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Abstract

Small blood vessels are more than inert tubes that carry blood. They are
elastic and surrounded by muscle that contract or relax to alter the local
blood flow characteristics. The regulation of blood flow by the muscle is
called the myogenic response. Blood vessels are also observed to exhibit
vasomotion, which is the spontaneous oscillation of the vessel diameter.

In the first part of the thesis, a controversy in the published literature
on the effect of vasomotion on vascular resistance is resolved. A mathemat-
ical model is used to show that vasomotion decreases the effective vascular
resistance. In the last part of the thesis, a model describing the dynamics of
~ vasomotion is reviewed and analyzed. In addition, the model is modified to
include three theories on the mechanisms underlying the myogenic response.
The model can qualitatively predict characteristics of the myogenic response,

and serves as a good foundation for future models.
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Chapter 1

Introduction

The blood vessels that are primarily responsible for the regulation of blood
flow through the body are called resistance vessels [1]. Resistance vessels
are the precapillary vessels that regulate blood flow to the capillary beds [1].
For these vessels, the pulsatile pressure from the heart is negligible and the
intraluminal pressure gradient is roughly constant. It is these vessels that
are of interest in this thesis.

Resistance vessels can locally regulate blood flow by contracting or re-
laxing the thick layer of smooth muscle which surrounds the vessel. For
example, the increase in blood flow resulting from an increase in blood pres-
sure can be counteracted by muscle contraction. Muscle contraction reduces
the vessel radius which returns blood flow to control levels. This mecha-
nism of blood flow regulation is referred to as autoregulation or the myogenic

mechanism [1].
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Figure 1.1: Strip-chart recording of an artery undergoing vasomotion from a
pregnant rat. Figure taken from Gratton et al. [11].

Resistance vessels are also observed to exhibit vasomotion [17]. Vasomo-
tion is the spontaneous rhythmic contraction and relaxation of the vascular
smooth muscle which results in an oscillation of vessel radius. Vasomotion
was first observed in bat wing veins in 1852, and was soon after observed in
rabbit ear arteries and the frog web small arteries [12]. A typical experimen-
tal record of vasomotion is shown in Figure 1.1. The functional significance
of vasomotion is not established, although there is little doubt that it has
an effect on blood flow and wascular resistance. It has been proposed that
vasomotion is related to the myogenic response [7, 32, 33], or that it results
from an instability in the system that controls smooth muscle intracellular
calcium levels [32].

The content of this thesis is divided into two parts. The first part, con-

tained in Chapter 2, analyzes the effect of vasomotion on vascular resistance.



Vascular resistance is defined locally on a segment of blood vessel as [24]

Ry =22, (1)
where Ap is the pressure drop over the length of the vessel (intraluminal
pressure) and F' is the fluid volume flux. The definition of vascular resistance
is analogous to Ohm’s law ( = ‘—I’—) , which relates the resistance, voltage, and
current in basic DC electrical circuits. Since vascular resistance is inversely
proportional to volume flux, it represents an opposition to blood flow, just
as an electrical resistor opposes current. Vascular resistance is applicable
to steady-state systems just as Ohm’s law is only applicable to DC circuits.
However, flows with a periodic component, such as those encountered during
vasomotion, always have a steady-state component, namely the mean flow,
to which the concept of vascular resistance can be applied [24].

Funk et al. [8] used a mathematical model to show that vascular resis-
tance decreases as the amplitude of vasomotion increases. However, obser-
vations from experiments appear to suggest the opposite. Meyer et al. [22]
observed that vasomotion was reduced in isolated resistance arteries from the
mesenteric circulation of pregnant rats compared to those of non-pregnant
rats. Pregnancy is associated with low vascular resistance [11]. In addition,
isolated arteries exhibit increased vasomotion in preeclampsia [5], which is
an abnormal state of high resistance during pregnancy. Finally, increased

vasomotion has been observed in animal models of increased vascular resis-



tance [22]. Motivated by these observations, Gratton et al. [11] revisited the
modeling of Funk et al. [8], and showed that vascular resistance increases
with vasomotion, consistent with experimental observations and in accor-
dance with the earlier modeling work of Parthimos et al. [26].

The contradictory results are resolved in Chapter 2 and an explanation is
given as to why Funk et al. [8] are correct with their analysis. An argument
is provided that resolves the apparent inconsistency between theoretical pre-
dictions and experimental observations. In addition, the validity of the use
of Poiseuille’s law in computing vascular resistance is examined.

The second part of the thesis, contained in Chapters 3 and 4, deals with
a mathematical model of the electrophysiology that regulates intracellular
calcium concentration and the corresponding production of muscle stress.
Several mathematical models have already been developed to model either
the myogenic response or vasomotion [16, 27, 33]. The shortcoming of these
models is that they do not consider the role of intracellular calcium, which
is the primary stimulus for smooth muscle contraction.

The focus of Chapter 3 is to review a model by Gonzalez-Fernandez and
Ermentrout [10] on the origin and dynamics of vasomotion. This model incor-
porates intracellular calcium concentration by coupling the Morris-Lecar [23]
model that describes the electrophysiology of the barnacle giant muscle fiber
with the mechanical properties of vascular smooth muscie. In Chapter 4, the
model is extended to account for the myogenic response and the maintenance

of myogenic tone. In Chapter 5, the purpose and conclusions of the thesis



are discussed.



Chapter 2

Effect of vasomotion on

vascular resistance

Blood flow through vessels is similar to fluid flow through rigid pipes. Al-
though blood is a non-Newtonian fluid and the vessel wall is elastic [24],
the mathematics that describe fluid flow through pipes can still be applied
to blood flow. Poiseuille’s law is a well-accepted formula to calculate the
volume flux in rigid pipes, and is often referred to when discussing vascular
resistance and blood flow in blood vessels. The derivation of Poiseuille’s law
and the assumptions on which it is based are reviewed in Section 2.1. In
Section 2.2, the calculations that iead to the controversy on the effect of va-
somotion on vascular resistance are reviewed, and the controversy is resolved.
"The calculations of vascular resistance rely on the use of Poiseuille’s law, even

though some of the assumptions underlying it are violated. Conditions under



which the applicability of Poiseuille’s law is valid are analyzed in Section 2.3.

In Section 2.4, the physiological significance of the results are discussed.

2.1 Poiseuille’s law

Poiseuille’s law for pipe flow is often referred to when discussing blood flow
in vessels. Poiseuille’s law gives the fluid volume flux through a tube as a
function of the pressure gradient, fluid viscosity, and pipe radius.

Poiseuille was a French physician who was interested in capillary flow.
Due to the difficulty of blood clotting when exposed to air, Poiseuille was
forced to experiment with water flow through glass tubes of capillary size.
Nonetheless, it was sometime in the 1840s when he experimentally obtained
the relationship,

Ap 4

where F, Ap, L, and ry are volume flux, pressure drop, pipe length, and
pipe radius, respectively. The constant K was determined under a variety of
conditions, and is actually representative of the fluid viscosity [24].

It was Wiedemann in 1856 and Hagenbach in 1860 who independently
derived Poiseuille’s law on theoretical grounds [24]. The derivation that fol-
lows here is slightly more complicated than their derivation, but is presented
to later justify the applicability of Poiseuille’s law to vasomotion.

The Navier-Stokes equations are the equations of motion for fluid flow.



In cylindrical coordinates, a fluid velocity field u = (u,, ug, u,) satisfies

2
G+ (- Vu =2 =240 (Vu -5 - 3%),
B (0-V)yug+ 22 =124 (Vigy+ 29 — 1), (22)
8z + (u-V) uzz—%gﬁ—l-vvzum

with

where p and v are the fluid density and kinematic viscosity respectively [21].
The Navier-Stokes equations are very difficult to work with due to the non-
linearity of the system. However, the system can be significantly simplified

with the following assumptions for pipe flow:

1. The radius of the pipe is constant at 7 = g,

2. the velocity profile is one dimensional in the z direction such that

u = (0,0, uz),
3. the system has reached steady-state such that %—‘t‘ =0,
4. there exists a no-slip boundary condition such that u.(rg) = 0,
5. the fluid is incompressible such that V - u = 0, and

6. the fluid velocity is finite.



These assumptions simplify (2.2) to

dp  pd ( duz)
E_*.rdr (Tdr) =0,

with p = pv, which can be solved for u, with the above boundary conditions

to give,

2 2

Uy = dp (2.3)

dp  dx’
Equation (2.3) shows a parabolic velocity profile. The volume flux is evalu-
ated by integrating the fluid velocity over the cross-sectional area of the pipe

to get

F = 27r/rouzdr
0

nré dp

8u dr’
By letting % = ——Ai-’l, this is rewritten as

. TAp 4
= 8,qu0’ (2.4)

which is Poiseuille’s law. This is in agreement with the qualitative result by

Poiseuille given in (2.1), with K = T



2.2 Background, setup, and analysis of the

model

Poiseuille’s law, (2.4), was derived in the last section since it is used in the
calculation of the effect of vasomotion on vascular resistance, which is defined
in (1.1) on page 3. Combining equations (1.1) and (2.4) gives the following
expression for the vascular resistance as a function of the vessel radius r:

_8pL
Tt

Ry (2.5)

This relationship is the starting point for the mathematical modeling by Funk
et al. [8], Gratton et al. [11], and Parthimos et al. [26].

Vasomotion is exhibited in a large variety of patterns [32]. A common
pattern is sinusoidal in nature, and hence the following form for 7 in (2.4)

and (2.5) is assumed [8, 11, 26]:
T =71(t) = ro(1 + Asinwt), (2.6)

where 79, A, w and ¢ is the average vessel radius, the fractional amplitude of
oscillation (A < 1), the frequency of oscillation, and time, respectively. The
time-dependence of r in (2.6) immediately violates the steady-state defini-
tion of vascular resistance, (1.1), and the assumption of time-independence
in Poiseuille’s law, (2.4). However, under certain conditions (which are ex-

plained in Section 2.3), it is reasonable to use Poiseuille’s law as an approxi-

10



mation for the time-dependent volume flux.
Assuming for the moment that Poiseuille’s law is applicable, the average

volume flux over one period of oscillation is given by

2w
- w [T
F=2["F 2.7

= [~ P, 27)
where 2 is the period of oscillation from (2.6), and F(t) = g—rff [+@®)]*.
Evaluating the integral gives

_ 7rAp s 3 4) 4
- . 2.
F = SuL (1+3)\ +8/\ To (2.8)

The average volume flux is normalized with respect to a vessel without va-

somotion to give

F=

3
=(14+3)\2+ ,\4) 2.9
F|A~0 ( (2:9)

as was obtained by Parthimos et al. [26]. Note that F|y—o = F as given in
(2.4). Thus, the normalized volume flux, F, increases with an increase of
vasomotion amplitude, A, as shown in Figure 2.1(a).

It would seem appropriate to evaluate an integral similar to (2.7) to cal-

culate the time average of vascular resistance, as follows:

Ry = 2“; —Rv(t) (2.10)

8 &L FEvaluating the resulting integral, and normalizing

where Ry (t) = T O]

11
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Figure 2.1: (a) Normalized volume flux, (2.9), as a function of vasomotion
amplitude, A. (b) Normalized vascular resistance, (2.11), as a function of A.
(c) Normalized effective vascular resistance, (2.14), as a function of A.
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with respect to a vessel without vasomotion gives

Ro _ RV . 3A2 + 2
V =™ b - z-
Rvr=o 201 —2)%

(2.11)

This is the result of Gratton et al. [11] and Parthimos et al. [26]. Figure 2.1(b)
gives the graph of RY as a function of A, which shows that R?, increases with
an increase in .

However, these results are inconsistent since time-averaged volume flux,
(2.9), and time-averaged vascular resistance, (2.11), cannot both increase
with A as it contradicts the definition of vascular resistance, (1.1). Parthimos
et al. [26] recognized this paradox but did not resolve it.

The problem arises in the calculation of the average vascular resistance in
(2.10). The definition of vascular resistance given in (1.1) on page 3 applies
to steady-state flows or to the steady-state component of the flow (i.e., mean
flow). Therefore, the definition of vascular resistance must be applied directly

to the mean flow (2.7) to give the effective vascular resistance

= —= 2.12
RV P ( )
or equivalently,
_ A
Ry = —
5= fo¥ F(t)dt
- (2.13)



Equation (2.13) is just the continuous harmonic mean of R(%). Although
(2.10) is the time-averaged vascular resistance, it is not representative of
the effective vascular resistance. Furthermore, calculating the time-averaged
vascular resistance makes no physical sense since vascular resistance is not a
rate, but a quantity with units dyne - s/cm®.

Using equation (2.8) in equation (2.12), and normalizing as before gives,

. Ry 1

= —= = 2.14
Ry va,\=0 1+3X\2+ %/\4 ( )

Figure 2.1(c) shows Ry as a function of A\. Effective vascular resistance
decreases with an increase of vasomotion amplitude, A, as consistent with

the definition. This is the conclusion of Funk et al. [8], and the one that is

correct.
The discussion on the physiological significance of this result is postponed
to section 2.4. In the following section, the applicability of Poiseuille’s law

for a time-dependent situation such as vasomotion is analyzed.

2.3 The use of Poiseuille’s law in modeling
the effect of vasomotion on vascular re-

sistance

Poiseuille’s law is based on the assumption that the flow has reached steady

state. In the model discussed in the previous section, the radius r in

14



Poiseuille’s law depends on time according to equation (2.6). By continu-
ing the use of Poiseuille’s law, the flow rate is assumed to instantaneously
reflect the current radius at all times. However, a lag is introduced as it takes
time for the flow to adjust to the changing radius, which is a consequence of
the fluid inertia.

This section examines conditions under which lag effects are minimal and
the use of Poiseuille’s law yields a reasonable approximation to the flow rate
of a a vessel with an oscillating radius. Three arguments are presented in

Sections 2.3.1, 2.3.2, and 2.3.3.

2.3.1 Argument 1 - Slow varying wall radius

Lag effects are minimized if the velocity of the changing radius is small in
comparison to the characteristic fluid velocity. For the sinusoidal radius

assumed in equation (2.6), the magnitude of the rate of change of r(¢) is
[7' ()] = |roAw coswt| < relw. (2.15)

The magnitude of the wall velocity, r'(¢), is bounded by the product roAw.
To determine whether this product is sufficiently small, it is compared to
the characteristic fluid velocity through a static pipe with radius g, given
by 4, = ﬁg, where F' is the volume flux as before. The ratio of these two
velocities give the nondimensional number D = T—g‘.—;\‘i = -r-g—’;-f"—" If D <« 1, then

the wall velocity is significantly less than the characteristic fluid velocity and

15



lag effects will be negligible. On the other hand, if D < 1 is not satisfied,
then more complex analysis is required. For the vessels of interest, typical
parameter values are o = 225 pm, A = 0.02, ;= = 0.375 Hz, and F = 100
pL/min (see [32] for example). With these values, D =~ 1072 < 1. Even
if the amplitude of the vasomotion is much larger than A = 0.02, D still

remains sufficiently small.

2.3.2 Argument 2 - Stokes number

The steady-state assumption, %l;- = 0, made in Section 2.1 cannot be made
for fluid flow in vasomotion. Furthermore, a radial velocity component is
introduced such that u = (u,,0,u;). A thorough analysis of the Navier-
Stokes equations under these conditions becomes very complex and difficult.
However, the system can be simplified by dropping negligible terms.

Recall from Section 2.1 that the derivation of Poiseuille’s law is based on
the z-component of the Navier-Stokes equations (2.2) in cylindrical coordi-

nates. This equation is the differential form of the following force-balance

equation:
transient convective pressure UTISCOUS
+ = +
inertia inertia force force

The transient inertia term cannot be dropped since the system is not steady

state. However, nondimensionalization can yield conditions under which the

16



transient inertia term can be safely neglected. Introduce the following nondi-

mensional variables,

~

z=Lz, wu=Uq,
p=pU%, t=£,
where L, U, and w are characteristic length, velocity, and frequency. Substi-

tute into the z-component of (2.2), rearrange, and drop the hats to get,

_ _Op V o2
u-V)u, = $+ULVu$.

wL Oug

T o
The non-dimensional number R = % is known as Reynolds number. Un-
der steady-state conditions (%t‘i = 0) , the magnitude of R gives insight into
whether the flow is dominated by viscous forces (R < 1) or convective inertia
(R>1).

Further arranging of the terms gives

wLl?fu, UL UL dp

v Ot * v TV v Oz
The non-dimensional number N, = “’—,‘:‘3 is known as Stokes number. The
Stokes number gives insight into whether the flow is dominated by tran-
sient inertia or by viscous forces. If the Stokes number is sufficiently small
(Ns; < 1), then the transient inertia term of the Navier-Stokes equation can
be dropped, leaving the steady-state equation from which Poiseuille’s law can
be derived as in Section 2.1. Although there exists a u, velocity component,

it can be safely neglected by the argument given in Section 2.3.1.

17



For typical vasomotion in resistance vessels, the characteristic frequency
and length are the frequency of oscillation and the average radius of the vessel,
respectively. Typical values are v = 0.04 cm?/s [24], w = 1.67 rad/s [12] and
L =200 pm. These values give a Stokes number of N; = 0.0167, sufficiently

small to drop the transient term, as desired.

2.3.3 Argument 3 - Fast transient to a similar problem

Brodkey [3] considered a fluid flow problem very similar to that of Poiseuille
flow. The setup of the system is the same, except the fluid is at complete
rest at t = 0. As t — o0, the system approaches the steady-state parabolic
velocity profile given by equation (2.3).

The interesting part of the solution is the speed at which the system
approaches the steady-state solution. If the transient is very fast, then it is
reasonable to assume that vasomotion flow will adjust quickly to the changing
radius, such that Poiseuille’s law essentially gives the instantaneous volume
flux at any moment. The details of the procedure used to obtain the solution

are provided in [3], with a final result of

2 2 oo J(ear) _ 2.

dwf,_r_ & ()
=08y T gy D\ | :

“ 4ud${ RPNy e L (2.16)

where o, is the n** root of the Bessel function Jy (Jp (@) = 0). The sum-
mation in (2.16) is the transient term which decays to zero as ¢ — oo. The

rate at which decay occurs is determined by the exponential. By picking a

18



characteristic time scale of ¢ = 5, the requirement for the transient solution

to decay quickly is that 7~ be large. However, this number is just the inverse
[¢]

of the Stokes number, N, as discussed in Section 2.3.2. In that section, N,

was required to be small. This is the same as - being large, as desired here.
N, g larg

2.4 Discussion

The calculated effect of vasomotion on vascular resistance given by (2.14)
shows that effective vascular resistance decreases with an increase of va-
somotion. This results seems inconsistent with experimental observations.
Decreased vasomotion is observed in low-resistance physiological states (e.g.,
pregnancy), and increased vasomotion is observed in high-resistance physio-
logical states (e.g., preeclampsia and hypertension) [11]. In this section, the
apparent disagreement between the theoretical results and the experimental
observations are resolved.

Recall that the quantities #* and Ry, given by (2.9) and (2.14), respec-
tively, have been normalized relative to a similar vessel with a vasomotion
amplitude of zero (A = 0). The shortcoming of this normalization is that the
dependence on the mean radius, 19, has been dropped. In fact, the average
radius of a mesenteric artery in pregnancy is increased at the same time as
vasomotion amplitude is decreased. Similarly, the average radius of a mesen-
teric artery in preeclampsia and hypertension is reduced while vasomotion

amplitude is increased. Due to the r§ dependence, blood flow and vascular

19



resistance have a much greater dependence on the mean radius than on the
amplitude of vasomotion. For example, if the average radius of oscillation is
increased by just 19%, the effective vascular resistance is decreased by 200%.
It is therefore insufficient to only consider changes in the amplitude of vaso-
motion when comparing different physiological conditions such as pregnancy
and hypertension.

Slaaf et al. [31] suggest that it is misleading to focus only on vasomo-
tion amplitude and average radius. There is a complicated interplay between
these factors, in addition to the pattern of vasomotion which may not be
sinusoidal as assumed in most of the modeling studies. It is possible that
two vessels with different combinations of average radius and vasomotion am-
plitude may have the same effective vascular resistance and hence the same
flow-carrying capacity. For example, a vessel with mean radius 79 = 9.31 um
and vasomotion amplitude A = 0.4 has essentially the same effective vascular
resistance as a vessel with rp = 10.00 um and A = 0.2. Slaaf et al. [31]
introduce the notion of an ‘effective radius’ to facilitate comparison of differ-
ent vessels. The effective radius is defined to be radius of a fictitional static
vessel that has the same vascular resistance and the flow-carrying capacity
as the vessel undergoing vasomotion, and takes into account the particular
pattern of vasomotion.

This chapter was motivated by the contradictory results by Funk et al. [8],
who showed that vascular resistance decreases with vasomotion, and Gratton

et al. [11] and Parthimos et al. [26], who showed the opposite, namely that
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vascular resistance increases with vasomotion. The contradiction is resolved
by a careful look at the meaning of vascular resistance. It is shown that the
result obtained by Funk et al., namely that vascular resistance decreases with
vasomotion, is correct. This implies that vasomotion contributes to flow. It
is also suggested that comparing vessels by the amplitude of the vasomotion
alone is misleading, and can lead to apparent inconsistencies between theory
and experimental observations. To correctly compare the vascular resistance
or, equivalently, the flow-carrying capacity of different vessels, the use of an
‘effective radius’ is advocated. The effective radius takes into account the

amplitude, pattern, and mean radius of the vasomotion.

21



Chapter 3

A mathematical model of

smooth muscle activity

In 1994, Gonzalez-Fernandez and Ermentrout [10] developed the first dynam-
ical model of vasomotion that took into consideration the electrophysiology of
smooth muscle. In this chapter, the derivation of the model is reviewed. The
equations presented here are modified slightly from the original ones. The
modifications are based on the model of Ursino et al. [33] and a simplified
model of Gonzalez-Fernandez [9].

What is unique about this model is that it takes into account the transport
of ions across the membrane of the smooth muscle cells and the dynamics
of the intracellular calcium concentration. These factors are neglected in
other mathematical models of smooth muscle activity [16, 27, 33]. In all,

the model takes into account the transport of ions across the cell membrane,
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the transmural pressure, the wall elastic and smooth muscle stresses, and
the associated vessel contraction or dilation [10]. This is accomplished by
using the well-known Morris-Lecar [23] model for the electrophysiology of the
barnacle giant muscle fiber, and combining it with the mechanical properties
of smooth muscle.

The derivation of the model is given in Section 3.1. The model is summa-
rized in Section 3.2 and briefly analyzed in Section 3.3. A discussion of the
results and the validity of the assumptions used in the derivation is given in

Section 3.4.

3.1 Model derivation

The first three equations of the model are based on the Morris-Lecar [23]
model. These equations are independent of the rest of the system, and
describe the smooth muscle cell membrane potential, the fraction of open
potassium channels, and the intracellular calcium concentration.

It is well known that intracellular calcium is the primary stimulus of mus-
cle contraction. Since intracellular calcium concentration can qualitatively
predict steady-state muscle stress [28], the fourth differential equation of the
model describes the dynamic dependence of muscle contraction on the intra-
cellular calcium concentration. The known muscle stress is used in the fifth
equation which models the dynamics of the actual vessel radius by balancing

the hoop forces in the vessel wall.
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The mechanics of smooth muscle is presented in Section 3.1.1. The math-
ematical equations which determine muscle activation are given in Section
3.1.2, followed by the equations for the electrophysiology and calcium con-

centration in Section 3.1.3.

3.1.1 Smooth muscle mechanics

The model assumes the balance of four forces to determine the vessel radius.

These forces are

1. transmural pressure, fa,,
2. internal wall friction, fy,
3. elastic force (inactive), f., and

4. muscle force (active), f.

These forces are described in Sections 3.1.1.1 - 3.1.1.4, respectively, and the

complete force balance equation is given in Section 3.1.1.5.

3.1.1.1 Transmural pressure force

Laplace’s law relates the tension (force per unit length) in the vessel wall,

Tap, to the radius and the transmural pressure as follows [24]:

TAp = Ap * T4,
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where Ap and 7; are the transmural pressure and inner vessel radius, re-
spectively. Note that the transmural pressure, Ap, is not the same as the
intraluminal pressure used in Poiseuille’s law in (2.4). The transmural pres-
sure is the pressure drop between the inside and the outside of the vessel.
The cross-sectional area of the vessel wall, A, is assumed to remain constant
such that

A= rz — rf)
is constant with r, being the outer vessel radius. By letting = ™ be the
average vessel radius, the tension in the vessel wall can be written as

Tap=A4Ap r-i),

4mr

where r > \/ﬁ. This is multiplied by a unit length, L, to give the force due
to the transmural pressure, fa,, as a function of the radius and transmural

pressure,

A
fap=Ap ( - E) - L. (3-1)

3.1.1.2 Internal wall friction force

The internal wall friction force, f, is assumed to be linearly proportional to

the wall velocity,

dr
ff = TE’ (3.2)

with 7 constant.
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3.1.1.3 Vessel elastic force

The elastic properties of the vessel are determined experimentally under con-
ditions where the muscle is completely inactive. Stress is applied to the vessel
wall by increasing the transmural pressure and measuring the corresponding
radius. The shape of the stress-radius curve is roughly consistent between
vessels, and is normalized with respect to the stress, oy, and radius, Tref,
at which maximum muscle stress occurs (reviewed in Section 3.1.1.4). The
resulting curve is shown in Figure 3.1, and the relationship is modeled by an

exponential function of the following form [33]:
Oe(Tn) = Oeo [ekc(rn—ro) - 1] )

with k., o, and 7y constant, and r, = ;r—f This function is simpler than
the one used by Gonzalez-Fernandez and Ermentrout [10], but has roughly
the same shape. The total elastic hoop force, f., on a longitudinal section of

the vessel wall with area S is given by [10]
fe=S- ae(rn) * 0o, (3.3)

where o is the maximum stress produced by the muscle.
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Figure 3.1: Artery normalized stress versus normalized radius. The dotted
curve represents the elastic component of stress for the vessel. The solid
curve represent the muscle stress component for the vascular smooth muscle
for a given radius at maximum contraction.

3.1.1.4 Muscle contraction force

Muscle stress is experimentally determined in a similar manner to the elastic
stress given in Section 3.1.1.3, except under conditions where the muscle is
at maximum contraction. To obtain the stress-radius curve for muscle con-
traction alone, the elastic component from Section 3.1.1.3 is subtracted. The
resulting stress-radius curve is bell shaped and is normalized with respect to
the stress and radius at which maximum muscle stress occurs. The resulting

curve is shown in Figure 3.1, and the relationship is modeled by [33]

Oe(ra) = e7Relrne),

with k. and 7. constant. The constant 7. is the normalized radius at which

maximum stress production occurs (r. = 1). Again, this function is simpler
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than the one used by Gonzalez-Fernandez and Ermentrout [10], but has a
similar shape.

Smooth muscle can also be in a state of partial contraction. To accom-
modate for this state, define w to be the fraction of activation of muscle such
that w = 0 denotes no muscle stress production and w = 1 denotes maximum
muscle contraction. The value of w is determined by the current physiological
state of the vessel which is reviewed in Sections 3.1.2 and 3.1.3.

The total muscle contraction hoop force, f., on a longitudinal section of

the vessel wall with area S is given by [10]
fc =S - Uc(rn) - 0g - W, (34)
with oy as defined before in Section 3.1.1.3.

3.1.1.5 Net force

By Newton’s Law, the sum of the forces acting on a free body is equal to
zero. Adding the forces from (3.1), (3.2), (3.3), and (3.4) according to the

free-body diagram shown in Figure 3.2 gives
pr_fe_fc_ffzo-

This equation can is solved for £ (from (3.2)) to give

d
= (far— e 1) (3:5)
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fap

Figure 3.2: Free body diagram of forces assumed in the vessel wall.
Equation (3.5) is the fifth equation of the model.
The next section discusses the physiology involved in determining the

muscle activation, w, and the mathematical model used to describe the dy-

namics of w.
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3.1.2 Muscle stress development and the dependence
on intracellular calcium

Within smooth muscle cells are thick and thin filaments which are responsible
for stress production. These filaments overlap in a longitudinal fashion. It is
the interaction between the thick and thin filaments (sliding filament theory)
that is believed to be responsible for stress production [29].

Thin filaments are made up of globular protein molecules called actin.
Actin molecules are about 5.5 nanometers in diameter and are joined end-
to-end to form a long structure resembling a chain of beads. These chains
are wound in pairs to produce helical shaped thin filaments [29].

Thick filaments are made up of large protein molecules called myosin.
A myosin molecule has a long rod-shaped section (sometimes called the tail
section) with a double globular head. Attached to the globular heads are
two protein molecules called light chains. About 300-400 myosin molecules
bundled together by the tails make up a thick filament. Protruding from the
sides of the bundle are the double globular heads which are referred to as
crossbridges. It is the interaction of the crossbridges on the thick filament
with the actin on the thin filament that is the cause of stress production [29].
The physical relationship between thin and thick filament are illustrated in
Figure 3.3.

Shortening of the muscle is brought about by a cyclic “rowing” motion

of the crossbridges, in which they successively attach to the closest available
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Figure 3.3: Diagram of overlapping thick and thin filaments. Figure taken
from Rhoades et al. [29].

thin filament site, change their shape and pull the actin filament along, then
let go of the actin and reattach further along [29]. A prerequisite for the
mysosin to bind to actin is the phosphorylation of the myosin head light
chain. Phosphorylation depends on the presence of free intracellular calcium,
as follows.

Free intracellular calcium combines with calmodulin which in turn acti-
vates the myosin light chain kinase (MLCK) enzyme. It is the activation of
this enzyme which allows the phosphorylation of the light chains which leads
to crossbridge cycling and muscle contraction.

The dependence of myosin phosphorylation on calcium is assumed as
follows. Let ¥ be the fraction of phosphorylized myosin light chains
(0 < ¢ <1). Steady-state phosphorylation is experimentally shown to have
a sigmoidal dependence on intracellular calcium concentration, Ca;:

9
Ca;

= GaZ, + Gal’ (3.6)

(s
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with ¢ constant, and Ca;,, being the reference calcium level at which half of
the myosin light chains are phosphorylized [28]. The value for Ca;, is believed
to be modulated by agonists. Changing this parameter essentially alters
the sensitivity of myosin phosphorylation on the free intracellular calcium
concentration. The dependence of the model dynamics on Ca;, is further
developed in Chapter 4 with regard to the regulation of myogenic tone.
Once a myosin light chain becomes phosphorylized, it can react with
actin to form crossbridge cycling. The dependence of the fraction of attached

crossbridges, w, on ¢ is modeled as follows [10]:

o=t (g ) (1)
where &y is a rate constant, and ¥, is constant. Equation (3.7) is such that
w approaches ﬁ at a rate determined by k. The variable w gives mean-
ing to muscle activation. If all the phosphorylized light chains are forming
crossbridges, then w = 1. Similarly, if none of the myosin light chains are
phosphorylized, then no crossbridge cycling can occur and w = 0. It is w
that determines the muscle activation in equation (3.4).

Since the phosphorylation of the myosin light chains depends on the in-
tracellular calcium concentration, an equation that determines intracellular

calcium concentration is required. Such an equation is developed in the next

section.
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3.1.3 Electrophysiology and intracellular calcium con-

centration of vascular smooth muscle

The primary mechanism for extracellular calcium to enter the cell is via the
voltage-dependent calcium channels, which are distributed within the cell
membrane. The extrusion of intracellular calcium is assumed to occur via
ATP pumps, also distributed within the cell membrane. Thus, the following

equation models the dynamics of the free intracellular calcium concentration:

dCa;

_C_lt_ = [—a.[ca - kCGCa.i] pP- (38)

Here, the influx of intracellular calcium is represented by —alg,. I¢, is the
membrane current which results from the transport of calcium ions into the
cell and « is the conversion factor from the ionic current to the molar rate of
calcium ions. The extrusion of calcium from the ATP pump is assumed to
be first order with rate constant k¢, [10].

The factor p takes into account the existence of intracellular buffers for
the calcium ions. The presence of buffers means that most calcium ions
entering the cell are bound to free radicals. It is only a small fraction of
the calcium ions (given by p) that remains available for cellular functions.
The amount of free intracellular calcium depends on the amount of buffer,
Bz, and the dissociation constant, K, for binding of calcium to the buffer.

The functional dependence of p on Ca; is derived by Gonzalez-Fernandez and
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Ermentrout [10] and is given by

p= (Kq+ Ca;)?
(Kd -+ Ca.,)z -+ KdBT.

To complete the model, an equation which describes the calcium current,
Ica, is required. In order to do so, the flow of other ions, in particular the
potassium ions, needs to be taken into account. This is done according to the
Hodgkin-Huxley [15] formulation, in which the dynamics of the membrane
potential are described by Kirchoff’s law,

dv
C’—C—l?—- I —Ice — I, (3.9)

where C is the membrane capacitance, and Ic,, Ix, and Iy are the ionic
potassium, calcium, and leak currents, respectively. The leak current is an
error correction term which takes into account all membrane currents that
are not directly modeled.

Ohm’s law is assumed to apply to each of the currents, such that [ is the
product of a conductance (the inverse of electrical resistance) and a driving

force. With this assumption, (3.9) is rewritten as

dv
C— =—gn- (v —v) — gcaMeo(v) - (W —vca) —gi- (v —w),  (3.10)

where g, gcq, and g; are the maximum whole-cell potassium, calcium, and

leak conductances, and v, vg,, and v; are the corresponding Nernst poten-
b b} 3
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tials [10]. The Nernst potential is the membrane potential at which an equi-
librium of intracellular and extracellular ions exists, balanced by the chemical
concentration gradient and the electrical gradient. For example, if v = g,
then no transport of potassium ions through the membrane will occur. The
n and mq(v) represent the fraction of open potassium and calcium channels,
respectively. A set of channels which are partially open will result in a cor-
responding fraction of the maximum whole-cell membrane conductance for
that channel.

The potassium and calcium channels open and close in response to the
membrane potential. The fractional distribution of open calcium channels

is assumed to depend instantaneously on the membrane potential and is

described by [10]

e () = % (1+tanh”_'”1), (3.11)

V2

where v; and v, are parameters, and v is the membrane potential. A graph of
Moo (v) is shown in Figure 3.4. An influx of calcium ions causes depolarization
of the membrane potential. Since mq,(v) increases with v, this causes more
calcium channels to open and further depolarization.

Voltage-dependent potassium channels behave in a similar manner to
calcium. However, potassium ions flow out of rather than into the cell to
cause repolarization. Potassium channels also open in response to an increase
in membrane potential, which counters the positive feedback of the calcium

channels. The steady-state fractional distribution of open potassium channels
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Figure 3.4: The fraction of open calcium channels, m,, as a function of the
membrane potential, v.

as a function of voltage is modeled by [10]

1 —
Neo (V) = B} (1 + tanh 2 v4v3) .

Unlike the fast calcium channels, potassium channels are assumed to respond
slowly to a change in membrane potential. This is modeled by letting the

actual fraction of open potassium channels, n, be determined by,

‘fi—z = A (oo (V) — 1), (3.12)

where based on statistical considerations [10],

v — U3
2'U4 ’

An = ¢, cosh

where ¢,, vs3, and v4 are constants.
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There exists a second class of potassium channels which are sensitive
to the intracellular calcium concentration. To incorporate this channel,
Gonzalez-Fernandez and Ermentrout [10] let u3 be a function of Ca;. This
effectively changes the sensitivity of ny, on v depending on the current cal-
cium concentration. To simplify the analysis, vz is taken as constant equal
to the average of vz over the range of Ca,;.

The differential equation (3.12) is such that n approaches n, at a rate
determined by A,. The slow potassium channel assumption is crucial for the
generation of action potentials and the existence of an oscillating solution.
It is this oscillation that is the driving force for vasomotion in this model.
Gonzalez-Fernandez and Ermentrout [10] acknowledge that a fast potassium
channel will abolish cyclic activity, and result in intermediate steady-state
values for the membrane potential. Under certain experimental conditions,
vessels cease to undergo vasomotion and have a constant radius. The corre-
spondence between different physiological conditions and the different types
of behaviour that can be generated by the model will be discussed further in

Chapter 4.

3.2 Model summary

% = —[gen - (v — ) + gcamoo(v) - (v — vca) (3.13)

+g; - ('U - 'U[)]C_l,
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3.3 Model analysis

The vasomotion model summarized in Section 3.2 is a system of five differen-
tial equations. The analysis of the system is significantly simplified if certain
dependencies are first understood. The differential equations for v and n are
coupled and are independent of the remaining equations. Ca; depends on v,

w depends on Ca;, and r depends w. This is seen by
n&v=Cay=>w=r

Thus, the behaviour of r is ultimately determined by the behaviour of v and
n. If v and n oscillate, then the oscillation is carried through to Ca;, w and
eventually r. The oscillation of r represents vasomotion. Similarly, if v and
n are at a stable fixed point, r is also constant.

The system was numerically integrated with Bard Ermentrout’s XPP
software [6] on a Linux workstation. The parameters used are given in Table
3.1 and are taken from Gonzalez-Fernandez and Ermentrout [10] for the vessel
electrophysiology and vessel dimensions, and from Ursino et al. [33] for the
elastic and muscle stress curves.

The phase plane of n versus v is given in Figure 3.5. The dashed curves
are the nullclines for v and n. They intersect at a steady state that is unstable.
The steady state is surrounded by a stable limit cycle, that is, an oscillation
of both v and n. The corresponding solutions for v, Ca;, w, and r as functions

of time are shown in Figure 3.6.
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| Parameter |  Units | Value |
A cm? 1.5 x 1073
T dyne s cm™? T
Te0 1.72 x 107°
ke 21.63
To 0.56
S cm? 9.0 x 103
L cm 1
o dyne cm ™2 3.0 x 10°
ke 16.0
Te 1
Uy mV —22.5
Us mV 25.0
U3 mV —15.0
Uy mV 14.5
&n s~t 2.664
C CmVv-! 1.9635 x 10714
a Cs 'mV~! | 7.854 x 10~ 1
Ik Cs'mV~! | 3.1416 x 10~ 3
dca Cs ImV-T | 157Tx 1078
Uy mV —70.0
Uk mV —90.0
UCa mV 80.0
a nM C-! 7.9976 x 10%°
Ky nM 1.0 x 10°
BT nM 1.0 x 10°
Caim nM 3.5 x 102
q 3
Um 3.0x 10"t
ky s~! 3.3
Ap mmHg 100
Tref cm 3.128 x 102
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Table 3.1: Model parameters and their default values.
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Figure 3.5: The phase plane of n versus v of the vasomotion model with
parameters from Table 3.1. The dotted curves represent the nullclines for
the v and n variables. The intersection of the nullclines is an unstable steady
state. The solid curve represents the oscillating solution for v and n.
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Figure 3.6: Solution of the vasomotion model for v, Ca;, w, and r as a function
of time for the parameters given in Table 3.1.
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3.4 Discussion

The parameters of the system are chosen such that an oscillation occurs in the
v and n variables. This oscillation is carried through by Ca;, w, and finally
r (vasomotion). Although the model is based on simple electrophysiology, it
is sufficient for oscillating solutions that cause vasomotion.

The model is not complete as it does not directly take into account other
factors that can affect vascular smooth muscle activity. For example, nitric
oxide (NO) affects the open probability of the potassium channels, which
affects the dynamics of the membrane potential, and ultimately the dynamics
of the vessel radius. It will be shown in Chapter 4 that a simple change in
one parameter can abolish cyclic activity and result in a static vessel. It is
likely that such a parameters is in fact influenced by external factors that
can place the vessel in an 'oscillatory domain’ and a ’resting state domain.’

The next chapter looks into conditions under which the model, placed
in the resting state domain, can account for characteristics of the myogenic

response and the maintenance of myogenic tone.
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Chapter 4

The myogenic response and the

regulation of myogenic tone

The myogenic response is the ability of vascular smooth muscle to relax and
contract in response to a change in blood pressure to regulate local blood
flow [1]. Figure 4.1 illustrates the myogenic response observed in the skeletal
muscle vascular bed of the dog. From a control pressure of 100 mmHg, the
pressure was abruptly changed and the corresponding flow was immediately
measured (solid circles). The flow was measured again under steady-state
conditions, achieved after 30-60 seconds (open circles) [1]. In this example,
the smooth muscle cells are successful at relaxing or contracting to maintain a
constant flow rate for pressures ranging between 20 and 130 mmHg. At higher
pressures, the smooth muscle cells are not as successful, but are successful at

reducing the flow significantly.
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Figure 4.1: Pressure-flow relationship in the skeletal muscle vascular bed of
the dog. Closed circles represent the muscle blood flow obtained immedi-
ately after abrupt changes in perfusion pressure from the control level of 100
mmHg. Open circles represent the steady-state flow obtained at the new
perfusion pressure [1]. Plot taken from Berne and Levy [1], redrawn from
Jones et al. [18]
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The myogenic response and vasomotion are both a result of smooth mus-
cle activity, which makes it a reasonable hypothesis that they are related
phenomena [7, 32, 33]. The model for vasomotion presented in Chapter 3
is based on simple physiology of vascular smooth muscle. If it is true that
vasomotion and the myogenic response are related, then characteristics of the
myogenic response should be present in the model. In this chapter, mecha-
nisms believed to be responsible for the myogenic response are investigated
in the context of the model.

The first requirement for the model to account for myogenic behaviour is
that is must be able to predict a stable steady state. A steady-state solution
with v = —64 mV is obtained by setting v; = —16, which is in agreement
with the reference resting membrane potential used by Harder [14] in his ex-
periments. The solution of the modified model is shown in Figure 4.2 (solid
curves). The vasomotion solution from Figure 3.6 has been superimposed for
comparison (dotted curves). The resting vessel has a membrane potential
less than that of vasomotion, which results in a reduced intracellular calcium
concentration, relaxed muscle and hence greater radius. Note that modify-
ing the parameter v; is not the only way to obtain a steady-state solution,
however it will be the only one considered here.

During the myogenic response, membrane depolarization and an increase
of intracellular calcium is observed. It is the increase of intracellular calcium
that is believed to be involved in the initiation of the myogenic response. Sec-

tion 4.1 will focus on proposed mechanisms for the initiation of the myogenic
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Figure 4.2: Steady-state solution (solid curves) for v, Ca;, w, and r. Parame-
ter values are as listed in Table 3.1, except v; = —16. The vasomotion solution
from Figure 3.6 has been superimposed for comparison (dotted curves).

46



response in the context of the model. However, after an initial transient,
intracellular calcium concentration is observed to return to normal levels
while stress production is maintained [4]. This observation has prompted
investigation into the existence of alternate regulatory mechanisms that are
responsible for the maintenance of myogenic tone [4]. In Section 4.2, a pro-
posed mechanism for the maintenance of myogenic tone is discussed in the

context of the model.

4.1 Initiation of the myogenic response

In this section, two theories on the cause of the initial increase in intracellular
calcium concentration that is observed during the myogenic response are
presented.

There is evidence of an ion channel that is sensitive to stretching of the cell
membrane. These stretch-activated channels (SAC) are cation nonspecific,
but contribute to the influx of ions which leads towards cell depolarization [4].
Depolarization increases the open probability of the voltage-dependent cal-
cium channels, which in turn leads to an increase in intracellular calcium.
In Section 4.1.1, currents due to stretch-activated channels are added to the
model, and the qualitative behaviour of the modified model in response to
stretch is demonstrated.

Even in the absence of extracellular calcium, an increase of intracellular

calcium is observed in stretched vascular smooth muscle [4]. This observation
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suggests the existence of an intracellular calcium store which can release
calcium into the cytosol in response to stretch. In Section 4.1.2, the dynamics
of an intracellular calcium store are added to the model, and the response of

the modified model to an applied stretch is investigated.

4.1.1 Stretch-activated channels (SAC)

The existence of a stretch-activated ion channel may be sufficient to explain
the initial depolarization of the membrane potential and the increase in in-
tracellular calcium observed in stretched vascular smooth muscle cells. A
depolarization of the membrane potential activates the voltage-dependent
calcium channels which causes an increase in intracellular calcium, further
depolarization, and the required stress production.

Kirber et al. [19] identified a cation nonspecific stretch-activated channel
in the toad stomach permeable to Nat, K*, and Ca?*, with unitary conduc-
tances of 58, 66, and 18.5 pS, respectively. It is the Na* current through this
channel that is believed to initiate depolarization which in turn activates the
voltage-dependent calcium channels [4].

The initial effect of a stretch-activated ion current on the steady state
solution will be considered by introducing a current, I, to equation (3.13)

to give

d:
d_:: = —[gxn - (v — vk) + gcaMoo (v) - (v —vea) + g1+ (v —w) + L] C7T.
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Since sodium is believed to be the ion which causes the initial depolarization,
let Iy = gnes - (v — Una)», Where gng, s, and vy,, are the maximum whole-
cell conductance of the sodium channels via the SAC, the fraction of open
stretch-activated channels, and the sodium Nernst potential, respectively.
The analysis will treat s as a parameter and the effect on the steady-state
value of r will be analyzed. Ideally, the dynamics of s would be required,
with a suitable dependence of s on 7.

The analysis will assume a fast potassium channel to abolish oscillating
activity by setting ¢, = 5- In Figure 4.3, the nullclines of v and n with s =0
are shown (solid curves). This situation corresponds to a stable steady-state
at v & —64 mV. Increasing s to s = 1 causes the nullcline for v to deform
and shift upwards (dotted curve). The new steady-state value of v is at
approximately —28 mV. Without the fast potassium channel assumption, this
steady-state would be the center of a stable limit cycle with small-amplitude
oscillations. The fast potassium channel was assumed here to eliminate these
oscillations.

With an increase of the membrane potential, v, the fraction of open cal-
cium channels increases which causes an increase in intracellular calcium and
a corresponding reduction of the radius, r. Figure 4.4 gives the steady-state
dependence of the membrane potential, v, and the radius, r, on the parame-
ter s. The figure shows that a reduction in radius can be accomplished by an
increase of s. In reality, s would not be a parameter, but somehow depen-

dent on stretch (changes in r from rest). It seems counterintuitive that this
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Figure 4.3: Nullclines 2

0

& = & = (, with gnva = 1, unva = 40 mV, and
¢n = 5. The intersection of the nullclines represents a stable steady state
with v & —64 mV. When s is increased, the % = 0 nullcline moves in the
direction of the arrow. The dotted nullcline shown is with s = 1. The applied
current yields a new steady-state at v =~ —28 mV.
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Figure 4.4: Steady-state dependence of the membrane potential, v, and vessel
radius, 7, on the fraction of open stretch-activated channels, s.
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mechanism would work. Namely, if s increases in response to an increase in
T, the eventual reduction of r due to s would abolish the stretch stimulus
for s. The severity of this paradox depends on the dynamics of s on r. As
shown in Figure 4.1, there is a 30-60 s delay in the activation of the myo-
genic response. This delay could be due to slowly activating stretch-activated
channels. Similarily, a delay may also be present in the deactivation of s in
response to changes in 7, such that the removal of the stretch stimulus does
not have an immediate effect on s. On the other hand, the stretch-activated
channels may only have a short-lived effect on the intracellular calcium con-
centration, before another mechanism, such as the one discussed in Section

4.1.2, dominate.

4.1.2 Intracellular calcium stores and IP;

A rise in intracellular calcium concentration in stretched vascular smooth
muscle has been observed in the absence of extracellular calcium [4]. This
observation suggests the involvement of an intracellular store for calcium
ions. The sarcoplasmic reticulum (SR) is an intracellular organ with stor-
age of calcium ions as its primary function. The SR takes in calcium via
an ATP pump and releases calcium in response to 1,4,5-triphosphate (IP3)
stimulation [1].

Kulik et al. [20] studied the effect of stretching vascular smooth muscle
cells on the concentration of intracellular IP3;. They determined that with a

stretch of 20% from rest, IP3 was increased after 25 s but returned to control
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Figure 4.5: Experimental record of the relative change in intracellular IP;
concentration of vascular smooth muscle after a single 20% stretch. Plot
taken from Kulik et al. [20]

levels after 45 s [20], as shown in Figure 4.5. Since IP; stimulates the release
of calcium from the SR [1], it is likely that this contributes to the initial
increase of intracellular calcium observed during the myogenic response.

In order to investigate the role of the SR in the context of the model,
equation (3.15) for the intracellular calcium concentration is modified by
adding a term that describes the flux of calcium across the membrane of the
SR. An equation describing the dynamics of the calcium concentration in
the SR, Ca,,, is introduced as well. The new calcium-handling equations are

based on those found in Bertram et al. {2], and are as follows:

dCa; _ l Plear _ RN JCT,P
% = [( Py +O°°) (Casr — Cay) Pipa] (4.1)

+ [—alce — kcaCas] p,
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with

Ooo = aooboohooa

Jus _ , _Cal
Pz~ “PCa?+90%’
a = —___Ca,;
*® 7 Ca;+ 100’
b — 1P;
e IP; + 200°
ho = 400
*° Ca; + 400’

and %::, A, O, Verp, and IP; are parameters. Default values of these param-
eters are listed in Table 4.1. The second term of equation (4.1) is familiar as
it is the same as in equation (3.15), and models the calcium flux through the
cell membrane. The first term of equation (4.1) and equation (4.2) models
the transport of calcium ions between the cytosol and the SR. In partic-
ular, the Elpf:: (Casr — Ca;) term models the leak transport rate of calcium
ions from the SR to the cytosol, and the Oy (Casr — Ca;) term models the
transport rate of calcium ions from the SR to the cytosol which depends on
the intracellular calcium concentration, Ca;, and the IP; concentration. The
dependence of Oy on Ca; is via the a,, and the ho terms. The a., term
models activation in response to an increase of Ca;, and the Ao term mod-

els deactivation with excessive amounts of Ca;. The dependence on the IP3
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| Parameter | Units | Value |

A s 0.25
o 5
Verp nM 240
Hleat 0.02

ip3
kca st 70
p 0.01

Table 4.1: Parameters used in the modified model that incorporates the
intracellular calcium stores.

concentration is sigmoidal, and increases with an increase in IP;. Finally,
the J;f—:f term models the take-up of calcium back into the SR via the ATP
pumps, with a sigmoidal rate dependence on Ca;.

The effect of releasing calcium from the SR to the cytosol in response to
IP; on the vessel radius is considered. In this model, changes in intracellular
calcium have no effect on the membrane potential. Although there is evidence
of ion channels that are sensitive to the intracellular calcium concentration,
they are neglected in the model. Therefore, assume a resting vessel with
Ap = 50 mmHg and v = —60 mV. At time £ = 10 s, Ap is raised to 200
mmHg. The increase in Ap causes a quick increase in the vessel radius, r,
which can be seen in the fourth panel of Figure 4.6. At this time, IP; is
assumed to begin increasing, reaching a maximum level at ¢ = 35 s, and
then returning to normal levels by ¢ = 55 s, mimicking the observation made
by Kulik et al. [20]. The form of the IP;-versus-time curve is motivated by
Figure 4.5, and is assumed to be bell shaped, as shown in the top panel of

Figure 4.6. The lower panels show the response of Ca,,, Ca;, and the radius
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as functions of time.

Transport of calcium from the intracellular stores to the cytosol occurs
as soon as IP3 starts to increase, with a corresponding change in radius
shortly after. Intracellular calcium increases for about 20 s before starting
to decrease. The decrease is likely due to activation of the ATP pumps in
the cell membrane. At about 45 s after the initial stretch, IP3 returns to
control levels [20], which ceases the transport of calcium from the SR to the
cytosol. At that point, intracellular calcium is returned to control levels,
muscle contraction ceases, and the radius increases. Although it is barely
noticeable in the figure, the calcium concentration in the SR slowly begins
to increase back to control levels.

This modified model qualitatively shows that introducing the intracellular
calcium stores that respond to increases in IP3 by releasing calcium into the
cytosol can account for the initial myogenic response seen in vascular smooth
muscle. However, it does not demonstrate the maintenance of myogenic tone
after calcium is returned to control levels, as seen at ¢t = 51 s when the radius
returns to resting levels. The maintenance of myogenic tone is believed to

be due to a secondary mechanism, dealt with in the next section.
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Figure 4.6: Solution of the vasomotion model modified to account for IP;-
induced release of calcium from the intracellular stores. The system assumes
that v is held constant at v = —60 mV. For the initial 10 s, Ap = 50 mmHg
before being set to Ap = 200 mmHg for the remaining 70 s. Top panel: At
t =10 s, IP; is assumed to increase and peak at ¢ = 35 s before tapering off
at about ¢ = 55 s. Bottom three panels: Response of calcium concentration
in the SR, intracellular calcium, and radius.
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4.2 A mechanism for the maintenance of myo-

genic tone

After the initial myogenic response, it is observed that the calcium concen-
tration returns to control levels while stress production is maintained. This
observation suggests the existence of a secondary mechanism responsible for
maintaining the myogenic tone, different from those discussed in Section 4.1.
In this section, a secondary mechanism which may be involved in the regu-
lation of myogenic tone is examined.

Intracellular Protein Kinase C (PKC) has been shown to sensitize the
contractile apparatus to intracellular calcium, such that a lower calcium con-
centration is required for stress production [30]. Furthermore, there is in-
direct evidence that suggests PKC is tonically active in pressurized arteries
that exhibit myogenic tone [25], which suggests its role in the maintenance
of myogenic tone.

The modulation of the sensitivity of muscle stress production on intracel-
lular calcium concentration can be modeled by varying the Ca;,, parameter
in equation (3.21). Varying this parameter effectively alters the sensitivity
of phosphorylation to the intracellular calcium concentration. In particular,
decreasing Ca;,, causes a left shift in 7, and results in the ability to maintain
muscle activation at lower intracellular calcium concentration levels than be-
fore. An assumption for the analysis that follows is that the intracellular

calcium concentration is steady at Ca; = 100 nM, which is consistent with
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that of resting vascular smooth muscle [29]. The steady-state muscle activa-
tion, w, and radius, r, as a function of Ca;, is shown in Figure 4.7, for various
values of Ap. The figure shows that decreasing the parameter Ca;,, (increas-
ing the sensitivity) increases the muscle activation, w, and hence decreases
the radius, 7.

For example, suppose a vessel is at rest with Ap = 50 mmHg and the
calcium sensitivity, Ca;, = 350 (default value). Under these conditions, the
vessel will have a radius of approximately r = 0.026 c¢cm (solid curve). An
increase of pressure to Ap = 200 will increase the radius to approximately r =
0.034 cm (dotted curve), well above the resting radius. The initial myogenic
response will decrease the vessel radius (as discussed in Section 4.1), but will
not be able to maintain the new radius for very long. Stress production can
be maintained by decreasing the Ca;, parameter such that less calcium is
required for stress production. For this example, letting Ca;,, = 150 brings
the system with Ap = 200 mmHg to a radius of approximately r = 0.024

cm.

4.3 Discussion

In this chapter, modifications to the vasomotion model presented in Chapter
3 were discussed in order to account for the myogenic response. In particular,
two mechanisms for the initiation of the myogenic response and another for

the maintenance of myogenic tone were presented.
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Figure 4.7: Steady-state dependence of muscle activation, w, and radius, 7, on
the calcium concentration sensitivity parameter, Ca;,,, for various transmural
pressures, Ap. The intracellular calcium concentration is held fixed at Ca; =

100 nM.
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There is at least one additional hypothesis for the maintenance of myo-
genic tone. This hypothesis is based on a careful accounting of the various
states of the myosin molecules involved in muscle stress production. In the
model discussed in this thesis, three states for myosin are assumed: 1) un-
phosphorylized and unattached to actin, 2) phosphorylized and unattached
to actin, and 3) phosphorylized and attached to actin. The “latch state” is a
hypothesized fourth state for myosin that is unphosphorylized, still attached
to actin, and producing stress [13]. Hai and Murphy [13] developed a kinetic
model that essentially predicts the same fraction of attached crossbridges, w,
for a reduced intracellular calcium concentration, Ca;, and a reduced fraction
of phosphorylized crossbridges, 1. The latch state model could be incorpo-
rated into the vasomotion model of Chapter 3. However, the same effect of
the latch state model can be accomplished by varying the Ca;, (as was done
in this chapter) and ¢,, parameters from equations (3.16) and (3.21), respec-
tively. The advantage of the Hai and Murphy [13] model is that the transient
solutions for changes in the intracellular calcium concentration qualitatively
agree with experimental data. In conclusion, the latch state hypothesis can
be modeled by varying the two parameters in the existing model, but it might

be more interesting to consider the dynamical model of Hai and Murphy [13].
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Chapter 5

Discussion and conclusions

In this thesis, some phenomena observed in resistance-sized vessels that are
due to the action of vascular smooth muscle cells surrounding the vessel were
examined. The myogenic response is the ability of vascular smooth muscle to
contract or relax in order to regulate local blood flow in response to changes in
blood pressure. Blood vessels are also observed to exhibit vasomotion, which
is the spontaneous oscillation of the vessel radius. The purpose of vasomotion
is not clear, but it is known to have an effect on vascular resistance and blood
flow. It has also been hypothesized to be related to the myogenic response.
In Chapter 2, a model for the effect of vasomotion on blood flow and
vascular resistance was analyzed. There is controversy in the published liter-
ature about the effect of vasomotion is analyzed on vascular resistance. Funk
et al. [8] used a mathematical model to conclude that vascular resistance de-

creases with an increase in vasomotion amplitude, while Gratton et al. [11]

62



concluded the opposite. In this thesis, the modeling was reviewed and it was
concluded that vasomotion alone decreases vascular resistance, in agreement
with the modeling work of Funk et al. [8]. The disagreement with the mod-
eling of Gratton et al. [11] stems from a misinterpretation of the definition
of vascular resistance. The definition of vascular resistance only applies to
steady-state flows or the steady-state component of flow. It is therefore not
valid to consider a time-dependent vascular resistance or the time-average of
it. “Time-dependent resistance” is actually the study of impedance theory
(see Nichols et al. [24]).

In the model of Funk et al. [8], the radius in Poiseuille’s law is assumed to
vary with time to give the instantaneous fluid volume flux at any moment.
There is a potential problem with this assumption in that Poiseuille’s law
is only applicable to steady-state flows, and flow is not at a steady state
during vasomotion. However, conditions were derived in Chapter 2 under
which the use of Poiseuille’s law in approximating vascular resistance during
vasomotion is legitimate.

Another potential problem with the model is the non-Newtonian prop-
erty of blood. This means that ;¢ in Poiseuille’s law is not constant, but
dependent on the flow characteristics. Blood plasma alone behaves like a
Newtonian fluid, but it is the suspension of red blood cells which makes it
non-Newtonian [24]. For steady flow, u is understood to be the effective
viscosity of the blood, and it deperrds on the fluid velocity, the vessel radius,

and the red blood cell concentration. The problem arises when the vessel

63



radius is varied. This alters the effective viscosity of the blood, which in turn
alters the fluid volume flux and the effective vascular resistance. For small
oscillations of vessels with a mean radius of 200-350 pm, the effective vis-
cosity does not change significantly [24] and can be considered constant (as
was done throughout this thesis). However, for capillary-size vessels, a small
change in the radius can have significant effects on the effective viscosity, and
more care must be taken with any analysis.

The analysis in this thesis only considered the local effect of vasomotion
on blood flow and vascular resistance. In reality, a blood vessel is a member
of a large network of vessels that are in series and parallel. If each vessel
were to be static, then the system can be modeled like a basic DC circuit
and the flow characteristics over any segment can be predicted. Vasomotion
in a vessel changes the dynamics of the network and causes fluctuations in
pressure which alters blood flow characteristics in other parts of the network.
It would be an interesting study to consider some basic networks of vessels,
and the effect of vasomotion in one or some of the vessels, in and out of
phase.

In Chapter 3, a model for vasomotion based on the model of Gonzalez-
Fernandez and Ermentrout [10] was reviewed. The electrophysiology of the
muscle cells is modeled by the Morris-Lecar [23] model, which models the
transport of calcium and potassium ions through the cell membrane, the
membrane potential, and the resulting intracellular calcium concentration.

Since intracellular calcium is the primary stimulus for muscle contraction,
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the calcium concentration is used to model the muscle activation, which is
combined with the mechanics of the vessel in order to determine the vessel
radius. The parameters of the model are such that an oscillation occurs in
the membrane potential, which causes oscillations throughout the system,
including that of the radius. This oscillation represents vasomotion.

In Chapter 4, modifications were made to the vasomotion model to inves-
tigate the validity of the theories on the mechanisms underlying the myogenic
response. In particular, two theories were investigated for the initiation of
the myogenic response, and one for the maintenance of myogenic tone. The
first theory for initiation is the existence of stretch-activated channels in the
membrane that causes membrane depolarization in response to cell deforma-
tion. Cell depolarization increases the flux of calcium into the cell and hence
muscle contraction. The second theory is that of an intracellular calcium
store that releases calcium into the cytosol in response to IP3; stimulation.
Finally, a theory on the maintenance of myogenic tone was discussed and
an analysis on the sensitivity of the muscle contractile apparatus on the in-
tracellular calcium concentration was performed. The results of the chapter
give evidence that the vasomotion model can be extended to account for the
myogenic response. The analysis presented is qualitative, but invites further
research into the mathematics that describe smooth muscle physiology.

Since vascular smooth muscle activity regulates blood flow, it suggests
the existence of a control mechanism for vascular smooth muscle activity. It

is this control system that regulates the amount of muscle contraction such
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that the proper radius is achieved to bring blood flow back to control levels.
However, it is not exactly clear how this control mechanism works. A vessel
experiences a norimal stress from the transmural pressure (as discussed in
Chapter 4) and a shear stress from the intraluminal pressure gradient. It
is likely that these stresses regulate the myogenic response by causing the
release of chemical messengers that subsequently stimulate the contractile
apparatus of vascular smooth muscle. Some experiments have shown that
an intact endothelium (the cellular lining of the inner vessel wall) is required
for the myogenic response [14]. Furthermore, it has been shown that the en-
dothelium can release nitric oxide (a vasodilator) in response to shear stress,
and endothelin (a powerful vasoconstrictor) [1]. These observations suggest a
role for the endothelium in the control mechanism of smooth muscle activity,
and motivate future extensions of the model.

The analysis of the model has primarily dealt with the electrophysiology
that controls the intracellular calcium concentration. Future investigation of
the model may consider questions such as variations in the mechanical prop-
erties of blood vessels. These properties may include the observed stiffening
of blood vessels that occurs with aging. An initial analysis of this phenomi-
non would include changes in the elastic properties of the vessel, by altering
the properties of the elastic component of the free body diagram shown in
Figure 3.2. As the m(_)del stands, a smaller steady-state radius would be
predicted as a result of an increased vessel stiffness. However, this change in

radius would alter the blood flow characteristics which could alter the control
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mechanism for smooth muscle activity. This example highlights the impor-
tance of extending the model to account for the control system of vascular
smooth muscle by the blood flow.

In conclusion, the model reviewed in Chapter 3 can account for some
of the phenomena observed in blood vessels. It stands as a good founda-
tion for extensions to account for the myogenic response, and possibly other

mechanisms that control vascular smooth muscle activity.
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