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Abstract

This thesis describes the generation, characterization, and nonlinear application of intense
terahertz (THz) pulses. Nonlinear THz spectroscopy has emerged as a powerful tool to
study the ultrafast time evolution of high-field charge carrier dynamics in semiconductors
and nano-materials. The study of such phenomena in semiconductors and semiconductor

structures requires intense THz pulses with high electric-field strengths.

We have developed an improved experimental setup for generating high-power, near-
single-cycle THz pulses by tilted-pulse-front optical rectification in LiNbO3 with optimized
optical-to-THz conversion efficiency, and proper characterization of the THz pulses in the
Ultrafast Nanotools lab at the University of Alberta. We have investigated the effects of
optical pump pulse pre-chirping and polarization on THz pulse generation using separate
compressors for the optical pulses used for THz generation and detection. By down-chirping
the 800 nm optical pump pulses to 385 fs, single-cycle THz pulses with energies up to 3.6 uJ
were obtained, corresponding to an energy conversion efficiency of 3x1073. This high-field
THz source is capable of generating electric fields greater than which can induce nonlinear

carrier dynamics in semiconductors.

We demonstrate novel high-field THz experiments that explore nonlinear processes in
doped and photo-excited bulk semiconductors. As a benchmark and consistency check,
a nonlinear THz absorption bleaching Z-scan experiment was conducted on an n-doped
InGaAs epilayer on a lattice matched InP substrate. This experiment confirmed that the

THz pulses generated by our source are adequate for ultrafast nonlinear measurements in

ii



the THz frequency range. Even more interesting, we have achieved unprecedented THz field
absorption bleaching simply by flipping the face of the sample illuminated by the THz pulse
pump. That is, we illuminate the insulating (substrate) side of the sample with the THz
pulse in the Z-scan experiment rather than illuminating the usual (conducting) face of the

sample. In this study considerable insight has been gained into developing an optical diode.

We have also developed a technique to measure transient voltage pulses induced in
doped and photoexcited semiconductors due to a shift current generated from the nonlinear
THz dynamics of free electrons in the conduction band. This is a fascinating feature with a
practical application as an ultrafast and ultra-sensitive THz phtotodetector. A Drude-based
dynamic intervalley scattering simulation reveals that the nonlinear THz-induced transient
voltage pulses are a result of intervalley scattering driven by high-field THz pulses. It is the
first time that THz induced picosecond voltage transients are measured in semiconductors.
We find that an intense THz pulse incident on an InGaAs sample excites a transient dipole
due to intervalley scattering. Also, THz pulse induced transient voltage signals have been
investigated in ZnTe, and doped-Si semiconductors due to a direct flow of free carriers upon
THz photon absorption. We have observed nonlinear conductivity responses in Si, ZnTe,
photo-excited SI-GaAs, and doped InGaAs, showing the strong THz pulse can heat the
electron population and create a momentum distribution leading to saturable absorption in

the THz frequency range.
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CHAPTER 1

Introduction

The interaction of electromagnetic (EM) radiation with matter has provided an extremely
effective and powerful tool for controlling the behavior of condensed materials in all of
its phases. This helps to probe and understand the electronic and vibrational states of a
wide variety of materials. Each region of the EM spectrum interacts with different degrees
of freedom of matter and specific spectral ranges have been made accessible through the
advent of suitable sources and detectors. For example, optical radiation predominately
interacts with valence electrons, however, whereas THz radiation interacts strongly with
many elementary excitations in the meV range [Jepsen et al. (2011); Kampfrath et al. (2013)]

within a picosecond time scale.

Since the realization of the first coherent broadband THz sources in the 1980’s at
Bell Labs, (New Jersey), USA based on the free-space photoconductive switch (or Aus-
ton switch) [Auston (1975); Auston and Cheung (1985); Cheung and Auston (1985)] and
phonon-polaritons in LiTaO3 [Auston et al. (1984)], major scientific advancements have
been made. This includes THz pulse generation, detection, time-domain THz spectroscopy,
time-resolved THz spectroscopy and THz imaging which has revolutionized the field of THz
optics, leading to enormous advances in both fundamental physics and a wide range of
practical applications. THz waves have been widely used as a noncontact probe of material
properties with high sensitivity [Jepsen et al. (2011)]. In particular, as a probe of charge
carrier dynamics in semiconductors originates from the fact that the dielectric response of
charge carriers is strong and dispersive in the THz region of the electromagnetic spectrum
[Ulbricht et al. (2011)]. Terahertz time-domain spectroscopy (THz-TDS) and time-resolved
terahertz spectroscopy (TRTS) have been the most utilized ultrafast optical techniques to
determine the broadband complex conductivities in steady-state and transient systems, re-

spectively. TRTS has also been used to explore ultrafast carrier dynamics in materials.
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Figure 1.1: Ponderomotive energy induced by THz pulses at an electric field strength
of 300 kV/cm. At the peak field, the ponderomotive energy is larger than the band

gap of the host materials.

THz radiation is in the frequency range between the upper limit accessible with elec-
tronics and the lower limit that can be accessed by optics. Roughly speaking the THz range
covers 0.1-10 THz (1 THz = 10'? Hz) or equivalently the wavelength range from 3 mm -
30 pum or photon energy scale of 0.4 - 40 meV. A frequency of 1 THz is equivalent to a
wavelength of 300 pm, or a photon energy of 4.1 meV. It is evident that the photon energy
in the THz frequency range is below the typical band gap energy of semiconductors (1-3
eV). However, when a high peak field THz pulse is incident on matter, its oscillating field
can deposit several times the THz photon energy. It is defined as the average oscillation
energy that is acquired by free electron in the radiation field of the incident laser pulse. The
work done on a charge carrier with effective mass m* by a THz field with frequency wrp.,
peak amplitude E’;«kHZ can be estimated by the ponderomotive energy [Turchinovich et al.
(2012); Kampfrath et al. (2013)].

e (B2,.)

w, =
P *, 42
dm*wi g,

(1.1)

As shown from Eq. 1.1, the ponderomotive energy depends on the square of the wavelength
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Figure 1.2: Time domain waveform of a high-power terahertz pulse with a peak
electric field of 300 kV/cm radiated from a tilted-pulse-front LiNbOg3 optical rec-
tification source and measured by electro-optic sampling using 0.5 mm thick ZnTe

crystal. The inset shows the corresponding amplitude spectrum.

and is linearly dependent on the laser field intensity. An example of a ponderomotive energy
calculated for both InGaAs and GaAs semiconductors at an incident THz field strength of
300 kV/cm is shown in Fig. 1.1

The transform-limited temporal shape of a typical THz pulse attained from optical rec-
tification sources used for spectroscopy is an approximately single cycle electromagnetic
transient with a pulse duration of about 1 ps. The corresponding pulse spectrum is cen-
tered near 1 THz with a bandwidth of 1 THz, hence the name "terahertz pulse". An
experimentally measured high-power single cycle ultrashort THz pulse generated from a
tilted-pulse-front LiNbOg optical rectification source is displayed in Fig. 1.2. As shown in
the inset of Fig. 1.2, the THz pulse spectrum has a peak of about 0.5 THz and a bandwidth
of 0.7 THz. The spectral bandwidth depends on the source crystal as well as the detection

system in general.



The THz spectrum covers a wide range of fundamental elementary excitations and reso-
nances in solid state materials and molecules. Therefore, the broad spectrum of a THz pulse
is a vital spectroscopic tool that provides access to fundamental modes of many physical
phenomenon, including free carrier absorption, low energy excitations, and optically ac-
tive vibrational modes, and collective modes in condensed matter such as phonons, plasma,
magnons [Ulbricht et al. (2011); Averitt and Taylor (2002); Kampfrath et al. (2013)]. Typi-
cal optically-active vibrational modes lie below 5 THz; however, there are many vibrational
modes and low energy excitations above 5 THz. We are generally limited to the 0.2 - 3 THz
range because of the sources and detectors we have been using, and the fact that they tend
to have vibrational modes above 3 THz. Also, the photon energies of the THz spectrum do
not create direct one-photon generation of free carriers in semiconductors due to the THz
photon energy being much smaller than the energy gap of typical semiconductors. Hence,

THz pulses are an ideal tool for a contact-free probe of materials.

Terahertz optics and technology has sparked an increasingly wide range of scientific
applications across many disciplines and brought an almost immeasurable number of break-
throughs. Our Lab has been the source of recent breakthroughs on the topics of ultra-
fast phenomena in semiconductors, nanoparticles, and DNA damage. One of the greatest
strengths of THz spectroscopy and the THz field as a whole, is the ability to generate and
coherently detect near single-cycle pulses, enabling the characterization of ultrafast phenom-
ena in semiconductors and nanomaterials on the picosecond time scale. Examples of recent
major THz scientific research advancements in our lab include: (1) Ultrafast picosecond
voltage transients have been measured in doped and photo-excited semiconductors with-
out applying an external bias for the first time . (2) The invention of THz-coupled STM
imaging has enabled direct measurements of the ultrafast excitation and decay of a single
nanoparticle with unprecedented simultaneous temporal (< 0.5 ps ) and spatial (2 nm) res-
olutions [Cocker et al. (2013)]. (3) The biological effects of high-power pulsed THz radiation
on artificial human skin tissues has been shown for the first time. We have investigated the
biological effects of intense pulsed THz radiation on artificial human skin tissues. Exposure
of artificial human skin tissue to intense THz pulses for ten minutes was shown to lead to a
significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may
cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced
increase in the levels of several proteins responsible for cell-cycle regulation and tumor sup-
pression, suggesting that DNA damage repair mechanisms are quickly activated [Titova
et al. (2013)]. Furthermore, the intense THz pulses affect expression levels of numerous
genes associated with non-melanoma skin cancers, psoriasis, and atopic dermatitis [Titova

et al. (2013)]. Our laboratory is also home to time-resolved THz spectroscopy research in a

1Two papers of ultrafast picosecond voltage transient in doped and photoexcited semiconductors are
under preparation to be submitted to PRB



number of novel materials, covering phenomena ranging from ultrafast carrier dynamics in

semiconductor nanostructures to insulator-metal phase transitions [Cocker et al. (2012)].

The future exploration of nonlinear THz dynamics in materials demands an efficient,
accessible, table-top high power and high intensity THz source. This requires improvements
to the usual, low-power optical rectification techniques used for spectroscopy. Recently,
advances in intense table top terahertz sources and broadband detection techniques have
opened up a new phase of fundamental nonlinear terahertz research of materials to gain
deep insight into ultrafast nonlinear phenomena for the next generation semiconductor-

based nanoscale electronic devices.

In this thesis, detailed characterization of an improved scheme for high power THz pulse
generation using tilted-pulse-front methods are presented. In addition, four main experi-
ments conducted at room temperature utilizing this high-THz-power source have revealed

novel ultrafast nonlinear responses under THz excitation.

This thesis is organized as follows: Chapter 2 presents an overview of the basic techniques
of the most common table-top THz radiation sources and detectors based on femtosecond
laser techniques. In Chapter 3 a brief introduction to the characteristic features of ultrafast
nonlinear optics and mechanisms of nonlinear dynamics in the terahertz range are discussed.
Chapter 4 is devoted to the presentation of a self-consistent theoretical model, that is the
Drude dynamic intervalley scattering model, for hot carrier transport in semiconductors. In
Chapter 5, I will present the principles and a brief discussion of optical diffraction by grat-
ings followed by technical details of a novel experimental scheme of high power THz pulse
generation using tilted-optical pulse-front through optical rectification in LiNbOg3. For the
rest of the chapters, we employed intense THz pulses to study the current frontier in the
THz technology which is the ultrafast nonlinear THz carrier dynamics in semiconductors,
typically the two most technologically-important semiconductors, GaAs and InGaAs. A
brief introduction of THz nonlinear optics and novel experimental demonstrates an optical
diode by utilizing the intense THz field attained from the high THz power setup are the
subjects of Chapter 6. The rest of two chapters are devoted to an experimental and theo-
retical investigation of THz-pulse-induced picosecond voltage transients in semiconductors,
which is the first time such an effect has been observed. Chapter 7 presents novel experi-
mental results of the nonlinear THz induced transient voltage and THz photo-detectors in
model semiconductors like InGaAs and GaAs. Chapter 8 presents ultrafast THz induced
transient voltages in photoexcited SI-GaAs. Chapter 9 summarizes all the experimental
works conducted in this thesis and highlights possible future experiments on "nonlinear

THz rectification" in semiconductors.



CHAPTER 2

Generation and detection of terahertz radiation

2.1 Introduction

Until recently, the THz spectral range remained relatively unexplored due to the lack of
suitable sources and detectors at THz frequencies compared with the well established neigh-
boring spectral bands in the microwave and infrared/visible regions. Optical generation
of THz radiation is obtained by either ultrafast photoconductive switches (generation of
transient photocurrents in semiconductors) or nonlinear optical responses in electro-optic

crystals.

Optical methods of THz pulse generation and detection are based on the fundamental
principle of electromagnetic radiation from accelerated charges, from an oscillating dipole,
P(t) or time varying current, J(¢). Detailed methods regarding the THz generation, de-
tection, and the principles and achievements of THz spectroscopy, are given in a number
of THz reviews and books [Jepsen et al. (2011); Ulbricht et al. (2011); Mittleman (2003);
Yun-Shik (2009); Dexheimer (2008)].

2.2 Generation of THz radiation

Over the past two decades, ultrashort laser pulses, in conjunction with transient current
sources and electro-optic (EO) crystals capable of optical rectification (OR) have become the
most versatile and widely used table-top THz generation techniques. This section focuses
on the discussion of the most common THz sources, photoconductive switches and OR

sources. Illuminating a photoconductive switch with a femtosecond laser pulse induces a



transient electric current that emits THz radiation in the far field [Auston and Smith (1983);
Auston et al. (1984); You et al. (1993); Budiarto et al. (1996); Zhao et al. (2002)]. The
generated THz field is directly proportional to the first derivative of the transient current,
Erg. x %‘g. Conversely, a THz pulse obtained using OR is generated by a second-order,
nonlinear transient polarization induced by the mixing of difference frequency components
of the pump pulse inside the EO crystal [Hu et al. (1990); Xu et al. (1992)]. The emitted
THz field is directly proportional to the second-order derivative of the nonlinear polarization

. 2
of the material, BTy, %TE'

OR has several advantages over transient current sources by providing much broader
THz spectra [Huber et al. (2000); Stepanov et al. (2003)], required no external bias, and
being simpler to implement experimentally. On the other hand, unlike electro-optic crystals,
photoconductive switches do not depend on crystal orientation [Reimann (2007)], nor are

they strongly influenced by the polarization of the optical pump beam.

In addition to the two common table-top approaches to THz generation discussed above,
air-plasmas produced by femtosecond laser pulses have recently emerged as alternative
sources of THz radiation [Cook and Hochstrasser (2000); Kress et al. (2004); Bartel et al.
(2005); Xie et al. (2006); Kim et al. (2007); Karpowicz et al. (2008); Dai et al. (2009);
Klarskov et al. (2013)]. A formal introduction to the general concept and working principles
of OR, photoconductive sources, and air plasma generation are provided in the following

sections.

2.2.1 THz pulse generation by photoconductive switch

Photoconductive switches based on semi-insulating semiconductor substrates have been used
to generate and coherently detect THz electromagnetic radiation. THz pulses can be ra-
diated from accelerated photocarriers generated upon illuminating the surface of a biased
semi-insulating (SI) semiconductor surface with femtosecond optical pulses. The accelerated
photocarriers induce a transient current that in turn emits transient THz radiation into free

space.

Photoconductive switches based on semiconductors with high carrier mobility generally
achieve the best THz generation efficiency. Materials with high breakdown fields are also
advantageous because they allow large voltage biases to be applied, which is directly propor-
tional to the generated THz pulse energy. Meanwhile, laser pulses with short pulse duration
enable photocurrent switching on the subpicosecond time scale. Hence, direct band-gap
semiconductors, mainly semi-insulating GaAs wafers, are used as ultrafast photoconductive
switch devices, with a bias voltage supplied through metallic electrodes deposited on the

surface of the wafer. Also Si, and InP are used as photoconductive switches [Rice et al.
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Figure 2.1: Schematic diagram of photoconductive switch THz pulse source.

(1994)]. Generation of THz radiation using photoconductive switch is illustrated in Fig.
2.1, where an ultrashort laser pulse with a photon energy larger than the bandgap of the
material, hw> F, illuminates at the gap between the electrodes to generate electron-hole
pairs. Subsequently, the photoinduced photocarriers are accelerated along the field direc-
tion by a static bias field supplied along the metallic electrodes. The resulting accelerated
photocarriers (current transients) emit THz radiation in the far field. In the far field ap-
proximation, the THz electromagnetic radiation emitted from the photoconductive switch
is proportional to the first time derivative of the transient current, E(t) o< dJ(¢)/dt [S. Jha
(1995); Jepsen et al. (2011)]. Analytical analysis of the far field radiation is discussed in
Appendix A, Section A.1.

2.2.2 THz pulse generation by optical rectification

Optical rectification is a second order nonlinear optical process that involves the frequency
down conversion of femtosecond optical pulses to the THz spectral range in electrooptic me-
dia. The difference frequency mixing among the frequency components within the spectrum
of ultrashort optical excitation pulse that propagates through a noncentrosymmetric crys-

tal results in a rectified (dc) polarization component. The linear (L) and nonlinear (NL)



electric polarization P in materials is expanded as a power series of E as,

1 1 . 1
P =coxVE+ —coxPEE + —coxYEEE + —coxYEEEE + ... (2.1)
— 2 3! 4!
L
NL

where ¢ is the electric vacuum permeability, x!) is the second rank tensor of the linear

4.

susceptibility, and x®), x(3), x®) ... are higher order nonlinear susceptibilities. From Eq.

2.1 the term that is responsible for OR is the second-order nonlinear polarization term, y (2.

The idea behind OR is to generate a second order nonlinear polarization inside the
nonlinear crystals, which then emits electromagnetic radiation in the THz frequency. The

total induced nonlinear polarization by OR inside the emitter is expressed as,

“+oo
PO0) = 3 e 2 () / E, (@ + Q)E; (w)dw (2.2)

Jk -

where i, j, k are the x, y, z direction in the crystallographic axis of the nonlinear media.
The sum adds all the contributions of the induced nonlinear polarization at different points
and different generated frequencies associated with the optical rectification. Pg?;{Z(Q) is

the induced dc polarization through difference frequency mixing and is responsible for THz

radiation, XS,)C is the second-order nonlinear susceptibility tensor, and E;(w+ ) and Eg(w)
are the amplitude electric field components at two different spectral frequencies of the fem-
tosecond laser pulse. The fundamental electromagnetic wave equation for generation and

propagation of THz waves derived from Maxwell’s equations is expressed as,

n?(Q)0°E _ 1 9*P?

VZE — - = -
c2  Ot? €c: Ot?

(2.3)

where n?(Q2) is the refractive index of the medium at a newly generated THz frequency.
Detailed derivation of optical rectification mechanism of THz pulse radiation in nonlinear
crystal is described in Appendix A section A.2 (or Chapter 2 of my MSc thesis [Ayesheshim
(2009)] and [(Ganichev and Prettl, 2006, Chp:6)]). Also, THz pulse generation through
difference frequency mixing is possible by exciting the electromagnetic and phonon-polariton
modes in ferroelectric crystals like LiTaOs and LiNbOgs. Phonon-polaritons in the THz
frequency range can be generated when an ultrashort optical pulse is focused onto such
crystals through impulsive stimulated Raman scattering and difference frequency mixing.
The detailed analysis of ferroelectric oxide crystals as a THz pulse radiation source through

difference frequency mixing (OR) is given in Chapter 5.

Figure 2.2 illustrates generation of THz pulses by OR. An intense femtosecond optical

pump pulse illuminates a non-centrosymetric crystal and induces a nonlinear rectified po-
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Figure 2.2: Generation of a terahertz pulse by optical rectification in ZnTe. The
incident ultrafast optical pulse induces a nonlinear polarization P in the ZnTe crys-

tal.

larization P via difference frequency mixing and the induced polarization acts as a source
of THz radiation. In collinear phase matching, the optical pulse and the generated THz
radiation co-propagate in the same direction inside the crystal. As the optical pulse moves
through the crystal, the field components of the generated THz radiation superimpose con-

structively and yields optimal THz generation efficiency.

In optical rectification, a pump laser pulse induces a nonlinear polarization proportional
to its intensity envelope [Wahlstrand and Merlin (2003)]. The nonlinear response of optical
materials to femtosecond laser excitation gives rise to exchange of energy between radiation
fields of different frequencies [(Ganichev and Prettl, 2006, Chp:6)]. During the exchange,
conservation of photon energy as well as conservation of momentum should be fulfilled. The
efficiency of this technique is highly limited by the collinear phase-matching condition of the
group velocity of the optical pulses (v§,) with the phase velocity of THz pulse vﬁ’f}lz inside
the generating crystal. That is, the optical group velocity must be equal to the phase velocity
of the generated THz radiation to achieve collinear phase matching. The requirement of
this condition is conveniently fulfilled using a collinear geometry in a Zincblende crystal of
ZnTe around 800 nm pump wavelength [Hu et al. (1990); Nahata et al. (1996); Blanchard
et al. (2007)] and around 1 pm in GaP [Chang et al. (2006)].

The achievable THz temporal shape and bandwidth are controlled by both the bandwidth
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of the excitation laser pulse, the phase-matching condition [Jepsen et al. (2011); Ulbricht
et al. (2011)] and the absorption of the nonlinear material. THz radiation emitters via
difference frequency mixing are listed in Ref. [Reimann (2007)] and [Ulbricht et al. (2011)],
and these include, ZnTe, GaAs, GaP, InP, GaSe, CdTe, CdZnTe, ZnGeP,, LiNbO3, LilOg,
LiTaOj3, SiO3, and DAST. Among these, ZnTe for 0 - 3 THz range, GaP for 2 - 7 THgz,
and GaSe for 8 - 40 THz (which can go up to 100 THz by tilting the crystal with a short
enough pump pulse) are widely used materials for difference frequency generation through
collinear phase matching [Ulbricht et al. (2011)], and LiNbOg3 can be used for high power THz
pulse generation via non-collinear setups [Hebling et al. (2002)]. Both photoconductive and
nonlinear electrooptic source are often a challenge for broadband detection due to a limited
bandwidth, as mentioned above. In order to completely exploit the THz frequency range
for potential applications, ultrabroad bandwidth and scalable THz sources are required. Air
plasma induced by intense femtosencod laser pulses has an ability to generate and detect
broadband Ho et al. (2010) THz pulses through a third-order nonlinear x(3) optical processes
Bartel et al. (2005). Unlike photoconductive sources and electrooptic crystals the spectral
range is not limited by phonon absorption and dispersion, rather it’s only limited by the
optical pulse duration. Such that a full bandwidth coverage from 0.3 to 30 THz [Karpowicz
et al. (2008)] is able to be detected in this technique.

2.2.3 THz radiation in Air Plasma

THz waves are generated in gases during the gas ionization processes induced by mixing
of the fundamental femtosecond pulses with 800 nm in wavelength and its second har-
monic (SH) laser pulses (400 nm) [Cook and Hochstrasser (2000); Kress et al. (2004); Bartel
et al. (2005); Xie et al. (2006); Kim et al. (2007); Karpowicz et al. (2008); Dai et al. (2009);
Klarskov et al. (2013)]. It has emerged as one of the most promising broadband and scalable
THz sources. Using this method, the THz radiation originates from the transient photocur-
rent of ionizing electrons driven by the asymmetric electric fields of the superposition of
the fundamental and the SH waves [Kim et al. (2007)]. Also, the ponderomotive forces
present at the focus of the intense laser pulse, which creates a density difference between
electrons and ions. Consequently, the charge separation results in EM transient radiation
[Hamster et al. (1993); Yun-Shik (2009)] in the frequency range. However, much stronger
THz radiation contribution arising from frequency mixing of the fundamental optical wave
of frequency w with a second harmonic wave of frequency 2w. Figure 2.3 illustrates the
experimental geometry of THz generation from laser-induced plasma in gases. The second-
harmonic generation is usually carried out in a type-I S-barium borate (BBO) crystal as
shown in Fig. 2.3. The THz radiation intensity is maximized when the fundamental and

SH polarizations are parallel, while it is negligible when they are perpendicular. In this
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Figure 2.3: Schematic illustration of the experimental setup for generation of THz
radiation by mixing the fundamental and second-harmonic (SH) optical pulses.

Type-1 f-BBO crystal is introduced after the lens to generate a SH beam.

method, third-order nonlinearity is the dominant processes for THz radiation generation,
however, higher-order terms of nonlinearity are also considered at higher optical power. The
nonlinear polarization that contributes THz radiation from Eq. 2.1 are x(3) and higher or-
der nonlinearity terms. Higher order nonlinear processes are described by nonperturbative
analysis [Yun-Shik (2009)].

2.3 THz pulse detection

THz pulses can be detected either coherently in the time domain via processes analogous to
THz pulse generation, or incoherently using thermal detectors (such as bolometers and pyro-
electric detectors). In general, electromagnetic radiation detector performance is limited by
sensitivity and signal noise. However, coherent THz pulse detection methods provide high
signal-to-noise with ultrafast responsitivity. The most advanced ultrafast coherent detection
methods mainly rely on photoconductive sampling and electrooptic sampling techniques.
Coherent detection schemes measure the transient electric field of a THz pulse. Therefore,
with coherent detection techniques, both the actual electric field amplitude and phase infor-
mation of each spectral component in the pulse is resolved with high precision. This allows
for simultaneous extraction of both the real and imaginary components of the conductivity

of materials without the need for Kramers-Kronig analysis.

However, incoherent detectors only measure the intensity of the THz field and have
slow response time. Incoherent detectors are thermal detectors like liquid-helium cooled
bolometers, thermopiles, and pyroelectric detectors. These detectors can measure radiation
power over a wide spectral range depending on the coating used. Comparison of THz energy

measured using pyroelectric and thermal detectors are shown in Fig. 2.4. The fundamental
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Figure 2.4: THz power and energy detectors: (a) Pyroelectric detector (SPJ-D-
8 Spectrum Detector Inc.) used to measure the THz pulse energy at the sample
position. (b) Pyroelectric detector, LabMax-Top "Coherent Inc. laser power and
energy meter". (c) Thermopile detector, Molectron Detector Inc. PowerMax 500A
thermal detector. (d) Thermopile detector. The zero reading is due to the spectral

range of the coating used for the detector is not in the THz spectral range.
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difference between the different THz pulse energy reading seen by the detectors in Fig.
2.4 is due to the different coating used in the detectors. Thermal detectors respond to
the temperature variation due to THz absorption on the detector surface. In pyroelectric
detectors, the change in temperature modifies the built-in spontaneous electric polarization

of the detector ferroelectric crystal.

2.3.1 Photoconductive Sampling

THz pulse detection by photoconductive antenna depends on the current induced by a THz
electric field in a photoconductive gap, and the photocarriers are injected by the optical
probe pulse. The working principle of a photoconductive antenna as a THz detector is
identical to that of a THz emitter carried out through photoconductive sampling in an
antenna structure. The difference is that the instantaneous THz field replaces the DC field
for photoconductive sampling such that the THz detector antenna is unbiased, as a result

the electrodes are connected to a current amplifier rather than a power supply.

Semiconductor
substrate \

signal
THz pulse output
gating pulse
(800 nm) amplifier

Au-electrodes

Figure 2.5: Schematic representation of a photoconductive antenna THz pulse re-
ceiver. At is the time delay between the THz pulse and an optical detection beams,

that controlled by the optical delay stage to map-out the THz signal.

Figure 2.5 illustrates the unbiased photoconductive antenna THz pulse receiver. The

optical gate-pulse (probe pulse) delayed by At with respect to the THz pulse, interacts
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with the photoconductive switch in which the optical probe generates charge carriers and
the THz field drives them to form a transient photoinduced current. Here the incident
THz field amplitude provides a bias voltage to the photocurrent. The photocurrent lasts
for the carrier lifetime, which should be much shorter than the THz pulse duration for a
time-resolved waveform measurement [Yun-Shik (2009)]. As a result a PC antenna needs a
semiconductor with a very short recombination time such as LT-GaAs [Beard et al. (2001);
Cooke (2006)] to increase the bandwidth. The temporal electric field of the THz pulse, at
the moment of overlap with the optical probe pulse including both its amplitude and sign,
is determined from the photoinduced current. The complete THz pulse transient is then
retrieved by varying the time delay between the THz pulse that generates photocurrent in
the unbiased photoconductive switch and the optical probe pulses [Cai et al. (1998)]. The
induced photocurrent is directly proportional to the THz pulse field.

2.3.2 Free-Space Electro-Optic Sampling

Free-space electro-optic sampling (FSEOS) is a measurement of the amplitude and phase of
the electric field of a THz pulse in the time domain utilizing the linear Pockel’s effect [Wu
and Zhang (1995)]. The Pockel’s effect is the change of the refractive index of an electro-
optic medium in proportion to the applied electric field. In FSEOS techniques, the Pockel’s
effect produces birefringence (changes the refractive index along one polarization axis) in a
detection crystal subjected to a THz electric field that in turn modifies the polarization of
the probe beam traveling through the crystal. THz field induced birefringence in a nonlinear
optical medium is proportional to the applied THz field amplitude [Yun-Shik (2009); Jepsen
et al. (2011); Ayesheshim (2009)].

In FSEOS, the phase mismatch between the optical sampling pulse and THz pulse inside
the detection crystal limits the efficiency of free-space electro-optic sampling. Hence, electro-
optic crystals that fulfill velocity matching near 800 nm, high transparency at optical and
THz frequencies, and large EO coefficient are required for efficient EO sampling [Yun-Shik
(2009)]. Similar to OR, ZnTe crystal is the most common used for EO sampling due to its
large EO coefficient (ryo = d14 = 4 x 1072m/V) and collinear phase matching (refer Table
5.1 in Chapter 5).

Figure 2.6 illustrates a typical FSEOS setup for measuring THz field-induced birefrin-
gence in electro-optic crystals. The THz pulse and the optical sampling beams are made
to coincide and propagate collinearly in the electrooptic detection system. Depending on
the THz field strength, a phase modulation is induced inside ZnTe when the THz pulse
co-propagates with a sampling beam, see Fig. 2.6. In our high power setup, a piece of ZnTe
crystal with thickness about 500 pm orientated along [110], is used for detection of a THz
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Figure 2.6: Schematic diagram of free space electro-optic detection of THz pulses.
Evolution of the polarization of probe beam is shown before and after the ZnTe, \/4
plate, and Wollaston prism. The THz modulation is displayed on the oscilloscope

that directly connected to the two photodiodes via 50 2 SMA cable.
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[110]

Figure 2.7: Schematic of ZnTe crystal orientation and polarization orientation of
probe and THz fields for maximum field induced birefringence. THz pulse and
optical probe beams are co-propagated through a thin undoped [110]-oriented ZnTe

crystal with field polarizations parallel to [110] direction of the crystal.

beam using free space electro-optic sampling. The balanced photodiodes denoted by A and
B, as shown in Fig. 2.6, measure the intensity of the two beams split by the Wollaston
polarizer (WP). Subsequently, an EO signal (the intensity difference detected by the bal-
anced photodetector (BPD)) is collected with a lock-in amplifier phase-locked to an optical
chopper which modulates the THz generation beam. The sine of the angle of polarization
rotation, €, is directly proportional to electrooptic signal amplitude modulation measured

by the balanced photoconductive diodes as,

Ia—1Ip

i Y 24
T 1n sin @ (2.4)

where I4 and Ip are the intensity measured by photodetector A and B, respectively.

THz pulse detection at low THz fields creates a linear optical pulse polarization mod-
ulation. However, strong THz fields create over rotation of the optical pulse polarization
in the detection crystal. Hence, attenuation of THz pulse intensity with a combination of
Si-wafers or wire grid polarizers is essential to keep the photodiode detection scheme in

the linear regime, where sin() ~ 6. Figure 2.8 illustrates a typical THz pulse measured
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using FEOS after the THz field is attenuated using two Si-wafers to prevent over-rotation
that decreases the amplitude of the measured EO signal. The linear electro-optic THz pulse
modulation effect inside the nonlinear detector crystal leads to a polarization rotation of the
optical beam. When this optical beam propagates through the rest of the FSEO detection
units, a phase retardation between the two optical probe beam components are measured
by the balanced photodiode. The strength of the THz field is directly proportional to the
phase retardation (modulation) measured by the photodiodes, and it has a form,

IA — IB 2w

2 "Z —sinf="niry Erg.L 2.5

IA T IB Sin /\ 7107“41 THz ( )
where 147 = 4.04x1072 m/V is the linear electrooptic coefficient for ZnTe, ny = 2.85 is

the index of ZnTe at THz frequencies, L is the thickness of the electrooptic crystal and A =

800 nm is the wavelength of the optical pump beam. Small modulation E;E is preferred
to maintain linearity in the electro-optic detection system. Without the THz pulse, the
linear polarized optical sampling beam travels through the detection, ZnTe crystal without
any modification of the polarization condition. Therefore, the polarization is changed to
circular by a A/4-wave plate placed after the ZnTe detector. The beam splits into two equal
amplitude orthogonal components by a Wollaston prism and guided to balanced photodiode
detectors A and B that are connected to an oscilloscope or lock-in amplifier, as shown in
Fig. 2.6. The THz field modulation reading by lock-in/oscilloscope, that is the difference
in voltage signal measured from the two photodiodes becomes zero. However, when a
linearly polarized probe and THz pulse co-propagate through the detection crystal, the
THz field induced birefringence tilts the polarization of the probe pulse by a certain angle

0 proportional to the strength of the field given by Eq. 2.5.

Consequently, the probe polarization evolves to elliptical polarization after the \/4-wave
plate and the balanced photodiode A and B measures different amplitude levels of the EO
signal. The electrooptic signal modulation measured by the lock-in/oscilloscope is directly

proportional to the electric field of the THz pulse (see Eq. 2.5).

In the majority of applications utilizing THz pulses generated from both photoconductive
switches and OR sources, low energy pulses to drive and probe material responses without
perturbation. For example, time-resolved spectroscopy employs a non-contact probe of
sample properties to detect and monitor conductivity using weak THz probe pulses, charac-
terization of transient carrier dynamics in semiconductors [Beard et al. (2000); Ganichev and
Prettl (2006); Dexheimer (2008); Yun-Shik (2009)], organic crystals [Hegmann et al. (2002)],
and semiconductor nanocrystals [Cooke et al. (2006); Titova et al. (2011)] in the THz fre-
quency range. Also, THz intensities generated from transient currents and OR sources have
been insufficient to demonstrate sub-picosecond nonlinear THz processes of materials for the

last two decades. Moreover, in the THz region, spectroscopic studies have been restricted
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Figure 2.8: THz waveform measured after attenuating the THz energy using a two
Si-wafers separated by 35 mm placed on the collimated propagation of the THz
beam. The main pulse represented by 2 is followed by a series of reflected pulses
as depicted in the figure. The pulses represented by 1 and 2 are pre and main
pulses, respectively, while those pulses denoted by 3-6 are due to the multi-reflection

between the two Si-wafers. The phase delay between the successive pulses is 11 ps.
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to narrow frequency ranges [0.1 - 3 THz] and to the exploration of linear THz effects in
materials. The main impediment to broadband THz spectroscopy lies in the limitations on
broadband sources. Therefore, the study of THz nonlinear optics, spectroscopy, and other
applications were hampered by the absence of efficient, intense, table-top sources. As a
result, there is a considerable interest in the development of new sources of ultrashort high-
field THz pulses to study the properties of materials under high-field conditions in the THz
regime. I believe that ultrafast nonlinear THz dynamics research in matter is going to be the
future prospect of this technology. Therefore, the use of ultrashort THz pulses for ultrafast

nonlinear THz dynamics studies requires high-power with high peak field amplitudes.

2.4 Intense THz pulse generation

High THz electric-field strength as a pump is desirable to drive nonlinear processes in mate-
rials, allowing studies of charge carriers and low-energy excitations in the nonlinear regime
[Ulbricht et al. (2011)]. Table top intense THz pulses with peak amplitudes beyond several
hundredths of kV/cm can be achieved by high-intensity femtosecond laser sources com-
bined with large-aperture emitters [Blanchard et al. (2007)], tilted-pulse-front excitation in
LiNbOg3 [Hebling et al. (2002); Yeh et al. (2007); Hoffmann and Fulop (2011); Hirori et al.
(2011); Blanchard et al. (2014)], and four wave mixing in air-plasma [Cook and Hochstrasser
(2000); Bartel et al. (2005); Kim et al. (2008)]. Several improvements have been made on
the former two most efficient table-top-high power THz pulse generation techniques [Blan-
chard et al. (2007)]. With photoconductive switches, improvements made to scale up the
THz emissions were made by optimizing antenna structures, increasing electrode separation
gaps, increasing the bias field and the optical excitation fluence. For example, [Budiarto
et al. (1996)] biased the electrodes with a pulsed voltage of 45 kV and illuminated with 150
fs Ti:sapphire laser pulse energy of 0.5 mJ at 1 kHz repetition rate. The highest THz energy
achieved from large-aperture photoconductive THz sources was 0.8 pJ by illuminating the
photoconductive switch with 120 fs ultrashort laser pulses at 10 Hz repetition rate [You
et al. (1993)]. More recently, [Ropagnol et al. (2013)] reported a THz pulse energy of 3.6
uJ with peak THz field of 143 kV /cm from using an interdigitated ZnSe large aperture
photoconductive antenna. From large scale facilities with free-electron lasers (synchrotron),
up to 100 pJ THz pulse energy can be generated [Shen et al. (2007)]. However, these large

facilities are not easily accessible.

In addition to high power sources, new broadband sources are of interest to fully exploit
the entire THz range for THz time domain spectroscopy. Recently, a photo-induced air
plasma THz generation and detection technique that provides a broadband THz spectrum
with high peak field strength has emerged [Bartel et al. (2005); Xie et al. (2006); Ho et al.
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(2010)]. Basic techniques of air plasma-based THz pulse generation is presented in chapter
2 section 2.2.3. However, EO crystals remained attractive for the development of extreme
THz sources through the improvement of OR techniques due to their simplicity and their

broad range of applications.

2.4.1 Intense THz pulse generation by OR

From optical rectification sources in a large aperture 75 mm in diameter ZnTe crystal, a
single-cycle THz pulses with 1.5 1J energy and an energy conversion efficiency of 3.1x107°
have been generated [Blanchard et al. (2007)]. Tilted-pulse-front OR [Yeh et al. (2007);
Stepanov et al. (2008); Hirori et al. (2011)], have overcome the limitations that hinder
achievement of intense THz pulses and boosted the ultrafast nonlinear THz experiments to
a new research frontier in a relatively unexplored spectral range at high intensity of THz

field excitations.

The most important optical parameters that enhance the efficiency of THz pulse gen-
eration by OR is a large effective nonlinear coefficient (d.ss), small THz absorption, and
good velocity matching (phase-matching) between the group velocity of the optical pump
and the THz phase velocity [Hebling et al. (2008); Fulop et al. (2010)]. In a collinear phase
matched optical rectification scheme of THz generation, the experimental setup is straight
forward in which a femtosecond laser pulse excites an electro-optic crystals such as ZnTe and
the emitted THz pulse is detected via electro optic sampling technique as discussed before.
However, multi-photon absorption leads to saturation of the THz pulse generation efficiency
in ZnTe crystals. An alternative candidate of efficient THz pulse generation using nonlinear
processes is a large nonlinear electrooptic coefficient crystal, e.g. LiNbOs [Hebling et al.
(2002)] and using higher fluences of the optical excitation pulse. Unlike ZnTe, in LiNbOs5,
collinear phase matched optical rectification is impossible due to a large refractive index
mismatch between THz and 800 nm pulses. As a result, phase matching of the THz and
optical pulse can only be achieved using a pulse-front-tilt geometry [Hebling et al. (2002)].

The details and improved version of this setup is presented in Chapter 5.
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CHAPTER 3

Ultrafast nonlinear THz dynamics

"Physics would be dull and life most unfulfilling if all physical phenomena around us were
linear. Fortunately, we are living in a nonlinear world. While linearization beautifies Physics,

nonlinearity provides excitement in physics" Principles of Nonlinear Optics-Y. R. Shen.

3.1 Introduction

Ever since the advent of the laser in 1960 at the Hughes Research Laboratory in California
[Maiman (1960)], researchers have been able to investigate the optical material response to
light at higher intensity than ever before. Soon after, the generation of optical harmonics
by [Franken et al. (1961)] in quartz crystals, not seen with ordinary light, marked the be-
ginning of the field of nonlinear optics. Since then, numerous nonlinear optical experiments
have been carried out that offer a host of fascinating phenomenon which have enhanced
our understanding of fundamental light-matter interactions and stimulated a revolutionary
change in optics technology. The immediate impact of such physical phenomena in semi-
conductors, due to the properties of electrons in the conduction band and their dynamic
responses to light, has enabled us to manufacture high performance novel modern optic and

optoelectronic devices.

Nonlinear optical phenomenon of a medium, through which light is propagating, is de-
scribed in terms of the relationship between the incident electric field, E(r,t), and the
induced time varying electronic polarization, P(r,¢). The induced time varying polarization
can act as a source of new electromagnetic radiation with frequency components not present
in the incident radiation field. The interaction is in the regime of linear optics if the relation
of the polarization to the applied field is linear, i.e., P(t) = eox* (¢)E(t). This happens for
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low intensity excitation. On the other hand, high intensity interaction is characterized by a
nonlinear relation between P and E, when the magnitude of incident field is comparable to

interatomic electric fields!.

Investigating the nonlinear interactions of THz fields in semiconductors provides unique
opportunities to extend our fundamental understanding of high field carrier transport dy-
namics in materials over the entire spectral range. The study of nonlinear THz dynamics
due to the interaction of intense THz pulses with matter is relatively new [Gaal et al. (20<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>