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Abstract 

 

Due to the complexity of breakup ice jam processes deterministic modelling 

cannot yet forecast every aspect of the timing and severity of possible consequent 

flooding, especially when some lead-time is needed. In most northern regions, the 

sparse network and short record of data have impeded the successful development 

of empirical and statistical models. In this study, a multi-layer modeling approach 

was investigated for forecasting breakup ice jam flooding using the two soft 

computing techniques: artificial neural networks and fuzzy logic systems. The 

Town of Hay River in NWT, Canada was chosen as the case study site, where the 

breakup ice jam flooding is an annual threat. 

 

This thesis first presents the development of index variables as potential 

predictors to breakup severity and timing. For the case study site, it was found 

that water level at the onset of freeze-up and accumulated degree-days of freezing 

during the winter could be potential predictors for breakup severity. The indicator 

variable of the timing of the onset of breakup was found to be completely 

nonlinear with respect to any of the index variables. Then the feed-forward 

artificial neural network (ANN) modeling technique was assessed for its 

applicability in forecasting of onset of breakup. Detailed results of the ANN 

model calibration and validation are presented and discussed. It was found from 

the calibration results, that the ANN model has greater potential for successfully 

forecasting the onset of river ice breakup (i.e. the first transverse cracking of the 



 

 

ice cover) compared to the conventional multiple linear regression technique. 

However, rigorous validation also indicated that the accuracy of such ANN 

models can be optimistically overestimated by looking only at the calibration 

results. Finally, the applicability of a Mamdani-type fuzzy logic system to forecast 

the peak snowmelt runoff during breakup for a long lead-time of ~3 to 4 weeks 

prior to breakup was assessed, and was found to be a good predictor of breakup 

flood severity at the Town of Hay River. In particular, it was found that the fuzzy 

logic model could predict most of the high flow, the exception being those that 

were triggered by short intense rainfall events during the breakup period (a factor 

that cannot be included in a long lead-time forecast).  

 

This study contributes new knowledge and techniques, advancing the breakup ice 

jam flood forecasting capabilities for the northern communities.  The two most 

common soft computing techniques (e.g. ANN and fuzzy logic system) were 

studied comprehensively for their potential in river ice breakup forecasting and 

demonstrated step by step at the case study site. A hydrometeorological data base 

for the Town of Hay River was also established for the further research.  
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Chapter 1  Introduction 

 

Flooding is one of the most damaging natural disasters faced by mankind. It can 

be triggered by heavy rainfall, rapid snowmelt, as well as by ice jams and not 

uncommonly a combination of them. In northern river basins such as in Canada, 

ice jams are a major cause of significant flooding (Andrews 1993). For instance, 

in the period 1983 to 1987, over one third of flood events in Canada were caused 

by ice jams (Environment Canada 1988). The estimated economic loss each year 

due to ice jams is around $60 million dollars in Canada (Beltaos 1995) and $120 

million dollars (USD) in United States (White et al. 2007).  

 

Ice jams can develop during freeze-up, during a mid-winter thaw and/or during 

spring breakup. In this study, only breakup ice jams are considered, as these are 

common in northern Canada and almost universally the most severe of the three. 

For a major ice jam, due to its blockage of the river channel and much bigger 

hydraulic resistance by its rough interface with the water, the water level is 

elevated much higher than what occurs for the open channel condition at the same 

discharge.  As a result, ice jam flooding can occur even with a moderate flow 

discharge (e.g. see Figure 1-1). Additionally, breakup ice jam floods are always 

sudden, as water level associated with a major ice jam can rise several meters in 

minutes. The competent ice floes carried with the ice jam flood water increase 

risk to life and damage to property. In the context of climate change, the 

frequency of extreme ice jam floods may possibly be expected to increase (e.g. 
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Beltaos and Prowse 2001; Mahabir et al. 2007). Therefore, it is crucial to have the 

capability of forecasting such events with enough lead-time for northern riverside 

communities. 

 

The goal of the study is to enhance our capability to predict the flooding severity 

and the timing of river ice breakup in northern communities. In the following of 

this chapter, a background of river ice breakup problems is first given; A literature 

review of the state of art forecasting models on the flood severity and timing of 

river breakup is then presented; Finally the objectives of the study and the 

structure of the thesis is outlined. 

 

1.1 Background 

 

River ice breakup is a very complex process involving many disciplines such as 

thermodynamics, structural mechanics, hydraulics, hydrology, and meteorology. 

It has been the focus of intense research over the past few decades. Beltaos (2008) 

provides a comprehensive review of the state of knowledge of river ice breakup 

processes and related phenomena. The whole breakup process can be divided into 

five phases: pre-breakup, onset, drive, jamming, and wash.  In the pre-breakup 

phase, the strong ice cover is subject to thermal decay by the positive energy 

inputs; for example, solar radiation from above, and heat transferred to the 

underside by flowing water. Meanwhile, the river discharge starts to increase 

along with the snowmelt runoff and the associated rising water levels and 
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increased flow shear stresses cause the decayed ice cover to crack. This finally 

results in the onset of breakup, which was defined as “the first sustained 

movement of the winter ice cover” by Beltaos (1997). As the snowmelt runoff 

continues to cause river water levels rise, the fragmented ice sheets are carried 

along the flow downstream (this is drive) until they are stopped by, for example, a 

stronger and intact ice cover.  Ice jamming results. An ice jam can either stay in 

place until it melts out, or it might release under the pressure of building water 

storage upstream, or as a result of an incoming wave of ice and water.  The ice 

jam release wave or ‘jave’ (e.g. see Beltaos and Burrell 2005; Kowalczyk 

Hutchison and Hicks 2007), comprised of release water and ice, can stall and 

reform a new ice jam somewhere downstream, or may instigate an ice jam release 

when it impacts on an existing downstream ice jam. In particular, on dynamic 

systems, such as the Hay River, NWT, the breakup front can proceed downstream 

in a cascade of driving, jamming and releasing events until the last phase of wash, 

in which the ice blocks are cleared from the river by the runoff or the remnants of 

ice jams just melt out in place. 

 

Currently, the main focus of river ice breakup research is in studying the 

dynamics of ice jam formation and release. Extensive literature on these ice jam 

processes include field investigations and data collections (e.g. Jasek 2003; Shen 

and Liu 2003; Beltaos and Burrell 2005; Kowalczyk Hutchison and Hicks 2007; 

She et al. 2009a), experimental studies (e.g. Zufelt 1990; Healy and Hicks 2006, 

2007; Dow Ambtman et al. 2011a, 2011b) and numerical simulations (e.g. see 
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Shen et al. 1990, 1995; Beltaos 1993; Zufelt and Ettema 2000; She and Hicks 

2006; She et al. 2009b).  All of these efforts have aimed to provide a capability to 

predict the formation and release of ice jams and to quantify their potential flood 

impacts. More recently, Carson et al. (2011) provided the test results of three 

phases for the 8 numerical models (i.e. CRISSP 2D by Manitoba Hydro/Clarkson 

University; HEC-RAS by AMEC Earth and Environmental; ICEJAM by 

University of Alberta; ICEPRO by KGS Group; ICESIM by Hatch Energy; MIKE 

11 by LaSalle Consulting Group; RIVER1D by University of Alberta and 

RIVJAM by Environment Canada). They concluded that when these models were 

calibrated against the proper field data, they all were able to reproduce the 

measured data; when no field data were provided to calibrate the ice parameters of 

each model (i.e. in a “blind test”), their performances were more variable, and 

highly dependent on the modelers’ judgments. Though much success has been 

achieved, these models need more verification in practice and the data 

requirements for calibrating them are intensive and time-consuming. Many 

features of the phenomenon (e.g. ice jam thickness) are logistically difficult to 

measure safely, which may reduce the reliability of such models for practical 

forecasting purposes.  In addition, although such models provide a promising tool 

for short lead-time forecasting of potential ice jam flood levels (i.e. providing a 

few hours advanced warning of expected water levels given knowledge of 

incoming ice runs or javes), in the context of long lead-time forecasting (e.g. days 

to weeks in advance of breakup) they are not generally applicable. 
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Breakup ice jam floods have been documented along many rivers in northern 

Canada. For example, the Town of Hay River in Northwest Territories (NWT) has 

a very long history of moderate and significant spring ice jam flooding. Flooding 

occurred in 20 of the 47 years between 1963 and 2010, and 8 of these were severe 

flood events (Kovachis et al. 2011). For a small town of about 3600 population 

(2006 census accessed from www.hayriver.com), the estimated losses and 

property damages were between 0.6 million and 1 million Canadian dollars for the 

two largest documented floods: in 1963 (Stanley Grimble Roblin Ltd. 1963) and 

1985 (Environment Canada 1988). Ice jam flooding is also frequent in other rivers 

across Canada such as the Athabasca River at Fort McMurray, Alberta (see 

Mahabir 2007), the Pease River at Peace River, Alberta, the Red River at 

Winnipeg, Manitoba, and the St John River at New Brunswick. Though ice jams 

have some beneficial ecological impacts (e.g. see Beltaos et al. 2006), their 

destructive threat to properties and human lives is a major concern in northern 

communities such as the Town of Hay River.  

 

For hundreds of communities across Canada, practical and reliable forecasting 

tools are imperative to provide advance warning of the expected timing and 

magnitude of ice jam floods. The ultimate objective of this study was to develop 

such an operational tool, by integrating modern ice jam flood forecasting 

technologies within an expert system interface in the development of an 

Emergency Operations Ice Jam Flood Forecasting Expert System (Brayall et al. 

2008). To achieve these goals, a comprehensive suite of ice jam flood forecasting 
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models was proposed, which was comprised of the following three key 

components (see Figure 1-2):  

1. A long lead-time preparedness forecasting model (i.e., providing a few 

weeks warning), based on soft computing techniques.  This component 

produces as output a qualitative forecast of the expected severity of 

breakup flooding (e.g., a low, moderate, or high degree of flooding), 

which helps to define the appropriate level of emergency preparedness 

planning required by both the local disaster services agency and the 

community’s residents. This also produces as output a forecast of 

expected timing of the onset of breakup, i.e. the first transverse crack of 

the ice cover, with a lead-time of ~ 1 week.  

2. A moderate lead-time event forecasting model (i.e., 12 to 24 hours 

warning), based on ice jam release event modeling.  This component 

produces as output the expected timing of the ice jam flood event in the 

community. This model will be closely integrated with event detection 

technologies such as water level sensors, remote cameras, and satellite 

imagery. 

3. A short lead-time evacuation forecasting model (i.e., 6 to 12 hours 

warning), based on ice jam formation event modeling, which produces as 

output the extent and depths of flooding anticipated in the community.  

This model will be closely integrated with community Emergency 

Operations systems, to facilitate the orderly and efficient execution of an 

evacuation plan.   
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For detailed studies of the second and third components, the reader is referred to 

Watson (2011) and Brayall (2011), respectively. This study focuses on the long 

lead-time forecasting model (i.e. the first component) and aims to investigate and 

enhance our ability to forecast the breakup ice jam floods. To some extent, 

flooding is a natural event that cannot be completely prevented. However, due to 

the rapidity with which ice jam flood events develop, an advanced warning and 

preparedness measures are greatly desired for the riverside communities to 

minimize the potential for property damage and, in some cases, they may even 

save human lives. Considerable efforts have been undertaken to develop empirical 

and statistical models to forecast the severity of breakup ice-jam flooding. A small 

number of models are also available in respect to forecast the timing of breakup. 

This literature is discussed below. 

 

1.2 Forecasting breakup flood severity  

 

In terms of breakup flood severity, to be useful a forecasting model should 

provide a quantitative flood level forecast for a specific site with adequate lead-

time. In current practice, there exists no such a model. Empirical, statistical and 

artificial intelligence models are quite prevalent in operational river ice 

jam/flooding prediction. Techniques range from simple threshold models to 

complex nonlinear models.  
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1.2.1 Threshold models 

 

Historically, some forecasting models have attempted only to produce a 

dichotomous outcome, i.e. whether or not a breakup ice jam will occur, since this 

is a necessary condition for any ice jam flooding. Shulyakovskii (1963) first 

presented a simple one-variable threshold model to predict the risk of ice jams on 

the Yenisei River downstream of the town of Krasnoyarsk, Russia, using the 

freeze-up stage as the only independent variable. There existed a lower threshold 

when ice jams would never happen and an upper threshold when ice jam would 

surely happen. White (2003) then used the same data to develop a quantitative 

probability distribution function for ice jam occurrence between the two threshold 

values. However, this is the only successful single-variable threshold model that 

can be found in literature. Due to the complexity of factors precipitating ice jams, 

it is rare that such a simple threshold model could be found for each case. For 

example, Robichaud (2003) tested 16 hydrometeorological indices as potential 

single variable threshold indicators of breakup flooding for the Athabasca River at 

the Town of Fort McMurray, Alberta Canada, and none were successful. 

 

Multivariate threshold models have also been investigated: Shulyakovskii (1963) 

presented an example of a two-variable threshold model for the Neman River 

downstream of Kaunas (before the construction of the Kaunas hydroelectric 

plant), Lithuania, based on the mean rate of water level rise before the onset of 

breakup and on the air temperature at the time of breakup. He found that ice jams 
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occurred when the air temperature was positive at the time of breakup, and the 

rate of water level rise was not lower than 24 cm/day at the water gauge of 

Kaunas.  

 

Galbraith (1981) developed a more complex threshold model to predict the 

likelihood of ice jams on the Saint John River in New Brunswick. Four 

meteorological indices were analyzed on the available data set (from 1954 to 

1980): the accumulated degree-days of thaw (ADDT, referred to a base 

temperature of 0 °C); the average rate of heat transfer during the breakup period; 

the snowmelt index (SMI); and the accumulated precipitation during the breakup 

period. An operational procedure was then used to estimate the likelihood of a 

breakup ice jam based on the weather forecast data in the coming 5 days. When 

ADDT reached 50 °C-days or the SMI reached 90mm in less than 15 days, the risk 

of ice jam will be high. Also, when the accumulated precipitation exceeded 40 

mm over a three day period, the risk of serious flooding was increased. However, 

the author also mentioned that these threshold values could only be regarded as 

guidelines as confidence in them was not very high due to a small sample size and 

the rare occurrence of ice jam events.  

 

Similar studies have been performed to develop multivariate threshold models 

(e.g. see Wuebben and Gagnon 1995; White and Kay 1996; White and Daly 

2002). However, as summarized by White (2003), the main drawback of these 

models is that they tend to have a high rate of false-positive errors (i.e. false 
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predictions of ice jams that did not happen) in order to minimize the false-

negative errors (i.e. non-predicted ice jams that did happen). Another weakness of 

these threshold models is that they do not give any quantitative or qualitative 

evaluation of the flood severity; they only attempt to predict whether an ice jam 

will or will not occur. On many Canadian northern rivers such the Athabasca 

River in Alberta and the Hay River in NWT, ice jams happen almost every spring, 

but not all of them have caused flooding. Therefore, it is necessary to investigate 

models to forecast the breakup ice jam flood severity other than occurrence of ice 

jam in these cases. 

 

1.2.2 Multiple linear regression models 

 

Because of the limited capability of the threshold models, more complex models 

have been investigated for predicting potential breakup ice-jam flood severity, 

either qualitatively or quantitatively, for example, the applicability of statistical 

techniques, such as multiple linear regression models, have been explored. 

Shulyakovskii (1963) first developed a linear regression model to predict the 

maximum water level rise above the initial water level at the onset of breakup for 

the Tom River at the Town of Tomsk, Russia. The model validation was not 

discussed by the author, neither the error range of the model. However, it is worth 

noting that the following independent variables were chosen in the model 

development: 
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• 𝐴𝐷𝐷𝐹𝑤, which is the accumulated degree-days of freezing during winter 

(e.g. the period from the day of freeze-up to January inclusive for the 

site);  

• the depth of snow cover on the ice and in the river basin; 

• the rate of water level rise before the onset of breakup;  

• and the ratio of 𝐴𝐷𝐷𝑇𝑗𝑎𝑚  to 𝐴𝐷𝐷𝑇𝑠𝑛𝑤 , which are respectively the 

accumulated degree-days of thaw at the jam location and a upper basin 

location. 

 

Mahabir et al. (2006a) also developed a multiple linear regression model for 

predicting the maximum breakup water level at the Town of Fort McMurray, 

Alberta Canada from an extensive database of 106 variables. The selection of 

independent variables was done by Pearson’s correlation coefficient analysis. The 

jackknife approach was used to assess the model stability and the best model was 

determined by the adjusted R2 criterion. The final model had a standard error of 

±0.7 m and was the most successful statistical model to date for this study site. 

The authors commented that the validation of the model was limited by the 

unavailability of the data for the extreme events, i.e. the performance of the model 

on these events was verified.  
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1.2.3 Logistic regression models 

 

Logistic regression is another form of regression, in which only a small number of 

ordinal outputs rather than a continuous output are modeled. Its two biggest 

advantages over the linear regression models are that no distribution assumption is 

needed for the input and output variables and the output variable can have a 

nonlinear relationship with the input variables. White (1996) used a logistic 

regression model to predict ice jams on the Platte River at North Bend, Nebraska 

USA, which provided a dichotomous outcome (e.g. jam/no jam). However, a cut-

off point, i.e. a probability value for the occurrence of ice jam, has to be chosen 

subjectively. For the study site at the 0.36 probability level, the model had 1 of the 

28 jam years falsely classified as a non-jam year and 8 of the 11 non-jam years 

falsely classified as jam years. 

 

1.2.4 Discriminant function analysis 

 

Discriminant function analysis is a statistical method that predicts a category 

output using independent variables. Using two linear discriminant functions, 

Zachrisson (1990) presented a model to predict the ice jam flood risk on the 

Tornealven River along the Finish-Swedish border by using three output 

categories: Safe, Medium, and Critical, and four input variables: total winter 

precipitation, total April precipitation, change of discharge in 5 days before 

breakup and the date when the accumulated thawing degree-days reaches 40°C. 
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The model showed a promising result in 1989 but a poor result in 1990. The 

author commented that it was due to limited data on the ice thickness and 

strength. White and Daly (2002) applied the same technique to predict ice jam 

risk at Oil City, Pennsylvania, USA. However, unlike Zachrisson, they used a 

dichotomous outcome, e.g. jam or no jam. They found that, at this site, the 

discriminant function analysis model had fewer false positive errors than the 

empirical threshold model. However, it did have more false negative errors (i.e. 6 

out of 39 ice jam events were falsely classified as non-jam events). White and 

Daly also developed the 90% confidence intervals for the prediction result by 

using a bootstrap simulation (Efron and Tibshirani 1993): when a non-jam event 

is predicted, the chance of a jam occurring ranges from 7% to 25%; when a jam 

event is predicted, the chance of it not occurring ranges from 0 to 20%. In terms 

of flood forecasting, this model could only provide a prediction of the ice jam 

occurrence, not the severity of breakup flooding. 

 

1.2.5 Artificial neural networks (ANNs) 

 

In recent years, the advances in soft computing techniques suggest great potential 

for application to the breakup forecasting problem. The ANN method is one of the 

most commonly used. ANNs self-learning capabilities enable them to represent 

the inherent relationships between the input and output variables, without the need 

for a priori knowledge about the nature of the relationship. This special advantage 

over other techniques makes it very suitable for the river ice problems: for 
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example, Massie et al. (2002) developed an ANN to produce a daily forecast of 

jam/no jam at Oil City, Pennsylvania USA. The ANN model decreased both the 

false positive error rate and the false negative error rate comparing to the 

alternative regression and threshold methods at the same location.  

 

The viability of using ANNs to model at least some river ice processes has been 

demonstrated by modeling ice thickness growth in several studies. Seidou et al. 

(2006) investigated a one-hidden-layer neural network with a sigmoid transfer 

function for the nodes in the hidden layer and a linear transfer function in the 

output layer. They also used a trial and error process to find the optimal number 

of both input nodes and hidden nodes. They found that choosing a proxy variable 

for solar radiation as one of the inputs made the model more physically rigorous, 

but at the same time it decreases its practical utility due to the complexity in 

calculating the variable. Hicks et al. (1995) found that the less data intensive 

linear heat transfer model outperformed a full energy budget model for modeling 

thermal breakup on the Mackenzie River at the outlet of Great Slave Lake, NWT 

Canada. This suggests that a more practical simplified method for river ice 

forecasting, in which air temperature is an important meteorological factor.  

 

Chokmani et al. (2007) also assessed the ability of ANNs in river ice thickness 

modeling using easily available climate data. In the preliminary data set analysis, 

the outliers were excluded. It was found that the developed ANNs were not able 

to model the low and high ice thickness values correctly. They suggested that 
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rescaling of the data set in an interval of [0.1, 0.9] and using more hidden nodes 

might improve the model performance. Another problem is that they did not test 

the sensitivity of the number of hidden nodes to the model performance. 

 

1.2.6 Fuzzy logic systems 

 

Based on the concept of fuzzy set proposed by Zadeh (1965), fuzzy logic systems 

have the best advantage over others to deal with linguistic variables (e.g. low, 

average, and high) and generalized expert knowledge (i.e. “rules of thumb”) in an 

“IF-THEN” format.  A good example of a general rule for the breakup flood 

severity can be found in Beltaos (1997): when the freeze-up stage is low and 

spring runoff is average or high, the breakup flood risk will be moderate; or when 

the freeze-up stage is high and spring runoff is low (or high), the breakup flood 

risk will be low (or high).  

 

Mahabir et al. (2002) proposed the first fuzzy logic system to predict the breakup 

water level of the Athabasca River at the Town of Fort McMurray, Alberta, 

Canada by using only long lead-time variables, specifically: antecedent basin 

moisture, later winter snowpack, and late winter ice thickness. By giving ~ 3 

weeks of lead-time, the model could correctly predict all the high water events 

with only one false positive error.  
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Mahabir et al. (2006b) enhanced their fuzzy logic model by investigating a hybrid 

neuro-fuzzy model and applied it in the same site. This hybrid model combined 

both the advantages of the ANN’s self-learning capability from the historical data 

and the fuzzy logic system’s ability to incorporate linguistic variables and 

qualitative understanding and knowledge of the river ice breakup process. 

Specifically, the rule base of the fuzzy logic system was trained using the ANN 

approach. Their model was found to perform much better than the MLR model for 

the same site, while using fewer input variables and providing a longer lead-time 

forecast.  

 

1.2.7 Discussions 

 

From the above reviews it is apparent that, due to the extremely complex 

mechanism of breakup ice jams in natural rivers, most of the current forecasting 

approaches are highly site specific and empirical. The variables used in these 

methods are usually arbitrary and not known or possible to be forecasted more 

than a few days prior to breakup, which greatly reduces their potential as a 

practical forecasting tool for a long lead-time prediction. In less populated regions 

like northern Canada, a short record of historical data and the sparsity of data 

network further impede successful development of such models, such as statistical 

models which usually need a large data set to make them more reliable. In 

addition, the severity of breakup ice jam flooding was not considered by most of 

these earlier models, either quantitatively or qualitatively, only the occurrence of 
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ice jams. Though fuzzy logic models (e.g. Mahabir et al. 2006a and 2006b) have 

showed much potential in respect to forecasting flood severity, quantitative data 

collection is still a big problem for less populated northern regions. For instance, 

at the town of Hay River, the collection of a reliable maximum breakup water 

level set is not possible for the variety of the ice jam locations at the town 

(Mahabir et al. 2007). In this case, the direct evaluation of breakup flooding 

severity (i.e. flood water level) is impossible; only other possible indicators can be 

used, such as peak snowmelt runoff during breakup. These indirect breakup 

indicators will be discussed in this study. 

 

1.3 Forecasting the timing of breakup 

 

For advance warning purposes, the onset of breakup is of great interest in the 

practice of river ice breakup forecasting. As has been discussed earlier, the onset 

of breakup is the result of the increase of river discharge (and water level) from 

snowmelt and/or rainfall runoff and the decay of the ice cover by extra energy 

input (e.g. solar radiation). Thus in the literature, either the water level or the date 

of the onset of breakup has been used for the purpose of forecasting. Using the 

water level at the onset of breakup (defined as HOB) as the predictive variable in 

practical forecasting has been quite common in the past since it is closely related 

to the physical mechanism of the ice cover deflection and fracture. It is especially 

useful when the historical water level hydrographs are available at gauge sites as 

they can be used to extract the required breakup data, i.e. HOB. The predictions of 
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HOB can be translated to the time scale based on real time water level 

observations, usually based on a projection of the prevailing rate of water level 

rise during the pre-breakup period.  

 

1.3.1 Semi-empirical models 

 

Most early studies focused on river ice breakup mechanisms. In those studies, the 

breakup water level rather than the time of breakup has been used to develop the 

breakup forecasting models. Billfalk (1981) investigated the formation of shore 

cracks parallel to the river banks by considering a floating ice cover as an 

infinitely long beam on an elastic foundation. In his study, the required water 

level changes to create cracks were computed both for cases of a fixed end beam 

(see Equation [1-1]) and a hinged end (see Equation [1-2]).  

 

∆ℎ = 0.0058𝜎𝑖�𝑡𝑖/𝐸                                                                                     [1-1] 

 

∆ℎ = 0.018𝜎𝑖�𝑡𝑖/𝐸                                                                                       [1-2] 

 

where ∆ℎ is the water level change; 𝜎𝑖 is flexural strength of the ice; 𝑡𝑖 is the ice 

thickness; and E is modulus of elasticity of the ice. 
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A laboratory experiment was also designed to validate the theory; however, the 

results showed considerable scatter in the data.  The author discussed the possible 

reasons such as the limitation of displacement of the support (which was not 

infinitely long) in the laboratory experiments and the variability of the flexural 

strength of thin ice covers. These two factors reflect the limitation of the theory 

when applied to practical problems: the finite channel width of the river and the 

non-uniform ice thickness across the width. 

 

Tang and Davar (1984) developed a semi-empirical forecasting approach to 

predict the onset of breakup and maximum breakup water level. They first 

extracted the water level data from the historical hydrographs, including the 

maximum stable freeze-up water level (HF), the breakup water level (HOB), and 

the maximum water level during breakup (HM). They used a simplified method to 

calculate the heat index, ∑𝑞, which was taken as the sum of net incoming solar 

radiation, emitted long wave radiation, and conduction and convection heat 

exchange to the ice cover. The ice thickness (ti) was estimated based on the 

accumulated degree-days of freezing. Using the five variables, two empirical 

relationships were found:  the plot of the deviation, 2.5ti -HOB -HF, against ∑𝑞; 

and the plot of the deviation, HM -1.22-1.18HF, against ∑𝑞 . When they were 

validated, it was found that the model only worked successfully for winter thaw 

events within a 24-hour range of the forecast, but was very poor for the spring 

breakup events. By providing a procedure to predict the probable water level a 

few days in advance, they showed that the model had potential as an operational 
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tool for a case study of the 1982-83 breakup events at the Nashwaak River in New 

Brunswick Canada. The prediction error for the maximum breakup water level 

was 0.3m and the timing of onset of breakup was correctly predicted. However, 

they noted that the model was very sensitive to the accurate data extraction from 

the hydrometric records, which means that the poorly extracted data would result 

in poor model performance. 

 

1.3.2 Empirical models 

 

Many site-specific empirical and semi-empirical approaches have been developed 

as more practical tools for forecasting purposes. These employ the historical 

records of hydro-meteorological data (e.g. snowfall, air temperature, and freeze-

up water level) in a conceptual modelling framework. Shulyakovskii (1963) first 

proposed the relationship between the onset of breakup (i.e. “the first ice-cover 

push”) and required heat input to the ice cover, which is a function of several 

factors, such as ice thickness, depth of snow on the ice cover, morphological 

characteristics of the river, flow velocity under the ice cover and the rise of water 

level. He further proposed that the water level at which the first ice push occurs 

was directly correlated to the maximum water level or the mean water level 

during the first 5 days of the stable ice period. This provides the simplest model 

that can be used for a long lead-time forecasting of the required water level to 

initiate the river ice breakup (i.e. no short term variables are needed, such as 

expected air temperatures). 
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Beltaos (1990) presented a similar approach as that proposed by Billfalk (1981) 

for the idealized case of an infinitely wide channel and further discussed the 

results for the finite channel width case. In the same study, Beltaos also discussed 

the boundary constraint criterion for the onset of breakup (defined as “the time 

when the local ice cover is set in motion”) and proposed a practical approach to 

forecast the onset of the breakup, as shown in Equation [1-3] below. 

 

𝐻𝑂𝐵 − 𝐻𝐹 = 𝑘𝑡𝑖                                                                                                 [1-3] 

 

where, 𝐻𝑂𝐵  is the water level at which the onset of breakup occurs; 𝐻𝐹  is the 

water level at the preceding freeze-up; 𝑡𝑖  is the ice thickness; and, 𝑘  is an 

empirical coefficient that depends on the river channel geometry and hinge crack 

distance from the edge.  

 

Beltaos (1997) proposed a more general equation for cases where significant heat 

input to the ice cover has occurred during the pre-breakup period (Equation [1-4]).  

 

𝐻𝑂𝐵 − 𝐻𝐹 = 𝑘𝑡𝑖 − 𝑓(𝐴𝐷𝐷𝑇−5)                                                                         [1-4] 

 

where 𝐻𝑂𝐵 , 𝐻𝐹 , 𝑘 , and 𝑡𝑖  are the same as those in Equation [1-4]; 𝑓  is a site-

specific function; and 𝐴𝐷𝐷𝑇−5 is defined as the accumulated degree-days of thaw 

referred to a base temperature of -5 °C. Here, the ADDT-5 is considered as an 
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index of the accumulated heat input to the ice cover during the pre-breakup 

period.  

 

Aside from the water level, other indicators can be used for forecasting the onset 

of breakup, such as the accumulated degree-days of thaw, based on mean daily air 

temperatures. For instance, Kovachis (2011) examined three variations of 

accumulated degree-days of thaw as an indicator of the onset of breakup at Hay 

River, NWT: the accumulated degree-days of thaw on a base of 0 °C, ADDT0; the 

accumulated degree-days of thaw on a base of -5 °C, ADDT-5; and the total 

degree-days of thaw on a base of 0 °C, TDDT. It was found none of these 

variables produced particularly consistent results as an indicator of the timing of 

breakup at a specific site within the study area. Nevertheless, it is very worthwhile 

to test other factors such as the winter snowfall, spring rainfall as potential 

breakup indicators.  

 

1.3.3 Soft computing methods 

 

More recently, soft computing methods have been investigated for forecasting the 

timing of river breakup. Chen and Ji (2005) developed a three-layer neural 

network model using fuzzy optimization to forecast the freeze-up and breakup 

dates of the Yellow River at Inner Mongolia, China. Four input variables were 

used in their study: the accumulated degree-days of thaw, the average water level, 

the average streamflow and the maximum ice thickness. Five nodes were used in 
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the intermediate layer. The first 28 data points (1969 to 1996) were used to train 

the neural network model and the last 5 (1997-2001) were used to test the model. 

The results showed moderate success on the test set (1 to7 days of error for 

breakup dates) while the calibration results were not shown in the paper. Later, 

Zhou et al. (2009) used a Support Vector Machine (SVM) model for ice breakup 

prediction for the same site on the Yellow River using the same calibration and 

test data set as Chen and Ji (2005). They showed that SVM had better results than 

ANN both for the training and testing data. However, it is significant to note that 

they also found that the error on the testing data was smaller than the error on the 

training data. In the author’s opinion, this result shows the disadvantage of the 

split-data method used for the model validation: when the error on the testing data 

is smaller than that on the training data, it is not convincing that the model will 

have as good performance in another split-data pattern. More comprehensive 

validations should be conducted in developing an ANN model. 

 

Wang et al. (2008) used a feed-forward ANN model trained by a Levenberg-

Marquardt algorithm to forecast the ice run date, freeze-up date and breakup date 

at this same site of the Yellow River, China. For the three sites of study reach, 

both the prediction errors for the data of ice run and for the freeze-up date ranged 

from 0 to 2 days. However, they found that for the breakup date, the error ranged 

from 2 to 7 days.  
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Hu et al. (2008) further employed a hybrid feed-forward ANN model (particle 

swarm optimization and back propagation) to predict the timing of breakup on the 

Ningxia and Inner Mongolia Reach of the Yellow River, China and concluded 

that the hybrid ANN model outperforms both the empirical and combined 

empirical and statistical methods. The errors ranged from -4 to +8 days for the 

breakup date. In both of these studies, 7 input variables were used: water 

temperature, air temperature, discharge, water channel storage, ice concentration 

on the water surface, ice thickness, and water level. Detailed definitions of the 

variables were not provided.  

 

Guo (2009) further applied the Non-linear Combined Forecast (NCF) method to 

predict the freeze-up and breakup dates of the Yellow River China. Based the 

structure of a fuzzy optimization neural network (Chen 1998), he combined a 

fuzzy pattern recognition model (FPR), a FPR-ANN model and an intelligent 

forecast model. Using the mean absolute error as the evaluating index, he found 

that the new model (i.e. combination of the three) outperformed both of the 

original models. The mean error for the freeze-up date was 1.17 days, while the 

error for the breakup date was not shown. It should be noted that the change in 

performance between the FPR-ANN model and the new model was very small. 
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1.3.4 Discussions 

 

The timing of river breakup is difficult to predict due to its great dependence on 

the short-term weather conditions during the pre-breakup period. The semi-

empirical models consider the physical mechanisms associated with of the onset 

of breakup and, therefore, have the advantage of being more physically rigorous. 

However, the data requirements for these methods are necessarily more extensive. 

From a forecaster’s point of view, these models or approaches are too complicated 

to use: some parameters (e.g. ice strength and thickness just prior to breakup) are 

highly site and case specific and take many years of field data collection to 

calibrate adequately. On the other hand, most empirical models are also very site-

specific and need a large data set to gain a high level of confidence. Thus the 

utility of both approaches in forecasting practice are very limited. 

 

Those recent studies have illustrated the potential applicability of soft computing 

methods, especially ANNs, for forecasting the timing of the river ice breakup. 

However, there are still many questions yet to be answered. One of the biggest 

questions is: in the context of northern rivers, where the available data is 

relatively limited, how reliable will the calibrated ANN model be, given a small 

data set? Also how does the size of the intermediate layer affect the performance 

of an ANN model in the same (data limited) situation. Further studies are needed 

to investigate these questions. 
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1.4 Objectives of this study 

 

Expanding on the previous research by Mahabir (2007), which investigated direct 

relationships between raw data and breakup severity using regression methods, 

fuzzy logic and neuro-fuzzy logic models, in this study, a multi-layer approach is 

to be explored to address the data sparsity issue in northern regions.  Though both 

ANN and fuzzy logic systems have been shown to be universal approximators, an 

explicit methodology to develop these models has not yet come into existence, 

particularly for the river ice breakup applciation. On the one hand, this gives 

model developers the freedom to choose any model configuration they want; 

however, the other side is that it is hard to verify choices and the performance of 

the calibrated model on the “blind” data is forever unknown.  

 

The specific objectives of this study were to: 

• to investigate a multi-layer modeling approach to forecast breakup ice jam 

flood severity for northern communities, where the sparsity and short 

record of the hydrometeorological data is a constraining issue; 

• to assess the applicability of feed-forward artificial neural networks 

(ANNs) and the Mamdani-type fuzzy logic systems (FLSs) to the river ice 

breakup forecasting problem. To achieve this, ANNs and FLSs were 

developed and demonstrated. Based on the suitability of the typical data 

available and given the type of forecasts generally needed,  it was 

determined that the ANN approach was best suited to the problem of 
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predicting the timing of river ice breakup and the FLS was best suited to 

the problem of forecasting the breakup ice jam flood severity. 

 

1.5 Outline of the thesis 

 

This thesis has a paper-based format and follows the specifications brought 

forward by the Faculty of Graduate Studies and Research, University of Alberta.  

One conference paper and two journal papers make up the three main chapters of 

the thesis: 

• Chapter 2 describes the multi-layer modeling approach proposed in this 

study and presents the hydro-meteorological data set for the study site, the 

Hay River basin at NWT Canada. This is an extended version of the paper 

which was presented by the author at the 20th Canadian Hydrotechnical 

Conference, Canadian Society for Civil Engineering (Zhao et al. 2011).  

• Chapter 3 presents the results of investigating the applicability of ANN 

models to the onset of breakup, as published in the Journal of Cold 

Regions Science and Technology (Zhao et al. 2012a).  

• Chapter 4 shows the detailed results of the investigation of using the 

fuzzy logic technique to predict the peak snowmelt runoff during breakup, 

which is to be submitted to the Journal of Cold Regions Science and 

Technology in the near future (Zhao et al. 2012b).  

• Chapter 5 makes the conclusions for this study and some 

recommendations for future research.  
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• Appendix A presents the development of the raw hydrometeorological 

data set of the Hay River study site.  

• Appendix B summarizes all the data tables of the index variables 

extracted or processed from the raw hydrometeorological data for the Hay 

River study site.  

• Appendix C presents the detailed discharge hydrographs for the three 

WSC gauges in the Hay River basin and the extractions of the peak 

snowmelt runoff.  

• Appendix D presents the result of the study using ANN models to predict 

the timing of breakup at the Town of Hay River NWT.  
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Figure 1–1:  Comparison between the annual open water maximum and ice jam 

affected maximum water level at WSC Hay River near Hay River 

gauge (07OB001). 
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Figure 1–2:  A multi-stage river ice jam flood forecasting system (adapted from 

Brayall et al. (2008)). 
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Chapter 2  Available hydro-meteorological data and proposed river breakup 

forecasting model structure1

 

 

2.1 Introduction 

 

Unlike open-water floods, breakup ice jam floods are always sudden, as water 

levels associated with a major ice jam can rise several meters in just minutes.  For 

example, Kowalczyk Hutchison and Hicks (2007) documented a water level rise 

of 0.81 m/min during an ice jam release event on the Athabasca River. Due to 

their obstructive effects on the river flow, ice jams can result in severe flooding 

even at relatively low flow rates. Moreover, competent ice floes carried with flood 

waves can pose significant risk to life and property of the riverside communities. 

Therefore, for those communities faced with this annual threat, predicting the 

timing and anticipated severity of breakup flooding can be extremely valuable in 

flood preparedness planning. 

 

Considerable physical understanding on the river ice breakup process has been 

gained in the last 50 years or so (e.g. see Beltaos 2008). However, due to the 

complex interactions between meteorological, hydrological, and hydraulic factors 

during the progression of the river ice breakup, a completely physically based 

                                                 
1 This chapter is an extended version of the published paper: Zhao, L., Hicks, F. and Robinson 
Fayek A. 2011. “River breakup forecasting by hydro-meteorological data”, 20th Canadian 
Hydrotechnical Conference, Canadian Society for Civil Engineering, Ottawa, July 14-17, 2011, 
HY-048: 11pp. 
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prediction model is not yet feasible. Thus, most forecasting models are highly site 

specific and empirical in nature (e.g. see White 2003). Furthermore, because of 

the dependence of breakup timing and severity on meteorological conditions 

immediately prior to and during breakup, most of the input variables in 

forecasting models are limited by the time range of accurate weather forecasts (i.e. 

typically only one to two days).  

 

The process of river ice breakup and subsequent ice-jam flooding is influenced by 

many factors such as ice cover thickness and strength, as well as the volume of 

snowmelt runoff and consequent stream flow rate. In practice, these variables 

cannot safely be measured or quantified just prior to or during breakup and the 

resulting lack of data usually poses a major limitation in developing reliable 

forecasting models for ice-jam floods. Fortunately, these factors are closely 

related to hydro-meteorological conditions, which are readily available or 

forecasted through hydrometric gauges and climate stations. In less populated 

regions like northern Canada, a short record of historical data and the sparsity of 

the data networks further impede successful development of forecasting models. 

The challenge in this case becomes one of trying to incorporate information from 

a variety of sources and measurement techniques. For example, snow water 

equivalent (SWE) data may be available from snow courses, snow pillows, 

climate stations and satellite image. It may not be practical to directly combine 

this data to estimate basin average SWE, but it may be possible to consider all of 

the data in the determination of a basin representative spring snowmelt runoff 
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index useful for breakup forecasting. In addition, for those communities prone to 

breakup ice jam floods, valuable historical breakup information can be obtained 

from technical flood reports and local newspaper reports. These raw data, either 

qualitative or quantitative, provide valuable information to investigate and 

develop forecasting models of river ice breakup. The goal of the research was to 

consider all relevant historical data by employing a new multi-layer modeling 

approach for forecasting river ice breakup.  

 

As illustrated in Figure 2-1, the proposed approach is comprised of four layers: 

raw data, index variables, breakup indicators, and output variables. All of the 

pertinent historical information and archived raw hydro-meteorological data from 

different sources are collected in the first layer (e.g. historical breakup reports, air 

temperature, snowfall, water level, etc.). In Layer 2, index variables are either 

directly extracted (e.g. day of the onset of freezing and thaw) or calculated from 

the raw data (e.g. accumulated degree days of freezing and thaw). The resulting 

set of index variables are then tested for their potential as predictors for breakup 

severity and timing.  The promising index variables are carried forward as input 

data to Layer 3, where various complex models are investigated to determine key 

breakup indicators (e.g. peak flow of snowmelt runoff or water level at the onset 

of breakup). For example, the index variables for basin SWE derived from various 

data sources (as discussed above) might be used as inputs to a model for the 

spring snowmelt runoff (a key breakup severity indicator). Soft computing 

techniques (e.g. fuzzy logic systems and artificial neural networks (ANNs)) are 
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ideally suited to the development of these breakup indicators. The predictions of 

the Layer 3 variables are finally used to project the timing of breakup (i.e. using 

the real time gauged water level) and the flood severity (i.e. using the established 

relationship between flood severity and peak flow during breakup) in Layer 4. A 

parallel approach is used to collate records for the output variables, i.e. the timing 

of breakup and flood severity, in Layer 4.  

 

This chapter illustrates the development of the first two model layers (i.e. the 

collection of the raw data and development of the index variables) for the case 

study site at the Town of Hay River, NWT, a northern community frequently at 

risk of ice jam flooding during breakup. The development of the data set of the 

output variables in Layers 3 and 4 is also presented, as well as the results of the 

screening for key predictors of the output variables. 

 

2.2 Study site and raw data collection 

 

The Town of Hay River is located in the Hay River delta on the south shore of 

Great Slave Lake, Northwest Territories, Canada (see Figure 2-2). The Hay River 

experiences a highly dynamic breakup each spring (typically in late April or early 

May), which ultimately results one or more large ice runs approaching the 

community.  Because Great Slave Lake does not melt out until early June, these 

ice runs can jam in the delta causing flooding at the Old Town and KFN Reserve 

along the East Channel and the Fishing Village along the West Channel (see the 
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inset in Figure 2-2). Several weeks advanced warning of the expected breakup 

severity would be valuable to the town for emergency preparedness planning. A 

timely and accurate prediction of the expected timing of the initiation of breakup 

near the town would also be extremely useful, since the subsequent breakup 

evolution can unfold within as little as 24 to 48 hours following the first cracking 

at the town site (Kovachis et al. 2010). 

 

All of the available raw hydro-meteorological data and other records were 

assembled and processed to build the raw data set for this study. Meteorological 

stations run by Environment Canada (EC) and hydrometric gauges by Water 

Survey of Canada (WSC) provide the best readily available raw data in direct 

relation to river ice breakup. Specifically, in the Hay River basin, there are four 

active WSC streamflow gauges along the main stem. From upstream to 

downstream these are: the Chinchaga River near High Level (WSC station 

number: 07OC001), the Hay River near Meander River (WSC station number: 

07OB003), the Hay River near ALTA/NWT Boundary (WSC station number: 

07OB008) and the Hay River near Hay River (WSC station number: 07OB001). 

Water levels (instantaneous and daily) and stream flow data (daily) are collected 

and archived by WSC as well as ice thickness data from the field winter discharge 

measurements.  

 

There are also several active meteorological stations in and near the Hay River 

basin (see Figure 2-2). The two most pertinent stations are: High Level A 
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(Meteorological Service of Canada Climate ID: 3073146), located near the 

Chinchaga River basin at High Level airport, Alberta; and Hay River A 

(Meteorological Service of Canada Climate ID: 2202400), located at the Hay 

River airport. Both stations are principal climate stations with daily forecast and 

archived hourly observations readily available in near-real-time from online 

climate data at the EC website2. The complete record of daily air temperature 

(including mean, maximum and minimum), precipitation (including rainfall, 

snowfall, and total precipitation) and snow-on-the-ground for these stations were 

obtained from National Climate Data Archive of Environment Canada3

 

. 

There are also several other sources for winter snow water equivalent data.  For 

example, Alberta Environment (AE for short, see River Forecast Section 2011) 

and the Aboriginal Affairs and Northern Development Canada (AANDC for 

short, see Water Resources Division 2011) operate snow courses. Also, volunteers 

from the Town of Hay River (THR) have conducted intermittent snow depth 

measurements during winter over many years. For the purpose of studying 

breakup, the snowpack condition in late winter (usually at the end of March or the 

beginning of April) is of most interest, since it has been found to be a very good 

indicator of the expected snowmelt runoff volume and peak (Zhao et al. 2009). 

The SWE data from the snow course surveys near the Hay River basin used in this 

study included: High Level (AE ID: 07JF801) and Assumption (AE ID: 

07OA801); Hay River (AANDC ID: 07OB-SC02) and Swede Creek (AANDC 

                                                 
2 http://climate.weatheroffice.gc.ca/climateData/canada_e.html 
3 Archived Canadian Daily Climate Data is accessible at ftp://arcdm20.tor.ec.gc.ca/pub/dist/CDCD/ 

ftp://arcdm20.tor.ec.gc.ca/pub/dist/CDCD/�


 

49 

ID: 07OB-SC03); and various locations in and around the Town of Hay River 

from THR volunteers.  

 

Other available sources for the breakup information for this study were also 

collected including the technical reports, local newspaper reports on river breakup 

and flooding, and scientific studies by the river ice research group at the 

University of Alberta (UA) and AANDC. Specifically, Gerard and Stanley (1988) 

provided a detailed summary of historical breakup information on the Hay River; 

this database was then updated by Gerard et al. (1990), Jasek et al. (1993), Jasek 

(1993), and Kovachis et al. (2011). All of the qualitative data (i.e. descriptions of 

breakup flood severity) and quantitative data in these reports were used to define 

the breakup severity for the years between 1964 and 1993. For the years between 

1994 and 2002, the reports from the newspaper at the Town of Hay River (HUB 

Publications Ltd 1994-2002) were only source of information regarding breakup 

severity. More recently, from 2003 to 2010, the breakup severity was determined 

based on direct observations by the UA river ice research group.  

 

All the raw data mentioned above are provided via a data CD attached at the end 

of the thesis and the corresponding descriptions are presented in Appendix A. 
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2.3 Development of index variables 

 

All of the raw data collected from the above sources were used to develop the 

index variables for this breakup study. Figure 2-3 presents the raw data (Layer 1) 

and index variables (Layer 2). These variables include the directly extracted water 

levels and the processed indices from the meteorological data. To facilitate the 

subsequent development of multiple breakup forecasting models, the index 

variables were divided into two subsets according to their availability for 

forecasting purposes: a long lead-time subset (e.g. variables known more than one 

week in advance of breakup) and a short lead-time subset (e.g. variables only 

obtained, or forecasted, a few days before breakup). 

 

Based on the daily air temperature and water level data, three key dates related to 

river ice freeze-up and breakup were first defined. These dates were then used to 

define the other index variables as discussed below. 

• DOT: the date of the onset of thawing degree-days, considered as the time 

from which the ice cover decay and snowmelt starts.  It is taken as the date 

of the first of five consecutive days of mean daily air temperatures above -

5°C each year (so as to take into account the melting effect of maximum 

daily temperatures above freezing). This was found to be best choice to 

account for ice cover decay by Bilello (1980). If a cold spell of more than 

5 days of below -5°C temperatures occurs, it is reset as the date when 

above -5°C air temperatures resume (again requiring 5 consecutive days). 
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• DOF: the date of the onset of freezing used in the calculation of freezing 

degree-days.  This is taken as the date of the first of five consecutive days 

of subzero daily air temperatures each year.  If a warm spell of more than 

5 days of above freezing temperatures occurs, it is reset as the date when 

the freezing air temperatures resume (again requiring 5 consecutive days). 

It is considered as the start of the winter snow accumulation and river 

freeze-up. 

• DOR: the date of the onset of water level rise due to spring snowmelt.  This 

is defined as the day when the rate of rise first achieves a specified value 

(e.g. 5cm/day was used for the HRHR gauge).  

 

2.3.1 Long lead-time variables 

 

The following independent variables are known sufficiently in advance of 

breakup to be useful for a long lead-time forecast. 

• API: the antecedent precipitation index. This is the accumulated 

precipitation during the previous summer (between July 1 and September 

30). It is considered as an index of soil moisture that affects the spring 

snowmelt runoff process. 

• HOF: the water level on the date of the onset of freeze-up (DOF), which 

gives a general idea of the required water level to initiate the breakup in 

spring. As a rule of thumb, the higher HOF is, the greater the water level 

and snowmelt runoff required to initiate breakup. It is also an alternative 
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of API, considered as a surrogate of soil infiltration capacity during 

snowmelt period. 

• ADDFW: the accumulated degree-days of freezing for the winter period, 

defined as the sum of the negative degree-days for the winter period, 

which begins on DOF and ends on DOT. This is considered as an index of 

the winter severity and late winter ice cover condition. 

• SWE variables: These are considered an important index of expected 

spring snowmelt runoff, which in turn affects the breakup process directly. 

Also SWE influences the ice cover decay potential during pre-breakup. 

The higher the depth of snow cover, the slower the ice cover decay. 

o APw: the accumulated winter snowfall (measured at climate 

stations using a Nipher shielded standard snow gauge), defined as 

the sum of the precipitation during the winter period (between DOF 

and DOT).  

o SWESC: the SWE measured during the late winter snow course 

surveys (usually at the end of March or the beginning of April).  

o SNGOT:  the depth of snow on the ground (reported at climate 

stations), taken on the day of the onset of thaw (DOT).  

• Ice variables: The thickness and strength of the late winter ice cover also 

affects the breakup severity and timing. In this study, late winter ice 

thickness data were obtained from the records of direct winter discharge 

measurement by WSC. In these records, the date of the measurement of 

ice thickness (Di) could be either before or after the onset of thaw (DOT).  
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If Di is prior to DOT,  the ice thickness from the measurement can be a 

good estimate of the ice thickness at the onset of thaw, DOT, since there is 

usually not much ice growth during the last week or two of winter. On the 

other hand, the ice cover deterioration must be considered if Di is 

measured after the onset of thaw, DOT. The following two index variables 

are defined from these records. 

o ti: the ice thickness from the last direct measurement by WSC each 

winter (usually conducted in mid-April).  

o DECAY: an index variable to account for potential ice decay when 

Di is after DOT: If Di is 7 or more days after DOT, DECAY is set to 

1; otherwise DECAY is set to 0. The choice of 7 days is based on 

the estimated time required for the ice cover to become isothermal 

before starting to decay. 

• HOR: the water level on the day of onset of rise (DOR).  This indicates the 

ice level at late winter. 

 

2.3.2 Short lead-time variables 

 

The following variables are defined using the daily meteorological data during the 

pre-breakup period. 

• ADDT-5: the accumulated degree-days of thaw during the pre-breakup 

period, referred to a base air temperature of -5°C and calculated from the 

onset of thawing degree-days (DOT) up to the day of breakup (DFC, as 
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defined in the following section). It is considered as an index of the 

accumulated heat input to the ice cover which decreases ice thickness 

and/or ice strength during the pre-breakup period.  

• ADDF-5: the accumulated degree-days of freezing (referred to a base air 

temperature of -5°C) during the pre-breakup period (i.e. between DOT and 

DFC). This accounts for the occurrence of a cold spell (i.e. mean daily air 

temperature is below -5°C) after the onset of thaw, which would be 

expected to delay ice cover deterioration. 

• RNPB: the accumulated rainfall during the pre-breakup period, which 

would be expected to enhance the rate of snowmelt runoff and accelerate 

ice cover deterioration.  

• SNPB: the accumulated snowfall during the pre-breakup period. Because of 

its high albedo, snowfall during the pre-breakup period tends to delay 

snowmelt runoff and ice cover deterioration. 

• ARS: the accumulated rainfall during the spring snowmelt period (i.e. from 

the onset of thawing degree-days, DOT, to the day just before the peak flow 

at HRHR). This is considered as a positive impact to the peak snowmelt 

runoff. 

• ASS: the accumulated snowfall during the spring snowmelt period. This is 

considered as another factor that would affect the peak snowmelt runoff. It 

could either increase the peak flow rate by additional amount of snowmelt 

or decrease the peak by reducing the snowmelt rate.  
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2.4 Development of output variables 

 

Figure 2-4 presents the output variables (Layer 4) that were defined using the raw 

data in the case of Hay River breakup study. These were grouped into two 

subsets: one for breakup severity and the other for breakup timing. 

 

2.4.1 Breakup severity  

 

This refers to the flood severity resulting from ice jams during breakup. For the 

case of the Town of Hay River, a quantitative variable (e.g. a flood water level at 

a specific location) is difficult to establish because of the variety of flood prone 

areas in the Hay River delta and the lack of a comprehensive water level record 

for each. Fortunately, considerable qualitative information on breakup flood 

severity is available from historical flood descriptions in technical reports, 

personal accounts and newspapers articles.  

• BS: the qualitative descriptor for breakup severity at the town. It has three 

possible values: ‘severe flooding, ‘some flooding’, and ‘no flooding’. 

‘Severe flooding’ applies to major floods in which the flood extent and 

damage to property were extensive, as explicitly described in 

historical/technical reports and newspaper accounts. ‘Some flooding’ 

applies to those events when minor or moderate flooding was documented, 

though insufficient information is available to distinguish between the two.  
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Typically for these events vulnerable areas (e.g. the government dock, as 

well as businesses and residences closest to the river) were flooded to 

some extent and people were evacuated as a precaution.  ‘No flooding’ 

refers to those events described as ‘quiet’ and unnoticeable in the 

newspaper accounts or field notes. 

 

The period of record for this investigation was limited to between 1964 and 2010.  

Although some variables are known prior to that, and in particular, it is known 

that the most severe flood on record occurred in 1963, the HRHR gauge was only 

installed in 1964.  Since that data is critical to the forecasting effort (particularly 

in terms of the output variables), its period of operation is the constraining factor 

in this analysis. 

 

2.4.2 Breakup timing  

 

In this study, the initiation of breakup was defined as the first evidence of 

transverse cracking near the HRHR gauge site. The following variables were first 

determined using the historical hydrometric data.  

• HFC: the water level at which cracking first occurs. It was determined by 

identifying the first spike in the historical instantaneous water level 

hydrographs and confirmed as applicable using direct observations in 2005, 

and 2007 to 2010.  
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• DFC: the date corresponding to HFC. When HFC comes before the noon of 

the day, DFC is set as the previous day. Otherwise, DFC is the day when the 

HFC occurs. This definition was chosen to facilitate more realistic 

correspondence with those index variables represented by mean daily 

values. 

 

From the perspective of practical forecasting, the variable DFC is using the date 

format and not a common choice for developing forecasting models. Since the rise 

of water level in the snowmelt season is the most direct driving force initiating the 

breakup, it is practical to use the onset of rise of water level as the starting point to 

define the output variable ΔDFC. 

• ΔDFC: the length of the duration required from the onset of rise of water 

level (DOR) to the day of first cracking (DFC). 

 

Another more direct way to define the timing of breakup at the Town of Hay 

River is the day of the first push: 

• DB: the day of the first push of ice at the town site. They were obtained 

from historical breakup reports and newspaper accounts (prior to 2003) 

and recent field work (from 2004 to 2011). 

 

Similar to the forecasting of the first crack, DB is not a feasible variable to use in 

operational forecasting directly. The alternative output variable was calculated:  
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• ΔDB:  the number of days until breakup, DB, from the onset of water level 

rise at the HRHR gauge (DOR). 

 

2.5 Screening of predictors to the output variables 

 

Generally, the severity of breakup is controlled by the magnitude of snowmelt 

runoff and ice cover competence prior to breakup, while the timing of breakup is 

more related to weather conditions during the pre-breakup period. Thus it is more 

feasible to develop a long lead-time forecasting model for breakup severity than 

for breakup timing. Late winter ice cover conditions can be related to freeze-up 

water level and winter severity. Spring snowmelt runoff can be predicted based on 

the late winter SWE and antecedent soil moisture, though incident rainfall during 

breakup may accelerate the snowmelt runoff process. In this study, the long lead-

time index variables were first tested to assess their potential as direct predictors 

of breakup severity, BS. However, it was found that none of these index variables 

were strongly indicative of BS (see Appendix B for details). Nevertheless, there 

were some qualitative tendencies demonstrated as discussed below. 

 

It appears that flooding events are associated with higher freeze-up levels, HOF. 

As shown by Figure 2-5(a), when HOF is above 2.8 m, the probability of flooding 

is high, with some or severe flooding occurring in 7 of 10 cases.  The three 

exceptions (1998, 1993 and 1977) were associated with low snowmelt runoff 

events, specifically: 390, 159 m3/s and 530 m3/s, respectively, all of which are 
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below the average snowmelt runoff peak flow of 638 m3/s. Flooding occurred in 

only 3 (18%) of the 17 years for which the freeze-up level, HOF was below 2.1 m, 

and none of these events were significant in severity. These findings are 

consistent with the logic of breakup severity forecasting discussed by Beltaos 

(1995). 

 When HOF is low: neither low nor high snowmelt runoff would be 

expected to induce severe flooding. 

 When HOF is high: a low snowmelt runoff would be more likely to result 

in a thermal breakup (no flooding), and a high snowmelt runoff would be 

expected to induce severe flooding.  

Thus, these findings will be very useful in developing the ‘IF-THEN’ rule base 

and fuzzy sets for the final fuzzy logic model to predict breakup severity. 

 

A competent and thick ice cover is typically considered necessary for any 

significant breakup event. Therefore, the ice variables (ti and DECAY) at the 

HRHR gauge were also assessed for their potential as predictors of breakup 

severity. The results are shown in Figure 2-5(b), where the letter ‘Y’ indicates that 

some ice decay occurred prior to breakup. As the figure illustrates, there is no 

clear pattern. Two examples are 1977 and 2008: in 1977, the index ice thickness 

was relatively high (1.2 m) yet no flooding occurred; in 2008, the index ice 

thickness was 0.6 m (below the average of 0.7 m), yet severe flooding occurred.  

There also appears to be no particular trend towards lower breakup severity for 

those years in which decay was thought to have occurred prior to breakup. 
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Figure 2-5(c) shows the freezing degree-days, ADDFW, at the Hay River Airport, 

coded by breakup severity. It appears that most of the severe flooding events are 

associated with a higher ADDFW: 7 of the 8 years (88%) with severe flooding 

have ADDFW exceeding the threshold 2900. Considering that ADDFW is as an 

index of the winter severity and late winter ice cover condition, it makes sense 

that higher ADDFW may be indicative of a severe breakup. However, this 

indication is very weak: non-flooding events occurred as many times as flooding 

events when ADDFW exceeded this value. This suggests that the initial ice cover 

condition prior to deterioration plays a minor role in the case of Hay River 

breakup. 

 

It was also found that neither the API or SWE index variables were indicative of 

breakup severity, as exemplified by Figure 2-5(d) for the API at Hay River A 

station and Figure 2-5(e) for the SWEW at the High Level snow course. This result 

implies that none of these variables are individually sufficiently representative of 

the late winter snowpack condition and runoff potential in the Hay River basin. 

This illustrates the need for the multi-layer modeling approach; their effects will 

be combined to facilitate inclusion of all SWE data sources and API in a Layer 3 

breakup indicator.  

 

Based on the above results, the potential predictors for a long lead-time 

forecasting model of breakup severity include HOF, ADDFW, and a combination of 
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the API and SWE variables to indicate the expected magnitude of snowmelt 

runoff, i.e. the breakup indicator in Layer 3. This will be discussed in details in 

Chapter 4. 

 

For the prediction of breakup timing, the most important factors are the rise of 

water level and the extent of ice cover decay. Thus practically, two other variables 

could be used indirectly as indicators of the timing of breakup:  

• ΔHFC: the amount of water level rise required from the onset of rise of 

water level (HOR) to the first cracking (HFC). This is used in most of the 

literature (e.g. see Beltaos 2008). It can be evaluated by using the real time 

hydrographs at WSC gauges. 

• ADDTFC: the amount of the degree-days of thaw (ADDT-5) required from 

the onset of thaw (DOT) to the day of first cracking (DFC). This provides an 

indirect prediction of breakup timing in terms of heat input to the ice cover 

required to initiate the breakup, with degree-days of thaw providing an 

index of this heat input. It can be evaluated several days in advance using 

readily available weather forecasts from EC. 

 

Forecasting the timing of breakup is more complex than forecasting the severity, 

because timing is more affected by the weather conditions during the pre-breakup 

period. Simple analyses were conducted to screen the predictors for the output 

variables for the prediction of breakup timing. When the available data were 

plotted for the index variables against each of the output variables, a large degree 
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of scatter was seen. For example, simple linear correlations between some of the 

index variables and the output variable, ΔHFC, are shown in Figure 2-6. The very 

small coefficients of determination (R2 values) (see Figure 2-6(a)-(f)) mean that 

none of the input variables are significantly linearly correlated with the output 

variable. Also, there is no obvious pattern between ΔHFC and DECAY (see Figure 

2-7). This implies that the relationships between the index variables and the 

output variable are nonlinear. In Chapter 3, the ANN modeling approach is 

investigated to assess its applicability to this nonlinear problem. 

 

2.6 Summary 

 

This chapter introduces a new multi-layer modeling approach for the river ice 

breakup forecasting problem. The results of the first two layers of the approach 

are presented: the collection of all raw historical and hydrometeorological data 

and development of index variables. The detailed process for constructing the 

index variables from the raw data is described and demonstrated for the case of 

Hay River, NWT. The potential predictors of breakup severity were also 

identified for the case study site, the Town of Hay River, such as the water level 

at the onset of freeze-up and the accumulated degree-days of freezing during 

winter. The antecedent precipitation index and the SWE variables are to be 

combined as an indicator for the magnitude of snowmelt runoff, which will be 

discussed in Chapter 4 as the important indicator of breakup flood severity. In 

practice, these variables could be determined well in advance of breakup, thus can 
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be used for a long lead-time forecast of breakup severity. The nonlinearity of the 

timing of breakup was also discussed and the applicability of ANN modeling 

technique will be investigated in Chapter 3. 
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                                Figure 2–1:  Proposed multi-layer modeling approach for river ice breakup forecasting. 
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Figure 2–2:  Location of the Hay River basin and map of the Town of Hay River. 
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Figure 2–3:  Layers 1 and 2 in the Hay River breakup forecasting model. 
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Figure 2–4:  The output variables in Layer 4 for the Hay River breakup study. 
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Figure 2–5:  Potential predictors for breakup severity at the Town of Hay River. Note: the letter ‘Y’ in 

(b) indicates that some ice decay occurred prior to breakup. 
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Figure 2–6:  Simple correlations between the index variables (x axis) and ΔHFC (y axis). Note the 

sample size is 42 for all the cases.  
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             Figure 2–7: Required water level rise (ΔHFC) coded with the extent of ice cover decay. 
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Chapter 3  Applicability of multilayer feed-forward neural networks to 

model the onset of river ice breakup4

 

 

3.1 Introduction 

 

The occurrence of ice jams during river breakup presents a significant flood risk 

to many northern communities and, for those communities faced with this annual 

threat, predicting the onset of breakup can be extremely valuable in flood 

preparedness planning.  However, the complexity of the problem, combined with 

our limited ability to forecast many of the relevant hydrometeorological factors 

driving the river ice breakup process, makes this a particularly challenging 

problem.  Nowhere is this more evident than in remote northern communities (e.g. 

in the Northwest Territories of Canada), where the data is sparse and historical 

records are generally limited. 

 

Forecasting river ice breakup has been the focus of intense research over the past 

few decades. Beltaos (2008) provides an excellent review of the state of 

knowledge of breakup processes and related phenomena. Although a few 

researchers have employed deterministic methods based on the dynamics of the 

ice cover deflection and fracture caused by water waves (e.g. see Shulyakovskiy 

                                                 
4 A version of this chapter has been published as a journal paper: Zhao, L, F Hicks and A 
Robinson Fayek (2012) “Applicability of multi-layer feed-forward neural networks to model the 
onset of river breakup”, Journal of Cold Regions Science and Technology,70:32-42.. It has been 
slightly revised here to accommodate revisions required by the thesis committee. 
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1972; Billfalk 1981; Daly 1995; Beltaos 1990 and 2004; Nzokou et al. 2009), due 

to the complexity of the problem and the logistical difficulties in measuring many 

aspects of the phenomenon, site specific empirical methods still predominate (e.g. 

see White 2003). This is particularly true with respect to predicting the onset of 

breakup, as the properties of the ice cover at the onset of breakup can be difficult 

to measure in the field, due to safety concerns.  Semi-empirical methods, such as 

the boundary constraint criterion (Beltaos 1997), have also been developed for 

considering the actual mechanisms influencing the onset of breakup. These 

employ physical information (e.g. channel geometry and ice competence) to 

incorporate more deterministic effects and have the advantage of being more 

physically rigorous.  However, the data requirements for these methods are 

necessarily more extensive.  

 

Recent studies have investigated the practical application of artificial intelligence 

techniques to the field of civil engineering, and the application of artificial neural 

network (ANN) techniques is one of the most commonly used approaches (e.g. 

see Flood and Kartam 1994a and 1994b; ASCE 2000a and 2000b; Dawson and 

Wilby 2001; Maier and Dandy 2000; Maier et al. 2010). ANNs self-learning 

capabilities enable them to represent the inherent relationship between the input 

and output variables, without the need for a priori knowledge about the nature of 

the relationship. This special advantage over other techniques makes it very 

suitable for complex nonlinear problems which cannot yet be solved analytically.  
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A number of researchers have successfully employed ANNs for various river ice 

applications: for example, Seidou et al. (2006) and Chokmani et al. (2007) 

illustrated the viability of using ANNs to estimate lake and river ice thickness 

growth; Massie et al. (2002) developed an ANN to produce a daily forecast of 

jam/no jam with improved accuracy over statistical and empirical methods; and 

Chen and Ji (2005) and Hu et al. (2008) employed ANNs in attempting to predict 

the timing of breakup on the Yellow River, China with moderate success. Mahabir 

et al. (2006) developed a neuro-fuzzy model for river ice breakup forecasting in 

which the rule base was trained using ANNs. Their model was found to perform 

much better than a multiple linear regression (MLR) model for the same site, 

while using fewer input variables and providing a longer lead-time forecast. These 

earlier investigations have illustrated the potential applicability of ANNs for 

forecasting the complex and nonlinear river ice breakup problem. 

 

The objective of this study was to investigate the practical applicability of ANN 

modeling to forecast the timing of river ice breakup particularly in the context of 

limited data, as is typical in less populated northern regions and to illustrate their 

correct implementation and validation for this problem. To achieve this, a three-

layer feed-forward ANN model was developed to forecast the onset of river ice 

breakup using variables extracted from the readily available hydro-meteorological 

data record for the demonstration site at the Town of Hay River, NWT Canada. 

This Chapter first provides descriptions of the study site and data sources along 

with details of the process employed to determine the input and output variables.  
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This is followed by details of the ANN model development, calibration and 

validation.  Comparisons of model performance to results obtained using the more 

conventional MLR modeling approach are also presented and discussed.  Finally, 

recommendations for future study are presented.   

 

3.2 Study site and data sources 

 

The test site for this investigation was the Town of Hay River, which is located at 

the mouth of the Hay River on the south shore of Great Slave Lake, NWT, 

Canada (Figure 3-1). The north flowing nature of the river means that spring 

snowmelt runoff in the upper basin makes its way downstream into strong 

competent ice. This, combined with steep gradients along the river (including two 

waterfalls, 33 m and 15 m high, respectively), leads to a highly dynamic breakup 

in most years, with a cascade of ice jam formation and release events progressing 

down the Hay River.  The resulting ice runs eventually reach the Town of Hay 

River where the ice cover on Great Slave Lake obstructs their further passage. As 

a result, the town is prone to severe ice jamming and consequent flooding during 

spring breakup. 

 

University of Alberta researchers have been monitoring breakup at this site and 

assisting in the flood forecasting efforts since 2004.  A timely and accurate 

prediction of the initiation of breakup near the town is extremely desirable from 

an emergency preparedness perspective, since the subsequent breakup evolution 
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can unfold quite rapidly.  For example, the peak stage at the town has followed 

the first transverse cracking within zero to two days in 23 of the 38 cases 

documented since 1933, and within 6 days in all but one of the remaining 

documented cases (Kovachis 2011). Thus, prediction of the initiation of breakup 

local to the Town of Hay River was the key focus of this study. 

 

As is typical of northern Canada, there is only a sparse network of hydrometric 

gauges and climatic stations in the Hay River basin (see Figure 3-1). The two 

stations in closest proximity to the town were chosen for use in this study, 

specifically: the Water Survey of Canada (WSC) streamflow gauge 07OB001, 

Hay River near Hay River (HRHR), which is located about 10 km upstream of the 

town site (Figure 3-1(a)) and Environment Canada’s (EC) climate station 

2202400, which is situated at the Hay River airport (Figure 3-1(b)).  The WSC 

HRHR gauge has the longest hydrometric record of all the gauges on the Hay 

River (1963 to present). For this study, instantaneous and daily water level data 

were supplied by WSC, as well as ice thickness data from winter discharge 

measurements. The EC station at the Hay River airport is a principal climate 

station with hourly observations available in near-real-time. This station provides 

the longest record of meteorological data in the Hay River basin area. The 

historical daily air temperature (e.g. mean, maximum and minimum), precipitation 

(rainfall, snowfall, and total precipitation) and snow-on-the-ground records from 

year 1964 to 2007 were obtained from National Climate Data Archive of 

Environment Canada. Data after 2007 were available from their website 



 

80 

(http://climate.weatheroffice.gc.ca/climateData/canada_e.html). These raw hydro-

meteorological data records were accessed and processed to build the data set for 

this study. 

 

3.3 Determination of input and output variables 

 

A practical definition of the onset of breakup was introduced by Shulyakovskiy 

(1963) and adopted by Beltaos (1997) as “the time when the first sustained 

movement of the winter ice cover takes place”. Unfortunately, this definition was 

not practical for the Hay River case because of the rapidity at which the breakup 

unfolds: once this sustained movement occurs, flooding can ensue within as little 

as one to two hours.  Therefore, for the purposes of this study, the onset of 

breakup was defined as the first evidence of transverse cracking near the WSC 

HRHR gauge site.  In a manner similar to earlier researchers (e.g. Shulyakovskii 

1963 and Beltaos 1997), the forecast is achieved by predicting the expected rise of 

water level associated with the onset of cracking, ΔH.  The expected timing is 

then determined based on the real time water level data, by projecting the rate of 

rise of the water level hydrograph.  

 

Considering all of the available hydro-meteorological data presented in the last 

section and from a physical point of view, the two categories of factors controlling 

the water level associated with the first cracking are:  

http://climate.weatheroffice.gc.ca/climateData/canada_e.html�


 

81 

• driving forces: the heat input into the ice cover that decreases ice thickness 

and/or strength; and  

• resisting forces: the competence (or strength) of the ice cover. 

In this study, the following one output and seven input variables can be extracted 

from the developed data set to describe these processes.   

 

3.3.1 Rise of water level at the onset of breakup, ΔH 

 

As noted above, the rise of water level at the onset of breakup, ΔH, is the primary 

output parameter (dependent variable) of the forecasting model.  To facilitate the 

model development, ΔH was defined as the difference between the water level at 

the onset of rise of spring runoff, HOR, and the water level at the onset of breakup 

(i.e. at the time of the first transverse crack), HFC, both of which were extracted 

from the measured data at the WSC gauge site (i.e. from the actual strip charts for 

1964 to 1996 and from the continuous electronic water level data for 1997 to 

2010).   

 

Based on direct observations from 2005 to 2010 (excluding 2006), it has been 

determined that fluctuations in the WSC water level record provide a consistent 

indication of the shifting of ice sheets associated with the development of the first 

transverse cracks at the gauge site.  Figure 3-2 illustrates this using two examples 

from the data record for which actual observations are available (2005 and 2008).  

As the figures illustrate, this initial transverse cracking tends to be associated with 
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the slope break in the water level hydrograph that is followed by a water level 

drop. Thus, for those years where no direct visual observations were available, the 

water level associated with the first crack, HFC, was identified from the WSC 

gauge records as the first slope break preceding a water level drop in the measured 

instantaneous water level hydrograph.  No water level data were available during 

breakup in 1973, 1974, 1975, 1980 and 1995, leaving a total of N = 42 years of 

record between 1964 and 2010.  The corresponding date on which HFC occurred 

was also documented as a variable: DFC. In cases where HFC occurred before noon, 

DFC was set as the previous date; otherwise, DFC was assigned the date on which 

HFC occurred. This definition was chosen to facilitate more realistic 

correspondence with those independent variables represented by mean daily 

values (as discussed further below).  

 

For this study, HOR, the observed water level just prior to the arrival of the spring 

runoff wave, provided an index of the actual pre-breakup flow. This measured 

stage was used (as opposed to the discharge deduced from this measured stage) 

because the WSC discharge data are not immediately available to facilitate real-

time forecasting.  HOR also represents the base level that must be exceeded by 

some incremental rise, ∆H, before the ice can crack and thus shift a small amount, 

causing a slope break in the local water level hydrograph.  In this context then, 

HFC (which is equal to HOR + ∆H) is slightly analogous to the threshold water 

level “that must be exceeded in the spring before the ice is detached from the 

banks and other river boundary supports” (Beltaos 1997).  Some earlier 
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researchers have found the freeze-up stage, HF, directly represents the threshold 

water level that must be exceeded for the ice cover to detach and move; others 

have found that the freeze-up stage must be exceeded by some incremental rise 

for the ice to detach and move (e.g. Hicks et al., 1995). In this study, the freeze-up 

stage was not found to be a useful representation of either, possibly because the 

objective here was to predict the stage associated with first cracking, not to predict 

the threshold stage for detachment and sustained movement of the ice.  In 

particular, it was found that freeze-up stage values extracted from the 

instantaneous water level data for this site exhibited no correlation with the 

observed stage at first cracking, HFC. In fact, in many cases the observed freeze-

up stage was higher than HFC. This makes physical sense if the freeze-up stage is 

indicative of the threshold stage for sustained ice movement, since first cracking 

occurs prior to sustained ice movement and thus should occur at a lower stage. 

However, it also means that the freeze-up stage was not of any practical value for 

predicting the first transverse crack. 

 

HOR was also extracted from the WSC HRHR gauge record.  However, in this 

case, daily water level data were found to be more useful than instantaneous data. 

Based on an examination of the gauge records, it was found that HOR could most 

reliably be identified by taking it as the mean daily water level on the first day that 

the rate of water level rise attains 5cm/day and continues to increase afterwards. 

Specifically, in examining the actual data record, it was found that variations in 

water level less than 5 cm could be spurious fluctuations. For real-time 
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forecasting purposes, it has also been determined that the mean daily water level 

can reasonably be approximated by the observed value at noon, since the water 

level is rising gradually in the pre-breakup period.  Figure 3-2 illustrates the HOR 

values determined for the two example cases, 2005 and 2008. 

 

Figure 3-3 shows the resulting dependent variable ΔH (=HFC - HOR) in descending 

order, color coded according to breakup flood severity at the Town of Hay River. 

Although there is no definitive threshold relationship between ΔH and breakup 

flood severity, it appears that severe flood events are more likely to occur when 

ΔH exceeds about 0.7m, for which 16 of 26 (61% of) events involved flooding. 

This includes 6 of the 7 documented severe flood events and 10 of the 12 cases in 

which some flooding occurred. For ΔH less than 0.7m, only 3 of 16 (19% of) 

events involved flooding.  

 

3.3.2 Heat input factors 

 

The heat input to the ice cover during the pre-breakup period is described by five 

variables, processed from the available meteorological data. Two of these five 

variables were formulated from the mean daily air temperature data: ADDT-5 and 

ADDF-5. ADDT-5 was taken as the accumulated degree-days of thaw, referred to a 

base air temperature of -5°C as suggested by Bilello (1980), in the pre-breakup 

period (e.g. between the onset of thaw, DOT, and the day of the first crack, DFC). 

The onset of thaw, DOT, was defined as the date after which the mean daily air 
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temperature persisted above -5°C (e.g. for five consecutive days). Any mean daily 

temperatures below -5°C in the pre-breakup period were used to count towards 

the accumulated degree-days of freezing, ADDF-5 referenced to the same base 

temperature. It should be noted that a number of other degree-day accumulation 

conventions were tested, but this one was found to produce the most consistent 

results.  ADDT-5 is considered as an index of the accumulated heat input to the ice 

cover, which in turn decreases ice thickness and/or ice strength.  Thus ADDF-5 

provides an index of the delay of ice cover deterioration during the pre-breakup 

period. 

 

The three remaining variables: RNPB, SNPB, and SNGOT, were formulated using the 

daily precipitation and the snow-on-the-ground data, since rainfall and snowfall 

during the pre-breakup period are also important factors that can affect ice cover 

competence.   RNPB is the accumulated rainfall during the pre-breakup period. It is 

considered as an index that accelerates snowmelt process and the ice cover 

deterioration.  SNPB is the accumulated snowfall during the pre-breakup period. It 

is considered as an index important in delaying snowmelt and ice cover 

deterioration.  SNGOT is the depth of snow on the ground at the onset of thaw, 

DOT. It is considered as a factor which can delay ice cover decay and breakup: the 

higher the depth of snow cover, the slower the ice cover decays and the later the 

ice cover breaks up. 
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3.3.3 Initial ice cover condition 

 

In terms of ice competence, the initial ice cover condition is described by two 

variables: ti and DECAY. ti is the ice thickness, based on the data collected during 

WSC’s final winter discharge measurement each year. The date of the 

measurement is recorded as Di. There are usually several measurements for each 

winter season, but the last one each year (usually taken in mid-April) is 

considered most representative of the actual ice cover thickness just prior to 

breakup.  

 

The other index variable for ice cover condition, DECAY, was introduced to 

identify whether the ice cover has been significantly decayed or not at the time of 

this ice thickness measurement. DECAY was assigned one of two values: 1 or 0, 

by comparing the Di with the onset of thaw, DOT. If Di was seven days, or more, 

later than DOT, which means that the ice cover had been exposed to the thawing 

temperatures for longer than seven days at the time of the measurement, DECAY 

was set to 1; otherwise DECAY was set to 0.  A zero or one classification for the 

ice decay was chosen because the breakup evolves quickly at this site (over just a 

few days, as discussed earlier) and, based on direct observations since 2004, there 

usually appears to be a dramatic change in the degree of thermal deterioration of 

the ice cover from one day to the next.  The model was tested with and without 

this variable, and its inclusion was confirmed to reduce the model error.   
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All seven variables discussed above: ti, DECAY, SNGOT, ADDT-5, ADDF-5, RNPB 

and SNPB were used as the models’ input variables. The first three (ti, DECAY and 

SNGOT) are known approximately one to three weeks in advance of the onset of 

breakup, whereas the other four variables (ADDT-5, ADDF-5, RNPB and SNPB) 

must be updated during the pre-breakup period, based on the actual 

meteorological conditions and short range weather forecasts.  

 

3.4 Multiple linear regression (MLR) models 

 

The multiple linear regression (MLR) technique is currently one of the most 

prevalent methods used in river ice forecasting. Correct application of MLR first 

requires that the data set have the characteristics of normality of distributions and 

independence of input variables. Despite this, to the authors’ knowledge, none of 

the earlier studies applying this technique to the river ice forecasting problem has 

checked this requirement. The typical river ice breakup data used in the 

forecasting models do not meet these requirements, yet the method is still widely 

applied. In the context of this study, because of its prevalent use in practice, the 

MLR technique was employed purely to provide a conventional (though not 

necessarily valid) basis of comparison for the proposed ANN model later. 

 

A backwards stepwise regression was performed, in which all the input variables 

were first entered into the equation and then were successively removed upon 

meeting the criterion of the significance level of the F-statistic being greater than 
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0.1 (In this context, the significance level indicates the probability of making an 

incorrect inference in the hypothesis that the removed variable is not significantly 

improving the model performance). The significance level of 0.1 was chosen to 

achieve a more parsimonious model (IBM SPSS Inc., 2009).  

 

This process produced six successive MLR models: the first, employing all seven 

input variables, is shown in Equation [3-1]. As Figure 3-4(a) illustrates, this 

model provides relatively poor predictive capability. 

 

∆𝐻 = 1.6543 ∗ 𝑡𝑖 − 0.0517 ∗ 𝐷𝐸𝐶𝐴𝑌 − 0.0019 ∗ 𝑆𝑁𝐺𝑂𝑇 + 0.0004 ∗ 𝐴𝐷𝐷𝑇−5 

            +0.0206 ∗ 𝐴𝐷𝐷𝐹−5 − 0.0064 ∗ 𝑅𝑁𝑃𝐵 − 0.0017 ∗ 𝑆𝑁𝑃𝐵 − 0.1002     [3-1] 

 

The final MLR model from the stepwise regression, which employed only two 

input variables (ice thickness, ti and ADDF-5), is shown in Equation [3-2]. As 

Figure 3-4(b) shows, the performance of this simpler MLR model was comparable 

to the one obtained using all seven input variables.  

 

∆𝐻 = 1.6232 ∗ 𝑡𝑖 + 0.0199 ∗ 𝐴𝐷𝐷𝐹−5 − 0.1351                                            [3-2] 
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3.5 Artificial neural network models  

 

3.5.1 Model structure 

 

As a data-driven black-box model, ANN is suitable for complex non-linear 

problems when an explicit relationship between the input and output variables is 

difficult to formulate. This method has a parallel and layered structure consisting 

of artificial neurons (or nodes) that process a number of input signals to produce 

an output signal. Among the different structures for developing ANN models, 

Maier and Dandy (2000) and Maier et al. (2010) found that multilayer feed-

forward networks have been, and are, the most commonly used in the applications 

of ANNs to water resources problems. It has also been shown that a three-layer 

feed-forward network with sufficient nodes in the intermediate layer can 

approximate any function to any desired degree of accuracy (Hornik et al. 1989). 

For this investigation, the most common three-layer feed-forward structure was 

employed, as illustrated in Figure 3-5. The first is the input layer comprised of all 

the input variables. The last is the output layer which is the output variable. The 

intermediate (or hidden) layer is composed of a number of artificial nodes. Nodes 

of adjacent layers are connected by weighting factors. The analytical form of the 

model depicted in Figure 3-5 can be expressed by Equation [3-3]. The original 

values of the nodes in the input layer (Xi) are first summed by their weights (wij). 

Each weighted sum is then taken as the input to the nonlinear transfer function (f1) 

for the hidden nodes HNj. The outputs of the nodes in the hidden layer (HN1 to 
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HNh) are again summed up by their weight (wj) and then taken as the input for the 

node in the output layer (Y).  These weighted sums are converted into the final 

output using either a linear or non-linear transfer function (f2) for the node in the 

output layer (Y). 

 

𝑌 = 𝑓2�∑ 𝑓1�∑ (𝑋𝑖𝑛
𝑖=1 𝑤𝑖𝑗)�ℎ

𝑗=1 𝑤𝑗�            [3-3] 

 

where: n is the number of input variables (7 in this case); and h is the number of 

nodes in the intermediate layer.  

 

The number of nodes, in the intermediate (hidden) layer, h, is the most critical 

parameter for a feed-forward ANN structure because an inappropriate choice 

could result in a model with little generalization capability. If too few hidden 

nodes are used, the model will not be able to express the complex relationship 

between the input and output variables. If too many hidden nodes are used an 

over-fitting situation results, causing the model to perform much better for the 

calibration data than for the unseen validation data. Currently there is no 

deterministic method to find the optimal number of nodes to use in the 

intermediate layer. Sarle (1997) discussed the use of empirical guidelines noting 

that they are all very case specific and, thus fundamentally no better than the 

simple trial-and-error method. Therefore, in this study, the trial-and-error method 

was implemented: first by training a number of networks with different numbers 

of hidden nodes, then choosing the one with the best performance as the final 
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model. The smallest number of hidden nodes was taken as 2 in this study. The 

NeuroShell® 2 Release 4.2 (Ward Systems Group, Inc., 1995) software, used for 

this study, recommends specifying the number of hidden nodes for a three-layer 

network by Equation [3-4]. 

 

ℎ =  1
2

(𝑁𝐼 + 𝑁𝑂) + √𝑁                                                                                      [3-4] 

 

where: NI is the number of the input variables; NO is the number of output 

variables; and N is the available number of the calibration data cases.   For this 

case, with seven input variables, one output variable and 42 calibration data cases, 

Equation [3-4] suggests that it would be appropriate to use 11 nodes in the hidden 

layer.  Therefore, a range of 2 to 11 for the number of hidden nodes was tested 

and compared. Two larger values, 15 and 20 hidden nodes, were also tested to see 

if larger model structures could give better performance. The 12 model structures 

investigated in this study are summarized in Table 1, categorized into three groups 

by the ratio of the degree of freedom, DF (i.e. the number of connection weights 

for calibration) to the size of calibration data set, N, so that the average 

performance of structures in each group can be compared. The degrees of freedom 

are calculated using Equation [3-5]: 

 

DF = h(NI+1) + (h+1) NO                                                                                  [3-5] 
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The ‘small’ group includes three structures (h=2, 3 and 4) where the ratio, DF/N, 

is less than 1. The ‘moderate’ group includes another five structures (h=5 to 9) 

when the ratio is between 1 and 2. The ‘large’ group is comprised of the cases for 

which the ratio is larger than 2 (h=10, 11, 15 and 20).  

 

3.5.2 Model calibration  

 

Calibration of an ANN model involves iteratively updating the connection 

weights between the nodes of adjacent layers (i.e. wij and wj in Equation [3-3]) to 

minimize the overall mean squared error between the actual and modeled output 

for all calibration data. In this investigation, the calibration data were first pre-

processed and standardized; then the back-propagation (BP) algorithm proposed 

by Rumelhart et al. (1986) and ‘early stopping’ scheme (see Sarle 1997) were 

used to calibrate the models proposed above; the performance of the calibrated 

models were then compared to determine the best model structure. 

 

3.5.2.1 Data pre-processing 

 

The range in magnitude of each variable in the calibration data set can be quite 

different. For example, in this study, the variable ADDT-5 ranges from 0.0 to 

169.2 °C-day whereas the variable ti only varies from 0.4 to 1.1 m. If the original 

values of these variables were used in calibrating the ANN model, very small 
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weightings would be assigned for these widely ranging variables. Therefore, to 

avoid the effect of uneven absolute ranges of variables, the original data should be 

transformed. Among the different transformation techniques (e.g. the linear, 

logarithmic, histogram equalization, seasonal and normal transformations), 

Bowden et al. (2003) found that the linear transformation gave the best results. 

Therefore, in this study, all of the input and output data were linearly scaled to the 

range of -1 and 1 using Equation [3-6]: 

 

𝑆𝑖 = [2𝑥𝑖 − (𝑥𝑚𝑎𝑥 + 𝑥𝑚𝑖𝑛)] (𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛⁄ )                                                     [3-6] 

 

where: Si is the scaled non-dimensional value of the variable; xi is its original 

value; and xmax and xmin are the maximum and minimum value of the variable in 

the data set, respectively.  

 

All of the input and output variables were scaled into non-dimensional numerical 

values between -1 and 1 using Equation [3-6]. A box plot of the scaled values for 

each variable (except the nominal variable DECAY) is shown in Figure 3-6, 

illustrating the fact that none of the variables are normally distributed. This is an 

advantage of ANN modeling over traditional statistical models such as MLR, as it 

is not appropriate to apply MLR modeling to non-normally distributed data 

(Masters 1993). It should be noted that non-linear data transformations might 

resolve this issue for the MLR modeling technique; however, as the historical 

applications of MLR modeling to this problem have not employed such 
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transformations, and this research was focused on the ANN modeling approach, 

such investigations were considered beyond the scope of this study. To measure 

the model performance against observed data, the output from the calibrated 

model was rescaled by the reverse process to obtain values in the original unit. 

 

3.5.2.2 Calibration algorithm  

 

The BP algorithm was chosen to train the proposed ANN models, as it has been 

the most commonly used in water resources related applications (Maier et al. 

2010). There are several parameters associated with the BP algorithm including: 

the initial weight range, the transfer functions, the learning rate, α and the 

momentum factor, m. The initial weight range defines the range of the randomly 

assigned connection weights as the initial condition for the iteration process. In 

this study, since the BP algorithm cannot guarantee globally optimal results from 

the calibration, successive values for the initial weight range, ranging from 0.01 to 

0.3 with a step size of 0.01, were tried. Then the initial weight range which 

provided the best model performance was used in the final version of the model.  

 

The transfer functions in the BP algorithm (i.e. f1 and f2 in Equation [3-3]) can be 

any differentiable and bounded function. In this study, a hyperbolic tangent was 

chosen as f1 and a linear (identity) function was chosen as f2. This combination is 

recommended by Sarle (1997) and NeuroShell® 2 Release 4.2, and has been used 
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most frequently for forecasting problems in the literature (Maier and Dandy 

2000).  

 

Since the computational time required for calibration was not a constraint in this 

study, relatively small learning rates and momentum factors were used: α = 0.1 

and m = 0.1 for the intermediate layer and α = 0.05 and m = 0.5 for the output 

layer. These are recommended by NeuroShell® 2 Release 4.2 and were kept the 

same throughout the calibration process. 

 

To avoid over-fitting (i.e. a situation in which the model is overly calibrated such 

that it even reproduces the ‘noise’ in the calibration data and thus has a poor 

generalization capability), the ‘early stopping’ scheme (Sarle 1997) was also 

employed in this study. In this scheme, the calibration data set is split into two 

subsets: one for training the model and the other for testing the model during the 

calibration process. The model calibration proceeds using the training subset, and 

each successive calibration is assessed using the testing subset.  The calibration 

result that produces the minimum root mean squared error for the testing subset 

(RMSEtst), as calculated by Equation [3-7], is then chosen as the optimal model.   

 

𝑅𝑀𝑆𝐸𝑡𝑠𝑡 = � 1
𝑁𝑡𝑠𝑡

∑ 1
2

(𝑌𝑠� − 𝑌𝑠)2𝑁𝑡𝑠𝑡
𝑠=1                       [3-7] 

where: 𝑌𝑠�and 𝑌𝑠are respectively the modeled and actual output for the sth of the 

Ntst testing data.   
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For this study, the calibration data was split manually so as to avoid any 

extrapolation by the ANN model in the testing phase; specifically, those data with 

one or more extreme values of any input or output variable were kept in the 

training subset. Also to make the best use of the available data, 90% of data was 

kept in the training subset and the remaining 10% was left in the testing subset. As 

a result, the data for 1970, 1992, 1997 and 2005 were chosen as the testing subset 

and the remaining 38 years data were used as the training subset (as noted in 

Figure 3-3).  

 

3.5.3 Model validation 

 

Before implementing an ANN model in practice, it is necessary to determine how 

well the model will make predictions for cases that are not in the calibration data 

set by validating its generalization capability.  Given the small data set available 

in this study (N = 42 years), it was not valid to employ the commonly used split-

sample validation method due to the subjective approach required for the sample 

splitting (Sarle 1997).  This was confirmed by testing the split-sample approach 

for multiple combinations of calibration/validation subsets. As expected, it was 

found that resulting model error depended on the sample split selected, even 

though sub-samples were chosen to have consistent statistics for all variables. 

Consequently, the ‘leave-one-out cross validation’ (LOOCV) technique (Stone 

1974) was employed here. In this method, the ANN model is calibrated and 
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validated N times, each time calibrating with all but one of the data set (i.e. with a 

sample size of N-1 for training and testing).  The calibrated model is then 

validated by the reserved (single) data case not used in the calibration. This 

calibration and validation process is repeated until each data case is used as a 

validation data once. The average of the resulting validation errors is then used as 

an estimate of the true error of the model.  

 

As discussed above, in this study, four cases were chosen for the testing subset 

(1970, 1992, 1997 and 2005) in the calibration process.  When one of the four test 

cases was reserved for validation in the LOOCV procedure, another case having 

an output of comparable magnitude was substituted in the calibration testing 

subset. The data cases used as substitutes in the testing subset are marked with ‘☆’ 

in Figure 3-3. 

 

3.6 Results and Discussions 

 

3.6.1 Calibration and determination of the final ANN model 

 

Figure 3-7 illustrates the comparative performance of three of the calibrated 

models (for h = 2, 6 and 20), as a function of initial weight range (IWR). As seen 

in Figure 3-7(a), models with fewer hidden nodes (e.g. h = 2) have the largest 

errors; this is because small networks have a limited capability to express the 
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types of complex relationships considered in this study. The model performance 

improved when the number of hidden nodes were increased, as illustrated by 

Figure 3-7(b) for h = 6. However, when too many hidden nodes were employed 

the model performance became unpredictable, as illustrated in Figure 3-7(c) for h 

= 20. In particular, for some trials, such as IWR = 0.05, 0.10, 0.13, 0.14 and 0.28, 

the calibration fit the testing data better than the training data (Figure 3-7(c)). 

These results imply that a medium size network is likely to exhibit better 

performance than a large size network in the case of a small data set.  

 

Figure 3-7 also illustrates that the optimal IWR was identified for each model as 

the value associated with the minimum RSME for the testing subset.  Figure 3-8 

compares the optimal values of IWR for all 12 cases of h tested. This comparison 

shows that that medium sized models (e.g. for h = 6 to 9) exhibited better 

performance than the small models (e.g. for h = 2 to 5).  Although the larger 

models suggest even better performance, potentially unpredictable results are 

possible.  Specifically, when the testing errors are smaller than the training errors 

(e.g. as they were for h = 11 and 20), the testing error is no longer representative 

of the model error, which means that the ‘early stopping’ scheme has essentially 

failed. 

 

Based on the above results, the model with 6 hidden nodes and an initial weight 

range of 0.29 showed the smallest RMSEtst and was chosen as the optimal model. 

The performance of this proposed ANN model is shown in Figure 3-9. The R2 for 
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the whole calibration set was 0.93, which is much better than seen for the two 

MLR models discussed earlier (0.22 and 0.21). Also, RMSEtst was 0.23 m, which 

is much smaller than the SEE for the two MLR models (0.65 m and 0.61 m). This 

good performance implies the great potential of the ANN model to generalize the 

complex relationships for the river ice breakup forecasting. 

 

3.6.2 Validation of the ANN model 

 

The results for the 42 LOOCV calibrations are shown in Figure 3-10, illustrating 

that they varied substantially in terms of the resulting training and the testing 

errors.  This demonstrates how sensitive the ANN calibration results are to small 

changes in the calibration data, especially for small data sets.  However, the 

average of the RMSEtrn (0.14 m) and the RMSEtst (0.26 m) for the LOOCV 

analysis are very close to those for the proposed ANN model calibration (also 

shown on the figure), which were 0.16 m and 0.23 m, respectively. 

 

The results of the validation of the 42 LOOCV models are shown in Figure 3-11. 

The range of validation errors (0.00 to 4.77 m) is much larger than that for the 

testing errors (0.11 to 0.42 m as seen in Figure 3-10). This implies that the 

accuracy of the ANN model could be overestimated by looking only at the 

calibration testing errors, especially if the data set is small, which is the case in 

this study. For the 9 anomalous years, in which one or more variables were 

outside of the range of the corresponding calibration data, the errors were 
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generally larger. In addition, the modeled outputs were negative (i.e. physically 

meaningless) for 4 of the anomalous cases and beyond the maximum of the 

observed values for 2 of the anomalous cases. This illustrates that problems 

associated with extrapolating ANN models.  It should also be noted that, to 

prevent these non-physical (i.e. negative) outputs, a sigmoid transfer function 

could be tried for the node in the output layer. This needs further investigation in 

future studies. 

 

There could be two possible reasons for this poor predictive capability of the feed-

forward ANN models in this study. The first is the small size of the calibration 

data set compared to the large structure of the ANN model. In the case of this 

study, the ratio of degrees of freedom to the size of the calibration data set was 

1.31 for h = 6 (see Table 1), which is larger than 1. This can cause the ANN 

model training to become trapped in some local minima that is far away from the 

global optimum, which tends to result in poor validation performance. One 

possible solution to this problem would be to perform a sensitivity analysis on the 

input variables and then eliminate those found to be insensitive, so as to reduce 

the complexity of the model structure. It is also possible that model performance 

could reflect errors in the data set, especially as the occurrences of the first 

transverse cracks were, in most cases, deduced from the historical raw water level 

data rather than by direct observation.  Despite these issues, the forecast stage at 

breakup for 2011 was found to be within 0.1 m of the actual observed value.   
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3.6.3 Potential of the ANN model to predict the timing of breakup  

 

To test the potential applicability of the ANN model for predicting the timing of 

river ice breakup, these forecasted water levels were translated into a date of 

occurrence (DFC) by referring to the raw strip chart or instantaneous water level 

data from WSC to determine the date on which the modelled HFC occurred. For 

some cases, the modelled HFC was outside the range of the available water level 

data; in those cases, the predicted DFC was estimated as the date on which the 

water level was closest to the modelled HFC. 

 

Figure 3-12 illustrates the comparisons of the proposed ANN model predictions to 

the actual data and to the 2-variable MLR model (i.e. Equation [3-2]). As 

expected, given the lower RMSE in the calibrated ANN model, the performance is 

encouraging, with the predicted dates for the onset of breakup all within one day 

of the actual occurrence (see Figure 3-12(a)).  In comparison the 2-variable MLR 

model performs relatively poorly. However, the results of the validations in the 

LOOCV analysis, shown in Figure 3-12(b), probably illustrate a more realistic 

picture of the potential accuracy of the forecasts: 28 of the 47 events have an error 

equal to or greater than 2 days, which is comparable to that of the 2-variable MLR 

model. This fact suggest that, despite the encouraging calibration results of the 

ANN model, its true performance in forecasting practice still has much 

uncertainty and needs further study.  Nevertheless, the optimal model suggested in 

this study did correctly predict the timing of breakup in 2011. 
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3.6.4 Relative importance of the input factors to the timing of river ice breakup 

 

To make the most use of the calibrated ANN model, the relative importance of 

input variables to the output variable was calculated by Garson’s method (Garson 

1991), using the calibrated connection weights. The results are shown in Figure 3-

13. The five most important variables are the SNGOT, ADDF-5, DECAY, ADDT-5, 

and ti, which are all of a similar level of relative contribution (from 14% to 20%). 

The remaining two variables (i.e. RNPB and SNPB) are less important. This analysis 

was also performed for all the calibrations in the LOOCV (see Chapter 3). The 

rank of the relative contributions of each input variable to the output variable are 

shown by the box plot in Figure 3-14.  This result indicates that the four most 

important input variables are ti, ADDT-5, ADDF-5 and SNGOT and the least 

important is SNPB. This result is more or less consistent with those empirical 

criteria for the onset of river ice breakup found in the literature (e.g. see Beltaos 

1997), except for the following newly introduced variables: the accumulated 

degree-days of freezing during the pre-breakup period (ADDF-5) and the snow-on-

the-ground at the onset of thaw (SNGOT) which were also found to be important 

factors affecting the initiation of river ice breakup in this study. The result of this 

analysis is also consistent with that of the MLR models (see Equations [3-1] and 

[3-2]). In the backward stepwise regression, the last model contained the two 

variables: ti and ADDF-5. It is understandable, given that when a cold spell occurs 

during the pre-breakup period, the decay of ice cover could be delayed, which 
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thus affect the initiation of breakup. ADDF-5 is a good indicator of this effect and 

should be included in developing river ice breakup models. These results also 

suggest that snowfall during the pre-breakup period (SNPB) is not as important as 

the other factors and can be neglected in practical models for river breakup 

forecasting. 

 

3.7 Conclusions 

 

This Chapter explored the practical applicability of feed-forward ANN models to 

the river ice breakup forecasting problem. All of the independent and dependent 

variables related to river ice breakup were processed from the readily available 

historical hydrometric and meteorological records. These variables were then used 

to develop a three-layer feed-forward ANN model. The results for the Hay River 

case study showed that the feed-forward ANN model has more potential than 

conventional multiple linear regression models employed historically to express 

the complex nonlinear relationship between the input and output variables in the 

river ice breakup forecasting problem. However, limited available data remains a 

key constraint in forecasting this complex phenomenon. 

 

It is important to note that an ANN model’s performance can be optimistically 

overestimated by looking only at the calibration testing results. The results of the 

independent validation for this example case study clearly illustrate that the error 

of the calibrated ANN model on the unseen validation data could be much larger 
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than those indicated by the calibration testing data.  It was also found that the 

error is generally larger for the extrapolation cases than for interpolation.  Thus 

independent validation, using data not employed in the training and testing 

processes, is essential to obtain a clear picture of the actual potential errors of any 

ANN model. 

 



 

105 

Table 3–1:  The 12 ANN model structures tested in this study. 

Size of 
network 

Number of 
hidden nodes  

(h) 

 Degree of freedom 
(DF) Ratio of DF to N 

Small 

2 19 0.45 

3 28 0.67 

4 37 0.88 

Medium 

5 46 1.10 

6 55 1.31 

7 64 1.52 

8 73 1.74 

9 82 1.95 

Large 

10 91 2.17 

11 100 2.38 

15 136 3.24 

20 181 4.31 
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Figure 3–1:  Map of (a) the Hay River basin and (b) the Town of Hay River. 
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Figure 3–2:  Examples of HFC and HOR determination at the WSC 07OB001 

(HRHR) gauge for (a) year 2005 and (b) year 2008. 
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Figure 3–3:  The amount of rise of water level required to initiate river ice 

breakup (ΔH), and breakup flood severity, at the Town of Hay 

River. Note: the years marked with symbol ‘★’ were used in the 

testing subset in the calibration of the ANN model; the years 

marked with the symbol ‘☆’ were the substitutes used when 

members of the testing subset were reserved cases in the  in the 

leave-one-out cross validation. 
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Figure 3–4:  Comparison between the predicted stage change at the onset of breakup 

(ΔHreg) and the observed stage change (ΔHobs) for the two multiple linear 

regression models: (a) with the most input variables and (b) with the least 

input variables. Note: the dashed lines enclose ±0.2 m difference from the 

perfect agreement (solid line). R2 is the coefficient of determination and 

SEE is the standard error of the estimate. Sample size is 42 in this study. 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Δ
H

re
g, 

m
 

ΔHobs, m 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

Δ
H

re
g, 

m
 

ΔHobs, m 

(a) MLR Model (all variables) 
       R2 = 0.22 
       SEE = 0.65m 

(b) MLR Model (2 variables) 
      R2 = 0.21 
      SEE = 0.61m 



 

110 

  

Figure 3–5: The three-layer feed-forward ANN structure employed in this study. Note: 

shaded nodes in the input layer are variables known one to three weeks prior 

to the onset of breakup; unshaded nodes are variables based on the actual 

situation and weather forecasts during the pre-breakup period; wij is the 

connection weight between an input node (Xi) and a hidden node (HNj); wj is 

the connection weight between a hidden node (HNj) and the output node Y. 
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Figure 3–6:  Box plot for the scaled values of all input and output variables. Note: 

‘x’ indicates the median value; the bottom and top of the box are the 

25th and 75th percentiles, respectively; and the lower and upper ends 

of the whiskers are the 5th and 95th percentiles, respectively. 
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Figure 3–7:  Root mean squared error (RSME) as a function of the initial weight 

range (IWR) for three of the calibrated models: (a) h=2, (b) h=6, and 

(c) h=20, where h is the number of hidden nodes.  The boxed 

number indicates the optimal IWR for each model. 
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Figure 3–8:  Comparison between the best performances of the trained ANNs with 

different numbers of hidden nodes. 
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Figure 3–9:  Comparison of the modeled ΔH of the final ANN model (ΔHANN) 

with the corresponding observed values (ΔHobs). Note: the dashed 

lines enclose ±0.2 m difference from the perfect agreement (solid 

line); RMSEtst is the root mean squared error for the testing subset. 
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Figure 3–10:  Results of the 42 calibrations in the LOOCV. Note: ‘Δ’ indicates the 

anomalous years, in which one or more of the variables were outside 

of the range of the calibration data; ‘▼’ and ‘▲’ indicate the 

maximum and minimum testing errors, respectively. 
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Figure 3–11:  Comparison of the output values for the validating data (ΔHvdn) 

compared to the corresponding observed values (ΔHobs). Note: ‘Δ’ 

indicates the anomalous years, in which one or more of the 

variables were outside of the range of the calibration data. 
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Figure 3–12: Comparison of the predicted date of the onset of breakup (DFC) to the 

observed data for (a) the calibrated ANN and MLR model (i.e. Equation [3-

2]) and (b) the validations in the LOOCV. Note: “↓” indicates that the 

predicted DFC was estimated and is known to be less than shown and “↑” 

indicates that the predicted DFC is greater than shown (for cases which 

could not be precisely determined due to incomplete hydrographs). 
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Figure 3–13:  Relative contributions of input variables to the output variable for 

the calibrated ANN model with 6 hidden nodes. 
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Figure 3–14:  Box plot of the ranks of relative contributions of input variables to the 

output variable for the different calibrations in the LOOCV. Note: ‘x’ 

indicates the median value; the bottom and top of the box are the 25th and 

75th percentile; the ends of the whiskers are the 5th and 95th percentile. 
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Chapter 4  Long lead forecasting of spring peak runoff using Mamdani-type 

fuzzy logic systems5

 

  

4.1 Introduction 

 

Breakup ice-jams are frequent on many northern rivers, particularly in the vicinity 

of river confluences, islands, tight channel bends and in deltas. Although there are 

beneficial aspects for northern eco-systems (e.g. Beltaos et al. 2006), the 

consequent severe floods that ice jams cause can also lead to significant property 

loss and even threat to human safety in riverside communities. The magnitude of 

the snowmelt runoff peak is generally one of the most significant controlling 

factors in determining potential breakup severity, because of its direct hydraulic 

influence on ice jam induced flood levels. Therefore it is of great potential value, 

in terms of ice jam flood preparedness planning, to be able to predict the 

magnitude of the peak snowmelt runoff hydrograph for communities threatened 

by spring ice jam floods.  

 

Forecasting snowmelt runoff has been a very important practice in cold regions. 

Physically based snowmelt runoff modeling has been actively studied for decades 

(e.g. see DeWalle and Rango 2008; Ferguson 1999). Generally, these models 

                                                 
5 A slightly condensed version of this chapter is being submitted to the Journal of Cold Regions 

Science and Technology with my thesis supervisors (F. Hicks and A. Robinson Fayek) as co-
authors.  
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focus on the prediction of the snowmelt runoff process by the energy budget 

method, which is very data intensive. In northern regions, where the data network 

is sparse and the record is relatively short, there is seldom sufficient data for 

calibration and validation of the numerous model parameters involved.  Thus, 

such data intensive models are often of limited value for the application of long 

lead-time ice jam flood forecasting in northern communities.  

 

Compared to the long-term and large investments required to develop a physically 

based, distributed, hydrologic model under changing environmental conditions, 

more cost-efficient, flexible and robust soft computing methodologies (e.g. ANN 

models and fuzzy logic systems) offer promising alternatives. However, despite 

its attractive ability to self-learn  using historical data, as a pure ‘black-box’ 

approach ANN model structures cannot be investigated analytically (e.g. see 

ASCE 2000a and 2000b). Also, for cases where there is only a small calibration 

data set, the ANN models’ reliability in forecasting is still questionable (e.g. see 

Zhao et al. 2011).  Therefore, the potential suitability of fuzzy logic systems for 

forecasting peak runoff during spring snowmelt was investigated in this study. 

 

Since first proposed by Zadeh (1965), fuzzy set theory has been widely used in 

many problems. The concept of fuzzy sets is an extension of classic crisp set 

mathematics in which the bivalent membership (i.e. 0 or 1) is replaced with an 

interval (i.e. [0, 1]) of real numbers. Consequently, it is more suitable for dealing 

with imprecise data and the qualitative nature of vagueness of heuristic 



 

128 

knowledge, especially in the context of hydrological modeling for northern 

regions where data networks are sparse and records are short. For example, in this 

study, a spatially limited dataset of point-wise snowfall measurements was used to 

provide an index of late winter snow pack conditions over a whole basin.  Two 

overlapping fuzzy sets can be used to capture the impreciseness of this index 

variable, for example, describing a particular case as “Low” to a degree of 0.4 and 

“Average” to a degree of 0.6. By using crisp inputs and outputs, a fuzzy logic 

system implements a nonlinear mapping from its input space to its output space. It 

works like an expert system by using fuzzy sets to describe expert knowledge (i.e. 

an “IF-THEN” rule base). Thus the primary advantages of a fuzzy logic model 

over an ANN model are its interpretability and transparency, and it is tolerant of 

imprecise data.   

 

Although known as universal approximators (e.g. see Wang 1992; Kosko 1992), 

there is no single architecture or configuration generally employed in the design 

of a fuzzy logic system for a particular problem. Neither a construction method 

nor the determination of the size of the optimal fuzzy system have been developed 

theoretically (Castro and Delgado 1996). Though automatic rule generation and 

system optimization are possible by a hybrid approach of soft computing 

techniques, for example neuro-fuzzy (e.g. see Jang et al. 1997) or genetic 

algorithms (e.g. see Herrera 2008), the transparency of fuzzy logic systems is 

sacrificed if calibrated by any of these techniques. For example, in investigating 

the transferability of fuzzy logic systems Mahabir et al. (2006)  demonstrated that 
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expert knowledge based fuzzy logic models outperform neuro-fuzzy models, 

especially for the extreme flood events. They also mentioned that a possible 

reason for this was that the rule base calibrated by ANNs introduced some site 

specific factors, which is not transferable from one site to another.  

 

Although fuzzy logic systems are attracting more and more attention in water 

resources engineering research (e.g. see Mujumdar and Ghosh 2008), alternative 

methodologies for model development, such as the partitions of membership 

functions, generation of rule base (e.g. most appropriate one), the choices of 

inference operators and defuzzification methods, have seldom been systematically 

investigated. In most cases, model development has been conducted subjectively 

and so the models’ sensitivity to these various component approaches is not 

known. Therefore, it was a particular goal of this study to conduct such 

investigations in order to achieve a better understanding of the fuzzy logic 

modeling approach. 

 

In this chapter, the extraction of peak snowmelt runoffs from the available 

historical daily discharge data is first presented and assessed as a potential 

indicator of breakup flood severity with the Hay River, NWT Canada taken as the 

study case. Then the selection of the three long lead-time input variables and the 

impacts of the short-term meteorological data (e.g. rainfall and snowfall) on the 

long lead-time forecasting model are discussed. Next, the model configuration for 

the study case is introduced, followed by the detailed descriptions for developing 
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each component of the model. Finally the results of experiments on the models 

are discussed.  

 

4.2 Description of study site and available data  

 

The Hay River originates from the Rocky Mountains in northern British Columbia 

and Alberta, Canada. It flows northeast into Great Slave Lake in the Northwest 

Territories (Figure 4-1(a)), forming a small delta at the Town of Hay River (THR, 

Figure 4-1(b)). Due to the northerly flow direction of the Hay River, breakup 

commences in the upper (southern) portion of the basin first; as a result snowmelt 

runoff from the upper basin typically encounters strong competent ice in the lower 

basin, driving a highly dynamic breakup down the river.  This combined with the 

fact that the ice on Great Slave Lake does not melt out until several weeks after 

river ice breakup, means that spring ice jams are an annual occurrence at the town 

site. Flooding tends to occur when the spring snowmelt runoff event is large, 

especially if the peak flow is coincident with the formation of ice jams. Thus any 

reliable breakup flood forecasting tool must include information regarding the 

expected snowmelt peak magnitude.  

 

There is only a sparse network of hydrometeorological stations in the Hay River 

basin. As shown in Figure 4-1(a), there are four streamflow gauges operated by 

the Water Survey of Canada (WSC) along the main stem of the Hay River. Two 

are located in the upper basin: Chinchaga River near High Level (CRHL, 



 

131 

07OC001) and Hay River near Meander River (HRMR, 07OB003). The third is 

situated at the AB/NWT border (070B008) and the fourth is located 13km 

upstream of the town site Hay River near Hay River (HRHR, 07OB001).  The 

border gauge only operates seasonally and reports only water levels, therefore, its 

data was not relevant to this study.  Daily water levels and flow data from three 

remaining gauges were used in this study.  

 

Two long term active climate stations, operated by Environment Canada (EC), 

were relevant to this study: High Level A (HLA, 3073146) is located near the 

upper basin at the Town of High Level, Alberta; and Hay River A (HRA, 

2202400) is located in the lower basin at the THR. The historical daily data 

archives for these two stations include air temperature, rainfall, snowfall, 

precipitation and depth of snow on the ground. Additionally, there are also snow 

course survey data, e.g. snow water equivalent (SWE), available near the Town of 

High Level (07JF801, Alberta Environment 2011) and near the THR (07OB-

SC02, Aboriginal Affairs and Northern Development Canada 2011) for a shorter 

period than the climate stations. Record periods for all of the raw historical data 

assembled for this study are summarized in Table 4-1. These data were processed 

to develop the data base of input and output variables discussed below. 
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4.3 Assessment of peak snowmelt discharge at HRHR and its relationship to 

breakup flood severity at THR 

 

For both open water and ice affected flooding scenarios, peak flow is one of the 

most decisive factors. In the case of the Hay River, summer rainfall induced 

annual peak flows have never been a concern for the THR. It is high spring 

snowmelt runoff events combined with severe breakup ice jams that have caused 

all of the severe flood events in the history of the town. The spring peak discharge 

not only controls the water level directly from the viewpoint of hydraulics, it also 

affects the initiation of ice jams, which is another necessary condition for breakup 

ice-jam floods. Therefore, in the context of long lead forecasting of breakup ice-

jam flooding, it is reasonable to investigate the peak snowmelt runoff as an 

indicator of flood severity associated with breakup ice jams. To assess the 

potential influence of the peak spring snowmelt discharge, QP, at HRHR on the 

breakup flood severity at the THR, the raw historical daily flow data at HRHR 

was used to extract QP. Next all of the data related to historical breakup at the 

town were collected from various sources and used to define breakup flood 

severity at THR. Then the relationship between the two was analyzed.  

 

4.3.1 Extraction of QP at the three WSC gauges 

 

On the Hay River, the peak spring snowmelt discharge, QP, usually occurs in late 

April or early May. It can either be prior to, along with, or after, the breakup event 
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at the town site. Great care was taken to correctly identify the QP for each year at 

all three WSC gauges. In some cases this was straightforward; for example, when 

there was only one single peak during the snowmelt period. However, because of 

the dynamic nature of breakup along the Hay River, discharge fluctuations due to 

variable ice effects are very common in the WSC spring daily flow data. These 

are not snowmelt peaks; they are typically either erroneous discharge 

interpretations (caused by assuming the validity of a winter rating curve in the 

backwater zone of an ice jam) or actual discharge fluctuations caused by ice jam 

release waves.  For the purposes of this discussion, peaks associated with such ice 

affected discharge fluctuations during the breakup period are defined as QMB. 

Figure 4-2 illustrates one such example for the HRHR gauge from 1988; here the 

spring peak snowmelt discharge, QP, followed the ice clearing.  This example 

illustrates how simply picking the largest value from a published table of mean 

daily flows could greatly overestimate the actual snowmelt runoff peak. Though 

QMB was not the primary focus of this study, it was also extracted from the 

historical data of HRHR for a comparison with QP to understand its impact to the 

breakup flood severity at the THR.  

 

All the QP data were also extracted at the other two gauges (HRMR and CRHL) 

from the available daily flow data using the same methodology as for the HRHR 

gauge. However, it should be noted that for the HRMR and CRHL gauges, in 

some cases the ice effect on the flow hydrographs is not as obvious as that for the 

HRHR gauge, which made the identification of QP at these gauges more difficult. 
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Therefore, in this study, the timing of QP at the HRHR gauge was used to extract 

the most probable QP at the HRMR and CRHL gauge when the hydrographs 

showed more than one peak during spring snowmelt period. A good example of 

these cases is illustrated in Figure 4-2 for 1988: when both the QP for the HRHR 

and HRMR occurred on May 12, the most possible QP for the CRHL is the one on 

May 9 (i.e. three days ahead) compared to the other two on May 3 and May 20 

because of the nearest approximation of the CRHL gauge to the HRMR gauge. 

The detailed information on all the historical QP for the three gauges can be found 

in Appendix C. 

 

4.3.2 Determination of breakup flood severity at THR 

 

Kovachis et al. (2011) summarize the information on the THR breakup flood 

severity dating back to 1984, based on historical flood descriptions in technical 

reports, personal accounts, and newspapers articles. Three qualitative descriptors 

were applied for all the cases: ‘severe flooding’, ‘some flooding’, and ‘no 

flooding’. ‘Severe flooding’ describes major events in which the flood extent and 

damage to property were extensive, as explicitly described in the available 

sources. ‘Some flooding’ refers to both minor and moderate flood events, since it 

was often the case that insufficient information was available to distinguish 

between the two. ‘No flooding’ refers to those events described as ‘quiet’ and 

unnoticeable in historical accounts. 
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4.3.3 Relationship between QP at HRHR and breakup flood severity at THR 

 

It is possible to investigate a relationship between QP and breakup severity for 

those years in which QP is available at HRHR (1964 to 2010). Figure 4-3 shows 

the 47 ranked QP values at HRHR (QP_HRHR for short) coded according to breakup 

flood severity at the THR, illustrating that  flooding events are more prone to 

occur when QP_HRHR is greater than or equal to the median value (635 m3/s). Of 

the 24 cases falling in this range, there were 8 with ‘severe flooding’ (i.e. in 33% 

of the cases where QP ≥ 635 m3/s) and 9 cases (38%) with ‘some flooding’. In 

contrast, of the remaining 23 cases, where QP was below the median value, there 

were no ‘severe flooding’ events and only 3 years when ‘some flooding’ occurred 

(i.e. only 13% of cases when QP < 635 m3/s). This result suggests that QP_HRHR is a 

good indicator of expected ice jam flood severity at THR.   

 

It is important to note that a high value of QP_HRHR did not always result in 

flooding (e.g. 1969) and, conversely, flooding did occur in some cases where 

QP_HRHR was relatively low (e.g. 2006, 2010, and 2001).  To investigate this 

further, a comparison was made between the timing of QP_HRHR and the timing of 

ice clearing at the town site. (This time lag, in days, is provided over the bars in 

Figure 4-3.)  It was found that, in most cases, where a high value of QP_HRHR came 

more than 4 days after ice clearing at the town site, there was no flooding at all 

(e.g. in 1969, 1967, 1987, 1964, 1976, 1975, and 1996). Because the ice jam 

formed in the community well before the snowmelt runoff hydrograph peaked, the 
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resulting ice jam was not high enough to cause flooding. There were two 

exceptions to this: in 1992 and 1986 where, QP_HRHR followed ice clearing by 10 

and 7 days, respectively, but ‘severe flooding’ occurred. In these cases, despite 

the delayed snowmelt peak the ice jams still formed at relatively high discharges, 

due to a particularly dynamic breakup evolution (Gerard and Stanley 1988; Jasek 

et al. 1993). These variabilities illustrate the need to develop a more complex 

model to predict potential breakup severity.  However, it is clear that any such 

model must depend heavily on a good prediction of QP, which was the focus of 

this modeling effort. 

 

4.4 Screening of input variables for a long lead forecasting model of QP 

 

The important factors controlling snowmelt runoff include the late winter snow 

pack condition, antecedent soil moisture conditions, the depth of frozen soil, the 

rate of energy influx causing snowmelt and, possibly, rain-on-snow effects. From 

the perspective of providing a long lead forecast of the snowmelt runoff peak (i.e. 

~3 to 4 weeks in advance of breakup), the latter two factors would be unknowns. 

Therefore, only the first three variables were considered in this study. However, 

due to the potential significance of the rain-on-snow effect (e.g. see Todhunter 

2001), the influence of spring rainfall on the snowmelt peak was assessed in order 

to facilitate an estimate of the  range of error caused by this effect; this can be 

provided along with the long lead forecast. 
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To facilitate the development of the input variable dataset, two key dates were 

first defined from the daily air temperature data. The date of the onset of freezing 

degree-days, DOF, was taken as the date of the first of five consecutive days of 

subzero daily air temperatures each fall. If a warm spell of more than 5 days of 

above freezing temperatures occurred, then the onset of freezing was reset as the 

date when the freezing air temperatures resumed (again requiring 5 consecutive 

days).  The date of the onset of thawing degree-days, DOT,  was taken as the date 

of the first of five consecutive days of mean daily air temperatures above -5°C (so 

as to take into account the melting effect of maximum daily temperatures above 

freezing) each spring. If a cold spell of more than 5 days of below -5°C 

temperatures occurred, the date of the onset of thawing degree-days was reset as 

the date when above -5°C air temperatures resumed (again requiring 5 

consecutive days). The period between DOF and DOT was then defined as the 

winter period and used to develop the three input variables.  

 

4.4.1 Accumulated precipitation during the winter period 

 

The late winter snow pack condition indicates the potential volume of snowmelt 

runoff. Many hydrological studies have used the pack’s late winter snow water 

equivalent (SWE) and/or remotely sensed snow cover data to model the snowmelt 

runoff process. The spatial and temporal variations of snow pack conditions are 

generally used as the explanatory variables of these predictive models. Dyer 

(2008) used three snow cover parameters (i.e. the timing and value of the 
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maximum snow volume, and the duration of snowmelt) to predict the spring peak 

discharge using multiple linear regression analysis for five large North American 

watersheds. The best coefficient of determination (R2) he obtained: 0.56, was for 

the high-latitude Yukon basin. He suggested that using more detailed SWE data 

would enhance model accuracy. Similarly, Yang et al. (2003) found that remotely 

sensed data describing snow cover extent can be used to predict spring discharge 

with acceptable accuracy. In particular, they studied the relation between 

streamflow and remotely sensed snow cover information (e.g. SWE and snow 

cover extent) in the Yukon River basin and found a general association of high 

(low) flow peak with high (low) maximum SWE over the basin. However, they 

also noted a much higher variability in peak flows than in the basin SWE, which 

suggested uncertainties in the reliability of the basin SWE data from remotely 

sensed data.   

 

Basin-averaged SWE data, based on remote sensing images, are also available for 

the Hay River basin; however these data have been found to show very little 

annual variation.  For example, Mahabir et al. (2006) showed the Hay River basin 

satellite SWE data had a standard deviation (SD) of only 5 mm over 24 years and 

absolutely no correlation to the snowfall data measured by Environment Canada 

(R2 < 0.05).  Yang et al. (2009) found a similar lack of variation in satellite SWE 

data for the Yukon River basin, with a SD of only 13 mm.  Thus satellite SWE 

data are considered to be of questionable value to represent the true SWE over the 

Hay River basin.  
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In the Hay River basin, snow course surveys (i.e. direct snow depth and/or SWE 

measurements) are conducted only monthly and records date back only to 1986. 

In contrast, the daily snowfall/precipitation data records at the HLA and HRA 

climate station date back to 1968 (see Table 4-1). Therefore, to maximize the 

length of record available for this study, the accumulated precipitation during the 

winter period, APW, based on data from the HLA and HRA climate stations, were 

used to provide an index of the late winter snowpack condition over the upper and 

lower Hay River basin areas, respectively.   

 

4.4.2 Water level at the onset of freeze-up 

 

Soil infiltration loss during the snowmelt period reduces the direct runoff and, 

therefore, the magnitude of the snowmelt peak. Although it is not generally 

practical to measure soil moisture basin wide, and such data certainly do not exist 

for most northern basins such as the Hay River basin, reasonable indices of soil 

moisture are readily available.  The most common is the antecedent precipitation 

index, or API (Gray 1970) which, in this context, would simply be a summation 

of all of the rainfall in the preceding open water season. However, API is 

generally more relevant to hydrologic modeling on an event by event basis, and a 

seasonal accumulation is not necessarily representative of soil moisture conditions 

in late fall just prior to freeze-up. In this application, actual groundwater levels 

would generally be a more robust indicator of basin soil moisture and since in late 
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fall/early winter the river level itself is an indicator of ground water levels, the 

daily average water level on the date of the onset of freezing degree-days (i.e. on 

DOF), HOF, was taken as an indicator for the antecedent soil moisture that would 

affect the infiltration loss of the snowmelt. A higher HOF suggests a higher soil 

moisture content, which would limit the available infiltration storage volume and 

increase the snowmelt runoff peak. Conversely, a lower value of HOF would be 

expected to be associated with a lower snowmelt runoff peak. 

 

4.4.3 Accumulated degree-days of freezing during the winter period 

 

The accumulated degree-days of freezing during the winter period, ADDFW, was 

used to provide an indirect index to account for both snow sublimation and 

ground freezing effects. Mass loss due to snow sublimation is a very important 

component of the snow water balance; it can amount to as much as 15 to 32% of 

the snowfall (e.g. see MacDonald et al. 2008; Strasser et al. 2008; Hood et al. 

1999), greatly reducing potential snowmelt runoff. Although it is very difficult to 

quantify snow sublimation through direct measurements, the accumulated degree-

days of freezing during the winter period, ADDFW, can be considered as an index 

of the factors that affect the sublimation loss during the snowfall accumulation 

period. For example, Yang et al. (2009) evaluated the compatibility of snow cover 

data in the Yukon River basin and found a wide range in the ratio of basin-

averaged SWE to accumulated precipitation over the winter period, APW, (i.e. 

ratios of 0.37 to 1.20). The lower ratios were generally associated with high 
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values of APW and warm winters; while the higher ratios were associated with low 

values of APW and cold winters. Thus one would expect a positive correlation 

between the peak snowmelt runoff and ADDFW; that is, greater snowmelt runoff 

after colder winters (i.e. winters with lower snow sublimation) and lesser 

snowmelt runoff after warmer winters (i.e. winters with greater snow 

sublimation). 

 

The degree of ground freezing during the winter is also potentially important to 

snowmelt runoff, since the deeper the ground is frozen, the lower the infiltration 

loss expected during the snowmelt runoff period. Since deeper ground freezing 

(and thus lower infiltration loss) would be expected to be associated with larger 

values of ADDFW, again it is expected that ADDFW would be positively correlated 

with the peak snowmelt runoff. 

 

4.4.4 Effect of superimposed rainfall/snowfall during snowmelt runoff to QP 

 

Incident intense rainfall is superimposed on snowmelt runoff when saturated soil 

layers are frozen and the infiltration loss is minimal. This can directly increase the 

spring snowmelt runoff and its peak. In addition, rainfall during this period can 

accelerate the snowmelt process substantially, also resulting in an increased 

snowmelt runoff peak. To assess the potential effect of spring rainfall events on 

QP, the following accumulated rainfall ratio for the spring snowmelt runoff 

period, ARRS, was defined: 
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ARRS = ARS / APW                                                                                          [4 − 1] 

 

where ARS is the accumulated rainfall during the spring period and APW is the 

accumulated precipitation (snow plus rain) over the entire winter.  

 

Figures 4-4(a) and (b) present the results of correlation analyses between ARRS 

and the QP at HRMR (QP_HRMR) and HRHR (QP_HRHR), respectively. The goodness 

of fit (i.e. a linear regression model), R2 are both very small for the two cases 

(0.119 and 0.017). The p values for the null hypothesis tests (i.e. the slope of the 

linear regression model is zero), 0.040 for Figure 4-4(a) and 0.390 for Figure 4-

4(b), indicate that there is a statistically significant linear relationship between 

QP_HRMR and ARRS_HLA (i.e. the ARRS at HLA) and none between QP_HRHR and 

ARRS_HRA (i.e. the ARRS at HRA). Although this relationship is not very evident 

because of very small R2 in Figure 4-4(a), it is interesting to note that when 

ARRS_HLA, is greater than ~0.17, all but one of the QP_HRMR values are above the 

regression line (note the exception in 1982, when the accumulated winter 

precipitation was relatively small). Below this threshold, the QP_HRMR values are 

scattered around the regression line. Therefore, 0.17 was chosen as the threshold 

value for AARS_HLA, beyond which QP_HRMR has the potential to be significantly 

enhanced by the spring rainfall. Such cases cannot not be predicted with a long 

lead forecast model (since rainfall cannot be reliably predicted several weeks in 

advance). In addition, those cases in the historical record that fell into this 
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category were excluded when evaluating the long lead forecast model (1978, 

1979, 1981, 1982, 1994, 1997, 2003, and 2007) leaving 28 years of record in the 

dataset. It was for the consistency purpose to discard the year 1982 though it was 

an exception case among other intense spring rainfall events. This will be further 

discussed in the model results. As Figure 4-4(b) illustrates, no comparable 

threshold was evident for the ARRS at HRA (ARRS_HRA).  

 

A later snowfall event that occurs during the spring snowmelt period might be 

expected to diminish QP, by temporarily delaying the snowmelt, or it might 

enhance QP by adding additional SWE to the pack.  To investigate whether there 

is a consistent tendency one way or the other, the following accumulated snowfall 

ratio for the spring snowmelt runoff period, ASRS, was defined: 

 

ASRS = ASS / APW                                                                                           [4 − 2] 

 

where ASS is the accumulated snowfall occurring during the spring snowmelt 

period.  

 

As Figures 4-4(c) and (d) illustrate, the accumulated snowfall ratios during the 

spring snowmelt period at HLA (ASRS_HLA) and HRA (ASRS_HRA) show no 

significant relationship with QP (see the very small R2 and very high p values), nor 

is any threshold value apparent.  Therefore, there is no evidence that a late 
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snowfall (occurring during the snowmelt period) has any significant, consistent 

effect on QP. 

 

Based on these data analyses, the six long lead-time input variables: APW_HLA, 

ADDFW_HLA, HOF_HRMR, APW_HRA, ADDFW_HRA, and HOF_HRHR were used to develop 

the predictive model for QP_HRHR. This enables a lead-time of approximately 3 to 4 

weeks before breakup. Twenty-eight years of historical data were available to 

evaluate the model. 

 

4.5 Configuration of the fuzzy logic system for QP at HRHR 

 

To incorporate the spatial variation of contributing snowmelt to the peak flow at 

the basin outlet, the Hay River basin was divided into two sub-basins: the upper 

Hay River basin (i.e. upstream of the HRMR gauge) and the lower Hay River 

basin (i.e. downstream of the HRMR gauge). The configuration of the fuzzy logic 

system for QP_HRHR is illustrated by Figure 4-5: Submodel-1 and Submodel-2 were 

first developed to model QP for the upper basin (QP_HRMR) and the lower basin 

(QP_Lower), each using three of the six input variables; QP_HRMR and QP_Lower were 

then used as the inputs of Submodel-3 to determine the QP at the Hay River outlet 

(QP_HRHR). Note that there is no actual numerical output produced for QP_Lower in 

Submodel-2, only linguistic values (i.e. a fuzzy set). This highlights a key 

advantage of fuzzy logic models, in that they can even accept non-numerical 

linguistic values as inputs. 
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To determine the appropriate model structure for the sub-models, two types of 

fuzzy logic systems (FLS) were considered, Sugeno or Takagi-Sugeno type 

(Takagi and Sugeno 1985) and Mamdani-type (Mamdani and Assilian 1975). 

Both are commonly used in fuzzy control and fuzzy modeling (e.g. see Ying 

2000). The primary distinction is in their different structures for “IF-THEN” rules. 

For the Sugeno-type, the consequent of each rule (i.e. the “THEN” part of each 

“IF-THEN” rule) is a (linear or nonlinear) function of the input variables; for the 

Mamdani-type, the consequent of each rule is a fuzzy set (i.e. a linguistic term).  

Though it is potentially more powerful, the Sugeno-type typically needs a large 

data set to reliably calibrate the function parameters for the consequent. By using 

linguistic terms for both the input (“IF” part) and the consequent, the Mamdani-

type describes expert knowledge (e.g. rules of thumb) in a more intuitive manner 

by mimicking human thinking. As it is widely accepted for capturing expert 

knowledge more explicitly than the Sugeno-type, the Mamdani-type structure was 

applied for all the three sub-models in this study.  

 

Figure 4-6 shows the flow chart of a Mamdani-type FLS, as well as an example of 

detailed model components, in this case for Submodel-1. The development of 

each of the following components was explored in detail for this study. In the 

FUZZIFICATION component, the input variables are classified into membership 

functions (MFs) based on linguistic terms.  In the example shown, three linguistic 

terms (“Low”, “Average”, and “High”) have been used to describe each of the 
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three input variables, resulting in a total of nine MFs to be defined in the model 

development.  A key aspect of fuzzification is that the membership functions 

overlap such that particular values of an input variable can be classified (i.e. have 

non-zero membership) to some degree in more than one linguistic category. For 

example, as illustrated in Figure 4-6, an APW_HLA value of 90 mm has a 

membership degree of 0.30 in “Low” and “0.70” in “Average” (summing for a 

total membership of 1.00 overall). Thus, the input data is actually classified into 

sets of numbers, not just assigned qualitative descriptors.  Membership functions 

are also used to classify all possible values of the output variable though, 

generally, more linguistic terms (than those used for the input variables) are 

employed.  Figure 4-6 also illustrates an example for QP_HRMR under the 

DEFUZZIFICATION heading.  Five linguistic terms (“Very Low”, “Low”, 

“Average”, “High” and “Very High”) were used for the output variable in this 

example.  

 

In the INFERENCE component of a FLS, the “IF-THEN” rule base is developed, 

describing the outcomes for all possible combinations of the input variables. This 

is illustrated linguistically in Figure 4-6 under the INFERENCE heading; for 

example, IF all of the input variables are “Average” THEN, conceptually, the 

‘consequent’ (i.e. the result for the output variable) could reasonably be expected 

to be “Average” as well (i.e. Rule 14).  Again, this requires consideration of sets 

of numbers (specifically the degree of membership involved for each input 

variable in each category), not simply a qualitative assessment. As a result, 
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consideration of all possible inputs using the “IF-THEN” rule base and fuzzy 

operators produces an output fuzzy set. The degree of truth of each rule’s 

consequent is first computed using an “AND” operator (e.g. MIN or PROD) to 

combine the linguistic terms of the fuzzified inputs (i.e. the “IF” part). To 

illustrate this for the MIN operator, consider an example in which the APW_HLA is 

0.70 degree of “Average”, ADDFW_HLA is 0.60 degree of “Average”, and HOF_HRMR 

is 0.20 degree of “High”. The THEN part (QP_HRMR) for this IF is 0.20 (i.e. the 

minimum of 0.70, 0.60, and 0.20) degree of “Average” by Rule 15 shown in 

Figure 4-6. When PROD is used, QP_HRMR will become 0.084 (i.e. the product of 

0.70, 0.60, and 0.20) degree of “Average”. Also the MIN and PROD produce the 

output MF shape in different ways: MIN clips the corresponding output MF at the 

validated degree of truth (see Figure 4-7(a)); PROD scales it by the validated 

degree of truth (see Figure 4-7(b)). All the MFs with a non-zero membership for 

QP_HRMR are then aggregated to form a complex output fuzzy set by the 

aggregation operator (e.g. MAX or BSUM). MAX and BSUM respectively 

choose the maximum and the sum (with a bound of 1.0) of all the degree of truth 

for each MF of the output variable. This would result in four different 

combinations of inference operators: MIN-MAX, MIN-BSUM, PROD-MAX, and 

PROD-BSUM.  In the example provided in Figure 4-6, it is the shaded portion 

shown on the output variable membership functions illustrated under the 

DEFUZZIFICATION heading by the MIN-MAX operator.  
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DEFUZZIFICATION is then the final component of the FLS, in which the 

inference result (i.e. the output fuzzy set) is converted to a crisp value (e.g. a 

specific value of QP_HRMR in this example) or a linguistic term, by a specific 

algorithm. Details of the development of each of these FLS model components are 

discussed the following sections. 

 

4.6 Development of the model components 

 

Though it has been accepted that a fuzzy logic model can approximate any 

continuous function, there is not yet a general theory to guide the development of 

its component (i.e. the number and shape of MFs, rule base and inference 

operators, and the defuzzification method) and so multiple approaches still exist. 

Though other soft computing methods such as neural networks or genetic 

algorithms (e.g. see Jang et al. 1997; Herrera 2008) have been employed in the 

development of various fuzzy logic model components, the main weaknesses of 

such methods are that they reduce the transparency of fuzzy logic models and the 

resultant models may exhibit unreliability in cases with limited data sets (e.g. see 

Zhao et al. 2011). Therefore, in this study, each component of Submodel-1 was 

developed explicitly in a series of independent experiments. The results of these 

experiments were then used as guidelines for developing the components of the 

Submodel-2 and Submodel-3. Measured by the designed criterion indices, those 

configurations with best performance were chosen for the final model. The details 

of the designed experiments and indices are as follows. 
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4.6.1 Development of MFs 

 

To determine the number and shape of MFs is very context specific. For most 

practical problems, the number of MFs for each variable should be no more than 

the number of conceptual entities that can readily perceived by a human being for 

that variable, which is typically between 3 and 7 MFs.  However, a practical rule 

is to use as small a number as possible in order to make the model structure (e.g. 

the rule base) tractable by avoiding the problem of “rule explosion”. Specifically, 

a complete rule base contains all the possible combinations of different MFs for 

each input variable; therefore, the number of rules required is equal to MFn, where 

n is the number of input variables. As illustrated in the example in Figure 4-6, 

where 3 MFs (i.e. Low, Average and High) were used for each of the 3 input 

variables, 27 (i.e. 33) rules were required to complete the rule base.  If 5 MFs are 

used, the size of rule base expands to 125 (i.e. 53); if 7 MFs are used, then 343 

(i.e. 73) rules must be defined. Not only does it become conceptually intractable to 

define such a complex array of rules, it would require an extremely large set of 

data to reliably test and validate the resulting model.  Given that only 28 years of 

data are available for evaluating the developed models in this study, if 7 MFs 

were employed for each input variable, then the vast majority of the 343 rules 

would not be evaluated; this would make the resulting rule base debatable. 

Therefore, 3 and 5 MFs for the input variables were considered in the study.  
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As mentioned earlier, often more MFs are used for the output variable than the 

input variables; this is done in an effort to make a smoother transition for the 

output MFs (Inform GmbH 2010). In this study, two schemes for the number of 

MFs for the input and output variables were implemented: the first one (I3O5) 

uses 3 MFs (“Low”, “Average”, and “High”) for the input variables and 5 MFs 

(“Very Low”, “Low”, “Average”, “High”, and “Very High”) for the output 

variable; the second one (I5O7) uses 5 MFs for the input variables and 7 MFs 

(“Extremely Low”, “Very Low”, “Low”, “Average”, “High”, “Very High”, and 

“Extremely High”) for the output variable.  

 

Once the number of MFs is determined, the characteristic points (e.g. the values 

associated with zero and full membership) for each variable can then be assigned; 

and the intermediate points can be interpolated either linearly or nonlinearly, 

resulting in a triangular, trapezoidal, Gaussian, or bell shape. Nguyen et al. (1994) 

showed that a piecewise linear function is the least sensitive (i.e. “the change in 

an input value x will lead to the smallest possible change in the value of 

membership”) for FLSs. Mahabir et al. (2006) also found that the FLS did not 

appear to be sensitive to the shape of MFs in comparing results for linear and 

cubic spline shapes. Pedrycz (1994) showed that 50% overlapping between 

adjacent triangular MFs for the output variable produces zero defuzzification error 

using the centroid method. Therefore, in this study, triangular shape MFs were 

considered first.  
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To develop the optimal model, the following general constraints for constructing 

the MFs (e.g. see Pedrycz and Oliveira 1996) were also employed: (a) all the MFs 

must be normal (i.e. there exists at least one point having full membership); (b) 

only partial overlapping is allowed between two adjacent MFs such that no more 

than two linguistic terms are used for expressing the fuzziness of a crisp value; (c) 

all the MFs must be convex, i.e. their shapes should be unimodal; and (d) the 

universe of discourse (i.e. all possible values) for each variable should be fully 

covered; thus each point should have a non-zero membership value for at least 

one MF.  

 

Following these general constraints, the statistics of the historical data for the 

input and output variables were used to develop their MFs. Specifically, zero and 

full memberships were first defined at some points for each MF; then linear 

interpolation was used to define the intermediate points. For example, the 

partitions of the MFs for the input and output variables tested in scheme I3O5 for 

the Submodel-1 are illustrated in Figure 4-8. For each of the input variables, three 

scenarios were tested for partitioning the MFs.  For scenario (a): the zero 

percentile value (i.e. the minimum value in the historical record) was assigned full 

membership for L and zero membership for A(a) and H(a); the 50th percentile 

value (i.e. the median value) was assigned full membership for A and zero 

membership for L(a) and H(a); and the 100th percentile value (i.e. the maximum 

value) was assigned full membership for H(a) and zero membership for L(a) and 

A(a). These points of zero and full membership for each MF were then connected 
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by straight lines to form the full definitions of the MF (i.e. the solid line triangular 

shapes shown in Figure 4-8). For scenario (b), the points with the full membership 

of L and H were changed to range from the 0 to the 5th percentile values for L(b) 

and from the 95th to the 100th percentile values for H(b), making the shapes of 

L(b) and H(b) trapezoidal, as shown in Figure 4-8(b). Scenario (c) was similar to 

scenario (b), except that the trapezoidal ranges extended from 0 to the 10th 

percentile values for L(c) and from the 90th to the 100th percentile value for H(c).  

These trapezoidal shapes for the “Low” and “High” MFs were intended to test if a 

range is better than a single point for representing the full membership zone for 

these extreme MFs. The corresponding partitions of MFs for the output variable in 

scheme I3O5 are shown in Figure 4-8(d). As explained above, two additional MFs 

classifications: “Very Low” (VL) and “Very High” (VH) were introduced. The 

15th, 20th and 25th percentile values  were used to define the full membership 

range for L(a), L(b) and L(c), respectively;  and the 85th, 80th and  75th percentile 

values were used to define the full membership range for H(a), H(b) and  H(c), 

respectively. For all scenarios, the L (or VL) and H (or VH) MFs are also 

extended backward or forward so that when the actual value of the variable is 

lower or higher than the historical minimum or maximum, they would be assigned 

a full membership of 1. 

 

The partitions of MFs for the input and output variables in the scheme I5O7 for 

the Submodel-1 are shown in Figure 4-9. In this case, the three scenarios for the 

MFs for the input variables employed the same percentile points as were used for 
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as the output variable in scheme I3O5, (i.e. as in Figure 4-8(d). Two additional 

partitions were tested for the output variable’s MFs in this case (Figure 4-9(d)): 

“Extremely Low” (EL) and “Extremely High” (EH). The percentile values for full 

membership of each MF were respectively 0([0, 2.5], [0, 5]), 15(17.5, 20), 

30(32.5, 35), 50(50, 50), 70(67.5, 65), 85(82.5, 80), 100([97.5, 100], [95, 100]). 

 

Due to the sensitivity of the defuzzification algorithm to definitions of the MFs of 

the output variable, different practical ranges were tested in choosing its universe 

of discourse. First the output was assumed to range only between the historical 

minimum and maximum values, as shown in Figure 4-8(d) and 4-9(d). Then the 

range was broadened beyond the historical minimum and maximum, first by 5% 

and then by 10%. These three sets of MFs for the output variables, combined with 

the 3 different input variable MF test scenarios and the two MF schemes (I3O5 

and I5O7), resulted in a total of 18 experiments for testing partitions of the MFs 

for the input and output variables of Submodel-1. 

 

4.6.2 Development of the rule base and inference operators 

 

The rule base is the determinative and the most sensitive component of any FLS 

since it explicitly represents the knowledge of the system (Inform GmbH 2010). It 

directly defines the relationships between the MFs of the input and output 

variables. Although extreme cases can usually be defined by experts easily, 

interpretations of the relationships between input and output variables are often 
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considerably less definitive for the intermediate cases.  Therefore, in this study, a 

correlation analysis of the input and output variables from the historical data set 

was used to assist in the rule base development, with the most correlated input 

variable considered to have the most significant impact on the output variable. 

Figure 4-10 presents the results of correlation analysis between the three input 

variables (APW_HLA, ADDFW_HLA, and HOF_HRMR) and the output variable (QP_HRMR) 

for Submodel-1. As seen in Figure 4-10(a), the input variable, APW_HLA, had the 

strongest correlation to QP_HRMR (i.e. correlation coefficient (r) = 0.734). 

Therefore, the first guideline in developing the rule base was that the resulting MF 

(i.e. the linguistic term) for the output variable should not be much higher or 

lower than the corresponding MF for APW_HLA. Consider an example case for the 

I3O5 experiment where APW_HLA is “Low”; no matter what the other two inputs 

are, the output MF should be the same (i.e. “Low”) or at least be a MF that 

overlaps with “Low” (i.e. “Very Low” or “Average”). The second input variable 

ADDFW_HLA had the next strongest impact on QP_HRMR (i.e. r = 0.529 as shown in 

Figure 4-10(b)) and so was used to decrease these three possibilities to two. 

Continuing with the same example case, where the MF for APW_HLA is “Low”, if 

ADDFW_HLA is also “Low” then the output QP_HRMR should only be “Very Low” or 

“Low”.  Alternatively, if ADDFW_HLA is “Average” or “High”, the output QP_HRMR 

should only be “Low” or “Average”. To narrow down the output MF for each rule 

to a single outcome the last input variable, HOF_HRMR, was considered; however, 

given the lower correlation between this input variable and QP_HRMR (r = 0.088 

shown in Figure 4-10(c)), it was not always easy to make a definitive judgement.  
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Therefore, for this study, three slightly different rule bases were developed for 

each scheme of experiments (i.e. I3O5 and I5O7), with each successive rule base 

assuming a slightly stronger influence of HOF_HRMR compared to the previous.  In 

addition, a fourth rule base was automatically generated in fuzzyTECH, using a 

qualitative interpretation of the correlation analysis as input (i.e. a ‘very positive’ 

correlation for APW_HLA, a ‘somewhat positive’ correlation for ADDFW_HLA and a 

‘very small positive’ correlation for HOF_HRMR).  Tables 4-2 and 4-3 show the four 

rule bases developed and tested for Submodel-1 for schemes I3O5 and I5O7, 

respectively. In these tables, RB1d and RB2d refer to the rule bases generated in 

fuzzyTECH.  

 

Four rule bases were also developed and tested for Submodel-3. Since QP_HRMR 

shows a strong correlation with QP_HRHR (see Figure 4-11), it was considered to 

have a strong positive impact on the output. However, as there is no actual 

numerical value for the variable QP_lower on which to perform a correlation 

analysis, its impact on QP_HRHR was tested by the first three rule bases as shown in 

Table 4-4: in RB3a, QP_HRHR does not change with QP_lower and it is considered as 

the same as QP_HRMR; in RB3b, QP_HRHR changes slightly with QP_lower (e.g. the 

output is upgraded only when QP_HRMR is “high” or “very high”); in RB3c, 

QP_HRHR is more sensitive to QP_lower (e.g. when QP_HRMR is “very low”, the output 

is degraded). As well, a fourth rule base, RB3d in Table 4-4, was generated in 

fuzzyTECH and used for a comparison with the former three. It should be noted 

that, when generating up the fuzzyTECH rule base (i.e. RB3d), QP_lower was 
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assumed to have a smaller positive impact on QP_HRHR than QP_HRMR because the 

lower basin represents only 30% of the whole basin area.  

 

Apart from the design of these rule bases, the inference operators are also very 

important in the REFERENCE process as discussed above. In this study, four sets 

of fuzzy operators (i.e. MIN-MAX, MIN-BSUM, PROD-MAX, and PROD-

BSUM) were all tested, along with each of the rule bases, to compare their 

impacts on model performance.  

 

4.6.3 Experiments on choosing the defuzzification method 

 

Defuzzification (or reconstruction) is the reverse process of fuzzification (i.e. it is 

the transformation of a fuzzy set into a representative crisp value). While not 

essential to all applications, it is desirable in most practical problems because 

crisp values can be more easily understood and explicitly compared. As with the 

choices of MFs and rule base, defuzzification is also a very sensitive component 

for a FLS (e.g. see Robinson Fayek and Sun 2001). Choosing a defuzzification 

method is very context specific as no one method is universally better than others.  

For most FLSs, two categories of defuzzification methods are used: one is used to 

achieve the most plausible value from the output fuzzy set; and the other is used 

for computing the best compromise value among all the MFs of the complex 

output fuzzy set. Those methods relevant to the former objective (achieving the 

most plausible value) include the mean-of-maximum (MoM), largest-of-
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maximum (LoM) and smallest-of-maximum (SoM) methods. They only account 

for the part of the solution set with the highest degree of truth (e.g. the segment 

“bc” in Figure 4-12 for which the degree of membership is the highest, 0.60) by 

selecting a typical value, e.g. mean (i.e. (xb+xc)/2) for MoM, largest (i.e. xc) for 

LoM, or smallest (i.e. xb) for SoM. These methods are often used in pattern 

recognition and classification applications when a plausible solution is most 

appropriate.  

 

The latter objective (computing the best compromise value) is most commonly 

achieved using the center-of-area (CoA) method (also known as the centroid or 

center-of-gravity method) or the center-of-maximum (CoM) method. The COA 

method computes the horizontal coordinate of the centroid of the polygon for the 

output fuzzy set (e.g. the centroid of polygon “abcdefgh” in Figure 4-12), as 

expressed by Equation [4 − 3]. 

 

�̅�𝐶𝑂𝐴 =
∫ 𝑥𝜇𝑥𝑑𝑥
𝑥ℎ
𝑥𝑎

∫ 𝜇𝑥𝑑𝑥
𝑥ℎ
𝑥𝑎

                                                                                                     [4 − 3] 

 

where x denotes the QP_HRMR as in Figure 4-12; µx denotes the degree of 

membership at a specific value of x (e.g. at the solid line in Figure 4-12).  

 

Due to the intensive computing requirements of the CoA method, fuzzyTECH® 

uses a “fast CoA” (FCoA) method to approximate it, which neglects the 
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overlapping portion between the different parts of the output fuzzy set (e.g. the 

shaded area in Figure 4-12). This method has a much higher computational 

efficiency than the real CoA algorithm and has been proven to provide sufficient 

accuracy for the vast majority of applications (Inform GmbH 2010).  

 

The CoM method computes the weighted average of the values at its maximum 

degree of truth for each part of the output fuzzy set, as expressed by Equation 

[4 − 4].  

 

�̅�𝐶𝑂𝑀 =
∑𝜇𝑀𝐹 ∗ 𝑥𝑀𝐹�����

∑𝜇𝑀𝐹
                                                                                                [4 − 4] 

 

where 𝜇𝑀𝐹 denotes the degree of truth for a specific MF, e.g. 0.6 for “L”, 0.4 for 

“A” and 0.3 for “H” in Figure 4-12; 𝑥𝑀𝐹����� donates the average value at which the 

MF achieves its full membership, e.g. the horizontal coordinate of the peak of the 

triangular shape “L” (xL), “A” (xA), and “H” (xH) in Figure 4-12; when the peak of 

a MF is a range (e.g. a trapezoidal shape), the mid-point value of the range is 

used. 

 

In this study, the latter category of defuzzification methods, e.g. CoA 

(approximated by FCoA in fuzzyTECH) and CoM, were considered more 

appropriate to this specific application because they provide the best comprise 

value among all the fuzzy sets of the output variable. Nevertheless, one method of 
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the former category (e.g. MoM) was also used for the purpose of comparison as it 

only considers the fuzzy set with the highest membership. 

 

4.6.4 Numerical measurement criteria for model performance 

 

The performance of FLMs can be evaluated by comparing the model outputs with 

actual observations in the historical record. In this study, two sets of numerical 

indices were used to assess the model performance. The root mean squared error 

(RMSE) (Equation [4 − 5] ) was first chosen as an index to assess the crisp 

output.  

 

𝑅𝑀𝑆𝐸 =  �
∑ �𝑄𝑖 − 𝑄𝚤� �

2𝑁
𝑖=1

𝑁
                                                                                    [4 − 5] 

 

where 𝑄𝑖 and 𝑄𝚤�  are the ith observed and modeled values of QP, respectively and N 

is the total number of historical observations available for comparison (e.g. 28 in 

this study). 

 

The total error (TE) was used as another index for assessing the model 

performance, as it is useful from the perspective of qualitative forecasting. TE 

was defined as the sum of the false positive errors (PE) and false negative errors 

(NE). To calculate PE or NE, the universe of discourse of the output variable QP 

was first divided into 5 (for the I3O5 scheme) or 7 (for the I5O7 scheme) sub-
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ranges by the points of intersection of the defined MFs. Each of the sub-ranges 

was assigned the linguistic term (i.e. MF) which has the highest membership for 

the values in this sub-range. In cases where the memberships for two adjacent 

terms were both 0.5, the higher (or right-hand side) term was chosen to be 

conservative in the context of flood forecasting. For example, as shown by Figure 

4-13, the linguistic terms used for the sub-ranges of QP in the I3O5 scheme were 

“Very Low” (VL), “Low” (L), “Average” (A), “High” (H), and “Very High” 

(VH). Both the observed and modeled values of QP were transformed to their 

corresponding linguistic terms by the interval values of each sub-range. These 

categorized values of measured and modeled QP were then compared to determine 

the PE and NE: PE is the count of the modeled outputs, which are “H” or “VH” 

and higher than the corresponding actual values; and NE is the count of the 

modeled outputs lower than the corresponding actual values, which are “H” or 

“VH”. 

 

4.7 Results and discussions 

 

To determine the best configuration for the fuzzy logic model, a series of 

experiments were first conducted for Submodel-1, as summarized in Table 4-5. In 

each of the two schemes of experiments, different number of partitions of MFs for 

the input and output variables were used, (i.e. I3O5 used 3 partitions for the input 

variables and 5 partitions for the output variable and I5O7 used 5 partitions for the 

input variables and 7 partitions for the output variable). As well, different shapes 
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of MFs (e.g. all triangular shapes and combinations of triangular and trapezoidal 

shapes) were tried. This resulted in a total of 18 experiments for Submodel-1. 

Four groups of rule bases were also tried for each experiment to test the impacts 

of different input variables to the output variable (as discussed earlier). For each 

rule base, four inference operators (i.e. MIN-MAX, MIN-BSUM, PROD-MAX, 

and PROD-BSUM) were tried. Finally, three different defuzzification methods 

were tested. All of model variations were tested and compared against the 

historical data to determine the best configuration for Submodel-1 and this 

optimal configuration was then adopted for Submodel-2.  A series of experiments 

were then designed for Submodel-3, as shown by Table 4-6, adopting the MF 

partitions from Submodel-1. Four rule bases, four inference operators and three 

defuzzification methods were tested; and the configuration with the best 

performance compared to the historical data was chosen for the final model.  The 

following discussion presents the results of the various test experiments and 

comparisons. 

 

4.7.1 Results of experiments on Submodel-1 

 

The quantitative criterion index (i.e. RMSE) and the qualitative criterion index 

(i.e. TE) were used separately to assess the relative performance of the different 

experimental configurations for Submodel-1. In terms of RMSE, the results for of 

all 18 experiments are summarized in Table 4-7, which shows the best RMSEs for 

the different configurations of Submodel-1 and their corresponding TE, PE, and 
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NE. These results suggest that the performances in RMSE were more or less 

consistent for all the 18 experiments, within a narrow range from 90 to 99 m3/s 

and this variation is considered negligible in the context of flood forecasting at 

this site.  However, the corresponding qualitative error index, TE, has a wider 

range, from 4 to 8, for these experiments. It was found that using 5 partitions of 

MFs for the input variables (i.e. experiments I5O7-a1 to I5O7-c3) does not result 

in any better performance compared to using 3 partitions (i.e. experiments I3O5-

a1 to I5O5-c3). For each of the 9 experiments in each scheme (i.e. of the same 

number of partitions of MFs), RMSEs were also consistent within a narrow range, 

(e.g. from 90 to 98 m3/s for I3O5 and from 94 to 99 m3/s for I5O7). The minimum 

RMSE of 90 m3/s was achieved in experiment I3O5-c1 with rule base RB1c, 

using PROD-MAX and the CoM defuzzification method. The corresponding TE 

for this experiment was 7, with 4 PEs and 3 NEs, respectively.  As discussed in 

Section 4.6.2, the rule base RB1c includes the input variable HOF with a 

somewhat strong influence on the output variable QP_HRMR. This is not the same 

indication as shown in Figure 4-10 (c) (i.e. very poor correlation between the 

two).  This finding suggests that the linear correlations do not explain the physical 

rules. From this point of view, more research is needed to investigate more 

comprehensive techniques to develop the rule base of fuzzy logic systems. 

 

Similar results were also found when TE was used as the criterion to select the 

best performance for the 18 experiments designed in this study, as shown in Table 

4-8. The biggest difference between these TEs is 3, with the minimum being 4 
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and the maximum 7. The I5O7 partitions did not have a better result than the I3O5 

partitions, and were even worse in many cases. The corresponding RMSEs for 

each of the best TEs were generally greater than those shown in Table 4-7. This 

suggests that the two performance indices used in this study are not consistent 

with each other (i.e. the configuration with the best RMSE is not the one with the 

lowest TE). However, given the relatively tight range in RMSE for all 

experiments, and the fact that the RMSE for the two experiments with the lowest 

TE (I3O5-a1 and I3O5-a2) was only 8 m3/s higher than the minimum RMSE of 

90 m3/s (for experiment I3O5-c1), It seems that TE is a more robust and practical 

index of model performance.  Since I3O5-a1 had the simplest partition of MFs 

(e.g. all triangular shape) of the two experiments with the lowest TE, this 

configuration was considered as the optimal one for Submodel-1. 

 

The comparison between the modeled and observed QP_HRMR is shown in Figure 

4-14, where the division of the five sub-ranges (i.e. the linguistic terms) is also 

illustrated. From the perspective of flood forecasting, the model has a very good 

performance in the H and VH events, for which only one VH event (1992) was 

underestimated as an H event. This can be explained by the fact that there was an 

intense rainfall event of 16 mm just prior to the runoff peak in that year. Though 

this rainfall was not quite high enough to exceed the threshold (i.e. ARRS_HLA = 

0.17) for classification as having a significant effect on QP_HRMR, it appears that 

the APW was relatively high and the combined effect was enough to nudge the 

actual runoff peak event from H to VH.  Of the A events, three were 
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overestimated as H (1976, 1987, and 1991). In all the three years, the APW was 

very high and they were predicted as H events. Although the VL and L events are 

not really of great importance when assessing this model’s performance, it should 

be noted that they did seem to be slightly overestimated by this model. However, 

in the context of flooding forecasting, these results are not interpreted as false 

positive errors because they could not cause any real concern in terms of 

advanced warning.  

 

4.7.2 Results of the final model performance 

 

In this study, there was no numerical value for the output variable of Submodel-2, 

i.e. QP_Lower. Considering the knowledge based nature of the FLS and the similar 

characteristics of the upper and lower Hay River basin, the best configuration for 

Submodel-1 was adapted for the development of Submodel-2: the I3O5-a1 (3 for 

the input variables and 5 for the output variable) partitions of MFs with the 

triangular shape, RB1c, PROD-BUSM inference operator and CoA 

defuzzification method. The outputs of these two sub-models were then used as 

the intermediate inputs (see Inform GmbH 2010) of Submodel-3. As discussed 

above, similar experiments were implemented to test the four rule bases (i.e. 

RB3a, RB3b, RB3c, and RB3d shown in Table 4-4), the inference operators and 

the defuzzification methods. The same indices were also used to assess the 

performances of different configurations of Submodel-3.  
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The results in terms of RMSE for all experiments are shown in Table 4-9. The 

minimum RMSE has a range of 23 m3/s from 168 m3/s for RB3d to 191 m3/s for 

RB3c. Also the corresponding TE for each configuration is different: 5 for RB3d 

and 8 for RB3c. The results on TE for all experiments are also shown in Table 4-

10, where the same configuration for RB3d has the best performance of all. 

Therefore, the configuration for the RB3d with the MIN-MAX inference operator, 

CoM defuzzification method was chosen as the optimal one for Submodel-3.  

 

The comparison between the modeled and observed QP_HRHR is shown in Figure 4-

15. It is apparent that two (1983 and 1976) of the four PEs are just located at the 

border of the A and H sub-ranges. Of the remaining two PEs for the final model 

(1991 and 1990), the former can likely be explained by weather conditions 

occurring after the ‘forecast’ date. Specifically, in 1991, there was a 6-day long 

cold snap just before the runoff peak and so not all the snow at HRA had melted 

when peak came. The only NE was for the year 1985, which was one of the 

biggest flood events in the THR. In this year, there was an intense rainfall of 18.1 

mm at HRA in the three days just prior to the peak.  

 

4.7.3 Corrections of underestimate of QP for the rainfall events during snowmelt 

period 

 

In the context of flood forecasting it is very important to quantify the exacerbation 

of the snowmelt peak flow caused by rainfall during the snowmelt runoff period. 
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For this purpose the 8 discarded events from the historical records, for which 

significant spring rainfall occurred (see Section 4.4.4), were tested to assess 

Submodel-1 and Submodel-3. It was found that for QP_HRMR (Submodel-1), the 

errors of these events were all negative (i.e. the peak runoff discharge was 

underestimated, as would be expected) and were very scattered when plotted 

against ARRS_HLA, as shown in Figure 4-16(a). An interesting point is that the eight 

cases can be divided into two groups: one with small errors and prediction falling 

into the correct category as the observations when ARRS_HLA was below 0.20 (as 

indicated in Figure 4-16(a)); and the other with greater errors when ARRS_HLA was 

over 0.20. For the latter group, the errors averaged 248 m3/s (ranging from 109 to 

360 m3/s), which resulted in all the 6 cases where High or Very High events were 

incorrectly categorized by the model as less severe (i.e NE). For Submodel-3, the 

result is shown in Figure 4-16(b): when ARRS_HLA was below 0.20 (2 cases), the 

error was very small, 20 m3/s and 34 m3/s, respectively (positive, not shown in the 

figure); otherwise, QP_HRHR was underestimated with an average of 313 m3/s 

(ranging from 193 to 490 m3/s), which caused 4 High events to be classified as 

less severe (4 NEs). This implies that a better threshold value of ARRS_HLA for 

screening rainfall events might be 0.20 for the Hay River basin (not 0.17, as was 

originally assumed).  It is also worthwhile to note that sporadic rainfall events that 

occur during the snowmelt runoff period may be of less significance, in terms of 

increasing the spring runoff peak, compared to intense rainfall storms, even when 

the total rainfall amount is greater. A good example of this occurred in 1982 (see 

Figure 4-16(a) and (b)) when the ARRS_HLA was as high as 0.51, but was scattered 
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over a prolonged duration (23 days), thus the resulting errors in the QP_HRMR and 

QP_HRHR predictions were not large. 

 

4.8 Sensitivity of model performance to inference operators and defuzzification 

methods 

 

The effects of using different inference operators and defuzzification methods on 

model performance were compared for Submodel-1 (e.g. the I3O5-a1 experiment 

with RB1c) and Submodel-3 (e.g. the experiment with RB3d). The results for 

Submodel-1 are shown in Figure 4-17. The resulting RMSE was comparable for 

the CoA and CoM defuzzification methods, (both categorized as seeking a 

compromise result). However, when the MoM defuzzification method was used, 

larger RMSEs resulted (see Figure 4-17(a)).  Model results were also relatively 

insensitive to the type of inference operator; as seen in Figure 4-17(a) for the 

same defuzzification method, the RMSEs for different inference operators were 

very close to each other. In contrast, the other performance index, TE (shown in 

Figure 4-17(b)) shows more variability in the model results: the CoA method gave 

the best results among the three defuzzification methods for each inference 

operator and for this defuzzification method (CoA), TE also showed some 

sensitivity to inference operators. It had a minimum value of 4 for PROD-BSUM 

and a maximum value of 6 for MIN-MAX. The MoM method gives the worst TE 

and RMSE of all cases. This indicates that MoM method is not as useful as CoA 

and CoM to this application, which has been discussed above (i.e. MoM only 
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accounts for partial output fuzzy set). The relative performance of the CoA and 

CoM methods were very similar in terms of RMSE, though the CoA method gave 

a slightly better result than the CoM in terms of TE.  

 

The results for Submodel-3 are shown in Figure 4-18. Again, the resulting RMSE 

was not sensitive to inference operators under the same defuzzification method 

(see Figure 4-18(a)), and it was much higher when MoM was used compared to 

the results for CoA and CoM. The resulting TE, shown in Figure 4-18(b), was 

also more sensitive to defuzzification methods than inference operators: there was 

no difference greater than 1 for all operators under the same defuzzification 

method; there was the greatest difference (i.e. 2) for the MIN-BSUM operator 

with the CoA and CoM methods.  

 

It should be noted that the optimal versions of Submodel-1 and Submodel-3, 

involved different choices for the inference operator and defuzzification method. 

This illustrates the fact that there is not one universal approach that will be ideal 

for all scenarios. Therefore, a good practice is to try them all and to then choose 

the one with the best performance. 

 

4.9 Interpreting QP_HRHR in terms of breakup flood severity at THR 

 

Figure 4-19 shows the distributions of occurrences of historical breakup events at 

THR for each partition of QP_HRHR in Submodel-3 (note the record data before 
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1975 were also included though they were not considered in assessing the 

models). It is apparent that most of the severe flooding events fall into the 

partitions of “High” and “Very High”, with the exception of one event (2003), 

which was “Average”. The corresponding percentages of each kind of breakup 

events are also shown in Figure 4-19.  This information can be used to develop 

some preliminary guidelines for predicting breakup severity at THR: 

1) When QP_HRHR is “Low” or “Very Low”, there is very little likelihood that 

a flooding event will occur; 

2) When QP_HRHR is “Average”, the likelihood of a non-flooding event is 

about twice that for a flooding event (~2 in 3 likelihood for non-flooding, 

compared to ~1 in 3 likelihood of at least some flooding occurring).  Also 

if flooding does occur, the likelihood of it being severe is small (only 

about 1 in 5 of actual flooding events are likely to be severe); 

3) When QP_HRHR is “High”, there is a very strong likelihood (~3 in 4) that a 

flooding event will occur; and it is just as likely to be a severe flood event 

as it is to be a moderate or minor flood event; 

4) When QP_HRHR is “Very High”, it is almost certain that a flooding event 

will occur; and the chance of a severe flooding event is twice as much as 

that a moderate or minor flooding event. 

 

Although these preliminary guidelines are useful, it is important to remember that 

there is still a great amount of uncertainty in long lead-time forecasts (e.g. ~3 to 4 

weeks ahead of breakup), as discussed earlier (see Section 4.3.3). A high QP_HRHR 
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does not necessarily cause any flooding at THR when it comes after breakup and 

the flow during the breakup is not high. Also, for long lead-time forecasting, the 

actual meteorological conditions just prior to breakup or during the snowmelt 

runoff period are unknown when the prediction is made. Thus in practice, 

occurrences such as intense rainfall events can affect the snowmelt peak, and thus 

the potential breakup severity. Based on the available historical data for the case 

of the Hay River, it is estimated that, for cased where the ARRS_HLA is greater than 

0.20, Submodel-3 may underestimate QP_HRHR by ~300 m3/s. 

 

4.10 Summary 

 

A reliable long lead forecasting of breakup ice-jam flood severity is of extreme 

importance for protecting properties and human lives in northern communities. In 

this study, the peak snowmelt runoff during breakup was assessed as an indicator 

of breakup flood severity, using the Town of Hay River as the test case. Due to a 

sparse network and short record of hydrometeorological data in remote northern 

regions, the techniques of fuzzy set and fuzzy logic were applied to make optimal 

use of limited data and available heuristic knowledge.  Specifically, a Mamdani-

type fuzzy logic system was developed to model the peak runoff at the Town of 

Hay River using three long lead-time variables: the accumulated precipitation 

during winter, the accumulated degree-days of freezing during winter and the 

local river water level at the onset of freeze-up. The Hay River basin was also 
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divided into two sub-basins to incorporate the spatial variations of the 

contributions to the snowmelt runoff at the outlet. 

 

By designing a series of experiments for the different configurations of the 

submodels, it was found that the optimal fuzzy logic model could provide very 

good performance for the “High” and “Very High” events. Overall, there was 

only one “Very High” event that was underestimated (because of an intense 

rainfall just prior to the peak runoff). The possible error range due to rainfall 

events were also assessed by evaluating the model using those data with a ratio of 

accumulated rainfall to the winter precipitation in the upper basin higher than 

0.20. It resulted in an underestimation error of ~300 m3/s for the peak snowmelt 

runoff at the basin outlet.  

 

Preliminary guidelines for predicting the breakup severity based on the expected 

peak snowmelt runoff were also provided. However, it should be noted that some 

uncertainty exist when the peak comes later than the breakup event. The timing of 

snowmelt peak and breakup can only predicted using the short lead-time 

meteorological data (e.g. air temperature and rainfall). This needs to be further 

investigated. 
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                                               Table 4–1:  List of hydrometeorological data used in this study. 

 

Data source Data type 
Station/gauge name 

(ID) 
Duration of 

record 

WSC daily discharge and water level 
HRHR (07OB001) 1964-2010 
HRMR (07OB003) 1975-2010 
CRHL (07OC001) 1970-2010 

EC 
daily air temperature, rainfall, 

snowfall, total precipitation, and 
depth of snow on the ground 

HRA (2202400) 1964-2010 

HLA (3073146) 1968-2010 

Alberta Environment late winter SWE High Level (07JF801) 1986-2010 
Aboriginal Affairs and Northern 

Development Canada late winter SWE THR(07OB-SC02) 1982-2010 
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Table 4–2:  The four rule bases tested in scheme I3O5 for Submodel-1. 

Rule 
No. 

IF THEN QP_HRMR 

APW_HLA ADDFW_HLA HOF_HRMR in RB1a in RB1b in RB1c in RB1d 

1 L L L VL VL VL VL 
2 L L A VL VL VL VL 
3 L L H VL VL L L 
4 L A L L L L L 
5 L A A L L L L 
6 L A H L A A L 
7 L H L A A L L 
8 L H A A A A A 
9 L H H A A A A 
10 A L L L L L L 
11 A L A L L L A 
12 A L H L L A A 
13 A A L A A A A 
14 A A A A A A A 
15 A A H A H H A 
16 A H L H H A A 
17 A H A H H H H 
18 A H H H H H H 
19 H L L A A A A 
20 H L A A A A A 
21 H L H A A H H 
22 H A L H H H H 
23 H A A H H VH H 
24 H A H H VH VH H 
25 H H L VH VH VH H 
26 H H A VH VH VH VH 
27 H H H VH VH VH VH 

 

Note: the italics indicate the differences between RB1b, RB1c, and RB1d and RB1a. 
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Table 4–3:  Four rule bases tested in scheme I5O7 for Submodel-1. 

Rule 
No. 

IF THEN QP_HRMR 

APW_HLA ADDFW_HLA HOF_HRMR in RB2a in RB2b in RB2c in RB2d 
1 VL VL VL EL EL EL EL 
2 VL VL L EL EL EL EL 
3 VL VL A EL EL EL EL 
4 VL VL H EL EL EL EL 
5 VL VL VH EL EL VL VL 
6 VL L VL EL EL EL EL 
7 VL L L EL EL EL EL 
8 VL L A EL EL EL VL 
9 VL L H EL EL VL L 
10 VL L VH EL L VL L 
11 VL A VL VL VL VL L 
12 VL A L VL VL VL L 
13 VL A A VL VL VL L 
14 VL A H VL L L L 
15 VL A VH VL L L L 
16 VL H VL L L VL L 
17 VL H L L L VL L 
18 VL H A L L L L 
19 VL H H L L L L 
20 VL H VH L L L A 
21 VL VH VL L L VL L 
22 VL VH L L L L L 
23 VL VH A L L L A 
24 VL VH H L L L A 
25 VL VH VH L L L A 
26 L VL VL VL VL VL VL 
27 L VL L VL VL VL L 
28 L VL A VL VL VL L 
29 L VL H VL VL VL L 
30 L VL VH VL VL L L 
31 L L VL VL VL VL L 
32 L L L VL VL VL L 
33 L L A VL VL VL L 
34 L L H VL VL L L 
35 L L VH VL A L L 
36 L A VL L L L L 
37 L A L L L L L 
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Rule 
No. 

IF THEN QP_HRMR 

APW_HLA ADDFW_HLA HOF_HRMR in RB2a in RB2b in RB2c in RB2d 
 

38 L A A L L L L 

39 L A H L A A A 
40 L A VH L A A A 
41 L H VL A A L A 
42 L H L A A L A 
43 L H A A A A A 
44 L H H A A A A 
45 L H VH A A A A 
46 L VH VL A A L A 
47 L VH L A A A A 
48 L VH A A A A A 
49 L VH H A A A A 
50 L VH VH A A A A 
51 A VL VL L L L L 
52 A VL L L L L L 
53 A VL A L L L L 
54 A VL H L L L L 
55 A VL VH L L A L 
56 A L VL L L L L 
57 A L L L L L L 
58 A L A L L L A 
59 A L H L L A A 
60 A L VH L H A A 
61 A A VL A A A A 
62 A A L A A A A 
63 A A A A A A A 
64 A A H A H H A 
65 A A VH A H H A 
66 A H VL H H A A 
67 A H L H H A A 
68 A H A H H H A 
69 A H H H H H H 
70 A H VH H H H H 
71 A VH VL H H A A 
72 A VH L H H H H 
73 A VH A H H H H 
74 A VH H H H H H 
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Rule 
No. 

IF THEN QP_HRMR 

APW_HLA ADDFW_HLA HOF_HRMR in RB2a in RB2b in RB2c in RB2d 
75 A VH VH H H H H 
76 H VL VL A A A A 
77 H VL L A A A A 
78 H VL A A A A A 
79 H VL H A A A A 
80 H VL VH A A H A 
81 H L VL A A A A 
82 H L L A A A A 
83 H L A A A A A 
84 H L H A A H A 
85 H L VH A VH H A 
86 H A VL H H H A 
87 H A L H H H A 
88 H A A H H H H 
89 H A H H VH VH H 
90 H A VH H VH VH H 
91 H H VL VH VH H H 
92 H H L VH VH H H 
93 H H A VH VH VH H 
94 H H H VH VH VH H 
95 H H VH VH VH VH H 
96 H VH VL VH VH H H 
97 H VH L VH VH VH H 
98 H VH A VH VH VH H 
99 H VH H VH VH VH H 
100 H VH VH VH VH VH VH 
101 VH VL VL H H H A 
102 VH VL L H H H A 
103 VH VL A H H H A 
104 VH VL H H H H A 
105 VH VL VH H H VH H 
106 VH L VL H H H A 
107 VH L L H H H H 
108 VH L A H H H H 
109 VH L H H H VH H 
110 VH L VH H EH VH H 
111 VH A VL VH VH VH H 
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Rule 
No. 

IF THEN QP_HRMR 

APW_HLA ADDFW_HLA HOF_HRMR in RB2a in RB2b in RB2c in RB2d 
112 VH A L VH VH VH H 
113 VH A A VH VH EH H 
114 VH A H VH EH EH H 
115 VH A VH VH EH EH H 
116 VH H VL EH EH EH H 
117 VH H L EH EH EH H 
118 VH H A EH EH EH VH 
119 VH H H EH EH EH EH 
120 VH H VH EH EH EH EH 
121 VH VH VL EH EH EH VH 
122 VH VH L EH EH EH VH 
123 VH VH A EH EH EH VH 
124 VH VH H EH EH EH EH 
125 VH VH VH EH EH EH EH 

 

  Note: the italics indicate the differences between RB2b, RB2c, and RB2d and RB2a. 
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Table 4–4:  Four rule bases applied for Submodel-3. 

Rule 
No. 

IF THEN QP_HRHR 
QP_HRMR QP_Lower in RB3a in RB3b in RB3c in RB3d 

1 VL VL VL VL VL VL 
2 VL L VL VL VL VL 
3 VL A VL VL L L 
4 VL H VL L L L 
5 VL VH VL L L L 
6 L VL L L VL L 
7 L L L L L L 
8 L A L L L L 
9 L H L A A A 
10 L VH L A A A 
11 A VL A A L A 
12 A L A A A A 
13 A A A A A A 
14 A H A H H A 
15 A VH A H H A 
16 H VL H H A A 
17 H L H H H A 
18 H A H H H H 
19 H H H VH VH H 
20 H VH H VH VH H 
21 VH VL VH VH H H 
22 VH L VH VH VH H 
23 VH A VH VH VH H 
24 VH H VH VH VH VH 
25 VH VH VH VH VH VH 

 

Note: the italics indicate the differences between the rules RB3b, RB3c, and RB3d and 

the rule RB3a. 

 



 

179 

Table 4–5:  Design of experiments on the Submodel-1. 

 

Experimental  
scheme 

Membership function  
partitions 

Rule  
base 

Inference 
 operator 

Defuzzification 
method 

I3O5 

a). all triangular shape 
    1. historical range only; 
    2. extended by 5%  for the historical minimum 
        and maximum; 
    3. extended by 10% for the historical minimum 
        and maximum 
b). composite of triangular and trapezoidal shape 1 
    1. historical range only; 
    2. extended by 5%  for the historical minimum  
        and maximum; 
    3. extended by 10% for the historical minimum 
        and maximum 
c). composite of triangular and trapezoidal shape 2 
    1. historical range only; 
    2. extended by 5%  for the historical minimum  
        and maximum; 
    3. extended by 10% for the historical minimum  
        and maximum 

RB1a;  
RB1b;  
RB1c; 
RB1d 

MIN-MAX;  
MIN-BSUM;  
PROD-MAX; 
PROD-BSUM 

CoA;  
CoM; 
MoM 

I5O7 

RB2a;  
RB2b;  
RB2c; 
RB2d 

MIN-MAX;  
MIN-BSUM;  
PROD-MAX; 
PROD-BSUM 

CoA;  
CoM; 
MoM 
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Table 4–6:  Design of experiments on the Submodel-3. 

Experiment  
schemes 

MF  
partitions 

Rule  
base 

Inference 
operator 

Defuzzification 
method 

adopted based on tests of Submodel-1 

RB3a;  
RB3b;  
RB3c; 
RB3d 

MIN-MAX;  
MIN-BSUM;  
PROD-MAX; 
PROD-BSUM 

CoA;  
CoM; 
MoM 
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Table 4–7:  Results of experiments on the Submodel-1 when RMSE was used as the 

criterion. 

No. Rule 
base 

Inference  
operators Defuzzification RMSE, m3/s TE PE NE 

I3O5-a1 RB1c PROD-BSUM CoA 98 4 3 1 
I3O5-a2 RB1c PROD-BSUM CoA 98 4 3 1 
I3O5-a3 RB1c PROD-BSUM CoA 99 6 5 1 
I3O5-b1 RB1c PROD-MAX CoA 94 6 5 1 
I3O5-b2 RB1c PROD-MAX CoA 96 6 5 1 
I3O5-b3 RB1c PROD-MAX CoA 98 6 5 1 
I3O5-c1 RB1c PROD-MAX CoM 90 7 4 3 
I3O5-c2 RB1c PROD-MAX CoM 91 7 4 3 
I3O5-c3 RB1c PROD-MAX CoM 92 7 4 3 
I5O7-a1 RB2b MIN-BSUM MoM 98 8 4 4 
I5O7-a2 RB2b MIN-BSUM MoM 99 8 4 4 
I5O7-a3 RB2b MIN-BSUM MoM 99 8 4 4 
I5O7-b1 RB2d MIN-BSUM CoA 98 9 2 7 
I5O7-b2 RB2d MIN-BSUM CoA 97 8 2 6 
I5O7-b3 RB2d MIN-BSUM CoA 96 8 2 6 
I5O7-c1 RB2b MIN-MAX CoA 96 7 3 4 
I5O7-c2 RB2b MIN-MAX CoA 95 7 3 4 
I5O7-c3 RB2b MIN-MAX CoA 94 7 3 4 

 

Note: the italics indicate the one with the best performance. 
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Table 4–8:  Results of experiments on the Submodel-1 when TE was used as the 

criterion. 

No. Rule base Inference  
operators Defuzzification TE PE NE RMSE, m3/s 

I3O5-a1 RB1c PROD-BSUM CoA 4 3 1 98 
I3O5-a2 RB1c PROD-BSUM CoA 4 3 1 98 
I3O5-a3 RB1b MIN-BSUM CoM 4 3 1 108 
I3O5-b1 RB1c PROD-BSUM CoM 5 4 1 97 
I3O5-b2 RB1c PROD-BSUM CoM 5 4 1 98 
I3O5-b3 RB1c PROD-BSUM CoM 5 4 1 100 
I3O5-c1 RB1c PROD-MAX CoA 7 5 2 90 
I3O5-c2 RB1c PROD-MAX CoA 6 5 1 93 
I3O5-c3 RB1a PROD-BSUM CoA 6 3 3 112 
I5O7-a1 RB2a PROD-BSUM CoM 5 2 3 116 
I5O7-a2 RB2a MIN-MAX CoM 5 2 3 115 
I5O7-a3 RB2a MIN-MAX CoM 5 2 3 116 
I5O7-b1 RB2a MIN-BSUM CoM 5 2 3 114 
I5O7-b2 RB2a MIN-BSUM CoM 5 2 3 115 
I5O7-b3 RB2a MIN-BSUM CoM 5 2 3 116 
I5O7-c1 RB2a MIN-BSUM CoM 6 2 4 120 
I5O7-c2 RB2a MIN-BSUM CoM 6 2 4 122 
I5O7-c3 RB2a MIN-BSUM CoM 6 2 4 123 

 

Note: the italics indicate the one with the best performance. 
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Table 4–9:  Results of experiments on the Submodel-3 when RMSE was used as 

the criterion. 

No. Rule base Inference  
operators Defuzzification RMSE, m3/s TE PE NE 

1 RB3a MIN-BSUM CoA 174 7 4 3 
2 RB3b MIN-MAX CoA 191 7 5 2 
3 RB3c MIN-BSUM CoA 191 8 7 1 
4 RB3d MIN-MAX CoM 168 5 4 1 

 

Note: the italics indicate the one with the best performance. 
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Table 4–10:  Results of experiments on the Submodel-3 when TE was used as the 

criterion. 

No. Rule base Inference  
operators Defuzzification TE PE NE RMSE, m3/s 

1 RB3a MIN-BSUM CoM 7 6 1 176 
2 RB3b MIN-MAX CoA 7 5 2 191 
3 RB3c MIN-MAX CoA 7 5 2 195 
4 RB3d MIN-MAX CoM 5 4 1 168 

 

Note: the italics indicate the one with the best performance. 
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Figure 4–1:  Map of (a) the Hay River basin and (b) the Town of Hay River. 
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Figure 4–2:  An example of an ice affected discharge hydrograph at the HRHR 

WSC gauge for 1988. Note: The dashed line is the assumed 

snowmelt runoff hydrograph (i.e. estimated ice effects separated). 
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Figure 4–3:  Historical QP at HRHR coded according to breakup flood severity at the THR. Note that the number above 

the bar indicates the number of days between ice clearing at the THR and QP (no number shown means that 

QP occurred before ice clearing at the THR). 
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Figure 4–4:  Influence of spring rainfall and snowfall during snowmelt to Qp by correlation analysis between (a) 

Qp_HRMR and ARRS_HLA; (b) Qp_HRHR and AARS_HRA; (c) Qp_HRMR and ASRS_HLA; (d) Qp_HRHR and ASRS_HRA. 

Note the sample sizes for each case are respectively 36, 46, 36, and 46. 
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Figure 4–5: Configuration of the fuzzy logic system for predicting QP_HRHR. 
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Figure 4–6:  Flow chart for a Mamdani-type FLS and an example of components of Submodel-1. Note: the symbol“√” indicates the 

rules associated with the given example input; the shaded area in the output MF indicates the output fuzzy set (e.g. the 

result of inference for the given example input and rule base) by the MIN-MAX operator. 
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Figure 4–7:  Different operators in INFERENCE component for producing the 

output MF: (a) MIN (clip); (b) PROD (scale).  
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Figure 4–8:  Three different partitions of MFs for the input and output variables in 

the I3O5 scheme. 
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Figure 4–9:  Three different partitions of MFs for the input and output variables in 

the I5O7 scheme. 
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Figure 4–10:  Correlations between the numerical input variables and the output 

variable of the Submodel-1. Note r is Pearson's correlation 

coefficient. The sample size for all the three cases is 28. 
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Figure 4–11:  Correlation between observed values of QP_HRHR and QP_HRMR. Note 

the sample size is 28. 
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Figure 4–12:  An example of the polygon (i.e. solid line) for the output fuzzy set 

for QP_HRMR. Note the numbers indicate the validated degree of 

truth for each MF; the shaded areas indicate the overlaps between 

the adjacent MFs that have been validated. 
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Figure 4–13:  Categorization of the actual observed values of QP_HRMR using 

defined MFs. 

 

 

0

0.5

1

0 100 200 300 400 500 600 700

M
em

be
rs

hi
p

Qp_HRMR, m3/s

LVL HA VH



 

198 

 

Figure 4–14:  Model performance for the final Submodel-1.  
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Figure 4–15:  Model performance for the final Submodel-3. 
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Figure 4–16:  Error in modeled peak discharges for the intense rainfall events at 

HLA by (a) Sub-model 1 and (b) Sub-model 3. 
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Figure 4–17:  Comparison of model performances for Submodel-1 using different 

inference operators and defuzzification methods in terms of (a) 

RMSE and (b) TE. 
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Figure 4–18:  Comparison of model performances for the Submodel-3 using 

difference inference operators and defuzzification methods in 

terms of (a) RMSE and (b) TE. 
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Figure 4–19:  Comparison of the ooccurrences of historical breakup events at 

THR for each partition of QP_HRHR. 
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Chapter 5  Summary and conclusions 

 

River breakup ice jam flooding is one of the most dangerous natural disasters in 

northern communities.  Due to the suddenness and rapidness of rise of flood water 

level, an advance forecast, in terms of the expected flood severity and timing of 

the onset of breakup, is extremely helpful in the preparedness planning for the 

riverside communities. Unfortunately, current knowledge and understanding of 

ice jam dynamics has not allowed us to predict every aspect of the ice jam 

flooding. In particular, there is a great need to have long lead-time forecasts of the 

expected breakup flood severity. Moreover, the highly dynamic and swift nature 

of ice jam events results in a very limited amount of data available to develop and 

validate reliable ice jam forecasting models. Thus the present capability to 

forecast the occurrence, extent, and duration of breakup ice jam flooding is very 

limited. The existing small amount of forecasting models are all highly site 

specific and empirical. The variables used in these methods are usually arbitrary 

(due to the lack of an analytical breakup ice jam model) and not possibly achieved 

or forecasted more than a few days prior to breakup. In less populated regions like 

northern Canada, a short record of historical data and the sparsity of data network 

further impede successful development of such models.  

 

With the continuing growth of northern communities, a reliable forecasting tool 

for breakup ice jams is most urgent. Being part of the Operational River Ice Jam 

Flooding Forecasting System (see Section 1.3), this study aimed to explore a 
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multi-layer modeling approach by incorporating all the readily available 

hydrometeorological data into the river ice breakup forecasting. Two soft 

computing techniques, artificial neural networks and fuzzy logic systems, were 

comprehensively assessed for their applicability to the river breakup problems and 

demonstrated in the study site, the Town of Hay River, NWT. 

 

In this thesis, a new multi-layer modeling approach for the river ice breakup 

forecasting problem was first proposed in Chapter 2.  The approach was 

comprised of four layers: 

1. The raw data layer: all the raw hydrometeorological data (e.g. air 

temperature, precipitation, water level, etc.) and other pertinent historical 

information (e.g. qualitative breakup flooding reports from local 

newspapers or personal communications with local residents) are collected 

in this layer. 

2. The index variable layer: the raw data are processed to develop proper 

variables, such as accumulated degree-days of freezing and thaw, 

accumulated precipitation during winter, and the water level at the onset of 

freeze-up, which are carried forward to use as input data to the next layer. 

3. The breakup indicator layer: the key breakup indicators (e.g. in terms of 

breakup timing and flooding severity) are identified in this layer and 

complex soft computing techniques are employed to model these 

variables. 
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4. The output variable layer: the output variables of river breakup 

forecasting, the timing of onset of breakup and a qualitative descriptor of 

the expected breakup flooding severity, are then projected from the 

predictions of the breakup indicators in the last layer. 

 

The details on the data processing and definitions of all the variables in the four 

layers were presented and demonstrated for the Town of Hay River in Chapter 2. 

The most promising potential predictors of breakup severity were found to be 

water level at the onset of freeze-up and the accumulated degree-days of freezing 

during winter. The variable related to the timing of breakup, ΔHFC (i.e. the 

difference between the water level at the onset of breakup and that at the onset of 

rise of snowmelt runoff) was found to be completely nonlinear with respect to the 

independent index variables: the three long lead-time variables were the late 

winter ice thickness, whether the ice cover was significantly decayed or not, and 

the depth of snow on the ground at the onset of thaw.  The four short lead-time 

variables were the accumulated degree-days of thaw, the accumulated degree-days 

of freezing, the accumulated snowfall, and the accumulated rainfall during the 

pre-breakup period.   

 

Chapter 3 explored the applicability of feed-forward artificial neural network 

models for forecasting of the timing of the onset of river ice breakup. It represents 

the first application of ANNs to river ice breakup forecasting for which the model 

is actually independently validated. Specifically, in this case, the objective was to 
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predict the onset of cracking (i.e. the first transverse crack.) The output variable of 

the model was chosen as the water level rise between the onset of the spring 

snowmelt runoff and first cracking. The input included three long lead-time 

variables (each known several weeks prior to breakup): the ice thickness, the ice 

cover condition prior to breakup, and the depth of snow cover at the onset of 

thaw, as well as four short lead-time variables (each either know or forecasted 

during the breakup period): the accumulated degree-days of thaw, the 

accumulated degree-days of freezing, the accumulated rainfall and snowfall 

during pre-breakup. The “early stopping” scheme was employed in the calibration 

of the ANN model as well as a trial-and-error procedure for the optimization of 

the model performance with respect to the number of the hidden nodes and the 

initial weight range. The ‘leave-one-out cross validation’ method was used to 

assess the model error. It was found that:  

• The calibrated ANN model showed more potential than conventional 

multiple linear regression models for this specific problem. 

• A medium-size structure of the ANN model exhibited better performance 

than either a large-sized or small-sized structure. The optimal value for the 

ratio of the degrees of freedom to the calibration data size was ~1.3. 

• Even with the same number of hidden nodes, the ANN model was very 

sensitive to the assignment of the initial weight range. A trial-and-error 

procedure is essential for determining its optimal value. 

• The independent validation results showed that the error of the calibrated 

ANN model on the unseen validation data could be much larger than those 
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indicated by the calibration testing data and that the error is generally 

larger for the extrapolation cases than for the interpolation cases. In 

practice, the ANN model should be recalibrated whenever the new data is 

available. 

 

Chapter 4 explored and assessed the applicability of the technique of the 

Mamdani-type fuzzy logic systems to predict the peak snowmelt runoff during 

breakup and its viability as an indicator of breakup flood severity. It represents the 

first time that the Mamdani-type fuzzy logic system has been comprehensively 

studied, in terms of each single component, for the river ice breakup forecasting 

problem, including the development of membership functions, rule base and 

inference operator, and the defuzzification method. Specifically, in this part of 

study, the relationship between the breakup flood severity and peak snowmelt 

runoff was first established for the case study site using the available historical 

data. Three long lead-time variables were used as inputs to the model: the 

accumulated precipitation during winter, the accumulated degree-days of freezing 

during winter and the local river water level at the onset of freeze-up. 

Furthermore, the whole basin was divided into two sub-basins to account for 

spatial variations in the contributions to snowmelt runoff. Based on this 

investigation, it was found that: 

• The optimal fuzzy logic model could provide very good performance for 

the “High” and “Very High” events, which are of most interest from the 

flood forecasting perspective. However, significant underestimation errors 
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(i.e. ~300 m3/s) should be expected whenever intense spring rainfall events 

occur in the interval between the day of the long term forecast and the 

actual breakup (i.e. when the spring rainfall ratio is over 0.20).  

• Using more membership functions for the input and output variables did 

not result in better model performance.  The I3O5 scheme (i.e. using 3 

membership functions for the input variables and 5 membership functions 

for the output variable) was more suitable for this specific problem than 

the I5O7 scheme. 

• The fuzzy logic model was very sensitive to the fuzzy operators and 

defuzzification methods. For best performance, different model 

configurations were associated with different combination of fuzzy 

operators and defuzzification method. However, for the case of peak 

snowmelt runoff, it was found that the COA and COM methods 

outperformed the MOM method.  A trial-and-error practice would be 

necessary to determine the best combination of these. 

 

From the point view of the model transferability, it should be noted that the peak 

discharge during breakup is the single most important factor affecting the ice jam 

flood severity and thus this model is relevant to all ice jam flood affected sites, 

not just the Hay River case study presented here. The demonstrated fuzzy logic 

system can be easily applied to any other sites only by directly using the 

established rule base; however, site-specific data would be needed to develop the 
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relevant membership functions and for performing a sensitivity analysis on the 

inference operators.  

 

The demand of the practical methodology for river ice breakup flooding will 

continue to be of importance as the northern region communities continue to 

expand. Furthermore, the warming trend of the global climate is likely to 

exacerbate the severity of breakup ice jam flooding. This is because, in the 

context of a warming climate, the early spring snowfall will become rainfall, 

which would cause much higher peak snowmelt runoff (see Chapter 4). In 

addition, there will be a greater risk of mid-winter thaws and potentially multiple 

breakup events in some years. As the majority of the river ice engineering 

community focuses on numerical simulations of the breakup ice jam process, the 

author recommends continued research on the soft computing methodology, 

which could provide a less time-consuming and more cost-efficient complement 

to the current research paradigm: 

1) Further research on ANNs should be performed for other sites, for which 

plentiful data is available. The early stopping calibration scheme and the 

leave-one-out cross validation technique should always be used to see if 

the model’s performances will improve for such cases. 

2) An analysis of the calibrated ANN model should be performed in each 

case, to determine the impact of each input variable on the output variable. 

This is important for understanding the key factors that affect the timing of 
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river ice breakup. This result can also be used to simplify the model 

structure by only selecting the important input variables. 

3) More meteorological factors can be incorporated into the fuzzy logic 

system directly, such as spring rainfall and air temperature, to enhance its 

capability to forecast the breakup ice jam flooding severity. The layered 

structure should be used to avoid the rule base explosion problem. For 

example, the spring rainfall ratio (ARRS) should come into the model in the 

same layer as the long lead-time forecast of the snowmelt peak, but not in 

the same layer as other long lead-time input variables (see Figure 5-1). 

Though this would limit the lead-time of practical forecasting, the 

enhanced rainfall effect on the peak snowmelt runoff can be significant 

and worthy of this consideration. There is also a need to collect the solar 

radiation data to account for the ice cover decay extent just prior to 

breakup rather than just using ADDT as a surrogate. 

4) More work also needs be done on the Mamdani-type fuzzy logic system.  

For example, to determine how to develop a more rigorous rule base using 

more sophisticated techniques. This is especially important for the cases 

when data are plentiful; a hybrid model (e.g. neuro-fuzzy system, genetic 

fuzzy system) should be tested and compared for their performance. 
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             Figure 5–1: Proposed layered structure for the new fuzzy logic system to incorporate the spring rainfall information.  
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Appendix A Development of the raw hydrometeorological database for Hay 

River breakup forecasting 

 

This appendix presents a summary of the collated hydrometeorological data from 

a variety of available data sources in the Hay River basin. This includes: 

hydrometric data (e.g. discharge and water levels) gauged by WSC, 

meteorological data (e.g. mean daily air temperature, daily precipitation, and 

snow-on-the-ground condition) from EC climate stations, late winter snowpack 

data by snow course surveys (e.g. snow pack depth and water equivalence), and 

river ice measurement data (ice thickness). 

 

A.1 Raw hydrometric data  

 

The raw hydrometric data are available at the four WSC gauges in the Hay River 

basin (See Figure 2-2). These include water level and/or discharge data on an 

hourly and/or daily basis. Also the winter discharge measurements performed by 

WSC provide a useful data source for the seasonal development of the river ice 

thickness. All these data were collected and discussed below. 

 

A.1.1 Instantaneous and daily stage/discharge data 

 

For the three gauges, HRHR, MRMR, and CRHL, both the stage and discharge 

data are available from WSC. The historical records for these data are 
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summarized in Table A-1. All these raw data can be found in the attached 

compact disc, in the folder of “hydrometric data”.  

 

Apart from these digitized data, there are also raw stripe charts provided by WSC 

for the early periods of HRHR. These are the breakup water levels that have not 

ever been digitized by WSC. A lot of efforts were made to digitize these raw 

charts and the results are summarized in the file ‘Ungraphed hourly WL at HRHR 

1964-1996’ (also the raw charts can be found in the folder ‘HRHR Strip Charts 

during breakup period’). 

 

A.1.2 Ice thickness data extracted from the winter discharge measurements 

 

At the three gauges of HRHR, HRMR and CRHL, WSC performs winter 

discharge measurement 3 to 5 times per year, in which the ice thickness is also 

measured. The raw data sheets of discharge measurements provided by WSC 

were digitized and summarized. Among these measurements, the last one at the 

end of winter is very useful to be considered as an estimation of the maximum ice 

thickness of the year. All the raw data of measurement records are summarized in 

the folder of “winter ice thickness measurement” in the attached compact disc. 

Please note that the actual ice thickness data before 1992 at the HRHR gauge 

were extended by the relationship shown in Figure A-1. The complete late winter 

ice thickness data are presented in Table A-2. 
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The Town of Hay River also performed ice thickness measurements at various 

locations around the town. The available data are collected and summarized in the 

data file of ‘THR ice thickness measurements’. 

 

A.2 Raw meteorological data  

 

The main sources of the meteorological data are the EC climate stations in the 

Hay River basin. The two stations chosen in this study are shown in Figure 2-2. 

They are the Hay River A at the Town of Hay River and High Level A at the 

Town of High Level. Apart from these, there are several snow courses surveyed in 

the basin, which are also shown in Figure 2-2.  

 

The raw meteorological data achieved from these EC climate stations include the 

daily mean air temperature, daily rainfall, daily snowfall, daily total precipitation, 

and snow depth on the ground. The records of these data are summarized in Table 

4-1 and the raw data are organized in the folder “Mete data” in the attached data 

disc. The available snow course surveys data are also organized in the same folder 

with a name of ‘Snow course surveys’. 
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Table A-1: Historical records of hydrometric data at WSC gauges in Hay River Basin. 

 

No Station 
No 

 Station 
Name 

Instantaneous  
Water Level 

Hourly  
Discharge 

Daily  
Water Level 

Daily  
Discharge 

1 07OB001 HRHR 
1997-2010: all the year  (15 mins interval) 
1964-1996: only the pre-breakup periods 
(hourly) 

NA 1964-2010 1964-2010 

2 07OB003 HRMR 1991-2008: March/April to November 2000-2008 1975-2008 1975-2010 
3 07OB008 HRNB 2003-2010: March/April to November NA 1987-2010 NA 
4 07OC001 CRHL 1978-2008: all the year 1999-2008 1970-2008 1970-2010 
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Table A-2:  Actual late winter ice thickness data at HRHR. 

 

Year Measurement 
Date 

actual ice thickness 
(ti), 
m 

the water surface 
 to bottom of ice (WSBI), 

m 
1964 17/04/1964 0.58 0.55 
1965 09/03/1965 0.78 0.74 
1966 06/04/1966 0.80 0.76 
1967 12/04/1967 0.63 0.60 
1968 19/03/1968 0.74 0.71 
1969 08/04/1969 0.62 0.59 
1970 13/04/1970 0.61 0.58 
1971 15/04/1971 0.81 0.77 
1972 25/04/1972 0.55 0.52 
1973 10/04/1973 0.66 0.63 
1974 09/04/1974 0.62 0.59 
1975 10/04/1975 0.67 0.64 
1976 13/04/1976 0.43 0.41 
1977 04/04/1977 1.15 1.10 
1978 26/04/1978 0.81 0.77 
1979 14/04/1979 0.81 0.77 
1980 10/04/1980 0.83 0.79 
1981 22/04/1981 0.78 0.74 
1982 15/04/1982 0.83 0.79 
1983 24/03/1983 0.77 0.73 
1984 18/04/1984 0.45 0.43 
1985 19/04/1985 0.88 0.84 
1986 02/04/1986 0.83 0.79 
1987 15/04/1987 0.66 0.63 
1988 07/04/1988 0.69 0.66 
1989 07/04/1989 0.70 0.67 
1990 10/04/1990 0.64 0.61 
1991 12/04/1991 0.59 0.56 
1992 14/04/1992 0.74 0.72 
1993 07/04/1993 0.88 0.82 
1994 18/04/1994 0.92 0.92 
1995 18/04/1995 0.65 0.62 
1996 18/04/1996 0.65 0.58 
1997 14/04/1997 0.67 0.64 
1998 14/04/1998 0.71 0.68 
1999 14/04/1999 0.42 0.39 
2000 10/04/2000 0.61 0.57 
2001 17/04/2001 0.59 
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Year Measurement 
Date 

actual ice thickness 
(ti), 
m 

the water surface 
 to bottom of ice (WSBI), 

m 
2002 22/04/2002 0.74 0.73 
2003 17/04/2003 0.90 0.84 
2004 12/04/2004 0.64 0.60 
2005 13/04/2005 0.70 0.67 
2006 06/04/2006 0.63 0.59 
2007 17/04/2007 0.83 0.77 
2008 15/04/2008 0.62 0.62 
2009 16/04/2009 0.64 0.61 
2010 13/04/2010 0.70 0.68 

 

Note: the italics indicate that they were estimated from the WSBIs using the 

relationship shown in Figure A-1. 
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Figure A-1: Relationship between the actual ice thickness (ti) and the measured 

water surface to the bottom of ice (WSBI) at HRHR gauge from 

1992 to 2010. 
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Appendix B Data tables of all the developed variables for the Hay River 

breakup forecasting 

 

This appendix summarizes all the data tables of the variables extracted or 

processed from the raw hydrometeorological data for the Hay River breakup 

forecasting. Please refer to Chapter 2 for the detailed definition for these 

variables. 

 

 



227 

Table B-1: Classification of historical breakup severity at the Town of Hay River. 

 

Breakup Severity Year 

severe flooding 
(8 years) 

1974, 1978, 1985, 1986, 
1989, 1992, 2003, 2008; 

some flooding 
(12 years) 

1965, 1972, 1979, 1981, 
1994, 1997, 2001, 2005, 
2006, 2007, 2009, 2010; 

no flooding 
(27 years) 

1964, 1966, 1967, 1968, 
1969, 1970, 1971, 1973*, 
1975, 1976, 1977, 1980, 
1982, 1983, 1984, 1987, 
1988, 1990, 1991, 1993, 
1995, 1996, 1998, 1999, 
2000, 2002, 2004. 

 

*Note: since there was no documentation on the 1973 breakup, it is reasonable to 

assume it was a non-flood year. 

 



228 

Table B-2: Extracted or processed independent variables from the hydrometric data at HRHR. 

 

Year HOF DOR HOR DFC HFC ti Di DECAY 
  m   m   m m     

1964 2.63 26/04/1964 1.79 27/04/1964 3.51 0.58 17/04/1964 0 
1965 2.54 07/04/1965 1.65 23/04/1965 3.96 0.78 09/03/1965 0 
1966 1.94 09/04/1966 1.75 04/05/1966 3.44 0.80 06/04/1966 1 
1967 1.70 01/05/1967 1.68 06/05/1967 2.26 0.63 12/04/1967 0 
1968 1.70 09/04/1968 1.81 10/04/1968 3.51 0.74 19/03/1968 0 
1969 1.83 11/04/1969 1.60 17/04/1969 2.03 0.62 08/04/1969 0 
1970 2.36 23/04/1970 1.70 24/04/1970 2.12 0.61 13/04/1970 0 
1971 1.66 18/04/1971 1.54 25/04/1971 1.86 0.81 15/04/1971 0 
1972 1.55 25/04/1972 1.40 03/05/1972 1.91 0.55 25/04/1972 0 
1973 1.62 NA NA NA NA 0.66 10/04/1973 0 
1974 2.18 NA NA NA NA 0.62 09/04/1974 0 
1975 2.46 NA NA NA NA 0.67 10/04/1975 0 
1976 2.15 15/04/1976 1.85 18/04/1976 2.38 0.43 13/04/1976 1 
1977 3.38 12/04/1977 2.38 24/04/1977 5.12 1.15 04/04/1977 0 
1978 2.83 23/04/1978 1.93 29/04/1978 2.47 0.81 26/04/1978 1 
1979 2.67 26/04/1979 1.89 08/05/1979 2.99 0.81 14/04/1979 0 
1980 2.50 NA NA NA NA 0.83 10/04/1980 1 
1981 1.89 27/04/1981 1.81 29/04/1981 2.24 0.78 22/04/1981 0 
1982 1.35 25/04/1982 1.71 30/04/1982 2.00 0.83 15/04/1982 1 
1983 1.83 21/04/1983 1.88 25/04/1983 2.50 0.77 24/03/1983 0 
1984 2.01 16/04/1984 1.66 19/04/1984 2.18 0.45 18/04/1984 1 
1985 3.06 17/04/1985 1.93 26/04/1985 3.17 0.88 19/04/1985 0 
1986 3.14 24/04/1986 2.10 29/04/1986 3.68 0.83 02/04/1986 0 
1987 2.28 15/04/1987 1.86 22/04/1987 2.38 0.66 15/04/1987 1 
1988 2.61 13/04/1988 1.72 22/04/1988 3.25 0.69 07/04/1988 0 
1989 2.81 24/04/1989 2.01 01/05/1989 2.91 0.70 07/04/1989 0 
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Year HOF DOR HOR DFC HFC ti Di DECAY 
  m   m   m m     

1990 2.41 18/04/1990 2.02 24/04/1990 2.73 0.64 10/04/1990 1 
1991 1.63 16/04/1991 1.82 21/04/1991 2.63 0.59 12/04/1991 1 
1992 2.45 11/04/1992 2.44 24/04/1992 3.56 0.74 14/04/1992 0 
1993 3.84 11/04/1993 2.12 21/04/1993 3.03 0.88 07/04/1993 1 
1994 2.56 14/04/1994 2.21 21/04/1994 3.60 0.92 18/04/1994 0 
1995 1.67 NA NA NA NA 0.65 18/04/1995 0 
1996 1.52 29/04/1996 1.70 30/04/1996 2.06 0.65 18/04/1996 1 
1997 2.65 21/04/1997 2.04 28/04/1997 2.75 0.67 14/04/1997 0 
1998 4.68 07/04/1998 2.23 17/04/1998 3.41 0.71 14/04/1998 1 
1999 1.82 16/04/1999 1.75 22/04/1999 2.20 0.42 14/04/1999 1 
2000 2.38 19/04/2000 2.03 27/04/2000 2.71 0.61 10/04/2000 1 
2001 2.42 16/04/2001 1.75 29/04/2001 3.00 0.59 17/04/2001 1 
2002 2.72 28/04/2002 2.00 10/05/2002 2.95 0.74 22/04/2002 0 
2003 2.40 17/04/2003 2.04 24/04/2003 3.15 0.90 17/04/2003 1 
2004 2.23 10/04/2004 1.92 28/04/2004 3.60 0.64 12/04/2004 1 
2005 2.25 16/04/2005 1.94 22/04/2005 4.30 0.70 13/04/2005 1 
2006 2.46 12/04/2006 1.88 23/04/2006 4.30 0.63 06/04/2006 1 
2007 1.72 19/04/2007 1.92 24/04/2007 3.45 0.83 17/04/2007 1 
2008 3.11 15/04/2008 2.03 03/05/2008 4.35 0.62 15/04/2008 1 
2009 2.92 19/04/2009 1.97 30/04/2009 3.78 0.64 16/04/2009 0 
2010 2.92 14/04/2010 2.14 21/04/2010 3.10 0.70 13/04/2010 1 
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Table B-3: Extracted dependent variables from the hydrometric data at HRHR. 

 

Year DQp QP DQM QMB DHM HMB Dcl 
    m3/s   m3/s   m   

1964 12/05/1964 708 08/05/1964 725 07/05/1964 8.32 10/05/1964 
1965 02/05/1965 750 02/05/1965 750 02/05/1965 9.21 04/05/1965 
1966 10/05/1966 620 10/05/1966 620 09/05/1966 5.43 12/05/1966 
1967 23/05/1967 793 11/05/1967 900 10/05/1967 6.27 13/05/1967 
1968 06/05/1968 518 04/05/1968 476 30/04/1968 7.95 04/05/1968 
1969 07/05/1969 889 29/04/1969 796 26/04/1969 6.61 29/04/1969 
1970 03/05/1970 374 03/05/1970 374 03/05/1970 7.34 07/05/1970 
1971 01/05/1971 600 01/05/1971 600 01/05/1971 5.02 30/04/1971 
1972 09/05/1972 1020 09/05/1972 1020 09/05/1972 7.16 10/05/1972 
1973 10/05/1973 513 27/04/1973 650 28/04/1973 6.09 02/05/1973 
1974 02/05/1974 1240 02/05/1974 1240 01/05/1974 8.40 04/05/1974 
1975 30/04/1975 680 30/04/1975 680 01/05/1975 5.23 01/05/1975 
1976 30/04/1976 685 26/04/1976 665 22/04/1976 6.15 27/04/1976 
1977 06/05/1977 289 27/04/1977 530 27/04/1977 7.41 04/05/1977 
1978 03/05/1978 818 03/05/1978 818 05/05/1978 7.28 07/05/1978 
1979 21/05/1979 694 17/05/1979 643 11/05/1979 >7.297 17/05/1979 
1980 28/04/1980 120 28/04/1980 120 28/04/1980 2.82 29/04/1980 
1981 04/05/1981 790 04/05/1981 790 04/05/1981 7.40 09/05/1981 
1982 20/05/1982 604 09/05/1982 657 09/05/1982 8.02 10/05/1982 
1983 30/04/1983 550 30/04/1983 550 30/04/1983 6.54 04/05/1983 
1984 28/04/1984 79 21/04/1984 172 21/04/1984 3.61 30/04/1984 
1985 06/05/1985 1080 06/05/1985 1080 06/05/1985 9.61 09/05/1985 
1986 13/05/1986 697 06/05/1986 720 06/05/1986 9.67 08/05/1986 
1987 06/05/1987 766 27/04/1987 772 28/04/1987 8.41 01/05/1987 
1988 12/05/1988 480 27/04/1988 640 27/04/1988 7.46 02/05/1988 
1989 08/05/1989 888 05/05/1989 912 03/05/1989 10.54 06/05/1989 
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Year DQp QP DQM QMB DHM HMB Dcl 
    m3/s   m3/s   m   

1990 28/04/1990 560 28/04/1990 560 27/04/1990 8.14 02/05/1990 
1991 02/05/1991 438 27/04/1991 460 24/04/1991 7.29 01/05/1991 
1992 08/05/1992 861 28/04/1992 900 28/04/1992 9.68 30/04/1992 
1993 30/04/1993 159 30/04/1993 159 30/04/1993 5.00 06/05/1993 
1994 29/04/1994 792 29/04/1994 792 28/04/1994 10.41 01/05/1994 
1995 02/05/1995 340 02/05/1995 340 04/05/1995 7.34 07/05/1995 
1996 08/05/1996 645 02/05/1996 200 02/05/1996 5.46 02/05/1996 
1997 13/05/1997 635 04/05/1997 555 03/05/1997 8.46 04/05/1997 
1998 22/04/1998 390 22/04/1998 390 21/04/1998 6.16 08/05/1998 
1999 04/05/1999 190 26/04/1999 181 26/04/1999 3.66 >04/27/1999 
2000 15/05/2000 278 01/05/2000 267 29/04/2000 5.61 >04/25/2000 
2001 07/05/2001 430 07/05/2001 430 04/05/2001 8.45 >05/04/2001 
2002 22/05/2002 562 22/05/2002 562 15/05/2002 8.44 22/05/2002 
2003 02/05/2003 675 02/05/2003 675 30/04/2003 >8.158 02/05/2003 
2004 06/05/2004 209 05/05/2004 193 01/05/2004 6.41 05/05/2004 
2005 30/04/2005 758 28/04/2005 737 24/04/2005 6.65 28/04/2005 
2006 01/05/2006 470 29/04/2006 455 25/04/2006 7.35 29/04/2006 
2007 14/05/2007 824 29/04/2007 500 27/04/2007 7.69 29/04/2007 
2008 10/05/2008 893 08/05/2008 870 05/05/2008 8.92 08/05/2008 
2009 13/05/2009 952 07/05/2009 700 06/05/2009 7.25 07/05/2009 
2010 01/05/2010 436 28/04/2010 412 25/04/2010 7.67 28/04/2010 

 
Note: From 1985 to 1989, all the Qp and QMB are adjusted to 80% of the WSC pulished data by Jesek (1993), 

except the Qp for year 1986. Reference: Jasek, M. 1993. Hay River Flood Control: Hay River, N.W.T.. 

The Town of Hay River, N.W.T. 
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Table B-4: Long-lead time variables developed from the meteorological data at 

HRA. 

 

Year API DOF ADDFW DOT DMO APW SNGOT 

  mm   °C-day     mm cm 
1964 185.7 26/10/1963 3199.8 18/04/1964 04/05/1964 NA1 58 
1965 158.8 29/10/1964 3126.1 01/04/1965 17/04/1965 99.4 13 
1966 104.8 29/10/1965 3173.5 26/03/1966 04/05/1966 148.6 97 
1967 113.2 16/10/1966 3689.8 20/04/1967 05/05/1967 153.3 48 
1968 78.2 29/10/1967 2674.5 03/04/1968 06/05/1968 110.4 25 
1969 147.6 30/10/1968 3140.0 07/04/1969 29/04/1969 121.1 48 
1970 86.0 18/10/1969 2778.3 09/04/1970 09/05/1970 126.4 33 
1971 67.1 04/11/1970 3130.4 13/04/1971 21/04/1971 84.5 13 
1972 74.3 30/10/1971 3533.9 24/04/1972 04/05/1972 125.0 28 
1973 121.2 23/10/1972 2928.9 08/04/1973 26/04/1973 88.1 15 
1974 164.8 29/10/1973 3497.9 07/04/1974 28/04/1974 135.2 86 
1975 143.9 07/10/1974 2957.5 06/04/1975 22/04/1975 136.5 58 
1976 125.9 22/10/1975 3213.5 02/04/1976 25/04/1976 146.1 48 
1977 122.1 05/11/1976 2337.0 07/04/1977 19/04/1977 74.6 38 
1978 57.8 31/10/1977 2921.3 08/04/1978 03/05/1978 59.6 39 
1979 104.3 23/10/1978 3457.2 21/04/1979 17/05/1979 92.9 44 
1980 88.0 29/10/1979 2150.3 26/03/1980 19/04/1980 51.2 33 
1981 186.1 22/10/1980 2477.8 19/04/1981 06/05/1981 107.8 52 
1982 113.3 18/10/1981 3219.4 07/04/1982 17/05/1982 89.7 28 
1983 96.9 27/10/1982 3364.1 12/04/1983 09/05/1983 119.1 52 
1984 136.7 05/11/1983 2592.7 27/03/1984 18/04/1984 78.1 32 
1985 197.9 21/10/1984 3183.3 12/04/1985 05/05/1985 109.9 40 
1986 148.2 14/10/1985 2954.0 15/04/1986 07/05/1986 150.2 43 
1987 101.0 26/10/1986 2308.9 29/03/1987 27/04/1987 118.2 71 
1988 140.1 03/11/1987 2438.1 10/04/1988 07/05/1988 96.7 51 
1989 184.4 18/10/1988 2985.7 08/04/1989 27/04/1989 89.4 40 
1990 84.9 26/10/1989 3012.9 27/03/1990 22/04/1990 130.3 59 
1991 206.7 10/10/1990 3127.0 29/03/1991 05/05/1991 155.2 82 
1992 214.0 13/10/1991 2955.5 19/04/1992 04/05/1992 130.2 60 
1993 134.1 02/11/1992 2155.6 20/03/1993 15/04/1993 43.0 33 
1994 108.8 24/10/1993 3188.4 28/04/1994 08/05/1994 141.0 63 
1995 76.4 28/10/1994 2712.6 16/04/1995 09/05/1995 118.9 82 
1996 49.4 21/10/1995 3105.7 05/04/1996 26/04/1996 61.7 50 
1997 156.8 16/10/1996 3041.1 09/04/1997 24/04/1997 64.8 48 
1998 191.4 04/10/1997 2277.2 29/03/1998 18/04/1998 72.5 29 
1999 208.0 29/10/1998 2142.4 20/03/1999 13/04/1999 78.1 53 
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Year API DOF ADDFW DOT DMO APW SNGOT 

  mm   °C-day     mm cm 
2000 120.2 27/10/1999 2108.9 20/03/2000 19/04/2000 55.6 29 
2001 148.7 24/10/2000 2473.0 08/04/2001 19/04/2001 111.7 23 
2002 256.7 16/10/2001 2974.2 26/04/2002 18/05/2002 121.0 18 
2003 166.8 10/10/2002 2536.7 03/04/2003 23/04/2003 82.0 22 
2004 121.6 28/10/2003 2655.7 29/03/2004 12/04/2004 90.3 42 
2005 62.5 14/10/2004 2719.5 28/03/2005 19/04/2005 115.8 22 
2006 189.1 29/10/2005 1857.3 21/03/2006 14/04/2006 72.2 22 
2007 139.4 26/10/2006 2601.0 22/03/2007 16/04/2007 116.2 34 
2008 185.2 28/10/2007 2917.2 07/04/2008 02/05/2008 91.0 29 
2009 185.3 18/10/2008 2897.2 09/04/2009 05/05/2009 148.2 47 
2010 132.8 28/10/2009 2152.3 28/03/2010 19/04/2010 95.4 12 

 

Note: At HRA, the SWE was estimated as one tenth of snowfall depth until Sep 1964 

when Nipher gauge was installed. This is confirmed by checking the daily. 
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Table B-5: Short-lead time variables developed from the meteorological data at 

HRA. 

 

Year ASS ARS ADDT-5 ADDF-5 RNPB SNPB 

  mm mm °C-day °C-day mm cm 
1964 0.8 7.1 30.3 2.6 0.0 0.8 
1965 5.6 1.3 96.8 30.1 1.3 12.4 
1966 30.7 0.3 110.8 194.3 0.3 44.6 
1967 0.0 5.8 93.5 0.0 0.0 0.0 
1968 20.3 8.5 23.4 4.0 4.6 1.0 
1969 20.0 14.8 72.4 0.0 0.8 1.8 
1970 51.6 1.8 107.6 1.4 0.0 10.9 
1971 7.1 0.0 124.5 0.3 0.0 7.1 
1972 0.0 0.0 63.5 0.0 0.0 0.0 
1973 3.8 1.8 NA NA NA NA 
1974 0.8 1.5 NA NA NA NA 
1975 1.8 12.0 NA NA NA NA 
1976 0.0 8.1 119.4 1.1 1.0 0.0 
1977 3.6 0.2 125.0 0.0 0.0 3.6 
1978 5.0 10.9 51.3 34.1 10.7 5.0 
1979 2.4 6.8 45.5 39.5 2.0 2.1 
1980 0.8 0.2 NA NA NA NA 
1981 4.4 12.6 35.5 0.7 12.6 4.4 
1982 37.5 7.3 99.7 8.5 3.1 7.8 
1983 0.4 2.0 79.3 2.7 2.0 0.0 
1984 0.0 1.6 139.2 16.7 0.0 0.0 
1985 12.8 19.4 50.7 10.1 1.9 10.6 
1986 3.2 6.9 54.5 2.8 0.0 3.2 
1987 10.1 0.8 109.5 34.5 0.2 10.1 
1988 7.2 5.0 65.4 4.3 4.8 2.4 
1989 8.6 3.0 146.5 35.7 0.0 8.6 
1990 0.6 8.9 138.5 20.1 8.9 0.6 
1991 7.6 9.8 99.5 4.0 9.8 7.6 
1992 4.6 6.6 38.8 0.0 0.0 0.8 
1993 3.8 7.4 134.1 18.7 7.4 4.2 
1994 0.0 0.0 0.0 0.0 0.0 0.0 
1995 0.8 1.2 NA NA NA NA 
1996 0.8 5.5 114.1 29.9 5.5 0.8 
1997 1.2 24.7 125.5 8.5 5.9 1.2 
1998 0.0 0.0 106.3 1.7 0.0 0.0 
1999 8.6 1.3 156.5 60.4 0.0 9.2 
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Year ASS ARS ADDT-5 ADDF-5 RNPB SNPB 

  mm mm °C-day °C-day mm cm 
2000 0.8 8.0 175.5 107.9 1.6 0.8 
2001 0.4 1.2 110.0 7.8 1.2 1.1 
2002 28.6 0.8 40.9 33.2 0.0 27.0 
2003 14.8 11.1 116.3 9.5 8.5 16.0 
2004 2.8 6.4 104.3 46.7 6.4 3.6 
2005 11.0 1.6 147.0 8.4 1.2 9.4 
2006 6.0 9.0 137.7 47.7 9.0 10.7 
2007 5.2 36.0 141.8 71.7 2.8 7.6 
2008 9.6 0.4 155.6 46.7 0.2 11.6 
2009 0.0 11.4 101.7 3.5 11.4 0.4 
2010 23.8 0.2 168.7 9.1 0.0 26.4 
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Table B-6: Long-lead variables developed from the meteorological data at HLA. 

 

Year API DOF ADDFW DOT APW 

  mm   °C-day   mm 
1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 82.0 23/10/1967 2285.2 21/03/1968 120.4 
1969 58.3 31/10/1968 2935.2 03/04/1969 102.5 
1970 42.0 04/11/1969 2241.4 09/04/1970 104.1 
1971 71.5 22/10/1970 2866.9 02/04/1971 76.7 
1972 99.4 25/10/1971 3235.3 11/04/1972 164.4 
1973 57.0 25/10/1972 2460.6 23/03/1973 142.0 
1974 42.6 31/10/1973 3104.8 06/04/1974 181.0 
1975 16.7 06/11/1974 2408.2 07/04/1975 106.9 
1976 63.8 22/10/1975 2763.6 25/03/1976 144.3 
1977 37.4 09/11/1976 1734.1 03/04/1977 51.6 
1978 48.1 31/10/1977 2476.3 28/03/1978 85.0 
1979 60.8 08/11/1978 2988.2 07/04/1979 102.1 
1980 39.9 03/11/1979 2016.2 26/03/1980 58.7 
1981 41.1 03/11/1980 1947.6 08/03/1981 100.5 
1982 89.7 24/10/1981 2995.4 07/04/1982 84.6 
1983 56.0 28/10/1982 2664.6 31/03/1983 128.1 
1984 50.4 04/11/1983 2274.0 23/03/1984 66.7 
1985 90.2 16/10/1984 2831.2 31/03/1985 133.4 
1986 90.6 20/10/1985 2435.2 26/03/1986 105.2 
1987 36.7 25/10/1986 2232.7 29/03/1987 179.4 
1988 96.2 29/10/1987 2065.2 08/04/1988 114.5 
1989 47.1 19/10/1988 2722.7 06/04/1989 183.9 
1990 62.5 26/10/1989 2693.1 27/03/1990 139.1 
1991 98.0 11/10/1990 2664.3 15/03/1991 190.0 
1992 67.2 16/10/1991 2257.1 10/03/1992 148.7 
1993 92.2 02/11/1992 1964.8 27/02/1993 53.4 
1994 59.2 28/10/1993 2475.9 25/03/1994 109.5 
1995 54.0 28/10/1994 2429.5 07/04/1995 89.4 
1996 29.3 22/10/1995 3142.9 05/04/1996 142.7 
1997 30.1 16/10/1996 2860.5 10/04/1997 100.0 
1998 78.5 07/10/1997 2017.1 16/03/1998 72.4 
1999 32.6 07/11/1998 2062.6 19/03/1999 61.6 
2000 49.4 02/11/1999 1973.6 21/03/2000 63.9 
2001 78.1 25/10/2000 2212.2 26/03/2001 83.3 
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Year API DOF ADDFW DOT APW 

  mm   °C-day   mm 
2002 82.2 17/10/2001 2593.1 10/04/2002 73.3 
2003 45.8 14/10/2002 2268.0 06/04/2003 79.6 
2004 61.1 28/10/2003 2343.4 28/03/2004 78.0 
2005 60.0 15/10/2004 2422.5 27/03/2005 181.5 
2006 30.3 31/10/2005 1714.8 21/03/2006 87.6 
2007 32.8 28/10/2006 2422.5 22/03/2007 118.0 
2008 59.8 04/11/2007 2447.8 06/04/2008 114.3 
2009 93.0 26/10/2008 2631.1 27/03/2009 121.2 
2010 66.4 29/10/2009 2007.5 28/03/2010 97.9 
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Table B-7: Short-lead variables developed from the meteorological data at HLA. 

 

Year DMO ASS ARS 

    mm mm 
1964 NA NA NA 
1965 NA NA NA 
1966 NA NA NA 
1967 NA NA NA 
1968 4/6/1968 0.8 6.5 
1969 4/17/1969 3.1 27.9 
1970 4/18/1970 4.6 5.4 
1971 4/16/1971 7.9 7.6 
1972 4/29/1972 1.1 1.6 
1973 4/21/1973 1.0 15.6 
1974 4/15/1974 0.0 0.0 
1975 4/16/1975 0.0 5.8 
1976 4/11/1976 0.0 11.9 
1977 4/10/1977 0.0 2.6 
1978 4/18/1978 6.2 22.5 
1979 5/7/1979 27.2 19.8 
1980 4/4/1980 0.0 5.6 
1981 4/22/1981 17.5 37.8 
1982 4/14/1982 3.0 43.4 
1983 4/24/1983 12.2 0.3 
1984 4/7/1984 2.1 3.2 
1985 4/26/1985 2.0 4.0 
1986 4/15/1986 1.2 14.2 
1987 4/24/1987 2.6 12.4 
1988 4/16/1988 0.0 10.8 
1989 4/29/1989 5.4 0.2 
1990 4/18/1990 7.4 0.6 
1991 4/21/1991 5.0 0.2 
1992 4/21/1992 1.1 11.0 
1993 3/26/1993 7.4 0.0 
1994 4/11/1994 0.0 26.2 
1995 4/21/1995 9.2 0.0 
1996 4/25/1996 6.4 7.6 
1997 4/23/1997 2.6 17.6 
1998 4/6/1998 0.2 0.4 
1999 4/13/1999 6.0 6.4 
2000 4/17/2000 4.4 7.2 
2001 4/19/2001 6.0 0.4 
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Year DMO ASS ARS 

    mm mm 
2002 4/22/2002 4.8 1.3 
2003 4/13/2003 0.0 21.8 
2004 4/6/2004 0.0 7.2 
2005 4/12/2005 0.8 7.4 
2006 4/10/2006 0.0 12.6 
2007 4/17/2007 14.2 24.2 
2008 4/27/2008 11.9 4.6 
2009 4/19/2009 2.8 12.0 
2010 4/17/2010 8.5 14.4 
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Table B-8: Extracted variables from the hydrometric data at HRMR. 

 

Year HOF DOR HOR DQp QP 
  m   m   m3/s 

1964 NA NA NA NA NA 
1965 NA NA NA NA NA 
1966 NA NA NA NA NA 
1967 NA NA NA NA NA 
1968 NA NA NA NA NA 
1969 NA NA NA NA NA 
1970 NA NA NA NA NA 
1971 NA NA NA NA NA 
1972 NA NA NA NA NA 
1973 NA NA NA NA NA 
1974 NA NA NA NA NA 
1975 4.10 18/04/1975 3.86 04/05/1975 202 
1976 3.80 06/04/1976 3.84 28/04/1976 268 
1977 5.15 09/04/1977 4.12 04/05/1977 200 
1978 4.91 23/04/1978 4.09 05/05/1978 422 
1979 4.35 26/04/1979 3.87 19/05/1979 492 
1980 4.49 06/04/1980 3.83 23/04/1980 102 
1981 3.60 23/04/1981 3.60 05/05/1981 563 
1982 3.41 27/04/1982 3.69 18/05/1982 358 
1983 3.63 17/04/1983 3.78 29/04/1983 300 
1984 3.65 14/04/1984 3.64 26/04/1984 41.8 
1985 4.80 17/04/1985 3.94 10/05/1985 496 
1986 4.86 16/04/1986 3.79 14/05/1986 261 
1987 4.13 16/04/1987 3.97 06/05/1987 341 
1988 4.37 13/04/1988 3.99 12/05/1988 261 
1989 4.79 21/04/1989 4.08 06/05/1989 631 
1990 4.35 11/04/1990 4.06 28/04/1990 371 
1991 3.52 17/04/1991 3.79 01/05/1991 221 
1992 4.22 05/04/1992 4.43 07/05/1992 583 
1993 5.27 02/04/1993 3.92 24/04/1993 87.8 
1994 4.27 04/04/1994 4.03 29/04/1994 544 
1995 3.67 23/04/1995 3.84 02/05/1995 175 
1996 3.43 18/04/1996 3.86 05/05/1996 464 
1997 4.66 22/04/1997 4.21 12/05/1997 507 
1998 6.56 07/04/1998 4.34 19/04/1998 225 
1999 3.71 17/04/1999 3.91 01/05/1999 147 
2000 4.07 22/04/2000 4.08 13/05/2000 229 
2001 4.34 20/04/2001 4.00 09/05/2001 182 
2002 4.00 27/04/2002 3.86 21/05/2002 244 
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Year HOF DOR HOR DQp QP 
  m   m   m3/s 

2003 4.04 16/04/2003 3.75 30/04/2003 480 
2004 3.80 07/04/2004 3.84 05/05/2004 115 
2005 4.17 07/04/2005 3.86 29/04/2005 518 
2006 4.05 08/04/2006 3.90 30/04/2006 207 
2007 3.64 15/04/2007 3.93 12/05/2007 629 
2008 4.89 25/04/2008 4.37 10/05/2008 468 
2009 4.63 14/04/2009 4.12 12/05/2009 441 
2010 4.90 15/04/2010 4.31 29/04/2010 252 
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Table B-9. Late winter SWE from the snow course surveys at the Hay River 

basin. 

 

Year Upper basin SWEsc, mm Lower basin SWEsc, mm 
  High Level Assumption Hay River Swede Creek 

1964 
    1965 
    1966 
    1967 
    1968 
    1969 
    1970 
    1971 
    1972 
    1973 
    1974 
    1975 
    1976 
    1977 
    1978 
    1979 
    1980 
    1981 
    1982 
  

100 86 
1983 

  
122 95 

1984 
  

90 74 
1985 

  
111 119 

1986 107 86 95 99 
1987 128 124 97 78 
1988 85 64 126 102 
1989 146 152 67 67 
1990 113 104 120 103 
1991 135 131 94 85 
1992 90 66 121 103 
1993 27 0 51 36 
1994 88 64 109 84 
1995 58 52 121 99 
1996 168 194 65 76 
1997 108 114 74 85 
1998 58 60 84 70 
1999 70 61 72 69 
2000 65 51 56 75 



243 

Year Upper basin SWEsc, mm Lower basin SWEsc, mm 
  High Level Assumption Hay River Swede Creek 

2001 80 79 104.1 104.1 
2002 98 108 97 86.1 
2003 93 75 90.5 80.5 
2004 89 79 88.9 101.6 
2005 150 116 111.8 134.6 
2006 75 75 83.8 91.4 
2007 123 117 129 88.9 
2008 122 109 93.3 109.1 
2009 121 124 141 143 
2010 59 78 80 72 
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Table B-10: Extracted variables from the hydrometric data at CRHL. 

 

Year DQp QP 
    m3/s 

1964 NA NA 
1965 NA NA 
1966 NA NA 
1967 NA NA 
1968 NA NA 
1969 NA NA 
1970 25/04/1970 126 
1971 28/04/1971 292 
1972 07/05/1972 748 
1973 04/05/1973 244 
1974 29/04/1974 810 
1975 03/05/1975 94.9 
1976 26/04/1976 112 
1977 01/05/1977 69.1 
1978 02/05/1978 328 
1979 17/05/1979 341 
1980 19/04/1980 20 
1981 04/05/1981 479 
1982 16/05/1982 249 
1983 27/04/1983 160 
1984 24/04/1984 22.6 
1985 08/05/1985 236 
1986 15/05/1986 131 
1987 05/05/1987 154 
1988 09/05/1988 103 
1989 04/05/1989 547 
1990 26/04/1990 288 
1991 29/04/1991 119 
1992 04/05/1992 411 
1993 24/04/1993 26.5 
1994 26/04/1994 382 
1995 30/04/1995 86.5 
1996 03/05/1996 287 
1997 10/05/1997 405 
1998 20/04/1998 55 
1999 29/04/1999 67.2 
2000 11/05/2000 153 
2001 10/05/2001 75 
2002 19/05/2002 159 
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Year DQp QP 
    m3/s 

2003 28/04/2003 337 
2004 02/05/2004 72.5 
2005 26/04/2005 409 
2006 29/04/2006 74.8 
2007 09/05/2007 625 
2008 08/05/2008 267 
2009 10/05/2009 230 
2010 27/04/2010 84.8 
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Appendix C Extraction of peak snowmelt runoffs from the discharge 

hydrographs at the WSC gauges in the Hay River basin  

 

This appendix shows all the available discharge hydrographs at the gauges of 

HRHR, HRMR and CRHL, and the extractions of the peak snowmelt runoffs for 

each gauge. These extracted variables were used in Chapter 4 as the output 

variables for the fuzzy logic models. 
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Figure C-1: Discharge hydrographs at the three Hay River WSC gauges in 2010. 

 

 

 

Figure C-2: Discharge hydrographs at the three Hay River WSC gauges in 2009. 
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Figure C-3: Discharge hydrographs at the three Hay River WSC gauges in 2008. 

 

 

 

Figure C-4: Discharge hydrographs at the three Hay River WSC gauges in 2007. 
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Figure C-5: Discharge hydrographs at the three Hay River WSC gauges in 2006. 

 

 

 

Figure C-6: Discharge hydrographs at the three Hay River WSC gauges in 2005. 
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Figure C-7: Discharge hydrographs at the three Hay River WSC gauges in 2004. 

 

 

 

Figure C-8: Discharge hydrographs at the three Hay River WSC gauges in 2003. 
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Figure C-9: Discharge hydrographs at the three Hay River WSC gauges in 2002. 

 

 

 

Figure C-10: Discharge hydrographs at the three Hay River WSC gauges in 2001. 
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Figure C-11: Discharge hydrographs at the three Hay River WSC gauges in 2000. 

 

 

 

Figure C-12: Discharge hydrographs at the three Hay River WSC gauges in 1999. 
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Figure C-13: Discharge hydrographs at the three Hay River WSC gauges in 1998. 

 

 

 

Figure C-14: Discharge hydrographs at the three Hay River WSC gauges in 1997. 
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Figure C-15: Discharge hydrographs at the three Hay River WSC gauges in 1996. 

 

 

 

Figure C-16: Discharge hydrographs at the three Hay River WSC gauges in 1995. 

 

 

0

200

400

600

800

1000

1200

1400

01-Apr 08-Apr 15-Apr 22-Apr 29-Apr 06-May 13-May 20-May 27-May 03-Jun

D
ai

ly
 d

is
ch

ar
ge

, m
3 /s

at HRHR

at HRMR

at CRHL

Ice clearing 
at THR

QP_HRHR

QP_HRMR

QP_CRHL

0

200

400

600

800

1000

1200

1400

01-Apr 08-Apr 15-Apr 22-Apr 29-Apr 06-May 13-May 20-May 27-May 03-Jun

D
ai

ly
 d

is
ch

ar
ge

, m
3 /s

at HRHR

at HRMR

at CRHL

Ice clearing 
at THR

QP_HRHR

QP_HRMR

QP_CRHL



255 

 

Figure C-17: Discharge hydrographs at the three Hay River WSC gauges in 1994. 

 

 

 

Figure C-18: Discharge hydrographs at the three Hay River WSC gauges in 1993. 
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Figure C-19: Discharge hydrographs at the three Hay River WSC gauges in 1992. 

 

 

 

Figure C-20: Discharge hydrographs at the three Hay River WSC gauges in 1991. 
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Figure C-21: Discharge hydrographs at the three Hay River WSC gauges in 1990. 

 

 

 

Figure C-22: Discharge hydrographs at the three Hay River WSC gauges in 1989. 
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Figure C-23: Discharge hydrographs at the three Hay River WSC gauges in 1988. 

 

 

 

Figure C-24: Discharge hydrographs at the three Hay River WSC gauges in 1987. 
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Figure C-25: Discharge hydrographs at the three Hay River WSC gauges in 1986. 

 

 

 

Figure C-26: Discharge hydrographs at the three Hay River WSC gauges in 1985. 
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Figure C-27: Discharge hydrographs at the three Hay River WSC gauges in 1984. 

 

 

 

Figure C-28: Discharge hydrographs at the three Hay River WSC gauges in 1983. 
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Figure C-29: Discharge hydrographs at the three Hay River WSC gauges in 1982. 

 

 

 

Figure C-30: Discharge hydrographs at the three Hay River WSC gauges in 1981. 
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Figure C-31: Discharge hydrographs at the three Hay River WSC gauges in 1980. 

 

 

 

Figure C-32: Discharge hydrographs at the three Hay River WSC gauges in 1979. 
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Figure C-33: Discharge hydrographs at the three Hay River WSC gauges in 1978. 

 

 

 

Figure C-34: Discharge hydrographs at the three Hay River WSC gauges in 1977. 
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Figure C-35: Discharge hydrographs at the three Hay River WSC gauges in 1976. 

 

 

 

Figure C-36: Discharge hydrographs at the three Hay River WSC gauges in 1975. 
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Figure C-37: Discharge hydrographs at the three Hay River WSC gauges in 1974. 

 

 

 

Figure C-38: Discharge hydrographs at the three Hay River WSC gauges in 1973. 
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Figure C-39: Discharge hydrographs at the three Hay River WSC gauges in 1972. 

 

 

 

Figure C-40: Discharge hydrographs at the three Hay River WSC gauges in 1971. 
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Figure C-41: Discharge hydrographs at the three Hay River WSC gauges in 1970. 

 

 

 

Figure C-42: Discharge hydrographs at the three Hay River WSC gauges in 1969. 
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Figure C-43: Discharge hydrographs at the three Hay River WSC gauges in 1968. 

 

 

 

Figure C-44: Discharge hydrographs at the three Hay River WSC gauges in 1967. 
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Figure C-45: Discharge hydrographs at the three Hay River WSC gauges in 1966. 

 

 

 

Figure C-46: Discharge hydrographs at the three Hay River WSC gauges in 1965. 
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Figure C-47: Discharge hydrographs at the three Hay River WSC gauges in 1964. 
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Appendix D Forecasting the timing of breakup at the Town of Hay River, 

NWT 

 

In northern regions, river ice breakup is an annual event that can present a 

significant threat to riverside communities. Water levels associated with ice jam 

events can rise several meters in just minutes; therefore, it is essential to have 

sufficient advance warning should evacuation become necessary. This study 

explores the potential for using readily available hydro-meteorological data from 

hydrometric gauges and climatic stations to develop a practicable forecasting 

model for breakup timing. 

 

Artificial neural network (ANN) modelling is one of the most common data-

driven techniques for solving complex non-linear problems which are not yet 

tractable through fully deterministic means (Maier et. al. 2010). In this study, the 

suitability of ANN modeling was tested to determine its potential to aid in 

forecasting the timing of breakup at the Town of Hay River, NWT, where breakup 

ice jam floods are a frequent occurrence. To achieve this, readily available hydro-

meteorological data from within the Hay River basin were collated and processed 

to predict the date of breakup, DB (i.e. the timing of the first push of ice) at the 

town site. Data for DB were obtained from historical breakup reports and 

newspaper accounts (prior to 2003) and recent field work (from 2004 to 2011). 
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Operationally, the forecast would be conducted once each spring, on the date of 

the onset of breakup, DOB, (taken as the date on which the rise of spring runoff 

commences based on the historical daily stage data). The breakup timing forecast 

would use both observed hydrometeorological data and short term weather 

forecasts as input. In this study, models for two alternative output variables were 

tested:  

• ∆DB:  the number of days until breakup. In this case the model provides a 

direct forecast of the expected number of days between the onset of breakup 

(DOB) and the first push at the town site (DB).  

• ADDTB: the accumulated degree-days of thaw between the onset of breakup 

(DOB) and the date of breakup (DB). This provides an indirect prediction of 

breakup timing in terms of heat input to the ice cover required to initiate the 

breakup, with degree-days of thaw providing an index of this heat input. 

 

The following variables were used as the input variables in these models:  

• ADDFW: the accumulated degree-days of freezing during the winter period, 

which starts from the onset of freezing degree-days (i.e. the first day of 5 

consecutive days of subzero mean daily air temperatures) and ends at the 

onset of thawing degree-days (i.e. on the first of 5 consecutive days of air 

temperatures above -5°C). It is used as an index of late winter ice thickness 

and competence. 



273 

• APW: the accumulated snowfall during the winter period, in terms of snow 

water equivalent. It provides an index of the late winter snowpack in the 

basin, providing indication of the expected magnitude of spring runoff. It is 

also taken as an index of the snow coving the ice and insulating it against 

thermal deterioration. A high snowpack would be expected to delay the ice 

decay more than a low snowpack. 

• RNPB: the accumulated rainfall during the pre-breakup period (i.e. prior to 

DOB). Rain can accelerate both snowmelt and ice cover decay, and thus the 

speed at which the breakup process can unfold. 

• ADDTPB: the accumulated degree-days of thaw during the pre-breakup 

period. It is taken as an index of the accumulated heat input to the ice cover 

which decreases ice thickness and/or ice strength during the pre-breakup 

period. 

• TDDFPB: the total degree-days of freezing during the pre-breakup period. It 

provides an indication of the potential impact of a cold spell after the onset of 

thaw, in terms of the potential for a delay in ice cover deterioration in the pre-

breakup period. 

 

An extended cold spell that occurs after the onset of breakup (i.e. after DOB) 

would also be expected to delay breakup. However, given that this forecast would 

be conducted only once a year, on DOB, such events in the record would not 

provide consistent calibration data. Therefore, with the caveat in mind that the 

model cannot account for the occurrence of a prolonged cold spell occurring after 
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the forecast, these events were excluded from the calibration set. This left a total 

of 34 years of record remaining in the data set. These data were split to develop 

the models: 7 (~20%) of these were reserved for validation and the remainder 27 

(~80%) were used to calibrate the ANN model. The detailed approach used to 

calibrate the ANN model is similar to that employed by Zhao et.al. (2012). Two 

ANN models were developed for each of the two output variables (i.e. ∆DB and 

ADDTB). Also, two multiple linear regression (MLR) models were developed 

using the same data set to provide a comparison to the ANN models.  The results 

of calibration and validation for all of these models are shown in Figure 1. For the 

output variable ∆DB, the MLR1 (Figure 1a) and ANN1 (Figure 1b) models show 

very similar validation errors (mean errors of 5.3 days for MLR1 and 5.5 days for 

ANN2), although the ANN1 exhibits a much better calibration result. For the other 

output variable, ADDTB, the ANN2 model (Figure 1d) shows much better results 

both for calibration and validation, compared to the MLR2 model (Figure 1c). 

Also, when the validation results of the MLR2 and ANN2 models were evaluated 

using observed mean daily temperature data to determine to date of breakup, the 

mean errors were 2.4 days and 1.7 days, respectively. Thus the ANN2 model had 

the lowest error of the four models. These results also suggest that the indirect 

variable ADDTB gives a better indication of breakup timing than the direct 

variable ∆DB for this site. 

 

In the next phase of this study, the effect of a cold spell following the onset of 

breakup will be further considered. As well, the significance of each input 
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variable to the output will be examined using the calibrated ANN models, so that 

the most important factors that control the onset of breakup can be identified. 
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Figure D-1: Results of the calibration and validation of the four models. Note: RMSEcal and 

RMSEval indicate the root mean squared error of the calibration set and validation 

set. Sample size is 34 for MLR models development. 
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