
Energy Profiles of Java Collections Classes

Samir Hasan
Computer Science and
Software Engineering

Auburn University
szh0064@auburn.edu

Zachary King
Computer Science and
Software Engineering

Auburn University
zok0001@auburn.edu

Munawar Hafiz
Computer Science and
Software Engineering

Auburn University
munawar@auburn.edu

Mohammed Sayagh
MCIS

Polytechnique Montreal
mohammed.sayagh@polymtl.ca

Bram Adams
MCIS

Polytechnique Montreal
bram.adams@polymtl.ca

Abram Hindle
Dept. Of Computing Science

University of Alberta
abram.hindle@ualberta.ca

ABSTRACT
We created detailed profiles of the energy consumed by com-
mon operations done on Java List, Map, and Set abstrac-
tions. The results show that the alternative data types for
these abstractions differ significantly in terms of energy con-
sumption depending on the operations. For example, an Ar-
rayList consumes less energy than a LinkedList if items are
inserted at the middle or at the end, but consumes more
energy than a LinkedList if items are inserted at the start
of the list. To explain the results, we explored the memory
usage and the bytecode executed during an operation. Ex-
pensive computation tasks in the analyzed bytecode traces
appeared to have an energy impact, but memory usage did
not contribute. We evaluated our profiles by using them to
selectively replace Collections types used in six applications
and libraries. We found that choosing the wrong Collec-
tions type, as indicated by our profiles, can cost even 300%
more energy than the most efficient choice. Our work shows
that the usage context of a data structure and our measured
energy profiles can be used to decide between alternative
Collections implementations.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—complexity mea-
sures, performance measures

Keywords
Energy Profile, Collections, API, Java

1. INTRODUCTION
Limiting energy consumption is an emerging concern in

software research [8, 9, 22, 28, 30, 35, 39, 41, 42]. The scale of
data centers and the limited battery lifetime of ubiquitous
mobile devices have forced the owners and makers of these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ICSE ’16, May 14-22, 2016, Austin, TX, USA
c© 2016 ACM. ISBN 978-1-4503-3900-1/16/05. . . $15.00

DOI: http://dx.doi.org/10.1145/2884781.2884869

systems to monitor and budget for energy at all fronts—
software included. Although there is a growing need for de-
velopers to optimize the energy-efficiency of their software,
they are typically unaware of how to do this [34,50].

Researchers have recently started focusing on autotuning
the energy consumption inside software to optimize energy-
efficiency [8, 9, 13, 14, 30]. Götz and colleagues [13, 14] con-
tributed the initial work following the autotuning optimiza-
tion approaches in performance improvement (e.g., [37]).
Bunse and colleagues [8, 9] focused on adapting systems
at runtime to use the most energy-efficient sorting algo-
rithm. In recent work, Manotas and colleagues [30] designed
a tool for autotuning Java applications by selecting the most
energy-efficient implementations for Collections APIs.

Another approach to optimize energy-efficiency is to in-
form developers about the energy consequences of their high-
level coding decisions, specifically to find alternative coding
idioms. Researchers have explored the energy impact of de-
sign patterns [10, 29, 40] and refactoring [35, 41]. However,
they were not able to provide specific guidelines, perhaps
because the energy footprints of these coding decisions were
too small. Manotas and colleagues [30] achieved significant
energy saving only by replacing Java Collections classes, but
they were not able to explain what is contributing to the im-
provement. Instead, they followed a search-based software
engineering approach to find the alternative that produces
the most energy-efficient result.

Our work focuses on creating energy profiles of popu-
lar Java Collections classes in order to guide developers.
Specifically, we created energy consumption profiles of com-
monly used API methods for variants of three Collections
datatypes: List, Map, and Set. Then, we investigated the
reasons behind the difference in energy profiles by consid-
ering memory usage and bytecode executed during an op-
eration. Finally, we explored how the Collections instances
are used in real applications and how the usage impacts the
overall energy consumption. Using the per-method energy
profiles as building blocks, a developer can estimate the en-
ergy impact of each Collections instance and choose a more
efficient alternative, if available. An essential property is
that the profiles respect the constraints developers are tied
to, since developers choose a Collections class on purpose,
e.g., a List instead of a Set or a Map. Hence, proposing a
Set or a Map to swap a List is confusing as a guideline. This
is different from an autotuning approach that aggressively
swaps Collections classes based only on API match [30].

This paper presents profiles for Collections types chosen
from the Java Collections Framework [24], Apache Com-
mons Collections [2], and Trove [47]. We collected the en-
ergy usage data using the GreenMiner framework [21].

Our profiles indicate how the energy consumption of these
implementations varies with input sizes and data types. We
noticed that for smaller lists (size < 500), the energy con-
sumption differences are small, while the differences are more
prominent if there are many elements. We found that opera-
tions that contain expensive computation tasks in bytecode
traces appear to consume more energy. Surprisingly, mem-
ory usage did not seem to have an impact. In fact, a List
containing integer elements is more expensive than a List
containing objects; extra operations for auto-boxing con-
tribute, rather than the memory requirement of elements.

We evaluated our energy consumption profiles by modify-
ing the List classes in four open source Java libraries, one
Java application, and one Android application. The energy
measurement shows that choosing wrong Collections classes
can impact energy consumption by over 300% (perhaps an
extreme case), while choosing a “green” option can improve
energy consumption by as much as 38%.

Our results indicate that the differences in energy con-
sumption follow the trends suggested by our profiles. The
impact is large when large collections are created during ex-
ecution. This paper makes the following contributions:

• We describe a method in which the energy consumption
profiles are measured on coding idioms in isolation, and
are then used to provide guidance for choosing alterna-
tive coding idioms.

• We measure the energy profiles of various kinds of Col-
lections classes obtained from different sources, and also
profile energy consumption for varying input sizes and
element types (Section 4).

• We explored two possible alternatives to explain energy
consumption differences between operations (Section 5).

• We evaluate on real applications whether the alterna-
tive Collections classes can be swapped to predictably
improve or worsen energy consumption (Section 6).

Our results are encouraging, since energy consumption
profiles seem to have the potential to provide a developer
guidance about choosing among Java Collections. If energy
profiles of alternative coding idioms are available, develop-
ers can use them as a guideline to choose the “green” option
based on their coding context.

2. COLLECTIONS CLASSES IN OUR STUDY
Java Collections classes store group of objects and provide

APIs to access, modify, or iterate over the elements. Java
ships with the Java Collections Framework (JCF), which
provides reusable and convenient implementations of popu-
lar data structures and algorithms.

There are also many third-party implementations of simi-
lar structures. We studied two third-party implementations:
Apache Commons Collections (ACC) and Trove. From ACC,
we studied implementations that are alternative to those
already in JCF. The Trove collections only hold primitive
data types, since their goal is to reduce memory usage and
improve performance (Trove requires three times less heap
space than JCF implementations for larger collections [47]).

The Collections classes we studied are shown in Table 1.

Table 1: Profiled Collections Classes

TIntArrayList
TIntLinkedList TIntHashSetTIntIntHashMapTrove

HashedMap
LinkedMapTreeListApache Collections

Framework (ACC)
ListOrderedSet
MapBackedSet

HashSet
TreeSet
LinkedHashSet

ArrayList
LinkedList

HashMap
TreeMap

Java Collections
Framework (JCF)

SetMapListLibrary

We profiled the energy consumption of single API meth-
ods common across the implementations. More results and
profiles are available at the project webpage: https://sites.
google.com/site/collectionsenergy/.

3. ENERGY MEASUREMENT INFRASTR-
UCTURE SETUP

We used GreenMiner’s hardware infrastructure to mea-
sure the actual energy consumed in joules (J) by our test
programs. Each test was allowed to run to completion and
the energy consumed by each test was recorded.

3.1 The GreenMiner Infrastructure
GreenMiner [21] is a hardware/software continuous test-

ing suite. It instruments numerous devices, runs tests on
these devices, and measures the energy consumption and
power use of the entire device as the tests run. The Green-
Miner client is a Raspberry Pi that acts as a test-bed; it con-
trols an Android test device. The Pi executes tests on the
device, and collects the results from an Arduino board that
monitors the energy consumption of the test device. En-
ergy is measured via an INA219 energy measurement chip
that samples and aggregates measurements 500,000 times a
second. The test-bed records and uploads the INA219 ag-
gregate measurements to the GreenMiner webservice.

3.2 Measurement Process
To measure the effect of using different workloads on dif-

ferent collections, a basic Android app was created. This
test-app displays a blank screen and sits idle. The screen en-
ergy consumption is constant throughout the test [11]. The
test-app is a scaffold for jUnit tests to run the experiments.
Each unit test for the test-app is a separate experiment or
run. In each test, a Collections class was created and ini-
tialized, and a workload (insertion, iteration, etc.,) was run
against it. The energy consumed by the test was measured
and recorded with GreenMiner.

Each GreenMiner run executes unit tests for a specific use
case. For example, for the use case Insertions at the Begin-
ning of Lists, we wrote jUnit tests for the 5 list alternatives
(Table 1). In each test, N items were added to the beginning
of the list. We varied the input size N from 1 to 5000 (13
different sizes) and prepared tests for each of them. Thus,
for this use case, the test device ran 65 different tests (5
kinds of lists x 13 list sizes).

Each test, given all parameters, was run 20 times on Green-
Miner and the results were collected. We chose 20 measure-
ments per test to be able to measure a 95% confidence in-
terval and to have enough statistical power to distinguish
between different energy efficiencies of the different collec-
tions.

The reports were downloaded and collated, as they report
the energy consumed during each run and also the mean of

●●●●● ● ● ● ● ●
●

●

●

●●●●● ● ● ● ● ●
●

●

●

●●●●● ● ● ● ● ●
● ●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

●

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in List

(a) Insertion at beginning

●●●●● ● ● ● ● ● ● ● ●
●●●●● ● ● ● ● ● ● ● ●
●●●●● ●

●
●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

0
5

10
15

20
25 ●

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in List

(b) Insertion in middle

●●●●●
●

● ● ● ● ● ● ●
●●●●● ● ● ● ● ● ● ● ●●●●●● ● ● ● ● ● ● ● ●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

●

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in List

(c) Insertion at end

●●●●
●

●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

10 ●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in List

(d) Iteration

●●●●● ● ● ●
●

●
●

●
●

●●●●● ● ● ●
●

●
●

● ●

0 500 1250 2000 2750 3500 4250 5000
0

5
10

15
20

25
30

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in List

(e) Random access

Figure 1: Energy profiles for insertion (a) – (c), iteration (d) and random access (e) on List implementations.

20 runs. We prepared the energy consumption profiles by
plotting the means against the input size N.

There were, however, a few issues with this approach.
First, we needed to ensure that each unit test encounters
the same overhead. Second, since our code fragments were
small, their energy consumption could also be too small to
be observable. Finally, the actual energy consumed by a
test suite varies from device to device and the GreenMiner
system is attached to 4 different devices; thus we forced all
of the tests to run only on a single device. We took several
measures to deal with these issues.

Ensuring a Fixed Overhead.
We created a new instance of all tested collections inside

setUp(), irrespective of the one that is actually used for the
particular test. For instance, when inserting items into a
LinkedList, all the 5 list instances were first created through
the setUp() method, followed by the actual insertions.

Producing Observable Changes.
Inside a test method, we repeated the API invocation mul-

tiple times. For example, when inserting 50 items, there
were 20 runs of: (1) invoking setUp(); (2) inserting; (3) in-
voking tearDown(). All the unit tests were designed similarly.
Thus, the numbers on our graphs are an aggregate instead
of the performance of a single run. This produces an ob-
servable effect on the energy consumption of the test suite.

Ensuring Device Consistency.
We ran all our tests on a single device to remove inconsis-

tencies. All 4 devices in the GreenMiner system use phones
of the same model, but we chose to use one for all measure-

ments to minimize differences in device-specific performance.
Although each phone may report slightly different energies,
the important measure here is not the absolute energy but
rather the difference between two readings. As long as we
use a single device, we expect the differences to be consis-
tent.

4. ENERGY PROFILE RESULTS
We profiled the energy consumption of some of the com-

mon API methods provided by List, Map, and Set imple-
mentations, and recorded how this varies with input sizes.
Specifically, we asked six research questions.

RQ1. Which List implementation is the most energy effi-
cient for insertions, iteration, and random access?

RQ2. Which Map implementation is the most energy effi-
cient for insertions, iteration, and random access?

RQ3. Which Set implementation is the most energy effi-
cient for insertions, iteration, and random access?

RQ4. How does the input size affect the energy consump-
tion of the collections?

RQ5. How does storing different elements affect the energy
consumption of the collections?

RQ6. How can we use the profiles to choose the most energy
efficient implementation of List, Map and Set?

RQ1, RQ2, and RQ3 compare the energy profiles created
for List, Map, and Set implementations; RQ4 and RQ5 are
about measuring the impact of input sizes and data types;
RQ6 is about using the results as a guideline for developers.

●●●●● ● ● ●
●

●

●

●

●

●●●●
● ● ● ●

●

● ●

●
●

0 500 1250 2000 2750 3500 4250 5000

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5 ●

●

HashMap (JCF)
LinkedHashMap (JCF)
TreeMap (JCF)
TIntIntHashMap (Trove)
HashedMap (ACC)
LinkedMap (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Map

(a) Insertion

●●●●
●

●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8 ●

●

HashMap (JCF)
LinkedHashMap (JCF)
TreeMap (JCF)
TIntIntHashMap (Trove)
HashedMap (ACC)
LinkedMap (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Map

(b) Iteration

●●●●
●

●
●

●
●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

●

●

HashMap (JCF)
LinkedHashMap (JCF)
TreeMap (JCF)
TIntIntHashMap (Trove)
HashedMap (ACC)
LinkedMap (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Map

(c) Random Query

Figure 2: Energy profiles for insertion, iteration, and query on random keys in Map implementations.

RQ1. Which List implementation is the most
energy efficient for insertions, iteration, and ran-
dom access?
Key Result: For insertions at the beginning, JCF’s
LinkedList consumes the least energy, followed by Trove’s
LinkedList. For insertions at the middle and at the end,
Trove’s ArrayList is the most energy efficient, followed by
JCF’s ArrayList. Energy does not vary when lists expand.

Insertion
Figures 1(a), 1(b), and 1(c) demonstrate the energy con-
sumption trends for insertion tests for List implementations.

For small sizes (1–500), the difference in energy consump-
tion for insertions at the beginning of the list is evident only
for TreeList. Even at size 250, TreeList consumes ≈ 31%
more energy than ArrayList. For larger sizes, LinkedList
is more efficient. At input size of 5,000, LinkedList con-
sumes ≈ 13% less energy than TIntLinkedList, the next
best performer. Compared to the worst performing TreeL-
ist, LinkedList consumes ≈ 79% less energy.

When inserting items at the middle, an interesting pat-
tern emerges between the different list implementations. Ar-
rayList and TIntArrayList have very similar, and quite ef-
ficient, energy performance. Next, TreeList and LinkedList
both have similar, yet not quite as efficient, performance.
And finally, TIntLinkedList has the worst performance by
far. At input size of 500, ArrayList and TIntArrayList per-
form ≈ 48% better than TIntLinkedList, a large difference
that increases to ≈ 93% at size 5,000. There is a substantial
amount of extra energy required by TreeList, LinkedList,
and TIntLinkedList to perform insertion at the middle as
opposed to at the beginning.

For insertions at the end of the list, the energy differ-
ences are not obvious for input sizes below 1,000 for all
lists, with the exception of TreeList, which has a notice-
able degradation of ≈ 32% for size 250 (Figure 1(c)). For
larger sizes, however, the differences become more evident.
TIntArrayList saves ≈ 25% energy compared to ArrayList
and ≈ 87% when compared to TreeList, the next best and
worst energy rated lists, respectively.

We also gathered similar profiles for the case when Ar-
rayList and TIntArrayList are not set to a predefined ca-
pacity during creation. Uninitialized array lists need to
reallocate memory when current capacity is not sufficient.
Due to this dynamic resizing, we expected a difference in
energy consumption trends compared to the previous initial-

ized version. However, there was no difference in the energy
consumption for the uninitialized version, especially when
adding items at the middle and at the end of the list. Even
with dynamic expansion, ArrayList and TIntArrayList are
still more energy efficient than others. Therefore, initializ-
ing an ArrayList variant with a capacity is not necessary—it
will perform well anyway.

Iteration
Figure 1(d) shows the energy consumption profile for iter-
ation with an iterator. For small sizes, iteration over an
ArrayList is slightly more energy efficient—while for 5,000
items, it has a maximum energy savings of ≈ 4%. The re-
sults show that there is not much difference when comparing
energy consumption of iteration over the lists.

Random Access
When accessed through randomly generated indices, we did
not observe any major differences in energy consumption for
list sizes smaller than 500 as shown in Figure 1(e). For larger
input, ArrayList, TIntArrayList and TreeList were the most
energy efficient, producing a savings of ≈ 40% compared to
LinkedList and ≈ 77% when compared to TIntLinkedList.

RQ2. Which Map implementation is the most
energy efficient for insertions, iteration, and ran-
dom access?
Key Result: HashMap is the most energy efficient alter-
native for insertions and random queries. If insertion order
should be preserved, ACC’s LinkedMap is slightly better on
insertions than JCF’s LinkedHashMap. TreeMap is energy
hungry and should be avoided unless explicitly needed.

Insertion
Figure 2(a) shows the energy consumed by inserting key-
value pairs in Map implementations. Unlike List implemen-
tations, there are some variations in energy consumption,
even for smaller maps. For sizes up to 250 items, all except
TreeMap perform equally well. TreeMap energy consump-
tion increases drastically with larger input size. For 5,000
insertions, it is ≈ 73% more expensive than HashMap and
≈ 88% more expensive than LinkedHashMap.

All other maps perform equally well for sizes up to 1,000.
Interestingly, HashMap performs consistently better than
all other maps until size 5,000, where LinkedHashMap has
a drop in energy consumption and saves ≈ 8% energy over
HashMap. For most of the cases, Trove’s TIntIntHashMap

●●●●● ● ● ●
●

●

●

●

●

●●●●● ● ●
●

●
●

●

● ●

0 500 1250 2000 2750 3500 4250 5000

1.
0

1.
5

2.
0

2.
5

3.
0

●

●

HashSet (JCF)
LinkedHashSet (JCF)
TreeSet (JCF)
TIntHashSet (Trove)
MapBackedSet (ACC)
ListOrderedSet (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Set

(a) Insertion

●●●●
●

●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

10 ●

●

HashSet (JCF)
LinkedHashSet (JCF)
TreeSet (JCF)
TIntHashSet (Trove)
MapBackedSet (ACC)
ListOrderedSet (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Set

(b) Iteration

●●●●
●

●
●

●

●

●

●

●

●

●●●●
●

●
●

●

●

●

●

●

●

0 500 1250 2000 2750 3500 4250 5000

2
4

6
8

10

●

●

HashSet (JCF)
LinkedHashSet (JCF)
TreeSet (JCF)
TIntHashSet (Trove)
MapBackedSet (ACC)
ListOrderedSet (ACC)

M
ea

n
Jo

ul
es

 (
J)

Elements in Set

(c) Random Query

Figure 3: Energy profiles for insertion, iteration, and query on random keys in Set implementations.

consumes more energy than HashMap. This was surprising,
since the Trove implementation with primitive data types
did not improve upon JCF HashMap.

Iteration
Similar to our findings for lists, the iteration performance
is almost the same for all implementations (Figure 2(b)).
For larger lists, JCF’s HashMap requires a little less energy,
while ACC’s HashedMap ended up being the most expen-
sive. However, the differences are very small for large lists,
and even more so for smaller ones.

Random Query
The random query performance shows an interesting trend,
as shown in Figure 2(c). For sizes up to 500, TreeMap is con-
sistently one of the two most energy efficient maps. However,
for larger lists, TreeMap queries become the most expensive,
while HashMap consumes the least energy—a minimum sav-
ings of ≈ 2% compared to LinkedHashMap, and a savings
of ≈ 12% when compared to TreeMap.

RQ3. Which Set implementation is the most en-
ergy efficient for insertions, iteration, and ran-
dom access?
Key Result: HashSet is the most energy efficient alterna-
tive for insertions and random queries. ACC’s ListOrdered-
Set is the most energy efficient Set for iterations, though
not by a large margin. TreeSet is energy hungry and should
be avoided unless explicitly needed.

Insertion
Figure 3(a) shows the energy profiles for Set insertions. For
input sizes less than 750, all implementations are quite close,
but for a larger size, noticeable differences arise.

Trove’s TIntHashSet is consistently the most efficient, sav-
ing ≈ 13% energy over HashSet and ≈ 49% over TreeSet.

Iteration
The iteration performance is similar for all implementations
(Figure 3(b))—there are no apparent differences for sizes up
to 1,000. For large lists, ACC’s ListOrderedSet is the most
energy efficient, with a maximum energy saving of ≈ 4%.
Again, there are often larger energy savings between smaller
input sizes than there are between larger ones; for example,
at size 1,500 ACC’s ListOrderedSet has an ≈ 27% savings
over JCF’s LinkedHashSet, whereas the savings between the
same implementations at size 5,000 are only a mere ≈ 2%.

Random Query
Figure 3(c) shows the energy profiles for random queries.
There are many energy spikes throughout the various input
sizes. Interestingly, the largest differences between imple-
mentations are in the medium size inputs, between sizes
1,000 and 3,000. Another notable trend is that TreeSet
starts out in the smaller inputs to be one of the most efficient
implementations for smaller sizes, then for larger sizes has
an ≈ 13% degradation from the optimal performing Hash-
Set. However, at size 50, TreeSet actually saves ≈ 4% over
HashSet.

RQ4. How does the input size affect the energy
consumption of the collections?

Key Result: For input sizes 1–500, all alternative imple-
mentations of List, Map, and Set perform equally well.

To determine the statistical significance of energy differ-
ences, we determined for each alternative collection and each
size the 95% confidence intervals of the energy consumption
measurements. For each size, we then compared the con-
fidence intervals of each alternative collection in terms of
overlap. Non-overlapping intervals indicate a significant dif-
ference between the corresponding collection types.

We found that smaller Collections with less than 500 el-
ements do not show a significant difference in energy con-
sumption between alternative implementations. The differ-
ences get larger and become significant as we deal with more
elements. For example, for list insertions at the beginning,
we compared ArrayList and LinkedList (among others) and
found that for a size of 250, the confidence intervals were
overlapping. However, for 500 elements, the intervals be-
came disjoint. After comparing all other implementations
in a similar way, we found the size 500 to be an appropriate
threshold across all Collections types.

RQ5. How does storing different elements af-
fect the energy consumption of the collections?

Key Result: Operations on primitive data types in lists
surprisingly consume more energy than inserting small ob-
ject types in a list.

When running List insertion and iteration tests on small
objects, we expected the energy consumption to be higher
than the lists containing primitive elements. Yet, the energy

Random
Access

Insertion
Iteration

TreeList

LinkedList

TIntArrayList

TIntLinkedList

At Beginning At Middle

ArrayList

At End

(a) List Matrix

QueryInsertion Iteration

TreeMap

LinkedMap

HashedMap

TIntIntHashMap

LinkedHashMap

HashMap

(b) Map Matrix

QueryInsertion Iteration

TreeSet

ListOrderedSet

MapBackedSet

TIntHashSet

LinkedHashSet

HashSet

(c) Set Matrix

1

2

3

4

6

5

Rank (best - worst):

Figure 4: Color map showing the rank of each List, Map and Set implementation per use case. Green identifies
an implementation as energy efficient, while red denotes it as energy hungry. Therefore, the greener the color,
the better.
profiles of integer runs were consistently higher than those
of the small objects. Figure 5 shows a scatterplot comparing
the energy consequences of a List of integers versus a List
of small objects; the results are shown for ArrayList and
LinkedList. Some inputs of the ArrayList are not shown
since they skew the graph. The majority of the points lie
below the line y=x, whereas we were expecting all points
to lie above it. For size 4,000, inserting an integer in the
beginning of a JCF LinkedList is ≈ 13% more expensive
than inserting a small object. The results are consistent
with other list operations. More details and graphs are on
the project webpage.

Since Java Generics do not support primitive types, the
integers are auto-boxed as Integer objects in order to be
held in the Collections. The lists have to add and remove
this wrapper at runtime. The results are likely due to this
behaviour.

RQ6. How can we use the profiles to choose the
most energy efficient implementation of List, Map
and Set?
Key Result: In general, TIntArrayList is the most energy
efficient list implementation, followed by ArrayList. For
maps, HashMap is the best, while for Sets, HashSet is the
most energy efficient, with TIntHashSet as a close second.

Above the minimum input size threshold of 500 items
(as mentioned in RQ4), we can use our profiles to choose
the most energy efficient implementation based on the way
the Collections classes are used. Figure 4 summarizes our
findings as choice matrices that can help in making these
decisions. Each color denotes a rank: green identifies the
most efficient implementation, while red indicates the worst
among the alternatives. In each table, a row with more green
in it is likely to be more energy conservative on average.

In general, TIntArrayList, HashMap and HashSet (not
shown) are the standout Collections implementations, fol-
lowed closely by ArrayList and TIntHashSet. Lists stored
as arrays are preferred in general. Linked list variants only
work better if they are required to behave like a stack, i.e.,
a datatype with items added and removed from the front.
Figure 4 may also help in finding the best Collections im-
plementation instead of the best library, since one can eas-
ily mix-and-match different implementations of different li-
braries. Choosing one collection from one of the libraries
does not lock developers into that library.

5. WHY THESE ENERGY DIFFERENCES?
We carried out further investigations to discover the key

factors that may explain the different energy consumption

●●●●●
●

●

●

●

●

0.9 1.2 1.5

0.
9

1.
2

1.
5

● ArrayList (JCF)
LinkedList (JCF)

M
ea

n
Jo

ul
es

 (
J)

 S
m

al
l O

bj
ec

ts

Mean Joules (J) Integers

Figure 5: Comparing insertion of small objects to
insertion of integers.

profiles. We explored two possible factors—(1) memory us-
age during API operations and (2) time-consuming bytecode
instructions executed during API operations. Here, we ex-
plain the differences in energy consumed during different
kinds of insertion operations (add() methods) on List imple-
mentations. Other Collections types and API methods are
covered on our project webpage.

5.1 Memory Usage
We recorded memory consumption for List instances be-

fore and after invoking the add() operation, while adding 500
items to the list. We chose 500, since RQ4 showed that Col-
lections with 500 or more items show significant differences
in energy consumption.

Figure 6 shows the resulting memory usage graph when
inserting at the beginning of the list. The graphs for inser-
tions at the middle and at the end of the list were almost
the same, which indicates that no matter how the items
are inserted into the list, the memory footprints are similar.
Yet, the energy profiles were different for the different in-
sertion approaches (Figures 1(a)–1(c)). Therefore, memory
consumption is not a (significant) driving factor behind the
differences in energy consumption.

5.2 Executed Dalvik Bytecodes
We generated bytecode traces during the execution of

an add() operation on two List instances (ArrayList and
LinkedList) and compared them. First, we used dexdump to
extract the application’s bytecode. Then, we instrumented
each line of the bytecode using the AndBug debugger tool,
which implements the Java Debug Wire Protocol (JDWP).
Upon execution, the tool prints out the executed bytecode
and the corresponding source line.

●● ● ●

●

●

●● ● ●

●

●

0 50 125 200 275 350 425 500

0
5

10
15

20
25

30

●

●

ArrayList (JCF)
LinkedList (JCF)
TIntArrayList (Trove)
TIntLinkedList (Trove)
TreeList (ACC)

M
em

or
y

U
sa

ge
 (

K
B

)

Elements in List

Figure 6: Memory usage of List implementations
during insertion at the beginning.

Comparing the traces, we identified two bytecodes that
may have an impact on the runtime (and therefore energy)
performance: iget-object and invoke-static. When ele-
ments are inserted in the middle, iget-object is executed
many more times than the other instructions. This is be-
cause LinkedList traverses half of the list to reach to the
middle and locate the position for the new item. The larger
the List becomes, the more traversals are needed. For exam-
ple, when the 500th element is inserted to a list, iget-object
is executed 63 times more than the next frequently occur-
ring instruction. This may explain why LinkedList consumes
more energy than ArrayList, as shown in the energy profile
(Figure 1(b)).

The impact of bytecodes are less obvious when elements
are inserted at the beginning or at the end. When in-
serting at the beginning, invoke-static dominates the ex-
ecution for an ArrayList (used to execute the expensive
System.arraycopy() method). This difference in workload is
probably why an ArrayList instance consumes more energy
than a LinkedList instance for insertions at the beginning,
as shown in our profiles. However, invoke-static is also ex-
ecuted while inserting elements at the end. In this case, its
impact is likely offset by many other bytecode instructions
only found in LinkedList execution traces (new-instance and
invoke-direct). Hence, this analysis is not enough to ex-
plain why ArrayList performs better in this context. This is
left as future work.

6. EVALUATION
The energy profiles compare the Collections classes for

each API method and suggest better alternatives (cf. RQ6).
However, when Collections instances are used in applica-
tions, multiple API methods are invoked on each object, de-
pending on the role of the object in the system and the load
of the system. Hence, we expect that the energy footprint of
each Collections object in an application is determined by a
combination of the energy impact of all invoked API meth-
ods. To analyze this, we ask two more research questions:

RQ7. Do the different Collections classes have an energy im-
pact in real applications compared to what we found
for similar collections in the profiles? How large is the
impact?

RQ8. Can we use the energy profiles to switch to an alter-
native collection and improve (or degrade) the energy
consumption of an application?

App

App + Test Suite

Inter-procedural
Program Analysis

Manual Analysis

Collections
Usage
Profile

Good
and

Bad Use

Bytecode

App + Test Suite

Modified
Application

Original Application Analysis Output

Source Code
Script

for Rewriting
Source Code

Source Code

Figure 7: Evaluation workflow.

To answer RQ7, we modified real applications to use al-
ternative Collections classes and measured the energy con-
sumed by the modified applications. Previous work has
demonstrated that Collections classes do have an impact [30].
We extend this state of the art by selectively (based on the
usage profile of each instance) modifying the Collections in-
stances using the energy profiles (RQ8): we create “good”
and “bad” versions of the original program when possible,
and compare their energy consumption using GreenMiner.

Using the methodology of Figure 7, we studied the en-
ergy consumption of four popular Java libraries—Google
Gson [15], Apache Commons Math [4], XStream [51], Apache
Commons Configuration [3]—, an open source email client,
K-9 Mail [26], and a Stock Exchange Trading Simulator ap-
plication. Each library came with a large test suite (16–137
KLOC). We analyzed the Collections instances used in the
code to create usage profiles, i.e., to determine which API
methods are being invoked and where. We wrote an inter-
procedural program analyzer based on WALA [48] that au-
tomatically analyzes program bytecode.

Our WALA analyzer detected three kinds of Collections
instances: (1) Collections instances declared as fields of a
class and used in multiple methods, (2) Collections instances
locally created inside methods and used in the same method,
and (3) Collections instances locally created inside methods,
but used in multiple methods since they are passed as a re-
turn value. The inter-procedural analysis uses call graphs
and control flow graphs created by WALA to collect usage
profiles for these instances. Currently, we do not support
the analysis of Collections instances when they are passed
as an argument to a method. Adding this would require an-
other inter-procedural analysis, but we did not find enough
such instances to justify the implementation. We manually
analyzed these remaining instances.

For each Collections instance found by WALA or our man-
ual analysis, we identified if it is used in an energy-appropriate
manner or a better alternative is available, based on simple
heuristics derived from RQ6. To create a “good” version, we
looked into the usage of Collections instances to see whether
swapping to another Collections class may save energy. For
example, our profiles suggest that ArrayList is more energy-
efficient than LinkedList when inserting items at the end of
the list or when iterating over the list (these two are the
most common List methods). So, if a LinkedList is used in
a program for these operations, our WALA program will de-
tect it and indicate that we can improve energy consumption
by replacing LinkedList with ArrayList.

Similarly, we prepared “bad” versions by going against our
profiles. For example, the profiles suggested that ArrayList
is more energy efficient than LinkedList for common list op-
erations. Instead of following this recommendation, a “bad”

version replaces ArrayList with LinkedList. We expected
this change to increase the energy consumption.

Next, we used a Python script to perform lexical anal-
ysis on the source code and transform the List instances
to alternatives that should improve (or degrade) the energy
consumption. A simple lexical analysis was sufficient, since
we swapped between alternative Collections instances with
(almost) the same API (similar to Manotas et al. [30]). Fur-
thermore, we chose to deal only with lists during our eval-
uation. There are two reasons behind this choice. First,
changing ArrayList to LinkedList (or vice-versa) is safe—
the code, if it compiles, behaves the same way irrespective of
the implementation. This may not be the case if we change
a HashMap to a TreeMap, since if the key object does not
have an appropriate compareTo() method defined, the maps
may behave differently. It is even more difficult to con-
vert a TreeMap to a HashMap, since the sorting behavior
of a TreeMap may be desired in a usage scenario. Second,
lists are more widely used than other collections such as
maps or sets (Gson: 60%, K-9 Mail: 57%, Apache Com-
mons Math: 56%, XStream: 50%, Apache Commons Con-
figuration: 53%, Stock Exchange Trading Simulator: 57%).
Therefore, the energy contribution from lists is probably
higher than that from other collections.

Eventually, we created four“bad”versions and three“good”
versions. For the first three libraries, the developers almost
exclusively used ArrayList whenever they needed a list data
structure and followed the common usage profile of adding
an item at the end of a list and/or iterating the list. Thus,
we found little scope to improve on the energy consumption
for these libraries. Instead, it was more interesting for those
three systems to demonstrate worse energy performance by
changing most of the ArrayList instances to LinkedList. In
K-9 Mail, we had comparatively more linked lists, so there
was a scope to make improvements. We therefore had both a
“good” and a “bad” version for it. We also made “good” ver-
sions of the Apache Commons Configuration library and the
Stock Exchange Trading Simulator application, since their
usage of lists could be optimized for energy consumption.

The next sections describe the results of our analyses for
the six applications. To address RQ7, we report the energy
impact when we used alternative Collections instances, while
for RQ8, we report the changes that we made (guided by our
profiles) to get a “good” or a “bad” version.

6.1 Google Gson
Google Gson is a serialization/deserialization library that

provides mechanisms to convert Java objects to JSON and
back [15]. We used version 2.1 for our study, consisting of
about 13 KLOC and a test suite of 16 KLOC. The Gson
API refers to most of the collection instances through Col-
lections interfaces, e.g., List, Map, and Set. The developer
chooses whether to use an ArrayList or LinkedList instance,
for example, where a List is required.

Changes Made. We found 53 ArrayList instances in the
codebase (Table 2). Only 4 of these instances are part of
the library code, while 49 are in the test suite. Our WALA
program discovered 4 instances on which end-insertions and
iterations were performed; modifying these to LinkedList in-
stances should be a “bad” change. We studied the rest of the
instances manually, and changed 47 instances to LinkedList
that had the same usage pattern.

Energy Impact. Table 2 shows the percentage of change
in energy consumption of the modified application. With
LinkedList, the energy consumption increases by 309%. There
are two factors contributing to this large increase. First, the
library performs 4 times slower when LinkedList instances
are used, which may cause more energy consumption during
the test run. Second, the Gson test suite has a number of
performance tests that perform serialization and deserializa-
tion on large inputs (≈ 2-4 MB). Our profiles, as discussed
in RQ4, indicate that the energy differences are more sig-
nificant with larger collections, which is directly reflected
through these results.

6.2 Apache Commons Math
The Apache Commons Math library provides implemen-

tations of mathematical and statistical algorithms that are
otherwise unavailable in the standard Java distribution [4].
We used version 3.4.1 (209 KLOC app + 137 KLOC test).
The library creates 167 instances of ArrayLists. There are
91 ArrayList instances in the test suite.

Changes Made. Since it was not possible to run all the
tests on our device due to memory constraints and incom-
patibility issues, in our study we selected a subset of tests
(71%) that compiled successfully.

Out of a total of 258 instances of ArrayList in the codebase
and tests (Table 2), WALA detected 77 instances that were
used mostly for end-insertions (60 occurrences), iterations
(18 occurrences) and random access (5 occurrences). After
manual inspection, we found 169 more instances that were
used similarly. Our profiles suggest that LinkedList is a bad
choice for these instances, and we used this to make a “bad”
version.

Energy Impact. The modified version consumed 15% more
energy (Table 2). Again, the changed library runs ≈ 1.2
times slower than the original version, which may have caused
more energy to be consumed.

6.3 XStream
The XStream library can be used to serialize Java objects

in XML and deserialize it back [51]. XStream version 1.5
has a library of 34 KLOC and a unit test suite of 30 KLOC.
There are 33 ArrayList instances in the library code and 128
instances in the test code.

Changes Made. We choose a subset of the test suite (80%),
as some tests were incompatible with the GreenMiner plat-
form. Out of 161 instances of ArrayList, WALA detected
23 instances that were used for end-insertions (20 occur-
rences), iterations (4 occurrences) and random access (2 oc-
currences). We manually found another 130 instances used
in the same way. In total, 153 ArrayList instances were con-
verted to LinkedList, expecting higher energy consumption.

Energy Impact. There is a degradation of 5% when swap-
ping the ArrayList instances with LinkedList (Table 2). The
modified version runs ≈ 1.05 times slower than the original,
which may explain why it has a higher energy consumption.

6.4 K-9 Mail
The K-9 Mail version 5.101 codebase has 34 KLOC, with

a test suite of 2 KLOC. There are a total of 294 instances of
collections used, out of which only 28 were covered by the
test suite. To make sure more of the collections are exer-

1.47%

77 21148 4 K-9 Mail 294

64 1

7

161

29

0

Collections LinkedList

0

258 Apache Commons Math

 XStream

KLOC

0

461

53

324

ArrayList

100

2

 Google Gson

 Program

346

125

246

153

51

Changes

Good Bad

0.25%

0

0

0

0.32%

15%

5%

309%

Changes in Energy Consumption

Good Bad

 76 1269 12 Apache Commons
 Configuration 154 0 0

38%11 80 8 Stock Exchange Trading
 Simulator 14 0 0

Table 2: Libraries and applications for evaluating the energy profiles

cised, we augmented the original test suite by generating 256
more test cases for the app. We used JTExpert [43] to auto-
matically generate tests. As this generates tests for the Java
platform, and Android tests should inherit from the class
AndroidTestCase, we modified the generated tests to adapt
them to the Android platform by using JavaParser [25]. In
order to know which collection method is called by the exe-
cuted tests, we did a dynamic analysis using AspectJ.

Changes Made. K-9 Mail application uses 148 ArrayList
instances and 21 LinkedList instances (Table 2). With our
WALA analysis, we found that there was scope to prepare
both a “good” and a “bad” version of the program.

Our WALA program found 53 instances of ArrayList that
were used for ArrayList-friendly operations (40 occurrences
of end-insertions, 9 occurrences of iterations and 2 occur-
rences of random accesses). We manually found 72 other
instances having a similar usage pattern. We changed these
instances to LinkedList, thereby creating a “bad” version.

With our WALA analysis, we also found 21 LinkedList
instances in the codebase. Our heuristics suggested that we
should change 4 of these instances to ArrayList, because the
lists were being used for end-insertions, insertions at a ran-
dom index, and queries using the contains() API. According
to our profiles, ArrayList is the most energy efficient choice
in this context. We therefore created a “good” version of the
app by changing these 4 instances to ArrayList.

Energy Impact. Table 2 shows the differences in energy
consumption of the two versions. For “bad” changes, K-9
Mail performed only slightly worse, with an overall degra-
dation of 0.32%. We did expect an increase in energy con-
sumption, although it is only by a small amount. For the
“good” changes, we achieved an improvement of 0.25%.

For both versions, we noticed that the differences were
very small. The K-9 Mail test suite is significantly different
from the rest of the applications that we studied—it does not
exercise large collections. In Gson, the tests were feeding a
huge load (≈ 2-4 MB) to the lists. On the contrary, the K-9
Mail tests were dealing with lists of only a few elements.
Therefore, the impact was very small.

6.5 Apache Commons Configuration
The Apache Commons Configuration library facilitates

storage and retrieval of configuration information for Java
applications [3]. We studied version 1.10 that has 40 KLOC
of library code, and a test suite of 36 KLOC. There are 13
instances of LinkedList and 166 instances of ArrayList in the
original codebase.

Changes Made. We again choose a subset of the program
(83%) that was compatible with the testing platform. In
the reduced version, we had 69 ArrayList instances and 12

LinkedList instances. Out of these 12 LinkedList instances,
WALA detected 8 that were used for end-insertion and it-
eration. We manually found the other 4 of them to be used
in a similar way. Since our profiles indicate that ArrayList
is a better choice for these operations, we changed these 12
instances to ArrayList, expecting a decrease in the energy
consumption of the test suite.

Energy Impact. Changing the LinkedList instances to Ar-
rayList improved the energy consumption by 1.47% (Ta-
ble 2). The modified version of the library ran ≈ 1.02 times
faster than the original, which is probably why the energy
consumption was lower.

6.6 Stock Exchange Trading Simulator
This is a Java based simulation application developed in-

house at Auburn University. The program has 11 KLOC
lines of application code, with 8 instances of LinkedList used
in the codebase.

Changes Made. Our WALA analysis detected 7 instances
of LinkedList that were used for end-insertions and itera-
tions. We manually found 1 more instance being used in a
similar way. Since ArrayList is better for both of these oper-
ations, we made “good” changes by swapping the LinkedList
instances with ArrayList.

Energy Impact. Our modified program demonstrated a 38%
reduction in energy consumption and ran ≈ 1.6 times faster.

6.7 Discussion
For all test applications, we obtained differences in energy

consumption by changing the Collections instances (RQ7).
The magnitude of change, however, depends on how aggres-
sively the instances are exercised during program execution.
With significant usage, we can get large increases in energy
consumption for bad choices of Collections instances (RQ8).

We also noticed that for each of the applications, the
degradation factor for energy consumption was the same as
the slowdown factor of the bad version of the program. For
example, the version of Gson with bad changes ran ≈ 4
times slower and consumed ≈ 4 times more energy than the
original version. However, the power consumption of both
versions (i.e., the rate of energy consumption per time unit)
was very similar, which indicates that the bad version (with
ArrayList instances changed to LinkedList) just does more
work during the extra time it is executing. This may explain
why it consumes more energy. We found a similar trend in
execution times while generating our profiles. However, to
determine whether it is a consistent trend that more energy
is only being consumed because of slower applications, more
investigation is needed.

In our WALA analyzer, we chose a simple heuristic to help

us decide whether to change a Collections instance. This
worked well owing to the fact that we dealt only with lists,
and that most of the ArrayList instances that we found were
performing end-insertions and iterations anyway. In the fu-
ture, we want to focus on developing a more sophisticated
heuristic to handle other Collections.

7. THREATS TO VALIDITY
A number of issues affect the validity of our work. First of

all, measurements of physical systems, in particular phones,
inherently are affected by noise and non-determinism. Our
test-bed was designed to minimize such noise and to control
for non-deterministic differences in measurements by repeat-
ing measurements 20 times. Section 3.2 discusses how we
have addressed other measurement-related issues.

How generalizable are our results? The GreenMiner in-
frastructure uses Android devices to perform the energy pro-
filing. We ran our tests on a single phone that had a specific
version of the Android OS installed. We expect these energy
trends to be similar across Android devices. For example,
we found similar trends when we ran the tests on the other
three devices on GreenMiner.

A more subtle issue may arise due to the range of the
measurements that we achieved. As we saw in the pro-
files, the energy measurements are quite small, especially
for small collections. This is expected, since a single API
usage corresponds to a maximum of three lines of code per-
forming an operation and there is a significant overhead in-
troduced by setup and teardown methods of each test. To
validate whether this large noise could overshadow the oth-
erwise small energy consumption of a single API invocation,
we ran a separate baseline test running only the setup and
teardown methods, i.e., the noise. We found that each of
our actual tests consumed substantially more energy than
this baseline, i.e., our measurements reflect the energy con-
tribution from the API usage.

8. RELATED WORK
There has been a large body of empirical work measur-

ing the impact of code change in various domains. Source
level modifications such as refactorings [35, 41], design pat-
terns [1,10,29,40], and code obfuscation [42] have been found
to affect an application’s energy consumption. Hindle pro-
posed Green Mining to study how changes across software
versions affect energy consumption [20]. Others have worked
on evaluating energy behavior of sorting algorithms [8, 9],
web-servers [31], lock-free data structures [22], API usage of
Android apps [28], recommending energy-efficient Android
apps to users and developers [23], and the effect of adver-
tisements and ad-blocking on energy consumption [16,39].

Li et al. [27] repeatedly profiled Java bytecode instructions
to link source code and bytecode to energy consumption
in order to estimate the energy consumption of a line of
Java code. JalenUnit [33] uses PowerAPI and statistical
execution sampling to automatically generate benchmarks
to measure the energy consumption of an API.

Researchers have measured energy in a number of ways.
Hardware systems such as the Atom LEAP platform [45]
and WattsUp meters [49] can measure actual power con-
sumed by an application. Cycle accurate simulators such
as SoftWatt [18], Sim-Panalyzer [32], and simplepower [52]
provide an energy estimate by simulating CPU cycles for

each component used in executing the application. Esti-
mation based approaches [5–7, 12, 19, 33, 46] use empirical
data to propose a model for estimating energy consump-
tion. Pathak et al. [36] and Aggarwal et al. [5] show that
dynamic analysis of running systems, specifically by extract-
ing system calls, can produce accurate runtime models of a
system and estimate the energy consumption impact of a
change. Similar work on execution logs by Gupta et al. [17]
fingerprinted modules for their energy consumption profile.
Zhang et al. [54] describe an online profiler called PowerTu-
tor that models energy consumption by aggregate models of
individual components such as network and CPU.

Our work is closest to the approach taken by Manotas
et al. [30]. The paper describes an autotuning framework,
SEEDS, that aids in automatically choosing the most energy-
efficient collection from the Java Collections API. SEEDS
achieves this by running an exhaustive trial-and-error on all
compatible collection implementations and measuring the
impact of each on the overall energy consumption of a given
test suite for the application. Our approach is significantly
different in making the comparison. Instead of an exhaus-
tive search on which implementation is best for the partic-
ular application (test suite), we use empirical evidence, i.e.,
the energy profiles that we derived in this work and the API
usage patterns, to predict the best alternative.

Another closely related work is Chameleon [44], which
is an autotuning approach for optimizing collection usage.
However, it is particularly focused on memory usage and
runtime performance (e.g., clock time), which could be a
proxy for energy consumption. We believe that an autotun-
ing framework can be equipped with our profiles to make a
more accurate and realistic tool.

The motivation of all of the above work comes from studies
on developer and consumer knowledge about software energy
consumption that indicate that developers and consumers
are not sufficiently aware of how much energy their software
consumes, what are the energy bottlenecks, and which pro-
gramming practices should be avoided [34,38,50,53].

9. CONCLUSION
Our results provide a guideline about the scenarios in

which the energy consumption of alternative Collections cla-
sses becomes an issue. For insertion operations, the energy
differences are significant, but not that much for other list
operations. Also, for lists of small size, the energy consump-
tion does not vary much between the lists. Furthermore,
many of the differences in energy consumption can be ex-
plained by expensive bytecode operations.

Overall, our results will be especially useful for developers
of large scale software who commonly work with large Col-
lections instances. They can guide the developers and make
them aware of the consequences of their programming de-
cisions. Our approach can also be used in making smarter
autotuning tools. Most importantly, this should motivate
future work on creating better guidelines for many other
alternative programming choices.

More information is available on the project webpage:
https://sites.google.com/site/collectionsenergy/.

Acknowledgments
We thank the reviewers for their comments. This work was
supported by the NSF grant CCF-1217271 and NSERC.

10. REFERENCES
[1] S. A. Abtahizadeh, F. Khomh, and Y.-G. Guéhéneuc.

How green are cloud patterns? In Proceedings of the
34th IEEE International Performance Computing and
Communications Conference (IPCCC), Nanjing,
China, December 2015.

[2] Apache commons collections.
http://commons.apache.org/proper/
commons-collections/source-repository.html.

[3] Apache commons configuration.
https://commons.apache.org/proper/
commons-configuration/index.html.

[4] Commons math: The apache commons mathematics
library.
https://commons.apache.org/proper/commons-math/.

[5] K. Aggarwal, C. Zhang, J. C. Campbell, A. Hindle,
and E. Stroulia. The power of system call traces:
Predicting the software energy consumption impact of
changes. In Press of the 2014 Conference of the
Center for Advanced Studies on Collaborative
Research, IBM Corp, 2014.

[6] N. Amsel and B. Tomlinson. Green tracker: a tool for
estimating the energy consumption of software. In
CHI’10 Extended Abstracts on Human Factors in
Computing Systems, pages 3337–3342. ACM, 2010.

[7] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
framework for architectural-level power analysis and
optimizations. In Proceedings of the 27th Annual
International Symposium on Computer Architecture,
ISCA ’00, pages 83–94, New York, NY, USA, 2000.
ACM.

[8] C. Bunse, H. Hopfner, E. Mansour, and
S. Roychoudhury. Exploring the energy consumption
of data sorting algorithms in embedded and mobile
environments. In MDM’09. Tenth International
Conference on, pages 600–607. IEEE, 2009.

[9] C. Bunse, H. Höpfner, S. Roychoudhury, and
E. Mansour. Choosing the” best” sorting algorithm for
optimal energy consumption. In ICSOFT (2), pages
199–206, 2009.

[10] C. Bunse, Z. Schwedenschanze, and S. Stiemer. On the
energy consumption of design patterns. In EASED@
BUIS, pages 7–8. Citeseer, 2013.

[11] M. Dong, Y.-S. K. Choi, and L. Zhong. Power
Modeling of Graphical User Interfaces on OLED
Displays. In DAC 2009, DAC ’09, pages 652–657, New
York, NY, USA, 2009. ACM.

[12] M. Dong and L. Zhong. Self-constructive high-rate
system energy modeling for battery-powered mobile
systems. In Proceedings of the 9th MobiSys, pages
335–348. ACM, 2011.

[13] S. Götz, C. Wilke, S. Richly, and U. Aßmann.
Approximating quality contracts for energy
auto-tuning software. In GREENS 2012, pages 8–14,
June 2012.

[14] S. Götz, C. Wilke, M. Schmidt, S. Cech, and Uwe.
Towards energy auto tuning, Aug. 21 2013.

[15] Google gson. https://code.google.com/p/google-gson/.

[16] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J.
Halfond. Truth in advertising: The hidden cost of
mobile ads for software developers. In Proceedings of
the 37th International Conference on Software

Engineering - Volume 1, ICSE ’15, pages 100–110,
Piscataway, NJ, USA, 2015. IEEE Press.

[17] A. Gupta, T. Zimmermann, C. Bird, N. Nagappan,
T. Bhat, and S. Emran. Detecting Energy Patterns in
Software Development . Technical Report
MSR-TR-2011-106, Microsoft Research, 2011.

[18] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin,
N. Vijaykrishnan, and M. Kandemir. Using complete
machine simulation for software power estimation:
The softwatt approach. In Proceedings of the HPCA8,
pages 141–150. IEEE, 2002.

[19] S. Hao, D. Li, W. G. Halfond, and R. Govindan.
Estimating android applications’ cpu energy usage via
bytecode profiling. In GREENS, 2012 First
International Workshop on, pages 1–7. IEEE, 2012.

[20] A. Hindle. Green mining: A methodology of relating
software change and configuration to power
consumption. Empirical Softw. Engg., 20(2):374–409,
Apr. 2015.

[21] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow,
J. C. Campbell, and S. Romansky. Greenminer: a
hardware based mining software repositories software
energy consumption framework. In Proc. of the 11th
MSR, pages 12–21. ACM, 2014.

[22] N. Hunt, P. S. Sandhu, and L. Ceze. Characterizing
the performance and energy efficiency of lock-free data
structures. In INTERACT, pages 63–70. IEEE, 2011.

[23] R. S. Infantes, G. Beltrame, F. Khomh, E. Alba, and
G. Antoniol. Optimizing user experience in choosing
android applications. In Proceedings of the 23rd IEEE
International Conference on Software Analysis,
Evolution, and Reengineering (SANER), Osaka,
Japan, March 2016.

[24] Java collections framework. http://docs.oracle.com/
javase/8/docs/technotes/guides/collections/.

[25] Java parser.
https://github.com/javaparser/javaparser.

[26] K-9 mail. http://k9mail.org/.

[27] D. Li, S. Hao, W. G. Halfond, and R. Govindan.
Calculating source line level energy information for
android applications. In Proceedings of the 2013
ISSTA, pages 78–89. ACM, 2013.

[28] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas,
R. Oliveto, M. Di Penta, and D. Poshyvanyk. Mining
energy-greedy api usage patterns in android apps: an
empirical study. In Proceedings of the 11th Working
Conference on MSR, pages 2–11. ACM, 2014.

[29] A. Litke, K. Zotos, A. Chatzigeorgiou, and
G. Stephanides. Energy consumption analysis of
design patterns. In Proceedings of the International
Conference on Machine Learning and Software
Engineering, pages 86–90. Centre for Telematics and
Information Technology, University of Twente, 2005.

[30] I. Manotas, L. Pollock, and J. Clause. Seeds: A
software engineer’s energy-optimization decision
support framework. In Proceedings of the 36th ICSE,
pages 503–514. ACM, 2014.

[31] I. Manotas, C. Sahin, J. Clause, L. Pollock, and
K. Winbladh. Investigating the impacts of web servers
on web application energy usage. In GREENS, 2013
2nd International Workshop on, pages 16–23. IEEE,
2013.

[32] T. Mudge, T. Austin, and D. Grunwald. The reference
manual for the sim-panalyzer version 2.0.

[33] A. Noureddine, R. Rouvoy, and L. Seinturier. Unit
testing of energy consumption of software libraries. In
Proceedings of the 29th Annual ACM Symposium on
Applied Computing, SAC ’14, pages 1200–1205, New
York, NY, USA, 2014. ACM.

[34] C. Pang, A. Hindle, B. Adams, and A. E. Hassan.
What do programmers know about the energy
consumption of software? PeerJ PrePrints, 3, 2015.

[35] J. J. Park, J. Hong, and S. Lee. Investigation for
software power consumption of code refactoring
techniques. In Proc. of the 26th International
Conference on Software Engineering and Knowledge
(SEKE), pages 717–722, 2014.

[36] A. Pathak, Y. C. Hu, and M. Zhang. Bootstrapping
energy debugging on smartphones: a first look at
energy bugs in mobile devices. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks,
page 5. ACM, 2011.

[37] P. M. Phothilimthana, J. Ansel, J. Ragan-Kelley, and
S. Amarasinghe. Portable performance on
heterogeneous architectures. In ASPLOS 2013,
ASPLOS ’13, pages 431–444, New York, NY, USA,
2013. ACM.

[38] G. Pinto, F. Castor, and Y. D. Liu. Mining questions
about software energy consumption. In Proceedings of
the 11th Working Conference on MSR, pages 22–31.
ACM, 2014.

[39] K. Rasmussen, A. Wilson, and A. Hindle. Green
mining: energy consumption of advertisement blocking
methods. In H. A. Müller, P. Lago, M. Morisio,
N. Meyer, and G. Scanniello, editors, GREENS 2014,
pages 38–45. ACM, 2014.

[40] C. Sahin, F. Cayci, I. L. M. Gutierrez, J. Clause,
F. Kiamilev, L. Pollock, and K. Winbladh. Initial
explorations on design pattern energy usage. In
GREENS, 2012, pages 55–61. IEEE, 2012.

[41] C. Sahin, L. Pollock, and J. Clause. How do code
refactorings affect energy usage? In ESEM, pages
36:1–36:10, New York, NY, USA, 2014. ACM.

[42] C. Sahin, P. Tornquist, R. Mckenna, Z. Pearson, and
J. Clause. How does code obfuscation impact energy
usage? In Proceedings of the 2014 IEEE International
Conference on Software Maintenance and Evolution,

ICSME ’14, pages 131–140, Washington, DC, USA,
2014. IEEE Computer Society.

[43] A. Sakti, G. Pesant, and Y.-G. Guéhéneuc. Instance
generator and problem representation to improve
object oriented code coverage. IEEE Transactions on
Software Engineering, pages 1–1, To appear, 2015.

[44] O. Shacham, M. Vechev, and E. Yahav. Chameleon:
Adaptive selection of collections. In Proceedings of the
30th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09,
pages 408–418, New York, NY, USA, 2009. ACM.

[45] D. Singh and W. J. Kaiser. The atom leap platform
for energy-efficient embedded computing. Center for
Embedded Network Sensing, 2010.

[46] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of
embedded software: a first step towards software
power minimization. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 2(4):437–445,
1994.

[47] Trove. http://trove.starlight-systems.com/.

[48] T.j. watson libraries for analysis (wala). http:
//wala.sourceforge.net/wiki/index.php/Main Page.

[49] Watts up. https://www.wattsupmeters.com/secure/
products.php?pn=0.

[50] C. Wilke, S. Richly, S. Gotz, C. Piechnick, and
U. Aßmann. Energy consumption and efficiency in
mobile applications: A user feedback study. In
GreenCom 2013, (iThings/CPSCom) and CPSCom,
pages 134–141. IEEE, 2013.

[51] Xstream. http://xstream.codehaus.org/.

[52] W. Ye, N. Vijaykrishnan, M. Kandemir, and M. J.
Irwin. The design and use of simplepower: a
cycle-accurate energy estimation tool. In Proceedings
of DAC, pages 340–345. ACM, 2000.

[53] C. Zhang, A. Hindle, and D. M. Germán. The impact
of user choice on energy consumption. IEEE Software,
31(3):69–75, 2014.

[54] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,
Z. M. Mao, and L. Yang. Accurate Online Power
Estimation and Automatic Battery Behavior Based
Power Model Generation for Smartphones. In
CODES/ISSS ’10, pages 105–114, New York, NY,

USA, 2010. ACM.

