
UNIVERSITY OF ALBERTA

The Enterprise Executive

by

Pok Sze Wong

A thesis
submitted to the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

Edmonton, Alberta
Fall, 1992

Abstract

Enterprise is a graphical programming environment for designing, coding, debugging,

testing, monitoring, profiling and executing programs in a distributed hardware environment.

Enterprise code looks like familiar sequential code. The user attaches icons, called assets, to

sequential code modules to specify the parallelism of the program. The system provides several

kinds of assets, each representing a different high-level technique of parallelism. There is an

analogy between assets in a program and those in an organization. The system automatically inserts

the code to handle communication and synchronization into a module based on its attached asset

kind. Also, the system runs the program and supports limited process migration and dynamic

distribution of work, based on the demand and availability of resources.

 Enterprise is an on going project involving many researchers. This thesis presents the work

on the design and implementation of the textual interface, the Enterprise assets, the executive, and

some practical applications to test the flexibility of the system. With the interface, the user can edit,

compile and run an Enterprise program. Assets are implemented by adding communication and

synchronization code characterizing their kind into user code. A C program preprocessor is used

to turn a module call into a message sending the correct parameters. The executive manages the

assets (and the machines they use) at run time. It runs assets on available machines and handles

dynamic distribution of work, as well as concurrency issues such as fairness and termination. It

also monitors the load on the environment and performs limited process migration when necessary.

The Enterprise system has been used to convert several sequential programs to run on a distributed

environment, as well as to develop new distributed programs. The experience indicates that the

Enterprise model offers a flexible and easy to use approach for rapid construction of distributed

applications.

Acknowledgements

I am indebted to the support and guidance of my supervisor Professor Jonathan Schaeffer.

The readability and presentation of this thesis is largely due to his effort in reading the many drafts

of the thesis.

I also thank Professor Duane Szafron, from whom I learn the object-oriented methodology,

and the work has greatly benefitted from the support he provided. Thanks are due to Professor

Werner Joerg, Xiaobo Li and Tony Marsland, my examination committee members, for their

valuable comments and suggestions and for their time spent in reading this thesis.

I would like to thank the members of the Enterprise project group here, who provided helpful

suggestion on this work. I wish to thank Enoch Chan who had to modify the compiler

implementation many times, every change I made in the Enterprise executive. Ian Parsons is

gratefully acknowledged for his bravery in using Enterprise to implement Baudet's chaotic Gauss-

Seidel algorithm and his help in debugging the system. Carol Smith and Paul Lu also helped me in

getting some applications to run on Enterprise.

Ajit Singh was the developer of FrameWorks which was the precursor to Enterprise. The

design of Enterprise is much influenced by his experience. His work also made available to

Enterprise a test suit of distributed programs. I would also like to thank him for his helpful

comments on the design of the system.

Thanks also goes to the Department of Computing Science which provided me with technical

and financial support.

Table of Contents

Chapter 1: Enterprise Parallel Program Model.. 1
1.1. Mission.. 1
1.2. Motivation... 2
1.3. Problem ... 2
1.4. Overview... 3
1.5. Scope and Organization of the Thesis . 5

Chapter 2: Related Work .. 6
2.1. Introduction.. 6
2.2. Scope Definition.. 6
2.3. Review of Approaches to Parallelism.. 7

2.3.1. Static and Dynamic Concurrent Function-Parallel Computations...... 9
2.3.2. Static and Dynamic Concurrent Data-Parallel Computations. 9
2.3.3. Static and Dynamic Pipelined Function-Parallel Computations. 9
2.3.4. Static and Dynamic Pipelined Data-Parallel Computations 10

2.4. Models of Computation .. 10
2.5. Classification Scheme ... 11
2.6. Task Oriented Models .. 12

2.6.1. CAPER ... 12
2.6.2. E/SP... 13
2.6.3. PAT ... 13

2.7. Data Oriented Models.. 13
2.7.1. CODE... 14
2.7.2. DGL.... 14
2.7.3. HeNCE ... 15
2.7.4. LGDF... 15
2.7.5. Paralex.. 15
2.7.6. PPSE.... 16
2.7.7. TDFL ... 16

2.8. Template Attachment Models .. 16
2.8.1. PAL ... 17
2.8.2. PIE .. 17
2.8.3. FrameWorks .. 17

2.9. Conclusions and Comparative Remarks... 18

Chapter 3: The Enterprise Model .. 20
3.1. Introduction.. 20
3.2. Module Calls.. 20
3.3. Module Roles and Assets . 21

3.3.1. Individual... 22
3.3.2. Line .. 23
3.3.3. Pool .. 23
3.3.4. Contract... 24
3.3.5. Department .. 25
3.3.6. Division... 26
3.3.7. Service.. 26

3.4. Parallelization by Coercion.. 27
3.5. Conclusions... 27

Chapter 4: Programming in Enterprise... 28
4.1. Introduction.. 28
4.2. Textual Interface.. 29
4.3. Syntax of the Textual Enterprise Graph .. 30
4.4. Writing an Enterprise Application.. 33
4.5. Compiling an Enterprise Application .. 36
4.6. Running an Enterprise Application... 37
4.7. Conclusions... 39

Chapter 5: The Overall Enterprise Architecture .. 40
5.1. Introduction.. 40
5.2. System Design.. 40

5.2.1. Interface Manager .. 41
5.2.2. Application Manager .. 41
5.2.3. Code Librarian.. 41
5.2.4. Execution Manager.. 42
5.2.5. Resource Secretary.. 42
5.2.6. Monitor/Debugging Manager .. 43

5.3. System Implementation.. 43
5.3.1. Fault Tolerance .. 44
5.3.2. Process Migration .. 44

5.4. Conclusions... 45

Chapter 6: Design of the Enterprise Executive.. 46
6.1. Introduction.. 46
6.2. Object-Oriented Design Techniques.. 46
6.3. Overview of the Executive Architecture .. 47
6.4. Assets... 49

6.4.1. Clients . 50
6.4.2. Workers .. 50

6.5. Design Models and Their Communication Protocols . 50
6.5.1. Restricted Model... 51
6.5.2. Reference Model... 53
6.5.3. Forwarder Model.. 55
6.5.4. Comparative Analysis of Different Models............................... 57

6.6. Managers.. 58
6.6.1. Asset Managers.. 60

6.6.1.1. Pool Manager .. 61
6.6.1.2. Contract Manager.. 61
6.6.1.3. Individual Manager.. 61

6.6.2. Machine Manager.. 61
6.6.3. Execution Manager.. 64

6.7. Termination .. 64
6.7.1. Abort. 64
6.7.2. Finish .. 65

6.8. Conclusions... 66

Chapter 7: Implementation of the Executive... 67
7.1. Introduction.. 67
7.2. Structure of an ISIS Application .. 67
7.3. ISIS Broadcast Primitives... 69
7.4. Limitations Imposed by ISIS .. 69

7.5. Implementation of Assets . 70
7.5.1. Main Structure Implementation .. 71

7.5.1.1. Establish Connection.. 72
7.5.1.2. Receiving Call Messages .. 73
7.5.1.3. Synchronization... 74
7.5.1.4. Termination.. 74

7.5.2. Call Implementation.. 76
7.5.2.1. Gathering of Call Parameters.. 76
7.5.2.2. Making a Call . 77
7.5.2.3. Extracting Call Parameters... 79

7.6. Implementation of Managers.. 80
7.6.1. Implementation of Asset Managers.. 81
7.6.2. Implementation of Machine Manager .. 82

7.6.2.1. Process-Machine Binding .. 82
7.6.2.2. Queues .. 88
7.6.2.3. Resource Secretary .. 88
7.6.2.4. Launching Remote Processes .. 89

7.6.3. Implementation of Execution Manager.................................... 89
7.7. Application Independent Experiments .. 92
7.8. Conclusions... 94

Chapter 8: Conclusions and Future Research.. 96
8.1. Conclusions... 96
8.2. Enterprise - The Next Generation .. 97

References .. 99

Appendix A: Some Example Applications .. 105
A.1. The Animation Application.. 105
A.2. The Prime Number Generator . 106
A.3. Parallel π Computation .. 107
A.3. Chaotic Gauss-Seidel. 109

Appendix B: C Code for the Entry Procedures of the Animation Example 111

Appendix C: Entry Procedures of the Animation Example with Enterprise Code......... 113

- 1 - The Enterprise Executive

Chapter 1

Enterprise Parallel Program Model

1.1. Mission

This thesis is part of an ongoing research on the design and implementation of a distributed

programming environment. The focus of this thesis is on the executive of the Enterprise

environment. The term executive, although no longer used in the literature, refers to the computer's

operating system. As Comer (1983) wrote:

"Hidden in every computer system is the software that controls processing, manages
resources, and communicates with external devices like disks and printers.
Collectively, the programs that perform these chores are sometimes referred to as the
executive, monitor, task manager, or kernel."

This term executive is chosen to be consistent with the anthropomorphic philosophy used in

designing the Enterprise system and to distinguish the operating system in sequential computing.

The Enterprise system is built with four objectives in mind:

1) Provide a simple high-level mechanism for specifying parallelism that is independent

of low-level synchronization and communication protocols,

2) Provide transparent access to heterogeneous computers, compilers, languages,

networks and operating systems,

3) Support the parallelization of existing programs to take advantage of the investment in

the existing software legacy, and

4) Be a versatile programming environment by eliminating the overhead that arises from

switching between it and other programming tools.

The author's contribution to the project involves the following:

1) Participation in the overall design of Enterprise (E. Chan et al, 1991 and D. Szafron

et al, 1992).

2) Developing a portion of the code generator to insert communication and

synchronization code supporting a specified parallelization technique in Enterprise

- 2 - The Enterprise Executive

into user modules. The entry procedure and module calls of the user code are turned

into message exchanges (Chan, 1992) using a modified GNU C compiler.

3) Design and implementation of the Enterprise executive. The executive manages the

Enterprise processes (and the machines they use) at run time. It runs processes on

available machines and handles dynamic distribution of work, as well as concurrency

issues such as fairness and termination.

4) Developing the textual interface of Enterprise. With the interface, a user can edit,

compile and run an Enterprise program when a graphics terminal is not available.

The above work is reflected in this thesis. Chapter 2 discusses other similar work in the area of

parallel and distributed programming environment. Chapter 3 and 4 demonstrate the Enterprise

programming model. Chapter 5 outlines its overall architecture. Chapter 6 and 7 present the design

and implementation of the Enterprise executive.

1.2. Motivation

During the last decade, there has been a steady shift from large centralized time sharing

systems to networks of personal computers and workstations in commercial, academic, research

and industrial environments. Several factors help to support this evolution.

Development in hardware technologies have lowered the cost of a processor. Also, advances

in networking technology have made available high bandwidth communication access to facilities

on the network. Regardless of the factors behind the change, the popularity of networked

workstation computing environment opens up a new window of opportunity.

Parallel computing is considered as the most promising approach to high speed computing.

Usually workstations are not used continuously, and there are often 'wasted cycles' as many of

them are idle from time to time, especially during weekends and nights. The network of

workstation combined delivers more power than most supercomputers ("the network is the

supercomputer"1). Harnessing this computing power not only eliminates the need for costly larger

computers and utilizes idle workstations, but has the additional advantage of providing the user

with a uniform computing environment. The same workstation computer is used for all computing

needs regardless of their computational complexity.

1.3. Problem

It is widely agreed that parallel and distributed software development involves much more

effort and time than sequential programming. The design, implementation and testing of parallel

1A generalization by Carl Hamacher of Sun Microsystem's phrase "the network is the computer".

- 3 - The Enterprise Executive

software is considerably more complicated than comparable sequential software. Efficient parallel

algorithms have been developed for a vast group of problems, yet few algorithms find their way

into practice. Obtaining a good parallel algorithm to a problem usually involves a small part of the

total implementation cost. The major costs are spent in attacking issues that do not exist in the

sequential environment. These include, for example, fault tolerance, synchronization, deadlock,

communication, heterogeneous computers and operating systems, and the complexity of

debugging and testing programs that may be non-deterministic because of concurrent execution.

Harnessing the computing power of a network of machines poses several challenges that do

not have an analogue in the tightly-coupled multiprocessor environment.

1) The processors available to an application and their capabilities may fluctuate from

one execution to another.

2) Communication costs are generally high in such an environment. This limits the kinds

of parallelism that can be effectively implemented.

3) Users do not want to become experts in networking or low-level communication

protocols to utilize the potential parallelism.

There are few systems that are aimed at providing shared processing power in a workstation

environment, while taking into consideration the constraints of the environment and the user.

There is a need for a tool for the rapid construction of parallel and distributed software, with a fault

tolerance capability, and to harness the untapped potential of networked, idle workstations. This

tool must bridge the perceived complexity gap between distributed and sequential software,

without requiring the user to undergo extensive retraining.

1.4. Overview

Enterprise is a programming environment for designing, coding, debugging, testing,

monitoring, profiling and executing programs in a distributed hardware environment. It represents

the evolution of the Frameworks system (Singh, Schaeffer and Green, 1989a, 1989b, 1991;

Singh, 1991). Programs written in the Enterprise environment look like familiar sequential C code

since the parallelism is expressed graphically. The system inserts the code necessary to handle

communication, synchronization and fault tolerance, allowing the rapid construction of correct

distributed programs. This bridges the complexity gap between distributed and sequential

software. Enterprise programs execute on a network of computers, using the idle cycles on the

machines. The system supports load balancing, limited process migration, and dynamic

distribution of work in environments with varying resource utilization. Enterprise offers an

- 4 - The Enterprise Executive

economical way to improve the productivity of programmers and the throughput of existing

resources.

Enterprise has several features that makes it different from other parallel and distributed

program development tools (see Chapter 2):

1) Users program in a sequential programming language (C) with new semantics

defined for procedure/function calls that allows them to be executed in parallel. The

semantic changes are simple and exhibit the powerful property that parallel code is

indistinguishable from sequential code. Enterprise automatically inserts all the

necessary communication and synchronization protocols into the user's code and

frees the user from these details.

2) Enterprise can generate these protocols automatically because most large-grained

parallel programs use only a small number of regular parallelization techniques (as

will be illustrated in Chapter 2), such as pipelines and replication, etc. An Enterprise

user selects a parallelization technique by manipulating icons using the graphical user

interface. The user code for the parallel program is independent of the parallelization

technique chosen. This enables applications to be adapted easily to a fluctuating

number and type of available processors, usually without changing the user's code.

It also provides an easy mechanism for experimentation and evaluation of how the

different parallelization techniques fare on the user's specific application.

3) To make parallelism easy to express and understand, Enterprise uses an analogy

between the structure of a parallel program and the structure of an organization. The

new analogy replaces inconsistent analogies used in the past (pipelines, masters,

slaves, etc.) by a uniform set of assets (contracts, departments, individuals, etc.). An

organizational analogy was chosen because organizations are common and inherently

parallel. This analogy provides the user with a different (but familiar) model for

developing parallel programs. Although some researchers are against (Dijkstra,

1982) and some support (Booth, Schaeffer and Gentleman, 1982) the use of

analogies in computing science, they should prove quite useful, as they have been in

object-oriented programming.

4) Many of the parallelization methods supported by Enterprise can partition work

dynamically in environments with varying resource availability. For instance, a

contract supports partitioning of work to a varying number of identical subordinates.

A contract utilizes as many idle machines as available to fulfill the task. Only a few

- 5 - The Enterprise Executive

machines may be available during peak hours, but many more may be available in the

evening to help complete the contract.

5) In many parallel computing environments, the user needs to draw communication

graphs which usually involves drawing a diagram to connect nodes (processes) with

arcs (communication paths). A similar diagram is created in Enterprise, but users are

relieved from the tedium of drawing the details; they only have to edit the diagram by

coercing and expanding nodes that represent assets. Coercion represents a high-level

method to specify how a process (asset) interacts with its neighbors and corresponds

to choosing a common parallelization technique. Expanding a node lets the user

explore the hierarchical structuring of the application.

The user manipulates using the graphical interface and writes sequential code that is free of

any parallel constructs. Enterprise recognizes where to insert the parallel code from the graph. It

then compiles the routines, dynamically launches processes on machines and sets up the required

connections. Processes run in the background, making use of the available idle machines and

recognizing when machines become heavily loaded. Hence applications can profitably use

machines that would otherwise be idle without interfering with the user community.

1.5. Scope and Organization of the Thesis

The emphasis of this thesis is on the executive of the system. The executive is implemented

as part of the Enterprise system and as a result of this research. The thesis is organized as follows.

Chapter 2 gives a general discussion of issues of parallel programming environments, and

reviews some existing systems.

Chapter 3 provides an introduction to the concept of the Enterprise model, including the new

semantics of ordinary sequential procedure calls and the kinds of parallelism (assets) supported.

Chapter 4 illustrates programming on the Enterprise system using the textual interface.

Chapter 5 outlines the Enterprise architecture and its implementation.

Chapter 6 contains a description of the object-oriented design of the Enterprise executive.

Chapter 7 describes the implementation of the Enterprise executive using the ISIS package.

Chapter 8 summaries the thesis and provides a discussion of the ongoing research.

- 6 - The Enterprise Executive

Chapter 2

Related Work

2.1. Introduction

Parallel and distributed computing are generally considered as the most viable approach to

high speed computing. In the last decade, a wide range of multiprocessor architectures as well as

the basic tools and techniques to utilize them have been developed. Also, there has been an

increasing practice of using a loosely coupled multicomputer networks (e.g. a network of

workstations), as if it were a poor man's supercomputer, to solve problems that used to be run on

large centralized multiprocessor systems. In the past, the research in parallel computing was

primarily aimed at achieving the highest possible performance levels. Most of the programming

paradigms were modelled after the processor hardware. For instance, the programming models

were usually categorized as shared memory or message passing (Bilardi, 1989; Sunderam and

Geist, 1991). Such a restrictive view may be the fundamental reason why a large class of parallel

algorithms have not made their way into actual implementation. Providing a programming

paradigm that was easy to understand and use was not a major concern until lately.

In recent years, there has been an enormous increase in the number and quality of parallel

programming environments described in the literature. Many of them have introduced new parallel

programming models that are based on software perspectives. As mentioned in Chapter 1, this

thesis is a continuation of these investigations. This chapter reviews the major techniques, tools

and systems that are related to this work.

2.2. Scope Definition

Parallel computing is a diverse research area. Hundreds of parallel programming tools are

being developed. It is important that the goals and scope of this review can be clearly defined and

focused on topics related to the issues involved in this research.

Parallel processing can be viewed as part of the more general computing structure known as

concurrent computing. In concurrent execution, there are more than a single thread of a program in

execution. Concurrent execution is more commonly referred to as multiprogramming when several

processes share a single processor at one time. The operating system multiplexes the processor

among the concurrent processes. On the other hand, when the processes share a pool of processors

- 7 - The Enterprise Executive

simultaneously, it is called multiprocessing, or more often, parallel processing. Furthermore, if the

underlying processors are connected by a local or wide area network, the computation is known as

distributed processing.

The architectures of a parallel or distributed processing system can be categorized into two

classes (Flynn, 1966). In single instruction multiple data (SIMD) architectures, every processor

can be viewed as executing the same instruction simultaneously. In multiple instruction multiple

data (MIMD) multiprocessor systems, every processor may execute different instructions. The

MIMD architectures can be classified in terms of how the data is accessed, as shared memory or

message passing. Furthermore, when the multicomputers are connected over a local or wide area

network, the system is usually referred to as a distributed system.

As mentioned in the introduction, most parallel programming tools in the past supported a

paradigm that is tightly coupled with the underlying hardware. This is comparable to the stage of

assembler coding in the ancient days of sequential programming. With the advancement in parallel

programming environments, paradigms that are independent of any hardware structures, focusing

on the parallelization techniques themselves, are available.

In addition, a programming environment can be classified according to its features (Chang

and Smith, 1990) such as the languages supported, automatic parallelization capabilities, fault

tolerance, verification, testing, debugging and the hardware systems supported. In another related

study, Bal, Steiner and Tanenbaum (1989) focus on the language issue in distributed systems.

Most programming environments fall into a model of categorization introduced in Section 2.4. To

limit this review to within the scope of this work, only programming environments that exhibit

some conceptual programming models or paradigms for building parallel applications on large

grain parallel architectures (using MIMD multicomputers and network of workstations) will be

surveyed.

2.3. Review of Approaches to Parallelism

There are many ways to classify techniques for parallel computation (Bal, Steiner and

Tanenbaum, 1989; Carriero and Gelernter, 1989; Chang and Smith, 1990; King, Chou and Ni,

1990). King, Chou and Ni (1990) characterize parallel computation from two perspectives: from

the way the computation is partitioned and distributed, and from the way the computation is

executed. This scheme appears to cover almost all the possible parallelization approaches. Based

on this scheme, a new dimension is added to distinguish parallelization techniques that generate

tasks to be dynamically distributed at run time and parallelization techniques that do not. The

techniques to achieve parallelism are best summarized by a three dimensional scheme.

Parallelization technique can be categorized from three perspectives:

- 8 - The Enterprise Executive

1) From the partitioning and distribution of the computation,

2) From the execution style of the computation, and

3) From the mutability of the computation.

 From the first perspective, computation can be characterized as data-parallel or function-parallel:

a) A function-parallel view has a program divided into subprograms of different

functionality, which can be executed in parallel on different processors. Function-

parallelism is sometimes referred to as parallelism by partition since the operation is

partitioned into subtasks (Dennis and Van Horn, 1966). Function-parallelism is

suitable for applications that can be programmed using many independent subroutines

(animation, for example).

b) A data-parallel view has the data partitioned among the processors (Hillis and Steele,

1986). Processors execute the same program on different data subsets. Data-

parallelism is suitable for applications which perform the same set of operations

repeatedly and independently on a large set of data. Data-parallelism can also be

referred to as parallelism by replication, since the operation is replicated on different

sets of data. Programs with nested loops to handle static and regular data structures

are suitable for data-parallel computation (image processing and ray tracing, for

example).

From the second perspective, execution, a parallel computation can be characterized as either

concurrent or pipelined (Hwang and Briggs, 1984):

a) Concurrency exploits spatial parallelism by utilizing different processors working

simultaneously on independent tasks which may be data-parallel or function-parallel.

b) Pipelining exploits temporal parallelism. Each processor works like a filter on its

input data and passes output data to the succeeding processors. Data flows through

the pipeline as they are processed stage by stage. A datum, once entering the system,

will be used or modified repeatedly along the pipeline.

From the third perspective, mutability, a parallel computation can be characterized as either static or

dynamic (Suhler, Biswas, Korner and Browne, 1990). Generally there is more logical parallelism

- 9 - The Enterprise Executive

in a parallel algorithm than physical parallelism in a multiprocessor. At run time, there may be more

ready tasks than available processors.

a) In static parallelism, the distribution of tasks is performed statically at load time. The

static parallelization approach is used when the computation structure is regular,

mapping nicely to the physical computation structure. The approach is also used

when the computational focus does not change with time.

b) In dynamic parallelism, the distribution of task varies with the demand of the

computation. The programmer is relieved from predicting the resource utilization

characteristics of the program. When the program exhibits a computation structure

that is irregular, or when the computation focus changes with time (as in

combinatorial search problems), it is impossible to achieve a good mapping between

tasks and processors (and the less than optimal load balancing degrades

performance).

By combining the three perspectives, different styles of parallel computation can be identified.

2.3.1. Static and Dynamic Concurrent Function-Parallel Computations

In these approaches, different processors perform different functions simultaneously. The

strategy is to break the original problem down into several small independent subproblems. Each

processor executes a different function on the same data. The parallelism is static in that each

subtask involves approximately the same amount of work. For example, in a particle-in-a-cell

application, different boundary constraint tests can be applied in parallel to the same datum (Singh,

Weber and Gupta, 1991). The parallelism is dynamic when the amount of work involved in

solving the subproblem varies in the execution. Some simulation applications can take advantage

of this kind of parallelism (Myrias, 1990).

2.3.2. Static and Dynamic Concurrent Data-Parallel Computations

Processors perform the same operation simultaneously but on different data sets in the

concurrent data-parallel approaches. These approaches are also commonly known as domain

decomposition (Fox et al. 1988). Some problems exhibit a static computation structure and the

amount of input data fed to an operation is constant, as in problems like parallel π computation.

On the other hand, in some problem, the amount of data required to be processed changes with

time, as in parallel sorting applications.

- 10 - The Enterprise Executive

2.3.3. Static and Dynamic Pipelined Function-Parallel Computations

In the pipeline different stages perform different functions. When data flows through the

stages, they are modified along the way. Traditionally, in terms of computer architecture, the

pipeline hardware has all the operations taking the equal amount of CPU time of one tick. A

branch and bound algorithm exhibits pipeline parallelism as well as concurrent parallelism

(Schaeffer, 1989). Each node in the search tree would take roughly the same amount of time. The

animation application discussed in this report illustrates an application suitable for a pipeline (Foley

van Dam, Feiner and Hughes, 1990). This application also shows that during execution, some of

the operations in the pipeline may require more computation time than others. Preferably, more

processors should be allocated dynamically to meet the demand.

2.3.4. Static and Dynamic Pipelined Data-Parallel Computations

The data-parallel approach has a number of processors performing identical operations on

individual data elements. To carry out correct executions, different data streams have to flow along

different directions to bring appropriate data to the required processors at the right moment. The

operations are synchronized. Since the communication overhead associated with medium and

large-grained multicomputers are considerable, and a global clock is required to synchronize the

operation among the processors, this approach of parallelism is uncommon in MIMD and

distributed parallel programming environments and is most often seen in fine-grained granularity

applications (such as systolic systems (Kung, 1979)). Carriero and Gelernter (1989) do not even

consider this approach. However, research has been underway to explore its feasibility (King,

Chou and Ni, 1990) and some programming environments support it (Segall and Rudolph, 1985).

2.4. Models of Computation

It is widely believed that the abstract computation model provided is the heart of a

programming environment, whether it is parallel or sequential. In the world of sequential

programming, we usually program at a conceptual level using a high-level language and seldom

concern ourselves with the physical architecture of the machine. In the world of parallel

programming, however, the idea of a conceptual machine is not as common. The parallelism in a

program is usually expressed in an architecturally specific way, forcing the programmer to

consider issues such as communication and synchronization at a low level. Recently, the idea of

using an abstract model that is most natural to the problem to describe parallel computation has

been addressed by many researchers. According to them, in general, the formulation of parallel

computation can involve the following steps (Carriero and Gelernter, 1989; Browne, 1985, 1986):

1) Choose the model of computation that is most natural for the problem.

- 11 - The Enterprise Executive

2) Write a program using the method that is most natural for that abstract machine.

3) If the resulting program is not acceptably efficient, transform it methodically into a

more efficient version by switching from a more-natural method to a more-efficient

one.

Programming at the conceptual level has many advantages. It increases the portability and

reusability of the program. It also allows the parallelism in a program to be expressed in a natural

way, implying that the programmer need only be knowledgeable in his application, not in parallel

programming. Therefore the strength of a parallel programming environment is largely affected by

the computation model it provides.

This section gives an overview of recent developments in parallel programming

environments, classifying them by their conceptual computation model and comparing them on

their strengths and weaknesses in expressing parallelism. The survey is not exhaustive but rather

gives a representative sample of the current researches. The Linda language (Gelernter and

Carriero, 1985; Gelernter, 1989; Carriero and Gelernter, 1988, 1989) uses the concept of a tuple

space for communication between concurrent processes. Processes use atomic operations to read,

read and delete, or add a tuple to the tuple space. This model is powerful but it does not provide a

high-level parallel conceptual machine to describe a parallel program. This review therefore does

not include Linda. Another relevant parallel programming model is the Chare kernel (Fenton, et al,

1991). A chare is a module to be executed in parallel. It can have multiple entries in which

enclosed program segments and new chares can be created (even recursively) to execute the

entries. The portability of applications is a tremendous asset, however the onus is still on the

programmer to use the supplied programming language enhancements and explicitly code all the

parallelism. As with Linda, Chare kernel is not a high-level design tool for parallel programming

and is not covered in this survey.

2.5. Classification Scheme

The models of parallel computation can be described as a directed graph whose nodes

represent units of computation, and whose arcs represent the data flow, control flow or messages

between nodes (Browne, 1985). The models can be classified into three categories according to

the structural focus employed to incorporate the parallelism: data oriented, task oriented and

template attachment as Figure 2.1 (modified from Pancake and Utter, 1989) shows.

- 12 - The Enterprise Executive

Task
Oriented

Data

Oriented

Template
Attachment

Dependency Graphs

Concurrent History Graph

Control Flow Graph

Data Driven

Demand Driven

Protocol Specified

Anthropomorphic

Virtual Architecture

Conceptual

Computational

Model

Figure 2.1. A Classification Scheme for Parallel Programming Environment Models

2.6. Task Oriented Models

In these models, parallelization is achieved by partitioning the tasks to be performed into a

collection of serial processes, each processing a unique thread of control. Models in this category

can be represented by a directed graph whose nodes represent a procedure call or a synchronization

point, and whose arcs represent an operation that advances the program from one state to another.

These graphical environments usually support dependency analysis of programs which are

written in Fortran and run on machines with a small granularity (for example, PAT: Smith,

Appelbe and Stirewalt, 1990; E/SP: Sridharan, et al., 1989; CAPER: Sugla, Edmark and

Robinson, 1989).

2.6.1. CAPER

CAPER (Sugla, Edmark and Robinson, 1989) is an application programming environment

for message passing multiprocessors. A program is specified by drawing a graph of nodes and

lines. A node contains routines implementing algorithm or transforming data between

communicating algorithms (which distribute and restructure distributed data). A line represents the

- 13 - The Enterprise Executive

transfer of data between two routines. The programmer can program a parallel application by

connecting a standard working set of parallel programs together and specifying the necessary data

transformation routines. With the graphical interface, this would involve drawing lines between

icons representing the program pieces. When the problem involves the use of a new algorithm, the

programmer can construct new pieces of code rather than using the working set, and connect the

pieces together. Each node is also assigned a number which specifies how many processors are

used to run the encapsulated routine. The graph is hierarchical and nodes can be grouped together

or expanded.

2.6.2. E/SP

E/SP (Harrison, 1990; Sridharan, et al., 1989, 1990; Browne, Sridharan et al., 1990) is an

environment for the parallel structuring of Fortran programs using a hierarchical dependency

graph. The highest level graph of a program consists of a computation node, an entry node, and an

exit node. A node of the most resolved level contains single statements. The next level of

resolution is the basic block or the subprogram, and the highest level is typically a segment of a call

tree. The Fortran language has been extended to include fork and join statements for expressing

parallelism. The programmer collapses or expands a node to decide the granularity of a

computation unit and the realization of the parallelism is done automatically by the tool. When

dependencies must be removed to achieve parallelism, the programmer is informed of the

dependency type and prompted to change the portion of the program involved. The drawback is

that only the divide-and-conquer paradigm of parallel processing can be realized.

2.6.3. PAT

 Parallelizing Assistant Tool, PAT (Harrison, 1990; Smith and Appelbe, 1988; Smith,

Appelbe and Stirewalt, 1990), contains a parallelizer which examines Fortran source code and

suggests parallelization modifications, a static analyzer that simulates the execution of the source

program and locates anomalies caused by the interaction of tasks, and a debugger. The program

analysis is built using a control flow graph (CFG) of the program. Each node in the CFG

represents either a basic block of the program, a branch or a merging of the program flows.

Subroutine calls in the CFG are expanded inline for simplicity (each call is expanded individually

in context). The dependence information is extracted by tracing paths through the program, using

reference lists to construct a global dependence graph. Browsing of dependencies is provided

through an interactive graphical interface at the statement or variable level.

2.7. Data Oriented Models

For data oriented models, parallelism occurs as the simultaneous execution of an operation on

multiple data elements. Whenever the size of the data warrants parallelization, activities are

- 14 - The Enterprise Executive

replicated for execution across data subsets. Program execution is viewed as a single thread of

control which temporally diverges into parallel action sequences that later converge. Models in this

category can be represented by a directed graph whose nodes represent units of computation and

whose arcs represent flow of data (Babb, 1984). Models can be further classified as being

demand-driven, data-driven or user-specified.

The sequence of operations in the demand-driven model of computation is that the sink node

requests data from the source node and the source node responds. The sink node is the terminating

node producing the final output. The source node is the initial node in the program which is also

responsible for getting the input data. From the sink node, each node first sends a demand for data

request to its parent in the dependence graph. The demand is then propagated towards the input of

the graph. From the source node, the result is then propagated back to the sink node. A data-

driven methodology employs a communication protocol where source nodes send results to sink

nodes and perhaps await acknowledgement of result arrival or use a time-out mechanism. In both

cases, the functions are embedded in the nodes and data objects are carried on the arcs. The

number of messages in the demand-driven model is double that of the data-driven model and the

size of the demand messages are small, resulting in a poor utilization of bandwidth. Some models

(for example, CODE, (Sobek, Azam and Browne, 1988)) integrate demand-driven and data-driven

control by allowing some arcs to be data-driven and others to be demand-driven. Most of the

existing parallel programming environments specify parallelism based on the large grain dataflow

model developed by Babb (1984).

2.7.1. CODE

Computation Oriented Display Environment, CODE (Sobek, Azam and Browne, 1988;

Browne, Werth and Lee, 1989), uses a large grain dataflow model. Computations at each node can

be specified as data- or demand-driven. The programmer describes the computation by drawing a

graph of nodes and dependencies using icons chosen from a palette. The graph can be

hierarchically defined; a node may contain a subgraph of nodes, a filter, or a subprogram. A node

that contains a program is called a schedulable unit of computation (SUC). Code associated with a

SUC is entered using a text editor. SUC's communicate via dependencies. A filter node defines the

transmission of some subset of data from its input dependencies to some subset of its output

dependencies.

2.7.2. DGL

Direct Graph Language, DGL (Jagannathan et al., 1989), is a parallel programming

environment based on a demand-driven, large grain dataflow model. Every node is associated with

a function module. Each incoming edge is associated with a parameter taken by the function. Each

- 15 - The Enterprise Executive

outgoing edge is associated with a use of the result of the function. The programmer draws a

dataflow graph using a graphical tool to represent the dataflow of the program. The function can

return only a single result and have no side effects. This is the major limitation of the system,

since many applications, such as graphics programs, modify their data (for example, frame buffer

or the terminal screen) through side effects. Another drawback is that it supports only a single level

resolution of parallelism.

2.7.3. HeNCE

The programming environment for a heterogeneous network of parallel machines, HeNCE,

(Beguelin et al., 1990, 1992) supports the creation, compilation, execution, debugging, and

analysis of parallel programs for a heterogeneous group of computers. The programmer specifies

the parallelism of a computation by drawing a directed acyclic graph where the nodes in the graph

represent subroutines and the arcs represent data dependencies. HeNCE will automatically insert

code to handle communication into these procedures and run them on machines in the network. In

addition to the standard dataflow paradigm, HeNCE also supports dynamically spawned

subgraphs, pipelining, loops and conditions. In general, HeNCE is similar to TDFL.

2.7.4. LGDF

Large Grain Dataflow, LGDF (DiNucci and Babb, 1989), takes the form of a directed graph

consisting of processes (represented as circles) and datapaths (represented as vertical lines or

rectangles) selectively connected pair-wise by arcs. A process is a sequential program written in a

high-level language such as C or Fortran. Each datapath contains a (possibly zero length) data

structure specified by the programmer. For a process to read and/or write to this structure, the

process and datapath must be connected with an arc having read and/or write permission. These

permissions are represented in the graph as arrowheads on the arc illustrating the allowed

direction(s) of dataflow: towards the process (for read permission) and/or towards the datapath (for

write permission). At any moment, a datapath can be in the state of being read from, written to or

neither. A process may start execution (fire) when it can read from all of its connected arcs. Also,

by applying the reserve and grant commands to a datapath, a process can exclude or permit other

processes from accessing the datapath. It supports only single level resolution of parallelism.

2.7.5. Paralex

Paralex (Babaog
u
lu, Alvisi, Amoroso and Davoli, 1991) is a parallel programming

environment based on a data-driven, large grain dataflow model. The computation satisfies the

functional paradigm. Data communication is specified by drawing links to connect the nodes.

There are two kinds of nodes. At a computation node, execution begins when data arrives at every

link incident at a node. At a filter node, data values are extracted on a per destination basis before

- 16 - The Enterprise Executive

they are transmitted to the next node to avoid transmitting unnecessary data. The user selects a

node type from a menu and the tool puts the node on the screen. The drawing of links involves

only clicking the mouse on the source and destination nodes. This is a major advancement over

most other tools since the user is free from the tedium of most of the graphical layout task. The

drawback of this environment is that it exhibits only a single level resolution of parallelism.

2.7.6. PPSE

Parallel Programming Support Environment, PPSE (Lewis and Rudd, 1990), is an integrated

set of tools for the design and construction of parallel software. The PPSE Parallax graphical

design editor supports a hierarchical graphical description language called ELGDF (Extended Large

Grain Dataflow) to describe data and control dependencies between tasks. It offers graphical

constructs such as pipes, loops, repeated nodes, and special dataflow arcs to indicate mutually

exclusive access to data. The user attaches to each sequential routine one of the graphical nodes and

connects the nodes together to represent the dataflow between different routines. It supports

hierarchical resolution of parallelism.

2.7.7. TDFL

Task-Level Dataflow Language, TDFL (Suhler, Biswas, Korner and Browne, 1990;

Suhler, 1989; Suhler, Biswas and Korner, 1987) evolves from CODE. TDFL introduces the idea

of mutable computation graphs to support the mutable execution of recursive functions. If the data

input to a function is above a threshold size, then additional processes are created to help process

the data. The creation of nodes continues until the data size is within the threshold. However, data

size may not be the best criterion to determine the degree of mutability, since processor usage is not

necessarily proportional to data size. Since it is difficult to describe loop and do-all parallelism

using the dataflow model, TDFL introduces new constructs to support parallelism not addressed in

the formal dataflow models: Loop, DoAll, Case and EndCase nodes, and self-loop arcs. TDFL is

a demand-driven dataflow system and therefore exhibits implicit parallelism. As in other dataflow

parallel tools, the programmer uses a graphical tool to generate a program graph, and text is used to

specify the code.

2.8. Template Attachment Models

Yet another class of approaches provides a set of predefined parallel objects which defines

the communication and execution behavior of the enclosed module. Among the earlier efforts, the

Parallel-programming and Instrumentation Environment (PIE) made available to the programmer

pre-coded templates of parallel structures such as master-slave, pipeline and systolic

multidimensional pipeline (Segall and Rudolph, 1985). In these models, a template provides an

implementation of the communication and synchronization structures and the programmer needs to

- 17 - The Enterprise Executive

provide only the sequential code. Some environments model the computation entities after physical

architecture characteristics and provide architectural templates like systolic arrays and master/slave

relationships (for example, PIE: Segall and Rudolph, 1985; PAL: Xu and Hwang, 1989). Some

environments support the techniques of parallelism directly through the templates (for example,

FrameWorks: Singh, Schaeffer and Green, 1989a, 1989b, 1991; Singh, 1991). They focus on

problem solving at a higher level using some anthropomorphic analogies.

2.8.1. PAL

Parallel Language, PAL (Xu and Hwang, 1989), is a procedural parallel language

introducing the language construct molecule. A molecule is a set of program objects that have

some common properties. A molecule type characterizes a particular computation mode (SIMD,

sequential, pipelining, array processing, dataflow, multiprocessing, etc.). The user associates a

sequential procedure with a molecule type and the procedure then executes in the specified mode

(SIMD, sequential, etc). A new molecule type can be created by specifying the operations

characterizing the type (for example, a stack machine can be defined through the push and pop

operations).

2.8.2. PIE

In the Parallel-programming and Instrumentation Environment, PIE (Segall and Rudolph,

1985; Vrsalovic et al., 1988; Harrison, 1990), parallelism is realized by join and detach statements.

Global data, and operations on that data, are encapsulated in frames. Frames are shared among

specific tasks and/or C functions and shared abstracted data types can be constructed using frames.

The most important idea in PIE is the implementation template construct, which defines and

controls parallel computation activities and data. The pre-coded structure of an implementation (in

terms of control, communication, synchronization, and data partition) is made available to the

programmer in the form of a modifiable template. The template provides the send/receive operation

and the programmer has to provide only the sequential code. Implementations can be nested with

one implementation being a part of the other. The following implementations are available: master-

slave, recursive master-slave (same as master-slave except that the slave could become recursively

master for another set of activities), heap implementation (in which work is distributed through

data structures like queues or heaps), pipeline and systolic multidimensional pipeline.

2.8.3. FrameWorks

In FrameWorks (Singh, Schaeffer and Green, 1989a, 1989b, 1991; Singh, 1991), an

application is viewed as a graph with nodes being communicating processes. Each node contains a

sequential module or procedure. Communication and synchronization are specified by the

properties of the node through up to 3 types of attribute bindings. The input template specifies the

- 18 - The Enterprise Executive

incoming message to a node, and can be one of the following: initial, which accepts no input from

other nodes; in_pipeline, which specifies the node as a part of a pipeline; and assimilator, which

states that the node merges the results of several nodes. The output template specifies the outgoing

message from a node, and can be one of the following: out_pipeline, which specifies the output of

the node to flow in a pipeline fashion to its connecting nodes; manager template, which specifies

that a fixed number of multiple workers will be used to execute the called procedure; and terminal

template, which specifies that the application terminates there. The body template defines the

execution mode of the node: an executive template causes the process to have its input, output and

error streams directed to the terminal; and a contractor specifies that multiple workers are assigned

dynamically at run-time to execute the specified node. The run-time dynamic task decomposition is

supported by the language constructs split and merge, which are similar to fork and join in task-

oriented models.

FrameWorks introduces the mechanism in which processes are replicated dynamically

according to availability of idle processors. However, its method to specify the parallelism may be

less intuitive to many programmers. Programmers have to go through a mental process to

transform parallelization techniques and express them in terms of input and output communication.

2.9. Conclusions and Comparative Remarks

The data dependence graph contains redundant information for the parallelization process.

Many dependencies are generated by scalar variable references, which offer little possibility of

parallelism. Also, it is rare that every statement is involved in a compute-intensive segment.

Storing the data dependency information for a region that is not compute-intensive is wasteful,

since parallelization of it achieves little. A model that supports hierarchies of abstraction permits the

computation to be realized with increased resolution and limits the size of the graph to a

manageable complexity. The highest level graph consists of a single node which contains the entire

program. The node of the most resolved level contains single statements. All three categories of

models can support hierarchical abstractions of the computation graph that describes the parallelism

of the program. In data oriented and task oriented models, the graphs are strictly hierarchical since

expanding a node gives a subgraph with similar properties as the original node. In template

attachment models, graphs at different levels may exhibit different properties.

Nodes in the template attachment models, by definition, may exhibit different properties. In

general, it can express any parallelism desired by designing new templates. The other two models,

task and data oriented, are more limited because they usually support a single node type - the

computation unit. Both these models work best for expressing concurrent function-parallel

computation. It is possible to express concurrent data-parallel parallelism only when the data size

and number of processors are static. Besides, to express a simple concurrent data-parallel

- 19 - The Enterprise Executive

computation in which each processor takes an equal share of the tasks and works in parallel, the

programmer has to partition the data and specify the routing of data for each node. Also, most

models do not support recursive calls and dynamic concurrent data-parallel computation. Finally, it

is impossible to express pipeline computations in these models. Therefore, some environments

introduce special nodes to express the above parallelisms. In TDFL, the DoAll node is added to

the dataflow model, which takes an incoming array data token and outputs an array data token. The

size of the array determines the number of times the function is invoked. Each invocation writes to

a different element of the array. Also, the Self-Loop Arc is added to support state retention.

In some cases, the dataflow diagram can be automatically translated from the dependency

specification in the file (makefiles are a good example). Non-procedural languages, such as Lisp

or Prolog, are better described by a data-oriented model. However, usually, dataflow diagrams

are not readily available.

Because of the extensive research in the area of automatic parallel compilers, the program call

structure and control flow information can be automatically generated in most cases. The

programmer usually needs to deal only with the unresolved dependencies. However, the

parallelism obtained by an automatic parallelizer may not be optimal since the analysis is based on

static information only.

When the dependency information is not readily available, it is time consuming and error

prone for the programmer to draw a large number of nodes and edges when the data flow or call

structure are complicated. Moreover, data dependence, program control flow and program states

are all low-level information and can often be non-intuitive to the programmer. A tool that interacts

with a programmer only in terms of the above information can easily overwhelm the programmer

with a large amount of low-level information. Also, these graphs can be dense structures. For large

programs, this may pose a manageability problem to the programmer.

If the concern is to design a parallel program with the programmer in control, the best choice

would be a parallel programming environment that uses the template attachment model. If

mutability and implicit parallelism are the concern, then the data oriented environment is the choice.

A task oriented environment is best used as a tool to let the programmer view and modify the

program after automatic parallel structuring has been performed.

- 20 - The Enterprise Executive

Chapter 3

The Enterprise Model

3.1. Introduction

In Enterprise, there is generally no difference between the organization of a parallel or

distributed program and that of a sequential program. The structure of the program is independent

of whether it is designated for executing sequentially or distributed. An Enterprise program is a

collection of modules with each having a single entry procedure that can be called by other modules

and a (possibly empty) collection of internal procedures that are known only within that module.

Sharing of variables among modules are not allowed. This is comparable to programming with

abstract data types, which provide well-defined means for manipulating data structures while

hiding all the underlying implementation details from the user.

The code is executed sequentially within any module. A sequential program is therefore

simply a single module Enterprise application with the module's entry procedure being the main

program. Enterprise introduces parallelism by allowing the user to specify the way in which the

modules interact. Module interaction is determined by two factors: the role of a module and the call

to a module. The role of a module specifies which one of a fixed set of parallelization techniques

(asset kinds) the module will use in execution. The call to a module defines the identity of the

called module, the information passed and the information returned. The role of a module is

expressed graphically while the call is specified in the code.

3.2. Module Calls

Procedures interact using procedure calls in a sequential program. The calling procedure, say

A, has a procedure call with a list of arguments to a procedure, say B. Procedure A is suspended

after the call is made and procedure B is started. Procedure B can use the information passed as

arguments. B sends the results to procedure A when B has completed execution, through side-

effects to the arguments and/or through the return value if the procedure is in fact a function.

It is useful to distinguish calls that return a result from those that do not. The former are

abbreviated as f-calls (function calls) and the latter are abbreviated as p-calls (procedure calls).

Enterprise module calls are similar to sequential ones except in two ways:

1) Arguments cannot be pointers, nor can they contain any pointers. Therefore, in the

C-language version of Enterprise, module calls cannot return values via side-effects

- 21 - The Enterprise Executive

since C uses call-by-value as its parameter passing mechanism. Other than that, there

is no syntactic difference. A procedure or function may be called with an arbitrary

number of parameters. Also, there is no limitation on the data type which a function

should return.

2) When a module A calls another module B, A is not suspended but continues to

execute. The p-call in the statement:

B(data);
/* some other code */

is non-blocking, so that A continues to execute concurrently with B. Of course in

this case, B does not return a result to A.

However, if the call to module B was an f-call, then module A would block when it

tried to use the function result, if module B had not yet completed execution.

Consider the following example:

result = B(data);
/* some other code */
value = result + 1;

When this code is executed, the calling module A, only blocks when the statement

"value = result + 1;" is executed and only if module B has not yet returned the value

of result. This concept is similar to the work on futures in object-oriented

programming (Chatterjee, 1989).

The syntactic similarity between procedure calls and module calls makes it easier to transform

sequential programs to parallel ones and makes it trivial to change parallelization techniques using

the graphical user interface. Usually no modification to the user's code is required.

3.3. Module Roles and Assets

The role of a module is independent of its call and depends only on the parallelization

technique chosen. There are a fixed number of predefined roles corresponding to asset kinds.

To help describe module roles, an analogy between Enterprise programs and the structure of

an organization is used. An organization usually has various assets available to perform its tasks.

For instance, a large task could be split into subtasks where different subtasks are given to various

parts of the organization (divisions, departments, pools, lines and/or individuals) to work in

parallel. Some tasks could even be completed by contract where the organization is not directly

concerned about the nature or number of individuals that perform it. Moreover, an organization

- 22 - The Enterprise Executive

usually provides many standard services (like time keeping, information storage and retrieval, etc.)

that are available on demand to improve its functionality.

In Enterprise, calls in one asset to other assets are translated into message communication. In

dataflow models, the communication structure is directly specified by the dataflow graph. Since

dataflow graphs are dense and complicated structures, they are unsuitable for specifying a

distributed application. In Enterprise, these details are hidden from the user. Instead, the system,

rather than the user, determines the flow of information and control in the application and inserts

the appropriate communication code in the user's program. To identify the call structure, it is

necessary to explore the implication of hierarchies in the Enterprise asset graph and to determine

the call structure implied by an asset kind. The knowledge of the communication structure can be

used to insert appropriate code into the user's module as well as processing procedure calls into

message exchanges (Chan, 1992).

This section describes the communication structure of each asset and investigates the

dataflow semantics of coercing an individual to each of the asset kinds. To avoid confusion,

coercion is only allowed to apply to an individual, except to reverse the changes by coercing an

asset back to an individual. Currently, Enterprise supports the following different asset kinds:

individual, line, department, pool, contract, division and service.

3.3.1. Individual

An individual contains no other assets. An individual is analogous to an individual person in

an organization. An individual executes its code sequentially to completion when called. The next

call to the same individual waits until the previous call is completed. An individual may be called

by any external asset using its name. An individual is equivalent to a sequential program.

As illustrated by the icon in Figure 3.1, the program executes as a single thread as illustrated

by the single arrow. The single arrow also serves to indicate that the program expects an entry

procedure at the next connecting node below it to accept a call made from the program. If the entire

application is run sequentially, the graph will contain only one individual node, without any node

connecting to its outgoing arrow.

Figure 3.1. An Individual Asset

- 23 - The Enterprise Executive

3.3.2. Line

A line consists of a fixed number of ordered heterogeneous member assets. Each member

makes a call to the next member in the line. A line is analogous to a manufacturing, construction or

assembly line in an organization. Each member of the line refines the work of the previous asset

and passes the work on. For example, a line might consist of an individual who takes a pizza

order, someone else to make the pizza and a third person to deliver it. Any subsequent call to the

line waits only until the first asset has done its subtask of the previous call, not until the entire line

has completed. The first asset in a line functions as the receptionist for the line and is the only

asset that is externally visible. Therefore the first asset of a line is the only asset that may be called

by an external asset and it shares its name with the line asset for this purpose. Lines are analogous

to pipelines in the literature.

If an individual is coerced to a line, the original entry procedure resides in the first asset in the

line. If the individual makes a call to an external asset, the call will be moved to the last asset in the

line instead. As shown in its icon in Figure 3.2, the multiple arrows indicates that each node in

the line expects an entry procedures at the next connecting node to accept a call made from it.

Each node in the line will be inserted with code for establishing communication to the next node in

the line. The number in the icon indicates the number of members in the line, which is 3 in this

example.

3

Figure 3.2. A Line Asset

3.3.3. Pool

A pool contains a fixed number of identical assets as shown in Figure 3.3. It is analogous to

a pool in an organization where every member works on an identical task. For example, consider a

pool of bank tellers. A client is services by the first available idle teller, and if all the tellers are

busy, the client has to wait. Since pool members are externally indistinguishable (they perform

the same task and share the same code), an external call cannot select a particular pool asset.

Therefore all pool assets share the same name with the pool asset, and an external call addresses

- 24 - The Enterprise Executive

the entire pool. A pool is equivalent to a master-slave construct with a fixed number of slaves in

the literature.

Since all members of a pool are identical to an external asset, in terms of control flow, a pool

is similar to an individual. The flow of any outgoing or incoming call of an asset is not altered

when an individual is coerced to a pool. However, since multiple replicas are ready to serve a

call, some management is needed to direct the call efficiently to an idle replica. As in a line, the

number in the icon indicates the number of members in the pool, which is 3 in this example.

3

Figure 3.3. A Pool Asset

3.3.4. Contract

A contract contains a collection of identical assets, so it is similar to a pool (Figure 3.4).

However, the number of assets in a contract is dynamic and depends on the number of processors

that are free at any time. A contract is analogous to a contract that an organization lets to execute a

collection of identical tasks. For example, an organization might contract out the package delivery

job to a courier company. The courier company is called whenever a package delivery is needed.

The organization is not concerned with how the courier company uses its resources, or the route

chosen to deliver the packages. The number and capability of resources used by the courier

company and the amount of competing traffic can affect the delivery time. Similarly when an

Enterprise call is made to a contract, an idle asset executes the call. If all assets are busy and no

more are available for hire, then the call waits for an asset to become available. A contract asset

shares the same name with its members and the members all have identical code, as is the case

with a pool asset. A contract is analogous to a dynamic master-slave construct, where the number

of slaves varies in response to program needs (demand) and resource utilization (environment).

- 25 - The Enterprise Executive

Figure 3.4. A Contract Asset

As mentioned above, a contract is the same as a pool except that the number of replicas varies

dynamically. The icon of a contract is similar to that of a pool. The asset should be managed to

direct the call efficiently to an idle replica and to vary the number of replicas dynamically.

3.3.5. Department

A department consists of a fixed number of heterogeneous assets. Every department has a

single receptionist asset that shares its name with the department so that the department can be

called by external assets. The receptionist makes direct calls to all the other assets in the

department which then execute concurrently. This is analogous to a department in an organization

where a receptionist is responsible for directing all incoming communication to the appropriate

place. The department is similar to parallel constructs such as fork/join or parbegin/parend

(Singh, Weber and Gupta, 1991; Dijkstra 1968), which creates parallel threads that execute

independent code.

A department contains a fixed number of heterogeneous assets. The first asset in a

department is the only asset that may be called from an external asset. It is also the only asset that

make direct calls to all the other assets in the department. The flow of any outgoing and incoming

calls to an asset are not altered when an individual is coerced to a department, except that the first

asset will make calls to all the other assets in the department in addition to the outgoing call. The

call structure is presented in Figure 3.5. The multiple arrows indicates that the first node in the is

connected to several entry procedures in addition to the external node. The number indicates the

number of assets contained. Communication to the external is only possible at the first node. The

first node in the department will be inserted with code for establishing the communication paths

described above.

- 26 - The Enterprise Executive

3

Figure 3.5. A Department Asset

3.3.6. Division

A division contains a hierarchical collection of identical assets with a fixed breadth and depth

where work is divided and distributed at each level. Every division has a single receptionist asset

that shares its name with the division so that the division can be called by external assets.

Divisions can be used to parallelize divide-and-conquer computations.

In terms of call structure as shown in Figure 3.2, a division is a dynamic line in which every

element of the line runs the same program on different data. Each element of the chain will

recursively call an instance of itself. If the recursion reached a point in which distributed execution

is not feasible (judging from the grain size or resource availability), a local call instead of a call to a

remote process server is made, in which case the program is executed sequentially. Therefore, a

division is also similar to a contract that calls itself recursively. A call made to a division must be

coordinated to ensure that it will be handled by an idle server.

Figure 3.6. A Division Asset

3.3.7. Service

A service contains no other assets. However, unlike an individual that can be employed by a

single asset, a service may be used by more than one asset at the same time. A service is

analogous to any asset in an organization that is not consumed by use and whose order of use is

- 27 - The Enterprise Executive

not significant, for example, the clock on the wall. A service may be called by any external asset

using its name. A services is analogous to a manager for shared memory (or 'tuple space') in the

literature. Since a service may be called in any order by any asset, a service cannot be described by

the Enterprise graph which is structured and hierarchical. Instead, services are considered as an

unordered collections of modules external to the Enterprise graph.

A service is like an individual except it can accept calls from more than one external asset at

one time. Since the call is from an external asset, from the view point of the service itself, it is

identical to an individual. Every service can potentially be called by any other assets so the

compiler inserts the code to establish connection with all the services in the code of every assets.

3.4. Parallelization by Coercion

Based on the above investigation on Enterprise assets, parallelism achieved by coercion in

Enterprise can be classified as replication and partition. Replication splits the original asset into

homogeneous assets and executes each asset on a different machine if possible. Since the assets

have to be homogeneous, the call structure of the program is not altered after the coercion.

Partition splits the asset into heterogeneous assets and changes the program's call structure.

Coercion of an asset into a line or department results in new call structures. Each asset in a line

contains a call to the next asset in the line. The first asset in a department calls all the other assets in

the department. Every asset in a line or department after the partition will have the same replication

characteristics as the asset before it was partitioned.

3.5. Conclusions

This chapter presented the Enterprise programming model. The new semantics of the

procedure call introduced by Enterprise were illustrated. Procedure and function calls are

processed into asynchronous remote procedure calls. For a function call, the program blocks

when the data to be returned are accessed in part or in whole. This chapter also described in detail

all the parallel techniques supported by Enterprise assets. Each asset represents a different way of

replicating or partitioning an operation across multiple processes using analogies found in an

organization. Moreover, the semantics of each asset was explained in terms of its data/control flow

structure and its partition and replication characteristics.

- 28 - The Enterprise Executive

Chapter 4

Programming in Enterprise

4.1. Introduction

The process of developing any application generally involves three steps: design the

program, compile the program and execute the program. It may take many iterations through the

above steps to debug and test the application before it is considered complete. In Enterprise, in

addition to the program code, it is also required to specify an application graph. Constructing an

Enterprise application involves the steps shown in Figure 4.1. The diagram also illustrates the

dependencies and dataflow involved. An Enterprise application graph contains all the information

as to how the program would be run in parallel. The program code looks the same as ordinary

sequential code and is devoid of any parallel constructs.

Compile

program
source code

Run
executables

program
graph

Edit

program
graph

program
output

user
design

program
input

Figure 4.1. Major Development Flow of an Enterprise Application

This chapter presents the programming facilities in Enterprise. It contains a walk-through of

an Enterprise session to construct a distributed program. This chapter does not intent to

demonstrate the use of all the combinations of Enterprise assets, but serves to illustrate that the

Enterprise model offers a simple and easy way to develop parallel applications. The focus is on

Enterprise program design using the textual interface, which is part of the work of this thesis.

- 29 - The Enterprise Executive

Program design using the graphical user interface can be found in other related publications (Chan

et al., 1991; and Szafron et al., 1992).

4.2. Textual Interface

The textual interface was originally implemented as an interim measure to decouple the

development of the other parts of Enterprise from the graphical user interface, which was not

available. However, a textual interface also provides the user a handy way to develop Enterprise

applications when a graphics terminal is not available or when X window is not accessible. A

common scenario of the above is when the user is running Enterprise over a modem line.

In the graphical interface, an integrated environment is supported and the user compiles and

executes an Enterprise application at the click of a button on the screen. In the textual interface, the

system consists of three UNIX programs: the user's favorite text editor, such as emacs or vi , the

program compile, and the program run. All three programs can be executed from the UNIX shell.

As shown in Figure 4.1, the text editor is used to generate the program code and program graph,

which are then used as input to the compiler to obtain the executables. Run uses the program graph

to launch the compiled executables in a distributed environment.

In Enterprise, the program graph has two parts. The first part is a graph of assets arranged in

a hierarchical order. The other part is an unordered set of service assets. Although other parallel

programming environments support graphical views, as described in Chapter 2, these views are

either non-editable or are edited by drawing nodes and arcs that represent processes and

communication paths. In Enterprise, the user starts with an individual asset that encapsulates the

entire program. As mentioned in the previous chapter, if an individual is used to run the code, it

will execute sequentially on its own. The user introduces parallelism to the program by coercing

the individual assets into assets that contain multiple processes, for example, contracts, pools,

departments and divisions. The multiple processes contained in an asset are all individuals to begin

with. The user splits the original program among the processes so that each piece of code can be

run concurrently. More parallelism can be achieved by further coercion of the other individual

assets into assets that represent multiple processes. For example, one can build a contract where

each asset in the contract is itself a line of individuals. Services can be considered as a global

computation facility (such as clocks) which can be used by any assets of other kinds and the order

of use is not important. Therefore, services are organized as a set, separated from the main asset

graph. An Enterprise diagram can be constructed using any combination of assets.

An Enterprise graph can also be viewed as a hierarchical structure of repetitive coercion

applied to individual assets. The graph exhibits a structure similar to the top down decomposition

of the program. The model allows the user to parallelize a program just by coercion. Coercing an

- 30 - The Enterprise Executive

asset from one kind to another usually does not require any changes to the user's source code

(there may be few exceptions to this, particular if pointers are used to alias data). However, some

gathering or separation of functions from one file to another may be needed. For example, if an

individual is coerced into a line of three individuals, the code associated with the original individual

would be separated into three files. Each individual in the line will execute a separate file.

In the graphical interface, it is possible to coerce an asset of multiple processes back to an

individual and undo the parallelism introduced by a previous coercion. The user can thus

experiment with parallelism of different grain sizes. However, in the textual interface, this

backward operation is not a concern since the user can delete the unwanted coercion statement from

the textual graph.

4.3. Syntax of the Textual Enterprise Graph

The textual Enterprise graph is organized as an ordered sequence of coercion operations and

asset attributes specifications. As mentioned in the introduction of this chapter, the order of

coercion operations is important since it represents the hierarchy of parallelism which leads to

different parallel structures (such as line in a pool and pool in a line).

The operations and specifications are defined by statements. An Enterprise graph is specified

by one or more statements. A statement is defined as a stream of characters ending with a carriage

return. A statement may contain a number of identifiers. An identifier is a stream of characters

ending with a space or carriage return.

An identifier that begins in the first column signifies that the statement specifies a coercion

operation or asset attribute specification. If the identifier is one of the known assets (individual,

line, department, pool, contract, division, and service), the statement is recognized as a coercion

operation. Otherwise, the identifier is assumed an asset name and the statement is considered as an

attribute specification. Figure 4.2 illustrates the syntax of coercion statements.

individual <name>
line <size> <name0> <name1> ... <namesize-1>

department <size> <name0> <name1> ... <namesize-1>

pool <size> <name>
contract <name>
division <depth> <breadth> <name>

service <name>

Figure 4.2. Syntax of Coercion Statement

- 31 - The Enterprise Executive

The above figure serves only to illustrate the syntax of the Enterprise graph; the semantic

implications of the graph will be discussed in Section 4.4. The first identifier represents the kind of

asset (which can be one of individual, line, department, pool, contract, division or service) to be

coerced. As discussed in the previous chapter, each asset has its own semantics which support a

particular kind of parallelism. A user module is associated with an individual asset by default, so a

statement that coerces an asset to an individual may be omitted. Following the first identifier is a

list of arguments which gives the size of the asset, the name of the asset to be coerced, and the

members of the asset.

The size argument is usually a number representing the degree of parallelism supported by

the asset. Usually, the number (with the exception of division and contract) defines the number of

processes used to run the code of the asset. When the asset has a default size, for instance, if it is a

contract, service, or individual, the size argument is omitted. In contract assets, the number of

processes used is varied dynamically at run time based on the number of available machines in the

environment as well as the amount of work passed to the asset. In service and individual assets,

the size is always one. Therefore these assets do not require the size argument. The division asset

requires two size arguments: breadth and depth.

 The identifier following the size argument gives the name of the asset to be coerced, which

must be an individual. As mentioned in Chapter 2, in all Enterprise assets, the first member of the

asset, also known as the receptionist, shares the name with the asset itself. In the textual graph, the

name always refers to the individual asset when the name is shared. If the receptionist of the asset

is an individual, the name refers to the receptionist. If the receptionist contains other assets, the

name refers to the receptionist of the contained assets and so on.

If the assets contain heterogeneous assets (as in lines and departments), the identifiers

following the name are the names of the other members of the coerced asset. As described in

Chapter 2, the first member of an asset shares the name with the asset itself. That is also the name

of the target on which the coercion is performed. The name of the first member is already given

and therefore it is not required. Only the names of the other members are required as member

arguments. In homogeneous assets such as individuals, pools and contracts, since all members are

alike and share the name of the coerced asset itself, no member argument is required.

 To summarize the arrangement of coercion operations in an Enterprise graph, an Enterprise

graph is hierarchically organized. It always begins with the coercion of the asset running the main

program and the application graph is constructed just by successive coercion. The main asset

remains the root of the graph. Every asset to be coerced, with the exception of the main and service

assets, must have already been specified as a member argument in some previously defined asset.

- 32 - The Enterprise Executive

As mentioned in the introduction, services are arranged as a set of assets that can be accessed in

any order by any other assets, and order is not important in specifying services. Every asset kind,

except service, in an Enterprise graph obeys the hierarchical structure.

In addition to coercions, the Enterprise textual graph also contains information specific to the

assets themselves, such as libraries to compile them with, and machines to run them. If an

identifier that begins in the first column is not one of the known assets (individual, line,

department, pool, contract, division, and service), the identifier is assumed an asset name and the

statement is considered as an attribute specification. An asset must be defined in a coercion

statement before its attributes can be specified in an asset specification statement, which is optional.

Attributes are also optional. The user may leave out attribute specification entirely and the system

then makes the decision when necessary. As with coercion, these attributes apply only to the

individual asset. Attribute statements must begin with the name of the asset, and can be followed

by one or more attributes which must be started with a tab character in the first column. These

attributes specify user preferences such as machine allocation constrains and compilation libraries.

Figure 4.3 illustrates the syntax of asset specification statements.

<name>
library <file0> <file1> ...

exclude <machine0> <machine1> ...

include <machine0> <machine1> ...

Figure 4.3. Syntax of Asset Specification Statement

If the identifier after the tab is "library", the remaining identifiers in the statement give the

libraries to be linked when compiling the asset.

The user can also specify a machine preference list, as one can do with FrameWorks. If the

identifier after the tab is "include", the remaining identifies in the same statement gives the

machines preferred to execute the program on. If none of the desired machines is available, any

idle machine will be used. If the identifier is "exclude", the succeeding identifiers name the

machines to be avoided. Even if the machine is idle, it will not be used. Since the main module is

always run from the machine where the user's terminal is connected to, allocation constrains for

the main module are ignored. The machine on which the user runs the main module cannot be

excluded to avoid deadlock in allocation. This ensures that there will be at least one machine to put

the processes on. The bottom line, when the entire network of machines are all busy, all the

processes would be running on the single machine from which the user starts the Enterprise

program. This is equivalent to running the program sequentially on that machine. The user may

- 33 - The Enterprise Executive

leave the allocation entirely to Enterprise by specifying no allocation constraints. Enterprise then

selects machines from the environment based on their load averages.

The usage of CFLAGS is equivalent to that in Make (Feldman, 1979). It can be used to

specify the path for linking '#include' files in a C program, as well as flags for optimization

options. The specification may appear anywhere in the file, but must begin in the first column. The

following figure illustrates the syntax of a CFLAGS statement:

CFLAGS = <flag0> <flag1> ...

Finally, comments may appear anywhere in the file provided that they begin with a '#'

character in the first column. For example, the following are comments:

This is a comment
This is another comment

4.4. Writing an Enterprise Application

In this section, a walk-through of an Enterprise session to construct a distributed program is

presented. A program that animates a school of fish swimming across a display screen is

considered. The program involves generating a sequence of graphical images that, when shown in

rapid succession, generate the illusion of motion. Producing these images involves computation

intensive calculations and a high volume of data. There are three fundamental operations in the

program: Model, PolyConv and Split with the following functionality:

• Model: Animates the movement of fish in a tank based on behavioral characteristics of

the fish and the laws of physics. It determines the location and motion of each object

in a frame, stores the results in a file, calls PolyConv to process the frame and

proceeds to the next frame.

• PolyConv : Reads a frame from the disk file, performs some data format

transformations, viewing transformations, projections, sorts and calls Split, passing

it a transformed frame and a sequence number.

• Split: Performs hidden surface removal, anti-aliasing and stores the rendered image in

a file.

This problem was contributed by a research group in our Department and is certainly more

complex than portrayed by our brief description. The program is structured so that Model

executes a loop that, for each frame in the animation, performs some work on the frame and calls

- 34 - The Enterprise Executive

PolyConv with the results. PolyConv refines the image received from Model and calls Split. Split

does the final polishing of the frame and writes the final image to disk.

An Enterprise program consists of a graph of assets and files of C code. As described in the

previous chapter, each asset encapsulates a single C procedure/function, called an entry

procedure, and a collection of support procedures used by the entry procedure, all in a single file.

A program will consist of several assets. In this example, there will be three assets: Model,

PolyConv and Split. Users who have access to a graphics terminal manipulate icons that represent

assets. The graphical interface generates a textual file containing the graph of assets. Users who do

not have a graphics terminal available to them can specify the textual file directly without using the

graphical interface.

Users create the graph file with their favorite text editor. As a convention, the name of the

program is used to name the graph file, Animation in this case. The design session begins as

follows:

1) A new program consists of a single individual asset that represents a sequential

program component. The code for the procedures Model, PolyConv and Split could

be associated with this single individual asset and run as a sequential program. Every

asset should have a name associated with it. In this case, since Model is the entry

procedure (or the main routine), the asset should be named as Model. This program is

represented by entering the following statement into the graph file:

individual Model

2) Obviously, Model does not have to wait until PolyConv finishes the execution of the

first animation frame to start working on the second frame. Similarly, there is no

reason for PolyConv to wait for Split. Therefore, the asset can be coerced to

(replaced by) a line asset by adding the following statement into the graph file.

line 3 Model PolyConv Split

3) The statement above specifies that the asset Model is coerced to a line of 3 assets

(which are Model, PolyConv and Split). By default, an asset that is not given an asset

kind is assumed an individual. Statements such as

individual Model

are not required in the file. This statement can therefore be removed from the file.

- 35 - The Enterprise Executive

4) Further, the Split asset can be coerced from an individual to a contract by entering the

next statement:

contract Split

After this step, the graph file should look like the following:

line 3 Model PolyConv Split
contract Split

5) PolyConv can be specified to avoid the machine sundog but preferably use the

machine sass-lake or salt-creek. Two attribute specifications should be inserted to

make the file look like the following:

line 3 Model PolyConv Split
contract Split
PolyConv

exclude sundog
include sass-lake salt-creek

Asset attribute specifications can appear anywhere after the coercion statement that

creates it. For example, the statement which creates the PolyConv and Split asset is

the statement:

line 3 Model PolyConv Split

Therefore, the following variation of the graph file is equivalent to the original:

line 3 Model PolyConv Split
PolyConv

exclude sundog
include sass-lake salt-creek

contract Split

As shown above, an asset attribute specification should always begin with the name

of the asset in the first column. It is then followed by one or more attributes. Each

attribute begins with the tab character. The order in which these attributes are

specified is not important. For instance, the 'include' attribute may come before the

'exclude' attribute without changing the semantics.

6) The Split asset can be specified to compile with the libraries -lm -lx11 and mylib by

adding the library attribute. After this point, the file should look like the following:

line 3 Model PolyConv Split
PolyConv

exclude sundog

- 36 - The Enterprise Executive

include sass-lake salt-creek
contract Split
Split

library -lm -lx11 mylib

7) Finally, comments may be added anywhere in the file, provided that they begin with a

'#' in the first column:

This is the Animation program graph.
The application contains a line of 3 assets
line 3 Model PolyConv Split
PolyConv should not run on sundog, but on sass-lake & salt-creek
PolyConv

exclude sundog
include sass-lake salt-creek

Split is coerced into a contract
contract Split
Split uses the library -lm -lx11 & mylib
Split

library -lm -lx11 mylib

As illustrated above, in an Enterprise graph the length of the critical data path is represented

by the number of coercion operations in the file, while the degree of replicated (non-line)

parallelism is represented by the length (or number of assets) of a coercion statement.

The C code associated with an asset can also be entered using any text editor. The code

should be named as the name of the asset with a ".c" suffix. In the example, the Model code

would be saved in the file Model.c, illustrating the close relationship between Enterprise code and

sequential C code.

If the C code for the individual Split contains a sequence of procedure calls (or even a single

procedure call at the end of it), then Split could be coerced to a line by, for example, appending the

following statement to the file (and prepare ".c" files for the two added assets):

line 3 Split HiddenSurfaceRemoval AntiAliasing

Each of the assets in the line would represent one of the procedure calls. Several other asset kinds

are supported by Enterprise and they can be combined in arbitrary hierarchies.

4.5. Compiling an Enterprise Application

 The program compile can be used to compile an Enterprise program. It takes a program

name, which should be Animation in our example. For example, the following command is used

to compile the Animation application:

compile Animation

- 37 - The Enterprise Executive

Enterprise automatically inserts the code necessary to run the program in a distributed environment.

The compiler then generates the executable and reports any errors to the user. This involves

inserting code to establish remote procedure connections, and translating entry procedures calls to

message communication. The latter is done by a modified GNU C compiler (Chan, 1992). In the

above example, all the assets in the Enterprise program graph will be compiled regardless if they

have been changed. The user can specify particular assets to be compiled and only those assets will

be generated by the compiler. This is useful when the user has only changed some assets since the

last compilation. The name of the assets to be generated are given as additional arguments on the

command line. The order of the assets in the argument list is not important. For example, the

following command is used to compile only the Split and PolyConv asset in the Animation

application:

compile Animation Split PolyConv

An asset is required to be recompiled only when one of the following occurs:

1. its code has been changed, or

2. it has been coerced to a different asset, or

3. a service has been added or removed (in which case all the assets except services

needs to be recompiled).

In the complete graphical interface, the application manager incrementally logs any change in the

Enterprise program, both graph and source code, and determines which assets are to be

recompiled. With the textual interface, the user would have to determine which assets are changed

to take advantage of the partial compilation facility.

4.6. Running an Enterprise Application

After the program is compiled, the user can run the program. As with compile, run takes the

name of the program as the required argument on the command line. For example, the following

command is used to execute the Animation application:

run Animation

 If additional arguments are given after the program name, they are treated as arguments to the

program to be executed. For example, to run another Enterprise program Primes in which the

sequential program takes the range of primes to be found, the following command is used instead:

run Primes 0 100

- 38 - The Enterprise Executive

Redirection of UNIX standard input and output of the main module is supported in the same

way as in a sequential program. Enterprise finds as many processors as are necessary to start the

program, initiates processes on the processors, monitors the load on the machines and (if a contract

is used) dynamically adds additional processors to the application based on the demand and supply

of idle processors. The load averages and allocation of processes on the machines may be

displayed at the same time when the program is executing. If insufficient processors are available

to start the application, run will ask the user to select one of the following choices:

1. The program should be aborted.

2. The program should wait until sufficient processors are available and start the

application then. The system monitors the load in the environment and automatically

initiates the application when it is possible.

3. The program should start immediately with the currently available processors. If the

user allows process migration, processes will be migrated to idle processors as they

become ready. UNIX has no kernel support for process migration, and it is external

to UNIX. In some cases, as when processes use files, process migrations may not be

possible.

The program run also supports options to suppress process migration, to log flow of

messages and processor allocation status to a file, or to start up a new window (if running under X

window) to observe this information. These options are specified as command line arguments

before the name of the program. For example, to run the application Prime with logging of

messages and displaying of these information on a created window, the following command is

used:

run -x -l Primes 0 100

The following is a list of execution options and their meaning:

-x A new monitor window is to be launched in X window to output allocation status and

message logs. By default, no new window will be created and this information is

directed to the UNIX standard output.

-t The application directs the allocation status and message logs to the device specified

after the option. For example, the following command runs Animation and redirects

the output to the terminal ttyp1:

run -t /dev/ttyp1 Animation

- 39 - The Enterprise Executive

This allows users to use another window to display allocation status and message

logs when they have access to more than one terminal. There are tools, such as emacs

and layers, which can multiplex several virtual terminals on a single physical

terminal. An alternative use of this option is to turn off the allocation status and

message logs display by redirecting them to /dev/null.

-m The application is to be run with process migration. UNIX does not have kernel

support for process migration. To implement process migration, a new process is

created on the destination machine and the original process is killed. The system does

not guarantee that the application behaves deterministically and that variables are

consistent when process migration is used. By default, the program is run without

process migration.

-l The allocation status and message logs are saved in a file in addition to output to the

terminal. The filename is the name of the application suffixed with ".log". For

example, the log file of Animation would be Animation.log. The file will always be

appended, instead of overwritten, if it is not empty when the program is executed. By

default, no logging is performed if this option is not specified.

The user's current directory will be used as the working directory of the Enterprise program. All

the Enterprise processes will be run from that directory, including the Enterprise system files such

as managers for the processes and machines. Enterprise also looks for a machine database file

'mach_file' in that directory. In this file, a user specifies machines to run Enterprise processes.

4.7. Conclusions

This chapter describes the textual interface which users can use to edit, compile and run an

Enterprise application. Users need only to specify a program graph of assets and attach source

code to the assets in the graph. Starting with a graph which contains a single individual asset

running the entire program, users introduce parallelism in the program by coercing repeatively the

individual asset into another asset that contains multiple processes. Moreover, users can define

modules to run as services which are organized as a bag of globally accessible computation

facilities. Allocation constrains to run a module on particular machines can be specified. The syntax

to express the above information in the textual graph format was illustrated via a walk-through to

construct a real Enterprise application. This chapter also introduced the basic facilities to design,

compile and run an Enterprise application. A discussion of all the facilities in Enterprise is

presented in the following chapter .

- 40 - The Enterprise Executive

 Chapter 5

The Overall Enterprise Architecture

5.1. Introduction

This chapter presents the overall Enterprise Architecture. It contains a brief description of the

current work involved in Enterprise. It also serves to address the position of the executive among

the other components of Enterprise. An overview of the design of the system is provided, an

overview of its implementation follows.

5.2. System Design

In Enterprise, distributed application programs are modelled after an organization, as the

name suggests. To be consistent, the same analogy is found in the logical components of the

Enterprise system itself. In the architecture of Enterprise, there are six logical components: an

interface manager, an application manager, a code librarian, an execution manager, a

monitoring/debugging manager and a resource secretary as shown in Figure 5.1.

Interface
Manager

Application
Manager

Execution
Manager

Resource
Secretary

RECEPTIONIST

OFFICE

User

Machine
Registry

CLIENTS

Code
Librarian

Monitor/Debugger
Manager

Figure 5.1. The Architecture of Enterprise

- 41 - The Enterprise Executive

5.2.1. Interface Manager

The Enterprise graphical interface provides an environment for editing, debugging,

compiling, configuring, executing and monitoring parallel programs. The user can develop parallel

applications in a single unified programming environment. The tool features an asset graph editor

for user to construct their applications using the organization analogy.

An object-oriented design was used for the user-interface. For example, each asset is an

instance of an asset class and is responsible for knowing its name, attributes (like the length of a

line asset or the size of a pool), components (like the components of a line), code, drawing itself,

expanding itself, etc. Since different asset classes share many responsibilities, inheritance was

used extensively. Moreover, the other interface components (windows, menus and dialogs) are

also objects.

The current implementation of the user interface was written using the X Window System

(Scheifler and Gettys 1986) on Sun workstations, making the interface highly portable. The

implementation was developed in C++ using Motif (Young, 1990a; Young, 1990b). The

combination was picked for easy integration with the rest of Enterprise (which is implemented in

C), to remain faithful to the object-oriented design, to enhance portability and to minimize

development time by utilizing the Motif class library of interface objects.

 A graphical user interface provides a simple and powerful programming environment,

however, a textual interface is also desired since a user may want to reconfigure a program when a

graphics terminal is not available. The textual interface, of course, has limited capabilities

compared to the graphical interface; for example the user may not be able to view the dynamic

execution of a program.

5.2.2. Application Manager

The application manager is the control center for Enterprise. The application manager

maintains all of the permanent information about an application, including the asset graph and the

source code. The user can access application-specific information only through the application

manager. Also, the manager ensures information provided by the user is correct and consistent

with the current state of the program design.

5.2.3. Code Librarian

The code librarian manages the source and object code of different modules in a parallel

application. Since Enterprise is aimed at a heterogeneous networked workstations environment,

the librarian maintains multiple object codes for a variety of architectures. The librarian constructs

- 42 - The Enterprise Executive

and executes a makefile that is incrementally modified as the user changes the specifications of an

application, and is parameterized to support different target architectures.

The librarian keeps track of the location of the source code and the corresponding object files

for all assets in the application. Before an Enterprise application is started, the librarian ensures

that all the required executables are ready and performs the necessary compilations for the

unavailable executables on demand (Chan, 1992). Compilation requires knowledge of the kinds of

assets involved, which is obtained from the application manager. During the compilation,

appropriate Enterprise code is inserted into the module depending on its asset kind. Re-

compilation of an asset is only required when either the user modifies the asset's code, the asset

has been coerced to a different kind, or when the asset is to be run on a machine for which an

executable is not available.

Requests for compilation come from two sources. First, the user can ask the interface

manager to compile the application to reveal syntax and semantic errors. Second, the execution

manager can request executables on demand at run-time. As machines become available, the code

librarian informs the execution manager if an executable exists for that machine. If the executable

is not available, the execution manager makes the decision as to whether to request the librarian to

provide it or not.

5.2.4. Execution Manager

The Enterprise execution manager controls the execution of an Enterprise application. It

creates all the processes specified by the asset graph, and sets up the required communication

channels. It manages machine resources and migrates processes from busy machines to idle

machines. It mediates communication among processes so that work will be directed to an idle

process. It traps interrupts and faults in the execution and cleans up any run-away processes after

the execution is done or aborted.

The decision on where a process is to be executed is made by the execution manager,

implying that executables are general and do not have a specific machine name compiled into them.

Associated with an asset is a machine preferences list which specifies any constraints on the

machines to be used to run this asset. The default is that the program will run on any machine.

The user, however, may choose to constrain the choice of machine in some way, say by execution

speed or physical location. The method used to select machine preferences is similar to the

technique employed in FrameWorks.

5.2.5. Resource Secretary

The resource secretary maintains the machine registry, which is a database of specifications

on each machine in the network, such as the machine name, its architecture and type, operating

- 43 - The Enterprise Executive

system version, compiler name and options, a speed rating, RAM size, etc. The secretary

determines periodically (a system adjustable parameter) the load on each machine and reports any

change in a machine's status (from idle to busy or vice-versa) to the execution manager.

Each machine in the network has an associated ".enterprise" file in which the owner of the

machine can specify when Enterprise programs are allowed to run. The default is to allow

programs to run on evenings and weekends only.

5.2.6. Monitor/Debugging Manager

 In parallel programming environments, monitoring and debugging are important facilities.

They should enable a user to determine the bottleneck in a program and to recognize possible

concurrency problems by monitoring the program's execution. Enterprise supports monitoring by

program animation. Every call to an asset is time stamped and the information is either sent to the

interface (to display dynamically the program's execution in real-time), or saved in a file for the

user to replay the program at leisure. The user can use the debugger to step through an application

at the asset call level and to set breakpoints any time an asset is called.

5.3. System Implementation

FrameWorks was built on NMP (Marsland, Breitkreutz and Sutphen, 1991), but its many

limitations forced us to consider alternatives. Enterprise uses the ISIS package to do all the low-

level communication. ISIS was chosen to remain faithful with the object based design philosophy

of the system, and for easy integration with the rest of Enterprise. For instance, the user interface

was designed using an object-oriented approach and implemented using C++. ISIS provides the

necessary library routines to structure an object based application (Birman et al., 1985) on top of

ordinary C code. Major portions of the system have been implemented using existing C programs,

for instance, the compiler and the user's code have been written in C. ISIS provides global

naming, message passing and process grouping mechanism for communicating processes

(Birman, 1991; Birman, Cooper and Gleeson, 1991). Moreover, it also supports fault tolerance.

Enterprise is implemented as an ISIS program. Not only are the executables that Enterprise

produces ISIS programs, but the architecture of Enterprise is designed as a multiple-process

program that communicates using ISIS. Most of the components of the architecture described in

Section 5.1 are communicating processes. The Application Manager is conceptually a separate

process, but for efficiency is implemented as part of the Interface Manager. For a similar reason,

the resource secretary is implemented as part of the Execution Manager.

- 44 - The Enterprise Executive

5.3.1. Fault Tolerance

ISIS has extensive support for fault tolerance (Birman, 1992). Consider the case of

implementing an individual. One approach for fault tolerance supported by ISIS is redundant

computation. Several processes undertake the same task, with the caller waiting for the first

response and continuing to execute without waiting for a response from the others. It achieves fault

tolerance at the cost of wasted CPU cycles.

Another approach in ISIS is the coordinator-cohort computation (the standby approach)

(Budiraja et al., 1992). The method works by ranking the members of a process group and then

labeling the lowest ranking member as the coordinator for a request. This process will execute the

request and broadcast a reply to the caller. The other members are cohorts; they are passive unless

a failure prevents the coordinator from terminating normally, in which case they take over one by

one, in rank order. The coordinator is also able to send the cohorts a copy of the answer returned

to the caller at the termination of the computation. ISIS does not add extra cohorts to a coordinator-

cohort algorithm when it is already running, so fault tolerance is limited by the number of cohorts

at the start of the computation. If several requests arrive concurrently, the job of being coordinator

will be split over the members of the group in a uniform manner. Thus a single process may be the

coordinator for one or two requests while being cohorts for others. Moreover, there may be several

coordinators at one time for different requests. The scheme thus exploits the distributed processing

power of the group in a fault tolerant way.

If the asset is a contractor or a department, when some of the processes fail to complete, the

number of replies will be less than the number of broadcast messages sent. In this case, the

program needs to either recompute the missing piece, or reissue the entire request. Using this

approach, the application handles the recovery from fault.

Both the replication and standby (coordinator-cohort) approaches achieve only partial failure

resiliency. Computation results will be lost when the failure involves all the processors

responsible for the computation. In ISIS, a tool is provided to log a process' events and, when a

total failure occurs, to recover the state it was in from the log. This is done by logging a copy of

the checkpoint of the computation state onto stable storage.

5.3.2. Process Migration

Migrating a process from one machine to another involves (Eskicioglu, 1990):

1) suspending of the process on the source machine,

2) transferring of the process state to the destination machine, and

3) resuming its execution on the destination machine.

- 45 - The Enterprise Executive

These operations require support from the operating system. The initial implementation of

Enterprise has been done under the Sun OS operating system, which does not offer any process

migration facility. However, the development of Enterprise under an operating system which

offers process migration, such as the V-System (Cheriton and Zwaenepoel, 1983), would allow

for better load distributions. Under Sun OS, when it is necessary to relinquish a processor, it is

sometimes possible to suspend the process in the middle of an execution and restart it over again

on another machine (although, obviously, some work will have been wasted). Also, in the case

when the workstation is being used as an employee of a contractor, it can be released when the

employee completes the unit of work assigned to it by the contractor.

5.4. Conclusions

This chapter provides an outline of the Enterprise architecture, the tools to implement it, and

some issues to be resolved. This includes a brief introduction of the major components of the

system and their implementation, and the major issues like distributed debugging, fault tolerance,

and process migration. This chapter was an introduction to the internal details of the Enterprise

environment. It served as a bridge between the user-interface aspect of Enterprise described in the

previous chapter and the operating system aspects described in chapters that follows.

- 46 - The Enterprise Executive

Chapter 6

Design of the Enterprise Executive

6.1. Introduction

The Enterprise executive controls the execution of an Enterprise application. It is responsible

for creating all the processes specified by the asset graph, and setting up the required

communication channels. It manages machine resources and migrates processes from busy

machines to idle machines. It mediates communication among processes so that work will be

directed to an idle server process. It traps interrupts and faults in the execution and cleans up any

run-away processes after the interrupt or fault.

This chapter describes the design and architecture of the Enterprise executive. The object-

oriented design paradigm is introduced and some terminology used in this chapter are defined. The

chapter then illustrates how the architecture of the executive was influenced by the object-oriented

design methodology. This includes a discussion of the Enterprise module call protocol,

implementation of different kinds of Enterprise assets, management of machine resources, and

design of the execution shell.

6.2. Object-Oriented Design Techniques

Using an object-oriented approach, the system is structured around the objects that exists in

our model. An object is an entity that has private data (state) and a set of operations (behavior) to

manipulate that data (Stroustrup, 1988). To invoke the operation in an object, a message is sent to

the object. The message contains a selector to invoke the specific operation (known as a method) in

the object. Additional arguments may be sent with the selector in the message. A method is similar

to a procedure and can only be invoked when the object receives the message whose selector

corresponds to that of the method.

Another feature of object-oriented programming is the concept of a class. A class describes

the common behavior of a collection of objects. An instance of a class is an object that has its own

state. Class descriptions usually contain variables and the method that manipulates the objects. It is

a mechanism to encapsulate the state and behavior of a set of objects. Classes are related to each

other through an inheritance hierarchy. Through inheritance, objects in different classes share

behavior. A subclass inherits state and behavior from its superclasses, and can override the

superclass' behavior method by redefining the method.

- 47 - The Enterprise Executive

Object-oriented design involves the following major steps, (Booch, 1986):

1) The objects in the system are identified. This involves the recognition of the role of an

object in the model, for instance, whether it is a server or client. Typically, the objects

identified are derived from the nouns which are used in the problem description.

Also, a class hierarchy for similar objects is derived.

2) The operations required of each object are identified. The behavior of an object when

invoked by messages from other objects is defined.

3) The interface and dependencies of each object are identified. This involves identifying

the external views and interaction protocols among objects and classes of objects.

This step defines the selector and message format among the communicating objects.

4) The objects are implemented. An object can be implemented by building on top of

existing lower level objects or classes, as well as by decomposing it into subsystems

of objects.

Object-oriented design is considered by many as a powerful methodology for developing

applications. The approach is used in designing many parts of the Enterprise system, including the

program model, user interface and the execution manager. Object-oriented programming is

designed to produce modular, reusable, modifiable code. During experimentation with different

implementation approaches, the ease of changes and enhancements to the existing code proved to

be highly desirable. The ability to create subclasses of existing classes was extremely useful in

reducing both the design and the development time of Enterprise. The following section outlines

the overall architectural features of the executive and overviews the function of each component.

6.3. Overview of the Executive Architecture

Using an object-oriented approach to design the system, the objects that exist in the

environment and their relations are identified. Responsibilities common in different assets are

factored out and classified to achieve code reuse. The fundamental building blocks of the

Enterprise executive can be summarized by the inheritance tree or class hierarchy in Figure 6.1.

- 48 - The Enterprise Executive

Asset
Managers

Execution
Manager

Machine
Manager

Workers

Assets

Executives

Managers

Clients

Workers

Figure 6.1. Class Hierarchy of Enterprise Executives

At the root of the class hierarchy is the Executives. This class encapsulates the common

behavior of every asset in the system. Similarly, the Managers class defines the common

behavior among objects which manage resources. The Assets class encompasses the common

behavior of both Workers and Clients classes. The managers class encapsulates the shared

characteristics of three subclasses, Execution Manager, Machine Manager and Asset

Managers, based on the type of object being managed. The use of plural in the class name

signifies that there are multiple run-time object instances for the class.

The managers manage the run-time resources of an Enterprise program. The execution

manager interfaces the executive to the other components of the overall Enterprise architecture,

such as the code librarian and application manager. The machine manager places Enterprise

objects, both managers and assets, on idle machines based on their demand and availability. Asset

managers select idle workers to execute the call initiated by clients, and requests resources from

the machine manager to execute the workers. Every asset has an associated asset manager. An

individual asset is also the manager for itself.

Assets are processes of modules of an Enterprise program. It is similar to a user program in a

sequential programming environment, except that the user code is encapsulated by a layer of kernel

structure to handle communication and synchronization. This layer is attached to the user code

automatically by inserting code which handles communication and synchronization using a C

language compiler. Figure 6.2 illustrates this concept of adding a layer of kernel to the user code.

- 49 - The Enterprise Executive

User
Process

Kernel
Messages

Figure 6.2. A Kernel Layer Encapsulates User Code

Assets may be viewed as a client or a worker. Worker assets are those which execute calls

directed to them and client assets are those which initiate the calls. A worker asset can be further

classified as a contract, pool or individual, according to its number of instances at run-time.

Figure 6.3 gives an overview of the interactions among different components in the

Enterprise system when a program is executed. This collaboration of different objects in the system

will be discussed in detail in the following sections.

Execution
Manager

Machine
Manager

Machine
Secretary

Request Machine Usage

Update Machine Usage

Asset
Managers

Worker

Argument

GraphFrom
Application Manager,

Code Librarian
and Debugging Manager

Execution Manager

Request Assets
or

Return Surplus Assets

Withhold
Assets on

Busy Machines

Worker

Client

Main Call

Call Forward

Workers Client

Flow of data

System Process

User Process

Class
Boundaries

Graph

Figure 6.3. Overview of the Executive Objects and their Interactions.

6.4. Assets

 The object-oriented design approach begins with identifying objects in the designer's model

of reality. From the user's perspective, the only objects are the processes of the Enterprise assets in

- 50 - The Enterprise Executive

execution. Every asset in an Enterprise application can potentially function in the dual role of a

client as well as a worker. Assets repeatedly serve calls placed to them by assets connected to their

input and, therefore, function as workers to other assets. During the period of working on these

calls, an asset may call other assets and thus may become a client. This behavior is common for all

Enterprise assets regardless of their asset kind.

An Enterprise program at run-time can be viewed as client and worker(s) communicating

using a call structure similar to that of a Remote Procedure Call (RPC) (Birrell and Nelson, 1984).

There may be multiple instances of workers servicing a call from the client. The instance of

workers may be fixed (pool asset) or varied (contract asset). A worker with only a single instance

is equivalent to an individual asset.

6.4.1. Clients

Before a client call its workers, it must be acquainted with them, as discussed in the previous

chapter. The client's potential workers can be determined from the call graph and code to establish

connection with the workers can be inserted to the user's program. The call to an entry procedure

is converted into a RPC. Depending on which procedure call is invoked, workers providing the

corresponding service will be sent the RPC.

6.4.2. Workers

The worker has to announce its name on the system so that other modules can use the remote

procedure it supports. It needs to determine its instance number if it has multiple copies of itself

and registers itself (by its instance number) with its manager when it becomes idle. Using the

convention of ISIS and many other distributed systems, a process can be uniquely referenced by

its name together with its instance number. The number of instantiations that a worker has can be

determined from the call graph and the required code to announce one's identity can be inserted

into the user code. The entry procedure is translated into a message handling entry which extracts

the call parameters from the messages. Every worker runs in an infinite loop to consume incoming

calls, therefore, every worker process needs to declare a procedure which, when invoked,

terminates itself. This procedure will be called when there are no more calls to be handled. It may

also be called as part of the function to perform process migration. The system "migrates" a

process by terminating it and restarts it on a different machine. Before termination, a worker needs

to ensure that there is no unconsumed message outstanding in the buffer. However, sometimes it

is desirable to terminate the application immediately before completion, as when a fault occurs in

one of the modules, and the system should support this kind of worker termination as well.

- 51 - The Enterprise Executive

6.5. Design Models and Their Communication Protocols

 Using an object-oriented approach, the system is structured around the objects that exists in

our model. By taking a different view point and by focusing on different aspects of the system,

various interaction protocols between client and worker assets can be realized. Several approaches

to design the application have been investigated. They involve trade-offs between flexibility and

reusability of the design, efficiency of the implementation, and capability of correctly

implementing all the Enterprise assets.

In this section, several models are presented which are different for the above consideration.

The first model to be considered is the restricted model. This is the same as the restricted model

used in implementing FrameWorks. Assets in this model communicate directly with each other.

This model is simple but has severe limitations in ensuring fairness and mutual exclusion of

handling calls among assets of multiple processes. Therefore, this model is only used to

implement all the assets of a single instance in Enterprise, for example, individuals and services.

The second model, the reference model, requires a client to acquire the right for exclusive use of a

worker from an external process before communicating to the worker process directly. In other

words, the external process references an idle worker to the client. The third model, the

forwarder model, the client simply makes the call to the forwarder which then acts on behalf of the

client to ensure that the call will be made to an idle worker. All calls go through the forwarder and

so requests can be serialized. There are merits and drawbacks with each model and these will be

discussed in detail later in this chapter.

6.5.1. Restricted Model

In the restricted model, the assets communicate with each other directly according to the call

structure. This model is similar to the restricted model described in (Singh, 1992). Although the

restriction of the model experienced in FrameWorks is different from that in Enterprise, the same

name is chosen for historical reasons and the new model does have restrictive uses. From the

user's point of view, the procedure calls and returns are the only messages exchanged among the

assets. Hidden from the user, there is also the exchange of control messages to ensure proper

synchronization and scheduling of the calls. An asset communicates this information with its

called asset directly. For example, Figure 6.4 illustrates the communication between two processes

in which A calls B.

- 52 - The Enterprise Executive

Process
A

Process
B

Control Messages

User Messages

Figure 6.4. Direct Communication

The calling module is responsible for selecting an appropriate process to serve the call when

more than one process is available (as in the case of a contract or pool). The advantage of this

model is that it is simple, requires few processes to implement, and involves few message

exchanges. However, this implementation model fails to handle the case when multiple clients are

contending for multiple workers. The interaction relation is shown in Figure 6.5.

Process
A

Process
A

Process
A

Process
B

Process
B

Process
B

Figure 6.5. Many to Many Call Relation

The selection should be mutually exclusive to avoid multiple clients from calling the same idle

worker simultaneously. The restricted model is limited in that clients do not share information

among themselves as to which server is selected. To ensure mutual exclusion, two approaches can

be used: locking the servers, or serializing the requests for servers. In both cases, an

(conceptually) external process, a manager, is required to maintain the locking or to serialize the

requests. Effectively, the original many-to-many relation is transformed to a pair of one-to-many

relations with the introduction of this manager process. The transformed relation is illustrated in

Figure 6.6.

- 53 - The Enterprise Executive

Process
A

Process
A

Process
A

Process
B

Process
B

Process
B

Manager

Figure 6.6. Transformed Relation by introducing a Manager

- 54 - The Enterprise Executive

This process compensates the limit in the original model by its global view on the interaction

which can ensure that only one client is accessing the worker at a time. In the original model,

clients are limited in their perspectives. They do not know when others are calling a worker and

which worker is being called. At this point, it can be concluded that the restricted model is

insufficient to implement the Enterprise system when processes of multiple instances are involved.

However, because of its simplicity, the model is still useful for implementing assets of a single

instance, for example, individuals and services.

By using different approaches to serialize the requests for an idle worker, at least two new

models for implementing pools or contracts can be realized. In the first model, the reference model,

the management process just serves as a referral agency and a client still communicates directly

with its worker once it knows which worker is available. In the second model, the forwarder

model, the management process represents the worker. All communication is routed via the

management process and the worker is hidden completely from the client. The reference model is

described in FrameWorks as the general model.

6.5.2. Reference Model

Using this approach, before making a call, a client obtains the name of an available worker

from the worker's reference. The reference marks the worker as unavailable once the worker has

been referred to a client. The client then calls the worker directly and sends it the message

containing the call parameters. When the worker finishes with the call, it replies directly to the

client and registers itself as available for employment with its reference. Since all clients must

check out the workers from the reference before making any call, requests for workers can be

serialized and it can be ensured that workers are given to only one client at a time. When there is no

available worker, the client's request for reference would block. Since in Enterprise all calls

should be non-blocking, the entire task of asking for reference and making the call can be forked

off to run asynchronously. In this way, the client would not block but continues with its execution.

Figure 6.7 shows the flow of messages among the worker, client and reference.

Process
A

Process
B

Control Messages

User Messages

Manager

Figure 6.7. Manager Assisted Communication

- 55 - The Enterprise Executive

5. receive message
 and run the call

worker

worker

worker

manager

3. send message to worker

1. send request
for a worker

6. reply the call

client

y = B(x);

B(x)
{
 return(x);
}

z = y;

4. wait for
the call return

8. resume

:

2.reply the id
of an idle worker

7. register

w
ith w

orker

as idle
1) Client (A) sends a request for idle worker to the manager of the workers (B's

manager), and waits for a reply.

2) The manager replies the name of the idle worker. If none is available, the request is

put on a queue and will be met when the resource conditions allow.

3) Client (A) then puts the call parameters in a message and sends it to the idle worker.

The message is sent asychronously and the client proceeds with other tasks.

4) If the return variable is accessed, the client (A) waits for the variable to be returned

from the call.

5) In the meantime, the idle worker running B receives the message, interprets the

arguments, and executes the procedure.

6) When the worker has done with the procedure, it puts the result in a reply message,

and sends the message to A.

7) The worker sends a message to its manager to signify that it becomes idle. The

manager of B receives the message containing the id of the idle worker. If the

manager is not waiting for an idle worker, the id is put into the queue of idle workers.

8) Client (A) gets the result from the reply message (from B) and resumes.

Figure 6.8. The Enterprise Module Call Sequence for Manager Assisted Communication

- 56 - The Enterprise Executive

Using the convention used in FrameWorks, the interaction structure is called Manager Assisted

Communication since the manager plays a supporting role in the call protocol. The communication

protocol for the reference model for a client and a pool of workers is illustrated in Figure 6.8.

Messages are marked by arrows, showing the direction of the exchange. Control messages are

represented by dotted arrows.

6.5.3. Forwarder Model

In the reference model, a client communicates with the worker directly. However, prior to

making the call, the client must exchange messages with the manager of the worker. The

forwarder model relieves the client from the task of finding (and even waiting for) an idle worker.

The client can simply make the call and the forwarder is responsible for receiving the message from

the client, selecting an idle worker, and sending the message to the selected worker. Neither the

client nor the worker is aware of the existence of the other party. The forwarder interfaces all

communication between them. As in the reference model, the forwarder marks the worker as

unavailable once the call has been forwarded to a worker. When the worker finishes with the call,

it also registers itself as available for employment with the forwarder. Since all clients must route

their calls through the forwarder, requests for workers can be serialized and it can be ensured that

workers are given to only one client at a time. When there is no available worker, the forwarder

blocks but the client continues. The forwarder waits for an idle worker on behalf of the client.

From the client's perspective, the call is non-blocking, and therefore satisfies the requirement of

non-blocking call in Enterprise. Figure 6.9 shows the interaction among the worker, client and

forwarder. The interaction is called Manager Delegated Communication since the client leaves the

job of calling a worker totally to the manger. Figure 6.10 shows the sequence of events that occurs

when an Enterprise call is issued from a procedure A, to call procedure B.

Process
A

Process
B

Control
Messages

User Messages

Manager

User Messages

Figure 6.9. Manager Delegated Communication

- 57 - The Enterprise Executive

worker

worker

worker

manager 3. foward message

1. send call message
and resume

5. reply and check in with manager

6. forward reply

client

y = B(x);

B(x)
{
 return(x);
}

Workers

z = y;
2. wait for the call return

7. resume

4. receive message
 and run the call

:

1) Client (A) sends a message containing the procedure name and arguments to the

workers handling that procedure (B workers). The client (A) then resumes execution

immediately.

2) If the return variable is accessed, the client (A) waits for the variable to be returned

from the call when accessed.

3) In the meantime, the manager of B receives the message, selects an idle worker and

forwards the message to the chosen worker. If no idle worker is available, the

manager waits until one is available.

4) The selected worker receives the message, interprets the arguments, and executes the

procedure.

5) When the worker has done with the procedure, it puts the result in a reply message,

and sends a message to its manager to signify that it becomes idle.

6) The manager of B receives the message containing the id of the idle worker. If the

manager is not waiting for an idle worker, the id is put into the queue of idle workers.

The manager also forwards the reply back to caller (A).

7) The client (A) gets the result from the reply message (from B) and resumes.

Figure 6.10. The Enterprise Module Call Sequence for Monitor Delegated Communication

- 58 - The Enterprise Executive

6.5.4. Comparative Analysis of Different Models

The two approaches described above to resolve the limitation in the restricted model are

functionally equivalent. They differ only in their cost of development and cost of execution.

Usually, when designing other systems, the issue of cost of execution are to be considered later at

the implementation time. However, when designing an environment for distributed computing

where high performance is desired, the designer should be aware of execution issues in every step

of the design and implementation. To keep the design general, the consideration is made

independent of any specific underlying communication system like ISIS or NMP.

The main advantage of the forwarder model over the reference model is the high level of

transparency it supports. In terms of software maintenance, in the forwarder approach, assets are

self contained. Changing the asset to a different kind affects only the asset itself. The logical client /

worker relations possible in Enterprise are one-to-many, many-to-one, and many-to-many. The

one-to-many client / worker relation is found in a client calling a worker which has multiple

instances (as in the case of calling pools and contracts). The inverse is true when a client with

multiple instances calls a single worker (as in individuals). However, with the forwarder in place,

from both the client's and worker's perspective, there is only one interaction relation. The

communication structure is one-to-one with the forwarder in both cases. As shown in the

protocol, to the client, the manager and workers can be encapsulated in a single unit and treated as

a black box. However, the interaction style cannot be well abstracted in the reference model. Since

the caller is not concerned about the component of the worker in the forwarder model, coercing an

asset to different kind involves only changing the asset alone and nothing else. This allows quick

and easy experimentation of various parallelization techniques.

In terms of execution, in the forwarder approach, assets are not self-contained. The state of

an asset is not only maintained by the caller and the called asset, but is also maintained in part by

the forwarder. In the reference model, the messages are either in the client or in the worker.

However, with the forwarder model, at any time the forwarder may have messages that are waiting

to be delivered to the worker. Therefore, it would be more difficult and costly to make the system

fault tolerant. There will be more complicated possibilities to consider when the system crashes to

keep the assets in a consistent state.

As illustrated in the figures showing the message exchange protocols of the reference model

and the forwarder model, both approaches require the same number of message exchanges for

each procedure call made. However, the message sizes involved in the forwarder approach would

be larger in general.

- 59 - The Enterprise Executive

In the reference model, the worker sends a message to the manager to register itself as idle

before a call can be made to itself. To make a call, the client sends a message to the manager to

request a worker, and then makes the actual call and sends a message containing the call parameters

to the idle worker. If the call is a function call, there will be an additional message containing the

return parameters from the worker. Therefore, the message cost associated with a procedure call

would be four exchanges in total. The cost of a function call would be five messages. Three of

the messages are control messages for selecting an idle worker, and they are generally just a

message containing a single integer.

In the forwarder model, the client sends the message containing the call parameters to the

manager, who then forwards it to the idle worker. For each call, at least two messages will be

required to get the call to its destination. If the call is a function call, two more messages would be

needed. As in the reference model, the worker also sends a message to the manager to register

itself as being idle at the end of each call served. Therefore, making a procedure call takes three

messages in total. The cost of a function call is five messages. Only one of the messages is

control messages for selecting an idle worker, which is also a message containing a single integer.

The other messages contain call parameters, which, in general, may be of considerable size.

Sending an integer on the network costs the same as sending a packet (currently, Ethernet

runs in chunks of 1 Kbytes) and so a small message size does not always imply substantial

savings. It is equally important to minimize the number of message exchanges as well as the size

of messages. When the total size of call parameters occupies less than a packet, since in the

forwarder model fewer message exchanges are involved, the forwarder model may be more

efficient. When the call parameters are of considerable size, it may be expensive to forward every

call and calling the worker directly using the reference model would be more economical.

Initially, the design was based on the reference model. It was used in FrameWorks, so it was

well understood and enabled a prototype to be rapidly constructed. However, as discussed in

this section, the model is not very easy to maintain, since the implementation of an asset is

dependent on the asset kind of all its called assets as well as its own. This is undesirable because

Enterprise is an on going project in which new asset kinds have been continually being researched

and old assets are being redefined. In the forwarder model, any change in the asset's

implementation affects the asset alone. Therefore, the current approach uses the forwarder model.

6.6. Managers

Following the above investigation, it was realized that an object external to the call structure

is required to maintain the call to ensure correct synchronization of procedure call messages. In

addition to correctly dealing with scheduling and synchronization of user messages, the

- 60 - The Enterprise Executive

implementation model should also handle concurrency issues such as fairness, deadlock, and

application termination (Peterson and Silberschatz, 1985).

Deadlock in a concurrent system is a situation in which two or more processes are prevented

from proceeding because each has allocated to it a resource required by the other. Deadlock in

communication is not possible in Enterprise since the graph is essentially a call tree. Deadlock in

allocating resources is handled by serializing the requests for resources, for example, requests for

workers must be synchronized.

Fairness in operating systems is concerned with ensuring that a resource will eventually be

allocated to the process requesting it, and that no process should wait permanently for a resource.

The issue of fairness occurs when calling assets compete for workers to serve their calls, and also

when workers compete to serve an incoming call. Fairness is also a concern when assigning

processes to machines. Any process waiting for a machine should be able to run on an idle

machine eventually.

Application termination deals with removing processes when they are no longer needed.

Every worker process in Enterprise runs in an infinite loop in which it reacts to incoming call

requests and executes the entry procedure. Unless the application finishes or detects an exception

condition, a worker cannot be removed since a call request may arrive at any time. Therefore, the

fact that the worker has been idle for an extended period is not a sufficient criterion for termination.

A worker may end up losing some incoming calls travelling on their way along the network. In

sequential programs, usually, when the main program finishes, the entire application is done. On

the contrary, in concurrent execution, this is usually not the case. Consider a simple example of a

line. The last process in the line may not even have started to process its final set of call parameters

when the main program, which is the first process in line, finishes. All these issues must be

considered when designing the termination algorithm.

To deal with the synchronization and concurrency issues described above, the managers class

is introduced. This class of objects monitors and allocates the usage of various resources. These

objects also ensure the proper termination of processes. Three behaviors are common for every

member of this class: it handles requests for resources, it redistributes (remove or create)

resources based on their demand and supply, and it detects when processes are finished and

releases the resources that it monitors.

In this section, subclasses of the class managers are also presented. Since different resources

may require a different way of handling, and different resources may have different utilization

characteristics, it would be better to factor out the responsibility of managing these resources and

have a separate manager managing each kind of resources. This management style is commonly

- 61 - The Enterprise Executive

found in real organizations, for example, there are usually managers for personnel, for factory

lines, and so on. A manager class is named by the type of asset it monitors, as in real

organization. The resources that exists in the execution environment are assets and machines.

Factoring out the responsibility at design stage does not imply that these managers must each be

run as a separate process. These issues will be considered at implementation time in the next

chapter.

6.6.1. Asset Managers

The discussion on asset communication in the previous sections has identified the need for an

asset manager to monitor an asset to guarantee that the use of it will be mutually exclusive. There

should be logically an asset manager for every asset. The asset manager shares the name with the

asset it manages, so that to the external objects, the asset manager represents the managed assets.

The asset manager accepts requests from workers to register themselves as idle workers. The asset

manager maintains a queue of idle workers as its private data structure to guarantee fairness in the

selection of workers to perform calls. This ensures that a call is made to an idle worker instead of

one that is busy. When a worker is done with a call, it registers with the manager so that it will be

used again.

The asset manager can be migrated while keeping its private data in a consistent state. When

the asset manager detects that a new instance of itself is created, it transfers its data state to the new

instance and terminates itself. The individual manager is the asset itself. When a client makes a

call to a pool or contract asset, the call is actually intercepted by the manager and then forwarded to

an idle worker without the client's awareness.

In addition to mediating calls between clients and workers, the asset manager collaborates

with the machine manager for ensuring better resource utilization. The machine manager monitors

machine availability but has little knowledge of the calls among the assets. The asset managers, on

the other hand, have no concern for the machines which the assets are run on. The asset manager

handles requests from the machine manager to dismiss workers on busy machines. The asset

manager can fire a worker when it feels that there is a surplus of workers. This will release the

machine occupied by the fired worker, and the worker being laid off is communicated to the

machine manager, who then updates the machine resource condition. The asset manager

collaborates with the machine manager to ensure proper termination of the processes. This section

will be focused on the manger's function as a synchronization monitor. Its other role as a

"terminator" will be discussed in Section 6.7.

- 62 - The Enterprise Executive

The class of asset managers serves as the superclass to define operations shared by its

subclasses Pool Manager, Contract Manager and Individual Manager. Individual manager is an

abstract class since the manager is the asset itself.

6.6.1.1. Pool Manager

As a subclass of the asset manager, a pool manager inherits all the behavior of an asset

manager. Moreover, when a pool manager has all its workers on its idle queue for some time, it

reports to the machine manger that its managed pool is inactive. The machine manager can

therefore make better use of the inactive pool's machines. Once a client starts to access the pool,

the pool manager reports to the machine manager that the pool is active.

There may be problems associated with the heuristic used to determine if a pool is inactive.

For some application, the computation can call a pool, perform some local computation, then call

the pool again. The pool may then be kept switching between active and inactive states. It all

depends on the magic number for the time which a worker idles to be considered as inactive. In

fact, every CPU scheduler is faced with a similar problem and a worst case scenario can be

constructed for every heuristic.

6.6.1.2. Contract Manager

A contract manager also supports all the operations for asset managers. In addition, when a

contract manager has more than one worker on its idle queue, it returns the extra worker to the

machine manager. The machine manager will then remove the worker and releases the machine to

the free pool of machines. When a contract manager runs out of idle workers to satisfy the call, it

makes a request to the machine manager, which spawns a new worker if a free machine is

available. The request will be repeated until there are sufficient workers to handle the call. The

machine manager will try to meet the demand, perhaps not immediately, depending on the resource

availability at the time the request is made.

6.6.1.3. Individual Manager

In the restricted model, individual assets communicate with each other directly. There is

only one resource and so no manager is required to mediate the use of it. However, for

completeness, so that logically every asset has its manager, the class individual is still defined.

However, an individual manager is the individual itself. It satisfies all the operations required by

the class asset manager.

6.6.2. Machine Manager

In addition to asset resources, the performance of the environment also depends on the

effective management of machine resources. Since the tasks involved in assigning workers to

- 63 - The Enterprise Executive

clients is different from that of binding machines to processes, a new class is created to organize

machines and processes. This is the only class which contains the state of the binding between

machines and processes. The other objects in the environment can be freed from concerning about

the location of the processes.

The machine manager allocates machine resources. This involves initial placement of assets

on machines before the execution, and load balancing after the execution begins. Load balancing in

this system involves first, the shrinking and expanding of contract assets on the machines based on

their demand and availability, and second, process migration of processes, both assets and

managers from busy machines to idle ones.

The information obtained from the machine secretary is used to classify machines on the

network as being busy, free or used. A machine which is busy should not be assigned any asset.

The term busy is overloaded with meanings here. It means that assets are unwelcome on that

machine, due to real resource contentions or political reasons. A machine without any asset is free,

and a machine with an asset already running on it is used. The machine which the user starts his

main module on (presumably the user's terminal) is always marked as usable so that this can

serve as the last resort to put processes on and avoid deadlock in the allocation algorithm.

The allocation begins by assigning assets and managers to free machines. The assignment is

made by a simple depth first traversal of the call tree. If no free machines remain, machines which

are already used are awarded to assets in a round-robin manner. Running several assets on a single

machine achieves no parallelism but resource contention. Placing multiple assets on one machine is

only a temporary measure to get the program in execution. When resources become available,

process migration will be done to resolve the contention. Alternatively, the user has the option to

wait until sufficient machine is available to run each process on a different machine. The user may

also choose to not execute the application when there is not sufficient resource. The machine

manager will inform the user of resource shortage and asks the user to decide. Every worker of the

pool asset will be placed on a different machine if possible. Contract assets are allocated on a

demand basis and initially only one instance of every contract asset is placed on the machine.

After the binding of processes to machines is completed, the machine manager launches the

assets in the reverse order of the call tree. The assets at the leaves of the call tree are launched first.

This order satisfies the call dependency relations and thus minimizes the polling time for an asset to

establish connection with the called modules.

The machine manager also supports process migration when machine load changes are

reported by the machine secretary. The secretary sends to the machine manager a message

containing a list of machines with status of busy or free. If the process on the busy machine is of

- 64 - The Enterprise Executive

contract type and it is not the only instance of contract remaining, the contract is simply removed

from the machine. If the asset is not a contract, the asset is migrated on to another machine.

Migration is done by launching a new instance of the asset on another machine and then removing

the original asset. If the user forbids process migration, the asset is left intact. The selection of

migration destination is made according to a priority scheme outlined below.

When a machine becomes busy, a new machine must be found to migrate the asset on to. A

free machine is attempted to begin with. If there is none, a machine is obtained from the contract.

An idle contract is requested from the contract manager. The idle contract can be removed and the

migrating asset can then be moved on to the free machine. If no free machine can be obtained by

removing a contract process, a machine which has already been loaded with asset(s) is found.

Initially, machines with inactive assets are attempted. If there are no inactive assets, the process is

migrated onto a machine with active assets. The machine which is then overloaded with assets is

remembered. When other machines become available, process migration will be done to resolve

the overloading, first on machines with active assets, then machines with inactive assets.

When there are free machines, machines with assets that are active are migrated from the

overloaded machines to the free machines. This ensures that resource contention will be resolved

as soon as possible. Next, assets that are not active, but crowded on a single machine are moved.

After this if there are still free machines, they are queued.

The machine manager is responsible for collecting machines released by a contract manager.

When a contract manager has more than one idle worker, the manager terminates the extra worker

and returns the machine to the machine manager. Also, it is responsible for launching new

machines for contract assets when requested by the contract manager. If no idle machine is

available, the request is queued and will be satisfied when a machine is available. The request for

contract is at a lower priority than requests for machines to resolve machine contention among

active assets.

The machine manager is responsible for marking an asset as being active or inactive when

informed by the asset manager. The machine manager uses this information to place assets on

machines when putting every asset on a separate machine is not possible.

The machine manager is also responsible for terminating or aborting all created processes

when requested. When the machine manager terminates the processes, it will take into account that

some of the processes have not yet finished even though the processes at higher level in the call

graph have. The termination proceeds in the order of the call graph and will wait for work to finish

properly at each level before proceeding to the next level. When aborting the processes, waiting is

not required and all the processes are terminated right away.

- 65 - The Enterprise Executive

Finally, the machine manager traps faults in any of the processes it launched and cleans up

any residue processes left on the network.

6.6.3. Execution Manager

An interfacing object is required to serve as the mediator between the other parts of the

executive and the external objects requesting services from the executive. The execution manager

interfaces the kernel to the other components in the overall Enterprise architecture, such as the code

librarian and application manager. Given an Enterprise graph, it initiates requests to the machine

manager to place assets, except the main module on machines. When the placement is completed,

the execution manager is responsible for launching the main module. It also interfaces requests

from the application manager to change execution settings for debugging and process migration.

The next major function of the execution manager is to trap interrupt and program faults and

cleans up any residue processes left on the network. In FrameWorks the process of application

termination is initiated by the main module. When the main module completes the execution, it

sends notices of termination to all its called modules. The termination procedure then propagates to

all the processes along the call graph. This method only works if all the modules terminate

normally. If the module stops prematurely, by user interrupt or due to an error in one of the

modules, there may be runaway processes. Such a problem is avoided in Enterprise .

6.7. Termination

In addition to correctly dealing with scheduling and synchronization of user messages and

machines, the implementation model should also handle concurrency issues such as application

termination. Every Enterprise process, with the exception of the main process, runs in a loop to

serve incoming calls placed on them until exit is explicitly called or an exception occurs. When the

main program is done the algorithm finish is run. When an exception occurs to any of the

processes the algorithm abort is run instead. Both algorithms ensure that there will be no residue

processes of the Enterprise application on the network after the application aborts or finishes.

These algorithms force processes along the call tree to quit one by one.

6.7.1. Abort

The abort algorithm should be run when the user interrupts the program, or when the

program has an execution exception. The execution manager traps interrupts sent to the main

module and sends to the machine manager the abort request they are received. The machine

manager sends an abort request to all the asset managers in the application and calls exit to

terminate itself. Upon receipt of the abort request, each asset manager sends to all its workers an

abort request and then calls exit to terminate itself. Every worker, when it receives the abort

- 66 - The Enterprise Executive

request, calls exit to terminate itself. The abort request propagates along the hierarchy of the call

tree, and ends in the individual workers which is always at the leaves of the tree. All the processes

should be terminated at that point. Abort requests are all asynchronous and the requester will not

wait for acknowledgement. Since the recipient calls exit immediately, work in progress and

messages outstanding will be lost.

The machine manager detects exceptions in any process it launched and execute the abort

routine when they occur. When any of the processes is terminated by sources other than the

machine manger, it indicates that an exception has occurred in the terminated process. All the

processes will be terminated in this case. The machine manager does terminate processes as it

migrates them. It also terminates the processes when the application finishes normally, so the

manager must rule out these cases and must not run the abort algorithm. In UNIX, processes

which are done should be properly acknowledged by the machine manager to avoid the creation of

a large number of zombie processes. These zombie process, which are dead, would still occupy

space in the UNIX operating system's process entry table and may hinder the system's

performance.

6.7.2. Finish

 The algorithm finish is run when the main module, which the execution manager waits for,

is done. The execution manager calls machine manager which then executes its own routine to

finish up other processes and itself. The machine manager issues a request to finish which awaits

reply to each of the asset managers in the hierarchical order of the call graph. The request blocks

until the current asset manager is finished before the next manager is asked to terminate. This is the

major difference between algorithm finish and abort. In many situations (for example, in line

assets), after the main module has finished, the other modules may still be in progress and even

have messages outstanding. This is especially true for assets at the leaves of the call tree. Unless

the modules at the higher levels (closer to the root) of the call tree have completed all the work and

messages, terminating the modules at the lower levels (closer to the leaves) may result in loss of

messages. The asset manager upon receipt of the request to terminate, checks if there are

outstanding messages on the system's message buffer or in its private queue. If there is none, the

asset flushes its outgoing message buffer, sends requests to terminate all its workers and waits

for the workers to reply. Since an asynchronous broadcast method is always used in implementing

Enterprise module calls, it is necessary that messages will still reach their destinations when an

Enterprise process terminates. When the process dies before its messages reach the destination, the

messages may be discarded by the system. It is necessary to ensure that every message will be

delivered to each of its destinations even if the process sending or receiving the message fails

immediately afterwards. After it collects all the replies, it informs the machine manager that the

- 67 - The Enterprise Executive

particular asset is done and terminates itself. If there are outstanding messages, the request to

terminate is delayed and will be served only after all the messages have been handled. Moreover,

since the worker may be executing the entry procedure and cannot be killed when the request to

terminate itself is received. The worker indicates that it is in the entry procedure by setting the flag

busy before calling the entry procedure, and clearing it afterwards. The entry procedure is

considered as a critical section that cannot be interrupted.

6.8. Conclusions

The discussion of the termination issues leads the chapter to an end. In this chapter, the

design of the Enterprise executive was described. An object-oriented design methodology was

used and this chapter shows how the architecture is evolved using this model. The architecture of

the executive component of the system were described in detail. Several design alternatives were

considered and some concurrency issues were discussed. The approaches to resolve these issues

were presented. The following chapter describes the implementation of the Enterprise system based

on the design presented in this chapter. Some implementation trade-offs will be discussed.

- 68 - The Enterprise Executive

Chapter 7

 Implementation of the Executive

7.1. Introduction

Although an object-oriented approach is used in designing the kernel, the implementation was

written in C and uses the ISIS libraries. This combination was chosen for easy integration with the

rest of Enterprise. A large portion of the system has been implemented on top of existing C

programs, for example, the Enterprise compiler is implemented by modifying the GNU gcc

compiler which is written in C (Chan, 1992).

Although the use of an object-oriented language is not strictly necessary to accomplish object-

orient design, it is better to have object-oriented support from the language. ISIS provides the

support for structuring the application using the object-oriented approach (Birman, Joseph,

Raeuchle and Abbadi, 1985). An ISIS process is structured as a collection of message entries,

which is equivalent to methods in object-oriented programs. Every message entry has an associated

selector and an entry is invoked by messages sent to it. A new task for the entry is created on each

incoming message and tasks run concurrently. Moreover, ISIS provides a process grouping

mechanism which allows a group of process to be manipulated as if they were a single entity

(Birman, Cooper and Gleeson, 1991). This modularity construct provides the necessary support

for grouping instances of processes into classes.

7.2. Structure of an ISIS Application

ISIS applications are usually structured as a collection of message triggered tasks, which

handle messages in a callback style. For each message sent to an entry, an ISIS task is created

dynamically to execute the function specified in isis_entry(function) and the pointer to the

message is passed as a parameter to the function. A task is composed of a memory area where a C

subroutine call stack can be managed and a descriptive structure in which register variables used by

the task can be saved when the task is blocked. ISIS recommends the call-back style of

programming in which task creation occurs on each message. Spawning a new task for every

message is simple, avoids risk of deadlock, and achieves maximum concurrency. The mechanism

corresponds nicely with some object-oriented paradigm for message handling, for example, Actors

(Agha, 1986) since a new instance of itself is created on every incoming message. An ISIS

program will be message driven and the user does not have to worry about polling or blocking for

messages.

- 69 - The Enterprise Executive

Since the UNIX kernel does not support the task mechanism, running tasks without system

support imposes several limitations:

1. A UNIX stack can grow without limit, but ISIS tasks are subject to a stack size

limitation. A normal UNIX program can recur or dynamically allocate memory

effectively without limit. Tasks run on dynamically allocated stack space obtained

from malloc and not the normal system stack area of a UNIX program. Local

variables declared within a procedure or block, arguments, and register variables are

saved on the stack in each call. The current stack limit is 16 Kbytes. Locally

declared large data structures can exceed this stack limit, as can deep recursion.

Although one can set the stack limit by calling isis_entry_stacksize(entry,

size) to specify a size to use with the message entry, in Enterprise, it would be hard

to predict the user's program stack usage behavior at compile time to insert the

appropriate call.

2. Since a task is external to the operating system, its implementation costs both time

and memory space. Task creation incurs an overhead of about 1 ms on a typical

UNIX system (ISIS, 1992). ISIS tasks consume a lot of memory, even when they

are blocked.

3. The achieved concurrency would not enhance performance on a uniprocessor system,

but promote resource contention. Moreover, for certain applications, it is required that

requests be handled one at a time to ensure deterministic execution. For example, in

Enterprise, an individual is required to behave as a single thread sequential program.

Since ISIS tasks have considerable overhead and some limitations, tasks are avoided in

implementing Enterprise applications. Although the internal implementation does not use the task

mechanism, a process can still be viewed from the external as if it were using the task mechanism.

Messages are still labelled by an integer selector which directs it to the appropriate entry point in the

program. The program must explicitly receive the messages arriving at the entry point by calling

an ISIS receive message system function. The entry procedure is not subject to the stack limit,

incurs a much smaller overhead, and the next request waits until the current one is done.

Unfortunately, it will still be subject to the limitation of a fixed message buffer. There is simply no

apparent solution to this problem, as experienced also with the UNIX socket facilities itself (Li

et al., 1992). The program will be an inter-mix of conventional single thread and task style. ISIS

tasks are still used in handling special messages for terminating or aborting the program, in similar

- 70 - The Enterprise Executive

ways as signal handlers are used in normal programs. In such cases the stack limit and overhead

are not concerned since these tasks are executed only once.

7.3. ISIS Broadcast Primitives

Messages in ISIS are sent by broadcast calls. It is similar to the semantics used in Remote

Procedure Calls except that the message can be directed to multiple destinations in a single call

(Birrell and Nelson, 1984). The ISIS broadcast primitive fbcast is the least costly broadcast

primitive in ISIS. It provides FIFO ordering on a point-to-point basis and it is reliable. The term

reliable means that either all the destinations receive the message or none do, even if the sender

fails. For the Enterprise system, the calls are usually sent point-to-point instead of multicast,

which is only used when multiple processes all execute redundant computations to achieve fault

tolerance. Therefore, the ordering of message delivery in the group is not important and fbcast is

used because of its low cost.

Normally ISIS sends messages indirectly via a program called protos. ISIS also supports

another protocol known as the BYPASS communication, in which messages are sent directly to

their destination directly without going through protos. BYBASS communication is used when the

following properties are satisfied:

1. The communication is to be sent to a single destination

2. The destination is a group to which the caller belongs or the caller is a client of.

3. The broadcast protocol must be one of mbcast, fbcast, cbcast or abcast1.

Broadcasts that do not satisfy the above criteria will be sent using the slower protocols.

7.4. Limitations Imposed by ISIS

The version of ISIS used is v2.2, which is effectively identical to the commercial version

v3.0. There are several effects on any application that uses ISIS.

1. Users would be required to purchase the ISIS software before they can enjoy the

benefit Enterprise offers.

2. ISIS restricts the naming of user variables. Many ISIS global variable and structures

use popular names, for example, message and address. These names are common in

the user's code and become a problem when ISIS code is inserted into the user's

1The specify semantics of the broadcast protocol is beyond the scope of this thesis, and can be found in the
ISIS documentation.

- 71 - The Enterprise Executive

code. The naming conflict actually arise when the Animation application described in

Chapter 4 is compiled.

3. Another limitation concerns the message buffer size of ISIS. ISIS may choke when

messages are sent rapidly without waiting for acknowledgement, as in asynchronous

broadcasts. When unreceived messages are queued up and the backlog of messages

gets sufficiently large, ISIS will discard new messages and send the channel

overflow signal and kill the program. For example, when the program is blocked for

I/O, the program will stop reading messages and message overflow is possible. The

limit of backlog limit is 32 Kbytes plus 8 Kbytes of data that can be in the channel.

Currently there is no way to negotiate with ISIS over the threshold for message

backlog.

4. ISIS processes are quite large. This causes considerable disruption when running the

program on a distributed environment shared by a user community. Running the

program on other users' machines may cause flushing of their file system cache

contents. When they return, they will find that their favorite files have been removed

from the cache to make room for the files of the Enterprise processes.

7.5. Implementation of Assets

As discussed in the previous chapter, an Enterprise program in execution is a set of

communicating objects. Objects which execute a user module are known as assets based on the

discussion in the previous chapter. Each asset is uniquely named by the module it runs. Asset

running a module may have more than one instance, if the asset implements a parallel structure

with multiple processes (for example, pools and contracts). Each asset must establish connection

with all its communicating partners when they start up. It has to announce its availability on the

network as well so that others can communicate with it. It also needs to know its execution state as

being busy or idle so that it will not be terminated by its manager when it is busy handling a call. It

may be running in debug mode, in which every message exchanged will be carbon copied to the

debugging monitor. The mode of execution is recorded also in global variables. It is also

necessary to declare methods and their associated selectors to handle messages for executing a

module call and messages to terminate itself. The sequence of events that takes place when one

process calls another is shown in Figure 7.1. The shaded blocks indicates the work performed by

Enterprise , transparent to the user, when a call is made. The compiler inserts the necessary stubs

for performing the message exchanges and the kernel manages the communication at runtime.

- 72 - The Enterprise Executive

User

x=f(y) pack
argument

bcast

start connect

User-stub Runtime Server

F(y)

unpack
argument

startpg_joinrecord

Server-stubRuntimelookup

pg_lookup

find idle
process

transmit

bind
address

receive

transmit

msg_get

work

return
pack
result

call
packet

result
packet

receiveunpack
result

x
avail

work

z = x

wait

bc_wait

reply

CalleeCaller

user compiler execute

Enterprise

interface

usercompilerexecute

Enterprise

interface

Isis

Network

Figure 7.1. Sequence of events in an Enterprise RPC

7.5.1. Main Structure Implementation

All the asset processes in Enterprise have the following general structures:

1. The program calls isis_remote_init() to connect itself to the ISIS server.

2. It declares task entries by calling isis_entry() to handle termination and procedure

call requests.

3. It registers itself to the asset group by calling pg_join(), which makes itself known

on the network.

- 73 - The Enterprise Executive

4. The program obtains the addresses of all its called assets by pg_lookup().

5. The program ends the start up sequence by calling isis_start_done().

6. The program then enters a loop to read messages and calls the entry procedure with

the received messages. If no message is available, the program blocks until one is

available.

7. At the end of the loop the program calls isis_accept_events() to give other ISIS

tasks, such as the termination or abort procedure, a chance to run.

The code to perform the above is inserted as generic templates into the user's program and does not

require the processing of the user's code. Instead, the exact code inserted depends on the kinds of

asset that the module is coerced to. The user's code is kept as intact as possible, except at entry

procedure declaration and entry procedure calls, so that the code will not be hard to read even after

the communication code is inserted. Also, unless the user make changes to the program code,

coercing an asset to a different kind requires only relinking the code template of the new asset.

Recompilation of the user program is not necessary. Appendix C illustrates the generic template

inserted for the modules in the Animation application. The program structure outlined above will

be discussed in detail later in this chapter.

7.5.1.1. Establish Connection

The following ISIS routine must be called to initialize ISIS before calling any other ISIS

routine. This call should be made before using any other ISIS code:

isis_remote_init(name_of_server, lport_nr, rport_nr, option);

This routine should be called in the main routine and the value lport_nr is the port number

used by ISIS to talk to applications. The value rport_nr is the port number used by ISIS to talk

to applications. The value is chosen by the system administrator when installing ISIS. If the

number is given as 0, ISIS will obtain the value from the environment variable ISISPORT or look

in the /etc/services file.

The ISIS routine isis_entry(ABORT, abort, "abort") defines that when a message is

delivered to the entry point, ABORT, a new task of the specified routine, abort, will be created to

handle the message. The last argument in the subroutine call is just a string for descriptive

purposes. An ISIS process can have many entries and each one is given a unique entry number

and messages are addressed to these entry numbers. As mentioned in the previous section, ISIS

tasks are only used in handling special messages for terminating or aborting the program.

- 74 - The Enterprise Executive

Procedure call messages addressed to the entry procedure are not handled by the task mechanism

for better performance. If the routine is specified as MSG_ENQUEUE in isis_entry, instead of

spawning a new task on every incoming message, messages to the corresponding entry point are

queued up and must be individually received.

The ISIS routine pg_join("B",0) registers the process as a member of the named asset

group. The first argument must be the name of the process group to join. The last argument must

be a 0 which marks the end of argument list. In between the two arguments, some optional

keywords may be specified, for example, to perform process logging for fault tolerance. The

routine pg_join returns the address of the group. All Enterprise assets in the application except

the one running the main module would be used by some other modules and must register itself via

pg_join. When inserting communication code in the application, an asset can be recognized as the

main module from the call tree. The main module is at the root of the call tree.

If an asset makes calls to other assets, it must obtain the addresses of those assets using the

ISIS routine pg_lookup. This routine accepts an asset name as its parameter, for example,

pg_lookup(asset), and returns the address of the process group. ISIS supports naming

transparency and the address of a process group can be obtained simply by its name, regardless of

its location in the networked environment. To speed up message delivery via the ISIS BYPASS

mode, the asset can be registered as clients to all the assets it calls. When code is attached to a

module, all the assets called by an asset can be determined from the call tree and appropriate

pg_lookup routines can be inserted. Since all the services are potentially used by every asset

(except services), for simplicity, calls to look up all the services addresses is inserted in the start

up sequence of every asset (except services).

ISIS inhibits the delivery of messages from other processes until isis_start_done is

called. This ensures all the necessary initializations are done before the process responds to any

incoming message. The routine isis_start_done informs ISIS that the start up sequence is

completed and messages can be sent to the process.

7.5.1.2. Receiving Call Messages

After the start up sequence is done and isis_start_done has been called, the program runs

in a loop to receive messages addressing to run the entry procedure, to terminate or to abort the

program. Messages to the entry procedure can be received using the call msg_p =

msg_rcv(entry). The msg_rcv call will block until a message is available. The variable msg_p

will contain the address of the incoming message. The argument entry is an integer serving as the

message selector, such that messages can be sent to this location and retrieved using the selector

key. It should be declared as a message pointer: message *msg_p. Since messages addressing

- 75 - The Enterprise Executive

the finish and abort routines will be run as ISIS tasks, these routines will be invoked even when

the program is blocked at the msg_rcv call. They will be discussed in Section 7.5.1.4.

After the message is received, the process sets the busy flag and call the entry procedure

passing the message as parameter. When the entry procedure returns, the process clears the busy

flag. The busy flag signifies that the entry procedure is in execution when the process is

interrupted by finish messages. If the busy flag is set, the process cannot be terminated.

If the program does not block in ISIS calls, other ISIS events may not get a chance to run.

At the end of the loop, isis_accept_events(ISIS_ASYNC) is called to read and deliver any

pending messages to other tasks. The control will be returned to the caller after the resulting tasks

had a chance to run. The flag ISIS_ASYNC tells ISIS to run asynchronously and continue without

blocking when there is no other task to run.

7.5.1.3. Synchronization

If an asset has multiple instances, as in pools or contracts, before a worker waits for

incoming messages, it sends to its manager its address. Using the address, the manager can

forward work to a worker. The ISIS variable my_address contains the address of the process.

The usual way to address a specific process in a group of identical process, as suggested by ISIS,

is by its rank. The oldest member in the group has rank 0, the second oldest rank 1 and so on.

Each process in the asset group therefore has a unique rank number, which the asset manager can

use to address work to a specific process. However, in the Enterprise environment, processes are

created and destroyed dynamically. For a contract asset, the number of multiple processes changes

dynamically, and thus their ranks. For a pool asset, which has a static number of processes, the

ranks of the processes may also change with time due to process migration. There is no guarantee

that the rank received by the manager is the most up-to-date information. When the rank

information is on the way through the network, the actual rank may have already changed in the

worker. Since in ISIS, an address of a process is unique and static with time, the following code

is inserted to announce a process' identity before waiting for an incoming message:

fbcast(<module>,CHECK_IN,"%A[1]",&my_address,NREPLY);

7.5.1.4. Termination

ISIS task entries are used to implement the termination algorithms. The algorithms abort and

finish are declared as an ISIS tasks using the following primitives:

isis_entry(FINISH, finish_handle, "finish_handle");
isis_entry(ABORT, abort_handle, "abort_handle");

The abort entry takes a message as parameter and calls exit immediately.

- 76 - The Enterprise Executive

abort_handle(msg_p)
message *msg_p;
{

msg_get(msg_p,"");
exit();

}

The finish entry also takes a message as an argument but instead of quitting right the way, the

request waits. The request should wait while the entry procedure is in execution or when there is

message outstanding. There is a choice here as to whether the task should block waiting for the

entry procedure to be done or the messages to be cleared, or the task should end and the request to

terminate should be remembered. The latter approach is chosen because a task consumes a lot of

memory even when it is blocked. Therefore two issues must be dealt with: first, the incoming

request should be remembered so that a reply can later be sent to the requestor when the request is

satisfied, and second, the number of outstanding messages must be known at any time.

The information pertaining to a sender resides only in the message and it is not possible to

regenerate this information. Therefore, the message must be kept around for a reply to be sent to

the correct requestor when the request is served. Normally, ISIS will automatically delete

messages when a task is done. Each message has a reference count which is 1 by default. ISIS

decrements the reference count to delete a message. When the reference count reaches 0, the

storage of the message is reclaimed. To keep ISIS from actually removing the message, the routine

msg_increfcount is called so that the reference count will not reach 0 when the entry returns.

The number of outstanding messages at an ISIS entry point can be obtained by calling

msg_ready(entry). A program should not be terminated when the number is non-zero and when

the entry procedure is running. Since ISIS tasks are run concurrently, an explicit lock must be

used to safeguard the entry procedure. The lock is implemented by global variables which are

shared by all tasks. The variable _e_busy is set when program is in the entry procedure so that the

procedure will not be interrupted.

When the required condition for termination is met, the program must flush its message

buffer before quitting. This forces all messages that may be buffered in the ISIS system to be

delivered to their destinations. The ISIS primitive flush is called to accomplish this.

This section illustrates the code required to implement different assets. The asset dependent

code is inserted to the user's module, and is independent of the content of the user's module. The

responsibility of the code includes establishing connections with other processes, accepting

incoming messages and running the entry procedure, handling of termination, and ensuring

fairness of use in assets of multiple processes. Since the above code, which implement the asset's

parallelism, is independent of the user's code, it can be compiled as a separate library. Coercing a

- 77 - The Enterprise Executive

module to use a different asset usually requires only relinking the module to use a different library,

unless the user code has been changed. As mentioned in Chapter 4, coercing an asset to a line or

department will require change in the user's code, and so requires recompilation of the user's code

in these cases. The next section describes the generation of code for making procedure calls which

are dependent on the user's code.

7.5.2. Call Implementation

The following section presents the mechanism to make Enterprise calls and to extract the

parameters from a received message. Parsing of user code is required to turn the entry procedure

to a procedure which accepts a message as parameter and extracts from it, procedure call

parameters. Processing of user code is also needed to transform entry procedure calls into ISIS

broadcasts. The compiler is responsible for the transformations. This section gives the

specification of its code generator component. The implementation is researched by Enoch Chan

(Chan, 1992) and is done by modifying the GNU gcc compiler.

7.5.2.1. Gathering of Call Parameters

The parameters used in a module call are encapsulate in a message which is sent to the

module being called using the ISIS broadcast primitive. ISIS ensures that appropriate conversions

are made if the representation of a data type varies from one machine to another (for example, VAX

integers are stored differently in memory than most other machines). The number and type of the

parameters to be exchanged must be specified by a format string in a manner similar to the C

formatted I/O functions such as printf and scanf. ISIS supports all the predefined data types

in C. The following is a list of the predefined message format types (Birman, 1992):

 %A address structure pointer or vector
 %B bitvec (vector of 128 bits) pointer or vector
 %c char
 %C char pointer or vector
 %d long int (4-byte)
 %D long int pointer or vector
 %E event_id structure pointer or vector
 %f single-precision (32-bit) float.
 %F float pointer or vector.
 %g double-precision (64-bit) float.
 %G double pointer or vector.
 %h short int (2-byte)
 %H short pointer or vector
 %l long int (4-byte); syn. for %d
 %L long pointer or vector, syn. for %D
 %m message pointer
 %P groupview structure pointer or vector
 %s character array (null-terminated character string)

- 78 - The Enterprise Executive

Upper-case format items denote a vector of the corresponding base type. In the case of a vector, a

length argument specifying the number of elements is required immediately after the vector

address. For example, the parameters used in a call or a procedure header with types defined

below

int size;
float priceTable[10];
char stockType;

will be translated into a message with the following format string and arguments

"%d%F%c",size, priceTable, 10, stockType

In ISIS, user-defined structures are supported by creating a new format string. It is therefore

necessary to extract from the parameter list of an entry procedure the names and types of the

parameters and record them in a symbol table. If the data type is not defined, a call to specify a

format string for the type must be included:

isis_define_type(typeCharacter, sizeof(struct Parameter),converter);

The argument typeCharacter is an ascii character used in format items referring to this type. It

must not redefine the ISIS predefined formats (a b c d e f h l m p s). This type character should be

recorded in the symbol table so that it will be reused when a message of this type is constructed in

other modules. The converter routine is responsible for mapping a data item of the specified type

from the byte format of a sending machine into the byte format of the receiving machine. However,

the data items encapsulated in the user defined structure must be known so that they can be

converted in turn. In our current implementation, no converter is specified. This limits the

application to run on machines that share the same byte ordering.

Since the available formats are limited by the number of allowable formats, which is small, a

casting mechanism is used instead to handle user defined structures. User structures are cast into

C characters of equivalent sizes. In sending or receiving the structure, the cast (char *) is used.

The resulting scheme is even simpler to implement. This scheme also suffers from the limitation

that the application must be run on machines sharing the same byte ordering.

7.5.2.2. Making a Call

Module calls that return a result are called f-calls and modules calls that do not return a result

are called p-calls, as discussed in Chapter 3. A p-call is translated into the following ISIS

broadcast that does not expect any reply, which is always non-blocking:

fbcast(<address>, CALL, <parameter format>, <parameters>, NREPLY);

- 79 - The Enterprise Executive

fbcast is an ISIS broadcast primitive, as mentioned in Section 7.3. The argument <address>

specifies the address of the called worker. The argument CALL is a constant which selects that the

message should invoke the call servicing method of the worker. A worker object has also methods

for handling debugging and termination requests and the selector distinguishes the different

methods. The arguments <parameter format> and <parameters> defines the format and call

parameters to be gathered into the message, as discussed in the section above. The argument

NREPLY is a constant of value 0 which specifies that no reply is expected from the call.

An f-call is translated into an ISIS broadcast that expects a reply. Non-blocking broadcast is

specified with the 'f' option in the bcast call so that a task is created to run the broadcast

asynchronously. The call <return value> = f(<parameters>) is translated to the followings:

int <return value>_token;
<return value>_token = fbcast_l('f', <address>, CALL,

 <parameter�format>,
<parameters>,
REPLY,
<return value format>,
<address of return value>);

A token is required for each asynchronous broadcast so that the return value can be received later

by a rendezvous using the token. The argument 'f' of the broadcast call specifies that the

broadcast is to be forked off as a task. There is the additional arguments REPLY, return formats

and return values. Otherwise, the call is similar to that used in a p-call. The argument REPLY has a

value of 1, which specifies the broadcast should expect a reply. The return value is the address of

the variable in which the reply can be put. The format string of return value is declared in similar

way as that in call parameters.

When the variable holding the <return_value> is referenced, the following line is inserted

just before the reference is made, to block and wait for the result to arrive:

bc_wait(<return value>_token);

If this is the first reference after the call, this may cause the program to block and wait until the call

returns. If the result is ready, the program resumes immediately. The program also resumes

immediately when the reference is not the first one. For parameters and return value declared as

follows,

int a; /* 'a' is an integer */
int b[10]; /* 'b' is an array of integers */
struct point x,y; /* 'x', 'y' are user-defined structures called 'point' */

the three C statements in a program:

- 80 - The Enterprise Executive

/* 1. making a p-call */
g(a);
/* 2. making a f-call and expecting result to be received in 'x' */
x = h(b);
/* 3. accessing 'x' */
y = x;

will each result in the translation or insertion of a call to the ISIS library:

/* 1. ISIS RPC expecting no reply */
fbcast(g_pg,CALL,"%d",a,NREPLY);

/* 2. ISIS RPC expecting a reply which can be collected via a token */
x_token = fbcast_l("f",h_pg,CALL,"%D[10]",b,REPLY,"%C",&x,sizeof(point));

/* 3. Variable accessed, 'bcwait' inserted to wait for RPC to return */
bc_wait(x_token);
z = y;

It is of interest to note that in 2, the address of the receiving variable is given as the argument, and,

the user-defined structure is received as an array of characters.

7.5.2.3. Extracting Call Parameters

The entry procedure header and the parameter declarations are translated into an entry which

extracts the parameters from an ISIS message. A format string for the parameters is generated

based on the data type of the parameters. The format string and parameters are stuffed into a

receive call which is inserted into the user code. The entry procedure <function>:

<function>(<parameters>)
<parameter type declarations>;
{
 <local variables>
 ...
}

is translated into

<function>(msg_p)
message *msg_p;
{
 <parameter type declarations>; /* parameters declared as local variables */
 msg_get(msg_p, <parameter format>, <address of parameters>);
 {
 <local variables>
 ...
 }
}

For example, a stub procedure declared as follows,

g(x,y)

- 81 - The Enterprise Executive

int x;
struct y;
{
}

will be translated to:

g(msg_p);
message msg_p;
{

/* ISIS call to extract variables from a message. */
msg_get(msg_p,"%d%C",&x,&y,dummy);

}

The addresses of the parameters are given as arguments, and, the structure is extracted as an array

of characters. The dummy argument is a place holder. This argument was originally used to put the

size of the array, which is not of concern here. Array parameters with dynamic size will not occur

in Enterprise because pointers are not allowed as parameters.

After the call has been received and the entry procedure executed, a result may be returned.

An ISIS reply call will be inserted before any return statement in the entry procedure:

return(<return value>);

will be translated into the statements

reply_l("f",msg_p, <return value format>, <return value>);
return;

which sends the return value to the caller using the fbcast mechanism (denoted by "f"). For

example, if the return value is declared as follows,

int a; /* 'a' is an integer */

the return statement:

return a;

will be translated to:

reply_l("f",msg_p,"%d",a);
return;

7.6. Implementation of Managers

Besides assets, the other class of objects that exists in the run time environment are

managers. Initially, the manager was implemented as a single process encompassing all the

responsibilities of the classes asset managers, machine manager, and execution manager defined in

the previous chapter. This was the approach used in implementing the general model in

- 82 - The Enterprise Executive

FrameWorks. There were two manager process, the Execution Time Monitor (ETM) and the

Butler (Nichols, 1987). The Butler maintains a database that contains information on the load-

status of machines on the network, which is similar to the UNIX ruptime program. The ETM

oversees the execution of a FrameWorks application and performs many functions:

1) It carries out the initial hand-shake procedure to ascertain that all the processes in the

application have started properly.

2) It coordinates the execution of calls and returns between clients and workers.

3) It executes the termination procedure of the entire application.

4) It may collect run time statistics and event history of the application which can be

used in post-execution analysis.

The ETM is therefore the main control center of a FrameWorks application. The initial

implementation for Enterprise followed a similar direction. However, it was soon realized that the

single process which carries out all the different responsibilities and acts as a communication center

soon became a bottleneck of the system. Collecting load averages and launching processes on

machines usually requires substantial waiting time. In the mean time, a large number of call

messages may be queued up in the system waiting to be routed to their appropriate destinations.

Therefore, in the subsequent versions of the Enterprise executive, the responsibilities of the

manager class are split amongst different processes. In the next section, the implementation of the

asset manager, which is concerned with routing a call to an available worker process is discussed.

7.6.1. Implementation of Asset Managers

In assigning the work for an asset manager, there are two choices. The asset manager can

route all the call messages from different modules in the application to their respective destinations.

Alternatively, it can coordinate only the calls to a single module, having an asset manager to

manage each module. The latter would have the advantage of enhanced transparency, since the

asset manager can then represent a worker. A client is not concerned with whether it is calling a

worker of multiple instances or a single worker. Moreover, this can avoid a potential

communication bottleneck when several clients are calling different modules, since the calls will be

routed through different asset managers. This may not mean substantial improvement in

communication if the application is to be run on the Ethernet, since all the messages would still be

jamming through a single bus. However, this approach exhibits more parallelism and a call to a

module would not have to wait when the manager is busy coordinating the call of another module.

Although the asset managers are managing different workers, they can be implemented using the

- 83 - The Enterprise Executive

same program and the binding of the worker to be managed can be done at run time. In terms of

object-oriented approaches, this is known as different instantiation of the same class method. In the

current implementation, a separate asset manager is launched at run-time to manage every asset

(except individual, whose incoming calls are not managed because there is only one process to

handle the calls).

The main responsibility of the asset manager is to forward calls from a client to an idle

worker. When implementing the asset manager, there are two choices. A call request could block,

waiting for an idle worker to declare itself, or it could be saved somewhere reasonable when there

is no idle worker. The latter would be a more efficient solution because tasks use up a lot of

memory. If no idle worker is available, the message is queued up. The message is prevented

from being deleted by the ISIS system using the routine msg_increfcount(msg_p). When a

worker is available, it sends a message to the manager registering itself. On receipt of this

message, the asset manager removes the first message in the queue and sends it to the worker

using the ISIS forward() routine. This ISIS primitive will send the message to the worker while

using the last sender as the sender of the message, so that the worker can reply directly to the

original sender. If there is no message waiting in the queue when a worker registers itself, the

worker is appended to the queue of idle workers. When the message has been forwarded to the

worker, the message should be explicitly removed by calling msg_delete(). Otherwise, the

accumulation of useless messages can result in a memory leak, in which the program gradually

becomes more and more bloated and creaks to a halt eventually.

7.6.2. Implementation of Machine Manager

As mentioned in Chapter 6, the machine manager has three main responsibilities: to establish

the necessary connection, to put the processes on machines, and to monitor the load condition in

the environment. To carry out these responsibilities, the machine manager maintains the necessary

data structures to record the dynamic binding of processes to machines. It updates the data

structures when the binding changes. To ensure fairness in the allocation of machines to

processes, several queues are maintained with each recording processes with different priorities.

The queues also keep track of the machines which are free, used, busy and overloaded. To detect

load changes, periodically, the resource secretary informs the machine manager of the load

averages. The UNIX rsh command is used to put processes on remote machines in the

environment.

7.6.2.1. Process-Machine Binding

The machine manager maintains the binding recording which machines each Enterprise asset

runs on. Every Enterprise asset is implemented as a unique ISIS process group with the asset name

- 84 - The Enterprise Executive

being the group name. Enterprise assets (for instance, pool) may have multiple processes at run

time. A group running the pool or contract asset thus has more than one process in the group.

When a machine becomes busy, processes on the machine must be removed. The machine

manager finds out what asset each process on the machine belongs to and requests the asset

manager to have the particular group member removed. At any moment, arbitrary processes of an

asset may be removed to migrate the processes or cut back a contract. Initially, the entire mapping

of machines and processes is stored in a dynamic hash table as shown in Figure 7.2.

mid
replica

mid
replica

mid
replica

next

next

next

0

2

1

0

1

0

NULL

Busy
Used

Used
Used

status
process

size 4table

mid
replica
next

2
0

mid
replica
next

IS_AGENT

cmid

Figure 7.2. Preliminary Machine Table Structure

The processes allocated to the machines are put in the buckets indexed by the machine id's. The

hash table data structure supports the requirement of binding more than one record with a hash

index, and can handle the situation when more than one process is moved on to a machine.

However, this table soon proves insufficient because updating a process on the mapping affects

not only the machine, but the composition of the asset in some cases. The processes in a group

running an asset are always ranked in their order of creation. For managers to address a call to the

correct worker, up-to-date rank information must be maintained. Also, removing a process from

the network not only subtracts a process from the machines, but also decreases the number of

members of an asset. Initially, this information is scattered in different tables with some duplicated

information found in the asset table and the machine table. The asset table is shown in Figure 7.3.

The mapping structure is not only costly to update at run time, but is hard to maintain and

understand since it does not correspond well with the real model of the operation. Therefore, the

structure is redefined according to the operation required.

- 85 - The Enterprise Executive

module
table

sass-lake

ardmore

bellis

sundog

name

asset

replica

include

exclude

PolyConv

Individual

NULL

1

pg

pg_gv

mgr_gv

mgr

machine

name

asset

replica

include

exclude

Model

Individual

NULL

NULL

1

Module table entry

pg

pg_gv

mgr_gv

mgr

machine first

lastModule table entry

name

asset

replica

include

exclude

Split

Pool

NULL

NULL

2

Module table entry

pg

pg_gv

mgr_gv

mgr

machine

address

address

groupview

groupview

address

address

groupview

groupview

groupview

groupview

address

address

value

link

1

link

0

last

valuefirst

last

first value

link

1

value

link

1

Figure 7.3. Preliminary Asset Table Structure

- 86 - The Enterprise Executive

A doubly-linked list is used to organize processes in an asset. This structure allows for the

convenient removal of arbitrary process and recalculation of the id of the other processes. The id

of a process is not stored but computed by traversing the list. The id only needs to be computed or

updated when a process is removed. Storing or computing the id does not represent any trade-off

in computation cost. The latter costs less in terms of storage. The linked-lists of processes in

different assets are organized as an array of linked-lists. Consistent with the ISIS convention,

processes are organized to have the most recent process bearing the largest id. Although processes

can be removed in arbitrary order, processes are always added to the end of the linked-list.

Processes to run the manager of an asset are also organized as doubly linked-lists.

From time to time, arbitrary processes on a machine may be removed. The request to remove

the process may come from two sources. A machine manager may remove a process from the

machine when the load on it becomes heavy. A contract manager may request to have its surplus

workers removed. These requests may involve updates of arbitrary workers. Therefore, a doubly-

linked list is also used to organize processes on a machine.

When adding or removing a process of an asset on a machine, the process needs to be

examined with regard to both the machine and the asset. Each process record should therefore be

simultaneously an element of one of the machine list and one of the asset list. The resulting data

structure is an orthogonal list. Each process record contains two sets of pointers, machine-links

and asset-links, by which the orthogonal doubly-linked list are formed. This structure, which is the

principle data structure maintained by machine manager, implements the allocation map of

processes to machines. Each process contains, in addition to the links to the next process, a status

flag to mark the process as active or inactive and a process id. When an asset manager (having all

its member on the idle queue) considers the asset it manages as inactive, it informs the machine

manager and the flag is set. When the machine manager launches a process, its process id is

recorded. Whenever a SIGCHLD signal is received, the process id returned from wait is used to

determine if the process has been abnormally terminated. Processes terminated normally by the

machine manager would have their record removed and their process id would not be found. Child

processes run by the machine manager are waited to avoid creating a large number of zombie

processes. Figure 7.4 shows the process node structure of the following declaration:

struct struct process_node {
int status, pid;
struct process_node *machine_next,*machine_prev, *asset_next,*asset_next;

}

- 87 - The Enterprise Executive

StatusPid

link to previous process of asset

link to previous process of machine

link to next process of machine

link to next process of asset

Process Node

Figure 7.4. A Process Node Structure

3

D

0 1 2

1

2

ACTIVE ACTIVE INACTIVE

0

A

A

A

INACT

ACTIVEACTIVE

ACTIVE

ACTIVE

1329

1330

1367

1450

1331

asset
record

asset
record

asset
record

Array of Asset Header Structure

A
rr

ay
 o

f M
ac

hi
ne

 H
ea

de
r S

tr
uc

tu
re

link to
next
process
of asset

link to
previous
process
of asset

INACT INACT1451 1452

Process Node

link to next process of machine
link to next
previous of
machine

Figure 7.5. Process-Machine mapping structure

- 88 - The Enterprise Executive

Since doubly-linked lists are used in the structure, the header records in the lists are of same type

as the process node. Figure 7.5 shows an example of the data structure configuration with several

process node connected together as process are added to machines and assets.

An asset list header is different from a process node in that the machine links and the process

id field are unused. The field for process id is used to hold the asset id, which is the index of the

asset list header in the entire array of asset list headers. Assets in the array are arranged in the order

of the call graph structure. Since service assets may be called by any other asset, they are always

placed at the end after all other assets. The link to the next processes of machine field is used to

reference the last item in the process list, so that processes can always be added to the end of the

list. The link to the previous process of machine field points to an asset record which has a

structure shown in Figure 7.6. The asset record records many useful attributes and characteristics

of the asset, such as its name, kind, machine preferences, and number of members.

struct asset_record {
char *name;
asset_type kind;
int nr_replica;
QUEUE include, exclude;

}

name

kind

nr_replica

include

exclude

pool

3

Model

1, 5, 2

Asset Record

id

status

previous process of machine

next process of machine

previous process of asset

next process of asset

3

0

Asset Header

Process
Record

Figure 7.6. Asset Header Structure

A machine header also has two unused links compared to a normal process node. The field

for process id is used to hold the index of the machine header, as in asset headers. The field for

process status is used to hold the machine status. Machine status is different from process status. A

machine may be in one of the three status: allocated, deallocated and free. The link to the previous

process of asset field is coerced to a string pointer which references the name of the machine. The

link to the next process of asset field is currently unused. It may be later used to point to a string

- 89 - The Enterprise Executive

describing the machine architecture type (for example, sun3 or sun4, ... etc). The header structure

is shown in Figure 7.7.

id

status

previous process of machine

next process of machine

previous process of asset

next process of asset

3

0

Machine Header

sun020.ucs.ualberta.ca

Process
Record

Figure 7.7. Machine Header Structure

7.6.2.2. Queues

In addition to the principle allocation map structure, the machine manager uses a number of

queues to carry out the allocation/deallocation procedure. Each record in the queue contains an

integer, which is the machine id. The structure is shown in Figure 7.8.

value

link

5

NULL

value

link

10first

last

QUEUE

Figure 7.8. Queue Structure

Usually remove operations satisfy the first-in-first-out (FIFO) order as normal queues do,

however, removal of arbitrary items from the queue is also supported. For example, if the

Enterprise user has a specific choice of machines, the machines will not be removed in FIFO order

from the free queue. The machine manager also uses the graph structure as discussed in Chapter

3. This is the same graph structure used in the textual interface.

7.6.2.3. Resource Secretary

The resource secretary is implemented as part of the machine manager as a temporary

measure. The UNIX program ruptime is used to obtain the load averages on all the interested

machines. The program ruptime can output if the machine is currently up or down, and three

- 90 - The Enterprise Executive

integers that indicate the load averages on the machines during the last 1, 5 and 15 minutes. If the

load average over the last 1 minute is below a certain threshold, it is marked as usable. This

mechanism has the disadvantage of using a magic threshold to determine if the machine is heavily

loaded. The result is piped (on UNIX pipes) to the machine manager.

7.6.2.4. Launching Remote Processes

A simplistic reverse depth first traversal is used to launch processes on the allocated

machines. The launching is started from the leaves of the call tree, so that a module used by other

module will be put on the system before the modules using it. This will enable the acquaintance

amongst the modules to be established as soon as possible. When launching processes on remote

machines, the UNIX routine system was used initially. However, this routine forks off a UNIX

shell which then executes the required command. Running the UNIX shell is an unnecessary step

and it costs both time and memory. It doubles the number of processes created for each command

executed, which is an unacceptable overhead. The memory and time required to run the UNIX

shell depends on the shell program the user is running, and the complexity of his / her shell start

up script, sometimes the cost can be substantial. In addition to run the shell, it also costs to

duplicate the address space of the parent. As mentioned in Section 7.2 of this chapter, ISIS

processes are very large. It is always not feasible to clone an ISIS process. It can happen that the

operating system simply runs out of process entry space or memory to run the number of

Enterprise processes required. Therefore, instead of using the system command, the machine

manager simply vfork's a child and calls exec to launch the processes directly. The command

vfork is used because the address space is not copied when spawning the child process. The

issue of cost trade-offs in using the system call system, fork, and vfork are usually not a

concern for most system programmers. This work presents a special case in which these

implementation choices play an important role.

7.6.3. Implementation of Execution Manager

The execution manager interfaces the kernel to the other components in the overall Enterprise

architecture, such as the code librarian and application manager. It accepts an Enterprise asset

graph which is the data that communicates between the executive and the application manager.

Although the Enterprise graph is actually used in the machine manager, the data structure to

implement the graph is discussed in this section, since the Execution Manager serves as the front

end to accept the graph.

- 91 - The Enterprise Executive

department 3 A B C
line 2 B D
contract C
pool 3 D
service E
service F
A

library table.o queue.o -lm
B

include sass-lake, ardmore, bellis
exclude sundog

Figure 7.9. A Sample Enterprise Graph

name

asset

nr_replica

nr_callee

include

exclude

callee

E

service

1

0

Service Node

library

name

asset

nr_replica

nr_callee

include

exclude

callee

F

service

1

0

Service Node

library

Services List

Figure 7.10. Service Structure of the Enterprise Application in Figure 7.8.

- 92 - The Enterprise Executive

head

sundog

sass-lake

ardmore

bellis

machines

machines

callee pointers

name

asset

nr_replica

nr_callee

include

exclude

callee

Model

Individual

1

2

Call graph node

name

asset

nr_replica

nr_callee

include

exclude

callee

A

individual

1

2

Call graph node

name

asset

nr_replica

nr_callee

include

exclude

callee

B

individual

1

1

Call graph node

name

asset

nr_replica

nr_callee

include

exclude

callee

C

contract

1

0

Call graph node

table.o

queue.o

-lm

object files

library

library

library

name

asset

nr_replica

nr_callee

include

exclude

callee

D

pool

3

0

Call graph node

library

Figure 7.11. Call Graph Structure of the Enterprise Application in Figure 7.8

The program in Figure 7.9 serves only to illustrate its corresponding representation using the

internal graph structure. A node in the call graph is identical to a node in the service list, although

the overall organization is different. This example also demonstrates the implication of various

coercions in Enterprise in terms of the call structure they generate.

- 93 - The Enterprise Executive

7.7. Application Independent Experiments

These experiments were done to investigate the cost of executing Enterprise calls with

varying message sizes. They offered insight into the performance characteristics and overheads of

Enterprise. These results are not intended to be comprehensive but to investigate the kind of

applications that can achieve speedup by using Enterprise. A sample of these applications,

described in Appendix A, were tested to confirm the findings in this section.

The application independent results would also provide some suggestions for the relative

performance characteristics of programming using various Enterprise assets. Although

conceptually there are more than two kinds of assets, physically, Enterprise processes have only

two configurations: single and replicated. Assets like pools, contracts and divisions are supported

at run time by a group of replicated worker processes. Module calls made to a group of replicated

workers are performed via a forwarder to ensure the job is taken by an idle worker. Module calls

to a single process are made directly. By investigating the cost of these two kinds of calls, the

cost of different kinds of assets are demonstrated. The experiments used to investigate

FrameWorks were repeated here so that a comparison could be made. Since all Enterprise calls are

asynchronous, only the p-call was experimented. The cost of an f-call would differ only by the

extra cost of the reply. The time taken for 100 calls was measured for the two call configurations.

Each experiment was repeated five times and the average of the observed times was calculated in

each case. The results are shown in Figures 7.12.

806040200
0

10

20

30

40

50

60

Forward
Direct

Message Size (Kbytes)

T
im

e
/1

0
0

M

e
s

s
a

g
e

s

(S
e

c
o

n
d

s
)

Figure 7.12 Cost of 100 Enterprise Calls

- 94 - The Enterprise Executive

To compare Enterprise with the benchmark done by ISIS, the time required for a single call was

also measured. Figure 7.13 shows the average time taken in executing a call as the message size is

varied.

806040200
0.0

0.1

0.2

0.3

0.4

0.5

0.6

Forward
Direct

Message Size (Kbytes)

T
im

e
/1

0
0

M

e
s

s
a

g
e

s

(S
e

c
o

n
d

s
)

Figure 7.13 Cost of a Single Enterprise Call

Some useful observation can be made concerning the results. Figure 7.12 shows that the

performance of doing 100 calls in Enterprise is similar to that in FrameWorks. A direct call in

Enterprise is identical to a call in the pipeline configuration of FrameWorks, whereas a forwarded

call in Enterprise is similar to a call in the manager configuration of FrameWorks. Enterprise is

faster than FrameWorks in direct call and slower in call via a forwarder. These results are

consistent with those reported by Birman, Schiper and Stephenson (1991). There has been no

reported result on the performance of a call using the ISIS forward mechanism, however,

intuitively the cost should be similar to that required in multicasting a call to two destinations,

based on the amount of message exchange required. At the time of this writing, the forward

mechanism in ISIS is not working completely and additional cost is incurred in an awkward

workaround. In Enterprise, parameters in a call are sent directly as ISIS messages. There is no

control information piggybacked on the message and so no additional cost is incurred. However,

it should be noted that ISIS puts 220 bytes of header information on each packet transmitted. The

same overhead would be required by the user if the program is written directly using ISIS code to

achieve similar functionality as that generated by Enterprise.

- 95 - The Enterprise Executive

The results in Figures 7.12 and 7.13 also suggest that calling via a forwarder is expensive.

They represent the cost of a call forwarded to a single destination. When forwarding to multiple

destinations, as in a pool or contract, the cost multiplies. It is a rule in parallel processing that

adding more processor will not result in additional speedup unless each processor can work on a

task of sufficient granularity. Figure 7.11 can be used as a guideline for the extent to which a

program should be parallelized. Because of the high cost of communication in calls using a

forwarder, in the Animation program given in Appendix A.1, coercing the Spilt asset to a pool of

three process did not yield significant speedup. On the other hand, large grain computational

intensive applications with grain size in the order of several seconds and even minutes are not

uncommon in practice. For instance, the Parallel π and Parallel Prime Number computation in

Appendices A.2 and A.3 have the grain sizes that are well within the range of good performance

for the pool assets.

Birman, Schiper and Stephenson (1991) also give a detailed analysis of ISIS' performance

and a comparison with SUN RPC. It has been reported that a null 2-process remote procedure call

in ISIS had a round-trip latency of 6.51 ms. A 1 K message and a null reply took 7.86 ms. ISIS

requires substantial CPU time in its creation of a lightweight task on the remote side, and recording

the wall-clock time on every message sent or received. These represent significantly more work

than those involved in other packages such as NMP or SUN RPC.

The results in Figures 7.12 and 7.13 also show that cost of communication grows quickly

with the message size. ISIS is implemented using UDP, instead of TCP, because of TCP's small

limit on the number of open connection at any time. However, the UNIX UDP implementation

fails to handle high volume traffic. For example, having a hundred 4000-8000 bytes messages in

transit at one time will actually cause UNIX to lose both outgoing and incoming UDP packets

silently. ISIS uses a heuristic flow control which chokes the sender just before it is expected to

overload UNIX. On the other hand, TCP is no better in handling high volume communication, as

it is also limited to a buffer size of 52 Kbytes (Stevens, 1990). Therefore, applications that

generate voluminous traffic will not benefit from using Enterprise, which is implemented on ISIS.

An application of this kind not only runs up a huge "bill" in terms of CPU cycles needed to

generate the message, but also overloads UDP and chokes the system if the destination does not

consume the data out at a reasonable rate.

7.8. Conclusions

This chapter described the implementation of the Enterprise executive. It presented a

justification and analysis of the implementation. Several implementation trade-offs were

considered, for example, ISIS tasking verses direct message receive. These experiences should

- 96 - The Enterprise Executive

provide useful references to other developers who use ISIS as their implementation tool. The

practical feasibility of the implementation was evaluated using a set of experiments. For large grain

applications, Enterprise should be a platform for achieving good speedup. In contrast to a

automatic parallelization tool, an Enterprise user still has full control over the parallel structure used

in the application through the application graph.

- 97 - The Enterprise Executive

Chapter 8

Conclusions and Future Research

8.1. Conclusions

This thesis demonstrates that the Enterprise system is worthwhile for developing distributed

application. The thesis research consists mainly of two parts, the model and the realization of the

model. The first half of the thesis describes the model and how it can be used to develop

applications. The product of the research is a textual interface. The second half of the thesis

presents the approaches to achieve the model. It contains a discussion of the design and

implementation of the executive. The thesis concludes with the development of an application using

Enterprise and a discussion of the performance achieved.

The first half of the thesis focuses on the programming model. Enterprise is distinct from

other distributed programming environment in many aspects. Enterprise supports the unique

programming philosophy of parallelization by hierarchical coercions. In many parallel or

distributed computing environment, the user needs to draw communication graphs which usually

involves drawing a diagram to connect nodes (processes) with arcs (communication paths). In

Enterprise, the user is spared from these chores, instead, coercing and expanding nodes are all that

required. Chapter 1 presented this design philosophy. Each kind of coercion represents a high

level parallelization technique and is represented by an entity known as asset. Enterprise uses the

analogy of an organization to illustrate each technique supported, for example, line and department.

This analogy model is presented in Chapter 3, which describes the semantics of each coercion

method in terms of data/control flow. In general, parallelism can be achieved by replication and

partition of computation process, which are specified in Enterprise by hierarchical coercions. A

textual user interface has been developed to support this programming concept. The feasibility of

the programming model has been experimented by constructing several program using the

environment, including an Animation program .

The other half of the thesis presents the design and implementation of the Enterprise

executive. The system is developed using the ISIS distributed library package. An object-oriented

methodology, which supports hierarchical design and program reuse, is used in the design. The

experience from FrameWorks (Singh, 1991) proved useful in many areas of the development of

Enterprise. The execution model was presented in Chapter 6 and 7. This model has the major

- 98 - The Enterprise Executive

advantage that coercing an asset will change only the asset itself since its internal composition is

transparent to other assets. The model also ensures the proper handling of many concurrency

issues such as synchronization, fairness and termination. For example, an Enterprise user will be

relieved from the tedium of terminating any run-away process. Throughout the design and

implementation, the issue of performance has always been a major concern, since the environment

is aimed at supporting the notion of "the network is the supercomputer". This includes the

awareness of detailed implementation issues, like using the less usual style of ISIS programming

without tasks. A set of experiments is performed to assess the usefulness of the system and it is

concluded that Enterprise provides an easy way to achieve good speedup on coarse grain

problems.

8.2. Enterprise - The Next Generation

The Enterprise system is at the stage of prototyping and many of the desired features are still

missing in the system. The project is an ongoing research project and this thesis is just a snapshot

on some of the components of the system. For instance, the graphical user interface and the

debugger is not described in this thesis. This section suggests some of the directions that future

research can explore.

1. Several components of the Enterprise system are implemented as temporary

measures, including the textual interface. Currently the graph is described by text.

The interface can be improved to use menus developed using the UNIX curses

screen handling package. Moreover, the syntax for specifying machine preferences

can be extended to use query type descriptions such as 'memory > 8M'.

2. Another component of the Enterprise system which has been implemented as an

interim measure is the resource secretary. In this thesis, the secretary is simply the

UNIX ruptime program. Research is currently underway to construct a more

sophisticated resource secretary (Theimer and Lantz, 1989).

3. As discussed in Chapter 7, implementing the communication primitives using ISIS

libraries imposes several limitations. The most important limitation may be that users

may need to acquire ISIS before they can use Enterprise. In general, any

communication library can be used. Currently, the major ISIS features that

Enterprise utilizes, in their order of extent, are process grouping, transparent global

naming, message addressing by selectors, and concurrent tasks. Similar features are

also supported by other distributed systems such as PVM (Sunderam, 1990) which

can be used as an alternative communication backend.

- 99 - The Enterprise Executive

4. Currently a simplistic depth-first traversal of the call tree is used to bind processes to

machines. No effort has been made to map a process' resource utilization

characteristics with the processor's capability. Processor allocation has always been

an area of intensive research. A suitable heuristic would be to collect run time

statistics of the application and use this information to improve the process allocation

in the next run (Yan and Lundstrom, 1989).

5. The system described in this thesis executes Enterprise applications on a

homogeneous network of machines. However, research is taking place (Chan,

1992) to investigate the extension of the current system to support a heterogeneous

environment using the Imake program (DuBois, 1990).

6. At this moment Enterprise does not have sophisticated support for source code

control or compilation on demand. The system will recompile all the assets in an

Enterprise graph unless the user specifies a particular asset. Currently the

Enterprise graph can be constructed using any text editor, it is not easy to determine

from the graph if the user has coerced an asset. Coercion does not require the

modification of the associated code, unless the call structure is altered. Therefore it is

not possible to decide which asset is coerced by looking at the modification date of its

source code file. The graphical editor, however, can support this feature since any

modification to the graph goes through the Enterprise graphical interface.

7. Several new asset kinds are under construction. Many parallel/distributed

programming environments support a pardo (or parallel for-next) construct in which

the results are retrieved in the order which the RPC's are made. An asynchronous

pool asset is being researched, in which items are sent off to compute asynchronously

and the results can later be collected in a first-done-first-retrieved order. This would

be similar to the concept of a bag in the sequential paradigm. In terms of execution,

this asset is no different from an ordinary pool except that results should be polled

instead of waited in a fixed order. The ISIS primitive bc_pool can be used to check

if result from an RPC has been returned.

- 100 - The Enterprise Executive

References

G.A. Agha. ACTOR: A Model of Concurrent Computation in Distributed Systems, 1986,
MIT Press, Cambridge.

B. Appelbe and K. Smith. PAT: Interactive Conversion of Sequential to Parallel Fortran,
IEEE COMPCON, 1990, pp. 585-588.

O. Babaog
u
lu, L. Alvisi, A. Amoroso and R. Davoli. Paralex: An Environment for Parallel

Programming in Distributed Systems, 1991, Technical Report UB-LCS-91-01,
Department of Mathematics, University of Bologna, Bologna, Italy.

R.G. Babb. Parallel Processing with Large Grain Data Flow Techniques, IEEE Computer,
1984, vol. 17, no. 7, pp. 55-61.

R.G. Babb, II. Programming Parallel Processors, 1988, Addison Wesley, Reading.

H.E. Bal, J.G. Steiner and A.S. Tanenbaum. Programming Languages for Distributed
Computing Systems, ACM Computing Surveys, 1989, vol. 2, no. 3, pp. 261-322.

G.M. Baudet.The Design and Analysis of Algorithms for Asynchronous Multiprocessors,
1978, Ph.D. Thesis, Computer Science Department, Carnegie-Mellon University.

A. Beguelin, J.J. Dongarra, G.A. Geist, R. Manchek and V.S. Sunderam. Graphical
Development Tools for Network-Based Concurrent Supercomputing, in Proceedings
of Supercomputing 91, 1991, pp. 435-444.

A. Beguelin, J.J. Dongarra, G.A. Geist, R. Manchek, K. Moore, R. Wade, J. Plank, and
V. Sunderam. HeNCE: A User's Guide Version 1.2, 1992, Oak Ridge National
Laboratory.

G. Bilardi. Some Observations on Models of Parallel Computation, in Opportunities and
Constraints of Parallel Computing, 1989, Springer Verlag, New York, pp. 11-13.

K. Birman, T. Joseph, T. Raeuchle and A.E. Abbadi. Implementing Fault-Tolerant
Distributed Objects, IEEE Transactions on Software Engineering, 1985, vol. SE-11,
no. 6, pp. 502-508.

K. Birman, A. Schiper and P. Stephenson. Lightweight Causal and Atomic Group
Multicast, ACM Transactions on Computer Systems, 1991, vol. 9, no. 3, pp. 272-
314.

K. Birman. The Process-Group Approach to Reliable Distributed Computing, 1991,
Technical Report TR-91-1216, Computer Science Department, Cornell University.

K. Birman, R. Cooper and B.Gleeson. Design Alternatives for Process Group
Membership and Multicast, 1991, Technical Report TR-91-1257, Computer Science
Department, Cornell University.

- 101 - The Enterprise Executive

K. Birman. How to Securely Replicate Services, 1992, Technical Report TR-92-1274,
Computer Science Department, Cornell University.

A. D. Birrell and B. J. Nelson. Implementing Remote Procedure Calls, ACM Transactions
on Computer Systems, 1984, vol. 2, no. 1, pp. 39-59.

K.S. Booth, J. Schaeffer and W.M. Gentleman. Anthropomorphic Programming, 1984,
Technical Report CS-82-47, Department of Computer Science, University of
Waterloo.

G. Booch. Object-Oriented Development, IEEE Transactions on Software Engineering,
1986, vol. SE-12, no. 2, pp.211-221.

J.C. Browne. Formulation and Programming of Parallel Computations: A Unified
Approach, in Proceedings of the International Conference on Parallel Processing,
1985, pp. 624-631.

J.C. Browne. Framework for Formulation and Analysis of Parallel Computation
Structures, Parallel Computing, 1986, vol. 3, pp. 1-9.

J.C. Browne, M. Azam and S. Sobek. CODE: A Unified Approach to Parallel
Programming, IEEE Software, 1989, vol. 6, no. 6, pp. 10-18.

J.C. Browne, T. Lee and J. Werth. Experimental Evaluation of a Reusability-Oriented
Parallel Programming Environment, IEEE Transactions on Software Engineering,
1990, vol. 16, no. 2, pp. 111-120.

J.C. Browne, K. Sridharan, J, Kiall, C. Denton and W. Eventoff. Parallel Structuring of
Real Time Simulation Programs, IEEE COMPCON, 1990, pp. 580-584.

J.C. Browne, J. Werth and T. Lee. Intersection of Parallel Structuring and Reuse of
Software Components: A Calculus of Composition of Components for Parallel
Programs, in Proceedings of the International Conference on Parallel Processing,
1989, pp. 126-130.

N. Budiraja, K. Marzullo, F.B. Schneider and S. Toueg. Primary-Backup Protocols:
Lower Bounds and Optimal Implementations, 1992, Technical Report TR-92-1265,
Computer Science Department, Cornell University.

N. Carriero and D. Gelernter. Applications Experience with Linda, in Proceedings of the
ACM Symposium on Principles of Programming Languages, 1988, ACM, New
York.

N. Carriero and D. Gelernter. Linda in Context, Communications of the ACM, 1988, vol.
32, no. 4, pp. 444-458.

N. Carriero and D. Gelernter. How to Write Parallel Programs, ACM Computing Surveys,
1989, vol. 2, no. 3, pp. 323-357.

L. Chang and B.T. Smith. Classification and Evaluation of Parallel Programming Tools,
1990, Technical Report 1990-22, College of Engineering, University of New
Mexico.

- 102 - The Enterprise Executive

A. Chatterjee. Futures: A Mechanism for Concurrency Among Objects, in Proceedings of
Supercomputing '89, 1989, pp. 562-567.

E. Chan, P. Lu, J. Mohsin, J. Schaeffer, C. Smith, D. Szafron and P.S. Wong.
Enterprise: An Interactive Graphical Programming Environment for Distributed
Software Development, 1991, Technical Report TR 91-17, Department of Computing
Science, University of Alberta.

E. Chan. The Enterprise Librarian, 1992, M.Sc. Thesis, Department of Computing
Science, University of Alberta, in preparation.

D. Cheriton and W. Zwaenepoel. Distributed Process Groups in the V Kernel. ACM
Transactions on Computer Systems, 1985, vol. 3, no. 2, pp.77-107.

D. Comer. Operating System Design: The XINU Approach, 1984, Prentice-Hall, Toronto.

J.B. Dennis and E.C. Van Horn. Programming Semantics for Multiprogrammed
Computations, Communication of the ACM, 1966, vol. 9, no. 3.

E.E. Dijkstra. Selected Writings on Computing: A Personal Perspective, 1982, Springer
Verlag, New York.

D.C. DiNucci and R.G. Babb II. Architecture of the Parallel Programming Support
Environment, IEEE COMPCON, 1989, pp. 102-107.

P. DuBois. Using Imake to Configure the X Window System Version 11 Release 4, 1990,
Wisconsin Regional Primate Research Center.

M.R. Eskicioglu. Design Issues of Process Migration Facilities in Distributed Systems,
IEEE TCOS Newsletter, 1990, vol. 4, no. 2, pp. 3-13.

S. I. Feldman. Make - A Program for Maintaining Computer Programs, Software -
Practice and Experience, 1979, vol. 9, pp. 255-265.

W. Fenton, B. Ramkumar, V.A. Saletore, A.B. Sinha and L.V. Kalé. Supporting
Machine Independent Programming on Diverse Parallel Architectures, in Proceedings
of the International Conference on Parallel Processing, 1991, pp. 193-201.

M. J. Flynn. Very high-speed computing systems. in Proceedings of the IEEE, 1966, vol.
54, pp. 1901-1909.

J. Foley, A. van Dam, S. Feiner and J. Hughes. Computer Graphics: Principles and
Practice, 2nd edition, 1990, Addison Wesley, Reading.

G. Fox, M. Johnson, G. Lyzenga, S. Otto, J. Salmon and D. Walker. Solving Problems
on Concurrent Processors, 1988, Prentice Hall, Englewood Cliffs.

G.A. Geist and V.S. Sunderam. Experiences with Network Based Concurrent Computing
on the PVM System, 1991, Report Number TM-11760, Oak Ridge National
Laboratory.

J. Gettys, P.L. Karlton and S. McGregor. The X Window System, Version II, Software -
Practice and Experience, 1990, vol. 20, no. s2, pp. s35-s67.

- 103 - The Enterprise Executive

W. Harrison. Tools for Multiple-CPU Environments, IEEE Software, 1990, vol. 7, May,
pp. 45-51.

P.J. Hatcher, M.J. Quinn, A.J. Lapadula, R.K. Seevers, R.J. Anderson and R.R. Jones.
Data-Parallel Programming on MIMD Computers, IEEE Transactions on Parallel and
Distributed Systems, 1991, vol. 3, no. 2, pp. 377-383.

W.D. Hillis and G.L. Steele, Jr. Data Parallel Algorithms, Communication of the ACM,
1986, vol. 29, no. 12, pp. 1170-1180.

K. Hwang and F. Briggs. Computer Architecture and Parallel Processing, 1984, McGraw
Hill, New York.

ISIS. The ISIS Distributed Toolkit, Version 3.0 User Reference Manual, 1992, ISIS
Distributed Systems, Ithaca.

R. Jagannathan, A.R. Downing, W.T. Zaumen and R.K.S. Lee. Dataflow-based
Methodology for Coarse-Grain Multiprocessing on a Network of Workstations, in
Proceedings of the International Conference on Parallel Processing, 1989, pp. 54-
58.

C.T. King, W.H. Chou and L.M. Ni. Pipelined Data-Parallel Algorithms: Part I-Concept
and Modeling, IEEE Transactions on Parallel and Distributed Systems, 1990, vol. 1,
no. 4, pp. 470-485.

H.T. Kung. Lets Design Algorithms for VLSI Systems, in Proceedings of the Caltech
Conference on Very Large Scale Integration, 1979, pp. 65-90.

T.G. Lewis and W.G. Rudd. Architecture of the Parallel Programming Support
Environment, IEEE COMPCON, 1990, pp. 589-594.

X. Li, P. Lu, J. Schaeffer, J. Shillington, P.S. Wong and H. Shi. On the Versatility of
Parallel Sorting by Regular Sampling, 1992, Technical Report TR 91-06, Department
of Computing Science, University of Alberta.

T.A. Marsland, T. Breitkreutz and S. Sutphen. A Network Multi-processor for
Experiments in Parallelism, Concurrency: Practice and Experience, 1991, vol. 3, no.
3, pp. 203-219.

Myrias. Parallel Programmer's Guide, Myrias Research Corporation, 1990, Edmonton.

D.A. Nichols. Using Idle Workstations in a Shared Computing Environment, in
Proceedings of the 11th ACM Symposium on Operating Systems Principles, 1987,
pp. 5-12.

C.M. Pancake and S. Utter. Models for Visualization in Parallel Debuggers, in
Supercomputing '89, 1989, pp. 627-636.

J.L. Peterson and A. Silberschatz. Operating System Concepts, Alternate Edition, 1985,
Addison Wesley, Reading.

J. Schaeffer. Distributed Game-Tree Searching, Journal of Parallel and Distributed
Computing, 1989, vol. 6, pp. 90-114.

- 104 - The Enterprise Executive

R.W. Scheifler and J. Gettys. The X Window System, ACM Transactions on Graphics,
1986, vol. 5, pp. 79-109.

Z. Segall and L. Rudolph. Pie (A Programming and Instrumentation Environment for
Parallel Processing), IEEE Software, 1985, vol. 2, no. 6, pp. 22-37.

A. Singh. A Template-Based Approach to Structuring Distributed Algorithms Using a
Network of Workstations, 1991, Ph.D. Thesis, Department of Computing Science,
University of Alberta.

A. Singh, J. Schaeffer and M. Green. Structuring Distributed Algorithms in a Workstation
Environment: The FrameWorks Approach, in Proceedings of the International
Conference on Parallel Processing, 1989, pp. 89-97.

A. Singh, J. Schaeffer and M. Green. A Template-Based Tool for Building Applications in
a Multicomputer Network Environment, in Parallel Computing, 1989, D. Evans, G.
Joubert and F. Peters (editors), North-Holland, pp. 461-466.

A. Singh, J. Schaeffer and M. Green. A Template-Based Approach to the Generation of
Distributed Applications Using a Network of Workstations, IEEE Transactions on
Parallel and Distributed Systems, 1991, vol. 2, no. 1, pp. 52-67.

J.P. Singh, W-D. Weber and A. Gupta. SPLASH: Stanford Parallel Applications for
Shared-Memory, 1991, Technical Report CSL-TR-91, Computer Systems
Laboratory, Stanford University.

K. Smith and B. Appelbe. PAT-An Interactive Fortran Parallelizing Assistant Tool, in
Proceedings of the International Conference on Parallel Processing, 1988, pp. 58-
62.

K. Smith, B. Appelbe and K. Stirewalt. Incremental Dependence Analysis for Interactive
Parallelization, in Supercomputing '90 , 1990, pp. 330-341.

S. Sobek, M. Azam and J.C. Browne. Architecture and Language Independent Parallel
Programming: A Feasibility Demonstration, in Proceedings of the International
Conference on Parallel Processing, 1988, pp. 80-83.

K. Sridharan, M. McShea, C. Denton, B. Eventoff, J. Browne, P. Newton, M. Ellis, D.
Grossbard, T. Wise and D. Clemmer. An Environment for Parallel Structuring of
Fortran Programs, in Proceedings of the International Conference on Parallel
Processing, 1989, pp. 98-106.

K. Sridharan, R. Narayanaswamy, C. Denton and B. Eventoff. Parallel Structuring of
Programs Containing I/O Statements, in Proceedings of the International Conference
on Parallel Processing, 1990, pp. 224-228.

W.R. Stevens. UNIX Network Programming, 1990, Prentice Hall, Englewood Cliffs.

B. Stroustrup. What is "Object Oriented Programming", IEEE Software, 1988, pp. 10-20.

B. Sugla, J. Edmark and B. Robinson. An Introduction to the CAPER Application
Programming Environment, in Proceedings of the International Conference on
Parallel Processing, 1989, pp. 107-111.

- 105 - The Enterprise Executive

P.A. Suhler. Heuristic Tuning of Parallel Loop Performance, in Proceedings of the
International Conference on Parallel Processing, 1989, pp. 184-191.

P.A. Suhler, J. Biswas and K.M. Korner. TDFL - A Task-Level Data Flow Language,
1987, Technical Report TR-87-44, Department of Computer Science, University of
Texas at Austin.

P.A. Suhler, J. Biswas, K.M. Korner and J.C. Browne. TDFL: A Task-Level Dataflow
Language, Journal of Parallel and Distributed Computing, 1990, vol. 9, no. 2, pp.
103-115.

D. Szafron, J. Schaeffer, P.S. Wong, E. Chan, P. Lu and C. Smith. Enterprise: An
Interactive Graphical Programming Environment for Distributed Software, in
Proceedings of the Conference on Programming Environments for Parallel
Computing, 1992, to appear.

V.S. Sunderam. PVM: A Framework for Distributed Computing, Concurrency: Practice
and Experience, 1990, vol. 2, no. 4, pp. 315-339.

M.M. Theimer and K.A. Lantz. Finding Idle Machines in a Workstation-Based Distributed
System, IEEE Transactions on Software Engineering, 1989, vol. 15, no. 11, pp.
1444-1453.

D. Vrsalovic, Z. Segall, D. Siewlorek, F. Gregorettl, E. Caplan, C. Fineman, S. Kravltz,
T. Lehr and M. Russinovich. Performance Efficient Parallel Programming in MPC,
1988, Technical Report CMU-CS-88-164, Department of Computer Science,
Carnegie Mellon University.

Z. Xu and K. Hwang. Molecule: A Language Construct for Layered Development of
Parallel Programs, IEEE Transactions on Software Engineering, 1989, vol. 15, no.
5, pp. 587-599.

J.C. Yan and S.F. Lundstrom. The Post-Game Analysis Framework - Developing
Resource Management Strategies for Concurrent Systems, IEEE Transactions on
Knowledge and Data Engineering, 1989, vol. 1, no. 3, pp. 293-309.

D.A. Young. OSF/Motif Reference Guide, 1990, Prentice Hall, Englewood Cliffs.

D.A. Young. The X Window System Programming and Application with Xt OSF/Motif,
1990, Prentice Hall, Englewood Cliffs.

- 106 - The Enterprise Executive

Appendix A

Some Example Applications

This appendix presents a few simple applications constructed and executed using the

Enterprise system. The hardware computing environment has a number of Sun4 workstations

connected over a Ethernet-based local area network. The examples does not cover all the features

and capabilities of Enterprise, but demonstrate the basic idea of the system.

A.1. The Animation Application

More experimental results are performed using the Animation Application described in

Chapter 4. In addition to the sequential version, two distributed configurations discussed in

Chapter 3 were implemented. These configuration are shown in Figures A.1 and A.2.

line 3 Model PolyConv Split
Model
 library -lUTILITY -lfb -lm
PolyConv
 library -lUTILITY -lfb -lm
Split
 library -lUTILITY -lfb -lm

Figure A.1. Animation as a Line of Three

line 3 Model PolyConv Split
pool 5 Split
Model
 library -lUTILITY -lfb -lm
PolyConv
 library -lUTILITY -lfb -lm
Split
 library -lUTILITY -lfb -lm

Figure A.2. Animation as a Line of Three and Split as Pool

For this program, a speedup of 1.75 was obtained by using a line running on three

processors instead of a single individual asset (a sequential program). This result is slightly better

than that achieved by FrameWorks. Note that any timings are subject to large variations,

depending on the number of available processors and the amount of traffic on the network. In this

- 107 - The Enterprise Executive

particular case, the timings were done late at night with minimal contention with other users on

processors and network traffic.

By coercing the Split asset to a pool of 3 processes and running each process on a different

processor, a speedup of 2.1 was obtained. It is important to keep in mind that no change to the

source code is necessary, and only the Split module needs to be recompiled.

The example shows that experimentation with different configuration of processors can be

easily performed in Enterprise. The application is able to achieve a fairly good speedup, yet the

absolute value is not important. Since the application would otherwise be executed sequentially,

any improvement in performance would be welcomed. The fact that this speedup can be achieved

without any change to the sequential code is the major advantage of using Enterprise. The parallel

version involves much complex issues, for example, mutually exclusive selection of an idle

processor, if to be constructed manually even using a high level distributed library package, such

as ISIS or NMP. Writing it from scratch using sockets or RPC's would involve so much effort

that makes it less feasible.

A.2. The Prime Number Generator

The application Prime implements a parallel program for finding all the prime numbers that

falls within a given range. The application consists of two modules: Partition and FindPrimes.

Partition obtains from input parameters the interval to be searched and the number of subranges to

divide the search domain. It computes the subranges to be search and sets up the output format for

the results. This information is then passed to the module FindPrimes via a function call.

The parallel program is a line asset of two members: Partition and FindPrimes, as shown in

Figure A.3. FindPrimes is a pool asset which has 2 members. Each member runs the code of the

FindPrimes module and all replicas run in parallel on 2 workstations. The prime numbers

generated are written to a file.

line 2 Partition FindPrimes
pool 2 FindPrimes
Partition:

library -lm
FindPrimes

library -lm

Figure A.3. Application Graph for Prime

Prime numbers in the range 0 to 1,000,000 were searched. The range was divided into 20

subranges. The sequential application took 426 seconds to execute on a Sun4. This is an

- 108 - The Enterprise Executive

application that is relatively easy to achieve good speedup because of its high granularity and low

communication needs. The experiment was repeated with pool sizes of 4 and 8, which required no

change or recompilation of code at all. The speedup curve is shown in Figure A.4.

1086420
0

1

2

3

4

5

6

Processors

S
p

ee
d

u
p

Figure A.4. Speedup for Prime

The knee in the speedup curve shows that when a pool of 8 workers is used to run

FindPrimes, the gain in parallelism can no longer as effectively offset the communication overhead

incurred as with other configurations. The experiment was also repeated by using a contract to run

the FindPrimes module, and a speedup of 3.6 was attained.

line 2 Partition FindPrimes
contract FindPrimes
Partition:

library -lm
FindPrimes

library -lm

Figure A.5. Application Graph for Prime using dynamic processes

A.3. Parallel π Computation

We illustrate a practical application of Enterprise using a common parallel numerical analysis

application. The Parallel π program has been used to demonstrate many parallel programming

- 109 - The Enterprise Executive

environments (Babb, 1988; Hatcher et al., 1991). The application computes the value of π by

numerically calculating the integral:

 ⌡
⌠

0

1
4

(1+x2)
dx = tan-1(1) = π

0

1

2

3

4

0

0.
12

0.
24

0.
36

0.
48 0.

6

0.
72

0.
84

0.
96

π

Figure A.5. The area under the curve 4/(1+x2) gives π

This is the area under the curve of Figure A.4. The areas under the vertical strips are

calculated in parallel. Area of each stripe is approximated by estimating the areas under each of

thousands of very narrow stripes. The program is usually done using a master-slave construct in

which each slave computes a segment of the area. Each slave returns its portion of the area and is

accumulated to obtain the final value of π.

The application graph for Parallel π is shown in Figure A.5. The program is a line asset of

two members: Partition and FindPi. FindPi is a pool asset which has 3 members. The application

is similar in its parallel graph structure to the Prime application but function calls, instead of

procedure calls, are used in the modules. This should illustrate how calls that expect replies

perform.

line 2 Partition FindPi
pool 3 FindPi
Partition:

library -lm
FindPi

library -lm

Figure A.6. Application Graph for Pi

- 110 - The Enterprise Executive

In one experiment, the area was divided into 90,000 stripes. Each member ran the code of the

FindPi module and all replicas ran in parallel on 3 workstations. The sequential application took

1.057 seconds to execute on a Sun4. The parallel computation achieved a 1.74 fold speedup.

A.4. Chaotic Gauss-Seidel

We present an implementation of Baudet's (1978) parallelization of the Gauss Seidel

algorithm for solving the family of equations Ax = b. The program is divided up into three

sections. The first section receives input from the user and then divides up the work and distributes

it to the processors. The second section serves as shared memory and responds to requests from

other routines to either initialize x, update a portion of the x vector, or return the current value of

the x vector. This section is implemented as a service. The third section asks the service for the

current state of the x vector and iterates its section of the vector until the tolerance is met. A pool is

used to run this section and all segments run in parallel. The application graph for this application

is shown in Figure A.7.

line 2 baudet doTheWork
pool 10 doTheWork
service serviceXValues
baudet
 library -lm
doTheWork
 library -lm
serviceXValues
 library -lm

Figure A.7. Application Graph for Chaotic Gauss-Seidel

In one experiment with a problem size of 1000, a speedup of at least half-linear was achieved, as

Figure A.8 shows.

- 111 - The Enterprise Executive

10864200
0.0

1.0

2.0

3.0

4.0

5.0

Proces sors

S
p

ee
d

u
p

Figure A.8. Speedup for Chaotic Gauss-Seidel

The above examples demonstrates several important advantages of Enterprise:

1. These examples show that worthwhile performance gains are possible using the

Enterprise system.

2. All the applications can be modified to run from existing sequential program with little

modification (splitting of code into different files). The code modification performed

by Enterprise on the Animation application can be found in Appendix C, with the

original code shown in Appendix B.

3. Different configuration of each of the application can be generated with no change of

code at all.

- 112 - The Enterprise Executive

Appendix B.

C Code for the Entry Procedures of the Animation Example

This appendix gives pseudo code for the Animation example. For brevity, only the main

procedure calls of Model, PolyConv and Split are shown.

Asset Code: Model

/* Model asset */

#define NUMBER_STEPS 4
#define NUMBER_FISH 10
#define NUMBER_FRAMES 20

main()
{

float timeperframe;
int frame;

/* Generate the school of fish */
MakeFish(NUMBER_FISH, 0);

/* Loop through each frame */
timeperframe = 1.0 / NUMBER_STEPS;
for(frame = 0; frame < NUMBER_FRAMES; frame++)
{

/* Do model computations */
InitModel(NUMBER_FISH);
MoveFish(NUMBER_FISH, timeperframe);
DrawFish(NUMBER_FISH, timeperframe * frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */
 PolyConv(frame);

}
}

- 113 - The Enterprise Executive

Asset Code: PolyConv

/* PolyConv asset */

#define MAX_POLYGONS 1000

PolyConv(frame)
int frame;
{

polygon polygontable[MAX_POLYGONS];
int npoly;

/* Convert polygons and send to Split */
DoConversion(frame);
npoly = ComputePolygons(&polygontable);
Split(frame, npoly, polygontable);

}

Asset Code: Split

/* Split asset */

#define MAX_POLYGONS 1000

Split(frame, npoly, polygontable)
int frame, npoly;
polygon polygontable;
{

HiddenSurface(frame, npoly, polygontable);
AntiAlias(frame, npoly, polygontable);

}

- 114 - The Enterprise Executive

Appendix C.

Entry Procedures of the Animation Example with Enterprise Code

The Animation application in Chapter 2, along with the Enterprise diagram in Figure A.2, is

translated automatically into an executable program. In this Appendix, the program that Enterprise

produces is given. In the code, italic text refers to inserted code, while regular text identifies the

user-written code. To limit the illustration within a reasonable space, this example serves to

demonstrate what Enterprise does to user code, but not the complete accurate code being inserted.

This illustration also shows that most of the Enterprise code is inserted as a block of

initialization code, including the code to establish communication. The Enterprise code for Split,

which is a pool and PolyConv, which is an individual, is similar except in a few statements in their

initialization code. In other words, coercing an asset to a different kind requires simply linking the

module with a different initialization code template.

- 115 - The Enterprise Executive

Asset Code: Model

#include "isis.h"
#include <signal.h>

/* Declare services entry numbers */
#define _e_CALL 11

/* Declare constants and global flags */
#define _e_REPLY 1
#define _e_NREPLY 0
int _e_busy = FALSE;

/* Declare address of all called modules */
address *_e_PolyConv;

/* Establish connection with ISIS and its callee(s) */
_e_init()
{
 isis_remote_init(0,0,0,ISIS_NOCOPYRIGHTNOTICE);
 do
 _e_PolyConv = pg_lookup("PolyConv");
 while (addr_isnull(_e_PolyConv));
 pg_client(_e_PolyConv,"PolyConv");
 isis_start_done();
}

#define NUMBER_STEPS 4
#define NUMBER_FISH 10
#define NUMBER_FRAMES 20

main()
{

float timeperframe;
int frame;

/*** Enterprise code inserted for main() ***/
_e_init ();

/* Generate the school of fish */
MakeFish(NUMBER_FISH, 0);
/* Loop through each frame */
timeperframe = 1.0 / NUMBER_STEPS;
for(frame = 0; frame < NUMBER_FRAMES; frame++)
{

/* Do model computations */
InitModel(NUMBER_FISH);
MoveFish(NUMBER_FISH, timeperframe);
DrawFish(NUMBER_FISH, timeperframe*frame);
WriteModel(frame);

/* Done! Send work to PolyConv process */
/*

 * Function call of PolyConv()
 * PolyConv(frame);
 */

bcast(_e_PolyConv,_e_CALL,"%d",frame,_e_NREPLY);
}

}

- 116 - The Enterprise Executive

Asset Code: PolyConv

#include "isis.h"

/* Declare services entry numbers */
#define _e_FINISH 1
#define _e_ABORT 2
#define _e_CALL 11

/* Declare constants and global flags */
#define _e_REPLY 1
#define _e_NREPLY 0
int _e_busy = FALSE;

/* Declare address of itself and all called modules */
address *_e_my_pg;
address *_e_Split;
address *_e_manager;

/* This entry terminates the asset immediately */
_e_abort_handle(_e_msg_p)
message *_e_msg_p;
{
 msg_get(_e_msg_p,"");
 exit();
}

/* This entry terminates the asset when it has done all calls */
int _e_finish = FALSE;
message *_e_finish_msg;
_e_finish_handle(_e_msg_p)
message *_e_msg_p;
{
 msg_get(_e_msg_p,"");
 if (msg_ready(_e_CALL)==0 && !_e_busy) {
 reply(_e_msg_p,"%d",1);
 flush();
 exit();
 }
 else {
 _e_finish = TRUE;
 msg_increfcount(_e_msg_p);
 _e_finish_msg = _e_msg_p;
 }
}

_e_init()
{
 isis_remote_init(0,0,0,ISIS_NOCOPYRIGHTNOTICE);
 isis_entry(_e_CALL,MSG_ENQUEUE,"enqueue");
 isis_entry(_e_FINISH, _e_finish_handle, "_e_finish_handle");
 isis_entry(_e_ABORT, _e_abort_handle, "_e_abort_handle");
 _e_my_pg = pg_join("PolyConv_worker",0);
 do
 _e_manager = pg_lookup("PolyConv");
 while (addr_isnull(_e_manager));
 do
 _e_Split = pg_lookup("Split");
 while (addr_isnull(_e_Split));
 pg_client(_e_Split,"Split");
 isis_start_done();

- 117 - The Enterprise Executive

}

main()
{
 message *_e_msg_p;
 _e_init();
 while (1) {
 message *_e_wrapper_msg_p;
#define _e_CHECK_IN 12
 cbcast(_e_manager,_e_CHECK_IN,"%d",pg_rank(_e_my_pg,&my_address),_e_NREPLY);
 _e_wrapper_msg_p = msg_rcv(_e_CALL);
 msg_get(_e_wrapper_msg_p,"%m",&_e_msg_p);
 _e_busy = 1;
 PolyConv(_e_msg_p);
 _e_busy = 0;
 msg_delete(_e_msg_p);
 msg_delete(_e_wrapper_msg_p);
 if (_e_finish && (msg_ready(_e_CALL) == 0)) {
 reply(_e_finish_msg,"%d",1);
 msg_delete(_e_finish_msg);
 flush();
 exit(0);
 }
 }
}

/*
 * This is an Enterprise asset. The original
 * declaration of the function is commented out
 * and is replaced by the inserted code. The
 * code inserted depends on the asset's type.
 *
 * PolyConv(frame)
 */
PolyConv(msg_p)
message *msg_p;
{
int frame;
{

int npoly;
polygon polygontable;

msg_get(msg_p,"%d",&frame);

DoConversion(frame);
/* Done! Send work to PolyConv process */
/*
 * Function call of Split()
 * Split(frame);
 */
bcast(_e_Split,_e_CALL,"%d%d%C",frame,npoly,polygontable,sizeof(polygontable),_e_NREPLY);
return;

}
}

- 118 - The Enterprise Executive

Asset Code: Split

#include "isis.h"

/* Declare services entry numbers */
#define _e_FINISH 1
#define _e_ABORT 2
#define _e_CALL 11

/* Declare constants and global flags */
#define _e_REPLY 1
#define _e_NREPLY 0
int _e_busy = FALSE;

/* Declare address of itself and all called modules */
address *_e_my_pg;
address *_e_manager;

/* This entry terminates the asset immediately */
_e_abort_handle(_e_msg_p)
message *_e_msg_p;
{
 msg_get(_e_msg_p,"");
 exit();
}

/* This entry terminates the asset when it has done all calls */
int _e_finish = FALSE;
message *_e_finish_msg;
_e_finish_handle(_e_msg_p)
message *_e_msg_p;
{
 msg_get(_e_msg_p,"");
 if (msg_ready(_e_CALL)==0 && !_e_busy) {
 reply(_e_msg_p,"%d",1);
 flush();
 exit();
 }
 else {
 _e_finish = TRUE;
 msg_increfcount(_e_msg_p);
 _e_finish_msg = _e_msg_p;
 }
}

_e_init()
{
 isis_remote_init(0,0,0,ISIS_NOCOPYRIGHTNOTICE);
 isis_entry(_e_CALL,MSG_ENQUEUE,"enqueue");
 isis_entry(_e_FINISH, _e_finish_handle, "_e_finish_handle");
 isis_entry(_e_ABORT, _e_abort_handle, "_e_abort_handle");
 _e_my_pg = pg_join("Split_worker",0);
 do
 _e_manager = pg_lookup("Split");
 while (addr_isnull(_e_manager));
 isis_start_done();
}

main()
{
 message *_e_msg_p;
 _e_init();

- 119 - The Enterprise Executive

 while (1) {
 message *_e_wrapper_msg_p;
#define _e_CHECK_IN 12
 bcast(_e_manager,_e_CHECK_IN,"%A[1]",&my_address,_e_NREPLY);
 _e_wrapper_msg_p = msg_rcv(_e_CALL);
 msg_get(_e_wrapper_msg_p,"%m",&_e_msg_p);
 _e_busy = 1;
 Split(_e_msg_p);
 _e_busy = 0;
 msg_delete(_e_msg_p);
 msg_delete(_e_wrapper_msg_p);
 if (_e_finish && (msg_ready(_e_CALL) == 0)) {
 reply(_e_finish_msg,"%d",1);
 msg_delete(_e_finish_msg);
 flush();
 exit(0);
 }
 }
}

#define MAX_POLYGONS 10
/*
 * This is an Enterprise asset. The original
 * declaration of the function is commented out
 * and is replaced by the inserted code. The
 * code inserted depends on the asset's type.
 *
 * Split(frame,npoly,polygontable)
 */
Split(msg_p)
message *msg_p;
{
/* generating code for { */
{

int npoly, frame;
polygon polygontable;

msg_get(msg_p,"%d%d%C",&frame,&npoly,&polygontable,NULL);

HiddenSurface(frame,npoly,polygontable);
AntiAlias(frame,npoly,polygontable);

}
}

