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Abstract 

 

Data based abnormality detection is a growing research field focussed on 

extracting information from feature rich data. They are considered to be non-

intrusive and non-destructive in nature which gives them a clear advantage over 

conventional methods. In this study, we explore different streams of data based 

anomalies detection. We propose extension and revisions to existing valve stiction 

detection algorithm supported with industrial case study. We also explored the 

area of image analysis and proposed a complete solution for Malaria diagnosis. 

The proposed method is tested over images provided by pathology laboratory at 

Alberta Health Service. We also address the robustness and practicality of the 

solution proposed. 
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Chapter 1 

Introduction 

1.1 Motivation 

‘Abnormality’ literally is defined as behaviour that breaches the rule. As the 

definition suggests the behaviour of systems (human body can also be considered 

as a system) or processes operating within these rules are acceptable. Thus it 

becomes important to monitor a system to avoid deviation or abnormal behaviour 

to boost profitability. As we walk in the era of digital age or in the age of 

information technology, system monitoring has become excessively widespread. 

The system’s information is delivered in the form of digital data like time series 

data of critical variables, or digital images etc. The aim of the study presented 

here is to extract abnormalities or anomalies present in the digital data which 

cause deviation from normal working conditions. The problems arising from the 

abnormal behaviour needs to be quantified to understand the severity of the 

problem to help in prioritising the maintenance of such systems. Thus, it becomes 

important to understand data more closely as it carries physical information of the 

system and develop smarter data driven techniques to capture the maximum 

amount of information about the system from the delivered data. Data driven 

techniques have a clear advantage in industry as well as medicine because they 

are non-intrusive in nature. The two case studies presented in this research work 

show the need for data based diagnosis methods for detection of anomalies. 

1.2 The valve problem 

Typical industrial plants such as an oil refinery include thousands or more control 

loops to operate the process at desired operating conditions. The first case study 

presented in this thesis focuses on the performance of control loops. In particular, 

a poorly performing control loop results in degraded process performance. The 

degraded process performance results in poor plant performance which directly 

impacts the profitability of the plant. Thus control loop monitoring has emerged 
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as an important capital asset to industry. Most control loops are equipped with 

movable mechanical equipment, the actuator, to control the process and the most 

commonly used actuating device is the control valve. Many literature studies 

suggest that 20-30% [1 and 8] of all control loops have oscillation problems 

which can directly be related to valve problems. The physical understanding of 

the valve indicates that static friction (stiction) is most often the cause for poor 

control loop performance. A typical valve controlled loop is shown in Figure 1.1. 

The stiction induced non-linear oscillations known as limit cycles [1 and 8] are 

shown in Figure 1.2 leading to system instability.  

Choudhury et al [1] introduced a bi-coherence based data driven method to detect 

and quantify stiction and this method is reported to be most successful method for 

stiction detection [8]. However, the bi-coherence method often gives a number of 

false and missed alarms and the primary focus of their method is stiction detection 

and quantification. The aim of the current research in this thesis is to rename the 

‘Valve Stiction’ detection algorithm as ‘valve fault detection’ algorithm and also 

minimize the number of missed and false alarms. 

 

Figure 1.1: Schematic of simple feedback of valve controlled process 
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Figure 1.2: The limit cycles due to valve problems in PC950 loop from 

industrial data set 

 

1.3 Targeted information capture in digital images 

The second case study in this thesis primarily explores the field of image 

processing to provide computer aided vision methods to detect the presence of 

malaria parasites in thin smeared blood sample slides. Humans are gifted with an 

exceptionally powerful visual system which makes them experts in visual based 

judgement. Although the foundation of image processing is mathematics and 

probabilistic formulations, human intuition and analysis plays an important role in 

the choice of particular method over another. Hence, we first try to understand the 

basics of human vision system. Figure 1.3a shows a simple schematic of human 

visual system which comprises of the eyes, optic nerves and visual cortex at the 

rear of our brain. The eye captures visual data and transfers this to the visual 

cortex through the optic nerve. The brain interprets the visual stimuli which form 

a large part of our experience. Figure 1.3b show an overly simple imitation of the 

human visual system. 
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                                    (a)        (b)       

Figure 1.3: Imitation of Human visual system with computer aided vision. 

 

The emergence of low cost digital imaging system has given access to cheap and 

feature rich information for automatic image analysis. Image analysis has opened 

a huge field for automation, wherein algorithms are designed to extract 

information from digital images for subsequent decision support. Automatic 

image analysis is very diverse, popular and has deep roots in the medical field 

such as MRI scans for locating tumours. The focus of this work is to introduce the 

effectiveness of automated image analysis in the field of malaria diagnosis. 

Malaria is the third deadly infectious disease [6] and has infected humans for 

almost 500,000 years [5]. High death tolls and large volume of infections 

especially in the developing countries as shown in Figure 1.4 clearly motivate the 

need to control the disease by providing cheap and speedy diagnosis methods 

combined with effective medication. The diagnosis of malaria is still in its 

primitive stage and extensively dependent on manual microscopy. The overall 

understanding of manual microscopy reveals a huge potential for image analysis 
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based automation methods. The semi-automatic diagnosis process is designed to 

imitate the process of manual microscopy as closely as possible. Also, the semi-

automatic technique as developed here has specifically been designed under the 

constraint that it should be unsupervised, specific and practical.  

 

Figure 1.4: Estimated incidence of malaria per 1000 population, 2006 [5] 

 

The method proposed in this thesis is based on image analysis combined with 

robust statistical methods to capture the specific information in the low resolution 

images. The method was tested on a large variety of images provided by 

personnel at Alberta Health Services. 

1.4 Thesis overview 

This thesis is organised as follows: chapter 2 discuses the basics of valve 

controlled loops and the problems related to valves. Specifically, this chapter 

discusses the bi-coherence based method proposed by Choudhoury et al [1] and 

proposes improvements to the current bi-coherence method. The importance of 

revisions and improvements suggested are tested through the two industrial case 

studies presented later in the chapter. 
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Chapter 3 starts by motivating the need for an automated method for malaria 

diagnosis. This chapter discusses the development of novel image based diagnosis 

method with detailed explanation of each step. The chapter carefully looks at the 

choice of method for each step under the given constraint. The success rate of the 

method is discussed in the later part of chapter by analysing more than 200 

images received from the University of Alberta hospital.  

The thesis ends with concluding remarks in Chapter 4 with a short discussion on 

suggestion for future work. 
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Chapter 2 

Bi-coherence Based Valve Stiction 

Detection:  

Extensions and Recommendations 

2.1 Introduction 

The most common actuating element in a control loop is a valve which is 

typically the only moving element in a feedback loop. A cross-sectional diagram 

of a typical pneumatic control valve is shown in Figure 2.1. The valve represented 

in this Figure portrays the motion of a spring-diaphragm actuated stem in a flow 

control loop. The valve stem is surrounded by tight packing to ensure that fluid 

flow under control does not leak. Because of this there is static friction between 

the packing and the moving valve stem. Thus, valve stiction (as a short from for 

static friction, to distinguish from dynamic friction) is one of the most common 

causes of non-linearity in the control loop. Typically, sticky valves will cause 

limit cycles in the loop and these oscillations can easily propagate to other loops 

in an interconnected system. In addition to this there may be other problems with 

the actuator such as problems with the valve positioner, ruptured diaphragms, 

broken springs, hysteresis, backlash and possible non-linear excursions of the 

process. The objective of this study is to therefore be able to develop a general 

data-based ‘valve fault detection’ tool. The implicit assumption here is that the 

process can be considered to be locally linear and therefore any non-linearity 

detected in a loop can be attributed to valve problems. 
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Figure 2.1: Spring Diaphragm valve 

 

2.2 A closer look at stiction 

Detection and quantification of valve problems is therefore an important issue in 

industry in order to prioritize the maintenance of control loop hardware to 

enhance plant performance. Among all of this, valve stiction is a fairly wide 

spread problem and as a result there have many studies in the literature suggesting 

several methods for detection and quantification of valve stiction [8]. Figures 2.2 

and 2.3 give a graphical illustration of valve stiction as a fault detection and fault 

diagnosis problem. To detect and quantify stiction it is first necessary to 

understand the physical behavior of sticky valve. The physical behavior of valve 

stiction can be closely captured using a two parameter model shown in Figure 2.3, 

as proposed by Choudhury et al [1]. The two parameters are S (stick band + dead 

band) and J (slip jump) as shown in Figures 2.3 and 2.4.  

Packing 
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Figure 2.2: Control loop diagram with a sticky valve 

 

 

Figure 2.3: Sticky valve output showing the magnitude of stick band plus 

deadband (S) and slip-jump (J) parameters 

 

 

Figure 2.4: Typical input-output behavior of a sticky valve 
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2.3 Extensions and Improvements 

The bi-coherence based non-intrusive stiction detection algorithm has been 

reported [8] as one of the most successful methods for detecting and quantifying 

stiction. The algorithm uses process output (PV), controller output (OP) and set 

point (SP) data to detect and quantify stiction. However the bi-coherence based 

algorithm in its current form [1 and 8] results in a number of false and missed 

alarms. The objective in this section is to propose extensions to the existing valve 

stiction algorithm to minimize the number of missed and false alarms and thus 

enhance the performance and robustness of the algorithm. The reasons for the 

false and missed alarms and the corresponding extensions to overcome the 

limitations of the current algorithm are listed below and are supported by 

appropriate examples to demonstrate the utility of the proposed changes on 

simulated and industrial data sets. Details of the suggested changes are also given 

in MATLAB code.  

1) Detrending of data: The algorithm starts with the detection of oscillation 

in the error signal (SP-PV). Oscillation detection is very sensitive to the 

stationarity of the signals that are being analyzed; to make the oscillation 

detection robust, it is advisable to make the error signal stationary by 

detrending. Detrending, removes the mean value of time series and makes 

oscillation detection robust and less prone to errors, this reduces the 

number of false alarms.  In all of the following examples, we use 

detrended data. We start with one simple example to illustrate one such 

case: 
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Figure 2.5: The original signal (for tag PC2345 from an industrial site*) was 

non-stationary and the stiction detected was positive. However there was no 

stiction detected in this valve after detrending; the algorithm thereafter 

correctly diagnoses this case as a ‘no stiction’ signal. 

* Industrial site name withheld for confidentiality reasons. 

2) Non-Linearity check: Non linearity detection is one of the initial checks in 

the stiction detection and quantification algorithm; it fails to detect and 

quantify stiction if the computed non-linearity index (NLI) of the error 

signal is non-positive. NLI is sensitive to the number of data points and 

changes if the data is segmented into smaller over-lapping windows 

particularly in the case of noisy data. Perhaps, the reason for failure of 

detecting nonlinear ‘elements’ in a large dataset, meaning many 

observations, is that the NLI is averaged. As a result the NLI may be lower 

over the entire data set when some windows segments may have linear 

characteristics and even though other window segments may indicate 
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significant nonlinearities. If on the other hand, NLI is computed on 

segments of data that are created by overlapping windows, each of length 

at least 1024 points, then the NLI of many of these windows may be 

larger. To make the NLI more robust in such cases, it is suggested that the 

data be segmented as follows with an agent based voting decision.  

 For observations less than 1024 points, report it as insufficient data 

for quantification. 

 For observations between 1024 to 2048 points, choose segments of 

width of 1024 points with moving overlapping width of 100 points. 

Than the final NLI decision of ‘yes’ or ‘no’ is arrived at by vote 

count. 

 For observations with more than 2048 points, choose segments of 

width of 2048 points with moving overlapping width of 200 points. 

Than the final NLI decision of ‘yes’ or ‘no’ is arrived at by vote 

count. 

This approach circumvents the requirement of the data being free from sharp or 

abrupt changes. For example, if the data comes from a loop with no valve or non-

linearities but has some abrupt or sharp changes then the windows containing 

these changes will indicate high non-linearity. However a majority of the 

windows will not show the presence of any non-linearity. This feature clearly 

serves to extend the bi-coherence method and overcomes the problem that was 

commented in Ref [8] page number 323 ‘requirement of a large dataset free from 

sharp or abrupt changes are clear weakness of the method’. 

In this way it is suggested that data segmentation for NLI and stiction 

quantification be differentiated i.e. NLI is calculated over large number of 

overlapping windows and if non-linearity is detected then stiction is quantified 

over the data segment where NLI is the highest. In order to make the diagnostics 

easier and also to extract maximum information from the analysis, the algorithm 
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is extended to also report percentage of segmented windows with high NLI as 

explained below: 

 If more than half segmented windows are detected to have high 

NLI then maximum NLI is reported along with the percentage of 

segmented data with high NLI and stiction is quantified. 

 If less than half segmented windows report high NLI then the 

algorithm will only report the percentage of segmented data with 

high NLI.  

These changes were applied and checked on the industrial dataset shown below. 

In both cases, segments of width 2048 points with moving overlapping width of 

200 points were selected: 
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Figure 2.6 (Tag PC245): Initially without NLI calculations on segmented data 

no stiction was detected. As can be visualized there are limit cycles in this 

data because of valve problems. After implementing the suggested changes, 

the NLI is found to be 0.52 thus allowing the algorithm to confirm non 
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linearity and correct diagnosis of stiction. In this case percentage of window 

segments with high NLI is reported to be 58%. 
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Figure 2.7 (Tag: FC933): The presence of limit cycles clearly shows valve 

problems in some data segments with maximum NLI value of 0.89 thus 

confirming stiction or valve problems or nonlinear process excursions. In this 

case percentage of window segments with high NLI is reported to be 64% 

 

3) Set point activity check:  Oscillations in the set point (SP) values can be 

one of the causes of process variable (PV) oscillations. This could 

potentially be caused by problems in the outer loop in a cascaded loop 

setting. The present algorithm has a check for set point activity but we 

suggest an extra step to make the SP activity check more robust. The 

current algorithm uses correlation between SP and PV blindly, not taking 

into account the time-lag between SP and PV. It is necessary to use lag-

adjusted correlation to minimise the number of missed and false alarms. 
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Alternately, we suggest use of coherency information; the coherency 

matrix tries to capture the correlation between two time series in the 

frequency domain thus making it phase blind. Coherency analysis between 

the SP and PV will therefore be ‘blind’ to the time lag between the two 

time series and still report correct correlation in the spectral domain. A 

high correlation would indicate good performance of the loop and thus 

negate any issues with non-linearity. A low coherency would be a cause of 

concern and would need to be diagnosed carefully to arrive at root-cause 

analysis of the oscillations. 

Simulated examples: 

Simulation model 1: A Simulation model using Matlab/Simulink is designed to 

excite a first order plus time delay (FOPTD) process under closed loop control 

with oscillations in the SP signal. This simulated data was used to detect SP 

activity. 
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Figure 2.9: Zoomed plot of PV and SP from simulation model as shown in 

Figure 2.8 
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Figure 2.10: Correlation of SP and PV at different time lags from simulation 

model 1 in Figure 2.8 
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From Figure 2.10, the present algorithm fails to check this case as a ‘high’ SP 

activity case, even though the SP signal has significant number of zero crossings 

and the correlation between the SP and PV, without taking the time lag into 

account, is smaller than the threshold value of 0.8. We can observe that 

correlation between PV and SP is maximized at time lag = 5 (correlation= 0.9815) 

but in the current algorithm, we proceed with the correlation calculated at time 

lag=0 (to yield a correlation of 0.7674), thus resulting in a false alarm. With the 

suggested amendment in set point activity check, we are more confident in 

inferring this as an oscillation in loop because of SP oscillation.  

Simulation model 2: In Figure 2.11, a simulation model is designed to excite a 

FOPTD process under closed loop control with non-linear oscillations from 

another interconnected loop. Consider, control loop 1 with the valve stiction 

block and loop 2 without valve stiction i.e. loop 1 is excited with step signal and 

PV of loop 1 is SP for loop 2.This simulated data from both the control loops 

were used to detect SP activity and to check that there would be no false alarms in 

the loop with no stiction.  
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Figure 2.12: Zoomed plot of PV and SP for loop 1 (with stiction) 
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Figure 2.13: Zoomed plot of PV and SP for loop 2 (without stiction) 
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Figure 2.14: Temporal correlation of SP and PV for loop 2 at different time 

lags 
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 Figure 2.15: Coherency of SP and PV for loop 2 
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The first loop has stiction with little or no SP activity. Both algorithms are able to 

correctly detect stiction in this loop (see Figure 2.12).  

For the interconnected second loop it can be seen from Figure 2.14, that the 

present algorithm fails to detect this as a ‘high’ SP activity case, even though the 

SP signal has a significant number of zero crossings and high NLI; the correlation 

between the SP and PV without taking the time lag into account, is smaller than 

the threshold value of 0.8. We can observe that the correlation between PV and 

SP is maximized at time lag of 7 (correlation= 0.999) but the current algorithm 

calculates the correlation at time lag 0 (correlation= 0.7322), thus reporting this as 

a case of false alarm, i.e. reporting stiction when there is none. 

Simulation model 3: The simulation model represented in Figure 2.16 represents a 

common case of cascaded loop. The revision suggested in SP activity check will 

be able to capture stiction in the cascaded loop, as the simulation in Figure 2.16 

suggest inner loop has sticky valve. As we know inner loop will have faster 

dynamics compared to outer loop thus control valve will exist in inner loop. If 

revised SP activity check detects valve problem in the loop, the method will 

report valve problem in inner loop. 
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Figure 2.17: Zoomed plot of PV and SP for master loop 
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Figure 2.18: Zoomed plot of PV and SP for slave loop 
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To minimize the number of false alarms due to SP activity, two methods are 

suggested: 

1) Coherency plot: From Figure 2.15, we can observe that because of high 

correlation between SP and PV, the magnitude of squared coherence is 

consistently high, thus an appropriate threshold can be designed to 

capture the high correlation between PV and SP. This method is 

advantageous over temporal correlation analysis because spectral 

correlation of coherency analysis is phase blind requiring less 

computational effort. 

2) Time lagged correlation: From Figures 2.10 and 2.14, we can observe 

that correlation is function of time lag and is maximized at particular time 

lag.  So as an alternative to coherency analysis between PV and SP, we 

suggest calculating correlation at different time lags and then searching for 

the maximum correlation, and subsequently using this maximum 

correlation for further analysis. This will require additional computational 

resources. 

These changes were applied and checked on the industrial dataset shown below. 

In both cases, segments of width 2048 points with moving overlapping width of 

200 points were selected: 
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Figure 2.19 (Tag FC loop CHEM 14 Ref [8] page number 298): This case was 

correctly diagnosed as ‘high SP activity’ 

 

2.4 Brief outline of algorithm: 

 

Figure 2.21: Flow diagram of the revised algorithm 
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The above flow chart gives a brief outline of the algorithm for valve stiction 

quantification. The steps followed in the algorithm are explained in detail below: 

1) Input (SP, PV, OP) 

2) Detect oscillations from detrended error (SP-PV) data on segmented 

overlapping windows as present in the current algorithm. 

3) If oscillations are detected, NLI calculations are performed on smaller 

overlapping windows of error signal as suggested earlier in this report. 

4) If NLI detected to be high for more than half of the segmented windows, a 

SP activity check is performed as suggested above. We also suggest 

reporting percentage of data for which high NLI is detected. 

5) If SP is not the cause of loop oscillation, quantify stiction on larger data as 

done in current algorithm 

Output: After thorough analysis of PV, SP and OP data the algorithm reports the 

following five parameters with changes implemented in second and fifth output 

parameters to make the diagnosis of the loop easier.  

1) Stiction 

2) Maximum NLI  

3) Error due to stiction 

4) Stiction confidence 

5) Percentage of window segments with ‘high’ NLI 

2.5 Concluding remarks: 

The extensive data analysis reported below on some benchmark industrial data 

(Ref [8] page number 298-366) set reveals that the extensions and improvements 

suggested has significantly enhanced the diagnosis process. The diagnosis is not 
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only restricted to stiction problems but with these recommendations the algorithm 

can also address ‘other’ valve problems. The success rate for stiction detection 

and quantification was increased from 70% to more than 90%. 

Notation:  

NS = No Stiction 

MA = Missed alarm 

S = Stiction  

NLI = Non Linearity Index 

Color notations:  

Blue: Represents cases of missed alarm with the revised method as described above. 

Red: Represents cases of missed alarm with current algorithm but were diagnosed 

correctly with revised algorithm. 

Gray: Represents cases of false alarm with current algorithm but were diagnosed 

correctly with revised algorithm. 

Results of case study 1: All of the changes as suggested above were implemented in the 

MATLAB code and tested on simulated and industrial datasets. Table 2.1 shown below 

gives comparison of the results from current MATLAB code and revised MATLAB code 

applied to the industrial dataset (24 hrs data sampled at rate of 1 minute). The comparison 

of the results below show fewer cases of false and missed alarms (marked in red). We 

suggest that industrial engineers try this out on a larger data set and recommend 

appropriate threshold on the coherency level.  
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Loop name Stiction NLI Stiction NLI

FC190A 0.62 0.25 0.89 0.54

FC314  0.00 0.30 0.00 0.63

FC566  0.92 0.23 0.11 0.31

FC977  NS NA 1.04 0.89

FC308A NS NA 2.70 0.75

LC010  2.86 0.55 2.67 0.87

LC093 0.02 0.92 0.06 0.97

LC156  NS NA 0.33 0.08

LC164  NS NA 0.17 0.65

LC168  0.70 0.30 0.72 0.59

PC103  2.80 0.98 2.76 0.99

PC112  3.69 0.24 4.77 0.87

PC134  NS NA 0.24 0.68

PC268  3.40 0.66 4.02 0.87

PC950  NS NA 1.95 0.52

PC018  7.64 0.47 2.02 0.94

PC008  0.32 0.83 NS NA

PC009  0.53 0.76 0.52 0.64

PC010  0.48 0.95 0.60 0.95

PC028 0.26 0.38 NS NA

TC061  1.40 0.37 1.04 0.60

TC063  1.22 0.23 0.94 0.56

TC106  0.31 0.69 0.21 0.94

TC007  2.18 0.68 1.72 0.84

TC015  0.32 0.77 0.31 0.84

Current algorithm Revised algorithm

 

Table 2.1: Current algorithm (5 cases of missed alarm (marked in yellow) 

and 2 cases of false alarm (marked in green)), compared with revised 

algorithm (5 cases which were missed with the earlier code (marked in red) 

and 1 case of false alarm (marked in blue)). To make this comparison easier 

the cases of false alarms (marked in orange and grey) are distinguished in 

both Tables.  

 

Results of case study 2: The changes proposed in the bi-coherence based 

algorithms have been shown to reduce the number of missed and false alarms. We 

can observe that there are fewer cases of missed alarm with the revised algorithm 
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and most of these missed cases can be attributed to failure of oscillation detection 

algorithm. The stiction detection algorithm can thus be further fine-tuned by 

having a robust oscillation detection algorithm.  The brief summary of results 

from the analysis is compiled in Table 2.1 and Table 2.2: 

 

Chemicals 

 Result Remarks 

Loop 1 29 % High 

NLI 

This is a case of missed alarm with current algorithm 

 Loop 9 NS MA 

Loop 14 NS This is a case of false alarm with current algorithm. 

Case of High SP activity. 

Loop 15 NS MA 

Loop 16 40 % High 

NLI 

This is a case of missed alarm with current algorithm 

Loop 17 NS MA, no oscillations detected 

Loop 18 NS This is a case of false alarm with current algorithm. 

Case of High SP activity. 

Loop 24 NS This is a case of false alarm with current algorithm. 

Case of High SP activity. 

Loop 27 S This is a case of missed alarm with current algorithm 

because no NL detected 

Loop 30 45 % High 

NLI 
This is a case of missed alarm with current algorithm 

Loop 32 NS This is a case of false alarm with current algorithm. 

Case of High SP activity. 

Loop 35 30 % High 

NLI 

This is a case of missed alarm with current algorithm 

Loop 37 NS MA 

Loop 41 NS MA 

Loop 43 NS MA, no oscillations detected 

Loop 49 NS MA, no oscillations detected 

Loop 51 20 % High 

NLI 

This is a case of missed alarm with current algorithm 

Loop 70 40 % High 

NLI 

This is a case of missed alarm with current algorithm 

Loop 72 20 % High 

NLI 

This is a case of missed alarm with current algorithm 

Loop 73 NS MA 

Loop 75 20 % High 

NLI 

This is a case of missed alarm with current algorithm 

 

Table 2.2: Results from chemical plat data (Ref [8] page number 298) 
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Table 2.3 reports the combined analysis of the two case studies reported above and shows 

a significant improvement in the success rate for stiction detection. 

 

Total cases = 101 Current algorithm Revised algorithm Percentage 

improvement 

Missed alarms 22 % 8 % 14 % 

False alarms 6 % 1 % 5 % 

Successful detection 72 % 91 % 19 % 

 

Table 2.3: Summary of results from the above two case studies for a total of 

101 loops. The overall success rate for the revised algorithm improved from 

72% to 91%. 
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Chapter 3 

Complete Solution: Automated, 

Unsupervised Detection of Malarial 

Parasites in Microscopic Images 

 

Introduction 3.1 

The war between homo sapiens and the mosquito borne parasite plasmodia has 

been epic. The results are so bitter that we are loosing a million lives [19] out of 

more than 250 million infections annually. The overall impact of the disease 

around the world is massive and it is an enormous burden to developing countries. 

Figure 3.1 gives an idea how some parts of the world have been affected by the 

disease. In recent reports the tentative death tolls are higher than those reported by 

World Health Organisation (WHO). 

 

 

Figure 3.1: Estimated deaths from malaria per 1000 population, 2006 

 



Chapter 3: Detection of Malarial Parasites in Microscopic Images  

33 

 

There is an ambitious goal to eradicate malaria with-in a decade and to improve 

overall global health. Money funnelled into malaria control has soared to over $ 1 

billion a year [6]. The malaria control program can roughly be categorized under 

three major steps, preventing the disease to spread by providing insecticidal nets, 

spraying insecticides, speedy and low cost diagnosis and cheap and effective 

medication. Doctors in the developing world often lack laboratory facilities to 

authenticate cases of suspected malaria. Perhaps more often, they never even get 

to see patients who have the disease — many patients either cannot afford the 

time or money to see a doctor or they simply self-diagnose and take cheap over-

the-counter medications to battle malaria-like symptoms [6]. 

To better understand why malaria has become such a threat and what can be done 

to stop the disease, it helps to know a little biology. Malaria is caused by four 

closely related parasites Plasmodium vivax, Plasmodium ovale, Plasmodium 

falciparum and Plasmodium malariae, the deadliest of which is Plasmodium 

falciparum, which has a particular fondness for anopheles mosquitoes. The 

parasites enter the bloodstream when an infected mosquito bites a human. Then 

they multiply inside the host's liver and red blood cells. Eventually the red blood 

cells (RBCs) burst with a new generation of parasites, causing fever, shivering, 

pain and sometimes death. The cycle of transmission is complete when another 

mosquito bites an infected person and picks up more parasites. 

There are various techniques [5] to diagnose malaria of which manual microscopy 

is considered to be the gold standard. Manual microscopy has advantage over 

other techniques that it is sensitive and specific. However, one of the 

disadvantages of diagnosis using manual microscopy methods is that it requires 

extensive human intervention during the diagnosis process which can often lead to 

late and sometimes erroneous diagnosis. The operator requires extensive training 

to gain expertise in the diagnosis using a microscope and in any case because of 

the sheer volume of the samples that need to be analyzed, the method is not 

consistent. The focus of this research is to upgrade the diagnosis process such that 
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it could be fast, reliable and low cost with minimum human reliance. Such a 

diagnosis system can be designed by understanding the procedure and standards 

followed by experts. 

3.2 Manual microscopy 

The WHO practical microscopy guide for malaria provides detailed procedures 

for laboratory practitioners [20]. Diagnosis initially requires observing blood 

smeared slide under the microscope for detecting the presence or absence of 

parasites. The practitioners generally observe two types of slides using fast 

Giemsa stain protocol to highlight the parasites. The two types of blood slides are 

thick smeared and thin smeared slides as shown in Figure 3.2, where the violet 

coloured dots with in the RBC can be identified as stained parasites. The 

disadvantage of Giemsa staining is that it also stains other artefacts such as white 

blood cells, platelets, dirt etc. This problem of other stained objects needs to be 

considered carefully when comparing results of automated image-based diagnosis 

with manual microscopy.   

 

Figure 3.2: Images of thin and thick Blood smeared slides 

 

Image of a thick 

blood smeared slide 

Image of a thin blood 

smeared slide 
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The probability of detecting parasite in thick blood smeared slides is higher 

because of the larger volume of blood observed. If the expert suspects the 

presence of Malarial parasite in thick blood smeared slides then the diagnosis 

process is followed by examination of a thin smeared blood slide. The thin blood 

smear slide is used for the enumeration of the infection i.e. determining the 

number of infected RBCs per 1000 RBCs. The process of enumeration requires 

manual count of the number of RBCs in the observed microscopic field followed 

by counting of number of infected RBCs. Apart, from enumeration pathologists 

also need to report the life cycle and the specie causing the infection; thus the 

process of diagnosis is extensively dependent on experts. 

3.3 Materials 

Anonymized thin blood film images acquired as described in Figure 3.3 were 

obtained from Alberta Health Services laboratories at the University of Alberta. 

The samples obtained mostly had low number of parasite(s) in early stages (ring 

trophozoites) of their life cycle. Such features are often hard to detect. In addition 

several samples did not have any parasites (negative controls). The samples were 

stained using a fast Giemsa protocol to highlight the parasite(s) and were initially 

examined by hematopathologists with expertise in malaria diagnosis. Slide images 

were acquired using a charge coupled device (CCD) camera with different range 

of magnification. Some images had variable stain characteristics making 

computer based detection more challenging. In total 10 patients samples were 

examined, parasitemia was reported as number of infected RBCs per thousand 

RBCs. Thus for each patient, 10 images each representing one microscopic field 

at 1000X magnification and containing approximately 100 RBCs were acquired to 

fulfill WHO recommendations. Ten negative control cases were included in a 

blinded fashion to check the specificity of the image based method. 
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Prepare thin 

blood film

Stain blood film

Acquire images

 

Figure 3.3: Flowchart describing the steps of image aquasition 

 

3.4 Method 

The problems of manual microscopy can be overcome by exploring computer 

based, specifically image-based, diagnostic methods. An automated diagnostic 

method can be developed by understanding the diagnostic expertise and 

representing it by a specifically tailored image processing based algorithm.  The 

literature contains descriptions and details of several computer vision or image-

based algorithms [12, 13, 16, 17 and 18]. However, most of these algorithms are 

supervised and complex, that is they need manual intervention or calibration. 

Considering the high fatality rate and huge volumes of samples that need to be 

analyzed we need a sensitive, practical and robust method with minimum human 

intervention. In this context, computer based diagnosis can help in the rapid, 

accurate and consistent identification of true Malaria cases and thus significantly 

reduce the financial burden on overall malaria prevention program [20] and 

therefore allow more resources to be assigned towards the prevention and 

treatment of malaria. 

An automated diagnosis method can be developed by understanding the 

diagnostic expertise and representing it by a specifically tailored image processing 

based algorithm. The image processing based algorithm should perform diagnosis 

more or less imitating the process undertaken in manual microscopy. The 

algorithm should be capable of operating in an unsupervised environment and 

need to be robust with no false negatives. The unsupervised nature of the 
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proposed procedure should reduce human intervention, and in so doing speed up 

the diagnosis process. The algorithm should also be sensitive enough to capture 

parasites at all stages particularly at the early stages of their life cycle and to do 

this without missing any parasites irrespective of image variations. In order to 

perform diagnosis, the method must be capable of differentiating between parasite 

and artefacts. The majority of the image based diagnosis methods [12, 13, 16, 17 

and 18] reported in literature do not address this requirement. 

 The challenge to achieve this high degree of sensitivity and robustness under an 

unsupervised environment has been carried out by developing a very novel and 

simple statistical method for image classification. The image classification 

problem performs the following steps: i) RBC enumeration, ii) potential parasite 

identification and iii) report parasitemia by counting the number of infected RBC 

per every 1000 RBC. The steps that constitute the image processing and image 

segmentation tasks are summarized in the flowchart as shown in Figure 3.4. The 

method was developed on the MATLAB
TM

 R2007b platform. 

 

Figure 3.4: Flowchart describing the steps of the proposed algorithm 
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3.4.1 Pre-processing:  

The purpose of pre-processing is to remove unwanted objects and noise from the 

image to facilitate image segmentation into meaningful regions. The  image 

processing enhance the input image for visual purposes. The series of steps 

required to carry out  image pre-processing are as follows:  

i) Load colored (Red, Green and Blue channel) or gray scale image, the 

colored image is first converted to a gray scale image. The contrast of the 

gray scale image is enhanced using local histogram equalisation [11-12] to 

enhance the visibility of the parasites and RBCs.  

ii) The next and important step in image segmentation is to extract 

meaningful regions or in other words distinguish objects from the 

background. The common way described in the literature is to use edge 

detection algorithms [3 and 4]. Edge detection is a method of identifying 

pixels in image, where the intensity value changes sharply. An example of 

edge detection is shown in Figure 3.5.  

 

Figure 3.5: Example of edge detection 

 

Edge detection algorithms use gradient information followed by 

smoothing and morphologoical boundary closing. It is not always easy to 

detect edges and the location of an object in presence of substantial noise. 

This makes edge detection algorithms computationally exhaustive and less 

sensitive. The novel and robust approach to detect a closed curve in an 
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image is to detect regions with statistical similarity inside and outside the 

curve. We require a method which can overcome the problems of edge 

detection algorithm Chan & Vese et al. [2 and 9] proposed energy 

minimization of the image to detect objects embedded within an image. 

The method is independent of gradient information and relies on the region 

statistics inside and outside the curve. 

The goal of implementing the Chan-Vese based boundary detection 

algorithm to segment an image into meaningful regions, in our case 

separate RBC and artefacts from the background is shown in Figure 3.6. 

The binary label for statistically similar regions is represented in Figure 

3.7. 

Boundary extracted on contrast enhanced image

 

Figure 3.6: Boundary extracted image using the Chan-Vese segmentation 

method 
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Binary image

 
 

Figure 3.7: Binary mask from the Chan-Vese segmentation method 

 

iii) The binary image of statistically similar region generated after the Chan-

Vese segmentation is able to distinguish RBCs from the background. 

However because of the biconcave shape of the RBC as shown in Figure 

3.8, the central pallor is assigned the same features as the background, as 

shown in Figure 3.7. Because of this we need to remove the holes in the 

binary image to have a good RBC count. To perform this task a ‘hole 

filling’ algorithm was designed as described with a simple illustrative 

example in Figure 3.10.  

 

Figure 3.8: Bi-concave shape of RBC 

 

Central Pallor 
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The technique to fill the holes in the binary digital image is to distinguish 

the background from the central pallor. Connected component analysis can 

be used to separate the background from the central pallor in the binary 

image. Connected component analysis extracts the information on pixel 

connectivity in 2-dimensional image by labelling connected pixels 

possessing the same intensities. Figure 3.9 shows an example of 8 sided 

connectivity. All the connected components were extracted shown as in 

Figure 3.10b and the mathematical operation of intersection was 

performed between the largest connected component with the original 

binary mage. The idea used was that generally in an image background is 

the largest connected component. The final hole filled image is shown in 

Figure 3.10c after the operation of intersection. The hole-filled image is 

subjected to minute erosion [4] using disk-shaped structuring element of 

radius 5 pixels, the resulting image after hole-filling and erosion is shown 

in Figure 3.11. The erosion removes any isolated pixel(s) in the image thus 

reducing the number of artefacts. 

 

          Figure 3.9: 8-way connected component 
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Figure 3.10: Example to illustrate the ‘hole-filling’ algorithm: a) Dummy 

image with holes b) All the connected components c) Holes filled image after 

intersection 

 
inner circles removed

 

Figure 3.11: Binary image after removing spurious boundaries  

 

3.4.2 RBC count:  

The number of RBCs in the pre-processed binary image can be calculated if the 

total area occupied by RBCs is divided by the mean area of a RBC and then adjust 

the RBC count to the nearest integer. The challenge was to determine the precise 

mean area of one RBC for each image without any prior information (because the 
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size of RBCs depend on factors such as a patient’s age, other blood related 

diseases etc). To automate this procedure in an unsupervised algorithm, we first 

attempt to obtain a size distribution of RBCs in pixel units. To accomplish this we 

observe that RBCs possess almost circular shape, this feature of RBC can be 

exploited and various radii circles can be fitted to the RBC to generate a circle 

size distribution. The mean area generated from such a circle size distribution was 

used to determine the total number of RBC in the image. The problem of fitting 

radii of various sizes to RBCs was implemented using the popular ‘Hough 

transform’ [3, 4 and 7]. 

Hough transform works as a powerful tool for image segmentation to extract pre-

defined (line, circular, elliptical etc.) shapes in an image. The Hough transform 

tries to determine if the group of pixels lie on a curve of specific shape and is 

unaffected by image noise. The main use of the very commonly discussed Hough 

transform is for extracting straight lines in image. The method developed by 

Hough to extract straight lines can be extended to determine a circle within an 

image. The circular Hough transform method is a modified form of the 

conventional Hough transform, where the parameter equation for straight line is 

changed to a general equation of circle expressed in equation (1).  

cos

sin

a x r

b y r
                                                             (1) 

Now given a gradient angle (ø) at an edge point (x, y), we can compute 

parameters ‘a’ and ‘b’ for pre-defined radius (r) or for given radius range. The 

edge points lying on the same circle are assigned to one accumulator array and 

this process is repeated for each point on the image. The algorithm terminates 

until we have assigned all edge points to one of the accumulator array thus each 

accumulator array possess the centre and a corresponding radius of the circle.  

The modified Hough transform was applied to binary images thus maximizing the 

gradient of the RBCs to avoid unnecessary fitting. As can be observed from a 

typical slide shown in Figure 3.11, the RBCs are not all perfectly circular, which 
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leads to the suggestion of using the Hough transform for ellipse fitting [7]. 

However literature studies [3 and 4] indicate that as the number of parameters 

increases the algorithm becomes slow and furthermore it may have severe 

memory allocation problems. Therefore the Hough transform for circle of 

different radii was implemented and the results demonstrate the efficacy of the 

method in that it allowed the feature generation to be very robust and completely 

unsupervised. An example of this implementation is shown in Figure 3.12 

followed by the corresponding circle size distribution. Table 1 represents results 

obtained from the analysis of one randomly picked images from patient M7. 

Image with Circles Detected (center positions and radii marked)

50 100 150 200 250 300 350 400

50

100

150

200

250

300

    

Figure 3.12: Circles of different radii are detected on binary image after 

removing spurious boundaries 
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Figure 3.13: Circle size distribution 

 

The results shown above demonstrate the efficiency of Hough transform in image 

segmentation. The circle size distribution shown in Figure 3.13 can be directly 

related to the RBC size distribution which gives a good insight of the average 

RBC size of the patient. The mean RBC size is an important parameter for 

medical experts because variation in RBC size can reflect on other blood related 

diseases such as anaemia. Also the method proposed above can be used as an 

efficient tool as an offline RBC counter. The unsupervised approach to generate 

RBC size distribution and RBC count acts as an added information apart from 

diagnosis of Malaria. 
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Table 3.1: Comparison of RBC count using the automated algorithm and its 

comparison  with the manual count (edge cells were considered) 
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Figure 3.14: Comparison of RBC count 

*  Errors were due to edge cells 

Manual count represented in Table 3.1 was performed by an expert practitioner. 

Manual count is performed as follows: an expert counts the complete RBCs 

embedded in the image and only counts the RBCs on two adjacent edges in order 

to have symmetry. Thus the error in algorithm count are generally not significant. 

M7 Algorithm count 
 

Manual count Error 

M7-1 67 66 1 

M7-2 74 74 0 

M7-3 64 64 0 

M7-4 75 73 2* 

M7-5 64 64 0 

M7-6 76 76 0 

M7-7 75 75 0 

M7-8 72 71 1 

M7-9 64 66 2* 

M7-10 74 75 1 
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3.4.3 Parasite detection 

The next part of the proposed methodology is the detection of potential parasites 

in Giemsa stained thin smear blood slide images. Considering that parasites are 

small stained objects embedded within the RBC, they are often distinguishable 

from the RBC plus other background ‘image noise’ and artefacts (artefacts 

represents platelets, WBC, dirt, dye crystals etc.) in the image. The literature is 

archived with several methods for image segmentation based over edge detection 

[12] or statistical methods using classifiers [13 and 14] for the detection of 

parasites. However, the edge detection method as discussed earlier is dependent 

on gradient information of the image and tends to generate undesired results if the 

parasites are barely visible or in early stages of their life cycle. On the other hand, 

classification method tends to overcome these problems but development of a 

classifier requires access to historical information making it a supervised learning 

method.  

Our primary objective is to have a robust unsupervised method for the detection 

and enumeration of Malaria parasites. In this context, the property of parasites 

being stained can be exploited to separate them from the RBC and the 

background. To be able to do this we need an unsupervised, sensitive and reliable 

segmentation method which can extract parasite information from the image.  

The visual inspection of pixel intensity data plot as shown in Figure 3.15 reveals 

the distinguishable clusters of background, RBC and stained pixels. The pixel 

intensity data plot suggests the use of a non-hierarchical method of clustering 

technique such as k-means clustering (KMC) [10] to segment the pixels into 

corresponding distinguishable groups. The advantage of clustering methods is to 

uniquely classify data, in this case a digital image based on an unsupervised 

learning methodology. These methods are also robust and can be easily 

implemented to achieve a desired level of image segmentation. The 

implementation of robust clustering method requires prior information of a 

number of clusters and good initial guess of cluster centroids. Commercially 

available software packages (e.g. MATLAB) provide KMC as a tool for data 
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clustering but these algorithms are not designed for image segmentation and in 

any case they require a good initial guess for the number of clusters and cluster 

centroids to have meaningful clustering. Figure 3.15 shows that the cluster of 

stained pixels, presumably representing parasites, has very few data points 

compared to RBCs and the background cluster. Clearly these giant data clusters 

easily overwhelm the small clusters, with the result that a clear demarcation 

between the RBCs and the parasites is not possible using conventional KMC. 

To overcome the problems of unknown number of clusters, good initial guesses 

and retaining the information about small clusters in the presence of giant clusters, 

a modified KMC based algorithm has been developed. The problem of unknown 

number of clusters can be addressed as catching almost empty clusters, if we 

initialize the KMC with more number of clusters than expected. If the algorithm 

encounters an empty cluster it reduces the number of cluster by one in an iterative 

process until the process reaches an optimum number of separable clusters. The 

problem of good initial guess was combined with the initialization of the 

clustering algorithm in order to facilitate the clustering process by segmenting the 

background cluster. The background cluster can be separated from the RBC and 

artefacts by superimposing the hole-filled image over the original RGB image as 

shown in Figure 3.16. The visual inspection of pixel intensity plot as shown in 

Figure 3.17 reveals the background intensity suppressed to zero makes the 

clusters more distinguishable. The pixel intensity of the background set to zero 

gives us the freedom to choose the initial centroids of equal weight between zero 

and maximum pixel intensity value. The sparseness of the pixel map combined 

with a good initial guess makes the KMC algorithm fast and robust. This initial 

guess serves as a default guess for all cases thus rendering this as an unsupervised 

parasite detection and enumeration algorithm.  
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Figure 3.15: Pixel intensity plot with random threshold 

 

   
 

Figure 3.16: Segmented image with background set to ‘zero’ pixel values 
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Figure 3.17: Pixel intensity plot with ‘background pixel intensity’ values set 

to zero 

 

The parasite cluster as observed in Figures 3.15 and 3.17 is a weak cluster or in 

other words fewer pixels are stained. The small clusters (stained pixels) buried 

under a large population are clearly overwhelmed. Therefore the small cluster 

information is lost during the process of clustering and hardly any of the small 

clusters appear as separate cluster(s). The solution to this problem is obtained by 

imparting higher weights to the small cluster(s) compared to the larger clusters. In 

this way the small cluster information is retained by making small cluster 

comparable to big clusters. The new modified form of KMC as designed with the 

modifications discussed above is defined as probabilistic k-means clustering 

(PkMC). The discrete probability function (DPF) for PkMC was designed using 

the binomial theorem as described below. The binomial theorem facilitates the 

application of dynamic choice of higher weights to small cluster(s).  
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Binomial theorem: 

The mathematical expression for the binomial theorem can be expressed as: 

1 1

0 1 1( ) ... ...n n n n n n k n k n p n p n n n n

k p n nx y x x y x y x y xy y  (2) 

 

Where: 

,x y , n  and 

!

!( )!

n

k

n

k n k
                                                                                                       (3) 

The expression can be explained as follows: we have a total of ‘n’ clusters and the 

‘k
th

’ and ‘p
th

’ clusters are to have the maximum weight. Since we only have one 

cluster (stained pixels) with the maximum weight, we can choose ‘y’ as unity, 

leaving variable ‘x’ free for maximization as represented in equation (4). The 

discrete probability distributions (DPF) for different cases are described below 

with the maximization equations. 

1

0 1 1( 1) ...n n n n n n k n n

k n nx x x x x                     (4) 

Case 1: When ‘n’ is even and for a given ‘k
th

’ cluster p(k) can be designed from 

equation (4) is explained below; 

1

1 1... ( 1)n n n k n n n n

k n nx x x x x                                             (5) 
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( 1)

n n n k n n

k n n

n n

x x x

x x
                                                         (6) 

( )
( 1)

n n k

k

n n

x
p k

x x
                                                                                             (7) 

Equation (7), shows that the probability of k
th

 cluster depends on x, k and n.  
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Mathematically, we have shown that p(k) will have a global maximum value for a 

particular value of x for a given set of k and n. The advantage of using this form 

of probability function with given n and k is that we can solve for x, such that p(k) 

is maximum. 

 The value of x for maximising p(k) can be solved by equating the derivative of 

p(k) with respect to ‘x’ to zero. The equation derived after equating the derivative 

to zero can be easily solved for a positive root of ‘x’ under the constraint that 0 < 

p(k) < 1: 

1(1 ) (1 ) 0n n nn x k x kx                                                                     (8) 

Case 2: When ‘n’ is even and for a given ‘k
th

’ cluster p(k) can be designed from 

equation (4) as explained below for two separate sub cases: 

Sub case 1: 1 ≤ k ≤ (n-1)/2 

1

1

1

2
1

2

( )
( )

(1 )

n n k

k

n

n n

n

x
p k

x x
                                                                                    (9) 

Similar to the maximization scheme described earlier, the value of ‘x’ can be 

solved by equating the derivative of p(k) with respect to ‘x’ to zero. The equation 

derived after equating derivative to zero can be easily solved for positive of ‘x’ 

under the constraint 0 < p(k) < 1: 

1

1 2
1

2

2 1
(1 ) (1 )(1 ) ( ) 0

2

n

n n n

n

k n
n x k x x                                             (10) 

Sub case 2: (n-1)/2< k ≤ n 
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In our case, ideally we should have three clusters (n = 3 and k = 2) to represent the 

background, RBC and parasite, thus the solution of equation (12) is x = 0.7937 

and the corresponding DPF is shown in Figure 3.18.  
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Figure 3.18: Probability density function for 3 clusters 

 

Suppose we have some artefacts (such as the central pallor) which could be 

assigned as cluster. In this case our design parameters will be: number of clusters 

are 4 (n = 4), and the parasite would be represented by the third cluster (k = 3). 

The maximization scheme for this case yields, x = 1.2 and the corresponding DPF 

is as shown in Figure 3.19. 
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Figure 3.19: Probability density function for 4 clusters 

 

The discrete probability density function designed as described above was used to 

impart weights to the clusters. The stained pixels were given higher weights and lower 

weights were assigned to other clusters so as to retain parasite information buried in a 

large population.  

The Probabilistic (PkMC) labels the clusters as 1) the first cluster being for background, 

2) the second cluster of stained cluster (i.e. parasites and arte facts) and 3) the third 

cluster of RBC. The PkMC also gives the average intensity of each cluster and 

designates this as the cluster centroids. The last part of the algorithm is concerned with 

how to separate artefacts from the potential parasites. The artefacts can be visualized as 

stained WBC, platelets, dirt or dye crystals. 

 

3.4.4 Potential parasite confirmation: 

The features of parasite need to be understood to separate them from artefacts. An 

intelligent separation scheme can be designed by exploiting the features such as: 

parasites are embedded with in the RBC and artefacts are more or less homogeneous 

objects. The method to separate parasites from the artefacts is described below by an 
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illustrative example. Figure 3.20a represents a sample image after background intensity 

set to zero and with a parasite in one of the RBCs.  Figure 3.20b is a binary image of 

Figure 3.20a. Now each component in Figure 3.20a will have an average intensity and 

clearly the average intensity of a platelet or WBC will be near the stained pixel intensity 

because of their homogeneous nature. An intensity based threshold can be used to 

separate the platelets and WBCs. Recall that the PkMC method returns 3 clusters of a) 

background, b) stained pixels and c) RBC as shown in Figure 3.21. Apart from clusters 

labels PkMC also reports the average intensity of each cluster as three centroids. The 

comparison of the average intensity of each component from Figure 3.20a to the 

centroid for stained pixel helps to distinguish between platelet or WBC or any other 

artefact. This ensures that stained pixels which are parasites are retained and artefacts 

are removed as shown in Figure 3.22. Figure 3.22b represents a binary mask of stained 

pixels which happens to be a parasite; this binary mask is superimposed over the 

original image to give the actual parasite location and parasite count. 

 

          
 

Figure 3.20: a) Gray scale image with background pixels set to zero (step 2) 

b) Binary image after boundary detection (step 5) 

 

   

Figure 3.21: Ideally PkMC generates three clusters a) Background, b) 

Stained pixels (parasites, platelets and other artefacts) and c) RBC 
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Figure 3.22: After implementing threshold check a) Only RBCs are retained 

i.e. platelet and artefact are removed to finally yield b) Binary mask of 

Parasite 

 

The parasite detection method was implemented over the 10 potential cases and 

10 blind cases. The detection of parasites in two examples is represented in Figure 

3.23a and 3.23b are marked in black. Figure 3.23 shows the importance of 

unsupervised algorithm as both the images are taken under different condition. 

Also the platelets and WBC in the images are not recognized as parasites. 

             

parasites marked image

          

a) Parasites marked in black, Total infected RBC = 4        
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parasites marked image

 

b) Parasites marked in black, Total infected RBC = 2 

Figure 3.23: Parasites marked image 

 

3.5 Results and discussion 

The proposed method was tested on larger variety of images with Malarial 

parasites at different life cycle to check for the sensitivity and specificity of the 

algorithm.  The performance of the method was tested over cases provided by 

Alberta Health Services for 10 potential cases of Malaria and 10 blind control 

cases to cross-validate the method. The measure of performance and accuracy of 

the method was determined under two parameters: sensitivity and positive 

predictive value (PPV) [9]. Sensitivity is defined as ability of the algorithm to 

correctly detect parasite(s). PPV is defined as the precision rate of the algorithm. 

The values for sensitivity and PPV are expressed in terms of true positives (TP), 

false positive (FP) and false negative (FN) as defined in expressions (10) and 

(11): 

TP
Sensitivity

TP FN
                                                                                         (10) 

TP
PPV

TP FP
                                                                                                  (11) 

The results of all the cases are summarized below, the values of false positive, 

false negative and true positive are reported in Table 3.  



Chapter 3: Detection of Malarial Parasites in Microscopic Images  

58 

 

Table 3 gives a good insight of the automated diagnosis process and the decision 

making by the algorithm. The large number of false positives can be attributed to 

the presence of a higher number of artefacts and poor image quality. The benefit 

of the unsupervised method proposed here can be seen with minimal or zero cases 

of false negatives. 

Total cases 20 

True positives 15 

False positives 5 

False negatives 0 

Sensitivity % 100 

Positive Predictive Value % 

(PPV) % 

75 

 

Table 3.2: Results for detecting and confirming parasites 

Apart, from the combined results of 20 cases a detailed analysis for one random 

case is also represented. The results from each of the 10 images for random case 

are reported in Table 4. Table 4 gives a comparative study between results from 

the proposed algorithm and results from the pathologist report. This study 

confirms the sensitivity and accuracy of the proposed method. The small errors in 

the infected RBC count were due to high platelet count. The results for all the 

cases are reported separately at the end of this chapter. 

 Algorithm result Pathologist’s result 

 RBC count Infected RBC count RBC count Infected RBC count 

M7-1 67 0 66 0 

M7-2 74 2 74 2 

M7-3 64 3 64 3 

M7-4 75 0 73 0 

M7-5 64 1 64 1 

M7-6 76 2 76 1 

M7-7 75 3 75 3 

M7-8 72 5 71 1 

M7-9 64 1 66 1 

M7-10 74 1 75 1 

 

Table 3.3: Results for patient M7, reported parasitemia = 2.55% 
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Figure 3.24: Comparison of infected RBC count 

 

Clearly the parasitemia level is a crucial factor to report and dependent over the 

number of images observed. This is a fundamental limitation of microscopy, that 

is the ability to detect Malaria depends on the number of microscopic fields 

observed [11]. The automated technique presented here is successful in reporting 

parasitemia level of 0.1% or less. This can be understood as follows: the proposed 

algorithm can even capture a single infected RBC out of 1000 observed RBCs.  

The advantage of the method presented in this chapter is to simply report 

parasitemia. The main benefit is that it has significantly reduced the effective time 

of diagnosis when combined with an image acquisition system, and using this 

method it is possible to examine entire slide. Secondly, the unsupervised nature of 

the method will minimize the human reliance and will bring down the effective 

cost of diagnosis. In addition to this, the method not only focuses on detecting 

parasites, it also reports the size distribution of RBCs which can contribute in 

detecting other diseases related to size of RBC and can be used an offline RBC 

counter. Lastly, the method is reliable, automated or un-supervised and gives 

consistent results. 
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3.6 Concluding remarks 

This chapter provides an automated, robust and unsupervised screening method 

for Malaria parasites. Existing diagnosis methods in the literature depend 

extensively on skilled practitioners and require training, that is, they are 

supervised or non-automated. Compared to other diagnostic techniques, it avoids 

problems associated with rapid methods, such as being species specific and high 

per test cost.  In contrast to this the method proposed here is completely 

automated, following the slide making and initial digital imaging of slides. The 

method was specifically developed to work on low resolution images and thereby 

removes dependency on high resolution microscopy which boosts the practicality 

of the algorithm. Combined with an image acquisition system will allow entire 

slide to be examined minimizing human reliance. The necessity of electricity is 

principal obstacle in using such kind of system. 

The algorithm was not only developed to detect parasite but it also determines the 

RBC size distribution which may be of use in the diagnosis of other diseases. 

3.7 Complete case study for potential and control cases 

3.7.1 Potential cases: 

M1: Parasitemia =  0.64% 

 Algorithm count 

M1-1 82 0 

M1-2 93 0 

M1-3 92 0 

M1-4 91 0 

M1-5 115 0 

M1-6 101 0 

M1-7 91 0 

M1-8 83 0 

M1-9 93 6 

M1-10 91 0 
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M3: Parasitemia =  0.73% 

 Algorithm count 

M3-1 85 0 

M3-2 87 0 

M3-3 83 0 

M3-4 87 1 

M3-5 71 0 

M3-6 87 1 

M3-7 78 0 

M3-8 67 0 

M3-9 96 0 

M3-10 81 4 

 

M4: Parasitemia =  2.69% 

 Algorithm count 

M4-1 54 3 

M4-2 64 1 

M4-3 59 1 

M3-4 59 2 

M4-5 61 1 

M4-6 55 0 

M4-7 71 3 

M4-8 61 5 

M4-9 51 0 

M4-10 59 0 

 

M5: Parasitemia =  0.59% 

 Algorithm count 

M5-1 63 4 

M5-2 65 0 

M3-3 70 0 

M5-4 78 0 

M5-5 56 0 

M5-6 77 0 

M5-7 68 0 

M5-8 68 0 

M5-9 65 0 

M5-10 59 0 
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M6: Parasitemia =  0% 

 Algorithm count 

M6-1 117 0 

M6-2 88 0 

M6-3 98 0 

M6-4 98 0 

M6-5 101 0 

M6-6 109 0 

M6-7 98 0 

M6-8 101 0 

M6-9 110 0 

M6-10 104 0 

 

M7: Parasitemia =  2.55% 

 Algorithm count 

M7-1 67 0 

M7-2 74 2 

M7-3 64 3 

M7-4 75 0 

M7-5 64 1 

M7-6 76 2 

M7-7 75 3 

M7-8 72 5 

M7-9 64 1 

M7-10 74 1 

 

M8: Parasitemia =  3.11% 

 Algorithm count 

M8-1 82 0 

M8-2 84 0 

M8-3 87 0 

M8-4 84 1 

M8-5 90 0 

M8-6 81 1 

M8-7 83 0 

M8-8 84 2 

M8-9 74 0 

M8-10 85 2 
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M9: Parasitemia =  1.06% 

 Algorithm count 

M9-1 101 0 

M9-2 104 0 

M9-3 103 0 

M9-4 100 3 

M9-5 100 0 

M9-6 99 0 

M9-7 92 0 

M9-8 84 5 

M9-9 74 0 

M9-10 85 2 

 

M10: Parasitemia =  4.47% 

 Algorithm count 

M10-1 79 0 

M10-2 91 0 

M10-3 104 7 

M10-4 94 6 

M10-5 91 0 

M10-6 85 7 

M10-7 85 8 

M10-8 75 8 

M10-9 90 0 

M10-10 78 3 

 

M11: Parasitemia =  0.488% 

 Algorithm count 

M11-1 67 1 

M11-2 78 0 

M11-3 73 0 

M11-4 82 2 

M11-5 77 0 

M11-6 85 0 

M11-7 87 0 

M11-8 93 0 

M11-9 83 1 

M11-10 93 0 
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3.7.2 Control cases: 

C1: Parasitemia =  1.26% 

 Algorithm count 

C1-1 80 0 

C1-2 80 0 

C1-3 80 2 

C1-4 76 0 

C1-5 76 0 

C1-6 74 0 

C1-7 66 1 

C1-8 78 0 

C1-9 98 7 

C1-10 85 0 

 

C2: Parasitemia =  0% 

 Algorithm count 

C2-1 72 0 

C2-2 64 0 

C2-3 72 0 

C2-4 71 0 

C2-5 65 0 

C2-6 93 0 

C2-7 75 0 

C2-8 79 0 

C2-9 66 0 

C2-10 64 0 
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C3: Parasitemia =  0% 

 Algorithm count 

C3-1 87 0 

C3-2 82 0 

C3-3 84 0 

C3-4 90 0 

C3-5 78 0 

C3-6 90 0 

C3-7 87 0 

C3-8 82 0 

C3-9 73 0 

C3-10 86 0 

 

C4: Parasitemia =  1.65% 

 Algorithm count 

C4-1 65 0 

C4-2 64 0 

C4-3 64 0 

C4-4 54 0 

C4-5 61 0 

C4-6 53 0 

C4-7 61 10 

C4-8 66 0 

C4-9 58 2 

C4-10 64 0 

 

C5: Parasitemia =  0% 

 Algorithm count 

C5-1 68 0 

C5-2 60 0 

C5-3 61 0 

C5-4 58 0 

C5-5 58 0 

C5-6 61 0 

C5-7 50 0 

C5-8 68 0 

C5-9 - - 

C5-10 63 0 
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C6: Parasitemia =  0.99% 

 Algorithm count 

C6-1 68 3 

C6-2 64 2 

C6-3 71 0 

C6-4 67 0 

C6-5 77 0 

C6-6 67 0 

C6-7 75 0 

C6-8 71 1 

C6-9 68 0 

C6-10 76 1 

 

C7: Parasitemia =  3.00% 

 Algorithm count 

C7-1 74 0 

C7-2 70 1 

C7-3 84 3 

C7-4 73 0 

C7-5 57 7 

C7-6 81 2 

C7-7 62 6 

C7-8 61 0 

C7-9 66 2 

C7-10 55 0 

 

C8: Parasitemia =  3.48% 

 Algorithm count 

C8-1 54 1 

C8-2 52 0 

C8-3 58 3 

C8-4 56 0 

C8-5 64 1 

C8-6 59 2 

C8-7 66 5 

C8-8 59 4 

C8-9 61 5 

C8-10 74 0 
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C9: Parasitemia =  0% 

 Algorithm count 

C9-1 60 0 

C9-2 37 0 

C9-3 46 0 

C9-4 47 0 

C9-5 31 0 

C9-6 43 0 

C9-7 64 0 

C9-8 65 0 

C9-9 53 0 

C9-10 44 0 

 

C10: Parasitemia =  0% 

 Algorithm count 

C10-1 73 0 

C10-2 81 0 

C10-3 73 0 

C10-4 70 0 

C10-5 31 0 

C10-6 43 0 

C10-7 64 0 

C10-8 65 0 

C10-9 53 0 

C10-10 44 0 
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Chapter 4 

Concluding Remarks & Future Work 

4.1 Concluding remarks 

This thesis has successfully demonstrated the significance of data based methods 

for abnormality detection and quantification. The work explored two different 

streams of abnormality or anomaly detection and has demonstrated that data based 

diagnosis can indeed be effective in various fields of science. The non-intrusive 

and non-destructive nature of these methods has a clear advantage over other 

methods. This thesis has provided a ‘complete solution’ for the digital image 

based diagnosis of Malaria. Also, it has closely looked into the bi-coherence 

based method to detect and quantify valve problems. The suggested revisions and 

improvements to the existing algorithm have demonstrated that the solution 

suggested is even more broadly applicable to all types of valve problems and not 

simply valve stiction. 

The data driven methods have proven to be most successful to address the issues 

of valve faults in controlled loops. The bi-coherence based method has proven to 

be very successful in stiction detection. However, the method restricts itself only 

to the detection and diagnosis of valve stiction. If we closely observe industrial 

data we can see that stiction is only one of many possible valve faults.  Secondly, 

the existing bi-coherence based method tends to generate a few cases of missed 

and false alarms. To minimize this issue, the bi-coherence method has been 

revised wherein each step was examined in detail. A revised logic for the 

algorithm was proposed and is shown in Figure 2.21. The new logic for non-

linearity index (NLI) check was successfully able to capture intermittent valve 

problems. The revision of this ‘NLI check’ has served to reduce the number of 

missed alarms. The revised ‘set point (SP) activity’ check combined with efficient 

non-linearity check has made the ‘SP activity check’ very effective leading to 

significant reduction in the number of false alarms.  Lastly, the revision in NLI 
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reporting as: ‘percentage of data windows with high NLI’ has given operator 

access to more detailed information of the data set, including confidence margins 

in the diagnosis.  

In chapter 2, we have shown the efficacy of these suggested changes through two 

industrial case studies. The comparative study in section 2.5 shows significant 

improvement in the overall data based diagnosis of valve controlled loops. 

Chapter 3 explored the field of image analysis and presented a ‘complete solution’ 

for image based Malaria diagnosis. Image based diagnosis is an open area of 

study and research and has gained immense popularity in the medical field. This 

chapter has elucidated the problems concerning Malaria and indicated the 

potential impact of such automated methods. The need for an automated diagnosis 

is clearly evident from the number of casualties and from the volume of infections 

caused by lack of cheap and speedy diagnosis. The chapter provides an 

automated, robust, unsupervised and practical method for malarial parasite 

detection in thin smeared blood images. The schematic of the method proposed is 

shown Figure 3.4. The proposed method is theoretically simple and robust. 

The lack of high resolution microscopes in developing countries was carefully 

considered by developing a method to work with low resolution images. Low 

resolution images made image segmentation challenging with conventional edge 

detection techniques. To have effective level of image segmentation the method 

of energy minimization based boundary detection has proved its efficacy over 

conventional edge detection techniques. The novel idea for ‘hole-filling’ 

algorithm combined with circle detection method has closely replicated the 

method of RBC enumeration as done in manual microscopy. Apart from RBC 

enumeration, this method can be easily tuned in for automatic detection of circular 

objects embedded in an image. 

 A substantial amount of research effort has been dedicated towards understanding 

clustering based image segmentation. The novel concept of binomial based 
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probability distribution was specially tailored to capture the information of barely 

visible parasite(s). The introduction of probabilistic clustering (PkMC) has proven 

to be an excellent approach to capture small cluster(s) buried in a large 

population. The PkMC method is sensitive enough to capture a single parasite in 

an image. When combined, the RBC enumeration with parasite detection method 

end up as an unsupervised algorithm that needs no initial training and it certainly 

has advantages over other methods in the literature. Apart from diagnosis of 

malaria, the algorithm can easily be tuned for processing other stream of images.  

4.2 Future work 

4.2.1 Coherency threshold 

Chapter 2 presented the importance of time lagged correlation between SP and PV 

to avoid false alarms. But determining the temporal time lag correlation in noisy 

data is not an easy task to perform. The issues concerning temporal time-lagged 

correlation can be avoided by replacing it with spectral correlation. The idea 

proposed is to use coherency metric to capture spectral correlation. Future 

researchers can develop an analytical threshold from coherency metric to capture 

time-lag adjusted correlation.  

4.2.2 Oscillation detection 

Oscillation detection is an important step in overall detection and quantification of 

valve problems as discussed in chapter 2. The existing oscillation detection 

algorithm is dependent on the condition of stationarity of the signal. Oscillation 

detection algorithm tends to give undesired results for industrial cases where data 

is not stationary. This opens a good opportunity for research to explore areas 

where data stationarity in not mandatory.  

4.2.3 Image acquisition system 

Chapter 3 demonstrates the importance of computer vision based diagnosis of 

Malaria. Combined with an automated digital microscope, this would allow an 

entire slide to be examined. High electricity cost and requirement of computers 
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are obstacles to use this system in field particularly in developing countries. This 

gives a good opportunity to develop a complete system which is capable of image 

acquisition with simultaneous processing ability. The device can be very handy 

particularly in remote areas where access to electricity and computers is limited. 

4.2.4 Enhance reliability of automated diagnosis  

 Medical imaging has attracted significant attention for automatic diagnosis. 

Somehow, the penetration of automated diagnosis is not easy in medical fields. 

The ‘reliability’ of diagnostic scheme is an important issue for automated method 

in the medical field. ‘Reliability’ depends on the sensitivity, specificity and 

practicality of a method. The reliability issue can be addressed by testing 

diagnostic schemes for large sets of images and compares them with the manual 

microscopy method. This motivates the need to invest a substantial amount of 

effort to collect images from different laboratories and produce extensive case 

study of comparative results. 
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