
Global dynamics of diffusive animal movement models under
habitat degradation, destruction, and fragmentation:

eigenvalue problems and geometry at the landscape scale

by

Yurij Salmaniw

A thesis submitted in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

in

Applied Mathematics

Department of Mathematical and Statistical Sciences

University of Alberta

© Yurij Salmaniw, 2023



Abstract

Habitat loss is a significant problem and the leading cause of species extinctions and

decreases in biodiversity worldwide. This issue is primarily driven by human activities,

making it crucial to understand the consequences of our actions as a global commu-

nity. The empirical study of habitat loss is complex, expensive, and time-consuming.

Moreover, habitat is being lost at an accelerating rate, and so there is a substantial

need for a timely assessment of the impacts of habitat loss. Fortunately, mathematical

modelling allows us to assess the impacts of different aspects of habitat loss in a general

setting, applicable to numerous species in various environmental scenarios.

In this dissertation, we delve into three critical aspects of habitat loss: habitat

degradation, habitat destruction, and habitat fragmentation. By employing the frame-

work of reaction-diffusion equations, we investigate the global dynamics of single and

multi-species models under different forms of habitat loss. This analysis includes a

detailed exploration of the global dynamics of time-dependent single and multi-species

models using tools from the theory of partial differential equations and the theory of

monotone flows. We develop robust modelling frameworks specific to habitat loss pro-

cesses derived from a careful consideration of the ecological definitions of these forms

of habitat loss. Of significance is a rigorous, analytical connection between the degra-

dation and destruction formulations through an asymptotic limit. This connection

between habitat degradation and destruction appears to be the first of its kind, estab-

lishing a connection consistent with the observation that the level of degradation of
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different habitats lies on a spectrum, ranging from intact to destroyed.

A central object of study in this analysis is the so-called principal eigenvalue, which,

in our context, provides a theoretical net growth rate of the population, at least for

small population sizes. By examining these principal eigenvalues, we can assess habitat

fragmentation’s impact independently of or in conjunction with habitat degradation

and destruction. This results in a fitness index intimately dependent on the arrange-

ment and geometry of the degraded/destroyed regions. Compared to existing measures

of habitat fragmentation, our approach offers a mechanistic and species-oriented tool,

providing unique insights into the effect of fragmentation on diffusive species while

also providing a robust framework for translation to other environmental factors or

non-diffusive movement mechanisms.

Importantly, this framework is versatile enough to be applied to both the landscape

and patch scales. It is essential to note that fragmentation is often studied at the patch

scale, which can lead to misleading conclusions regarding the overall impact of habitat

fragmentation. Since habitat fragmentation is sometimes measured empirically in ways

incompatible with our fitness index metric, we also examine the impacts of habitat

fragmentation on the theoretical total abundance of a population, considered for both

single- and multi-species models.

In all assessment methods, we consider fragmentation as an arrangement and a

process. By doing so, we take into account the spatial distribution of habitats and

the changes that may occur over time, relating more closely to habitat fragmentation

as it occurs in the natural world. In turn, this allows us to analyze habitat loss’s

consequences more comprehensively and generate more accurate conclusions about the

effects on species populations.

This dissertation presents a detailed and thorough investigation of habitat loss

and its impacts on species, focusing on the connections between habitat degradation,
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destruction, and fragmentation. By employing mathematical modelling and the frame-

work of reaction-diffusion equations, we are able to study the global dynamics of single

and multi-species models under different scenarios of habitat loss. This work provides

numerous assessment tools and viable hypotheses which can be tested and verified, ei-

ther experimentally or in the field, giving precise mechanisms and, ultimately, answers

to some of the most pressing questions surrounding the complex effects of habitat loss.
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Preface

This dissertation is broken into three main chapters which consider habitat degrada-

tion, habitat destruction, and habitat fragmentation. The second chapter, concerning

habitat degradation, is based on the work published with my current supervisors, Dr.

Hao Wang & Dr. Zhongwei Shen. This was published in the Journal of Mathematical

Biology in 2022 [104]. In the present work, the results are generalized further to include

cases not previously considered.

The third chapter, concerning habitat destruction, is based on work also done with

my current supervisors. Similar to the degradation chapter, the work of chapter three

provides more detail than would otherwise be found in publication. There is also a

direct development of the theory for linear equations in the ‘destruction’ setting, which

is less appropriate for a scientific paper, but is great to include in a dissertation setting.

The fourth chapter, concerning habitat fragmentation, contains the most recent re-

sults obtained during the final year of my doctoral degree. This chapter is a slight de-

parture from the previous two in that the mathematical analysis is less developed, and

so we appeal to the use of numerical simulation to complement the analytical insights.

As one may soon read, this is a requirement if we really want to study fragmentation

in an ecologically meaningful way, as analytical results are incredibly challenging to

obtain for ‘geometric’ problems in partial differential equations in general.

Throughout this work, a number of numerical simulations are used to compliment

the analytical insights. All of these are done using the MATLAB software.

As a final note, shifting to first person momentarily, this work is centred in the field

ofmathematical biology ; yet, I must admit that biology or ecology was never particularly

motivating, at least prior the start of my doctoral degree. My background, both in
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my undergraduate degree and in my master’s degree, was in the theoretical analysis of

partial differential equations. While there was always a loose connection to biological,

chemical, or physical phenomena, this was not the selling point of the work, so to

speak. I do not think I appreciated it at the time, but the analysis and the analysis

alone was the motivating factor of my work.

Starting my PhD at the University of Alberta, I have since had the pleasure of

working with some of the top experts in mathematical biology the field has to offer.

Through these interactions I have, I believe, begun to understand how mathematics

can be connected and used to describe the natural world in greatly diverse ways. In my

own work, this includes a deeper understanding of the types of problems I am familiar

with mathematically, but had never studied from the perspective of yes, but what do

these analytical results tell us? I had not even seen a simple derivation of the heat

equation before taking a graduate level Mathematical Biology course at the University

of Alberta. In hindsight, this feels somewhat embarrassing.

The point of all of this is: the thesis you are about to read, whether intentional

or not, seems to reflect my own personal journey, moving from a very theoretical

standpoint to a much more applied point of view. This is not to say that the work

actually becomes more applied as we progress; indeed, this does not seem to be the

case. Instead, what is reflected as the thesis progresses is my own change in attitude

towards these problems. This paradigm shift has been an important one, and I hope

that it is reflected in this work.
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You are not controlling the storm, and you are not lost in it. You are the storm.

– Sam Harris.

Who would have guessed reading and writing would pay off?

– Homer Simpson.
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Chapter 1

Introduction

1.1 On “Habitat Loss”

Habitat loss is one of, if not the contributing factor to the loss of biodiversity worldwide

[65], including birds [115], mammals [3], reptiles [51], amphibians [114], invertebrates

[26], and plants [69]. While some forms of habitat loss are naturally occurring (e.g.,

flooding, geological processes, other substantial weather events), the unfortunate reality

is that the majority of habitat loss is a result of human activity [25], [97], [98], especially

through deforestation, agricultural development and urbanization, but also through

resource extraction, pollution, climate change, trawling, and more. On one hand, we

have a broad understanding of the impacts of habitat loss on local species populations.

This can be seen through some prototypical mathematical models that capture the

relative effects of habitat loss on competing species ([116] is a classic example), as well

as empirical studies that span decades [18], [97]. As a result of reduced biodiversity,

cascading effects include decreased pollination and seed dispersal, decreased climate

regulation, and diminished pest and disease control [29]. On the other hand, when

seeking more precise descriptions of the relative impacts of differing forms of habitat

loss, such as degradation, destruction, and fragmentation, there are many competing

ideas.

Perhaps the lack of clarity stems from a lack of consistency in terms and definitions

used across disciplines and research areas. On the empirical side, for example, the

definition(s) of habitat loss, as well as the related concepts commonly used to describe
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and study these phenomena, (e.g., habitat, patch model, landscape scale, measurement

effects, etc.), are not so clear. Indeed, some authors have noted these issues explicitly

and the downstream effects these oversights can have [72]. In some cases, different

empirical studies and setups result in different directions of effect. This is best ex-

emplified by differing mechanisms and interpretations of habitat fragmentation [39],

[46], [49]. Ultimately, this leads to further confusion, especially for policymakers, when

the science that should be informing their decisions is inconclusive at worst, and not

entirely convincing at best. To further exacerbate these issues, this lack of consistency

has spilled into the modelling literature as well. Given the accelerated rate of habitat

loss worldwide [25], we may not have the time to appeal to continued data collection

and observation; the timescales at which negative effects are realized may not be com-

mensurate with the timescales of data collection, or more importantly, the timescales

at which we may meaningfully respond as a human collective.

Why should we care?

We first ignore the question of what habitat loss is, exactly, and instead focus on why

we should care about its consequences in a more broad sense. The argument is obvious:

humans, as a species, are a part of the natural world and benefit from the resources it

provides. These benefits are referred to as ecosystem services in the ecological literature

[22]. We have become incredibly efficient at using the resources on offer. This has led

to a massive increase in population (we are currently around 8 billion people; in 1992,

the year I was born, there were around 5.5 billion people; in 1951, < 75 years ago,

there were around 2.6 billion people).

Unfortunately, however, this increase in efficiency comes with costs, and these costs

are conveniently delayed, often at a time scale that allows for downplaying of conse-

quences through arrogance, willful ignorance, or both. Humans, generally speaking,

like (and sometimes, admittedly, need) stuff. Once a population has determined that

it likes a certain thing, economic theory suggests that a “free market” will minimize

the cost associated with producing said thing through competition, supply, demand,

and so on, allowing many people to enjoy said thing at a minimal cost. Alas, this
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minimization procedure does not often take into account other negative consequences

of such processes, let alone address potential long term consequences. This minimiza-

tion of cost, as a consequence, is not often innovative, but instead transfers the cost to

others elsewhere, both in space or in time. This point is made eloquently in Nature’s

Services: Societal Dependence On Natural Ecosystems [22] over two decades ago:

“In the space of a single human lifetime, society finds itself suddenly con-

fronted with a daunting complex of trade-offs between some of its most

important activities and ideals. Recent trends raise disturbing questions

about the extent to which today’s people may be living at the expense of

their descendants, casting doubt upon the cherished goal that each suc-

cessive generation will have greater prosperity. Technological innovation

may temporarily mask a reduction in earth’s potential to sustain human

activities; in the long run, however, it is unlikely to compensate for a mas-

sive depletion of such fundamental resources as productive land, fisheries,

old-growth forests, and biodiversity.”

We then beg the question, how do these negative effects of habitat loss actualize?

The general hypothesis, now widely agreed upon, is that habitat loss is the primary

contributing factor to the global decline in biodiversity. Biodiversity refers simply to

the variety and variability of organisms, ranging from the gene level to the ecosystem

level. This decrease in diversity is a direct consequence of habitat loss, and the realized

negative effects described above are symptoms of this decline. These interactions are

not well understood, so it is not possible to give concrete answers in a general sense to

questions such as when will this species go extinct?, or how much land can we remove

before extirpation of a local population?. However, we present a few case studies to

highlight some of the underlying mechanisms we see these negative effects.

• Bananas: Banana crops suffer from disease outbreaks due to the use of crop

monocultures. This means that, since the banana population in crops are very ho-

mogeneous (genetically speaking), disease outbreaks are much more likely, which

reduces yield, alters appearance, shelf life, and marketability; debilitates the host
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plant, or at worst, kills the plants [100]. The conversion of natural ecosystems to

monocultural plantations (an example of minimizing cost and maximizing yields),

has devastating effects on the local environment.

• Coffee beans: Climate change, a broad form of habitat degradation, can af-

fect coffee bean production through a reduction in quality and yield, as well as

increased exposure and sensitivity to certain insects and diseases [40].

• Climate regulation: Forests and tropical forests are well-known for their role

in carbon capture [6], [73]; a removal of these ecosystems naturally reduces their

capacity to continue to do so! Forests are also useful in temperature regulation,

regulating freshwater flows, and more [6]; indeed, forests’ interactions with carbon

should be seen “as one co-benefit of reforestation strategies designed to protect

and intensify the hydrologic cycle and associated cooling” [30].

• Loss of pollinators: Pollinators provide an essential service to ecosystems, and

habitat loss is a primary driver of their decline [101]. While pollination can

occur naturally through, e.g., wind, a majority of plants rely on animals. The

destruction of the habitat of pollinators has the downstream effect of drastically

impacting cultivated and wild plants alike.

Hence, habitat loss does not directly affect humans nearly as often as it does indi-

rectly through other negative consequences3, and these consequences do not impact

everyone equally. To better parse these complexities, mathematical modelling offers

a unique perspective to better understand the consequences of habitat loss on species

and biodiversity in general.

How to model habitat loss

In the present work, the phenomenon we are most interested in is that of habitat

loss ; but, this is somewhat misleading, as habitat loss is not a single, well-defined

occurrence [82]. It is the author’s opinion that clarifications are desperately needed

3This is not to discount special cases, such as indigenous tribes that live in tropical forests: defor-
estation practices directly affect their population by destroying their home [102].
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due to gaps in the connection between the mathematical and ecological study of habitat

loss. Admittedly, the following is by no means a new argument, at least at the meta

level; such points have been raised a number of times for habitat loss specifically [32],

[33], [39], [44], [46], [49], but also in other areas of ecology [57]. Yet, there is still a lack

of clarity in the wider literature. For this reason, we take a detour to elucidate some

common points of confusion.

First, a non-trivial question to ask is: what is habitat? As asserted in [49], [57],

habitat is sometimes used synonymously with concepts of vegetation type or landscape

features more generally. Understanding that this has evidently led to ambiguity and

confusion, we opt for a more precise definition.

Definition 1.1.1 (Habitat [57]). The resources and conditions present in an area that

produce occupancy - including survival and reproduction - by a given organism. Habi-

tat is organism-specific; it relates the presence of a species, population, or individual

(animal or plant) to an area’s physical and biological characteristics.

We refer to a general region of interest as a landscape, with the distinction being

that a given landscape is independent of the species occupying it. Our models will be

formulated at the landscape scale, with some regions comprised of habitat as defined

above, and other regions comprised of non-habitat.

In particular, we note that habitat is not mere vegetation type or structure; it is

the accumulation of particular landscape features required by an organism to survive

and reproduce. Given an area where an organism is provided with resources (food,

water, shelter, etc.) that allow it to survive, it is habitat. This perspective will be

important when we develop our models later.

We now ask: what is habitat loss? Even those far removed from its study can

imagine that habitat loss must be related to the removal of natural habitat by some

means - it is in the term itself, the habitat is lost! For example, on February 6, 2023, the

top Google search result from The National Wildlife Federation provides the following

description:

“Habitat loss—due to destruction, fragmentation, or degradation of habi-

tat—is the primary threat to the survival of wildlife in the United States.
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When an ecosystem has been dramatically changed by human activities—such

as agriculture, oil and gas exploration, commercial development, or water

diversion—it may no longer be able to provide the food, water, cover, and

places to raise young that wildlife need to survive.”[56]

The second search result, found on Wikipedia2, gives the following description:

“Habitat destruction (also termed habitat loss and habitat reduction) is the

process by which a natural habitat becomes incapable of supporting its na-

tive species. The organisms that previously inhabited the site are displaced

or dead, thereby reducing biodiversity and species abundance.”[55]

One may note that neither provides a definition of habitat loss, which may indeed be

intentional. Between these two descriptions, there are notable similarities and distinc-

tions. The similarities between the two are changes to natural habitat and the impact

these changes have on local species. This is a good start, perhaps, as it aligns with

the intuitive understanding of habitat loss described earlier; but, there are several key

differences that produce more questions than answers.

In the first definition, we immediately notice three subcategories of habitat loss,

namely degradation, destruction, and fragmentation. This appears to be at odds with

the second definition, where habitat loss is equivalently termed habitat reduction or

habitat destruction, while degradation and fragmentation are nowhere to be found.

Similarly, the first definition attributes habitat loss directly to human activities while

the second does not. Human activities are understood to be a primary driver of habitat

loss [25], [106] (in some sense that will be made clearer), but can also be a consequence

of events less directly connected to human activity (forest fires are one such exam-

ple). The second definition of habitat loss does not make such an anthropomorphic

distinction. Furthermore, the first definition leaves some ambiguity as to what extent

species need to be affected by habitat changes in order for the habitat to be considered

2Of course, one should delve into the citations provided for these definitions rather than working
directly from Wikipedia - this is not the purpose of this exercise; instead, we are looking at what a
layperson may first find should one do their own research
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“lost”. On the other hand, the second definition appears to require local species to be

displaced or wiped out entirely for the habitat to be considered lost.

Keen readers may tacitly claim that this is a strawman argument: these descrip-

tions were pulled from a google query, and so surely do not represent the more academic

exploration of habitat loss from the ecologists’ point of view. To conclude this point

more concretely, Table 1.1 compiles a handful of definitions used for some key terms

introduced here. This includes habitat loss, habitat degradation, habitat destruction,

habitat fragmentation and habitat fragmentation per se. Note that these definitions

were taken from papers that included them in an explicit way. This table, similar to

those found in [49] or [57], highlights more clearly the concern: these definitions are

woefully inconsistent at best and contradictory at worst! What is even more unfortu-

nate, perhaps, is the fact that many references studying these phenomena do not even

provide a working definition of the term!

This discussion is not all encompassing, but highlights some of the potential issues

when trying to model these processes using mathematical tools: we require underlying

assumptions and precise definitions of the processes being modelled. Initially, what

we find instead are descriptions of the consequences of environmental modification on

species. In such a case, habitat loss is, by definition, the end result of species decline

upon modification of the habitat (presumably in a negative way). This may be a suit-

able formulation for an ecologist, but it is wholly inadequate and outright misleading

from a modelling perspective. If the mathematician has an idea of what habitat loss

is, but their idea is inconsistent with the idea that the ecologist holds, it becomes very

difficult to utilize interdisciplinary communication. In fact, this mismatch may even

invalidate the model to begin with! Of even more consequence, perhaps, are cases

where models are meant to be connected to observations of empirical data - a mis-

match between a model formulation and data collection casts doubt on any concrete

conclusions drawn.

The general thrust being made here is simple: before diving into deeper scientific

questions and insights, we must first clearly define our terms so that we all know what

we are talking about! If terms cannot be clearly well defined, this aspect should also
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be highlighted explicitly rather left vague and up to interpretation. For this reason, we

will take a moment to explore some of the key terms found in the literature surrounding

habitat loss, primarily from the perspective of the ecologist. This exploration will lead

us to a handful of postulates, which are useful guiding tenets or heuristics that are

ecologically reasonable while providing guidance into how one may incorporate key

aspects of habitat loss in a mathematical setting.

Despite their shortcomings, these descriptions of habitat loss still give us some

useful information. In particular, the first definition highlights three (possibly distinct)

processes closely related to habitat loss. We define these more clearly now.

Definition 1.1.2 (Habitat Degradation [82]). A general term describing any set of

processes resulting in a decrease in quality of habitat.

Definition 1.1.3 (Habitat Destruction [82]). When a natural habitat is altered so

dramatically that it no longer supports the species it originally sustained.

What may be useful to note is the following caveat: total destruction of a natural

habitat is much less common than one might think. Instead, habitat quality is often

reduced while simultaneously increasing its level of heterogeneity. This process can take

a long time, and so it is difficult to say exactly when the habitat has become “destroyed”

except for in very extreme cases. This suggests that the line between degradation and

destruction is fuzzy, and these are instead two ends of a spectrum, ranging from not at

all degraded to completed degraded. At the point of total degradation, the habitat can

be considered destroyed. This is the convention we will use throughout this manuscript

when we discuss habitat degradation and/or destruction. Furthermore, this will align

in a favorable way with model formulations to be introduced later. In this sense,

definitions 1.1.2 and 1.1.3 will be agreeable to a majority of biologists/ecologists while

also providing an implicit mechanism suitable for mathematical description.

Postulate One: Habitat degradation and habitat destruction lie on a spectrum.

intact degraded destroyed−−−−−−−−−−−−−−−−−−−−−→
State of the Habitat
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Another interesting distinction gleaned from this discussion is the alteration of

habitat, and the impact said alteration(s) have on local species. From the ecologists’

perspective, some argue that one cannot and should not separate these two aspects [33],

[72]. The difference here is therefore purely mathematical: from the modelling point

of view, it is conceptual to describe habitat loss independent of the effect on species.

One can imagine a scenario in which habitat is “lost” by some means, but some subset

of local species (bacteria, insects) are more/less affected than others (large mammals).

This suggests that not only does the process of habitat degradation/destruction lie on

a spectrum, but it is also species dependent: properties of the population itself may

determine whether a particular instance of habitat loss is better or worse than another,

leading to the following.

Postulate Two: Habitat and habitat quality, however described, is species dependent.

The exact same observable characteristic(s) of a given landscape (food, water, shelter,

availability of space, etc.) may be ideal for some species while terrible for another. In

this sense, habitat loss in any form should not be viewed in a vacuum.

This distinction between habitat loss independent of impact, and habitat loss as it

effects local species, becomes more important when one considers habitat fragmenta-

tion. Fragmentation, in a general sense, is defined as follows.

Definition 1.1.4 (Fragment (noun) [47]). A part broken off or detached; an isolated,

unfinished or incomplete part.

Definition 1.1.5 (Fragment (verb) [47]). To collapse or break into fragments; to divide

into fragments: disunify

Definition 1.1.6 (Fragmentation [47]). The act or process of fragmenting; the state

of being fragmented.

Habitat fragmentation, as previously discussed, is a much more precarious term. A

common definition of habitat fragmentation is the following.

Definition 1.1.7 (Habitat Fragmentation (vague)).

• A process by which large and contiguous habitats get divided into smaller, isolated

patches of habitats [33], [38];
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• Landscape transformation that includes the breaking of large habitat into smaller

pieces [48].

Funnily enough, the first definition, taken again from Wikipedia, follows the term

“more specifically”; the comedy here being that this is not very specific at all! The

second definition from another author is similar. While they capture the rough idea

behind habitat fragmentation, it is a difficult definition to work with from a modelling

perspective. A slightly more useful definition, perhaps, is the following.

Definition 1.1.8 (Habitat Fragmentation (more precise) [33]). The process during

which a large expanse of habitat is transformed into a number of smaller patches of

smaller total area isolated from each other by a matrix of habitats unlike the original.

Readers should be careful here: the use of the term habitat above does not appear

to be the same as that used here. Instead, they probably mean something closer to

vegetation type.

We distinguish the previous definitions from the following, also commonly found in

the ecological literature.

Definition 1.1.9 (Habitat Fragmentation per se). Changes in habitat configuration

that result from the breaking apart of existing habitat, independent of other forms of

habitat loss (e.g., habitat degradation or destruction).

In particular, when we refer to habitat fragmentation per se, we are discussing the

arrangement of the regions of habitat alone, independent of other forms of habitat loss

(degradation or destruction). More precisely, this point of view considers the study

of the effects of the mere arrangement for a given total amount of habitat. There is

much debate on the use and validity of studying such perspectives in detail, however we

take motivation from [44]: rather than dismissing one definition in favor of the other,

we will explore habitat fragmentation from multiple perspectives as they can provide

complimentary results and insights. This motivates our third postulate.

Postulate Three: Habitat fragmentation can be viewed in two distinct ways: in the

sense of as an arrangement, and in the sense of as a process.
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Studying habitat fragmentation as an arrangement, as suggested, considers the

effect of shape and geometry of habitat in a given landscape. The effect part of the

study can be varied and sometimes quite complicated; we discuss this in more detail in

Chapter 4. Some critics suggest that this point of view is not a good representation of

habitat fragmentation as it occurs in the natural world. For a more ecologically minded

perspective, we also study habitat fragmentation as a process : this is the idea that,

through the process of habitat degradation and destruction, fragmentation occurs as

an inevitable consequence. The end result of a fragmented landscape is therefore an

epiphenomenon. We expand upon this in Chapter 4.

We then take the general term habitat loss to be as follows.

Definition 1.1.10 (Habitat Loss). Any combination of one or more of the processes

of habitat degradation, destruction or fragmentation.

In this way, habitat loss remains somewhat vague, but its constituent components

are better defined.

1.2 Preliminaries

In this section, we highlight some of the standard notations and conventions used

throughout the dissertation. We also explore some of the abstract theory used to prove

later results. This preliminaries section will focus on all of the mathematical tools

to be used in this thesis in detail. This includes key definitions, theorem statements,

lemmas, and propositions. What will be lacking is a detailed repetition of proofs for

many of these statements. In some cases, if the key ingredients are enlightening and

not overly cumbersome, some further detail or insights may be provided. In other

cases, the technical nature of the results and their proofs can be incredibly tedious,

outweighing any novel insights one may gain through the exposition of a proof. In

such cases, at minimum two different references should be provided for further reading

and additional context. Ultimately, a judgement call will be made, balancing the big

picture with the technical details. Sometimes, when a proof technique is very similar,

we will prove only the “more challenging” case(s). In particular, we provide proofs

12



for results that may essentially follow from existing arguments, but do not themselves

have a nice reference to point to.

1.2.1 Function spaces

We briefly introduce some notations and conventions. Spoiler alert: this work deals

with partial differential equations, almost exclusively of parabolic or elliptic type. Nat-

urally, this involves a few key components: space, time, derivatives, and their rela-

tionships. Functions will be denoted by the usual letters (u,v,w,z,f ,g, etc.). Unless

otherwise clear, we write u = u(x, t) to denote dependence on a point x ∈ RN with

dimension N ≥ 1, and on a point t ∈ [0,∞). Derivatives will be written as ∂
∂x
, ∂2

∂x2
,

etc. Sometimes we may use subscripts, i.e., ∂u
∂t

=: ut,
∂u
∂x

=: ux, and so on. We denote

by ∇ = ( ∂
∂x1
, . . . , ∂

∂xN
) the gradient. We denote by ∆ =

∑︁N
i=1

∂2

∂x2i
the Laplacian. We

then denote by Ω ⊂ RN a smooth (C2 unless otherwise specified), bounded domain. Ω

denotes the closure of the domain, while ∂Ω denotes the boundary. QT will occasion-

ally denote the (open) parabolic cylinder Ω × (0, T ) for some fixed time T > 0, while

QT will denote the closed cylinder. When dealing with integrals, we often suppress the

variable of integration when the context is clear. In most cases, the domain over which

we integrate provides the required context.

Continuous function spaces

In classical PDE theory, we work with smooth solutions, which are understood to be

solutions sufficiently differentiable in the classical sense. We highlight some of these

spaces and their basic properties here.

Continuous functions in space only

Ck(Ω) (Ck(Ω)) denotes the set of all functions having continuous derivatives up to order

k in Ω (Ω). C0(Ω) and C0(Ω) will be denoted simply by C(Ω) and C(Ω), respectively.

If we denote by α = (α1, . . . , αn) a multi-index for non-negative integers αi satisfy-
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ing |α| = α1 + · · ·+ αn, we can define a norm on Ck(Ω) by

∥u∥Ck(Ω) =
∑︂
|α|≤k

sup
x∈Ω

|Dαu| ,

where

Dαu =
∂|α|u

∂xα1
1 · · · ∂xαn

n

.

It is readily verified that Ck(Ω) endowed with this norm is a Banach space (see, for

example, [1]). Note that when k = 0, we have the space of all continuous functions,

denoted simply by C(Ω), with the usual sup-norm

|u|C(Ω) = sup
x∈Ω

|u(x)| .

Definition 1.2.1. Given a function u(x) defined over Ω, we define the support of the

function u by

supp(u) = {x ∈ Ω : u(x) ̸= 0}.

Definition 1.2.2. Denote by Ck
0 (Ω) the set of all functions belonging to Ck(Ω) with

compact support in Ω.

To generalize these spaces of continuous functions a little bit, one may introduce

the following semi-norm for a function u defined on Ω:

sup
x,y∈Ω,x ̸=y

|u(x)− u(y)|
|x− y|α

,

for any α ∈ (0, 1). We then consider the Hölder class, denoted by Cα(Ω), the set of all

functions such that the norm

∥u∥Cα(Ω) = ∥u∥C(Ω) + sup
x,y∈Ω,x ̸=y

|u(x)− u(y)|
|x− y|α

is finite. We then define the function space for any non-negative integer k

Ck,α(Ω) = {u : Dβu ∈ Cα(Ω) for any multi-index β such that |β| ≤ k},

with the associated norms built in an analogous way. Of particular interest are the

spaces C1,α(Ω) and C2,α(Ω), the set of functions that are once (or twice) differentiable,

with its first (or second) derivative being Hölder continuous.
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Finally, we say that a subset Ω′ is compactly contained within Ω, denoted Ω′ ⋐ Ω,

if Ω′ is compact and Ω′ ⊂ Ω. If given any subdomain Ω′ ⋐ Ω there holds u ∈ Ck,α(Ω′),

we say that u ∈ Ck,α(Ω). The space C0,α(Ω) is exactly the Hölder space Cα(Ω).

As noted previously, all spaces are Banach when equipped with the norms intro-

duced here. Also note that in the case when α = 1, the Hölder class is referred to as a

Lipschitz class.

Finally, for functions on Hilbert spaces, we have the following standard result. Its

statement is found in [8], for example.

Proposition 1.2.1. Let H be a Hilbert space. Denote the inner product on H by ⟨·, ·⟩

and the corresponding norm by ∥·∥. Let T be a compact, symmetric operator on H. If

η1 = sup {⟨Tu, u⟩ : ∥u∥ = 1} > 0,

then η1 is an eigenvalue of T , i.e. there exists u1 ∈ H \ {0} so that Tu1 = η1u1.

Continuous functions in space and time

In the case where our domain is a parabolic cylinder, we introduce similar spaces that

are convenient for the study of second order parabolic equations. Given two points

A = (x, t), B = (y, s) ∈ QT , define the parabolic distance between A and B as

d(A,B) =
(︁
|x− y|2 + |t− s|

)︁1/2
.

Then, given a function defined on QT , we introduce the semi-norm

sup
A,B∈QT ,A ̸=B

|u(A)− u(B)|
dα(A,B)

for any α ∈ (0, 1). We denote by Cα,α/2(QT ) the space of all functions such that the

norm

∥u∥Cα,α/2(Ω) = ∥u∥C(QT ) + sup
A,B∈QT ,A ̸=B

|u(A)− u(B)|
dα(A,B)

is finite, where ∥·∥C(QT ) is now the sup-norm over QT . We then define the following

space appropriate for second order parabolic partial differential equations.
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Definition 1.2.3. For any non-negative integer k and any α ∈ (0, 1), we define the

space

C2+α,1+α/2(QT ) = {u : Dβu, ∂u
∂t

∈ Cα,α/2(QT ) for any β such that |β| ≤ 2}

endowed with the norm

∥u∥C2+α,1+α/2(QT ) =
⃦⃦
∂u
∂t

⃦⃦
Cα,α/2(QT )

+
∑︂
|a|≤2

∥Dαu∥Cα,α/2(QT ) .

Sobolev spaces in the domain Ω

Here we remind readers of some basic facts and definitions for the theory of Sobolev

spaces. We discuss the case of a spatial domain only. The more complicated case of

t-anisotropic Sobolev spaces [123] is discussed after.

When a classical, smooth setting is not appropriate, it is common to appeal to

notions of integrability and weak derivatives. This naturally involves the theory of

Sobolev spaces. For 1 ≤ p <∞, define the norm

∥f∥Lp(Ω) =

(︃∫︂
Ω

|f |p
)︃1/p

.

We then denote by Lp(Ω) the space of all integrable functions (in the sense of Lebesgue,

see [1, Ch. 1]) such that its Lp-norm remains finite. In the case of p = ∞, L∞(Ω)

is understood to be the set of functions that are essentially bounded, i.e. the set of

functions such that

esssup(u) = inf{c ∈ R : u(x) ≤ c for almost every x ∈ Ω}

remains finite. In this case, ∥u∥L∞(Ω) ≡ esssup(u). For continuous functions, we have

that

lim
p→∞

∥f∥Lp(Ω) = ∥f∥L∞(Ω) .

The space Lp(Ω) can be obtained through the completion of C∞(Ω) with respect to the

norm ∥·∥Lp(Ω). If, given any K ⋐ Ω there holds ∥f∥Lp(K) < ∞, we say that f belongs

to Lploc(Ω).
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Definition 1.2.4. Suppose u ∈ L1
loc(Ω) and i = 1, . . . , N . If there exists functions

gi ∈ L1
loc(Ω) such that ∫︂

Ω

giϕ = −
∫︂
Ω

u
∂ϕ

∂xi

holds for any function ϕ ∈ C∞
0 (Ω), we say that gi is a weak derivative of u. In such a

case, we then write
∂u

∂xi
= gi.

In the definition above, the function ϕ is commonly referred to as a test function.

Using this framework, we now have notions of weak gradients and higher. This is a

key ingredient that allows one to develop notions of solutions that are not necessarily

classical.

We are then able to introduce higher order Sobolev spaces. If a function has k weak

derivatives (through repeated application of Definition 1.2.4), we say that it belongs

to the space W k(Ω). We define the following Sobolev space.

Definition 1.2.5. Let k be a non-negative integer and p ≥ 1. Then we denote by

W k,p(Ω) the class of functions

W k,p(Ω) = {u ∈ W k(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k}

endowed with the norm

∥u∥Wk,p(Ω) =

⎛⎝∫︂
Ω

∑︂
|α|≤k

|Dαu|p
⎞⎠1/p

.

For all p > 1, W k,p(Ω) is a Banach space. Finally, we have the following space of

functions that “vanish along the boundary” in a weak sense.

Definition 1.2.6. Denote by W k,p
0 (Ω) the closure of C∞

0 (Ω) in W k,p(Ω).

Remark 1.2.1. In the definitions above, when one takes p = 2 we have a Hilbert space

with an inner product given by the norm. It is customary to denote these spaces as

Hk(Ω). Of particular interest are the spaces H1(Ω) and H1
0 (Ω).
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We also have the following Poincaré-type inequality for functions which vanish on

a set of positive measure. This is Theorem 4.4.2 in Weakly Differentiable functions by

Ziemer [125], modified as to align with the notation used here.

Proposition 1.2.2. Suppose Ω ⊂ RN is bounded. Suppose u ∈ H1(Ω) has the property

that ∫︂
E

∇u =

∫︂
E

u = 0,

where E ⊂ Ω is a measurable set of positive (Lebesgue) measure. Then, there exists a

constant C = C(Ω) so that

∥u∥L2(Ω) ≤ C ∥∇u∥L2(Ω) .

This is usually presented in the case of H1
0 (Ω), the set of functions whose trace

vanishes on ∂Ω. In Chapter 3, we will require the same inequality for functions which

vanish on some set contained within Ω.

Sobolev spaces in the domain QT

We now introduce the so-called t-anisotropic Sobolev spaces for problems that depend

on time. The most important space isW 2,1
p (Ω), also appropriate for the study of second

order parabolic equations.

Definition 1.2.7. For any p ≥ 1 we define the space

W 2,1
p (QT ) =

{︁
u : Dαu, ∂u

∂t
∈ Lp(QT ) for every |α| ≤ 2

}︁
endowed with the norm

∥u∥W 2,1
p (QT ) =

⎛⎝∫︂∫︂
QT

⎛⎝∑︂
|α|≤2

|Dαu|p +
⃓⃓
∂u
∂t

⃓⃓p⎞⎠ dxdt

⎞⎠1/p

W 2,1
p (Ω) is also a Banach space. There are additional special cases for W k,m

p when

k,m are 0 or 1. There are also precise definitions for smooth functions vanishing along

∂Ω× (0, T ) or along ∂Ω× (0, T ) ∪ Ω× {t = 0}. For these cases, we refer to [123, Ch.
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1.4.1]. Here, we will simply refer to such functions as test functions where the context

will be clear.

What will be useful for later chapters is the special space V2(QT ), which is also

found to be a Banach space.

Definition 1.2.8. Let L∞(0, T ;L2(Ω)) be the set of all functions for which almost

every t ∈ (0, T ), u ∈ (·, t) ∈ L2(Ω) with ∥u(·, t)∥L2(Ω) bounded. We denote by V2(QT )

the set L∞(0, T ;L2(Ω)) ∩W 1,0
2 (QT ) endowed with the norm

∥u∥V2(QT ) = sup
t∈(0,T )

∥u(·, t)∥L2(Ω) + ∥∇u∥L2(QT ) .

There are many fine and useful properties of these function spaces, including proper-

ties of weak derivatives, equivalencies under certain hypotheses, density and compact-

ness properties, interpolation inequalities, relations to less regular boundary conditions,

and so on. We do not expand any further here, instead referring to [1], [123] for further

insights. When these properties may be used, we provide references as appropriate.

1.2.2 Inequalities, convergence and embeddings

In this section we compile some useful inequalities, along with convergence and em-

bedding results.

Inequalities

We have the following, Cauchy’s inequality with epsilon: given ε > 0 and a, b ≥ 0 there

holds

ab ≤ ε

2
a2 +

1

2ε
b2

Its generalization, Young’s inequality with epsilon, is as follows: given any ε > 0,

a, b ≥ 0, and p, q > 1 satisfying 1
p
+ 1

q
= 1, there holds

ab ≤ ε

p
ap +

ε−q/p

q
bq.

This inequality allows one to prove Hölder’s inequality.
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Proposition 1.2.3 (Hölder’s inequality). Let p, q > 1 satisfy 1
p
+ 1

q
= 1. If f ∈ Lp(Ω)

and g ∈ Lq(Ω), then fg ∈ L1(Ω) and

∥fg∥L1(Ω) ≤ ∥f∥Lp(Ω) ∥g∥Lq(Ω) .

Select convergence results

Here we highlight some standard convergence results. First is the Arzelà-Ascoli Theo-

rem.

Theorem 1.2.1 (Arzelà-Ascoli Theorem). Suppose a sequence of real-valued functions

fn(x) are uniformly bounded and equicontinuous on Ω. Then, there exists a uniformly

convergent subsequence.

Similarly, we have Dini’s theorem.

Theorem 1.2.2 (Dini’s Theorem). Suppose a sequence of real-valued functions {fn(x)}n∈N
are monotone (increasing or decreasing) and converge pointwise in Ω. If the limit func-

tion is also continuous, the convergence is uniform.

Embeddings

Let X and Y be Banach spaces such that X ⊂ Y . Recall that we say X is compactly

embedded in Y , denoted by X ⋐ Y , provided that i. ∥u∥Y ≤ C ∥u∥X for some C

independent of u; and ii. each bounded sequence in X is precompact in Y . We have

the following two standard embedding theorems.

Theorem 1.2.3 (Sobolev embedding). Let Ω ⊂ RN be a smooth, bounded domain and

p > Nk. Then, W 1,p(Ω) ⊂ Cα(Ω) for any 0 < α ≤ 1 − N/p, and for any function

u ∈ W 1,p(Ω), there holds

∥u∥Cα(Ω) ≤ C(N, p,Ω) ∥u∥W 1,p(Ω) .

Furthermore, the embedding is compact.
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Theorem 1.2.4 (t-anisotropic Sobolev embedding). Let Ω ⊂ RN be a smooth, bounded

domain and p > (N+2)/2. Then, W 2,1
p (QT ) ⊂ Cα(QT ) for any 0 < α ≤ 2−(N+2)/p,

and for any function u ∈ W 2,1
p (QT ), there holds

∥u∥Cα,α/2(QT ) ≤ C(N, p,QT ) ∥u∥W 2,1
p (Ω) .

Furthermore, the embedding is compact.

A simple example

Here we briefly explore a simple example demonstrating the application of the Sobolev

embedding theorem. Consider the equation

ut = duxx + u(m(x)− u)

in a bounded domain QT subject to appropriate boundary conditions. In classical PDE

theory, one assumes that m ∈ Cα(Ω) for some α ∈ (0, 1) in order to obtain a classical

solution u ∈ C2+α,1+α/2(QT ). Suppose instead that we merely assume m(x) ∈ L∞(Ω).

Classical theory no longer applies, but we may regularizem bymε so thatmε is smooth

for every ε > 0, and mε → m in Lp(Ω) as ε → 0+ for any p ≥ 1. The corresponding

solution, denoted by uε, is then classical. It is possible to obtain uniform bounds on

uε, independent of ε. This shows that uε ∈ W 2,1
p (QT ) for any p ≥ 1 by the Lp-theory

of parabolic equations. Hence, there exists a convergent subsequence, converging to a

weak solution of the original problem. Using Theorem 1.2.4, we may choose p as large

as we like to conclude that in fact u ∈ C1+α,(1+α)/2(QT ) for any α ∈ (0, 1). This shows

that the solution is differentiable in space, with its derivative Hölder continuous, but

with (perhaps) no second derivative (in a classical sense)!

1.2.3 Monotone dynamical systems

In this section, we highlight some of the standard abstract results applied to monotone

dynamical systems, and more specifically continuous monotone dynamical systems. We

focus on continuous-time order-preserving flows as this will be the primary use of these

tools here. For further precision and details, we refer readers to [68], [124]. We hope

to provide a reminder and some context for more familiar readers.
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We begin with some standard definitions and their notations. Let X be a Banach

space with Y ⊂ X. A subset K of X is said to be a cone if K + K ⊂ X, λK ⊂ K

for all λ ≥ 0, and K ∩ (−K) = {0}. We will assume a cone has non-empty interior

unless otherwise specified. There is then an ordering induced by the cone K. For each

u, v ∈ K, we write u ≥ v if u − v ∈ K; u > v if u − v ∈ K+; u ≫ v if u − v ∈ K++,

where K+ = K \ {0} and K++ is the interior of the set K, i.e., the set consisting of

all points x0 ∈ K such that there exists an open ball around x0 contained within K.

A simple but instructive example is the space X := C(Ω). Then, C+(Ω) is simply

the set of non-negative continuous functions on Ω. C++(Ω) is the set of strictly positive

functions in Ω. For w1, w2 ∈ C(Ω), the following ordering is often used in literature.

w1 ≤ w2 iff w2 − w1 ∈ C+(Ω),

w1 < w2 iff w2 − w1 ∈ C+(Ω) \ {0},

w1 ≪ w2 iff w2 − w1 ∈ C++(Ω).

Note that the cone we work in depends on the problem we study; the ordering above

is appropriate for homogeneous Neumann boundary data, but is not sufficient for ho-

mogeneous Dirichlet boundary data.

We now present some important theorems concerning compact, positive operators,

their spectral radius, and connections to eigenvalues. Let T be a linear operator on a

Banach space X. T is called positive if T (K) ⊂ K. Denote by σ(T ) the spectrum of T

and spr(T ) the spectral radius of T . We have the following theorems of Krein-Rutman,

both found in e.g., [68, Ch. I.7].

Theorem 1.2.5 (Krein-Rutman I). Suppose an operator T : X → X is compact and

positive. Assume that λ = spr(T ) > 0. Then λ is an eigenvalue of T with eigenfunction

ψ > 0.

Assume now thatK has nonempty interior. An operator T is called strongly positive

if T (K+) ⊂ K++. We have the second theorem.

Theorem 1.2.6 (Krein-Rutman II). Suppose the operator T is compact and strongly

positive. Then λ = spr(T ) > 0, and λ is the unique eigenvalue of T having a positive
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eigenfunction ψ. Furthermore, ψ ≫ 0 and λ is algebraically simple. Finally, |r| < λ

for all r ∈ σ(T ), r ̸= λ.

Finally, we have the following result for the inhomogeneous problem. We assume

h ∈ X+ and consider the solution of the equation

γu+ Tu = h in X+.

Theorem 1.2.7 (Krein-Rutman III). Assume the hypotheses of Theorem 1.2.6 hold.

Then

(i) There exists a unique solution u ∈ X++ solving the inhomogeneous problem for

every γ > λ; there is no positive solution for any γ ≤ λ.

(ii) If γ = λ, there is no solution at all.

We next recall the definition of a semi-flow. A semi-flow is a continuous map

S = S(t, u) : Dom(S) ⊂ [0,∞)× Y → Y such that Dom(S) is open in [0,∞)× Y and

satisfies the following three properties:

i.) S(0, u) = u, ∀u ∈ Y ;

ii.) S(t, S(t′, u)) = S(t+ t′, u) for any t, t′ ≥ 0, u ∈ Dom(S(t+ t′));

iii.) S(t, u) is strongly continuous in (t, u).

Property ii. is often referred to as the semigroup property. The map S is called strictly

order preserving (resp. strongly order-preserving) if for any t > 0, u < v implies that

S(t, u) < S(t, v) (resp. S(t, u) ≪ S(t, v)). Note that in some references, the term

order-preserving is exchanged with monotone. Hence the term monotone dynamical

systems.

Beyond monotonicity, there is the notion of subhomogeneity.

Definition 1.2.9 (Subhomogeneous function). A continuous function f : X → X is

said to be subhomogeneous if f(λu) ≥ λf(u) for any u ∈ X and λ ∈ [0, 1]; strictly

subhomogeneous if f(λu) > λf(u) for any u ∈ X with u ≫ 0 and λ ∈ (0, 1); and

strongly subhomogeneous if f(λu) > λf(u) for any u ∈ X with u≫ 0 and λ ∈ (0, 1).
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We now present a useful “threshold dynamics”-type theorem in the language of

[124] (the precise theorem statement is given in [124, Thm. 2.3.4]). Similar results and

further discussion can be found in [68].

Theorem 1.2.8 (Threshold dynamics). Suppose a continuous map f : X+ → X+

is either strongly monotone and strictly subhomogeneous, or monotone and strongly

subhomogeneous. Suppose further that f is asymptotically smooth, and every orbit in

X+ is bounded. Finally, suppose that f(0) = 0 and that Df(0) is compact and strongly

positive. Then the following threshold dynamics hold.

• If spr(Df(0)) ≤ 1, then every orbit in X+ converges to 0;

• If spr(Df(0)) > 1, then there exists a unique fixed point u∗ ≫ 0 such that every

orbit in X+ converges to u∗.

To give some additional context, we also state the following two theorems from [68]

concerning subhomogeneous continuous time semiflows. Denote by [u1, u2] the order

interval {u ∈ C(Ω) : u1 ≤ u ≤ u2}.

Theorem 1.2.9 (Monotone theorem I). Let u1 < u2 be equilibrium points of the strictly

order-preserving semiflow S, and let X = [u1, u2].

Assume [0,∞)×X ⊂ Dom(S) and that S(t,X) is relatively compact for each t > 0.

Then either

(i) there is a further equilibrium in X, or

(ii) there is a strictly monotone entire orbit γ = {zt : t ∈ R} connecting u1 and u2,

i.e., zt+τ = S(τ, zt) for every t ∈ R, τ ∈ [0,∞), and either

xt < xt+τ , ∀t ∈ R, τ > 0, and lim
t→−∞

zt = u1, lim
t→∞

zt = u2,

or

xt > xt+τ , ∀t ∈ R, τ > 0, and lim
t→∞

zt = u1, lim
t→−∞

zt = u2

For the next theorem, we also require the notion of subequilibria and superequilibria.
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Definition 1.2.10 (Subequilibria & Superequilibria). A point u ∈ X is called a sube-

quilibrium (superequilibrium) of the continuous dynamical system S if u ≤ S(t, u)

(u ≥ S(t, u)) for all t ∈ [0, T ), where 0 < T = T (u) is the (possibly infinite) maximal

existence time of the flow S. A point u is a strict subequilibrium (superequilibrium) if

it is a subequilibrium (superequilibrium), but not an equilibrium.

Theorem 1.2.10 (Monotone theorem II). Let S be strongly order-preserving, and let

v1 < v2 be subequilibrium and superequilibrium, respectively. Let V := [v1, v2], and

assume that [0,∞) × V ⊂ Dom(S) and that S(t, V ) is relatively compact for each

t > 0. Finally, assume each equilibrium in V is stable. Then all positive semiorbits in

V converge, i.e. ω(v) = {v∗}, v∗ equilibrium, for all v ∈ V . In addition, the set E of

equilibria of S in V is totally ordered and connected.

The language is sometimes difficult to parse so we will use the same simple example

to demonstrate its use.

Return to a simple example

We return again to the equation

ut = duxx + u(m(x)− u)

in Ω, subject to appropriate boundary conditions. The abstract Theorem 1.2.8 can

be applied to this problem to conclude that there exists a unique steady state u∗d,m if

and only if the sign of a principal eigenvalue is negative, otherwise 0 is the only steady

state. Using the maximum principle, we can show that the PDE generates a strongly

monotone flow. Furthermore, since the reaction term is concave in the variable u,

it is also strongly subhomogeneous, and so the PDE generates a strongly monotone

subhomogeneous flow.

The “asymptotic smoothness” property follows from the regularizing effect the PDE

operator has. In this case, the operator takes a merely continuous function and returns

a twice differentiable function (if m(x) ∈ Cα(Ω)). Using standard methods one can

show that solutions remain uniformly bounded for all time due to the strict concavity

of the reaction term.
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It is easy to verify that u(x, 0) ≡ 0 implies that u(x, t) = 0 for all t > 0. Com-

pactness again follows from the regularity of the PDE operator (in this case, a simple

diffusion operator). Since the PDE has the “infinite propagation speed” property, i.e.,

solutions with non-negative, non-trivial initial data are strictly positive for any t > 0,

the PDE is strongly positive.

Thus, the PDE map S(t;u0(x)), taking a continuous function u0(x) = u(x, 0) as

an input, returning a solution to the given problem satisfies all of the conditions of

Theorem 1.2.8. In practice, the higher order terms (diffusion, advection) relate to

compactness properties of the PDE map S. On the other hand, properties of the

low order term (generally f(x, u), in this case the logistic form u(m(x) − u)) provide

monotonicity or subhomogeneity properties of the PDE map S.

As it turns out, the dichotomy between [0, 1] and (1,∞) in this case can be made

equivalent to the sign of a principal eigenvalue. This eigenvalue corresponds to the

linearization of the time-dependent problem about the trivial steady state. This eigen-

value, in turn, depends on the diffusion rate d and the heterogeneity m(x), giving

insights into the nature of persistence for diffusing species.

1.2.4 Maximum principles, comparison principles, and Hopf’s
lemma

In this section, we highlight briefly the two main “types” of solutions we work with.

The first is the classical solution, which is sufficiently differentiable to plug directly

into the relevant equation and satisfies it everywhere in Ω or QT . The second is the

weak solution (in our case, this often turns out to be a strong solution). Also of note

is the mild solution, though we do not use this notion in the present work and will not

focus deeply on the theory of semigroups.

Elliptic equations

Suppose we are given a general, second order linear elliptic operator:

Lu := −
N∑︂

i,j=1

aij
∂2u

∂xi∂xj
+

N∑︂
i=1

bi
∂u

∂xi
+ cu. (1.1)
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We always assume that aij(x), bi(x), c(x) belong to L∞(Ω), aij = aji, and that there

exists constants 0 < λ ≤ Λ so that

λ |ξ|2 ≤
N∑︂

i,j=1

aij(x)ξiξj ≤ Λ |ξ|2 , ∀ξ ∈ RN , x ∈ Ω.

This lower bound is commonly referred to as a uniform ellipticity condition, which

essentially ensures a “non-degeneracy” condition on the highest order term of the

operator L. We may then consider equations of the form

Lu = f in Ω,

where f(x) is some given, suitably smooth function. A quintessential tool in the study

of PDE is the so-called maximum principle, see e.g., [123, Ch. 8], [95, Ch. 2], [8, Ch.

]. In what follows, ∂
∂ν

denotes the outward unit normal vector to the boundary ∂Ω.

Theorem 1.2.11 (Maximum principle for elliptic equations). Let c(x) ≥ 0, and aij(x),

bi(x), c(x) belong to L∞(Ω). Suppose that u ∈ C2(Ω) satisfies Lu ≤ 0 in Ω. Then,

• If u attains a non-negative maximum M ≥ 0 at any point x0 ∈ Ω, then u ≡ M

in all of Ω.

• Suppose further that u ∈ C(Ω) and that Ω satisfies the interior ball condition

(i.e., every point x0 ∈ ∂Ω lies on the boundary of a ball Bρ(y0) ⊂ Ω). If u = M

at some point x0 ∈ ∂Ω for which ∂u
∂ν

exists, then either ∂u
∂ν
> 0 at x0 or u ≡M in

Ω.

The second part of this theorem ensuring the strict positivity of the outward facing

normal

Note that our general assumption that ∂Ω is of class C2 ensures the interior ball

condition holds automatically; less regular domains, such as those with cusps, can still

satisfy an interior ball condition.

The maximum principle has many consequences. Of particular use is the compar-

ison principle, which now incorporates some information along the boundary. In this
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work, we primarily consider only the homogeneous Dirichlet or Neumann boundary

condition:

BDu := u = 0 on ∂Ω, or BNu :=
∂u

∂ν
= 0 on ∂Ω.

Then, we can formulate the boundary value problem{︄
Lu = f in Ω,

Biu = 0 on ∂Ω,
(1.2)

where i = D,N and f(x) is a given, suitably smooth function. We then have the

following.

Theorem 1.2.12 (Comparison principle for elliptic equations). Suppose c(x) ≥ 0 and

bi(x), c(x) belong to L∞(Ω). Suppose that u, v ∈ C2(Ω) ∩ C(Ω) satisfy Lu ≤ Lv in Ω,

and Biu ≤ Biv along ∂Ω for i = D or N . Then there holds

u(x) ≤ v(x) ∀x ∈ Ω.

Remark 1.2.2. This theorem statement was taken from [123, Ch. 8.1] which is valid

only for the Dirichlet boundary condition. The same is true for a Neumann bound-

ary condition (or a Robin boundary condition, not discussed here), in which case we

reference [95] or [8] and the references therein.

As we will explore in the next section, often the requirements for these results are

too strong.

Parabolic equations

Here we compile the analogous results to the previous section for the case of second

order parabolic problems. In this case, the operator is still of the form given in (1.1),

but now aij = aij(x, t), bi = bi(x, t), c = c(x, t), each of which are assumed bounded

in QT . It is still assumed that aij satisfies the uniform ellipticity condition for all

(x, t) ∈ QT .

We then consider solutions to the equation

ut + Lu = f in QT
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where f = f(x, t) is some given, appropriately smooth function. We have first the

maximum principle.

Theorem 1.2.13 (Maximum principle for parabolic equations). Suppose aij(x, t),

bi(x, t), c(x, t) belong to L∞(Ω). Suppose that u ∈ C2,1(QT ) satisfies ut + Lu ≤ 0

in Ω. Then,

• If u attains a non-negative maximum M ≥ 0 at any point (x0, t0) ∈ QT , then

u ≡M in all of Ω× (0, t0].

• Suppose further that u ∈ C(Ω × (0, T )) and that Ω satisfies the interior ball

condition (i.e., every point x0 ∈ ∂Ω lies on the boundary of a ball Bρ(y0) ⊂ Ω).

If u = M at some point (x0, t0) ∈ ∂Ω × (0, T ) for which ∂u
∂ν

exists, then either

∂u
∂ν
> 0 at (x0, t0) or u ≡M in Ω× (0, t0).

Then, we can formulate the parabolic initial-boundary value problem analogous to

problem (1.2): ⎧⎪⎨⎪⎩
ut + Lu = f(x, t) in Ω× (0, T ),

Biu(x, t) = 0 on ∂Ω× (0, T ),

u(x, 0) = u0(x) ⪈ 0 in Ω

(1.3)

where i = D,N as before, and f(x, t) is a given. We then have the following.

Theorem 1.2.14 (Comparison principle for parabolic equations). Suppose aij(x, t),

bi(x, t), c(x, t) belong to L
∞(Ω). Suppose that u, v ∈ C2,1(QT )∩C(QT ) satisfy ut+Lu ≤

vt + Lv in QT , and Biu ≤ Biv along ∂Ω× (0, T ) for i = D or N . Then there holds

u(x, t) ≤ v(x, t) ∀(x, t) ∈ QT .

Similar results under weaker conditions

As we will explore in the next section, often the conditions for maximum/comparison

principles are too strict, particularly when we consider solutions that may not be

differentiable in the usual sense. As it turns out, strong maximum principle-type

results still hold for weak and strong solutions, where differential inequalities are now
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understood in the weak or almost everywhere sense. For the case of elliptic equations,

we state the so-called Aleksandrov maximum principle, with statement taken from [52,

Ch. 9.1]. We modify the statement slightly for the conventions used here.

Theorem 1.2.15 (Aleksandrov maximum principle). Suppose u ∈ W 2,N(Ω) satisfies

−Lu ≤ 0 and c = 0 (c ≥ 0). Then u cannot achieve a maximum (nonnegative

maximum) in Ω unless it is a constant.

In the case of parabolic equations, we state the result found in [4, Theorem 1]. We

again modify the statement slightly to align with the conventions used here.

Theorem 1.2.16 (Aleksandrov maximum principle for parabolic equations). Suppose

that u(x, t), v(x, t) ∈ C1,1(QT ). Suppose that there exists a point (x0, t0) ∈ QT such

that u(x0, t0) = v(x0, t0) and that u ≤ v in Qt0. Suppose further that u and v satisfy

ut − Lu ≤ 0 ≤ vt − Lv

in Qt0 in the weak sense. Then, u ≡ v in Qt0.

Remark 1.2.3. Actually, the result in [4] is much more general, allowing for nonlin-

earity at the highest order. We do not require such machinery generally; the value is

in the decreased regularity assumptions on the functions. Notice that we require u and

v to satisfy some differential inequalities (similar to the classical case), but now they

hold only in a weak sense. We elaborate further on this point in the subsequent section.

Essentially, so long as the appropriate differential inequalities are satisfied, even in

a weaker sense, we have the same results as those found in Theorem’s 1.2.11-1.2.13.

We also state the following result, commonly known as Hopf’s lemma. This lemma

is of particular use when applying the maximum principle and considering boundary

points. Of note is the lack of regularity required: the result holds for strong solutions

(see the following section for details!). Since our solutions are not always classical such

considerations are necessary. The statement is taken from [103, Theorem 1.1]

Theorem 1.2.17 (A general Hopf’s lemma). Let Ω ⊂ RN be a smooth bounded domain,

aij ∈ Cα(Ω) with aij(x) = aji(x), 1 ≤ i, j ≤ N , x ∈ Ω, and
∑︁N

i,j=1 aij(x)ξiξj > 0 for

30



all x ∈ Ω and ξ ∈ RN \ 0. Assume that u ∈ C1(Ω) solves, in the weak sense,

−
N∑︂

i,j=1

∂xi(aij(x)∂xju) +
N∑︂
i=1

bi(x)∂xiu+ c(x)u ≥ 0, in Ω,

where bi ∈ L∞(Ω) for 1 ≤ i ≤ N , c ∈ L∞(Ω), and c(x) ≥ 0 a.e. in Ω. Suppose that for

x0 ∈ ∂Ω there exists a ball B ⊂ Ω with x0 ∈ ∂B where u = u(x) > u(x0) for x ∈ B. If

u(x0) ≤ 0 then

∂u

∂ν
(x0) < 0,

where ν is the outward unit normal at x0.

Remark 1.2.4. Note that in the statement above, the operator is in divergence form.

This is different from L introduced in (1.1), which is not in divergence form. This

can cause some confusion, however, we note that under appropriate smoothness as-

sumptions on the coefficients they are equivalent. In particular, we always consider

aij(x) ≡ diδij, where δij is the Kronecker-Delta function and di > 0 is a constant.

Hence, the two forms are equivalent for our purposes.

1.2.5 Notions of solutions to PDEs

Here we explore which kind of solutions we expect to obtain in this work.

Classical solutions of elliptic equations

Definition 1.2.11 (Classical solution). We call a function u(x) a classical solution of

problem (1.2) if it belongs to C2+α(Ω)∩C(Ω) for some α ∈ (0, 1), satisfies the equation

everywhere in Ω, and satisfies the boundary condition pointwise everywhere along ∂Ω.

From this definition, we see that a classical solution is the easiest to work with, at

least in one sense: all derivatives are the usual derivatives that we are familiar with

from calculus I, and the equation is satisfied in an intuitive way. This is different from

the notion of weak and strong solutions. Notice that in this case, the operator L is

taken in divergence form. As stated previously, this will not make a difference for our

purposes since aij will be constant for each of its entries; despite this, it is worth noting
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that in general, weak formulations are a little more natural for equations in divergence

form.

Weak and strong solutions of elliptic equations

In most cases of interest, regularity assumptions required for classical solutions are

much too restrictive. It is nice to be able to work with less regular functions and still

have a notion of a solution in a meaningful way. To this end, we use the notion of weak

derivative introduced previously. In particular, weak solutions are made well-defined

through integration by parts.

Definition 1.2.12 (Weak solution (elliptic case)). A function u(x) belonging to H1(Ω)

is said to be a weak solution of the equation Lu = f in Ω if, given any test function

ϕ ∈ C∞
0 (Ω), there holds∫︂

Ω

(︄
N∑︂

i,j=1

aij(x)
∂u

∂xj

∂ϕ

∂xi
+

N∑︂
i=1

bi(x)
∂u

∂xi
ϕ+ c(x)uϕ

)︄
dx =

∫︂
Ω

fϕdx. (1.4)

If, in addition, u ∈ H1
0 (Ω), u is said to be a weak solution to the boundary value problem

(1.2) with BD = 0.

Remark 1.2.5. In the definition above, if u ∈ H1
0 (Ω), u is said to vanish along ∂Ω

in the sense of the trace. The trace theorem is an important result that allows one to

consider functions taking values on “sets of measure zero”. Indeed, from the point of

view of Ω, ∂Ω has measure zero since it is N − 1-dimensional! In the case of Dirichlet

boundary conditions, this is obtained somewhat directly. In the case of Neumann bound-

ary conditions, a similar perspective is taken, with the Neumann boundary condition

satisfied in some integral sense.

We highlight the trace theorem here for convenience. The following is taken from

[31, Ch. 5].

Theorem 1.2.18 (Trace theorem I). Let Ω have a C1 boundary and fix p ≥ 1. Then,

given any u ∈ W 1,p(Ω), there exists a bounded linear operator T : W 1,p(Ω) ↦→ Lp(∂Ω)

such that
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• Tu = u|∂Ω if u ∈ W 1,p(Ω) ∩ C(Ω); and

• ∥Tu∥Lp(∂Ω) ≤ C ∥u∥W 1,p(Ω),

where C depends only on p and Ω.

In some references, the statement is more “direct” for the Hilbert space H1(Ω), and

so we state this version as well, taken from [123, Ch. 1].

Theorem 1.2.19 (Trace theorem II). Let Ω have a C2 boundary. Then, any u ∈ H1(Ω)

has a trace Tu along ∂Ω such that Tu ∈ L2(∂Ω), which is to say, there exists a function

Tu ∈ L2(∂Ω) satisfying

lim
n→∞

∫︂
∂Ω

|un − Tu|2 dS = 0,

where {un}n∈N ⊂ C1(Ω) is an arbitrary sequence converging to u in H1(Ω).

Further discussion on traces can be found in, e.g., [8, Ch. 1.6].

In the definition of a weak solution, we make no assumption on the regularity

of the solution beyond H1(Ω). In many cases, the regularity can be improved so

that the solution, while not classical, may still have some classical differentiability or

integrability properties. This motivates the definition of a strong solution.

Definition 1.2.13 (Strong solution (elliptic case)). A function u ∈ W 2,p(Ω) is said to

be a strong solution to the equation Lu = f if u satisfies the equation almost everywhere

in Ω. If, in addition, u ∈ H1
0 (Ω), u is said to be a strong solution of the boundary value

problem (1.2) with i = D.

Remark 1.2.6. Similar to the case of weak solutions, analogous formulations exist

for the case of Neumann boundary conditions. In fact, in the case of homogeneous

Neumann boundary data, both weak and strong solutions are defined through the identity

(1.4) with H1
0 (Ω) replaced by the larger space H1(Ω). These distinctions are covered in

detail in [89, Ch. IV].
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Classical solutions of parabolic equations

We now highlight the analogous results to the previous section for the parabolic case.

All results are almost identical aside from a handful of technical details that change.

Overall, the philosophy to develop notions of classical, weak, and strong solutions

remains the same.

Definition 1.2.14. We call a function u(x, t) a classical solution of problem (1.3)

if it belongs to C2+α,1+α/2(QT ) ∩ C(QT ) for some α ∈ (0, 1), satisfies the equation

everywhere in QT , satisfies the boundary condition pointwise along ∂Ω for all t > 0,

and there holds limt→0+ u(x, t) = u0(x) pointwise in Ω.

Weak and strong solutions of parabolic equations

As in the case of elliptic equations, requirements for classical solutions are often too

restrictive. Using the same notion of weak differentiability, we have the following

definition of a weak solution.

Definition 1.2.15 (Weak solution (parabolic case)). A function u(x, t) belonging to

H1(QT ) := W 1,1
2 (QT ) is said to be a weak solution of the equation ut + Lu = f in QT

if, given any test function ϕ ∈ C∞
0 (QT ), there holds∫︂∫︂

QT

(︄
utϕ+

N∑︂
i,j=1

aij
∂u

∂xj

∂ϕ

∂xi
+

N∑︂
i=1

bi
∂u

∂xi
ϕ+ cuϕ

)︄
dx =

∫︂
Ω

fϕdx. (1.5)

If, in addition, u(·, t) ∈ H1
0 (Ω) for almost every t ∈ (0, T ), u is said to be a weak

solution to the boundary value problem (1.3) with BDu = 0.

Remark 1.2.7. As in the case of elliptic equations, we may treat the homogeneous

Neumann boundary condition though choosing test functions from the space H1(QT ).

Furthermore, as in the case of elliptic equations, boundary conditions are considered

satisfied in the sense of the trace. This notion extends to satisfying the initial data in

the sense of the trace.

For convenience we highlight some trace theorems for parabolic problems. In what

follows, we denote by ∂QT the set ∂Ω× (0, T ) ∪ Ω× {t = 0}.
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Theorem 1.2.20. Let Ω have a C2 boundary. Given any function u ∈ H1(QT ), u has

a trace Tu ∈ L2(∂QT ).

We conclude with the notion of strong solution for parabolic problems.

Definition 1.2.16. A function u ∈ W 2,1
p (QT ) is said to be a strong solution of the

equation ut + Lu = f if u satisfies the equation almost everywhere in QT . If, in

addition, u(·, t) ∈ H1
0 (Ω) for almost every t ∈ (0, T ), and limt→0+ u(x, t) = u0(x) in

the sense of the trace, u is said to be a strong solution of the initial-boundary value

problem (1.3) with i = D.

Remark 1.2.8. As in the case of elliptic equations, most textbooks consider in detail

only the case of Dirichlet boundary data. The analogous formulation for the homo-

geneous Neumann problem follows by replacing H1
0 (QT ) with H1(QT ), the details of

which can be found in, e.g., [89, Ch. VI].

1.2.6 Schauder Theory for elliptic and parabolic equations

To complement the material introduced in previous sections, we now state some results

sometimes generally referred to as the Schauder theory of elliptic and parabolic equa-

tions. This theory provides conditions which ensure the existence and uniqueness of a

classical solution to linear, second order elliptic and parabolic equations. Additionally,

we have the so-called Schauder estimates for these classical solutions.

Elliptic equations

Theorem 1.2.21 (Existence of classical solutions (elliptic case)). Assume α ∈ (0, 1),

and aij,bi,c, f belong to Cα(Ω) with c ≥ 0. Then, problem (1.2) admits a unique

classical solution u ∈ C2,α(Ω) ∩ C(Ω).

Theorem 1.2.22 (Schauder estimates (elliptic case)). Assume α ∈ (0, 1), and aij,bi,c

belong to Cα(Ω). Suppose also that f ∈ Cα(Ω). If u ∈ C2,α(Ω) ∩ C(Ω) is a classical

solution to problem (1.2), then

∥u∥C2,α(Ω) ≤ C
(︂
∥f∥Cα(Ω) + ∥u∥C(Ω)

)︂
for some constant C > 0 depending on N , α, Ω, and the Cα-norms of aij, bi, c.
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Parabolic equations

Theorem 1.2.23 (Existence of classical solutions (parabolic case)). Assume α ∈ (0, 1),

and aij,bi,c, f belong to Cα(Ω). Then, problem (1.3) admits a unique classical solution

u ∈ C2+α,1+α/2(QT ) ∩ C(QT ).

Theorem 1.2.24 (Schauder estimates (parabolic case)). Assume α ∈ (0, 1), and

aij,bi,c belong to C
α,α/2(QT ). Suppose also that f ∈ Cα,α/2(QT ). If u ∈ C2+α,1+α/2(QT )∩

C(QT ) is a classical solution to problem (1.3), then

∥u∥C2+α,1+α/2(QT ) ≤ C
(︂
∥f∥Cα,α/2(QT ) + ∥u∥C(QT )

)︂
for some constant C > 0 depending on N , α, Ω, and the Cα-norms of aij, bi, c.

1.2.7 Lp-theory for elliptic and parabolic equations

We conclude with the weak and strong analogues to the Schauder theory briefly pre-

sented in the previous section. In these cases, the Hölder condition on the right hand

side is exchanged for an Lp condition. For the case of weak solutions, we state some

theorems from the L2-theory of elliptic and parabolic equations. Then we state results

for the Lp-theory versions leading to strong solutions.

Theorem 1.2.25 (L2-existence for linear elliptic equations). Suppose bi ≡ 0 and that

c ≥ 0. Then, given any function f ∈ L2(Ω), the following hold.

• There exists a unique weak solution u ∈ H1
0 (Ω) solving problem (1.2) with i = D.

• If, in addition, c ̸≡ 0 in Ω, then there exists a unique weak solution u ∈ H1(Ω)

solving problem (1.2) with i = N .

Remark 1.2.9. This result for the case of Dirichlet boundary conditions (homogeneous

or otherwise) can be found in, e.g., [31, Theorem 3 Ch. 6.2] or [123, Theorem 2.3.2].

The result for Neumann boundary data (homogeneous or otherwise) can be found in

[89, Ch. IV]. In the case where c ≡ 0, the problem reduces to Poisson’s equation, which

is easier and can be treated separately. Actually, this is precisely Problem 4 in [31, Ch.

6.6].
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Remark 1.2.10. If the condition bi ≡ 0 is violated, Theorem 1.2.25 is still true; in

this case, the equation solved must be written as Lu+ µu for some µ ∈ R. Then, there

exists a γ ≥ 0 so that Theorem 1.2.25 holds for all µ ≥ γ. This can be found in the

two Theorems referenced in the previous remark. Essentially, the first order terms ruin

the symmetry of the operator L, and so the “usual” techniques (Riesz’s representation

theorem or variational methods) do not apply.

Along with the existence of a solution, we also obtain the following estimates for

the solution obtained.

Theorem 1.2.26 (L2-type estimates for linear elliptic equations). Suppose the hy-

potheses of Theorem 1.2.25 hold. Then, there exists a constant C > 0 such that the

solution u satisfies

∥u∥H1(Ω) ≤ C ∥f∥L2(Ω) ,

where the constant C is independent of f . If ∂Ω has a C2 boundary, then there further

holds

∥u∥H2(Ω) ≤ C
(︂
∥f∥L2(Ω) + ∥u∥H1(Ω)

)︂
,

for some C > 0 independent of f and u.

Remark 1.2.11. The first estimate is obtained rather directly with limited regularity

requirements on ∂Ω. Usually, the second estimate is presented as an “interior estimate”

first, holding only in any compact subset Ω′ ⋐ Ω. Since we always assume Ω has a

smooth enough boundary, we jump straight to the punchline: we obtain H2-estimates

in terms of the data f and lower order norms of the solution u. For the Dirichlet

problem, we refer to [123, Ch. 2]. For the homogeneous Neumann problem, we refer

to [89, Ch. IV.3].

Theorem 1.2.27 (L2-existence for linear parabolic equations). Suppose aij, bi, c ∈

L∞(QT ). For simplicity, we assume that aij are independent of t. Suppose also that

u0 ∈ H1(Ω). Then, given any function f ∈ L2(QT ), the following hold.

• There exists a unique weak solution solving problem (1.3) with i = N .
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• Suppose further that u0 ∈ H1
0 (Ω). Then, there exists a unique weak solution u

solving problem (1.3) with i = D.

Remark 1.2.12. For the homogeneous Neumann boundary data case, we refer to [89,

Ch. VI]. For the homogeneous Dirichlet boundary data case, we refer to [123, Theorem

3.5.1].

Theorem 1.2.28 (L2-type estimates for linear parabolic equations). Suppose the hy-

pothesis of Theorem 1.2.27 hold and that ∂Ω is C2.. Then, there exists a constant

C > 0 such that the solution u satisfies

∥u∥W 2,1
2 (QT ) ≤ C

(︂
∥f∥L2(Ω) + ∥u0∥H1(Ω)

)︂
.

Remark 1.2.13. Unlike the case of elliptic equations, we choose to jump straight to

the global regularity estimate in W 2,1
2 (QT ) rather than starting in some weaker space,

like W 1,0(QT ). These results exist, but compiling the varying technical details is cum-

bersome and distracting to the main goal.

Finally, we conclude with the so-called Lp-theory of elliptic and parabolic equations.

In this case, we increase the requirement on the right hand side, which improves the

space in which solutions are obtained from W 2,2(Ω) and W 2,1
2 (QT ) to W 2,p(Ω) and

W 2,1
p (QT ). In particular, this is most useful when applying the Sobolev embedding

theorems (Theorem 1.2.3 and 1.2.4). For the following theorems, we now present the

existence and apriori estimates in the same place.

Theorem 1.2.29 (Lp-theory for linear elliptic equations). Suppose that aij, bi, c ∈

L∞(Ω), c ≥ 0, and aij ∈ C(Ω). Assume p > 1 and that ∂Ω is C2. Then, given any

function f ∈ Lp(Ω), there exists a unique strong solution u ∈ W 2,p(Ω) solving problem

(1.2). Furthermore, the solution u satisfies

∥u∥W 2,p(Ω) ≤ C
(︂
∥f∥Lp(Ω) + ∥u∥Lp(Ω)

)︂
,

for some C > 0 independent of f and u.

Theorem 1.2.30 (Lp-theory for linear parabolic equations). Suppose that aij, bi, c ∈

L∞(QT ) and aij ∈ C(QT ). Assume p > 1, that ∂Ω is C2, and u0 ∈ W 2,p(Ω). Then,
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given any function f ∈ Lp(QT ), there exists a unique strong solution u ∈ W 2,1
p (QT )

solving problem (1.3). Furthermore, the solution u satisfies

∥u∥W 2,1
p (QT ) ≤ C

(︂
∥f∥Lp(QT ) + ∥u0∥W 2,p(Ω) + ∥u∥Lp(QT )

)︂
,

for some C > 0 independent of f and u.

Remark 1.2.14. These results contain so-called global estimates over the entire do-

main Ω. Generally, one first obtains interior estimates for any compact subset Ω′ ⋐ Ω.

For general Lp-estimates, we refer to [119]. In it, interior estimates are obtained for

some general second order linear elliptic and parabolic equations (note that they do not

contain first order terms in the operator, i.e., bi ≡ 0). One may then apply a local

flattening of the boundary technique in order to prove these estimates are in fact global

across the whole domain Ω, where the smoothness requirement of ∂Ω is what allows

one to perform this “trick”. This is covered in detail for the Dirichlet case in [123,

Ch. 9.1] (for elliptic) and [123, Ch. 9.2] (for parabolic). For the case of Neumann

boundary conditions, one may use the interior estimates found in [119], along with the

approaches used in [89] (to handle the Neumann boundary condition) and the methods

of [123, Ch. 9] (to handle the local flattening of the boundary).

1.2.8 Monotone methods for nonlinear elliptic and parabolic
equations

We conclude with a brief discussion of so called monotone methods in proving the well-

posedness of certain general nonlinear problems. It is important to note that this sense

of “monotone” is different than the “theory of monotone flows”. In the present setting,

monotone refers to the construction of monotonic sequences of sub/super solutions.

For quasilinear parabolic and elliptic equations, particularly those with nonlinearity in

the reaction term only, we can prove the existence/uniqueness of solutions based on

some rather reasonable conditions on the right hand side (particularly, Assumptions

2.2.1-2.2.2).

These results are well-known and not original here. For the purpose of this pre-

sentation, we follow references such as [123] or [95]. We use sub/super solutions in
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the classical sense, applying the classical comparison principle, Theorem’s 1.2.12 and

1.2.14, to show that the generated sequences are indeed monotone. Paired with Dini’s

theorem and the Schauder estimates, we prove the sequences converge to a solution to

the original problem. In some cases, this solution is unique; other times, we obtain at

least two solutions that are ordered.

The result we present here is for the case of a scalar parabolic problem. The

elliptic case is similar with some important modifications. More precisely, notice the

non-negativity of c(x) in Theorem 1.2.12; there is no such requirement for parabolic

equations, an essential difference between the two. This is what may lead to a lack of

uniqueness in the steady state problem.

Beyond scalar equations, these monotone methods can also be applied to systems of

elliptic and parabolic equations. In these cases, the differential inequalities may change

depending on the nature of the interaction on the right hand side. The three com-

mon cases are quasimonotone nonincreasing, quasimonotone nondecreasing, or mixed

quasimonotone. We focus only on the nonincreasing case, since this corresponds to

competitive systems.

We now introduce the notion of sub and super solutions. Actually, we have already

seen this for linear equations in Theorems 1.2.12 and 1.2.14, where u and v are respec-

tively sub and super solutions. Note that in some references these are called lower and

upper solutions. Suppose we are given the following nonlinear problem:⎧⎪⎨⎪⎩
ut −∆u = f(u), in QT ,

Biu = 0, on ∂Ω× (0, T ),

u(x, 0) = u0(x), in Ω,

(1.6)

for some non-trivial initial data u0(x) and i = B or i = N . We assume that f(u) is at

least Lipschitz continuous in its argument.

Definition 1.2.17. A function u (u) belonging to C2,1(QT ) is called a sub (super)

solution of problem (1.6) if it satisfies

wt −∆w ≤ (≥) f(w) in QT ,

satisfies

Biw ≤ (≥) 0 on ∂Ω× (0, T ),
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and satisfies w(x, 0) ≤ (≥) u0(x) in Ω.

Sometimes we say that u, u are ordered if u ≤ u in QT . Notice that a solution is

both a sub and super solution. Since f is Lipschitz, there exists a constant c > 0 so

that

f(u)− f(v) ≥ −c(u− v) (1.7)

whenever u ≥ v. If we consider functions lying between our sub and super solutions,

this means that the function

F (u) := cu+ f(u)

is monotone nondecreasing for u ≤ u ≤ u. Later, we will actually assume that f is

differentiable and is therefore Lipschitz. We then set up an iteration scheme via

wnt −∆wn + cwn = F (wn−1), in QT , (1.8)

Biw
n = 0, on ∂Ω× (0, T ), (1.9)

wn(x, 0) = u0(x), in Ω, (1.10)

where we choose our initial iterate w0(x, t) ∈ Cα,α/2(QT ) for some α ∈ (0, 1). Since the

right hand side is known, classical theory (e.g., Theorem 1.2.23) ensures the existence

of a unique classical solution w1(x, t). Bootstrapping this process, we have a classical

solution for each n ≥ 1. Putting some of these pieces together, the natural initial

iterates we might choose are given by w0 := u and w0 := u. These initiate our

upper and lower sequences which, with some care, can be shown to converge to a

true (classical) solution of the original problem. This is what we find in the following

statement, modified from [123, Ch. 12.1.3].

Theorem 1.2.31. Let w and w be ordered supersolution and subsolution of prob-

lem (1.6), respectively, and assume f is Lipschitz continuous. Then, the upper se-

quence {wn}n≥0 converges monotonically from above to a solution w∞ and the lower

sequence {w}n≥0 converges monotonically from below to a solution w∞, and w∞(x, t) ≤

w∞(x, t)in QT ; in fact, w∞ = w∞ is the unique solution.
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Since the proof is somewhat instructive for future sections, we provide the key

details here.

Proof. Step 1: monotonicity. First we show that the iterates {wn}n≥0 , {wn}n≥0

are monotone increasing and decreasing, respectively. We show the second case only,

with the first following in a similar fashion. Set z := u − w1 = w0 − w1. Then, we

compute directly to find that

zt −∆z + cz ≥ F (u)− F (w0) = 0 in QT ,

since u = w0. The maximum principle implies that z ≥ 0 in QT , since we also have

that Biz ≥ 0 along ∂Ω× (0, T ) and z(x, 0) = 0. Therefore,

w1 ≤ w0 in QT .

Arguing in the other direction yields w0 ≤ w1. Then we set z̃ := w1 − w1. z̃ satisfies

z̃t −∆z̃ = F (u)− F (u) ≥ 0 in QT ,

which holds since u ≤ u by assumption and F (w) is nondecreasing for all u ≤ w ≤ u.

Since Biz̃ = 0 and z̃(x, 0) = 0, the maximum principle again yields that z̃ ≥ 0, and so

w1 ≤ w1 in QT .

We now proceed inductively. Assume that for some k ≥ there holds

wn−1 ≤ wn ≤ wn ≤ wn−1.

Set ẑ := wn − wn+1. Then ẑ satisfies

ẑt −∆ẑ = F (wn−1)− F (wn) ≥ 0 in QT ,

which follows from the non-increasing property of F and the inductive hypotheses. We

again have that Biẑ ≥ 0 with ẑ(x, 0) = 0, and so

wn+1 ≤ wn in QT
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by the maximum principle. Similarly, we find that wn ≤ wn+1 in QT . One repeats

the procedure one last time to obtain that wn+1 ≤ wn+1, which proves the desired

monotone property of the respective sequences.

Step 2: convergence. We now show that these sequences converge, and in fact

converge to a solution of problem (1.6). We show the result for {wn}n≥0. Since F

is monotone nonincreasing and Lipschitz, the (pointwise) monotone convergence of

wn ↗ w∞ as n→ ∞ implies that F (wn) → F (w∞) as n→ ∞. Since the initial iterate

is smooth, each iterate is itself smooth, i.e.,

wn, wn ∈ C2+α,1+α/2(QT ),

for each n ≥ 1, which holds by the existence Theory Theorem 1.2.23. In fact, by the

Schauder estimates for parabolic equations there holds

∥wn∥C2+α,1+α/2(QT ) ≤ C
(︂
∥u0∥C2+α,1+α/2(QT ) +

⃦⃦
wn−1

⃦⃦
C2+α,1+α/2

)︂
,

for some C > 0, independent of n. This implies that {wn}n≥0 is uniformly bounded

in C2+α,1+α/2, and hence w → w∞ is indeed a solution to problem (1.6). Notice that

in this step we use the monotone property of the sequences generated. This completes

the proof of the first part of the theorem.

Step 3: uniqueness. Since f is Lipschitz continuous, w∞ − w∞ satisfies

(w∞ − w∞)t −∆(w∞ − w∞) = f(w∞)− f(w∞) ≥ −c(w∞ − w∞) in QT ,

for some c ≥ 0. With Bi(w
∞−w∞) = w∞(x, 0)−w∞(x, 0) = 0, the maximum principle

implies that

w∞ − w∞ ≥ 0 in QT

and so w∞ = w∞, completing the proof.

Remark 1.2.15. Under weaker conditions on the function f , we may lose the unique-

ness of the solution. Instead, we have that any other solution w̃ lying between the

sub/super solution pair satisfies w∞ ≤ w̃ ≤ w∞. Additionally, the ordered property of

the sub/super solutions is not necessary! They are necessarily ordered by virtue of the

equation that they solve, see Chapter 2.
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Some further discussion is warranted. As we have just proven, a Lipschitz condition

is sufficient to ensure that the solution to the time-dependent problem is unique. The

same cannot be said for the elliptic equation without additional hypotheses on the

function f . The next theorem will require in addition that the constant c in the

Lipschitz condition (1.7) be non-negative. Looking at Step 3 of the previous proof,

we see where this requirement will be necessary: for parabolic equations, the sign of

the low order coefficient c(x, t) does not affect the fact of the maximum principle.

Furthermore, the use of monotone sequences, let alone the use of classical sub/super

solution pairs, is not a requirement for a similar result to hold. Just as we introduced

notions of weak derivatives and weak/strong solutions, we may consider weak/strong

sub/super solutions. In such cases, equality in (1.4) or (1.5) can be replaced with ≤

and≥ for sub and super solutions, respectively. It is weak if the integral inequality holds

for any test function belonging to the appropriate space. It is strong if the integration

by parts is unnecessary so that the equation holds almost everywhere in the domain.

Using these notions of sub/super solutions, one may emulate the techniques used in the

previous proof. The main ingredient that changes is the application of the maximum

principle for strong or weak solutions. To do away with the monotone property, we

use the Bolzano–Weierstrass theorem in place of the monotone convergence theorem:

every bounded subsequence has a convergent subsequence. Compactness properties of

the spaces in which the sequences are bounded allow one to extract a subsequence that

converges in some nice way. This is the strategy used in the following proof, modified

from a handful of results found in [95, Ch. 3] concerning elliptic equations.

Theorem 1.2.32. Suppose w,w are strong sub/super solutions to the steady state for

problem (1.6). Then, the upper and lower sequences {wn}n≥1 and {wn}n≥1 given by

the iteration scheme (1.8) with initial iterates w and w, respectively, are monotone in

the sense that {wn}n≥1 is nondecreasing and {wn}n≥1 is non-increasing. Furthermore,

wn ≤ wn for each n ≥ 0. Therefore, the monotone pointwise limits

lim
n→∞

wn = w∞ and lim
n→∞

wn = w∞

exist; they are each a strong steady state solution to problem (1.6). Finally, there exists
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another solution w∗ lying in w ≤ w∗ ≤ w, then w∞ ≤ w∗ ≤ w∞.

Remark 1.2.16. When we have the homogeneous Neumann boundary condition, we

must further assume that c ̸≡ 0 in QT ; otherwise, the iterates we generate may not

have a unique classical solution. In fact, the problem has a continuum of constant

solutions.

We omit the proof as we use the same techniques in Chapter 2. The technical

details are similar to the proof of Theorem 1.2.23; the difference is in the arguments

for the convergence step, appealing instead to Sobolev theory and the Sobolev em-

bedding theorem. Then, we can bootstrap to prove that the sequence converges in

C1+α,(1+α)/2(QT ); continuing further, we obtain a classical solution via Schauder esti-

mates. The monotonicity of the sequences still holds, giving us convergence of the

entire sequence. Repeating these arguments, one can prove that any other solution

must lie between the lower and upper limits.

In future chapters, we apply a similar technique; however, we do not get convergence

of the entire sequence. The subsequence extracted still produces a strong solution,

however, and the solution is unique under appropriate conditions on the right hand

side. These results as presented are meant to give insights into the big picture for

monotone methods. Further discussion on the uniqueness problem for elliptic equations

can be found in [95, Ch. 3.3]. The following condition is sufficient to guarantee the

uniqueness of the solution:

f(u) ≤ f(v) whenever w ≤ v ≤ u ≤ w.

Finally, we comment that similar existence-comparison theorems exist for coupled

equations of reaction-diffusion type. The sense in which functions are sub/super solu-

tions in the competitive case is given in Chapters 2 and 3, see the proof of Theorem

2.5.2. Some useful references include [123, Ch. 12] and [95, Ch. 3], where weaker

conditions on the reaction term f and more general operators are considered.
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1.2.9 Existing mathematical works

We take a moment to highlight briefly some of the existing literature most related

to the present work. Here, we emphasize works focusing primarily on the analysis of

reaction-diffusion equations of the form to be studied in the present work; within each

chapter, we will highlight in more detail efforts made to model habitat loss specifically.

In the mathematical context, we are studying the effects of environmental hetero-

geneity on diffusing species in a reaction-diffusion equation setting. This area has been

well studied, and so we do not expect to be comprehensive here. Instead, we highlight

some of the key works by authors who have frontiered this perspective, especially in

application to biological systems. Key textbook references include [8], [90], [93], [94],

[109].

For a single species, the pioneering work of Cantrell & Cosner explore in the late

1980’s and early 1990’s exemplifies the utility of diffusive logistic equations in hetero-

geneous environments. In [13], properties of a principal eigenvalue with sign-indefinite

weight is considered, an application of results obtained in [7], [43]. In [12], a diffusive

logistic model with sign-indefinite weight is considered, providing a foundational frame-

work on which all subsequent results essentially follow. Their analysis uses the study of

the principal eigenvalue to determine local stability of trivial steady states. Subsequent

works, including [14]–[17], explore further the effects of environmental heterogeneity

on diffusing species.

Later, multi-species models are considered, either in a cooperative or competitive

setting. [28] considers a n-species population model, where differing phenotypes rep-

resent differing dispersal strategies, while all other traits remain identical. This led

to the classic result “the slower diffuser always wins!”, which is robust in a tempo-

rally static but non-homogeneous landscape. This concept has been widely explored

since then, including further study of the 2-species competition case and time-periodic

environments, see [70], [71].

More recently, a rather complete description of the global dynamics of a 2-species

competition model has been described by He and Ni in a series of papers, see [59],

[60], [64] and [61], [81]. These works provide a complete description of the global
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dynamics under biologically relevant environmental properties, such as one species

with a heterogeneous environment while the other has a homogeneous environment.

These works, while general, rely again on the study of a principal eigenvalue, and so

the stability criteria are often abstract, and impossible to verify in many cases. For this

reason, a direct application to habitat loss is not possible: mathematical generality is

favoured, perhaps at the cost of precise, quantitative information.

Different from existing works, we seek to combine the mathematical rigour of previ-

ous efforts with the biological precision of more ecologically minded efforts to gain deep

insight into the effects and relative impacts of different processes of habitat loss. This

will follow from our three postulates introduced previously, beginning with habitat

degradation, followed by habitat destruction, and finally, habitat fragmentation.
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Chapter 2

Habitat Degradation

In this chapter, we present some novel habitat degradation models using reaction-

diffusion equations. Continuing from the introduction, we introduce some additional

key ecological terms to solidify the connection between the model and ecological in-

sights. We discuss briefly some existing efforts to model habitat loss in a general sense,

noting that they are not necessarily specific enough to distinguish between different

forms of habitat loss described thus far. In Section 2.2, we derive our PDE model using

postulates and definitions given thus far. In Section 2.3, we take a detour to establish

some of the technical background we will need to fully determine the global dynamics

of the time-dependent system. In Section 2.4, we discuss the scalar equation subject to

habitat degradation. This includes well-posedness results, comparison principles, and

a full description of the global dynamics. Finally, we discuss a two-species competition

model with habitat degradation in Section 2.5. In order to fully analyze the problem,

we make some biologically reasonable simplifications. We prove the well-posedness of

the problem as well as some comparison-principal type results for competitive systems.

We are then able to fully describe the global dynamics. We present some numerical

simulations to demonstrate some of our theorem statements, particularly in the two-

species competition model case, in Section 2.6. We conclude with a discussion of the

results and related implications in Section 2.7.
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2.1 Preface

Habitat degradation, as defined in Chapter 1, is the gradual deterioration of habitat

quality. As noted in [44], “in [a] degraded habitat, a species may decline, occur at a

lower density, or may be unable to breed”. In contrast to obvious habitat destruction,

habitat degradation is sometimes more difficult to detect because of the timescale at

which effects are realized, and some species with longer lifespans may persist in an

area for a long period of time before extirpation. Moreover, habitat degradation is

implicitly linked to habitat quality ; often, habitat quality is not explicitly considered

for landscape-level habitat analysis. Consider the following quote from [65]:

The exclusion of habitat quality from many landscape-level habitat analy-

ses likely results from the difficulty in measuring habitat characteristics and

reliably associating those conditions with demographic outcomes. Habi-

tat quality is often multi-faceted, affecting multiple population outcomes

(e.g., survival and reproduction), difficult to directly describe with remotely

sensed imagery and evaluate alongside measures of habitat amount and

fragmentation (Johnson, 2007). Consequently, habitat quality is often omit-

ted or more subjectively represented in habitat management or conservation

planning.

Hence, we have significant motivation to study the effects of habitat degradation with a

little more nuance. Mathematical modelling offers unique insights into such subtleties.

Evidently, essential to the definition of habitat degradation is an understanding of

habitat quality. We adhere to the following.

Definition 2.1.1 (Habitat quality [57]). The ability of the environment to provide

conditions appropriate for individual and population persistence. It should be considered

a continuous variable, ranging from low to medium to high, based on resources available

for survival, reproduction, and population persistence, respectively.

Recalling that habitat is species-specific, habitat quality is also intrinsically species-

specific in this context. We also have a rough ordering of priority: low-quality habitat
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may allow for survival alone; medium-quality habitat will facilitate reproduction; high-

quality habitat facilitates persistence of the population. In this sense, terms like “bad

habitat” or “unsuitable habitat” are somewhat oxymoronic; if a ‘habitat’ is bad, it is

not habitat by definition. Alternatively, habitat is good by definition.

2.2 Model derivation

Our focus in this section is on providing a heuristic derivation of the modelling frame-

work to be used in describing habitat degradation. Taking motivation from Section 1.1,

we aim to incorporate postulates one and two: habitat degradation and destruction lie

on a spectrum, and this level of impact is dependent on the species considered. We

then cast this problem in the context of partial differential equations and explore the

predictions made by this simple model. We consider first the case of a single species

and then formulate the reaction-diffusion system between two competing species.

To start, we assume that there is some landscape given by a bounded region. For

simplicity, we will assume that the landscape can be divided into two distinct regions:

the undisturbed region, unaltered by processes of habitat loss, and the modified region,

assumed to be degraded by some natural or anthropomorphic process. We will assume

that it is “business as usual” in the undisturbed region, with the population dynamics

described by some reasonable functional form. We then assume that there is a negative

impact on the species in the degraded region, and so the population level will either

remain static or decrease in these regions. This negative impact, which is implicitly

dependent on the species considered, will be described by the parameter c ≥ 0. This

parameter will be a key aspect of our analysis. This parameter can be thought of in

two ways: as a net death rate in those regions, a consequence of the modified habitat,

or as the inverse of the resilience of a species in terms of its ability to withstand

modifications to its environment. This perspective is important for future discussions,

as pests are often species that are rather resilient to environmental change, putting

them at a competitive advantage compared to other native species [27], [105], [108].

To this end, fix Ω ⊂ RN , N ≥ 1. This will be our landscape occupied by the local

species. Note carefully that, should we refer to Ω as habitat, we are assuming implicitly
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that it once was habitat. We assume that the species move according to diffusive

movement at a constant rate d > 0. In the absence of birth/death processes, we

assume the total population remains fixed. This yields a zero-flux boundary condition,

which in this case corresponds to a homogeneous Neumann boundary condition (such

as in problem (1.2) with boundary operator BN). To model the effects of habitat

degradation, we assume the following according to our previous descriptions:

(i) The habitat Ω is split into two regions such that Ω = G ∪ B. G denotes the

undisturbed region(s), while B denotes the region(s) of degraded habitat. We

always assume that 0 < |B| < |Ω|, where |·| denotes the Lebesgue measure.

(ii) In region G, the population grows according to a logistic growth or similarly

shaped functional response (to be made precise below).

(iii) In region B, the population declines at rate c ≥ 0.

Figure 2.1: A two-dimensional representation of assumption (i), where the whole do-
main Ω is broken into disjoint subdomains representing the undisturbed region of habi-
tat “G” and the degraded region of habitat “B”. The regions can be of any (fixed) shape
or size, as long as both regions have positive area.
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These assumptions give us a simple setting to explore the impacts of a degraded

habitat on diffusing species. Assumption (i) simply ensures that there are both better

and worse quality regions within the available habitat; of course, this is a simplification.

In the natural world, these boundaries may not be so well defined. One may then

debate whether the region B is indeed habitat in our present context; on one hand,

species will persist in these regions due to the nature of the PDE model. Therefore,

we may interpret the region B is a low-quality habitat. On the other hand, if the

entire landscape is made of only the region B, the species goes extinct; in this case, B

is no longer habitat by definition, as it can no longer sustain the local population(s).

Assumption (ii) is the “business as usual” assumption in the good region G. (iii) is

the assumption of, at worst, a non-positive impact the degraded habitat has on local

species. This satisfies postulates one and two, where c is the net (negative) result

on the population growth, and the level of impact ranges from c = 0 (completely

neutral) to c = ∞ (completely lethal). We should take care, however, as assumptions

(ii)-(iii) implicitly assume that forms of “competition” (intraspecific competition in

the single species case) do not take place in the degraded region B. This is more

or less reasonable depending on the actual mechanism of competition. In the case of

interference competition (i.e. competition that occurs directly between individuals),

the species may still interact within a degraded area of habitat. This could be through

direct acts of aggression in order to prevent other individuals (within the same species)

from accessing their mating partner. In this case, the intraspecific competition might be

considered independent of the quality of the habitat, and so assumption (iii) may not be

reasonable. Alternatively, if the interference competition occurs in order to maintain

access to a specific resource, such as water or territory necessary for survival, it is

assumed that the degraded region(s) do not contain such resources, and so competition

is no longer necessary in these regions. Similarly, in the case of exploitative competition

(i.e. competition that occurs indirectly between individuals), the use of a necessary

resource by one species results in less resource for other species. In the degraded

region(s), there are no such resources available, and so it is reasonable to assume that

there is no competitive interaction.
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Denote by 1K(x) the indicator function of a set K ⊂ RN , that is,{︄
1K(x) = 1 for x ∈ K,

1K(x) = 0 otherwise.

Then, we can formulate the single species model as follows:⎧⎪⎨⎪⎩
wt = d∆w + 1Gf(x,w)− c1Bw in Ω× (0, T ),

w(x, 0) = w0(x) ≩ 0 in Ω,
∂w
∂ν

= 0 on ∂Ω× (0, T ),

(2.1)

In general, we always assume that the reaction term satisfies

Assumption 2.2.1. f(x,w) ∈ Cα,1(Ω×R+), f(0) = 0, and there exists U > 0 so that

f(x,w) < 0 for all w > U , for all x ∈ Ω,

along with one of the following:

Assumption 2.2.2. For any x ∈ Ω there holds f(x, λw) ≥ λf(x,w) for all w ∈ R+

and λ ∈ (0, 1). Moreover, there exists an open set Γ ⋐ G such that the inequality is

strict, i.e., f(x, λw) > λf(x,w) for all x ∈ Γ.

Assumption 2.2.3. For any x ∈ Ω there holds

(1− λ)f(x,w1) + λf(x,w2) ⪇ f(x, (1− λ)w1 + λw2)

for any w1 ̸= w2 and λ ∈ (0, 1). In fact, since f is assumed differentiable in the variable

w, this is equivalent to the function being bounded by its Taylor approximation:

f(x,w2) ≤ f(x,w1) + f ′(x,w1)[w2 − w1]

for any x ∈ Ω and any w1,w2 belonging to R+.

Assumption 2.2.1 is a standard regularity condition for well-posedness, though the

notation may not be standard. Here, Cα,1 means that for each w ≥ 0 fixed, f(x, ·) is

Hölder continuous with exponent α, and for each x ∈ Ω fixed, f(·, w) is differentiable.

It also assumes that if the population is zero there is no birth or death, and that the

population growth becomes negative for sufficiently large population sizes. Techni-

cally, this condition is a minimal requirement ensuring the existence of a non-trivial
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steady. The first part of Assumption 2.2.2 is sometimes referred to as a subhomo-

geneity condition [124, Ch. 2.3] in the variable w. In particular, a subhomogeneity

condition automatically implies that f(x,w) ≤ f ′(x, 0)w for all w > 0. Assumption

2.2.3 is a standard concavity condition in the variable w. Notice that concavity implies

subhomogeneity. We can see this through a few examples. One example of a function

satisfying assumptions 2.2.1 and (2.2.2) but not (2.2.3)) is

f(x,w) = w(e−w − γ)

for γ ∈ (0, 1). An example of a function satisfying all assumptions is the logistic growth

form w(1− w). Since we allow environmental heterogeneity in the good region G, we

may more generally consider

f(x,w) = w(m(x)− w)

for some function m(x) ∈ Cα(Ω).

Scalar problems are, generally, easier to analyse than systems, and so we can treat

more general forms of the reaction term f . For the competition system, we instead

assume a simple Lotka-Volterra form of reaction. In this case, the habitat degradation

competition-diffusion model can be written as follows:{︄
ut = d1∆u+ 1Gu(1− u− γ1v)− c11Bu in QT ,

vt = d2∆v + 1Gv(1− γ2u− v)− c21Bv in QT .

Through this construction, we still split the domain into two (almost) disjoint regions

- assumption (i). We see logistic growth and competition in the undisturbed habitat

G, while both species experience mortality in region B at rates ci ≥ 0, i = 1, 2 -

assumptions (ii) and (iii), respectively. In particular, we note that c1 is not necessarily

equal to c2, even if each population exists in the same environment. This moves towards

addressing the subtlety in the effect of altered habitat on species, as it depends on the

species and their individual traits. For simplicity, we assume the rate of competition is

equal, that is, γ1 = γ2 = 1, so as to isolate the effects of degradation on the interacting

species alone. We take species u as the slower diffuser and species v as the faster

diffuser so that 0 < d1 ≤ d2 are held fixed. This assumption can be made without
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loss of generality since the system has some nice symmetry properties. The Neumann

problem may now be more conveniently written as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = d1∆u+ u[mc1 − 1G(u+ v)] in QT ,

vt = d2∆v + v[mc2 − 1G(u+ v)] in QT ,

u(·, 0) = u0 ≩ 0, v(·, 0) = v0 ≩ 0, in Ω,
∂u
∂ν

= ∂v
∂ν

= 0 on ∂Ω× (0, T ),

(2.2)

where

mci(x) := 1G(x)− ci1B(x), i = 1, 2. (2.3)

Our goal now is to investigate the global dynamics of the scalar equation (2.1) as

they depend on d, c, along with its associated steady state. We can then perform a

detailed analysis of the competition-diffusion system (2.2) depending on the relation

between the parameters di and ci, resulting in a complete description of the global

dynamics.

In order to use the tools of monotone dynamical systems, we must first introduce

some relevant eigenvalue problems. As it turns out, these problems will allow us to

determine the precise local stability of all of the steady states.

Existing results

We now introduce some comparisons to existing habitat loss modelling efforts. First

and foremost, it should be noticed that this model is spatially explicit, and so it

explicitly captures the impact that heterogeneity has on competing species. As a

comparison, one may consider a classic habitat loss model given in [116] in which n

species compete for a shared resource. The model is given as a system of ordinary

differential equations, and is therefore spatially homogeneous. The species are ordered

in terms of their competitiveness, i.e. superior species can occupy the area of inferior

species, whereas inferior species cannot occupy an area held by a superior competitor.

The destruction is described in terms of the proportion of available habitat remaining,

i.e. the total available habitat is 1, and the proportion of available habitat is 1 − D,

where D is the proportion of total habitat that has been removed. Such models do not
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consider the effect (whether positive or negative) of configuration or fragmentation,

as there is no distinction between possible configurations. Furthermore, this type of

model is more accurately described as a habitat destruction model (as opposed to

habitat degradation model), as it is assumed the lost region is no longer viable in any

way for any species, and so no consideration is given to the precise quality of the lost

habitat. This framework has been investigated extensively, including other effects not

considered here, such as variation in patch quality [54] or the Allee effect [19]. Such

constructions align more closely with the habitat amount hypothesis, see [34].

More generally, it has been a popular approach to model habitat loss through

metapopulations, or multiple patches, as introduced by Levins in 1969 [83]. Such mod-

elling efforts vary in their construction, application and complexity, see for example,

[66], [77], [92] or more recently [88]. In [66], for example, a single-species metapop-

ulation model is used to explore the effect of immigration rates between patches on

population persistence. While an implicit heterogeneity of the landscape is built into

the model, the relation to habitat fragmentation is also implicit as a consequence. Ar-

rangement is not considered as much as the exchange between neighbouring patches,

and the cost of moving between patches (if any) must be determined apriori, rather

than as a consequence of the model formulation itself. An important development

described in [77] is the rate at which habitat is lost; when investigating extinctions

thresholds, as is common in these metapopulation models generally, one implicitly as-

suming a rate at which the habitat is lost. Whether this rate is fast or slow has a

dramatic impact on the time it takes for extinction/extirpation to occur. Similar to

some of the conclusions drawn later in this Chapter, [92] concludes that the systematic

removal of habitat can favor ‘weedy’ species, emphasizing the counter-intuitive effects

that habitat loss can have on competing species. The more recent work [88] considers

similar modelling frameworks, where individual patches may now variation in habitat

quality over time, with the binary ‘suitable’ and ‘unsuitable’ perspective as a special

case. Nevertheless, all metapopulation models suffer from the same drawback of im-

plicit spatial structure and uniformity within and between patches. These models are

mathematically similar to the ODE habitat loss model prototype described previously,
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and so suffer from similar drawbacks. However, even in the cases where the models

differ (both mathematically and conceptually) in a more significant way, the precise

measurement of “habitat loss” is often obscured, or at least inconsistent across mod-

elling efforts. One may refer to [72], which highlights some of the measures that may

be used in these contexts. This includes measures such as number of patches, mean

patch size, mean patch isolation, or total edge amount. Depending on the modelling

framework, any combination of these measures can be interpreted as habitat loss or

fragmentation. This results in confusion, as highlighted by Figure 3 in [72]. Roughly

speaking, one can hold any variable fixed and alter the remaining variables positively

or negatively in order to draw widely varying conclusions regarding the sustainability

of species. One benefit of using a spatially explicit model is that all of these factors

are encapsulated within the model, with the drawback being an increased difficulty in

performing analysis for any particularly chosen configuration. Such drawbacks may be

overcome through the use of numerical simulation, however.

Some authors have proposed spatially explicit models comparable to that presented

here [112], however, the analysis involves simplifications in order to make comparisons

to the spatially homogeneous ODE model. Such simplifications include an appeal to

a one dimensional model only, writing the spatially dependent solution in its Fourier

series expansion. After dropping higher order terms, one retains only the linear terms,

reducing to the form of an ordinary differential equation. Such efforts are valuable in

determining the disparity between spatially homogeneous and spatially heterogeneous

models; however, they still lack the explicit spatial structure required to study habitat

fragmentation.

In the form of (2.2), the mathematical model most closely resembles existing models

investigating the effect of heterogeneous environments, see chapter 4 in [93] and the

references therein, and more recently [61]–[63], which provide a rather complete picture

of the global dynamics under fairly mild assumptions on the heterogeneity appearing

in the system. Additionally, readers are directed to some interesting results found in

[8] where the authors consider a one dimensional habitat (0, 1) with heterogeneity of
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the form

ma(x) :=

⎧⎪⎨⎪⎩
−1 in [0, a),

k in [a, a+ L),

−1 in [a+ L, 1].

Then, the authors investigate the optimal location of the favorable region given by the

parameter a. This is done for both Dirichlet and Neumann boundary conditions, and

a more general investigation is given in [9]–[11]. Such works provide some motivation

and insight into the investigation presented here, but tend to focus on the particular

locations of favorable habitat patches in single species models rather than the impact

of the measure of detriment within the favorable and unfavorable regions.

We now investigate the long-term behaviour and properties of the steady states

corresponding to problem (2.2) depending on the parameters appearing within the

model. In particular, we explore changes in stability based on the parameters ci, which

measures the effect of the degraded region on the competing species u and v.

2.3 Eigenvalue problems with a sign-indefinite weight

In this section, we highlight some of the key results from the study of eigenvalue

problems. These solutions, and in particular the principal eigenvalue/eigenfunction

pair, is closely related to the stability properties of solutions to the scalar equation. In

fact, from our assumptions made thus far, our solution process is a strongly monotone

dynamical system. The threshold dynamics found in theorems such as Theorem 1.2.8

will depend critically on the sign of a particular principal eigenvalue. Then, we can use

the same monotone theory to determine the global dynamics of the competition system.

Therefore, a detailed description of the local stability of possible steady states through

these eigenvalues is critical to our analysis. To study the eigenvalue problem allowing us

to apply Theorem 1.2.8 to problem (2.1), we first introduce a closely related auxiliary

eigenvalue problem. Originally studied by Brown and Lin [7], this problem is often

referred to as an “eigenvalue problem with sign-indefinite weight”. Further references

and discussion can be found in [8]. A warning: this problem, while important, is more

of a technical piece of information useful for our analysis rather than a meaningful
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ecologically connected concept.

2.3.1 The first problem

Let m ∈ L∞(Ω) and consider the problem{︄
∆ψ + λmψ = 0 in Ω,
∂ψ
∂ν

= 0 on ∂Ω.
(2.4)

If there exists a value λ1(m) ∈ R and a positive function ψ1 ∈ H1(Ω) solving (2.4) in

the weak sense, we call λ1(m) the principal eigenvalue to problem (2.4). The following

is a well-known result. Manes and Micheletti originally discussed this problem under

Dirichlet boundary data in [84] (in French), while Brown and Lin [7] discussed the

more subtle case of homogeneous Neumann boundary data yielding the result below.

A rather complete discussion of this problem can be found in [8], where the authors

discuss the more general case of Robin-like boundary data. The main result we will

use here is the following, which can be found in, e.g., [93, Chapter 4], [8, Ch. 2], a

result of the conclusion reached in [7].

Proposition 2.3.1. Let m ∈ L∞(Ω) be non-constant. Problem (2.4) has a nonzero

principal eigenvalue λ1(m) if and only if m changes sign (on sets of positive measure)

and
∫︁
Ω
m ̸= 0. More precisely,

(i)
∫︁
Ω
m < 0 ⇒ λ1(m) > 0 ;

(ii)
∫︁
Ω
m > 0 ⇒ λ1(m) < 0;

(iii)
∫︁
Ω
m = 0 ⇒ 0 is the only principal eigenvalue;

(iv) λ1(h) > λ1(k) if h ≨ k;

(v) λ1(hn) → λ1(h) if hn → h in L∞(Ω).

Since the proof of this theorem uses tools that are very similar to those used in the

proof of Theorem 3.4.1, we omit it here.

One can see how this eigenvalue problem might relate to the population models we

want to analyse. Since we have assumed that both sets B and G have positive measure,
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the heterogeneity for the competition system will always change sign in Ω (mci is 1 in

G and −c in B). Thus we will always have a principal eigenvalue, the sign of which is

determined only by the sign of |G|−c |B|. For the general scalar equation, it is slightly

more complicated, where the function we care about will be the linearization about 0,

i.e., 1Gf
′(x, 0)− c1B. Yet, we still have an easily verifiable formula given by∫︂

G

f ′(x, 0)dx− c |B| ,

the sign of which determines the sign of λ1(1Gf
′(x, 0) − c1B). This will become im-

portant in later sections. Implicit in this formulation is the shape and geometry of the

sets G and B, but we save this discussion for Chapter 4.

Notice that this problem features only the environmental heterogeneity, but not

the rate of diffusion d. In the following section, we introduce the primary eigenvalue

problem of interest. This will incorporate information from Theorem 2.3.1 and the size

of d, with precise asymptotic information as d→ 0+ or as d→ ∞.

2.3.2 The second problem

From the construction of our original problem, we see that there are two primary

pieces of information at play given a fixed habitat Ω: the first is the heterogeneity of the

environment, given by 1Gf(x,w)−c1Bw, and the second is the diffusion rate d > 0. The

eigenvalue problem introduced in this section corresponds directly to the local stability

of a steady state via a linearization process. The sign of this new principal eigenvalue

can be characterized by the principal eigenvalue of problem (2.4). In particular, when

we linearize about the trivial steady state, the principal eigenvalue is the net growth

rate of the entire population over the entire domain for small population sizes. A

necessary condition for the persistence of the population will be net positive growth

for small population sizes. Before we get ahead of ourselves, let us introduce the

problem and the main results to be used in subsequent analysis.

Let m ∈ L∞(Ω) and consider the following eigenvalue problem:{︄
d∆ϕ+mϕ+ µϕ = 0 in Ω,
∂ϕ
∂ν

= 0 on ∂Ω.
(2.5)
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We call µ1(d,m) a principal eigenvalue for problem (2.5) whenever there exists a pos-

itive solution ϕ1 ∈ H1(Ω). It is well-known that this problem has a unique principal

eigenvalue admitting the variational characterization:

µ1(d,m) = inf

{︃∫︂
Ω

[︁
d |∇ϕ|2 −mϕ2

]︁
dx : ϕ ∈ H1(Ω),

∫︂
Ω

ϕ2dx = 1

}︃
. (2.6)

The following proposition highlights some of the classical properties of this eigenvalue

as related to problem 2.4.

Proposition 2.3.2. Suppose m ∈ L∞(Ω) is not a constant function. Then the follow-

ing hold.

(i)
∫︁
Ω
m ≥ 0 ⇒ µ1(d,m) < 0 for all d > 0.

(ii)
∫︁
Ω
m < 0 ⇒

⎧⎪⎨⎪⎩
µ1(d,m) < 0, if d < λ−1

1 (m),

µ1(d,m) = 0, if d = λ−1
1 (m),

µ1(d,m) > 0, if d > λ−1
1 (m).

(iii) µ1(d,m) is strictly increasing and concave with respect to d > 0.

(iv) µ1(d,m) < µ1(d, m̃) whenever m ≩ m̃.

(v) µ1(d,m) satisfies the following limiting behaviour:

lim
d→0+

µ1(d,m) = −max
Ω

m and lim
d→∞

µ1(d,m) = − |Ω|−1

∫︂
Ω

m

(vi) µ1(d,mn) → µ1(d,m) whenever mn → m in L∞(Ω).

Similar to before, the proof of this result uses similar techniques in proving Proposi-

tion 3.4.2, and so we omit the details here. Points (i)-(v) appear in [93], however point

(vi) is not explicitly discussed. Point (v) is proven in [68] when mn → m in C(Ω),

whereas a weakened regularity case (with respect to Lp(Ω), p > N/2) is discussed in

detail in [23], [45], [67], for example.

Returning to our previous discussion, we recall that if m = 1Gf
′(x, 0) − c1B, the

principal eigenvalue corresponds to a growth rate for small population sizes. From

the convention used here, −µ1(d,m) is therefore the net growth rate of the population
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near m. This gives a concrete connection to the ecological impact of the environmental

heterogeneity on a diffusing species: (i) if the average heterogeneity is non-negative, the

net growth of the population is positive for all d > 0; (ii) if the average heterogeneity

is negative, the net growth rate may be positive or negative depending on the size of

the diffusion rate d. We notice the sign of the net growth rate changes precisely when

d = λ1(m). This is the direct connection between µ1(d,m) and λ1(m); (iv) tells us that

better environments increase the net growth rate; (v) tells us that the net growth rate

is continuous with respect to changes in the environment. Each of these facts gives

a preliminary verification that the model is consistent with what we often observe in

the natural world; (iii) is less intuitive, but suggests that a slower rate of diffusion is

advantageous for population survival when the resources are held fixed in time. This

is less universally true than the other properties, but can be understood biologically

as well: suppose m(x) is the resource density in Ω. When the diffusion rate is very

large, the species are moving so quickly that they use only the average resource density

available. This is made precise by the limiting behaviour as d → ∞ found in point

(vi): in the limit, the net growth rate is exactly the average of the resources available

given by m(x). In this case, if the average resource density is negative, the population

will decay. On the other hand, as d → 0+, the net growth rate is the maximum value

of the resource function m(x). Thus, as long as there are resources somewhere in Ω,

the net population growth will also remain positive for small enough rates of diffusion.

Therefore, in this modelling paradigm, a slower rate of diffusion somehow allows the

population to concentrate around resource peaks, or at the very least, utilize the best

resource areas between the faster movers.

2.4 The scalar equation

We now have the tools to explore in detail the well-posedness and global dynamics

of problem (2.1). We first prove the well-posedness of the time-dependent problem

under biologically reasonable assumptions. Since the system is nonlinear, we must

prove some comparison principle results that allow us to apply a monotone method

to obtain a global solution. This monotone method is similar to the ideas presented
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in Section 1.2.8. There are some areas of care, however, since our right hand side

is, in general, discontinuous. Therefore, the classical theory presented in Section 1.2

is not directly applicable. Instead we appeal to the notion of strong solutions, using

regularity results to ensure that the solution obtained is smooth enough to apply the

monotone dynamical theory. We then prove a similar existence theorem for the steady

state problem depending on the sign of a principal eigenvalue. We then apply the

monotone theory to obtain the global threshold dynamics, followed by a special case

to be used in the study of the competition system.

2.4.1 Well-posedness

We start with the definition of a strong solution of the time-dependent problem (2.1)

and its associated steady state (i.e., when we take wt ≡ 0), which differ slightly from

the notion of strong solution introduced in Section 1.2.

Definition 2.4.1. (1) A strong solution on QT to (2.1) is a solution which belongs to

W 2,1
p (QT )∩C([0, T );C(Ω)) for all p ≥ 1, satisfies the equation almost everywhere

in QT and satisfies the boundary condition everywhere on ∂Ω for all t ∈ (0, T ).

A global strong solution is a strong solution on [0, T ) for all T > 0.

(2) A steady state to (2.1) is a solution which belongs to W 2,p(Ω) for all p ≥ 1,

satisfies the equation almost everywhere in Ω and satisfies the boundary condition

everywhere on ∂Ω.

Remark 2.4.1. Since we may choose p as large as we like, the boundary condition

is satisfied in the classical sense due to the Sobolev embedding, Theorem’s 1.2.3 and

1.2.4.

Recall that we denote by C++(Ω) the interior of the cone C+(Ω) with the ordering

≤, <,≪ introduced in Section 1.2. We state the following comparison principle whose

proof, being much simpler than that of Proposition 2.5.1 for the competition system,

is omitted.
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Proposition 2.4.1. Suppose F (x,w) ∈ Cα,1(Ω×R+) satisfies Assumption 2.2.2. Sup-

pose w1, w2 ∈ W 2,1
p (QT ) ∩ C([0, T );C(Ω)) for any p ≥ 1, and satisfy{︄

w1
t ≤ d∆w1 + 1GF (x,w

1)− c1Bw
1 a.e. in Ω× (0, T ),

∂w1

∂ν
≤ 0 on ∂Ω× (0, T ),{︄

w2
t ≥ d∆w2 + 1GF (x,w

2)− c1Bw
2 a.e. in Ω× (0, T ),

∂w2

∂ν
≥ 0 on ∂Ω× (0, T ).

(1) If w1(·, 0) ≤ w2(·, 0), then w1(·, t) ≤ w2(·, t) for all t ∈ (0, T ).

(2) Suppose, in addition, w1, w2 ∈ C1((0, T );C(Ω)). If w1(·, 0) ≤ w2(·, 0) and

w1(·, 0) ̸≡ w2(·, 0), then w1(·, t) ≪ w2(·, t) for all t ∈ (0, T ).

Similarly, we have the following comparison theorem for non-negative steady states.

Proposition 2.4.2. Suppose F (x,w) ∈ Cα,1(Ω×R+) satisfies Assumption 2.2.2. Sup-

pose w1, w2 ∈ W 2,p(Ω) for any p ≥ 1 are non-negative and satisfy{︄
−d∆w1 ≤ 1GF (x,w

1)− c1Bw
1 a.e. in Ω,

∂w1

∂ν
≤ 0 on ∂Ω,{︄

−d∆w2 ≥ 1GF (x,w
2)− c1Bw

2 a.e. in Ω,
∂w2

∂ν
≥ 0 on ∂Ω.

Then, w1 ≤ w2. Moreover, there holds either w1 < w2 or w1 ≡ w2.

Proof. We argue by contradiction: suppose that w1 ≤ w2 were false. Set α∗ :=

inf {α > 1 : w1 ≤ αw2}. The continuity of w1 and w2 implies that α∗ > 1 and w1 ≤

α∗w2, and that there exists a point x0 ∈ Ω such that w1(x0) = α∗w2(x0).

Since F (x,w) satisfies α∗F (·, w) ≥ F (·, α∗w) for w > 0 by Assumption 2.2.2, we

find−d∆(α∗w2) ≥ 1GF (x, α
∗w2)−c1Bα∗w2. In particular, w1 and α∗w2 are an ordered

sub/super solution pair according to the differential inequalities found in the statement

of the proposition.

If x0 ∈ Ω, Theorem 1.2.16 (from [4, Theorem 1]) implies that w1 ≡ α∗w2 in Ω.

Then, 0 < w2 < w1 due to α∗ > 1, and hence,

0 = −d∆(w1 − α∗w2) ≤ 1G(F (x,w
1)− α∗F (x,w2)) < 1G(F (x,w

1)− F (x, α∗w2)) = 0
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in Γ ⋐ G by Assumption 2.2.2, a contradiction. If x0 ∈ ∂Ω, Hopf’s lemma gives

∂
∂ν

(w1 − α∗w2) > 0 at x0, in contradiction to the boundary conditions assumed. Hence,

w1 ≤ w2.

Repeating the previous steps using the maximum principle and Hopf’s lemma, we

find that either w1 < w2 or w1 ≡ w2 in Ω. This completes the proof.

We now prove the following Theorem concerning the well-posedness of problem

(2.1).

Theorem 2.4.1. For any initial data w0 ∈ C+(Ω), (2.1) admits a unique global strong

solution w ∈ Cα([0,∞);C+(Ω)) ∩ C1((0,∞);C+(Ω)) for any α ∈ (0, 1).

Proof of Theorem 2.4.1. The proof essentially follows regularization arguments and

standard theory. In what follows, we remind readers that QT := Ω × (0, T ) for some

T > 0 fixed. Note that the uniqueness of global strong solutions follows immediately

from Proposition 2.4.1 point (2).

We now show existence. We first approximate 1G and 1B by the functions 1εG and

1
ε
B belonging to C∞(Ω) (through mollification, for example), so that 1εG → 1G and

1
ε
B → 1B in Lp(Ω) for any p ≥ 1. We first prove the existence of a positive classical

solution wε(x, t) for each ε > 0. We then argue that in the limit as ε → 0+, we retain

a strong solution w(x, t) to problem (2.1) for some T > 0 fixed. It is then easy to show

that the solution is in fact global and will in fact be globally bounded.

In what follows, we essentially use a sub/super solution argument. First, 0 is clearly

a subsolution since f(x, 0) = 0. Then, by Assumption 2.2.1, there existsM ≫ 1 so that

f(x, U) < 0 for all x ∈ Ω for any U > M , and so M is a supersolution. By Theorem

1.2.31, there exists a classical solution wε(x, t) for every ε > 0. By the uniqueness of the

classical solution, it is also a strong solution. Since f(x, U) ≤ f ′(x, 0)U for all U ≥ 0,

Gronwall’s inequality implies that there exists constants C, γ > 0 so that wε(x, t) ≤

Ceγt for all t > 0, and so wε(x, t) is a global solution. By the same sub/super solution

argument, there holds 0 ≤ wε(x, t) ≤ M for all t ∈ (0,∞), and so wε(x, t) is globally

bounded. Notice also that these bounds holds uniformly in ε as well. Therefore, the

right hand side is uniformly bounded in L∞(QT ). In particular, 1εGf(x,wε) − c1εBwε
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belongs to Lp(QT ) for any p ≥ 1. By Theorem 1.2.4, the right hand side is therefore

bounded in W 2,1
p (QT ), and so there exists a subsequence which we do not relabel such

that

wε → w strongly in W 1,0(QT ), weakly in W 2,1
p (QT ),

and by Theorem 1.2.4, wε → w in C1+α,(1+α)/2(QT ) for any α ∈ (0, 1). Therefore, since

1
ε
G, 1

ε
B are uniformly bounded in ε, it is not difficult to show that ∆wε is a Cauchy

sequence in Lp(QT ). The completeness of Lp implies that ∆wε → ∆w strongly in

Lp(QT ), and so wε → w strongly in W 2,1
p (QT ). Note that there is a bit of a jump here:

we have estimates on ∆wε, but not on D
2wε, which includes the mixed derivatives as

well. This is not difficult to overcome since∫︂
Ω

(∆wε)
2 =

∫︂
Ω

(︄
N∑︂
i=1

∂2wε
∂x2i

)︄2

=

∫︂
Ω

(︄
N∑︂

i,j=1

(︃
∂2wε
∂xi∂xj

)︃2
)︄

=

∫︂
Ω

(D2u)2,

which is obtained via integration by parts. The regularity of wε for each ε > 0 justifies

the calculation, and so w is indeed the unique strong solution to problem (2.1).

Again, by Gronwall’s inequality and Assumption 2.2.1, we find that w(x, t) is global

and uniformly bounded in time. Furthermore, w ∈ C(1+α)/2([0,∞);C(Ω)). The regu-

larity of w is an immediate consequence of [111, Theorem 3]. Indeed, since w0 ∈ C+(Ω)

and (x, t) ↦→ 1G(x)f(x,w(x, t))− c1B(x)w(x, t) is Hölder continuous in time, ∂w
∂t

exists

and is uniformly continuous on (0,∞)× Ω. Hence, w ∈ C1((0,∞);C(Ω)).

We verify that w satisfies the Neumann boundary condition. Since wε → w in

C1+α(Ω) as ε→ 0, we see for any fixed t > 0 and x0 ∈ ∂Ω⃓⃓⃓⃓
∂w

∂ν
(x0, t)

⃓⃓⃓⃓
≤
⃓⃓⃓⃓
∂

∂ν
(w(x0, t)− wε(x0, t))

⃓⃓⃓⃓
+

⃓⃓⃓⃓
∂wε
∂ν

(x0, t)

⃓⃓⃓⃓
=

⃓⃓⃓⃓
lim
x→x0

(w − wε)(x0, t)− (w − wε)(x, t)

x− x0

⃓⃓⃓⃓
≤ ∥w − wε∥C1(Ω) .

Taking ε → 0 shows that ∂w
∂ν

= 0 for all x ∈ ∂Ω and t > 0. This completes the

proof.

Similarly, we have the following Theorem for the existence and uniqueness of non-

trivial steady states.
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Theorem 2.4.2. Denote by µ1(d,1Gf
′(x, 0)−c1B) the principal eigenvalue to problem

(2.5). If µ1(d,1Gf
′(x, 0) − c1B) < 0, then there exists a unique positive steady state

w∗
d,c ∈ W 2,p(Ω) solving problem (2.1). If µ1(d,1Gf

′(x, 0)− c1B) ≥ 0, then 0 is the only

steady state solving problem (2.1).

Proof of Theorem 2.4.2. Denote by ϕ1 the positive eigenfunction to problem (2.5) as-

sociated with µ1(d,1Gf(x,w)−c1B). We treat first the case when µ1 < 0. We compute

directly to see that

−d∆(εϕ1) = εϕ1(1Gf
′(x, 0)− c1B + µ1) ≤ 1Gf(x, εϕ1)− c1Bϕ1,

which holds for all ε sufficiently small since −µ1 > 0. Similarly, M ≫ 1 is a super-

solution by Assumption 2.2.2. By Theorem 2.4.2 and Theorem 1.2.31, there exists a

unique positive solution w∗
d,c satisfying εϕ1 ≤ w∗

d,c ≤M for all x ∈ Ω.

Suppose now that µ1 > 0 and there exists a strong solution w∗
d,c that is positive

somewhere in Ω. We compute directly to see that

−d∆(εϕ1) = εϕ1(1Gf
′(x, 0)− c1B + µ1) ≥ 1Gf

′(x, εϕ1)− c1Bεϕ1,

which holds for all ε > 0 sufficiently small by the subhomogeneity of f . Hence, for

all ε > 0 sufficiently small, Theorem 2.4.2 guarantees that w∗
d,c ≤ εϕ1. Since ε was

arbitrary, choosing ε small enough contradicts the positivity of the steady state. This

proves the second part of the theorem, completing the proof.

Remark 2.4.2. In Theorem 2.4.2, the steady state is a strong solution belonging to

the class W 2,p(Ω) for any p ≥ 1. In particular, choosing p sufficiently large yields that

in fact w∗
d,c ∈ C1+α(Ω) for any α ∈ (0, 1) by the Sobolev embedding Theorem 1.2.3.

2.4.2 Global dynamics

We now prove the following theorem concerning the global dynamics of (2.1). Recall

that −µ1(d,1Gf
′(x, 0) − c1B) can be understood as the net growth rate for small

population sizes, obtained through a linearization of (2.1) about 0.

Theorem 2.4.3. Suppose w0 ∈ C+(Ω) \ {0} and that f(x,w) ∈ Cα,1(Ω×R+) satisfies

Assumption 2.2.2. Then, we observe the following global dynamics.
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(i) Suppose that µ1(d,1Gf
′(x, 0) − c1B) < 0. Then, w(·, t) → w∗

d,c in C(Ω) as

t → ∞, where w∗
d,c is the unique positive steady state to problem (2.1) obtained

in Theorem 2.4.2.

(ii) Suppose that µ1(d,1Gf
′(x, 0)− c1B) ≥ 0. Then, w(·, t) → 0 in C(Ω) as t→ ∞.

In the following proof we apply some of the existence/regularity results we have

obtained thus far, Propositions 2.4.1 and 2.4.2, and the abstract Theorem 1.2.8.

Proof of Theorem 2.4.3. The existence and uniqueness of a global strong solution fol-

lows from Theorem 2.4.1.

To prove this result, we apply some of the theory of monotone flows presented in

Section 1.2.

Denote by {Φt}t≥0 the semiflow on C+(Ω) generated by solutions of (2.1). Let

u0 ∈ C+(Ω) \ {0}. Replacing u0 by Φ1u0, we may assume without loss of generality

that u0 ∈ C++(Ω).

Claim 1: When µ1(d,1Gf
′(x, 0)− c1B) < 0, (2.1) admits a unique positive steady

state w∗
d,m by Theorem 2.4.2. Denote by ϕ1 the associated positive eigenfunction.

Notice that Φt(0) = 0 and Φt(w
∗
d,c) = w∗

d,c.

Fix ε so small and M so large that εϕ1 ≤ u0 ≤ M . Then, Φt(εϕ1) ≤ Φtu0 ≤ ΦtM

for all t ≥ 0 thanks to Proposition 2.4.1. In fact, choosing ε≪ 1 so that

µ1 + 1G

(︃
f ′(x, 0)− f(x, εϕ1)

εϕ1

)︃
≤ 0,

we have by Proposition 2.4.1 that εϕ ≤ Φt(εϕ), and so εϕ is a strict subequilibrium

by the subhomogeneity of f . Similarly, choosing M large enough so that f(x, U) < 0

for all U > M , Proposition 2.4.1 again gives that Φt(M) ≤ M . M is therefore a

strict superequilibrium. By Theorem 1.2.9, Φt(εϕ1) is increasing in t and converges

pointwise to the positive steady state w∗
d,mc

as t → ∞, and ΦtM is decreasing in t

and converges pointwise to a positive steady state w∗
d,c as t → ∞. Proposition 2.4.2

guarantees that w∗
d,c = w∗

d,c since the positive steady state is unique. By Dini’s theorem,

the convergence holds in C(Ω). It follows that Φtu0 → w∗
d,c in C(Ω) as t→ ∞.

68



If µ1(d,1Gf
′(x, 0) − c1B) ≥ 0, then 0 is the only steady state to (2.1). Indeed, it

follows that for each M ≫ 1, ΦtM is decreasing in t and converges in C(Ω) to 0 as

t → ∞. Fixing M so large that u0 ≤ M , we conclude that Φtu0 → 0 in C(Ω) as

t→ ∞. This completes the proof.

A special case

We briefly treat a special case of the more general theorem proved here. This is the

form explored in [104].

When f(x,w) = w(1 − w), 1Gf
′(x, 0) − c1B = 1G − c1B. Theorem 2.4.3 tells us

that the persistence of a single species depends on the sign of the principal eigenvalue

µ1(d,1G − c1B), which depends directly on the size and shape of the region B, the

diffusion rate d, and the level of impact c in the region B. In particular, given any size

or location of destroyed habitat, one can always choose c sufficiently small such that∫︁
Ω
mdx = |G| − c |B| > 0 so long as |G| > 0 (see Lemma 2.4.1). From Proposition

2.3.2, we see that this is enough to ensure that µ1 < 0. Notice that the same cannot be

said concerning extinction if we take c large! That is to say, we do not necessarily have

that µ1(d,1G − c1B) > 0 for some c≫ 1. This implies that given any configuration of

good and bad regions, there is always a value c sufficiently small such that the species’

population persists.

This observation motivates consideration of the special case when c = 0. Our

nonlinear term becomes w(1G − 1Gw) = 1Gw(1− w). In this form, w ≡ 1 is the only

steady state, and hence, w → 1 as t → ∞ for any nontrivial initial data. This is an

interesting result as it indicates that as long as there is some region where the growth

rate of the species is positive (in this case, in the region G at rate 1), the species

will reach carrying capacity everywhere. This point will become important later when

discussing a similar limiting case of the full system (2.2).

Let us make this rigorous and concrete. In what follows, µ1(d,mc) denotes the

principal eigenvalue to problem (2.5) with m = 1G − c1B.

Lemma 2.4.1. Suppose that
∫︁
G
f ′(x, 0) > 0. Then, there exists c∗ = c∗(d) ∈ (0,∞]

such that µ1(d,1Gf
′(x, 0)− c1B) < 0 if and only if c ∈ [0, c∗).
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Proof. Direct computation shows that
∫︁
Ω
(1Gf

′(x, 0) − c1B) =
∫︁
G
f ′(x, 0) − c |B| ≥ 0

for all 0 ≤ c ≤
∫︁
G
f ′(x, 0). It follows from Proposition 2.3.2 (i) that µ1(d,1Gf

′(x, 0)−

c1B) < 0 for all c ∈ [0,
∫︁
G
f ′(x, 0)].

By Proposition 2.3.2 (iv) and (v), the function c ↦→ µ1(d,1Gf
′(x, 0) − c1B) is

increasing and continuous on [0,∞). Thus, if limc→∞ µ1(d,1Gf
′(x, 0)− c1B) > 0, then

there is a unique c∗ ∈ (0,∞) such that µ1(d,1Gf
′(x, 0) − c1B) = 0 when c = c∗, and

µ1(d,1Gf
′(x, 0)−c1B) < 0 if and only if c ∈ [0, c∗). If limc→∞ µ1(d,1Gf

′(x, 0)−c1B) ≤

0, then µ1(d,1Gf
′(x, 0)− c1B) < 0 for all c ∈ [0,∞). In this case, c∗ = ∞.

The following is an immediate consequence which we note for later use.

Corollary 2.4.1. Suppose f(x,w) = w(1− w). Then, f ′(x, 0) = 1,
∫︁
G
f ′(x, 0) = |G|,

and so µ1(d,mc) < 0 for all c ∈ [0, |G|
|B| ].

Let c∗ = c∗(d) be as in Lemma 2.4.1. Theorem 2.4.1 ensures that problem (2.1)

admits a unique positive steady state w∗
d,c for each c ∈ [0, c∗). We prove the following

result.

Lemma 2.4.2. There holds w∗
d,c < w∗

d,0 in Ω for all c ∈ (0, c∗). Furthermore, w∗
d,c →

w∗
d,0 in C(Ω) as c→ 0.

Proof. We write w∗
c for w∗

d,c as the context for the current proof should be clear.

Notice that for any c ∈ (0, c∗), w∗
c ≨ w∗

0 by Proposition 2.4.2. Theorem 1.2.16 then

implies that w∗
c < w∗

0 in Ω. If w∗
c (x0) = w∗

0(x0) for some x0 ∈ ∂Ω, Hopf’s lemma implies

that ∂w∗
c

∂ν
(x0) > 0, which contradicts the boundary condition satisfied by w∗

c , and so

w∗
c < w∗

0 in Ω for all c ∈ (0, c∗).

By Proposition 2.4.2, w∗
c is increasing as c decreases. Hence, the pointwise limits

w∗ := limc→0w
∗
c exist in Ω, and 0 < w∗ ≤ w∗

0 in Ω. We now show that w∗ ≡ w∗
0.

Since w∗
0 is bounded for all c ∈ [0, c∗), |1Gf(x,w∗

c )− c1Bw
∗
c | ≤ M < ∞ for all

c ∈ [0, c∗). In particular, the right hand side belongs to Lp(Ω) for any p ≥ 1. Theorem

1.2.29 then tells us that in fact supc∈[0,c∗)w
∗
c ∈ W 2,p(Ω)(Ω) for any p ≥ 1. Thus, the

compactness of W 2,p(Ω) (i.e., the Rellich–Kondrachov compactness theorem [31, Ch.

5]) yields the existence of a subsequence such that

w∗
c → w∗, ∇w∗

c → ∇w∗ strongly in Lp(Ω) as c→ 0.
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Note that, since w∗
c (x) is monotone increasing for each x ∈ Ω as c→ 0, the limit point

is unique, and so we are guaranteed that the limit is exactly w∗.

Consequently, if we multiply the equation for w∗
c against a test function ϕ and

integrate by parts, we immediately find that w∗ is a weak solution solving the same

problem as w∗
0. The Sobolev embedding ensures that in fact w∗ ∈ C1+α(Ω) for any

α ∈ (0, 1), and so the weak solution is in fact a strong solution. Uniqueness of the

strong solution tells us that w∗
0 = w∗. Finally, Dini’s theorem ensures that w∗

c → w∗
0

uniformly in Ω, completing the proof.

We then have the following corollary for later use.

Corollary 2.4.2. Suppose f(x,w) = w(1 − w). Then, w∗
0 ≡ 1 in Ω, w∗

c < 1 for all

c ∈ (0, c∗), and w∗
c → 1 uniformly in Ω as c→ 0+.

2.5 A competitive system

With the results proved in the previous section, we are now ready to tackle the com-

petitive system. Since the system is more complicated than the scalar equation, we

consider the special form of reaction given in problem (2.2). We essentially apply the

same theory to the system, but there are now possibly four (or more) steady states.

Therefore, we must discuss the appropriate cone in which to work so that we generate

a strong monotone flow, and we must determine precisely the local stability of possible

steady states. We begin to address the first piece of the puzzle now.

2.5.1 Comparison principles for competitive systems

In what follows, the orderings ≤K , <K and ≪K denote the skew orderings for compet-

itive systems: for u1, u2, v1, v2 ∈ C(Ω),

(u1, v1) ≤K (u2, v2) iff u2 − u1 ∈ C+(Ω) and v1 − v2 ∈ C+(Ω),

(u1, v1) <K (u2, v2) iff u2 − u1 ∈ C+(Ω) \ {0} and v1 − v2 ∈ C+(Ω) \ {0},

(u1, v1) ≪K (u2, v2) iff u2 − u1 ∈ C++(Ω) and v1 − v2 ∈ C++(Ω).

Thus, we work in the cone (X+)× (−X+) = (C(Ω
+
)× (−C(Ω)) so that our com-

petitive system can be treated as a cooperative system. We now present an analogue to
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the comparison theorem for scalar problems, Theorem 2.4.1. The approach to proving

the result can easily be translated to a proof for the scalar case.

Proposition 2.5.1. Let T ∈ (0,∞). Suppose that u, u, v, v belong to W 2,1
p (QT ) ∩

C([0, T );C(Ω)) for any p ≥ 1 with u(·, 0), v(·, 0) ≥ 0 and satisfy the conditions:

ut − d1∆u ≤ u(mc1 − 1G(u+ v)) a.e. in Ω× (0, T ),

vt − d2∆v ≤ v(mc2 − 1G(u+ v)) a.e. in Ω× (0, T ),

ut − d1∆u ≥ u(mc1 − 1G(u+ v)) a.e. in Ω× (0, T ),

vt − d2∆v ≥ v(mc2 − 1G(u+ v)) a.e. in Ω× (0, T ),

∂u

∂ν
≤ ∂u

∂ν
on ∂Ω× (0, T ),

∂v

∂ν
≤ ∂v

∂ν
on ∂Ω× (0, T ).

Then, the following hold.

(1) If (u(·, 0), v(·, 0)) ≤K (u(·, 0), v(·, 0)), then (u(·, t), v(·, t)) ≤K (u(·, t), v(·, t)) for

all t ∈ (0, T ).

(2) Suppose in addition u, u, v, v belong to C1((0,∞);C(Ω)). If (u(·, 0), v(·, 0)) <K

(u(·, 0), v(·, 0)), then

(u(·, t), v(·, t)) ≪K (u(·, t), v(·, t)), ∀t ∈ (0, T ).

Proof. (1) First, we claim that u, v ≥ 0 holds necessarily. Consider w = −u. Then by

assumption, w satisfies

wt − d1∆w ≤ β(t)w, (2.7)

for some nonnegative β(t), the existence of which follows from v, u ∈ C([0, T );C(Ω)).

Set w− = max{0,−u}. Multiplying (2.7) by w−, integrating the resulting inequality

over Ω and integrating by parts yields that 1
2
d
dt

∫︁
Ω
(w−)2dx ≤ β(t)

∫︁
Ω
(w−)2dx. From

the Gronwall inequality and the nonnegativity at t = 0, we obtain w− ≡ 0. The same

argument applies to v, and hence u, v ≥ 0.
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Now, set w1 := u − u and w2 = v − v. We show that w+
i := max{0, wi} ≡ 0 for

i = 1, 2. Setting f1(x, u, v) = u(mc1 − 1G(u+ v)) and f2(x, u, v) = v(mc2 − 1G(u+ v)),

we estimate

1

2

d

dt

∫︂
Ω

[︁
(w+

1 )
2 + (w+

2 )
2
]︁
dx

≤
∫︂
Ω

[︁
w+

1 (d1∆w1 + f1(x, u, v)− f1(x, u, v)) + w+
2 (d2∆w2 + f2(x, u, v)− f2(x, u, v))

]︁
dx

≤
∫︂
Ω

w+
1 (f1(x, u, v)− f1(x, u, v)) dx+

∫︂
Ω

w+
2 (f2(x, u, v)− f2(x, u, v)) dx,

(2.8)

where we used the assumed differential inequalities in the first inequality, and integrated

by parts and dropped non-positive gradient terms in the second inequality.

We now write

f1(x, u, v)− f1(x, u, v) = u(mc1 − 1G(u+ v))− u(mc1 − 1G(u+ v))

= mc1(u− u)− 1G ((u+ u)(u− u) + v(u− u)− u(v − v))

= (mc1 − 1G(u+ u+ v))w1 + 1Guw2,

f2(x, u, v)− f2(x, u, v) = (mc2 − 1G(v + v + u)w2 + 1Gvw1.

Inserting these into (2.8) yields

1

2

d

dt

∫︂
Ω

[︁
(w+

1 )
2 + (w+

2 )
2
]︁
dx

≤
∫︂
Ω

(mc1 − 1G(u+ u+ v))(w+
1 )

2dx+

∫︂
Ω

(mc2 − 1G(v + v + u)(w+
2 )

2dx

+

∫︂
Ω

(︁
uw+

1 w2 + vw+
2 w1

)︁
dx

≤
∫︂
Ω

[︁
(mc1 − 1Gu)(w

+
1 )

2 + (mc2 − 1Gv)(w
+
2 )

2
]︁
dx+

∫︂
Ω

(u+ v)w+
1 w

+
2 dx.

Notice that in the second inequality we have used that u, v ≥ 0 so that uw+
1 w2 =

uw+
1 (w

+
2 − w−

2 ) ≤ uw+
1 w

+
2 . A similar inequality holds for vw+

2 w1.

Next, applying Young’s inequality to the mixed term yields

1

2

d

dt

∫︂
Ω

[︁
(w+

1 )
2 + (w+

2 )
2
]︁
dx

≤
∫︂
Ω

(mc1 − 1Gu+ (u+ v)/2)(w+
1 )

2dx+

∫︂
Ω

(mc2 − 1Gv + (u+ v)/2)(w+
2 )

2dx

≤ β(t)

∫︂
Ω

[︁
(w+

1 )
2 + (w+

2 )
2
]︁
dx,
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where the existence of such a function β(t) again follows from the fact that all sub/super

solution pairs belong to C([0, T ), C(Ω)). Gronwall’s inequality then gives∫︂
Ω

(︁
(w+

1 )
2 + (w+

2 )
2
)︁
dx ≤ e2

∫︁ t
0 β(s)ds

∫︂
Ω

(︁
(w+

1 (0))
2 + (w+

2 (0))
2
)︁
dx = 0,

since w+
1 (0) = max{0, u(x, 0)−u(x, 0)} = 0 and w+

2 (0) = max{0, v(x, 0)− v(x, 0)} = 0

by assumption. Consequently, w+
i = 0, and hence wi ≤ 0 a.e. in QT for each i, i.e.

u ≤ u and v ≤ v a.e. in QT . Finally, by the Sobolev embedding Theorem 1.2.4, all

quantities are continuous in QT , and hence the inequality holds everywhere in QT .

This completes the proof of the first part of the theorem.

(2) Next, notice the Sobolev embedding ensures that u, u, v, v ∈ C1(Ω) for all

t ∈ (0, T ). If in addition we assume that u, u, v, v ∈ C1((0, T );C(Ω)), we may apply

the strong maximum principle Theorem 1.2.16 as follows. Since w1 ≤ 0, the hypothesis

of Theorem 1.2.16 is satisfied. Suppose there exists a point (x0, t0) ∈ QT such that

w1 = 0. By Theorem 1.2.16, it must be the case that w1 ≡ 0 in Ω for all t ∈ (0, t0). This

contradicts the continuity of w1(·, t) and the fact that w1(x, 0) = u(x, 0)− u(x, 0) < 0

for some x ∈ Ω. Hence, w1 < 0 for all (x, t) ∈ QT , i.e. u < u for all (x, t) ∈ QT .

We now consider points on the boundary ∂QT . Suppose that there exists x0 ∈ ∂Ω

such that w1(x0, t0) = 0 for some t0 > 0. Hopf’s lemma (the parabolic version of

Theorem 1.2.17) then guarantees that ∂w1

∂ν
> 0, which is clearly in contradiction to the

assumption that ∂w1

∂ν
= ∂u

∂ν
− ∂u

∂ν
≤ 0. Hence, u < u for all (x, t) ∈ Ω× (0, T ).

The same procedure yields that v < v using instead that u ≤ u from (1) and

the boundary conditions for v, v. This completes the proof of the second part, and

concludes the proof of the theorem.

We also have the following existence-comparison theorem for the elliptic system,

which is partially an analogue of Proposition (2.5.1). In this case, we actually have more

since we strengthen our assumption: a comparison theorem holds, but we also obtain

solutions to the elliptic system through a monotone iteration scheme. This is similar

to the strategy explored in Section 1.2, but the complexity is increased due to the

coupled system. On the other hand, the form of the reaction terms are appropriately

quasimonotone [123, Ch. 12], and so the sequences generated are monotone.
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Proposition 2.5.2. Suppose that u, u, v, v belong to W 2,p(Ω) for any p ≥ 1 and

satisfy the conditions:

−d1∆u ≤ u(mc1 − 1G(u+ v)) a.e. in Ω,

−d2∆v ≤ v(mc2 − 1G(u+ v)) a.e. in Ω,

−d1∆u ≥ u(mc1 − 1G(u+ v)) a.e. in Ω,

−d2∆v ≥ v(mc2 − 1G(u+ v)) a.e. in Ω,

∂u

∂ν
≤ ∂u

∂ν
on ∂Ω,

∂v

∂ν
≤ ∂v

∂ν
on ∂Ω.

If u, u, v, v satisfy (u, v) ≤K (u, v), then

• there exist steady states (u∗, v∗) and (u∗, v∗) to (2.2) such that

(u, v) ≤K (u∗, v∗) ≤K (u∗, v∗) ≤K (u, v);

• any steady state (û, v̂) to (2.2) obeying (u, v) ≤K (û, v̂) ≤K (u, v) must satisfy

(u∗, v∗) ≤K (û, v̂) ≤K (u∗, v∗).

Proof. The proof follows from “standard” iterative arguments for quasimonotone sys-

tems and Theorem 1.2.16 in place of the classical maximum principle. The scalar case

was considered in Section 1.2.8.

First, letK be so large that F1(x, u, v) := Ku+u(mc1−1G(u+v)) and F2(x, u, v) :=

Kv + v(mc2 − 1G(u + v)) are non-decreasing in the arguments u and v, respectively.

We then iterate through the process

−d1∆uk +Kuk = F1(x, uk−1, vk−1),

−d2∆vk +Kvk = F2(x, uk−1, vk−1).

subject to homogeneous Neumann boundary data along ∂Ω.

We use our sub/super solution pairs (u, v) = (u0, v0) and (u, v) = (u0, v0) as initial

iterates to create monotonic sequences satisfying

u ≤ uk ≤ uk+1 ≤ uk+1 ≤ uk ≤ u, v ≤ vk ≤ vk+1 ≤ vk+1 ≤ vk ≤ v,
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in Ω for all k ≥ 1. We follow a similar procedure as that outlined in, e.g., [123, Ch.

12] or [95].

We show the details for (uk, vk) with the same approach applying to (u, v). Since

u, v belong to W 2,p(Ω), they are uniformly bounded in Ω by the Sobolev embedding.

Hence,

F1(x, u, v), F2(x, u, v) ∈ L∞(Ω).

By the existence result Theorem 1.2.29, there exists a unique positive strong solution

u1, v1 ∈ W 2,p(Ω). Set w1 = u−u1 and z1 = v1−v. By the assumptions in the statement

of the theorem there holds

−d1∆w1 +Kw1 ≤ F1(x, u, v)− F1(x, u, v) = 0,

and ∂w1

∂ν
≤ 0 along ∂Ω. Similarly, −d2∆z1 ≤ 0. By the comparison principle we have

that w1 = u− u1 ≤ 0 and z1 = v1 − v ≤ 0.

Consider now wk = uk−uk+1 and zk = vk+1−vk. Assume wi, zi ≤ 0 up to i = k−1.

We proceed inductively. First we have that

−d1∆wk +Kwk = F1(x, uk−1, vk−1)− F1(x, uk−2, vk−2).

Write the right hand side as

F1(x, uk−1, vk−1)− F1(x, uk−1, vk−2) + F1(x, uk−1, vk−2)− F1(x, uk−2, vk−2) ≤ 0,

which holds by the non-increasing property of F1 and the fact that our iterates are

positive. The same argument holds for zk.

Using the same setup, one can show that uk ≥ uk+1 and vk+1 ≥ vk+1 for every k.

Finally, we consider wk = uk − uk. By assumption, w0 ≤ 0. For k ≥!, wk satisfies

(wk)t − d1∆wk +Kwk = F1(x, uk−1, vk−1)− F1(x, uk−1, vk−1)

Assume the above holds up to k − 1. Using the same rearrangement used previously

along with the fact that vk−1 − vk−1, it is not difficult to obtain wk ≤ 0. The same

argument holds for zk = vl − vk. Hence, the monotonicity of our sequences holds for

all k.
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Since the sequences are monotone and uniformly bounded, the following pointwise

limits exist

lim
k→∞

uk = u∗, lim
k→∞

uk = u∗, lim
k→∞

vk = v∗, lim
k→∞

vk = v∗,

and are uniformly bounded inW 2,p(Ω) for any p ≥ 1. Thus, the compactness ofW 2,p(Ω)

yields a subsequence that we do not relabel which converges strongly in W 1,p(Ω) and

weakly in W 2,p(Ω). Since each Fi(x, u, v) are Lipschitz continuous in the arguments

u, v, we find that the pairs (u∗, v∗) and (u∗, v∗) are steady state solutions to problem

(2.2) in the weak sense. Furthermore, by the Sobolev embedding we have convergence

in C1+α(Ω). In particular, the boundary condition is satisfied everywhere along ∂Ω.

Again by the regularity of Fi in the arguments u, v, we can show that the convergence

is strong inW 2,p(Ω) and (u∗, v∗) and (u∗, v∗) are strong solution pairs to problem (2.1).

The ordering relation of these solutions obtained then follows immediately due to

the ordering of the original sequences.

Finally, if (u∗, v∗) is any other solution lying between the original sub/super solu-

tions pairs, choosing (u0, v0) = (u∗, v∗) yields u∗ ≤ u∗ and v∗ ≥ v∗. A similar argument

yields u∗ ≥ u∗ and v∗ ≤ v∗, completing the proof.

We conclude this subsection with the following simple result.

Corollary 2.5.1. If a coexistence steady state (ũ, ṽ) to (2.2) exists, there must hold

(ũ, ṽ) ∈ C++(Ω)× C++(Ω).

Proof. It is easy to see that (0, v∗) ≤K (ũ, ṽ) ≤K (u∗, 0) from Proposition 2.5.2. The

result then follows from of Proposition 2.5.1 (2) with (u, v) = (0, v∗) and (u, v) =

(u∗, 0).

2.5.2 Well-posedness

Using the results of the previous section, we are now ready to prove the well-posedness

of the time-dependent competition system. Furthermore, the solution process generates

a strongly monotone flow on the space (C+(Ω) × (−C+(Ω)). We have the following

theorem.
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Theorem 2.5.1. For any initial data (u0, v0) ∈ C+(Ω)×C+(Ω), there exists a unique

global strong solution (u, v) to (2.2) satisfying

(u, v) ∈ [Cα([0,∞);C+(Ω)) ∩ C1((0,∞);C+(Ω))]2

for any α ∈ (0, 1). Moreover, solutions to problem (2.2) are strongly monotone in the

sense that if (u0, v0), (ũ0, ṽ0) ∈ C+(Ω)×C+(Ω) are such that (u0, v0) <K (ũ0, ṽ0), then

(u(·, t), v(·, t)) ≪K (ũ(·, t), ṽ(·, t)) for all t > 0

Proof of Theorem 2.5.1. We may repeat the same process given in the scalar case in

order to deduce some preliminary regularity results. To this end, regularize by 1εG, 1
ε
B.

It is easy to see that 0 is a subsolution whileM suitably large is a supersolution for both

equations u and v. By a standard monotone iteration schemes (see Section 1.2.8) we

deduce the existence of a unique classical solution (uε, vε) ∈ C2+α,1+α/2(QT ) ∩ C(QT )

for each ε > 0 fixed. Furthermore, uε, vε are uniformly bounded in ε since M is a

supersolution for all ε > 0. Thus, Fi(x, uε, vε) are uniformly bounded in L∞(QT ),

and so by Theorem 1.2.30 (uε, vε) are uniformly bounded in W 2,1
p (QT ) for any p ≥ 1.

Choosing p large enough we have that in fact (u, v) ∈ [C1+α,(1+α)/2(Ω × [0, T ))]2 for

any α ∈ (0, 1) by the Sobolev embedding. It is easy to verify the boundary condition

as in the scalar equation case due to the convergence in C1(Ω).

Next we show that solutions are positive and global. First, we assert that the

solution (u, v) is non-negative. To see this, note that the equation for each solution

can be written as

ut = d1∆u+ uF1(t),

vt = d2∆v + vF2(t),

where Fi(t) = mi − 1G(u + v) are bounded by some nonnegative function β(t) for

any T > 0. Multiplying each equation by u− = max{0,−u} and v− = max{0,−v}

respectively and integrating over Ω, we find that

1

2

d

dt

∫︂
Ω

[︁
(u−)2 + (v−)2

]︁
dx ≤ β(t)

∫︂
Ω

[︁
(u−)2 + (v−)2

]︁
dx.
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The result then follows from Gronwall’s inequality and the fact that u−(·, 0) = v−(·, 0) =

0.

Next, if one considers the pair (u, v) = (Meγtϕ1, 0) where ϕ1 is the first eigenfuction

solving (2.5) corresponding to µ1(d1,mc1), it is easy to see that

ut − d∆u ≥ u(mc1 − 1G(u+ v)),

so long as γ ≥ µ1(d1,mc1). Hence, u is exponentially bounded in time and thus

necessarily exists globally. Furthermore, we see that u(x, t) > 0 in Ω for all t > 0 so

long as u0(x) = u(x, 0) > 0 somewhere in Ω. A similar argument holds for v(x, t) when

one considers (u, v) = (0,Meγtϕ̂1) where ϕ̂1 corresponds to µ1(d2,mc2) and γ is chosen

such that γ + µ1(d2,mc2) ≥ 0.

We may now improve the regularity in the time variable for application in the

following section. Most important in this argument is the Hölder continuity of the

solution in the variable t. This allows us to apply [111, Theorem 3] once again: since

u0 ∈ C(Ω) and (x, t) ↦→ u(x, t)[mc1 − 1G(u(x, t) + v(x, t))] is Hölder continuous with

exponent α in the variable t, we may conclude that ∂u
∂t

exists and is uniformly continuous

on (0,∞). Similarly, we conclude that ∂v
∂t

exists and is also uniformly continuous on

(0,∞). Consequently, the unique strong solution (u, v) belongs to [Cα([0,∞);C(Ω))∩

C1((0,∞);C(Ω))]2.

With the sufficient regularity obtained, an application of Proposition 2.5.1 (2) im-

mediately gives us the strong monotonicity of the system in (C(Ω) × (−C(Ω)), com-

pleting the proof.

2.5.3 Global dynamics

We now state one of the main results of this chapter. Denote by µ1(d1,mc1) (resp.

µ1(d2,mc2)) the principal eigenvalue associated with the linearization of (2.1) at 0

with (d,m) = (d1,mc1) (resp. (d,m) = (d2,mc2)). See Proposition 2.3.2 for details.

By Theorem 2.4.1, we have a unique positive steady state when the principal eigen-

value is negative. Whenever µ1(d1,mc1) < 0, denote by u∗ the unique positive steady

state of (2.1) with (d,m) = (d1,mc1). Similarly, whenever µ1(d2,mc2) < 0, denote

79



by v∗ the unique positive steady state of problem (2.1) with (d,m) = (d2,mc2). The

following result provides a full description of the global dynamics of the competition

system (2.2) depending on di and ci.

Theorem 2.5.2. Let 0 < d1 < d2. Then the following hold (with all convergences hold

in C(Ω)× C(Ω)).

(1) Suppose µ1(d1,mc1) ≥ 0 and µ1(d2,mc2) ≥ 0. Then, (u, v) → (0, 0) as t→ ∞.

(2) Suppose µ1(d1,mc1) < 0 and µ1(d2,mc2) ≥ 0. Then, (u, v) → (u∗, 0) as t→ ∞.

(3) Suppose µ1(d1,mc1) ≥ 0 and µ1(d2,mc2) < 0. Then, (u, v) → (0, v∗) as t→ ∞.

(4) Suppose µ1(d1,mc1) < 0 and µ1(d2,mc2) < 0. Then, there exist critical values

0 < c∗2 < c∗2 < c1 such that the following results hold.

(i) If c2 ∈ (c∗2,∞), then (u, v) → (u∗, 0) as t→ ∞.

(ii) If c2 ∈ (c∗2, c
∗
2), then (u, v) → (ũ, ṽ) as t → ∞, where (ũ, ṽ) is the unique

coexistence steady state of (2.2).

(iii) If c2 ∈ (0, c∗2), then (u, v) → (0, v∗) as t→ ∞.

Furthermore, c∗2 and c∗2 are given by the unique zero of the functions c2 ↦→

µ1(d1,mc1 − 1Gv
∗) and c2 ↦→ µ1(d2,mc2 − 1Gu

∗), respectively. That is,

c2 = c∗2 ⇐⇒ µ1(d1,mc1 − 1Gv
∗) = 0 and c2 = c∗2 ⇐⇒ µ1(d2,mc2 − 1Gu

∗) = 0.

Remark 2.5.1. Note that in the description of c∗2, the dependence of µ1(d1,mc1−1Gv∗)

on c2 is given implicitly by the dependence of v∗ on c2. This is in contrast to c∗2 where

the dependence is more explicit, seen directly by the presence of mc2.

We also prove the following limiting case extending point (iii) of Theorem 2.5.2.

Theorem 2.5.3. Let 0 < d1 < d2 and c2 = 0 < c1. Then,

(u, v) → (0, v∗) in C(Ω)× C(Ω) as t→ ∞.
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To complete the picture of potential asymptotic outcomes, we highlight the follow-

ing limiting cases when either the diffusion coefficients are identical, or the level of

degradation for each species is identical.

Theorem 2.5.4. Suppose that d1, d2 > 0 and c1 = c2 = 0. Then, there exists a curve

of steady states of the form {(σ, 1 − σ) : σ ∈ [0, 1]}. Furthermore, the linearization

about the semi-trivial steady states (1, 0) and (0, 1) have a zero eigenvalue, that is, the

semi-trivial steady states are neutrally stable.

Theorem 2.5.5. Suppose that d1 = d2 > 0, and u∗ and v∗ exist. The following hold.

(1) If c1 < c2, then (u, v) → (u∗, 0) in C(Ω)× C(Ω) as t→ ∞.

(2) If c1 > c2, then (u, v) → (0, v∗) in C(Ω)× C(Ω) as t→ ∞.

This result is of notable significance due to its implications for the sustainability of

multiple species’ populations. This result suggests that, under the introduction of any

amount of degraded habitat, if one species is particularly resilient in the degraded re-

gion, not only will it survive, but it will drive the other species to extinction! Moreover,

this result holds for any such 0 < d1 < d2. Hence, under the introduction of variable

heterogeneity, the slower diffuser may not always win! In fact, in the limiting case,

as long as species u experiences some level of mortality in some region of Ω, species

v always drives species u to extinction! The remarkable fact is that this holds for any

c1 > 0, for any region B, regardless of how small c1 or the region B might be. This

behaviour can be observed in the numerical results of Section 2.6.

In order to prove Theorem 2.5.2, we use the following crucial result.

Proposition 2.5.3. Let d1, d2 > 0 and c1, c2 ≥ 0 be such that µ1(di,mci) < 0 for

i = 1, 2. Suppose that every coexistence steady state of (2.2), if exists, is asymptotically

stable. Then one of the following alternatives holds.

(a) There exists a unique coexistence steady state of (2.2) which is globally asymp-

totically stable.

(b) System (2.2) has no coexistence steady state, and one of (u∗, 0) or (0, v∗) is

globally asymptotically stable, while the other is unstable.
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For notational simplicity, we omit Neumann boundary conditions whenever no con-

fusion is caused.

Proof of Theorem 2.5.2 (1)-(3). We address cases (1)-(3) together since they are the

most straightforward. Denote by (u, v) the unique global strong solution to (2.2) with

initial data (u0, v0) ∈ [C+(Ω) \ {0}]2.

(1) Suppose µ1(di,mci) > 0 for i = 1, 2. Define (u, v) := (0, w2) and (u, v) := (w1, 0)

in Ω×[0,∞), where w1 and w2 are respectively solutions to (2.1) with (d,m) = (d1,mc1)

and (d,m) = (d2,mc2) subject to the initial conditions w1(·, 0) = u0 and w2(·, 0) = v0.

By Theorem 2.4.3, wi(·, t) → 0 in C(Ω) as t→ ∞ for i = 1, 2.

Direct computation shows that the differential inequalities in Proposition 2.5.1 hold,

that is, (u, v) and (u, v) are respectively a sub solution and a super solution of (2.2).

We conclude from Proposition 2.5.1 that 0 ≤ u ≤ u and 0 ≤ v ≤ v in Ω for all t > 0.

Hence, (u, v) → (0, 0) in C(Ω)× C(Ω) as t→ ∞, completing the proof of part (1).

Next we prove the result for case (3). Case (2) follows in an identical fashion.

Suppose that µ1(d1,mc1) ≥ 0 while µ1(d2,mc2) < 0 so that v∗ exists.

Let w be the unique solution of (2.1) with (d,m) = (d1,mc1) and initial data

w0 = u0. Theorem 2.4.3 (ii) ensures that w → 0 in C(Ω) as t → ∞. Obviously, w

satisfies

wt − d1∆w ≥ w(mc1 − 1G(w + v)) a.e. in Ω× (0,∞),

and hence, u ≤ w by Proposition 2.4.1. It follows that u → 0 in C(Ω) as t → ∞, and

thus, for any 0 < ε≪ 1, there is tε ≫ 1 such that 0 ≤ u ≤ ε in Ω for all t ≥ tε. Let zε

be the strong solution to the following auxiliary problem{︄
zt = d2∆z + z(mc2 − 1G(z + ε)) in Ω× (tε,∞),

z(·, tε) = v(·, tε) in Ω.

Proposition 2.4.1 yields that zε ≤ v for all t ≥ tε.

Recall that µ1(d2,mc2) < 0. By Proposition 2.3.2 (iii), we may choose ε so small

that µ1(d2,mc2 − ε1G) < 0. Then, the following equation:

d2∆z
∗ + z∗(mc2 − 1G(z

∗ + ε)) = 0 in Ω
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admits a unique positive solution z∗ε . It follows from Theorem 2.4.3 that zε → z∗ε in

C(Ω) as t→ ∞.

Finally, let v solve{︄
vt = d2∆v + v(mc2 − 1Gv) in Ω× (0,∞),

v(·, 0) = v0 in Ω.

By Theorem 2.4.3, v → v∗ as t → ∞. Note that by Proposition 2.4.1, v ≤ v in Ω for

all t > 0. Combining these results, we deduce that

z∗ε = lim
t→∞

zε ≤ lim inf
t→∞

v ≤ lim sup
t→∞

v ≤ lim
t→∞

v = v∗, ∀0 < ε≪ 1.

We conclude by showing that z∗ε → v∗ in C(Ω) as ε → 0. Actually, the exact

same argument as that used in the proof of Theorem 2.4.2 applies except we replace

c with ε. Dini’s theorem proves the uniform convergence over Ω. Furthermore, the

convergence holds in C1+α(Ω) for any α ∈ (0, 1), and so the boundary condition is

satisfied everywhere on ∂Ω.

It follows that z∗0 is a strong solution satisfying the same equation as v∗. The

uniqueness of solutions implies that z∗0 = v∗ in Ω. Sending ε to zero completes the

proof of part (3), and we are done.

The rest of this section is devoted to the proof of Theorem 2.5.2 (4) with the short

proof of Theorem 2.5.3 presented afterward. In what follows, we analyze in detail the

local stability of the steady states. Since µ1(di,mci) < 0 for i = 1, 2, we have at least

three steady states: (0, 0), (u∗, 0), and (0, v∗). In particular, recall that Lemma 2.4.2

applies to u∗ and v∗ with respect to c1 and c2, respectively.

Lemma 2.5.1. Suppose c1 > 0 and µ1(d1,mc1) < 0. Then there exists a critical value

c∗2 ∈ (0, c1) such that the following hold:

(i) if c2 ∈ (0, c∗2), then (u∗, 0) is unstable;

(ii) if c2 ∈ (c∗2, c1), then (u∗, 0) is linearly stable.

Furthermore, c∗2 satisfies c∗2 > c2 :=
|G|−

∫︁
G u

∗

|B| > 0.
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Proof. Consider the following eigenvalue problem associated to the linearization of

(2.2) about (u∗, 0):{︄
d1∆ψ1 + (mc1 − 21Gu

∗)ψ1 − 1Gu
∗ψ2 + λψ1 = 0 in Ω,

d2∆ψ2 + (mc2 − 1Gu
∗)ψ2 + λψ2 = 0 in Ω.

(2.9)

In particular,

d2∆ψ2 + (mc2 − 1Gu
∗)ψ2 + λψ2 = 0 in Ω, (2.10)

and so all eigenvalues are real.

Since |G| >
∫︁
G
u∗ due to Lemma 2.4.2, we deduce

∫︁
Ω
(mc2 − 1Gu

∗) = |G| −
∫︁
G
u∗ −

c2 |B| ≥ 0 for all c2 ≤ c2, where c2 is as in the statement. It follows from Proposition

2.3.2 that

µ1(d2,mc2 − 1Gu
∗) < 0, ∀c2 ≤ c2, (2.11)

where µ1(d2,mc2 − 1Gu
∗) is the first eigenvalue of (2.10).

Assume c2 ≤ c2 and let ψ2 be the positive eigenfunction associated to λ :=

µ1(d2,mc2 − 1Gu
∗) < 0. We solve for ψ1 in the first equation of (2.9) given by

d1∆ψ1 + (mc1 − 21Gu
∗)ψ1 − 1Gu

∗ψ2 + λψ1 = 0 in Ω. (2.12)

Since µ1(d1,mc1 − 21Gu
∗) > µ1(d1,mc1 − 1Gu

∗) = 0 and λ < 0, the operator given by

d1∆+ (mc1 − 21Gu
∗) + λ : C(Ω) → C(Ω), (2.13)

is invertible. This together with the third theorem of Krein-Rutman, Theorem 1.2.7,

imply that (2.12) admits a unique positive solution. Hence, λ is a negative eigenvalue

to the problem (2.9) and (u∗, 0) is unstable.

So far, we have shown that (u∗, 0) is unstable for c2 ∈ (0, c2]. We extend this

interval to (0, c∗2) for some c∗2 > c2. First, if we choose c2 = c1 so that mc2 = mc1 ,

we see from Proposition 2.3.2 (iii) that µ1(d2,mc2 − 1Gu
∗) > µ1(d1,mc2 − 1Gu

∗) = 0.

This together with (2.11) and the monotonicity of c2 ↦→ µ1(d2,mc2 − 1Gu
∗) yields the

existence of a unique value c∗2 ∈ (c2, c1) such that µ1(d2,mc2−1Gu
∗) = 0. In particular,

µ1(d2,mc2 −1Gu
∗) < 0 for all c2 ∈ (0, c∗2). Hence, the operator (2.13) is again invertible

for all c2 ∈ (0, c∗2) and so (u∗, 0) is unstable. This proves part (i) of the proposition.
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It remains to show that (u∗, 0) is linearly stable for all c2 ∈ (c∗2, c1). Referring back to

the eigenvalue problem (2.9), if ψ2 ̸≡ 0, then λ must satisfy λ ≥ µ1(d2,mc2−1Gu∗) > 0,

as c2 ∈ (c∗2, c1). On the other hand, if ψ2 ≡ 0, one considers only

d1∆ψ1 + (mc1 − 21Gu
∗)ψ1 + λψ1 = 0 in Ω,

and notices that λ ≥ µ1(d1,mc1 − 21Gu
∗) > µ1(d1,mc1 − 1Gu

∗) = 0. In either case, all

eigenvalues of (2.9) are positive, and thus, (u∗, 0) is linearly stable for all c2 ∈ (c∗2, c1).

This completes the proof of part (ii).

We now prove the analogous result for the local stability of (0, v∗).

Lemma 2.5.2. Let c1 > 0 and µ1(d2,mc2) < 0. There exists a critical value c∗2 ∈ (0, c1)

such that the following hold:

(i) if c2 ∈ (0, c∗2), then (0, v∗) is linearly stable;

(ii) if c2 ∈ (c∗2, c1), then (0, v∗) is unstable.

Furthermore, c∗2 satisfies c∗2 > c2 := sup {c2 > 0 : v∗ ≥ u∗ in G} > 0.

Proof. Consider the following eigenvalue problem associated to the linearization of

(2.2) about (0, v∗):{︄
d1∆ψ1 + (mc1 − 1Gv

∗)ψ1 + λψ1 = 0 in Ω,

d2∆ψ2 + (mc2 − 21Gv
∗)ψ2 − 1Gv

∗ψ1 + λψ2 = 0 in Ω.
(2.14)

By Corollary 2.4.2, u∗ < 1 in Ω, and v∗ → 1 in C(Ω) as c2 → 0, and thus, u∗ ≤ v∗ in

G for every c2 sufficiently small. Hence, c2 is well-defined. From Proposition 2.3.2 (iv)

it follows that

µ1(d1,mc1 − 1Gv
∗) > µ1(d1,mc1 − 1Gu

∗) = 0, ∀c2 ∈ (0, c2).

If ψ1 ̸≡ 0, then λ ≥ µ1(d1,mc1 − 1Gv
∗) > 0. If ψ1 ≡ 0, then λ ≥ µ1(d2,mc2 −

21Gv
∗) > µ1(d2,mc2 − 1Gv

∗) = 0. In either case, all eigenvalues of (2.14) are positive

for c2 ∈ (0, c2), and so (0, v∗) is linearly stable for c2 ∈ (0, c2).
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We now extend the interval (0, c2) to (0, c∗2). Notice that if we choose c2 = c1, then

µ1(d1,mc1 − 1Gv
∗) = µ1(d1,mc2 − 1Gv

∗) < µ1(d2,mc2 − 1Gv
∗) = 0,

and hence there exists a critical value c∗2 > c2 such that µ1(d1,mc1 − 1Gv
∗) = 0.

Consequently, (0, v∗) is linearly stable for all c2 ∈ [0, c∗2).

Finally, we show that (0, v∗) is unstable for all c2 > c∗2. Referring back to the

linearized system (2.14), set λ = µ1(d1,mc1 − 1Gv
∗) < 0 and denote by ψ1 the corre-

sponding eigenfunction. We now solve for ψ2. This follows immediately from the fact

that the operator d2∆+ (mc2 − 21Gv
∗) + λ is invertible since µ1(d2,mc2 − 21Gv

∗) > 0

and λ < 0, i.e., we apply the third Krein-Rutman theorem once again. Hence, (2.14)

has a negative eigenvalue for all c2 > c∗2 and so (0, v∗) is unstable. This completes the

proof.

Next, we state a result asserting that every coexistence steady state is linearly sta-

ble, whenever it exists. This key result in conjunction with Proposition 2.5.3 will allow

us to prove the subsequent Lemma, which results in conclusions of global asymptotic

stability.

Lemma 2.5.3. Suppose 0 < d1 < d2 and 0 ≤ c2 < c1. Then, any coexistence steady

state of (2.2), whenever it exists, is linearly stable.

Proof. We adapt the proof of [61, claim (S)]. Let (ũ, ṽ) be a coexistence steady state

of (2.2). Then, (0, ṽ) ≪K (ũ, 0) by Corollary 2.5.1. Consider the eigenvalue problem

associated to the linearization of (2.2) about (ũ, ṽ):{︄
d1∆ψ1 + (mc1 − 1G(ũ+ ṽ)− 1Gũ)ψ1 − 1Gũψ2 + λψ1 = 0 in Ω,

d2∆ψ2 + (mc2 − 1G(ũ+ ṽ)− 1Gṽ)ψ2 − 1Gṽψ1 + λψ2 = 0 in Ω.
(2.15)

Denote by (ϕ1, ϕ2) the eigenfunction pair associated to the principal eigenvalue λ1,

whose existence and simplicity is ensured by the second Krein-Rutman theorem, The-

orem 1.2.6. We may choose ϕ1, ϕ2 such that (0, 0) ≪K (ϕ1, ϕ2), that is, (ϕ1, ϕ2) ∈

(X+)× (−X+), and ∥ϕ1∥22 + ∥ϕ2∥22 = 1. Direct calculations give

d1∇ ·
(︃
ũ2∇

(︃
ϕ1

ũ

)︃)︃
= 1Gũ

2(ϕ1 + ϕ2)− λ1ũϕ1 in Ω.
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Multiplying the above identity by
ϕ21
ũ2

and integrating over Ω, we find

−2d1

∫︂
Ω

ũϕ1

⃓⃓⃓⃓
∇
(︃
ϕ1

ũ

)︃⃓⃓⃓⃓2
dx =

∫︂
G

ϕ2
1(ϕ1 + ϕ2)dx− λ1

∫︂
Ω

ϕ3
1

ũ
dx.

Similarly, there holds

−2d2

∫︂
Ω

ṽϕ2

⃓⃓⃓⃓
∇
(︃
ϕ2

ṽ

)︃⃓⃓⃓⃓2
dx =

∫︂
G

ϕ2
2(ϕ1 + ϕ2)dx− λ1

∫︂
Ω

ϕ3
2

ṽ
dx.

Combining these two identities, we find

−λ1
∫︂
Ω

(︃
ϕ3
1

ũ
− ϕ3

2

ṽ

)︃
dx = −2d1

∫︂
Ω

ũϕ1

⃓⃓⃓⃓
∇
(︃
ϕ1

ũ

)︃⃓⃓⃓⃓2
dx−

∫︂
G

ϕ2
1(ϕ1 + ϕ2)dx

+ 2d2

∫︂
Ω

ṽϕ2

⃓⃓⃓⃓
∇
(︃
ϕ2

ṽ

)︃⃓⃓⃓⃓2
dx+

∫︂
G

ϕ2
2(ϕ1 + ϕ2)dx

≤ −
∫︂
G

(ϕ1 + ϕ2)(ϕ
2
1 − ϕ2

2)dx = −
∫︂
G

(ϕ1 + ϕ2)
2(ϕ1 − ϕ2)dx ≤ 0.

This implies that λ1 ≥ 0 with equality if and only if ϕ1
ũ

≡ const, ϕ2
ṽ

≡ const and

ϕ1 = −ϕ2.

If (ũ, ṽ) is not linearly stable, then λ1 = 0. It follows that ũ = kṽ for some k > 0,

which together with the system satisfied by (ũ, ṽ) gives{︄
d1∆ũ+ ũ(mc1 − 1G(1 + k−1)ũ) = 0 in Ω,

d2∆ṽ + ṽ(mc2 − 1G(1 + k)ṽ) = 0 in Ω.

Clearly, w∗ := (1 + k−1)ũ = (1 + k)ṽ satisfies{︄
d1∆w

∗ + w∗(mc1 − 1Gw
∗) = 0 in Ω,

d2∆w
∗ + w∗(mc2 − 1Gw

∗) = 0 in Ω.

Hence, w∗ satisfies (d2 − d1)∆w
∗ − 1B(c1 − c2)w

∗ = 0 in Ω, leading to w∗ = 0 in Ω.

This contradicts the positivity of ũ and ṽ. In conclusion, λ1 > 0, and hence, (ũ, ṽ) is

linearly stable.

Lemma 2.5.3 allows us to show an additional property of the quantities c∗2 and

c∗2: they are ordered. This gives us an existence/non-existence result for a positive

coexistence steady state.

Lemma 2.5.4. It holds c∗2 < c∗2. Moreover,
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(i) If c2 ∈ [0, c∗2) ∪ (c∗2,∞), there is no coexistence steady state;

(ii) If c2 ∈ (c∗2, c
∗
2), then there exists a unique coexistence steady state.

Proof. First, we claim that c∗2 < c∗2. Suppose otherwise. We then consider two cases:

c∗2 > c∗2 and c∗2 = c∗2.

In the first case, whenever c2 ∈ (c∗2, c
∗
2), both (u∗, 0) and (0, v∗) are linearly stable

according to Lemmas 2.5.1 and 2.5.2. Such a case is contradictory to Proposition 2.5.3.

Suppose now that c∗2 = c∗2. Let c2 be exactly this value. Note that v∗ is fixed

corresponding to c2, whereas u
∗ is fixed and independent of c2. From the definition of

c∗2 and c∗2, we find simultaneously that

µ1(d1,mc1 − 1Gv
∗) = 0 = µ1(d2,mc2 − 1Gu

∗)

for some eigenfunctions ψ1, ψ2, while 0 = µ1(d1,mc1 − 1Gu
∗) = µ1(d2,mc2 − 1Gv

∗)

with eigenfunctions u∗ and v∗, respectively. In other words, the following equations

are satisfied:

d1∆ψ1 + (mc1 − 1Gv
∗)ψ1 = 0, d1∆u

∗ + u∗(mc1 − 1Gu
∗) = 0,

d2∆ψ2 + (mc2 − 1Gu
∗)ψ2 = 0, d2∆v

∗ + v∗(mc2 − 1Gv
∗) = 0,

From the variational characterization of these eigenvalues, we have that

0 ≤
∫︂
Ω

[︁
d2 |∇ϕ|2 − ϕ2(mc2 − 1Gu

∗)
]︁
dx, ∀ϕ ∈ H1(Ω) : ϕ ̸≡ 0,

0 =

∫︂
Ω

[︁
d2 |∇v∗|2 − (v∗)2(mc2 − 1Gv

∗)
]︁
dx, (2.16)

and also

0 ≤
∫︂
Ω

[︁
d1 |∇ϕ|2 − ϕ2(mc1 − 1Gv

∗)
]︁
dx, ∀ϕ ∈ H1(Ω) : ϕ ̸≡ 0,

0 =

∫︂
Ω

[︁
d1 |∇u∗|2 − (u∗)2(mc2 − 1Gu

∗)
]︁
dx. (2.17)

Note that the inequalities above are strict when ϕ is any function other than the

principal eigenfunction. Hence, if we choose ϕ = v∗ in the first equation appearing in

(2.16) and take the difference of the two, we find that
∫︁
G
(v∗)2(u∗ − v∗) > 0. Similarly,
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if we choose ϕ = u∗ in the first equation appearing in (2.17) and take the difference of

the two, we obtain
∫︁
G
(u∗)2(v∗ − u∗) > 0. Adding these two quantities, we find

0 <

∫︂
G

(v∗)2(u∗ − v∗)dx+

∫︂
G

(u∗)2(v∗ − u∗)dx = −
∫︂
G

(u∗ − v∗)2(u∗ + v∗)dx ≤ 0,

which is a contradiction. Hence, c∗2 ̸= c∗2, and so combining these two cases implies

that c∗2 < c∗2 must hold.

(i) Let 0 ≤ c2 < c∗2. Suppose on the contrary that there exists a coexistence

steady state (ũ, ṽ). In this case, (0, v∗) is linearly stable by Lemma 2.5.2, while (ũ, ṽ)

is globally asymptotically stable by Lemma 2.5.3 and Proposition 2.5.3, leading to a

contradiction.

A similar argument holds when c2 > c∗2.

(ii) Suppose c2 ∈ (c∗2, c
∗
2). Then, both (u∗, 0) and (0, v∗) are unstable, and hence,

Proposition 2.5.3 ensures the existence of a unique coexistence steady state. This

completes the proof.

We are ready to prove Theorem 2.5.2 (4).

Proof of Theorem 2.5.2 (4). By Lemmas 2.5.1, 2.5.2 and 2.5.4, there holds c∗2 < c∗2 <

c1.

(i) Suppose c2 ∈ (c∗2, c1). By Lemma 2.5.1, (u∗, 0) is linearly stable. Since c2 > c∗2,

Lemma 2.5.2 implies that (0, v∗) is unstable. By Lemma 2.5.4, there is no coexistence

steady state. From Proposition 2.5.3, we conclude that (u∗, 0) is globally asymptotically

stable.

(ii) Suppose c2 ∈ (c2, c
∗
2). Then, both (u∗, 0) and (0, v∗) are unstable. By Lemma

2.5.4, there exists a unique coexistence steady state, and is hence globally asymptoti-

cally stable by Proposition 2.5.3.

(iii) Suppose c2 ∈ (0, c∗2). Then, (0, v∗) is linearly stable by Lemma 2.5.2. By

Lemma 2.5.1, (u∗, 0) is unstable, and by Lemma 2.5.4, there is no coexistence steady

state. Hence, Proposition 2.5.3 implies that (0, v∗) is globally asymptotically stable.

Theorem 2.5.3 follows almost immediately from the previous results.
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Proof of Theorem 2.5.3. It is easy to see that when c2 = 0 < c1, (u
∗, 0) is unstable

while (0, v∗) is linearly stable. From Lemma 2.5.4, we see that there cannot exist a

coexistence steady state when c2 = 0. Hence, (0, v∗) is globally asymptotically stable

by Proposition 2.5.3.

Proof of Theorem 2.5.4. In this case, our system becomes{︄
ut = d1∆u+ 1Gu(1− u− v),

vt = d2∆v + 1Gv(1− u− v).

Clearly, constant steady states consist of {(σ, 1 − σ) : σ ∈ [0, 1]}. Linearizing about

the steady state (u∗, 0) = (1, 0) gives{︄
d1∆ψ1 − 1Gψ1 − 1Gψ2 + λψ1 = 0,

d2∆ψ2 + λψ2 = 0.

Obviously, λ = 0 is an eigenvalue with an eigenfuntion (ψ1, ψ2) = (1,−1). The same

argument applies to (0, v∗) = (0, 1), showing this state also has a zero eigenvalue.

Proof of Theorem 2.5.5. The proof is identical to the case when c1 = c2 and d1 < d2.

More precisely, the result follows from the monotonicity of the eigenvalue µ1(d,mc)

with respect to c.

2.6 Numerical simulation

In Figure 2.2 we find a region plot showing the globally asymptotically stable steady

state in the c2-d2 plane. Using MATLAB’s pdepe function, we solve the time-dependent

problem for the coupled system (u, v) and compute the L1-norm of the solution, now

close to a steady state after sufficient time has passed. We then compute separately

the solution in the absence of a competitor, that is, the solutions (ũ, 0) and (0, ṽ)

each corresponding to its scalar equation counterpart. We then plot a “relative total

abundance”, which compares the abundance of each population in the competitive

system (u, v) relative to the total abundance in absence of a competitor given by the

solutions (ũ, 0) and (0, ṽ).

In this example, we fix d1 = c1 = 1 for population u; the black vertical line denotes

c1 = 1. Note that since d1, c1 are held fixed, we need compute the total abundance
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at steady state for (ũ, 0) only once! On the other hand, we must compute the total

abundance at steady state of (0, ṽ) for each fixed value in the (c2, d2) plane. The

landscape is given by Ω = (0, 10), the habitat by G = (0, 4)∪ (6, 10), and the degraded

region by B = (4, 6). The quantities c∗2, c
∗
2 are the quantities defined in Theorem 2.5.2.

The subplot is a cross-section of the case when d2 = 10. This figure can be found in

[104].
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2.7 Discussion

In this chapter we developed a habitat degradation model using reaction-diffusion equa-

tions. We consider both the scalar (single-species) case as well as a two-species compe-

tition case. Different from existing works, we include ecologically relevant components

not commonly considered in tandem: a diffusive movement mechanism with explicit

spatial heterogeneity and species-dependent habitat quality. Our main result, Theorem

2.5.2, highlights the importance of species-dependent habitat quality as a considera-

tion. It is found that, for any degraded area B with positive Lebesgue measure, a

sufficiently resilient species (e.g., c2 ≪ 1) will always displace the slower diffuser! This

result is robust in that any size or shape for the region B facilitates this result. This

is exemplified by the key thresholds 0 < c∗2 < c∗2 < c1, where c2 < c∗2 ensures that

population v always displaces population u, c2 > c∗2 returns to the classical case where

population u always displaces population v, and intermediate values of c2 guarantee

the global asymptotic stability of the coexistence steady state. Of course, the rela-

tive size of these thresholds in relation to 0 or c1 certainly depend directly on the

geometric properties of the region B. These quantities are of significant importance.

First, they demonstrate explicitly that a resilience to environmental change can act as

a viable evolutionary strategy. This is in contrast to classical results suggesting an evo-

lution towards slow dispersal rates [28]. Of note is the potential for application across

differing species, rather than merely across different phenotype expression within the

same species as in the aforementioned reference. Moreover, these thresholds highlight

the importance of considering species-specific traits. Typically, it is assumed in many

works that sharing the same landscape or environment means that we can take the

same function m(x) to describe the spatially-dependent growth rates of two competing

species. On the contrary, given that habitat itself is a species-specific concept, we need

consider the existing landscape and its relation to the needs of each competitor. This

is of further interest when considering questions of conservation, where the removal of

existing habitat while maintaining some subset of said habitat may counter-intuitively

lead to the displacement of the “stronger” competitor due to an unforeseen or dis-

regarded resiliency of the “weaker” species. This also gives a mechanism by which
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invasive species can easily displace native species through a lack of natural mortality

or an enhanced ability to occupy less resource-rich areas of the landscape.

To prove this main result, we describe completely the global dynamics of the scalar

equation and establish useful existence-comparison results. Due to the lack of regu-

larity of the environment (i.e., we have discontinuities along the boundary ∂B), we

must appeal to notions of strong solutions. Fortunately, the regularity of the obtained

solutions is sufficient to apply the theory of monotone flows.

Important in this analysis is the detailed study of the sign of some principal eigen-

values. These eigenvalues, corresponding to a linearization about 0 (and other steady

states for the competition system), determine the local stability of the steady states.

The framework developed here allows for a precise description of these principal eigen-

values. This extends some of the existing mathematical literature in an interesting way.

In classical works studying two-species competition-diffusion models, it is assumed that

the environmental heterogeneity is identical for each species. It is then found that the

slower diffuser always wins, indicating an evolutionary selection pressure for slower dis-

persal rates [28]. However, this perspective assumes the only difference between agents

is the diffusion rate. This is almost certainly quite rare in the natural world; more

nuance is desirable. We extend this result, showing that slow diffusion is still beneficial

to survival, but that resilience to environmental changes can also facilitate persistence.

This offers an alternative strategy to slower rates of diffusion: higher rates of resilience

in a modified habitat. In works such as [59], [60], [64], [81], similar descriptions of the

global dynamics are established; however, they are somewhat limited in their ecological

application due to the assumptions required for their results to hold. For example, in

[59], [60], [64], the environmental heterogeneity must be non-negative. This setting is

inadequate for the study of habitat loss and its effect on interacting populations. We

extend this literature by establishing similar results for functions that may be negative

in some regions. Furthermore, their results are established in an abstract setting: their

conclusions follow from an assumption of the sign of a principal eigenvalue a priori !

That is, the set of parameters for which coexistence or mutual exclusion is a possibility

may be empty. This is concerning for ecological application, as we do not have an ex-
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plicit understanding of how these principal eigenvalues behave. We extend such results

by considering a configuration that can be studied in detail (indicator functions with

‘good’ or ‘bad’ regions only), giving explicit behaviour as it depends on parameters in

the model, while also remaining general enough to be applied across a wide variety of

species and environmental scenarios. Of significance is the fact that there is always a

parameter window in which coexistence is guaranteed; the trade-off between dispersal

rates and levels of resilience can promote biodiversity, at least from the point of view

of this simplified analysis.

Of further interest is the behaviour of the critical values c∗2 and c∗2. Is it possible

to increase the size of this window indefinitely? That is, can the parameter regime for

which coexistence is guaranteed be made arbitrarily large? Can we obtain bounds above

for c∗2 or below for c∗2? In describing either of these quantities, we gain information for

the principal eigenvalue which tells us more information about whether a population

may persist or be extirpated.

From our analysis, we also begin to observe some general heuristics when judging

the impacts of habitat loss. In the case of habitat degradation, we have a necessary

condition for population persistence: the total resources in the regionGmust be greater

than c |B|. This indicates that we can first facilitate persistence by either improving

habitat quality (decreasing the value of c), or by decreasing the size of the degraded

region B. In practice, we can ideally reduce both.

There are limitations to the perspective. We make a big assumption on the nature

of the movement of the organism. Diffusive movement is widely applicable, but is

not universal [8], [94]. Different movement mechanisms, such as advection or spatially

dependent diffusion, may be ecologically relevant in many cases and may alter the

results established here. We also assume that competition (either intra- or inter-)

occurs only in the good region G. We justified this earlier; it may be interesting to

study the case when competition occurs across the entire landscape, even within the

degraded region B. Unfortunately, our results rely on the convergence of the steady

state u∗ → 1− as c → 0+, which no longer holds if the competition occurs across the

entire domain. More precisely, this convergence result is what allows us to determine
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precisely the sign of all relevant principal eigenvalues. It is not immediately obvious

how this will translate, and so we leave this question for future efforts.
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Chapter 3

Habitat Destruction

In this chapter, we move towards a novel habitat destruction model under a similar

framework. Continuing to take motivation from our introductory discussion, we use

heavily Postulate One: habitat degradation and habitat destruction lie on a spectrum.

We first discuss briefly some modelling context, noting that existing works discussed in

Chapter 2 are also appropriate examples here; therefore we do not discuss other efforts

in much more detail. In Section 3.2, we derive our habitat destruction model from

some basic ecological principles. In Section 3.3, we introduce some further technical

preliminaries necessary to study the destruction problem in detail. As in the degra-

dation models, eigenvalue problems are a key tool for analysis; Section 3.4 introduces

the relevant eigenvalue problems for this new setting, and also includes an important

convergence result between the degradation eigenvalue problem and the destruction

eigenvalue problem. We then study the scalar habitat destruction problem in Section

3.5. This includes well-posedness, comparison principles, and a complete description

of the global dynamics, and a connection between the dynamics of the degradation

problem and the dynamics of the destruction problem. Most importantly, we prove

Theorem 3.5.10, which provides an analytical connection between our habitat degrada-

tion problem and the habitat destruction problem in an asymptotic limit. In Section

3.6, we analyze the two-species competition model in the destruction setting, and then

prove another convergence result between the degradation and destruction systems.

Section 3.7 includes some numerical demonstrations of these results. We conclude with

a discussion of the broad impacts and insights of these results in Section 3.8.
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3.1 Preface

Habitat destruction, as defined in Chapter 1, suggests that the habitat has been altered

so dramatically that it can no longer sustain the species it once did. In contrast to

mere degradation, destruction is the most extreme case: species cannot survive there

at any level. While easier to identify in practice due to its drastic appearance, its

effects are comparably drastic, and paradoxically may still take much time for a local

species to feel the full effects. Therefore, following the model formulations of Chapter

2, we propose similar models that now feature regions of truly destroyed habitat. In

this case, our destroyed regions fall squarely within non-habitat ; a question of quality

is no longer relevant. It is as bad as it can possibly be! This motivates our following

derivation process.

3.2 Model derivation

We now propose a new model meant to capture habitat destruction. To this end,

we appeal once again to postulate one: levels of degradation lie on a spectrum, with

increasing degradation leading to destruction. If degradation is measured by some

parameter, such as c ≥ 0 in the habitat degradation model derived in Section 2.2,

we logically ask the question: what happens in the limit as c → ∞?. In a reasonable

habitat degradation model, this limit should correspond to a habitat destruction model,

at least in some sense.

We then try to intuit what problem might be solved in such a limit. Denote by

wc(x, t) the solution to the scalar degradation problem (2.1). We make the following

observations:

• wc(x, t) ≥ 0 in QT for all c ≥ 0.

• wc(x, t) is monotonically decreasing in QT with respect to c.

• wc(x, t) ≤ w0(x, t) in QT for all c ≥ 0.

The first fact follows from the maximum principle. The second fact will follow from

a refinement of Lemma 2.4.2. The third fact follows from the second. It is therefore
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quite reasonable to assume that there is a well-defined limiting problem corresponding

to the case when c = +∞.

We then make a slight jump using a relatively simple observation. If we multiply

the equation for wc by wc and integrate by parts, we have

d

dt

∫︂
Ω

1
2
w2
c = −d

∫︂
Ω

|∇wc|2 +
∫︂
G

f(x,wc)wc − c

∫︂
B

w2
c

Rearranging and integrating from 0 to T gives further that

c

∫︂∫︂
B×(0,T )

w2
c =

∫︂∫︂
G×(0,T )

f(x,wc)wc − d

∫︂∫︂
QT

|∇wc|2 −
∫︂
Ω

wc(x, t)

⃓⃓⃓⃓T
0

.

Therefore, dropping the negative terms and using the boundedness of wc, we find that

∥wc∥L2(B×(0,T )) ≤Mc−1/2

for some M > 0 independent of c. Consequently, at least on the bounded interval

(0, T ), our solution wc vanishes in the region B as c → ∞. Hence, whatever problem

the limit solves, it should always be zero in the destroyed region B. We therefore

formulate a potential habitat destruction problem as⎧⎪⎨⎪⎩
wt = d∆w + f(x,w), in Ω \B × (0,∞),
∂w
∂ν

= 0, on ∂Ω× (0,∞),

w = 0, on ∂B × (0,∞).

(3.1)

In this way, the habitat destruction problem is described by a reaction-diffusion

equation subject to homogeneous Neumann boundary data on the outer boundary

∂Ω, but also features interior sub-region(s) with homogeneous Dirichlet boundary data

along ∂B, that is, there is a hostile boundary within the available habitat Ω. Note that

while intuitive, it is not immediately clear that this is the correct problem to study.

Problem (3.1) will be our candidate for the limiting problem as c → ∞ in problem

(2.1).

In addition to studying connections between these scalar problems, we also want to

investigate again the corresponding competition destruction system. The degradation

competition system given by 2.2 has the following analogous competition destruction
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system: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
ut = d1∆u+ f1(x, u, v), in Ω \B × (0, T ),

vt = d2∆v + f2(x, u, v), in Ω \B × (0, T ),
∂u
∂ν

= ∂v
∂ν

= 0, on ∂Ω× (0, T ),

u = v = 0, on ∂B × (0, T ).

(3.2)

One may consider general forms of the functions fi with minimal changes to existing

methods to study the global dynamics of this problem. However, since we also wish

to provide concrete, analytical connections between these degradation and destruction

problems, we take the prototypical Lotka-Volterra form of competition in a heteroge-

neous environment

f1(x, u, v) = u(m(x)− u− v), f2(x, u, v) = v(m(x)− u− v), (3.3)

where m ∈ Cα(Ω \B) for some α ∈ (0, 1).

We now seek to connect problems (2.1) and (3.1), (2.2) and (3.2) as well as their

respective steady states, through a limit as the level of degradation c in the region B

becomes arbitrarily large.

From Chapter 2, we already understand that the global dynamics for such problems

can be understood via the theory of monotone flows. This naturally led to a detailed

study of some related eigenvalue problems. Thus, we have two tasks before discussing

the time-dependent problem: first, we must develop the corresponding eigenvalue prob-

lems to (3.1), obtaining results similar to those found in Section 2.3. This will allow

us to describe the global dynamics of problems (3.1) and (3.2), assuming that we have

a reasonable solution process to work with. Second, if we want to produce an analyt-

ical connection between the degradation and destruction problems, it will prove very

useful to first prove some convergence results between corresponding eigenvalues and

eigenfunctions. These are the results we obtain in Section 3.4. Before we can tackle

these, however, we first require some technical preliminaries concerning assumptions

and appropriate function spaces to work in.
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3.3 Technical preliminaries

Assumptions

We begin the assumptions for the bad habitat B and the growth rate function f

appearing in (2.1). In contrast to the habitat degradation problem, we now require

some technical conditions on the geometry of the set B. This is not a significant

restriction as we may approximate an open set B by a smooth set B′ such that the

sets differ by an arbitrarily small amount (in symmetric difference, for example). The

assumption for the set B is the following.

Assumption 3.3.1. B ⋐ Ω is an open subset with smooth boundary, comprised of

finitely many disjoint components, each of which are themselves simply connected.

Biologically, such a condition is in correspondence with the “cookie cutter” inter-

pretation of habitat loss [98], [99], which suggests that habitat loss is “like a cookie

cutter stamping out poorly mixed dough”. Mathematically, this assumption ensures

that the inner boundary ∂B does not touch the outer boundary ∂Ω, and more impor-

tantly ensures that B does not “split” the domain Ω into disjoint components in the

case of spatial dimension > 1. In two dimensions, for example, an annulus is not an

allowable configuration in our setting; despite this, it is worth noting that in such a case

where the domain is split, one may consider each separate component individually. In

the case of the annulus, one would treat the outer region as we do in the current work,

while the inner region is merely a circle with hostile boundary, which can be treated

through classical methods. Readers may also note that this restriction is used in the

destruction case, but such a restriction is not necessary in the case of a fixed level of

degradation. Some sample configurations, both allowable and not, can be found in

Figure 3.1.

The assumptions on the growth rate f : (Ω\B)×[0,∞) → R will remain the same as

in assumptions 2.2.1 and (2.2.3)) but now holding only in the set Ω\B. Unfortunately,

an assumption of mere subhomogeneity is not sufficient to obtain uniform estimates

in time. Hence, we require the stronger condition of concavity, but we note the places

where subhomogeneity is sufficient. Similar to the scalar degradation case, we assume
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(a) Allowable (b) Not Allowable

Figure 3.1: A visual depiction of allowable and not allowable configurations of the
region B. In (a), all regions are simply connected, have regular enough boundary, and
there is distance between the edges of B and the edge of Ω. In (b), one region features
a hole and is therefore not acceptable; another touches the boundary of Ω at exactly
two points, essentially cutting off a chunk of Ω which is also not allowed. The third
touches the edge of Ω at a single point; For technical reasons, we cannot allow this
either.

some standard regularity requirements for the reaction term in each argument. The

positivity of f ′(·, 0) somewhere in Ω \ B is necessary to ensure that a positive steady

state may exist; without this condition, the only steady state will be the trivial one.

Paired with the regularity of the domains Ω and B, we also have regularity up to the

boundary ∂Ω and up to ∂B for problem (3.1). The concavity condition ensures that

the flow induced by the differential equation is strongly monotone, and ensures the

uniqueness of the positive steady state, whenever it exists. More importantly, at least

in the current context, we require a strict concavity condition to obtain convergence

from the time dependent problem to the corresponding steady state, uniform in the

variable c. Some prototypical examples of functions satisfying these hypotheses can be

found in Chapter 2.

Assumptions 3.3.1, 2.2.1, and 2.2.3 are always assumed in what follows whenever

B and f are involved.

Some new function spaces

Despite the amount of function spaces introduced in Section 1.2, we require yet further

function spaces to study these new problems. In the remainder of this section, we
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introduce these function spaces over the domain Ω \ B and their relation to similar

spaces over the entire domain Ω. We remind readers that we denote by ∂/∂ν the unit

outward facing normal vector along either ∂Ω or, in this chapter, ∂B. To be clear:

the outward facing normal vector on ∂B is outward facing from within Ω \B; in other

words, the inner facing normal vector from within the set B.

We denote by C1
B(Ω) the space

C1
B(Ω) :=

{︁
v ∈ C1(Ω \B) : v|∂B = 0

}︁
,

and consider H1
B(Ω) to be the closure of the space C1

B(Ω) with respect to the usual

H1-norm over Ω \ B. In this way, H1
B(Ω) can be thought of as similar to the space

H1
0 (Ω), with functions now vanishing along ∂B in the trace sense. More precisely, it

can be checked that

H1
B(Ω) =

{︁
u ∈ H1(Ω \B) : Tu = 0

}︁
,

where T denotes the trace operator extending the notion of restricting a function on

Ω \ B to ∂B. This follows from some of the standard arguments used in, e.g., [123,

Ch. 1.5.2], which gives some equivalencies between functions that vanish in the sense

of the trace and the space H1
0 (Ω).

For any u ∈ C1
B(Ω) or H1

B(Ω), we always identify it with its zero extension into

B. If u ∈ H1
B(Ω) ∩ C(Ω \B), then u is continuous over all of Ω. Furthermore, if

u ∈ H1
B(Ω), then the resulting function belongs to H1(Ω), where its weak derivative

identical in Ω \ B and identically zero in B. This follows from problem 18 in [31, Ch.

5].

Conversely, if u ∈ H1(Ω) with u = 0 a.e. in B, then u|Ω ∈ H1
B(Ω). Therefore, we

identify H1
B(Ω) with {u ∈ H1(Ω) : u = 0 a.e. in B}, and simply write

H1
B(Ω) =

{︁
u ∈ H1(Ω) : u = 0 a.e. in B

}︁
.

We wish to emphasize that these results crucially rely on the smoothness of ∂B and

the fact that B ⋐ Ω.

Recall that for T > 0, we write QT := Ω× (0, T ). Similarly, we write QB,T := (Ω \

B)×(0, T ), and defineH1
B(QT ) to the closure of {v ∈ C1((Ω \B)× [0, T ]) : v(∂B × [0, T ]) = 0}
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under the usual H1-norm over (Ω \B)× (0, T ). Similarly, there holds

H1
B(QT ) =

{︁
u ∈ H1(QB,T ) : Tu = 0

}︁
=
{︁
u ∈ H1(QT ) : u = 0 a.e. in B × (0, T )

}︁
.

We have already introduced the spaces L2(QT ) and H1(QT ) in Section 1.2. We

similarly consider H1
B(QT ) to be the completion of the set of all smooth functions v

vanishing in a neighbourhood of ∂B×(0, T ) with respect to the H1(QT ) norm. Similar

to the previous discussion, we have the following observation: if v ∈ H1(QT ) is such

that v ≡ 0 in B×(0, T ), then v ∈ H1
B(QT ). This result follows from the same arguments

made in the purely spatial case, see [123, Ch. 1.5.3]. In particular, when ∂B is smooth

any function belonging to H1(QT ) has a trace on ∂B × (0, T ) (e.g. [123, Theorem

1.5.3])). Then, one may modify the proof of [123, Theorem 1.5.4] to obtain the desired

result.

3.4 Eigenvalue problems in domains with holes

3.4.1 The first problem (reprise)

Motivated by the form of problem (3.1), we formulate the associated destruction eigen-

value problem as follows: ⎧⎪⎨⎪⎩
∆ψ + λmψ = 0, in Ω \B,
∂ψ
∂ν

= 0, on ∂Ω,

ψ = 0, on ∂B,

(3.4)

where m ∈ L∞(Ω\B). Different from problem (2.4), we note that 0 is NOT a principal

eigenvalue of (3.4) due to the zero Dirichlet boundary condition on ∂B, which actually

causes some essential differences between (2.4) and (3.4). Also different from problem

(2.4), there is always a principal eigenvalue. If problem (3.4) is to be connected to

problem (2.4) through a limit, we observe that for any set satisfying |B| > 0 we may

always choose c≫ 1 sufficiently large so that∫︂
Ω

(1Gm− c1B) = −c |B|+
∫︂
G

m < 0.

By Proposition 2.3.1, we therefore have the existence of a value c∗ > 0 such that a

principal eigenvalue λ1(c) exists for every c ≥ c∗. Consequently, it seems reasonable to

expect the following result, an analogue of problem (2.4) for the destruction case.
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Proposition 3.4.1. Suppose m ∈ L∞(Ω \ B) is positive on a set of positive Lebesgue

measure. Then, (3.4) admits a unique positive principal eigenvalue λ1(m,B), which is

simple and given by

λ1(m,B) = inf
ψ∈H1

B(Ω)

{︄∫︁
Ω\B |∇ψ|2∫︁
Ω\Bmψ

2
:

∫︂
Ω\B

mψ2 > 0

}︄
.

Moreover, λ1(m,B) is monotone in the following sense:

(i) for any B1, B2 such that B1 ⊂ B2, λ1(m,B1) ≤ λ1(m,B2) with strict inequality

whenever B2 \B1 has positive measure;

(ii) for any m1,m2 ∈ L∞(Ω \ B) satisfying m1 ≤ m2, λ1(m1, B) ≥ λ1(m2, B) with

strict inequality whenever m1 ̸≡ m2.

Such existence results can be obtained from the more general abstract framework

found in [121, Chapter 3], for example. A direct proof is provided here for our case,

which mimics closely the case of homogeneous Dirichlet boundary conditions along ∂Ω,

see [7].

Proof of Theorem 3.4.1. First, recall that the norms ∥∇u∥L2(Ω\B) and ∥u∥H1(Ω\B) are

equivalent by Poincaré’s inequality. We now justify an application of Proposition 1.2.1.

For any u, v ∈ H1
B(Ω) fixed, we define the symmetric quadratic form (u, v) →

∫︁
Ω\Bmuv

on the space H1
B(Ω) ×H1

B(Ω). The Riesz representation theorem [31, Ch. D.3] guar-

antees the existence of an operator T such that ⟨Tu, v⟩ = (u, v), where ⟨·, ·⟩ denotes

the inner product on H1
B(Ω) given by

⟨u, v⟩ =
∫︂
Ω\B

∇u∇v.

Furthermore, it is easy to verify that T is symmetric since (u, v) ↦→
∫︁
Ω\Bmuv is sym-

metric. Since m is bounded, Hölder’s inequality shows that T is bounded:

|⟨Tu, v⟩| =
∫︂
Ω\B

muv ≤ ∥m∥L∞(Ω\B) ∥u∥L2(Ω\B) ∥v∥L2(Ω\B) .

We now show that the operator T is compact. Suppose {un} is a bounded sequence

in H1
B(Ω). Since H1

B(Ω) is Hilbert, the sequence converges weakly in H1
B(Ω) to some
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element u ∈ H1
B(Ω), i.e. un ⇀ u in H1

B(Ω). Since the space H1
B(Ω) embeds compactly

in L2
B(Ω), we have that un → u strongly in L2

B(Ω). The Cauchy-Schwarz inequality

then implies that Tun → Tu in H1
B(Ω):

∥Tun − Tu∥2H1(Ω\B) = ⟨Tun − Tu, Tun − Tu⟩

=

∫︂
Ω\B

m(un − u)(Tun − Tu)

≤ ∥m∥L∞(Ω\B) ∥un − u∥L2(Ω\B) ∥Tun − Tu∥L2(Ω\B)

≤ C ∥m∥L∞(Ω\B) ∥un − u∥L2(Ω\B) ∥Tun − Tu∥H1(Ω\B) .

Hence, T is compact. Consequently, under the assumption that Ω′ := {x ∈ Ω \ B :

m(x) > 0} is a set of positive measure, we may choose ũ ∈ H1
B(Ω) to be a function

which is positive on Ω′ and zero elsewhere so that

⟨T ũ, ũ⟩ =
∫︂
Ω\B

m(x)ũ2 =

∫︂
Ω′
m(x)ũ2 > 0.

Proposition 1.2.1 then ensures that there exists a principal eigenvalue η1 > 0 and

corresponding eigenfuntion ψ1 for T such that Tψ1 = η1ψ1. We then assert that ψ1 can

be chosen to be strictly positive in Ω \ B. Indeed, the usual bootstrapping argument

allows one to show that ψ1 ∈ Lp(Ω \ B) for any p ≥ 1, and so the Sobolev embedding

ensures that in fact ψ1 ∈ C1+α(Ω \B) for any α ∈ (0, 1). To see this, notice that since

mψ1 ∈ L2(Ω \ B), ψ1 ∈ W 2,2(Ω \ B) by the Lp-theory of elliptic equations, Theorem

1.2.29. Using the Sobolev embedding Theorem 1.2.3, we have that ψ1 ∈ Lq(Ω \B) for

some q > 2. We then repeat the process, concluding that ψ1 ∈ W 2,q(Ω\B). Eventually

we conclude that ψ1 ∈ Cα(Ω \B) and so ψ1 is bounded and belongs to W 2,p(Ω \ B)

for every p ≥ 1.

Then, ψ1 is a strong solution solving problem 3.4 for λ = η−1
1 . We then consider the

positive and negative parts ψ+
1 = max{ψ1, 0} and ψ−

1 = max{−ψ1, 0}. Each belongs

to H1
B(Ω) and are thus both weak solutions to the same problem. Using the same

notation for m+/−, we may then write

−∆ψ+
1 +m−ψ+

1 = λ1m
+ψ+

1 ≥ 0,

and so the strong maximum principle and the regularity of ∂Ω, ∂B ensure that ψ
+/−
1

are sign definite or constant. Due to the boundary condition along ∂B, the latter is
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impossible and so we choose ψ1 = ψ+
1 to be our eigenfunction. Further, ∂ψ1/∂ν < 0

along ∂Ω.

Uniqueness follows immediately. Indeed, suppose ψ1, ψ2 are eigenfunctions corre-

sponding to η−1
1 . Then, for each β ∈ R, ψ1 + βψ2 is also an eigenfunction of definite

sign. We may then choose β so that∫︂
Ω\B

(ψ1 + βψ2) = 0,

in which case ψ1+βψ2 = 0, and hence ψ1 and ψ2 are linearly dependent. The first part

of the proof is completed by setting λ1(m,B) = 1/η1. A standard scaling argument

allows one to deduce the variational formulation as presented in the statement of the

theorem, following directly from Proposition 1.2.1.

With the variational formulation at hand, the monotonicity of λ1(m,B) with re-

spect to subsets follows immediately once one realizes that ψ ∈ H1
B2
(Ω) ⇒ ψ ∈ H1

B1
(Ω)

whenever B2 ⊂ B1, and so a simple choice in test function yields the desired result:

in the variational formulation of λ1(m,B1), choose the principal eigenfunction corre-

sponding to λ1(m,B2) as your test function.

Similarly, the variational formulation allows one to conclude that whenever m1 ≤

m2, the eigenfunction corresponding to m2 is a valid test function for the eigenvalue

corresponding to m1. The strict inequality follows from the uniqueness of the eigen-

function. This completes the proof.

3.4.2 The second problem (reprise)

Similar to Section 2.3, we formulate the associated destruction eigenvalue problem as⎧⎪⎨⎪⎩
d∆ϕ+mϕ+ µϕ = 0, in Ω \B,
∂ϕ
∂ν

= 0, on ∂Ω,

ϕ = 0, on ∂B,

(3.5)

where m ∈ L∞(Ω \ B). This can be viewed as the destruction analogue to problem

(2.5). We again recall the previous degradation result, which characterized the principal

eigenvalue depending directly on the average of the environmental heterogeneity. Since

we are taking c→ ∞, we remove the possibility of the principal eigenvalue to problem
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(3.5) to be negative for all d > 0. Instead, we have a threshold depending on d where

the sign may change; this is comparable to the standard Dirichlet eigenvalue problem.

We have the following result.

Proposition 3.4.2. Problem (3.5) admits a principal eigenvalue µ1(d,m,B). It is

simple and given by

µ1(d,m,B) = inf
ϕ∈H1

B(Ω)

{︃∫︂
Ω\B

(︁
d |∇ϕ|2 −mϕ2

)︁
:

∫︂
Ω\B

ϕ2 = 1

}︃
.

Moreover, µ1(d,m,B) enjoys the following properties:

(i) d ↦→ µ1(d,m,B) is strictly increasing on (0,∞); in fact, it is strictly concave on

(0,∞).

(ii) µ1(d,m2, B) < µ1(d,m1, B) if m2 ≩ m1.

(iii) m ≤ 0 ⇒ µ1(d,m,B) > 0 for all d > 0.

(iv) m > 0 on some nontrivial subset ⇒

⎧⎪⎨⎪⎩
µ1(d,m,B) < 0, if d < 1

λ1(m,B)
,

µ1(d,m,B) = 0, if d = 1
λ1(m,B)

,

µ1(d,m,B) > 0, if d > 1
λ1(m,B)

.

(v) If mn → m in C(Ω \B), then µ1(d,mn, B) → µ1(d,m,B) as n→ ∞.

Proof of Theorem 3.4.2. We take for granted the variational formulation of the prin-

cipal eigenvalue, which follows from the theory of symmetric, compact operators on

Hilbert spaces. We focus instead on the properties of µ1(d,m,B) as it depends on the

rate of diffusion, the environmental heterogeneity, and the set B.

Fix m and B. If 0 < d1, d2, the variational form of µ1 allows us to write

αµ1(d1,m,B) + (1− α)µ1(d2,m,B) ≤
∫︂
Ω\B

(αd1 + (1− α)d2) |∇ψ|2 −mψ2,

for any α ∈ (0, 1) and any ψ ∈ H1
B(Ω). Since ψ was arbitrary, we take the infimum to

conclude that

αµ1(d1,m,B) + (1− α)µ1(d2,m,B) ≤ µ1(αd1 + (1− α)d2,m,B),

108



where strict inequality follows from the uniqueness of the eigenfunction. This proves

(i).

Point (ii) follows from the same reasoning, using the variational formulation and

choosing the correct test function to show that µ1(d,m2, B) ≤ µ1(d,m1, B). Strict

inequality follows from the uniqueness of the eigenfunction.

For m ≤ 0, the positivity of the eigenvalue follows immediately from the variational

form, proving point (iii).

Suppose now that m > 0 on some nontrivial subset. By Theorem 3.4.1 it fol-

lows that the principal eigenvalue λ1(m,B) > 0 exists. Choosing ϕ1 ∈ H1
B(Ω) the

corresponding eigenfunction, the variational form of µ1(d,m,B) gives us that

µ1(d,m,B) ≤ (dλ1 − 1)

∫︂
Ω\B

mϕ2
1.

Since
∫︁
Ω\Bmϕ

2
1 > 0, we see that µ1(d,m,B) ≤ 0 whenever dλ1 − 1 ≤ 0. This proves

the first part of (iv).

Similarly, we choose ψ1 ∈ H1
B(Ω), the principal eigenfunction to µ1(d,m,B), in the

variational form of λ1(m,B) to find that

λ1(m,B) ≤ µ1(d,m,B) + 1

d
.

Choosing d = λ−1
1 (m,B) and combining with the previous result yields µ1(d,m,B) =

0 ⇐⇒ λ−1
1 (m,B) = d, proving the second part of (iv). The third part follows

immediately, completing the proof of part (iv).

Finally, if mn → m in C(Ω\B), there exists a sequence {εn}n∈N so that −εn ≤ m−

mn ≤ εn for each n, and εn ↘ 0 as n→ ∞. Then, using the fact that µ1(d,m±ε, B) =

µ1(d,m,B)∓ ε, we find that |µ1(d,m,B)− µ1(d,mn, B)| ≤ εn. Sending n→ ∞ yields

(v), completing the proof.

3.4.3 Connections with Section 2.3

Now that we have the degradation and destruction eigenvalue problems formulated and

some of their properties described, we are ready to prove rigorously some convergence

results between these sets of problems.
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Denote by λ1,c := λ1(mc) the principal eigenvalue to problem (2.4) with m := mc =

1Gm(x) − c1B. Denote by ψ1,c the corresponding eigenfunction for each c ≥ 0 fixed.

Here, m ∈ L(Ω\B) can be considered a bounded function over all of Ω via an extension

by zero in B. Denote by λ1,∞ := λ1(m,B) the principal eigenvalue to problem (3.4) and

by ψ1,∞ its corresponding eigenfunction. The following result establishes a connection

between these eigenpairs.

Theorem 3.4.1. The following hold.

(i) There exists a unique c∗ > 0 such that the function c ↦→ λ1,c is strictly increasing

on (c∗,∞), and limc→∞ λ1,c = λ1,∞.

(ii) limc→∞ ψ1,c = ψ1,∞ in H1(Ω) under the normalization
∫︁
Ω
mcψ

2
1,c =

∫︁
Ω\Bmψ

2
1,∞ =

1.

Proof of Theorem 3.4.1. Since the proof is almost identical to the proof of Theorem

3.4.2, and arguably a bit easier, we outline only the key steps. First, it is easy to

deduce that λ1,c is strictly increasing and bounded above by λ1,∞. As a result, its

limit exists and is given by the supremum, denoted by λ∞. Then, we find that ψ1,c

is uniformly bounded in H1(Ω) and thus has a convergent subsequence, weakly in

H1(Ω) and strongly in L2(Ω). Denote this by ψ∞. Furthermore, ψ1,c → 0 a.e. in

B, and so the candidate function ψ∞ ∈ H1
B(Ω) as argued previously. We may then

show that λ1,∞ ≤ λ∞ by the weak lower semicontinuity of the norm. This implies that

∇ψ1,c → ∇ψ∞ in norm, and hence the convergence is in fact strong. Uniqueness of the

eigenfunction allows one to conclude that ψ∞ = ψ1,∞, and the proof is complete.

Our second result, while similar to Theorem 3.4.1, is of more consequence in an

ecological sense. This result establishes a connection between the principal eigenpairs

of (2.5) and (3.5) in the limit as c→ ∞, which corresponds directly to a linearization of

the scalar problem. Denote by µ1,c := µ1(d,m) the principal eigenvalue to problem 2.5

with m := mc(x) as previously defined. Denote by ϕ1,c its corresponding eigenfunction.

Denote by µ1,∞ := µ1(d,m,B) the principal eigenvalue to problem (3.5). We prove the

following.
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Theorem 3.4.2. The following hold.

(1) The function c ↦→ µ1,c is strictly increasing on (0,∞), and limc→∞ µ1,c = µ1,∞.

In fact, µ1,c is strictly concave on (0,∞).

(2) limc→∞ ϕ1,c = ϕ1,∞ in H1(Ω) under the normalization ∥ϕ1,c∥L2(Ω) = ∥ϕ1,∞∥L2(Ω\B) =

1.

Proof of Theorem 3.4.2. Since mc1 ≥ mc2 for c1 ≤ c2, Theorem 2.3.2 (iv) guarantees

that µ1,c1 ≥ µ1,c2 with strict inequality whenever c1 < c2. This shows µ1,c is increasing.

Then, we compute directly via the variational form to obtain for any α ∈ (0, 1)

αµ1,c1 + (1− α)µ1,c2 ≤
∫︂
Ω

(︁
d |∇ψ|2 −m(1−α)c1+αc2ψ

2
)︁

for any ψ ∈ H1(Ω) satisfying ∥ψ∥L2(Ω) = 1. Taking the infimum over functions ψ ∈

H1(Ω) and noting again the uniqueness of the principal eigenvalue, we find that µ1,c is

strictly concave with respect to c.

Since ϕ1,∞ ∈ H1
B(Ω), ϕ1,∞ ∈ H1(Ω) by zero extension in B. It follows from the

variational form (2.6) and the normalization
∫︁
Ω
ϕ2
1,∞ = 1 that

µ1,c ≤
∫︂
Ω

(︁
d |∇ϕ1,∞|2 −mcϕ

2
1,∞
)︁
=

∫︂
Ω\B

(︁
d |∇ϕ1,∞|2 −mϕ2

1,∞
)︁
= µ1,∞,

where the second equality is a result of the eigen-equation satisfied by µ1,∞ and ϕ1,∞.

Thus, µ1,c is strictly increasing, strictly concave and uniformly bounded by µ1,∞. Hence,

a unique µ∞ := limc→∞ µ1,c exists and is finite. It is clear that we must have µ∞ ≤ µ1,∞.

From the eigen-equation satisfied by µ1,c and ϕ1,c (or (2.6) with the understanding

that the infimum is attained at ϕ1,c),

d

∫︂
Ω

|∇ϕ1,c|2 = µ1,c +

∫︂
Ω

mcϕ
2
1,c ≤ µ∞ + ∥m∥L∞(Ω\B) ,

where we have thrown away the negative term and used the normalization
∫︁
Ω
ϕ2
1,c =

1. Hence, {ϕ1,c}c≥0 is uniformly bounded in H1(Ω). Consequently, there exists a

subsequence (still denoted by ϕ1,c) and some ϕ∞ ∈ H1(Ω) such that

lim
c→∞

ϕ1,c = ϕ∞ weakly in H1(Ω) and strongly in L2(Ω). (3.6)

111



Notice also that

c

∫︂
B

ϕ2
1,c = µ1,c +

∫︂
Ω\B

mϕ2
1,c − d

∫︂
Ω

|∇ϕ1,c|2 ≤ µ∞ + ∥m∥L∞(Ω\B) ,

leading to
∫︁
B
ϕ2
1,c ≤ 1

c

(︂
µ∞ + ∥m∥L∞(Ω\B)

)︂
→ 0 as c → ∞. This together with the

strong convergence in (3.6) implies
∫︁
B
ϕ2
1,∞ = 0. Hence, ϕ∞ = 0 a.e. in B, and so,

ϕ∞ ∈ H1
B(Ω) by the discussion in Section 3.3. Furthermore, since

∫︁
Ω
ϕ2
1,c = 1, the

strong convergence in (3.6) implies that
∫︁
Ω
ϕ2
∞ = 1. Hence, ϕ∞ is nonzero and is a

valid test function in the variational characterization of µ1,∞.

We now show that µ1,∞ ≤ µ∞. Since µ1,∞ has the variational characterization given

in Proposition 2.3.2, we find

µ1,∞ = inf
ϕ∈H1

B(Ω)

{︃∫︂
Ω\B

(︁
d |∇ϕ|2 −mϕ2

)︁
:

∫︂
Ω\B

ϕ2 = 1

}︃
.

This together with the weak lower semicontinuity of the norm ∥ · ∥L2(Ω) and (3.6) leads

to

µ1,∞ ≤
∫︂
Ω\B

d |∇ϕ∞|2 −
∫︂
Ω\B

mϕ2
∞

=

∫︂
Ω

d |∇ϕ∞|2 −
∫︂
Ω

mcϕ
2
∞

≤ lim inf
c→∞

∫︂
Ω

d |∇ϕ1,c|2 − lim
c→∞

∫︂
Ω

mcϕ
2
1,c = lim inf

c→∞
µ1,c = µ∞.

Hence,

µ∞ = lim
c→∞

µ1,c = µ1,∞. (3.7)

In particular, this implies that ϕ∞ solves the same eigenvalue problem as ϕ1,∞, and

hence, ϕ∞ = ϕ1,∞ by the uniqueness of the eigenfunction and the normalization.

It remains to show limc→∞ ∇ϕ1,c = ∇ϕ∞ in L2(Ω) so that limc→∞ ϕ1,c = ϕ∞ in

H1(Ω). Notice that

d

∫︂
Ω

(︁
|∇ϕ1,c|2 − |∇ϕ∞|2

)︁
= µ1,c − µ1,∞ +

∫︂
Ω\B

m(ϕ2
1,c − ϕ2

∞)− c

∫︂
B

ϕ2
1,c

≤ µ1,c − µ1,∞ +

∫︂
Ω\B

m(ϕ2
1,c − ϕ2

∞).
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Letting c→ ∞ in the above inequality, we see from (3.7) and the strong convergence in

(3.6) that lim supc→∞
∫︁
Ω
|∇ϕ1,c|2 ≤

∫︁
Ω
|∇ϕ∞|2. As lim infc→∞

∫︁
Ω
|∇ϕ1,c|2 ≥

∫︁
Ω
|∇ϕ∞|2

due to the weak lower semicontinuity of the norm ∥ · ∥L2(Ω) and the weak convergence

in (3.6), we find limc→∞
∫︁
Ω
|∇ϕ1,c|2 =

∫︁
Ω
|∇ϕ∞|2, which together with the weak con-

vergence in (3.6) yields limc→∞∇ϕ1,c = ∇ϕ1,∞ in L2(Ω) (i.e., weak convergence plus

convergence in norm implies strong convergence in a Hilbert space). This completes

the proof.

Uniform upper and lower bounds of principal eigenfunctions

These convergence results, while essential to the study of the degradation and destruc-

tion models, are not sufficient on their own. While we have solutions belonging to

H1(Ω) and H1(Ω \B), we seek a stronger result, namely some uniform L∞-bounds on

the eigenfunctions with respect to c.

Denote by µ1,c := µ1(d,1Gm − c1B) the principal eigenvalue with eigenfunction

ϕc solving problem (3.5), normalized so that ∥ϕc∥L2(Ω) = 1. We prove the following

technical lemmas which give some uniform boundedness estimates from above and

below on ϕc with respect to c≫ 1.

Lemma 3.4.1. Given any subset K ⋐ Ω \B, there holds

0 < inf
c≫1

inf
K
ϕc ≤ sup

c≫1
sup
K
ϕc <∞.

Proof. By a slight modification of the proof of Theorem 3.4.2,

lim
c→∞

ϕc = ϕ∞ in H1(Ω), (3.8)

where ϕ∞ ∈ H1
B(Ω) is the first eigenfunction solving problem (3.5) normalized so that

∥ϕ∞∥L2(Ω\B) = 1. Since m ∈ L∞(Ω \B) and ϕ∞ = 0 on ∂B (in the sense of the trace),

Lp-theory of elliptic equations applies. This is a similar argument to that used in the

proof of Theorem 3.4.1. The Sobolev embedding, Theorem 1.2.3, ensures that for all

c ≫ 1, ϕc ∈ Lq(Ω \ B) for some q > 2. We repeat until we may choose q > N which

guarantees that ϕ∞ ∈ C(Ω \B).
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Without loss of generality, we may assume K has a smooth boundary. Then,

from the L2-theory of elliptic equations, ( essentially Theorem 1.2.29, or the improved

global regularity case for Theorem 1.2.25), {ϕc}c≫1 is bounded in H2(K). Repeated

application of the Lp-estimates yields that in fact {ϕc}c≫1 is bounded in W 2,p(K) for

any p ≥ 1, since m ∈ L∞(Ω \ B) does not depend on c. By the Sobolev embedding

Theorem 1.2.3, {ϕc}c≫1 is bounded in C1,α(K) for some α ∈ (0, 1), and so, limc→∞ ϕc =

ϕ∞ in C(K) thanks to the Arzelà-Ascoli theorem and (3.8). Since 0 < infK ϕc ≤

supK ϕc <∞, the conclusion of the lemma follows.

We now obtain the global L∞ estimate.

Lemma 3.4.2. There holds supc≫1 supΩ ϕc <∞.

Proof. From Lemma 3.4.1, we see that {ϕc}c≫1 is uniformly bounded from above for

anyK ⋐ Ω\B. The delicacy in this case comes in deriving a uniform upper bound on ϕc

in a neighbourhood of B. Unlike the previous methods applied, we cannot use the same

bootstrapping arguments since 1Ω\Bm− c1B becomes unbounded in Lp(Ω) as c→ ∞

for any p ≥ 1. For this reason, we appeal to an application of the Moser iteration

technique. While somewhat technical in the calculations, the result is a brilliant one.

To this end, we seek to obtain a bound of the form

∥ϕc∥L2Nk/(N−2)k (BRk+1
(x0))

≤ Ck ∥ϕc∥L2Nk−1/(N−2)k−1
(BRk

(x0))
, (3.9)

for some constants Ck such that their product
∏︁∞

n=1Cn is bounded independent of

c≫ 1, and BRk+1
(x0) ⋐ BRk

(x0) concentric balls of particular radii Rk defined below.

In the above estimate, N ≥ 3 is the spatial dimension. The cases N = 1, 2 are simpler

and the explicit calculations are omitted. Briefly, one notices that for p = 2, the

Sobolev embedding gives a stronger result when N = 1, 2. For N = 1, we obtain

boundedness essentially for free (in fact, we obtain Hölder continuity from a W 1,2(Ω)

estimate!). For N = 2, we are in the case where N = p, and so W 1,2(Ω) ⊂ Lq(Ω) for

any 1 ≤ q <∞. For N ≥ 3, the best we can do is a Lq(Ω) estimate for q = 2N/(N−2),

as we explore in detail now.
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Step 1 By Theorem 3.4.2, {µ1,c}c≫1 is bounded and limc→∞ ϕc = ϕ∞ in H1(Ω) for

some ϕ∞ ∈ H1
B(Ω), considered as an element in H1(Ω) by zero extension.

Since B ⋐ Ω, there is R > 0 such that the R-neighbourhood of B is compactly

contained in Ω. Fix an arbitrary point x0 ∈ B. Then, BR(x0) ⋐ Ω. We drop the

dependence on x0 moving forward for notational brevity. Choose a cut-off function

η ∈ C∞
0 (BR) so that 0 ≤ η ≤ 1 in BR, η = 1 in BR(1−1/N), and |∇η| ≤ 4N2/R(N − 2).

Multiplying the equation for ϕc by η
2ϕc and integrating by parts yields

d

∫︂
BR

|∇ϕc|2 η2 ≤ 2d

∫︂
BR

η |∇ϕc| |∇η|ϕc +
∫︂
BR

η2(1Ω\Bm− c1B + µ1,c)ϕ
2
c . (3.10)

Applying Young’s inequality to the first term on the right hand side of (3.10) side

yields

2d

∫︂
BR

η |∇ϕc| |∇η|ϕc ≤
d

2

∫︂
BR

η2 |∇ϕc|2 + 2d

∫︂
BR

ϕ2
c |∇η|

2

≤ d

2

∫︂
BR

η2 |∇ϕc|2 + 2d

(︃
4N2

R(N − 2)

)︃2 ∫︂
BR

ϕ2
c .

Combining this with (3.10), using the boundedness of m, {µ1,c}c≫1, and dropping the

negative term, we are left with

d

2

∫︂
BR

|∇ϕc|2 η2 ≤

(︄
2d

(︃
4N2

R(N − 2)

)︃2

+ ∥m∥L∞(Ω\B) + |µ1,c|

)︄∫︂
BR

ϕ2
c ≤ C0

∫︂
BR

ϕ2
c .

(3.11)

Since ηϕc ∈ H1
0 (BR), the Sobolev inequality and Poincaré’s inequality yields

∥ηϕc∥L2N/(N−2)(BR) ≤ C ∥ηϕc∥H1(BR) ≤ C ∥∇(ηϕc)∥L2(BR) ,

where C may change between inequalities but does not depend on c ≫ 1. Using the

fact that ∇(ηϕc) = ∇ηϕc +∇ϕcη paired with the estimate (3.11), we see that

d

4
∥∇(ηϕc)∥2L2(BR) ≤

d

2

∫︂
BR

(|∇η|2 ϕ2
c + |∇ϕc|2 η2)

≤ d

2

(︃
4N2

R(N − 2)

)︃2 ∫︂
BR

ϕ2
c + C0

∫︂
BR

ϕ2
c ≤ C0 ∥ϕc∥2L2(BR) ,

where again C0 may change from line to line but remains independent of c≫ 1. Finally,

using the fact that η = 1 in BR(1−1/N) we obtain the estimate

∥ϕc∥L2N/(N−2)(BR(1−1/N))
≤ C1 ∥ϕc∥L2(BR) , (3.12)
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where C1 depends on all quantities thus far but can be chosen independent of c≫ 1.

Step 2 We seek to show the induction step. Set αk = (N/(N − 2))k−1 for integer

k ≥ 1 and consider the sequence of radii Rk =
R
2
(1 + α−1

k ) so that R1 = R and R∞ :=

limk→∞Rk = R/2. Note that we have established (3.9) for k = 1 (namely, (3.12)),

where C1 is as defined above. Then, we consider a sequence of cut-off functions ηk ∈

C∞
0 (BRk

) so that 0 ≤ ηk ≤ 1, ηk = 1 in BRk+1
, and |∇ηk| ≤ 4/(Rk−Rk+1) = 4Nαk/R.

Multiplying the equation for ϕc by η
2ϕ2αk−1

c , integrating by parts and throwing away

negative terms yields

d(2αk − 1)

α2
k

∫︂
BRk

|∇ϕαk
c |2 η2k ≤ 2d

∫︂
BRk

ηk |∇ϕc| |∇ηk|ϕ2αk−1
c

+
(︂
∥m∥L∞(Ω\B) + |µ1,c|

)︂∫︂
BRk

ϕ2
c . (3.13)

We again control the first term on the right hand side via Young’s inequality and absorb

into the left hand side. To this end, we compute

2d

∫︂
BRk

ηk |∇ϕc|ϕ2αk−1
c |∇ηk| =

2d

αk

∫︂
BRk

ηk |∇ϕαk
c |ϕαk

c |∇ηk|

≤ d(2αk − 1)

2α2
k

∫︂
BRk

|∇ϕαk
c |2 η2k +

2d

2αk − 1

∫︂
BRk

ϕ2αk
c |∇ηk|2

≤ d(2αk − 1)

2α2
k

∫︂
BRk

|∇ϕαk
c |2 η2k +

32dN2α2
k

R2(2αk − 1)

∫︂
BRk

ϕ2αk
c .

Combining this result with (3.13) leaves

d(2αk − 1)

2α2
k

∫︂
BRk

|∇ϕαk
c |2 η2k ≤

(︃
∥m∥L∞(Ω\B) + |µ1,c|+

32dN2α2
k

R2(2αk − 1)

)︃
∥ϕαk

c ∥2L2(BRk
) .

(3.14)

Notice again that ηkϕ
αk
c belongs to H1

0 (BRk
). Therefore, applying the Sobolev inequal-

ity, Poincaré’s inequality and the fact that ∇(ηkϕ
αk
c ) = ∇ηkϕαk

c + ηk∇(ϕαk
c ) gives us

that

d(2αk − 1)

4α2
k

∥ηkϕαk
c ∥2L2N/(N−2)(BRk

) ≤
d(2αk − 1)

2α2
k

∫︂
BRk

(︁
|∇ηk|2 ϕ2αk

c + |∇ϕαk
c |2 η2k

)︁
,
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and so combining this estimate with (3.14) and using that ηk ≡ 1 in BRk+1
yields

d(2αk−1)

4α2
k

∥ϕαk
c ∥2L2N/(N−2)(BRk+1

) ≤
(︂
∥m∥L∞(Ω\B) + |µ1,c|+

32dN2α2
k

R2(2αk−1)
+ 8dN2(2αk−1)

R2

)︂
∥ϕαk

c ∥2L2(BRk
) .

(3.15)

An elementary manipulation gives that

∥ϕαk
c ∥L2N/(N−2)(BRk+1

) = ∥ϕc∥αk

L2αk+1 (BRk+1
)
, ∥ϕαk

c ∥L2(BRk
) = ∥ϕc∥αk

L2αk (BRk
)
. (3.16)

Finally, rearranging (3.15) and using (3.15) we obtain the final estimate

∥ϕc∥L2αk+1 (BRk+1
) ≤ Ck ∥ϕc∥L2αk (BRk

) ,

where Ck is a constant depending on all quantities used throughout this procedure

but can be chosen independent of c, and is dominated by a term of order (α4
k/(2αk −

1)2)1/2αk ∼ (αk)
1/αk for k large.

Step 3 We complete the limiting process. The uniformity in c is clear; on the other

hand, upon iteration we find that

∥ϕc∥L2Nk/(N−2)k (BRk+1
)
≤

k∏︂
n=1

Cn ∥ϕc∥L2(BRk
) , (3.17)

and so we now ensure that the product of the constants Ck are bounded. First, note

that there exists a constant A depending on ∥m∥L∞(Ω) , |µ1,c| , d,N,R but independent

of c, k so that

Ck ≤ (Aαk)
1/αk .

Here, the constant A can be obtained by extracting the highest order terms (with

respect to powers of αk) and estimating the remaining terms from above, which are

already known to be uniformly bounded. Then, we use the fact that
∏︁∞

n=1Cn <

∞ ⇐⇒
∑︁∞

n=1 log(Cn) <∞. Using the bound above and some elementary calculation,

we see that

∞∑︂
n=1

log(Cn) ≤
∞∑︂
n=1

(n− 1) log(A1/(n−1)σ)

σn−1
<∞,
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where σ = N/(N − 2) > 1 ensures the convergence. Thus, (3.17) is bounded, and

taking k → ∞ yields

∥ϕc∥L∞(BR/2(x0))
≤M ∥ϕc∥L2(BR(x0))

.

Since x0 ∈ B was arbitrary, we have that ϕc is uniformly bounded on some set B′ such

that B ⋐ B′. Combining this with Lemma 3.4.1, we conclude that supc≫1 supΩ ϕc is

bounded. This completes the proof.

3.5 The scalar equation

3.5.1 Well-posedness

In this section we focus now on building solutions to problem (3.1). We begin with the

definition of a solution in this context.

Definition 3.5.1. (1) A classical solution on QB,T to problem (3.1) is a solution

belonging to C2+α,1+α/2((Ω \ B) × (0,∞)) ∩ C+((Ω \ B) × [0,∞)) satisfying the

equation everywhere in Ω \ B, satisfying w∞ = 0 everywhere along ∂B, and

∂w∞/∂ν = 0 everywhere along ∂Ω.

(2) A steady state to problem (3.1) is a solution belonging to C2+α(Ω\B)∩C(Ω\B)

satisfying the equation everywhere in Ω \B and boundary conditions everywhere

along ∂Ω and ∂B.

Remark 3.5.1. Notice that, different from the degradation problem, we actually as-

sume sufficient regularity on the function f(x,w) restricted to Ω\B. This will guarantee

the existence of a classical solution.

Before we can prove the existence of such a solution, we briefly develop some of the

theory for linear parabolic equations in domains with holes.

Second order linear parabolic equations in domains with holes

In order to discuss the well-posedness of problem (3.1), we must first highlight some

of the standard theory for linear equations of the same form. For our purposes, it is

118



sufficient to establish some standard theory for the following problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt = d∆w + c(x, t)w + f(x, t), in Ω \B × (0, T ),
∂w
∂ν

= 0, on ∂Ω× (0, T ),

w = 0, on ∂B × (0, T ),

w(x, 0) = w0 ≩ 0, in Ω \B.

(3.18)

We first state the following strong maximum principle, plus a comparison theorem

for the nonlinear problem. The maximum principle result is identical to the classi-

cal case, except we must treat both cases along ∂Ω and ∂B, using the “Neumann”

boundary arguments along ∂Ω, and the “Dirichlet” boundary arguments along ∂B.

Theorem 3.5.1. Suppose w ∈ C2,1(QB,T ) satisfies⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − d∆w + c(x, t)w ≥ 0, in QB,T ,
∂w
∂ν

≥ 0, on ∂Ω× (0, T ),

w ≥ 0, on ∂B × (0, T ),

w(x, 0) ≩ 0, in Ω \B,

where c(x, t) is bounded in QB,T . Then w(x, t) ≥ 0 in QB,T , and w(x, t) > 0 in Ω \ B

unless it is identically zero.

Theorem 3.5.2. Suppose that w,w belong to C2+α,1+α/2(QB,T ) with w(·, 0), w(·, 0) ≥ 0

and satisfy the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
wt − d∆w ≤ f(x,w), in QB,T ,

wt − d∆w ≥ f(x,w), in QB,T ,
∂w
∂ν

≤ ∂w
∂ν
, on ∂Ω× (0, T ),

w ≤ w on ∂B × (0, T ).

If w(·, 0) ≤ w(·, 0), then w(x, t) ≤ w(x, t) for all (x, t) ∈ QB,T . Furthermore, if

w(·, 0) ⪇ w(·, 0), then w(x, t) < w(x, t) for all (x, t) ∈ Ω \B × (0, T ).

Remark 3.5.2. This result is essentially identical to that found in Theorem 2.4.1 of

the previous chapter. The key differences are that the inequalities now hold in the

classical sense, and we must satisfy an inequality along both boundary portions.

Proof. This result follows from a standard argument, see e.g. [95, Ch. 2 Lemma

3.6], where one uses the fact that the nonlinearity f(x, ·) is a C1-function. First,
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one deduces that w ≤ w in QB,T via Theorem (3.5.1). Next, one uses the Neumann

boundary condition along ∂Ω to conclude that the inequality must be strict. The

strong maximum principle implies that w − w = 0 cannot occur for an interior point

(x0, t0) ∈ QB,T , and so w < w in QB,T . Then, one makes use of Hopf’s lemma to

conclude that w−w = 0 cannot occur along ∂Ω, since this would imply that ∂(w−w)
∂ν

> 0,

a contradiction. This completes the proof.

Next, we establish the following existence result.

Theorem 3.5.3. Suppose ∂Ω and ∂B are smooth and w0(x) ∈ H1
B(Ω) ∩ Cα(Ω) for

some α ∈ (0, 1). Suppose also that f(x, t), c(x, t) ∈ Cα(QB,T ). Then there exists a

unique classical solution w(x, t) ∈ C2+α,1+α/2(QB,T ) ∩ H1
B(Ω) solving problem (3.18).

In addition, ∂w
∂ν
< 0 along ∂B.

Proof. The well-posedness of the linear problem follows from standard arguments with

essentially no change aside from building weak solutions from the space H1
B(Ω). For

this reason we highlight the key steps only.

First, we note that −d∆+m(x) is a self adjoint operator on H1
B(Ω) and is further-

more compact. The compactness follows from Poincaré’s inequality and the bounded-

ness of m(x). By the theory of self adjoint, compact operators in a Hilbert space, we

have that the eigenfunctions of −d∆ + m(x) form an orthogonal basis for the space

H1
B(Ω). Actually, this is just the spectral theorem, see [31, Ch. D.6, Theorem 7].

Next, we apply the Galerkin method using the aforementioned eigenfunctions as

our basis in order to deduce the existence of weak solutions to problem (3.18), see e.g.

[31, Ch. 7.1]. In particular, we first assume that f ∈ C∞(QB,T ) in order to deduce

the existence of a solution w ∈ C∞(QB,T )∩H1
B(Ω). Uniqueness of this solution follows

from the usual argument, i.e. assume there are two solutions and apply the maximum

principle.

With the existence of a smooth solution, we then take an approximating sequence

fε(x, t) ∈ C∞(QB,T ) so that fε → f ∈ Cα,α/2(QB,T ) as ε → 0. An application of

Schauder estimates (Theorem 1.2.24) then yields the existence of a unique solution

w(x, t) ∈ C2+α,1+α/2(QB,T ) ∩ C(QB,T ) ∩H1
B(Ω)
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which also satisfies the boundary conditions in the classical sense. Finally, since w > 0

in QB,T and u = 0 along ∂B, u attains its minimum value (of 0) along ∂B. Since

w is not constant, the maximum principle then implies that ∂w
∂ν

< 0 along ∂B. This

completes the proof.

Finally, we may use a standard method of sub/super solutions applied to the prob-

lem (3.1) in order to deduce the existence and uniqueness of solutions for this nonlinear

problem. This is summarized in the following theorem.

Theorem 3.5.4. Suppose there exists functions u, u satisfying the hypotheses of The-

orem 3.5.2 in QB,T . Then there exists a unique solution u ≤ u ≤ u solving problem

(3.1) in (0, T ), and this solution is in fact global. Furthermore, ∂u
∂ν
< 0 along ∂B.

Proof of Theorem 3.5.4. The proof follows from a standard monotone iteration proce-

dure. See the proof of Proposition 3.5.6, which uses the same technique for the elliptic

system. The only modification is an application of the existence theory for linear

equations developed above.

Second order linear elliptic equations in domains with holes

Similar arguments and results hold for the corresponding elliptic (or steady state)

problems. We highlight two key results here to be used later.

Theorem 3.5.5. Suppose that w,w belong to C2+α(Ω \B) and satisfy the following:⎧⎪⎪⎪⎨⎪⎪⎪⎩
−d∆w ≤ f(x,w), in Ω \B,
−d∆w ≥ f(x,w), in Ω \B,
∂w
∂ν

≤ ∂w
∂ν
, on ∂Ω,

w ≤ w on ∂B.

Then w ≤ w. Furthermore, either w < w or else w < w.

Theorem 3.5.6. Let µ1,∞ be the principal eigenvalue to problem 3.5 for m ≡ f ′(x, 0).

Then we have the following dichotomy.

(1) Suppose µ1,∞ < 0. Then, (3.1) admits a unique positive steady state w∗
∞.
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(2) Suppose µ1,∞ ≥ 0. Then, w∗
∞ ≡ 0 is the only steady state solving problem (3.1).

Proof of Theorem 3.5.6. When µ1,∞ < 0, the existence of a positive steady state w∗ ∈

X++ follows from a sub/super solution argument. In such a case, εϕ1,∞ acts as a sub

solution for any ε ≪ 1, where we choose ε small enough so that f ′(·, 0) − f(·,εϕ1,∞)

εϕ1,∞
≤

−µ1(∞). Choosing M ≫ 1 as a super solution, we apply the existence theorem for

monotone elliptic problems Theorem 1.2.32. Therefore, there exists a steady state

w∗ satisfying εϕ1,∞ ≤ w∗ ≤ M . The concavity of f in the argument w (actually,

subhomogeneity is sufficient) ensures that the steady state is unique and so w∗ ≡ w∗
∞

is the positive steady state solving problem (3.1).

In the case that µ1,∞ ≥ 0, we may choose εϕ1,∞ as a super solution. Since ε > 0

was arbitrary, sending ε→ 0 yields (2). This completes the proof.

3.5.2 Global dynamics

For the global dynamics of the destruction problem, there are three perspectives we

take. First, we naturally want to describe the global dynamics for the scalar destruction

problem (3.1). Second, we seek to describe fully the global dynamics of the degradation

problem in relation to the principal eigenvalue µ1,∞. In Chapter 2, we fully described

the global dynamics of the degradation problem in Theorem 2.4.3. We will reformulate

this result in the context of the current chapter. Third, we finish with a uniform

connection between these in a global sense. We begin with the global dynamics of the

habitat destruction problem.

Theorem 3.5.7. Assume 0 ⪇ w∞(·, 0) ∈ C1
B(Ω). The following hold.

(i) If µ1,∞ < 0, then Theorem 3.5.6 ensures that (3.1) admits a unique positive

steady state w∗
∞. Then, w∞ → w∗

∞ in C(Ω \B) as t→ ∞;

(ii) If µ1,∞ ≥ 0, Theorem 3.5.6 guarantees that 0 is the only steady state to (3.1).

Then, w∞ → 0 in C(Ω \B) as t→ ∞.

Remark 3.5.3. Notice the similarities with Theorem 2.4.3. Indeed, these theorems

are essentially “equivalent” in their respective settings.
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Proof. This result follows from similar arguments made in the proof of Theorem 3.5.8,

but there are some technical issues to address due to the Dirichlet boundary condition

along the boundary ∂B. To address this, we set X := C1
B(Ω) and recall the strong

partial order on X generated by the cone X+ = {v ∈ X : v ≥ 0} with interior

X++ =

{︃
v ∈ X : v > 0 in Ω \B and

∂v

∂ν
< 0 on ∂B

}︃
.

The global existence, uniqueness and regularity of solutions to (3.1) with initial data in

X+ follow from Theorem 3.5.3. The comparison principle ensures that (3.1) generates

a strongly monotone flow on X++. In contrast to the degradation problem, the de-

struction problem requires information about the normal derivative on the boundary.

Luckily, we have the required result, stated at the end of Theorem 3.5.3.

When µ1,∞ < 0, the existence of a positive steady state w∗ ∈ X++ follows from

Theorem 3.5.6. Since problem (3.1) generates a strongly monotone flow in X++, we

then conclude that w∗ is globally attractive for any initial data u0 ∈ X+ \ {0} through

an application of Theorems 1.2.9-1.2.10. This is essentially an identical argument to

that used in the proof of Theorem 2.4.3.

When µ1,∞ ≤ 0, 0 is the only steady state solving problem (3.1) by Theorem 2.4.2.

Hence, 0 is globally attractive and the proof is complete.

Remark 3.5.4. It is worth mentioning that the concavity assumption is not essential

for Theorem’s 3.5.7 and 3.5.7 to hold. Indeed, a weaker condition of subhomogeneity

(Assumption 2.2.2) is sufficient. In fact, concavity is only needed when taking the limit

c→ ∞.

3.5.3 Connecting the asymptotic behaviour of degradation
and destruction

We now state a result connecting the dynamics of the degradation problem (2.1) and

the destruction problem (3.1). In this case, we are not yet concerned about uniform

behaviour necessarily.

Theorem 3.5.8. The following hold for each c ∈ (0,∞).
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(i) If µ1,c < 0, then (2.1) admits a unique positive steady state w∗
c ∈ W 2,p(Ω) for any

p ≥ 1, and wc(·, t) → w∗
c in C(Ω) as t→ ∞ whenever wc(0, ·) ̸≡ 0;

(ii) If µ1,c ≥ 0, then 0 is the only steady state solution to (2.1) and wc(·, t) → 0 in

C(Ω) as t→ ∞.

Moreover,

• if µ1,∞ ≤ 0, then (i) holds for any c ∈ (0,∞);

• if µ1,∞ > 0, then there exists a unique c∗ > 0 such that (ii) holds for all c ∈

(c∗,∞).

Proof. The proof of this result follows from results found in Chapter 2. We include the

additional arguments as necessary.

The first part of the theorem follows directly from Theorem 2.4.3.

The “Moreover” part follows directly from Theorem 3.4.2 (1). That is, since µ1,c

is increasing and bounded above by µ1,∞, we have two cases. In the first case, µ1,c <

µ1,∞ ≤ 0, and the result follows. In the second case, the monotone convergence of

µ1,c → µ1,∞ implies the existence of a unique value c∗ so that µ1,c > 0 for all c ∈ (c∗,∞).

The second conclusion follows, completing the proof.

3.5.4 Uniform convergence between degradation and destruc-
tion

Finally, we are ready to establish a connection between the scalar degradation and

destruction problems. We prove the following two results, the first for the steady state

problems, and the second for the time-dependent problems.

Theorem 3.5.9. The following hold.

(1) Suppose µ1,∞ < 0 so that Theorem (3.5.6) ensures that problem (3.1) admits a

unique positive steady state w∗
∞. Then, problem (2.1) admits a unique positive

steady state w∗
c for all c≫ 1, and there holds

lim
c→∞

w∗
c = w∗

∞ in C(Ω).
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(2) Suppose µ1,∞ > 0 so that Theorem (3.5.6) guarantees that w∗
∞ ≡ 0 is the only

steady state solving problem (3.1). Then, there exists a unique c∗ > 0 such that

w∗
c ≡ 0 is the only steady state solving problem (2.1) for all c ∈ (c∗,∞).

(3) Suppose µ1,∞ = 0. Then, w∗
c > 0 exists for all c > 0 by Theorem 2.4.3, and

w∗
c → 0 in C(Ω) as c→ ∞.

Theorem 3.5.10. Assume that µ1,∞ ̸= 0. Let wc and w∞ be the unique solutions to

problems (2.1) and (3.1), respectively, with the initial data satisfying 0 ⪇ wc(·, 0) =

w∞(·, 0) ∈ C1
B(Ω) and supp(w∞(·, 0)) ⋐ Ω \B. Then,

lim
c→∞

wc = w∞ uniformly in Ω× [0,∞).

The proof of Theorem 3.5.9

In this section we prepare for and provide the proof of Theorem 3.5.9. To do so, we use

a monotonicity argument, Dini’s theorem, and uniqueness of the steady state. First

we establish the following monotonicity result.

Lemma 3.5.1. Assume µ1,∞ < 0. Then, for any 0 < c < c, there holds w∗
∞ ≤ w∗

c < w∗
c

in Ω.

Proof. Note that since µ1,∞ < 0, w∗
c exists for all c > 0. Then, it is easy to see that

w∗
c ≤ w∗

c by the concavity of f(x, ·) and the strong maximum principle for strong

solutions, e.g., Theorem 1.2.16. The strong maximum principle and Hopf’s lemma

imply that either w∗
c < w∗

c or w∗
c ≡ w∗

c in Ω. By the uniqueness of the steady state

solution, the second cannot hold, and the strict inequality follows.

Let c > 0. Note that both w∗
c and w∗

∞ satisfy{︄
0 = d∆w + f(x,w), in Ω \B,
∂w
∂ν

= 0, on ∂Ω.

As w∗
∞ = 0 < w∗

c on ∂B, we apply Theorem 3.5.2 to conclude w∗
∞ ≤ w∗

c in Ω\B. Since

w∗
∞ is identified with its extension by zero in B, we automatically have that w∗

∞ < w∗
c

in B by the positivity of w∗
c . Hence, w

∗
∞ ≤ w∗

c in Ω, and the proof is complete.
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We now establish Theorem 3.5.9. Its proof is instructive for the more difficult

parabolic analog, Theorem 3.5.10, as we require fewer estimates to conclude our desired

result.

Proof of Theorem 3.5.9. The existence and uniqueness of positive steady states follow

from Theorems 3.5.6 and 3.5.8. We consider three cases separately.

Case 1: Suppose first that µ1,∞ < 0. Lemma 3.5.1 asserts that {w∗
c}c≫1 is a

decreasing sequence of functions and is uniformly bounded below by w∗
∞. Hence, the

pointwise limit w∗ := limc→∞w∗
c exists in Ω and is nontrivial. This is our candidate

solution to the limiting problem.

Multiplying the equation satisfied by the steady state w∗
c by itself and integrating

over Ω, we obtain

d

∫︂
Ω

|∇w∗
c |

2 =

∫︂
Ω\B

f(·, w∗
c )w

∗
c − c

∫︂
B

(w∗
c )

2 ≤ ∥f ′(·, 0)∥L∞(Ω\B) ∥w
∗
c∥

2
L2(Ω) , (3.19)

where used Assumption 2.2.3 in the inequality (actually, subhomogeneity is sufficient

here). Hence, {w∗
c}c≫1 is uniformly bounded in H1(Ω). Consequently, there exists a

subsequence, still denoted by w∗
c , such that

lim
c→∞

w∗
c = w∗ strongly in L2(Ω) and weakly in H1(Ω). (3.20)

In particular, for any ϕ ∈ H1
B(Ω) (considered as an element in H1(Ω) after zero exten-

sion in B), we have −c
∫︁
B
w∗
cϕ = 0 for all c≫ 1, and

lim
c→∞

d

∫︂
Ω

∇w∗
c∇ϕ = d

∫︂
Ω

∇w∗∇ϕ, lim
c→∞

∫︂
Ω

f(·, w∗
c )ϕ =

∫︂
Ω

f(·, w∗)ϕ.

Therefore, w∗ satisfies −d∆w∗ = f(x,w∗) in Ω \B in the weak sense.

We now show that w∗ ∈ H1
B(Ω). We see from the equality in (3.19) that

c

∫︂
B

(w∗
c )

2 ≤ ∥f ′(·, 0)∥L∞(Ω\B)

∫︂
Ω

(w∗
c )

2.

As supc≫1

∫︁
Ω
(w∗

c )
2 < ∞, we arrive at limc→∞

∫︁
B
(w∗

c )
2 = 0. It then follows from the

convergence in (3.20) or the monotone convergence theorem that
∫︁
B
(w∗)2 = 0, and

hence, w∗ = 0 a.e. in B. In particular, w∗ ∈ H1
B(Ω).
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Combining these results, we conclude from the elliptic regularity theory that w∗ is

a steady state to (3.1), and therefore, w∗ = w∗
∞ by the uniqueness of positive steady

states. As w∗ ∈ C(Ω), we conclude the result from Dini’s theorem, and thus, complete

the proof.

Remark 3.5.5. Unfortunately, we cannot expect a stronger notion of convergence in

the entire space Ω in a classical sense than what was shown above. Informally, this

can be made intuitive if one considers the fact that ∂w∗
∞

∂ν
is negative along ∂B while

w∗
∞ is identically zero inside of B. Hence, we expect the classical derivative of w∗

∞

to be discontinuous along ∂B. However, stronger notions of convergence are readily

established away from the boundary of B through the usual arguments.

Preparing for the proof of Theorem 3.5.10

In this section we prepare for the proof of Theorem 3.5.10. In order to do so, we prove

convergence in a number of steps, treating separately the convergence in Ω \ B, B, as

well as the time intervals (0, T ] and (T,∞). The strategy is to abuse the monotonicity

of the family of solutions wc, w
∗
c with respect to parameter c. This is similar to the

proof of Theorem 3.5.9, but the time dependence makes things a little more delicate.

The following schematic gives an overview of how this result is proved.
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Figure 3.2: A schematic showing the strategy to prove uniform convergence in the scalar
case. First, we have the monotonicity of the steady states (dashed lines, decreasing
in c). We see monotonicity of the time-dependent sub/super solutions (in c). From
above, we have a decreasing property in both time and c for sufficiently large initial
data (solid red, orange, green, respectively). From below, solutions are increasing (in
time) for sufficiently small initial data (dashed red, orange and green), however this is
counteracted by the decreasing nature in c (dashed green, orange, red, respectively).
To overcome this, we use w∞ as the lower bound, which converges in time independent
of c.

We establish the following monotonicity result.

Lemma 3.5.2. Denote by wc(x, t) the unique solution to problem (2.1) for c > 0.

Assume 0 < c < c. If wc(·, 0) = wc(·, 0) ∈ C+(Ω) \ {0}, then wc > wc > 0 in

Ω× (0,∞).

Proof. Set w := wc − wc and w+ := max{0, w}. Note that wc and wc are bounded.

This together with the regularity assumption on f implies the existence of some K > 0
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such that

1

2

d

dt

∫︂
Ω

(w+)2 = −d
∫︂
Ω

⃓⃓
∇w+

⃓⃓2
+

∫︂
Ω

w+(f(·, wc)− f(·, wc)) ≤ K

∫︂
Ω

(w+)2.

Gronwall’s inequality implies that w+ = 0 a.e. in QT and hence wc ≤ wc holds in

all of QT by the smoothness of the solutions. Then, since wc ∈ C1((0,∞);C+(Ω)),

the strong maximum principle for strong solutions applies, e.g., Theorem 1.2.16. In

particular, if there exists a point (x0, t0) ∈ QT such that w = 0, it follows that w ≡ 0

in Ω for all t ∈ (0, t0), a contradiction to the uniqueness of solutions. Finally, if there

exists a point x0 ∈ ∂Ω such that w(x0, t0) = 0 for some t0 > 0, Hopf’s lemma implies

that ∂w
∂ν
(x0, t0) > 0, a contradiction to the homogeneous Neumann boundary condition

satisfied by w along ∂Ω. Hence, w < 0 ⇒ wc < wc in Ω × (0,∞). The conclusion

wc > 0 in Ω× (0,∞) follows from similar arguments and the proof is complete.

As an immediate consequence of Theorem 3.5.8 and Lemma 3.5.2, we have the

following result.

Corollary 3.5.1. Suppose µ1,∞ > 0. Then, for any initial data wc(0, ·) ∈ C+(Ω) \ {0}

independent of c≫ 1, there holds

lim
t→∞

sup
c≫1

∥wc(·, t)∥C(Ω) = 0.

Proof. By Theorem 3.5.8, there is c∗ ≫ 1 such that limt→∞ ∥wc∗(·, t)∥C(Ω) = 0. The

result then follows from the monotonicity result Lemma 3.5.2: wc(x, t) ≤ wc∗ for all

c ∈ (c∗,∞). This completes the proof.

The next result addresses the uniform convergence over finite time intervals.

Lemma 3.5.3. If wc(·, 0) = w∞(·, 0) ∈ H1
B(Ω)∩C+(Ω) for all c≫ 1 and supp(w∞(·, 0)) ⋐

Ω \B, then for each T > 0,

lim
c→∞

wc = w∞ uniformly in Ω× [0, T ].

Proof. Fix T > 0 and denote by w0 the common initial data. The proof is done within

four steps.
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Step 1 We show the existence of some M =M(T ) > 0 such that∫︂∫︂
QT

(︄
w2
c + |∇wc|2 +

⃓⃓⃓⃓
∂wc
∂t

⃓⃓⃓⃓2)︄
≤M, ∀c≫ 1. (3.21)

Due to the lack of smoothness of the solution wc, we first mollify the indicator

functions on the right hand side of (2.1) so that the approximate solution belongs to

H1(QT ). To this end, we set ε0 := 1
2
dist(∂Ω, ∂B) and define for each ε ∈ (0, ε0) the

sets:

Bε =
{︁
x ∈ Ω : dist(x,B) < ε

}︁
, Bε = {x ∈ B : dist(x, ∂B) > ε} .

Note that Bε ⋐ B ⋐ Bε ⋐ Ω. We regularize 1Ω\B such that

1
ε
Ω\B = 1 in Ω \Bε, 1

ε
Ω\B = 0 in B, 0 ≤ 1

ε
Ω\B ≤ 1 in Bε \B,

and limε→0 1
ε
Ω\B = 1Ω\B in L2(Ω). Similarly, we regularize 1B such that

1
ε
B = 1 in Bε, 1

ε
B = 0 in Ω \B, 0 ≤ 1

ε
B ≤ 1 in B \Bε,

and limε→0 1
ε
B = 1B in L2(Ω). Consider (2.1) with 1Ω\B and 1B replaced by 1εΩ\B and

1
ε
B, respectively, that is{︄

wt = d∆w + 1
ε
Ω\Bf(x,w)− c1εBw, in Ω× (0,∞),

∂w
∂ν

= 0, on ∂Ω× (0,∞).
(3.22)

Denote by wεc the unique solution of (3.22) satisfying the initial data wεc(·, 0) = u0.

Note that the standard L2-theory of parabolic equations, e.g., Theorem 1.2.25, ensures

that

lim
ε→0

wεc = wc in W 2,1
2 (QT ), (3.23)

and that ∂wε
c

∂t
∈ H1(QT ) for each ε > 0.

We establish some uniform-in-ε estimates of wεc . First, we differentiate ∥wεc∥
2
L2(Ω)

with respect to time and integrate by parts to obtain:

d

dt
∥wεc∥

2
L2(Ω) = 2

∫︂
Ω

wεc
(︁
d∆wεc + 1

ε
G\Bf(·, wεc)− c1εB

)︁
≤ 2

∫︂
Ω

|f(·, wεc)wεc | ≤ 2 ∥f ′(·, 0)∥L∞(Ω\B)

∫︂
Ω

(wεc)
2.
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Gronwall’s inequality implies that ∥wεc(·, t)∥
2
L2(Ω) ≤ eM0T + ∥w0∥2L2(Ω), where M0 :=

2 ∥f ′(·, 0)∥L∞(Ω\B). Integrating with respect to time yields

∥wεc∥
2
L2(QT ) ≤ T (eM0T + ∥w0∥2L2(Ω)). (3.24)

We now seek to estimate higher order terms. Clearly, wεc satisfies∫︂∫︂
QT

(︃
∂wεc
∂t

v + d∇wεc · ∇v
)︃

=

∫︂∫︂
QT

(︁
1
ε
Ω\Bf(·, wεc)− c1εBw

ε
c

)︁
v, ∀v ∈ H1(QT ).

(3.25)

Setting v = wεc in (3.25), legal by the regularity of wεc , we have∫︂ T

0

d

dt
∥wεc∥

2
L2(Ω) + d ∥∇wεc∥

2
L2(QT ) =

∫︂∫︂
QB,T

f(·, wεc)wεc − c

∫︂∫︂
B×(0,T )

(wεc)
2

≤ ∥f ′(·, 0)∥L∞(Ω\B) ∥w
ε
c∥

2
L2(QT ) .

Note that supε∈(0,ε0) supc≫1 ∥wεc∥L2(QT ) <∞ by (3.24). Setting

M1 =M1(T ) := ∥f ′(·, 0)∥L∞(Ω\B) sup
ε∈(0,ε0)

sup
c≫1

∥wεc∥
2
L2(QT ) + ∥u0∥2L2(Ω) ,

we find the uniform bounds

sup
0≤t≤T

∥wεc(·, t)∥
2
L2(Ω) ≤M1, ∥∇wεc∥

2
L2(QT ) ≤

M1

d
, ∀c≫ 1 and ε ∈ (0, ε0), (3.26)

We now seek to obtain estimates on ∂wε
c

∂t
. Setting v = ∂wε

c

∂t
in (3.25), made possible

due to the mollification procedure, we deduce∫︂∫︂
QT

⃓⃓⃓⃓
∂wεc
∂t

⃓⃓⃓⃓2
= −d

2

∫︂∫︂
QT

∂

∂t
|∇wεc |

2 +

∫︂∫︂
QT

1
ε
Ω\Bf(·, wεc)

∂wεc
∂t

− c

2

∫︂∫︂
QT

1
ε
B

∂

∂t
(wεc)

2

≤ −d
2

(︂
∥∇wεc(·, T )∥

2
L2(Ω) − ∥∇u0∥2L2(Ω)

)︂
+

1

2

∫︂∫︂
QT

⃓⃓⃓⃓
∂wεc
∂t

⃓⃓⃓⃓2
+

1

2
∥f(·, wεc)∥

2
L2(QB,T )

− c

2

∫︂
B

1
ε
B

(︁
(wεc)

2(·, T )− u20
)︁

≤ d

2
∥∇u0∥2L2(Ω) +

1

2

∫︂∫︂
QT

⃓⃓⃓⃓
∂wεc
∂t

⃓⃓⃓⃓2
+

1

2
∥f ′(·, 0)∥2L∞(Ω\B) ∥w

ε
c∥

2
L2(QT ) ,

where we have applied Young’s inequality, thrown away the negative terms, and used

the fact that u0 ≡ 0 in B. Setting

M2 =M2(T ) := d ∥∇u0∥2L2(Ω) + ∥f ′(·, 0)∥2L∞(Ω\B) sup
ε∈(0,ε0)

sup
c≫1

∥wεc∥
2
L2(QT ) ,
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we find ∫︂∫︂
QT

⃓⃓⃓⃓
∂wεc
∂t

⃓⃓⃓⃓2
≤M2, ∀c≫ 1 and ε ∈ (0, ε0). (3.27)

Passing to the limit ε→ 0 in (3.26) and (3.27), we conclude (3.21) from (3.23).

Step 2 By (3.21), there is a subsequence, still denoted by wc, and a function U ∈

H1(QT ) such that

lim
c→∞

wc = U in L2(QT ),

lim
c→∞

∂wc
∂t

=
∂U

∂t
weakly in L2(QT ),

lim
c→∞

∇wc = ∇U weakly in L2(QT ).

(3.28)

Note that in light of Lemma 3.5.2, U must be the pointwise and monotone limit of wc

as c→ ∞. We show U = 0 a.e. in B × (0, T ) so that U ∈ H1
B(QT ).

Recall that ϕ1,c is a positive eigenfunction of (2.5) associated with the principal

eigenvalue µ1,c. The normalization ∥ϕ1,c∥L2(Ω) = 1 is fixed. Set wc := Me−µ1,ctϕ1,c for

some M > 0 to be determined. Direct computations yield

(wc)t − d∆wc = (1Ω\Bf
′(·, 0)− c1B)wc ≥ 1Ω\Bf(·, wc)− c1Bwc,

where we used in the inequality the fact that f(·, u) ≤ f ′(·, 0)u for any u ≥ 0 due to

Assumption 2.2.3 (subhomogeneity is sufficient). Obviously, ∂wc

∂ν
= 0 on ∂Ω.

Theorem 3.4.2 (2) says limc→∞ ϕ1,c = ϕ1,∞ in H1(Ω), where we recall that ϕ1,∞

is a positive eigenfunction of (3.5) associated with the principal eigenvalue µ1,∞ and

satisfies the normalization ∥ϕ1,∞∥L2(Ω\B) = 1. This together with ∂ϕ1,∞
∂ν

< 0 on ∂B

and the conditions on u0 ensures the existence of M ≫ 1 such that u0 ≤Mϕ1,c for all

c≫ 1 by Lemma 3.4.1. For such a M , we apply the comparison principle to conclude

that wc ≤ wc in Ω × [0,∞) for all c ≫ 1. This together with Theorem 3.4.2 and the

fact ϕ1,∞ ∈ H1
B(Ω) yields

lim sup
c→∞

∫︂ T

0

∫︂
B

w2
c ≤ lim sup

c→∞
M2

∫︂ T

0

e−2µ1,ctdt

∫︂
B

ϕ2
1,c = 0.

We then conclude from the monotone convergence theorem or the convergence in (3.28)

that U = 0 a.e. in B × (0, T ), and hence, U ∈ H1
B(QT ).
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Step 3 We show U = w∞ on Ω× [0, T ]. Note that wc satisfies∫︂∫︂
QT

(︃
∂wεc
∂t

v + d∇wεc · ∇v
)︃

=

∫︂∫︂
QT

(︁
1
ε
Ω\Bf(·, wεc)− c1εBw

ε
c

)︁
v, ∀v ∈ H1(QT ).

(3.29)

For v ∈ C1([0, T ];H1
B(Ω)) with v(T ) = 0, we see from (3.29) that

−
∫︂∫︂

QB,T

∂v

∂t
wc +

∫︂∫︂
QB,T

∇wc · ∇v =

∫︂∫︂
QB,T

f(·, wc)v +
∫︂
Ω\B

u0v(·, 0). (3.30)

Note from (3.29) and (3.28) that U satisfies∫︂∫︂
QB,T

(︃
∂U

∂t
v + d∇U · ∇v

)︃
=

∫︂∫︂
QB,T

f(·, U)v, ∀v ∈ H1
B(QT ). (3.31)

In particular, for v ∈ C1([0, T ];H1
B(Ω)) with v(T ) = 0,

−
∫︂∫︂

QB,T

∂v

∂t
U +

∫︂∫︂
QB,T

∇U · ∇v =

∫︂∫︂
QB,T

f(·, w∞)v +

∫︂
Ω\B

U(·, 0)v(·, 0). (3.32)

Comparing (3.30) and (3.32) and taking c → ∞, we find that indeed U(·, 0) = u0 by

the arbitrariness of v(·, 0).

Consequently, we have shown that U satisfies (3.31) and U(·, 0) = u0. This is

actually a weak formulation of (3.1). Moreover, as the pointwise and monotone limit

of wc as c → ∞, U must be bounded. We show that the weak formulation admits at

most one bounded solution, and then, U = w∞ on Ω× [0, T ].

To this end, we make note of the following fact (see e.g. [123, Lemma 3.1.2]): given

a function w ∈ H1
B(QT ) such that w(·, 0) = 0, there holds∫︂

Ω\B
w2(·, t) = 2

∫︂ t

0

∫︂
Ω\B

w
∂u

∂t
a.e. t ∈ (0, T ). (3.33)

Suppose now that there are two bounded solutions u1, u2 ∈ H1
B(QT ) satisfying the

weak formulation (3.31) and the same initial data belonging to H1
B(Ω)∩C+(Ω), which

is assumed to hold in the trace sense. Set w := u1 − u2 and note that w(·, 0) = 0 in

Ω \B. Then, w satisfies∫︂∫︂
QB,T

(︃
∂w

∂t
v + d∇w · ∇v

)︃
=

∫︂∫︂
QB,T

(f(·, u1)− f(·, u2))v, ∀v ∈ H1
B(QT ).
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Take v = w+ ∈ H1
B(QT ) and apply (3.33) and the Lipschitz continuity of f(x, ·) to

obtain

1

2

∫︂
Ω\B

(w+)2(·, t) ≤M

∫︂∫︂
QB,T

(w+)2.

The integral form of Gronwall’s inequality implies that
∫︁
Ω\B(w

+)2 = 0 for a.e. t ∈

(0, T ). Repeating the procedure for v = w−, we conclude that w = 0 a.e. and the

uniqueness follows.

Step 4 As U is the monotone limit of wc as c → ∞ and U = w∞ is continuous in

Ω× [0, T ] when extended by zero in B, we conclude from Dini’s theorem that wc → w∞

uniformly in Ω× [0, T ] as c→ ∞. This completes the proof.

Now, we treat infinite time intervals.

Lemma 3.5.4. Assume µ1,∞ < 0. If wc(·, 0) = w∞(·, 0) ∈ H1
B(Ω) ∩ C+(Ω) for all

c ≫ 1 and supp(w∞(·, 0)) ⋐ Ω \ B, then there exist r > 0 and M = M(w∞) > 0 such

that

∥wc(·, t)− w∗
c∥C(Ω) ≤Me−rt + ∥w∗

∞ − w∗
c∥C(Ω) , ∀t > 0 and c≫ 1.

Proof. The conclusion of the lemma follows from the following two steps. Denote by

w00 := wc(·, 0) = w∞(·, 0) the common initial data.

Step 1 We show the existence of r1 > 0 and M1 =M1(u0) > 0 such that

wc(·, t)− w∗
c ≤M1e

−r1t, ∀t ≥ 0 and c≫ 1.

By Theorem 3.5.8, w∗
c exists for all c > 0. Denote by µ1(d,1Ω\Bf

′(·, w∗
c ) − c1B)

the principal eigenvalue of (2.5) with m := 1Ω\Bf
′(·, w∗

c ) − c1B, and by ψ̂c the as-

sociated positive eigenfunction satisfying the normalization
∫︁
Ω
ψ̂

2

c=1. Notice that

µ1(d,1Ω\Bf
′(·, w∗

c ) − c1B) > 0 for any c ∈ (0,∞) due to the concavity of f(x, ·).

Actually, subhomogeneity is sufficient, since subhomogeneity implies that

f(x,w∗
c )

w∗
c

≤ f ′(0),
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and so Proposition 2.3.2 (iv) implies that

µ1(d,1Ω\Bf
′(·, w∗

c )− c1B) > 0 = µ1(d,1Ω\Bf(x,w
∗
c )− c1B),

where the second equality follows from the existence of a unique steady state.

We claim that

lim inf
c→∞

µ1(d,1Ω\Bf
′(·, w∗

c )− c1B) > 0. (3.34)

Denote by µ1(1Ω\Bf
′(·, w∗

∞) − c1B) the principal eigenvalue of (2.5) with m =

1Ω\Bf
′(·, w∗

∞)− c1B. By a minor modification of the proof of Theorem 3.4.2, it is not

difficult to find that

lim
c→∞

µ1(d,1Ω\Bf
′(·, w∗

∞)− c1B) = µ1(d, f
′(·, w∗

∞), B), (3.35)

where µ1(d, f
′(·, w∗

∞), B) is the principal eigenvalue of (3.5) with m = f ′(·, w∗
∞).

By the variational characterization of µ1(d,1Ω\Bf
′(·, w∗

∞)− c1B), we find

µ1(d,1Ω\Bf
′(·, w∗

∞)− c1B) ≤ d

∫︂
Ω

⃓⃓⃓
∇ψ̂c

⃓⃓⃓2
−
∫︂
Ω

ψ̂
2

c(1Ω\Bf
′(·, w∗

∞)− c1B)

= µ1(d,1Ω\Bf
′(·, w∗

c )− c1B) +

∫︂
Ω\B

ψ̂
2

c(f
′(·, w∗

c )− f ′(·, w∗
∞)).

Theorem 3.5.9 and the normalization
∫︁
Ω
ψ̂

2

c=1 imply that limc→∞
∫︁
Ω\B ψ̂

2

c(f
′(·, w∗

c ) −

f ′(·, w∗
∞)) = 0. It then follows from (3.35) that

µ1(d,1Ω\Bf
′(·, w∗

∞), B) = lim inf
c→∞

µ1(d,1Ω\Bf
′(·, w∗

∞)− c1B)

≤ lim inf
c→∞

µ1(d,1Ω\Bf
′(·, w∗

c )− c1B).

Since µ1(d,1Ω\Bf
′(·, w∗

∞), B) > 0, the claim (3.34) follows.

Since w00 is continuous and compactly supported in Ω \ B, and {ψ̂c}c≫1 is locally

uniformly positive in Ω\B by Lemma 3.4.1, there exists M̃1 > 0 such that u0 ≤ M̃1ψ̂c

for all c≫ 1. Set

Wc := M̃1e
−µ1(d,1Ω\Bf

′(·,w∗
c )−c1B)tψ̂c.

It is straightforward to check that Wc satisfies

(Wc)t − d∆Wc = (1Ω\Bf
′(·, w∗

c )− c1B)Wc in Ω× (0,∞).
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Note that w̃c := wc − w∗
c obeys

(w̃c)t − d∆w̃ = 1Ω\B(f(·, wc)− f(·, w∗
c ))− c1Bwc ≤ (1Ω\Bf

′(·, w∗
c )− c1B)wc

in Ω × (0,∞), where we used the concavity of f in the inequality. Obviously, both

Wc and w̃c satisfy the homogeneous Neumann boundary condition on ∂Ω. Since

w̃c(·, 0) = w00 − w∗
c ≤ M̃1ψ̂c = Wc(·, 0), we apply the comparison principle to ar-

rive at wc ≤ Wc. Note that Lemma 3.4.2 yields supc≫1 supΩ ψ̂c < ∞. Hence, set-

ting r1 := lim infc→∞{µ1(f
′(·, w∗

c ) − c1B} − δ > 0 for some fixed 0 < δ ≪ 1 and

M1 := M̃1 supc≫1 supΩ ψ̂c + 1, we find wc(·, t)− w∗
c ≤M1e

−r1t for all t ≥ 0 and c≫ 1.

Step 2 We show the existence of r2 > 0 and M2 =M2(u0) > 0 such that

w∗
c − wc(·, t) ≤M2e

−r2t + ∥w∗
∞ − w∗

c∥C(Ω) , ∀t ≥ 0 and c≫ 1.

As we are treating the lower bound for wc, we may assume without loss of generality

that u0 ≤ u∗∞. Note that Lemma 3.5.2 ensures that w∞ ≤ wc for all c≫ 1, leading to

w∗
c − wc(·, t) ≤ ∥w∗

∞ − w∗
c∥C(Ω) + w∗

∞ − w∞(·, t), ∀t ≥ 0 and c≫ 1, (3.36)

where w∞ solves (3.1) with initial data u0. Hence, it suffices to derive an exponential-

in-time upper bound for w∗
∞ − w∞(·, t).

We claim that there exist t0 ≫ 1 and v ∈ L∞(Ω) such that

0 ≨ v ≤ w∞(·, t) in Ω \B, ∀t ≥ t0. (3.37)

Indeed, since Theorem 3.5.7 ensures that w∞(·, t) → w∗
∞ uniformly in Ω \B as t→ ∞,

for some fixed V ⋐ Ω \ B there is t0 ≫ 1 such that infV×(t0,∞)w∞ > 0. The claim

follows readily.

Set F (w) := f(·,w∗
∞)−f(·,w)
w∗

∞−w . We show r2 := µ1(d, F (v), B)) > 0. Indeed, since

w∞(·, t) ≤ w∗
∞ for all t ≥ 0 by the choice of the initial data w00, we find v ≤ w∗

∞

from (3.37). It follows from the concavity of f that F (v) ≤ F (0). Noticing that

µ1(d, F (0), B) = 0 (as w∗
∞ is exactly the associated eigenfunction), we deduce from

Lemma 3.4.2 (ii) and v ≩ 0 (by (3.37)) that r2 = µ1(d, F (v), B) > µ1(d, F (0), B) = 0.
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Set W∞ := M2e
−r2(t−t0)ψ̂∞ in Ω \ B × [t0,∞), where ψ̂∞ is the positive eigen-

function of (2.4) with m = F (w∗
∞, v) associated with the principal eigenvalue r2 =

µ1(d, F (v), B), and M2 > 0 is such that w∗
∞ ≤ M2ψ̂∞. Such a M2 exists due to the

positivity of w∗
∞ and ψ̂∞ in Ω \B and the negativity of the outer normal derivative of

w∗
∞ and ψ̂∞ along ∂B. It is straightforward to check that W∞ satisfies

(W∞)t − d∆W∞ = F (v)W∞ in (Ω \B)× (t0,∞),

while w := w∗
∞ − w∞ satisfies

wt − d∆w =

(︃
f(x,w∗

∞)− f(x,w∞)

w∗
∞ − w∞

)︃
w ≤ F (v)w in (Ω \B)× (t0,∞),

where the inequality follows from (3.37) and the concavity of f . Obviously, both W∞

and w satisfy the homogeneous Neumann boundary condition on ∂Ω and homogeneous

Dirichlet boundary condition on ∂B. Since w(·, t0) ≤ w∗
∞ ≤ M2ψ̂∞ = W∞(·, t0), we

apply the comparison principle to find w(·, t) ≤ W∞(·, t) for t ≥ t0. This can be readily

extended to hold for all t ≥ 0 by making M2 larger if necessary. The conclusion in this

step then follows from (3.36).

We are ready to prove Theorem 3.5.10.

Proof of Theorem 3.5.10. Clearly, for any T > 0,

Ac := sup
t∈(0,∞)

∥wc(·, t)− w∞(·, t)∥C(Ω)

≤ sup
t∈(0,T ]

∥wc(·, t)− w∞(·, t)∥C(Ω) + sup
t∈(T,∞)

∥wc(·, t)− w∞(·, t)∥C(Ω)

=: A1
c(T ) + A2

c(T ).

(3.38)

By Lemma 3.5.3,

lim
c→∞

A1
c(T ) = 0, ∀T > 0. (3.39)

To treat A2
c(T ), we consider two cases. Denote again by w00 the common initial data.

Case 1: µ1,∞ > 0. It follows from Corollary 3.5.1 and Theorem 3.5.7 (ii) that

limT→∞ limc→∞A2
c(T ) = 0, which together with (3.38) and (3.39) yields limc→∞Ac = 0.
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Case 2: µ1,∞ < 0 Obviously, for any T > 0,

A2
c(T ) ≤ sup

t∈(T,∞)

∥wc(·, t)− w∗
c∥C(Ω) + ∥w∗

c − w∗
∞∥C(Ω) + sup

t∈(T,∞)

∥w∗
∞ − w∞(·, t)∥C(Ω)

=: Ã
1

c(T ) + Ã
2

c + Ã
3
(T ).

By Lemma 3.5.4, there exist r > 0 and M = M(w00) > 0 such that Ã
1

c(T ) ≤

Me−rT + Ã
2

c for all T > 0 and c ≫ 1. Since limc→∞ Ã
2

c = 0 by Theorem 3.5.9 and

limT→∞ Ã
3
(T ) = 0 by Theorem 3.5.7 (1), we find limT→∞ limc→∞A2

c(T ) = 0, which

together with (3.38) and (3.39) yields limc→∞Ac = 0.

3.6 A competitive system

In this section, we prove the uniform convergence of a competition system subject

to habitat degradation, problem (3.2), to a competition system subject to habitat

destruction, problem (2.2). To make the problem more tractable, we assume that

0 < d1 < d2 and take the prototypical form given in (3.3). As in the scalar case, we

reserve the notation (u∞, v∞) for the unique solution to problem (3.2) and denote by

(uc, vc) the unique solution to problem (2.2) for each c > 0.

The main result of this section is the following.

Theorem 3.6.1. Suppose 0 < d1 < d2, µ1,∞(d1) ̸= 0 and µ1,∞(d2) ̸= 0. Denote by

(uc, vc) and (u∞, v∞) the unique solutions to problems (2.2) and (3.2), respectively,

with the initial data satisfying 0 ⪇ uc(·, 0) = u∞(·, 0) ∈ C1
B(Ω) and 0 ⪇ vc(·, 0) =

v∞(·, 0) ∈ C1
B(Ω) such that supp(uc(·, 0)) ⋐ Ω \B and supp(vc(·, 0)) ⋐ Ω \B. Then,

lim
c→∞

(uc, vc) = (u∞, v∞) uniformly in Ω× (0,∞).

Similar to the scalar case, we set for d > 0 and c > 0,

µ1,c(d) := µ1(d,1Ω\Bm− c1B) and µ1,∞(d) := µ1(d,m,B).

By Theorem 3.4.1 (1), c ↦→ µ1,c(d) is increasing and limc→∞ µ1,c(d) = µ1,∞(d).
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To this end, we first reformulate a previous result, namely Theorem 2.5.2, suited

to the current context. This provides a similar result to Theorem 3.5.8, connecting

the asymptotic behaviour of the degradation and destruction scalar problems, but not

necessarily in a uniform sense.

Theorem 3.6.2. Consider problem (2.2) with fixed c > 0.

(1) If µ1,c(d1) < 0, then the semi-trivial steady state (u∗c , 0) exists, and for any initial

data u0, v0 ∈ C+(Ω) \ {0}, there holds

lim
t→∞

(uc(·, t), vc(·, t)) = (u∗c , 0) in C(Ω)× C(Ω).

Furthermore, if µ1,∞(d1) < 0, then µ1,c(d1) < 0 for all c ∈ (0,∞).

(2) If µ1,c(d1) ≥ 0, then the only steady state is the trivial one, and for any initial

data u0, v0 ∈ C+(Ω) \ {0}, there holds

lim
t→∞

(uc(·, t), vc(·, t)) = (0, 0) in C(Ω)× C(Ω).

Furthermore, if µ1,∞(d1) > 0, then there exists C sufficiently large so that µ1,c(d1) >

0 for all c ∈ (C,∞).

Proof. This result follows directly from the proof of Theorem 2.5.2 when c1 = c2.

Roughly, one proves that problem (2.2) induces a strongly monotone flow. From

the assumption of 0 < d1 < d2 and identical resource distribution, one can then show

that (u∗c , 0) is locally stable while (0, v∗c ) is unstable, whenever it exists. Recall that

the existence of non-trivial (0, v∗c ) is given by the sign of µ1,c(d2) as found in Theorem

3.5.8. One can then show that there are no coexistence steady states. The conclusion

then follows from the theory of monotone flows, e.g., Theorems 1.2.9-1.2.10.

A similar result holds for the competition destruction problem. We omit the details

of the proof as they are essentially the same as the proof of Theorem 3.6.2, with the

only change being the cone due to the homogeneous Dirichlet condition along ∂B.

Theorem 3.6.3. Consider problem (3.2). If µ1,∞(d1) < 0, then the semi-trivial steady

state (u∗∞, 0) exists, and for any initial data 0 ⪇ u0, v0 ∈ C1
B(Ω),

lim
t→∞

(u∞(·, t), v∞(·, t)) = (u∗∞, 0) in C(Ω)× C(Ω).
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In the following, we seek to prove Theorem 3.6.1. Unlike the scalar problem, how-

ever, it is no longer expected that c ↦→ (uc, vc) is decreasing. This is due to the interplay

between the decrease in mc as c increases, and the competition between species; for, if

uc is decreasing, −uc is increasing in the equation for vc. This is a subtle but important

difference between the degradation system and its corresponding scalar equation. De-

spite this, we are still able to prove a uniform convergence result in a number of steps.

Taking motivation from the scalar case, we consider separately the intervals (0, T ) and

[T,∞). We first prove convergence in an arbitrary, finite time interval.

Lemma 3.6.1. For any initial data (uc(·, 0), vc(·, 0)) and (u∞(·, 0), v∞(·, 0)) satisfying

the same assumptions as in Theorem 3.6.1, it holds that for each T > 0,

lim
c→∞

(uc, vc) = (u∞, v∞) uniformly in Ω× [0, T ].

Proof. Denote by ũc, ṽc the unique solutions to problem (2.1) with d = d1, f =

f1(·, ·, 0), ũc(·, 0) = uc(·, 0) and d = d2, f = f2(·, 0, ·), ṽc(·, 0) = vc(·, 0), respectively.

We finish the proof within four steps.

Step 1 We show that γ := max
{︂
supc≫1 supΩ×[0,∞) ũc, supc≫1 supΩ×[0,∞) ṽc

}︂
< ∞

and

e−γtũc ≤ uc ≤ ũc and e−γtṽc ≤ vc ≤ ṽc in Ω× [0,∞), ∀c≫ 1.

We first demonstrate γ <∞. Lemma 3.5.2 implies that ũc ≤ ũ1 in Ω× [0,∞) for all

c ≥ 1. Since ũ1 is bounded thanks to Assumption 2.2.1, we find supc≫1 supΩ×[0,∞) ũc <

∞. A similar argument yields supc≫1 supΩ×[0,∞) ṽc <∞. Hence, γ <∞.

For the two-sided inequalities of uc and vc to hold, it suffices to show that for each

c ≫ 1, (u, v) := (e−γtũc, ṽc) and (u, v) := (ũc, e
−γtṽc) are respectively subsolution and

supersolution thanks to the comparison principle.

Clearly,

ut − d1∆u = −γu+ u(1Ω\Bm− c1B − ũc) ≤ u(1Ω\Bm− c1B − e−γtũc − ṽc) = f1(x, u, v),

where γ ≥ ṽc is used in the inequality, and

ut − d1∆u = u(1Ω\Bm− c1B − u) ≥ u(1Ω\Bm− c1B − u− v) = f1(x, u, v),
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where we used vu > 0 in the inequality. Similarly, we find that v and v obey vt ≤

d2∆v + f2(x, u, v) and vt ≥ d2∆v + f2(x, u, v), respectively. Obviously, u, u, v and v

satisfy the homogeneous Neumann boundary condition on ∂Ω.

Step 2 We show that

lim
c→∞

(uc, vc) = (u∞, v∞) uniformly in (Ω \B)× [0, T ].

Recall that QB,T := (Ω \B)× (0, T ). We introduce the following auxiliary problem:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ut = d1∆u+ f1(x, u, v), in QB,T ,

vt = d2∆v + f2(x, u, v), in QB,T ,
∂u
∂ν

= 0 = ∂v
∂ν
, on ∂Ω× (0, T ),

u = uc, on ∂B × (0, T ),

v = vc, on ∂B × (0, T ).

(3.40)

Since uc and vc are Hölder continuous, this problem is well-posed (see, for example, [95,

Ch. 8] for a treatment of time dependent boundary data; see also [80, Ch. III, §5]).

Denote by (ûc, v̂c) the unique solution of (3.40) with initial data (ûc(·, 0), v̂c(·, 0)) =

(uc(·, 0), vc(·, 0)).

Uniqueness of solutions ensures that (ûc, v̂c) = (uc, vc) in Ω \ B for t ∈ [0, T ), and

hence, ûc ≤ ũcγ and v̂c ≤ ṽc ≤ γ in QB,T for all c≫ 1. In particular, this implies that

{fi(·, ûc, v̂c)}c≫1, i = 1, 2 are uniformly bounded in Lp(QB,T ) for any p ≥ 1. Theorem

1.2.30 along with Ehrling-Nirenberg-Gagliardo’s interpolation inequality (see, e.g. [123,

Theorem 1.3.1] or [1, Theorem 5.2]) ensure that {ûc}c≫1 and {v̂c}c≫1 are uniformly

bounded in W 2,1
p (QB,T ) for any p ≥ 1. The Sobolev embedding Theorem 1.2.4 then

implies the existence of a subsequence, still denoted by (ûc, v̂c), which converges to

(û∞, v̂∞) in C1+α,(1+α)/2(QB,T ) as c→ ∞ for any α ∈ (0, 1).

We then proceed with the usual bootstrapping argument. Since fi(x, ûc, v̂c), i = 1, 2

are Hölder continuous in QB,T , interior Schauder estimates for parabolic equations (see,

for example, [123, Theorem 7.2.5]; this is similar to Theorem 1.2.24 which gives global

estimates) ensure that {ûc}c≫1 and {v̂c}c≫1 are uniformly bounded in C2+α,1+α/2(QB,T )

for some α ∈ (0, 1). We may then deduce the existence of a further subsequence (still
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labelled by c) such that

∆ûc → ∆û∞, ∇ûc → ∇û∞, ûc → û∞,

∆v̂c → ∆v̂∞, ∇v̂c → ∇v̂∞, v̂c → v̂∞,

in Cβ,β/2(QB,T ) as c→ ∞ for any β ∈ (0, α).

We now show that the limit (û∞, v̂∞) satisfies the same initial data and boundary

conditions as the solution (u∞, v∞) solving (3.2). We provide the details for û∞ with the

same arguments holding for v̂∞. Note that since B ⋐ Ω, the boundary data along ∂Ω

is trivially satisfied. From Step 1 we have already shown that e−γtũc ≤ ûc = uc ≤ ũc

in QB,T for all c≫ 1. In the limit, we therefore have that

0 ≤ lim sup
x∈Ω\B
x→x0

û∞(x, t) ≤ lim
x∈Ω\B
x→x0

ũ∞(x, t) = 0, ∀(x0, t) ∈ ∂B × [0, T ].

Hence, û∞ = 0 on ∂B × [0, T ]. Similarly, we also find that

ũ∞(·, 0) = lim
t→0+

e−γtũ∞(·, t) ≤ lim
t→0+

û∞(·, t) ≤ lim
t→0+

ũ∞(·, t) = ũ∞(·, 0),

and so û∞(·, 0) = uc(·, 0). Thus, we find that in fact (û∞, v̂∞) belong to C2+α,1+α/2(QB,T )∩

C(QB,T ) for some α ∈ (0, 1), and is a solution to problem (3.2). The uniqueness of

solutions then implies that (û∞, v̂∞) = (u∞, v∞).

Step 3 Since Theorem 3.5.10 gives that ũc, ṽc → 0 uniformly in B× [0, T ] as c→ ∞,

we find from Step 1 that limc→∞(uc, vc) = (u∞, v∞) uniformly in B× [0, T ]. The result

then follows from Step 2.

We conclude with the proof of Theorem 3.6.1.

Proof of Theorem 3.6.1. Again, we denote by ũc, ṽc the unique solutions to problem

(2.1) with d = d1, f = f1(·, ·, 0), ũc(·, 0) = uc(·, 0) and d = d2, f = f2(·, 0, ·), ṽc(·, 0) =

vc(·, 0), respectively. Denote by ũ∞, ṽ∞ the unique solutions to problem (3.1) with

d = d1, f = f1(·, ·, 0), ũc(·, 0) = uc(·, 0) and d = d2, f = f2(·, 0, ·), ṽc(·, 0) = vc(·, 0),

respectively. By Theorem 3.5.10, limc→∞ ũc = ũ∞ and limc→∞ ṽc = ṽ∞ uniformly in

Ω× [0,∞). Set

Auc := sup
t∈[0,∞)

∥uc(·, t)− u∞(·, t)∥C(Ω) and Avc := sup
t∈[0,∞)

∥vc(·, t)− v∞(·, t)∥C(Ω) .
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To treat Auc and A
v
c as c→ ∞ and in consideration of the fact that µ1,∞(d1) < µ1,∞(d2),

we consider three cases: µ1,∞(d1) > 0, µ1,∞(d1) < 0 < µ1,∞(d2), and µ1,∞(d2) < 0.

Case 1: µ1,∞(d1) > 0: It is straightforward to check that (0, ṽc) and (ũc, 0) are

subsolution and supersolution, respectively. The comparison principle then yields

uc ≤ ũc, vc ≤ ṽc, ∀c≫ 1. (3.41)

Similarly, u∞ ≤ ũ∞ and v∞ ≤ ṽ∞. It is evident that, for any T > 0,

Auc ≤ sup
t∈[0,T ]

∥uc(·, t)− u∞(·, t)∥C(Ω) + sup
t∈(T,∞)

(︂
∥ũc(·, t)∥C(Ω) + ∥ũ∞(·, t)∥C(Ω)

)︂
=: Au,1c (T ) + Au,2c (T ).

Lemma 3.6.1 yields that limc→∞Au,1c (T ) = 0 for any T > 0. As limc→∞ ũc = ũ∞

uniformly in Ω × [0,∞) thanks to Theorem 3.5.10, we arrive at limc→∞Au,2c (T ) =

2 supt∈(T,∞) ∥ũ∞(·, t)∥C(Ω). Since µ1,∞(d1) > 0, Theorem 3.5.7 ensures that

lim
t→∞

∥ũ∞(·, t)∥C(Ω) = 0,

leading to limT→∞ limc→∞Au,2c (T ) = 0. Hence, limc→∞Auc = 0.

Since µ1,∞(d2) > µ1,∞(d1) > 0, an identical approach shows that limc→∞Avc = 0,

concluding the proof of case 1.

Case 2: µ1,∞(d1) < 0 < µ1,∞(d2). In this case, (3.41) still holds. Since µ1,∞(d2) > 0,

we apply Corollary 3.5.1 to arrive at limt→∞ supc≫1 ∥ṽc(·, t)∥C(Ω) = 0. Hence, for each

0 < δ ≪ 1, there is Tδ ≫ 1 such that supc≫1 ∥vc(·, t)∥C(Ω) ≤ δ for all t ≥ Tδ.

Consider the following auxiliary problem:{︄
ut = d1∆u+ u(1Ω\Bm− u− δ)− c1Bu, in Ω× (Tδ,∞),
∂u
∂ν

= 0, on ∂Ω× (Tδ,∞).
(3.42)

Denote by uδc the unique solution of (3.42) with the initial condition uδc(·, Tδ) = uc(·, Tδ).

First, we claim that

uδc ≤ uc in Ω× [Tδ,∞), ∀c≫ 1. (3.43)

143



Indeed, since −vc ≥ −δ, there holds

(uc)t − d1∆uc = uc(1Ω\Bm− uc − vc)− c1Buc ≥ uc(1Ω\Bm− uc − δ)− c1Buc.

Then, as uc(·, T ) = uδc(·, T ), (3.43) follows from the comparison principle.

Second, we claim that for δ > 0 sufficiently small (in fact, δ < −µ1,∞(d1) is suffi-

cient), there exists a non-trivial steady state uδ,∗c corresponding to problem (3.42) that

is globally attractive. To see this, we note that

µ1(d1,1Ω\Bm− δ − c1B) = µ1,c(d1) + δ ≤ µ1,∞(d1) + δ < 0,

where the first inequality follows from Theorem 3.4.2(1). Our second claim then follows

from Theorem 3.5.8. Moreover, we have that limc→∞ uδ,∗c = uδ,∗∞ in C(Ω) by Theorem

3.5.9, where uδ,∗∞ is the unique positive steady state of (3.1) with d = d1 and f(x, u) =

u(m(x)− δ − u).

Third, we claim that

lim
δ→0+

uδ,∗∞ = u∗∞ uniformly in Ω. (3.44)

Indeed, using the comparison principle, it is not difficult to see that uδ,∗∞ is increas-

ing with respect to δ, and is bounded above by u∗∞. Clearly, the pointwise limit

limδ→0+ u
δ,∗
∞ = u0,∗∞ exists and is non-trivial. Uniqueness of solutions ensures that

u0,∗∞ = u∗∞. Dini’s theorem ensures that the convergence is indeed uniform, and so

(3.44) holds. In fact, these arguments are almost identical to those used in the proof

of Lemma 2.4.2. We omit further details.

We now treat Auc and Avc . Since µ1,∞(d2) > 0, we can follow the arguments as in

Case 1 to conclude that limc→∞Avc = 0. For Auc , we see that for any T > 0,

Auc ≤ sup
t∈[0,T ]

∥uc(·, t)− u∞(·, t)∥C(Ω)+ sup
t∈(T,∞)

∥uc(·, t)− u∞(·, t)∥C(Ω) =: Au,1c (T )+Au,2c (T ).

By Lemma 3.6.1, limc→∞Au,1c (T ) = 0 for any T > 0. We now estimate Au,2c (T ). It

follows from (3.41) and (3.43) that 0 ≤ uc − uδc ≤ ũc − uδc in Ω× [Tδ,∞), leading to⃦⃦
uc(·, t)− uδc(·, t)

⃦⃦
C(Ω)

≤
⃦⃦
ũc(·, t)− uδc(·, t)

⃦⃦
C(Ω)

, ∀t ≥ Tδ.
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Thus, for T ≥ Tδ,

Au,2c (T ) ≤ sup
t∈(T,∞)

⃦⃦
uc(·, t)− uδc(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
uδc(·, t)− u∞(·, t)

⃦⃦
C(Ω)

≤ sup
t∈(T,∞)

⃦⃦
ũc(·, t)− uδc(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
uδc(·, t)− u∞(·, t)

⃦⃦
C(Ω)

=: Ã
u,1

c,δ (T ) + Ã
u,2

c,δ (T ).

From our second claim and Theorem 3.5.10, we have for T ≥ Tδ,

lim
c→∞

Ã
u,1

c,δ (T ) = sup
t∈(T,∞)

⃦⃦
ũ∞(·, t)− uδ∞(·, t)

⃦⃦
C(Ω)

,

lim
c→∞

Ã
u,2

c,δ (T ) = sup
t∈(T,∞)

⃦⃦
uδ∞(·, t)− u∞(·, t)

⃦⃦
C(Ω)

.

Given Theorem 3.5.7, we let T → ∞ to find that

lim
T→∞

lim
c→∞

Ã
u,1

c,δ (T ) =
⃦⃦
ũ∗∞ − uδ,∗∞

⃦⃦
C(Ω)

=
⃦⃦
u∗∞ − uδ,∗∞

⃦⃦
C(Ω)

,

lim
T→∞

lim
c→∞

Ã
u,2

c,δ (T ) =
⃦⃦
uδ,∗∞ − u∗∞

⃦⃦
C(Ω)

,

where we used the fact that ũ∗∞ = u∗∞. It then follows from (3.44) that

lim
δ→0+

lim
T→∞

lim
c→∞

(︂
Ã
u,1

c,δ (T ) + Ã
u,2

c,δ (T )
)︂
= 0.

Hence, limT→∞ limc→∞Au,2c (T ) = 0, resulting in limc→∞Auc = 0. In conclusion,

limc→∞(Auc + Avc) = 0, which completes the proof in this case.

Case 3: µ1,∞(d2) < 0 This is the most difficult case since we do not have direct

control via ũ or ṽ. Instead, we carefully construct new sub/super solutions to show

that vc → 0, and then proceed as in Case 2. As in the previous cases, we focus on the

large time interval (T,∞) for some T ≫ 1 fixed since convergence in any finite time

interval [0, T ] follows from Lemma 3.6.1.

To this end, we still choose (u, v) = (ũc, 0), which satisfies the appropriate differ-

ential inequalities as shown in Theorem 3.5.10, Case 1. We then set (u, v) = (ûc, v̂c),

where v̂c solves⎧⎪⎨⎪⎩
(v̂c)t − d2∆v̂c = v̂c(1Ω\Bm− c1B + σ − u∗c − v̂c), in Ω× (T,∞),

v̂c(·, T ) = vc(·, T ), in Ω,
∂v̂c
∂ν

= 0, on ∂Ω× (T,∞),

(3.45)
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and ûc solves⎧⎪⎨⎪⎩
(ûc)t − d1∆ûc = ûc(1Ω\Bm− c1B − v̂c − ûc), in Ω× (T,∞),

ûc(·, T ) ≤ uc(·, T ), in Ω,
∂ûc
∂ν

= 0, on ∂Ω× (T,∞).

(3.46)

In (3.45), 0 < σ ≪ 1 is held fixed to be chosen independent of c. Without loss of

generality, we may assume that ûc(·, T ) ≤ u∗c for all c ≫ 1. The comparison principle

readily yields that ûc(·, t) ≤ u∗c for all t ≥ T and c ≫ 1. Moving forward, we suppress

the dependence of (ûc, v̂c) on σ.

We first claim that for σ sufficiently small,

lim
t→∞

sup
c≫1

∥v̂c(·, t)∥C(Ω) → 0. (3.47)

To see this, let w̃c solve⎧⎪⎨⎪⎩
(w̃c)t − d2∆w̃c = w̃c(1Ω\Bm− c1B + σ − u∗∞ − w̃c), in Ω× (T,∞),

w̃c(·, T ) = φ(·), in Ω,
∂w̃c

∂ν
= 0, on ∂Ω× (T,∞),

(3.48)

where φ ∈ C+(Ω) satisfies supc≫1 vc(·, T ) ≤ φ(cdot), which is possible due to the fact

that supc≫1 ∥vc(·, T )∥C(Ω) < ∞ by Lemma 3.5.2. Then, since u∗∞ < u∗c for all c ≫ 1,

the comparison principle yields v̂c(·, t) ≤ w̃c(·, t) for all t ≥ T and c ≫ 1. Moreover,

we have that

µ1(d2,mc − u∗∞) ≤ µ1(d2,mc − u∗c)

by Proposition (2.3.2)(iii). Furthermore, Lemma 3.4.2 yields

lim
c→∞

µ1(d2,mc − u∗∞) ↗ µ1(d2,m− u∗∞, B) > µ1(d1,m− u∗∞, B) = 0,

where µ1(d2,m− u∗∞, B) is the principal eigenvalue to problem (2.5) with d = d2 and

fu(x, 0) = m− u∗∞. Hence, for c sufficiently large, there exists 0 < σ ≪ 1 so that

µ1(d2,mc − u∗c)− σ = µ1(d2,mc − u∗c + σ) > 0, ∀c≫ 1. (3.49)

Choosing c∗ ≫ 1 fixed and σ ≪ 1 small enough so that (3.49) holds, we set

W̃ =Me−µ1(d2,mc∗−u∗c∗+σ)tψc∗ ,
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where ψc∗ is the corresponding eigenfunction to µ1(d2,mc∗ − u∗c∗ + σ). One readily

obtains that W̃ is a super solution to wc∗ by choosing M ≫ 1 so that

φ(·) ≤ W (·, T ).

Hence, limt→∞ ∥w̃c∗∥C(Ω) ≤ limt→∞

⃦⃦⃦
W̃
⃦⃦⃦
C(Ω)

= 0. Finally, by Lemma 3.5.2, it is not

difficult to see that w̃c is decreasing with respect to c. Consequently, for all c ≥ c∗, we

have that

v̂c(·, t) ≤ w̃c(·, t) ≤ wc∗(·, t),

and so it follows that

lim
t→∞

sup
c≫1

∥v̂(·, t)∥C(Ω) ≤ lim
t→∞

sup
c≫1

∥wc(·, t)∥C(Ω) ≤ lim
t→∞

⃦⃦⃦
W̃ c∗

⃦⃦⃦
C(Ω)

= 0,

and (3.47) holds.

Next, notice that while ûc depends on v̂c, v̂c remains independent of ûc and so

(3.45)-(3.46) do not comprise a fully coupled system of equations.

Through construction, u trivially satisfies

ut − d1u = u(1Ω\Bm− c1B − u− v). (3.50)

For v we then compute

vt − d2v = v(1Ω\Bm− c1B + σ − u∗c − v) ≥ v(1Ω\Bm− c1B − u− v)

⇐⇒ u∗c ≤ u+ σ = ûc + σ. (3.51)

Since (3.47) holds, we may choose T = T (δ) ≫ 1 independent of c so that v(·, t) ≤ δ

for all t ≥ T , for any given δ > 0 fixed. We then proceed as in Case 2 to show that

(3.51) holds for T sufficiently large, for all c≫ 1.

To this end, for a (possibly new) value δ > 0 satisfying 0 < δ ≪ σ ≪ 1, we construct

yet another solution ûδc solving problem (3.42) with ûδc(·, T ) = ûc(·, T ). Arguing as we

did to show (3.43) in the proof of Case 2, one similarly finds that

ûδc(·, t) ≤ ûc(·, t) ≤ u∗c(·), ∀t ≥ T, ∀c≫ 1, (3.52)
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and for δ small enough there exists a unique non-trivial steady state uδ,∗c such that

ûδc(·, t) → uδ,∗c (·) in C(Ω) as t→ ∞ for all c≫ 1. Note that (3.52) also gives us

0 ≤ u∗c(·)− ûc(·, t) ≤ u∗c(·)− ûδc(·, t) ⇒ ∥u∗c(·)− ûc(·, t)∥C(Ω) ≤
⃦⃦
u∗c(·)− ûδc(·, t)

⃦⃦
C(Ω)

,

for all t ≥ T , for all c≫ 1. We then estimate as follows:⃦⃦
u∗c(·)− ûδc(·, t)

⃦⃦
C(Ω)

≤
⃦⃦
u∗c − uδ,∗c

⃦⃦
C(Ω)

+
⃦⃦
uδ,∗c (·)− ûδc(·, t)

⃦⃦
C(Ω)

=: Aδ,1c + Aδ,2c (t).

(3.53)

By Theorem (3.52) and the subsequent remarks, there exists T ≫ 1 such that for all

t ≥ T , c≫ 1, there holds

Aδ,2c (t) ≤ σ

2
.

Estimating now Aδ,2c we find

Aδ,1c ≤ ∥u∗c − u∗∞∥C(Ω) +
⃦⃦
u∗∞ − uδ,∗∞

⃦⃦
C(Ω)

+
⃦⃦
uδ,∗∞ − uδ,∗c

⃦⃦
C(Ω)

=: I1 + I2 + I3. (3.54)

By Theorem 3.5.9, we may choose C sufficiently large so that

I1 + I3 ≤
σ

4
∀c ≥ C.

Similarly, by (3.44) we may choose δ sufficiently small so that

I2 ≤
σ

4
.

Combining these results, we find that⃦⃦
u∗c(·)− ûδc(·, t)

⃦⃦
C(Ω)

≤ Aδ,1c + Aδ,2c (t) ≤ σ ∀t ≥ T, ∀c≫ 1.

Finally, we are able to conclude that

u∗c(·)− ûc(·, t) ≤
⃦⃦
u∗c(·)− ûδc(·, t)

⃦⃦
C(Ω)

≤ σ

for all t ≥ T , for all c≫ 1, and so (3.51) indeed holds.

Combining (3.50) and (3.51) and noting the ordering of the initial data, the com-

parison principle yields that

ûδc(·, t) ≤ ûc(·, t) = u ≤uc(·, t) ≤ u = ũc(·, t),

0 = v ≤vc(·, t) ≤ v = v̂c(·, t), ∀t ≥ T, ∀c≫ 1. (3.55)
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We are now prepared to estimate Auc , A
v
c . Obviously,

Avc ≤ sup
t∈[0,T ]

∥vc(·, t)− v∞(·, t)∥C(Ω) + sup
t∈(T,∞)

∥vc(·, t)− v∞(·, t)∥C(Ω) =: Av,1c (T ) + Av,2c (T ),

(3.56)

Lemma 3.6.1 gives that limc→∞Au,1c (T ) = 0 and limc→∞Av,1c (T ) = 0.

We continue now to estimate Av,2c (T ). Using (3.55), we may write for any c ≥ C

Av,2c (T ) ≤ sup
t∈(T,∞)

(︂
∥v̂c(·, t)∥C(Ω) + ∥v∞(·, t)∥C(Ω)

)︂
≤ sup

t∈(T,∞)

(︂
∥v̂C(·, t)∥C(Ω) + ∥v∞(·, t)∥C(Ω)

)︂
,

where the second inequality follows from the monotonicity of v̂c(·, ·) given by Lemma

3.5.2. From (3.47) and Theorem 3.6.3, we may then take the limit as T → ∞ to obtain

lim
T→∞

Av,2c (T ) ≤ lim
T→∞

sup
t∈(T,∞)

(︂
∥v̂C(·, t)∥C(Ω) + ∥v∞(·, t)∥C(Ω)

)︂
= 0.

We now treat Au,2c (T ) using (3.55) once more:

Au,2c (T ) ≤ sup
t∈(T,∞)

⃦⃦
uc(·, t)− ûδc(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
ûδc(·, t)− u∞(·, t)

⃦⃦
C(Ω)

≤ sup
t∈(T,∞)

⃦⃦
ũc(·, t)− ûδc(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
ûδc(·, t)− u∞(·, t)

⃦⃦
C(Ω)

(3.57)

By Theorem 3.5.10, we may take the limit as c→ ∞ in (3.57) to find

lim
c→∞

Au,2c (T ) ≤ lim
c→∞

(︄
sup

t∈(T,∞)

⃦⃦
ũc(·, t)− ûδc(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
ûδc(·, t)− u∞(·, t)

⃦⃦
C(Ω)

)︄
= sup

t∈(T,∞)

⃦⃦
ũ∞(·, t)− ûδ∞(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
ûδ∞(·, t)− u∞(·, t)

⃦⃦
C(Ω)

,

where ũ∞ solves problem (3.1) with d = d1, f = ũ∞(m− ũ∞) and ûδ∞ solves problem

(3.1) with d = d1 and f = û∞(m−δ− û∞). Note that in this step, we must also choose

δ small enough so that Assumption 2.2.1 holds. Taking now T → ∞, we further obtain

by Theorem’s 3.5.10 and 3.6.3 that

lim
T→∞

lim
c→∞

Au,2c (T ) ≤ lim
T→∞

(︄
sup

t∈(T,∞)

⃦⃦
ũ∞(·, t)− ûδ∞(·, t)

⃦⃦
C(Ω)

+ sup
t∈(T,∞)

⃦⃦
ûδ∞(·, t)− u∞(·, t)

⃦⃦
C(Ω)

)︄
=
⃦⃦
u∗∞ − ûδ,∗∞

⃦⃦
C(Ω)

+
⃦⃦
ûδ,∗∞ − u∗∞

⃦⃦
C(Ω)

= 2
⃦⃦
ûδ,∗∞ − u∗∞

⃦⃦
C(Ω)
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Finally, by (3.44), we may take δ → 0+ to get the final estimate

lim
T→∞

lim
c→∞

Au,2c (T ) ≤ lim
δ→0+

2
⃦⃦
ûδ,∗∞ − u∗∞

⃦⃦
C(Ω)

= 0.

Combining all estimates, we are able to conclude that

lim
c→∞

(Auc + Avc) = 0,

completing the proof of Case 3, and the Theorem is proven.

3.7 Numerical simulation

In Figure 3.3, we observe numerical validation of Theorem 3.5.9. Actually, these profiles

are obtained using MATLAB’s pdepe function after running long enough to reach a

steady state. Then we plot the solution profile as the parameter c increases. As in the

degradation case, we fix the domain Ω = (0, L) with a single degraded region B = (4, 6)

in the centre of Ω. The habitat quality is 1 everywhere in G = (0, 4) ∪ (6, 10).

Figure 3.3: A simulation demonstrating Theorem 3.5.9 in one spatial dimension.
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Note that we do not consider the simulation of results for the competition system.

Indeed, the dynamic results are a little less interesting in this case (population u always

wins), and so it will look essentially identical to Figure 3.3 above.

3.8 Discussion

In this chapter we developed a habitat destruction model using reaction-diffusion equa-

tions. This was formulated from two perspectives. The first, coming from the definition

of habitat destruction appealed to in this work, we conceptualize a model in a ‘domain

with holes’. These holes represent the destroyed region of habitat, prescribed a homo-

geneous Dirichlet boundary condition along the inner boundary of the hole ∂B. The

second perspective, coming from Postulate One (degradation and destruction lie on a

spectrum), involves taking a limit as c→ ∞ in the degradation problem of Chapter 2;

naturally this should correspond to a habitat destruction problem. As was established

analytically, these two perspectives are equivalent. These constitute the key results of

this chapter: the uniform convergence between the habitat degradation model devel-

oped in Chapter 2 and the new habitat destruction model developed here. This result

is proven for a general right-hand side in the parabolic scalar case; a similar result holds

for the elliptic steady states. Of note is the fact that this convergence holds uniformly

in time. For the competition case, we appeal to a standard Lotka-Volterra competi-

tion model. As far as we can tell, this is the first modelling perspective establishing

a mathematically rigorous connection between the process of habitat degradation and

habitat destruction.

To study the habitat destruction problem in the first perspective (independent of

any connection with the degradation model), we had to develop some fundamental

theory. These developments are new in that they do not appear to exist in any present

texts, at least in an explicit way. However, these developments do follow from existing

theory of Hilbert spaces and standard ‘energy method’/Galerkin approximation tech-

niques. This establishes a well-posedness theory for linear equations in domains with

holes. Nevertheless, in Chapter 4, this development will prove very useful in that it

indicates where and why, exactly, our assumptions on the set B are required. This is
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particularly relevant for the question of habitat fragmentation.

Related to the convergence the parabolic and elliptic problems are the convergence

results between the related eigenvalue problems. As we have seen in the last two chap-

ters, an understanding of the global dynamics depends critically on the behaviour of

these principal eigenvalues. A significant portion of this chapter was dedicated to ex-

actly this. In Section 3.4, we introduce the relevant principal eigenvalue corresponding

to the habitat destruction problem. The properties of these new eigenvalue problems

are closely related to the eigenvalue problems introduced in Chapter 2. Indeed, a pre-

cise convergence result is established between both the principal eigenvalues and the

corresponding eigenfunctions. This is the steppingstone required to connect the global

dynamics of the degradation problem with the global dynamics of the destruction prob-

lem, and ultimately, to prove the uniform convergence between these solution sets. Also

of note is the uniform upper and lower bounds of the principal eigenfunctions as they

depend on the parameter c. This result, while intuitive, is highly non-trivial in the

end. An application of the Moser iteration technique seems to be the only applicable

method to obtain these bounds.

The results found in this chapter are also ecologically relevant. On the surface,

they validate the modelling perspective: increasing degradation leads to regions with

a population density of zero. This is in agreement with what many consider to be

the definition of habitat loss: the habitat is altered so dramatically that it can no

longer sustain the species it once did. In this case, the extirpation of species is a

consequence of habitat destruction and the modelling formulation used. This gives

a ‘lower bound’ on the likelihood for persistence of a population: if the principal

eigenvalue of the destruction problem indicates persistence, the population will always

survive in a degraded region. This may seem like a trivial fact, but it is also robust.

Moreover, to establish this and to demonstrate it rigorously in any modelling setting

is a challenge not often taken on.

In addition, we can make a comparison to the results obtained in Chapter 2: when

the habitat is merely degraded at some level, coexistence is always a possibility for

some parameter regimes. In contrast to the results of the present chapter, we find
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that when a habitat is destroyed, coexistence is never a possibility, and we recover the

‘slower diffuser always wins!’ result. While interesting, this is a consequence of the fact

that we assume the environmental heterogeneity in the remaining good region Ω \B is

identical for each population. As noted previously, this may be too restrictive to draw

broad conclusions. It may then be of interest to combine the perspective of the last

two chapters: one may consider ‘good’ and ‘degraded’ regions, in addition to destroyed

regions. Trade-offs in resilience and dispersal rates may then facilitate coexistence,

even in the habitat destruction setting. We leave such explorations for future work.

Inside of these results are some rather technical assumptions on the set B. Unlike

Chapter 2, we now require the boundary of B to be smooth and to be compactly

contained in the landscape Ω. The reason is simple enough: our analysis requires

some distance between the boundary of B and the boundary of Ω. With some further

technical arguments, it is likely that such conditions can be weakened significantly. In

increasing order of difficulty, one may consider less regular sets B, allow ∂B to touch

∂Ω at a single point, and then allow ∂B to touch ∂Ω along an interval. One difficulty is

that along this shared portion, the problem may become ill-posed due to the ‘double’

boundary condition (homogeneous Neumann and Dirichlet at the same time). For this

reason, one may need to modify the problem further to study such cases in detail.

Related to this, we require some rather strong assumptions on the initial data. In

particular, we must have that the initial data start with zero population density in the

destroyed region B. This is again more of a technical requirement and does not limit its

ecological application. Despite this, it may be possible to prove a similar convergence

result on the open interval (δ, T ) for any δ > 0. Such compatibility conditions are

common in the study of PDE, and so such restrictions are not entirely unexpected (e.g.,

the initial data satisfying a homogeneous Dirichlet boundary condition for convergence

up to t = 0 in a standard Dirichlet problem setting). We leave a further study of such

technicalities for future work.
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Chapter 4

Habitat Fragmentation

In the last two chapters, we studied in detail the global dynamics of some reaction-

diffusion equations and systems. This chapter is a departure from this level of math-

ematical analysis, opting now for a combination of analytical insights which are com-

plementary to some numerical insights. This is of necessity, in some sense, as the

analytical challenges of the problems we are about to explore are significant. More

precisely, we seek to investigate the impacts of habitat fragmentation in this chapter.

Under any reasonable definition of habitat fragmentation, this naturally leads to the

study of the influence of the size and geometry of the degraded/destroyed region B.

First, we discuss in more detail some of the conceptual and practical challenges that

arise when studying habitat fragmentation. In Section 4.1, we discuss some challenges

from the perspective of an ecologist. We then discuss how these confusions appear

to have bled into the modelling literature, and how we might remedy this (possibly

growing) disconnect. In Section 4.2 we describe some of the existing measures used

to assess fragmentation in a quantitative way. We will not use these formulations in

any direct way; however they provide insights into the kinds of qualitative behaviour

of fragmentation that researchers explore. Essential to our exploration will again be

some principal eigenvalues, all of which have been introduced in Chapters 2-3; we prove

some analytical results concerning the geometry of the region B and changes in prin-

cipal eigenvalues in Section 4.3. These results are rather technical, and no effort is

made to connect to the ecological application there. In Section 4.4, we finally explore

how to assess the impact of habitat fragmentation using the setting of partial differ-

154



ential equations. Recall from Chapter 1 Postulate Three: habitat fragmentation can

be studied as an arrangement or as a process [33]. There are actually further distinc-

tions to make: in each setting, we may consider so-called species-oriented measures or

pattern-oriented measures. We construct one measure for each, namely, the SOFFI

score and POFI score, respectively. A third approach, somewhat removed from the

first two, will assess the impact of fragmentation from the perspective of population

sizes. We construct two measures for this perspective: the TAFI score for single-species

models, and the R-TAFI score for multiple-species models. In Sections 4.5-4.6, we ex-

plore in detail each of these measures as an arrangement and as a process, respectively.

These sections include some analytical insights, but the most detailed and interesting

information will come from numerical simulations. We conclude with a discussion and

broad implications of these results in Section 4.7.

4.1 Preface

In Chapter 1, we introduced three primary components of habitat loss: degradation,

destruction, and fragmentation. From this discussion and the subsequent results of

Chapters 2-3, we found that while habitat degradation and destruction are intimately

linked, assumed to lie on a shared spectrum and then rigorously connected through an

asymptotic limit, the process of habitat fragmentation is more distinct. In some sense,

habitat fragmentation is an epiphenomenon: as a natural habitat undergoes a process

of degradation and destruction, it contemporaneously becomes fragmented. It is the

process of habitat removal itself that results in a fragmented landscape1.

This fact can, it seems, lead to some confusion in the literature. The following

references provide insights into the robust nature of the debates: [32], [33], [39], [44],

[46], [49]. These works motivate the discussion found here.

In particular, such confusions are found in the disconnect between modelling efforts

seeking to describe and quantify habitat fragmentation in some meaningful way, and

the perspectives and insights provided by ecologists most interested in the preservation

1Note carefully that we distinguish habitat fragmentation as a consequence of habitat loss from
natural changes in the heterogeneity of the environment.
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of species. From the point of view of the ecologist, there are a number of challenges

when using field studies and data to assess the impacts of fragmentation:

• Lack of consensus. There does not appear to be a consensus on what we mean

by habitat fragmentation (this point was discussed at length in Section 1.1), let

alone which measure is most useful to assess impacts of habitat fragmentation.

One commonly used approach includes measuring and comparing population-

level fitness quantities, such as net population growth rates or total abundances

under different landscape circumstances (quality or arrangement) [44]. The im-

portance of the distinction between measuring a growth rate versus the total

abundance will become evident shortly.

• Scale matters. Many data are collected at the patch scale rather than the land-

scape scale: if a landscape is made up of many smaller, roughly distinct patches,

data collected within these smaller patches making up the entire landscape ma-

trix may not accurately reflect the trends at the landscape scale [33], [39]. This

naturally leads to inconsistencies in modelling when it is not clear whether a

model is appropriate for the patch or landscape scale.

• Data collection can be challenging. Fitness alone is difficult to quantify and

measure. For example, we cannot easily measure the growth rate of a popula-

tion directly, particularly in natural ecosystems [2]; instead, we often count the

number of instances of a particular species in a given area (methods include a

mark-recapture study, using (births-deaths)/(time) to estimate a net growth rate,

recording changes in population sizes over time, or using a laboratory setting.

Some useful resources in this regard are [117] and [78]). This is expensive and

time-consuming work, therefore making it difficult to repeat for a large number

of species. This in turn makes generalization difficult. Pairing these challenges

with the complex dynamics of habitat fragmentation as it occurs in the natural

world introduces a second challenge highlighted below.

• How to connect with fragmentation. Even once a fitness measure is obtained

or data collected, one must introduce a mechanism to connect with habitat frag-
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mentation. This could focus on the particular species, its unique traits, and

reasonable assumptions on what is required for its survival. On the other hand,

one could describe independently different arrangements of habitat, and then cor-

relate this with collected data statistically. This approach is explored in [58] and

[120]; we expand on this point and discuss some of their insights momentarily.

• Context matters. It is not clear that measuring population growth rates and

total abundances will tell us the same thing; actually, it may be unreasonable to

assume that they would in the first place. To see this, one may consider a sin-

gle population that is in decline from a previously thriving population; the total

abundance may be very high while their net population change is negative. This

can lead to a number of logical errors. First, if one models habitat fragmenta-

tion with the output a predicted growth rate, while the data is total abundance,

one must take care in connecting these pieces of information directly. Second,

it leads to a logical inconsistency if we do not clarify what is meant by a “bet-

ter” or “worse” outcome: if population u under arrangement B1 has a smaller

growth rate but larger total abundance than population v under arrangement

B2, fragmentation could be “better” or “worse” for one population depending on

what we care about. This is highly relevant for both industry and conservation

efforts: a struggling population would benefit more from maximizing its growth

rate, while industry may prefer to maximize yield.

• Confounding factors. Even if the issues raised above are addressed, many ex-

isting measures of fragmentation correlate highly with total available habitat [33],

[120]. This raises issues when studying in more realistic, less idealized scenarios,

where habitat arrangement and amount are varied simultaneously. Untangling

their relative effects then becomes an additional challenge [35].

These challenges are explored in more detail in [74], asserting “...most manipulative

and mensurative fragmentation experiments have not provided clear insights into the

ecological mechanisms and effects of habitat fragmentation.”. Furthermore, habitat

fragmentation is evidently intimately related to the species under consideration, and
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the environment in which they live. Hence, we have substantial motivation to construct

novel and informative modelling techniques which

i.) Make predictions and hypotheses derived from biologically reasonable first prin-

ciples that can be rigorously tested; derivation should be mechanistic.

ii.) Assess impacts of habitat fragmentation in a general enough setting that a wide

range of species can be considered.

iii.) Assess the impacts of fragmentation in combination with other environmental

factors.

iv.) Are accessible to mathematical biologists and ecologists. Such tools should com-

plement existing efforts and experimental findings.

Generally, a species-area approach is utilized to study the effects of habitat loss [34];

this does not consider the configuration of the landscape, however, which introduces

confounding factors and unclear results [32].

From this discussion, we are inspired to take motivation from [44]: rather than

choosing a particular perspective and ignoring others, we aim to study the problem

of habitat fragmentation from two distinct perspectives, wherein we consider two fur-

ther standpoints within each overarching perspective. This will be comparable to our

efforts to study habitat degradation and destruction on a (continuous) spectrum, in

some sense. The modelling of habitat fragmentation can be broken roughly into two

categories. One end of this spectrum is species-oriented approaches. This approach

focuses heavily on the species and their individualistic responses to their environment,

and in our case, their response to environmental change. These approaches study

exogenous threats (habitat loss), endogenous threats (behaviour changes, biological

changes, species interactions), stochastic threats (environmental, genetic), or extinc-

tion proneness (interaction between species attributes and processes that threaten).

On one hand, this perspective is useful in that it considers explicitly the individual

traits of a species; on the other hand, it is limited in scope as it is impossible to do

this for every species across widely varying landscapes.
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On the other end of the spectrum are the pattern-oriented approaches. These

cases essentially focus on classifying different patterns as geometric objects through

some measure, then connecting this quantification with habitat fragmentation through,

e.g., statistical correlations with empirical data [44]. These approaches study native

vegetation (amount, size and structure of patches), edge effects, landscape connectivity,

and the interaction between matrix and landscape heterogeneity. This perspective may

be easier to apply in some cases, offering more flexibility and multiple perspectives

through numerous measures available; yet a lack of mechanistic connection to the

species considered makes generalization difficult, or even misleading [44].

These two approaches can be used in a complementary fashion, each providing dif-

ferent insights or providing alternative hypotheses to be tested and verified. Note that

this distinction and exposition, while closely related to the study of habitat fragmen-

tation “as an arrangement” versus “as a process”, is not equivalent. To be clear, one

may apply a species-oriented or pattern-oriented approach to either fragmentation “as

a process” or fragmentation “as an arrangement”.

Before we explore these ideas in more detail, we briefly explore some existing per-

spectives for measuring the impacts of habitat fragmentation.

4.2 Existing methodologies to assess impacts of frag-

mentation

In this section we present some of the existing measures of fragmentation, most of which

are from the perspective of a ‘pattern-oriented’ approach. While there are many ecolog-

ical studies assessing the impacts of fragmentation from a ‘species-oriented’ approach,

there are limited works presently in the literature that study this from a rigorous math-

ematical perspective. For this reason, we direct most of our attention to the general

trends found in statistical approaches.

We present primarily some of the ideas found in [58] and [120]. Suppose we are given

a population growth rate for two identical populations under different arrangements

of habitat, but with the total available habitat kept equal. One must first determine

which arrangement is “more” or “less” fragmented. Then we can correlate these quan-
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tifications with the measured fitness levels to determine the impact of a fragmented

landscape. In the first paper, authors present and compare a handful of common ana-

lytical tools that measure the level of fragmentation of a two-colored image; the second

paper, appearing over a decade after the first, performs a similar analysis, but with

many variations of the measures found in the first. As described earlier, they then

perform an analysis of correlations between each fragmentation measure.

In [58], they do not connect these measures to ecological findings necessarily; in-

stead, they look for correlations between measures, indicating which measures tell us

something unique about the landscape, or which measures may be superfluous. These

measures are therefore deemed pattern-oriented approaches, since they do not connect

directly to any particular species or individual traits. The purpose of the presenta-

tion here is not to give a detailed account of their findings, but rather to gain some

perspective into what kind of qualities or properties are commonly used to assess “frag-

mentation”.

Edge density: The total length of patch edge per unit area within a landscape [87].

In principle, one imagines that as the edge length per unit area increases, the landscape

is more fragmented. This measure is, however, susceptible to misinterpretation as it

is sensitive to the resolution of the map used (think of fractal-like objects, which can

have infinite edge length and finite area).

Contagion: Describes to what extent pixels are clustered. In [58], it is calculated as

the sum of two probabilities: “the probability that a pixel belongs to cover type i, equiva-

lent to the proportional representation of the cover type on the map, and the conditional

probability that, given a pixel is type i, that one of the neighbouring cells is cover type

j” [87]. This measure will be relevant to later constructions of fragmented landscapes

in the present work, where this concept of contagion motivates our construction of

simulated, fragmented landscapes.

Mean nearest neighbour distance: Defines an average edge-to-edge distance be-

tween a given patch and its nearest neighbouring patch. This measure does not use

patch area, and the distance is calculated based only on the closest other patch.
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Mean proximity index: A proximity index measures the level of isolation of a patch

within a group of patches. The determining factor is the search radius, which deter-

mines which neighbouring patches are included in the calculation. The value is given

by a sum of the ratio of patch size to nearest neighbour edge-to-edge distance. The

mean proximity index is then the average of the proximity index over all patches. Note

that, different from the mean nearest neighbour distance, patch size is incorporated.

Perimeter-area fractal dimension: Provides information on the roughness of a

patch edge. It is calculated as a slope of a ratio of the log of the perimeter and area of

each patch [87]. This measure actually lies between 1 and 2, where values closer to 2

indicate a more complex patch edge. The average across all patches is then calculated.

Mass fractal dimension: Calculates the complexity of the entire landscape, rather

than of individual patches. The measure describes how the relationship between the

number of pixels of a given landcover type in a pre-sized box changes with respect to

changes in the size of the box.

Many additional measures can be obtained through modification of these prototyp-

ical measures, each of which are studied in detail in [58].

The authors then used simulated landscapes to explore what each measure predicts

for a level of fragmentation. In most cases, this is done for two landcover types only

(good or bad). The authors found that correlations were highest between any combina-

tion of edge density, contagion, and mass fractal dimension, which implies that these

three measures roughly tell us the same thing. This is perhaps unsurprising based

on the nature of the construction of the measures. Edge density and contagion over

increasing land removal were almost exactly inversely proportional. In [120], a huge

number of other fragmentation measures, mostly modifications of similar forms to those

found here, are considered (see [120, Table 1], listing over 50 different measures).

While an interesting and useful contribution, the issues raised previously permeate

these approaches. Some authors even assert that classifying all of these measures

can be a daunting task [118], with endless modifications available. Related to the

mass fractal dimension are other perspectives that seek to measure fragmentation

through a single index. One rudimentary tool was developed in [5]. Others include
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“image-classification” approaches, which measure fragmentation via the complexity

(in a computer science sense) of an image. This can be studied using compression

algorithms, for example, where a more “fragmented” landscape has higher complexity

and therefore takes more space to store [118]. This is more of a “top-down” approach,

similar to the approach we will develop here.

Finally, there are a handful of modelling efforts falling under a more species-oriented

approach. The first is [113], where a PDE approach is used. While the original formu-

lation features explicit spatial structure, simplifying assumptions are used to reduce

it to ordinary differential equations. To achieve this, the authors write the solution

to their one-dimensional PDE as a Fourier series expansion, retain only the first term

and drop all higher order terms (i.e., a linearization procedure). This first mode sat-

isfies an ordinary differential equation which they then analyze. We instead seek to

retain an explicit spatial structure due to the important connection it has to habitat

fragmentation. More recently, [21] develops what they refer to as the Preston func-

tion, which describes triphasic species–area relationships for contiguous regions. This

Preston function comes from a spatially neutral model, and the authors construct new

formulas that relate it to several new fragmentation scenarios. They apply their mea-

sure to real and simulated landscapes to determine species-area relationships as they

also depend on spatial arrangements. The potential drawback to this approach is that

the results may be biased due to its derivation from a spatially neutral setting, re-

quiring the distribution of the species considered to be ‘statistically similar to those of

neutral species’, limiting its scope.

Our ultimate goal in this chapter is to develop robust assessment tools. In what

follows, we develop some fragmentation measures using tools and results obtained in

Chapters 2-3. The primary object of study will be the associated eigenvalue prob-

lems, and in particular, changes in the size of the principal eigenvalue with respect to

changes in the lost region B. As it turns out, the principal eigenvalue obtained via a

linearization procedure (about 0) is directly related to the intrinsic growth rate of the

population, at least for small population sizes [8], [94]. Hence, studying changes in this

population growth rate allows one to make direct connections between the geometric
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properties of a degraded/destroyed region and the fitness of the population. There-

fore, we take a moment to explore some technical analytical results. We then connect

these results to some fragmentation indices developed in Section 4.4. Due to the level

of complexity in studying such problems analytically, we use numerical simulation to

gain further insights.

4.3 Properties of principal eigenvalues as a function

of B ⋐ Ω

In this section, we explore properties of the principal eigenvalues for problems 2.4, 2.5,

3.4 and 3.5. We focus primarily on demonstrating some results for λ1(m,B); similar

results follow for all other eigenvalue problems. As we soon find, these proofs depend

critically on certain properties of the principal eigenvalue λ1(m,B), all of which are

satisfied by the other eigenvalue problems as well.

For tractability, we simplify the problem and consider only λ1(B) := λ1(1, B), the

special case where the habitat quality is 1 everywhere in Ω \ B. Note that in such a

case, the connection to µ1(d, 1, B), the principal eigenvalue to problem (3.5), is rather

direct.

Continuity of λ1(B) with respect to B

We prove the following theorem regarding the continuity of λ1(B) with respect to the

set B, in some sense. Denote by Br(x0) the ball of radius r > 0 about the point x0 ∈ Ω.

Recall that the Hausdorff distance between two subsets of Euclidean space is given by

d(A1, A2) = inf {r > 0 : A2 ⊂ Fr(A1) and A1 ⊂ Fr(A2)} ,

where Fr(A) := ∪x∈ABr(x) is the so called “r-fattening” of the set A. We have the

following continuity result with proof following modification of the techniques used in

[42, Theorem 1.6].

Theorem 4.3.1. Suppose A, An are closed subsets compactly contained in Ω such

that d(A,An) → 0 as n → ∞. Denote by λ1(An), λ1(A) the principal eigenvalues to

163



problem (3.4) with B := An, n ∈ N, and B := A, respectively. Denote by ψn1 , ψ1 the

corresponding eigenfunctions. Then it is true that

lim
n→∞

|λ1(A)− λ1(An)| = 0.

Furthermore, there holds

lim
n→∞

ψn1 = ψ1 strongly in H1(Ω).

Proof. Let Aε = Fε(A) for some ε > 0 and assume that d(A,An) → 0 as n → ∞.

Then for any fixed ε > 0, there exists n large enough so that An ⊂ Aε for all n ≥ n.

Obviously A ⊂ Aε holds by definition, and so we then have that

H1
Aε
(Ω) ⊂ H1

An
(Ω) ∩H1

A(Ω). (4.1)

Consequently, λ1(An) ≤ λ1(Aε) by Proposition 3.4.1 (i) for all n ≥ n.

By the density of C1
A(Ω) in H

1
A(Ω) (by definition; recall that under our regularity

assumptions for the hole in Ω, H1
A(Ω) can be identified through the completion of C1

A(Ω)

with respect to the H1-norm), there exists a function ψδ1 ∈ C∞(Ω), which vanishes in

a neighbourhood of A, and is H1-close to ψ1, i.e.⃦⃦
ψ1 − ψδ1

⃦⃦2
H1(Ω)

≤ δ,

for each δ > 0. Furthermore, we may choose ε small enough so that the support of ψδ1

is contained within Ω\Aε. This implies that ψδ1 ∈ H1
Aε
(Ω) ⊂ H1

An
(Ω), and ψδ1 is a valid

test function in the variational characterization of λ1(An):

λ1(An) ≤
⃦⃦
∇ψδ1

⃦⃦2
L2

≤ ∥∇ψ1∥2L2 +
⃦⃦
∇ψδ1 −∇ψ1

⃦⃦2
L2

≤ λ1(A) + δ.

Repeating this process for the eigenfunction ψn1 associated to λ1(An) (which is possible

due to (4.1)), we find that

λ1(A) ≤ λ1(An) + δ.
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Note that, as A,An ⊂ Aε, we may choose δ depending only on Aε. Combining these

results we conclude that

|λ1(A)− λ1(An)| ≤ δ,

as desired.

Next, since λ1(An) → λ1(A), under a unit L2-normalization we find that

∥∇ψn1 ∥
2
L2(Ω) = λ1(An) <∞,

and so {ψn1 }∞n=1 is uniformly bounded in H1(Ω). A subsequence therefore exists (which

we still denote by n) such that ψn1 → ψ∞ strongly in L2(Ω) and weakly in H1(Ω), for

some ψ∞
1 ∈ H1

A(Ω). In particular, ψ∞
1 ≡ 0 a.e. in A by the strong convergence in

L2(Ω). By the variational characterization of λ1(A) and the weak lower semicontinuity

of the norm, we then observe that

λ1(A) ≤ ∥∇ψ∞
1 ∥2L2 ≤ lim inf

n→∞
∥∇ψn1 ∥

2
L2 ≤ lim

n→∞
λ1(An) = λ1(A),

and so ψ∞
1 ≡ ψ1 by the uniqueness of the eigenfunction. This completes the proof.

We have the following corollary for problem (3.5).

Corollary 4.3.1. Under the same assumptions, Theorem 4.3.1 also holds for µ1(d,m,B),

the principal eigenvalue for problem (3.5).

This result holds for the degradation eigenvalue problems as well. Note that in

this case the result is somewhat trivial: the convergence result µ1(d,mn) → µ1(d,m)

for mn → m in C(Ω) actually holds if mn converges in Lp(Ω) for p > N/2 [8], [43].

Hence, the continuity of λ1(1Gm−c1B) and µ1(d,1Gm−c1B) with respect to B follows

immediately whenever

lim
n→∞

∥1An − 1A∥Lp(Ω) = 0

for any p ≥ 1. This is a different form of convergence than in the Hausdorff sense; one

may replace Hausdorff with convergence in the sense of symmetric difference, i.e., the

(Lebesgue) measure of the set (A1 \ A2) ∪ (A2 \ A1). The technicalities surrounding

different measures with respect to different metrics in different spaces are quite complex
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and beyond the scope of the present work; for this reason, we focus less on true rigour

and more on the big picture as it applies to biological application. This does leave

room for future work, however, as such an exploration may yield different insights into

the measures which we use to assess fragmentation.

Differentiability of λ1(A) under certain deformations

In this section, we prove (using essentially existing results) that the function λ1(A)

is differentiable with respect to perturbations of the set A. The sense in which this

differentiability holds is the following: consider a smooth map V : RN → RN referred

to as the deformation field. Then, we consider perturbations of the set A of the form

At := (Id+ tV )(A) = {x+ tV (x), x ∈ A} .

Then the following theorem holds.

Theorem 4.3.2. The function λ1(At) is differentiable with respect to t at t = 0 and

has the form

d

dt
λ1(At)

⃓⃓⃓⃓
t=0

= λ′1(A) = −
∫︂
∂A

(︃
∂ψ1

∂ν

)︃2

⟨V, ν⟩ dS,

where ψ1 is the normalized eigenfunction associated to λ1(A) and ν denotes the outer

normal vector to ∂A.

Remark 4.3.1. This result is emblematic of Hadamard’s variational formula and re-

lated formulations, see [53]. The pairing ⟨V, ν⟩ plays the role of the usual outward

facing unit normal vector, denoted by ∂/∂ν throughout the present work. The more

abstract form ⟨V, ν⟩ is somewhat complicated; we avoid most of the technical details

but provide appropriate references and key steps in the following proof.

Proof. The proof of this result follows from identical computations found in the [41].

Actually, our setting is much simpler. We highlight the key steps only, leaving out

technical computations.

First, one shows the differentiability of λ1(At) and its associated eigenfunction ψt

at t = 0 through an application of the implicit function theorem ([41, Lemma 2.1])
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and the Fredholm alternative. Such a result also follows from the more abstract theory

developed in [75, Chapter 5], but the following approach is more direct. Essentially,

one applies the IFT to the map

g(t) = (λ1(At), ψt) ∈ R×H1
At
(Ω).

From our previous results, g(0) = (λ1(A), ψ1) and is continuous at zero. Using the

weak formulation of solutions to the eigenvalue problem for t > 0 and the IFT, it

follows that g(t) is differentiable at t = 0, that is, λ1(At) and ψt are differentiable at

zero (see the proof of [41, Lemma 2.7]). This does not, however, immediately give us

the form for λ′(A) found in the theorem.

Once differentiability is established, one formulates the associated PDE to which

ψ′ := ∂ψt

∂t

⃓⃓
t=0

is a solution. In fact, ψ′ solves⎧⎪⎨⎪⎩
∆ψ′ + λ′1ψ1 + λ1ψ

′, in Ω,
∂ψ′

∂ν
= 0, on ∂Ω,

ψ′ = −∂ψ1

∂ν
⟨V, ν⟩ , on ∂A,

where ⟨·, ·⟩ denotes a pairing along ∂A between the deformation field V and the normal

vector ν. Again, this formulation is somewhat complicated, so we refer to the detailed

discussion in [53] regarding the interpretation of ⟨V, ν⟩. Roughly, it is defined as the

rate of deformation of the surface ∂A in the instantaneous normal direction. Also note

that in the derivation of this problem, the normal derivative ∂ψ1/∂ν actually appears

as the gradient ∇ψ1 along ∂A; therefore, the gradient along ∂A is actually in the

direction of the normal, and so they are equivalent along ∂A.

Once it is verified that ψ′ satisfies the problem above, we multiply by a test function

ψ ∈ H1(Ω) with unit L2-norm. Integrating over Ω yields∫︂
Ω

∆ψ′ψ + λ′1

∫︂
Ω

ψ1ψ + λ1

∫︂
Ω

ψ′ψ = 0.

Substitute ψ := ψ1 and apply Green’s second identity to obtain

λ′1 +

∫︂
Ω

ψ′∆ψ1 + λ1

∫︂
Ω

ψ′ψ1 +

∫︂
∂A

ψ′∂ψ1

∂ν
= 0,

where all other boundary terms vanish, and we have used that ψ1 has unit L2-norm.

Substituting the equation satisfied by ∆ψ1 and the boundary condition along ∂A sat-

isfied by ψ′, we obtain the result found in the theorem statement.

167



This result yields the following interesting corollary.

Corollary 4.3.2. Consider Ω = BR(0) for some R > 0. Then the hole A := Br(0)

for 0 < r < R fixed is critical in the sense that λ′1(A) = 0 for all divergence free

deformations of A. Furthermore, Br(0) is a global maximum with respect to translations

of the set Br(0) such that Br(0) ⊂⊂ BR(0).

Proof. First, one immediately finds that when A = Br(0), Ω = BR(0), solutions to the

problem are radially symmetric. Hence, ∂ψ1

∂ν
= C > 0 for some constant C all along

∂A. Hence, using the formula for λ′1(Br(0)) obtained in Theorem 4.3.2 we have

λ′1(Br(0)) = −
∫︂
∂A

(︃
∂ψ

∂ν

)︃2

⟨V, ν⟩ dS

= −C2

∫︂
∂A

⟨V, ν⟩ dS = 0,

since V is a divergence free vector field.

Next, we consider transformations of the form At := Br(−t, 0, . . . , 0), i.e. a transla-

tion of the ball in the first coordinate. Note that due to symmetry of the problem under

translations, we may consider without loss of generality translations in one coordinate

direction along that particular axis. In two dimensions, this is simply the ball of radius

r centred at the point (t, 0) for 0 < t < R− r. Note the upper bound on t ensures that

At ⊂⊂ Ω.

We now construct a test function for any appropriately chosen translation based

on the radially symmetric solution ψ0 corresponding to λ1(A0) = λ1(Br(0)). To this

end, take ψ0 and define ψ̃ = ψ0(−t, 0, . . . , 0) so that ψ̃ ≡ 0 in a (fixed) translated

hole Br,t := Br(−t, 0, . . . , 0). Then we extend ψ̃ to RN by a constant value, where

the constant is given by maxx∈Ω ψ0. We can better understand the approach through

Figure 4.1.
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Figure 4.1: A schematic demonstrating the idea behind the proof of Corollary 4.3.2.
The solid curve denotes the eigenfunction ψ0 when the hole Bρ(t) is placed exactly in
the centre t = 0. The dashed curve denotes the shifted eigenfunction ψ̃. On the right
side, we ‘lose’ some of the eigenfunction. On the left side, we extend the eigenfunction
by a constant value. This is our test function. Then, since the (weak) gradient of this
test function is identically zero in the extended region, it contributes nothing in the
variational characterization of the eigenvalue.

Claim: maxx∈Ω ψ0 = maxx∈∂BR(0) ψ0, and so this extension is continuous on BR(0).

In particular, ψ̃ ∈ H1
Br,t

(BR(0)) and is thus a valid test function on this space.

The proof of this claim can be seen as follows. Since ψ0 is radially symmetric,

denote by ϕ(s) the solution solving ϕ′′ + s−1ϕ′ + λ1ϕ = 0 subject to ϕ′(R) = ϕ(r) = 0.

By the positivity of ϕ in Ω and the boundary condition at r, one readily finds that

an interior minimum is impossible. Suppose now that an interior maximum occurs at

some point s0 ∈ (r, R). Because an interior minimum is impossible, there is no other
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such maximum in (s0, R). Then, on the interval (s0 − ε, R) we would find

ϕ′(s) > 0 on (s0 − ε, s0);

ϕ′(s0) = 0;

ϕ′(s) < 0 on (s0, R);

ϕ′(R) = 0.

Then,

ϕ′′(R) = lim
h→0

ϕ′(R)− ϕ′(R− h)

h
= − lim

h→0

ϕ′(R− h)

h
> 0,

for h small. This is a contradiction, since ϕ′′(R) = −λ1ϕ(R) < 0. Hence, no interior

maximum exists and maxx∈Ω ψ0 = maxx∈∂BR(0) ψ0.

We now estimate as follows: since ψ̃ ≡ const. in BR(0) \BR,t, we find that∫︂
BR(0)

⃓⃓⃓
∇ψ̃
⃓⃓⃓2
dx =

∫︂
BR(0)\BR,t

⃓⃓⃓
∇ψ̃
⃓⃓⃓2
dx+

∫︂
BR(0)∩BR,t

⃓⃓⃓
∇ψ̃
⃓⃓⃓2
dx

≤
∫︂
BR(0)\BR,t

|∇ψ0|2 dx+
∫︂
BR(0)∩BR,t

⃓⃓⃓
∇ψ̃
⃓⃓⃓2
dx

=

∫︂
BR(0)

|∇ψ0|2 dx.

Next, by the claim above, since ψ0 ≤ ψ̃ in BR(0) \BR,t, we have that∫︂
BR(0)

ψ2
0dx ≤

∫︂
BR(0)

ψ̃
2
dx.

Consequently, from the variational characterization of λ1(Br,t), we have that

λ1(Br,t) ≤

∫︁
Ω

⃓⃓⃓
∇ψ̃
⃓⃓⃓2

∫︁
Ω
ψ̃

2

≤

∫︁
BR(0)

|∇ψ0|2∫︁
BR(0)

ψ2
0

= λ1(Br(0)).

Furthermore, since ψ̃ is not an eigenfunction of the translated problem, this inequality

is strict. Hence, λ1(Br,t) < λ1(Br(0)) for any t > 0. In particular, this implies that

λ1(Br(0)) is a maximum among translated balls within a larger ball.
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We can also prove the following result which provides the asymptotic behaviour of

the principal eigenvalue λ1(Bρ) as ρ→ R−.

Theorem 4.3.3. Suppose N = 2. Fix R > 0 with 0 < ε0 ≤ ρ < R. Then there holds

λ1(Bρ(0)) ≥ max

{︃
1

(R− ρ)2
− 1

2

(︁
M2 + ε−1

0

)︁
, 0

}︃
,

where M = M(R) := maxx∈∂BR(0) ψ1. In particular, since ψ1 is uniformly bounded for

all ρ ∈ (ε0, R),

λ1(Bρ(0)) ∼ (R− ρ)−2

as ρ→ R−.

Actually, this result will follow from a relatively elementary result: a Poincaré-type

inequality that is a property of the underlying space H1
ρ(BR(0)).

Lemma 4.3.1. For any ψ ∈ H1
ρ(BR(0)) it is true that∫︂ R

ρ

ϕ2dr ≤ (R− ρ)2
∫︂ R

ρ

|ϕ′|2 dr.

Proof. Let r ∈ (0, ρ). Using the fundamental theorem of calculus and applying Hölder’s

inequality we can write

|ϕ(r)|2 =
⃓⃓⃓⃓∫︂ r

ρ

ϕ′ds

⃓⃓⃓⃓2
≤ (r − ρ)

∫︂ r

ρ

|ϕ′|2 ds

≤ (R− ρ)

∫︂ R

ρ

|ϕ′|2 ds.

Hence, if we integrate this with respect to r we find∫︂ R

ρ

ϕ2dr ≤
∫︂ R

ρ

(︃
(R− ρ)

∫︂ R

ρ

|ϕ′|2 ds
)︃
dr

= (R− ρ)2
∫︂ R

ρ

|ϕ′|2 ds,

and the result is proved.

We now prove Theorem 4.3.3.
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Proof of Theorem 4.3.3. Set Ω := BR(0) ⊂ R2, A := Bρ(0) ⊂ R2 with 0 < ρ < R.

Then, the solution to our eigenvalue problem is radially symmetric, and our eigenvalue

problem can be written as follows through a polar-coordinate transform:⎧⎪⎨⎪⎩
r2ϕ′′ + rϕ′ + λ1r

2ϕ = 0, in (ρ,R),

ϕ′(R) = 0,

ϕ(ρ) = 0.

The abstract framework in Chapter 3 guarantees the existence of a principal eigenvalue

λ1(Bρ(0)) with eigenfunction ψ1. Choose ψ1 with unit L2-norm. Since ρ > 0, λ1 > 0

by Theorem 3.4.1.

Dividing both sides of the equation by r2, multiplying by ψ1 and integrating by

parts on the second order derivative term yields

λ1(Bρ(0)) =

∫︂ R

ρ

|ψ′
1|

2 −
∫︂ R

ρ

1

r

(︃
ψ2
1

2

)︃′

.

Note that we have only λ1 on the left-hand side by the normalization of the eigenfunc-

tion. Applying the Lemma and integrating by parts once more, we find

λ1(Bρ(0)) ≥ (R− ρ)−2 − 1

2

(︄
ψ2
1(R) +

∫︂ R

ρ

(︃
ψ1

r

)︃2
)︄
.

Finally, using the normalization of ψ1 once more along with the fact that 0 < ε0 ≤ ρ

to obtain

λ1(Bρ(0)) ≥ (R− ρ)−2 − 1

2

(︁
ψ2
1(R) + ε−1

0

)︁
,

and the proof is complete.

We have the following consequence, relating the previous result to behaviour of

µ1(d, 1, Bρ(0)).

Corollary 4.3.3. Fix d > 0. Then, there exists ρ∗ = ρ∗(d) > 0 such that

µ1(d, 1, Bρ(0)) > 0

for all ρ ∈ (ρ∗, R).
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Proof. The result follows from the asymptotic behaviour of λ1(Bρ(0)) as ρ → R− and

Theorem 3.4.2. In fact, ρ∗ is given by the unique value such that

λ1(Bρ∗(0)) = d,

whose existence for any d > 0 follows from the monotonicity properties of λ1 and the

fact that λ1(Bρ(0)) ↘ 0 as ρ→ 0.

We now state an interesting result found in [8] which applies to the degradation

problem (2.4). We modify the statement to fit the notation used here.

Theorem 4.3.4. Let mn(x) ∈ L∞(Ω) for each n = 1, 2, . . . . Suppose further that

there is a constant M1 so that ∥mn∥L∞(Ω) ≤M1 for all n. Denote the positive principal

eigenvalue of problem (2.4) with m = mn(x) by λ1(mn). We have λ1(mn) → ∞ as

n→ ∞ if and only if there exists M0 > 0 such that∫︂
Ω

mn(x) dx ≤ −M0 for all n.

and

lim sup
n→∞

∫︂
Ω

mnψ ≤ 0

for all ψ ∈ L1(Ω) with ψ ≥ 0 a.e.

This has interesting implications for the problem of habitat fragmentation, which

we explore in the following sections. Before we get there, notice that combined with

Proposition 2.3.2 we can conclude that if λ1(mn) → +∞, then lim infn→∞ µ1(d,mn) > 0

for all d > 0. This provides a simple mechanism by which “chopping up” the landscape

into good and bad regions can cause deterministic extinction if the average habitat

quality is non-positive!

4.4 ‘Species-oriented’ versus ‘pattern-oriented’ ap-

proaches

Previously, we used a reaction-diffusion equation approach to model habitat degra-

dation and habitat destruction, both in a single species model and in a two-species
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competition model. In those results, we obtain very general rules that are consistent

with our current understanding of habitat loss and its impact on biodiversity. This

indicates that, roughly, the models make predictions that are consistent with our un-

derstanding of these two aspects of habitat loss. In particular, the models are successful

in that they predict species extirpation as a consequence of habitat loss.

At the heart of this analysis was the nature of the problems themselves (they

are continuous-in-time monotone dynamical systems) and a detailed study of local

stability. The local stability, as it was, depended precisely on the sign of a principal

eigenvalue µ1: µ1 < 0 predicted persistence, while µ1 > 0 predicted extinction. If we

set r1 := −µ1, r1 is the average net growth rate over the entire landscape Ω, at least for

small population sizes1. Depending on the form of the reaction term, we may decay to

zero, grow indefinitely, or saturate at some threshold, generally given by the carrying

capacity. Therefore, this growth rate can be used as a proxy to assess the fitness of a

population: r1 > 0 is a fit population, while r1 < 0 is not; a population with growth rate

r̃1 satisfying r̃1 > r1 > 0 is more fit than the first. In the ecological literature, this is

just one method to assess the fitness of a population [50], [110]. Therefore, we propose

that this principal eigenvalue as it depends on the subset B can be used as a proxy for

assessing impacts of fragmentation. The sense in which we mean fragmentation will

depend on the measure we use, which we describe shortly and will connect directly to

our discussion of habitat fragmentation.

To construct our measure, we let

µ̃1(d, m̃, c, B) := µ1(d,1Gm̃− c1B)

be the principal eigenvalue to problem (2.5) with m := 1Gm̃ − c1B. m describes the

habitat quality in G, while the region B is assumed degraded at some level c ≥ 0. Each

of our measures will be built from the following quantity:

Γ(d, m̃, c, B) := max{−µ̃1(d, m̃, c, B), 0}. (4.2)

The preliminary measure (4.2) simply says:

1Recall that this quantity in the given form is obtained through a linearization about the trivial
steady state.
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• Larger values of Γ imply a relatively more fit population.

• A value of 0 implies population decline, indicating deterministic extirpation.

We refer to Γ generally as a Fitness Index (FI) due to its ability to measure fitness

(through a theoretical population growth rate) in relation to some key biological pa-

rameters (diffusion rate d, habitat quality m̃, level of degradation in destroyed habitat

c, and the geometry of the set B).

Through construction, this is very much a species-oriented measure. It depends

on key parameters that are species-dependent, but more notably, it does not make an

effort to differentiate between particularly bad arrangements of habitat in a landscape.

This is in contrast to the usual pattern-oriented approaches, where any configuration

can, in principle, be classified and compared in a less coarse fashion. We are able to

take such liberties because, unlike most other habitat fragmentation models, we have

a direct and mechanistic connection to the growth rate of the population via the PDE

model2. Of course, it is not difficult to modify the definition above to compare the

theoretical growth rates directly whether positive or negative; we are instead interested

in cases where it is possible to facilitate population persistence or predict population

decline through the properties of the set B alone. Also note that, as opposed to the

destruction perspective of Chapter 3, we choose the degradation perspective of Chapter

2 as the foundation of our framework. This is due to the generality of the problem (the

destruction case can be obtained through the limit as c → +∞, as shown in Chapter

3) and the weaker assumptions on the set B.

We now simplify the setting to further isolate the effects of fragmentation alone.

Similar to the competition-degradation system case, we take m̃ = 1 so that the habitat

quality is fixed to 1 in the region G. Denote by ω the set of subsets

ω := {B ⊂ RN : B ⋐ Ω}

and by ωα the set of subsets

ωα := {B ∈ ω : |B| = α ∈ (0, |Ω|)}.
2In such a case, we would take m̃ = f ′(x, 0), the linearization of the reaction term at zero.
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Species-Oriented Fragmentation Fitness Index (SOFFI)

Our proposed Species-Oriented Fragmentation Fitness Index (SOFFI) is a function

R+ × R+ × ω ↦→ [0, 1) defined by

SOFFI(d, c, B) := Γ(d, 1, c, B), (4.3)

with a focus on changes to the set B. Notice that as |B| → 0+ in measure, SOFFI → 1−

for any d > 0 and c ≥ 0, giving the upper bound found in the range. The lower

bound follows from the definition of Γ. These results and others are found in Theorem

4.5.1. This inherits the same interpretation as Γ: the larger the SOFFI, the more fit

the population is predicted to be in that particular habitat arrangement. Through

construction, the measure is species-oriented in three ways: an assumption of diffusive

movement of the population, a variable rate of diffusion, and a variable level of impact

in the degraded regions.

Pattern-Oriented Fragmentation Index (POFI)

On the other hand, the fitness index Γ can be modified to construct pattern-oriented

measures. In this case, we seek to remove some of the dependence on biological pa-

rameters in addition to some normalization procedure. This way, the measure depends

primarily on properties of the set B while neutralizing the influence of other species-

dependent parameters. We can remove two of the biologically related components,

however it is important to note that we cannot remove the assumption of diffusive

movement!

To this end, we fix the diffusion rate d = |Ω|2/N and the degradation level at c = 0.

This way we study the problem at an approximately fixed scale, so that we do not

bias the measure towards small domains3 and the average of the environmental het-

erogeneity remains positive, guaranteeing the positivity of the measure by Proposition

2.3.2. Then, we restrict ourselves to the space ωα. As shown in [42, Theorem 1.2] for

3Since we can rescale space through a rescaling of diffusion, using the volume of the domain to the
power 2N where N is the spatial dimension, we keep the measure roughly fixed across diffusion rates.
For example, if Ω = (0, L) or (0, L) × (0, L), d = L2 so it is as if we study the problem in (0, 1) or
(0, 1)× (0, 1), respectively.
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a different but closely related problem, there is evidence to suggest that, given any

α ∈ (0, |Ω|) fixed, there exists a set B∗
α ⊂ Ω such that

SOFFI(|Ω|2/N , 0, B) ≤ SOFFI(|Ω|2/N , 0, B∗
α),

for any other subset B ∈ ωα. In ecological terms, there exists an optimal habitat

maximizing the SOFFI score. Our Pattern-Oriented Fragmentation Index (POFI) is a

function ωα ↦→ (0, 1] defined by

POFI(B) :=
SOFFI(|Ω|2/N , 0, B)

SOFFI(|Ω|2/N , 0, B∗
α)
. (4.4)

POFI removes much of the novelty of the species-dependent properties included in

SOFFI, however we must note that the measure is intrinsically species-oriented in

some capacity since the measure assumes a diffusive movement mechanism!

Total abundance as a measure of fragmentation

In other cases, such as the competition systems previously explored, the eigenvalue

problems are not as easy to study, either analytically or numerically. This is because

the stability now depends on eigen-systems, in which case tools like the variational

characterization of the principal eigenvalue do not exist. As an alternative, one may

assess the ‘fitness’ of a population through the total abundance at a steady state.

There are two important caveats to make here:

• Total abundance is not a standard measurement of fitness. Fitness is generally

understood in the sense of an ability to reproduce, survival, reproductive rates,

and the ability for a population to persist [96]. A population with high total

abundance but low reproductive output may be less fit than expected (especially

if the population is in decline, for example).

• Total abundance predictions are sometimes inherently at odds with the popula-

tion growth rate measure of fitness, at least in the present setting: as the popu-

lation is at a temporally constant steady state, the change in total population is

zero! This indicates a population-level fitness of “zero” from the perspective of

population growth rates.
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Despite these caveats, total abundance is sometimes used to assess ecosystem health

[24], [107]. The Biodiversity Intactness Index (BII) gives a score between 0 and 100,

indicating the percentage of population decline in some region, where we compare to a

presumed population before human-induced habitat loss. This could, in principle, be

used for a single species, but seems to generally be used in systems with multiple species

coexisting (hence the biodiversity aspect of the index). Due to the straightforward

mathematical formulation this provides, we study this perspective in some detail as

well.

Suppose we are given a population density ud,c,B(x), assumed at steady state, where

c, B indicate the dependence on the level of degradation c ≥ 0 and the properties of

the set B. Assume we have a theoretical population density u∗(x) representing the

outcome when there is no disturbance to the habitat. More precisely, u∗ corresponds

to the case when |B| = 0, and so is never identically zero so that persistence is always

a possibility. Our Total Abundance Fragmentation Index (TAFI) is then a function

C(Ω)+ × C(Ω)+ ↦→ [0, 1] defined by

TAFI(ud,c,B, u
∗) :=

∫︁
Ω
ud,c,Bdx∫︁
Ω
u∗dx

. (4.5)

Since 0 ≤ ud,c,B ≤ u∗ in Ω, the range of TAFI follows. Beyond the reasoning above, we

study this perspective in some detail since it is commensurate with some experimental

methodologies (such as measure incidence rates of a given species in some area) and is

of general interest to the understanding of the consequences of habitat fragmentation.

There are some other changes in perspective (as opposed to the BII) that may

make this a more reasonable, relative fitness measure of the population: in the case of

a competition system, we can compare the theoretical population abundance of each

population in the competition system relative to the theoretical population abundance

of all populations. This gives a relative measure of population fitness between two (or

more) populations by comparing their relative incidence rates as they depend on habitat

quality and arrangement. Given a j-species competition model for j ≥ 2, denote by

u∗i (x) the population abundance of population i at steady state. The Relative-Total
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Abundance Fragmentation Index for each population ui is then

R-TAFI(u∗i ) =

∫︁
Ω
u∗i dx∑︁j

k=1

∫︁
Ω
u∗kdx

.

R-TAFI may be considered as a BII measure for reaction-diffusion equations.

In the following two sections, we explore the predictions and hypotheses produced

from these fragmentation measures. In all perspectives, we are able to consider habitat

fragmentation as an arrangement as well as habitat fragmentation as a process.

4.5 Assessing the impact of fragmentation as an ar-

rangement

In this section, we focus on assessing the impact of fragmentation as an arrangement.

As described in Chapter 1, studying habitat fragmentation as an arrangement alone is

sometimes referred to as habitat fragmentation per se. This is a perspective where we

study the effect of arrangement independent of total available habitat [33].

To suit this perspective, we will work in landscapes with degraded region B ⊂ Ω

such that the total area of B is fixed. Therefore, in this section we always assume:

B ∈ ωα for some α ∈ (0, |Ω|).

This way, the total available habitat Ω \ B is held fixed, and there is always some

amount of habitat lost. We will then assess the differing impacts for habitats of different

configurations of B, isolating the effect of changes in arrangement of habitat and non-

habitat. Due to the complexity of this geometric problem, we study it both numerically

and analytically where possible.

4.5.1 Species-oriented approach

We begin with the species-oriented measure SOFFI. We state first some analytical

results which can be verified and explored further later using numerical techniques.
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Analytical insights

First, we connect some properties of the principal eigenvalue to the SOFFI measure.

We have the following properties.

Theorem 4.5.1. Assume d > 0, c ≥ 0. The following hold.

1.) For d, c fixed, SOFFI(d, c, B) ∈ [0, 1).

2.) SOFFI(d, c, B) is decreasing in both d and c. If B1 ⊂ B2, SOFFI(d, c, B1) >

SOFFI(d, c, B2).

3.) For d, c fixed, SOFFI(d, c, B) → 1− as |B| → 0+ in measure (i.e., as α → 0+).

4.) If |G| > cα for G, c fixed, SOFFI(d, c, B) ∈ (0, 1) for all d > 0. Moreover,

limd→0+ SOFFI(d, c, B) = 1 and limd→∞ SOFFI(d, c, B) = |G| − cα.

5.) If |G| < cα for G, c fixed, limd→0+ SOFFI(d, c, B) = 1. Furthermore, there exists

a d∗ > 0 such that

• SOFFI(d, c, B) ∈ (0, 1) for all d ∈ (0, d∗);

• SOFFI(d, c, B) = 0 for all d∗ ∈ (d∗,∞)

6.) If |G| = cα for G, c fixed, then SOFFI(d, c, B) ∈ (0, 1) for all d > 0, but

limd→∞ SOFFI(d, c, B) = 0.

7.) Fix d,B and let µ1(d, 1, B) be the principal eigenvalue to problem (3.5). We have

the following.

• If µ1(d, 1, B) < 0, then infc>0 SOFFI(d, c, B) ∈ (0, 1).

• If µ1(d, 1, B) > 0, there exists c∗ > 0 such that SOFFI(d, c, B) ∈ (0, 1) for

all c < c∗, and SOFFI(d, c, B) = 0 for all c > c∗.

8.) Fix d, c. We have the following.

• Suppose |G| > cα. Then SOFFI(d, c, B) ∈ (0, 1) for any configuration B ∈

ωα.
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• Suppose |G| < cα. Then there exists a sequence of habitats {Bn}n∈N with

fixed volume such that SOFFI(d, c, Bn) → 0 as n→ ∞; in fact, there exists

a sequence such that SOFFI(d, c, Bn) = 0 for all n ≥ n ≥ 0.

Proof. Each of these properties follow from properties of µ1(d,m) found in Proposition

2.3.2 and the definition of SOFFI.

Ecological interpretations of SOFFI’s properties

All of these properties are ecologically relevant and fall within the scope of works such

as [58]: we want to know, and more importantly understand, the limits of any given

measure of fragmentation. Unlike many existing fragmentation measures, these results

provide detailed hypotheses that can be verified experimentally, at least in principle.

We interpret each of the statements in Theorem 4.5.1.

1.) The range of values possible for SOFFI lies between [0, 1). It is important

to know the range of values our index might take; between 0 and 1 is simple and

interpretable. This could, in practice, be normalized as is desired, so the range is

somewhat arbitrary in this sense.

2.) SOFFI is decreasing with respect to increased degradation. This is an entirely

expected behaviour: as habitat quality decreases, the score should also decrease. On

the other hand, SOFFI is also decreasing with respect to d. This is a consequence of

the assumed movement mechanism. Since the movement is diffusive at a constant rate,

increased diffusion spreads out the population uniformly through the domain (this can

be shown rigorously). This means that the species use the average amount of available

resources. In contrast, smaller rates of diffusion allow the population to concentrate

around the peaks of resources or around areas of high-quality habitat; we see this in

the limiting behaviour as d→ 0.

3.) If we remove the entire degraded region, SOFFI reaches a value of 1. A value

of 1 corresponds to an undisturbed habitat, in which case d and c have no influence.

This is reasonable as diffusion has no effect in a homogeneous landscape1. Since the

1With homogeneous Neumann boundary conditions.
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degraded region B does not exist, c never appears in the equation.

4.) If the average landscape quality is positive, SOFFIis positive for any positive

rate of diffusion. In such cases, one can compare fitness levels based on the relative

sizes of their SOFFI scores.

5.) If the average landscape quality is negative, there is a diffusion rate at which

SOFFI becomes zero. This is consistent with a previous property: if increased diffusion

causes a homogeneously distributed population, agents spend as much time in the

good regions as in the bad. Since the overall landscape quality is negative, eventually

increasing diffusion results in a zero SOFFI score.

6.) If the average landscape quality is exactly zero, the SOFFI score is always

positive, but increased diffusion leads to a smaller and smaller SOFFI score.

7.) We proved some limiting analytical results in Chapter 3 concerning conver-

gence between the degradation and destruction eigenvalue problems. Hence, we have

information for large values of c depending on the sign of a different principal eigen-

value. This is also reasonable: based on information known in the ‘worst case’ scenario,

we can determine whether the SOFFI score will always remain positive for larger and

larger c, or if it will eventually reach a zero SOFFI score.

8.) We also have some information based on arbitrary configurations of B. If the

average habitat quality is positive, then the SOFFI score will always be positive! On the

other hand, a negative average habitat quality always has bad enough configurations

that ensure a zero SOFFI score. This is interesting as it connects quite directly to

the habitat amount hypothesis: the easiest way to ensure a positive SOFFI score is

to ensure that the amount of habitat G is sufficiently large! Therefore, SOFFI may

be most informative for edge cases where little habitat G remains, or the degradation

level c is particularly high.

Applications of the SOFFI score

From these explanations, it is now even more evident the species-oriented nature of the

SOFFI score. All of these properties tell us valuable information about the impacts of

habitat arrangements in a general sense, depending precisely on a few key biological
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parameters. However, we are also interested in more precise examples, in which case we

appeal to some of the analytical results proved in the previous sections of this chapter.

Example 1. ‘Placement of a factory’ This this example, we evaluate the

behaviour of the SOFFI score with a ball inside of a ball in two spatial dimensions.

Fix R > 0, 0 < ρ < R, and t ∈ [0, R− ρ). We then take

Ω := BR(0), B := Bρ(t),

and so

|Ω| = πR2, |B| = α = πρ2.

We then explore changes in SOFFI with respect to the parameter c ≥ 0, d > 0, and

the location of Bρ(t) depending on the centre t. Recall that due to the symmetry of

this problem, we consider only translations along the x1-axis. The range of t ensures

that B ⋐ Ω. See Figure 4.2.

First, we make some analytical observations following from [93, Ch. 4 Prop. 4.4]:

lim
d→0+

SOFFI(d, c, Bρ(t)) = 1, and lim
d→∞

SOFFI(d, c, B) =
R2 − cρ2

R2
.

This holds for any c, ρ > 0 fixed. We also expect a global minimum across all t ∈ (0, R−

ρ) when t = 0. This follows from the fact that the principal eigenvalue is maximized

across translations when it is exactly in the centre of BR(0). Finally, SOFFI(d, c, Bρ(t))

is obviously decreasing with respect to c for d, ρ > 0 fixed.

We observe the following behaviour numerically. This problem is solved using the

PDE Modeler applet in MATLAB. For technical reasons, we explore this problem from

two separate perspectives.

First, in Figure 4.3 we fix the centre t = 0 and observe changes in the SOFFI

score with respect to the size of the inner radius ρ, and the level of impact c within the

degraded region. We find that for any level c ∈ (0, 1), the SOFFI score is approximately

1 (its maximal possible value, indicated by the color yellow) when the degraded region

is not too large. We then find a sharp drop-off when the inner radius is greater than

∼ 0.4, quickly decreasing to a minimal value of 0 (indicated by the color blue). The

contour lines contain labels indicating the changing intermediate values.
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Figure 4.2: Schematic demonstrating the placement of a factory, depicted in red, in a
habitat Ω = B1(0). In this example, the factory is placed at 1/2 with radius 1/4.

Second, in Figure 4.4 we consider the destruction case (c = +∞) and observe

changes in the SOFFI score with respect to the location t of the inner region and

the size of the destroyed region ρ. As in Figure 4.3, yellow denotes areas of maximal

values whereas blue denotes areas of minimal values, and labelled contour lines indicate

changes in intermediate values. We restrict ourselves to 0 < t < 1− ρ so that Bρ(t) ⋐

B1(0). As expected, the radius of the ball has a drastic effect on the SOFFI score.

This is somewhat an artifact of the fact that we are in the destruction case. More

informative is the impact of the centre t: the SOFFI score is increased if we move the

destroyed region away from the centre of the domain.

Example 2. ‘Increasing fragmentation’ In this example, we explore changes
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Figure 4.3: SOFFI Score Example 1a. A numerical simulation of the SOFFI score
as it depends on c and ρ. Note that the centre t = 0 is fixed. Note also that the noise
found in the lower half of the plot is due to small variations coming from numerical
error. In the raw data, all values found below ρ ∼ 0.4 are within 10−6 of the maximal
value 1.

in the SOFFI score when B is a set of the form

Bk :=
⋃︂

0≤i≤k−1

(︃
2i

2k
,
2i+ 1

2k

)︃
,

in Ω = (0, 1), for some k ∈ N. If k = 1, B1 = (0, 1
2
). If k = 2, B2 = (0, 1/4)∪(1/2, 3/4).

Therefore, the total area of Bk is fixed (it is exactly 1/2 of the area of the total

landscape), but as k increases, Bk becomes more and more divided. In some sense, it

is becoming more fragmented in terms of its arrangement alone.

One prototypical example of an environment that has this behaviour is sin(2kπx).

In our setting, we will study the same kind of periodic function which is instead constant

1 in (0, 1) \ Bk, and is constant −c in Bk for some c ≥ 0. In fact, numerically we may

approximate this by

mk(x; c) := (max{sin(2kπx), 0})1/n − c (max{− sin(2kπx), 0})1/n

for some n≫ 1 and k ∈ N fixed.
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Figure 4.4: SOFFI Score Example 1b. A numerical simulation of the SOFFI score
as it depends on t and ρ. In this case the level of degradation is infinite, i.e., c = ∞.
Also note that we consider only 0 < t < 1 − ρ, and so the figure is symmetric about
this line.

In Figure 4.5, we observe changes in SOFFI score ranging from 1 resource peak

8 resource peaks. As expected, the score is decreasing as c increases for any level of

fragmentation. More interestingly, perhaps, is the compounding effect that the level

of degradation and the level of fragmentation has: it is much worse when both factors

are high, rather than only degraded or only fragmented.
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Figure 4.5: SOFFI Score Example 2. A numerical simulation of the SOFFI score as
it depends on the degradation level c and the fragmentation level k. In this case, we
have up to k = 8 patches of habitat.

4.5.2 Pattern-oriented approach

We now complete a similar analysis for the pattern-oriented measure POFI. This will

be a little easier since the results are similarly obtained (POFI is made from SOFFI,

after all).

Analytical insights

We again start with some analytical properties of POFI. Notice that in comparison to

the analytical results for SOFFI, we are much more limited in our analytical insights.

This is because we now focus exclusively on the geometric properties of B.

Theorem 4.5.2. The following hold.

1.) For any B ∈ ωα with α ∈ (0, |Ω|) fixed, POFI(B) ∈ (0, 1].

2.) POFI(B) → 1− as |B| → 0+ (i.e. as α → 0+).

3.) POFI(B) → 0+ as |B| → |Ω|−.
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4.) For each α ∈ (0, |Ω|) fixed, there exists a sequence {Bk}k≥1 such that

POFI(Bk) →
|G|

|Ω| · SOFFI(B∗
α)

as k → ∞.

Proof. The first three results follow directly from properties of the principal eigenvalue.

The fourth property follows from the limiting property of the principal eigenvalue as

d → ∞ and a rescaling argument. That is, a sequence of increasingly fragmented

landscapes can be made equivalent to sending the diffusion rate to infinity.

Ecological interpretations of POFI’s properties

We may interpret these results ecologically as follows.

1.) The range and interpretation of POFI is very similar to SOFFI. The main

difference is that POFI now provides a ratio describing how far away the arrangement

B is from an optimal arrangement B∗. A POFI score of 1 implies that there are no

changes in the arrangement that could improve outcomes; the smaller the POFI value,

the further it is from an optimal configuration.

2.) As the degraded region vanishes, POFI has a score of 1. This makes sense as

no degraded region is optimal for species survival!

3.) As the degraded region fills the entire landscape, the POFI score tends to zero.

This makes sense as if there is no habitat left, the species cannot survive!

4.) This result is somewhat convoluted, but we attempt to explain here. Since

|B| > 0 is fixed, |G|
|Ω| is always smaller than one. Therefore, by chopping up the degraded

region in a pathological way, you can force the numerator of POFI to tend towards

this ratio (the average habitat quality, in fact). This is, in some sense, the ‘worst

case’ scenario for a degraded region of fixed volume α when the level of degradation

is neutral (c = 0). Hence, the smaller the total available habitat Γ, the smaller the

theoretical limits of the measure POFI.
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4.5.3 Total abundance approach

Unlike the previous two approaches, this total abundance approach is somewhat more

difficult to study analytically as it actually involves the qualitative study of the steady

state to an elliptic reaction-diffusion equation. Therefore, we simplify our setting in

similar ways as in the species- and pattern-oriented approaches. We do this for a

single-species setting and a multi-species setting.

The single species case

First, we assume that uc,B is the steady state to problem (2.1) with d > 0, f(x, u) =

u(1− u) and c ≥ 0. Then, for B ∈ ωα fixed, uc,B solves

−d∆u∗ = u∗(1G − c1B − 1Gu
∗).

Furthermore, we can guarantee the existence of a unique, non-trivial steady state

whenever µ1(d, 1, B) < 0, where µ1(d, 1, B) is the principal eigenvalue to problem

(3.5). Then, we notice that if either c = 0 or |B| = 0, u∗ ≡ 1 is the unique steady

state. In fact, as proven in Chapter 2, for fixed B there holds uc,B → 1 uniformly in Ω

as c→ 0+. Therefore, in our setting the denominator of the TAFI score is∫︂
Ω

u∗dx = |Ω| ,

and so TAFI reduces to the average population density of uc,B over the landscape Ω:

TAFI(uc,B, 1) =
1

|Ω|

∫︂
Ω

uc,Bdx.

As it turns out, this is a popular object of study, see [85], [86], [91], [93] and the

references therein. In particular, we make note of two important facts:

• Maximizing the total population is not equivalent to maximizing the growth

rate of the population. That is to say, information gained from a linearization

procedure near zero is almost entirely disconnected from the solution behaviour at

steady state. From the perspective of linearization, we do not ‘see’ steady state

behaviour at all.
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• Unlike the growth rates via principal eigenvalues, it is not clear (and is in fact not

true) that the total abundance is monotone with respect to any parameters aside

from c. Of course, we know that the steady states are monotonically decreasing

with respect to c by Lemma 3.5.1.

Therefore, questions of total abundance require different approaches of analysis. We

highlight a few basic properties now.

Analytical insights

We have the following theorem regarding some properties of the TAFI score.

Theorem 4.5.3. Suppose d > 0, c ≥ 0 and B ∈ ωα. The following hold.

1.) For any d, c, B fixed, TAFI(ud,c,B) ∈ [0, 1].

2.) For any c, B fixed, there holds

• limd→0+ TAFI(ud,c,B)) =
|G|
|Ω| ;

• limd→∞ TAFI(ud,c,B)) = max{1− c |B|
|G| , 0}

3.) For any d,B fixed there holds limc→0+ TAFI(ud,c,B) = 1.

4.) For any d,B fixed, there holds for some ε0 > 0

lim
c→∞

TAFI(ud,c,B) ≥ ε0 > 0 ⇐⇒ µ1(d, 1, B) < 0,

where µ1(d, 1, B) is the principal eigenvalue to problem (3.5) with m ≡ 1 in G.

5.) For any d, c fixed, TAFI(ud,c,B) → 1 as |B| → 0+.

6.) For any d, c and α ∈ (0, |Ω|) fixed, there exists a set B∗ ∈ ωα such that TAFI(ud,c,B∗) ≥

TAFI(ud,c,B) for any other B ∈ ωα.

We will also observe the following fact: there exist configurations which are more

fragmented from the perspective of SOFFI, but has a higher TAFI score than the least

fragmented arrangement. This demonstrates analytically a fundamental and important

difference between the perspective of population growth rates and total population

sizes.
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Remark 4.5.1. We wish to highlight that, while deep and interesting results exist

regarding the maximization of total abundance [85], [91], their depth is somewhat reliant

on particular assumptions. This means that, in terms of more general application or

insights to be gained, we are restricted in making generalizations. For example, results

assume the heterogeneity is non-negative [86] (so c = 0 is the only possibility in our

setting), and the form of reaction must be precisely u(m(x) − u), which is slightly

different than the format found here (i.e., competition occurs across the entire domain

rather than only in the region G).

Ecological interpretations of TAFI’s properties

These properties can be interpreted ecologically as follows.

1.) The range of TAFI lies between 0 and 1; closer to 0 indicates a less ‘fit’

population, while closer to 1 indicates a more ‘fit’ population.

2.) For c, B fixed, we have precise values of TAFI when diffusion is arbitrarily

small or large. When d → 0+, the TAFI score is simply the ratio of total available

habitat over the total size of the landscape. When d → ∞, TAFI may vanish. When

c |B| < |G|, the TAFI score remains positive. This gives an interesting heuristic in

regard to fragmentation: regardless of the arrangement, we can either reduce the size

of the degraded region or reduce the level of impact within the degraded region (or

both) to improve outcomes for local species.

3.) If the level of degradation in B is neutral (c = 0), the TAFI score is maximized.

4.) We can relate the uniform positivity of the TAFI score with the negativity

of the principal eigenvalue in the destruction case. This simply says that, if TAFI is

positive in the worst possible scenario, it will be positive for any other fixed value c > 0.

5.) The TAFI score is maximized if the degraded region does not exist, which is a

biologically reasonable expectation.

6.) Similar to previous suggestions, there exist works that study the existence of

optimal regions B∗ maximizing the total abundance.
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Figure 4.6: A numerical simulation of the TAFI score as it depends on d and c. In this
case, we have just 1 large patch of habitat.

Applications of the TAFI score

Example 2. ‘Increasing fragmentation’

As in the case of SOFFI, we know that the optimal scenario is when k = 1. When

c = 0, mk(x; 0) is given by

mk(x; 0) = (max{sin(2kπx), 0})1/n.

We can observe the following behaviour across 4 plots. We fix the fragmentation level

k for each (choosing k = 1, 2, 3, 8). We plot the resulting TAFI score as a function of

rate of diffusion (parameter d) and the level of degradation (parameter c). Since our

domain is fixed as Ω = (0, 1), our normalization factor is exactly 1, and the TAFI score

is simply the total abundance.

The multi-species case

We also have the R-TAFI score for multi-species models. In our case, we appeal again

to a two-species model under habitat degradation as in Chapter 2. Since the complexity
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Figure 4.7: A numerical simulation of the TAFI score as it depends on d and c. In this
case, we have 2 smaller patches of habitat.

Figure 4.8: A numerical simulation of the TAFI score as it depends on d and c. In this
case, we have 3 smaller patches of habitat.
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Figure 4.9: A numerical simulation of the TAFI score as it depends on d and c. In this
case, we have 8 very small patches of habitat.

of multi-species models is significantly higher than that of single-species models, the

only real analytical insight we can determine assuredly is the following.

Theorem 4.5.4. Suppose (uc1 , vc2) is the unique steady state to problem (2.2) with

0 < d1 < d2 fixed, B ⋐ Ω fixed, and 0 < c2 < c1 for some c1 > 0 fixed. Then, there

exists 0 < c2 < c2 < c1 such that

• For all c2 > c2, R-TAFI(uc1) = 1 and R-TAFI(vc2) = 0;

• For all c2 < c2, R-TAFI(uc1) = 0 and R-TAFI(vc2) = 1;

• For all c2 ∈ (c2, c2), 0 < R-TAFI(uc1),R-TAFI(vc2) < 1.

Proof. The proof follows directly from the global dynamics established in Theorem

2.5.2.

This result suggests a continuum of possibilities. We explore this numerically now.
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Figure 4.10: A numerical simulation of the R-TAFI score as it depends on d and c2.
In this case, we have 1 patch of habitat.

Applications of the R-TAFI score

In this section, we use a numerical exploration to investigate Theorem 4.5.4. In this

case, we appeal to the R-TAFI score as we now have two populations. We use the

same environmental setup as in the single species case, but we now fix the degradation

level c1 = 1 and diffusion rate d1 = 0.1 for population u, while population v has

a degradation level c2 := c varying between 0 and 1 and diffusion rate d2 varying

between 0.1 and 10. In Figures 4.10-4.13, we observe changes in the R-TAFI score as

it depends on the rate of diffusion and the level of degradation for population v.

4.6 Assessing the impact of fragmentation as a pro-

cess

The perspective taken in Section 4.5 most accurately corresponds to habitat fragmen-

tation per se: we are interested in separating the effects of removal of habitat and the

arrangement of habitat. Inherent in this standpoint is essentially the consideration of
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Figure 4.11: A numerical simulation of the R-TAFI score as it depends on d and c2.
In this case, we have 2 smaller patches of habitat.

Figure 4.12: A numerical simulation of the R-TAFI score as it depends on d and c2.
In this case, we have 3 smaller patches of habitat.
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Figure 4.13: A numerical simulation of the R-TAFI score as it depends on d and c2.
In this case, we have 8 very small patches of habitat.

snapshots in time. In some applications, this may be precisely the insights desirable,

such as optimization of yield under well-controlled environmental conditions. There

are limitations to this point of view, especially from an ecological perspective: habitat

fragmentation, while intimately tied to the geometry of the patterns generated, is more

often an ecological process occurring over some period of time. An intact habitat is

gradually broken apart into disjoint, less connected patches lying within some environ-

mental matrix. As described in [33], assessment of fragmentation as an arrangement

generally implies four effects of fragmentation (as a process) on the resulting landscape

patterns observed: a reduction in total habitat amount, increases in number of distinct

habitat patches, a decrease in the size of habitat patches, and an increase in isolation

of habitat patches. This is what much of the measures/approaches discussed in Section

4.2 consider, sometimes in tandem but often only one effect at a time. This motivates

a completely different approach to assessing fragmentation while using the same tools

developed in the previous section. In particular, we are motivated by the following

supposition found in [33]:
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“Habitat can be removed from a landscape in many different ways, resulting

in many different spatial patterns (Figure 2). Do some patterns represent a

higher degree of fragmentation than others, and does this have implications

for biodiversity? If the answer to either of these questions is “no,” then the

concept of fragmentation is redundant with habitat loss. The assertion that

habitat fragmentation means something more than habitat loss depends

on the existence of effects of fragmentation on biodiversity that can be

attributed to changes in the pattern of habitat that are independent of

habitat loss. Therefore, many researchers define habitat fragmentation as

an aspect of habitat configuration.”

Using some of our measures developed, we will show that the answer to each of

the key questions raised above is yes!, and that habitat fragmentation as a by-product

of habitat loss is indeed meaningful and worth further exploration, both theoretically

and empirically. Furthermore, our approach remains at the landscape scale, and so we

are able to investigate the impacts of habitat fragmentation beyond mere patch-level

effects.

To achieve this, rather than considering snapshots in time and comparing the pre-

dictions of different measures (the pattern-oriented approach), we now start with an

entirely intact landscape: the entire domain Ω is habitat for the species under consid-

eration. We then systematically remove patches of habitat of a prescribed size. This

process replaces habitat with degraded/destroyed regions, resulting in a (potentially)

fragmented habitat. The nature of the process of removal of patches is what determines

whether or not it is ‘fragmented’. Naturally, this results in a discrete “time series” of

sorts, where each successive time-step indicates another chunk has been removed. This

process more accurately reflects habitat fragmentation as it occurs most commonly in

the natural world [33], and allows us to study the effects of habitat fragmentation over

time.

Let us make this more practical for our purposes. It is important to first note

that an analytical study of this setup is quite impractical. It is already difficult to

study arrangements of fixed sizes; studying sequences of arrangements of varying sizes
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complicates things further. Hence, we develop this idea with numerical implementation

in mind. To this end, we consider the fixed habitat Ω := (0, L) × (0, L), a square of

side length L > 0. We then ‘discretize’ the habitat into N2 patches of side length L/N .

For example, we may have a domain of length L and choose N = 7 so that we have

exactly 72 = 49 discrete patches of length L/7:

⏞ ⏟⏟ ⏞
L

We can then generate sequences of habitat matrices indexed by 1 ≤ k ≤ N2. This

sequence is always at most of length N2, for at step N2, the final patch of habitat

is removed, and the species must undergo deterministic extinction by definition (i.e.,

there is no habitat left to facilitate persistence!). For example, we may have a sequence

as follows. At time-step t0, the entire landscape is comprised of habitat (denoted by

green blocks). At timestep t8, we have 8 patches removed; at t46, we have 46 patches

removed (or, N2 − 46 = 3 patches remain).

⏞ ⏟⏟ ⏞
t0

↦→

⏞ ⏟⏟ ⏞
t8

↦→

⏞ ⏟⏟ ⏞
t46
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We then study the changes in our previously developed measures of fragmentation

as this sequence of habitat matrices evolves. Our general strategy in this section is

thus:

1. Generate sequences of habitat matrices of length (at most) N2;

2. Compute measures of fragmentation at each time step k, 1 ≤ k ≤ N2;

3. Compare results and explore implications for habitat fragmentation.

4.6.1 Fragmentation as a process and the SOFFI score

In what follows, we develop a strategy for Step 1 for the SOFFI score. This will be

slightly different from the approach taken for the total abundance approaches.

Step 1. Habitat matrix generation

Built into the approach described above is the generation of these sequences of habitat

matrices. We develop a method to generate such sequences here. In fact, our approach

takes inspiration from the so-called contagion measure of habitat fragmentation.

First, we fix two sequences of square matrices {Mk}1≤k≤N2 ,{Hk}1≤k≤N2 of size N .

Hk will denote the habitat matrix at step tk, where H
0 is simply the ones matrix (all

entries have value 1, indicating the entire landscape is habitat). The matrix Mk will

be an auxiliary probability matrix for the time step tk: each entry Mi,j, 1 ≤ i, j ≤ N ,

corresponds to the entry Hi,j. We then systematically prescribe probabilities to each

entry Mi,j. Note that this requires
∑︁N

i,j=1Mij = 1 (in practice we achieve this through

normalization). These probabilities then correspond to the likelihood that a given

patch within H will be removed. For example, if we have Mi,j = 1/N2 for every i, j, it

is equally probable that any patch of H could be removed. Deviating from this may

make a certain patch more or less likely to be removed at the next time step. Once a

matrix entry (ĩ, j̃) of H is chosen, based on the probability matrix M , the entry Hĩ,j̃

is changed from a value of 1 to a value of 0 (it is now degraded at some level). (ĩ, j̃)

is then assigned a value of zero in M , indicating that it has a probability of zero to
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be chosen at any subsequent step; biologically, this assumes that the patch has been

degraded or destroyed and does not become habitat again at any future step.

This algorithm generates a sequence of matrices {Hk}k, 1 ≤ k ≤ N2 − 1, where

we remove the final entry as we need not compute any measure for the trivial case of

no habitat available. Note that, at each time step tk, we generate a new probability

matrix with N2−k non-zero entries. This new probability matrix then determines the

patch to be removed at the subsequent time step, and the process repeats.

One may now ask: what does this have to do with fragmentation? Of course, we

also need some method to prescribe these probabilities to each entry of M . This is

where the concept of contagion returns. We first introduce a parameter λ ∈ (0, 1),

which will be our level of ‘fragmentation’ in the matrix H. We initialize the algorithm

with an equal probability across all matrix entries. That is, M0 is a matrix with a

value of 1/N2 in each entry. The first patch is therefore removed randomly with a

uniform distribution. Once the entry (ĩ, j̃) is chosen to be removed, the habitat matrix

H1 is the matrix with all 1’s except for the single entry (ĩ, j̃), now assigned a value of

0.

We then generate the next probability matrix M1, where (ĩ, j̃) now has a value

of 0 (it is removed and cannot be chosen again). This leaves N2 − 1 patches to be

assigned a probability. We then use the parameter λ to determine how likely it is that

the next patch removed is adjacent to a previously removed patch. This is similar to

contagion, but in the reverse direction. The endpoints are easiest to demonstrate the

idea: when λ = 0, there is ‘zero’ fragmentation, and therefore there is a probability

of 1 that the next patch removed will be adjacent to a previously removed patch.

Thus, λ = 0 logically corresponds to a no fragmentation case, since the matrix Hk

will have a connected degraded region at any time step tk through construction. On

the other hand, when λ = 1, there is ‘the most’ fragmentation, and therefore there

is an equal probability that any block could be removed at the next time step. This

logically corresponds to a much more fragmented habitat, since the patches removed are

more uniformly distributed throughout the landscape. Then, we may vary λ ∈ (0, 1)

continuously, corresponding to less fragmented (values closer to 0) or more fragmented
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(values closer to 1).

In our case, our algorithm is built as follows. In Hk, there are k entries with 0.

We then classify patches as adjacent or not adjacent. In our simulations, we classify

adjacent patches as either left/right, above/below, or on a diagonal from a removed

patch. Adjacent patches are assigned a probability lying between 1 (when λ = 0) and

1/(N2 − k) (when λ = 1). All non-adjacent patches are assigned a probability lying

between 0 (when λ = 0) and 1/(N2 − k) (when λ = 1). The parameter λ controls the

scaling between these two edge cases. In some sense, we have built a rather dichotomous

algorithm: there are only two probability values, with all adjacent patches receiving

the same value and all non-adjacent patches receiving the same value.

The following shows the outcome of a single simulation for λ = 0 (no fragmentation)

versus λ = 1 (most fragmentation). In it, we fix N = 7 and show time-step t25

(approximately half of the habitat removed).

⏞ ⏟⏟ ⏞
λ=0

versus

⏞ ⏟⏟ ⏞
λ=1

From this simplified example, we see that the λ = 0 case has a more ‘connected’

habitat remaining compared to the λ = 1 case. Hence, we see that this algorithm does

roughly what we want it to do: as lambda increases from 0 to 1, the habitat sequences

generated move from ‘less fragmented’ to ‘more fragmented’

Step 2. Computation of fragmentation measures

Once we have our sequence of habitat matrices, we must next compute the measures

which are meant to assess the impact of fragmentation. For now, we focus on an

application of the SOFFI score. We first note a few facts. In the following, we abuse
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notation slightly and denote by SOFFI(d, c,Hk) the SOFFI score at step k, where we

understand that Hk corresponds to the domain Ω with k patches removed.

Proposition 4.6.1. Suppose d > 0, c ≥ 0 are fixed. Then, there holds

• SOFFI(d, c,H0) = 1, and SOFFI(d, c,HN2
) = 0.

• SOFFI(d, c,Hk) ≥ SOFFI(d, c,Hk+1) for every k = 1, 2, . . . , N2. Furthermore, if

c = 0 the inequality is strict.

• SOFFI(d, 0, Hk) > 0 for all k = 1, 2, . . . , N2 − 1.

Proof. The first property follows directly from the definition of SOFFI and properties

of the principal eigenvalue. The monotonicity in item two follows from Theorem 4.5.1

2.), where the strict inequality can be observed from Theorem 4.5.2 1.) and Theorem

4.5.2 1.). The final property can be observed from Theorem 4.5.2 1.).

These properties, while somewhat trivial mathematically, are important to note for

the ecological interpretation of results: when there is no habitat removed, SOFFI = 1.

When the entire habitat is removed, we of course have SOFFI = 0. In this setup,

SOFFI is monotonically decreasing as habitat is removed; this is consistent with our

understanding of the impact of habitat loss on a single species. The third property

says that if the removed habitat is neutral to the species, our SOFFI score will always

predict persistence; extirpation is only possible when the entire habitat is removed.

Different from the previous section, we no longer use the PDEModeler app from

MATLAB. Due to the number of repetitions required, we instead construct a simple

discretization of the Laplacian (using a second order central difference scheme and

‘ghost nodes’ to handle the Neumann boundary condition). We then solve for the

principal eigenvalue of the discrete problem using Newton’s iterative method, setting up

N2 equations for the discretized problem and the final equation through normalization

of the eigenvalue (i.e., N2 + 1 equations and N2 + 1 unknowns). Note that we must

take some care at this step: Newton’s method, while brilliant, can have some stability

issues [76], especially for larger, more sparse matrices (such as in our case). Based
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on some rudimentary testing1, this becomes an issue with small diffusion rates and/or

finer mesh scales. To avoid this, we choose our diffusion rate and domain size not too

small and not too large, respectively.

Step 3. Comparison of results

We now present the outcomes found for this setup for the SOFFI score. We first fix

N = 10, so that we have a habitat matrix H with N2 = 100 patches. We compute the

SOFFI score every 1 − 5 steps, depending on the case, to save decrease computation

time. This is reasonable due to the continuity of SOFFI with respect to changes in

B, which follows from the continuity of the principal eigenvalue. We fix our habitat

length L = 1, and choose a mesh of 4 for each patch; therefore, the true mesh when

we solve for the principal eigenvalue is ∼ 0.025 (i.e., ∼ L/(4N) = 0.025.

We compare the SOFFI score across a number of variables. First, we are most

interested in changes with respect to the parameter λ as well as changes with respect

to the number of blocks removed. Therefore, we first plot the SOFFI score versus

the number of patches removed over the values λ = 0.0, 0.25, 0.5, 0.75, 1.0. We also

observe changes with respect to the level of impact in the removed regions. This is

described by the parameter c, and so we consider cases c = 0, 0.1, 1.0, 10.0. We hold

the diffusion rate fixed at d = 0.1, which is 1/10 the size of the domain2. Finally, we

note an important caveat: since the habitat matrices are generated in a probabilistic

way, we cannot rely on a single sequence to garner meaningful insights. To overcome

this, we repeat the process for a number of trials. In the following, we run 30 trials for

each fixed value λ. We then take an average of the SOFFI score across all trials. This

1The author readily admits numerical analysis is not the focus of this work; instead, we point out
that this method does not appear to be universally useful in this context. The issue seems to stem
from other eigenvalues being rather close to the principal eigenvalue, in which case the iterates may
return an incorrect (but close) result. This occurs most obviously when the diffusion rate is taken
small (≪ 10−1) and the spatial mesh must be chosen small enough to compensate. We avoid such
cases here to keep in mind the big picture. To study these edge cases, alternative methods may be
used to extract the principal eigenvalue

2A further note on the choice of diffusion rate: since we know the limiting behaviour of the principal
eigenvalue as d → 0+ or d → ∞, we do not want to choose d too small or too large. More precisely,
for d ≪ 1, our SOFFI score will remain close to 1; for d ≫ 1, our SOFFI score will remain close to
the average habitat quality. Such limiting cases can mask the influence of fragmentation alone.
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Figure 4.14: A numerical simulation of the SOFFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 0.0.

is meant to remove bias due to the random removal of patches. These results are found

in Figures 4.14-4.17, where the only change across figures is the level of degradation c

within the region B.

4.6.2 Fragmentation as a process and total abundance

Of interest is also the assessment of fragmentation as a process in relation to total

abundance. As previously noted, the habitat arrangement optimizing the growth rate

(i.e., maximizing the SOFFI score) is not necessarily the same as the arrangement

maximizing the total abundance. For this reason, we briefly explore the effect of

fragmentation as a process on two competing species.

Unlike the SOFFI score, the TAFI or R-TAFI scores require that we calculate the

total abundance at steady state. In a square domain, this can be rather involved. For

this reason, we take the same approach in a one-dimensional spatial domain: given

the domain (0, L) for L > 0 fixed, break the habitat into N pieces of length L/N and

systematically remove a patch, with λ ∈ (0, 1) a parameter determining how connected
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Figure 4.15: A numerical simulation of the SOFFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 0.1.

Figure 4.16: A numerical simulation of the SOFFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 1.0.
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Figure 4.17: A numerical simulation of the SOFFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 10.0.

the habitat will be at each time step.

Once a sequence of habitats Hk, 0 ≤ k ≤ N , has been generated, we calculate

the total abundance at steady state for each time step. Carefully note the distinction

between the time step tk, which refers to the current state of the landscape, and the

time dependence of the problem we look at. This may seem contradictory, since the

steady state is obtained by letting t → ∞ in the parabolic problem. On the other hand,

when the reaction term is concave (like the logistic form used in these examples), the

rate of convergence is exponential in time. Hence, this setup is most reasonable if the

landscape changes are occurring on a timescale slower than the population dynamics.

We then calculate the TAFI (single-species case) and R-TAFI score of each population

(two-species case), plotting the score versus the number of patches removed, identical

to the SOFFI score case.
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The TAFI score

Note that we already have insights into one property of the TAFI score under this

configuration: since the environmental heterogeneity is monotonically decreasing (we

always remove patches), the TAFI score will always be monotonically decreasing. This

is mathematically obvious but has significant ecological implications: habitat fragmen-

tation as a process is always bad for a single species. The same is not necessarily true

for the multi-species case, since a decrease in competition could improve the overall

habitat quality, even though habitat is being degraded/destroyed! What we are more

interested in are differences between less fragmented cases (λ = 0) and more fragmented

cases (λ = 1).

In Figures 4.18-4.20, we observe an interesting departure from the SOFFI score

predictions. First, note that we do not include the case of neutral degradation (c = 0)

due to Theorem 4.5.3 point 3.): in this case, the TAFI score is always 1. We show

the cases c = 0.1, c = 1.0, and c = 10.0. Unlike the SOFFI score, we find that

when the degradation level is low (Figure 4.18), fragmentation as measured by λ is

actually a good thing! For λ > 0, intermediate levels of lost habitat (∼ 15−35 patches

removed) actually increases the total abundance substantially compared to the no

fragmentation case (λ = 0). This is most pronounced at ∼ 25 − 30 patches removed,

where fragmentation alone can account for an almost 40% decrease in abundance. We

then see that when a large portion of the habitat has been removed (∼ 36−37 patches

removed), the relationship reverts back to what was found for the SOFFI score.

When we increase the level of degradation from 0.1 to 1.0 and 10.0, we find that

this phenomenon disappears completely! Of course, the TAFI score decreases when

c increases; what is more interesting is the difference between fragmentation regimes.

This is most pronounced in Figure 4.20, where the no fragmentation regime decreases

in a roughly linear fashion, while increasing λ results in a roughly ordered decrease in

TAFI score. This time, the differences are apparent with as little as ∼ 5− 10 patches

removed! When ∼ 10 − 15 patches are removed, fragmentation alone can account for

an almost 90% decrease in abundance. As expected, when enough blocks are removed

(> 30), the TAFI score is zero, indicating deterministic extinction. This behaviour is
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Figure 4.18: A numerical simulation of the TAFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 0.1.
The diffusion rate is fixed at d = 0.1 in a domain Ω = (0, L).

now consistent with predictions made by the SOFFI score.

The R-TAFI score

We now repeat this process for the R-TAFI score. Recall that R-TAFI is a relative

measure. In the case of two competing species, it is a zero-sum game: if population

u is thriving, population v is necessarily not thriving. Therefore, in Figures 4.21-4.25,

we plot only the R-TAFI score for population u. The R-TAFI score for population

v is obtained by taking TAFI(v) = 1 − TAFI(u). We fix the diffusion rates as d1 =

0.1 < d2 = 1.0 so that u is always the slower diffuser. We fix the degradation level

for population u at c1 = 1.0 and consider cases when c2 < c1 so that population v is

the more resilient population. We study the problem in the domain Ω = (0, L) with

N = 12 (12 patches to remove). We again run 30 trials for each value of λ and take

the average of the R-TAFI scores.
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Figure 4.19: A numerical simulation of the TAFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 1.0.
The diffusion rate is again fixed at d = 0.1 in a domain Ω = (0, L).

First, we know that for 0 patches removed, both populations persist. This is actually

the kinetics (ODE) case, since the environment is homogeneous, and the boundary

condition is homogeneous Neumann. Importantly, we note that population u will

survive up to step t11. This means that when the R-TAFI score decreases,

we eliminate the possibility that both u and v go extinct simultaneously.

Beginning with Figure 4.21, we observe that when 1 − 3 patches are removed,

population v is the winner (R-TAFI(u) = 0 ⇒ R-TAFI(v) = 1). We then find that

when fragmentation is low (λ = 0, blue line), we have coexistence for 4 − 10 patches

removed. Once 8 patches are removed, R-TAFI(u) > 0.5 and so population u becomes

the ‘winner’. Under increasing fragmentation, we also find coexistence, but population

u is at much lower levels. In this sense, fragmentation appears to favor population v.

As the degradation level c increases from 0.25 to 0.9 in Figures 4.22-4.25, we find

some potentially expected behaviour: as population v approaches a similar level of
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Figure 4.20: A numerical simulation of the TAFI score as it depends on the number of
patches removed. The level of degradation in the removed patches is fixed at c = 10.0.
The diffusion rate is again fixed at d = 0.1 in a domain Ω = (0, L).

resilience as population u (i.e., as c2 approaches c1 = 1), population u should eventually

start to increase in its R-TAFI score. Indeed, this is what we observe, where population

u wipes out population v for 1 − 11 patches removed. What is interesting, though, is

the change in behaviour when almost all patches are removed: we again begin to see

coexistence! In Figure 4.25, we find that coexistence is only facilitated when λ > 0.

When the degraded region is entirely connected, population u sees the benefit. This

trend holds across all figures: when λ = 0, coexistence is not facilitated at all when

too many patches are removed. On the other hand, when λ is positive (indicating the

habitat is at least somewhat fragmented), coexistence is much more likely to occur.

Population v seems to benefit the most under low- or high-habitat loss scenarios with

fragmentation. Conversely, population u seems to benefit most under intermediate

habitat loss and no fragmentation.
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Figure 4.21: A numerical simulation of the R-TAFI score as it depends on the number
of patches removed. The level of degradation in the removed patches for population v
is fixed at c = 0.1.

4.7 Discussion

This chapter has been dense with both numerical and analytical investigation. Here,

we aim to bring all of our findings together in a concise and interpretable fashion.

Fundamentally, we are interested in the following question: is habitat fragmentation

good or bad for species? As has been made evident, this question is ill-posed: habitat

fragmentation is not universally good or bad as context matters! Instead, we reframe

the question as: under what circumstances can habitat fragmentation be good, bad, or

neutral for diffusive species? We answer this question from the numerous perspectives

explored earlier.

4.7.1 When is habitat fragmentation neutral?

We first discuss cases where fragmentation is neutral. Through construction, frag-

mentation is generally not neutral, since we are removing habitat. However, through
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Figure 4.22: A numerical simulation of the R-TAFI score as it depends on the number
of patches removed. The level of degradation in the removed patches for population v
is fixed at c = 0.25.

simulation we observe some cases where habitat alteration does not cause significant

changes in our assessment measures.

In Figure 4.3, we consider the SOFFI score in a landscape B1(0) and degraded

region Bρ(0) for 0 < ρ < 1. We use a contour plot to view the SOFFI score with

respect to changes in the size of the degraded region (ρ) and the level of degradation

in the degraded region (c). We notice that the level of degradation c matters much less

than the size of the degraded region: if the inner radius is below ∼ 0.4, the SOFFI

score is ∼ 1 (its maximal possible value). In this simple example, we observe that for

‘fragmentation’ in the arrangement sense, total habitat is more important

than habitat quality.

A similar observation can be made from Figure 4.4. In this case, we have a com-

pletely destroyed region of radius ρ within the domain B1(0). This time, we consider

the effect of moving the location of the destroyed region, given by the parameter t. We
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Figure 4.23: A numerical simulation of the R-TAFI score as it depends on the number
of patches removed. The level of degradation in the removed patches for population v
is fixed at c = 0.5.

find that for small destroyed regions (ρ < 0.1), the location of the destroyed region has

little effect (the SOFFI score is roughly constant over vertical cross-sections when ρ is

small). complementing the previous insight, this indicates that for ‘fragmentation’

as an arrangement, the location of a destroyed region matters much less for

small regions.

In Figures (4.6)-(4.9), we find an example of fragmentation per se: the total avail-

able habitat remains fixed while the arrangement alone changes. In this case, we exam-

ine changes in the TAFI score (identical to the total population in this particular sce-

nario). In these figures, we observe that for small rates of diffusion (d < 1), increasing

fragmentation has little effect on the TAFI score (it remains near 0.5). This is consis-

tent with Theorem 4.5.3 point 2.), which says that as d→ 0+, TAFI → |G| / |Ω| = 0.5.

Similarly, we observe that for low levels of degradation (when c is small), the level of

fragmentation has less impact; this is observed in Figures (4.6)-(4.8) across all diffusion
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Figure 4.24: A numerical simulation of the R-TAFI score as it depends on the number
of patches removed. The level of degradation in the removed patches for population v
is fixed at c = 0.75.

rates and c < 0.2. Of course, this trend breaks down in the limit as the number of

distinct patches increases arbitrarily.

Similar conclusions are drawn when studying habitat fragmentation as a process.

In Figure 4.14, we observe that the SOFFI score, while decreasing, always remains

positive. This is consistent with item three of Proposition 4.6.1. But this is not exactly

what should interest us most: instead, we are interested in differences between different

values of λ. In particular, when c = 0, the SOFFI score decreases approximately

proportional to the amount of available habitat. All values of λ produce approximately

the same result. This is not necessarily an example of fragmentation being neutral ;

instead, it indicates that for low levels of degradation, the total available habitat matters

more than the arrangement of the habitat patches.
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Figure 4.25: A numerical simulation of the R-TAFI score as it depends on the number
of patches removed. The level of degradation in the removed patches for population v
is fixed at c = 0.9.

4.7.2 When is habitat fragmentation bad?

On the other hand, we have many more insights into when fragmentation is particularly

negative for a population. In Figure 4.3, we find that when the inner radius grows

beyond 0.4 (i.e., when the degraded region occupies more than ∼ 20 − 25% of the

landscape), there is a sharp drop off of the SOFFI score. Somewhat obviously, the

higher the level of degradation, the sharper the drop off.

Similarly, Figure 4.4 indicates that the location of a destroyed region can make a

significant difference in outcomes: when the destroyed region has radius > 0.1 (i.e.,

when the degraded region occupies more than ∼ 1− 2% of the landscape), the centre

value t can actually determine the difference between extinction and persistence as

predicted by the SOFFI score. Of course, the dramatic effect is amplified by the fact

that the level of degradation in this region is arbitrarily large. For finite values of c,

one expects the contour plot to stretch to the right (more areas of orange and yellow).
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In Figure 4.5, we observe a roughly decreasing SOFFI score with respect to both

level of degradation c and the level of fragmentation k. Recall that in this case, we

study habitat fragmentation per se, since the total available habitat remains fixed

while levels of fragmentation and degradation increase. The decrease in SOFFI score

is more dramatic over increasing degradation at higher levels of fragmentation. When

the landscape is less fragmented, the impact of degradation level is less pronounced.

This suggests that the negative effects of degradation are amplified by frag-

mentation per se .

We observe a similar trend in Figures 4.6-4.9: increasing the level of fragmentation

per se dramatically increases the size of the blue regions, indicating an increase in

parameter regions with 0 SOFFI score. This is most pronounced in Figure 4.9, where

almost the entire parameter region has a SOFFI score less than ∼ 0.2 − 0.3. This

suggests the same conclusion: the negative effects of degradation are amplified

by fragmentation per se .

The negative effects of habitat fragmentation are, perhaps, most evident in the

progression from Figure 4.14 to Figure 4.17. When the level of degradation is neutral

(c = 0), the SOFFI score decreases in a way that is proportional to the total available

habitat. That is, it is decreasing in a similar way across different fragmentation levels

(as described by the parameter λ ∈ (0, 1)). As the level of degradation increases, the

difference between the no fragmentation case (λ = 0) and the high fragmentation case

(λ = 1) is quite dramatic. This is most pronounced in Figure 4.17: we observe that in

the low fragmentation case, the SOFFI score is zero after ∼ 35 patches are removed.

This is in contrast to the case λ = 1, where the SOFFI score is zero after only ∼ 15

patches are removed! In this setting, the significant difference between these values of

λ indicates a significant difference due to fragmentation alone. Therefore, the level

of degradation greatly amplifies the impact of habitat fragmentation as a

process.

When we consider instead the effect of fragmentation on total abundance, we find

trends similar to those described above under certain scenarios. For a single species,

we use the TAFI score. In Figures 4.19-4.20, it is evident that fragmentation at any
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level (λ > 0) is much worse than the zero-fragmentation case (λ = 0). This is most

pronounced in Figure 4.20 where fragmentation alone can account for a ∼ 90% decrease

in total abundance. Therefore, the level of degradation greatly amplifies the

impact of fragmentation on total abundance as measured by the TAFI score.

For the case of two competing species, we appeal to the R-TAFI score. As previously

discussed, fragmentation appears to have a negative effect on the relative abundance

of population u (the slower diffuser). However, this case is more complicated than the

single species case, as the success of population u and the impact of fragmentation now

depend intimately on the level of impact felt by population v. As expected from our

analytical results, when c2 ≪ 1, we expect population v to thrive. This is observed

clearly in Figure 4.21, where population v is the winner for 1 − 7 patches removed.

Interestingly, R-TAFI(u) is increasing when the amount of habitat lost is high; note

that this benefit is decreased when fragmentation is high.

The story becomes more interesting as the impact felt by population v increases. As

c approaches 1, R-TAFI(u) starts to increase. This is expected, as a worse environment

for population v is a good thing for population u. However, the increase found for pop-

ulation u depends significantly on the level of fragmentation. For example, in Figures

4.22-4.23, we see that the zero-fragmentation case has a much higher R-TAFI score

than any case with fragmentation. Specifically, in Figure 4.23, the zero-fragmentation

case has population u wiping out population v for 3 or more patches removed. When

λ > 0, there is always coexistence, except for when λ = 0.25 and 7 − 8 patches are

removed. Therefore, habitat fragmentation is generally worse for the slower,

less resilient population.

4.7.3 When is habitat fragmentation good?

As found in the discussion thus far, we primarily observe habitat fragmentation to

have a negative impact on a population. This is easy enough to understand in some

sense. When we consider only a single species, habitat fragmentation as a process is

always bad. This is simply due to the fact that habitat is being removed, and so we

expect all of our measures to decrease. This trend appears to hold for fragmentation
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as a pattern: fragmentation, even when controlling for the total amount of habitat, is

negative in the sense that the SOFFI score decreases. Does this mean that we have

created a tautology? Habitat fragmentation is bad, essentially by definition? In the

cases mentioned above, the answer is perhaps yes. There are cases where this does not

hold, however.

First, habitat fragmentation, while negative for the SOFFI and POFI scores, may

actually improve the TAFI or R-TAFI scores. This is due to the disconnect between

persistence and total abundance: as noted previously, maximizing the SOFFI score is

not necessarily the same as maximizing the TAFI score. This is observed in Figure

4.18. In this case, the level of degradation is mild (c = 0.1). We then see that any

level of fragmentation actually increases the TAFI score quite a bit, at least when the

amount of habitat loss is high. For example, when 25 − 30 patches are removed, the

fragmentation cases (λ > 0) can account for a ∼ 45% increase in total abundance!

This effect seems to disappear at high habitat loss or high levels of degradation.

Of particular interest are the more complicated cases of interacting species. In our

case, we explore the influence of habitat fragmentation on a two-species competition

model. In Figures 4.10-4.13, we explore the effects of fragmentation per se. In each

successive plot, the total available habitat remains the same, while the number of

patches increases. Notice first that this measure does not portray any negative effect

on the total population of either u or v; it is a relative measure! What we do find,

however, is that increasing fragmentation per se increasing the size of the

parameter region which predicts species v as the survivor! This is in stark

contrast to the classic result the slower diffuser always wins!. It is well-known that for

reaction-diffusion equations, a smaller rate of diffusion is preferable. However, when

the faster diffuser (species v in this case) has even a slight advantage in the degraded

region (i.e., if c is even slightly less than 1), we observe that the range of diffusion

rates for which population v out-competes population u grows significantly as the

landscape becomes more fragmented. Furthermore, it also appears that the window

for coexistence increases as fragmentation increases. This point may deserve further

attention, as it is more likely not monotone (i.e., there exists some ‘optimal’ level of
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fragmentation maximizing the size of the window (c, c).

We find similar behaviour when we measure the R-TAFI score as a process. In

contrast to the impacts for population u, who generally does not benefit from habitat

fragmentation, fragmentation alone can be the difference between persistence and ex-

tirpation. This is most clearly found in Figure 4.23: when there is no fragmentation

(λ = 0), population u always wins when 3 or more patches are removed. On the other

hand, when there is some level of fragmentation (λ > 0), coexistence is more often a

possibility than not. Therefore, fragmentation is generally better for the faster,

more resilient population.

This is a particularly enlightening point, especially when paired with the insights

gained for a single-species model: habitat fragmentation can be good or bad, but the

mechanism by which fragmentation is good appears to require the presence of other

species. In our case, it appears that despite the habitat quality decreasing for both

populations u and v, since the decrease in quality affects population u more than it

affects population v, this may result in a ‘net’ increase in habitat quality! This can

actually be observed mathematically: consider the reaction term for population v:

f(x, u, v) = v(1G − c1B − 1G(u+ v)).

In it, the habitat ‘quality’ is given by 1G− c1B. This quantity appears in many of our

theorems, giving insights into the local stability at zero. However, with a slight change

in perspective, the habitat quality may just as well include the presence of competitors.

In such a case, the habitat quality is

1G − c1B − 1Gu.

Thus, if population u is decreasing due to increased fragmentation (we found exactly

this behaviour in the scalar case!), −u is increasing. Therefore, the habitat quality

for species v may be increasing when population u is decreasing ! We should remind

readers again of an important point: this investigation depends closely on the diffusive

assumption for animal movement. We carefully note that other movement mechanisms

may result in drastically different predictions.
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We summarize these findings in Table 4.1, providing direct answers to some of the

questions raised by ecologists and the nature of the impact of habitat fragmentation.

4.7.4 Concluding remarks

In this chapter, we discussed in detail some of the challenges associated with studying

habitat fragmentation. Of particular concern is the wide variety of definitions and ter-

minologies used in the literature. In the worst cases, the same term is used for entirely

distinct processes. This lack of clarity bleeds into the modelling literature, with many

authors not providing clear terminology. Interpreting results becomes much more diffi-

cult as a consequence. As evidenced by works such as [39] and [46], interpretations and

outcomes of fragmentation impacts are sometimes contradictory and often confusing.

To combat this, we distinguish two perspectives: habitat fragmentation as an ar-

rangement and as a process. We propose 4 distinct, but closely related, measures of

fragmentation. Using tools developed and used in Chapters 2-3, these measures devel-

oped are closer to the species-oriented perspective, including species-specific quantities,

such as diffusion rates and varying resilience to landscape changes. The first two in-

dices, SOFFI and POFI, are presented as measures of fitness since they relate directly

to the net growth rate of the population. The SOFFI score is easiest and most useful

to interpret. The POFI score, meant to remove some of the species-specific qualities,

is more of a theoretical object, providing a proof of concept that these measures can be

modified to fit more closely with pattern-oriented approaches. To complement these,

we also introduce the TAFI and the R-TAFI, relative measures of total abundance.

In the single species (TAFI) case, it is relative to the maximal theoretical population

size should there be no habitat disturbance. In the multi-species case (R-TAFI), it is

relative to the total abundance of all populations.

Using these scores, we assess the impact of fragmentation as a pattern and as a

process. By approaching the problem from several angles, we are able to tease apart

some general trends that appear to hold across all cases. These findings are summarized

in Table 4.1.

Due to the lack of consistency in conclusions found in the existing literature, we do
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not expect this problem to have an easy answer. The results obtained here reflect this

quite clearly: arguing whether habitat fragmentation is good or bad is moot. Instead,

we reframe the question as when is habitat fragmentation good, bad, or neutral? We

find that, in almost all cases, the impact of habitat fragmentation is amplified by

higher levels of degradation. On the other hand, low levels of degradation with high

fragmentation can sometimes be a good thing, even in the single species case. We then

observe that habitat fragmentation effects are much more complicated when there are

interacting species: depending on the species-specific features (dispersal rates, resilience

levels), fragmentation can be the difference between extirpation and persistence.

These results, while not definitive or necessarily conclusive, provide many mecha-

nisms by which the variability in fragmentation effects can be explained. We hope that

these results stimulate some new avenues of study, leaning more towards mechanistic

and species-specific perspectives for wide application and assessment.
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Chapter 5

Conclusion

5.1 Discussion and broad impact

Much of the main conclusions drawn and insights gained in this work are discussed

in detail at the end of each chapter, so we do not seek to repeat them here. Instead,

we will discuss some of the overarching themes of the dissertation and aim to connect

back to some of the original goals of this work from Chapter 1.

As has been argued, habitat loss is a timely issue which needs to be better under-

stood before it can be fully addressed. Habitat loss is inevitable, and so we are highly

motivated to study its impacts now so we can mitigate its impacts on biodiversity and

sustainability in the future. Moreover, habitat loss is a highly complex process with

many counter-intuitive components and impacts. Part of this complexity is inherent

in the problem; the rest of this complexity is perhaps a consequence of ambiguity in

both the mathematical and ecological literature. Before addressing habitat loss from

a modelling perspective, we must first define it in a way that is amicable to analytical

study. This is what was argued in Chapter 1.

In Chapter 2, we introduced a habitat degradation model following the precise

definitions found in the preceding chapter. From the discussion of Chapter 2, we con-

clude that the habitat degradation model developed offers valuable insights into the

dynamics of some ecological systems subject to habitat degradation. The inclusion of

ecologically relevant components, such as a diffusive movement mechanism with ex-

plicit spatial heterogeneity and species-dependent habitat quality, has allowed for a
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more nuanced understanding of the impacts of habitat degradation on interacting pop-

ulations. The main result of the chapter, a complete description of the global dynamics

of a competition-diffusion system, highlights the importance of species-dependent habi-

tat quality as a consideration. This indicates that a sufficiently resilient species will

always displace the slower diffuser, and this result is highly robust in that it holds

true for a degraded region of any size or shape. Different from existing mathematical

works studying similar problems, we fully describe the asymptotic behaviour with less

abstraction. In particular, we found that for any fixed configuration, there is always a

window giving coexistence of the competing species.

The framework developed in this chapter also extends existing mathematical liter-

ature in an interesting way, offering an alternative strategy to slower rates of diffusion

through higher rates of resilience in a modified habitat. The chapter’s results show

that slow diffusion is still beneficial to survival, but that resilience to environmental

changes can also facilitate persistence.

These insights offer a promising avenue for promoting biodiversity through a trade-

off between dispersal rates and levels of resilience. This is in contrast to classical

results, such as ‘the slower diffuser always wins! ’ result: even moderately different

species-specific qualities can drastically change the dynamical outcomes. This is best

understood through the detailed study of the principal eigenvalue, which contains all

of the necessary information to draw such strong conclusions. Significant effort was

given towards obtaining these sharp results.

While the assumptions on the nature of the movement of the organism and the

extent of competition may have its limitations, the insights provided by this model can

inform strategies for facilitating population persistence in the face of habitat degra-

dation. In practice, improving habitat quality and reducing the size of the degraded

region are both promising approaches. The habitat degradation model offers valuable

insights into the impacts of habitat degradation on ecological systems and highlights

the importance of considering species-dependent habitat quality in these analyses.

Using our three postulates, we then formulate a habitat destruction model from two

different perspectives, as explored in Chapter 3. First, from the definition of habitat
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destruction given here, we construct a habitat destruction model giving rise to reaction-

diffusion equations ‘in domains with holes’. Then, from our understanding that habitat

degradation and destruction lies on a spectrum, we consider an asymptotic limit as the

level of degradation becomes arbitrarily high. As it turns out, these two perspectives

are equivalent, giving some consistency to the models’ development.

From the discussion of Chapter 3, we can conclude that the habitat destruction

model developed also offers some valuable ecological insights, complementing the re-

sults of Chapter 2. First, we prove a uniform convergence between the habitat degrada-

tion model and the new habitat destruction model in a single-species setting. Beyond

its mathematical interest, this is the first convergence result of its kind, providing a di-

rect connection between the processes of habitat degradation and habitat destruction.

In the limit, we obtain a problem that is comparable to a classical Dirichlet prob-

lem, suggesting that there is an equivalent ‘critical domain size’ result to be obtained.

More interestingly, the convergence between these problems suggests a critical domain

size even in the degradation setting. We also establish a convergence result between

the degradation and destruction competition systems, indicating that in a destroyed

habitat, the slower diffuser regains the competitive advantage. In other words, vari-

able responses to habitat degradation are required to facilitate coexistence. Within

these results is a direct connection between the asymptotic behaviour of the solutions,

obtained via a detailed study of the associated principal eigenvalue problems.

These results demonstrate the importance of understanding the behaviour of prin-

cipal eigenvalues as they relate to the global dynamics of ecological systems. Indeed,

the intrinsic growth rate of a population is given by the negative of this eigenvalue, giv-

ing a direct connection to a populations’ fitness. The uniform convergence established

between the principal eigenvalues and corresponding eigenfunctions of the degradation

and destruction problems offers a steppingstone for connecting the global dynamics of

the two models, as well as for determining the likelihood of population persistence in

degraded or destroyed regions.

While Chapter 3’s assumptions on the nature of the set B and the initial data are

more limited than those of Chapter 2, the insights provided by the model can still
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inform strategies for mitigating the impacts of habitat loss on ecological systems. As

previously discussed, these are technical assumptions that may potentially be weakened

with further effort. In either case, these technical requirements do not detract from

the broad conclusions made.

Synthesizing these results and referring again to the arguments made in Chapter 1,

we begin to develop a unique approach to assess the impacts of habitat fragmentation.

We sought to study this aspect of habitat loss both as a process and as an arrangement.

The key tool to do so is, again, the associated principal eigenvalue.

In Chapter 4, we made a slight departure from the previous chapters, focusing more

closely on ecologically relevant scenarios of habitat fragmentation. This chapter high-

lights the importance of clarifying terminology and definitions in ecological research,

especially when we seek to model these processes mathematically. By distinguishing

between habitat fragmentation as an arrangement and as a process, and by proposing

several measures of fragmentation, Chapter 4 provides a framework for assessing frag-

mentation impacts in a more rigorous and mechanistic way. The measures developed

adopt both a species-oriented and a pattern-oriented approach, an attempt to broaden

the possible application of these measures, rather than close one off to a particular

perspective already existing in the ecological literature. The key measures introduced,

the SOFFI and POFI scores, give a single quantity between 0 and 1, indicating the

population’s fitness. Despite its simplicity, its derivation from first principles relies

on an assumption of diffusive movement; while this is a strong assumption to make, it

also provides very rich and complex information about a given landscape. Importantly,

the measure captures implicitly many of the key properties (edge length, edge density,

contagion, etc.) of fragmentation that ecologists care about. Given the mechanistic

beginnings, this approach is readily generalized to other movement mechanisms beyond

diffusion.

Using these scores, we assessed fragmentation as a pattern and as a process. As

a pattern, we provide analytical insights based off of the analytical properties of the

principal eigenvalue. These give general rules to promote a populations’ fitness, stated

as an abstract theorem, and then explained in simpler terms. As a process, it was
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found that fragmentation (as simulated via ‘contagion’) is negative for a population’s

fitness.

Despite its utility, it is also recognized that assessing fragmentation through growth

rates is not always commensurate with empirical studies of habitat fragmentation.

Indeed, many studies collect data indicating a total population abundance rather than

a growth rate. Hence, we introduce two additional measures, the TAFI and R-TAFI

scores, which provide a relative total abundance compared to some theoretical ‘optimal

state’. This is motivated again by existing measures found in the ecological literature,

such as the biodiversity intactness index. In both cases, it was found that fragmentation

can sometimes be good for increasing the total abundance of a population; however,

this was heavily dependent on the level of impact in the degraded region.

These findings suggest that the impact of habitat fragmentation on a species de-

pends intimately on 1. what metric is being used to assess said impacts, and 2. what

the quality of the habitat and surrounding matrix is. We summarized differing scenar-

ios in a table, providing viable answers to some of the toughest questions surrounding

the seemginly contradictory conclusions reached in some of the existing ecological lit-

erature.

These results combine to provide a nuanced overarching view into all of the processes

which comprise habitat loss. As discussed in Chapter 1, we have substantial motivation

to study the broad impacts of habitat loss of species. Due to the complexity of this

problem, mathematical modelling offers an alternative to costly and time-consuming

field studies. In [79], the authors state “Not only is research on the impacts of alien

species necessary to understand why some species are more disruptive than others and

why some systems are more susceptible to being disturbed by alien species, but it is

also of practical importance in determining how limited management resources should

be allocated.” Whether studying invasive species or otherwise, this is of significant

importance: we must strive to optimize our conservation efforts. The results found

here provide a number of mechanisms by which we can understand more deeply the

impacts of habitat loss.
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5.2 Future directions

From the work found in this document, there are many different directions one might

take to extend these insights further. We discuss briefly future directions for each

perspective somewhat separately.

Degradation

For the degradation models of Chapter 2, there are a few directions one might con-

sider. First, we consider a binary classification of the landscape, defining regions of

habitat (G) and non-habitat (B). This is, of course, a simplification. One may retain

the novelty of the ‘indicator function’ approach and it potential for precise analytical

insights by considering a higher-grain perspective. For example, one might separate

multiple ‘good’ regions G1, . . . , Gk and bad regions B1, . . . , Bj, k, j ≥ 1, each of which

are (almost) disjoint, whose union comprise the entire landscape Ω. Then, we can

assign different constant habitat quality values in each Gi, and different degradation

levels in each Bi. This will increase the difficulty of analytical study but may also

provide insights that cannot be captured in a binary setting.

Related to this point is the assumption that the ‘good’ regions and ‘bad’ regions

overlap exactly for the two competing species. Instead, one may consider a shared

‘bad’ region B, but then species specific growth rates in subsets of G; that is to say,

there may be separate regions of habitat for each species. This would almost certainly

further promote coexistence through niche differentiation.

Finally, one may consider competing species with 3 or more interacting populations.

This would provide richer insights into questions of biodiversity, but it is unlikely that

the global dynamics can be established in a general setting. In particular, competition

models with 3 or more interacting populations no longer fall under the umbrella of

monotone dynamical systems, and so alternative methods must be utilized.

Destruction

Similar to some future directions for the degradation model, it would be interesting to

consider the combined effects of habitat degradation and fragmentation. That is, we
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assumed a unit growth rate in the undisturbed region(s) Ω\B. It would be interesting

to consider a good region G and a moderately degraded region B′ such that G∪B′ = Ω.

This would, of course, decrease the likelihood for persistence, but it may also facilitate

coexistence in the competition model.

Aside from broadening the biological application, it would be of mathematical in-

terest to determine where our technical assumptions are necessary, and where they

might be weakened. In particular, it may be useful to weaken the condition on the

initial data so that it can be positive over the entire domain. It would also be of

great interest to prove an exponential rate of convergence in time, independent of the

parameter c. We come close to this result, but the devil is always in the details. It is

very difficult to use sub/super solution arguments to obtain uniform estimates of the

rate of convergence to a steady state across all values of c.

For the competitive system, it is likely possible to consider a more general right-

hand side satisfying appropriate monotonicity conditions. The form u(m − u − v) is

prototypical for competition in the sense that

∂f

∂u
= m− 2u− v,

∂f

∂v
= −u,

and so both are decreasing in the argument u. This is usually a sufficient condition to

apply the theory of monotone flows (i.e., we require a ‘cooperative’ system or something

equivalent).

Fragmentation

This chapter holds some of the most interesting avenues for future study. First, the

influence of the size and geometry of the degraded/destroyed region B on the size/sign

of principal eigenvalues is of mathematical interest and can also provide ecological in-

sights. The existence of an optimal hole, for example, is of great interest for conserva-

tion efforts. As was demonstrated, optimal is relative to what you care about: optimal

for population growth rates does not always agree with optimal for total abundance.

Several measures of habitat fragmentation were developed, but the application was

in the setting of simulated landscapes or particular forms of heterogeneity. While
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general trends were found, these insights are likely biased by the nature of the simulated

landscape considered. It would be interesting to apply these measures to fragmented

landscapes that are generated by different means and determine if the same conclusions

can be reached.

Finally, it would be a significant contribution to the literature if we could apply

these measures to real habitat loss data. Even a cursory image search for ‘deforestation

satellite images’ gives an idea of what shapes/patterns we might expect. It would be

useful to develop algorithms to translate such satellite imagery to a ‘black-and-white’

pixelated matrix. Then, we can classify each pixel as ‘habitat’ or ‘non-habitat’ and

feed this landscape matrix into the measures developed in this dissertation. This would

be the most ecologically appropriate, as habitat fragmentation is a process that occurs

in the natural world in a less algorithmic way than mere simulated landscapes.
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