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ABSTRACT

The results of a study of the behaviour of reinforced concrete
cellular orthotropic slabs is presented together with guidelines for
their design. The study was restricted to cellular flat plates supported
on non-deflecting columns with no edge beams or column capitals. The
variables considered were the stiffness properties of the slab, the span
ratio of the panéls, and the exterior column stiffnesses. An analysis

was performed by the method of finite differences.

Results of the study show that cellular orthotropic slabs behave
similar to solid isotropic slabs when the span ratio or the exterior
column stiffness is varied. Varying the stiffness properties of the slab
has Tittle effect on the total moment at any given section but has an
effect on the distribution of moments across the section. Slab deflections

are greatly effected by changes in slab stiffness properties.

Methods for approximating the distribution of moments across a
section and for calculating deflections for a cellular orthotropic slab

are presented.
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NOMENCLATURE

areas of the cross-sections perpendicular
to the x and y directions, respectively.

width of a cell unit perpendicular to the
x and y directions, respectively.

width of a cell perpendicular to the x
and y directions, respectively.

flexural rigidity or stiffness factors
for a cellular orthotropic slab.

torsional rigidity or stiffness factors
for a cellular orthotropic slab.

bx " bix
Eh3

0212 = flexural rigidity or stiffness

of a solid isotropic slab.

rigidity or stiffness factors of an
orthotropic plate.

modulus of elasticity.
modulus of elasticity for column concrete.
modulus of elasticity for slab concrete.

characteristic elastic properties of an
orthotropic material.

modification factor for column strip
moments for variations in the Dx/H ratio.

height or thickness of slab.

height of a cell,

height of column,

distance between finite difference grid

points in the x and y directions,
respectively.
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_ 5k Ecele/ht)

(D, + D, + Zny + ZDyX)/z

Tx ly
moment of inertia of column.

moment of inertia of the slab between
the centers of the spans either side
of column.

moments of inertia of the cross-sections
perpendicular to x and y directions,
respectively.

torsional constants for the cross-sections
perpendicular to x and y directions,
respectively.

factor reflecting the effect of support
conditions and variation in cross-section
on the flexural stiffness of a column.

factor reflecting the effect of support
conditions, variation in cross-section
and shape of panel on the flexural
stiffness of a slab.

= relative flexural stiffness
X(kSEcsIs/1x) of the columns above and

: below the slab to the
flexural stiffness of the
slab.

length of span for which the moments are
being determined.

length of span transverse to ]x'

total static moment of a panel.

bending moments per unit Tength of cross-

sections perpendicular to x and y directions,

respectively.

twisting moments per unit length of cross-
sections in rectangular coordinates.

load per unit area.
shearing forces on cross-sections

perpendicular to x and y directions,
respectively.
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span ratio

t

1]

}x/ly = Tongitudinal to transverse span.

h-h_i

vertical displacement or deflections of
the slab.

rectangular coordinate directions.
distance from the neutral axis of any
point on the cross-section measured
perpendicular to the neutral axis.

normal stress components in the x and y
directions, respectively.

shearing stress components in rectangular
coordinates.

unit elongation or strain in x and y
directions, respectively.

shearing strain in rectangular coordinates.

bix/bx

biy/ by

hi/h

Poisson's ratio
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CHAPTER I

INTRODUCTION

1.1 Introductory Remarks

A reinforced concrete cellular orthotropic slab is a concrete
sTab which has an orthogonal network of cavities or cells which may or
may not extend to the top or bottom surface of the slab. The shape of
the cells or cavities is arbitrary but the dimensions of each cell are
small in comparison to the clear span of the slab. Because this type of
slab has a definite reduction in dead weight over a solid slab with
equivalent shear and bending moment capacities, it can be very useful
in slab construction, especially in structures with long spans where

the dead weight is the major part of the total load.

Generally, the use of this type of slab construction has heen
restricted to slabs with equal stiffness properties in the two coordinate
directions (square waffle slabs} where the slab behaviour is similar to
that of a solid isotropic slab. To date there has been little to guide
the designer in proportioning moments and predicting behaviour if the
cells are such as to cause different relative stiffnesses in the coordinate
directions. Therefore, the purpose of this research was to study the
behaviour of these slabs with different stiffness properties in the
coordinate directions, to determine how they differ from solid isotropic
slabs, and from this information to suggest guidelines for a rational

design of cellular slabs.



1.2 Review of Related Literature

In a review of English language publications a fairly large
number of articles were found on orthotropic plates. However, practically
all these articles either were dealing with orthotropic steel plates or
were restricted to special boundary conditions not usually found in

concrete slab construction.

In 1964 F. Pfeffer!) published an article entitled "Stahlbeton-
ZeTlworke" {Reinforced Concrete Cellular Structures) which deals with the
type of cellular slab construction being considered in this study.

Pfeffer derived expressions for the stiffness constants for various types
of cell units and presented an example of an analysis for_a cellular slab
supported on a very irregular boundary using a finite difference technique.
However, he did not attempt to determine the effect of variations in the
stiffness properties on slab behaviour and to draw general conclusions

which would give direction in the design of cellular slabs.

1.3 Scope of Study

This study was restricted to cellular flat plates with no edge
beams or column capitals. The cross-sections of the sTab could be
different in the orthogonal directions, but for any cross-section the
cell units were of uniform size across the entire section. The loading

was considered uniform over the entire slab.



1.4 OQutline of Procedure

The analysis of a cellular slab involved two parts; firstly
the determination of the stiffness or rigidity properties and secondly
the determination of the deflections and bending moments. Expressions
for the stiffness factors for the most common types of cellular slabs
were derived using the procedure presented by Pfeffer(1). To determine
the deflections and moments in the slab a finite difference technique
was used. A computer program was written which, given the properties
of the slab, calculated deflections and moments. With this program the
properties of the slab were varied independently and the individual
effect of each property was studied. From these results guidelines for

the behaviour and design of cellular slabs were established.



! 2.1

(2)

Hearman

twisting moment equations for orthotropic plates are derived in

The theory of orthotropic elasticity is given in detail by

(3).

and to a Tesser extent by Timoshenko

CHAPTER II

CELLULAR ORTHOTROPIC THEORY

APPENDIX A and are as follows:
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where Dx’ D ,» and D are the stiffness or rigidity factors for

y? Dlx yx
an orthotropic plate. These stiffness properties, analogous to the
stiffness of a beam, can be effected by two factors, the elastic

properties of the material and the geometric properties of the cross-

section.
The plate equilibrium equation given by Timoshenko(B) is:
BZM BZM aZM BZM
Xy ALy YX 4 Y = _q (2.2)
ax2 XY IXoy Dy2

By substituting equations {(2.1) into (2.2) the differential equation for

orthotropic plates is obtained:

3w 3w atw _
Dy axm * Dy # D1y * Zny ¥ 2Dyx) a3xZay2" Dy ayr @
(2.3)
Using the notation:
H = (Dlx + DU + ZDXy + znyx)/z
the equation is changed to its standard form:
D, &M 4 oyt op A g (2.4)

2.2 Orthotropic Theory Applied to Ce11u1ﬁr Slabs

A cellular slab differs from the c1assica1.orthotropic plate
in that the elastic properties of its material can be assumed isotropic
with a constant modulus of elasticity. A cellular slab gets its ortho-

tropic character from the geometry of its cross-sections. Because of the



isotropic nature of the material the stress-displacement relationships

for an isotropic slab can be used for an orthotropic slab. They are as

follows:
_ Ez 32w 22w
% T ol e tvayz)
_ Ez 52w 32w
A ( 57 +v-§72—) (2.5)
Ez 22w
Txy = Tyx = T4y ° 90Xy

The basic equations for the bending and twisting moments of
a plate are given by the following integrals:

J'h/Z 4
M = o, zdz
X “h/2 X

J’h/Z '
M = g zdz
Y h/z Y (2.6)

j;h/z
M =
Xy 0/ Ty zdz

h/2

M_VX -—:&h/z T,YX zdz
If the cellular cross-section is known, equations (2.5) can

be substituted into equations (2.6) and the integration performed.

By comparing these equations with equations {2.1) the stiffness factors,

D.,D,, D D D..., and Dyx’ can be determined. This 1is the approach

x? Ty T1x? Tly? Txy
used by Pfeffer (]). Derivation of stiffness factors by this method
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is shown in detail for a prismatic cellular slab in the following section.

Derivations for other types of cellular slabs are shown in APPENDIX B.

2.3 Stiffness Factors for Prismatic Cell Units

The type of cellular slab considered here consists of prismatic
hollow bodies as shown in FIGURE 2.1. The characteristics of the cross-

sections can be given by the three expressions:

8 = ..._t.).i.).(. é = .ﬁL A= ...h.j. (2 7)
X by * ¥ by ? h )
Using the expressions for Ty30ys T y,'andwyx given by equations (2.5)
the equation for the bending moment Mx can be expressed as:
( h/2 hi/2 )
M. = — (b \5‘ b. Jﬂ o zdz
X b h/2 1X -h1/2 X
. E &’ 32w
) 12“‘“”3{5 wogy7 )
Similarly:
_ En3 3 32w 32w
My e (0827 gy * vagr) (2.8)
L (2 hy/2
Mxy W ’J-h/z Tyy 2 z -b /2 Tyy zdz)
_.g.,._h.g_. ('|.. 5 ;\3) ﬂ
T {1 N2 X aX3y



. _EN -5 23) %W
Mxy (1 w)T2 (1 GyA ) axay

Comparing equations (2.8) with equations (2.1) the stiffness factors

are as follows:

_ End 3 -
D = (Tv?2)12 (1- 8 2 ) = D.CX
D =Nl 53 = D.C
y ~ (T-vI)e y y
_ _VvE h3 - 3 -
D = reme (10 8°) =v-D-C
, (2.9)
E h
D, =—2T1_  (j-523) =v.0.C
Yo (1212 v y
. _Eh 3 - (1.
2DXy = WZ (]" (Sx?\ ) (] \)) D.ny
 _  Eh® (1-58.23) ! = (1-v) D.C
2Dyx T A+v)T2 Y yx

where
D . _E h3
(T-vZ12

is the stiffness of a solid isotropic slab and

1)

C = C

- 3
% Xy 1 8,

[
W
(4]
H

T - 823
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2.4 Stiffness Factors for Other Cell Units

For all types of cellular slabs the stiffness factors can be

expressed in terms of the four factors, CX, Cy, C.,. and C % where:

Xy y
Dx = D.Cx Dy = D.Cy
D1x = v.D.Cx D]y = v.D.Cy (2.11)
2ny = {T-v) D.ny ZDyx = (1-v) D.ny
and
H = D(vC, + va + (1-v} ny + (1-v) ny)/2 (2.12)

The factors, Cx’ Cy, ny, and ny, arg always less than or
equal to one. When they are all equal to one, the siab is solid and
isotropic. TABLE 2.1 gives the stiffness factors for the most common

types of cellular slabs.

2.5 Weight Reduction Factors

The big advantage in the use of cellular slabs is the saving
in dead weight. By dividing the volume of the cell unit removed by
the volume of a solid cell unit a weight reduction factor can be

obtained. These weight reduction factors are given in TABLE 2.1.
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CHAPTER III

METHOD OF ANALYSIS

3.1 Type of Slab Analysed

The slab analysed was a nine panel flat plate with quarter
symnetry as shown in FIGURE 3.1. This gave three different panel types,
interior, exterior and corner. There were no edge beams or column
capitals. The loading of the slab was assumed uniform. The columns
were considered non-deflecting and concentrated at a point. A study
by Simmonds and Seiss(4) has indicated that for relatively uniform
loadings the effect of varying the column bending stiffness for columns
across which the slab is continuous is negligible. Therefore, in this
study the bending stiffness of_co]umns in the directions where the slab
was continuous was considered constant and equal to infinity, but in the
directions where the slab was discontinuous the column stiffness was

considered a variable,
3.2 Finite Difference Method

The method of analysis was to replace, using a finite difference
technique, the governing differential equation (2.4) with a set of
simultaneous linear equation (see APPEMDIX C). The slab was divided
into eight divisions per panel in each direction giving a total of

169 equations.

12
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A Gauss-Jordan elimination technique was used to solve the
equations for deflections and these deflections were used to calculate

bending moments.

Results were obtained using a computer program which given the
input of the span ratio, the exterior column stiffness, and the stiffness
properties of the slab gave an output of deflections and bending moments.

This program was run on an IBM 360 MOD/67 computer.

A statics check was performed on the bending moments calculated
by the analysis comparing the total moment in a span with the theoretical
static moment. 1In all cases the moment from the analysis was within 2%
of the theoretical value and that was considered satisfactory for this

study.
3.3 Choice of Parameters
3.3.1 Slab Stiffness Parameters

The stab stiffness factors, Dx, D.,, and H, given in CHAPTER II,

Y
can be expressed as the dimensionless ratios, DX/D, Dy/D, and H/D, where
D is the stiffness of a solid isotropic slab of the same thickness. How-

ever, a more convenient form of expressing these ratios for this study

was found to be in terms of Dx/D’ Dx/Dy’ and Dx/H'

The bending stiffnesses, Dx and Dy, of a slab can not be varied

without effecting the twisting stiffness and the value of H. However,

the relationship between Dx’ Dy, and H varied with the type of cellular

slab. An approximate relationship given by Timoshenko(3) is H =/ Dny



14
or in another form D /H = JT%?TE; This approximation was first used
by M.T. Huber and is commonly referred to as Huber's approximation.
While the effect of variable Dx/D and Dx/Dy ratios was being studied,

D /H was equal to /*5;75;. Later the D /H ratio was varied with D, /D

and Dx/Dy constant.

After studying the stiffness constants for cellular slabs
given in TABLE 2.1 and considering the Timiting cases which would be
practical to build,ranges of values for the stiffness factors were
established. For some factors the range was set beyond practical values
to show their effect in very extreme cases. The ratio Dx/D was
considered to vary from 0.1 to 1.0, Dx/H from 1.0 to 20.0, and Dx/Dy
from 0.25 to 4.0.

3.3.2 Other Parameters

Besides the stiffness properties of the slab the other
parameters which were considered were the span ratio, the ratio of
exterior column stiffness to slab stiffness, K', and Poisson's ratio,

v. The span ratio was allowed to vary from 0.5 to 2.0 which are the
Timits of the proposed Reinforced Concrete Building Code ACI 3]8—71(5).
WhiTe the span ratio and the stiffness properties were varied the ratio
of the exterior column to slab stiffness was held constant at K' = 25,
corresponding to a condition of very stiff exterior columns. Later K'
was varied with values from 0 to 25. The definition used for K' was the
same as given in the current draft of the proposed ACI 318-71 Code.

The actual slab stiffness, Dx or Dy, not the solid slab stiffness, D,
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was used as the slab stiffness to which the column stiffness was compared.
In cellular slabs the concrete can expand laterally and the Poisson's
ratio effect cannot greatly influence the stresses. Therefore, Poisson's

ratio, v, was assumed equal to zero for this study.
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CHAPTER 1TV

PRESENTATION AND DISCUSSION OF RESULTS

4.1 Introduction

The total static moment, Mo, in a slab panel depends only on
the clear span between columns and the load, and does not depend on the
stiffness properties of the slab. 1In the proposed Reinforced Concrete
Building Code, ACI 318-71(5) this total moment is first split between
the negative and positive sections of the panel. The moment assigned
to each section is then proportioned between column and middle strips and
is assumed constant across each strip. The current draft of proposed
ACI 318-71 defines the column strip as one quarter of the short span
either side of the column and the middle strip as the strip between two

column strips.

In order that they may Ee helpful in design, the results of
this study are presented in a form which can be easily related to the
proposed ACI Code. The amount of moment in the negative and positive
~sections is shown as a percentage of the total moment, Mo, and the
amount of moment in the column strip is shown as a percentage of the
moment at that section. The definitions of column and middle strips

are the same as given by ACI 318-71.

17
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4.2 Co-ordinate System

In the co-ordinate system used to present the results the
X-span is always the span in which the moments are being determined
or the Tongitudinal span and the Y-span is always the transverse span.
Ratios such as Dx/Dy and the span ratio change when the span being
considered changes. For example a panel which has a span ratio of 2.0
when the Tong span moments are being considered has a span ratio of 0.5

when the short span moments are considered.
4.3 Variable Dx/D Ratio

Decreasing the Dx/D ratio while Dx/Dy is constant and Dx/H
=/_ﬁ;7ﬁ; (Huber's approximation) weakens the slab proportionally in
both bending and twisting stiffnesses and is analogous to decreasing
the thickness of a solid isotropicrslab. A1l the stiffness properties
of the slab decrease and the curvatures and deflections increase, but
the moments, which are stiffnesses multiplied by curvatures, remain

unchanged.

These conclusions were confirmed by the results of this study
which showed that when Dx/D was varied with Dx/Dy constant and Dx/H =
/Fﬁ;7ﬁ; the moments in the slab remained constant while the deflections
increased directly proportional to the inverse to Dx/D‘ Therefore, in
the design of a cellular orthotropic slab the Dx/D ratio need only be

considered when checking deflections.
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4.4 Variable Dx/Dy Ratio

4.4.1 Dx/Dy -~ Span Ratio Analogy

If Dx/Dy = 1.0 and D /H = /ﬁ;7ﬁ;= 1.0, an isotropic condition

exists with the stiffness properties equal, DX = Dy = H. If Dx/Dy is

not equal to 1.0, the slab is stiffer in one direction than in the other
and the curvature in the weak direction increases relative to the
curvature in the strong direction. If the span ratio is not equal to 1.0
the curvature in the Tong span increases relative to the curvature in the
short span. Therefore, stiffening the siab in the longitudinal direction
has an effect similar to increasing the span in the transverse direction,

and increasing Dx/Dy can be thought of as analogous to decreasing the

span ratio.

4.4.2 Negative-Positive Moment Split

FIGURES 4.1, 4.2, 4.3 and 4.4 give the negativerositive moment
split for a variable Dx/Dy ratio for interior, exterior and corner
panels, respectively. For comparison the design values for an interior
panel of a solid isotropic slab given by the Reinforced Concrete Building
Code, ACI 318—63(6) and the proposed ACI 318-71 Code(5) are shown 1in
FIGURE 4.1.

FIGURE 4.1 shows that for Dx/Dy = 1.0 the amount of negative
moment is fairly constant for span ratios greater than 1.0 but when the
span ratio is less than 1.0, the amount of negative moment decreases
with a drop of about 3.5% of the total moment, Mo, between the span

ratio of 1.0 and the span ratio of 0.5. When DX/Dy is increased above



20
1.0, the slab is made relatively weaker in fhe transverse direction.
Using the analogy between Dx/Dy and the span ratio this would have an
effect similar to increasing the transverse span and decreasing the span
ratio. As seen in FIGURE 4.1 for high span ratios, which have little
influence on the negative moment, increasing Dx/Dy also has Tittle
influence. However, for span ratios less than 1.0, where decreasing
the span ratio decreases the negative moment, increasing Dx/Dy also
decreases the moment with a decrease of about 3% of Mo between Dx/Dy
= 1.0 and Dx/Dy = 4.0. When Dx/Dy is Jess than 1.0 there is a similar

but opposite effect.

The results for the exterior and corner panels shown in
FIGURES 4.2, 4.3 and 4.4 are similar to those for the interior panel.
The positive moments in a corner panel and perpendicular to the free edge
in an exterior panel are constant and are not influenced by either the
span ratio or Dx/Dy' The internal and external negative moments vary more
than the negative moments for an interior panel with variation of as much
as 10% of Mo for the span ratio and 6% of Mo variation between Dx/Dy = 1.0

and Dx/Dy = 4.0. The exterior negative moment increases rather than

decreases with a decrease in the span ratio.

4.4.3 Column-Middle Strip Moment Split

FIGURES 4.5 to 4.12 show the column strip moments for negative
and positive section for the three types of panels, interior, corner
and exterior, for variations in Dx/Dy with Dx/H =y Dx/Dy‘ In each

figure the design value for a solid isotropic slab given by proposed
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act 318-71%5) is shown.

FIGURES 4.5 and 4.6 show that for an interior panel when
Dx/Dy = 1.0, the amount of moment in the column strip decreases with an
increase in the span ratio. This can be explained by the fact that as
the span ratio increases the Tongitudinal curvature increases relative
to the transverse curvature and the transverse curvature becomes

unimportant. The curvature in the longitudinal direction becomes fairly

‘uniform across a section and the moment is more uniformly distributed

across a section. Therefore, the moment in the column strip will tend
towards 50% of the moment in the section as the span ratio tends to in-

finity.

At the span ratio equal to 1.0 there is a discontinuity in the
curve. This is caused by the fact that when the span ratio becomes Tess
than 1.0, the transverse span becomes the Tong span and since the column
strip is one quarter of the short span either side of the column, the
width of the column strips now varies with the span ratio. If the column
strip had remained one quarter of the transverse span the curve would
have continued as a smooth curve for span ratios less than 1.0 with no

discontinuity.

When Dx/Dy is increased above 1.0, the slab is stiffened in
the Tongitudinal direction which can be thought of as similar to an
increase in the transverse span and a decrease in the span ratio.
FIGURES 4.5 and 4.6 show that, as with decreasing the span ratio,
increasing Dx/Dy above 1.0 increases the amount of moment in the column

strip. Similarly, the amount of moment in the column strip decreases
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when DX/Dy is decreased below 1.0. The increase in column strip moment
between Dx/Dy = 1.0 and Dx/Dy = 4.0 varies from about 8% to 15% of the

moment at the section.

Results for corner and exterior panels in FIGURES 4.7 to 4.12
show that the effect of Dx/Dy on the column strip moments in these

panels is similar to the effect in the interior panel.

4.5 Variable DX/H Ratio
4.5.1 Negative-Positive Moment Split

FIGURES 4.13, 4.14 and 4.15 give the amount of moment in the
negative section of the slab for variations in the Dx/H ratio for the

interior, exterior, and corner panels, respectively.

For a given Dx/Dy ratio the amount of negative moment is not
greatly influenced by changes in Dx/H' The maximum variation for the
interior panel is only about 1% of the total moment, Mo, for Dx/Dy = 4.0.
For exterior and corner panels the variation increases slightly with a
maximum of about 3.5% of the tctal moment, Mo, for Dx/Dy = 4.0 in the

corner panel.

4.5.2 Column-Middle Strip Moment Split

While the effect of variations in the Dx/Dy ratio on the
column strip moment was examined, the assumption was made that Dx/H =
/ﬁﬁ;7ﬁ; (Huber's approximation). FIGURES 4.16, 4.17 and 4.18 show the
effect of DX/H not equal to /ﬁ;?ﬁ; on moments in the column strip for the

three types of panels. The results are shown in terms of a factor, F,
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which represents the amount of moment in the column strip at a particular
Dx/H value diyided by the amount of moment in the column strip when

D/t = f'D‘”x/'Dy' .

If D /H is increased above /ﬁ;?ﬁ;? the column strip moment
increases, while if D /H is decreased below /5;75; the column strip
moment decreases. When Dx/H is increased, the twisting stiffness
decreases relative to the bending stiffness. As this happens the slab
tends to behave more and more 1like a series of unconnected beams with
more of the Toad being transferred directly to the ends of the beams
and into the column strip with less load being carried by the middle

strip.

The results for the three types of panels are very similar but
in each case there is a fairly wide scatter of values, especially for the
positive moments. FIGURE 4.19 is a composite of the results for negative
column strip moment for the three types of panel and as can be seen from
the figure there is much 1less scatter. These results can be approximated

by the curve shown in the figure.

Since the positive moments are smaller than the negative moments,
a large change in the percentage of positive moment in the column strip
does not reflect as large a change in the absolute value of the moment
as would be the case for negative moment. Therefore, there can be
larger errors in the approximation of distribution for positive moments
than for negative moments without causing serious problems. Since the
scatter for positive moments is on both sides of the negative values,

the curve in FIGURE 4.19 can probably be used as a good approximation
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for positive as well as negative moments.
4.6 Variable Column Stiffness

In all the previous results the ratio of exterior column to
slab stiffness was kept constant, K' = 25. FIGURE 4.20 shows the effect
of varying the exterior column stiffness on the hegative - positive
mcment split for moments in a corner panel and for moments perpendicular
to the free edge in an exterior panel. The moments in an interior panel
and the moments parallel to the free edge for an exterior panel were not

effected by variations in the exterior column stiffness.

The éxterna] negative moment increases rapidly as the column
stiffness increases from zero. At the same time the positive and internal
negative moments decrease. However, as the column stiffness becomes
larger the changes in moment become smaller and for K' values greater
than T0 the positive and negative moments are almost constant. This
agrees with the results obtained by Simmonds and Seiss(4) for solid
isotropic slabs. The effect of changing Dx/Dy from 1.0 to 4.0 is very
small with a maximum variation of about 2% of the total moment, Mo,

which can be considered negligible.
- 4.7 Deflections

The deflections in a slab are effectgd by the Dx/D’ Dy/D,
and H/D ratios. However, from the results of the analysis it was
observed that the effect of the H/D ratio was small compared to the -
effect of Dx/D and Dy/D. Therefore, it was thought that it might be

possible to approximate the deflections in a cellular slab by using
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only the Dx/D and Dy/D ratios. TABLE 4.1 gives the maximum slab
deflections for interior, exterior, and corner panels for a typical range
of stiffness properties. These deflections are compared to the results
obtained by multiplying the deflection for a solid isotropic slab,

Dx/D = Dx/D = H/D = 1.0, by the average of the inverse of DX/D and

Dy/D, (D/Dx + D/Dy)/2.

The agreement for the interior and corner panels is very good.
For the interior panel the approximation tends to underestimate the
deflections for low values of H/D with the theoretical value a maximum
of about 4% higher than the approximate value. For the corner panel the
approximation tends to overestimate the deflections with the theoretical
deflection about 4% less than the approximate value when H/D = 1.0. In
the exterior panel the agreement is not so good especially when the
value of DX/D‘y is not near 1.0. For DX/Dy = 4.0 the theoretical deflection

may be as much as 20% greater than the approximate value.
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CHAPTER V

DESIGN CONSIDERATIONS

5.1 Stiffness Properties

One of the first problems in the design of cellular slabs is
to determine the stiffness properties. TABLE 2.1 gives the formulas for
the calculation of the stiffness factors for three types of cellular
slabs. These three types of slabs would cover most of the cellular slabs
that would be built. However, if the stiffness properties for a different
type of cellular slab were required, they could be derived using procedures
similar to the procedures used for the types of slabs given. These

procedures are outlined in CHAPTER II and in APPENDIX B.

The stiffness properties are most conveniently expressed in
terms of the dimensionless ratios, DX/D, Dx/Dy’ and DX/H, where the X-span
is always the longitudinal span or the span in which the moments are

being determined and the Y-span is the transverse span.

5.2 Negative-Positive Moment Split

Neither the Dx/Dy nor the DX/H ratio has any great effect on
the negative-positive moment split. In all cases the effect of the
span ratio on the moment split is as great or greater than the effect
of Dx/Dy or Dx/H and in present design practice the span ratio is not

considered a factor in determining the negative-positive moment split.
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For moments in interior panels and parallel to the free edge in exterior
panels the negative-positive split can be assumed constant. For moments
in corner panels and perpendicular to the free edge in exterior panels
it can be assumed to be a function only of the exterior columns stiff-
nesses. Therefore, the same criteria use to determine the negative-
positive split for solid isotropic slabs can be used for cellular ortho-

tropic slabs.

It should be noted here that the maximum amount of moment that
could be carried in the external negative section for exterior and
corner panels for very stiff columns was found to be about 30% of the
total static moment, Mo. This is considerably less than the value of 65%
given in the current draft of the proposed ACI 318-71 Code(5). The results
of this study indicated that it would‘be impossible to generate 65% of the
total moment at the edge of the slab without a torsionally stiff edge
beam. Therefore, for a flat plate with no edge beams the proposed ACI
318-71 Code seems to have considarably overestimated the external negative

moment,
5.3 Column-Middle Strip Moment Split

The column-middle strip moment split is effected by both the
Dx/Dy and the Dx/H ratios. An increase in either DX/D_y or Dx/H will
cause an increase in the column strip moments. The percentage of the
moment at a section going to the column strip for Dx/Dy from 0.25 to 4.0,
for negative and positive sections, interior, corner and exterior panels,
respectively, can be determined from FIGURES 4.5 and 4.12. These values
are for a D /H ratio equal to /5;755.
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When DX/H is not equal to /Dx/Dy, the curve in FIGURE 4.19 can
be used to determine a factor, F, which when multiplied by the percentage
obtained from FIGURES 4.5 to 4.12, gives values for the particular value
of Dx/H'

These values give the percent of the moment at a section carried

by the column strip with the remainder being carried by the middle strip.

5.4 Deflections

A good approximation for the deflections for interior and corner
panels of a cellular slab can be obtained by multiplying the deflections
for a solid isotropic slab of the same thickness by a magnification
factor, (D/Dx + D/Dy)/z. If the panels are approximately the same size,
the corner panel deflections will be the greatest and therefore, the most
critical. Since the magnification factor slightly overestimates for a
corner panel, it would be excellent to use to check deflections in these
cases. In a éase where the exterior panel deflection might be critical
the deflection obtained by using the magnification factor could be increased

by 20% which would cover the maximum variation shown in TABLE 4.7.

5.5 Shear Design

Shear forces were not investigated in this study and no firm
conclusions can be made about their effect. ‘However, with all slabs
subjected to uniform load the critical section for shear will be around
the column and therefore, in cellular slabs it may be necessary to make
the slab solid around the columns. This would be similar to using a

drop panel or column capital with a solid slab, and if the solid section
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is not large compared to the span, it will not greatly effect the distribu-

tion of moments in the slab.

5.6 Design Procedure

As a result of this study the following procedure is recommended
for determining moments and deflections for the design of cellular

orthotropic flat plates with no edge beams on column capitals:

1} Calculate the total static moment, Mo, in the panel as

if the slab was isotropic.

2) Split the toté] moment, Mo, between negative and positive
sections using the same method that would be used for a
solid isotropic slab.

Mote that the results of this study show that the
value for the external negative moment in exterior and
corner panels for infinitely stiff exterior columns should
be considerably less than the 65% of the total static moment
as given by the current draft 6f the proposed ACI 318-71
Code(s).

3) Calculate the X to V span ratio and using TABLE 2.1
calculate the stiffness properties, Dx/D’ Dx/Dy’ and
Dx/H' The X-span is always the span for which the moments

are being determined.

4} Determine from FIGURES 4.5 to 4.12 the amount of moment'

to be assigned to the column strip for the Dx/Dy ratio.



52

5) Modify the amount of moment assigned to the column
strip for the D,/H ratio using the factor, F, from
FIGURE 4.19.

6) Repeat the procedure for the transverse span.

7) Check deflections by multiplying the deflections for
a solid isotropic slab of the same thickness by the
magnification factor, (D/DX + D/Dy)/z.
- Note that as discussed in SECTIONS 4.7 and 5.4
when the exterior panel deflection is critical, this
approximation may not give good results and the deflections

for this panel may have to be increased by 20%.

5.7 Accuracy of Design Procedure

The preceding design procedure only gives approximate moments
which will vary from the actual moments. However, in all cases the
procedure designs For 100% of the total static moment. Therefore, if
the procedure underdesigns for moment in one area, it will overdesign
in another. Since reinforced concrete will allow some redistribution
of moment, errors in assigning moments to a particular area of the slab
are not critical and the design procedure outlined here should give

satisfactory results.



CHAPTER VI

SUMMARY AND CONCLUSIONS

6.1 Summary

Thelobject of this investigation was to study the behaviour of
cellular orthotropic slabs and to determine guidelines for their design.
The investigatioh was restricted to cellular flat plates supported on
non-deflecting columns with no edge beams or column capitals. The
variables considered were the stiffness properties of the slab, the span
ratio of the panels, and the exterior columns stiffnesses. The stiffness
properties for common types of cellular slabs were determined using a

method given by Pfeffer(l).

With the aid of an electronic computer the method of finite

differences was used to perform an analysis of a cellular slab.

The behaviour of the slab with variable stiffness properties,
span ratio, and exterior columns stiffnesses was studied. Results for
a cellular slab were compared to the results for an isotropic slab and an
attempt was made to modify current design procedures for isotropic slabs

so that they could be used for cellular orthotropic slabs.

6.2 Conclusions

The stiffness properties which distinguish a cellular ortho-
tropic slab from a solid isotropic sTab can be expressed in terms of

the three ratios, DX/D, Dx/Dy’ and Dx/H‘ If the slab is isotropic and
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solid, the three katios equal 1.0. The other variables considered in the
analysis, the span ratio and the exterior column stiffness, have a similar

effect on an orthotropic slab as they have on an isotropic s1ab.

Within the range of values considered in this investigation,
the DX/D ratio has no effect on the moments in the sltab and the only
appreciable effect of the Dx/Dy and the Dx/H ratios is to change the
distribution of the moments across a section. The total moment at a
negative or positive section is not appreciably influenced by the stiff-

ness ratios.

The deflections of a cellular slab are mainly influenced by the
bending stiffness ratios, Dx/D and Dy/D. The twisting stiffness also has
some effect on slab deflections but it is negligible when compared to the

effect of the bending stiffnesses.

For the range of parameters studied in this investigation a
cellular orthotropic slab is significantly different from a solid isotropic
slab in only two ways, the disfribution of moments across a section and the
deflections. Therefore, if modifications are made for the column and
middle strip moments and for the deflections, a cellular slab can be

designed similar to a solid isotropic slab.
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APPENDIX A
ORTHOTROPIC PLATE EQUATIONS

The stress-strain relationships for an orthotropic plate as

given by Timoshenko(3) are:
o, E xEx + E ey
Uy = E'ysy + E"sx (A1)
Txy = Tyx = nyy = nyx

where the four constants, EIX’ E'y, E", and G, characterize the elastic
properties of the material. Kirchhoff's assumptions for plates give

the following strain-displacement relationships:

L= ., %MW - ., B - - .y 32w (A2)
X ax2 * Fy ayZ  * Yxy = Tyx X3y

By substituting equations (A2) into equations (A1) we obtain the stress-

displacement relationships for an orthotropic plate.

2 2
3W+ E||3W)

—_ ]
o = "z ({E'y 5z 32
. v 92w w 92W y
Uy- -Z (Ey -EWZ-'!' E 5;2) (A3)
2
T = T = - 26 z Chuli]

Xy yx X3y
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The bending and twisting moments for a plate are given by the following

integrals:

X
My =5Ax TyZdAy
- (A4)
Mxy -S‘Ax Txy z dAx
M_yx =SA TyXZdAy
Y
Substituting equations (A3) into equations (A4) gives the following
expressions:
- ' 2w 2 0 9°W 2
Mx— -EX E——Z-f ZdAX E 3 .deAX
A A
X X
= ' 3%y 5 92y
= - By gz v B L 5312-)
- t dW 2 i awj‘ 2
M = E
’ ijAszy e g § 22
Y
= . ! .aE-!!.- n a.%.‘f.".
.(Eyyay2 PEIyaxz)
(A5)
M = - 26 &M 22dA
Xy aX3y Jp X
X
= - GJd ﬂ

X 3X3y
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- % 2
My, = -26 axay‘j; z2dh,
y

32w
- GJy 5?5}

where Ix and I are moments of inertia and Jx and Jy are torsional

y

constants. I_, I "Jx’ and Jy are functions of the geometry of the

x>y
cross-sections of the slab.

From the equations for MX and Myx in (A5) the torsional constants,

Y
Jx and Jy, are as Tollows:

H

L=
1}

2
X %J;x 2°dA, 2 Iy
(A6)

[
1}

2 =
y gj;y 224, 21,

It should be noted that these values for the torsional constants are
derived using strain-displacement relationships based on the Kirchhoff's
assumptions and are strictly valid only for cellular plates in which the
cells are enclosed. For slabs in which the ribs project above or below
{see APPENDIX B.3) Kirchhoff's assumptions are not strictly valid and the

torsional constants must be modified.

By defining new constants as follows:

= ! = [t
D, = E x Ix Dy E y Iy
D]x = E Ix D]y =E Iy (A7)
2b,. = GJ b, = G6J

Xy X yX y
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and substituting them into equations {A5) we obtain the bending and

twisting moment equations for an orthotropic plate. (EQUATION 2.1).

~ 32w 32y
Me = - (Dx axz b Dy 5}2')
M=~ (D 22w o w )
Y y ayZ 1y 3x?
(A8)
M = - 20 Ef@!
Xy Xy O8xdy
2
M_=-2p MW

yX X axay
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APPENDIX B
STIFFNESS CONSTANTS FOR CELLULAR SLABS

B.1 Introduction
As stated in SECTION 2.2 cellular slabs get their orthotropic

character from the geometry of their cross-sections. The elastic

properties of the material are isotropic. That is:

L -t ._.E n . \)E - E
Ex—Ey-'—-I—_;fs E R G"m) (B1)

Therefore, by substituting equations (B1) into equations (A7) and comparing

with equations (2.711) we obtain the following relationships:

x T T 'x T T T %
. _E - B .n
= a5y v 0 Gy
(B2)
. _E _ _E h3
Dy = 2wy kT 2w T2 Dy
E £ n

where Ix and Iy are the bending moment of inertia terms and Jx and J'y

are the torsional constants.
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From equations (B2) it can be seen that:

. hd . h3
=1 - & =176
(B3)
_ h3 _ h3
Jx 12 2ny Jy I A 2Cyx

Therefore, if the moments of inertia and the torsional constants can be
calculated for a cellular slab, the stiffness constants, Cx’ Cy, ny,

and ny, can be evaluated.

B.2 Cylindrical Cell Units

The type of cellular slab being considered here is shown in
FIGURE B.T. The characteristics of the cross-sections can be given

by expressions similar to the ones used for a prismatic cellular slab.

LN (B4)

The bending moment of inertia of the cross-section in the X-direction
is equal to the moment of inertia of a solid rectangular section minus

the moment of inertia of a circular section.

Therefore,
I = h_‘?’. C = h_s. - _..I__ Hhiq
X 12 “x 12 bx 64
h3 . h h, 3
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_h 3
77 0-35 8 )
and
- 3
cx = {1 - 15 Sy ) (B5)

When calculating the moment of inertia for prismatic cells, the
width of the rib perpendicular to the direction of view was neglected. This
is no longer a good approximation when calculating the moment of inertia
in the Y-direction for cylindrical cell units since the ribs between the
circular hollow spaces now have a significant influence on the stiffness.
An approximate procedure for accounting for this increased stiffness is
to replace the cylindrical cell unit with an imaginary prismatic cell unit
‘which has the same first moment of area about the centroid of the section.
Thus the diameter of the cylindrical cell, hi’ is replaced by the imaginary

height of the equivalent prismatic cell, him’ as follows.

higth

=
l_>
TS

, [T f=
mlg::‘
-
|

FIGURE B.2  EQUIVALENT CYLINDRICAL AND PRISMATIC CELL UNITS



Static Moment of
Cylindrical Cell Unit
2
bx.h

Th 2
h,i Zhi

8 g 30

Therefore,

Now using the expression for Cy given

im

for

From equations (A6) and (B3):

J, =21, =
I, =21, =
and therefore,
ny
C

yX

B5

Static Moment of
Equivalent Prismatic Cell Unit

h'him b h1m th
2 x ° 4
2
‘b VS8 (B6)
prismatic cells (EQUATION 2.10):

h.
_ s (imy3
1-s, (2
3 (2 5 13
183 Gy (87)
h3
L
h3
17 - 2%,
(B8)
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B.3 Prismatic Cells Open at Bottom
This type of slab, which is sometimes referred to as a waffle

slab, is shown in FIGURE B.3. The characteristics of the cross-section

can again be expressed in terms of:

o
or
-

. ix . i o
§ = s & 5 XE (B9)

The bending moment of inertia can be calculated as if the slab
was a series of T-beams. Expressed in terms of 8ys 8y and A the stiffness

Yy
factors, Cx and Cy, become:

c, = 1 - 480 + 68x22 - 48,03 + g, 2"
1 - 8.4
(B10)
Cy 1 - 480 + 66yA2 = Bs,a3 £ 8 AN
1- ayA

One of Kirchhoff's assumptions for plates is that cross-sections
do not warp. However, when a cellular slab has ribs projecting from the
surface of the slab, as in FIGURE B.3, it is possible that the ribs may
warp under twisting moments. For this condition the torsional constants
can be calculated by summing the torsional constant of the slab without
ribs with the torsional constants of each rib. The torsional constant
for the slab without ribs is based on Kirchhoff's assumption of an
unwarped cross-section and the torsional constant for each projecting rib

is based on the twisting of a rectangular section free to warp.
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Therefore,
_ nd (B11)
I, = 172,
b t3 h.d ? d d
- %—— (F— + X (1-0.630 (% + 0.052(%)°) )
X
Now substituting,
t = h(-A)andd =b (1-6)
and simplifying,
- 3
Co = 17+ 2, 2= 8y (812)
d d d.
where a, = 2 ). (1-0630 2 + 0.052 (2)°)
Similarly,
= -A 3 + Al]1-6 Bi13
ny (1-2) ay (1 y) (B13)
dX dX dX
where ay, = 2(57)% . (1-0.630 £~ + 0.052 (£=)°)
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FIGURE B.1 CYLINDRICAL CELL UNITS

FIGURE B.3 PRISMATIC CELL UNITS OPEN AT BOTTOM
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APPENDIX C
FINITE DIFFERENCE PATTERNS

C.1 Difference Pattern for Interior Point

The standard differential equation for an orthotropic plate

(EQUATION 2.4) is:

ng?r+2Hmy +Ds*'tr = g (C1)

The finite difference technique replaces this equation by a series of
linear equations at discrete points in the slab. FIGURE C.1 shows a
typical internal portion of the slab with a gridwork of points. The point
for which the pattern fs developed is numbered 7 and the surrounding
points are numbered from 1 to 13. The partial differentials of equation

(C1) can be replaced by the following differencé equations for POINT 7:

Dy 1

Gz ) = (w, = 4w+ 6w - du, + wg)
(9—§- 2) = -;~—z-(2w - dw + 2w - 4w -8w - dw + 2w
3x“0y hx“hy 2 3 4 6 7 8 10
- MW+ 2w )
11 12
(c2)
( ﬁi#—) = _l,h (W - 4w + 6w -~ 4w +w )
3y hy 1 2 7 11 13
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By substituting equations (C2) into equation (C1) we obtain the following

equation:

D

X 21 y
hx* (ws o ) ¥ Bzl hxZhy2 (w2 ¥ i ¥ o * wlz) ¥ Ey”(wl ¥ w13)
4D 4D
- X 4H - y 4H
(e * menye) (0 * W) =+ papye) M+ v )
60 6D (C3)
+ (--—-'-)-(‘ + 8H ) W = q
hx4 hyu hx2hy2

This is the finite difference pattern for a typical internal point.

C.2 Difference Pattern for Point on Free Edge

FIGURE C.2 shows a point on the free edge along the X-axis.
If the difference pattern for an interior point (EQUATION C3) 1is applied
to a point on the free edge it will 1pv01ve four points, 1,2,3, and 4,
which are outside the slab and are, therefore, fictitious points. The

boundary conditions for a free edge along the X-axis are as follows:

_ 22w 32w -
My = Dy ( 5?2- + v %2 ) = 0
(C4)
oM 3 3
Q. - 2lyx - . asw _ oW
Y Tax Dy 5y3 (2H - v, ) 2Yax2

where Qy is the shearing force along the free edge. By replacing
equations {C4) by difference equations we can write Tinear equations

for the following four conditions:
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(My)s = 0
) =0
) =0
(0, 2 ) s o

Using these four equations the fictitious points, 1,2,3 and 4, can be
solved for in terms of the real points, 5 to 13. Then by substituting
the solutions for the fictitious points into equation (C3) we obtain
the finite difference pattern for a point on the free edge along the

X-axis involving only real points.

X (12 - (X (1-02) 2 - -
hxb (] v) (WS + wg) (hxl+ (1-v2) + hx2hy2(2H \’Dy UDX))(WG + WB)
6D 2D
X 2 Y 4 - -
+ (hx‘+ (1-v2) + iy t hy2(2H \JDy \JDX)) w7 (C6)
4D _
2 _ _ y 4 .
“hxZhy? (2H - vD, ) (w10 + wlz) (hyh + F§§F§?(2H vb.)) W
2D
—l W = g.
hy 13 2

The same procedure is used to determine the pattern for a point on the

free edge along the Y-axis.
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