(0] UNIVERSITY OF

@ ALBERTA

MINT709 Capstone Project Report

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN
controller (OpenDaylight)

September 2016

Japmeet Singh

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN
controller (OpenDaylight)

By

Japmeet Singh

A project submitted in partial fulfillment
of the requirements for the degree of
Masters of Science in Internetworking
at the
University of Alberta
December 2016

Abstract

Design & Implementation of a Dynamic and Traffic Aware Load Balancer on SDN

controller (OpenDaylight)

By Japmeet Singh
University of Alberta, 2016

Acknowledgements

I would like to thank my project mentor and supervisor Prof. Gurpreet Nanda for his continuous
guidance throughout the duration of my MSc, as well as during the project implementation. I

would also like to thank my family for their continuous support and guidance.

I rOAUCTION. .o oot 6

Software Defined NetWorking...........c.oouiiiiiiii e, 6
(075757 11 2 10 PR 7
The Need for Software Defined Load Balancing.................oooiiiiiiiiiiiiiiiiiiii e, 9
PrOJeCt PUIPOSE ..ttt 10
Lab IMPlementationo.uieiiiii it 11
ISSUES & Challen@es. ettt ettt e e e e et e 26
[70) 1 1o LT3 1) PP 27
Appendices & ReferenCes.ouuiiuiii 28
Mininet Network ToOpOloZY.ot e, 28
RECTONCES. . ..t 29
TabLe Of FiGUIS.ttt e e e e e e e ee e 30

Software Defined Networking (SDN)

Software defined networking (SDN) is an emerging networking architecture that aims to be
dynamic, centrally manageable, cost-effective, future proof and adaptable. SDN is ideal for
today’s network applications that require high bandwidth and are dynamic in nature. SDN aims to
eventually replace traditional networking by separating the network control logic from the
networking devices. This process is also referred to as decoupling the control plane from the
forwarding plane. This allows the control logic to be highly centralized as well as highly
programmable and it reduces the effort required to maintain the network. The SDN approach to a

network also makes it easy to diagnose the network in the event of errors or failures.

A software defined network consists of devices that are referred to as ‘Controllers’. Switches, that
are the forwarding devices, send the packets they receive to the controller and the controller tells
the switches what to do with those packets by installing ‘rules’ into the switches. Essentially,
whenever a switch receives a packet that does not match any existing rule in the switch, it is sent
to the controller for processing. Once the rules have been installed on the switches, the need to
forward (those) packets to the controller is eliminated and the latency to perform the requested
action is decreased. All communication that takes place in a software defined network takes place

via OpenFlow messages.

Advantages of SDN

1. Programmable: As the control and the physical layers of the network elements are decoupled,
the network control is programmable on the SDN controller, which is at the logical center of the

network.

2. Central: Since the SDN controller is logically central to the network, it maintains a global
network topology view at all times. This allows the controller to manage the entire network,

without relying upon any other network element.

3. Vendor Neutral & Open Source:

Software Defined Networks when implemented via Open Source standards, are not restricted to
vendor specific hardware, software and protocols. This in turn allows ‘off-the-shelf” hardware to
be used in order to deploy Software Defined Networks. Since the protocol/rules are defined by the
Open Networking Foundation (ONF) and are implemented via the Network OS (ex. Mininet),
vendor lock-ins can be easily avoided. Furthermore, Controllers such as OpenDaylight are open
source projects, everybody can contribute to the development of the projects and the community is

very large and diverse.

While SDN is a very promising direction for modern networks, it is not without it’s
disadvantages. The primary challenge that Software Defined Networks face today is the challenge
with the adoption of the new standard. Since SDN is a fairly new field of study and research, there
are a lot of features missing that are very critical to the functioning of many large scale networks.
Furthermore, many large scale networks do not, yet, see the feasibility to bring their services
down in order to switch from traditional networking to software defined networking. The work
around for that has been the deployment of ‘hybrid’ networks that can function in both SDN mode

and the traditional mode (for redundancy).

OpenFlow

OpenFlow is the protocol that defines how the network elements talk with each other, for
example: how the controller will talk with the switches and vice versa. OpenFlow is a
communications protocol that gives access to the forwarding plane of a network switch or router
over the network [1]. OpenFlow 1.0 was released on the 31% of December, 2009 and the
development is managed by the Open Networking Foundation (ONF). The current OpenFlow
version is 1.4, which includes multiple feature additions over version 1.0 like the addition of
multiple flow tables, MPLS & VLAN tagging support, virtual ports, controller connection failure
modes, the ability to use multiple controllers in the same network, per flow metrics, auxiliary
connections to name a few.

An OpenFlow switch separates the control plane and the forwarding plane in a switch. OpenFlow

switches only serve to forward data and the control logic is pushed to the OpenFlow switches via

OpenFlow messages. The data plane of an OpenFlow switch consists of a flow table that have

flow rules according to which packets are matched and forwarded.

The Software defined networking architecture is shown in figure 1 below:

Global Network View
A
App App || App App - _ 3
High-Performance < -
Machine _/ ———
3\ | Northbound AP | ‘
Controller = — —
\ [Southbound AP |
Ny
=A\=|

I —— \ N Thows =

| Forwarding | Forwarding | ‘

Forwarding

" Devices
Data
Forwarding | Forwarding | J

Figure 1

Connected to the Northbound APIs are user ‘apps’ or ‘applications’ which can perform a variety
of functions. These apps are deployed on top of the controller and rules in the matching tables
might be made to forward the data packets to these apps. A ‘load balancer’ is one of these

applications that runs on top of the SDN controller, which manages the load in the network.

There are many different flavors of SDN controllers as well. Mininet, the most popular Network
Operation System (NOS) is bundled with a few SDN controllers by default. These controllers are
the OVS Controller (OVS: Open VSwitch) and the POX controller. Mininet comes ready for
running other SDN controllers like NOX and RYU as well. There are other SDN controllers that
can be downloaded separately and be used either within Mininet or run as a separate VM. An

example of such a SDN controller is the OpenDaylight controller.

Traditional networks use static switches, resulting in static load balancing techniques. The primary
issue with this approach is that each packet has a pre defined path as per a pre defined flow. In the
event of a link or a switch failure, the flows and the pre defined paths have to be reconfigured
manually. This process becomes very complex and cumbersome as the network grows.

Controllers in a software defined networks have the complete topology information by listening to
the switches and calculates paths with the least load. This enables the controllers to make
intelligent decisions and frees the switches from any computational load. A challenge that
traditional networks face very frequently is the challenge with network looping. In order to solve
this problem, spanning tree protocols are run in traditional networks which remove the loops, at
the expense of bandwidth.

SDN Load balancers aim to change that by utilizing all the links between switches while avoiding
loops. In order to avoid loops, the SDN controller, OpenDaylight in my case, has to proactively
install flows into the switches as looping is bound to happen if the switches attempt to discover
hosts by the means of L2 Learning (flood packets until the switch builds a table with the hosts
mac address and the out port for that host).

The OpenDaylight SDN controller uses a Link Aggregation Control Protocol (LACP) [2] to
aggregate multiple links into one big link that connects multiple switches. This aggregated link’s
bandwidth is the sum of the individual bandwidths of each link. With the use of LACP in
OpenDaylight, load balancing is successfully achieved in the scenario where there are multiple

links between switches.

Project Purpose

The primary purpose of my project is to develop a load balancing mechanism for use in a

network using the OpenDaylight controller. The network topology can be seen in figure 2 below:

Host 1
Switch 2 Switch 1
— - =
- Host 2
Host 3

OpenDaylight
Controller

Figure 2

In the network topology in figure 2, if a SDN Load balancer is not used, loops will form between
Switch 1 and Switch 2 and the hosts would be unable to to talk to each other.

Since this is a SDN network with the OpenDaylight controller pushing rules and flows to the
Switches (which are Open VSwitches), loops are avoided. The OpenDaylight controller is running
the link aggregator service via the link aggregation control protocol (LACP) which combines the
three links between both switches, into one high bandwidth link, thereby providing load

aggregation as well as load balancing.

10

Lab implementation

This section explains all the steps involved in setting up the project and to get it working as

required.

1. Download VirtualBox for the required platform from (I am using the Mac OS version):

https://www.virtualbox.org/wiki/Downloads

2. Upon successfully downloading and installing VirtualBox, download Mininet VM image from:

http://onlab.vicci.org/mininet-vm/mininet-2.2.0-150106-ubuntu-14.04-server-amd64.zip

3. Go to file and select the option to ‘import appliance’ as shown in figure 3:

.' VirtualBox m Machine Window Help

Import Appliance... a8l]
{:} {5} @ Export Appliance... 38 E
Virtual Media Manager... 3D

ew Settings Discard Start

Figure 3

11

4. Choose the ‘.ovf’ file to import as shown in figure 4:

Appliance to import

VirtualBox currently supports importing appliances saved in the Open
Virtualization Format (OVF). To continue, select the file to import
below.

mininet-2.2.0-150106-ubuntu-14.04-server-amd64.ovf |

Expert Mode Go Back Continue Cancel

Figure 4

5. Configure the import settings. The VM needs a recommended 2GB of memory to perform.
Click on import as shown in figure 5:
Appliance settings

These are the virtual machines contained in the appliance and the suggested settings of the imported VirtualBox
machines. You can change many of the properties shown by double-clicking on the items and disable others
using the check boxes below.

Description Configuration

Virtual System 1 |

£8 Name Mininet-VM

E Guest 0S Type ¥4 Ubuntu (64-bit)

@ cpu 1

(¥ USB Controller v

@ Network Adapter V' Intel PRO/1000 MT Server (82545EM)

v & Storage Controller (SCSI) LsiLogic
Virtual Disk Image JUsers/Japmeet/VirtualBox VMs/Mininet-VM/mininet-vm-x86_64.vmdk

Reinitialize the MAC address of all network cards

Appliance is not signed

Restore Defaults Go Back import Cancel

Figure 5

12

6. Once the import is complete, configure the VM and select the network option. Enable the
second network adapter and choose ‘Host-Only Adapter’ as shown in figure 6:

Mininet-VM - Network

@!l%@@ﬁ =

General System Display Sterage Audio Network Ports Shared Folders User Interface

Adapter 1 Adapter 2 Adapter 3 Adapter 4

v| Enable Network Adapter

Attached to: ~ Host-only Adapter B

Name: vboxnetO

¥ Advanced

Adapter Type: | Intel PRO/1000 MT Desktop (82540EM)

<

Promiscuous Mode: Deny

MAC Address: 0800274742C2

®

Cable Connected

Port Forwarding

Figure 6

7. Click OK to save.

8. Double click on the VM to boot.

13

9. Upon boot, you will be greeted with the following screen as shown in figure 7:

buntu 14.04 LTS mininet-um ttyl

ininet-um login:

10. Use the username and password ‘mininet’ to log-in as shown in figure 8:

buntu 14.04 LTS mininet-vm ttyl

ininet-um login: mininet
Password:
Last login: Thu Dec 15 07:50:19 PST 2016 on ttyl

elcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/

ininet@mininet-um:~$ sudo dhclient ethl

TNETLINK ansuwers: File exists

ininet@mininet-un:~§ ifconfig ethl
Link encap:Ethernet HWaddr 08:00:27:9d:a3:7a
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:272 errors:0 dropped:0 overruns:0 frame:0
TX packets:328 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:29973 (29.9 KB) TX bytes:29828 (29.8 KB)

ininet@mininet-vm:"§ _

11. Run the command ‘sudo dhclient eth1” to configure an IP for the 2™ network interface we

added earlier.

12. Verify that the 2™ network interface has an IP address by using the command ‘ifconfig eth1’

14

13. Verify that the first network interface has an IP address by using the command ‘ifconfig eth0’

buntu 14.04 LTS mininet-um ttyl

ininet-um login: mininet
Password :
Last login: Thu Dec 15 07:50:19 PST 2016 on ttyl

elcome to Ubuntu 14.04 LTS (GNU/Linux 3.13.0-24-generic x86_64)

* Documentation: https://help.ubuntu.com/
ininet@mininet-um:~$ sudo dhclient ethl
RTNETLINK ansuwers: File exists
ininet@Bmininet-um:~§ ifconfig ethl
Link encap:Ethernet HUWaddr 08:00:27:9d:a3:7a
inet addr:10.0.2.15 Bcast:10.0.2.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:272 errors:0 dropped:0 overruns:0 frame:0
TX packets:328 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:29973 (29.9 KB) TX bytes:29828 (29.8 KB)

ininet@mininet-um:"~$
ininet@mininet-un:~§ ifconfig etho
ethoO Link encap:Ethernet HWaddr 08:00:27:47:42:c2
inet addr:192.168.56.102 Bcast:192.168.56.255 Mask:255.255.255.0
UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1
RX packets:14 errors:0 dropped:0 overruns:0 frame:0
TX packets:Z2 errors:0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuelen:1000
RX bytes:2408 (2.4 KB) TX bytes:684 (684.0 B)

ininet@mininet-um:~9

15

14. Update mininet by running the ‘sudo apt-get update’ command as shown in figure 10:

root@mininet-vm:~# sudo apt-get update
it http://security.ubuntu.com trusty-security InRelease
http://us.archive.ubuntu.com trusty InRelease
http://security.ubuntu.com trusty-security/main Sources [123 kB]
http://us.archive.ubuntu.com trusty-updates InRelease [65.9 kB]
http://security.ubuntu.com trusty-security/restricted Sources [4,613 B]
http://security.ubuntu.com trusty-security/universe Sources [46.5 kB]
http://us.archive.ubuntu.com trusty-backports InRelease [65.9 kB]
http://security.ubuntu.com trusty-security/multiverse Sources [3,199 B]
http://security.ubuntu.com trusty-security/main amd64 Packages [570 kB]
http://us.archive.ubuntu.com trusty Release.gpg [933 B]
http://us.archive.ubuntu.com trusty-updates/main Sources [388 kB]
http://security.ubuntu.com trusty-security/restricted amd64 Packages [13.

http://security.ubuntu.com trusty-security/universe amd64 Packages [146 k
http://security.ubuntu.com trusty-security/multiverse amd64 Packages [4,1
http://security.ubuntu.com trusty-security/main i386 Packages [528 kB]
http://us.archive.ubuntu.com trusty-updates/restricted Sources [5,888 B]
http://security.ubuntu.com trusty-security/restricted 1386 Packages [13.1

http://us.archive.ubuntu.com trusty-updates/universe Sources [170 kB]
http://security.ubuntu.com trusty-security/universe i386 Packages [147 kB

http://security.ubuntu.com trusty-security/multiverse 1386 Packages [4,30
http://us.archive.ubuntu.com trusty-updates/multiverse Sources [7,523 B]
http://security.ubuntu.com trusty-security/main Translation-en [314 kB]
http://us.archive.ubuntu.com trusty-updates/main amd64 Packages [934 kB]
http://security.ubuntu.com trusty-security/multiverse Translation-en [2,2

http://security.ubuntu.com trusty-security/restricted Translation-en [3,3

http://security.ubuntu.com trusty-security/universe Translation-en [86.6

The apt-get update command updates the sources required by mininet in order to download and

install software as well as update the operating system.

15. Once complete, run the ‘sudo-apt get install Ixde xinit’ command as shown in figure 11:

ininet@mininet-vm:"5 sudo apt-get install Ixde xinit_

16

This command downloads the ‘Ixde’ GUI environment and also installs the ‘xinit’ command that

is required to run Ixde GUI environment from command shell.

16. Once the download is complete, run the ‘sudo startx’ command to run the Ixde environment

with root privileges as shown in figure 12:

ininetmininet-vm:™S sudo startx

Figure 12

Once Ixde starts up, you will be able to see the desktop.
Once on the desktop click on the menu button, go to accessories and select ‘gedit’ as shown in

figure 13:

'Y @ rile Manager PCManFM

Internet » | @ Galculator

& Other J B gedit

B Programming » | & GNU Emacs 24

® Sound & Video D = Image Viewer
System Tools b | (@ Leafpad
Preferences p | ™ LXTerminai

§¢ Xarchiver
Run

& Logout

A "™ root@mininet-v... | M root@mininet-v... I

Figure 13

17

Alternatively, if you do not see the gedit application, open LXTerminal and type:
‘sudo apt-get install gedit’

This will install the gedit application and you will be able to access it from within the accessories

sub menu.

17. In the gedit application, write the following code and save it to the /mininet/custom directory:

custom.py ..

from mininet.topo import Topo

class MyTopo(Topo):
def init (self):

"Create custom topology."
Initialize topology
Topo. 1init (self)
Add hosts and switches
hl = self.addHost('hl')
h2 = self.addHost('h2')
h3 self.addHost('h3"')
sl = self.addSwitch('s1')
s2 = self.addSwitch('s2')
Add links
self.addLink(hl, sl
self.addLink(h2, sl
self.addLink(h3, sl
self.addLink(sl1, s2
self.addLink(sl1, s2
self.addLink(s1, s2)

topos = { 'mytopo’': (lambda: MyTopo()) }

T S — — — “—

Figure 14

18

This code adds three hosts and two switches. The hosts and switches are connected as shown in

the network diagram in figure 2.

18. Open a terminal window and type in the following commands as shown in figure 15:

root@mininet-vm: ~/mininet/custom

root@mininet-vm:~# cd mininet/custom
root@mininet-vm:~/mininet/custom# l

The cd mininet/custom command changes the current working directory to /mininet/custom.

19. Open another terminal window and type the commands as shown in figure 16:

root@mininet-vm: ~

root@mininet-vm:~# wget https://nexus.opendaylight.org/content/groups/public/orgjs
af-0.4.0-Beryllium.tar.gz]j

19

20. This command downloads the opendaylight SDN controller from the opendaylight.org
website.
The downloaded file is compressed in a .tar format. This command extracts the tar file into a

folder with the same name.

root@mininet-vm: ~

root@mininet-vm:~# 1s
bashrc
bashrc~

install-mininet-vm.sh

dlstrlbutlon karaf 0 4 0 Berylllum tar.gz
root@mininet-vm:~# cd distribution-karaf-0.4.0- Belylllum/
root@mininet-vm:~/distribution-karaf-0.4.0-Beryllium# /bln/karafl

22. Type cd distributon-karaf-0.4.0-Beryllium to change the working directory to that of the
OpenDaylight controller.
OpenDaylight is packaged into a karaf container. Typing ./bin/karaf starts the OpenDaylight SDN

controller.

20

23. After the OpenDaylight controller starts, type in the following command as shown in figure
19:

root@mininet-vm: ~/distribution-karaf-0.4.0-Beryllium

Figure 19

This command installs the following modules into the OpenDaylight controller [3]:

1. odl-restconf: Allows access to the restconf API

2. odl-12switch-switch: Provides network functionality similar to an Ethernet switch

3. odl-mdsal-apidocs: Allows access to the YANG API

4. odl-dlux-all: Installs the OpenDaylight GUI

5. odl-lacp-plugin: Installs the Link Aggregation Control Protocol on the OpenDaylight controller.

24. Upon launching the OpenDaylight controller and installing the features mentioned above,
open Firefox and type ‘127.0.0.1:8181/index.html’ and log in using the username and password

‘admin’ to access the dlux GUI.

OpenDaylight Dlux - Mozilla Firefox

OpenDaylight Dlux x \ +

€)® 127001

Please Sign In

. OPEN

Figure 20

21

From this GUI, the user can access the graphical representation of the topology, access the rest

config to push flows and retrieve topology information and also access the YANG visualizer.

25. Open the other terminal window (the one pointing towards /mininet/custom) and type the

following commands as shown in figure 21:

root@mininet-vm: ~/mininet/custom

nininet/custom# sudo mn --custom custom.py --topo=mytopo --controller=remote,ip=127.0.0.1,port=6633

* Adding controller
* Adding hosts:
hl h2 h3
* Adding switches:
sl s2
* Adding links:

(h1, s1) (h2, s1) (h3, sl1) (s1, s2) (s1, s2) (sl1, s2)
* Configuring hosts
hl h2 h3
* Starting controller
co
* Starting 2 switches
sl s2
* Starting CLI:
mininet> ||

26. This command launches the custom topology we programmed earlier with the following

options:

1. --topo=mytopo: Pass an object to instantiate the topology we created

2. --controller=remote: Tell the mininet system to use a remote controller and not the default
controller. The parameters ip and port tell the system where the controller is hosted.

Here we can see that the hosts H1 H2 and H3 have been added and switches S1 and S2 have also
been added.

The links (hl,sl), (h2,s1), (h3,s1), (s1,s2), (s1,s2), (s1,s2) have also been created and the
controller cO has been added to the topology as well.

The links and the network information can be obtained by running the command ‘links” and ‘net’

separately in the terminal as shown in figure 22:

22

root@mininet-vm: ~/mininet/custom

mininet> links
-eth@<->sl-ethl
-ethe<->s1-eth2
-ethO<->s1-eth3
-eth4<->s2-ethl
-eth5<->s2-eth2
-eth6<->s2-eth3
mininet>
mininet> net
-eth®:sl-ethl
-eth®:s1-eth2
-eth®:s1l-eth3
sl-ethl:hl-ethe sl-eth2:h2-eth® sl-eth3:h3-eth® sl-eth4:s2-ethl sl-eth5:s52-eth2 sl-eth6:s52-eth3
s2-ethl:sl-eth4 s2-eth2:sl-eth5 s2-eth3:s1-ethé6

mininet> nodes
available nodes are:

h3 sl s2
mininet>

The ‘links’ command shows the status of the links. This command is ideal to debug a network in

case a link between the network element goes down.

The ‘net’ command shows how the network elements are connected to each other and on what

interfaces. This command is ideal to debug the network in the event a host or a switch goes down.
In order to push the topology to the controller, the first few packets that are sent to the switches

are sent up to the controller for processing. During this first step, the controller installs flows into

the switches and creates a network map that can be visualized on the OpenDaylight DLUX GUI.

23

27. Run the following ping commands to generate traffic that will flow from between the hosts:

mininet> pingall
¥ Ping: testing ping reachability
-> h2 h3
-> hl h3
-> hl h2
* Results: 0% dropped (6/6 received)
mininet>
mininet> hl ping h2
PING 10.0.0.2 (10.0.0.2) 56(84) bytes of data.
64 bytes from 10. icmp seg=1 ttl=64 time=0.590 ms

0.0.2:
64 bytes from 10.0.0.2: icmp seq=2 ttl=64 time=0.100 ms
0.0.2: icmp seqg=3 ttl=64 time=0.052 ms

64 bytes from 10.
~C
--- 10.0.0.2 ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2000ms
rtt min/avg/max/mdev = 0.052/0.247/0.590/0.243 ms
mininet>
mininet> h2 ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from .0.0.3: icmp seq=1 tt1=64 time=0.601 ms
64 bytes from .0.0.3: icmp seq=2 ttl=64 time=0.051 ms
64 bytes from .0.0.3: icmp seq=3 tt1l=64 time=0.056 ms
64 bytes from .0.0.3: icmp seq=4 tt1=64 time=0.147 ms
~C
- 10.0.0.3 ping statistics ---
4 packets transmitted, 4 received, 0% packet loss, time 2999ms
rtt min/avg/max/mdev = 0.051/0.213/0.601/0.227 ms
mininet>
mininet>
mininet> hl ping h3
PING 10.0.0.3 (10.0.0.3) 56(84) bytes of data.
64 bytes from 10.0.0.3: icmp seg=1 tt1=64 time=0.295 ms
64 bytes from 10.0.0.3: icmp segq=2 ttl1=64 time=0.142 ms
64 bytes from 10.0.0.3: icmp seq=3 ttl=64 time=0.118 ms
~C

The pingall command is a quick command to ping all hosts from all other hosts. Running that
command makes the controller aware of the topology and the flows are pushed to the switches.
Run individual ping commands between every host to make sure each host can reach all the other

hosts.

28. Within the DLUX GUI, click on the nodes option and click on the Node Connectors option on

openflow:1 switch

% Topology

Node Name Node Connectors Statistics

openflow:1 None

openflow:2 None

24

The Node Connectors screen will open and will show all the ports on the switch ‘openflow:1” and

the statistics of all the ports:

=2a Nodes

Node Connector Statistics for Node Id - openfiow:1

openflow:1:3
openflow:1:LOCAL
openflow:1:4
openflow:1:5
openflow:1:6
openflow:1:2

openflow:1:1

Figure 25

Go back and click on Node Connectors option for ‘openflow:2’ switch:

=2a Nodes

Node Connector Statistics for Node Id - openflow:2

Node Connector ~ Rx
Id Pkts Collisions

openflow:2:3 45
openflow:2:2 29

openflow:2:1 29

openflow:2:LOCAL 0

Figure 26
As we can see in figure 26 on both switches there is traffic generated on each port (in the columns

Rx Pkts and Tx Pkts) which means all links are being utilized and thus, the load balancing is being

achieved on all of these links when communicating from one host to another.

25

The challenges faced during the project in the implementation of this project were the
identification of the limitations of mininet, the default mininet controller (OVS Controller) as well

as the POX controller.

Initially, efforts were made to develop a load balancing scheme for the default OVS Controller.
However, upon reading the documentation [4] as well as dry running the source code [5], it was
discovered that the default OVS Controller (controller-8) [6] only worked in the L2 learning mode
and any attempt to utilize multiple links between the two switches resulted in loops. That meant in
order to implement multi-link load balancing in the default OVS Controller, one would have to re-
code the controller from the ground up. It was decided that we were going to focus our efforts
elsewhere as better and more modular SDN controllers are already available and the default OVS

Controller is there to introduce people to the basic concepts of SDN.

The second controller that we looked at was the POX controller. POX is an open source
development platform for Python based SDN control applications such as OpenFlow SDN
Controllers [7]. POX supports modules that can be used to run the controller in a certain mode and
while POX supported load balancing, it did not support load balancing over multiple links [8] as
the POX controller fundamentally functioned in a L2 learning mode as well. Furthermore, POX
does not support OpenFlow 1.3 and only supports OpenFlow 1.0, which is a deal breaker as load
balancing over a network is not possible, in a reasonable and non-experimental way, in OpenFlow
1.0 [9]. POX is able to perform load balance across multiple servers, i.e. only multi-server round-
robin load balancing was available with the POX controller and thus, a different controller had to

be chosen.

The challenge faced with mininet was that mininet did not have the ability to implement multiple
links between switches and hosts. Upon further research, it was discovered that this feature was
later introduced in mininet version 2.2.0 and higher so the entire implementation had to be re-done

on this newer version of mininet.

26

Load balancing is a technique that is in place today to provide high network throughput as well as
provide a means to utilize extra links in a network that would otherwise be redundant. With the
advent of Software Defined Networks, load balancers and load balancing techniques can now
utilize the power of SDN controllers that have supreme control over the network topology,
allowing for greater control over how the data is handled in a network. We looked at Load
Balancing via Link Aggregation Control Protocol in the Open Daylight SDN controller, balancing
load over multiple links in this project, which is dynamic and represents a real world use case.
Organizations often run multiple links between multiple switches in order to provide redundancy
as well as link aggregation and load balancing. However, traditional approaches are more
cumbersome as each of the above mentioned features have to be implemented individually.

With the dawn of SDN based load balancing techniques in controllers such as Open Daylight, all
of the above mentioned techniques can be implemented within a single configuration. This
reduces the complexity of the network as well as the operating costs, which in the end is a primary

goal for Software Defined Networks.

27

Mininet network topology

from mininet.topo import Topo
class MyTopo(Topo):
def init ('self):

"Create custom topology."

Initialize topology

Topo. init _ (self)

Add hosts and switches

hl = self.addHost('h1")

h2 = self.addHost('h2')

h3 = self.addHost('h3')

sl = self.addSwitch('s1")

s2 = self.addSwitch('s2")

Add links

self.addLink(h1, s1)

self.addLink(h2, s1)

self.addLink(h3, s1)

self.addLink(s1, s2)

self.addLink(s1, s2)

self.addLink(s1, s2)
topos = { 'mytopo': (lambda: MyTopo()) }

28

References

[1] Nick McKeown; et al. (April 2008). "OpenFlow: Enabling innovation in campus networks".
ACM Communications Review. Retrieved 2009-11-02.

[2] https://wiki.opendaylight.org/view/LACP:Lithium:User Guide#LACP

[3]http://www.brianlinkletter.com/using-the-opendaylight-sdn-controller-with-the-mininet-

network-emulator/

[4]http://www.manualpages.de/FreeBSD/FreeBSD-ports-9.0-RELEASE/man8/ovs-

controller.8.html

[5]https://sourcecodebrowser.com/openvswitch/1.1.0~pre2.g2.ea763e0e/ovs-

controller 8¢ source.html

[6] https://github.com/osrg/openvswitch/blob/master/utilities/ovs-controller.8.in

[7] http://searchsdn.techtarget.com/definition/POX

[8] https://www.mail-archive.com/pox-dev(@lists.noxrepo.org/msg01093.html

[9] http://sdnhub.org/tutorials/pox/

https://www.opennetworking.org/sdn-resources/

https://wiki.opendaylight.org/

http://www.brianlinkletter.com/

29

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:

SDN Architecture

Project Network Topology

Virtual Box Import Appliance Screen# 1

Virtual Box Import Appliance Screen# 2

Virtual Box Import Appliance Screen# 3

Virtual Machine Settings Page

Mininet Login Screen

Mininet DHCP Configuration

Mininet Network Adapter Configuration

Mininet:
Mininet:
Mininet:
Mininet:
Mininet:
Mininet:
Mininet:

Mininet:

Mininet:
Mininet:
Mininet:

OpenDaylight: DLUX GUI Nodes Screen

Mininet Update Screen

GUI Installation

GUI Launch Command

Launching Gedit

Custom Topology Script

Navigating To /custom/

Download OpenDaylight

Extracting OpenDaylight from tar file
Running OpenDaylight

OpenDaylight: Installing features
OpenDaylight: Accessing DLUX GUI

Running Custom Topology
Links, Net and Nodes Commands

Ping Commands

OpenDaylight: Openflow:1 Node Connector Statistics Screen
OpenDaylight: Openflow:2 Node Connector Statistics Screen

30

