (b% d i ) ∗ R al fven ∗ R al fven

198 ! wr i t e (∗ ,∗ ) ” jdot mb new = ” , jdot mb new

199 ! wr i t e (∗ ,∗ ) ” jdot mb old = ” , jdot mb old

200

201 b% jdot mb = jdot mb new

202

203 end i f

204

205 i f (b% p o i n t m as s i == 0 . and . b% inc lude acc r e to r mb . and . &

206 (b% h a v e r a d i a t i v e c o r e (b% a i ) . or . b% keep mb on ) ) then

207 b% jdot mb = b% jdot mb − &

208 3 .8 d−30∗b% m(b% a i )∗ rsun4 ∗ &

209 pow cr ( min (b% r (b% a i ) , b% r l (b% a i ))/&

210 rsun , b% magnetic braking gamma )∗ &

211 two p i d iv p3

212 end i f

213

214 s% xtra1 = turnover t ime

215 s% xtra2 = mag f i e ld

216 s% xtra3 = conv env r

217 s% xtra4 = conv env m

218 s% xtra5 = s o n i c c r o s s t i m e

219

220 end subrout ine jdot mb rout ine
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Appendix B

Sample MESA inlist Files

Simulations within MESA are run with inlist files, these files are read sequen-

tially. If a variable is used multiple times, every subsequent use of the variable

overwrites the previous input. The sample inlist files shown here are exam-

ples of uses from within the main body of the text. All parameters not listed

in the sample inlist use the MESA default values.

B.1 Boosted Skumanich Sample

1 &binary job

2

3 inlist names(1) = ’ inlist1 ’

4

5 !which_for_pgstar = 0 ! 0 means none; < 0 means all; i > 0 means stari

6 evolve both stars = .false .

7 warn binary extra = .false.

8

9

10 / ! end of binary_job namelist

11

12 &binary controls

13 terminal interval = 10
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14 write header frequency = 5

15 initial period in days = ! period

16

17 use other jdot mb = .true.

18 use other mdot edd = .true.

19 terminate if initial overflow = .false .

20 limit retention by mdot edd = .true.

21 use es opacity for mdot edd = .true.

22

23 max explicit abs mdot = 1d100

24 fm = 0.01d0

25 fa = 0.01d0

26 fr = 0.10d0

27 fj = 0.001d0

28

29 m1 = ! donor mass

30 m2 = 1.4

31 max tries to achieve = 50

32 magnetic braking gamma = 4.0

33

34 / ! end of binary_controls namelist

1 &star job

2

3 ! start a run from a saved model

4 load saved model = .false.

5

6 ! setting intial model number

7 set initial model number = .true.

8 initial model number = 0

9

10 ! setting initial age

11 set initial age = .false .

12
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13 ! set_initial_dt = .true.

14 ! years_for_initial_dt = 1d5

15

16 change v flag = .true.

17 new v flag = .true.

18

19 ! change_rotation_flag = .true.

20 ! new_rotation_flag = .true.

21

22 change lnPgas flag = .true.

23 new lnPgas flag = .true.

24 warn run star extras = .false .

25

26

27 / !end of star_job namelist

28

29

30 &controls

31

32 x ctrl (1) = ! velocity ratio

33 x ctrl (2) = ! opacity limit

34 x ctrl (3) = ! wind factor

35 x ctrl (4) = ! turnover time factor

36 x ctrl (5) = ! rotation factor

37 x ctrl (6) = ! saturation factor

38

39 terminal interval = 10

40 write header frequency = 5

41

42 ! maximum number of profiles

43 max num profile models = −1

44

45 ! profile intervals

46 profile interval = 10000

47
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48 history interval = 1

49

50 hot wind scheme = ’Reimers’

51 cool wind RGB scheme = ’Reimers’

52 Reimers scaling factor = 1.0

53 smooth convective bdy = .true.

54 alt scale height flag = .true.

55 min dxm Eulerian div dxm removed = −1

56 mass change full on dt = 1d−99

57 mass change full off dt = 1d−99

58 wind boost full off L div Ledd = 1d99

59 wind boost full on L div Ledd = 1d99

60

61 max age = 1d10

62

63 /! end of controls namelist

B.2 CARB MB Sample

1 &binary job

2

3 inlist names(1) = ’ inlist1 ’

4

5 evolve both stars = .false .

6 warn binary extra = .false.

7

8 / ! end of binary_job namelist

9

10 &binary controls

11 terminal interval = 10

12 write header frequency = 5

13 initial period in days = ! initial period

14
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15 use other jdot mb = .true.

16 use other mdot edd = .true.

17 terminate if initial overflow = .false .

18 limit retention by mdot edd = .true.

19 use es opacity for mdot edd = .true.

20

21 max explicit abs mdot = 1d100

22 fm = 0.01d0

23 fa = 0.01d0

24 fr = 0.10d0

25 fj = 0.001d0

26 mass transfer beta = 0.8d0

27

28 m1 = ! initial donor mass

29 m2 = 1.4

30 max tries to achieve = 50

31 cur mdot frac = 0.5

32 magnetic braking gamma = 4.0

33

34 / ! end of binary_controls namelist

1 &star job

2

3 ! setting intial model number

4 set initial model number = .true.

5 initial model number = 0

6

7 ! setting initial age

8 set initial age = .false .

9

10

11 change v flag = .true.

12 new v flag = .true.

13
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14 change lnPgas flag = .true.

15 new lnPgas flag = .true.

16 warn run star extras = .false .

17

18

19 / !end of star_job namelist

20

21

22 &controls

23

24 x ctrl (1) = ! velocity ratio

25 x ctrl (2) = ! tau limit

26

27 terminal interval = 20

28 write header frequency = 10

29

30 ! maximum number of profiles

31 max num profile models = −1

32

33 ! profile intervals

34 profile interval = 10000

35 history interval = 1

36

37 hot wind scheme = ’Reimers’

38 cool wind RGB scheme = ’Reimers’

39 Reimers scaling factor = 1.0

40 smooth convective bdy = .true.

41 alt scale height flag = .true.

42 min dxm Eulerian div dxm removed = −1

43 mass change full on dt = 1d−99

44 mass change full off dt = 1d−99

45 wind boost full off L div Ledd = 1d99

46 wind boost full on L div Ledd = 1d99

47

48 use dedt form of energy eqn = .true.
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49 use gold tolerances = .true.

50

51

52 ! when to stop

53 max age = 1d10

54

55 /! end of controls namelist
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Appendix C

Black Hole Table

The methods and techniques used in this thesis to study NS LMXBs can be

extended to study black hole (BH) LMXBs as well. Below is a preliminary

table of well studied BH LMXBs. Extending this research to study BH LMXBs

requires varying the accretor mass as well as the donor mass increasing the size

of the parameter space.

Source Flags Md Mass Ratio Period Average Mass Transfer

(M�) (Md/Ma) (Hours) (M� yr−1)

MAXI J1659-152 T − − 2.414 3.54× 10−10

SWIFT J1357.2-0933 T − − 2.8 3.56× 10−11

SWIFT J1753.5-0127 Per − − 3.2 2.38× 10−09

XTE J1118+480 T 7.3 0.024 4.1 7.90× 10−12

4U 2030+40 Per 2.4 0.23 4.8 3.64× 10−08

MAXI J1836-194 T − − 4.9 1.04× 10−09

XTE J1859+226 T 10.83 0.25 6.6 7.52× 10−10

XTE J1650-500 T 4.72 0.25 7.7 5.56× 10−11

4U 1957+115 Per − − 9.33 2.84× 10−09

MAXI J1305-704 T − − 9.74 6.54× 10−10

SWIFT J174510.8-262411 T − − 21 3.13× 10−10

4U 1543-475 T 9.4 0.28 26.8 7.67× 10−10

XTE J1550-564 T 10.39 0.034 37 2.12× 10−09

4U 0538-641 Per 6.95 0.532 40.9 2.00× 10−07

GX 339-4 T − − 42.1 1.55× 10−08

GS 1354-64 T 7.47 0.12 61.1 6.64× 10−09

GRO J1655-40 T 5.4 0.38 62.9 2.86× 10−09

SAX J1819.3-2525 T 6.4 0.45 67.6 2.31× 10−09

4U 0540-697 Per 10.91 0.343 93.8 2.29× 10−07
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4U 1956+350 Per 12.4 1.294 134.3 3.88× 10−09

1E 1740.7-2942 Per − − 305.52 9.81× 10−09

GRS 1915+105 Per 12.4 0.058 314.4 1.59× 10−07

GRS 1758-258 Per − − 442.8 1.13× 10−08

XTE J0421+560 T − − 465.84 4.55× 10−11

Table C.1: A similar table to Table 2.3 showing BH LMXBs. Unlike the NS
LMXBs which were aggregated from different sources, all of the observed BH
LMXBs in this table are taken from Tetarenko et al. (2016)
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Appendix D

Normalized Rate Figure

As an additional resource we have created a figure similar to Figure 4.10 in

Chapter 4 where the rates have been normalized by the bins and split into

sub-figures.
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Figure D.1: The normalized progenitor formation rates of the different classes
of observed persistent LMXBs. The dashed lines are the same as in Figure 4.1.
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