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ABSTRACT

Let G be a locally compact group and let G4 be the algebraic group
G with the discrete topology. We prove in this thesis that the set of all left
averaging functions is a subspace if and only if G is amenable. This settles a
problem raised by Emerson, Rosenblatt and Yang, and Wong and Riazi. We
also confirm a conjecture of Rosenblatt and Yang in [25] by showing that if all
the left averaging functions are right averaging, then Gg4 is amenable.

Let LIM(L®(G)) [TLIM (L*°(G))] be the sets of [topologically] left in-
variant means on L®(G). We show that LIM(L*(G)) ~ TLIM(L>®(G)) is
large by embedding a large set into it. We also show that the cardinalities
of LIM(L®(G)) and TLIM(L**(G)) are equal when G is noncompact and
metrizable.

Let U be the set of functions in L°(G) admitting a unique left invariant
mean value. We prove that if I is a subpace of L*(G), then G is amenable
and there is a largest admissible subspace of L*°(G) with a unique left invari-
ant mean if and only if G is amenable. This answers two problems raised in
Rosenblatt and Yang [25].

Let G be a o-compact noncompact nondiscrete locally compact group. If
. G4 is amenable, then we can extend any left invariant mean on UCB(G) to a
left invariant functional on CB(G) which is not “topologically left invariant”.
We also show that if G' is another amenable group, then there is a left invariant

mean § on CB(G x G') and f € CB(G x G') with 8(f) =1 and wif) =0 for



any topologi~ally left invariant mean ¥ on CB(Gx G'). This answers a problem

raised in Rosenblatt [24] and also confirms Chou's conjecture in this case.
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CHAPTER 1
INTRODUCTION

The subject of amenability was initiated by Lebesgue (1904) and Banach
when they studied the existence and uniqueness of a positive, finitely additive,
translation invariant measure p on R with u({0,1]} = 1. In modern language,
the problem is concerned with the existence and uniqueness of invariant mears
on £%°(R), or the amenability of R. Since Day’s wofk [6] in 1957, this subject
has developed very quickly. Numerous characterizations of amenable groups
have been obtained (see the recent books of Paterson [19] and Pier [21] for
examples). In 1976 Chou [5] proved that for a discrete infinice group G there
are 22'°' left invariant means on #°(G). More recently, Lau and Paterson [16]
have shown that the cardinality of the set of topologically left invariant means
on L*(G) is 9249 for any noncompact amenable group G, where dG) =
min{|D| : D i a compact cover of G} (also see Granirer [12], Klawe [15],
Paterson [20] and Yang (33]).

In this thesis, we shall be primarily concerned with the criteria for amenabil-
ity of locally compact groups and discrete groups in terms of subspaces of
L>>(G) and the investigation of the set of invariant means. The thesis consists
of six chapters.

Chapter 2 contains the definitions and notations used throughout the the-
sis. We also introduce some properties of locally compact groups which will be

used throughout the remainder of the thesis.
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Chapter 3 concerus itself with the relationship between the discrete amenabil-
ity of a locally compact group and the set of left averaging functions. We show
that G is amenable as a discrete group if and only if A is a subspace, where
A is the set of left averaging functions. This provides an answer to problems
raised by Emerson [9], Rosenblatt and Yang [25] and Wong and Riazi [32].

In section 3.3, we confirm a conjecture of Rosenblatt and Yang that for
any non-amensble group G there is a left averaging function f € L*°(G) which
is not right averaging.

In chapter 4, we characterize amenability for a locally compact group and
a discrete group in terms of subspaces of L®(G). These will settle two problems
raised in Rosenblatt and Yang [25].

In chapter 5, we investigate the sizes of the sets of left invariant means.
We show that the size of LIM(L®(G)) ~ TLIM(L*(G)) is very large by

embedding F; into this set, where

Fi={0ct(NY:0>0,|0]=1 and 6(f)=0 if fe(IN)

with liyr'n f(n) = 0}.

In section 5.3, we prove that |LIM(L®(G))| = |TLIM(L>(G))| for any
noncompact locally compact metrizable group G. Also, counterexamples are
given to show that this is not the case when G is not metrizable.

In section 5.4, we provide an answer to a problem concerning the relation-

ship between LIM(L®(G)) and TLIM(L>(G)) raised by Rosenblatt in [22].
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Chapter 6 deals with the extension of an invaﬁant mean on UCB(G) to a
left invariant functional on CB(G) o£' L°°(G) such that it is not “tepologically
left invariant”.

In section 6.3, we show that this extension is possible for any noncompact
nondiscrete o-compact locally compact group which is amenable as a discrete
group.

In section 6.2, we show that there are amenable locally compact groups

which are not amenable as discrete groups such that
LIM(CB(G)) # TLIM(CB(G)).

This answers a problem raised in Rosenblatt [24] and this also confirms a con-

jecture of Chou’s in [4] in our case.



CHAPTER 2

PRELIMINARIES AND NOTATIONS

2.1. Introduction.

This chapter is intended to be a reference for the terms and the notations
used throughout the thesis. We also include some basic properties of locally

compact groups which will be needed in this thesis.

2.2. Notations and Definitions.

Let G be a locally compact group with a fixed left Haar measure A and let
L?(G) be the associated real Lek:esgue spaces (1< p < o0). If G is compact,
then we assume that A(G) = 1. For each f € L™(G) and z € G, let .f €
L™(@), the left translation of f by , be defined by -f(y) = f(zy), vy € G.
Similarly, we can define f, € L®(G), the right translation of f, by fi(y) =
f(yz), y€G.

A subspace S of L(G) is said to be admissible if it contains the constants
and ,f for each f € § and z € G. A functional m € §* is called a mean on S
if m(1)=1 and m >0, i.e. m(f) >0 for any f € § with f > 0.

For f € L®(G) and a constant ¢, we say that f left averages to c if
¢ € || - |loo-closed convex hull of {.f : = € G}. Similarly, we say that f right
averages to ¢ if ¢ € || - |leo-closed convex hull of {f; : z € G}.

The following notations are used throughout this thesis:



CB(G)

UCB(G)

LIM(S)

P(G)

pxf

TLIM(S)

Ao

AR

The space of all bounded real valued continuous functions on

G with the supremum norm.

The space of all uniformly continuous bounded real valued

functions on G with the supremum norm.

The set of left invariant means on S, i.e. the means m
on S with m(zf) = m(f) for any f € S and

¢ € G, where S is an admissible subspace of L*>(G).
The set of all ¢ € L(G) with ¢ >0 and |jplh) =1.

An element of L>(G) defined by ¢ * f(z) = [g o) f(t~1z)dt,

z € G where ¢ € P(G) and f € L™(G).

The set of topological left invariant means on S, i.e.,
the means m on S with m(p * f) = m(f) for any ¢ € P(G)

and f € S, where S = L%(G), or CB(G), or UCB(G).
The set of all f € L®(G) which left averages to zero.

The set of f € L%°(G) which left averages to some constant.

Note that we use A instead of Af for notational simplicity.

The set of f € L®(G) which right averages to some constant.



Al

Ga

supp f

The smallest admissible subspace of L°(G) containing, f

where f € L®(G).

The cardinality of a set A.

The set of all f € L®(G) with a unique left invariant mean value,
i.e. LIM(Sy)# ¢ and there is a constant ¢ such that m(f) = c for

any m € LIM(Sy).

The algebraic group G with a discrete topological structure.

The characteristic function of the nonempty set A.

The fice group on two generators.

The modular function of the group G.

The support of the function f (or a measure).

H = span {,f~f:z €G, f € L2(G)}.

The space L®(G) is a commutative Banach algebra under pointwise mul-

tiplication of functions as the product. Let D be the maximal ideal space of

L*°(G) with the Gelfand topology. Then the Gelfand transform A is an iso-

metric isomorphism of L°(G) onto C(D), the algebra of real-valued continuous

functions on D with the supremum norm. If 6 € D, ;0 € D is defined by

20(f) = 0(.f) for f € L*(G) and € G. For he C(D) and 2 €G, ;h € C(D)
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is defined by -h(8) = h(.) for & € D. Then the isomorphism A satisfies the

following.

G i=1,
(i) f>0if and only if f >0 (f € L®(G)),

(iii) (3f) = <f for all £ € G and f € L™(G).

For each A-measurable subset M of G, there is a unique open-closed set
M C D such that (Iy) = 15 and {M : M is a \-measurable set in G} is a
basis for the topology of D.

By the Riesz representation theorem, each p € LIM (L*=(G)) can be iden-
tified with a G-invariant probability measure i on D: i ) = u(f), f € L=(G).
We say that two left invariant means p;,p2 € LIM (L*(G)) are mutually sin-
gular if iy and g are mutually singular as measures on D (see [22]).

Let E be a subset of G. E is called a locally null set if A(ENK) =0 for
every compact set K in G. E is called permanently positive (p.p.) if for any
T1,%2,...,Tn € G, the set (n] z;E is not locally null. E is called strictly positive

i=1

(s.p.) if UN () z:E is not locally null for all open sets U and z1,22,...,%n € G.

=1

Note that if G is o-compact then a set E is p.p. if and only if A( N z:E) >0

i=1
n
for any z1,%2,...,%n and E is s.p. if and only if MU N N z:E) > 0 for any
i=1
open set U in G and z1,%2,...,Zn € G.

A function f € CB(G) with 0 < f <1 is called a permanently near one

function if for any € > 0 and z;,%2,...,%n € G, there is an 7o € G such that

1= f(zo)l <& (i=1,2,...,n).



2.3. Amenability and Properties of Locally Compact Groups.

Let G be a locally compact group. If LIM(L*(G)) # ¢, we call G an
amenable locally compact group. An example of non-amenable group is F,
the free group on two generators. It is well known that TLIM(L*(G)) C
LIM(L*®(G®)), LIM(UCB(G)) = TLIM(UCB(G)) and G is amenable if and

only if one of the following conditions is true:
(1) TLIM(L>(G)) # ¢,
(2) LIM(CB(G)) # ¢,
(3) LIM(UCB(G)) # ¢.

Also, if G is amenable as a discrete group, then G is amenable. But the
converse may fail. For example, the real 3-dimensional orthogonal group 0(3)
with its usual Lie group topology is compact so it is amenable. But it fails to
be amenable as a discrete group because G has a subgroup which is isomorphic
to Fy (see [13] P26).

Fglner in [10] proved that G is amenable as a discrete group if and only

if G satisfies the following condition.
Given ¢ > 0 and finite set K in G, there is a finite non-empty
set U in G such that
(eU)NU| = (1 —-¢)|U| for z € K.
This is called the Fglner condition.

In this thesis, we will also use the following results.
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PROPOSITION 2.3.1. Let G be a o-compact nondiscrete locally compact group.
Then for any € > 0 there exists an open dense set B C G with A\(B) < € (see

Granirer [11] Proposition 2 or Rudin [26]).

PROPOSITION 2.3.2. If G is a noncompact locally compact group, then there is
an open and closed o-compact noncompact subgroup Go of G (see [21] Propo-

sition 22.24 and [14] Theorem 5.7).

PROPOSITION 2.3.3. Let G be a locally compact group and let § be an ad-
missible subspace of L°(G). If G4 is amenable, then every m € LIM(S) can

be extended to an element of LIM(L®(G)) (see Silverman [29]).

PROPOSITION 2.3.4. Let {G. :y € T'} be a family of compact groups and let A,

be a A-measurable subset of G for each vy € T'. Ifall but a countable number of

the A., are equal to G, then [] Ay is measurable and M [] 44) = 1 MA44)
3y

~€er ~€r

If A(A») < 1 for an uncountable number of the indices A, then A [] 4x) =0
~€T

(see [14] 13.22).

Let M(G) be the Banach space of bounded regular Borel measures on G

with total variation norm. For p € M(G) and f € L™(G), we define
pe @)= [ St e o)
For z € G we write 8, for the point mass at z. If f € L°°(G), then

8.5 f(y) = fz7'y) = o1 f(¥) (v €G).
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Let A be the modular function of the locally compact group G. Itisa

continuous function defined on G with the properties:

() A(zy) = A(2)Ay), for z,y €G,
(i) A>0,

(iii) A(z) [ F(t)dt = [g fo-2(t)dt  for feL}YG) and z €G.
It follows that
@ * of = Az)(pz) * f
for ¢ € P(G), z € G and f € L(G).
As in [14] (P463 (B3T)), the following result will be useful for us.

PROPOSITION 2.3.5. Let X be a subspace of L=(G) and |f| € X for any
f € X. Then for any m € X* there exist unique positive m*,m~ € X* such

that m = m* —m~ and min(m*,m™) = 0, where
m* = max(m,0), m~ = —min(m,0)

and
max(m,0)(f) = sup{m(g) : 0 < 9 < f}
min(m,0)(f) =inf{m(g):0<g < f}

for any f € X with f >0.



CHAPTER 3
AMENABILITY OF LOCALLY COMPACT GROUP AND LEFT

AVERAGING FUNCTIONS

3.1. Introduction.

Emerson proved in [9] that if G is a locally compact group the following

are equivalent:

(2) G is amenable,

(b) N,{G) is closed under addition, where

No(G) = {f € L=(G): jinf ¢ * flieo = 0},

(c) d(p1* P(G),p2* P(G)) =0 for any 1,92 € P(G), where

(e + P(G), 2 * P(G)) = inf{llp1 * ¢ — w2 *$ll1 : 0,9 € P(G)}.

He asked whether the condition (b) could be replaced by
(b') Np = {f € L*(G):infyep lle* flloo = 0} is closed under addition, where
D is the set of all finite discrete positive measures on G of weight one

and p * f(z) = [g f(t™ z)dp(t). Since

/G f(t_la:)dy(t) = Z Xif(ziz)

=1
for some \; >0, z; € G (i = 1,2,...,n) with 330, A = 1, we have

Np = A,.

11
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Later Wong and Riazi in [32] (Theorem 4.1) showed that G is amenable
if and only if N7(UCB(G)) is closed under addition, where A7(X) denotes the
set {f € X :infuep |u*flloo = 0} for any admissible subspace X of L=(G). It
is easy to see that N(X) = X NAp and if N7(L*(G)) is closed under addition,
then so is N7(UCB(G)). The converse remains open (see [32] P494).

It is clear that A is closed under addition if and only if A is a subspace.
Rosenblatt and Yang in [25] proved that if G4 is amenable then A is a subspace
and if G is not amenable then A is not a subspace. They asked whether A
forms a subspace when G is amenable but not amenable as a discrete group.

In section 3.2, we show that A is a subspace if and only if Ao is a
subspace. Then we use a characterization theorem of Chou’s to prove that A
is a subspace if and only if G4 is amenable. This answers the problem raised
by Emerson, Rosenblatt and Yang, Wong and Riazi completely.

In the study of the relation between left and right averaging functions,
Rosenblatt and Yang in [25] conjectured that A ~ Ap # ¢ for any nen-amenable
locally compact group. They showed that if a discrete group G contains Fj,
then A~ Ag # ¢ (see [25] Theorem 2.6). In section 3.3, we iruprove our main
theorem of section 3.2 and then we apply this theorem to corfirm the conjecture

of Rosenblatt and Yang.

3.2. Locally Compact Group Which are &:uzanlie as Discrete Groups

and the Set A.

In this section, we are going to prove a criterion fcr a locally compact
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group to be amenable as a discrete group. This answers an open problem
raised in Emerson [9], Rosenblatt and Yang [25] and Wong and Riazi [32].

In [23], Rosenblatt proved the following ( see proposition 3.4 of [23] and

also [2] ).

THEOREM. For a o-compact locally compact group G, Ga is amenable if and
only if for each 8 € D, the subspace {ps(f): f € L®(G)} of £°(G) has a left
invariant mean, where py(f) € £°(G) is defined by pe(f)(z) = 8(:f), =€

G, f € L=(G).

Our proof of Theorem 3.2.3 depends on this theorem of Rosenblatt’s. We

first establish some leinmas.

LEMMA 3.2.1. For any locally compact group G, the following statements are
equivalent:

(i) A is a subspace,

(ii) Ao is a subspace,

(iii) Ao=H.

PRoOF: (i) =2 (ii) If A is a subspace, let fi,f2 € Ap C A. There is a number
¢ such that f; + f2 left averages to c. By Theorem 1.5 of [25}, G is amenable.
Since this has not appeared yet, we give the proof here for completeness. If G
is not amenable, then L*(G) = H. Since G is infinite, there exists a subset
A in G such that both A and A° are p.p. ( see Lemma 4.2.2 ). Thus, 14

does not left average. It is easy to see that A is closed. So some FeH



14
does not left average. But each ,f — f € A since Iim,.zl:-:___l #(z—=f=0.
Therefore A is not a subspace which is impossible. Let m € LIM (L*(G)),
then m(f;) = m(f2) = 0 since fi, f2 € Ag. Therefore ¢ = m(f, + f2) =0, ie.

fit+ f2 € A
(ii) = (iii) For any z € G and f € L*°(G), since

LS alf-H =0,

k=1

im —
n n

f— of € Ay. Hence if Ag is a subspace, then H C Ay. It is easy to see that

A is closed. So H C Ag. Let f ¢ H, then there is m € LIM (L*{G)) with

m(f) #0. So f & Ag. (See [14] (B37) and p. 236), i.e. Ao C H.

(iii) = (ii) is clear. To prove (ii) = (i), let f; left average to ¢;. Then
fi—c; left averages to 0 (i = 1,2). If A is a subspace, then (fi—c1)+(fa—c2) €

Ao, i.e. fi + fo left averages to ¢; + 3.

O

THEOREM 3.2.2. For any locally compact group G and 0 € D, Sp = {ps(f):
f € L™(G) is a simple function } is a subspace of £°(G) with the following
properties:

(i) |F|€ Sy for any F € Sy,

(ii) If m € S} is left invariant, then there are nonnegative left invariant
functionals m*, m™~ € S} such that m = m*—m™~ where m* = max(m,0), m~ =

—min(m,0) (see [14] (B34)).
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n
PROOF: {i} If f = 3 ailp; is a measurable simple function, then |pg(f)| =
i=1
po(1f]) ie. |pe(f)| € Se. Indeed, for any z € G, since {z7'E;:i=1,2,...,n}
are pairwise disjoint, there is at most one ¢ with 0(:1g;) # 0. Hence

Ipo(H)@) = 10( D aile1m) )1 = |3 aib(em)l = ) lailb(:1:)

i=1 i=1 =1

n

=0( Y lails1s:) = 41fD(@)-

i=1

(ii) Since m € S} is bounded, there are nonnegative mt, m~ € S such
that m = m* —m~, m* = max(m,0) and m~ = —min(m,0) by (i) and (B.37)
of [14].

Let Fy € Sy and Fy > 0. Since
mt(Fy) =sup{m(F):0< F< F, Fe€ Se},

fz€ Gand 0< F < Fy, then 0 < ,F £ ,Fp and m(.F) = m(F). Hence
m*(Fy) = m*(.Fo). Since for any F € S, there are F+, F~ € Sp such that
F+ >0, F- >0 and F = Ft — F~, mt is left invariant. Similarly, we can
prove that m™ is left invariant.

O

We are now ready to answer a question raised by Rosenblatt and Yang in

[25] (Remark 3 after Theorem 1.5).

THEOREM 3.2.3. For any locally compact group G, A is a subspace if and

only if G4 is amenable.
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PROOF: It is well known that if G4 is amenable, then A is a subspace (see
[25], Theorr1 1.1).

Let A be a subspace. By Lemma 3.2.1, Ay = H. Since any countable
subgroup of G is contained in a o-compact, open and closed subgroup of G (see
[21], Proposition 22.24), it suffices to show that, for any o-compact, open and
closed subgroup Go of G, (Go)a is amenable by (D) and (F) of [6], p. 516.
By Rosenblatt’s theorem above, it suffices to show that the subspace {pg,(f):
f € L™(Gyp)} of £2°(Gy) has a left invariant mean for each 8y € Dy, where Do
is the maximal ideal space of L>(G).

Let {zoGo : @ € A} be the set of all the left cosets of Gy in G and
Go € {z4Go : a € A}. For each f € L(Gy), let } be defined by }(zaz) = f(z)
for each ¢ € Gy, a € A. Since G = |?:-jA zaGo, } is a function on G. Claim:

a
} € L™(G). Let c € € and K be any compact subset of G. Since Gy is open,
there are only finitely many a;,az,...,an € A such that X N z4,Go # ¢ (=
1,2,...,n). Hence
{zGG:;‘>c}nK=DKﬂmmGon{zEG:;(:p)>c}
i=1
is A-measurable since f is measurable on Gy. Therefore } € L*(G) (see [14]
(11.31) and (15.8)).

Let 6 € Do be given and 6 € D be defined by 6(f) = 8u(f | Go) for any
f € L®(G). We first show that there is a left invariant mean my on Sy where
Se = {pe(f) : f € L*(G) is a simple function}. Let Ho = spaan{,F — F :

z € G, F € Sg} and hg € Hy. Then there is a h € H such that hg = pg(h).
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Claim: ||1 — holloo 2 1. Let € > 0. Since he HC Ao, there are X; > 0 and

z; € G (1 =1,2,...,n) such that f: A;=1and || 2 Xilz:k)lloo < €/2. Then
i=1

i=1

I i’\i(z.‘PO(h))"OO = "Pl)(i:/\i(zsh))"oo < lipall i)‘i(zsh)"m <ef2

i=1 i=1 i=1

It follows that

n n
1= el 2 13 Mt = el = 1= Y Mol 2 1=/

Since ¢ was arbitrary, ||1 — hgljoo > 1. Hence |1 — hglloo 2 1 for any he € Hp.
Now by Hahn-Banach theorem we can find M € 53 such that M(1) =1 and
M(hg) = 0 for uny hg € Hy, ie. M is left invariant. By Theorem 3.2.2, Mt
is a nonnegative left invariant functional on Sg. Put mp = MM :1), then myg is
a left invariant mean on Sp.

Let So, = {po,(f): f € L°°(Go) is a simple function}. By using mg, we
can define a left invariant mean on Sg, as following. For each pg,(f) € Seos
define mg,(pg,(f)) = mg(pg(})). Then mg, is well defined. Indeed, for simple
functions fi, f2 € L®(Go), let po,(f1) = pa(f2) ie. po,(f) = O where f =
fi—fo Let f= zn:la,-l g;- Note that for each z € G, there is at most one
¢ such that poo(lg,.)(_:c) # 0. Hence we have pg,(15;)(z) = 0 for i = 1,2,...,n

and z € Gy. Let 1 <7< n be given,

P9(1Ei)(zaom) = Po(zaozl(uaeAzaEa)) = e(l(UGEAz—lz;;-za E:))

= eo(l(uaeAz"z;;z‘,E.’) l Go) = 00 (lz'lEi) =0
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for any = € Go and ap € A. Hence po(i}:,'_.) =0 (i=12,...,n)ie po(}) =0

and

ey (p8s(f1)) — 66 (Ppo(f2)) = ma(pa(f1) — ma(pe(f2))

= me(pa(f)) =0

so mg,(pe,(f1)) = may(pe,(f2)). 1t is clear that my, is linear. To see that my,
is left invariant, it suffices to show that for any ¢ € Go and measurable set E

Of Go
200(15) = po((=1E))- (%)

Indeed, (%) implies that

may(spos(1E)) = may(pa0(c18)) = mo(po(15))) = ma(=pe(1E))

= mg(pg(iE)) = me,(pe,(1£))

for any = € Go and measurable subset E of Go. Hence mg,(zp,(f)) = ma,(peo(f))

for any = € G, and simple function f € L(Gy). To prove (*), note that

p6((218)) = po(lu,eazaz=1E) =00 (luaeazaz-1E | Go) = bo(1;-1E)

:PO(iE) = PO(z]-U.,EAzaE) = 00 (1u¢.€Az-lx,E | GO) = 00 (lx‘lE)-

Also mg, is nonnegative. Indeed, let f = ) ailp € L*°(G,) be a simple

i=1

function and pg,(f) > 0. Suppose that for each io there exist z € Go such
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that 8o(-1%;,) # O (otherwise take ai, = 0). Since ¢ E;Nz~1Ej = ¢ (i #Jj),
8o(:1E;) =0 if j # io. Hence

n

po,(f)(z) = Z;Pﬂo(aizlE,-) = a;, > 0.

i=
For each i, note that po(iE..) = P9(1uaeAzaE.-) > 0, so ma(po(iE_.)) >0
(: =1,2,...,n). Therefore

n n o
ma, (P8, (f)) = 'Z_;,aemoo(/)oo(lz.-)) = ; aime(po(1E;)) 2 0.

It is clear that mg,(1) = 1. Hence my, is a left invariant mean on Se,-

Since Sg, is demse in {pg(f) : f € L*(Gy)}, we can extend mg, to
{pe,(f) : f € L®(Go)} such that mg, is a bounded functional. It is easy to see
that mg, is nonnegative and left invariant, i.e. my, is a left invariant mean on
{pa(f): f € L*(Go)}-

]

Let X be a left invariant subspace of L°(G) and D denote the set of
all finite convex combinations of Dirac measures. As in [32], we denote the set
{f € X :inf{||lu* flloo : # € D} =0} by Ny(X) (see [32] p.480 and p.491). It

is clear that Mj(X) =X N Ao. See [14] 20.9.

COROLLARY 3.2.4. N;(I>(G)) is closed under addition if and only if Gq is

amenable.
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PrOOF: Since N;(L®(G)) = Ao, the Corollary is true by Lemma 3.2.1 and

Theorem 3.2.3.
O

REMARK 1. Wong and Riazi in [32], p. 493 proved that for any locally compact
group G, G is amenable if and only if N(UCB(G)) is closed under addition
where UCB(G) is the set of all the uniformly continuous functions on G. Since
there are amenable locally compact groups which are not amenable as discrete
groups, we have answered the problem raised by Wong and Raizi in [32], p.494

(Remark 3).

REMARK 2. Recall that P(G) = {¢ € L}(G) : ¢ > 0 and [l¢||; = 1}. Emerson
proved in [9] that G is amenable if and only if {f € L>(G) : inf{|lo* fllo : ¥ €
P(G)} =0} is closed under addition. This corollary provides an answer to his

problem in replacing P(G) by D ([9], p.187).

COROLLARY 3.2.5. (GRANIRER [11] AND RUDIN [26]). If G is not discrete

and G4 is amenable, then
LIM(L*®(G)) # TLIM(L*™(G))
where TLIM(L*®(G)) is the set of all topological left invariant means on L>(G).

PROOF: By Proposition 1.2 and the last proposition of [11], we can find an
open dense subset V in G such that m(ly) <1 forallme TLIM(L>*(G)). By

Theorem 3.2.3, Ay = H. We can see that ||y —h|lc > 1 for any h € H. Indeed,
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if there is h € H such that |1y — hlleo < 1 — ¢ for some € > 0, then we can find
z; € G and \; > 06 =1,2,...,n) such that 3  Ai=1 and || 3 dizihlloo < €/2.

i=1

i=1

It follows that
n n n
v - hllo 2 I Z'\iz.'(lv — k)l 2 Il Z ’\izaquoo ol | EAizih"oo >1-¢/2
i=1 i=1 1=1
which is impossible. Hence ||y — kllc = 1 for any h € H. By Hahn-Banach
theorem there is a functional M € L*(G)* such that M(ly) =1 and M (R)=0
for any h € H. Then m = 3ty € LIM(L*(G)) such that m(ly) = 1, ie.
m ¢ TLIM(L®(G)) ( see proposition 2.3.5 ).

(]

3.3. The Existence of Left Averaging Functions Which are not Right

Averaging.

In this section, we are going to confirm a conjecture of Rosenblatt and
Yang in [25] that there is an f € L*°(G) such that f left averages but f
does not right average when Gy is not amenable. Theorem 3.3.3 gives another
characterization of locally compact groups which are amenable as discrete groups

(see Theorem 3.2.3).
LEMMA 3.3.1.
(3) For f € I®(G), let f € L®(G) be defined by f(z) = f(z™") (= € G).

v
Then f € A if and only if f € Ag.
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(b) AC Ap if and only if A= Ag.

PROOF: (a) For any € G and t € G,

() = flat™?) = f(tz™t) = o (b)

Hence (:f) = },-1. It is easy to see that the following are equivalent:

(i) f € A (ii) there is a constant ¢ such that ¢ € ||.]jco-closed convex hull
of {:f:z€G}

(it ¢ € ||-|co-closed convex hull of {(:f) : 2 € G} = ||.]Joo—closed convex

hull of {},-1: z€G} (iv) } € Ag.
v

(b) Let AC Ap . If f € Ag then } € A by (a) since (\f/) = f. Hence

} € AC Ag and f € A by (2) again. Therefore A = Ap.

0

LEMMA 3.3.2. Ay is a subspace if and only if for any f € Ao, Yo diz; f € Ao

for any z; € G, A\; >0 (6=1,2,...,n) with Y} 0 Ai=1.

PROOF: Suppose that Ap is a subspace. If f € Ao, then . f € A for any
z€G. Let z; € Gand \; >0 (i =1,2,...,n), then A, f € Ao (i = 1,2,...,n).
So -0, Aiz: f € Ao since Ag is a subspace.

Conversely, let iA;z‘f € Ay for any f € Ap, z; € G and ;>0 (i =

i=1

1,2,...,n) with fn_: Xi = 1. Since Ao C H always holds ( see the proof of

i=1

Lemma 3.2.1 (ii) — (iii) ) and Ao is closed, it suffices to show that A2 H.

n-1
First, for f; € L°(G) and z; € G, z:1f—f € Ap. Let F = Y, a;(,‘f.'—f.') € Ay
i=1
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for any constants a;, z; € G and fi € L*(@G) (i =1,2,...,n—1), n 2 2. If
2. € G and fo € L®(G), the dlaim is that 3 ai(s.fi — fi) € Ao where ap

i=1

is a nonzero constant. Indeed, let ¢ > 0. Since ., fa — fn € Ao, there are

N
M >0,y €G (k=1,2,...,N) such that 3 A =1 and
k=1

N
. €
1Y Mews (ea o = Fulloo < 3

k=1
N
But 3 Aty F € Ao by hypothesis. So there are we > 0Oand 2, € G (£ =
k=1

L
1,2,...,L) such that >, we=1 and
=1

L N

€

| Zwlzz(z:’\kku)“w < 2°
k=1

=1
Hence

I z_L;wtz, [i Aky (2": ai(z: fi — fi))] lloo

k=1 =1

N

L
< " Zwin (Z’\kth) "°°+
=1

k=1

L N
+ Ianl Z wl“ Z)ﬂcy‘, (z,.fn - fn)"oo

=1 k=1
<ef2+¢l2=c¢.
By induction, A, 2 H.

O

THEOREM 3.3.3. For a locally compact group G, G4 is amenable if and only

if 3 Misif € Ao for any f € Ao, Xi >0 and z; € G with =1

i=1 =1
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PRrROOF: This is a direct consequence of Theorem 3.2.3 and Lemma 3.3.2.

O

The next lemma is in Rosenblatt and Yang [25]. For the sake of com-

pleteness, we give the proof.

LEMMA 3.3.4. If f € L°(G) left averages to ¢, and right averages to cz, then

c1 = ¢, where ¢; and c¢; are constants.

n
PROOF: Let € > 0. Then there exist \; > 0 and z; € G with Y \; =1

i=1

n n
and |le; — 3 Xi(z;: f)lloo < €. Since f right averages to c2, Y Mi(s;f) also right

i=1 i=1

averages to c;. Hence there exist yx € G and a; > 0 (k = 1,2,...,N) with

N N
3. ar=1and ||c2—2ak(

k=1 k=1 i=

N n N n
o = eal < 1Y o (3o Aileih), = eallootllez =3 ar (3 Mzif) llo
k=1 i=1 k .

k=1 i=1

n

/\i(z.-f)) lloo < €. Therefore
1 Vi

N n
<e+ Y al (c1 -3 A,-(,,.f)m"m < 2.
k=1

i=1

Since ¢ is arbitrary, ¢; = c3.
O
The following theorem confirms the conjecture of Rosenblatt and Yang
[25]):

THEOREM 3.3.5. If AC Apg, then G4 is amenable.

PROOF: By Theorem 3.3.3, it suffices to show that 3 Xiz;f € Ao for any

i=1

f € Ay, z; € Gand )\ >0 (i = 1,2,...,n) with ¥.); = 1. Since Ag C

i=1



25

AC Ag, f € Ar and it right averages to 0 by Lemma 3.3.4. Hence . » any

B

N
€ >0, there are fy > 0, yx € G (k= 1,2,...,N) suck that Y @y o L and
k=i

N
I kz Bifyllow < €. Note that for each i =1,2,...,7,
=1

N N
e (3 B Yoo = 1Y Bl ) oo <
k=1

k=1
Hence

N n n N -
1308 (3o N lleo = I X (0 Belead)y, e
k=1 k=1

=1 i=1
N

T "
< Z)‘i" Lﬂh(z;f)y,“oo <Eg,
i=1 k=1
ie. 30, \iz.f right averages to 0. By lemma 3.3.1, S5 1 Xz, f € A. Hence
%, Xiz; f left averages to 0 by Lemma 3.3.4 again. Therefore, Y iy Aiz:f €

Ay.



CHAPTER 4
AMENABILITY OF LOCALLY COMPACT GROUPS AND THE

SUBSPACES OF L*(G)

4.1. Introduction.

In this chapter, we provide answers to two problems raised by Rosenblatt
and Yang in [25]. These will give characterizations of amenable groups in terms
of various subspaces of L*(G).

Let G be a locally compact group. It is well known that if G4 is amenable,

then

U = ||.|o-closed span {-f—f:z€G, f€ L=®(G)}ucC

where C is the set of all the constants (see [25]).

Rosenblatt and Yang in [25] proved that if G is discrete and contains
F,, then U is not a subspace. They asked if U is a subspace when G is not
amenable. Our theorem 4.2.4 answers this problem completely. Corollary 4.2.5
will also give a criterion for amenability of a discrete group.

The existence and uniqueness of the left invariant mean on L>*{G) have
been discussed in many papers . As is well-known in most cases the size of
LIM(L™(G)) is either very large or empty. It is natural to ask whether there
exists a largest admissible subspace Sy of L*°(G) with a unique left invariant
mean (see [25] P5 problem (d)). It is proved in [25] that such a space does

not exist for any discrete group containing F3. Our theorem 4.3.1 answers

26



this problem completely. It gives also a criterion for amenabililty of a locally

compact group.
4.2. The functions with a unique invariant mean value.

Let G be a locally compact group. We will show in this section that U

is not a subspace when G is not amenable.

We need the following lemma, probably known, for which we were unable

to find a reference.

Recall a set E of G is called a permanently positive subset (P.P.) if fn] z;E

i=1

is not locally null for any z1,22,...,%s €G.

LEMMA 4.2.1. Let E be a P.P. set in G. Then there exists m € LIM(S:.)

with m(1g) = 1.

PROOF: Put m(1) = m(;1g) = 1 for any z € G and linearly extend m to

n
S1;. Then m is well defined. Indeed, let h=a+ Y aiz;lg = 0 (zi €

i=1

n n
G, i = 1,2,...,n). Since ()z;'E is not locally pull and h = ) a; on

i=1 =0

n n n
N z:7'E, Y o =0. Hence m(h)= Y a; =0. Similarly,if h>0and h € S1ig,

i=1 =0 =0

then m(h) > 0. Since m is nonnegative and m(1) = 1, m is bounded. Therefore

m € LIM(S:;)-

O

LEMMA 4.2.2. For any infinite locally compact group G, there is a subset A

in G such that both A and A° are P.P. sets, where A° = G~ A



PROOF: I G is discrete or G is o-compact and nondiscrete, then there is a
subset A in G such that both A and A° are P.P. sets in G (see [25], p 5 and [22],
Proposition 3.4). Let G be non-o-compact and nondiscrete. We can find an
open and closed o-compact subgroup Gg of G (see [21], Proposition 22.24). Let
Ap be a subset of Gg such that both Ag and A§ = Go ~ Ao are P.P. sets in Go.
Suppose {z,Go : @ € A} is all the left cosets of Goin G. Let A= QA ZoAo.
a
Since for any compact subset K of G, there are aj,a,...,a, € A such that
K C 0 zoGo, KNA = 0 Zo; AoNK is measurable. Hence A is measurable (see

i=1 i=1

[14] (11.31) and (15.8)). For any ¢: € G (i=1,2,...,n), since G= U Goz !,
a€A

there is a; € A such that g; = yiz;! for some y; € Go (: =1,2,... ,n). Hence
n n n
(9:A2 [ vizaizaido = () vido.
i=l i=1 i=1

Since Ag is a P.P. set in Gy, Ais a P.P. set in G. Similarly, A° = |J zoA§ is

a€A
a P.P. set in G, where A§ = Go ~ Ao.

a

LEMMA 4.2.3. IfU is a subspace, then U D H, where H, = span{.f—f:z €

G, f € L®(G) is a simple function}.

PROOF: It suffices tc show that for each measurable subset E of G and z €
G, ;1 — 1g € U. Assume that G is infinite. By Lemma 4.2.2, we can find a
subset A in G such that both A and A¢ are P.P. sets. Put E4 =(ENA)UAS,
then E, is a P.P. set. By Lemma 4.2.1, LIM(S:z,) # ¢, LIM{S:,.) # ¢-

Put & = :1g, — 1E, and & = pl4e ~ 14, then S¢, C SIBA and Sg, C Si,.-



Hence LIM(Se) # ¢ (i = 1,2). Also &,62 € Aq, hence m(&;) = 0 for all

m € LIM(Se,) (1 =1,2), ie. &,6€U. Since U is a subspace and
£ — & = (c1g, — 1E4) — (14c — 1a¢) = z1Ena — 1Bna,
+1Ena — 1Ena € U. Similarly, ;1pna- — 1pnac € U. Note that
(z18n4 — 1Ena) + (z1EnAc — 1Bnac) =21 — 1B-

Hence :lp—1g €U.
O

The following answers question (b) in the Remark following Corollary 1.4

of [25].

THEOREM 4.2.4. IfU is a subspace, then G is amenable.

PROOF: By Lemma 4.2.3, Y 2 H,. If G is not amenable, H, = H = L*(G).
For each fo € L®(G), there exist fn € H, (n=1,2,.. .) such that f, — fo in

|| - Jloo. Let
Hy, =span{zfa — fn:z € G} (n=0,1,2,...).
Since f, € H, CU, LIM(Ss,) # ¢. So
1=mg(1-hg) Sl =gl (R=12...)

m
for my, € LIM(Sy,) and hy, € Hy,. U hgy = ) ai(zifo — fo) € Hj, for

o; €C and z; €G (= 1,2,...,m), put hy, = ia;(,‘fn — fn), then hy, €

=1



Hf (n=1,2,...) and hy, — hyg, in ||]|co. Hence || 1 —hy, lloo = 11 =g llco 1.€.
l1—hg,lloc = 1 for any hy, € Hg,. Since G is not amenable, by [9] Theorem 2.12,
there exists fo € UCB(G), the set of uniformly continuous function on G, and

ti, $;€G (:=1,2,...,N) such that

N N
Y wfo-afo= (ufo—fo) + (fo— wfo) 21

i=1 i=1
ie. there exists hy, € Hy, such that hy, > 1. Take h} = (2||hg,llc) " by, then
% € Hj, and
@llhglleo)™ < B, <1/2
s0 |1 — A%, llc <1 which is impossible.
a

Open Problem: Does the amenability of G imply that U is a subspace? (This

is the case when G is discrete (see [25], Theore.u 1.1)).

COROLLARY 4.2.5. If G is a discrete group, the following statements are equiv-

alent
(a) G is amenable,
(b) U is a subspace,
(c) A is a subspace,
(d A =4,

(e) Uy=H where Uy={f€lU:m(f)=0 forall me LIM(S;)}.

PROOF: By Theorem 3.2.3 and Lemma 3.2.1, (a) ¢ (c) ¢ (d). By Theorem

4.3.4 and Theorem 1.1 of [25], (a) & (b).
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It is clear that if Up is a subspace, then Y is a subspace. Hence (e) =

(b). To see that (d) = (e), let f ¢ H, there exists m € LIM (L*°(G)) such that
m(f) #0,ie. f¢Up and Up C H. Since LIM(L™®(G)) # ¢ by Theorem 3.2.3,

H = Ay CU,. Theorefore Uy = H.

O

4.3. The largest admissible subspace with a unique invariant mean.

Now we come to discuss the existence of the largest admissible subspace

of L°(G) with a unique left invariant mean.

THEOREM 4.3.1. There is a largest admissible subspace Sy in L>*(G) with a
unique left invariani mean if and only if G is amenable. In this case, Sy =

H4C.

PROOF: Suppose that such Sy exists. Note that if £ € Ao and LIM(Se) # ¢,
then ELIM(S¢) is a singleton. Using this fact and the same proof of Lemma 4.2.3,
we have Sy D H, (see Lemma 4.2.3 for H,). Let m€ LIM(Sum), we can ex-
tend m to §p such that m € LIM(Sy) which is - o a singleton. Hence Sum
is closed and Syy D H, = H, ie. Sy 2H+C. Fo » € G and f € L=(G),

since o f — f € Ao, m(=f — f) =0, i.e. m{h) =@ f .+ & H. Therefore
1 = m(1—h) <1 hllo

for any h € H. Hence G is amenable.
Conversely, let G be amenable. Take Sy = H4(@. . -~ aduwlssibl

subspace S with a unique left invariant mean m be giver. For cach f€ S, f—
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m(f) € H, ie. S C H+ €. Indeed, if f — m(f) ¢ H, there exists M €
LIM(L>*(G)) such that M(f — m(f)) # 0. Note that M|S € LIM(S) and
M(f) = M|S(f) # m(f) which is impossible. For any m € LIM(Su), since
J—feA (z€G, feL®R)), m(h)=0 for any h € H. Consequently, Su

must have a unique left invariant mean.



CHAPTER 5
THE SIZES OF THE SETS OF INVARIANT

MEANS ON L*(G)

5.1. Introduction.

The size of LIM(L®(G)) ~ TLIM(L*>(G)) was first studied by Granirer

[11] and Rudin [26]. They showed independently that
LIM(L>®(G)) ~ TLIM(L*®(G)) # ¢

if G is nondiscrete and amenable as a discrete group. Earlier Stafney obtained
a similar result for second countable abelian groups in [31] (Chapter 3). Chou
in [2] and Skantharajah in [30] (Proposition 1) improved this result by showing
that if G has a closed normal subgroup H such that G/H is nondiscrete and
amenable as a discrete group then LIM(L>®(G)) # TLIM(L*(G)). Rosenblatt

in [23] proved the following.

THEOREM (ROSENBLATT). Let G be a o-compact locally compact group. If
G is nondiscrete and amenable as a discrete group, then there are at least 2°
mutually singular elements of LIM(L*(G)) each of which is singular to any

element of TLIM(L*®(G)). In particular,
|LIM(L™(G)) ~ TLIM(L™(G))| 2 2°.
In section 5.2, we use the axiom of choice and proposition 3.4 of Rosenblatt

in [22] to divide a “small”open dense subset of G into infinitely many pairwise

33



34
disjoint p.p. sets. Then we apply the technique used in Chou [3] to embed
a large set F; into LIM(L*(G)) ~ TLIM(L**(G)). This shows that the size
of LIM(L®(G)) ~ TLIM(L*®(G)) is large and removes the condition of o-
compactness for the above theorem of Rosenblatt (also see [19] chapter 7).

The study of the cize of LIM(L*(G)) was initiated in Banach [1}, Day
[6] and Granirer [12]. Chou in [5] proved that |LIM(¢*(G))| = 92! for any
discrete amenable infinite group. Lau and Paterson in [16] showed that
|TLIM(L*(G))| = 2249 where d(G) is the smallest possible cardinality of a
covering of G by compact sets. Since any topologically left invariant mean is a
left invariant mean, |LIM(L*(G))| > 92%®  The general problem of what the
cardinality of LIM(L*(G)) is remains open (see [19] chapter 7 and Yang [33)).

In section 5.3 we prove that for any noncompact locally compact metriz-
able group G, |LIM(L™(G))| = |TLIM(L*(G))}. Since \TLIM(L®(G))| =
22? this will give us the cardinality of LIM(L*(G)) in this case. We also
give examples to show that this is not true without the condition of metriz-
ability. Actually, [LIM(L®(G))| can be as large as we want without changing
|TLIM(L*(G))} for some amenable locally compact group.

Finally, we answer a problem raised in Rosenblatt [22] on whether any 8 €
LIM(L*®(G)) which is singular to every ¢ € TLIM (L*°(G)) can be supported
by a small set of G, ie. a set E with \(E™?) <1 and 8(1g) = 1. He proved

that for any compact group this is true and that for any locally compact group,
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if § € LIM(L*°(G)) is supported on such a set E, then @ is singular to every

¥ € TLIM(L™(G)).

5.2. The size of the set LIM(L®(G)) ~ TLIM(L*(G))-

Throughout this section G will denote a locally compact and nondiscrete
groap. Let Gy be a noncompact o-compact open and closed subgroup of G (see
[21], Proposition 22.24) and let {zaGo:a € A} be the set of all the left cosets

of Gy in G. Then G = |J z,F0 is a disjoint union.
a€A

DEFINITION 5.2.1: Let {A, : v € 2} be a family of A-measurable subsets of
Go. ¥ 1,72y--y7n € @, V is an open subset in Gy and g§‘),g§",...,g$,';’,. €
Go (i =1,2,...,n), the set

nm;

F=) Ne4xnV,

i=1 k=1
the intersection of finite elements of {xAy:z € G, 7 € } and an open set in
Gy, is called a (FI)-form set relative to {A,:v € Q}. I for all (FI)-form sets
F relative to {4 : v € 2} we have A(F) > 0, we call {4,:7€ Q} a strictly

positive (S.P.) family in Go.

LEMMA 5.2.2. I {Aq : o € A} is a S.P. family in G, and the set A=

U zaAq, then A is a M-measurable and S.P. subset of G.
a€A

PROOF: For any compact set K of G, there are aj,az,..., Qn € A such

that K C 0 24,Go since Gy is open. Hence K NA = Lnj(za,.Aa‘) NK is X
=1

=1

measurable. By (11.31) of [14], A is A-measurable. Given an open set Vin G
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, there is an ag € A with VN z,,Go # ¢. Let V5 be an open set in Go such
that V 2 24,V and let z,,22,...,2, be given. For each 1 <¢ < n, there is a

i € A such that y; = 23, %i%a; € Go. Hence

VN ﬁ ;A=VnN ﬁ U ZTiTala 2 Ta,Vo N ﬁ TiTa; Ao,

1=1 i=1 a€A i=1

= Tq, (Vo n ﬁ y,'Ao,,.).

i=1
Also, /\(xo,o (Vo N '61 y.-Aa..)) = /\(Vo n ‘61 y,-Ao,,.) > 0 since {Aq: a € A}

is a S.P. family in Gy. Note that Vp N ﬁy,-Am is a subset of Go which is

i=1

n n
o-compact. Hence, V5 N [ yiAq, is not locally null and so VN () z;4 is not

=1 =1

a locally null set.

Let Vp be an open dense subset of Gy with A(V3) < 1. Then
-1
v= V= (| zah)
a€A a€A
is also an open and dense subset in G. Suppose that V = |J zo4q, then each

a€A
A, is an open dense subset in Gg. We shall use Proposition 3.4 of [22] and

the axiom of choice to divide V into infinitely many disjoint S.P. subsets as the

following.

LEMMA 5.2.3. For each a € A, there are subsets Ag), t=1,2,... in Gy such

that A, = G AY is a digjoint union and for each i > 1, {Ag) ca€A}isa

i=1

S.P. family in Go.
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ProOF: Fix a ap € A. There are disjoint S.P. subsets Af,oo) and As,lo) in Go
such that A., = AQ U A®) by Proposition 3.4 of [22] since Go is o-compact.

Suppose Ag is a subset of A with ag € Ag. Set

Sp, = {AD : a € Ao, A® and AQ) are disjoint subsets of Ajand
Ay = A® UAY such that {Ag) :a € Ao} isa S.P. family (1 =0, 1)
and AONAQY =¢, ADNAD =¢ (+)forall a€ Ao}

Notice that we can have different S} s for the same Ao. Let Ap = {ao}. We can
see that such Sy, exists and Sa, # ¢. Take a partial order in the family of all
the nonempty Sa, as the following. Put Sa, < Sa;, if and only if Ao C A} and
S, C SAS for Ag C A and Ay € A. Then it is clear that < is a partial order.
For each chain {SA?) :p € B}, put Ag = pLeJE Af,”), then Ag C A and ap € Aq.
If a € Ag, then there is p € X such that a € Af," ). Let A be the same as in
SA?). Then A is well-defined since {SAgp) :p € B} is a chain. Also it is
clear that (%) is satisfied. Since for any ay,a2,...,as € Ao, there is p € X such
that ay,az,...,an € Af,"’, both {Ag’) ta € Ag} and {Af,,l) :a € Ao} are S.P.
families. Hence S, = {AL) : @ € Ao} is an upper bound of {s Ap P E z}.
By Zorn's Lemma, there is a maximal 5,. we claim that A = Ag. If not, let

a € A ~ Ag, then there are disjoint S.P. subsets ,,(,0) and ,,Sl) in Gp such that

Aa = Véo) U a(l). Put
AL = (VO U A, N AD) ~ AL)

AD = (VO U 44 0 AD) ~ AL)
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then A, = Ag)) U A&l) is a disjoint union and
ADNAY =4, ADNAD =

We claim that {Ag)) : B € AgU{a}} is a S.P. family. For any (FI)-form set Fo
relative to {Ag’) : B € Ao} and any g1,92,..-,9ma € Go, since {Afao) : B € Ao}

Mo
is a S.P. family and V = ) giA, is an open dense subset of Gy, we have
$=1

0< A(Fo n ﬁ g:A® n V) = ,\(Fo n ﬁ g:A® N 'ﬁ g,A,,)

=1 i=1 =1

< ,\(Fo n 'ﬁ 5:(A9 n A.,)) = /\(Fo N "ﬁ gi(A9n Af,?)))

i=1 i=1

<M(Fon[(5:49)

i=1

i.e. for any (FI)-form set F relative to {Afgo) : B € AU {a}}, A(F)>0.
Therefore {AE,O) : B € AgU{a}} is a S.P. family. Similarly, {Ag) : B € Aptu{a}}
is a S.P. family in Go. Therefore Sy ufa} 2 Sxo and Sx,ufa} # Ap, which is
a contradiction. Hence A = A,.

Suppose for each a € A, Aq = ADUAPD Y. . .uA™ is a disjoint union and
for each 1 <i <n, {AD :a €A} is a SP. family. Also, if i #j, ADNAT =
¢ (+*) for any o € A. Note that for each 1 <i <n, AY is a S.P. set in Go.
By Proposition 3.4 of [22] again, there are S.P. sets ALY and ASY i Go

such that A = A(M® UA™Y is a disjoint union. With the similar order and
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the argument as above, there is a maximal Sp, for every subset Ag of A with

ay € Ag, where
Sho = {AS,"’O) :a € Ay, A0 and Ag"l) are disjoint subsets of AS,") and
A = A Y ALY such that {A™) :a € A} is a S.P. family ( =0,1)
and APY NAPD =4, ATV NATD =4 (») }
Then Ag = A. Indeed, if @ € A ~ Ao, by Proposition 3.4 of [22], there are
disjoint S.P. sets Vi and v in Gy such that A = yin0) oV, Put
A2 = (V09 0 D 0 4G) ~ 4G

Al = (Vé”’l) uA®n AE,':”") ~ Af,"o’o)
then AM™ = A9y A is a disjoint union and
Af,';’o) N A = ¢, Ag’:’l) nAMO = ¢,

We claim that {Ag"o) : B € ApU{a}} is & S.P. family. Let Fy be a (FI)-form set
Ma

relative to {A(ﬂ"’o) :B€ Ao} and ¢1,92,...,9m, € Go. Note that V=) gida
i=1

is open and Fo N ) g:AS® is a (FI)-form set relative to {45 : B € Ao}

t=1

We have

Mma Ma Ma
0< A(Fon ([ 0:A5 0 () seda) < A(Fon [ (457 N 4a))

i=1 £=1 i=1

= '\(Fo n "ﬁ g.-(AS,,’;'°) n A&"'O)) < A(Fo N ﬁ g,-Af,"'o)),

i=1 i=1
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since Ay = AD UAD U...u ALV U ALY U APY, ALY AT = ¢ and
Ag"o’o) nAP = ¢ if k < n. Hence any (FI)-form set relative to {Af,"'o) : B €
Ao U {a}} has positive measure. Therefore {Ag.,o) : B € AgU {a}} is a S.P.
family. Similarly, {45"" : 8 € AU {a}} is a S.P. family. This contradicts the
maximality of Sy,. Therefore, for any a € A, A, = APy As,z) u---u A&"_l) U

AS,,"’O) U Ag,"’l) satisfies the property (**). The proof follows by induction.

a

LEMMA 5.2.4. For any nondiscrete locally compact amenable group G, there

are S.P. subsets E, (n =1,2,... ... ) in G such that E, N Ey, = ¢ (n # m)
and ¢(1 " ) <1 for each ¢ € TLIM(L®(G)).
U Ea

PROOF: If G is compact, there is an open dense subset V5 in G with A(Vp) <1

by Proposition 2 of [11]. We can find disjoint S.P. subsets En of G such that

n=1

Vo = U) En by Proposition 3.4 of [22). Since TLIM(L=(6)) = {A}, $( U En) <
n=1
1 for € TLIM(L®(G)). For the noncompact case we use all the notations as

in Lemma 5.2.3. Put E, = |J z.A%. Then by Lemma 5.2.2 and Lemma 5.2.3
a€A

o -1
E, is a S.P. subset in G. Since | En = ( U a:aVo) with A(Vp) <1 (see
n=1 a€A

Lemma 5.2.3 for AP and Vp), ¢(1 5 ) =0 < 1 for all ¥ € TLIM(L®(G))
E

n
nal

by the last proposition of [11].
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As in Chou [3], let

Fi={0elo(IN)’:620, |9 =1 and 6(f)=0 if

f € £°(IN) with li'r'n f(n) =0}
then SIN ~ IN C F; and |F;| = 2°. We are going to prove our first main result.

THEOREM 5.2.5. Let G be a nondiscrete locally compact group which is
amenable as a discrete group. Then there exists a positive mapping of L*(G)
onto £=(IN), say =, such that ||r]| =1 and its conjugate ©* is a linear isometry
of £°(IN)* into L°°(G)* with =*F1 C LIM(L>®(G)) ~ TLIM(L>(G)). More-
over, elements of n*(BIN ~ IN) are mutually singular and ©*@ is singular to

every ¢ € TLIM(L>®(G)) for any 6 € F;.

PROOF: Let {E, : n =1,2,...} be the subsets of Lemma 5.2.4. Since G is
amenable as a discrete group and E, is a S.P. subset of G there is a my, €
LIM(L*(G)) such that m,(1g,) = 1 for each n (see [2] p.48 the proof of
(3) = (4)). Define = : L®(G) — £°(IN) by 71 F)n) = ma(f) for f € L%(G)
and n € IN. Then = is linear and nonnegative. Since =(1) = 1, and for each
f € L=(G)

I=(Hlf = sup Imn(£)] < Il flloos

x|l = 1. For each F € £°(IN), define f(z) = F(n) if = € E, and f(z) =0 if
z ¢ ,,Q, E,. Then f € L®(G) and 7(f)(r) = ma(f) = ma(f - 15,) = F(n) (n €

I¥), ie. 7(f) = F and ||fllc = |Fllcc. Hence 7 is onto and 7* is a linear

isometry.
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For each 8 € F1, n*0 € LIM(L*(G)). Indeed, given f € L*°(G) and

z € G, since for each n € IN

W(zf)(n) = mn(zf) = mn(f) = W(f)(n),

ie. n(zf)=n(f), we have

7*60(zf) = 6(n.f) = 6( f) = =*6(f).

Hence #*# is left invariant. Since both 7 and # are nonnegative, 7*6 is non-
negative. Also, 7*6(1) = 6(x(1)) = 6(1) = 1, hence n*6 € LIM(L>*(G)). Let
E = nGI E,, then n(1g)(n) = ma(1g) = 1 (n € N), i.e. m(1g) = 1. Hence
7*8(1g) = 1. By Lemma 524, =*0 ¢ TLIM(L*(G)). If G is not com-
pact, then 7*@ is singular to ~ny ¥ € TLIM(L*(G)) since sup7*f C E and
sup) C G~ E (see [22], P.35). If G is compact, since 7*8(lg~g) = 0 and
MG ~ E) > 0, by Proposition 2.4 and Lemma 2.6 of [22], 7#*8 is singular to
X Let 61, 6, € BIN~ NN and 6 # 6;, then ||6; — 02| =2 (see [2], page 208).

Hence

1781 — 7G| = ||7*6y — 7*6z| = [|61 — 62| = 2.

By the Hahn decomposition theorem, for the signed measure p = ‘FE - ﬁz,
there are subsets Dt and D~ of D such that 4 >0 on D* and pu<0on D~.
Also D=D*UD-, D*ND~ = ¢. Since ||u| =2, [|76]| = 7G| =1, and
el = p(D*) = p(D™), T8y(D~) =0, 8(D*) = 0. Hence 7*f; and 7*6,

are mutually singular ( see [27], p.134 ).
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O

COROLLARY 5.2.6. Let G be a nondiscrete locally compact grouﬁ. I Gis
amenable as a discrete group, then there is a subset E C LIM (L=(G)) ~
TLIM(L*>(G)) with |E| > 2° and ||my — my|| = 2 for any m1,mz € E. In
particular,

|LIM(L®(G)) ~ TLIM(L™(G))| > 2°.

PROOF: As in the proof of Theorem 5.2.5, let E = n*(SIN ~ IN). Then for
any 01, 0, € AN ~ IN, ||7*6; — 76| = [|61 — 62f| = 2. Since |SIN ~ IN| =
2¢, |E| = 2¢.

a

Remark. 1. Corollary 5.2.6 removes the condition of o-compact for Corollary

(7.20) of [19].

2. Let V; be an open dense subset of Gy with AVo) < 1. Then V =

U zqVo is an open dense subset of G. Since V, can be divided into dis-
a€A

joint S.P. subsets Vo(o) and Vo(l), V can be divided into disjoint S.P. subsets

VO = | 2,V and VO = |J zo VY, and so on (see Lemma 5.2.2). There-
a€A @x€A

fore we can remove the condition of o-compactness for Rosenblatt’s theorem of

Proposition 3.5 of [22].
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5.3. The size of the ~~t LIM(L>*(G)) for a noncompact metrizable

locally compact group.

By comparing |[LIM(L*®(G))| with |TLIM(L*(G))| for a metrizable non-
compact locally compact group, we obtain the cardinality of LIM(L™(G)) s

the following (see [19], Chapter 7).

THEOREM 5.3.1. If G is a metrizable noncompact locally compact amenable
group, then |LIM(L®(G))| = |TLIM(L®(G))| = 22", where d(G) is the

smallest possible cardinality for a covering of G by compact subsets.

PROOF: Let Gy be an open and closed o-compact subgroup of G {see [21],
Proposition 22.24) and let {z4Go : @ € A} be all the left cosets of Go in G.
Since Gy is o-compact, we can find compact subsets K, of Go such that Kn C
Ky, Ko # Kns1 (n=1,2,...) and Go = g K,. Let E,=Kn~ Kn_y (n=

1,2,...), wherc we assume that Ko = ¢. Then E,NE;, = ¢ if n#m, E, is

- o0
A-measurable and E, is compact (n =1,2,...). Since Go= |J En,
n=1

G= | zaGo=|J GzaE,,= U ZaEn

aEA «€A n=1 (n,a)EINXxA

o
ad

TaByNzpBy =¢ if (n,a)# (0, a).

We first show that d(G) = |IN x A|. Since {zoEn : (n,a) e Nx A} is a

compact cover of G, d(G) < |IN x A|l. To prove that d(G) = |IN x A[, let D be
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a compact cover of G with |D| = d(G) and let

Dy = {CN(2a;G0): C €D, a1,0z,...,an €A with C ¢ JzaiGo

i=1

and i=1,2,...,n}.

Note that the mapping C N (z4;Go) — (C,z1,22,...,2s) from D, to a sub-
set of D x {0,1}" is 1 — 1, where z; = 1, z; = 0 (j # i). Hence |Dn| <
|D| = d(G). Since for each C € D, there are ay,02,...,%n € A such that

o0
U Dn

n=1

n o0
C C U z4;Go, \J Dn is a compact cover of G and < |D| = d(G).

i=1 n=1
Therefore we can assume that for each C € D, there is a a € A such that
C C 24Gq. For each a € A, there is C, € D with Cy C 2aGo. So the mapping
o — C, is 1—1 from A tc a subset of D. Hence |IN x Al = |A] £ ID| = d(G).

Since |[LIM(Z®(G))| = 22"© (see [19], p.274) and LIM(L*(G)) &
L>(G)*, to show that |LIM(L>(G))| = 9249 it suffices to show that |[L®(G)*| <
224%,

For any subset E of G, let CB(E) be the set of all continuous functions
on E. For each (n,a) € IN x A, since 2o B, is compact and metrizable, ToFn
is separable and |CB(zoEn)| < c. Hence |F| < c]IN x A| = ¢ d(G), where
F= U CB(zqE).

(n,a) EINXA

Let f € L°(G) and (n,a) € IN x A. By Lusin’s theorem {see [27], P.55),

for each k € IN, there is f(x,n,a) € F such that

Mz € 2aBn  fibmey(@) # F(®)} < T-
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If g is a A\-measurable function on G such that F = {z € G, f(z) # g(z)} is

locally null, then A(F NzoE,) =0 for any (n,a) € IN x A, ie.
Mz € 2aBn: fmer(a) #9(0)} < 1
for (k,n,a) € IN x IN X A. So f(kn,) is well-defined. Let the mapping ¢ :
L®(G) — FN*INXA he defined by
¢(f) = (f(k,n,0) J(k,m,0) ENXIN XA -

Then ¢ is a 1 — 1 mapping from L*°(G) to a subset of FINXINXA - Indeed, let
g € L®(G) with f # g. Then there is a € A such that f # g on z,Gy. Since

o0
2aGo = U zaEn, there is n € IN such that f # g on zoEn. Hence there is

n=1

k € IN such that
2
Mz € zoEy : f(z) # 9(2)} > z

50 f(k,n,a) F 9(k,n,a) DY the definition of f(k,n,a) and g(k,n,q) i-€ é(f) # ¢(9).

Hence

IE2(G)] < (MM < (ed(G))H?
since 2 < cd(G) < 299, (cd(G))HE) =248, Therefore
IL=(G)| < 24®) and |L®(G)"| <227
a

COROLLARY 5.3.2. Let G be a g-compact metrizable locally cempact group.

If G is nondiscrete and amenable as a discrete group, then

ILIM(L(G)) ~ TLIM(L*®(G))| = 2°.
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PROOF: By Corollary 5.2.6, |[LIM(L>(G)) ~ TLIM (L*(G))| = 2°. By The-
orem 5.3.1, |[LIM(L*(G)) ~ TLIM(L*®(G))| £ 2°. Hence |\LIM(L>®(G)) ~

TLIM(L®(G)}| = 2°.

As in the proof of Theorem 5.3.1, we have the following.

THEOREM 5.3.3. Let G be a locally compact amenable group. I G is metriz-
able, then |LIM(CB(G))| =1 when G is compact and |[LIM(CB(G))| = 92*®
when G is not compact,where d(G) is the smallest possible cardinality for a

covering of G by compact sets.

Unfortunately, Theorem 5.3.1 does not bold without the metrizability.

THEOREM 5.3.4. For any cardinal numbers m and 7, if 02 is infinite, then
there is a locafly compact gioup G such that |LIM(L>(G))| 2 m and
ITLIM(L=(G))| = 92" Moreover, there is a compact group G with |LIM(L*®(G))| :

M-

PROOF: Let S be a compact nondiscrete abelian group and let A and B be
S.P. subsets in S such that A(A) < 1, A\(B) <1 and ANB = ¢ (see [11],
Proposition 2 and {22], Proposition 3.4). Let Go = le'I S, where Sy = S for
any v € ;. Teke a discrete abelian group U with |U:’ | : n2. Let G =U X Go.
Then G is a nondiscrete abelian group. Note that Go is an open and closed

subgroup of G and {uGo : u € U} is the set of all cosets of Go in G. For

each finite subset A of m; and BE€m ~ A, let Ea 8 = U u( II E.,), where
w€U “MvEM
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E,=Bify=3 E,=Aifvy€Aand E, =S5 if vy ¢ AU{B}. Since
[1 E, is a S.P. subset in Gy (see [14], 13.22) E(4 g) is a S.P. set in G by
YEM

Lemma 5.2.2. Note that for any B € m, finite subsets A; of gy ~ {8} and

n n
z; € G (i =12,...,n), ziEBa;p 2 ) ziEs,p) is not locally null since
=1

i=1

E,p) is a S.P. subset, where A = 0 A;. Also, the maximal ideal space D of

i=1

G is compact (see the beginning of section 5.2 and [22], p.35). Hence the set
Dg = ﬂ{:;E(A,ﬂ) : A is a Snite subset of y ~ {8}, z € G}

is a nonempty left invariant and closed subset of D. By Proposition 3.4 of
(23], there is a left invariant probability measure ps on Dg. Hence there is
mg € LIM(L°(G)) such that rhg = py (see the beginning of section 5.2). If
B, B' € m with B # B, let A ={f'}, A" = {B}. Then E(a,p NEap)=¢
by the definition of Ea ). Hence DgN Dg = ¢ and mg # mg. Therefore
|LIM(L*(G))| > m. Also, as in the proof of Theorem 5.3.1, |[U| = d(G).
Hence |TLIM(L*™(Q))| = 92"® where d(G) = inf{|D| : D is a compact cover
of G}.

I we take U such that |[U| = 1 or G = Gy, then G is compact and

|ILIM(L*(G))| 2 m.

0O

5.4. An invariant mean which is singular to every element of TLIM(L>(G)).

Let f € L°°(G) and I(f) denote the smallest closed left invariant ideal

containing f. In [22] Rosenblatt showed that if a subsev E of G satisfies
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AE-!) < 1, then any m € LIM(L=(G)) with kerm 2 I(lg~Eg) is singular
to every ¥ € TLIM(L*®(G)). He asked if the converse is true and he proved
that it is for a compact group. Our Theorem 5.4.2 shows that for a class of

groups it is not the case. We need a lemma first.

LEMMA 5.4.1. Let G be a locally compact noncompact group and let Go be

an open and closed compact subgroup of G. If {£aGo : a € A} is the set of

n

all left cosets of Gy in G and Vp is an open dense subset of Gg, then [} z:V

i=1
n
is not locally null and z\(xo,Go N N :z:.-V) > ep for any 71,22+ %n € G and

=1
N

o € A, where V= |J 24V and €, > 0 depends on n only.
aEA

PROOF: For each n, the function /\( (n] a:,-Vo) of (z1,%2,...,%n) on the com-
=1

pact space G} is continuous. Since z\( N :c.-%) > 0 for any (21,%2,...,%n) €

i=1

n
G? and G} is compact, there is €, > 0 such that A( N :z:,-Vo) > en for any

i=1
(£1,%2,.--,%n) € G}. If a € A, for each 1 <@ < n, there is a; € A such that
Yi =25 'Tita; € Go. Hence
n n n
zaGo N ﬂ z;V D 2aGo N n(z;meo) = za( n y;%).
=] i=1 i=1
This implies that

)\(a:o,Go N ﬁ x.-V) > z\( ﬁ y.~Vo) > En.

i=1 i=1

Also, therefore ﬁ z;V is not locally null.

i=1
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THEOREM 5.4.2. If G is an abelian locally compact noncompact group which
contains an open and closed compact subgroup Gy, then there is an m €
LIM(L>™(:7)) such that m is singular to every ¥ « TLIM(L*(G)) and m(lg) =
0 for any subset E of G with \(E™!) < co. In particular, kerm does not con-

tain I(1g~g) for any subset E with AM(E™') < 1.

PROOF: For each n, we can find an open dense subset V;, in Go such that

A(Vio) < L (see [11], Proposition 2). Put Vo = |J zaVa,, then V; is an open
a€A
dense subset in G (see Lemma 5.4.1 for a, A and z,).

For each z € G, let z = 74,90 for some ag € A and go € Go, then
1lg, *ly,(z) = / 16,()1y, (t " z)dt = M(Go N V) = /\(goV,,'ol)
G
1
= /\(Vno) < ;;

since G is abelian. Hence for any y € TLIM(L>(G)),

¥(1lv,) = P(lg, * 1v,) < %

Let I, be the smallest left invariant ideal of L°°(G) containing l1g~v, and
all the functions of the form 14 for the subsets A of G with A(A4) < co. Then

it is clear that
I.= spa.n{f-== 1g~v,+9-1a: f, g€ L*(G), z€ G, ACG with A(A) < oo}.

Then I, # L®(G). Indeed, for any f € I, there are g1,92,...,9m € G and a

subset A in G such that \(A) < co and

1< o3 Tommta +1a):

i=1
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Let

E=(G~(0G~g,-v,.))~A=ﬁg.-V,.~A.
i=1

i=1
Since there is e, > 0 such that ,\(zaGo N ﬁl g,-V,,) > ey for any a € A
by Lemma 5.4.1, and since & is not compact, E is not locally null. Since
f=9onkE, |[f-1e>1ie 1¢ I,. By Proposition 2.5 of [22], there is a
mn € LIM(L%°(G)) with kerm, 2 I,. We can assume that i 2 V2 2V32---.

Let m be a w*-cluster point of net {m,}. Then there is a subnet {mn,} of

{my} such that

m= lién mn, in w®-topology.

For each n, there is g, such that ng2n for all > gn. Hence
m(G~ V)= lif’n M, (G ~ Vo) < ﬂl;_r?“ Mp,y(G ~ Vo) < ﬂllzr;x“ My (G ~ Vag) =0
ie. m(V,)=1and supp C Va. If € TLIM, then
. . o 1
P(supprin) < (V) = %(Vn) < ~

for any n. So tﬁ(suppﬁz) = 0 and m is singular to 9. If A is a subset of G

with A(4™!) < oo, then A(4) < co. So
m(A) = li;nm,,p (4)=0.

Therefore kerm can not contain [ (IG~A).



CHAPTER 6

LEFT INVARIANT MEPANS ON CB(G)

6.1. Introduction.

Liu and van Rooji in [18] showed that if G is noncompact, nondiscrete and
amenable as a discrete group, then LIM(CB(G)) # TLIM(CB(G)). Rosen-

blatt in [24] showed the following:

THEOREM(ROSENBLATT). Assume th.t G is nondiscrete noncompact o-compact
and amenable as a discrete group. Then there exists f € CB(G) with 0 <
f <1 and 0 € LIM(CB(G)) such that 6(f) = 1 and Y(f) = 0 for any

» € TLIM(CB(G)).

And, he asked if discrete amenability is necessary in the theorem. Chou
in [4] speculated that if G is noncompact, nondiscrete and amenable, then
LIM(CB(@®)) # TLIM(CB(G)) and he also showed in [2] that there exist com-
pact groups which are not amenable as discrete groups such that LIM(L>®(G)) #
TLIM(L®(G)). Since there are amenable groups which are not amenable as
discrete groups, our Theorem 6.2.1 answers the problem of Rosenblatt above
negatively. This also confirms Chou's conjecture in that case.

Let G be o locally compact group such that G4 is amenable. By Day’s
fixed-point theorem (see[7]), any 6 € LIM(UCB(G)) can be extended to an el-
ement of LIM(L®(G)). Since 6 is topologically left invariant on UCB(G),

the problem is whether the extension is also topologically left invariant on

52
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L>°(G). A group G is said to be an [IN]-group if it has a compact neighbor-
00d which is invariant under all inner automorphisms. Yang in [34] showed
that the extension of any 8 € LIM(UCB(G)) to the space U CB(G), is unique
for any {IN}-group G, viere UCB(G), is the space of all left uniformly con-
tinuous bounded functions ea G. Siuce %+ . extend § to TLIM (UCB(G))
by 8(f) = 6(¢ + f), (f € UCB(G)z), where » € P(G) is fixed. :. ¢ rxtension of
9 to LIM(UCB(G),) is also topologically left invariant ({13} p47).

Since LIM(UCB(G)) is large when G is amenable and non-compact, to
find the size of the set LIM(CB(G)) ~ TLIM(CB(G)), it is natural to ask
the following question (See Rosenblatt [24] P320):

Let G be nondiscrete o-compact noncompact and amenable as a discrete
group and let § € LIM(UCB(G)). Does there exist ¥ € LIM(CB(G)) ~
TLIM(CB(G)) such that ¢ =6 on UCB(G)?

In section 6.3 we show that we can extend 0 to a left invariant functional
on CB(G) such that it is not “topologically left invarian ». We also prove that
any @ € LIM(UCB(G)) can be extended to an element of LIM(L*®(G)) ~
TLIM(L®(G)). Hence |LIM(L*®(G)) ~ TLIM(L>®(G®))| = |LIM(L*®(G))I,
where G is any nondiscrete locally compact group which is amenable as a dis-

crete group.

6.2. Discrete Amenability and the set LIM(CB(G)) ~ TLIM(CB(G))

Let G be a nondiscrete noncompact g-compact group which is amenable

as a discrete group. The function f € CB(G) in the theorem of Rosenblatt in
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section 6.1 can be taken as a permanently near one function with the following
property:

(p) for any £ > 0 there are ¢ € P(G) and fu € CB(G) such that [l *

Imlloo < € and the support of f — fa is compact.

Since there are amenable groups which are not amenable as discrete groups
and a group is amenable as a discrete group if and only if any of its subgroup is
amenable as a discrete group, the following theorem implies that the condition of

the discrete amenability in Rosenblatt’s theorem of section 6.1 is not necessary.

THEOREM 6.2.1. Let G; be a noncompact o-compact nondiscrete group which
is amenable as a discrete group. If G, is any amenable locally compact group
and G = G; x G2, then there exists F € CB(G) with 0 < F <1 and 8 €

LIM(CB(G)) such that §(F) =1 and ¥(F) =0 for any ¥ € TLIM(CB(G)).

PROOF: Suppose fi € CB(G;) is a permanently near one function with prop-
erty (p) as in Rosenblatt’s theorem of section 6.1. Let Fy, € CB(G) be defined

by Fy,(z,y) = fi(z) for any (z,y) € G and let
H= span{(,,y)F —F:(z,y)€G,Fe CB(G)}.
Note that for any (z,y) € G and F € CB(G),

@ F = F = (e F = enF) + (enF — F)

= [y (e F) = (e F)] + e F — F]
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where e is the group unit of G or G;. Hence for any h € H, there are
z; € G1,; € Ga, constant a;, F; € CB(G), and F; € CB(G) (i = 1,2,...,n)

such that h = h; + hz, where

n n
b= 6i(@ofi—F), he=)_ 6w~ F).
i=1 i=1

Then ||Fy, —h|loc = 1. Indeed, for any € >0, by the Félner condition argument,

there are z), € G1,M¢ >0 (k=1,2,...,N) with SN M=1 and

N
1Y ey erballeo <6

k=1
Hence
N N N
NFy, — hlloo 2 || Z Ak(zt o) (F — Moo 2 Ml Z Ak(zy e Fp — Z Ak(z, ey h2lloo —€-
k=1 k=1 k=1
(%)
Note that
N n N _ N _ n

> e bz = 30 e (O M 0 F) = (30 My oF)| = 2 ailean BT,
k=1 =1 k=1 k=1 i=1

(*+)

where T; = 2?:1 Ak(z) e ,Fi. Since f is a permanently near one function and

G, is amenable, there is an z¢ € G; such that
Lo fi(zo)l <€ (k=1,2...,N) (+% %)

and my € LIM(CB(Gz)). For any F € CB(G), let F(#0) € CB(G,) be defined

by F(”°)(y) = F(z,y) for any y € G,. Then by (),(**) and (% * %)

N n
1Fp = hlloo 2 1S Meey 0 Fr — 3, il(enTi = Tllloo — €

k=1 =1
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2 "(i Ak(z'k,e)’ Fh) (iat((e,y.)T T)) "00

=1 1—1

N n
=113 Meag o) = 3 i (3 (T = (T oo — ¢

k=1 i=1

2 1= 3 o (5 (T = (@) o -

i=1

>m2(1— 3 ai(p (T - (1)) - 26 =1 - 2.

i=1
Therefore ||Fj, — hllco > 1 for any kh € H.

Let 8 € LIM(CB(G)) such that 8(Fs) = 1 (see section 2.2.5). Notice
that for any ¥ € TLIM(CB(G)), %(Fs) = 0. Indeed, for any ¢ > 0, let
fm € CB(Gy) and y; € P(Gy) such that the support of fu — fi is compact and
llp1# Fulloo < €. Take an ¢, € P(G2). Then ¢ defined by ¢(,y) = ¢1(z)p2(y)

for (z,y) € G is an element of P(G). Also, for any (z,y) € G,

|l * Frp(2,9)] = |/G‘Pl(tl)‘Pz(tz)fM(tl-lz‘)dtxdtzl = |1 * fu(z)| < &,

where Fy,, € G is defined by Fy,,(z,y) = fu(z) for (z,y) € G. So
o * Fiylloo < €. Since the support of fu — f1 is compact in G, the support of
Fy,, — Fy, is contained in C x G2 for some compact subset C of G;1. Also, Gy

is not compact, hence m(Fy,, ) = m(Fy,) for any m € LIM(CB(G)). Therefore

Y(Fr,) = $(Fpy) =l * Fru) <€

for any ¥ € TLIM(CB(G)) ie. (Fy,)=0.
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COROLLARY 6.2.2. Let G be as in Theorem 6.2.1. Then

LIM(CB(G)) # TLIM(CB(G))

Remark. This confirms Chou’s conjecture in this case.

6.3. Extension of Invariant Means on UCB(G).

We start with a lemma. It is a key lemma for our main theorem in this

section.

LEMMA 6.3.1. Let G be a locally compact group and let f € CB(G) be a
permanently near one function with 0 < f < 1. If G, is amenable and for any
T1,%2,...,2n € G and € > 0, there are ¢ € P(G) and fum € CB(G) such that

f — fu has a compact support and [|¢z; * fmlloo <€ (1 =1,2,...,n), then

inf {}lag—ulleo : u € UCB(G),a5 € |*|loo-closed convex of{.f : z € G}} =e0 2 1/2.

PROOF: Assume that € < 1/2. Then there are A; >0, z; €G (i =1,2,... 1)
and o € UCB(G) such that %, Ai =1 and a5 = Yoi; Aiz; f With llas—ulleo <
1/2. By Theorem 1.6 of [24], there is an m € LIM(CB(G)) with m(f) = 1.

Therefore m(ay) =1 and

m(u) = m(u - ag) + m(ag) 2 1~ lu—agleo > 1/2 (¥).
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On the other hand, for any ¢ > 0, there is an p € P(G) such that
llpz: * fmlloo < €b™1, where b= maxi<icn A(zi). Also, p*, f = A(zi)pz+f (i =

1,2,...,n). Hence

e * apelioo = 1Y A * (e fa)lioo = 11D NA(@)z; * Faslloo

i=1 i=1

< S NlAE) ez * farlloo < €.

i=1

Since u € UCB(G), by Lemma 2.2 of [13] (P27), we have
m(u) = m(p * u) = m(p + (u — a)) +m(p * a)

< [lu = aglleo + m(p * (a5 — agy,)) + (@ * 0y, )

< lu — aflloo + m(p * (a5 — agy)) + ¢,

where af,, = Y1) Aiz;(fm). Since the support of ag—ays, = as—j, is compact,

aj—gy € UCB(G), where a;_g5, = > i) Xiz;(f — fu). Also, G is noncompact

and the support of ay — ay, is compact, we have

m(p * (a5 — agy)) = m(as —as,) =0.

It follows that

m(u) < Ju - aglloo+€ S 1/2+

for any ¢ > 0, which is a contradiction to ().

Now we can prove our main theorem of this section.
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THEOREM 6.3.2. Let G be a noncompact nondiscrete locally compact group.
If G is o-compact and amenable as a discrete group, then there is an f € CB(G)
with 0 < f < 1 such that any § € LIM(UCB(G)) can be extended to a left
invariant functional m on CB(G) with m(f) >0, m(p* f) =0 and ¥(f) =0

for any ¢ € TLIM(CB(G) and ¢ € P(G).

PROOF: Let f € CB(G) be a permarently near one function with 0 < f <1
and for any ¢ > 0, z; € G (i = 1,2,...,n), there exist ¢ € P(G) and fm €
CB(Q) with the property that | * futlloo < €(3 = 1,2,...,n) and the support
of f— fu is compact (#*) (see [24] Proposition 1.5, Lemma 1.3 and its proof).

Set

H =span{.f - f: 2 €G,f € CB(G)}
Hg= span {u—0(u):u€ UCB(G)}

A= convex{1,f}.

Then A is compact. Claim for each fr=r+(1-r)fed (0<r= 1), he H
and hO € HOa

I fr = h = holloo 2 1/4. (*)

If r > 1/2, we can extend 6 to CB(G) such that 6 € LIM(CB(@)) since G
is amenable as a discrete group (see Chapter 2, Proposition 2.2.3). Suppose

6 € TLIM(CB(G)). Then 6(f) =0 by the property (#*). Hence

1/2 < r8(Q1) = 6(f, — h— ho) < ||fr — b — Rolloos
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where 8(h) = 6(hg) = 0. It follows that (*) is true. If + < 1/2, then 1 —
r > 1/2. Suppose () false in this case. Then there is an £ > 0 such that
\fr —h—helloo < 1/4—¢. Since h € Ag, there are \; > 0,z; € G (i = 1,2,...,7)
such that 3, Ai =1 and || 3, Xiz;hlleo < € (see Theorem 3.2.3). Put u =

Yoiq Aiz;he —r. Then u€ UCB(G). By Lemma 6.2.1, we have

" Z ’\izi (fr —h- ho)"oo

=i

2 |Ir - Z(l =1 Aiz f — Z'\izihé?"oo —¢£

i=1 i=1

=[|(1 —r)as ~ulfjc — €
>(1-r)1/2—-€e21/4—c¢,

where a; = Y ., Aiz; f- On the other hand,

I Z’\iza(fr ~h- h0)"oo < Z'\i”z.-(fr —h- hﬂ)"oo <1l/4-c¢
i=1 =1

which is impossible. Let B = i +Ho"-"°°. By Hahn-Banach theorem ([28]

P58), there exists A € CB(G)* and ry, ;2 € R, such that for any z € 4 and

y € B,

A(z) <1 <rs < A(y).

Since B is a subspace, A(y) = 0 on B. So A is a left invariant functional on
CB(G). Let m = A/A(1). Since 1, f € A, A(1) < 0 and A(f) < 0. Hence

m(1) = 1 and m(f) > 0. For any u € UCB(G), u —68(u) € Hg. We have

m(u — 0(u)) = m(u) — 0(u)m(1) =0
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ie. m is an extension of § and m(f) > 0. Let ¢ € P(G). Since M(f) =
0 for any M € TLIM(CB(G)) (see [24] P'«y+=/tlon 1.5), and if m*(1) #
0 then zMis € LIM(UCB(G)) which can ve extended to an element of
TLIM(CB(G)), m*(¢*f) = 0. Similarly, m~(p* f) =0. Therefore m(p*f) =
m*(p * f) —m~(p * f) = 0 for any ¢ € P(G).

O

Now we consider any nondiscrete locally compact group G. Let G be
noncompact and let Go be a o-compact noncompact open and closed subgroup
of G (see Proposition 2.2.2). Suppose {zaGo:a € A} is a complete set of left
cosets of Gp in G and V, is an open dense subset of Go with A(Vo) < 1 (see

{11} Proposition 2). Put

v=(U za%)_l.

a€CA

Then we have the following lemma which has been proved by Granirer in [11]).

LEMMA 6.3.3. For any ¢ > 0 there is an ¢ € P(G) such that llp * flloo < €

where f = 1y.

THEOREM 6.3.4. For any noncompact nondiscrete locally compact group G,
if G is amenable as a discrete group and 8 € LIM(UCB(G)), then there ex-
ists ¥ € LIM(L®(G)) ~ TLIM(L>(G)) such that ¥ = 6 on UCB(G). In

particular,

ILIM(L®(G)) ~ TLIM(L™(G))| 2 [LIM(UCB(G))| = 2",
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where d(G) is the smallest possible cardinality of a covering of G by compact

subsets of G.

PROOF: let f = ly and let Sy be the smallest left invariant subspace of
L*(G) containing f and UCB(G). For u € UCB(G), constants a; and z; €
G(: =1,2,...,n), define

n n

Y(u+ Y aizf) =6(u)+)_ai

i=1 i=1
Then 9 is well defined. Indeed, let u + Y i, air;f = 0. Suppose ¢ € G
and u(zo) + Y5, a; > 0. Then there is an open set U in G such that u +
Shi,ai >0o0n U. Since u+ YL airf =u+3 86 on UN .ﬁlzi-lV,
u+Y iy @iz, f >00nUN ﬁl z;~'V which is impossible. Therefore u+i?=l a; =

i=

0 and ¥(u + Y5, @iz, f) = 0. Similarly, we can show that 3 is nonnegative.
Hence % € LIM(Sy). Since G4 is amenable, ¢ can be extended to an element

of LIM(L®(G)).

Remark 1. This theorem imnproves theorem(7.20) of [19].

Remark 2. In theorem 6.3.2, we only can extend 6 € LIM(UCB(G)) to a left
invariant functional on CB(G) which is not topologically left invariant. We do

not know whether this functional can be a mean on CB(G).
COROLLARY 6.3.5. Under the condition of Theorem 6.3.4,

ILIM(L®(G)) ~ TLIM(L®(G))| = |ILIM(L*>(G))!.



PROOF: It is a direct consequence of Theorem 6.3.4.
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