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Abstract

In this thesis, the multi-armed bandit (MAB) problem in online learning is studied, when the feed-

back information is not observed immediately but rather after arbitrary, unknown, random delays. In

the “stochastic” setting when the rewards come from a fixed distribution, an algorithm is given that

uses a non-delayed MAB algorithm as a black-box. We also give a method to generalize the theo-

retical guarantees of non-delayed UCB-type algorithms to the delayed stochastic setting. Assuming

the delays are independent of the rewards, we upper bound the penalty in the performance of these

algorithms (measured by “regret”) by an additive term depending on the delays. When the rewards

are chosen in an adversarial manner, we give a black-box style algorithm using multiple instances

of a non-delayed adversarial MAB algorithm. Assuming the delays depend only on time, we upper

bound the performance penalty of the algorithm by a multiplicative factor depending on the delays.
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Chapter 1

Introduction

Online decision making problems arise in different context, such as news article recommendation (Li

et al., 2010), web content optimization (Agarwal et al., 2009), experiment design (Robbins, 1952),

or adaptive pre-fetching in computer memory architectures (Warmuth et al., 2011; Weinberger and

Ordentlich, 2002). In this type of problems, an agent (or algorithm) sequentially chooses actions

and receives feedback about them, helping it to choose the next actions in a better way so as to

maximize an objective function.

More precisely, consider an online decision making problem with discrete time steps t = 1, 2, . . . ,

and a set of actionsK. An agent acting in this environment has to choose, at each time step, an action

from the set of actions, which results in a reward (a real number) associated with taking that action

at that time step. The goal of the agent is to accumulate as much reward as possible. To achieve this

goal, the agent uses the information about the rewards of its actions, which is fed back to it by the

environment.

The agent’s ability and performance in learning to make good actions changes with the type and

amount of the feedback information that it is provided. In a full-information feedback setting, at

the end of each time step the agent observes the rewards of all the actions it could have chosen in

that time step. In a bandit feedback setting, at the end of each time step the agent only observes

the reward of its own action in that time step, and not the reward of the other actions it could have

chosen.

In studying the online learning problems described above, it is usually assumed that the feedback

related to each of the agent’s actions is provided to the agent immediately after the action has taken

place. In many applications, however, the feedback from agent’s action is not ready immediately,

but rather after some delay. For example, online ads must be shown continuously while the feedback

from the earlier ads (i.e., whether the user has clicked on the ad or not) is not received immediately,

or is received in an aggregated fashion at the end of each day due to the complex distributed nature

of ad-serving systems. Similarly, in parallel computing systems, the results of actions at different

nodes are communicated and updated with some delay. In designing medical experiments, while

waiting for the result of the treatment of one patient, other patients arrive that must be treated.
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This thesis studies online decision making for these types of situations which involve delayed

feedback. We design and study online learning algorithms under delayed feedback, and analyze the

performance penalty due to delays. We study a special case of the general problem described above,

in which the set of actions is {1, . . . ,K} and only bandit information is available. This is called

the Multi-Armed Bandit (MAB) problem. The precise problem definition is given in the coming

sections.

1.1 Outline of the thesis

This chapter captures the notations and definitions that will be used through the rest of the thesis.

After defining the mathematical notation that we use, we give formal definitions and protocols for

the multi-armed bandit settings that we study, as well as performance measures for the algorithms

in these settings. Then, in Section 1.4, we formalize and describe our model of delayed feedback.

In the chapters that follow, we first review some of the algorithms for the multi-armed bandit

problem, as well as related work in online learning with delayed feedback. Then we will separately

treat two variants of the MAB problem, and give two types of algorithms for them. The first type

of algorithms receive non-delayed algorithms as a black-box, and utilize their power to address the

delayed-feedback problem. The second type of the algorithms are derived by generalizing the non-

delayed algorithms so that they handle the delayed case as well. Under practical assumptions on the

delays, we analyze the performance of the algorithms provided, and upper bound the penalty that the

performance incurs due to the presence of delays. Finally, we test our algorithms in practice using a

set of experiments with different delay distributions.

1.2 Notation

Throughout the thesis, we will use the following notation. We use capital letter to denote random

quantities. The symbol I {A} denotes the indicator for the event A, which is 1 when A happens

and 0 otherwise. E [X] is the expected value of the random variable X , and P {A} = E [I {A}] is

the probability of the event A. By supa∈A f(a) and infa∈A f(a) we mean the supremum and the

infimum, respectively, of the function f(.) over the set A. The set of natural numbers {1, 2, . . . }

is denoted by N, and R is the set of real numbers. To denote a sequence, we use the notation

{Xt}t∈A, which is the sequence of all Xt values when the index t is chosen from the set A. By

maxa∈A f(a) and argmax
a∈A

f(a) we denote, respectively, the maximum value of function f(.) over

the set A and the value of a parameter a ∈ A that achieves that maximum (in case of multiple

optimal parameters, we explicitly state how to break the ties). The average of s values Y1, Y2, . . . , Ys

is denoted by Ȳs = 1
s

∑s
t=1 Yt. We use log n to denote the natural logarithm of real number n. The

modulus operator x mod y gives the positive remainder of dividing integer x by integer y. We

use O(f(t)) and Ω(f(t)) to denote the Big-Oh and Omega growth rate families of function f , and
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Repeat: At each time step t = 1, 2, . . . :

1. The environment chooses the rewards xi,t ∈ [0, 1] for 1 ≤ i ≤ K.

2. The agent chooses an action It, and sends it to the environment.

3. The agent observes the reward xIt,t that it has enjoyed for choosing action It.

Goal: Maximize the cumulative reward
∑n
t=1 xIt,t by time step n.

Figure 1.1: The multi-armed bandit game.

Õ(f(t)) = O (f(t) log(f(t))) for f(t) > 1.

1.3 The multi-armed bandit problem

In this section we precisely define the non-delayed MAB problems. As described above, we have

an online decision making problem with discrete time steps. There is an agent who sequentially

chooses actions from the set of K possible actions {1, . . . ,K}, and an environment that assigns

rewards to the actions and provides the agent with bandit-type feedback.

Figure 1.1 shows the protocol for the MAB game. At each time step t ∈ N, the environment

chooses a vector of K rewards xt, whose components we denote by xi,t, 1 ≤ i ≤ K. The reward

xi,t of each action i is assumed to be in [0, 1]. At the same time, using the feedback from its previous

interactions with the environment, the agent chooses an action It which is played in that time step.

Note that the choice It ∈ {1, . . . ,K} is a random quantity because the agent can use randomization

to pick its action. The agent then observes the reward of its choice, which is xIt,t, at the end of time

step t. The agent, however, does not observe the rewards of the other possible actions xj,t, j 6= It, as

the environment provides only bandit feedback. The goal of the agent is to maximize the cumulative

reward of its actions after n time steps, i.e.,
∑n
t=1 xIt,t. The number of time steps n is called the

time horizon.

Note that in the general form of the MAB game described above, no specific assumptions are

made about the rewards, except being bounded in [0, 1]. This means that the agent has to achieve a

good performance under any reward sequence. We will discuss this more formally in Section 1.5,

where we define what we mean by good performance. However, additional assumptions about the

rewards can be made which lead to interesting variants of the MAB problem. One of these variants

is the non-parametric stochastic MAB problem or, in short, stochastic MAB problem, which we

define in the next section.

1.3.1 Stochastic multi-armed bandits

The stochastic MAB problem was first studied by Robbins (1952). In this setting, we assume that the

reward of each action i at each time step is drawn from a fixed distribution νi on [0, 1], independently

from all other rewards of that action and from the rewards of other actions. More precisely, for
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1 ≤ i ≤ K, letXi,t denote the reward of action i at time step t, which is now a random quantity. The

rewards {Xi,t}t∈N are assumed to form an i.i.d sequence from the distribution νi and, furthermore,

the K sequences {Xi,t}t∈N, 1 ≤ i ≤ K, are assumed to be independent of each other. For all

1 ≤ i ≤ K, the distribution νi, whose mean we denote by µi, is not known to the agent.

Both the stochastic and the adversarial MAB settings have been studied thoroughly in the liter-

ature. In Section 2.1, we summarize some of the existing results about these two settings which we

will refer to throughout the thesis. We will also review some prior algorithms that we will use later

in solving the delayed problems.

1.4 Multi-armed bandits with delayed feedback

The problem we study in this thesis is the multi-armed bandit problem where there is some delay

before the agent can observe the reward of its action. This means that the agent will not always see

the reward of its action at the end of the time step in which the action is chosen, but rather some

(unknown) number of time steps later.

More precisely, in the delayed-feedback MAB problem, for each action 1 ≤ i ≤ K and each

time step t ∈ N, there is a non-negative delay τi,t associated with the reward xi,t of choosing action

i at time step t. This means that if action i is chosen at time step t, its reward will be observed

not at the end of time step t, but rather at the end of time step t + τi,t. We allow the delays to be

random in the general case. However, we do not make any additional assumptions about their joint

distribution. In particular, the delays can all have the same fixed values, or come from the same fixed

and potentially unbounded distribution, or can be infinite (in which case the reward will never be

observed). As a special case, when all the delays are zero we recover the original non-delayed MAB

problem. The exception to this is the stochastic MAB problem where, as we will see in Section

4.1, we require the delays to be independent of the rewards. For the adversarial setting, we require

the delays at each time step to be the same for different actions, that is, we have a single sequence

{τt}t∈N which is used for all the actions. This, however, does not prevent the delay sequence from

having any desired randomness. This is a common situation, e.g., in network-based applications,

when the delay depends on the congestion at the current time but not on the actual data that is being

transmitted.

Since the delays can have arbitrary values, in general it may happen that the rewards of the

actions It = i and It′ = j at time steps t and t′ have to be observed at the end of the same time step

t+ τi,t = t′ + τj,t′ . Therefore, in the delayed MAB problem the agent observes sets of rewards for

each action (and not only for the action chosen). The set of rewards of action i which are observed

at the end of time step t is denoted by Xi,t = {(s, xi,s) | 1 ≤ s ≤ t, Is = i, s+ τi,s = t}. Note that

the agent needs to see the time stamp s in addition to the reward value xi,s because the rewards can

get reordered due to delays. However, under the assumptions of the stochastic multi-armed bandit

problem, this reordering is not important, as we will see in Section 4.1. The detailed protocol for
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Repeat: At each time step t = 1, 2, . . . :

1. The environment chooses the rewards xi,t ∈ [0, 1] for 1 ≤ i ≤ K.

2. The agent chooses an action It, and sends it to the environment.

3. The environment adds the reward xIt,t to the set XIt,t+τIt,t so that it is observed by the agent
at the end of time step t+ τIt,t.

4. The agent observes the set Xi,t for 1 ≤ i ≤ K

Goal: Maximize the cumulative reward
∑n
t=1 xIt,t by time step n.

Figure 1.2: The multi-armed bandit game with delayed feedback.

the multi-armed bandit game with delayed feedback is given in Figure 1.2.

1.5 Performance measures

As noted before, the goal of the learning agent is to maximize its accumulated reward. In this section

we describe the way we evaluate the performance of the agent in achieving this goal.

In the general MAB problem as described above, we can not just evaluate the performance of the

agent by the magnitude of the reward it accumulates. The reason is that the amount of the reward

that an agent can collect depends on the problem: if the rewards are all zeros, then no algorithm can

achieve any reward, and if they are all one, then any algorithm achieves a cumulative reward of n.

Therefore, we need to measure the performance in such a way that describes how effective the agent

is in extracting the reward that is in the sequence on which it runs. In other words, a good agent

is one which uses the properties of the reward sequence as best as possible, such that it does not

regret its choices when the game is finished. This can be achieved by measuring the performance of

an agent by comparing its cumulative reward against that of some reference strategy, such that the

reference makes a good use of the reward content of the sequence of rewards.

The standard strategy that is usually used as the reference chooses the best constant action in

hindsight. More precisely, consider an action which if played up to round n, gives the largest

cumulative reward. We compare the cumulative reward of the agent after n time steps with the

cumulative reward of such an action. This difference is called the regret of the agent after n time

steps, which is defined as

Rn = max
1≤i≤K

{
n∑
t=1

xi,t −
n∑
t=1

xIt,t

}
. (1.1)

Hence, a good agent is one which achieves a small regret. Note that competing with the best action

in hindsight is hard enough. In particular, we will not be able to compete with the best strategy

that is allowed to change its choice at each time step, because the set of references will become

exponentially large (in the number of actions). However, we are still able to compete with strategies

that are allowed to change their actions a constant number of times, with algorithms that are in nature

5



the same as the ones used for competing with constant-action strategies. This is called the tracking

problem, which we do not consider in this thesis. Analysis of the tracking problem can be found in

Section 5.2 of the book of Cesa-Bianchi and Lugosi (2006).

The use of the cumulative reward of a constant action has an even more meaningful intuitive

interpretation in the stochastic setting. In this case, since the rewards are random, in the long run the

best action in hindsight becomes the action with the largest expected reward i∗ = argmax
1≤i≤K

µi (where

in the case of multiple optimal actions, we let i∗ be the smallest index among them). Accordingly,

in the stochastic setting, as common in the literature we redefine the regret to be

Rn =

n∑
t=1

Xi∗,t −
n∑
t=1

XIt,t. (1.2)

The regret as defined by (1.1) and (1.2) is a random quantity, since the agent (and the environ-

ment) can use randomization in their choices. We are therefore often more interested to know the

expected value of the regret, which shows the average performance of the algorithm. In fact, in the

adversarial setting, randomization is a very useful tool for the agent because if K ≥ 2 and the agent

is deterministic, then there is always a sequence of reward on which the agent suffers a regret as

large as Ω(n). This is because if the agent is deterministic, the environment can always compute

the choice of the agent for each possible history. The environment can thus set a reward of 0 for the

agents choices and 1 for the other actions, making the regret to be at least n/2.

In the adversarial setting, to compare the performance of different algorithms it is more appro-

priate to measure their worst-case regret. Let P denote the set of all K ×n sequences over [0, 1] for

all n ∈ N, and A be the set of all MAB algorithms. Denote by RA,Pn the regret of algorithm A ∈ A

on the sequence P ∈ P after n rounds. Then

sup
P∈P

RA,Pn

and

sup
P∈P

E
[
RA,Pn

]
are the worst-case regret and the worst-case expected regret, respectively, of algorithm A on any

sequence. A better agent is therefore one which achieves a lower worst-case regret.

To show that the agent controls its regret and therefore has a good performance, we usually give

upper bounds on the expected value of the regret. We can also provide an upper bound over the

regret that holds with high probability, which is a stronger result in the sense that it holds for all

values of the regret, not just the expected value. We are interested in bounds that scale sub-linearly

with the time horizon n, so that the average regret per time step, 1
nRn, goes to zero as n grows. Note

in particular that the growth rate of the regret divided by n is a natural measure of learning rate of

the agent.
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To see how fast the average per-time-step regret of an agent can approach zero, we usually start

by showing lower bounds for the minimax regret,

inf
A∈A

sup
P∈P

E
[
RA,Pn

]
(1.3)

which is the smallest worst-case expected regret any agent can achieve and is an inherent character-

istic of the learning problem. If the lower bound on minimax regret matches, up to a constant factor,

the upper bound on the worst-case regret of an agent, it means that the agent is learning with a rate

similar to that of the best possible agent, and is in this sense optimal.
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Chapter 2

Related work

2.1 Non-delayed multi-armed bandit algorithms

In this section we study some of the algorithms devised for the non-delayed MAB problem, upon

which we build our algorithms for the delayed setting in the coming chapters.

The adversarial and stochastic MAB problems have been thoroughly studied in the literature.

Auer et al. (2002) study the stochastic MAB problem presented in section 1.3.1, and their work

is followed by a sequence of inspired algorithms, such as the works of Audibert et al. (2009) and

Garivier and Cappé (2011), which illustrate and improve on different aspects of the problem. The

adversarial MAB problem has been studied by Auer et al. (2003) as well as Audibert and Bubeck

(2010), amongst others. A recent review of the MAB literature is due to Bubeck and Cesa-Bianchi

(2012). In the next sections, we will review some of the algorithms and results of these works which

are used throughout the thesis.

2.1.1 Stochastic setting

A large family of algorithms that work in the stochastic MAB setting are based on using upper

confidence bounds (UCBs). In this thesis we refer to this family as UCB-type algorithms. These

algorithms work by following the optimism in the face of uncertainty principle: they maintain op-

timistic estimates of the rewards of each action and in each time step choose an action for which

this optimistic estimate is the largest. Being optimistic causes the algorithm to constantly explore

different actions while trying to exploit the current observed optimal choice, thus avoiding early

commitment to a choice that may later turn out to be suboptimal.

More precisely, UCB-type algorithms maintain an upper confidence boundBi,s,t for each action

i, which depends on the current time step t, the number of observed rewards s, and the observed

reward values Yi,1, Yi,2, . . . , Yi,s. Each UCB-type algorithm specifies its own form for Bi,s,t. These

bounds are the optimistic estimates that we mentioned and are designed such that the expected

reward of the action is below its bound with high probability. At each time step t, these algorithms
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choose the action given by

It = argmax
1≤i≤K

Bi,Ti(t−1),t

where Ti(t) is the number of times action i has been chosen by time t.

Here we review two UCB-type algorithms that we will revisit in the thesis. The first algorithm,

called UCB1, is due to Auer et al. (2002). UCB1 uses upper confidence bounds of the form Bi,s,t =

Ȳi,s +

√
2 log t

s
, where Ȳ =

1

s

∑s
t=1 Yi,t is the average observed reward. In the original UCB1

paper (Auer et al., 2002), the authors show the following theorem.

Theorem 2.1. The expected regret of UCB1 after n time steps is bounded by

E [Rn] ≤
∑

∆i>0

(
8 log n

∆i
+

(
1 +

Π2

3

)
∆i

)
(2.1)

where ∆i = max1≤j≤K µj − µi is the difference between the expected reward of action i and that

of the action with the largest expected reward.

Recently, a new UCB-type algorithm, called KL-UCB, was proposed by Garivier and Cappé

(2011) (and independently also by Maillard et al. (2011)), which is asymptotically optimal up to

additive sublogarithmic terms and has also been found to work well in simulations. KL-UCB uses

upper confidence bounds of the form

Bi,s,t = max
{
q ∈ [Ȳi,s, 1] : sd(Ȳi,s, q) ≤ log(t) + 3 log(log(t))

}
where d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) is the KL-divergence of two Bernoulli

random variables with parameters p and q 1. The authors show that the KL-UCB algorithm enjoys

the following regret guarantee:

Theorem 2.2. Let µi denote the expected reward of action i, and i∗ denote an action with the largest

expected reward. Then there exists a constant C1 ≤ 7, as well as functions C2(ε) = O(ε−2) and

0 ≤ β(ε) = O(ε2), such that for any ε > 0, the expected regret of the KL-UCB algorithm satisfies

E [Rn] ≤
∑

∆i>0

∆i

[
log(n)

d(µi, µi∗)
(1 + ε) + C1 log(log n) +

C2(ε)

nβ(ε)

]
. (2.2)

As opposed to UCB1, the computation of the upper confidence bound for KL-UCB must be done

numerically, making this algorithm computationally expensive. In Chapter 4, we will extend these

two algorithms to work in the delayed setting.

It is noteworthy that the bounds above become vacuous when the gaps ∆i are very small, e.g.,

of order O(1/n). However, since the number of time an action is chosen is at most n, we can bound

the regret of each action by n∆i as well. We will use this smaller upper bounds in cases with very

small gaps.

1The Kullback-Leibler(KL) divergence is “a measure of the difficulty of discriminating between” two distributions (Kull-
back, 1997). Shlens (2007) provides a good tutorial on KL-divergence.
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2.1.2 Adversarial setting

The standard algorithm for the adversarial MAB problem is EXP3 by Auer et al. (2003). EXP3

works by maintaining a distribution over actions which is used for picking actions randomly at each

time step. The probability of choosing each action is proportional to the exponentiated total reward

observed for that action. For the detailed algorithm, please refer to the original paper (Auer et al.,

2003).

Recently, a new algorithm called INF (Implicitly Normalized Forecaster) was proposed by Au-

dibert and Bubeck (2010). As opposed to EXP3, this algorithm was shown to be optimal in the

sense that it achieves a regret with the same rate of growth as the minimax regret of the adversarial

MAB problem. EXP3’s regret-bound is larger by a poly-logarithmic factor. Bubeck (2010) shows

the following theorem for a special variant of INF.

Theorem 2.3. In the multi-armed bandit problem with K actions, the expected regret of INF after

n time steps satisfies:

E [Rn] ≤ 12.2
√
nK (2.3)

We will use this theorem in Chapter 3, where we transform the delayed problem to multiple

instances of the non-delayed problem, which are then solved by INF.

2.2 Related work on delayed online learning

The problem of online learning with delays has been studied in different contexts and for different

types of feedback. In this section we review the related work in this area. A concise summary,

together with the contributions of this work, is given in Table 2.1.

2.2.1 Bayesian setting

One of the thoroughly studied settings in the multi-armed bandit literature is the Bayesian setting.

In this setting, the problem is to compute an optimal policy (i.e., an optimal action given the history

of past observations and actions) so as to maximize the total expected (typically discounted) reward

over some finite or infinite horizon assuming that the actions’ reward generating distributions are

drawn from some known distribution at time t = 0, from which time on they are kept fixed. Note

that, in contrast to the stochastic MAB problem, this is a purely computational problem. In a sem-

inal paper, Gittins proved that the optimal policy has a special index-form, making its computation

feasible (Gittins and Jones, 1974).

In the Bayesian MAB setting, the problem of delayed feedback was proposed by Anderson

(1964). Suzuki (1966) gives optimal policies for a special case of the problem when the reward

distributions are parametric, and Choi and Clark (1970) treat a special case of the problem for deter-

mining the probability parameter of a binomial distribution. Recently, Guha et al. (2010) proposed

an algorithm that approximates the optimal solution of the problem when the delays are of order
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Stochastic Adversarial
L

+E
[
τ2
t

]
∗τconst

No Side Info Agarwal and Duchi (2011)
Full Langford et al. (2009)
Info Agarwal and Duchi (2011) Weinberger and Ordentlich (2002)

L L
Side Info + maxG ∗ average G

Mesterharm (2007) Mesterharm (2007)
I [ 4.2, 4.3, 4.4 ] I [ 3.1 ]

No Side Info ∗C1 and + C2B log(B) ∗ τconst
Bandit Desautels et al. (2012) (Neu et al., 2010)

Feedback
Side Info +τconst

√
log n N/A

Dudik et al. (2011)

Table 2.1: Summary of work on delayed online learning. A ∗ indicates a multiplicative penalty
in the regret, while a + shows an additive penalty. L denotes a matching lower bound. G is the
abbreviation for gap, the number of consecutive time steps the agent does not get any feedback.
I denotes the area for which there is an improved result in the thesis, together with the relevant
theorem numbers. The term τconst indicates that the results are for constant delays only. For the
work of Desautels et al. (2012), C1 and C2 are positive constants, with C1 > 1, and B denotes the
upper bound on delays. In that case, the regret grows by the multiplicative constant C1 independent
of delays, as well as an additive term depending on delays.

O(n/ log n), where n is the time horizon. Their algorithm considers constant delays δi for each

action i.

2.2.2 Full-information online learning

The adversarial full information online learning problem is similar to the adversarial MAB problem

described in Section 1.3, with the difference that the learner not only observes the reward of its own

action, but also the reward of the other actions it could have chosen at that time step. This setting

has been deeply studied in the context of prediction with expert advice, e.g., by Cesa-Bianchi and

Lugosi (2006).

An early result for learning under delayed feedback in the full information setting is due to Wein-

berger and Ordentlich (2002). They consider fixed delays and show that a sub-sampling approach

gives optimal results in this setting. While they state their problem and results for prediction of

individual sequences (which is a less general formulation of the full information feedback), their ap-

proach can be used directly for multi-armed bandits; it is, however, limited to constant (or bounded)

delays where the delay value or the bound is known a priori. In Section 3.2, we generalize their ap-

proach and show that the new version works for unknown, unbounded, and possibly infinite delays.

To put our contribution into context, let us now summarize their ideas and algorithm.

The idea of Weinberger and Ordentlich (2002) is that for a fixed delay of τ , once we know the

delay, we can sub-sample2 the sequence of reward vectors xt at a rate τ + 1, and give each of the
2By sub-sampling a sequence at a rate d, we mean creating a subsequence of that sequence consisting of members of the
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resulting sub-sequences to a non-delayed full-information algorithm. In other words, if we make a

prediction at time step t, we will be able to use its reward for decision making at time t + τ + 1.

Therefore, if we have τ + 1 instances of a non-delayed algorithm, and at time step t ≥ 1 consult

algorithm instance i, 0 ≤ i ≤ τ such that t mod (τ + 1) = i, then the algorithm instances will

observe no delays and at each time step we know what action to choose. Assuming n divides τ , if

Rmn is the regret of the m-th instance of the non-delayed algorithm on a sequence of length n, It is

the choice of the algorithm at time step t, xi,t is the reward of choosing action i at time step t, and

Rn is the regret of the sub-sampling algorithm under delay τ , then we have:

Rn = max
1≤i≤K

(
n∑
t=1

xi,t −
n∑
t=1

xIt,t

)

= max
1≤i≤K

 τ+1∑
m=1

n/(τ+1)−1∑
s=0

xi,s(τ+1)+m − xIs(τ+1)+m,s(τ+1)+m


≤

τ+1∑
m=1

max
1≤i≤K

Rmn/(τ+1)

=

τ+1∑
m=1

Rmn/(τ+1)

and therefore, the worst-case regret of the sub-sampling algorithm satisfies

sup
P
Rn ≤

τ+1∑
m=1

sup
P
Rmn/(τ+1) = (τ + 1)R′n/(τ+1)

where R′n/(τ+1) is the worst-case regret of the underlying non-delayed algorithm that is used. The

authors show a matching lower bound which establishes the optimality of their algorithm for con-

stant delays.

2.2.3 Label prediction

Mesterharm (2005, 2007) investigates another variant of the full information setting, with a different

delay model. He considers the label-prediction setting in which the learner observes, at each time

step, a side information vector xt for which it wants to predict a label yt. The label is given to the

agent at the end of the time step (in the non-delayed case), and the agent suffers a loss of 1 if it

had made a mistake and a loss of zero if the label is predicted correctly. The sequence of instances

and labels can be chosen by an adversary, or randomly from a fixed distribution, and the goal of the

learner is to make as few mistakes as possible.

Mesterharm considers an adversarial framework for the delays, in which to a sequence of sam-

ples {(xt, yt)}t∈N (drawn randomly from a fixed distribution or chosen in an adversarial manner),

the adversary assigns a sequence of delays {τt} from a multi-set D; the label yt is observed at time

step t+τt, i.e., τt rounds after side information xt is observed and prediction is made. The multi-set

sequence that are d indices apart, e.g., the first member, the (d+ 1)-th member, the (2d+ 1)-th member, and so on.

12



D, used to manage the power of the adversary in choosing the delays, is assumed to have infinitely

many elements. Let the number of instances of i ≥ 0 in D be di ≥ 0. If d5 = 10, for example, the

adversary can impose a delay of five rounds on ten of the instances in the sequence of samples.

The worst-case effect of the delays depends on how long the adversary can prevent the agent

from observing feedback. This is a property of the multi-set D. Let F (D, c) be the largest total

length of c lists of delays, built using members of D, such that the delays in each of the c lists make

it impossible to receive any feedback until the end of the list. This means that each delay in each list

is at least as large as the remaining length of the list. These lists can then be concatenated together

and used as the sequence of delays that the agent observes. This quantity is used in the upper and

lower bounds for the label prediction problem.

Mesterharm gives black-box style algorithms which transform non-delayed label prediction al-

gorithms to delayed ones. If the samples are chosen by an adversary, Mesterharm shows that the

expected number of mistakes in the delayed case incurs a multiplicative penalty that depends on the

average number of rounds at which no feedback is observed. We will see a multiplicative regret

bound of the same nature in Section 3.2 for the adversarial MAB problem.

When the samples are drawn from a distribution, the situation is better, and an additive penalty

of F (D, 1) on the expected number of mistakes was shown by Mesterharm. Note that F (D, 1) is

the maximum number of consecutive time steps when no feedback is received. As we will see in

Section 4.2.1, in the stochastic MAB problem as well, we can show a penalty on the regret that is

additive in the delays.

Mesterharm (2007) also gives lower bounds for the two cases described above. For the adversar-

ial case a multiplicative lower bound is shown, which uses the same ideas as the one by Weinberger

and Ordentlich (2002). We will discuss this idea later in Section 3.3. For the stochastic case, a lower

bound of F (D, 1)/2 on the additive penalty is given when the labels are binary.

2.2.4 Stochastic optimization

The effect of delayed feedback has also been studied in stochastic optimization (Langford et al.,

2009; Agarwal and Duchi, 2011). In stochastic optimization, the aim is to minimize a convex

function f(x) over a closed convex set X , using a sequence of random functions {ft}t∈N. The

functions ft : X 7→ R are assumed to be drawn from a distribution P such that for any x ∈ X ,

E [ft(x)] = f(x). Standard algorithms for this setting (e.g., the algorithm of Nemirovsky and Yudin

(1983)) are based on updating a solution candidate xt at time step t using the gradient of function

ft. The sequence of parameters {xt}t∈N generated by these algorithms can then be used, e.g., by

averaging, to get an estimate of the optimal solution. The performance measure used in this context

is risk, which is the expected difference E [f (x̂(T ))] − f(x∗) where x̂(T ) = 1
T

∑T
t=1 xt is the

average of the updated parameters after T runs and x∗ is the optimal solution which minimizes f .

In the delayed-feedback version of stochastic optimization, the gradient gt of the function ft
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is assumed to be observed after a delay τt. In this setting, Langford et al. (2009) show that in the

general case, under a constant delay τ the penalty in the performance of the algorithm is bounded

from above by a multiplicative factor of order
√
τ . Agarwal and Duchi (2011) show that using

smoothness assumptions on the gradients, it is possible to prove an additive penalty. More precisely,

they show that if E
[
τ2
t

]
≤ B2 for some real number B, then the penalty in the risk is additive and

is of order O(B2).

2.2.5 Bandit feedback

Learning under delayed feedback has also been studied for contextual bandits. A contextual bandit

game is similar to the usual multi-armed bandit problem defined in Section 1.3, except that at each

time step there is some side information xt ∈ X which helps the agent choose its actions and the

agent’s regret is measured relative to the performance of the best mapping π : X 7→ {1, . . . ,K}

from a fixed set Π, which is known to the agent. In detail, the agent interacts with its environment

at time step t as follows:

1. The environment chooses the side information xt and a K × 1 vector rt of rewards, and

presents xt to the agent.

2. The agent chooses an action It from the set of actions {1, . . . ,K}.

3. The agent observes the reward rIt,t of its choice.

Similar to the regular MAB problem, the information (x, r) can be chosen in an adversarial

manner or can come from a distribution. In the stochastic setting, and when the information is

delayed by a fixed delay of τ , Dudik et al. (2011) show that the penalty in the regret due to the

delays is an additive term of O(
√
N log(Kn2))τ where N is the size of the set of policies Π. This

gives a direct result for the stochastic MAB problem, as the MAB problem is a special case of

the contextual bandit problem when |X | = 1 and Π = {π1, . . . , πK}, πk(x) = k, 1 ≤ k ≤ K.

Thus, from the results of Dudik et al. (2011), when substituting N with K, we get an additive term

of O
(√

Klog(Kn2)
)
τ for the stochastic MAB problem. In Theorems 4.2, 4.3 and 4.4, we will

show additive penalty terms that, unlike the result of Dudik et al. (2011), do not depend on the time

horizon n when the delay is constant. It remains for future work to see whether such results can be

extended to the contextual bandit case.

Another work that concerns the bandit setting with delayed feedback is by György et al. (2007).

The authors consider the setting in which an agent, observing a side information, at each time step

chooses one of the K actions. The agent then has to wait for some time until the reward of this

action arrives. The setting, however, is continuous time, that is, there are no discrete time steps:

the agent can start with the next action as soon as the reward of the previous action arrives. Due

to the continuous time, the goal of the agent is not just to maximize its reward after n actions; it is

rather to maximize its reward per unit of time. This means choosing an action with a high expected

14



reward but a very long delay is not the best choice, as there may be actions with lower but immediate

expected rewards, which result in a higher reward rate. Note that the rewards depend on the current

side information, otherwise the problem will be equivalent to the regular MAB problem where the

expected rewards are normalized by expected delays. The authors propose a variant of the UCB1

algorithm (Auer et al., 2002) for the aforementioned setting. Their algorithm achieves a regret that

grows with a rate arbitrarily close to the optimal rate of O(log n).

The problem of delayed feedback has also been studied for Gaussian process bandit optimization

(Desautels et al., 2012). In this stochastic setting, for delays bounded by a known upper bound B,

the authors derive an upper bound on the regret of the form

Rn ≤ C1R
′
n + C2B log(B)

where R′n is the regret without delays and C1 and C2 are positive constants, with C1 > 1. As a

special case, this can be applied to the stochastic MAB problem. In that setting, however, our results

provide improved bounds as mentioned before.

A related work for the bandit feedback is due to Neu et al. (2010). In this work, the authors

study the problem of online learning in environments with stochastic controlled Markovian dynam-

ics, where the reward function is chosen in an adversarial manner. While not directly tackling the

delayed problem, as a byproduct of their analysis, the authors show that the so-called EXP3 algo-

rithm changes its policy slowly over time. Using this fact, the authors are able to bound the regret

of EXP3 when its actions are implemented with a delay. The resulting regret bound shows a multi-

plicative penalty depending on the constant delay. In Theorem 3.1, we show an improved result for

the adversarial MAB setting which allows non-constant delays.

2.3 Relation to parallel and distributed computing

The problem of delayed feedback is directly related to parallel and distributed computation. In par-

allel and distributed systems, there are many computing nodes performing computations to solve a

specific problem. These computing nodes can be different cores of a single processor, multiple pro-

cessors in a computer, or multiple computers connected across a network. Bertsekas and Tsitsiklis

(1989) and Leopold (2001) discuss the theory and models of parallel and distributed computing.

The online learning framework described in Chapter 1 is inherently sequential, working on only

one piece of data at a time. However, when there is a large amount of data available or when the

required time between two predictions is smaller than the time it takes to learn from the data, it is

desirable to parallelize the learning task. Due to the inherent latency in communication, excessive

synchronization between the computing nodes is not possible in such an architecture. Therefore, at

each time some of the computing nodes will be working on data that is not always current. In such

cases, having delay-tolerant online learning algorithms facilitates parallelizing the learning task.
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Figure 2.1: An example of parallel online learning. Core 1 makes prediction using the learned pa-
rameters in the shared memory, while cores 2 through 4 make updates using the resulting feedback.
During the time an update is done, multiple predictions must be made, and thus the predicting core
uses parameters that are not updated with the feedback from the most recent prediction.

For example, consider a processor with four cores working on an online learning problem, with

a shared set of parameters in the memory which is used for making prediction. Assume that the time

required for updating the parameters using the feedback is larger than the time required to make a

prediction using that parameters, and therefore one core is dedicated to making predictions while the

other three cores update the parameters using the feedback from those predictions. This is shown

in Figure 2.1. If an update is nearly three times slower than a prediction, in the time core 1 makes

three predictions, It, It+1 and It+2, the parameters are updated using the feedback of the prediction

It−1 which had arrived at the end of time step t − 1 and was processed by, e.g., core 4. Therefore,

the predicting core is working under delayed feedback, with parameters that are updated only with

the feedback of actions made three time steps ago.

This situation arises in other parallel architectures, as well. Applying delay-tolerant online learn-

ing algorithms for some of these different architectures has been studied in the literature on delayed

stochastic optimization, such as the studies by Agarwal and Duchi (2011) and Langford et al. (2009).

2.4 Contributions

We extend previous works to the multi-armed bandit setting and improve the previous results. Firstly,

unlike most previous work, we allow the delays to be random, and only make mild assumptions on

the delays which were discussed in Section 1.4. This is in fact an important improvement over the

assumption that the delay is constant, since most of the phenomena which result from delays, e.g.,

the reordering of the rewards, do not happen when the delay is constant. We also believe that our

assumptions are not a major limitation in practice, because many real applications, e.g., parallel and
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distributed computation, conform to these assumptions. Furthermore, our algorithms do not require

knowledge of the delays or any specific bound on them or on the expected delay.

Our first contribution is the generalization of the algorithm of Weinberger and Ordentlich (2002)

to the bandit setting with arbitrary delays depending only on time. Furthermore, while our algorithm

is analyzed and discussed for the MAB problem, the same idea can be applied to other areas of online

learning such as the full-information or the contextual bandit game.

While most of the additive regret penalties under delayed feedback have been shown for the full

information setting, in Theorems 4.2, 4.3 and 4.4 we show that an additive penalty can be obtained

for stochastic MABs as well, where unlike previous work in the bandit setting, the resulting term

will be shown to be independent of the time horizon n when the delays are bounded.
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Chapter 3

Adversarial multi-armed bandits

In this chapter we study a black-box approach to solving the adversarial multi-armed bandit problem

with delays. We generalize the algorithm of Weinberger and Ordentlich (2002), introduced in Sec-

tion 2.2.2, to the delayed MAB setting. In the case when the delays depend only on time and not on

the actions, we prove that the regret increases by a multiplicative factor that depends on the delays.

Note that this condition is naturally satisfied in important practical applications, such as when the

delays arise because the information need to be propagated in a network. In the next Chapter we will

treat the stochastic MAB problem, a special case of this problem, and show improved theoretical

guarantees.

3.1 Interface of a non-delayed MAB algorithm

For our methods to work, we need a traditional multi-armed bandit algorithm that works in non-

delayed environments. Such an algorithm has two main functions, GETACTION and FEEDREWARD.

The GETACTION function, when called, must return the next action that the algorithm recommends.

For proper behaviour, it is assumed that the action returned will actually be executed and the re-

sulting reward will be provided to the bandit algorithm, in a call to the FEEDREWARD function.

By proper, we mean that any deviation from this usage pattern may result in a loss of the regret

guarantees that hold when the correct interaction pattern is used.

Another function from the non-delayed MAB algorithm that is useful is the constructor which

returns a new instance of the algorithm. We denote a non-delayed MAB algorithm by BASE, and its

constructor function by BASE(K,n), and assume that different instances returned by this function

use independent internal random sources. Note that along with the number of actions K, we are

giving the time horizon n to the algorithm to fulfil the need of those algorithms that need it. This

parameter can be ignored if the algorithm does not depend on the time horizon. We note in passing

that there exist standard techniques (such as the doubling trick (Cesa-Bianchi and Lugosi, 2006,

page 38)) that can transform a horizon-dependent algorithm to one that works without knowing the

horizon, while essentially maintaining the same theoretical guarantees. In some cases, however, a
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stochastic non-delayed MAB algorithm can take advantage of knowing the time horizon to achieve

performance guarantees that can not be achieved if the time horizon is not known, as shown by

Audibert et al. (2009) and Salomon and Audibert (2011).

3.2 Black-box use of non-delayed algorithms

The algorithm of Weinberger and Ordentlich (2002), introduced in Chapter 2, attains an expected

regret which suffers a multiplicative penalty due to delays, and is known to be optimal in the full-

information setting with constant delays. Although their algorithm works out-of-the-box for the

bandit setting as well, it needs to know an upper bound on the delays. Here we extend their al-

gorithm and analysis to the more general delayed adversarial MAB setting as described in Section

1.4, enabling us to handle arbitrary, random, and potentially unbounded delays, without any prior

knowledge about the distribution or bounds of the delay.

Recall that the original algorithm of Weinberger and Ordentlich (2002) works in the following

way: given an a priori known upper bound τ on the delays, the algorithm creates (τ + 1) instances

of a non-delayed multi-armed bandit algorithm. We call each of these instances a machine. The

original algorithm uses, at time steps t = m(τ + 1) + i, m = 0, 1, . . . , the action chosen by

machine i. When machine i is consulted the next time, i.e, at time step (m + 1)(τ + 1) + i, the

reward of its previous choice has already been observed (since τ time steps have passed), and the

machine is therefore working in a non-delayed environment.

To extend this algorithm to work with general delays, we note that what we really need is to

have, at each time step, at least one machine that is ready for a call to its GETACTION() function,

i.e., that the reward of its most recent choice has arrived. Since a newly created machine can be

consulted for its next action immediately, whenever all the machines are waiting for the reward of

their most recent action, the algorithm can add a new machine and report its first choice as the choice

for that time step. This way, the number of machines grows gradually, depending on the maximum

delay upto that point in time. Specifically if the delays are equal to τ, we end up running the same

procedure as the original one, with the same number of machines, albeit without the need to know τ

upfront. In case of fixed delays, the difference to the original algorithm is that we add new machines

as they are needed; hence we will create the τ + 1 machines in the first τ + 1 rounds, as opposed to

the first round using the knowledge of τ.

The resulting algorithm, called Adversarial Black-box Bandits with Delays (ABBD), is given in

Algorithm 1. ABBD maintains the sets readyMachines and waitingMachines of instances of

the non-delayed adversarial multi-armed bandit algorithm BASE. At each time step, the algorithm

checks to find a machine that is available, i.e., one that has received the reward for its last action, in

the set readyMachines. If such a machine exists, it is used to determine the action for the current

time step; otherwise, a new machine is created.
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Algorithm 1 Adversarial Black-box Bandits with Delays (ABBD)

Input: K (number of actions), n (time horizon), BASE (non-delayed MAB algorithm).
Initialization:
newMachine← BASE(K,n) {Create a new instance of the base algorithm}
readyMachines← {newMachine}
waitingMachines← ∅
for t← 1 to n do

if readyMachines == ∅ then
{Create a new machine to consult}
newMachine← BASE(K,n)
readyMachines← readyMachines ∪ {newMachine}

end if
{Consult a machine that is ready for inquiry}
Remove machine m from readyMachines. Choose the earliest created if there are multiple
machines available.
I ← m.GETACTION()
waitingMachines← waitingMachines ∪ {(t,m)}
Send the action I to the environment
for i← 1 to K do

Get the rewards Xi,t from the environment
for each (s,X) ∈ Xi,t do

Remove (s,machine) from waitingMachines
machine.FEEDREWARD(X)
readyMachines← readyMachines ∪ {machine}

end for
end for

end for

3.2.1 Regret analysis: the case of time-dependent delays

Let Mn be the number of machines created by the ABBD Algorithm by the end of time step n.

Recall that Xi,t = {(s, xi,s)|1 ≤ s ≤ t, Is = i, s + τi,s = t} denotes the sequence of rewards

belonging to action i and observed at the end of time step t. In particular, τi,s is the number of time

steps that the reward of action i is delayed if the action is chosen at time step s. We will use the

following lemma in the rest of our analysis.

Lemma 3.1. At any time step t ≥ 1, we have:

Mt ≤ min {t, τ∗t + 1}

where

τ∗t = max
1≤i≤K
1≤s≤t

τi,s.

Proof. We have Mt ≤ t because we do not create more than one machine in any time step. First,

suppose t is a time step at which we have created a new machine. At that time step we needed to

consult a machine, but all the machines were awaiting their rewards. This means that if tj is the

last time machine j had been chosen, for any 1 ≤ j ≤ Mt−1 we have tj + τItj ,tj ≥ t. Therefore,

τ∗t ≥ t − min
1≤j≤Mt−1

tj ≥ t − (t −Mt−1) = Mt−1 where the last inequality follows because at
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least one of the machines must have been last used at or before time step t − Mt−1, otherwise

we have consulted two machines at the same time. Thus, by adding a new machine, we will have

Mt = Mt−1 + 1 ≤ τ∗t + 1.

Now, consider the other case when we have not added a new machine at time t. Let t′ < t be

the most recent time step when a new machine was added. We have t > 1 and the time step t′

always exists because we are adding a new machine at time step 1. By the argument above, we have

Mt = Mt′ ≤ τ∗t′ + 1 ≤ τ∗t + 1, which finishes the proof.

We can now translate the expected regret guarantee of the non-delayed base algorithm to a guar-

antee in the delayed setting, at least in the special case when the delays only depend on the time

step, but not on the action that is chosen at that time step. We will assume that the expected regret

of the non-delayed base algorithm is bounded by a convex function f . This assumption holds for

adversarial MAB problems, as well as other online learning contexts, which all have a regret upper

bound of the form Õ(nα) for some 0 ≤ α < 1, typically α = 1/2.

Theorem 3.1. Suppose that the non-delayed algorithm BASE, used in ABBD, has the guarantee that

its expected regret after n time steps is bounded by f(n) for some function f : [0,∞) 7→ [0,∞) that

is concave and differentiable and satisfies f(0) = 0. Further assume that the delays of all actions

at the same time step are the same, that is, τi,t = τt for all 1 ≤ i ≤ K, t ∈ N. Then the expected

regret of ABBD after n time steps satisfies

E [Rn] ≤ E
[
Unf

(
n

Un

)]
(3.1)

where Un = min{n, τ∗n + 1}.

Proof. We prove the statement for deterministic delays. The extension to random delays follows by

first conditioning on the delay sequence.

Let Mn be the number of machines created by time step n and Lj , (1 ≤ j ≤Mn) be the list of

time steps in which ABBD has used the action chosen by machine j. Since at each time exactly one

machine is used, the sets Lj together partition the set of time steps {1, . . . , n}. Since the delays at

each time step are the same for different actions, the available and waiting machines do not depend

on the actions chosen. Therefore, given the list of delays τ1, τ2, . . . , τn, the number of machinesMn

and the sets Lj are determined no matter what the rewards or the choices of the machines are, and

so is the machine that will be used in each time step. This means that given the delays, the sequence

of rewards xi,t, t ∈ Lj , 1 ≤ j ≤ K, that each machine j will operate on is determined. Therefore,

each machine j is in fact running in an oblivious adversarial MAB environment given the delays.

Let nj be the size of the list Lj , which is determined by the delays as Lj is. Define Rjnj to be the

regret of machine j in this environment, that is

Rjnj = max
1≤i≤K

∑
t∈Lj

xi,t −
∑
t∈Lj

xIt,t
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where It is the action chosen by ABBD (and machine j) at time step t. Then:

Rn = max
1≤i≤K

n∑
t=1

xi,t −
n∑
t=1

xIt,t

= max
1≤i≤K

Mn∑
j=1

∑
t∈Lj

xi,t −
Mn∑
j=1

∑
t∈Lj

xIt,t

≤
Mn∑
j=1

 max
1≤i≤K

∑
t∈Lj

xi,t −
∑
t∈Lj

xIt,t


=

Mn∑
j=1

Rjnj . (3.2)

By the assumption of the theorem, in a non-delayed environment, for any n ∈ N the expected

regret of the base algorithm over a sequence of n rewards is bounded by f(n). Therefore, using the

fact that given the delays, each machine j is running in a non-delayed oblivious MAB environment,

we get

E
[
Rjnj

]
≤ f(nj),

for each 1 ≤ j ≤Mn. Taking the expectation of (3.2) we get:

E [Rn] ≤ E

Mn∑
j=1

Rjnj


=

Mn∑
j=1

E
[
Rjnj

]

≤
Mn∑
j=1

f(nj) = Mn

Mn∑
j=1

1

Mn
f(nj)

≤Mnf

Mn∑
j=1

1

Mn
nj

 = Mnf

(
n

Mn

)
(3.3)

where the last line follows from Jensen’s inequality (Lemma A.2). By Lemma 3.1, n/Mn ≥ n/Un

where Un = min{n, τ∗n + 1}. Since f is differentiable and concave, and because f(0) is zero,

sf(1/s) is non-decreasing in s according to Lemma A.3. By setting s = Mn/n, from (3.3) we get:

E [Rn] ≤ nMn

n
f

(
n

Mn

)
≤ nUn

n
f

(
n

Un

)
= Unf

(
n

Un

)
.

This concludes the proof.

Note that our analysis is not limited to the bandit case, and applies to the full-information case as

well. Therefore, using a full-information base algorithm, we recover the performance guarantee of

Weinberger and Ordentlich (2002) in the case of bounded delays, without the need to know the upper

bound τ, while we still get a practical algorithm and guarantee even if the delays are not bounded.

22



We illustrate the use of Theorem 3.1 using an example. Consider the INF algorithm of Audibert

and Bubeck (2009). Recall from Chapter 2 that INF enjoys an expected regret bounded as

E
[
RINF
n

]
≤ 12.2

√
nK.

If ABBD is run with INF as the base algorithm, then according to Theorem 3.1, we get:

E [Rn] ≤ E
[
Un

(
12.2

√
nK/Un

)]
= 12.2

√
nK E

[√
Un

]
≤ 12.2

√
(E [τ∗n] + 1)nk (3.4)

In the case of delays bounded in [0, τ], we have E [τ∗n] ≤ τ, and therefore (3.4) gives E [Rn] ≤

12.2
√

(τ + 1)nK, which means the penalty we suffer due to delays is bounded by a multiplicative

factor of
√
τ + 1. It remains an open problem to extend the analysis to the case when the delays can

be action dependent.

3.3 A note on optimality

In this chapter, we showed an expected regret of type (τ + 1)E
[
RBase(n/(τ + 1))

]
, with RBase(n)

being the regret of a non-delayed MAB agent on a reward sequence of length n. The question is

whether such a multiplicative penalty is the best we can get in the delayed setting.

In Chapter 2, we mentioned that Weinberger and Ordentlich (2002) gave a lower bound of this

type for the full-information setting. The basic idea of their argument is that if we have sequences of

rewards in which each reward is repeated τ + 1 times, then the agent does not receive any feedback

on a reward before having to act on all the τ + 1 of those rewards, and once the information is

received, the rewards have probably changed. Therefore, the agent is in fact working on a non-

delayed sequence of length n/(τ + 1) (when the repetitions are removed), in which each of its

losses are multiplied by τ + 1.

While it may seem that this lower bound extends to the bandit setting, in fact it does not. The

reason is that in the full-information setting, in the τ+1 rounds when a reward is repeated, the agent

cannot act in such a way that at the end of the τ+1 round, it gets more information than it is possible

to get in one round in the non-delayed setting. In the bandit setting, however, this is not the case.

In other words, the MAB agent can use this period for τ + 1 explorations, and therefore get more

information after the τ + 1 rounds than what was possible to get in one round in the non-delayed

MAB setting. Therefore, we cannot simply multiply the regret in the non-delayed setting by τ + 1.

At the moment, we are not aware of a method to extend this lower bound to the bandit setting.

3.4 Time and memory usage of ABBD

In this section we discuss the time and space complexity of the algorithm introduced in the previous

section. Assume that creating a new instance of the base algorithm needs constant time, and insertion

to the set waitingMachines takes logarithmic time 1. Before sending the action to the environment
1For the readyMachines we can use a linked list, since we do not need look up but only O(1) insertion and deletion.

The logarithmic insertion and search time is satisfied for data structures such as Red-Black trees (Cormen et al., 2009).
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in time step t, the time that the ABBD algorithm spends is in the same order as the time of the call

GETACTION to the base machine plus O(logMt).

In the update phase, since the number of calls to the FEEDREWARD function is at most as much

as the number of rewards and each of those calls is preceded by a search in the set of waiting

machines, over n time steps the algorithm will need a total time of at most O(n(log(Mn) + tBase)),

where tBase is the running time of a call to FEEDREWARD. This means that on average, the time

it takes for an update in each time step is as much as a call to the FEEDREWARD function plus

O(logMn).

The space complexity of the algorithm is determined by the number of non-delayed instances

that it is storing. Since by Lemma 3.1 the number of machines created by ABBD at time step t is

bounded by τ∗t , where τ∗t is the largest delay by that time step, the space complexity of the algorithm

is at most of the order τ∗t times that of a non-delayed MAB algorithm. If the base algorithm has

a memory requirement of O(K), then the memory requirement of ABBD by time step t is upper

bounded by O(Kτ∗t ).

3.4.1 Why black-box?

According to the discussion above, the memory requirement of the black box approach is propor-

tional to the number of instances created of the non-delayed algorithms. One may then wonder why

a black box approach makes sense at all. The benefit of using a black-box approach is both theo-

retical and practical. Theoretically, using a black box approach we automatically enjoy the results

of any further development of the non-delayed algorithms, directly transferring them to the delayed

case. Furthermore, practically the black-box approach can be used in environments with established

and tested implementations of non-delayed algorithms, so as to reuse them reliably without the extra

cost of developing and testing a brand-new algorithm for the delayed setting.

In cases when memory is a constrained resource, we can use the approach of Neu et al. (2010),

which we referred to in Section 2.2.5. That is, we can run the EXP3 algorithm introduced in Section

2.1 with only the observed rewards and, under constant delays, still get a theoretical guarantee

similar to what we showed in Theorem 3.1. Furthermore, in Chapter 4, we will see examples of

these algorithms for the stochastic MAB problem with a memory requirement of O(K), as is the

case for the usual non-delayed stochastic MAB algorithms.
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Chapter 4

Stochastic multi-armed bandits

In this chapter we study the delayed-feedback multi-armed bandit problem with the additional

stochastic assumptions defined in Section 1.3.1. We study the theoretical properties of this for-

mulation which enable us to derive better regret guarantees than the general case, and develop two

types of algorithms that give us such guarantees.

Before starting with the algorithms, we study the properties of the stochastic MAB problem un-

der delayed feedback. These properties are used in deriving and analysing our algorithms in the next

sections. In Section 4.2, we give a black-box style algorithm which reduces the stochastic delayed

MAB problem to the stochastic non-delayed MAB problem with the same reward distributions, and

show that the penalty in the regret for this transformation is bounded by an additive term depending

on the delays. In Section 4.3, we show another approach for solving the delayed MAB problem

which uses adapted versions of UCB-style non-delayed MAB algorithms introduced in Section 2.1.

We give a method to generally extend the theoretical guarantees of this class of algorithms to the

delayed setting, again resulting in an additive penalty.

4.1 Properties of the stochastic delayed MAB problem

In this section we study the implications of delays on the assumptions of the stochastic MAB prob-

lem. As noted before, the delays can change the order in which the rewards arrive. First, we want

to show that if the delays are independent of the rewards, then the sequence of observed rewards for

each action is still an i.i.d. sequence with the same distribution as the original reward sequence.

More precisely, for each action 1 ≤ i ≤ K define the sequence {Yi,s}s∈N to be the sequence of

rewards that is observed by the agent. That means Yi,1 is a random variable taking the value of the

first reward that the algorithm observes for action i, Yi,2 is the second one, and so on. We had denoted

the sequence of rewards of action i at each time step t by {Xi,t}t∈N. Note that in the sequence {Yi,t}

we are considering only the rewards of the choices that the agent has actually made, which is only

a reordered subsequence of the rewards Xi,t. The way this sequence is reordered can depend on

the choices of the agent and therefore it is not clear whether this imposes a dependence between the
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observed rewards. In the following, we show that this dependence is actually not imposed.

We start by showing that the i.i.d. property is preserved when the sequence Xi,t is reordered.

We have the following lemma.

Lemma 4.1. Let {Xt}t∈N, be a sequence of independent, identically distributed random variables.

If we reorder this sequence according to an independent random permutation, then the resulting

sequence is i.i.d. with the same distribution as {Xt}t∈N.

Proof. Let the reordered sequence be denoted by {Zt}t∈N. We need to show that for all n ∈ N, for

all y1, y2, . . . , yn, we have

P {Z1 ≤ y1, Z2 ≤ y2, . . . , Zn ≤ yn} = P {X1 ≤ y1, X2 ≤ y2, . . . , Xn ≤ yn} .

Since {Xt}t∈N is i.i.d., for any fixed permutation the equation above holds as both sides are equal

to Πn
t=1P {Xt ≤ yt}. Since the permutations are independent of the sequence {Xt}t∈N, using the

law of total probability this extends to the general case as well.

We also need the following lemma (Doob, 1953, Page 145, Chapter III, Theorem 5.2).

Lemma 4.2. Let {Xi,t}t∈N be a sequence of i.i.d. random variables, and {X ′i,t}t∈N be its subse-

quence such that the decision whether to include Xi,t in the subsequence is independent of future

values in the sequence, i.e., Xi,s for s ≥ t. Then the sequence {X ′i,t}t∈N is an i.i.d. sequence with

the same distribution as {Xi,t}t∈N.

We can now use the two previous lemmas to prove that the i.i.d. property is preserved on the

sequence of observed rewards. This is captured in the following theorem.

Theorem 4.1. Consider a delayed stochastic multi-armed bandit game, with any multi-armed bandit

agent, and with delays independent of the rewards. For any action i, for any s ∈ N let Yi,s denote

the sth reward the algorithm observes for choosing action i. Then the sequence {Yi,s}s∈N is an i.i.d.

sequence with the same distribution as the sequence of rewards {Xi,t}t∈N.

Proof. Define {Zi,t}t∈N to be the sequence resulting from sorting the variablesXi,t by their possible

observation times t+τi,t ( that is, Zi,1 is the earliest reward that can be obtained if action i is chosen

at the appropriate time, and so on). Since delays are independent of the rewards, they define an

independent reordering on the sequence of rewards. Hence, by Lemma 4.1, {Zi,t}t∈N is an i.i.d.

sequence with the same distribution as {Xi,t}t∈N. Note that {Yi,s}s∈N, the sequence of rewards of

the choices of action i by the agent sorted by their observation times, is a subsequence of {Zi,t}t∈N
where the decision whether to include each Zi,t in the subsequence cannot depend on future rewards

Zi,s, s ≥ t. Also, the rewards of other actions that are used in this decision are independent of Zi,t.

Hence, by Lemma 4.2, {Yi,t}t∈N is an i.i.d. sequence with the same distribution as Zi,t, which in

turn has the same distribution as Xi,t.
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Before continuing to the algorithms, we give some additional notation and properties of the

stochastic setting. Define Ti(t) =
∑t
s=1 I {Is = i} to be the number of times action i has been

chosen by the agent up to (and including) time step t. Define Ci(s) to be the “inverse” of Ti(t),

showing the time step at which the agent has chosen action i for the sth time. Also, define Si(t) to

be the number of rewards that are observed by the end of time step t. Let i∗ = argmax
1≤i≤K

µi denote

the index of an optimal action (break ties by choosing the smallest index). For each action i, let

∆i = µi∗ − µi denote the gap between the expected reward of an optimal action and that of action

i. Let τ∗i,n = max1≤t≤n τi,t denote the maximum delay for action i over n time steps. We will use

this quantity in our regret upper bounds.

In the stochastic setting, from (1.2) we can get a more tractable expression about the expected

regret. In particular we have

E [Rn] = nµi∗ −
K∑
i=1

µiE [Ti(n)] =

K∑
i=1

∆iE [Ti(n)] . (4.1)

This essentially means that in order to bound the expected regret, it suffices to bound the expected

number of times each action is chosen. We will use this fact together with the notation above in the

next sections.

4.2 Black-box use of non-delayed stochastic MAB algorithms

In this section we give a black-box style algorithm for the stochastic MAB problem under delayed

feedback. Algorithm 2 shows the way our method works. The algorithm, called Stochastic Black-

box Bandit with Delays (SBBD), builds on a non-delayed algorithm BASE which is consulted when

making actions in the environment. We use the same model of a non-delayed MAB algorithm as

described in Section 3.1. To manage the delayed observation of rewards and simulate a non-delayed

environment for this base algorithm, SBBD maintains a First-In-First-Out (FIFO) buffer Q[i] for

each action 1 ≤ i ≤ K. This buffer is empty at the beginning and is used to store the rewards

observed for action i so that they can be used later when the base algorithm wants them.

Figure 4.1 shows the block diagram for the algorithm. At each time step, an SBBD agent tries

to feed into the base algorithm all the information available, and then choose its action based on

the next choice of the base algorithm for which there are no buffered rewards remaining. More

precisely, to make a decision at each time step t, SBBD first runs the base algorithm in a loop and

for each action the base algorithm chooses, gives it the next reward from the buffer of rewards of

that action, until the base algorithm chooses an action i for which the buffer is empty. SBBD then

reports this action as its choice at time step t. After reporting its choice, at the end of the time step,

SBBD observes new rewards for each of the actions and puts them into the queue for the respective

action, so that they can be used later when the base algorithm asks for them. If there is no reward for

action It, in the next time step SBBD will not be able to feed the base algorithm with a reward, so
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Algorithm 2 Stochastic Black-box Bandit with Delays (SBBD)

Input: K (number of actions), n (time horizon, optional), BASE (non-delayed stochastic MAB
algorithm)
Initialization:
BASEAGENT ← BASE(K,n) {Create a new instance of the base algorithm}
For each action 1 ≤ i ≤ K, Q[i]← new FIFO QUEUE()

I ← BASEAGENT.GETACTION()
for t← 1 to n do

while Q[I] 6= ∅ do
{Feed the base algorithm with a reward from the buffer of the selected action}
r ← Q[I].POP()
BASEAGENT.FEEDREWARD(r)
{Get the next action from the base algorithm}
I ← BASEAGENT.GETACTION()

end while
{There has been no buffered reward for action I , so send it to the environment}
Send action I to the environment
Get the sets of rewards Xi,t for each action i from the environment
For each action i, for each (s, r) ∈ Xi,t, Q[i].PUSH(r)

end for

it will again pick the same action as in the previous time step. As a result, once the base algorithm

picks an action for which the reward queue is empty, it keeps picking the same action until a reward

for that action is observed.

Consider the case when all the rewards are observed after a constant delay τ. The first time the

base algorithm chooses an action, SBBD keeps choosing that action for τ times consecutively, until

it receives the first reward for that action. On the next τ − 1 rounds, the rest of the rewards of that

τ choices arrive, and are stored in the buffer for that action. When the base algorithm chooses that

action at a later time, it is immediately given the reward from the buffer, without executing the action

in the environment as long as there is some reward buffered for that action. Once the base algorithm

chooses that action for τ more times, the buffer gets empty and SBBD issues another τ rounds of

consecutive plays of the action, filling the buffer again. This way the algorithm goes through periods

of τ time steps in which it chooses the same action, buffering the rewards and feeding them to the

base algorithm later. This is in fact similar to concentrating the exploration that the base algorithm

does when there are no delays, so that when the base algorithm needs the rewards, they are available

with no delays. At the same time, by choosing only the action for which the buffer is empty, the

SBBD makes sure that the base algorithm is fed with as much available information as it wants

before exploring for more information.

4.2.1 Regret analysis

To investigate the performance of the algorithm, first we show that the penalty due to delays on

the expected regret of the algorithm is bounded by an additive term that depends on the delays.
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Figure 4.1: The SBBD algorithm. The algorithm uses a non-delayed stochastic MAB algorithm
(BASE) as a black-box, and simulates a non-delayed environment for it. When the rewards of an
action are delayed, the SBBD algorithm keeps choosing the last action chosen by the black-box
algorithm. The rewards that arrive later are buffered in the queues, and given to the black-box
algorithm BASE when it chooses that action again.

After that, we show how we can employ the properties of the non-delayed base algorithm to give

high-probability upper bounds on the regret for the delayed-feedback problem.

We will use the following notation throughout the analysis. Assume that SBBD queries the base

algorithm for s times (i.e., the GETACTION() function of the base algorithm is called s times). Let

T ′i (s) denote the number of times action i has been chosen by the base algorithm during these s

queries. Recall that Ti(n) is the number of time steps that the agent (SBBD) has chosen action i in

the first n time steps. Also, recall that τ∗i,n = maxt=1,...,n τi,t denotes the maximum delay for action

i.

The following lemma gives us the relationship between the delays and the number of rewards

not fed into the base algorithm, and forms the basis of the expected regret bound.

Lemma 4.3. Assume SBBD is run for n ≥ 1 time steps, and has queried the base algorithm for n′

times. Then

n′ ≤ n

and

0 ≤ Ti(n)− T ′i (n′) ≤ max
1≤s≤T ′i (n)

τi,Ci(s) ≤ τ
∗
i,n. (4.2)

Proof. Since the total number of calls made to GETACTION() function of the base algorithm before

the end of time step n is at most one more than the number of rewards observed by then, and the

number of rewards observed is at most n − 1, we have n′ ≤ n. Whenever the base algorithm

chooses action i, either SBBD chooses that action as well (if the buffer Q[i] is empty), or the reward

buffer is not empty which means SBBD had already made an extra choice of i. Therefore we have

Ti(n)− T ′i (n′) ≥ 0.
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Recall that Ci(s) was the time at which the agent (SBBD) had chosen action i for the sth time.

Let t′n = Ci(T
′
i (n
′)) be the time step at which SBBD has picked action i for the T ′i (n

′)-th time. Let

tn = Ci(Ti(n)) be the time step at which SBBD has made its last choice of action i by time step n.

Then t′n ≤ tn and the number of times SBBD has chosen action i between time steps t′n and tn, i.e.,

Ti(n)− T ′i (n′), can be written as

Ti(n)− T ′i (n′) =

tn∑
t=t′n+1

I {It = i} ≤ tn − t′n.

If tn = t′n, the lemma holds trivially because the delays are non-negative, so assume that tn >

t′n. This means that after the first T ′i (n
′) choices of action i, SBBD has chosen action i at least

once more at time step tn. But our algorithm only picks action i when the base algorithm requests

it and there are no rewards buffered in Q[i]. Therefore, if all of the rewards of the first T ′i (n
′)

choices of action i were observed before time step tn, SBBD would not pick this action at time

step tn because the base algorithm would not need another reward for action i. Therefore, for some

1 ≤ s∗ ≤ T ′i (n
′), the reward of the s∗-th choice of action i has been observed at the time step

Ci(s
∗) + τi,Ci(s∗) ≥ tn. Since Ci(s∗) ≤ Ci(T ′i (n′)) = t′n, we have:

tn − t′n ≤ (Ci(s
∗) + τi,Ci(s∗))− Ci(s

∗) = τi,Ci(s∗) ≤ max
1≤s≤T ′i (n)

τi,Ci(s) ≤ τ
∗
i,n.

which finishes the proof.

We can now analyse the expected regret of Algorithm 2 using Lemma 4.3 and Equation (4.1).

We will have the following theorem.

Theorem 4.2. When run with a base algorithm BASE in a delayed stochastic MAB environment, the

expected regret of SBBD is upper-bounded by

E [Rn] ≤ E
[
RBASE
n

]
+

K∑
i=1

∆iE
[
τ∗i,n
]

(4.3)

where E
[
RBASE
n

]
is the expected regret of the base algorithm when run in a non-delayed environment

with the same reward distributions as the delayed problem.

Proof. Taking expectation of (4.2) we get:

E [Ti(n)] ≤ E [T ′i (n
′)] + E

[
τ∗i,n
]
.

Assume that the game is run so long that the base algorithm is queried for n times (i.e., it is queried

n−n′ more times). Then, since n′ ≤ n, the number of times action i is chosen by the base algorithm,

namely T ′i (n), can only increase, that is, T ′i (n
′) ≤ T ′i (n). Therefore,

E [Ti(n)] ≤ E [T ′i (n)] + E
[
τ∗i,n
]
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Multiplying both sides by ∆i and using (4.1), we get:

K∑
i=1

∆iE [Ti(n)] ≤
K∑
i=1

∆iE [T ′i (n)] +

K∑
i=1

∆iE
[
τ∗i,n
]
. (4.4)

As shown in Theorem 4.1, the observed rewards Yi,1, Yi,2, . . . , Yi,T ′i (n′), . . . Yi,Ti(n) are i.i.d. with

the same distribution as the rewards {Xi,t}t∈N. The base algorithm has worked on the first T ′i (n
′) of

these rewards. Therefore, the base algorithm has operated in a simulated non-delayed environment

with rewards that are i.i.d. with the same distribution of the rewards in the delayed environment.

E [T ′i (n)] is therefore the expected number of times that the base algorithm would choose action

i in an environment without delays but with the same reward distributions as the original delayed

problem. Thus, the first summation in the right hand side of (4.4) is in fact E
[
RBase
n

]
, the expected

regret of the base algorithm. This concludes the proof.

4.2.2 Time and memory usage of SBBD

In this section we discuss the time and space complexity of SBBD. In the action selection phase, the

total number (over n time steps) of accesses to the buffers cannot exceed the number of observed

rewards, which is at most as large as the number of time steps n. Therefore, the average number

of calls to the queues per time step is O(1). Also, the total number of calls in n time steps to the

GETACTION function of the base algorithm is at most as large as the number of rewards (since each

of them is followed by a FEEDREWARD call). The average number of such calls per time step is

thus O(1). Therefore, the average time consumed per time step for getting an action from SBBD is

of the same order as a regular non-delayed stochastic MAB algorithm.

In the update phase, in the total n rounds SBBD processes at most n rewards, each of them

resulting in a call to FEEDREWARD(). Therefore, on average there is one call to FEEDREWARD()

per time step, and therefore the time overhead during an update is similar to a non-delayed stochastic

MAB algorithm.

The buffers in SBBD are the main elements consuming memory. As shown in Lemma 4.3,

the size of each of these buffers at each time step is at most as large as the maximum delay by

that time step. Therefore, at each time step t, the memory requirement of the algorithm is of or-

der O(
∑K
i=1 τ

∗
i,t) which is in turn of order O(Kτ∗t ), in addition to the memory usage of the base

algorithm.

Here again, the space complexity is the bottleneck of our black-box style algorithm. In the next

section we will explore another approach that alleviates this problem.

4.3 Modification of non-delayed algorithms

Here we introduce another method to address the problem of stochastic MABs with delayed feed-

back. This approach is based on modifying non-delayed algorithms to work with any reward that
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is observed, as opposed to requiring one feedback per time step. In Section 4.3.1 we will show

that standard stochastic bandit algorithms based on upper confidence bounds (UCBs) can be used

in the delayed setting while retaining their theoretical guarantees. The general method to transform

theoretical guarantees to the delayed setting is shown in Section 4.3.1, and is applied to the standard

UCB1 algorithm of Auer et al. (2002) in Section 4.3.2. In Section 4.3.3, we show another example

using the recently proposed KL-UCB algorithm (Garivier and Cappé, 2011), for which applying this

general scheme is more involved.

4.3.1 UCB-type algorithms in delayed environments

The UCB class of algorithms was introduced in Chapter 2. Recall that a UCB algorithm maintains,

for each action i ∈ K, an upper confidence bound Bi,s,t, and at each time step chooses an action

with largest bound. In a non-delayed environment, the number of observed rewards for action i

before time step t is Ti(t− 1), and therefore the action to choose at time step t is given by

It = argmax
i∈K

Bi,Ti(t−1),t.

In case of delays, however, not all the rewards of previous actions are observed. In general, the

number Si(t) of rewards observed for action i by the end of time step t can be smaller than the

number of choices Ti(t). It may seem like a good idea to use the same upper confidence bounds in

this setting as well, with all rewards that have been observed. This means choosing

It = argmax
i∈K

Bi,Si(t−1),t

at each time step t. The question is whether this approach performs well in the delayed setting, and

how the resulting regret behaves.

In what follows, we want to answer this question for UCB-type algorithms in general, and show

that the same method of analysis that is used for them in the non-delayed setting can be exploited

to give performance guarantees in the delayed case. In the following lemma (which is similar to

Lemma 4.3 but holds for any algorithm) we bound the number of missing rewards. Then we go on

to show how it can be exploited to re-use the machinery used to analyze the original non-delayed

algorithms.

Lemma 4.4. For any algorithm in the stochastic delayed MAB game, at any time step t ∈ N, we

have

Ti(t)− Si(t) ≤ max
1≤s≤Si(t)

τi,s ≤ τ∗i,t. (4.5)

Proof. If Si(t) = Ti(t), then the lemma holds trivially, so consider the case when Ti(t) ≥ Si(t)+1.

Then from the first Si(t) + 1 ≤ Ti(t) times the agent chooses action i, the reward of at least one of

them, for example that of the s1
th choice, is not observed by time step t, otherwise we would have

Si(t) = Si(t) + 1 which is not possible. That means there exists 1 ≤ s1 ≤ Si(t) + 1 such that
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Ci(s1) + τi,Ci(s1) ≥ t+ 1. Let t1 = Ci(Si(t) + 1) be the time step of the (Si(t) + 1)-th choice of

action i. Note that Ci(s1) ≤ t1 ≤ t by definition. Therefore we can count the number of choices of

action i between the time steps t1 and t as

Ti(t)− Si(t) =

t∑
s=t1

I {Is = i}

≤ (t+ 1)− t1

≤ Ci(s1) + τi,Ci(s1) − Ci(s1)

= τi,Ci(s1) ≤ max
1≤s≤Si(n)

τi,Ci(s) ≤ max
1≤s≤t

τi,s

which was the claim of the lemma.

We will now use this lemma to provide a theoretical analysis of UCB-type algorithms in the

delayed setting. This will be done by showing how to adapt the proof machinery of a typical UCB

algorithm to the delayed setting. We start by characterizing the way UCB-type algorithms are shown

to perform well.

A usual analysis of the performance of a UCB algorithm works by giving an upper bound for the

number of trials of any suboptimal action, and showing that it is unlikely that the algorithm makes

more choices of that action. More precisely, the general analysis starts by the fact that for any ` > 1,

Ti(n) ≤ `+

n∑
t=1

I {It = i, Ti(t) > `} ,

and then shows that the events in the summation have very low probability for sufficiently large `.

This is because the event I {It = i} implies that the upper confidence bound Bi,Ti(t−1),t is greater

than the upper confidence bound of an optimal arm, Bi∗, Ti∗ (t−1),t, that is,

Ti(n) ≤ `+

n∑
t=1

I
{
It = i, Bi,Ti(t−1),t ≥ Bi∗,Ti∗ (t−1),t, Ti(t− 1) ≥ `

}
(4.6)

The events in the summation are very improbable if ` is large enough, since the number of samples,

Ti(t−1), from the reward distribution of the suboptimal action i become large enough to give a good

enough estimate of its mean and avoid choosing it over a better arm. To show this, concentration

inequalities suitable for the specific form of the upper-confidence bound are applied. Examples of

such concentration inequalities include Hoeffding’s inequality (Lemma A.1) as well as Theorem 10

of Garivier and Cappé (2011) (Theorem 4.5 in this chapter), which are used for UCB1 and KL-UCB,

respectively.

Trying to use the same method of analysis in the delayed setting, we can write

Ti(n) ≤ `+

n∑
t=1

I
{
It = i, Bi,Si(t−1),t ≥ Bi∗,Si∗ (t−1),t, Ti(t− 1) ≥ `

}
.

In this case, however, the number of samples used in the UCB is Si(t−1), while we know Ti(t−1) ≥

`. However, Lemma 4.4 bounds how much smaller Si(t−1) can be than Ti(t−1). Therefore, setting

33



` = `′ + τ∗i,n we get:

Ti(n) ≤ `′ + τ∗i,n +

n∑
t=1

I
{
It = i, Bi,Si(t−1),t ≥ Bi∗,Si∗ (t−1),t, Ti(t− 1) ≥ `′ + τ∗i,n

}
,

and since by Lemma 4.4, Ti(t− 1)− Si(t− 1) ≤ τ∗i,t−1 ≤ τ∗i,n,

Ti(n) ≤ `′ + τ∗i,n +

n∑
t=1

I
{
It = i, Bi,Si(t−1),t ≥ Bi∗,Si∗ (t−1),t, Si(t− 1) ≥ `′

}
. (4.7)

The probability of the event in the summation above can now be bounded using the same concentra-

tion inequalities as the ones used to bound (4.6) in the original analysis for the non-delayed setting,

with the same value for `′ as was previously used for `. Thus, we can re-use the proof machinery

for the regret analysis of UCB-type algorithms in a delayed environment, using the same UCBs but

only on the rewards that are observed, with only an additive penalty in the regret compared to the

non-delayed case. We will illustrate this using two examples. The first example uses the well-known

UCB1 algorithm, while the second one uses the recent KL-UCB algorithm.

4.3.2 UCB1 under delayed feedback

As an example of applying the general framework described above, we show the process for the

UCB1 algorithm (Auer et al., 2002). In the delayed setting, at time step t we will use upper confi-

dence bounds Bi,Si(t−1),t, where Bi,s,t = Ȳi,s +

√
2 log(t)

s
and Ȳi,s =

1

s

∑s
t=1 Yi,t is the average

over the first s observed rewards. We call this algorithm Delayed-UCB1 to distinguish it from the

original UCB1 for non-delayed environments. Note that in case there are no delays, Delayed-UCB1

reduces to UCB1.

Following the same lines as the proof of Auer et al. (2002), we get the following theorem,

showing an additive penalty compared to Theorem 2.1.

Theorem 4.3. For any n ≥ 1, the expected regret of the Delayed-UCB1 algorithm is bounded as

E [Rn] ≤ 8

 ∑
i:µi<µi∗

log n

∆i

+

(
K∑
i=1

∆iE
[
τ∗i,n
])

+ 3.5

K∑
i=1

∆i. (4.8)

Proof. Following the outline of the previous section, we can bound the summation in (4.7) using the

same analysis as in the original UCB1 paper (Auer et al., 2002). In particular, for any action i we

can write
n∑
t=1

I
{
Bi,Si(t−1),t ≥ Bi∗,Si∗ (t−1),t, Si(t− 1) ≥ `′

}
≤

n∑
t=1

I
{
Bi∗,Si∗ (t−1),t ≤ µi∗ , Si(t− 1) ≥ `′

}
+

n∑
t=1

I
{
Bi,Si(t−1),t ≥ µi∗ , Si(t− 1) ≥ `′

}
. (4.9)
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The event in the first summation implies that either Ȳi∗,Si∗ (t−1)+

√
2 log(t)

Si∗(t− 1)
≤ µi∗ or Ȳi,Si(t−1)−√

2 log(t)

Si(t− 1)
≥ µi. Hence,

(4.9) ≤
n∑
t=1

I

{
Ȳi∗,Si∗ (t−1) +

√
2 log(t)

Si∗(t− 1)
≤ µi∗ , Si(t− 1) ≥ `′

}
+

n∑
t=1

I

{
Ȳi,Si(t−1) −

√
2 log(t)

Si(t− 1)
≥ µi, Si(t− 1) ≥ `′

}
+

n∑
t=1

I

{
µi + 2

√
2 log(t)

Si(t− 1)
> µi∗ , Si(t− 1) ≥ `′

}
. (4.10)

By removing the condition Si(t− 1) ≥ `′, the summations can only grow. Therefore,

(4.10) ≤
n∑
t=1

t−1∑
s=1

I

{
Ȳi∗,s +

√
2 log(t)

s
≤ µi∗

}
+

n∑
t=1

t−1∑
s=`′

I

{
Ȳi,s −

√
2 log(t)

s
≥ µi

}
+

n∑
t=1

I

{
2

√
2 log(t)

Si(t− 1)
> ∆i, Si(t− 1) ≥ `′

}
.

Choosing `′ =

⌈
8 log(n)

∆2
i

⌉
makes the events in the last summation above impossible, because

Si(t− 1) ≥ `′ ≥ 8 log(n)

∆2
i

which implies 2

√
2 log(t)

Si(t− 1)
≤ 2

√
2 log(n)

`′
≤ ∆i. Therefore, combin-

ing with (4.7), we can write

Ti(n) ≤
⌈

8 log(n)

∆2
i

⌉
+ τ∗i,n+

n∑
t=1

t∑
s=1

(
I

{
Ȳi∗,s +

√
2 log(t)

s
≤ µi∗

}
+ I

{
Ȳi,s −

√
2 log(t)

s
≥ µi

})
.

Taking expectation gives

E [Ti(n)] ≤
⌈

8 log(t)

∆2
i

⌉
+ E

[
τ∗i,n
]

+

n∑
t=1

t∑
s=1

(
P

{
Ȳi∗,s +

√
2 log(t)

s
≤ µi∗

}
+ P

{
Ȳi,s −

√
2 log(t)

s
≥ µi

})
.

We can use the concentration inequality used in the original analysis, namely Hoeffding’s inequality

(Lemma A.1), to bound each of the probabilities in the summation:

P

{
Ȳi∗,s +

√
2 log(t)

s
≤ µi∗

}
≤ e−4 log(t) = t−4,

P

{
Ȳi,s −

√
2 log(t)

s
≥ µi

}
≤ e−4 log(t) = t−4.
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Therefore, we have

E [Ti(n)] ≤
⌈

8 log(t)

∆2
i

⌉
+ E

[
τ∗i,n
]

+

∞∑
t=1

2t−3

≤ 8 log(n)

∆2
i

+ 1 + E
[
τ∗i,n
]

+ 2ζ(3),

where ζ(3) < 1.21 is the Riemann Zeta function1. Combining with (4.1) proves the theorem.

4.3.3 KL-UCB under delayed feedback

In this section, we show an example when the scheme above may need more work to apply, and

produce slightly weaker results. The problem here is that it is not always a trivial task to reuse the

exact same analysis of the original, non-delayed algorithm for the delayed setting. Nevertheless, it

is still possible to get meaningful guarantees in the case of upper confidence bounds of the KL-UCB

algorithm (Garivier and Cappé, 2011) under delayed feedback.

Recall from Chapter 2 that for each action i, the upper confidence bound used by KL-UCB at

time t is Bi,Ti(t−1),t where

Bi,s,t = max
{
q ∈ [Ȳi,s, 1] : s d(Ȳi,s, q) ≤ log(t) + 3 log(log(t))

}
(4.11)

with d(p, q) = p log(p/q) + (1− p) log((1− p)/(1− q)) being the KL-divergence of two Bernoulli

random variables with parameters p and q. According to the method of Section 4.3.1, in the delayed

setting we use upper confidence bounds Bi,Si(t−1),t, and call this algorithm the Delayed-KL-UCB

algorithm. We can then prove the following theorem using the general scheme of Section 4.3.1.

Here again, the penalty in the regret is additive compared to the non-delayed setting of Theorem 2.2.

Theorem 4.4. For any ε > 0, the expected regret of the Delayed-KL-UCB algorithm after n time

steps is bounded by

E [Rn] ≤
∑

i:∆i>0

∆i

(
log(n)

d(µi, µi∗)
(1 + ε)C1 log(log(n))

)
+

+

K∑
i=1

∆i

(
C2(ε)

nβ(ε)
E
[
τ∗i,n
]

+ E
[
τ∗i,n
]

+ 1

)
,

where C1, C2, and β are the same as those in Theorem 2.2, and τ∗i,n = max1≤t≤n τi,t.

In this case, it is not as easy to repeat the same analysis as in the case of UCB1. The problem

is that the original, non-delayed analysis, when bounding the probability of the event in the right

hand side of (4.7), makes use of not only the number of samples, but also the fact that the number

of samples equals the number of trials, Ti(t − 1). This makes it possible to bound one of the

summations in the analysis by observing that Ti(t) increases after each play of action i. In the

delayed-case, however, the number of samples at time step t is Si(t − 1), which does not grow at

1For properties and theory of the Riemann Zeta function, see the book of Titchmarsh (1987)
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each trial but may rather stay the same for as many as τ∗i,n trials. This can introduce a multiplicative

factor of τ∗i,n into the bound. Here we avoid that effect by factoring out the logarithmic term of the

bound earlier in the proof, so that the delay term multiplies only the constant term of the original

bound. The other ideas of the analysis are the same as those in the original proof.

To prove the theorem, we need some auxiliary results. Define, as in the original analysis

d+(x, y) = d(x, y)I {x < y} .

Then we will have the following lemma, which is an adapted version of Lemma 7 of Garivier and

Cappé (2011). The proof follows the same idea as the original, except for having Si(t − 1) ≥ `′

which reduces the probability of the event.

Lemma 4.5. For any n ≥ 1,

n∑
t=1

I
{
It = i, µi∗ ≤ Bi∗,Si∗ (t−1),t, Si(t− 1) ≥ `′

}
≤

τ∗i,n

n∑
s=`′

I
{
sd+(Ȳi,s, µi∗) < log(n) + 3 log(log(n))

}
.

Proof. We start in the same way as the original proof. Note that d+(p, q) is non-decreasing in

its second parameter, and that It = i and µi∗ ≤ Bi∗,Si∗ (t−1),t together imply Bi,Si(t−1),t ≥

Bi∗,Si∗ (t−1),t ≥ µi∗ , which in turn gives

d+(Ȳi,Si(t−1), µi∗) ≤ d(Ȳi,Si(t−1), Bi,Si(t−1),t) ≤
log(t) + 3 log(log(t))

Si(t− 1)
.

Therefore, we have
n∑
t=1

I
{
It = i, µi∗ ≤ Bi∗,Si∗ (t−1),t, t > Si(t− 1) ≥ `′

}
≤

n∑
t=`′

I
{
It = i, Si(t− 1)d+(Ȳi,Si(t−1), µi∗) ≤ log(t) + 3 log(log(t)), Si(t− 1) ≥ `′

}
≤

n∑
t=`′

I
{
It = i, Si(t− 1)d+(Ȳi,Si(t−1), µi∗) ≤ log(n) + 3 log(log(n)), Si(t− 1) ≥ `′

}
≤

n∑
t=`′

t∑
s=`′

I {It = i, Si(t− 1) = s} × I
{
sd+(Ȳi,s, µi∗) ≤ log(n) + 3 log(log(n))

}
=

n∑
s=`′

n∑
t=s

I {It = i, Si(t− 1) = s} × I
{
sd+(Ȳi,s, µi∗) ≤ log(n) + 3 log(log(n))

}
=

n∑
s=`′

I
{
sd+(Ȳi,s, µi∗) ≤ log(n) + 3 log(log(n))

}
×

(
n∑
t=s

I {It = i, Si(t− 1) = s}

)
.

But note that the second summation is bounded by τ∗i,n, because for each s, there cannot be more

than τ∗i,n time steps at which action i is played while Si(t) = s stays constant, otherwise we would

have Ti(t′) − Si(t
′) > τ∗i,n for some t′ ∈ {s, . . . , n}, which is not possible due to Lemma 4.4.

Substituting this bound in the last expression proves the lemma.
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We also need the following two results from the original paper by Garivier and Cappé (2011).

Theorem 4.5 (Theorem 10 of Garivier and Cappé (2011)). Let {Yt}, t ≥ 1 be a sequence of in-

dependent random variables bounded in [0, 1], with common expectation µ = E [Yt]. Consider a

sequence {εt}, t ≥ 1 of Bernoulli variables such that for all t > 0, εt is a random function of

Y1, . . . , Yt−1
2, and is independent of Ys, s ≥ t. Let δ > 0 and for every 1 ≤ t ≤ n, let

St =

t∑
s=1

εs and Ȳt =

∑t
s=1 εsYs
St

,

with Ȳt = 0 when St = 0, and

Bn = argmax
{
q > Ȳn : Snd(Ȳn, q) ≤ δ

}
.

Then

P {Bn < µ} ≤ edδ log(n)ee−δ.

Lemma 4.6 (Lemma 8 of Garivier and Cappé (2011)). For a suboptimal action i, for every ε > 0,

let Kn =

⌊
1 + ε

d(µi, µi∗)

(
log(n) + 3 log(log(n))

)⌋
. Then there exist C2(ε) > 0 and β(ε) > 0 such

that
∞∑

s=Kn+1

P
{
d+(Ȳi,s, µi∗) <

d(µi, µi∗)

1 + ε

}
≤ C2(ε)

nβ(ε)
.

Now, we are ready to prove Theorem 4.4.

Proof of Theorem 4.4. For an action i, bounding the terms in (4.7) gives

n∑
t=1

I
{
It = i, Bi,Si(t−1),t ≥ Bi∗,Si∗ (t−1),t, Si(t− 1) ≥ `′

}
≤

n∑
t=1

I
{
Bi∗,Si∗ (t−1),t < µi∗

}
+

n∑
t=1

I
{
It = i, µi∗ ≤ Bi∗,Si∗ (t−1),t, Si(t− 1) ≥ `′

}
≤

n∑
t=1

I
{
Bi∗,Si∗ (t−1),t < µi∗

}
+ τ∗i,n

n∑
s=`′

I
{
sd+(Ȳi,s, µi∗) < log(n) + 3 log(log(n))

}
, (4.12)

where the last inequality follows from Lemma 4.5. Let

Kn =

⌊
1 + ε

d(µi, µi∗)

(
log(n) + 3 log(log(n))

)⌋
(4.13)

and

`′ = 1 +Kn. (4.14)

2That is, a function of Y1, . . . , Yt−1 together with possibly an extra, independent randomization.
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Then we have:
n∑

s=`′

I
{
sd+(Ȳi,s, µi∗) ≤ log(n) + 3 log(log(n))

}
≤

∞∑
s=Kn+1

I
{

(Kn + 1)d+(Ȳi,s, µi∗) ≤ log(n) + 3 log(log(n))
}

≤
∞∑

s=Kn+1

I
{
d+(Ȳi,s, µi∗) <

d(µi, µi∗)

1 + ε

}
. (4.15)

Putting inequalities (4.13) trough (4.15) back into inequality (4.12), from (4.7) we get:

E [Ti(n)] ≤ 1 + ε

d(µi, µi∗)

(
log(n) + 3 log(log(n))

)
+ E

[
τ∗i,n
]

+ 1+

n∑
t=1

P
{
Bi∗,Si∗ (t−1),t < µi∗

}
+ E

[
τ∗i,n
] ∞∑
s=Kn+1

P
{
d+(Ȳi,s, µi∗) <

d(µi, µi∗)

1 + ε

}
.

where the last term is a result of the delays being independent of the rewards. The first summation

can be bounded using Theorem 4.5, for which it suffices to set εt = 1, 1 ≤ t ≤ n, and use the

sequence of observed rewards {Yi,t} for the arm under consideration as the sequence {Yt} in the

theorem. The second summation can be bounded by Lemma 4.6. Therefore, the expectation of the

number of trials of the suboptimal action is bounded by:

E [Ti(n)] ≤ 1 + ε

d(µi, µi∗)

(
log(n) + 3 log(log(n))

)
+ C1 log(log(n))+

C2(ε)

nβ(ε)
E
[
τ∗i,n
]

+ E
[
τ∗i,n
]

+ 1.

Combining the above inequality with (4.1) finishes the proof.

4.4 Lower bounds for fixed delays

To investigate how close our solutions in this chapter are to optimal, we would like to derive lower

bounds that show that the minimum penalty possible should be additive in the delays. However,

this is not a clear goal. The problem is that the asymptotic sense in which lower bounds and upper

bounds match (as we are familiar with in the non-delayed setting) does not make much sense for

an additive lower bound. In other words, the lower and upper bounds for the MAB problem, as

we know them, have the same growth rate but do not match in constant factors. In a non-delayed

setting, this is not much of a problem, because we are interested in showing the rate with which

the regret goes to zero, which does not require knowledge of the specific constants. However, if we

want to show the same matching growth rates for the delayed setting, and at the same time get an

additive effect of delays, the constants will become important: we can show any additive bound for

large enough n, simply by decreasing the constant of the first term (the term that grows with n), and

adding as much delay term as we want.
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To give a concrete example, suppose that we know of a lower bound of c
√
Kn for the minimax

regret of the non-delayed stochastic MAB problem. It would then be a lower bound for the delayed

setting as well, since we cannot gain anything by observing late (or less) information. Now suppose

that, under a constant delay τ , the time horizon n is large enough to have
c

2

√
Kn > Kτ , that is,

n >

(
2

c

√
Kτ

)2

. We would then have
c

2

√
Kn + Kτ ≤ c

√
Kn, so for large enough n we would

have an additive lower bound on the regret in the delayed setting! The bound, however, is obviously

vacuous in the sense that it does not show anything about the additive nature of the effect of the

delays.

Another approach to tackle this problem might be to show a relation between the expected regret

of the delayed algorithm, E [Rn], and the exact value of the expected regret in the non-delayed

problem, E [R′n]. This means trying to derive a mapping that, for every delayed MAB algorithm,

gives a non-delayed MAB algorithm such that any run of the first algorithm can be associated with

a hypothetical run of the second one, in such a way that the regret in the delayed setting can be

written as the regret of the non-delayed algorithm in the corresponding non-delayed environment,

plus a term that depends on the delays. This way one may be able to reason for general random

delays as well, not only for fixed delays. This method, however, is not straightforward to use, and

investigating it is left for future work.
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Chapter 5

Experiments

In this chapter we empirically test the algorithms introduced in the previous sections, and verify

the results therein. First we study the effect of the delays on the regret and choose a magnitude

for the delay to run the rest of the experiments with. Then we test each of our four algorithms,

namely UCB1, KL-UCB and our black-box style algorithm SBBD run with non-delayed UCB1

and non-delayed KL-UCB, respectively. We run each of the algorithms under four different delay

distributions: constant, uniformly distributed, exponential, and Gaussian (truncated at zero). In these

experiments our aim is to investigate the penalty in the regret compared to the non-delayed setting,

and to see how tight our bounds for the algorithms in Chapter 4 are. We then compare the black-box

approach to the white-box one, in terms of the difference in their regrets as well as the memory

usage of the black-box algorithm.

5.1 General setup

All the experiments in this chapter were performed using the following settings. We use a two-

armed stochastic multi armed bandit environment, with Bernoulli rewards of expectations 0.8 and

0.9 respectively. The reason to choose this instantiation of the MAB problem was that the reward

structure was simple enough to let us distinguish the effects of the delay from those of the learning

problem itself. One other interesting question may be the way the penalty in the regret scales with

the number of arms. This study is postponed to future work.

Except for the first experiment in Section 5.2, each of the experiments in this chapter are run for

a time horizon of n = 1000 time steps, and all the results are averaged over 1000 independent runs.

Because of running time constraints, we were not able to use significantly larger time horizons. The

delay configuration varies from experiment to experiment, which is described in its corresponding

section.

We implemented the UCB1 and KL-UCB algorithms exactly as described by their corresponding

authors. To break the ties between equal upper confidence bounds, we used an independent uniform

randomization. This helps to distribute evenly the choices that occur at the beginning of runs when
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there are no rewards, instead of just choosing the action with the smallest index.

5.2 Regret penalty due to delays

First we run an experiment to help us choose a suitable magnitude for the delays which we want to

use in the rest of the experiments. For this purpose, we run Delayed-UCB1 for n = 10, 000 time

steps under increasing constant delays. Figure 5.1 shows the results on a logarithmic time scale. The

results are averaged over 2, 000 independent runs.
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Figure 5.1: Regret of Delayed-UCB1 for different constant delays.

As the figure shows, the regret in the delayed setting passes some unstable phase before being

stabilized and showing the real effect of the delay. In fact, these fluctuations were to be expected.

These fluctuations are only a scaled version of the fluctuations over the first few rounds of non-

delayed UCB1. In other words, for a constant delay τ , Delayed-UCB1 can not do better than random

exploration in the first τ rounds. This causes the algorithm to compensate by doing more exploitation

in the next rounds, thereby causing a sudden increase over τ time steps and then another τ rounds

of very slowly growing regret, hence the delayed regret getting less than the non-delayed regret at

some points (in fact, the idea of compacting the explorations to the first rounds of the game to get a

small final regret is used to provide optimal MAB algorithms such as MOSS (Audibert and Bubeck,

2009)). The fluctuations take a while to decay completely, as the information resulting from the
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Figure 5.2: Regret of Delayed-UCB1 for different constant delays. The regret has stabilized at time
n = 1000 for delays between 50 and 100.

actions the agent chooses influence his actions only after τ time steps.

While other experiments in this chapter use a time horizon of n = 1000, in this experiment

we used a larger time horizon to better see whether the regret has stabilized by time step 1000 for

a specific delay value. Figure 5.2 shows the same results by time step 1000. For the rest of our

experiments, while the delay should be small enough to let us reach the stable time steps, it has to

be large enough to let its effect be manifested in the regret. Therefore, according to the figures, a

delay between 50 and 100 would be suitable for a time horizon of n = 1000. We did not simulate

the effect for delays larger than 500, as by the explanation above as well as the observed behaviour

of smaller delays, the effect we could see was not stabilized. In the rest of the simulations, we have

used a delay of 75 time steps.

5.3 Effect of delay distributions

Having the average magnitude of the delay fixed, we were interested in the effect of different de-

lay distributions on the regret. We run each of our four algorithms in four different delay condi-

tions: constant delays, uniformly distributed delays, exponential delays, and delays with a Gaussian

distribution. Figures 5.3 through 5.6 show the results for each of the four algorithms. Symbols
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U [0, 150], Exp(1/λ = 75) and N+(75, 15) denote, respectively, the uniform distribution, the expo-

nential distribution, and the truncated Gaussian distribution. The standard deviation of the Gaussian

distribution before truncation was 15.

As seen in the figures, the average penalty of a fixed delay is usually an upper bound for that of

other distributions, with the normal distribution being almost the same as the fixed delay. This is

contrary to what is expected. For the uniform, exponential and Gaussian distributions, the penalty

term E [max1≤t≤n τt] shown in Theorems 4.2, 4.3 and 4.4 is expected to grow as the time horizon n

grows and to take larger values than its expectation E [τt] = 751. The fact that this has not happened

in the simulations suggests that the penalty term shown in the aforementioned theorems may be an

overestimation and a better way to bound the penalty may exist.

The difference of UCB1 and KL-UCB is also noteworthy in these experiments. Figure 5.7

compares the regret of these two algorithms at time step n = 1000. The penalty in regret that UCB1

has suffered here seems to be smaller than KL-UCB. We are not sure whether the extra term in the

analysis of KL-UCB in Theorem 4.4 has any effect here. This, however, does not necessarily mean

that UCB1 is more robust to delays, or more suitable to use in a delayed environment, since the regret

of KL-UCB under delays is still lower than that of UCB1. In other words, not only the difference

in the delayed and non-delayed regrets should be taken into account, we also need to check the total

regret.

5.4 Black-box vs. white-box

The question that we want to investigate in this section is how different the performances of the

delayed UCB algorithms and their black-box versions are. To this end, we run and compare Delayed-

UCB with the SBBD algorithm using non-delayed UCB as its base algorithms, as well as Delayed-

KL-UCB with SBBD run with non-delayed KL-UCB. Figures 5.8 and 5.9 show the results for

UCB1, and Figures 5.10 and 5.11 and KL-UCB, respectively.

For UCB1, the regrets of the two algorithms are very similar. For KL-UCB, while the situation

is similar (note the different scales of the y axis), the difference vanishes more slowly. The more

interesting case is that the black-box versions seems to have worked better than the modified version.

The difference, however, is insignificant for all of the simulations, as a paired t-test was not able to

reject the null-hypothesis of equal means with 95% confidence.

The question that remains is how large the extra memory requirement of the black-box algorithm

is. This is shown in Figure 5.12. Each plot shows the total number of items in the queues of the

algorithm at the end of each time step. The experiment shows that the average number of items

in the queue is much smaller than τ∗n (except in the case of fixed delays, for which τ∗n = E [τ ] =

min1≤t≤b τt) and therefore the black-box algorithm is still a feasible solution.

1The expectation of the truncated Gaussian is slightly larger than 75, because of the one-sided truncation.
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Figure 5.3: Regret of Delayed-UCB1 on the four different delay distributions compared with the
non-delayed setting. (a) Regret as a function of time. (b) Regret at time step n = 1000. Error bars
are two times the standard error in mean.
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Figure 5.4: Regret of Delayed-KL-UCB on the four different delay distributions compared with the
non-delayed setting. (a) Regret as a function of time. (b) Regret at time step n = 1000. Error bars
are two times the standard error in mean.
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Figure 5.5: Regret of SBBD, with UCB1 as base algorithm, on the four different delay distributions
compared with the non-delayed setting. (a) Regret as a function of time. (b) Regret at time step
n = 1000. Error bars are two times the standard error in mean.
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Figure 5.6: Regret of SBBD, with KL-UCB as base algorithm, on the four different delay distribu-
tions compared with the non-delayed setting. (a) Regret as a function of time. (b) Regret at time
step n = 1000. Error bars are two times the standard error in mean.
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Figure 5.7: The growth in the regret of UCB1 vs KL-UCB at time step n = 1000. Error bars are
two times the standard error in mean. KL-UCB seems to be more sensitive to delays, though its total
regret is always significantly below that of UCB1.
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Figure 5.8: Regret of Delayed-UCB1 vs SBBD, with UCB1 as base algorithm, as a function of
time. The regret curves of the two algorithms are closely matching each othe except for the case
of constant delays, when the regret of SBBD(UCB1) is first larger than that of UCB1, but then the
ordering swaps and eventually the curves converge.
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Figure 5.9: Regret of Delayed-UCB1 vs SBBD, with UCB1 as base algorithm, at time step n =
1000. Error bars are two times the standard error in mean. The regret of the black-box SBBD(UCB1)
algorithm is slightly smaller, but this is not statistically significant.
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Figure 5.10: Regret of Delayed-KL-UCB vs SBBD, with KL-UCB as base algorithm, as a function
of time. As opposed to UCB1, the regret of the black-box method, SBBD(KL-UCB) is at times
significantly different with the regret of Delayed-KL-UCB.

52



τ=75 τ ˜ U[0,150] τ ˜ Exp(1/λ=75) τ ˜ N+(75,15)

8

10

12

14

16

R
e
g
re

t(
R
n
)

Performance of SBBD(KL-UCB) vs Delayed-KL-UCB

Delayed-KL-UCB
SBBD(KL-UCB)

Figure 5.11: Regret of Delayed-KL-UCB vs SBBD, with KL-UCB as base algorithm, at time step
n = 1000. Error bars are two times the standard error in mean. As in the case of UCB1, the regret
of the black-box algorithm, SBBD(KL-UCB) is slightly better than the regret of Delayed-KL-UCB,
but again the difference is not statistically significant.
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Figure 5.12: Memory usage of the buffers of SBBD under four different delay distributions, run sep-
arately with KL-UCB or UCB1 as the base algorithm. After an initial transient phase, the memory
usage stabilizes.
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Chapter 6

Conclusion

In this thesis, we studied the multi-armed bandit problem under delayed feedback, and provided

algorithms for both the adversarial and the stochastic reward settings. We analyzed the regret penalty

arising from delays for both of these settings, and showed a multiplicative penalty in the general

adversarial case and an additive penalty in the stochastic setting.

Our proposed algorithms fall into two categories: black-box algorithms and white-box algo-

rithms. Our two black-box style algorithms, SBBD and ABBD, target the stochastic and adversarial

MAB problems, respectively. These algorithms work by using a non-delayed base MAB algorithm

and transforming the delayed problem to one or more instances of the non-delayed problem. Apart

from the memory requirements, for which we only have a large upper bound at the moment, the

black-box algorithms have many useful features, such as the ability to reuse already implemented

and tested non-delayed MAB algorithms for the delayed problem, as well as easily extending any

improvement in the non-delayed setting to the delayed setting. The white-box algorithms proposed

use upper-confidence bounds similar to the ones used in the non-delayed setting, but operate only

on the observed rewards. We show how one can reuse the mechanics of the analysis of UCB-type

algorithms in the non-delayed setting in order to obtain theoretical guarantees in the delayed setting.

We used a general formulation for delays which, while allowing random delays, does not make

non-realistic assumptions about the delays. For the stochastic MAB problem, we require the delays

to be independent of the rewards of the actions (and the randomization of the algorithm if the al-

gorithm is randomized). For the adversarial setting, our proof of the multiplicative upper bound of

our ABBD algorithm assumes that, at each time step, the delays of different actions are the same.

This is not less general than the previous work, since previous work mostly considers either constant

delays or the full information setting in which the delays of all the actions are the same at each time

step. Our results do not require the delays to be bounded; infinite delays are allowed, as well.

In our experiments, we found a gap between the regret penalty observed in practice and our

theoretical upper bound on the penalty. Furthermore, we tested the memory requirements of our

black-box algorithms, which seems to be much smaller than our initial conservative upper bounds.
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6.1 Future work

The exact way that the regret under delayed feedback depends on the delays is still not clear. An

important required result to make this dependence clear is the development of a tight lower bound.

Furthermore, as shown in our experiments, our additive delay terms in upper bounds on the regret

is not the best we can get. Perhaps a better experiment to verify this conjecture is to run simula-

tions with fixed delay mean and increasing delay variance. This can be achieved by using long-tail

distributions such as the Inverse Gamma distribution. Using the two parameters of this distribu-

tion, one can keep the mean constant while increasing the variance. An interesting quantity that can

be checked in these experiments is the distribution of gaps, i.e., the distribution of the number of

consecutive time steps when the agent receives no feedback.

An interesting open question is to tighten the upper bound on the regret penalty in both the

adversarial and the stochastic cases. This results in a better upper bound for the memory usage of

our black-box algorithms, as well. Apart from the asymptotic behaviour of the regret with the time

horizon n, the dependence on the number of actions K is also interesting to investigate.

Our algorithms can in principle be extended to other areas of online learning. Our ABBD al-

gorithm, for example, works independent of the feedback or information structure of the game.

SBBD can also be extended to other stochastic environments such as stochastic partial monitoring

games (Bartók et al., 2010). Investigating the extension of SBBD to stochastic settings with side

information is another open problem.

An interesting extension to the ABBD algorithm is to feed the black-box machines with all the

rewards that arrive. While this is not straightforward for MAB agents without white-box modifica-

tions, it is in principle possible to do in a black-box fashion for semi-bandit algorithms (Mannor and

Shamir, 2011).

In addition to the stochastic setting, it is interesting to show that we can reuse the proof mecha-

nism for the adversarial setting. This has already been done by Neu et al. (2010) for constant delays

and the EXP3 algorithm of Auer et al. (2003), but it remains to be generalized to arbitrary delays

and to other algorithms. The FTRL algorithm (Shalev-Shwartz and Singer, 2007) should provide a

suitable starting point, as EXP3 and INF (Audibert and Bubeck, 2009) are instances of FTRL. The

results of Neu et al. (2010) on slowly changing policies may be useful here as well, and the exact

analysis is the subject of future work.

Finally, removing our assumptions on the delays in the adversarial MAB problem, i.e., that the

delays depend only on time but not on actions, remains to be studied. This is especially interesting

because the statistical dependence structure of the problem becomes very complicated without that

assumption.

56



Bibliography

A. Agarwal and J. C. Duchi, “Distributed delayed stochastic optimization,” in Advances in Neu-
ral Information Processing Systems 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and
K. Weinberger, Eds., 2011.

D. Agarwal, B.-C. Chen, and P. Elango, “Explore/exploit schemes for web content optimization,” in
Data Mining, 2009. ICDM ’09. Ninth IEEE International Conference on, dec. 2009, pp. 1 –10.

T. W. Anderson, “Sequential analysis with delayed observations,” Journal of the American Statistical
Association, pp. 1006–1015, 1964.

J. Audibert and S. Bubeck, “Minimax policies for adversarial and stochastic bandits,” in Proceedings
of the 22nd Annual Conference on Learning Theory (COLT), 2009.

——, “Regret bounds and minimax policies under partial monitoring,” The Journal of Machine
Learning Research, vol. 11, pp. 2785–2836, 2010.
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Appendix A

Some mathematical results

The following lemma is a deviation result due to Hoeffding (1963), which is used in the analysis of

UCB-1 (Auer et al., 2002).

Lemma A.1. (Hoeffding’s Inequality) Let Y1, ..., Yn be random variables with range [0, 1] and

E [Yt|Yt−1, .., Y1] = µ. Let Ȳs =
1

s

∑s
i=1 Yi. Then for all a ≥ 0:

P
{
Ȳs ≥ µ+ a

}
≤ e−2a2s and P

{
Ȳs ≤ µ− a

}
≤ e−2a2s.

The next lemma is Jensen’s inequality (Jeffrey, 2004, Page 29). We have stated it here for

concave functions.

Lemma A.2. (Jensen’s Inequality) Let f(x) be a concave function on an interval I ⊆ R. Then for

any integer n, for any non-negative real numbers w1, w2, . . . , wn such that
∑n
t=1 wt = 1, and for

any x1, x2, . . . , xn ∈ I ,
n∑
t=1

wtf(xt) ≤ f

(
n∑
t=1

wtxt

)
.

The following lemma is a general result for concave functions, used in the proof of Theorem 3.1.

Lemma A.3. Suppose that the function f : [0,∞) 7→ [0,∞) is differentiable and concave and that

f(0) = 0. Then the function g(s) = sf(1/s), defined over (0,∞) is non-decreasing in s.

Proof. Since f is differentiable, by the definition of concavity we have f(0) ≤ f(t) + f ′(t)(0− t)

for any t ∈ (0,∞). Together with f(0) = 0, this implies

1

s
f ′(1/s) ≤ f(1/s) (A.1)

for s = 1/t. Taking the derivative of g(s), we get g′(s) = f(1/s) − 1
sf
′(1/s) ≥ 0 by (A.1).

Therefore, g(s) is non-decreasing in s.
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