INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the
text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the copy
submitted. Broken or indistinct print, colored or poor quality illustrations and
photographs, print bleedthrough, substandard margins, and improper alignment
can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and
there are missing pages, these will be noted. Also, if unauthorized copyright
material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning
the original, beginning at the upper left-hand comer and continuing from left to
right in equal sections with small overlaps. Each original is also photographed in
one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white photographic
prints are available for any photographs or illustrations appearing in this copy for
an additional charge. Contact UM!I directly to order.

®

UMI

Bell & Howell Information and Leaming
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

University of Alberta

THE APPLICATION OF INDUCTIVE LOGIC PROGRAMMING TO ASSIST
DIRECTORY LayouT DESIGN

by

Ping Gu ©

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfill-
ment of the requirements for the degree of Master of Science.

Department of Computing Science

Edmonton, Alberta
Spring 1999

i~l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale
du Canada

Acquisitions et
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your file Votre reférence
Our file Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the L’auteur conserve la propriété du

copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-40055-7

University of Alberta

Library Release Form

Name of Author: Ping Gu

Title of Thesis: The Application of Inductive Logic Programming to Assist Direc-
tory Layout Design

Degree: Master of Science

Year this Degree Granted: 1999

Permission is hereby granted to the University of Alberta Library to reproduce single
copies of this thesis and to lend or sell such copies for private, scholarly or scientific
research purposes only.

The author reserves all other publication and other rights in association with the
copyright in the thesis, and except as hereinbefore provided, neither the thesis nor any
substantial portion thereof may be printed or otherwise reproduced in any material
form whatever without the author’s prior written permission.

Poglr

Ping Gu

1316 Carling Ave, #2208
Ottawa, Ontario
Canada, K17 7L1

 Dec.&.1TVE

Date:

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Grad-
uate Studies and Research for acceptance, a thesis entitled The Application of
Inductive Logic Programming to Assist Directory Layout Design submitted

by Ping Gu in partial fulfillment of the requirements for the degree of Master of
Science.

. Russell Greiner,

Dr. Alinda Friedman

pase: . Jec3/99

To my parents: D.B. Gu and Xiugin

Abstract

Today’s increasing dynamics of commercial Yellow Pages™ (YP) telephone publish-
ing market requires effective tools that support easily customized Yellow Pages™
layouts and allow frequent updates. Yellow Pages™ Pagination System (YPPS)
which adopts an Al approach based on constraints in the problem of automated
Yellow Pages™ layout provides a flexible and intuitive formulation of complex layout
restrictions. Hence, the system is easier to maintain, extend and customize. However.
one difficulty arises when a customer needs to learn the complex layout constraints
specification language in order to specify his preferences. Therefore, we study the
problem of how to obtain layout constraints from a group of layout examples.

The specification of the layout rule induction problem can be subdivided into two
parts: one is to parse the relationships between different types of YP objects; the
other is how to represent the relationships and use them to produce layout rules. We
study layout rules from a real world application and define a set of relations which
capture the attributes of real-world layout rules. We implement a prototype system
which can analyze those relations from layout examples and generate files for Progol.
Progol is then used to generalize layout rules. The test results show that Progol is
able to construct those known layout rules given good and bad examples. Also, it can

induce some new and potentially useful rules if provided some good and bad examples

of how to place a particular object type.

A cknowledgements

[would like to express my sincere gratitude towards Dr. Randy G. Goebel. my
supervisor, for his guidance and on going support. His continuous encouragement
and advice throughout the course of my work was invaluable. I would also like to
thank my committee members: Dr. Russell Greiner, Dr. Renée Elio. and Dr. Alinda
Friedman for their careful reading and constructive criticisms. Also. [should thank
my fellow graduate students and staff of the Department of Computing Science for
creating a superb work environment.

Finally, I wish to thank to my husband, Hao Luan, and my family for all their
encouragement and undying confidence.

Contents

Introduction
1.I. Background
1.1.1 Preliminary
1.1.2 The YPPS _ . . . o
.2 TheProblem
1.3 Overviewof Approach
1.3.1 Inductive Logic Programming
1.3.2 Overview of some [LP systems
1.3.3 The Approach
1.4 System Overviews i
1.5 TheGoal
Related Work
2.1 IMAGE Systemo
2.1.1 System Overview
2.1.2 Bi-Directional Translation Model
213 Conclusion.
2.2 Applications of ILP Systems
2.2.1 Finite Element Mesh Design
2.2.2 Knowledge Discovery in Databases

Use of Progol to Construct Layout Rules

3.1 Dataused by Progol L.

3.2 Astudyoflayoutrules, .
3.21 Terminology
3.2.2 Layout Rules in the Real World
3.2.3 Representing Layout Rules

Design of the Implementation

4.1 A working assumption

4.2 Overview. R,

43 TheParser.
4.3.1 The Algorithm for Parsing a Spread
4.3.2 The Algorithm for Parsinga Page

4.4 Interaction Module

~1 Oy O OV Ut da W o= e

e}

4.4.1 Handling of Good Examples

4.4.2 Handling of Bad Examples
4.4.3 Background Knowledge
4.5 Implementation
5 Tests and Evaluations
5.1 Overview. e e e e
5.2 Task 1: Constructing the Known Rules
521 Overview e e
5.22 ATest Example.
5.2.3 Tests with Positive and Negative Examples
5.2.4 Tests with Positive ExamplesOnly
5.2.5 Discussion L L e e
5.3 Task 2: Finding Rules for Placing Each Object Type
53.1 Overview
5.3.2 Anpalysiso
5.4 Task 3: Finding New Rules
5.4.1 Apalysis L. Lo
6 Summary and Future Work
6.1 Conclusions e
6.2 FPuture Work L
Bibliography
A Definition of Terms
B Pictures of Examples
B.l1 Good Examples
B.2 Bad Examples
C Data Sets

-

79
81
31
38

91

List of Tables

3.1 Explanationsofterms.
3.2 Classification of categories
3.3 Classification of relations
4.1 An example file of the layout
4.2 The algorithm for parsingaspread
4.3 The algorithm of parsingapage
4.4 A method of handling good examples
4.5 A method of handling bad examples.
4.6 A workingexample0 000
4.7 An extract of file “da.pl”

Generating a file for rule “NoLonelyDa”
A file for Progol
Progol’s runtimes with good and bad examples.
Progol’s runtimes of having positive dataonly
Tests using positive only: a list of unexpected rules
Another file about rule “NoLonelyDa”
Task 2: rules generated by Progol
Task 3: Progol’s runtimes
Task 3: rules generated by Progol

g(gxg‘g‘mmoxmm
O O ~1T O Ut i O I\

Task 1: Input example files and theiroutput
Task 2: Input example files and theiroutput
Task 3: Input example files and theiroutput

000
W I =

List of Figures

1.1
1.2
1.3
1.4

S
[V

3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

An example of a typical YP directory
The architecture of the YPPS system
Architectural view of the system
Functional view of thesystem

System architecture of IMAGE
Bi-directional translation model

Eastbound and westbound trains.
The file trains.pl Lo
The weighted grid structure
A bad example of rule: SmallDAsAndICsStartOnSamePage

A good example of rule: NoLonelyDA
A bad example of rule: NoLonelyDA
A bad example of rule: NoICsAboveHPDA
A good example of rule: NoICsBeforeHalfPageOrFullPageDA
A bad example of rule: Touching
A bad example of rule: RankByGridWithinHeading
A bad example of rule: ReadingOrder
An example of “touch” relation.

A layout example
General flow chart of thesystem
A bad example of placing DF objects

Good examples 1 - rule: NoLonelyDa
Good examples 2 - rule: NoLonelyDa
Bad examples - rule: NoLonelyDa
A bad example of placing DAs
A good example of new rule: NoLonelyDa
A bad example of new rule : NoLonelyDa
Good examples of placing DA(F) and IC(F) - file “task3.good”
Good examples of placing HPDA - file “thpda.good”
Bad examples of placing DA - file “t-da.bad”

5.10 Bad examples of placing DF - file “t-df.bad”

5.11

Bad examples of placing IF - file “t-if.bad”

Lol e RS (V]

NI NI —
O =1 O Ut O N O

[N SR (VR N (V)
w O o

,,_.
v O

A

o S
[V o3 (V]

Sy Oy & O OV QO
Sy O W o WY

67
68
69
69
70

5.12 Bad examples of placing IC - file “t-ic.bad” 70

5.13 Bad examples of placing HPDA - file “t-hpda.bad” 70
5.14 Examples in a test file “test.good” 72
B.1 Good examples of rule:SmallDAsAndICsStartOnSamePage - file: smdal.good 81
B.2 Good examples of rule:NoLonelyDA - file: nolone.good (part 1) ... 82
B.3 Good examples of rule:NoLonelyDA - file: nolone.good (part 2) ... 82
B.4 Good examples of rule:NolcUnderDA - file: da.good 83

B.5 Good examples of rule:NoICsAboveHPDA - file: hpda2.good (part 1) S4
B.6 Good examples of rule:NoICsAboveHPDA - file: hpda2.good (part 2) 34

B.7 Good examples of rule:NoICsBeforeHPDA - file: noicbf.good 85
B.8 Good examples of rule:NolFsAtTopOfPage - file: if.good 35
B.9 Good examples of rule:DFsOnlyAtBottomOrUnderDA - file: df.good . 86
B.10 Good examples of rule:Touching - file: touch.good 36
B.11 Good examples of rule:RankByGridWithinHeading - file: rankgrid.good 37
B.12 Good examples of rule:ReadingOrder - file: rdorder.good 87
B.13 Bad examples of rule:SmallDAsAndICsStartOnSamePage - file: smda.bad 88
B.14 Bad examples of rule:NoLonelyDA - file: nolone.bad 38
B.15 Bad examples of rule:NolcUnderDA - file: da.bad 83
B.16 Bad examples of rule:NoICsAboveHPDA - file: noicabv.bad 39
B.17 Bad examples of rule:NoICsAboveHPDA - file: abv.bad 89
B.18 Bad examples of rule:NoICsBeforeHPDA - file: noicbf.bad 39
B.19 Bad examples of rule:NolFsAtTopOfPage - file: if.bad 89
B.20 Bad examples of rule:DFsOnyAtBottomOrUnderDA - file: dfl.bad . . 90
B.21 Bad examples of rule:Touching - file: touch.bad 90
B.22 Bad examples of rule:RankByGridWithinHeading - file: rankl.bad . . 90

B.23 Bad examples of rule:ReadingOrder - file: read.bad 90

Chapter 1

Introduction

1.1 Background

1.1.1 Preliminary

With increases in the volume and dynamics of information distributed by multimedia.
pagination and page layout problems have recently been paid more attention. The
problem of Yellow Pages™ (YP) Pagination and layout (YPPL) is one of finding a
compact and harmonious positioning of text and advertisements on the pages of a
commercial telephone directory ([1]). In practice, it is treated as a multi-dimensional
placement problem and hence is a complex computational task. In this dissertation.
we refer Yellow Pages™ to YP.

Figure 1.1 provides an example of a typical spread (double-page). We use this
figure to define some terminology. YP objects are classified by headings. For instance,
auto parts and auto rentals in Figure 1.1 are two specific headings. Display ads (DAs)
can span more than one column horizontally and the corresponding incolumn object
(ICs) which contain the text streams are of one-column width. A heading (HD)
consists of a set of DAs and ICs in lexicographic order. Any space remaining after
placement of DAs and text are placed is filled with filler material. The filler material
can be further subdivided into displey filler (DF) and incolumn filler (IF).

Of previously reported approaches, the three most relevant for general pagina-
tion and page-layout tasks are those that use rule-based methods, optimization by
simulated annealing ([1]) and constraint-based methods.

The rule-based approach has been applied to the YPPL problem and its newspaper

e[] — []l T It |

= E— —

[_—_ll——JUAmm_l ey B e
= = | o-

L = L—JL__Jr——ﬁ |

% [I;i /L __1) rites

C ===

NN

Figure 1.1: An example of a typical YP directory

equivalent with moderate success ([2]). Although “if-then” rules are helpful in defining
an objective function operationally, it appears that it is unsuitable for fully automated
YP layout, which is a very challenging combinatorial optimization problem. Those
“if-then” rules play an assisting role in YP design.

A simple stochastic search technique based on simulated annealing is presented in
[1], and can generate extremely compact and harmonious page layout. It formulates
a YPPL problem as an optimization problem in which the task is to position display
ads and incolumn text stream segments on sequential pages so as to minimize total
page length, and satisfy page-format requirements and positional relations between
DAs and [Cs. The algorithm has been applied to sample data from a real telephone-
directory, and produces solutions that are significantly shorter and better than the
published ones. However, since the approach uses general criteria for evaluating
solutions, it cannot satisfy particular requirements from different users. In this case,
it is not easily adapted for a general automated layout problem, which may occur in
different media and may have different requirements.

Constraint programming is broadly applicable to many computationally intensive
tasks. [3] presents a constraint-based pagination tool for YP telephone directories,
called YPPS (Yellow Pages™ Pagination System). In YPPS, the YP problem is

treated as a constraint satisfaction problem. Basically, layout requirements are stated

[\

by means of constraints. Expertise about the application domain can be exploited
by providing heuristics which guide the constraint solving process. By using some
powerful constraint processing techniques, such as constraint propagation over finite
domains and dedicated constraint abstractions, the system applies a coherent collec-
tion of layout constraints to a stream of YP objects to achieve aesthetically appealing
and rationally organized layouts.

The constraint-based methods provide a flexible formulation of complex layout
conditions. The hope is that the constraint processing technology is flexible enough

to help transform YP publishing to the volatile electronic publishing market.

1.1.2 The YPPS

YPPS is the first system that integrates constraint programming and artificial intel-
ligence methods for the problem of layout for telephone book Yellow Pages™!. Most
current pagination algorithms exploit heuristics that are procedurally encoded for
computational efficiency, with little support to flexibly accommodate user-specified
preferences. The Al approach based on constraints provides a flexible and intuitive
formulation of complex layout restrictions, as well as a declarative representation of
design knowledge([3]). Hence, a constraint-based layout system is easier to maintain,
extend, and customize. Moreover, it is easier to adapt the system to various presen-

tation media and to tailor to a specific user profile by setting design parameters.

Figure 1.2 illustrates the schematic architecture of YPPS. The input includes a
set of multimedia items (YP objects) and a set of pagination parameters, such as
the user’s layout preference (e.g., spacing, weighted grid), output media (e.g., paper,
HTML, CD), and resource limitations (e.g., space, time). Both the system designer
and end users can select a set of layout constraints from a pre-defined constraint li-
brary in YPPS according to company-, application-, and user-specific criteria. More-
over, the end user can select among a set of placement strategies and optimization
criteria (e.g. filler minimization vs. balancing of DAs and [Cs), which are mapped
onto constraints or propagators. The overall architecture shows the powerful flexibil-
ity of the system.

One important feature of YPPS is its underlying constraint language Y ellow PagesT

M

Yellow Pages Objects

Control Strategics

Modes

il

Finite Domain

. Cuonstraint Solver .
Booleun Constraints Propagutor Constraints

Figure 1.2: The architecture of the YPPS system

Page/Spread/Section
Layout

Language (YPL). YPL is a declarative, concise, and powerful constraint language
which supports a relatively “natural” specification of layout characteristics by the
page layout designer. It helps free the end user from cumbersome procedural lay-
out algorithms and makes it easier to formally represent the layout knowledge of

pagination experts.

1.2 The Problem

Today’s increasing dynamics of commercial YP telephone publishing market requires
effective tools that supports easily customized YP layouts and allow frequent up-
dates. YPPS is flexible in that it supports both system designers and the end user in
specifying constraints in a high-level language. However, it is difficult for a client to
understand the constraint representation language. Therefore, the problem of how to
represent layout constraints based on the client’s requirements is important.

It is usually easy for a client to provide a group of layouts which reflect his layout
preference and some general layout characteristics. Layout examples are typically
divided into two classes: good examples and bad examples. A good example shows
a layout preference in a positive way. On the other hand, a bad example illustrates

what is wrong with regard to a specific layout requirement. From the layout examples,

a layout designer can induce the valid constraints and use them in a YP pagination
system. The problem is to specify a set of layout rules from the examples which clients
provide. It is a challenge for a person to accomplish the task. With the state-of-the-
art computer-aided induction techniques, we can take layout examples as input and
generalize layout rules which can assist the layout designer in constructing a set of
application-specific constraints, then YPPS can use the constraints to automatically

produce aesthetically pleasing layouts which satisfy client requirements.

1.3 Overview of Approach

1.3.1 Inductive Logic Programming

Inductive learning is one form of machine learning. Various logical formalisms have
been used in inductive learning systems to represent examples and concept descrip-
tions. In general, these formalisms range from propositional logic to full first-order
predicate calculus. We distinguish two classes of learning systems based on its for-
malism for representing knowledge. One of them uses an attribute-value language to
represent objects and concepts, and is called attribute-value learners. The advantages
of attribute-value learners are: relative simplicity, efficiency, and existence of effective
techniques for handling noisy data. However, attribute-value learners have two strong

limitations:

e the background knowledge can only be expressed in a limited form

e the lack of relations makes the concept description language inappropriate for

some domains

Another class of learning systems, called relational learners, induce descriptions
of relations (definitions of predicates). In relational learners, the languages used to
represent examples, background knowledge and concept descriptions are typically
subsets of first-order logic. Learners that induce hypotheses in the form of logic
programs are called inductive logic programming systems.

Compared to attribute-value learners, inductive logic programming (ILP) systems

have the following major advantages:

(W)

e the use of domain-specific background knowledge enables the user to introduce

problem-specific constraints into the learning process

o the representation language is expressive enough to describe the details of many

domains

1.3.2 Overview of some ILP systems

Currently, there are three ILP systems which are most widely used. They are: FOIL
(23], Golem [25] and Progol [7].

FOIL builds on ideas from both the attribute-value learning algorithms and the
use of first-order logic as a representation language. It is the first widely known
demonstration that first-order logic can really work on a broad range of problems.
FOIL uses efficient methods adapted from attribute-value learners, such as, ID3 [29].
and AQ [30]. It can find recursive definitions and develop inexact but useful rules.
However, it has the following major limitations: First, FOIL requires all background
knowledge to be given extensionally. Second, it is based on a short-sighted greedy
algorithm which tends to local generalization.

Golem is a bottom-up algorithm based on Plotkin’s notion of relative least general
generalization (rlgg) [18]. It has been shown to be efficient and effective in many
application domains, due to the use of rlgg as an underlying hypothesis filter so that
it is able to avoid search in the construction of clauses. Golem, however, still suffers
from some of the restrictions, such as the prohibition of non-ground unit clauses in
the input files, and the restriction to determinate clauses.

Progol is an ILP system which, given examples and background knowledge. con-
structs hypotheses on the basis of Inverse Entailment [18] and general-to-specific
search through a predicate subsumption lattice. Progol is preferred in this study
because it allows arbitrary Prolog programs as background knowledge and arbitrary

definite clauses as examples.

1.3.3 The Approach

Layout constraints (rules) are used to capture user requirements, and help reduce the

search space in the process of layout generation. As mentioned above, our problem is,

given a group of good and bad layout examples, to produce generalized layout rules
(constraints) from them. Throughout the dissertation, we use layout constraints and
layout rules interchangeably.

The specification of the layout rule induction problem can be subdivided into two
parts: One is to parse the relationships between different types of YP objects: The
other is how to represent the relationships and use them to produce layout rules.

Parsing an arbitrary 2D picture is a challenging task. In our case, the YP layout
process is usually constrained by a grid structure which is explicitly or implicitly
given by the end user. The grid structure also encodes different priorities for each
grid position according to their effectiveness and costs. Hence, we assume all examples
are given in a pre-defined grid structure. In this way, parsing an example layout is
simplified.

Usually, the nature of an application domain determines the type of learning
techniques. The problem of inducing layout rules requires relational background
knowledge. In the meantime, layout designers are most interested in the understand-
ability of the induced rules. Therefore, ILP’s ability to use background knowledge
and representational flexibility makes it the most appropriate technique to be chosen
in the domain of layout rule induction. In this work, we decide to choose an ILP
system, PROGOL, as the layout rule generator. Input to the Progol system should
use first-order logic syntax, so we use Prolog predicates to represent relations between

objects.

1.4 System Overviews

In this dissertation, we implement a system that is capable of generalizing layvout
rules based on a group of good or bad layout examples. The system consists of three
components, as shown in Figure 1.3. The parser parses 2D layout examples and
generates clauses describing relations between different types of objects. Progol is
used to construct layout rules based on the output from the interaction module. The
interaction module allows the user to generate input files for Progol based on his

requests, and add mode declarations which are necessary for Progol.

Figure 1.4 illustrates a general picture of how ILP can be used in inducing layout

7

Layout Rules !

Layout Example ;;

Parser] Interaction), Progol

Figure 1.3: Architectural view of the system

rules. The ILP system takes as input both relations between YP objects and layout
example data and generate possible hypotheses so that those relations together with
hypotheses should entail the layout examples.

In Figure 1.4, there are three question marks which point out those different
areas which may influence layout rules induction. First, different [LP systems may
generate different explanations to the hypotheses and have their own restrictions when
applied to layout rules induction. Second, within the same ILP system, different
hypothesis restrictions will still affect the rule generation. For instance, suppose we
try to induce a layout rule from the layout example shown in the picture, using two

different hypothesis restrictions may result in two different rules:

1. layout(A, da, P) « abovelCs(A).
2. above(A,B) « largeDA(A), smallDA(B).

Rule 1 says that a DA object must be placed above all IC objects, however, rule
2 requires that larger DAs should be above smaller DAs. Those hypothesis restric-
tions are usually stated using “mode declarations”. They enable the user to specify
the predicate and function symbols to be considered, and the types and formats of

arguments for each. Last, the relation definition language is also important. There

are a couple of questions here that we need to consider: The first is how to define a
relation so that it can best reflect user’s preference and still be understandable? The
second is how expressive are the relations so that they can be used to generate layout

rules meaningful?

ILP System

Relations between _.i__
YP objects

Possible
Hypotheses

Hypothesis (?
Restrictions

Relation
Definition

Languages

layout(A. da.P) €— abovelCs(A).

or

above(A.B) €— largeDA(A), smallDA(B).

Figure 1.4: Functional view of the system

1.5 The Goal

In order to judge the quality of the induction ability of the system, there are two
main directions that we can consider. One is qualitative analysis of the rules, such as,
how much insight the rule provides to help the layout designer to understand user’s
layout preferences, or how easily understandable the rule is. The other is a domain
independent measure of the validity of generated rules.

The goal of this work is to investigate the use of one of ILP systems, Progol. to
construct layout rules. We want to test if the ILP technique is powerful enough to

fulfill the task of inducing layout rules, and whether it can handle the practical layout

rule learning problem. Furthermore, we want to accumulate valuable experience of
what kinds of relation definitions are necessary in order to represent rules which
are expressive enough to state users’ layout preferences. Therefore, we focus on the
validity check on the first alternative.

From the practical point of view, applying induced layout constraints successfully
in YPPS can help automated layout design. The end user does not need to master the
declarative YPL language to specify the requirements he prefers, so, it frees layout
designers from expressing cumbersome layout constraints. From the theoretical point
of view, we make one step forward in determining what is required in order to improve

the induction of 2D layout rules.

10

Chapter 2
Related Work

There are two major research areas which inspire our study of using ILP techniques
to generate layout rules. The IMAGE system ([20]) provides a framework to realize
application-specific GUlIs. It infers a group of mapping rules from multiple exam-
ples provided by the programmer. By this way. it saves the complexity and cost of
building application-specific GUIs. The other is successful applications of ILP sys-
tems in various domains, such as, finite-element mesh design, knowledge discovery in

database, and natural language processing.

2.1 IMAGE System

2.1.1 System Overview

In [20], Ken et al proposed an enhanced Programming By Example (PBE) method-
ology called “Programming by Interactive Correction of Examples”, and also imple-
mented a prototype system IMAGE. The new methodology is applied to the gener-
ation of mapping rules, which specify the mapping between application data and its
corresponding visual representation on GUIs. The study is based on the bi-directional
translation model in [21]. In this model, general mapping from abstract application
data to pictures, and from pictures to abstract application data. is realized merely by
giving declarative mapping rules.

Figure 2.1 shows the system architecture of IMAGE. It consists of four main

modules:

Example Generator

11

Generation Phase Applicatin Phase
Application Data)
Defin 2

Applicaticn Data
Definition T

Bi-Directicnal
Translator

Figure 2.1: System architecture of IMAGE

This module is responsible for generating application data examples, given an
application data type definition. It usually starts with the simplest application
data example, and then revise the examples to make them more complicated

by some specified strategies (refer [20]).

Drawing Editor
This module is used as a MacDraw-like editor for the programmers to correct

visualized pictures that the system shows.

Rule Generator
Given example data, including application data and its corresponding picture,
this module can generalize a mapping rule for translation. Furthermore. if the
rule does not reflect the programmer’s intention, it can be modified by additional

example pairs.

Bi-Directional Translator
This module employs the mapping rules to realize the bi-directional translation
between application data and its visual representation, using the hierarchical

constraint solver.
IMAGE system has two phases of usage: one is the rule generation phase, and the

12

Application data Visualization -

(Constraints A
Group Leader| Staff < {offset AL Brad 20 0)
’ {offset Brad Chris 0 10)
Alan Brad, Chris }
Brad John /
Chris Kevin .
Constraint
Satisfaction

Visual garsing

‘Visual Representation

™~ Control i AlanH EradH Johni :
\\
W\

\

\ T -
Mapping Rules \{ Chrls;—{ Kev:r..]

3

A

\
\ Dave ‘ J

Figure 2.2: Bi-directional translation model

other is the rule application phase. In the rule generation phase, based on the exam-
ples from the example generator and modified pictures from drawing editor, the rule
generator produces mapping rules incrementally. When the rule generation process
is completed, the application phase is invoked to present the mapping rules visually.
In the application phase, the mapping rules control the bi-translation between appli-
cation data and its visual representation. This phase provide “free-hand” interfaces

for end-users to manipulate application data visually.

2.1.2 Bi-Directional Translation Model

Figure 2.2 illustrates the bi-directional model with an example of department diagram

data.

Application data consists of a series of structured data. Each data is an instance
of a type definition. Visual representation is a picture which is constructed from
a series of graphical objects and geometric constraints among those objects. Each
graphical element corresponds to application data.

A mapping rule expresses the correspondence between an application data type
definition and a series of constraint templates ([20]). As shown in Figure 2.2, map-

ping rules control the processes of both visualization and visual parsing. When the

13

system visualizes an instance of a data type definition, all the constraint templates
in the mapping rule are instantiated, and the constraint solver determines the visual
representation by solving the constraints. On the other hand, the visual parsing is
also controlled by the mapping rules. It checks whether all constraint templates in
the mapping rule can be satisfied in a given picture. If so, the corresponding data

type definition is instantiated.

2.1.3 Conclusion

The most important feature is that the system can extract the programmer’s intention
about the revision of the rules. By applying the rules in visualization. it allows fast
and effortless creation of direct manipulation interfaces.Hence, this study motivates
our research of inferring layout rules from multiple layout examples provided by the

end-user.

2.2 Applications of ILP Systems

[LP systems have been successfully applied to various application domains. In this
section, we will present two different application areas of ILP: one is in the area of
mechanical engineering (finite element mesh design) [16], another is in the area of
knowledge discovery [9]. They both benefit from the ILP’s predicate logic descrip-
tions, and from the background facility in ILP. Similarities between the two areas and
the problem of YP layout rules induction are: they involve structured data and re-
quire background knowledge. Therefore, successful applications in these two domains

motivate the use of ILP in inducing layout rules.

2.2.1 Finite Element Mesh Design

The finite element (FE) method is used extensively by engineers and scientists to
analyze stresses in physical structures. It requires that the object is partitioned into
finite elements, resulting in a finite element mesh. The basic demand for the F'E
mesh is that the mesh should represent the exact shape of the structure. Since it is
very difficult to tell in advance where the mesh should be dense and where it should

be coarse because the resolution depends on several factors, including the shape of

14

the structure, the stresses applied to it and the boundary conditions. There exists
a strong need for knowledge-based expert systems which are able to help design FE
meshes.

FE methods have been applied for the last 30 years. A large number of successful
meshes for particular objects have been accumulated. By employing appropriate
machine learning techniques, the data from those example meshes can be used to
construct a knowledge base for a FE mesh design expert system.

In general, a mesh depends on the geometric properties of the object, the stresses
acting on it, and the relations between different components of the object. Also,
the mesh density in a region of the object depends on the adjacent regions. All
these relational dependencies suggest that the mesh design problem should apply
ILP techniques.

In [16], the ILP system GOLEM is employed to induce rules for deciding on appro-
priate resolution values of FE meshes. The resolution of a FE mesh is determined by
the number of elements on each of its edges. Thus, the problem of learning rules for
determining the resolution of a FE mesh can be formulated as a problem of learning
rules to determine the number of elements on an edge.

The input data for GOLEM consisted of 75 foreground examples, 613 negative
examples, and 588 background examples. The results obtained with GOLEM were
satisfactory even though some of the rules were useless. Here, we give an example of

a rule (in Prolog syntax).

mesh(Edge, 7) :-
usual_length(Edge),
neighbor_xy(Edge, EdgeY),
two_side_fixed(EdgeY),
neighbor_zx(EdgeZ,Edge),
not_loaded(EdgeZ .

This rule says that partitioning Edge into 7 elements is appropriate if Fdge has
“usual length”, and has a neighbor EdgeY in the xy-plane so that EdgeY is fixed at
both ends, and Fdge has another neighbor EdgeZ in the xz-plane so that EdgeZ is
not loaded.

2.2.2 Knowledge Discovery in Databases

In [9], a framework for realizing knowledge discovery in database by utilizing [LP
technoldgy is proposed. Most of the researches on knowledge discovery in databases
are based on decision tree algorithms. The decision tree approach is efficient in
extracting rules, however, its propositional logic representation formalisms make it
difficult to take into account the available background knowledge. In the domain of
knowledge discovery in databases, this limitation makes a big difference. Namely,
adequately prepared background knowledge enables us to generalize examples in a
more natural and concise manner. On the other hand. ILP approach can handle
background knowledge very naturally since it is based on first order logic.

Given a database and an inductive inference problem, how to design a target
concept representation is important. In the database terminology. other issues need
to be considered, such as, how to identify necessary background knowledge, how to
generate negative examples automatically. Shimazu [9] solved the issues by proposing
an extended Entity Relationship model. called RER model, to define the database.
By translating the database into the RER model, relevant database data can be
converted to input data for Progol. In addition, background knowledge is made from
each entity of RER model and relationship. The system employed the ILP system,
Progol, to induce rules.

Moreover, [9] presented an experimental study of automatic knowledge acquisition
of expertise in an e-mail classification expert systems. The results showed that the
system was able to extract a set of useful rules for 18 classes out of 20. Those rules

can be used as knowledge bases in an e-mail classification expert system.

16

Chapter 3

Use of Progol to Construct Layout
Rules

In this chapter, we use an example to demonstrate how Progol works with given
examples. As the goal of our work is to use Progol to generalize layout rules from a
sequence of layout examples, we will give a detailed discussion of how to represent

layout rules using Prolog clauses.

3.1 Data used by Progol

Progol is an ILP system that mixes “learning by being told” and “learning by exam-
ples” because it can make use of background knowledge that is supplied by the teacher
and expressed in Prolog clauses. Input to Progol consists of mode declarations. back-
ground knowledge, and positive and negative examples. In this section, we will use
a simple example to explain how Progol works with these three types of input. The
example here comes from [8] in that further details about Progol are discussed.

In the example, we are given a sequence of trains (see Figure 3.1). Each train has
attached a number of cars, each of which may have a number of different properties
such as being long or short, having a roof or no roof, and having a shape painted on
the side. In addition, we are given that each train is either traveling east or traveling
west. The problem is to find a rule that will predict, from the properties of its cars,

which direction the train is traveling.

A file containing the data for the trains example is given in Figure 3.2

17

> East West

UUI

l

Figure 3.1: Eastbound and westbound trains

%% Mode Declarations

modeh(l, eastbound(+train))?
- modeb(l, nextcar(+train,-car))?
modeb (1, shape({+car, #shape))?

%% Types

train(crainl). train(crain2). train{trainl).
train(traind4). crain(trainS). train(trainé).
car(carl_1l). car(car2_l). car(car3_1l).
car(car4_l). car({car5_l). car(caré6_1l).

shape (rectangle) . shape(circle} .

%% Background Knowledge

nextcar(trainl, carl_1l). nextcar (train2, car2_1).
nextcar(train3, car3_1l). nextcar(traind4, card_1).
nextcar (train5, carS5_1). nextcar{trainé, car6_1).
shape(carl_1l, rectangle). shape(car2_1l, rectangle).
shape(car3_1, rectangle). shape(car4_1l, circle).
shape (carS_1, circle). shape(car6_1, circle).

%% Positive Examples
eastbound(trainl).
eastbound(train2) .
eastbound (train3).

%% Negative Examples
:- eastbound(traind).

:- eastbound(train5).
:- eastbound{(trainé6).

Figure 3.2: The file trains.pl

18

First,

:~ modeh(1, eastbound(+train))?

As we have discussed, Progol constructs general rules expressed as Prolog clauses,
which have a head and body. This mode declaration says that general rules may have
heads containing eastbound(X), where X is a variable of type train. The number
1 is the recall of the mode declarations. It is used as a bound on the number of
alternative instantiations of the predicate that Progol will consider. An instantiation
of the predicate is a replacement of the types by either variables or constants in
accordance with the +, -, and # information. If we know that there are only a
certain number of solutions for a particular instantiation, we can express this as a
recall parameter to save Progol searching fruitlessly for further solutions.

Secondly,

:- modeb(1l, nextcar(+train,-car))?

:- modeb(1, shape(+car, #shape))?

are the mode declarations describing the form of literals that can be used in the body
of a Progol hypothesized clause. The first says that the general rules may have bodies
containing the predicate nextcar(X,Y), where X is of type train and Y is of type
car.

The + types are used where there is an input argument of a predicate, and - types
are used for an output argument. In cases where arguments can be both input and
output, two mode declarations can be given.

In the second declaration, the # in #shape type says that we must have con-
stants, not variables, of type shape. Thus we can have rules with bodies containing
shape(B,rectangle) but not shape(B,C).

Thirdly, in the Progol input file, we must add some additional types and back-
ground information in order to do generalization.

For instance,
shape(rectangle). shape(circle).
is a statement to specify the extension of shape. In this case, it says that the type

shape can only have two values, one is rectangle, the other is circle.

nextcar(trainl, cari_1).

19

shape(carl_ 1, rectangle).

The above two statements give us necessary background facts about traini. That
is, traini has one car, car1_1, and the car has a shape of rectangle on its side.

Finally, a positive example is a statement such as:
eastbound(trainl) .

A negative example is a statement such as:

:~ eastbound(train4).

The fact that the example is negative rather than positive is marked by the occurrence
of :- before the example.

With this information relating to the trains, we can ask Progol to generalize from
these examples and produce a more general rule. What Progol does can be divided
into three parts. The first part is to construct the most specific clause of the first
positive example. In this case, the first positive example is eastbound (traini). and
Progol will get its most specific clause using mode declarations:
eastbound(A) :- nextcar(A,B), shape(B,rectangle).

The second part is to make new clauses by combining the predicates contained
in the most specific clause. When Progol applies best first search and finds a clause
which explains most of the positive examples (and none of the negative ones). it
selects this clause as its general rule. In this case, the general rule is the most specific
clause itself.

The third part is to add this general rule to its information concerning the trains
and remove any of the original positive examples which are now redundant. In the
example, the general rule explains all the positive examples and all three are removed.
Progol finishes by printing out the rule concerning the eastbound predicate. That is,
eastbound(A) :- nextcar(A,B), shape(B, rectangle).

It tells us that a train is heading east if its first car has a rectangle on it.

3.2 A study of layout rules

The goal of our system is to use the ILP system, Progol, to generalize layout rules from

a group of given layout examples. In order to do that, we need to parse the known

20

[Term ” Fzplanation Abbreviation

IC Incolumn object IC

Heading | Heading object HD

IF Incolumn filler object [F

DF Display filler object DF

HPDA Half page display ad HPDA
FPDA Full Page display ad FPDA
small DA || Display ad object not including HPDA and FPDA || DA

Table 3.1: Explanations of terms

layout examples and explore implicit relationships between different tvpes of objects.
There are a couple of questions that are important to us. How do we represent a
layout rule so that it can best reflect the user’s intention? How many relations are
necessary In order to generate useful layout rules?

We begin our explanation by studying layout rules from a real YP publishing
company. Before we start, we need to explain some terms that are used in YP

publishing.

3.2.1 Terminology

Throughout the rest of this dissertation, certain terms are used with enough frequency
to warrant a clear understanding of their meaning with respect to the YP automated
layout problem. This section is intended to provide a common ground for the intended

meaning of these terms.

1. YP Objects

Table 3.1 explains terms that we use to represent different types of YP objects.

[V

. a grid structure
[t is known that a general layout problem is strongly NP-complete and thus,
there is no general and efficient algorithm for solving it([5]). The problem be-
comes linear in time only if we use additional constraints to reduce the design

space for arrangements, e.g., a grid structure.

A grid partitions a 2D plane into smaller rectangular units of mostly equal size

using horizontal and vertical lines. Figure 3.3 shows a weighted grid which

21

is used to control pagination process in YPL. A page contains 8 rows and 4
columns. Each grid has a weight which shows its priority according to its
effectiveness and costs. The lower value of a grid field, the higher priority it
represents. Throughout the dissertation, we assume all layout example objects

are placed within the 8-row and 4-column grid structure.

A
8
1 3 5 7
7
9 11 13 15
3
17 19 21 23
5
25 27 29 31
4
33 3s 37 39
3
41 43 45 47
2
49 51 53 55
1
57 59 61 63
0 R3:
1 2 3 s P

% & SR AV R S AT 'y

e

Figure 3.3: The weighted grid structure

3. rank
We use “rank” to order each DA object based on its size. For example. if we
use the grid shown in Figure 3.3, then the size of an HPDA is 16. Thus. its

rank is 16.

4. scope
The concept of scope is critical as various scopes defined for YPPS can expedite
the design of layout constraints and their efficient application. In the disser-
tation, scope means either page or spread, depending on the current layout

scope.

[&V]
(8]

3.2.2 Layout Rules in the Real World

A directory publishing company typically uses layout rules to express its layout re-
quirements. Such layout rules can be translated to corresponding layout constraints
which can be applied to a stream of display objects in order to achieve aesthetically
appealing and rationally organized layouts. As pointed out in [4], it is very important
to mention the distinction between the notion of a valid layout and a quality layout
in the process of applying constraint technology to the design and construction of a
feasible automated YP layout,

A validity constraint is typically applicable in a straightforward way, such as.
(1) There must be no IC above a half page display ad.

With the technique of constraint propagation, validity constraints can be used in
reduction of the solution space.

However, another such informal rule like :
(2) A DA must be placed as close as possible to its heading.

introduces the issue of “...as close as possible...”. We call such a constraint a “quality
constraint”. It is typically used as an optimization heuristic in order to distinguish
more preferable layouts.

Our aim is to study user-defined layout examples and extract useful expressions
of the relationships between different types of objects. For our study. we concentrate
on layout rules which address validity criteria through some examples. Therefore. we
limit our study to validity constraints and leave quality constraints as further work.

Here are some real layout rules from a directory publishing company.

1. SmallDAsAndICsStartOnSamePage
Consider the first page where ads of heading h (e.g. cycle shops) are placed. If
this page contains a small DA, then there must also be placed some ICs of that

heading.

Figure 3.4 shows a bad example of this rule. There are no [Cs of heading h2 on

page 141 although page 141 contains three DA objects of heading h2.

ICs of heading hl

Il

2 ; | DAs of

= ; -
DAs of T o M —— g}dmg ha
heading b gl

Figure 3.4: A bad example of rule: SmallDAsAndICsStartOnSamePage

2. NoLonelyDA
If a DA is smaller than a half page and if it is not the only DA of its heading,. it
must not be placed as the only DA of its heading on a page. In other words. if
a heading has more than one small DA, on each page there must be at least two
of them. For example, in Figure 3.5, page 123 has two DA objects al and a2
which are of the same heading A and page 124 has six DA objects of the same
heading h. Since there are more than one DA of heading £, there must be more
than one DA object on each page. A bad example of this rule is provided in

Figure 3.6.

3. NolcUnderDA
There must be no ICs under DAs. It requires that all DA objects must be
placed under IC objects.

4. NolCsAboveHPDA
Above a Half Page DA (HPDA) there must be no IC. This rule could also be
called “HPDAsOnToplIfPossible” because from the viewpoint of the implemen-

tation it is enough to force a HPDA on top of the page if there is no other
HPDA. A bad example of this rule is given in Figure 3.7. The HPDA object on

24

123

Figure 3.5: A good example of rule: NoLonelyDA

Hnn

123

DAs of the same heading

Figure 3.6: A bad example of rule: NoLonelyDA

(&1

5 ICs of
_Jheading hi

Figure 3.7: A bad example of rule: NoICsAboveHPDA

page 195 is placed wrong because it is under IC objects.

NolICsBeforeHalfPageOrFullPageDA

When a heading contains a DA that has the size of a half page (HPDA) or a
full page (FPDA), these ads must be the first placed objects of this heading.
That means only the heading itself together with other filler objects are placed
before those objects. As shown in Figure 3.8, objects which are allowed to place

before HPDAs are either heading object or filler objects.

NolFsAtTopOfPage
Incolumn filler (IF) must be placed at the top of a column. A column must

either start with a normal IC or with DAs of DA-like objects.

DFsOnlyAtBottomOrUnderDA
Display filler must only be placed under a DA or on positions that touch the

bottom.

Touching
Each DA of a heading must transitively touch an IC of its heading. In other

words, a DA touches, if and only if it touches an [C of its heading or another

26

f iiiiiiIIIIIIIIIIIIII...---.Ublas"f
g 82392

- 7

376371

Figure 3.8: A good example of rule: NoICsBeforeHalfPageOrFullPageDA

DA which touches that heading. We consider incolumn filler (IF) under an IC
of heading Hg to belong to Hg. Note that the “scope” of touching is always a
page, not a spread and touching over display filler (DF) is not allowed. The
length of the line at which two DAs must touch each other when they touch on
their sides is controlled by a parameter. Figure 3.9 shows a bad example with
regard to the rule of “touching”. Note that objects that are of the same heading
are filled with the same color and there are only two DA objects in Figure 3.9:
object 378424 and object 378684. The first DA belongs to heading 82328 and
it does not touch any object of that heading.

9. RankByGridWithinHeading

When there are two DAs of the same heading on the same scope. then the DA
with the better rank must be on a better position than the DA with the worse
rank. The quality of a position P is reflected by the grid weight of the grid
field in the upper-outer corner of the DA at position P. Figure 3.10 is a bad
example of this rule. The reason why it violates the rule is that the DA object
376184 and another DA 378289 are placed wrong. Since object 378289 has a
better rank than the object 376184, it should take a position which has a higher
priority. However, the object 378289 has a priority of 45 and object 376184 has
a priority of 43, which is better than another DA.

27

ICs of
heading 82340

heading 82046

DAs of heading
82046

Figure 3.10: A bad example of rule: RankByGridWithinHeading

28

heading
85404

heading —f—
85396

DAof
heading 85404

DAs of heading 85396

Figure 3.11: A bad example of rule: ReadingOrder

10. ReadingOrder
If there are two DAs of two different headings on a scope, then the DA of the
earlier heading must be placed before the DA of the later heading in reading
direction. Figure 3.11 shows a bad example concerning this rule. There are four
DA objects in Figure 3.11. Object 2652, 2633,2654 are of the same heading of
853964 whereas object 2656 belongs to another heading 85404. According to
the rule, object 2656 should not be placed above object 2653, 2654.

3.2.3 Representing Layout Rules

As we know, Progol uses Horn clauses to represent the results of learning. In this
section, we discuss the use of Horn clauses to represent the individual rule given

above.

Object Type Category
DA DADFs
DF

IC [CIFs

[F

HD hd
HPDA hpda

Table 3.2: Classification of categories

Relations

In order to represent the layout rules, we need to determine what relations are required
from the layout examples, and how to express them. The need for a relation is
determined essentially by its interestingness to a layout designer and its clarity in
helping to express those rules we discussed before.

Here, we introduce a new concept “category”. Table 3.2 describes the classification
of categories. In this case, we consider geometric inter-relationships between two
object categories rather than its types. For example, the relation “underICIFs(A. P)”
is more interesting than a relation of “under(A, B)". The relation “underICIFs(A.
P)” means that an object A must be placed under objects of category “ICIFs™ on a
page P. Usually, a layout designer pays more attention to the geometric relationship
(i.e. “under” or “above”) between two object categories rather than two individual
objects.

Here follows a detailed description of relations we use in our study:

1. icNum(H, N, P)
On page P, the number of [Cs of heading H is N.

N

. daNum(H, M, P)
On page P, the number of DAs of heading H is M.

3. icdaSamePage(icNum(H,N1,P),daNum(H,N2,P)).
When a number of ICs and small DAs of the same heading are on the same

page, we can use the above relation to represent that it is consistent with the

rule of “SmallDAsAndICsStartOnSamePage”.

30

~1

10.

11.

das(List, H)

In order to represent the rule of “NoLonelyDA”, we use a list List to record
the set of DAs of a specific heading H on each page. For example, relation
das([2,3], h80252). means that five DAs of heading h80252 are placed on
two separate pages. The first page contains two DAs and the second has three
DAs. It conforms to the rule of “NoLonelyDA” because each page has more

than one DAs of heading h80252.

. nolonelyDa(das(L, H))

We use “das(L,H)” to record the distributions of DAs of heading H on each
page. If the placement of DAs conforms to the rule of “NoLonelyDA”, then we

have this relation.

. underICIFs(A,P)

On page P, an object A is always placed under objects whose type are either

IC or IF. This relation is useful when expressing the rule of “NolcUnderDa”.

. abovelCIFs(A,P)

On page P, an object A is always placed above objects whose type are either

IC or IF.

aboveDADF's(A,P)

On a page, an object A is always above objects which are either DAs or DF's.

. underDADFs(A,P)

An object A is always under objects which are either DAs or DF's.

abovehpda(A,P)
An object A is above an HPDA object on page P.

underhpda(A,P)
An object A is under an HPDA object on page P.

. downNext(A, T)

T should be a specific type of those defined types, i.e., da, ic, hpda, if, df, or

31

13.

14.

16.

hd. It says that an object A is under another object which is of type T and A

is also adjacent to that object.

This relation considers a relationship between one object and another object
type. We need to define a relation that a DF object must be under and adjacent
to a DA object because the rule cares only another object’s type. Therefore.
we abandon another alternative form like “downNext(A,B)”, in which A and B

are both objects.

orderBefore(A,hpda,H)

In order to represent rule 5 “NolICsBeforeHalfPageOrFullPageDA”, we need to
analyze which objects are before an HPDA object. We need only consider those
objects which are of the same heading as the HPDA object. This relation is
used to specify that object A is on a previous page than the HPDA object. H
is the heading of both the HPDA object and the object A.

orderBefore(A ,fpda,H)
A is the object which can be placed before a FPDA object of its heading.

. topCol(A, P)

Since all objects are placed within the grid structure, each object must belong
to one of the four columns. An object could be placed in one of the three
positions with regard to a column: top, middle or bottom of a column. If it is
at the top of a column on page P, then the relation of “topCol(A,P)” holds for
that object.

midCol(A, P)
If the object A is placed in the middle of a column, it does not touch the top
nor touch the bottom, then the relation “midCol(A,P)” holds.

. touchBot(A, P)

If the object A is at the end of a column, which means, it touches the bottom

of a column on page P, then object A has the relation “touchBot(A,P)”.

touch(A,B)

Here, A and B represents two different objects. The relation of “touch” has two

32

19.

requirements. First, it means that object A and object B share edges. Then
it requires that object A and object B are of the same heading. For example,
in Figure 3.12, object a touches ¢ because object ¢’s upper line touches object
a. Note we also consider two objects have a “touch” relation if they share an
endpoint. As shown in Figure 3.12, objects 61, 62, b3 and b4 all has only one
endpoint which touches object a. In this case, we think that there exist “touch™

relations between b1, 62, b3, b4 and a.

It is also important to point out that relation “touch” is transitive. If an object
A touches B, and B touches another object C, then we have the relation of

“touch(A,C)”.

0 ;X

1 2 3 4

Figure 3.12: An example of “touch” relation

betterPosition(A, B)

Object A is in a better position than B. In the pagination business, a position
which a DA takes often reflects its cost and effectiveness. Usually, the largest
DA should be placed on the best position. Therefore, when considering which

object takes a better position than another, we restrict the scope to DA objects.

. rank(A, N)

We use “r(A, N)” to represent that a DA object A has a rank of N. We use the
size of the DA object as its rank.

33

21. piece(A, T, H, P)
Object A belongs to type T. It is of heading H and on page P.

S}
(8]

2. readingBefore(A, B)
In a reading direction, object A is placed before object B. Here. we consider

that the reading order is from left to right and from top to bottom.

23. layout(A, T, P)
This relation means that an object A of type T is in a valid position on page
P. Usually, type T is a specific type, such as, IC, DA. We use this relation to
represent an attribute of object A. For example, “layout(A,da.P)” tells us that
object A is an DA object and on page number P. Meantime, object A is in
a valid position which does not violate the layout rule of how to place a DA

object.

24. goodTouching(piece(A, T, H, P))
In YP publishing, it is often required that an object of one type touches an
object of another type. If not, then we think that object does not comply with

the rule of “Touching”.

We use the above relation to represent that an object A is in a good touching
position. In other words, it tells us that object A is placed in a position which
complies with the rule of “Touching”. For a good layout example of “touching”.

we assume that each object in the example has the relation “goodTouching”.

All relations above except relations 3,5,23,24 could be parsed from provided
layout examples. The relations 3,3, 23,24 can only be determined from good examples
with regard to a particular rule. For instance, if the user gives a good example of the
rule “touching”, then we can assume each DA object in the layout has the relation
“goodTouching”. On the other hand, in a bad example of “touching”, we can only

have the relation “

:-goodTouching” for each DA object.

Moreover, we divide the above relations into two categories: one is so called
“attribute relation”, another is “relative relation”. An attribute relation is a relation
which does not relate to a specific object. It gives us the information about the number

of objects of different types on the page or other information about a heading. For

34

Attribute Relations | Relative Relations

class one class two
icNum topCol downNext
daNum midCol touch
das touchBot orderBefore

underICIFs | readingBefore
abovehpda betterPosition
aboveDADFs
underDADFs

abovelCIF's
underhpda

Table 3.3: Classification of relations

example, the relation “icNum(H,N.P)” tells us how many IC objects of heading H on
page P.

A relative relation talks about the relationship of one object with another object
in the aspects of positioning, reading order, touching, etc. Furthermore, some of them
can represent objects’ relative positions on a page, such as, “topCol” and “touchBot”.
Relative relations can be further divided into two classes: A relation in class one tells
us a relationship between one object and the page. A relation in class two is used to
describe a relationship between two objects.

Table 3.3 describes the classification of the relations.

Representing the rules

Given the above relations, we can represent the layout rules in section 2.1 using Horn

clauses.

1. Rule I: SmallDAsAndICsStartOnSamePage
icdaSamePage(ics(H, N, P), das(H, M, P)) :-= N > M.
“icdaSamePage(ics(H, N, P), das(H, M, P))” is the head of the clause and
“N > M7 is the body of the clause. The rule tells us that if small DAs and [Cs
of one heading are placed on one page, then the number of ICs on that page

must be greater than of small DAs.

o

Rule 2: NoLonelyDA
nolonelyDa(das([A], H)).

nolonelyDa(das([AIB], H)) :- A>1, gt(B,1).

The definition of gt ([AIB], H) is:

gt([], -)-
gt([H|T], A) - H > A, gt(T, A).

The above expression tells us two conditions which conform to the rule of

“NoLonelyDA™:

e all DAs of a heading are placed on one page

e [f a heading H has more than one DA, then the final layout must have at

least more than one DA on each page.

3. Rule 3: NolcUnderDA
layout(A,da,P) :- underICIFs(A,P).
On a page, a DA object must be placed under all IC or IF objects.

4. Rule 4: NoICsAboveHPDA
layout (A, hpda, P) :- aboveDADFs(A,P).
layout (A, hpda, P) :- abovehpda(A,P).
layout (A, hpda, P) :- downNext(A, hpda).
HPDA is a special case of DA object, therefore, it must comply with Rule 3.
Combining Rule 4 with Rule 3, we encode the restriction that only when an
HPDA object is above DA(DF') objects or above another HPDA object, should
it be in a valid position. There exists the third case that an HPDA is still in a
valid position, which is, the HPDA object is under another HPDA object.

5. Rule 5: NolCsBeforeHalfPageOrFullPageDA

orderBefore(A, hpda, H) :- piece(A, df, H, P).
orderBefore(A, hpda, H) :- piece(A, if, H, P).
orderBefore(A, hpda, H) :- piece(A, hd, H, P).
orderBefore(A, fpda, H) :- piece(A, df, H, P).
orderBefore(A, fpda, H) :- piece(A, if, H, P).

36

[029]

10.

orderBefore(A, fpda, H) :- piece(A, hd, H, P).
The above rules show that only heading and filler objects of the same heading

as the H(F)PDA object can be placed before it.

. Rule 6: NolFsAtTopOfPage

layout(A, if, P) :- midCol(A, P).
layout (A, if, P) :- touchBot(A, P).
Since an IF object cannot be placed at top of a column, it can only be either

in the middle of a column or touch the bottom of a column.

Rule 7: DFsOnlyAtBottomOrUnderDA

layout (A, df, P) :- downNext(A, da).

layout (A, df, P) :- touchBot(A, P).

Display filler must only be placed under a DA or on positions that touch the

bottom.

. Rule 8: Touching

goodTouching(piece(A, da, H, P)) :- touch(A,B), piece(B, ic, H, P).
goodTouching(piece(A, da, H, P)) :- touch(A,B), piece(B, if, H, P).
Only when a DA object touches an IC(F') object of its heading, should we con-

sider it to be in a good “touching” position.

Rule 9: RankByGridWithinHeading
betterPosition(A,B) :- rank(A,C), rank(B,D), sameHeading(A,B), D=<C.
If object A’s rank is greater than that of object B, and also if A and B are of

the same heading, then it must be placed at a better position.

Rule 10: ReadingOrder
readingBefore(A,B) :- headBefore(A,B).

Here, we introduce a new relation “headBefore(A,B)”. Its definition is:

headBefore(A,B) :- piece(4,_,H1,.), piece(B,_,H2,.), H1<H2.
That means object A’s heading is less than object B’s heading in alphabetical

order. This rule compares two DAs of two different headings on the same page.

37

Since these relations are sufficient to represent each layout rule, our system must
be able to find these relations in examples. Then we can test if the ILP system.,
Progol, is able to generalize the rules that we expect. From the experimental point of
view, it is an indispensable step. Furthermore, we may change the mode declarations
in a Progol file to investigate whether Progol can construct some new and interesting

rules.

38

Chapter 4

Design of the Implementation

This chapter is concerned with the details of the design of the implementation of the
system. First, we discuss the use of a flat file format to represent a two-dimension
layout example. After we give a brief introduction to the system, we discuss the
design of the parser. In addition, we describe a method for generating an input file
for Progol in the interaction module. Finally, we will discuss some implementation

issues.

4.1 A working assumption

Figure 3.3 shows a grid structure that is used to control pagination process in YP
layout. We assume that all 2D layout examples are given based on the grid structure.
One grid corresponds to one page. Figure 4.1 shows an example of a spread. Each
YP object is represented by a box, and located by its upper-left corner. For instance.
the heading object labeled by “82011” is located at position (0,8); the DF object
labeled by “df821” is at position (3,2). The shading is used to distinguish objects of
different headings. Objects belonging to the same heading are filled with the same
shading.

We use flat files to represent different layouts of YP objects. Each file has a fixed
format. The layout in Figure 4.1 can be translated into a file as shown in Table 4.1.
In the beginning of the file, there is one number that specifies how many pages we
represented in the file. To represent a layout on a page, the file begins with the page

number and the number of columns on the page. Then it lists how many objects for

39

II:] Heading [Z DA l__—l IC
DF (i£82) iF

Y
8 _
J782013
7 8217
6 8214
. 8218
S
a ; 210 8215 e
: o 8219 |
3 (f‘dfazifXZEdfazif) st - |
—— S S /\ —
2 - ~ (—dags24
8211 | 8213 e ~
1 TN e N[i£822 [“argsas
. >
1 2 3 4 X

Figure 4.1: A layout example

each column, and detailed information of each object in the current column. Each
line represents a YP object. It contains: objectID, type, which heading it belongs
to, width, height, x and y coordinates. Each attribute is separated by a space. Note
that we classify different objects into different columns by their x-coordinate. If an
object A is located at (n,m), then we assume that it belongs to column n. Since
the flat file can represent the layout and describe attributes of each YP object in the

layout example, we can use it as input, and compute the relations between different

YP objects.

4.2 Overview

In Chapter 1, we mentioned that the system has three components: parser. interaction

module, and the Progol system. The integration is illustrated in Figure 4.2.

The primary purpose of the parser is to analyze whether the relations discussed
in Chapter 3 are satisfied in the current layout. If so, the output of the parser should
include a set of analyzed relations. The input is a file which expresses a group of
layouts using the specified format. The main loop successively reads and parses a
spread (double-page). The parsed results are written into an output file. In the

interaction module, the system will use the parsed results and generate an input file

40

BN
o

NN

b82011 hd 82011110 8
b8201 ic 82011 1107
8202 da 82011 3306
b8203 da 82011 330 3

o

p—

b8204 1c 82011 121 8

T~

8205 1c 82011 1228

w

b87017 hd 820121138
b8206 ic 820121137
b8207 ic 82012123 6
1f821 if 82012 123 4
dfS21 df 82012123 2

—

208 ic 820121208
209ic 820121106
10 da 82012220 5
22dfb70171103
1 da820131202

oL oo o
[SVAR (VI (V]

U‘O"Q—O‘WO‘D..O“O‘O‘CNJAK\')
o -
wo'—'
'-J

bb7013 hd 82013
b8214 ic 82013 1
b8215 ic 82013 1 :
b8216 ic 82013 1 2
if822 if 82013 11 2
5

b8217 ic 82013 1238
b8218 ic 820131136
b8219 da 82013133 5
df824 df 82013113 2
df825 df 82013113 1

// how many pages in the file

// page number of the left

// how many columns on the page
// the number of objects column 0

// the number of objects column 1

// page number of the right
// how many columns on the page

Table 4.1: An example file of the layout

41

Layout Examples

t

Read the first spread

Get the next spread

Parse the spread

'
T

Qutput analyzed
relations

]

)

| [
!nanua » | Get user’s choices ;
input ‘
t

i

P

Interaction

1}
Produce an input :
file for Progol ;

Progol file Layout Rules

Figure 4.2: General flow chart of the system

for the Progol system according to the user’s requests. The input file for Progol
contains only some background knowledge and positive or negative examples from
the parsed results. We need to manually add some mode declarations so that the
Progol system can perform the generalization. The user may set up different mode

declarations based on their own interests, in order to explore new and unknown rules.

4.3 The Parser

An input layout file will typically consist of a number of spreads. Each spread contains
two pages. On each page, there are a number of columns which hold YP objects (by
default, we use four columns). In our design, we have four classes to represent those

entities:

Spread A spread is a double-page. It receives and combines the parsed results from
its member pages. According to the information from all member pages. it

analyzes corresponding attribute relations.

Page A page consists of a number of columns. It receives the parsed results from

the columns and records the attribute relations regarding itself.

Column A column is a collection of YP objects. It is responsible for exploring

relative relations between objects in itself.

Object An object represents a YP object in the layout. It is identified by several

attributes.

4.3.1 The Algorithm for Parsing a Spread

A layout example is usually used to illustrate one or two layout rules. In general. one
spread of layout can fully represent the layout designer’s intention. Therefore, in our
design, we restrict the scope of “orderBefore” to a spread. That means if there is a
good example spread of “orderBefore”, then the HPDA object must be placed on the
right page, and the left page contains those objects which can be placed before the
HPDA object. A general description of the algorithm of parsing a spread is shown in
Table 4.2.

43

0. fileinfo = a container to save attribute relations from its member pages,
pages = a vector holding instances of pages of the spread
I. Fori=0to 1l Do
parse pages[i], call Page: :parse().
add the page’s parsed attribute relations into fileinfo.
2. If there is any H(F)PDA object on pages/!]
begin
assume the heading of the H(F)PDA object is _A,
If there is any object of the same heading as _A on pages[0]
begin
assume the object’s id is oid,
record the relation of ‘ ‘orderBefore(oid, h(f)pda, _h)’’.
end.
end.

Table 4.2: The algorithm for parsing a spread

4.3.2 The Algorithm for Parsing a Page

We divide the page-parsing process into two parts. The first step is to check the
number of different types of objects on the page and record corresponding attribute
relations. Then the parser goes through objects column by column in order to get

the relative relations between objects. Table 4.3 describes the algorithm.

4.4 Interaction Module

The interaction module serves as a bridge between the parser and the Progol system.
Its main function is to communicate with the user and identify those relations in which
the user are interested. It then puts those relations into a file following the format
which Progol requires. Finally, a manual operation of inserting mode declarations for

each Progol file is needed.

4.4.1 Handling of Good Examples

The input to the system includes good or bad examples. In general, an example is
good because it complies with one layout rule. The parsed relations from a good

example are written into the input file for Progol as positive examples. Table 4.4

44

Step 1. Analyze Attribute Relations
1.Repeat
2. Get a heading A
3. Check the number of IC, DA, [F, DF, HPDA objects which belong to A
on the current page
4. If h does not exist,
create a new record to save the information.
Else
add up the number of that type
5. Use the above information to get the attribute relations.
6.Until the last object on the page.

Step 2. Analyze Relative Relations
0. cols = total number of columns on the page
columns = a vector holding instances of columns on the page
1. If the page contains an HPDA object
call the function of analyzing HPDA-related relations
2. For each column Do
get the relation “topCol”
get the relation “midCol”
get the relation “touchBot”
check any adjacent two objects of the relation “downNext” and “touch™
check the relation underCATEGORY
check the relation aboveCATEGORY
3. For each column Do
check every object with objects in other columns about relation “downiNext™.
4. For each column Do
check every object with objects in other columns about relation “touch”.
5. For i =0 to cols Do
For j = i+1 to cols Do
check each DA object in columnsfi] with each DA object in columns(j]
about the relation of “betterPostition”.
6. For i =0 to cols Do
For j = i+1 to cols Do
check each DA object in columns/i] with each DA object in columns[j]
about the relation of “readingBefore”.

Table 4.3: The algorithm of parsing a page

45

C. Do you want to find a rule about a particular type ?
. if yes, input the type, assume it is T.
For each object of type T in the good examples, Do:
Add a statement of layout(oid, T, P).
output relations it involves.
else, are you interested in a particular relation?
if yes, input the relation name, assume it is Name,
For each parsed relation, Do
if its name == Name
output the relation.
endif
1C. endif
11. endif.

PRIPIPOA -

Table 4.4: A method of handling good examples

describes how we add in positive examples into the input file for Progol.

For example, Figure 4.1 shows a good example of how to place DF objects. In Fig-
ure 4.1, “df821” touches the bottom of the column. Even though it is not “downNext”
to a DA object, it is still considered to be in a valid position. “dfS22” and “dfS823”
do not touch the bottom of the column. However they are all “downNext” to a DA

object. Therefore, they all conform to the rule of “DFsOnlyAtBottomOrUnderDA™.

4.4.2 Handling of Bad Examples

A bad example usually relates to a specific layout rule. Since the bad examples are
intended to provide negative facts to the Progol system, we have a special method to
handle the translation from the parsed relations to the negative examples. Table 4.5
describes how we add in negative examples into the input file for Progol.

Lets use an example to discuss the method. Figure 4.3 gives us a bad example of
placing DF objects. All positions that DF objects take are invalid. Therefore, when

generating a Progol file, for each DI object, we can write a clause:
:-layout (0ID,df,P).

Here, “:-” means that the clause is negated. “OID” is the object ID and “P” is the

pagenumber.

Followed are the relations that the object involves along with some attribute

46

r

. Do you want to find a rule about a particular type ?

1. if yes, input the type, assume it is T.

2. For each object of type T in the negative examples, Do:
3. Add a statement of :- layout(oid, T, P).

4. output relations it involves.

5. else, are you interested in a particular relation?

6. if yes, input the relation name, assume it is Name,
7. For each parsed relation, Do

8. if its name == Name, then in the output:

7. add :- before the relation.

9. endif

1¢. endif

11. endif.

Table 4.5: A method of handling bad examples

information of the object. It is important to mention that in the bad example. only

those DF objects are placed wrong. In the example, object “df820” has relations:

downNext (d£f820, ic, 12).
underICIFs(df820, 12).
midCol (df820, 12).

It is obvious that the object “df820” is placed wrong because it does not touch the

bottom of the column and is not “downNext” to a DA object.

4.4.3 Background Knowledge

Background knowledge falls into two sets: object definitions and type definitions.
In the part of object definitions, each object appearing in the file is defined. For
example, box(b8201). box(b8202). box(b8203).
tells us that object b8201 b8202 and b8203 are instances of variable box.

Type definitions, however, are common to all the examples. We can define con-
stants of a type and introduce a new type in this part. The following is a brief

example:

type(da). type(ic). type(df). type(if). type(hd).
stype(hpda). stype(fpda).

47

Figure 4.3: A bad example of placing DF objects

piece(piece(A, T, H, P)) :- box(A), type(T), head(H), int(P).
touch(A,B) :- touch(B,A).
touch(A,C) :- touch(A,B), touch(B,C).

In the implementation, we save object definitions part in a background file and

append the type definitions as common knowledge.

4.5 Implementation

We use object-oriented design in C++ to implement the parser so that it is easy to
adjust the parser to different grid structure of a layout. Another useful tool we rely
on is the SGI Standard Template Library. It helps organize efficient and reusable
design and avoid redundant work.

The Standard Template Library, or STL, is a new C++ library that provides a set
of easily composable C++ container classes and generic algorithms ([13]). The con-
tainer classes include vectors, lists, deques, sets, multisets, maps, multimaps, stacks,
queues and priority queues. The generic algorithms include a broad range of fun-
damental algorithms for the most common kinds of data manipulations, such as
searching, sorting, merging, copying, and transforming. The two mechanisms are

designed to work together to provide us a wide range of useful functionality. The

48

>read da.good da.bad tmp.res

FREEERERLXX Starting to generate a PROGOL input file ****=**x=
Do you want to generate a file now (y or n)?

y

Please enter the file name without suffix (less than 15 characters)
da.pl

Do you want to look at Relations (1) or Attribute Relations (0)
1
Do you want to find a rule about a particular object type (v or n)?

y
Now please enter the type you are interested in:

da, df, ic, if, hd, hpda, fpda
da
FhRakeerxx® End of outputting file [[progol/da.pl J] ****=****

FRXAARERXXX Starting to generate a PROGOL input file *****x>*
Do you want to generate a file now (y or n)?

Table 4.6: A working example

most important difference between STL and all other C++ container class libraries is
that most STL algorithms are generic: they work on a variety of containers and even
on ordinary C++ arrays. A key factor in the library design is the consistent use of
iterators, which generalize C++ pointers, as intermediaries between algorithms and
containers.

The system can be run under a UNIX platform or on a PC under Windows95.
We use Progol version 4.2 to do the generalization. Table 4.6 is a working example
which shows how the system operates. Bolded fonts are user inputs. [n the example,
we first read a good and bad example file of placing DA objects. Then we generate
a file for Progol by choosing “DA™ as the type that we are interested in. The file for
Progol is called “da.pl”. An extract of the file is shown in Table 4.7.

49

% %% %% % %% Background Knowledge
:- [dagrd]? // note: “dagrd” is a file including each object’s definition

% %% %0 % %0 % Yo

type(da). type(ic). type(df). type(if). type(hd).
stype(hpda). stype(fpda).

piece(piece(A, T, H, P)) :- box(A), type(T), head(H), int(P).
touch(A,B) :- touch(B,A).

touch(A,C) :- touch(A,B), touch(B,C).

%% %% %% Positive Examples

layout(b3103, da, 31).
downNext(b3103, ic).
midCol(b3103, 31).
touch(b3103, b3102).
piece(b3102, ic, 80310, 31).
underICIFs(b3103, 31).

layout(b3109, da, 31).
downNext(b3109, if).
touch(b3109, if311).
piece(if311, if, 80312, 31).
touch(b3109, if312).
piece(if312, if, 80312, 31).
touch(b3109, b3115).
piece(b3115, da, 80312, 31).
touchBot(b3109, 31).
underICIFs(b3109, 31).

Table 4.7: An extract of file “da.pl”

Chapter 5

Tests and Evaluations

5.1 Overview

We evaluate the system by three different tasks. The first task tests if the system
can generalize those known layout rules, given good and bad examples. Secondly,
suppose a layout designer wants to summarize layout rules of how to place various
object types from a set of provided examples; we use the system to construct these
interesting rules and see how relevant the rules are. In the last task, we produce
some layout examples which imply new layout rules and test if the system can make
the generalization and provide us with rules that best reflect user’s preferences. All
tests are carried out on a SPARCstation20 in the distribution version of Progol4.2.
For each task, we examine the system in terms of the runtime taken to construct the
rules and number of examples. Moreover, we discuss the experience of using Progol

to perform the induction.

5.2 Task 1: Constructing the Known Rules

5.2.1 Overview

In previous chapters we assume we know what layout rules in a real world look like.
In the first task, we test if the system can generate those known layout rules from
good and bad layout examples. Each good and bad example is chosen to correspond
to a particular rule. That is to say, we intend that each rule captures several spreads
of good or bad examples. Pictures of all the examples we tested are provided in

Appendix B.

We conduct our tests in two stages. At the first stage, we use data from a mixture
of good and bad examples. At the second stage, we use good examples and ask Progol

to learn rules from positive data only. We will discuss the results from the tests.

5.2.2 A Test Example

We use an example to show how we conduct the test. Suppose the end user draws some
good layout examples and bad examples intended to imply the rule “NoLonelvDa”.
The good examples are presented in Figure 5.1 and Figure 5.2. Bad examples are
shown in Figure 5.3. The actual input to the system is file “nolone.good”. which saves
good layout examples, and file “nolone.bad”, which contains bad examples. Table 5.1
shows the process of generating a file for Progol. The bold type fonts are user inputs.
In this process, we generated a file called “nolone.pl”, as shown in Table 5.2. Note

that we wrote all background knowledge into a file called “nolonegrd.pl”.

Y 4 N
8 . | |)
80124 B
7 7 e 1250 .|
1240 0] 0
6 B IEECTUI SRR N
124r.|. azsii |
; 3 = . = —
12420 |70 1252
4 4 S B -
3 1236 ; i
2 2 — — ..
1 1237 e s
0 o V
1 2 3 4 x .) : —
123 Las
Y 4
8
0128
.
0129
&
0130
5
80130
4
l 80128 1300
: 1306 L -
: [ifiss] 1301 .
304 B s 1302
: 1304 if 1305
- A NG 1303
o >
1 . 3 L.
126

Figure 5.1: Good examples 1 - rule: NoLonelyDa

52

Ya a
8 _ .
| 90127 1274
7 e
127007 1278
6 i —
s S
5 '1271§'%\\:§5121‘
N X
4 — S
1272
3 - 1276
, |
1 A 1279
0 - >
1 2 2 4 x
127
¥
Y s 4
8 391 ° :
1291
7 1316 1310 7| 1319
1202 || 90129
§ - 6
1293 1315 1320
5 1317 1311 5
1321
4 1294 4
3 — 1318 3| 1322
2 \ - /\ /\ 2 N
1295 _ | ‘dfizs |~ < >
1 ‘\iir,~\j>) 1309 \\:§ELBO 1| 1323
- N
0 - 5 >
1 2 3 4 x 1 2 3 4 x
129 130

Figure 5.2: Good examples 2 - rule: NoLonelyDa

In order to use Progol to perform the generalization, we need to manually add
some mode declarations and necessary background knowledge.

We use “das(+list, +head)” to represent the DA distribution of a specific heading
on each page containing DAs of that heading. The variable “list” records the number
of DAs on each page, and “head” represents the heading.

In this example, the user wants to know what kind of DA distributions on each
page is considered to be good for the rule of “NoLonelyDa”. Therefore, we added two

statements as modeh:

:- modeh(1, nolonelyDa(das(+list, +head)))?

:- modeh(1, nolonelyDa(das({+int|+list], +head)))?

The question is: under what constraints, are the numbers in the list considered

to be consistent with the rule? The rule “NoLonelyDa” requires that the number of

53

O K N W o N o

»

L
»
»

W N N @

\ 4

(7]

1 2 3 4 X 0 1 2

301 302

Figure 5.3: Bad examples - rule: NoLonelyDa

>read nolone.good nolone.bad tmp.res

=** Starting to generate a PROGOL input file ===

Do you want to generate a file now (y or n)?

N

Please enter the file name without suffix (less than 15 characters)
nolone

Do you want to look at Relations (1) or Attribute Relations (0)
e

Please enter two names you want to find out from below:
Use the number to save typing, the numbers must be different
1. icdaSamePage 2. nolonelyDa

2
** End of outputting file [[progol/nolone.pl]| ***

** Starting to generate a PROGOL input file ***
Do you want to generate a file now (y or n)?

Table 5.1: Generating a file for rule “NoLonelyDa”

54

% %% %% % %% Background Knowledge

:- [nolonegrd]?

% %% % % % % Yo

type(da). type(ic). type(df). type(if). type(hd).
stype(hpda). stype(fpda).

piece(piece(A, T, H, P)) :- box(A), type(T), head(H), int(P).

%%% Positive Examples

nolonelyDa(das([2], h80123))
nolonelyDa(das([6], h80124)).
nolonelyDa(das([2], h80126)).
nolonelyDa(das([1], h80128))
nolonelyDa(das([2], h80130))
nolonelyDa(das([3,2], h90127)).
nolonelyDa(das([3,2], h90128)).
nolonelyDa(das([2,2], h90129)).

%%% Negative Examples
:-nolonelyDa(das([1,2], h12014)).
:-nolonelyDa(das([3,1], h12015)).

Table 5.2: A file for Progol

515}

DAs on each page must be greater than 1. It implicitly tells us that the selection of
modeb needs to consider if all numbers in the list is greater than a constant (or an

integer). Therefore, we specify the body mode declarations as follows:

:- modeb(1, gt(+list, #int))?

:- modeb(1, +list = [])?

- modeb(1, +int > #int)?

%% %% %% Background Knowledge

List([])-
list([H|T]) =- int(H), list(T).

gt([], -)-
gt([H|T], A) :- H > A, gt(T, A).

The predicate gt ([H|T], n) is used to check if each number in the list is greater
than a specific number n. Its definition is included as background knowledge. In
addition, the definition of a list is also included.

Equipped with the above mode declarations and background knowledge, the file
shown in Table 5.2 is ready to be input to the Progol system for generalization. The

result is shown below:

[3 redundant clauses retracted]
nolonelyDa(das([A], B)).
nolonelyDa(das([A|B], C)) - A > 1, gt(B, 1).
[Total number of clauses = 2]

[Time taken 0.100s]

The rule of “NoLonelyDa” allows two situations. One is that all DAs of heading
B must be on one page no matter how many DAs the heading has. Another is that if
the heading B has more than one DA and there are more one page containing DAs of

B, it requires that the number of DAs on each involved page must be greater than 1.

56

| Data set | Predicate | IEX| | 1E~] | |B] | 1H] | Time(sec) |
smda.pl icdaSamePage 5 2 0 1 0.183
nolone.pl | nolonelyDa 8 2 4 2 0.100
da.pl layout(A,da,B) 18 3 21 |1 0.033
und.pl underICIFs 21 1 22 12 0.033
nicbf.pl orderBefore 7 5 12 |3 0.067
hpda.pl layout(A,hpda.B) | 12 2 60 |3 0.083
above.pl | abovehpda 4 6 10 |1 0.017
ifl.pl layout(A,if,B) 7 2 31 |2 0.033
dfl.pl layout(A,df,B) 7 4 37 |2 0.050
touch.pl | goodTouching 32 1 67 | 2 7.333
read.pl readingBefore 20 2 46 | 2 0.083
rank.pl betterPosition 19 4 94 |2 69.300
Table 5.3: Progol’s runtimes with good and bad examples

5.2.3 Tests with Positive and Negative Examples

For each rule, we have a file of good examples and a file of bad examples. A list of
each source filename and the corresponding file for Progol generated by the system is
shown in Appendix C.

Table 5.3 is a summary of runtimes when we learn from those good and bad
examples. E*, E~ represent positive and negative examples respectively. B is the
background knowledge. and H is the constructed hypothesis.

As expected, most constructed rules correspond to the ones that we have discussed
in Chapter 3. Here, we do not repeat those rules which are the same as in Chapter
3. However, it is important to explain some differences between the rules we got and
those expected.

From the file “read.pl”, we want to generalize the predicate of “readingBefore™. In

the beginning of the file, we defined two new predicates and added them as background

knowledge:

sameHeading(A, B) :- piece(A, -, H, _), piece(B, _, H,).
headBefore(A, B) :- piece(A, -, H1, _), piece(B, _, H2, _), H1 < H2.

The mode declarations are as follows:
:- modeh(2, readingBefore(+box, +box))?

57

:- modeb(1, headBefore(+box, +box))?
:- modeb(1, sameHeading(+box, +box))?

The rule we got is:

readingBefore(A, B) :- headBefore(A, B).
readingBefore(A, B) :- sameHeading(A. B).

The first statement tells us that a DA of the earlier heading is before the DA of
the later heading in reading direction, and it explicitly expresses the rule of “Readin-
gOrder™ as discussed in Chapter 3. The second one expresses a complement of the
rule. It says that there is no dominating factor controlling reading order if two DAs
belong to the same heading.

In the file “rank.pl”, the predicate in which we are interested is “betterPosition™.

The following are the mode declarations:

:- modeh(1, betterPosition(+box, +box))?
:- modeb(2, rank(+box, -int))?

:- modeb(2, +int =< -int)?

:- modeb(2, -int =< +int)?

:- modeb(1, sameHeading(+box, +box))?
:- modeb(1, headBefore(+box, +box))?

The rules we got are:

betterPosition(A,B) :- head Before(A.B).
betterPosition(A,B) :- rank(A,C),rank(B,D),sameHeading(B,A).D=<E.E=<C.

The rules tell us that if two DAs are of different headings, then the DA with earlier
heading must take a better position. However, if they are of the same heading, then
its rank will determine its grid position. The higher the rank, the better the position.

The above results show that the generated rule provides much more insights to
the layout designer of the rule of “readingOrder” and “RankByGridWithinHeading”.

In addition, we did some tests of predicates “underICIFs” and “abovehpda™ with

the following results.

58

About the rule “NolcUnderDA”, we had two data sets to generalize the rule. From

the file “da.pl”, we got:
layout(A, da, B) :- underICIFs(A, B).

From file “und.pl”. we got:

underICIFs(A, B) :- piece(A, da, C, B).
underICIFs(A, B) :- piece(A, df, C, B).

The first rule tells us that a DA should be placed under objects of type IC or IF.
The second rule says that DA or DF objects should be placed under objects of type
IC or IF.

For rule “NoICsAboveHPDA”, we generated two files for Progol. The first one
tests the predicate of “layout(A, hpda, B)”. [t investigates the relative positioning of

HPDA objects. The result is:

layout(A, hpda, B) :- downNext(A, hpda).
layout(A, hpda, B) :- abovehpda(A, B).
layout(A, hpda, B) :- aboveDADFs(A. B).

From another point of view. we want to know which type of object can be placed
above an HPDA object. We generated a file called “above.pl”, in which we wanted

to generalize the predicate of “abovehpda”. The result is:
abovehpda(A, B) :- piece(A, hpda, C, B).

Both rules imply that no IC objects can be placed above HPDA. The first rule
enumerates three valid positions that an HPDA could be placed. The second one
presents a rule that says only an HPDA object can be placed above another HPDA
object.

The above tests demonstrated that Progol is able to generalize those known rules,
given good and bad examples. It can even provide us more information about layout

if we set up different mode declarations in the files for Progol.

59

| Data set Predicate IE*] | |Bl | [H| | Time(sec)

smda.pl icdaSamePage 5 0 1 0.117
(*)nolonepos.pl | nolonelyDa 11 4 1 0.100
da.pl layout(A,da,B) 18 18 |1 0.100
und.pl underICIFs 21 21 |2 0.117
nicbf.pl orderBefore 7 7 3 0.067
hpda.pl layout(A,hpda,B) | 12 34 |3 0.100
above.pl abovehpda 4 4 1 0.033
if.pl layout(A,if,B) 7 23 {2 0.050
df.pl layout(A,df,B) 5 15 |1 0.033
touchpos.pl goodTouching 32 67 |2 225.600
readpos.pl readingBefore 20 42 2 0.383
(*)rkposl.pl betterPosition 19 8 12 92917

Table 5.4: Progol’s runtimes of having positive data only

5.2.4 Tests with Positive Examples Only

Most ILP systems require both positive and negative examples of ground instances
of a predicate. Progol, however, provides a mechanism which can learn from positive
only data with low expected error [17]. Since explicit negative examples of a predicate
are not always readily available, it might be interesting to investigate the results from
Progol when given solely good examples.

We used the files of good examples in Table C.1 as input to the system and
generated files for Progol. Table 5.4 lists the results from learning positive data only.

Rules generated from files without * in Table 5.4 are the same as rules we got
from using positive and negative examples. However, the required runtime of “touch-
pos.pl” is about 32 times of the file “touch.pl” in Table 5.3. It is mainly because we
have such recursive relations: ¢ ‘touch(A, B) :- touch(B, A)’'’ ‘‘touch(A, B)
:- touch(a, C), touch(C, D)’°.

Progol can generalize rules for files with * in Table 5.4, but the results do not
express the rules the way that we expected. Table 5.5 lists the rules we got from
those files. Rule 1 tells us if the number of DAs on the first page is greater than 0,
then it complies with the rule of “NoLonelyDa”. From rule 2 we do not know under
what constraints that one DA should be placed at a better position than another.

The two unexpected rules resulted from the small number of examples, which made

60

Data set | Result
nolonepos | 1. nolonelyDa(das([A|B],C)) :- A > 0.

rkposl 2. betterPosition(A,B) :- rank(A,C), rank(B,D).

Table 5.5: Tests using positive only: a list of unexpected rules

the rules over-general.
The file “nolonepos.pl” contains only 11 positive examples. If we had a total of

52 examples (refer to file "t2.pl"), we could have the following rule:

nolonelyDa(das([A], B)) :- A>0.
nolonelyDa(das(A, B)) :- gt(A, 1).

The file “rkposl.pl” contains only 20 examples. Similarly, if we added 52 more

examples (refer to “rkpos2.pl”), we got:

betterPosition(A, B) :- headBefore(A, B).
betterPosition(A, B) :- rank(A, C), rank(B, D), D=<E, E=<C.

The experiments show that Progol needs sufficient number of examples when
learning from positive only data, especially for multiple clause hypothesis. This can
also be confirmed from the theoretical framework of Progol4.2, which involves an
algorithm for learning from positive data only.

Progol4.2 uses the Bayes’ function f,, to guide the search. Suppose H represents
hypothesis, m is the number of examples, and g(H) is the generality of A. The Bayes’
function f,, is:

fm(H) = 271 — g(H))™ (5.1)

We can see that f,, trades off the complexity of a hypothesis against its generality.
When constructing each clause, Progol “carries out an admissible search which op-
timsies a global estimate of f,, for the complete theory containing the clause under
construction” ([17]). The basis behind the global estimate is as follows: Suppose a
clause C; has been constructed as the ith clause of an overall theory H, = C,,---.Chx.

[t is found that when m is large it is possible to estimate both sz(H,) and g(H,).

61

% %% Positive Examples

nolonelyDa(das([2], h80123)).
nolonelyDa(das({6], h80124)).
nolonelyDa(das([2], h80126)).
nolonelyDa(das([1], h80128))
nolonelyDa(das([2], h80130))
nolonelyDa(das([3,2], h90127)).

nolonelyDa(das({3,2], h90128)).

nolonelyDa(das([3,2], h90129)).

% %% Negative Examples
:-nolonelyDa(das([1,2], h12014)).
:-nolonelyDa(das([3,1], h12015)).

Table 5.6: Another file about rule “NoLonelyDa”

Therefore, it is possible to maximise an estimate of f,,(H,) during the construction

of each of the clauses.

5.2.5 Discussion

When investigating the performance of the system, we notice that the number of
examples affects the construction of rules. Especially for Progol, a rule involving
integers that is not completely determined by a single example can be difficult to
learn. For example, consider the following test. On page 129 of Figure 3.2, we have
two DAs of heading 90129: 13/8 and 1309. If we modified the picture by replacing
the DF object df130 with another DA object 1312 of heading 90129, then there will
be three DA objects on this page.

After parsing, the system produced a group of positive examples, shown in Ta-
ble 5.6. Note that the line with bold fonts are different from that of Table 5.2.

With Table 5.6 as input, Progol produced:

nolonelyDa(das([A], B)).
nolonelyDa(das([A|B], C)) - A> 2, gt(B, 1).

This rule would require that on the first page the number of DAs of heading C
must be greater than two, and the subsequent pages must each have more than one
DA of heading C. The reason why we got such an unexpected rule is that the examples

did not provide enough information for induction.

5.3 Task 2: Finding Rules for Placing Each Object
Type
5.3.1 Overview

In task 1, we used Progol to generalize each known rule. However, we did not com-
prehensively consider all relations which must be obeyed for an object type. For

example, in task 1, we have a rule for [F’s position in one column:

layout(A, if, B) :- touchBot(A, B).
layout(A, if, B) :- midCol(A, B).

The rule does not tell us that an IF object must obey the rule of about being under
objects of DA or DF. In order to obtain a complete set of constraints for placing each
type, we need to parse each good and bad example, and save all relations that each
object of that particular type participates in. Then, we check if Progol can make a
compression and construct new rules.

We consider five types of YP objects: DA, DF, IC, IF and HPDA. For each type,
we have good examples (i.e. file “da.good”) and bad examples (i.e. file “da.bad™).
An important assumption is that every object of that type in the bad examples must
be incorrectly placed according to the user’s intention.

Figure 5.4 shows the picture of the file “da.bad”. In Figure 5.4, every DA object
1s incorrectly placed according to the user’s preference. An example is object 1011.
[t is incorrectly placed because it is above an IC object 1012. Another bad example
1s object 1021 on page 312. Although it has a relation of “underICIF's”, it does not
touch any IC(F) object of its heading.

63

—>

1011 Dy

1019) 1017 1018

o L Now A w o -~ [2N

1 2 3 4 x 0 1 2 3 4z
311 312

Figure 5.4: A bad example of placing DAs

5.3.2 Analysis

Since mode declarations are at the heart of Progol’s method of generalizing examples.
we discuss how we set up the mode declarations. Then follows the discussion of the
results.

In the layout, each good example is considered to be in a valid position. and each
bad example is considered to be in a invalid position. All relations in which each

example object participates are saved as background knowledge. The modeh should

be:
:- modeh(1, layout(+box, #type, +int))?

There are two factors that determine the modeb declarations for Progol. One is
to observe relations that almost all objects participate in. For example. if we look
at all DA objects and find out that almost all DA objects participate in the relation
of “underICIFs”, then we put this into the modeb. The second is to select relations
of most interest to the user. For example, if the user is interested in generalizations
of specific relations, “topCol”, he may put it into the modeb. The files in task 2 are
presented in Appendix C.

Table 5.7 shows the resulting rules computed by Progol. Compared with the rules
we got before, we can see that these rules provide new and complete constraints for
placing an object type. For instance, a DA object must be under objects of IC or [F,
and it must touch either an IC or IF of the same heading. There are two cases in

which DF object is placed validly. One is that it touches the bottom of the column,

64

Data Set | Rule

da2.pl layout(A, da, B) :- underICIFs(A, B), touch(A,
layout(A, da, B) :- underICIFs(A, B), touch(A,

); piece(C, ic, D. B).

C
C). piece(C, if, D, B).

df2.pl layout(A, df, B) :- touchBot(A, B).
layout(A, df, B) :- downNext(A, da), underICIFs(A, B).

if2.pl layout(A, if, B) :- touchBot(A, B).
layout(A, if, B) :- aboveDADFs(A, B), midCol(A, B).

ic2.pl layout(A, ic, B) :- aboveDADFs(A, B).

hpda2.pl | layout(A, hpda, B) :- downNext(A, hpda).
layout(A, hpda, B) :- abovehpda(A, B).
layout(A, hpda, B) :- aboveDADF's(A, B).

Table 5.7: Task 2: rules generated by Progol

the other is that it is under and adjacent to a DA and also under objects of IC(F).
For an II' object, it is valid if it touches the bottom of a column. Otherwise, it can be
placed in the middle of a column, and must be above objects of DA(F). The constraint

for IC is simple. It requires that an IC must be always above objects of DA(F).

5.4 Task 3: Finding New Rules

The system is designed to be able to construct rules based on user-provided examples.
In task 3, we draw some layouts which imply different rules from those we tested
before, and see what the system generates.

First, we have some layout examples which illustrate a new definition of rule
“NoLonelyDA”. Given the good examples shown in Figure 5.5 and the bad examples
shown in Figure 5.6, will the system be able to generate a rule of what DA distribution

on each page is acceptable?

The result is positive. If a heading Hg has more than one DA, then it requires that

the first page having DAs of that heading must also have at least two DAs. However,

65

© N W AR oy NN K

[T R R O T S N

O M N W E W oo N o® K

>
>

4 4
0610
0609
e =
\;,dfcoq;3
1 2 3 4 x 0 1 2 3 4
411 412
¥
4 4
8
7
6
<
1323

3 4 Z 0 1 2

413 414

Figure 5.5: A good example of new rule: NoLonelyDa

511 512

Figure 5.6: A bad example of new rule : NoLonelyDa

66

5]

it does not insist that each page having DAs of heading Hg must have more than one

DA of heading Hg.

nolonelyDa(das([A], B)).

nolonelyDa(das([A|B], C)) - A> 1.

Now, suppose we have spreads of good examples of placing various object types.
The good examples are presented by two files: “task3.good” and “thpda.good™. We
show the pictures of file “task3.good” in Figure 5.7, and file “thpda.good” is presented

in Figure 3.8.

Y J
8 8
7 7
0645 0654
6 6 \
5 S ~— -
N (Tacos)
4 4| osss 0649 0655
3 3 N ges2
1760122
2 . 0650 0656
0647
1 L 0653
0648 0651 (ifos2)
0 1 2 3 4 ¥ 0 1 2 3 & x
415 416
Y
Y r' S
8 §
7 7
0673 0677
6 6
® ° { 60125 [ifoss 1£067 Y i£068)
4 4
0671
3 3 0675 0678 0681
2 2 0672
0682
1 1 0676 0679 :
0671 (ifos9)
0 1 2 3 4 x 0 1 2 3 PR
417 418

Figure 5.7: Good examples of placing DA(F) and IC(F) - file “task3.good”

From the pictures, we can see that there are different rules for placing each object
type from what we discussed before. The test is to check if the system can generate

some new rules for placing each object type. In order to achieve this, we need bad

67

¥ 4 .

E 3 1

7 7 !

6 0601 6 5603 E

5 !
|

:
/

'S
o

’ TN

2 9602 2 0604
' 1 / ™ ~agosc_ [Zagos 1
\\, S
o H 2 3 : x g 1 2 3 i x
431 432
Y
Y a b
8 8 N
7 i 7 :
6 7) 6
5 - 5
- 4
3 1
2 2
1 1 >
0 1 2 3 i ox 3 1 2 3 + %
435 436
Y Y
8 8
7 7
5 s
s s
¢ "
3 3
2 2
1 1
0 1 2 3 4 x © 1 z 3 ¢ x
441 442

Figure 5.8: Good examples of placing HPDA - file “thpda.good”

examples of placing each object type. There are 5 files of bad examples. Each file has
an example of one object type. File “t-da.bad” means that each DA in the example
is placed wrong and file “t-ic.bad” means that it contains bad examples of placing
[C objects; the same rule applies to other three files. All bad examples are shown in

Figure 5.9, Figure 5.10, Figure 5.11, Figure 5.12, and Figure 5.13.

Y 4 Y4
8 8
7 0513 TN - 7
50112 © . T 0515
6 st 6
0510
5 0514 s
0511
P 0516 0517 4
3 0512 - ~ 3
, [ifoso }| seirs :
o518 2
1 1
0 > >
1 2 3 ¢ % 0 1 2 3 4 x
421 422

Figure 5.9: Bad examples of placing DA - file “t-da.bad”

)'s Y A
8 1 8
7 7
6 6
| soi1s
5 0531 5
0532 .
4 4 ——
d£05 S
3 : 3| 0533
2 2 —~ - -\
(Cagos{)
L 1
|
) > >
1 2 3 4 x o 1 2 3 PR
423 424

Figure 5.10: Bad examples of placing DF - file “t-df.bad”

Table 5.8 provides the Progol runtime for each file. The specification of mode
declarations in each file follows the same criteria which we discussed in Task 2.

The results provide some new rules for placing each object type. We listed all
rules in Table 5.9. For DAs, we need to place it above any object of IC(F), and it
must touch an object of IC(F) of its heading. The constraints for DI are fewer. As

69

Y a Y
8 8
7 7
& [————
S S O?‘SG .
1 4 e
; NEEDD
2 0551 0555 2 .ué§7 3
1 . . :
d£05 b3
o} = > >
1 2 3 4 X Q0 1 2 3 4 X
425 426
Figure 5.11: Bad examples of placing IF - file “t-if.bad”
Y
8
;
) | 'so116
05358
5 - !
‘0536 i
4 Ce - .
3| .- 05317 :
2 ESA
1
0 .
1 2 3 4 3 4 X
427 428
Figure 5.12: Bad examples of placing IC - file “t-ic.bad”

Y
v r' s 4
8 8 / /
7 7
e 0710
6 0701 6 0708 /////// \\\\\\\
5 5 = = ==
\\\\f;amkxzamg}
4 4 .
50120 ~ 7
3 //// N 3 ///////’//////
0702 0705
2 0704 p ~\\\ 5 0709
1 0703
/ (ifo_m) L /
. .
0 1 2 3 4 x o0 1 2 3 4 x
451 452

Figure 5.13: Bad examples of placing HPDA - file “t-hpda.bad”

| Data set | Predicate [EX] | |E-| | |B| | |H] | Time(sec) |
tdapl | layout(A, da, B) |15 |4 |SS |2 |2L900
wdfpl |layout(A,dL. B) |3 |2 |14 |1 |0.050
tif.pl layout(A,if. B) 19 |3 |39 |1]0033
t-ic.pl layout(A, ic, B) 34 5 126 | 1 0.050
t-hpda.pl | layout(A, hpda, B) | 9 2 34 3 0.067

Table 5.8: Task 3: Progol’s runtimes

Data Set | Rule

t-da.pl layout(A, da, B) :- abovelCIFs(A.B), touch(A,C). piece(C.ic.D.B).
layout(A, da, B) :- abovelCIFs(A,B), touch(A,C), piece(C.if.D.B).

t-df.pl layout(A. df, B) :- abovelCIFs(A, B).
t-if.pl layout(A, if, B) :- underDADFs(A, B).
t-ic.pl layout(A, ic, B) :- underDADFs(A, B).

t-hpda.pl | layout{A, hpda, B) :- downNext(A, hpda).
layout(A, hpda, B) :- abovehpda(A, B).
layout(A, hpda, B) :- aboveDADFs(A, B).

Table 5.9: Task 3: rules generated by Progol

long as a DF is placed above objects of IC(F), it is considered to be good. For IC
and IF, it is valid if they are placed under DA(F'). The rule of placing HPDA is the
same as before. It is either above another HPDA or under another HPDA, or it can

be above objects of DA(F). In other words, HPDA cannot be above objects of IC(F).

5.4.1 Analysis

The success of Task 3 shows that our system is able to find new rules given good and
bad examples. From the experiments, we know that the quality of a rule is affected
by the number of positive and negative examples. Empirically we observe that. for
a rule which has more than one clauses as rule body, for example, H < By, --. Bn.

each condition needs at least 6 positive examples.

43

4 &
8 8
7 7
0645 0654
6 6 y \\\
s S — o
<:,d£062;>
4 4| o646 0649 0655
3 3 ™~ 0652
60122
2 5 0650 0656
0647
1 0653
1 0648 0651 (: 15062:)
x 0 1 2 3 4 x
416
Y
Y r' S
8 8
7 7 L o -
0666 0673 0677
6 6 - »
° * [T ooz f‘dfos(' \dfoé{X 1£068)
4 0667 4 S LN
0671 .
3 3 0675 0678 0681
50124 - : o
2 0670 2| o872
0668 . 0682
1 1 p— 0676 0679
ose9 [if0ss) 0671 - : (ifo69)
Q 1 2 3 4 X 4] 1 2 3 4 X
417 418

Figure 5.14: Examples in a test file “test.good”

For example, in Figure 5.7 , we have 9 good examples of a DA which touches an
IC of its heading, and 6 good examples of a DA which touches an [F. If we change
the layout and reduce the number of DAs which touch IF, we get the updated layout
shown in Figure 5.14. On page 417, we put IC object 0670 above 7 f065, and two IF
objects (if066, if067) on page 418 are replaced by two DF objects (df063, df064). In
this case, there are only two DA objects, b0657 and b0677, which touch IF objects.

The test produces a result of no generalization, as shown below:

[No compression]

layout(b0673, da, 418).

layout(b0677, da, 418).

layout(A, da, B) :- abovelCIFs(A, B), touch(A., C), piece(C. ic. D. B).

[Total number of clauses = 3]

From all the positive examples, Progol can get only the last clause, which covers
most DAs which touch IC of the same heading. However, it cannot explain the two
objects, b0673 and b0677. The two objects are regarded as good examples, however.

they do not touch any IC object.

Chapter 6

Summary and Future Work

6.1 Conclusions

[LP systems have been successfully applied to various domains. [9] shows an exper-
imental study of automatic knowledge acquisition of expertise in an e-mail classifi-
cation expert system. A data mining system DB-Amp is used to extract relevant
knowledge from a database, and Progol is then used to infer a set of e-mail classi-
fication rules. The system succeeded in applying the rules to an operational expert
system and in showing its usefulness in a real business environment. Another ILP
system, Golem, has been applied to the problem of finite element mesh design [16].
Compared with other techniques of machine learning, ILP techniques have the ad-
vantages of outputting easily understandable rules and the ability to make use of
background knowledge in different application domains.

The constraint-based approach in YP layout design is useful because of its flexibil-
ity, and its declarative representation of design knowledge. Consequently, obtaining
layout constraints from a group of layout examples is an interesting problem and
worthy of study. This dissertation has studied the problem of inducing layout rules
using an ILP system, Progol. There is no previous work of using ILP techniques in
inducing YP layout rules. Our work is the first application of Progol to the layvout
rules learning problem.

We concentrate on the following issues:

1. how to identify necessary background knowledge (BK) and how to define pred-

icates constituting the BK;

74

2. given a set of layout examples, how to design a target concept representation

to be learned by Progol.

We studied layout rules in a real world and defined a set of relations (predicates)
which capture the attributes of real-world layout rules. The definition of the target
representation is determined by its “interestingness” to a layout designer and its
clarity in helping to express the rules.

Second, we developed a parser which is able to analyze those relations from layout
examples.

Our prototype system generates input files for Progol based on user’s instructions.
The definition of background predicates and mode declarations are added manually
into the files for Progol.

We conducted experiments on three different tasks. Given good and bad examples,
Progol is able to produce those known layout rules. However, our test with positive
only data shows that Progol cannot provide accurate rules. In addition, we did
tests on some good and bad examples of placing each YP object type. The system
demonstrated its ability to induce some new and potentially useful rules, such as. how
to place objects of each type. Furthermore, we applied the system to a set of layout
examples which imply different styles of layout. The results confirms that the svstem
is able to produce useful layout rules. Overall, it turns out that the quality of rules

is affected by the number of provided examples.

6.2 Future Work

There are two directions to extend our work.

From the theoretical point of view, we plan to investigate which factors are im-
portant to influence the induction of “better” layout rules. We need to consider
the following aspects: First, for ILP systems, we can specify hypotheses in order to
constrain the search and improve the efficiency. How would the setup of possible
hypotheses affect the resulting rules? In this case, we can extend our work to use
other ILP systems, such as, GOLEM or FOIL, and see if we can get more expressive

results without losing efficiency.

Second, the predicates constituting BK are crucial to the induction in ILP. Cur-
rently, we define a small set of predicates which are able to generate those known
rules. However, it will be insufficient to a more complex layout. One example is a
page full of DAs. How can we induce the constraints in such a case? These questions
can be further topics for study.

From the practical point of view, we need to focus on the following issues:

o Evaluation

The essential goal of layout rules is to help layout designers in YP design. To
evaluate its correctness, we need to apply the rules into the YPPS system and

find out if the generated layout is acceptable.

e Translation of pictures

Our system assumes a fixed file format of input pictures. Further work needs
to be done to build a translator which can translate the 2D pictures into the

file format which our system can accept.

e Identification of Examples

The identification of positive and negative examples is still a problem. In the
system, we assume each object in good example file as good, and each object
in bad example file as bad. An enhancement to the system would be an GUI in
which the user can specify good and bad layout examples. as well as to which

rule they are justified as good or bad.

e Quality Constraints

We leave the study to quality constraints as the future work. There are some
issues that need to be considered: a representation scheme in order to represent
the optimization quality rules and new relations that are used to distinguish

layouts of different orders with respect to a rule.

Bibliography

[l] Ramesh Johari, Joe Marks, Ali Partovi, Stuart Shieber, “Automatic Yellow-Pages
Pagination and Layout”,Journal of Heuristics, 2:1997, pp321-342.

[2] Chew Hong-Gian,Moung Liang, et.al, “ALEXIS: An Intelligent Layout Tool for
Publishing”, Proceedings of the Sizth Annual Conference on Innovative Applica-
tions of Artificial Intelligence, Seattle, WA, 1994, pp41-47.

[3] Graf W.H., S.Neurohr, and R.G.Goebel,*YPPS-A Constraint-Based Tool for the
Pagination of Yellow-Page Directories”, Technical Report. German Research Cen-
ter for Artificial Intelligence(DFKI) GmbH.

[4] Graf W.H., S.Neurohr, R.G.Goebel, “Experience in Integrating Al and Constraint
Programming Methods for Automated Yellow Pages Layout”.Technical Report,
German Research Center for Artificial Intelligence(DFKI) GmbH.

[3] Graf W.H., “Constraint-Based Graphical Layout of Multimodal Presenta-

tions”, Technical Report, German Research Center for Artificial Intelligence(DFKI)
GmbH.

[6] S. Muggleton and L. De Raedt, “Inductive logic programming: Theory and meth-
ods”, Journal of Logic Programming, 19,20:629-679, 1994.

[7] S. Muggleton, “Inductive logic Programming”, New Generation Computing.
8(4)1991, pp295-318.

[8] S. Roberts, “An Introduction to Progol”,Technical Report, Oxford University
Computing Laboratory, January 1997.

[9] K. Shimazu, K. Furukawa, “Knowledge Discovery in Database by PROGOL -
Design, Implementation and its Application to Expert System Building”. SIG-
FAT-9601-14, pp88 -104.

[10] S. Muggleton (Ed.), “Inductive Logic Programming”, Academic Press, 1992.

[L1] Philip D. Laird, Learning from Good and Bad Data, Kluwer Academic Publishers.
1988.

[12] G.D. Plotkin, “A Note on Inductive Generalization”, in B. Meltzer and D. Michie,
editors, Machine Intelligence, vol.5, Elsevier NorthHolland, New York, 1970.

[13] “Standard Template Library Programmer’s Guide”,
http://www.sgi.com/Technology/STL /indez.html.

[14] S. Muggleton, R. King, and M. Sternberg, “Protein Secondary Structure Pre-

diction using Logic-based machine learning”, Protein Engineering, 5(7):647-657,
1992.

77

[15] N. Lavra¢ and S. Dzeroski, “Inductive Logic Programming, Techniques and Ap-
plications”, Ellis Horwood, 1994.

(16] B. Dolsak and S.Muggleton, “The Application of Inductive Logic Programming
to Finite-Element Mesh Design”, In Muggleton, S., editor, Inductive Logic Pro-
gramming, pages 453-472. Academic Press, London.

[17] S.Muggleton, “Learning from Positive Data”, In Muggleton, S., editor. Inductive
Logic Programming, 6th International Workshop, pp358-376, Springer.

[18] S.Muggleton, “Inverse Entailment and Progol”, New Generation Computing,
Vol.13, 1995, pp245-286.

[19] I. Bratko and S. Muggleton. “Applications of Inductive Logic Programming”.
Communications of the ACM. Vol.38, No. 11, Novermber 1995. pp63-70.

[20] K. Miyashita, S. Matsuoka, S. Takahashi, and A. Yonezawa, “Interactive Gen-
eration of Graphical User Interfaces by Multiple Visual Examples™. UIST 94.
November 2-4,1994. pp85-94.

[21] S. Takahashi, S. Matsuoka, A. Yonezawa, and T. Kamada, “A General Frame-
work for Bi-Directional Translation between Abstract and Pictorial Data”.
UIST’ 91, November 11-13,1991, ppl65-174.

[22] K. Miyashita, S. Matsuoka, et.al, “Declarative Programming of Graphical Inter-
faces by Visual Examples™, UIST 92, November 15-18,1992, ppl107-116.

[23] J.R. Quinlan,. “Learning Logical Definitions from Relations”, Machine Learning.
5, 1990, pp239-266.

[24] S. Muggleton, “Inductive Logic Programming: derivations, successes and short-
comings”’, SIGART Bulletin, Vol.5 No. 1,1994, pp5-11.

[25] S. Muggleton and C. Feng, “Efficient Induction of Logic Programs”, S. Muggleton
(Ed.), Inductive Logic Programming, Academic Press, 1992, pp281-298.

[26] R. King, S. Muggleton, R. Lewis, and M. Sternberg, “Drug Design by Machine
Learning: The Use of Inductive Logic Programming to Model the Structure-
activity Relationships of Trimethoprim Analogues Binding to Dihydrofolate Re-
ductase”, Proceedings of the National Academy of Sciences, 89(23).1992.

[27] J. Cussens, D. Page, S. Muggleton and A. Srinivasan, “Using Inductive Logic
Programming for Natural Language Processing”, Technical Report, Oxford Uni-
versity Computing Laboratory, February, 1997.

(28] J. Cussens, “Part-of-speech Disambiuation Using ILP”, Technical Report, Oxford
University Computing Laboratory, 1996.

[29] J.R. Quinlan, “Induction of Decision Trees”, Machine Learning, Vol. 1, 1936,
ppS1-106.

[30] R.S. Michalski, et.al, “The Multipurpose Incremental Learning System AQL5
and its Testing Application to Three Medical Domains”, Proceedings of the Fifth
National Conﬁrence on Artificial Intelligence, Philadelphia, PA: Morgan Kauf-
mann. 1986, ppl041-1045.

78

Appendix A

Definition of Terms

Here, we list terms that we used in this dissertation by giving its name, definition.
and the page number related to it.

DA Display advertisement object (page 1, 21)
DADFs A category which includes display ad and display filler object (page 30)
DF Display filler object (page 1, 21)

DFsOnlyAtBottomOrUnderDA Display filler must only be placed under a DA
or on positions that touch the bottom. (page 26)

FPDA Full page display ad object (page 21)

heading All YP objects are classified by a heading object (page 1.21)

HPDA Half page display ad object. (page 21)

IC Incolumn text stream object (page 1,21)

ICIFs A category which includes incolumn text and incolumn filler object (page 30)
IF Incolumn filler object (page 1,21)

ILP Inductive logic programming (page 3)

NolCsAboveHPDA Above a Half Page Display Ads (HPDA’s) there must be no
IC. (page 24)

NolICsBeforeHalfPageOrFullPageDA When a heading contains a DA that has
the size of a half page (HPDA) or a full page (FPDA), then these ads must be

the first placed objects of this heading. (page 26)

NolIcUnderDA There must be no ICs under Das. (page 24)

NolFsAtTopOfPage Incolumn filler must not be placed at the top of a column. A
column must either start with an Incolumn or Display Ad objects. (page 26)

NolonelyDA If a DA is smaller than a half page and if it is not the only DA of it’s
heading, it must not be placed as the only DA of its heading on a page. (page
24)

79

rank We use “rank” to order each DA object based on its size. (page 22)

RankByGridWithinHeading When there are two DAs of the same heading on
the same scope, then the DA with the better rank must be on a better position
than the DA with the worse rank. The quality of a position P is reflected by
the grid weight of the grid field in the upper-outer corner of the DA at position
P. (page 27)

ReadingOrder If there are two DAs of two different headings on a scope, then the
DA of the earlier heading must be placed before the DA of the later heading in
reading direction. (page 29)

scope page or spread, depending on the current layout scope. (page 22)

SmallDAsAndICsStartOnSamePage Consider the first page where ads of head-
ing h are placed. If this page contains a small DA, then there must be placed
some ICs of that heading. (page 23)

spread double page (page 1)

Touching Each DA of a heading must touch transitively an IC of its heading. In
other words: A DA touches, if and only if it touches an IC of it’s heading or
another DA which touches. (page 26)

YP telephone book Yellow Pages™ (page 1)

S0

Appendix B

Pictures of Examples

B.1 Good Examples

Y
Ya 'y
L] 8 - T
T 3007 i - g
7 7 1805 i p— oo 301F | 2 =
b T3ces. 1T 0T
6 [-
o T.3009
H S 1606~ — - =
30600 ‘83003 PN -2 T
3 / - - 3 &s 7
3 , -3004 . B
73003 -
2 - - 5 3011 3012
3001 -} 3002 2900 <
\ 29017 L
M
3 2 3 4 X o H 2 3 4 X
14 15
4
Ya .
8 ~ 4
~ “TT 1018 ! 3028 | v
7 \\ / . 3025 7 3cie
- 302z 31939
6 ic13 s !
1623 —
5 -~ \\ i 3026 s | 1031 1037
3024
3 0
3027 3032
3 3020) 3038
T 3028 1033
2 2
I \ 3234
1 3021 1£302 } 1 3039
J 1035
o
1 2 3 0 x ¢ 1 2 3 4 X
16 17

Figure B.1: Good examples of rule:SmallDAsAndICsStartOnSamePage - file:
smdal.good

Y r'y
8 [:4
7 b
€ 6
s s
¢ &t
3 1236 3
2 2
1 1237 .
2 [
1 H 3 s x 1 2 3 + x
123 124
Y 4 Ya
] 8
ci2s
7 7
0129
'3 6
c1lli0
5 s
3 3 80139
| as12se 1300
3 1 1306 e
1£158 301
2 2
1302
1 N © 1304 1365
1303
° s
13 2 3 $ X 1 2 3 3 <
125 126

Ya IS
; [
7
&
5
4
3 B
2 sl
- 1273
e 2
o L
s
1 2 3 40X H 2 H X
127 128
v
Ya s
8 8 1
1291 |
7= 1316 131C 7 1319
1292 || so129
3 6
1293 1315 1326
H - 1317 1311 5
: 1321
s i 1294 4
3 e - 1318 3 1322
S INCAA e N
1295 dfi2g /\ A\ ~ 1
Lo N\ | 13os dn:cj‘ L 1323 :
\ N\~ ~ \ 1
o c
1 2 3 4 X i 2 3 3 X
129 130

Figure B.3: Good examples of rule:NoLonelyDA - file: nolone.good (part 2)

<

Ya
8]
7 7
6 &
s 5
4 4
3 - 3 :
2 503 _“m%w“
XV PR
3 (X 7: 1coz 3660 . gi‘;‘:ﬁ
af3l df31 >
° k - Y e ~) N
i 2 3 < x
31
Y
8
3309 7
s
| so132
3316 S
: 3305
31307 4
31 3
- - '~ / 2
2 1ica 2
PRSP R o 3312
1§ 3304) 1306 T > o 1
o 3 (e
q
b4 2 3 4 X
33
Y Y
8 -1
| ao1sc | soasy
7 : - 7
1501 3585 |
5 3503 - - 5
1502 - 3506
s : . s
. YT EED €D
- 3
3 y 3
2 1503 T Tisgr 2
1 / \ - 1
o
3 < £ 32 1 2 3 < X
35 36

Figure B.4: Good examples of rule:NolcUnderDA - file: da.good

v}
w

Ya 4
8
7
3
H
4
3
2
1
0
1 2 3 4 x a 1 2 3 1 %
1383 194
Y Yy
[s
1911
7 7
1912
3 3 1915
ks \
S s
4 g 1914
3 1 \ /
1915
2 2 1919
1916
3 1
1917
[
1 2 3 4 x 0 1] 3 4 0x
185 196

Figure B.5: Good examples of rule:NoICsAboveHPDA - file: hpda2.good (part 1)

Y
h
]
7 o
6
s
4
3
2
1
x o0 1 2 3 s X
198
Ya
8
.
B
B
¢
3
2
1
1 2 3 4 X 0 1 2 3 s x
1395 200

Figure B.6: Good examples of rule:NoICsAboveHPDA - file: hpda2.good (part 2)

84

Ya

[
1509 1518

7
1519

6 151§
1511

H

3 - 1512

™~ 4 1507
3 | 15020
s 1508 1513
2 — =
1 1503 1516 d£16
-)
g !
1 2 3 4
15

Y 4

8

7

6

5

3

bl

2

1

[

1 z 3 4
17

~
.

Figure B.7: Good examples of rule:NoICsBeforeHPDA - file: noicbf.good
Y
Y 4 3
8 - 8
[732011; S R 82012
7 : 8204 . | 8205 - 71 8208
8201 | - Sl szce 8212
6 — 6
8209
S — 8267 5
8202
4 7 ° . - Y 4 8210
2 ie821) 3 e —— =
5 N (Zaeazd { “aesai
8203 R7AN -

: - dts21 L} 3208 3219
. <« ~/

1 2 3 $ x 3 1 2 3 4 X

201 202

Y
3
7
5
4
3
2
¢ -

1 2 3 4 X 9 1 2 3 4 X

203 204

Figure B.8: Good examples of rule:NoIFsAtTopOfPage - file:

if.good

85

v .
8 8
| 82012
7 7
5206

& 3

s 8207 5

N 3

3 3

2

2 2

L

9 - >

1 2 3 ¢ x
201

Y 4

3

7

6

5

H

3

2

1

1] -—
i x

Y 4
]
7
6
5
4
3
1 7= v
. CasnnO)Can:L)

1 2

31 32
Y Yy
8 8
| sosz2
7 3ic9 7
& | 3361 . &
RO | sciz2
5 : 11g 5
4 a3a7 4
3 311 3
2 3308 2
3112
1 = 1
Sarnl [if31)

L] >

1 2 1 < X] 1 2 3 4 X

33 34

Figure B.10: Good examples of rule:Touching - file: touch.good

86

T N

2
1
[
1 2 3 3 X 3 1 3 4 X
21 22
Y 4 Y
B B]
7 7 4
[6
H s 6024 0025
H — A e~
3 CT 3 3
2 2 6026 \
6627
1 0012 6033 0021 3
d£c2 \
G
H 2 H] 4 X 9 1 2 3 ER 4
23 24

'
8
7
6
5
q
3
2
1
0
i z 3 N x 3 1 2 3 ¢ X
25 26
Y Ya
§ E]
7 7 -
] |.80260-]~
L 6 -
- 72801
5 5
2602
A . .. a
k) 1 R
72803 2608
2 2 A
. e
—de2af] X Tdr2sf llde28 de28
[
1 2 3 4 x o 1 2 3 40X
27 28

Figure B.12: Good examples of rule:ReadingOrder - file: rdorder.good

[0.2]
3

B.2 Bad Examples

Ya Y
a [
| so113
T 7
0136
[6
5 5
| :s0221
4 <
0128
1 - 3
o129
2 — - 7 - 2
1 o130~ lorar | le132-. :
a — L d
1 2 3 4 x
303 304

Figure B.13: Bad examples of rule:SmallDAsAndICsStartOnSamePage - file:
smda.bad

Y4 IS
8 a
7 7
s [
]

s l 5
4 4
3 0120 3 0124 0125
2 T e N
< 2
1 0121 0122 0123 . 0126
o

1 2 3 4 X G 1 2 3 q X

301 302

Figure B.14: Bad examples of rule:NoLonelyDA - file: nolone.bad

Y ? Y4
8 I 8
7 ! 7
I 12014
6 1018 6 H
s = > s
s 1011 G TieeT 1
3 ' 3
1019 1617 1018

S .
b
']

1 H 3 4t o 1 2 3 4 x

311 312

Figure B.15: Bad examples of rule:NolcUnderDA - file: da.bad

38

O M N W e o d oD

“

@+ W W A wn oo

Figure B.17:

321

G N WA d om o

&
8
| so11s
7
014G 0155
6
o4l I sonze i
s — 0156
(izo1s | arsa fo o
s
3
0142 2
.
2 x o L 2 3 i x
308 306

0155

| 90116
0153

0156

0153

X 0 1 2 3 3 X

322

Bad examples of rule:NolCsAboveHPDA - file: abv.bad

Figure B.18: Bad examples of rule:NoICsBeforeHPDA - file: noicbf.bad

Y Y 4

8 -] - "

. ; xtao./)

& [12121

s s e

Tdtoe)

< 1030 4

3 3

2 2

b i

L]
2 X o 1 2 3 4 X
113 114

Figure B.19: Bad examples of rule:NolFsAtTopOfPage - file: if.bad

39

1] #2013 '
8212
. .821%
Te213T YN
T 8215
1 2 3 s x @ 1 2 3 1 X
323 324

Figure B.20: Bad examples of rule:DFsOnyAtBottomOrUnderDA - file: dfl.bad

Ta A
8 8
a17e | ooz
7 7
0175 - 01807 R
6 6 oot 013 o19¢
d£01 -
s 5 R L)
90119 U R . -
q 4 T4 rei18s
0172 5
1 3 -
0186:
2 / 2
0173 0177 ~ b
1 0187
. .
0 \
1 2 1 4 X g 1 2 3 4 X
309 310

Figure B.21: Bad examples of rule:Touching - file: touch.bad

Y 4 P S
8 8 T
N | 90223 | i
7
7
0196.
6 6
0197
H 5
4 4 0188
k) 3 &S
0198
2)
6192 0193 = Nt
1 ~0189. -
1 N
bl
1 2 3 4 x o 1 2 3 K X

Figure B.22: Bad examples of rule:RankByGridWithinHeading - file: rankl.bad

Ya Ys
8 a
7 7
3 6
] s0127

s b s 1 ==

2 "0211-
4 s =

z 6212 -
1 B 3 —

2 7 Je2me] 0 0213
1h 1 P ~
a
1 2 3 ¢ x o 1 2 3 s X

Figure B.23: Bad examples of rule:ReadingOrder - file: read.bad

90

Appendix C

Data Sets

The following three tables list each source filename and the corresponding file for
Progol in task 1, task2 and task 3, respectively.

91

Good Example File

Bad Example File

Output File for Progol

smdal.good smda.bad smda.pl
nolone.good nolone.bad nolone.pl
da.good da.bad da.pl
da.good da.bad und.pl
noicbf.good noicbf.bad nicbf.pl
hpda2.good abv.bad hpda.pl
hpda2.good noicabv.bad above.pl
if.good if.bad if.pl
df.good dfl.bad dfl.pl
touch.good touch.bad touch.pl
rdorder.good read.bad read.pl
rankgrid.good rankl.bad rank.pl

Table C.1: Task 1: Input example files and their output

Good Example File

Bad Example File

Output File for Progol

da.good da.bad da2.pl
di.good df.bad df2.pl
if.good if.bad if2.pl
rdorder.good ic.bad ic2.pl
hpda2.good hpda.bad hpda2.pl

Table C.2: Task 2: Input example files and their output

Good Example File

Bad Example File

Output File for Progol

task3.good t-da.bad t-da.pl
task3.good t-df.bad t-df.pl
task3.good t-if.bad t-if.pl
task3.good t-ic.bad t-ic.pl
thpda.good t-hpda.bad t-hpda.pl

Table C.3: Task 3: Input example files and their output

