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Abstract

Object-oriented database systems have been proposed as an effective solution for
providing the data management facilities of complex applications. Proving this claim
and the investigation of related issues such as query processing have been hampered
by the absence of a formal object-oriented data and query model.

This thesis presents a model of queries for object-oriented databases and uses it to
develop a query processing methodology. Two formal query languages are developed:
a declarative object calculus and a procedural object algebra. The query processing
methodology assumes that queries are initially specified as object calculus expressions.
Algorithms are developed to prove the safety of calculus expressions and to translate
them to their object algebra equivalents. Object algebra expressions represent sets
of objects which may not all be of the same type. This can cause type violations
when the expressions are nested. A set of type inference rules is presented which
determines the type consistency of algebra expressions. The next step of the query
processing methodology is logical optimization. Algebra expressions are optimized by
applying equivalence preserving rewrite rules. Both algebraic and semantic rewrite
rules are developed. Applicability conditions for algebraic rules are determined by
pattern matching of query subexpressions while semantic rules additionally require
that various conditions on the database schema be met. Thus the semantic rewrite
rules are unique to a specific application. The final step in query processing is gener-
ation of access plans. The interface to an object manager subsystem which performs
primitive operations on streams of objects is defined. Join enumeration algorithms
from the relational model are adapted and extended to translate algebra expressions
into access plans which are sequences of object manager operations.
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Chapter 1

Introduction

1.1 Overview

Object-oriented database systems have been proposed as a solution well suited to pro-
viding the data management facilities for applications such as computer aided design,
office information and multi-media systems. These applications can be characterized
as complex; supporting multiple users concurrently and manipulating large amounts
of data. They require that features of programming languages and databases be
combined in a coherent, consistent fashion and embody aspects which have tradition-
ally belonged to separate research areas: languages and databases. Object-oriented
databases bridge these two worlds by combining the data abstraction and computa-
tion model of object-oriented languages with the performance and consistency features
of databases. Figure 1.1 illustrates this overlap and categorizes several well known
languages and databases.

ADT + Inheritance Languages
(Flavors, OakLisp, Trellis/Owl, C++, Smalltalk, Amber)

ADT Languages
(Emerald, Simula, ADA, CLU)

i
i

i

i

i

i

i

i
Object-Oriented DBMS !
(Iris, GemStone, POSTGRES, Orion) :
(Galileo, 02) :

i

i

i

i

i

i

i

Complex Data DBMS Flat DBMS
(IF0,VERSO, LDM, :NFI\IF, Format) (Relational)
i

Figure 1.1: Object-Oriented databases bridge traditional DBMSs and languages.

The extensive overlapping of areas in Figure 1.1 shows that many database models
have concepts in common. In this respect, each “new” database model is not new
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at all, it 1s merely a new combination and interpretation of pre-existing concepts.
A pre-requisite for performing research on any particular model then, is agreement
on which set of features the model includes, and their interpretation. Much of the
work to date on object-oriented databases has been restricted to these data model
issues. The many possible interpretations of features in the object-oriented model
(e.g., polymorphism, inheritance, etc.) makes it unlikely that a succinct and formal
definition of the model will be agreed upon in the near future. Rather than contribute
to the model debate, the goal of this thesis is to formally define an interpretation for
a set of object-oriented features and investigate query processing issues within this
context. Queries are an important component of database systems as query languages
define the user interface (both syntactically and functionally) and the query processing
techniques affect performance.

The distinction between defining a data model and investigating issues within the
context of that model is important. For example, Codd’s specification of the relational
model [Cod70, CodT71] provided a solid foundation for the investigation of issues
such as dependency theory, null value semantics, query processing and computational
completeness precisely because it was concise and formal. Figure 1.2 illustrates this
notion of a data model as an interpretation of known concepts (the dashed circle)
and as a means of providing the foundation for investigation of related issues. The
thesis follows this approach by formally defining an object-oriented database model
and using it as the foundation for an investigation of query processing.

structured values null value semantics

relations inheritance

ADTs

view management

polymorphism dependency theory
tuples =77~ X
7 type inclision computational completeness

\

QUERY PROCESSING

user interfaces

7

i sets funé‘tzons

i
v\ atomic vah/es

aggrega%i@n
~

_ wroduct

transitive closure language Support

null values transactions

spectalization

nested relations information capacity

Figure 1.2: The object-oriented model as a collection of known concepts.

1.2 Thesis Scope and Contribution

One of the primary distinctions between an object-oriented programming environment
and an object-oriented database is that the database supports efficient associative
access, l.e., queries. In particular, a declarative query language is desired because
it allows the programmer to focus on what the query means as opposed to how the
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query is implemented. Almost all object-oriented programming languages provide
some capability to apply a block of code (a predicate or function) to a collection of
objects and return those objects which satisty the predicate or the results of applying
the function to each member of the collection. I maintain that this does not constitute
a query facility for several reasons.

[terating through a collection of objects and applying the code block in its entirety
to each successive object is an inefficient paradigm. It requires that each object
(and perhaps intermediate values) be evaluated on an individual basis. In contrast,
traditional query processing techniques break down the query condition, i.e., the code
block, into primitive data manipulation steps and then apply each step to all items
being queried at once. Buffering can be used in this scenario to reduce the cost of
handling intermediate and final results. In addition, the effort expended in improving
the engine which performs the data manipulation primitives is highly leveraged as it
improves the performance of all queries.

Object-oriented programming languages permit constructs which do not terminate
or which create infinite output. Code blocks which specify such constructs would not
return a result while still consuming system resources to evaluate them. A standard
user requirement is that the database system return query results in finite time and
reject those queries for which this is not possible. Arbitrary code blocks do not have
this property.

An object-oriented language compiler or interpreter can use traditional code opti-
mization techniques to improve the run time of a block of code. But such techniques
typically do not utilize equivalent primitive data manipulation constructs to rewrite
expressions in a more efficient form. In other words, formal representations of query
conditions provide more opportunity for rewrites and optimization than the code
representation.

The problem this thesis investigates can be stated as follows: What is an appro-
priate query model for object-oriented systems and how are queries processed in an
object-oriented DBMS? The question can not be answered without addressing four
more fundamental problems related to object-oriented database systems:

1. What languages can be used to express queries and what defines an acceptable,
or computable query?

2. How do the semantics of inheritance affect query processing?

3. Can logically equivalent forms of a query be identified and used as a basis for
query optimization?

4. What functionality should an “object management subsystem” provide such
that queries can be evaluated efficiently?

The approach proposed in this thesis is depicted in Figure 1.3. Queries are ex-
pressed in a declarative language, the object calculus, which requires no user knowl-
edge of object implementations, access paths or processing strategies. The calculus
expression 1s first reduced to a normalized form and then tested for safety. The



normalized calculus expression is then converted to an equivalent object algebra ex-
pression. This form of the query is a nested expression which can be viewed as a tree
whose nodes are algebra operators and whose leaves represent instances of classes in
the database. The algebra expression is next checked for type consistency to insure
that predicates and methods are not applied to objects which do not support the
requested functions. This is not as simple as type checking in general programming
languages since intermediate results, which are sets of objects, may be composed
of heterogeneous types. The next step in query processing is logical optimization
achieved by applying equivalence preserving rewrite rules to the type consistent alge-
bra expression. Lastly, an access plan which represents a sequence of primitive data
manipulation operations is generated from the optimized object algebra expression.

normalized object type optimized
declarative calculus algebra consistent algebra access

- query expression expression  expression expression plan -

_— cglgulu; . calculus—alggbra..’_> typecheck . a}ggbra. | .| access p;an_ﬁ;
optimization transformation optimization generation

Figure 1.3: Query processing methodology.

The main contributions of this thesis are the following:

1. Formalization of a data model which captures many commonly accepted features
of object-oriented database systems and the development of two query languages
for that model: a declarative object calculus and a procedural object algebra.

2. A safety criterion for identifying computable queries.

3. A new definition of type consistency for query expressions which insures type
consistent bindings of program variables to query results.

4. The specification of an object manager subsystem interface which performs
primitive operations on streams of objects and algorithms for generating access
plans which are sequences of object manager operations.

1.3 Related Work

This thesis draws from several areas of computer science: advanced database models,
object-oriented programming languages, query processing and query languages. The
following sections review relevant aspects of these areas and identify the specific
ideas which have influenced the work. Several implementations of object-oriented
programming systems and databases have influenced the work as well. These are
summarized in Appendix A.



1.3.1 Advanced Database Models

It is commonly recognized that the relational data model [Cod70], with its flat repre-
sentation of data, results in a semantic mismatch between the entities being modeled
and the underlying DBMS [Ken79]. A number of approaches have been followed to
remedy this. One approach has been to modify the relational model to provide it
with more power [Cod79]. More recent work has aimed at including user defined data
types within the relational model [OT86, RS87, WSSH88]. Others have allowed for
non-normalized relations [OY87, Rot86, RK87, SS86] and developed languages for
them [AB84, JS82, Sch&5].

An orthogonal approach has been the development of new and more powerful
data models generally classified as semantic data models. Most semantic models are
based on the concepts of aggregation, generalization and classification [SS77]. Well
known examples are the E-R model [Che76], LDM [KV84], the Format model [HY84],
Daplex [Shi81], IFO [AH84] and Taxis [MBW80]. Overviews of the entire field can
be found in [Hul87, HK87].

The data model developed in this thesis includes the common semantic data model
features of aggregation, generalization and classification. The function-based action
paradigm of Daplex (without inverse functions) is used as the underlying mechanism
for sending a message to an object!. The consistent use of algebras in processing
queries for the normalized and non-normalized relational models provided motivation
to do the same for the data model presented in this thesis.

1.3.2 Object-Oriented Concepts

An overwhelming number of papers have been written in justification of some in-
terpretation of the term “object-oriented”. However, although a complete notion of
what it means to be object-oriented is not agreed upon, some common themes have
emerged. Proposals have been made to define terms such as object, class, identity,
behavior, representation, method and inheritance [OOD90, SB85, Weg87]. An object
is considered to be an instance of some class which defines its representation and
behavior. Identity is that property of an object which distinguishes it from all other
objects. It is separate from addressability and value. The object equality operators
identity, shallow equal and deep equal defined in [KC86] are present in almost all
object-oriented programming languages. Methods define the behavior of objects and
when applied to a specific object return another object; either a subobject or some
other object in the system.

Representation and/or behavior may be inherited. Inheritance defines a directed
graph whose nodes are classes and edges denote inheritance relationships. In the
context of databases, this graph represents the database schema. Early systems such
as Smalltalk [GR85] did not distinguish between inheritance of representation and
inheritance of behavior. Thus there was only one inheritance graph. Lal.onde and

!Chapter 2 clarifies how the message sending paradigm of object-oriented systems is modeled by
applying the function associated with a method to an object.



Zdonik investigate the situation where there are distinct graphs for each form of
inheritance within the same system [LTP86, Zdo86]. An orthogonal issue is whether
a class may inherit from one or many parent classes. Single inheritance forces the
inheritance graph to be a strict hierarchy while multiple inheritance organizes the
classes into a directed acyclic graph.

Proponents of object orientation claim that the approach is superior to other
paradigms for modeling real world entities. But the model may at times be overly
flexible while at others overly restrictive. For example, a common error is to use
subtyping (subclassing) as a means of composition rather than to define a sum of
behaviors. Design rules which guard against misapplication of object-oriented princi-
ples during system design are given in [HO87]. The requirement that all concepts be
organized into classes can be overly restrictive. For example, Borgida has investigated
how non-strict taxonomies of classes can be used to accommodate exceptional entities
[Bor88], i.e., those which differ only slightly from the class definition.

An alternative to classification schemes, yet still termed object-oriented, is the
notion of delegation. In this paradigm each object defines some behavior itself and
delegates additional behavior to other prototypical objects as required [Agh87, Lie86].
Strong arguments have been made to show that delegation and inheritance are both
viable methods for incremental definition and sharing of behavior [Ste87]. Recent
models have attempted to combine the two in an integrated fashion [Sci89].

Some more formal approaches to inheritance and classification have also helped
define object-oriented concepts. Cardelli defines a set inclusion semantics for multi-
ple inheritance by interpreting objects as records with function components [Car84].
Cardelli and Wegner use a typed A-calculus augmented with quantification to model
abstract types, subtypes and type inheritance [CW85]. They also make the distinction
between ad hoc, inclusion and parametric polymorphism which correspond to oper-
ator overloading, subtyping and generic functions respectively. A survey of typing
in various object-oriented programming languages is given in [DT88]. Other formal-
ization attempts have focused on providing a posteriori specifications of Smalltalk-80
using VDM and other specification languages [CP89, Wol87].

This thesis incorporates many of the concepts presented above. We use a multiple
inheritance model which does not support any form of delegation. Inheritance without
delegation gives the schema a regular structure which can be exploited during query
processing. The data model defines a mechanism for behavioral inheritance only
and makes no restriction on object representations. This allows objects within a
class to have different representations and permits the representation inheritance
graph to be distinct from the behavioral inheritance graph if desired. Representation
independence also permits treating objects as abstract instances of a class whose
methods define a behavior. We support inclusion polymorphism as defined by Cardelli
and Wegner [CW85] and base the form of our type inference rules on those proposed
by Cardelli in [Car84].



1.3.3 Query Processing

Query processing has many components including query representation, transforma-
tion, optimization and evaluation. A good overview of these issues and their interre-
lationships in the context of the relational model is provided by Jarke [JIK84].

Two types of query transformations are common. One generates query expressions
for which it is easier to prove certain properties such as safety. Methods for rewriting
relational calculus expressions to obtain domain independent formulas are presented
in [Bry89, GT87]. Domain independence implies safety by insuring that a query can
be answered by examining only the relations it references, not the (possibly infinite)
domains their attributes are drawn from [Fag82, GT87, Nic82]. A similar technique
using set operators instead of universal quantification and negation is given in [OW89].

The second type of transformation generates query expressions which are less
costly to evaluate. These are often referred to as logical transformations. Jarke
[JK84] and Talbot [Tal84] identify many such transformations for the relational data
model. Shaw identifies a limited number of logical transformations for an object
algebra [SZ90].

The ability to precisely define the nature and pre-conditions of logical transfor-
mations has led to their application using rule based systems. This technique can be
used both to ameliorate queries [GD87, HP88] and to translate them into executable
access plans [Fre87, GD87, Loh88].

Generating access plans requires that (1) a well defined set of primitive query oper-
ations be implemented, and that (2) techniques exist for enumerating and evaluating
alternate sequences of operations. The relational storage subsystem (RSS) of System
R [Ast76] defined the standard for relational low level query interfaces. Similar low
level interfaces have not been defined for other data models because they often are
mapped to the relational model. Enumeration of alternate operation sequences has
received significant attention in the context of join ordering [OL88, RR82, SAC*tT9].

Almost all of the referenced work is applied in this thesis. The proposed query
processing methodology, with the exception of the type consistency step, is similar
to that proposed by Jarke [JK84]. The notion of domain independence in the rela-
tional model is extended to define finite and infinite classes in Chapter 3 and their
relationship to the safety of queries. We use logical, equivalence preserving transfor-
mations to improve query expressions and define them with conditions which would
be suitable for a rule based transformation system. The join enumeration algorithm
of [OL88] and join template representation of [RR82] are modified and extended for
generating our access plans.

1.3.4 Query Languages

Many query languages have been developed for databases. I make the distinction
between “user” and “formal” languages. Languages such as QUEL [Sto76] and SQL
[Dat87] are user languages while calculi and algebras are formal. User languages
associated with a particular implementation are discussed in Appendix A.

The most well known calculus and algebra are those for the relational model
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[Cod70, Cod71, Klu82, OWS89, Ull82]. An algebra exists for the =INF model
[Rot86, Sch85] and for general non-normalized relations [AB84]. Complex object
manipulation languages have also been developed [BK86].

Osborn [Osh88, Osb89] describes an object algebra which views objects as passive
data and does not support encapsulation. Her algebra allows aggregate or set objects
to be disassembled and recombined and then reused in later stages of a query.

Zdonik and Shaw [SZ89, Zdo88] developed an object algebra which supports en-
capsulation but only allows unary methods to be used in qualifying algebra operators.
They also introduce an id-equal at depth ¢ comparison operator which allows struc-
tural comparisons of objects. Results of queries are always new objects. Thus the
same query run twice may not pass some equality tests which use the structural com-
parison operators. This complicates using query results as views since the database
user must insure that only the proper types of comparisons are performed on the
results of a previous query.

The user language OQL [ASL89] specifies queries as a subschema of the database
combined with selection criteria on the objects which are part of the subschema.
Objects whose components extend past the query defined subschema are ‘truncated’
in the sense that those components are not available in the query result. This allows
definition of views which hide a part of the objects’ representation while allowing free
access to the remainder of the objects. OQL considers objects strictly as aggregations,
not ADTs, and no discussion is presented on how to process and optimize such queries.

This thesis focuses on formal query languages by developing both an object calcu-
lus and an object algebra. Our query languages differ from those of Osborn [Osh88],
Alashqur [ASL89] and Shaw [SZ89] in that we support strict encapsulation, i.e., op-
erators which manipulate or depend on the object representation are not allowed.
Chapter 8 addresses how the addition of new operators affects the overall query pro-
cessing methodology.

1.4 Organization of this Thesis

This thesis is divided into eight chapters almost along the lines of Figure 1.3. The
object-oriented data model that forms the basis of investigation is introduced in Chap-
ter 2. The model formalizes objects, methods, classes, inheritance, legal database
states and operations. A sample hypertext database is defined which is used in ex-
amples throughout the thesis.

The following two chapters formalize the notion of queries against the model of
Chapter 2. Chapter 3 defines a declarative query language: the object calculus. The
syntax and semantics of low level query primitives are specified and a safety criterion
for object calculus expressions is developed. Chapter 4 presents a procedural query
language, the object algebra, which implements a subset of the full object calculus.
An algorithm for translating calculus expressions to their algebra equivalent is given.

Traditional query languages, with their limited data types and operations, have
required only simple checks for type consistency. In contrast, the data abstraction and
multiple inheritance present in the object-oriented model do not permit such trivial

8



typechecking. Chapter 5 presents a set of type inference rules for insuring the type
consistency of object algebra expressions. Type consistency is based on the notion
that an expression may conform to several types concurrently due to inheritance.
Several algorithms are developed for manipulating the class inheritance graph and
determining type inclusion relationships.

Chapter 6 presents a suite of equivalence preserving transformation rules for object
algebra expressions. The rules are intended to serve as the rule base for a query
rewrite system similar to that of Starburst [HP88]. Three types of transformation
rules are presented: identities, conditional rules and semantic rules. Identities are
always applicable while conditional rules must meet a set of well defined conditions
to be eligible. Semantic rules additionally utilize the semantics of the object-oriented
data model, class inheritance graph and type consistency to determine rule eligibility.

The last step in query processing, execution (access) plan generation, is addressed
in Chapter 7. Access plan generation is the process of translating object algebra
expressions into sequences of executable, primitive data manipulation operations. An
object manager interface which provides these primitive data manipulation operations
is defined followed by two algorithms for generating access plans for the intertface. The
first algorithm takes a naive approach and generates sub-optimal plans. The second
algorithm generates a family of access plans (which includes the optimal plan) by
applying a modified relational join enumeration technique.

Conclusions and contributions of this work are presented in Chapter 8. The results
are summarized and future research directions that this work suggests are discussed.



Chapter 2

The Object-Oriented Database
Model

2.1 Introduction

The data model attempts to meet several objectives, the most important of which is
to provide a query formalism which can be used to investigate properties of queries
such as safety, expressiveness and equivalence preserving transformations. Another
objective is to accurately reflect common object-oriented concepts without setting
any restrictions on implementations or physical object representations. For example,
relational query languages do not reflect whether relations are vertically or horizon-
tally partitioned in the physical system. Such knowledge is required for physical data
access but is not required in order to completely and unambiguously specify a query.
In an analogous fashion, the object-oriented data model and query formalism should
have a logical view of data which is consistent for all physical implementations.

The data model should additionally support both a set oriented query formalism
as well as a general purpose programming language with assignment. The common
problem of ‘impedance mismatch’ [Ban88a, MSOP86] occurs when a set oriented
query language and an imperative programming language with different computa-
tional paradigms are used together. Removing this mismatch makes it easier to
implement complex applications which operate on persistent data.

These objectives are best achieved by modeling objects as instances of abstract
data types (ADTs). This interpretation can be explained in the traditional context
of objects which are modeled as instances of record types [Car84]. Consider that
the fields of a record may hold data or functions. Restricting the fields of a record
type to functions on types results in a true ADT where the components of the record
implement the ADT abstraction. Functions in the mathematical sense are not depen-
dent on local data, but implementations of functions using imperative programming
languages are. As a result, implementations will often allow both data and functional
fields with the data fields corresponding to the object state, and the function fields
implementating the object behavior.

Defining objects as combinations of data and functions raises the question of
visibility. Is the data component visible only to an object’s functions or to any user
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of an object? The issue takes on added significance when we speak of inheritance.
When we say that type A inherits from type B we could mean:

1. inheritance of representation — type A objects have the same data compo-
nents as type B objects (and possibly additional ones);

2. inheritance of behavioral implementation - code implementing the func-
tions of type B objects can be applied to the data structures representing type
A objects;

3. inheritance of behavioral specification — type A objects provide functions
with the same names, arguments and semantics as those of type B objects.

Note that inheritance of behavioral specification (3) is a concept while items (1) and
(2) are realizations of that concept.

The inheritance relationships among types can be represented by a graph. This
graph is highly dependent on the form(s) of inheritance that a system supports.
For example, Smalltalk-80 [GR85] enforces (1) and (2) but allows inheriting types
(subtypes) to change the arguments and semantics of inherited functions. The public
and private declarations of Owl [SCW85] and C++ [Str86] allow (1) and (2) to be
chosen for each data component and function on an individual basis. A system can
have multiple inheritance graphs. Lalonde [LTP86] describes a Smalltalk-80 variant
which has one inheritance graph for implementations and a second for behavioral
specifications. It is also possible to have (3) without either (1) or (2). In this case each
type must reimplement the functional specifications and semantics it has inherited.

By separating behavior from implementation, the data model places no restrictions
on implementations [DT88, Sny87]. This allows

e a type to have multiple representations and implementations,

e subtypes to have representations and implementations different from their su-
pertypes.

The model can be used consistently for distributed systems with heterogeneous pro-
cessing elements, systems where functionality is distributed by type, and systems
where multiple representations of a type are required.

Modeling all object-oriented concepts is not possible as some are in conflict with
each other. For example, this thesis restricts objects to be instances of only one type
while other models [Fis87] allow an object to be a member of multiple types con-
currently. However, an object may exhibit the behavior of several types via multiple
inheritance. Lastly, the model presented here does not address primarily implementa-
tion issues such as object migration, exception handling, schema evolution [BKKKS87],
and saving queries as views [TYI88].

2.2 Values and Objects

All definitions in the model are based on the existence of the following sets:
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A finite set of basic domains Dy, ..., D, where D = U D;.
e A countably infinite set A of symbols called attributes.

e A countably infinite set 1D of identifiers.

o A finite set C'N of class names.

o A finite set M N of method names.

Definition 2.1 Values: There are three types of values:

1. Every v € D is an atomic value for which there exists a textual representation.
2. Every finite subset of I D is a set value.
3. Every element in IP(A) x IP(D) x IP(ID)" is a structural value.

The symbol V denotes the set of all values. O

Definition 2.2 Objects:  An object is a triple o = (id,cn,val) where td € ID,
en € CN and val € V. O = 1D x CN x V is the set of all objects. We will use the
notation o.1d, o.cn, and o.val, respectively, to denote the identifier, the class and the
value of object 0. O

Based on an object, the function ref(o) is defined which associates to an object
o the set of all identifiers referenced within the value part of the object. This is a
recursive function which includes all references of objects nested within o.

Definition 2.3 Consistent set of objects: A set of objects © is consistent iff:

e Yo,p € 0,0.1d # p.id (No two objects in © have the same identifier — unique
identifier assumption [KC86].)

e Yo € O,ref(o) C Uyeo p-id (Each identifier in ref(o) is an object in © — no
dangling identifier assumption [KC86].) O

2.3 Classes and Inheritance

Classes are abstract types whose instances are objects. In our model, a class is a
type definition as well as a synonym for all objects which are instances of the type
[Ban88a]. A class defines the interface and semantics of its instances by making public
a set of methods and their signatures. The method signature specifies the method
name, and the number and type of the arguments and result. For example, the class
Person might define the method

salary : Person x Date — Number

LP(X) denotes the powerset of X.
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whose semantics are to provide the salary values over a person’s lifetime.

Signatures provide the basis for a strongly typed, compile time-checkable system.
Type checking is based upon the notion of conformity. A type P conforms [BHJL86,
BHJ*87] to a type @ if

1. P provides at least the operations of ();

2. The types of the results of P’s operations conform to the types of the results of
the corresponding operations of @);

3. The types of the arguments of ()’s operations conform to the types of the argu-
ments of the corresponding operations of P.

The conformity relation is reflexive but not necessarily symmetric or transitive. As-
suming a set of primitive types and their known conformity, any non-primitive type
can be tested for conformity by recursively examining the types referenced by sig-
natures of its methods until only primitive types remain. An assignment is legal if
the type of an object conforms to the declared type of the identifier to which it is
being assigned. A formal definition of the conformity relation between types is given
in [BHJ*87] and is sufficient for developing a type checking algorithm.

A class which conforms to another and additionally adds behavior is said to be a
specialization of that class. This new class, termed a subclass, ‘behaves like’ [Zdo86] its
parent class in the sense that it exhibits all the behavior of its parent(s) in addition to
defining new behaviors. For example, we could define Student as a subclass of Person.
Since a student object implements the behavior of a person object, the Student class
provides the method

salary : Student x Date — Number
As well, it could specialize Person by adding new behavior defined by the methods

grade : Student x Course — Number
thesis_topic : Student — String

The concept of a subclass ‘behaving like’ its parent is called behavioral inheritance
and corresponds to the third form of inheritance described on page 11. In our example,
Student inherits the behavior of salary from its parent class. There is no restriction
on the number of classes a subclass may inherit behavior from. The case where a
class inherits from multiple parents is termed multiple inheritance. Our use of the
term inheritance will refer specifically to behavioral inheritance in the remainder of
the paper.

Since each class may have parents from which it inherits behavior, we can define a
class inheritance lattice as the directed graph G = (V, E') where verticesin V represent
classes and an edge (v;,v;) exists in E if v; is the parent of v;. We say v; is a subclass
of v; if there exists a path from v; to v; in F. Conversely, v; is a superclass of v; if a
path from v; to v; exists.

Multiple inheritance mechanisms require a conflict resolution protocol to deal with
cases where a class inherits the same named behavior from a number of classes. We
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consider the definition of this protocol to be an implementation issue and, therefore,
do not specify it explicitly as part of the formal data model. However, either one of
the two alternatives that have been proposed in the literature — namely requiring the
user to explicitly define the multiple inheritance semantics or resolving the conflict
according to a predetermined ordering of the class lattice — is appropriate.

The behavioral inheritance described above insures that a subclass always con-
forms to all of its superclasses. Others have called this substitutability [SZ89]. Sub-
stitutability insures that an object of class P can be used in any context specifying
a superclass of P. Note that a subclass could redefine the class of the result of an
inherited method to be a subclass of the original result class without violating sub-
stitutability. This is because rule 3 in the definition of conformity is not violated by
such a change. In order that the behavioral inheritance terminates, the class lattice
has a root class which is the parent of all other classes.

We call the instances of a class ¢ the extent of ¢ and denote it as ext(c). It is
also convenient to have a notation for referring to all the instances in the extent
of all classes rooted at a specific node in the class lattice. For a class ¢, the deep
extent of ¢, denoted ext*(¢), is the union of the extent of each class in the subtree of
the class lattice rooted at class ¢. Figure 2.1 illustrates a sample class lattice with
rectangles representing classes and circles denoting objects. Solid lines indicate a
subclass relationship and dotted lines indicate class membership. In this example
ext(ey) denotes the objects {01, 02} while ext*(¢q) denotes the objects {o1,...,010}.

C2 C3

/7/;\\\\\ /’44\\\\

Cq

Figure 2.1: Class lattice with extents.
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The definition of methods, classes and inheritance are formalized next. As indi-
cated earlier, methods define the behavior of objects. In the object-oriented paradigm,
a method is applied to an object or a message identifying a method is sent to an object
and a result object is returned [SB85]. Conceptually, a method can be thought of
as providing a mapping from a source object to a target object. If, in the process,
the value of the source object is changed, we say that the method has ‘side effects’.
Methods with side effects can adversely affect query processing. Consider a method
whose side effect is to create new objects in the class being queried. A query using
such a method would never terminate since the query set grows as each member of
the query set is evaluated. This thesis considers only side effect free methods.

Definition 2.4 Methods: A method is a triple m = (nm, f : S — T, b) where:

e nm € MN is the name of the method.

o f: 5 — T is a function mapping a product of source domains to a target
domain of the form

f:9 xS x...x8, =T
where S7,...,5, and T are sets of objects.

e b denotes the semantics (behavior) of function f. O

The following functions will be useful in the upcoming discussion:
e source(m) denotes S, the first source domain in S of method m.
e target(m) denotes the target domain, 7', of method m.
e name(m) denotes the name mn of method m.

Function f is n-ary in order to allow parameterized methods. For example,
f(s1,...,8,) =t when s1 € Sy,...,8,€ S, and t € T. Using the object-oriented
paradigm, function f is applied to object s; using objects sy,...,s, as parameters
resulting in object t. Subsequent definitions will restrict Sy,...,.5, and T to insure
substitutability and a strongly typed system. Later, sets of methods will be associ-
ated to classes and all methods associated with a class will be required to have unique
names. The following definition formalizes this constraint.

Definition 2.5 Consistent set of methods: A set of methods M is consistent iff:
Y, m; € M,name(m;) # name(m;),0 #j O

A class defines the behavior of its instances by providing methods which operate on
those instances. However, a class may additionally inherit behavior from its parents.
The functions which implement the methods of the parent class are only applicable to
instances of the parent class, they can not be applied to instances of a subclass. The
transformation operator ‘o’ modifies inherited methods such that they are applicable
to instances of a subclass.
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Definition 2.6 Method Transformation:  Given a method m and a set of objects
O:

moQ =m' =@, f S xT V)| [ n=n,
ST=0Q xSy x...xS,,
T =T,
V=>b] O

The transformation operator takes a method m and a set of objects 2 and cre-
ates a new method m’ with the same name, behavior, parameters and target domain
but which operates on the objects in ) instead of the source domain of the original
method. In the case of an interpreted language with dynamic binding like Smalltalk-
80 where representations and implementations are inherited, the transformation oper-
ator is a no-op. In compiled languages, the transformation operator is an abstraction
of that aspect of the compiler which implements the language’s inheritance mecha-
nisms.

The following definition formalizes the notion of a class and shows how the data
model implements behavioral inheritance. The transformation operator is used to
build a set of applicable methods from locally defined and inherited methods.

Definition 2.7 Classes: A class ¢ is defined as the tuple ¢ = (n,p, MT, AM) where:

e n € (N is the class name.
e p is a sequence of parent classes of the form <ey, ..., ¢ >.
o MT is a consistent set of methods with the added restrictions:

— Vm € MT, source(m) = ext(c). Each method in MT must operate on
all instances of the class, and no other objects. In other words, the class’
methods are defined only on the objects in the extent of the class.

— Vm € MT, source domains Sz(m),...,S;(m),...,S,(m) are the deep ex-
tent of some class ¢, ext*(c}), in the database. This restriction is based
on the principle of substitutability implied by the conformity relationship.
Substitutability states that an instance of a subclass is acceptable in any
context specifying an instance of the parent class. Here, the parent class is
;. In order to meet the substitutability criterion then, the function which
implements a method must accept all instances of ¢, and all subclasses of
¢ as arguments, i.e., ext*(cl).

— Vm € MT, the target domain T'(m) is the deep extent of some class
¢, ext*(’), in the database. This restriction insures that the result of
a method is well defined thereby allowing a strongly typed system, i.e.,
objects returned by method m are guaranteed to minimally conform to
class .

o AM is a set of applicable methods formed by:

MT(c)U(AM(cq) oext(c))U...U(AM(ck) o ext(c))
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The applicable methods of a class consists of the methods the class provides,
MT, plus the methods from its parents transformed to operate on its own
instances?. O

2.4 Databases

Definition 2.8 Database: A database is a pair db = (H,0) where H is a set of
classes denoting a class hierarchy and O is a consistent set of objects meeting the
following constraints:

1. Ve € 'H, the name of ¢ is unique.

2. Yo € 0, o.cn is the name of a class in H.
3. Croot € H.

4. Ye € H, cis a subclass of ¢,,;. O

The first two conditions insure that each object in the database belongs to only
one class which is itself in the database. The third and fourth conditions are required
to insure that the recursive definition for behavioral inheritance terminates for every
class in the database.

A legal database operation can be thought of as applying the function associated
with a method to a sequence of objects where the first object in the sequence is in
the extent of the class on which the method is defined.

Definition 2.9 Operation: A database operation is defined as the function
op :dbx <oq,...,0,> Xmn — r where:

e dbis a database.

® <01,...,0,> 1s a sequence of objects in db with at least one member.

e mn is the name of a method defined on the class of o;.

e 1 is the resulting object obtained when the function associated with the named
method, f: 57 x5y x...x S, = T, is applied to <oq,...,0,>. Intuitively, the

method with name mn is being applied to object o; with parameters oo, ..., 0,.
O
We introduce the notation op(db, <o1,...,0,>,mn) to indicate the result of the op-
eration dbx <oq,...,0,> Xmn.

It is often desirable to perform a sequence of operations with the implicit assump-
tion that the result of the first operation is to be used as the input to the second,
etc. This is analogous to composition of the functions associated with methods.
We call such a sequence of multiple operations a mop and introduce the notation
<01y ... 0> MmN, . .., MmN, where:

2This assumes that name conflicts between methods in MT and any parent class are already
resolved.
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e a database db is implied.
® <0q,...,0,> 18 a sequence of objects in db.
o <mny,...,mn, > is a sequence of method names where mn; € MN.

Let k; denote the number of parameters® required by method mn; where
1 <@ < m, then r is the result of the multi-operation obtained by:

ri == opi(db,<oy,... 05 41>,mn)

re == 0pa(db, <11, 08,42, oy O(hy thyt1) >, TN2)

r, == Opz(db, < ri-1, O(Z;;ll k)42 0(2321 k;)+1 >7 mm)
r=r, == opu.(db, <rm_1,0(zzn:—11 k)2t Cy O > MMy, )

This sequence of operations is illustrated in Figure 2.2. O

() ] [ i—1 [ m—1
2 hat2 (X2 ko) +2 Qo) ks)+2
l 0k1_|_1 J/ 0(k1_|_k2_|_1) J/ O(Zz ) k])-l—l \L Op
0 r r T e T r
2L opy 1] opy 2 TiLl) op; ¢ tm=Lll oop, L™
mny mny mn; MmN,

Figure 2.2: Sequence of operations making up a mop.

The multi-operation dot notation will be used in the remainder of the document.
<01, ...,0,>.mlist will be used to denote a multi-operation where the number of
method names in the method list is immaterial.

2.5 Example Database

The hypertext application is selected as an example because it belongs to an applica-
tion domain (office information systems) that is claimed to potentially benefit from
the object-oriented database technology. Specifically, a hypertext system requires
persistent data, has a large number of data types and many types of ad hoc queries
can be posed. The basic underlying concept is a simple one. Windows on the screen
are associated with units of information stored in a database [Con87]. Information

3The parameters are those objects supplied as arguments to a method in addition to the object
the method is applied to. In other words, a unary method has zero parameters.
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units are related to one another via [links. Links are typed in the sense that some
may be used to specify the structural composition of a document (structural links),
some may point to related information which supports the primary theme (referential
links), and some may point to comments made by reviewers (note links). Users of
the hypertext system browse through documents by traversing links and examining
nodes of interest. This approach is a powerful communications tool as documents do
not need to be structured linearly and users can sidetrack to follow related trails of
information in whatever order they desire.

Information units are referred to as nodes and can encompass text, graphics,
computer generated sound, and even executable programs. The example will be
restricted to textual nodes. A document is a set of nodes connected by links with
one node designated as the root node. Figure 2.3 depicts a hypertext system with
structural links shown as solid lines and referential links shown as dotted lines. The
nodes labeled A and B are root nodes. Documents can have any structure desired.
Here the documents rooted at A and B are linear and hierarchical respectively. In
general, there are no restrictions on links thereby allowing nodes to be a part of
multiple documents, as in the case of C, or to exist outside of a document as in the
case of nodes D, E and F. The forest of links associated with a document or group
of documents is called a web.

Figure 2.3: A web of hypertext nodes.

The hypertext database can be browsed in three ways. One method is to follow
links and to open windows on nodes to examine their contents®. Another method is
to graphically display the web associated with a document and selectively examine
nodes of interest. Third, the database can be queried to identify nodes meeting some
criteria. Nodes are qualified using selection criteria appropriate to the node type. For
example, textual nodes may be selected based upon a keyword search while graphics
nodes are selected based upon pattern recognition. The query mechanism can also
be used to filter the nodes and links presented to the user when viewing the web of a

*Most systems implement link following and window invocation as a single mouse command.
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document. Schatz and Caplinger [SC88] note that as a hypertext system grows, its
web becomes less connected. This is due to the existence of documents which do not
reference one another. In this situation, link following and web display as methods
for finding related units of information are of limited usefulness. As a result, the ad
hoc query capabilities become more important as the hypertext system grows in size.

The design of the user interface contributes greatly to the usefulness of a hy-
pertext system. The ease and speed with which links can be followed and windows
opened on information units can make the difference between a system which aug-
ments concurrent thought processes and one which merely stores large amounts of
related data. Although implementations such as KMS [AMYS88], Notecards [Hal88]
and Intermedia [Con87] each have a unique user interface, a common, low level ar-
chitecture can be identified. Campbell and Goodman [CG88] call this common set
of features the Hypertext Abstract Machine (HAM) and show how several well known
systems can be implemented on the standardized hypertext subsystem. The example
implements a subset of the HAM using the object-oriented database model presented
in this chapter.

Root
Boolean TextObject String Set DisplayObject Number Person
Window Line
Node Document Link

S

StructLink RefLink NoteLink
Figure 2.4: Classification graph for a hypertext system.

The class lattice for the hypertext database is given in Figure 2.4. The classes
Boolean, String, Set, and Number should be considered as being predefined by the
database management system while all other classes are defined by the hypertext
database implementor. The signatures of methods defined by each class are given in
Table 2.1. The classes Node, Link, and Document closely reflect the logical hypertext
structure described earlier. However, some implementation details are significant.
Since a node may belong to several documents concurrently, the links emanating
from it belong to several documents as well. The method links : Node x Doc — Set
returns the set of links emanating from a node for a given document.

Links identify their source and destination node by means of the methods from and
to. Unlike the HAM which tags links with an attribute, we have chosen to separate
link types by defining the subclasses StructLink, RefLink and NoteLink. This provides
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Table 2.1: Method signatures for classes of the hypertext database.

| Name | Method Signatures |
Root
Boolean (Bool) negate:  Bool — Bool
TextObject (TO) contains: TO x Str — Bool

creator: TO — Person
keywords: TO — Set
edit: TO — TO
String (Str) contains:  Str x Str — Bool
concat: Str x Str — Str
within:  Str x Str x Num — Bool
Set size: Set — Num
add: Set x Root — Set
DisplayObject (DO) display: DO — DO
1sColor: DO — Bool

Number (Num) add: Num x Num — Num
greater:  Num x Num — Bool
Person age: Person — Num

expertise:  Person — Set
mother: Person — Person
father: Person — Person
children: Person x Person — Set

Window
Link creator: Link — Person
from: Link — Node
to: Link — Node
part_of: Link — Doc
Node links:  Node x Doc — Set
Document (Doc) author: Doc — Person
co-authors: Doc — Set
title:  Doc — Str
keywords: Doc — Set
rootnode: Doc — Node
RefLink
NoteLink
StructLink

the opportunity to a-priori restrict the scope of a query by defining it to range over
the appropriate subclass of Link. Link is a specialization of the graphical object class
Line.

Documents and nodes both require a display ability and thus are a subclass of
Window. Node additionally inherits its text handling behavior from TextObject which
defines methods such as contains for testing substring containment and edit. Although
a document is a collection of nodes, it would be incorrect to implement Document
as a specialization of Node. Instead, instances of Document have a structural value
which captures the document structure but is hidden from users. Access to this
structure is provided by methods on the Document class thereby preserving the ADT
abstraction.

21



Chapter 3
The Object Calculus

3.1 Introduction

Three key trade-offs of OODB query facilities can be identified: (1) formal vs ad hoc
query languages, (2) predicates based upon structure vs behavior, and (3) object-
preserving vs object-generating operations. The goal is not to argue either side of
these trade-offs. Compromises need to be made with respect to each of these features
when designing a practical, user query language. However, a formal, behaviorally
based, object-preserving query language provides the best foundation for formal anal-
ysis of OODB query processing issues and results of this analysis should apply to many
other OODB query models.

Formal query languages [Osb88, SZ90] have several properties not found in ad hoc
query languages [Fis87, Kim87, MSOP86] which make them more suitable for formal
analysis. Their semantics are well defined which simplifies formal proofs about their
properties. Common types of formal query languages are a calculus or an algebra. A
calculus allows queries to be specified declaratively without any concern for processing
details. Queries expressed in an algebra are procedural in nature but can be optimized.
Algebras provide a sound foundation for rule-based transformation systems [Fre87,
GD87, HFLP89] which allow experimentation with various optimization strategies.
A large body of work exists on algebras for other data models [AB84, JS82, UlI82].
Defining OODB query requirements in terms of an algebra facilitates comparisons
with these other models.

Some models implement complex objects whose internal structure is visible [BK86,
LRV88, Osh88] while others view objects as instances of abstract data types (ADT)
[ACO85, SZ90]. Access to objects which are instances of an ADT is through a public
interface. This interface defines the behavior of the object. Although the two views
of objects appear incompatible, the ADT approach can effectively model complex
objects by including get and put methods for each of the components of the internal
structure [Zdo86]. Thus, a query language which supports predicates based on object
behavior is more general while still allowing knowledge of object representations to
be introduced in a later stage of query processing.

A distinction can be made between object-preserving and object-creating query

operations [SS90]. Object-preserving query languages [ASL89, ACO85, MSOP86]
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return objects which exist in the original database. Object-creating languages [Kim89,
LRVS88, Osh88, SZ90] answer queries by creating new objects from other objects. The
new objects have a unique identity and some criterion is used to appropriately place
them in the type inheritance graph. In one sense this violates the integrity afforded
by objects with identity as objects with no apparent relation to each other can be
combined and presented as a new object which (presumably) encapsulates some well
defined behavior. But the requirement for combining objects into new relationships
does exist; either for output purposes or for further processing as in knowledge bases
where knowledge is acquired by forming new relationships among existing facts.

This thesis restricts the query formalism to object-preserving operations for two
reasons. First, any OODB query language must have a complete object-preserving
query facility independent of whether it additionally creates new objects. The ability
to retrieve any object in the database utilizing relationships defined by the type inher-
itance graph or defined by ADT operations on objects is a fundamental requirement.
Second, object-creating operations raise a number of issues which are not the focus
of this research, e.g., what is the class of the created objects and what operations do
they support.

The remainder of this chapter develops an object calculus for the model of Chap-
ter 2. Primitive query operations and their semantics are developed in Section 3.1.
The calculus is formally defined in Section 3.2. Sections 3.3 and 3.4 examine several
characteristics of object calculus expressions and provide a definition of safety for
queries.

3.2 Query Primitives

In principle, maintaining the data abstraction paradigm would require querying the
database based on object behaviors, not their values. However, since every informa-
tion system actually stores values and uses functions to implement behavior, queries
need to specify a combination of values and functions. Four comparison operators
which can be used in queries are defined: ==, €, =, and = whose semantics are
shown in Tables 3.1 and 3.2. The == operator tests for object identity equality; i.e.,
0; == o; evaluates to true when o; and o; denote the same object. The € and =,
operators apply to set valued objects and denote set value inclusion and set value
equality respectively. As shown in the tables, one of the operands can denote a value.
The last operator, =, can only be used to test the value of an atomic object. In order
to maintain data abstraction, no primitives are provided for querying structural val-
ues. Any aspect of structural values which are required by users of an object should
be made available via methods by the class implementor.

Atoms are the building blocks of calculus expressions and predicates for qualifying
algebra operators. They represent the primitive query operations of the data model
and return a boolean result. The legal atoms are as follows:

e 0,00; where

— o; and o; are object variables or denote an operation of the form
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Table 3.1: Semantics of 0;00; as a function of the object value type.

02'(90]‘

0i | 9 == | = | € [ =n
atomic || T/F T/F undefined | undefined
atomic | structural || T/F | undefined | undefined | undefined
set] T/F | undefined T/F undefined
atomic || T/F | undefined | undefined | undefined
structural | structural || T/F | undefined | undefined | undefined
set T/F | undefined T/F undefined
atomic || T/F | undefined | undefined | undefined
set structural || T/F | undefined | undefined | undefined

set T/F | undefined T/F T/F

Table 3.2: Semantics of afo; as a function of the object value type.

alo;
a o = [ = [ € [ =4
atomic || undefined T/F undefined | undefined
valy structural || undefined | undefined | undefined | undefined
set undefined | undefined T/F undefined
atomic || undefined | undefined | undefined | undefined
{valy,...,val,} | structural || undefined | undefined | undefined | undefined
set undefined | undefined | undefined T/F

<01 ...0,>.mlist where oy ...0, are object variables,

— 0 is one of the operators ==, =, € or =;.
o abo; where

— 0; is an object variable or denotes an operation of the form

<01 ...0,>.mlist where oy ...0, are object variables,

— a is the textual representation of an atomic value or a set of atomic values,

— 0 is one of the operators =, € or =4.

Example 3.1 Let p, g and r be object variables. Then the following are examples of
legal atoms and their semantics:

1. (p == ¢) — Are the objects denoted by p and ¢ the same object?

2. (p €<q,r>.mlist) — Is the identifier of p contained in the set value of the object

obtained by applying the methods in mlist to the objects <q,r>7

(<p,q>.mlist = r) — Is the set value of the object obtained by applying the
methods in mlist to the objects <p,¢> pairwise equal to the set value of the
object denoted by r?

(“59” = p) — Is “59” the atomic value of the object denoted by p?

(“59” € p) — Does the set value of the object denoted by p include an identifier
for the object whose atomic value is “59”7
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6. ({“h97,“61"} =, <p,q,r>.mlist) — Does the set value of the object obtained
by applying the methods in mlist to the objects <p,q,r> contain only two
identifiers for objects whose atomic values are “59” and “6177 <&

3.3 The Object Calculus

The format of the object calculus definition is similar to the tuple relational calculus
definition provided in [UlI82]. A query in the object calculus is of the form {o | (o)},
where o is an object variable denoting some objects in the database and % is a
formula built from atoms. The result of the query is the set of objects o which satisfy
the predicate formed by ¢ (0). We introduce a third atom, specific only to calculus
expressions, in addition to those defined in the previous section.

Range Atom: C(0) or C*(0) where C is the name of a class and o is an object
variable ranging over the instances of class C'. (o) refers to the objects in the
extent of C, i.e., ext(C), whereas C*(0) refers to the objects in the deep extent
of C, i.e., ext*(C).

Formulas depend on the notion of free and bound variables. A variable is said to
be bound in a formula if it has been previously introduced using a quantifier such
as 3 or V. If the variable has not been introduced using a quantifier it is free in the
formula. Formulas are defined as follows:

1. Every atom is a formula. All object variables in the atom are free in the formula.

2. If ¢y and oy are formulas, then ¥y A 1y, 101 V 1y and =2y are formulas. Object
variables are free or bound in 1 Ay, 101 Vtby and —1by as they are free or bound
in 11 or ¥y depending on where they occur.

3. If ¢ is a formula, then (Jo)(¢) is a formula. Free occurrences of o in ¢ are

(
bound to (Jo) in ( 0)(2).
(
)-

4. If ¢ is a formula, then
bound to (Vo) in ( 0)(v

Yo)(v) is a formula. Free occurrences of o in ¢ are

5. Formulas may be enclosed in parenthesis. In the absence of parenthesis, the
decreasing order of precedence is €, =, =, ==, 3, V, =, A and V, in that
order.

A query is an object calculus expression of the form {o | (o)} where o is the only
free variable in .

Example 3.2 Using the database of Figure 2.4, the following sample queries can be
formulated as object calculus expressions.

1. Author of the document titled ‘As We May Think’ [Bus45]:

{ o | Fp(Doc(p) N o ==<p>.author
N “As We May Think” =<p>.title) }
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2. Nodes belonging to the document titled ‘As We May Think’:

{ o | Fp(Doc(p) N “As We May Think” =<p>.title
A Fq(Link™(q) A p ==<g>.part_of
A (0 ==<g>.from V o ==<¢>.10))) }

3. Documents co-authored by a person’s father:

{ o | Fp(Doc(o) N p==<o>.author
A Jq(q E<o>.co_authors N ¢ ==<p>.father)) }

4. Authors who only write about boating:
{o | Vp(Doc(p) N o==<p>.author N “Boating” e<p>.keywords) } <

At this point it is appropriate to comment on the choice of atoms for the object
calculus as some of them seem quite restrictive as compared to the tuple relational
calculus. For example, the tuple relational calculus allows the operator 8 to be one
of =, <, <, > or > whereas the object calculus restricts § to =, ==, =, or €. The
object calculus allows a value based equality comparison of atomic objects only, not
of complex objects.

Some researchers have proposed shallow and deep equality operators which can
be applied to objects of any class [GR85, KC86, LRV88]. Two objects are said to be
shallow-equal if their values are identical. Two objects are said to be deep-equal if
(1) they are atomic objects and their values are equal, or (2) they are set objects and
their elements are pairwise deep-equal, or (3) they are tuple objects and the values
they take on the same attributes are deep-equal.

The object calculus defined here avoids these operators for two reasons. First, a
value based comparison of complex objects, such as o; = 0;, where o; and o; are com-
plex objects, violates the principle of abstract data types whose instances are solely
defined by their behavior. In order to completely support encapsulation, one can not
allow query expressions whose results are dependent on equivalence of structure as
opposed to equivalence of behavior. Second, the model should allow various objects
of the same class to be implemented differently to take advantage of their environ-
ment. For example, different representations may be used when objects are in main
memory versus when they are stored on secondary storage. Furthermore, if distri-
bution and heterogeneity is considered, then objects may be represented differently
on different machines. Therefore, the notion of an equivalence test which depends on
representation is inappropriate.

A similar argument can be made for prohibiting the use of comparison operators
other than = on atomic objects. User knowledge of the values in a domain does not
necessarily imply knowledge about their ordering. As an example, consider the case
of a Ceasar cipher where all letters are shifted by n characters. With n = 5, the
encoded form of ‘hello world” would be ‘czggj rjmgy’. A database might contain the
class CipherAlphabet whose value domain is the letters of the alphabet and whose
total ordering is < v,...,z,a,...,u >. Obviously the < relation on members of
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CipherAlphabet is not the same as the < relation on the standard alphabet even though
the value domains are identical. For this reason, all value comparison operations other
than = must be implemented by a class in accordance with the total ordering the
class defines.

3.4 Finiteness

A traditional notion in relational databases is that relations are finite even if
the attribute values within the relation may be drawn from an infinite domain.
This restriction is the basis for defining the domain independent class of queries
[Fag82, GT87, Nic82]. A relational query is domain independent if it can be an-
swered by simply considering the collections of tuples of the relations named in the
query and ignoring the underlying domains of the attributes. The corresponding no-
tion in object-oriented databases would be that the extents of classes are finite while
the value components of objects may be drawn from infinite domains. Definitions 2.1
and 2.2 indeed allow for the value component of objects to be drawn from infinite
domains. However, whether a class extent is finite depends on the methods defined
by that class.

Consider the class Number from the example in the previous section. The signature
of the method add was given as:

add : Num x Num — Num

A problem arises due to the restriction on classes (Definition 2.7) which states that
any method defined on the class must apply to all objects in the extent of the class.
Thus if 1 is in the database, 2 needs to be in the database as well (1 4+ 1). This
scenario i1s not limited to mathematical concepts such as closure under addition, it
can occur in any class which has a method which maps to members of its own class.
For example, the method on String

within : Str x Str x Num — Bool
presents no problems while

concat : Str x Str — Str

implies the existence of an infinite number of strings (‘a’, ‘aa’, ‘aaa’, etc).
Note that not every method which maps to members of the class on which it is

defined causes problems. For example, in the class Person, the method with signature
father : Person — Person

does not imply an infinite number of person objects as long as we allow some persons
to have a NULL father or to return themselves when the father method is applied.

Clearly the intended semantics of the class and associated methods determine
whether a class is finite or not. We assume in the following that all infinite classes
(and their associated methods) are implemented as primitive classes, i.e., provided
by the database system. User defined classes are restricted to finite classes only. In
the sample hypertext database, String and Number are infinite classes.
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3.5 Safety of Object Calculus Expressions

The object calculus is extremely expressive and allows the formulation of queries
with no reasonable interpretation or which do not have finite output. For example,
{ 0| =C(0) } denotes all possible objects which are not in the extent of class C.
Similarly, { o | C*(0) } where C* is an infinite class such as Number denotes a well
defined, although infinite set of objects. To avoid such meaningless constructs, we
restrict ourselves to expressions considered safe.

Definition 3.1 Safety: An object calculus expression is considered safe if it can be
evaluated in finite time and produces finite output [OW89]. O

The previous definition is a semantic one. The following provides a syntactic
definition such that any object calculus expression can easily be tested for safety.

Definition 3.2 Restricted variable: Let F(xq,...,x)) be a conjunction of (possibly
negated) atomic formulas. We say that a variable x; is restricted in F' if one of the
following appears in £

L. C(x;) or C*(x;) without a negation to its immediate left where C' is a finite
class.

2. (x; 0 o) with positive polarity where 6 € {==,€} and o is an object variable
restricted in F.

3. (x; 0 <o1,...,0,>mlist) with positive polarity where 0 € {==,€} and
01,...,0, are restricted and x; & {o1,...,0,}.

4. (a = x;) with positive polarity where «a is the textual representation of an atomic
value or a set of atomic values. O

The atoms defined by cases 2-4 above are called generating atoms for the variable
x and are enumerated in Table 3.3. They are so named because they generate objects
for x from a constant value, the content of other objects, or by applying methods to
other objects. Atom 1 in the table generates values which are identical to values for
o. In practice, all occurrences of x are replaced by o. In atom 2, x ranges over the
identifiers contained within the set value of 0. Atoms 3 and 4 are similar to 1 and 2
except that the sequence of methods mlist is applied to object 0y prior to generating
values for x. Atom 5 generates a value for = from the textual representation of the
atomic value a.

Generating atoms are important because they can be used to generate responses
to queries without directly ranging over the classes which z is an instance of. Instead,
the query ranges over the classes of other variables in the generating atom.
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Table 3.3: Generating atoms for x.

1 T ==0

2 T EO0

3| v ==<o0y,...,0,>mlst
4| z €<oy,...,0,>mlist
) T =aq

Example 3.3 Consider the query which returns those children who have a geneticist
and poet for parents:

{ o | Fp(Person(p) A “genetics” €<p>.expertise
A Jq(Person(q) N “poetry” €<¢>.expertise
A o €<p,¢>.children)) }

In this query o €<p, ¢>.children is a generating atom as o does not range over a class
in the database. Instead, o ranges over the set valued objects returned by the method
application <p, ¢>.children. <&

Theorem 3.1 Let /' be the prenex disjunctive normal form (PDNF) of ¢». The
object calculus expression { o | ¥(0) } is safe iff o is the only free variable in (o) and
all other variables are bound and restricted.

Proof: We first show by case analysis that x; in Definition 3.2 always refers to a
finite set of objects.

Case 1: C(z;) or C*(x;)
By definition of finite classes, the (deep) extent of ' is a finite set of objects.

Case 2: z; == o
By definition of identity equality (==) #; and o denote the same object, thus
if o is restricted, x; denotes a finite set of objects as well.

Case 3: z; € o
Since o is restricted, it ranges over a finite set of objects. Fach set value in the
database is a finite set of objects. Thus z; ranges over the members of finite
sets within a finite set which is itself a finite set.

Case 4: ©; ==<01,...,0,>.mlist
Since oq,...,0, are all restricted, the operation <oq,...,0,>.mlist denotes a
finite set of objects. By definition of identity equality (==) then, z; denotes a
finite set as well.

Case 5: 1; €<01,...,0,>.mlist
Since oq,...,0, are all restricted, the operation <oq,...,o0r>.mlist denotes a
finite set of objects. Thus x; denotes a finite set of objects as in case 3.

Case 6: a = z;

x; denotes the single object whose value is a.
Since z; is restricted, the output of each disjunct is finite and since the query has a
finite number of disjuncts it can be evaluated in finite time. O
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Example 3.4 The following queries illustrate the nature of safe and unsafe queries.

1. Although o ranges over an infinite class in the following query, the query is safe
since o 1s restricted by the atom o ==<p>.age.

{0 | Number(o) A Ip(Person(p) A o ==<p>.age) }

2. The following query is not safe as o is not restricted by any atom and Number
is an infinite class.

{ o | Number(o) A Ip(“65” =p A “True” =<o, p>.greater) }

3. Let % stand for either the universal (V) or existential (3) quantifier and C
stand for a finite class. The following query is safe as x; is restricted by ranging
over the extent of a finite class and all other terms correspond to case 4 in

Theorem 3.1.

{o | (%xa...%x,)(C(xy)
A x9 ==<z1>.mlisty
A x3 ==<x9>.mlisty

N o==<x,>mlist, } <
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Chapter 4

The Object Algebra

4.1 Introduction

This chapter! presents an object algebra which implements a subset of the object
calculus. The algebra operators and their semantics are defined in Section 4.1. Sec-
tion 4.2 presents an algorithm for translating a restricted class of object calculus
expressions into object algebra expressions.

4.2 The Object Algebra

Operands and results in the object algebra are sets of objects. Thus the algebra
maintains the closure property [ASL89] where the result of a query can be used as
the input to another. Some of the operators accept more than two operands. Let
O be an operator in the algebra. The notation P O (Q1...Q) will be used for
algebra expressions where P and (); denote sets of objects which are arguments to
the operator ©. In the case where k = 1 we will use P © () and where k£ = 0 we will
use P O () without loss of generality.

Some of the algebra operators are qualified by a predicate. Such operators will
be written P Op (1 ...Qk) where F is a formula consisting of one or more atoms
connected by A, V, or = using parenthesis as required. Atoms reference lower case,
single letter variables which range over objects in the input set named with the
corresponding upper case letter. For example, the object variables p, ¢; and ¢ in the
predicate of P Op(,q 4, (@1,Q2) range over the sets of objects denoted by P, (4
and (), respectively.

The algebra defines five operators.

Union (denoted PUQ): The union is the set of objects which are in P or @) or both.
An equivalent expression for union is { o | P(0) V Q(0) }.

TPortions of this chapter have been accepted for publication in the Proc. of the
X3/SPARC/DBSSG/O0ODB Standardization Workshop held in conjunction with the May, 1990 SIG-
MOD conference in Atlantic City, New Jersey.

31



Difference (denoted P — Q): The difference is the set of objects which are in P and
not in (). An equivalent expression for difference is { o | P(0) A =Q(0) }. The
intersection operator, P N @, can be derived by P — (P — Q).

Select (denoted P op (1 ...Qk)): Select returns the objects denoted by p for each
vector <P,q1y ..., Q> €
P x @y x ... xQ which satisfies the predicate F'. An equivalent expression

for select is { p | P(p) N Q1(q1) Ao A Qr(qe) N F(pyqry -y qr) }-

The select is similar to, but more powerful than, that of [SZ90] which allows only
one operand. Multiple operands permit explicit joins as described in [Kim89].
An explicit join is a join between arbitrary classes which support (a sequence
of ) method applications resulting in comparable objects.

Example 4.1 Find all documents about cars by persons over 50 years of age.
Let d range over Doc and p range over Person, then

Doc o “car” €<d> keywords A <Per50n> <&

p==<d>.author A
“50"=x A “True’=<p,x>.age.greater

The result of this expression is a set of Document objects, not sets of
< Document, Person> objects. This is due to the ‘object preserving’ nature
of the algebra which does not support creation of new objects. In this sense
then, the select is most like the traditional semi-join operator. As a result, the
selection P op (Q1...Qy) always returns a subset of P.

Generate (denoted ¢ 7% (Q2...Qk)): F is a predicate with the condition that
it must contain one or more generating atoms for the target variable ¢ and
t does not range over any of the argument sets. The operation returns
the objects denoted by ¢ in F' for each vector <gqi,...,qz> € Q1 X ... X Q4
which satisfies the predicate F. An equivalent expression for generate is

{1 Qi(g) AN AQe(Qr) A (t g1y, qr)) 1

Two common uses of the generate operator are to collect results of method
applications or to iterate over the content of set valued objects.

Example 4.2 Return all co-authors of the document ‘My Cat is Object-
Oriented’ [Kin89]. Let ¢ be the target variable and d range over Doc, then
Doc | MyCat.r=<ds.qitle ] () ©
[ teE<d>.co_authors ]
Map (denoted @1 st (Q2...Qk)): Let mlist be a list of method names of
the form my---m,,. Map applies the sequence of methods in mlist to each
object ¢1 € Q)1 using objects in (Qs...Q%) as parameters to the methods in

mlist. This returns the set of objects resulting from each sequence application.
If no method in mlist requires any parameters, then (Qs...Q%) is the empty
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sequence { ). Map is a special case of the generate operator whose equivalent is
{t] Qi) Ao o AQrlgr) Nt ==<q1,...,qe>mlist }. This form of the gener-
ate operation warrants its own definition as it occurs frequently and supports
several useful optimizations. Map is similar to the image operator of [SZ90],
except that it is not restricted to unary methods.

4.3 Calculus-Algebra Translation

This section presents an algorithm for translating a subset of object calculus queries
to the object algebra.

Definition 4.1 Restricted Query: A restricted query is any safe object calculus
query of the form { o | Ipd¢Ir... ¥ (0,p,q,r,...) } where ¢» does not contain any
occurrences of either 3 or V. O

Restricted queries are similar in power to the select—project—join class of queries
in the relational model. Even though this class contains a large number of practical
queries, it does not include those that require universal quantification and recursion
such as those often required in knowledge base applications. This restriction can be
overcome by introducing additional algebra operators and will be a topic of future
research.

We show, by presenting an algorithm for translating restricted object calculus
queries to object algebra operator trees, that the algebra is capable of representing the
entire class of restricted queries. The algorithm inserts matched pairs of parentheses
into the disjuncts of the prenex disjunctive normal form (PDNF) of a query. The
algorithm terminates successfully when the inner most nested expressions correspond
to the range atoms of the query. If this step is not possible, then the query is unsafe.
After rewriting, nested subexpressions are mapped directly to their object algebra

counterparts.
We first introduce a simple notational convenience for describing atoms. Atoms
are written as a;(¢g | r1,72,...,7,) where ¢ is the atom number, g represents a variable

for which this atom generates values, and each r; represents a variable restricted by
the atom. We say that the atom generates g and restricts r;. However, the atom
references ¢ and all r;.

Example 4.3 The following expressions show the correspondence between atoms
and their shorthand notation.

1 Class_Name(o) — ay(o | -) range atom
2 pE<q, g>mlist — as(p | ¢1,¢2) set inclusion
3 <q1,q>.a.b.c==<qs,qs>.d.e.f — as3(-| ¢1, 92, q3,q4)

&

The calculus equivalents of the object algebra operators can now be easily ex-
pressed using this notation.
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Table 4.1: Calculus and algebra equivalents using abbreviated notation.

QUQU...UQ, = {q ]| Qilg|)VQag|)V...VQulg] )}

Q1NQ:N...NQ, {a ] Qg )NQag| JA...AQulq] )}

r {p | Pl )A=Qp])}

- Q
Pop (Qi...Qx) {p | Fl-lpqi, - at)) NP(pl )N Qu(qr [ A A Qrl(gr |- }
Q1 7k (Q2... Q) 1] Flla,a) AQulgu | )N A Qrlgr | -) )

The key to the translation algorithm is a recursive routine which given a target
variable, an empty expression and a list of unused atoms will selectively place atoms in
the empty expression. The routine additionally defines new, empty expressions which
denote ranges for the variables referenced in the atoms just placed. The routine is
called recursively on the newly defined empty expressions until all atoms have been
used. Empty expressions are written as (...), where the subscript o indicates that
the expression defines a set of objects for variable o.

Atoms will be selected for placement in the following order: (1) those which restrict
the target variable, (2) those which generate the target variable, and (3) range atoms
for the target variable. We introduce the notion of a correlating variable and correlated
atoms. Consider an undirected bipartite graph G where one set of nodes represents
variables, the other atoms, and edges connect atoms to the variables they reference.
Two atoms a; and a; are said to be correlated by variable v if there exists a cycle in
GG which traverses a;, a; and v, not necessarily exclusively.

We also define a conjunct dependency graph (CDG) for a conjunct of atoms
ai N ag A ...Aa,. The graph contains a node for each variable v referenced by any
atom a; and a directed edge vy — vy if there exists an atom a;(vy | ...v1...), i.e.,
a; generates values for vy using vy as input. We call vy the head and vy the tail
respectively. Later algorithms will require that a CDG be safe. Assume that some
nodes in a CDG are marked indicating that a set of values exists which the node’s
variable ranges over. Recalling that nodes with incoming edges represent variables
whose values are generated from others, we can mark such nodes if the tails of all in-
coming edges are marked as well. In other words, all inputs are present for generating
values for the head variable. We call the exhaustive propagation of node markings
completing the CDG. If after completion there exist any unmarked nodes we say that
the CDG is unsafe.

The atom placement routine is recursive and defined as follows:

Place(v)
Inputs:

o target variable v

e list of atoms L(ay,...,a,)
Outputs:

e success/failure indicator

e nested expression of atoms
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begin
let BG be the bipartite graph for atoms in L
select an atom a; € L which references v as per criterea given above
if ( appropriate a; not found ) then
return(UNSAFE QUERY)
else
let C' be the conjunct containing only a;
remove g; from L
endif
if (a; is a range atom for v (i.e., a;(v | _) ) then
while 3 range atom «; € L for v do
extend C' with «; via conjunction
remove a; from L
endwhile
return(OK)
else
for cach variable v; referenced by a; do
if BG' defines v; to be a correlating variable then
for cach ay € L correlated to a; by v; do
extend C' with a; via conjunction
remove a; from L
endfor
endif
endfor
let C'DG be the conjunct dependency graph for atoms in C
for each node v in C DG do
if ( v has no incoming edges ) or ( 3 an atom aj € L which references v ) then
mark node v
extend C' with an empty expression for v, (...),
endif
endfor
complete C'DG by propagating markings
if ( 3 any unmarked nodes in C' DG ) then
return(UNSAFE QUERY)
endif
for each empty expression (...), in C do
if Place(v) # OK then
return(UNSAFE QUERY)
endif
endfor
return(OK)
endif

end.
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We are now ready to specify the entire calculus to algebra translation algorithm.

Algorithm 4.1 Translate

Input: Object calculus expression : '
Output: Equivalent object algebra expression : A
begin
convert calculus expression to prenex disjunctive normal form
for each disjunct do
for each constant defining atom of the form v = const do

= o DN —
R i N R g

delete the atom and replace all other occurrences of v by const

endfor
rewrite all atoms using the shorthand notation developed above
for each atom a(v | rq,...,r,) for which there exists a range atom for

of the form a(v | ) do

o~ D~
-~J < Ot
~—

move v to the right hand side of the atom 8)
(e, a(v | re,...,m) = al_ | v,re, .0 )
endfor (9)
for each atom of the form a(g | g,71,...,7,) do (10)
rewrite the atom as a(-| ¢,71,...,7) (11)
endfor (12)
call Place(t) where t is the target variable of C' resulting in C’ (13)
from innermost to outermost parenthesis nesting of C’ do (14)
map the expression to equivalent algebra operators as per Table 4.3 (15)
endfrom (16)
endfor (17)
combine the algebra operator trees for each disjunct using Union (18)

end.

Example 4.4 We next illustrate Algorithm 4.1 via an extended example using the
query

Find all nodes belonging to the structural part of a document authored by
a person who is retired, i.e., we want only the StructLinks of the document
as opposed to RefLinks or NoteLinks.

This query can be expressed in the object calculus as:

{o | 3p(Doc(p)
A Fq(“657 = g A “True” =<p, ¢>.author.age.greater
A Ar(Struct Link(r) A p ==<r>.part_of
A (0o ==<r>.from V o ==<r>.t0))) }

The atoms are numbered uniquely as follows:

a;  Doc(p)
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as 657 =g

az  “True” =<p,¢>.author.age.greater
ay Struect Link(r)

as  p==<r>.part_of

ag 0 ==<r>.from

ar 0 ==<r>.1lo

We first delete the constant defining atom a5 and replace all occurrences of ¢ with
“65” (Steps 3-5). The two disjuncts of the prenex normal form of the query now are

(Steps 1-5):

Dy
Dy

Cll/\Clg/\Cl4/\Cl5/\Cl6
a1 NagNag \Nas A ar

We will perform the steps of the algorithm for disjunct ;. The atoms are first
written in the shorthand form introduced earlier (Step 5) resulting in:

ar(p | -) Aas(-| p) Aaa(r [ ) Aas(p|r) Aaso] 1)

One of the rewrites identified in steps 7-12 of the algorithm is possible. Recognizing
that a range atom exists for p in the query we can replace as(p | r) by as(-|p,r)
resulting in the expression:

ai(p | =) Nas(- | p) Aag(r | -) Aas(-| p,m) Aaso| )

Next, Place is called for the target variable o. Atom ag is selected first since it is the
only atom referencing variable o. The bipartite graph for this disjunct (see Figure 4.1)
has no cycles, thus the atom does not need to be combined with any others. The

C DG for ag 1s:

r— o0

Since r has no incoming edges we extend ag with an empty expression for r, (...),.
Variable o does not require an empty expression as it is generated by ag and no other
atoms reference it. Our query expression is now:

ag(o | r) A (...)r

Due to its recursive nature, Place is now called for the empty expression denoting r.
Two unused atoms reference r, a4(r | -) and as(_ | p,r). Using the selection criterea
given earlier we select as since it restricts r and a4, which is a range atom for r, is
saved for later. The C'DG for this atom is:

r—p

Both variables require empty expressions since unused atoms reference them. Our
query expression is now:

ag(o | ) A (as(= | pyr) Ao )p A )e)r
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Place is called again, once each to expand the empty expressions for p and r. The
expansion for p results in:
as(~ [ p) A (- )y

and that for r:
as(r | -)
Substituting into the partial query expression gives:

as(o [ 1) Aas(- | pr) Alas(-[ ) A (- )p)p A laal(r [ ))r)s

Place is called one last time for p resulting in the final query expression:

ag(o | 1) Alas(-|p,r) Aas(-] p) A (ar(p [ ))p)p A (aalr | ))r)r

a1

(43

r a4

\

(] 273

Figure 4.1: Query graphs for the sample query of Example 4.4.

The nested subsexpressions of the query can now be mapped to their object algebra
counterparts of Table 4.3. Working from innermost to outermost nesting levels results
in the object algebra expression:

(StructLink o4, ((Doc o4, ()))) 72, () <
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Figure 4.2: Mapping the query graph of Example 4.4 to an algebra operator tree.

39



Chapter 5

Type Consistency of Algebra
Expressions

5.1 Introduction

Database query languages have traditionally had only minimal type checking re-
quirements. In the relational model, for example, type checking insures that rela-
tion schemes are compatible and that only appropriate comparison operations are
performed on tuple fields. The limited number of primitive domains supported by
the model (e.g., integer, string, boolean) makes this a straightforward task. OODB
query languages introduce complexity into this process as query results may be non-
homogeneous sets of objects, i.e., all objects in the query result are not the same
typel.

Consider the case where the result of one query is used as the input to another.
How can we insure that methods referenced in the predicate of the second query are
defined on all objects in the result of the first? Previous algebras have imposed type
restrictions such as wunion compatibility [SZ90, Zdo88] on the algebra operators to
insure the type consistency of the result. Union compatibility states that members
of the sets being operated on must be instances of types which are in a subtype
relationship with one another. The type of the result is considered to be the most
general supertype of the types involved in the operation. Such restrictions are too
strong and can be avoided by a notion of type consistency which permits types to
encompass a set of type specifications.

For example, what is the objection to taking the union of a set of Apple objects
and a set of Orange objects? The result of the union is a set of non-homogeneous
objects in the sense that they are not necessarily related by type inclusion. The real
problem lies not with the union operation, but with operators which consume the
result of this union and attempt to apply methods to each object therein.

Another problem, termed impedance mismatch [MSOP86], occurs when an appli-

! An object is an instance of a single class but supports the type specifications of this class and
all its superclasses due to behavioral inheritance. Since this chapter investigates issues related to
support of type specifications the term type is used throughout.
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cation programming language must interface with a database query language. The
two languages often have (partially) incompatible data types, e.g., union types in
C and relations in SQL. A common requirement, independent of any particular lan-
guage, is that a program variable be iteratively bound to each element in the set
of objects returned by a query, e.g., portals [SR86] and cursors [Ast76]. Ideally, a
compiler should insure that this binding is type consistent in order to detect improper
use of data as early during query processing as possible. This problem becomes more
complex when the query results are not homogeneous.

This chapter? proposes a type consistency theory for object algebra expressions
with multiple types which resolves these issues. The theory is developed as a series
of type inference rules. First the notion of a conformance as the set of type speci-
fications an object supports is developed in Section 5.2 and an algorithm to derive
conformances is presented. After defining a notation for the type inference rules,
Section 5.3 develops rules for object algebra expressions in detail.

5.2 Types in Query Expressions

Black et. al. [BHJ*87] show how the conformity relationship is sufficient for devel-
oping a type checking algorithm for expressions denoting single objects and variable
assignment. As demonstrated in the introduction, object-oriented database query
languages introduce a new problem in that the result of a query is a set of objects
which may not be homogeneous. In this case, what can be said about the types that
each member of the query result supports?

Example 5.1 Consider the fragment of a type lattice in Figure 5.1 where types are
labeled t;. Assume we wish to take the union of the instances of types tg and tg. The
following can be said about the objects in (ext(ts) U ext(tg)).

1. Some objects conform to t5 (immediate supertype of ts),

2. Some objects conform to t5 (immediate supertype of tg),

3. All objects conform to t4 (immediate supertype of both tg and ).
Intuitively then, we may say that the type of (ext(ts) U ext(ty)) is t4 since this is the
only type that all objects in the union conform to. This case is somewhat trivial as all
objects in the query result conform to just one class. Referring again to Figure 5.1,
assume we wish to take the union of the instances of types #19 and ¢1;. In this case
the following can be said about the objects in (ext(t10) U ext(t11)).

1. Some objects conform to {¢s,%4,12} (immediate supertypes of ¢10),

2. Some objects conform to {ts,%s, 17} (immediate supertypes of t11),

3. All objects conform to {#1,%2} (not necessarily immediate supertypes).

ZPortions of this chapter have been published in the Proc. of the Object-Oriented Programming
Systems and Languages Conference, October 1990.
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The last statement holds because an object conforms to the type it is an instance of,
and via inheritance, any of its supertypes. <&

Figure 5.1: A type lattice fragment.

Definition 5.1 Conformance: A conformance is a set of types. A set of objects
O has conformance {ti,...,t,}, denoted by O:{t;,...,1,}, when each object 0 € O
conforms to every type t; € {t1,...,1,}. O

Definition 5.2 Conformance Inclusion Relationship: The conformance inclu-
sion relationship on two sets of types C; and (5 is defined as ] C (5 iff
Vi, € Cy,3t; € Cy | t; <t In other words, Cy C Cy, if for every type in Cy there
is a conforming type in C4. O

Note that €y may contain types which do not conform to any type in C5 under
this definition.

The notion of finding the set of types to which all members of a second set of types
conforms to is central to determining the type consistency of operations on sets of
objects. However, we do not always want to know all the types which are conformed
to as this set would contain redundant information. In Example 5.1 the conformance
of (ext(t10) U ext(t11)) was determined to be {#1,%2}. Including parents of ¢; and ¢3 in
the conformance would add no new type information since t; and ¢, define at least, if
not more than, the behavior of their parents, i.e., t; and ?5 are specializations of their
parent types. Similarly, placing more general types in the conformance, for example
parents of ¢; and ?3 but not #; or #; themselves, introduces a loss of type information.

Loss of type information is undesirable when type checking a query. Consider
again the type lattice fragment of Figure 5.1. Assume all objects in a query result
conform to both ¢19 and #1; but the conformance was nonetheless specified as {t1,15}.
This would correspond to the case where types more general than necessary are
placed into the conformance. It is possible that the query in question was just a
subquery and that further operations are to be performed on its result. Some of the
object algebra operators are qualified by predicates. One form of predicate involves
applying a method to each member in the query set. If the method referenced in the
query is defined on t;; but not on ¢, the query will fail during type checking when
in fact each member of the query set does support that method. Thus we have the
requirement that the conformance of a set of objects used in type checking include
only the most specific types which satisfy the conformance definition.
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Definition 5.3 Most Specific Conformance: The conformance of a set of objects
0, O:{ty,...,1,}, s defined to be the most specific conformance when there does not
exist a subtype s < t; such that all elements of O conform to s. O

The function MSC(t1,...,1t,) is defined to return the most specific conformance
of the types t1,...,t,.

Example 5.2 Referring to Figure 5.1:

MSC(tlo) = {tlo}
MSC(tlo,tll) = {tl,tg}
MSC(tlo,tG) = {tz} <>

The need will arise during type checking to determine the inverse M .SC' relation-
ship. Letting s and ¢ refer to subtypes and types respectively, the function MSC™!
is defined as

MSC_I(tl,...,tn) = {81,...,Sk | MSC(Sl,...,Sk) = {tl,...,tn} }

In other words, the inverse function M .SC~! returns the most general set of subtypes
all of whom conform to #q,...,%,.

Example 5.3 Referring to Figure 5.1:

MSC_I(tl) = {tl}
MSC_I(tl,tz) = {tio, 11}
MSC_I(t5,t7) = {in} ©

5.2.1 Determining the Most Specific Conformance

This section presents an algorithm for determining the most specific conformance
of a set of types. The algorithm assumes the type lattice is represented as a type
dependency matriz. The type dependency matrix for a type lattice with n types
(including Root) is of order n x n, i.e., there is a row and a column for each type in
the lattice. Using T'(7,j) to denote the type dependency matrix, cells in 7' can be
defined as:

... ) 1 it jis an immediate parent of s
rG.j) = { 0 otherwise

The algorithm first applies Floyd’s algorithm [Gou84] to determine the transitive
closure of T', denoted T, where:

1 if there exists a path from ¢ to 5

T.(i,5) = {

0 otherwise

Floyd’s algorithm actually computes the matrix of shortest paths between all
vertices of a graph but computes the transitive closure in the process.
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The remainder of the algorithm performs bit-vector operations on the columns
and rows of T, to determine the M SC'. Let d define the types of which the M SC is

desired:

> { 1 if MSC of type t; is desired

dj = 0 otherwise

We define the common ancestor vector ¢ where:

o = 1 if ¢; is a common ancestor of all types denoted by d
771 0 otherwise

by the bitwise AND:

C]‘ = /\(Tc(l,j) AV _'d]‘)
i=1
We next define the induced subgraph of T., called S as the subgraph of T. which
contains only the types which are common ancestors to all types in d. By definition,
the MSC(J) is restricted to types in ¢ and by extension, types in 5. Observing that
the “most specific” aspect of the types in the M SC' can be interpreted as those types
in the induced subgraph S which have no incoming edges allows us to derive the

vector m where:

0 otherwise

8, { 1 if ¢} is in the MSC of d
m; =

n

m; = (N =Si) A
=1

In other words, the M SC(d) includes only those types in the common ancestor
subgraph of T, which have no children.

Example 5.4 We demonstrate the above algorithm by deriving M .SC (10, t11) using
the type lattice of Figure 5.1. For completeness, assume that types ¢y, 5, t3 and t; are
all immediate subtypes of Root. For simplicity, we will denote the Root type as ty and
replace all iterations from 1..n in the algorithm to 0..n. Vector d is (00000000001 1].
Floyd’s algorithm is used to derive the transitive closure of the type dependency
matrix resulting in
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The common ancestors vector ¢ is determined by

n

¢ = N(Tui,j)V~dy)

=1
= [111000000000]
The induced subgraph S is:
lo 11 1y
S o 0 0 O
S(lvj) - ty 1 0 0
ta 1 0 0

Applying the final step of the algorithm to determine m gives:

m; = (A\-Si)Ae

=1
= [0110000000000]
= {tl, tg} <>

5.3 Type Inference Rules

The previous sections developed algorithms for determining the most specific confor-
mance (MSC) of a set of types. This section formalizes the notion of typing in object
algebra expressions by providing a set of type inference rules which utilize the M SC
and MSC™! functions. Although called type inference rules, they are really confor-
mance inference rules since they determine a conformance for the result of an object
algebra expression. The rules determine the conformance of an expression from the
conformance(s) of its subexpressions. The rules themselves do not imply a specific
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type checking mechanism. Instead, a type checking algorithm is considered correct
if it computes types that are derivable by these rules. An expression is considered
type inconsistent if the rules can not be used to derive a type (conformance) for all
variables in the expression.

A syntax for inference rules similar to that of [CW85] will be used:
Rule Name:

= (5.1)
where the horizontal line is a logic implication. If we can infer X, then we can
infer Y. Variables are used in a consistent fashion to denote similar items in each of
the rules. Upper case variables denote sets while lower case variables denote single
entities. For example, O, P, (), and R are object set variables while o, p, ¢, and r are
object variables with the implication that o € O, p € P, etc. [ is a set of conformance
inclusion constraints and A is a set of conformance assumptions for free variables. C'is
a conformance variable denoting a set of types. A.e: (' is the set A extended with the
assumption that expression e has conformance C'. A F expr is an assertion meaning
that from A we can infer expr. Table 5.1 summarizes the variable denotations.

Table 5.1: Definition of variables used in the inference rules.

e object algebra expression
f predicate subexpression
(i.e., lhs or rhs of an atom of the form (lhs 8 rhs))
2,7,k index variables and subscripts
m method name variable
0, P, q,T object variables
F/lo1:Cyq,...] predicate F'is a set of atoms connected by A and/or V

with all occurrences of o; having conformance ', etc.
type variable

set of conformance assumptions for free variables
conformance variable

set of conformance inclusion constraints

O,P,Q),R  object set variables

~ s

The following predefined functions are used by the typing rules.

unique(m,t,C): This boolean function evaluates to True if t € C' and method m is
defined only on type t and not on any other type in C.

arg-type(m,t,1): This function returns the declared type of the :'" argument of
method m on type .

num_args(m,t): This function returns an integer representing the number of argu-
ments required by method m defined on type .

res_type(m,t): This function returns the declared result type of method m on type ¢.

We present some conformance inclusion rules in order to familiarize the reader
with the rule format.
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Top:
I+ C C {Root} (5.2)

This rule states that every conformance is related via inclusion C to the set containing
just the Root type. This can be derived from the conformance inclusion definition
and recognizing that all types are a subtype of the Root type.

Transitivity:
I-CL 0,0, EC, (5.3)
IFCLCECs '
Provable by definition of the C relationship.
Reflexivity:
IFCCC (5.4)

Provable by definition of the C relationship and reflexivity of <.

We are now ready to develop a family of type inference rules for the object algebra.
Section 5.3.1 first introduces rules which can be applied to the predicates of select
and generate operations. This is followed by Section 5.3.2 which develops rules for
complete algebra expressions.

5.3.1 Predicate Inference Rules

Predicates qualify algebra operators and are composed of legal atoms connected by
A, V and —. Each atom is of the form (lhs 6 rhs) where [hs and rhs are either
an object variable, a literal value, or a method application on object variables and
6 € {=,==,€,=}. The following predicate typing rules can be used to determine
the type consistency of object variables when used as either the [hs or rhs of an atom.
Defining Set:

1LAFO:C

I[,AF o:C (5:5)

This rule states that an object variable conforms to the same types as the set from
which it is drawn. This is a restatement of the implication given earler: O:C' Ao € O
= 0:C.

This rule is fundamental to the notion of type consistency. While arguments to
algebra operators are sets of objects, predicates on algebra operators reference indi-
vidual object variables. Since at query execution time the predicate is evaluated once
for each object in the argument sets®, the entire algebra operator is type consistent
only if the predicate is type consistent for each type which exists in the argument
sets, i.e., the conformance.

The next two rules determine the result type of a sequence of method applications.
The first rule, for single methods only, insures that the types of the arguments to the
method match those specified in its signature. The second rule recursively determines
the result type of a sequence of method applications of length n by defining itself in

3Actually, the predicate is evaluated once for each element in the cross product of the argument
sets.
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terms of a sequence of methods of length n—1. When (n—1) =1, the recursion
terminates and the first rule is applied.

Single Method:

unique(m,t,C),
I,AF | num_args(m,t)=Fk—1,

C; C{arg_type(m,t,i)},2 <i <k
I,AF<01:Cy...op:Cp>m:{res_type(m,t)}

(5.6)

This rule determines the conformance of the result of a single method application.
The method application is legal if three conditions are met:

L. unique(m,t,C1) insures that there exists a type ¢ which is a member of con-
formance (7 and that method m is defined only on ¢ and not on any other
members of ;. This restriction insures that there is no ambiguity as to which
type’s method m is to be applied.

2. num_args(m,t) = k—1 insures that the signature of method m on type ¢ requires
the same number of parameters (oz ... 0;) as are provided in the operand list of
the method application.

3. C; C {arg-type(m,t,1)},2 < ¢ < k insures that the types of the :'" argument,
represented by the conformance C;, are subtypes (and therefore substitutable)
of the type stipulated by the signature of method m on type ¢.

If all of the above conditions are met, then the conformance of the result of the
method application is the singleton set containing the result type as specified by the
signature of m on t.

Multiple Methods:

<01:Cy...0j_1:Cj_y>mq - -my_q:{t},
unique(may,t,{t}),

num_args(my,,t) =k —j + 2, (5.7)
C; C {arg-type(m,, t,i)},j <i < k
I,AF<01:Cy...0;:Cj. . op:Cyp>my - - - my,: {res_type(my,, )}

I, AR

Y

This recursive rule determines the conformance of a sequence of method applications
based on the conformance of the sequence which applies methods m through m,,_;.
The multi-operation

<01 ...0p>M71 "My

is considered to be logically equivalent to the multi-operation
<Op ... 0> My My
followed by the single operation

<Tres, 041 ... 0>.My,
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where res is the result of the first multi-operation. The first condition of rule 5.7 stipu-
lates that the conformance of the multi-operation which applies methods my -« -m,_;
is known. This conformance is denoted as the singleton set {¢} since the signature of
method m,_; defines a single result type. The second condition insures that method
m,, is actually defined on type ¢, an ancillary result of the unique function. The third
condition guarantees that the proper number of arguments are present for method m,,
while the last condition insures that each argument conforms to the types declared
by m,’s signature.

If all of the above conditions are met, then the conformance of the result of the
sequence of method applications myq ---m, is the set containing the result type of
method m,, on type t.

Object Identity:
1LAF f:C
1,AF o0:C == f:C
This rule states that if there is a predicate subexpression f whose conformance is

known to be (', then the use of f in the atom 0o == f implies that o has conformance
C as well. This should make sense intuitively based upon the meaning of the ==

(5.8)

relationship. If two expressions are identity equal, i.e., denote the same object, then
they conform to the same types.
Set Inclusion:

LAF f:C
I,AF o:{Root} € f:C

This rule states that if there is a predicate subexpression f whose conformance is
known to be C', then the use of f in the atom o € f implies that o conforms to the
Root type. This apparent loss of type information is due to the fact that the data
model does not include a parametrically polymorphic set type definition operator

(5.9)

such as Set[t] [SZ90]. The data model supports only ‘generic’ set valued objects
which make no restrictions on the type of the objects in the set.
Set Equivalence:
ILAF f:C
I,AF o:{Root} = f:C

This rule states that if there is a predicate subexpression f whose conformance is

(5.10)

known to be (', then the use of f in the atom o = f implies that o conforms to the
Root class. The reasoning is the same as in rule 5.9.
Atom Disjunction:

I, AF Fi/lo:Ch], Fy/[o: (5]
ILAF (F1V Fy)/lo: MSC(CL U Cy)]

(5.11)

This rule states that if o has conformance (' for all occurrences in predicate F; and
conformance (5 for all occurrences in predicate F5, then the conformance of o in the
disjunction (£ V Fy) is MSC(Cy U Cy). Consider that Fy and F; both independently
define a set of types for o. Their disjunction then implies that o represents objects
which conform to types in C; or types in C5. This is similar to the case of Example 5.1.
The only statement one can make about all instances of o in the disjunction is that
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they conform to the most specific common ancestors of types in €y and Cy which is
given by MSC(Cy U Cs).

Atom Conjunction:

I, AF Fi/lo:Ch], Fy/[o: (5]
ILAE (Fy AN FY)/[o: MSC™HC, U Cy)]

(5.12)

This rule states that if o has conformance C; for all occurrences in predicate £}
and conformance (5 in all occurrences of predicate Fy, then the conformance of o
in the conjunction (F; A Fy) is MSC~(Cy U Cy). The MSC™! can be rationalized
as follows. Consider that F; and F, both independently define a set of types for o.
Their conjunction then implies that o represents objects which conform to types in
C1 and types in (5. Clearly, only subtypes which inherit from all types in Cy and C
can conform in this manner. M SC~(C} U Cy) determines that set of types.

The previous two rules, atom disjunction and atom conjunction, are important
results. They show that the manner in which atoms are combined in a predicate
affects whether type information is lost (disjunction) or gained (conjunction). Type
information can be lost in the case of disjunction since the inference rule derives
a conformance for the variable in question which contains types which are more
general, i.e., higher in the type lattice. Type information can be gained in the case of
conjunction since the inference rule derives a conformance for the variable in question
which contains types which are more specific, i.e., lower in the type lattice. An
example illustrating this situation will be given in the following section.

5.3.2 Algebra Expression Inference Rules

This section presents the algebra operators and their associated typing rules. First
some general inference rules for algebra expressions are needed.
Top:

I, At e:{Root} (5.13)

This rule states that all object algebra expressions minimally conform to the type
{Root}. This is clear since algebra expressions denote sets of objects and all objects
conform to the Root type.

Transitivity:
I A.e:Cl F Cl C CQ
: — 14
I,AF e:Cy (5-14)
This rule is the same as the conformance inclusion transitivity rule applied to algebra
expressions.
Basis:

I, AF ext(t):{t} (5.15)

Leaves of object algebra expression trees denote all instances of some type ¢ in the
database. This rule states that since all objects in ext(t) conform to ¢, the conformance
of aleaf node is {¢}. This rule is called Basis since the only type information initially
available in a query is the types it references explicitly. Just as query processing
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proceeds from the leaves of the query tree to the root, one can think of type inference
as proceeding from the leaves to the root as well.
Union:

LLAF P:Cy,Q:Chy

(5.16)

This rule states that the conformance of a union operation is the MSC of types
contained in the conformances of its operands. The reasoning is that M.SC(Cy U Cy)
denotes the most specific types to which all members of (P U @) conform.
Difference:

1,AF P:C,Q:C5
ILAF(P-Q):C4
This rule states that the conformance of a difference operation is the conformance of
the first operand. This should be clear as the result of a difference is a subset of the

(5.17)

first operand.
Select:
LAFEF/lp:Chq:C'y o g O]
ILAF (P:Cpop (Q1:C1...Qr:Cy)) - C,,

Here F' denotes the predicate of the select operation. The rule states that if the input
sets P, ()1 ... Qy have conformances C,, C1, ..., () respectively, then the result of the
select operation has conformance (', as derived for occurrences of p in predicate F.
Since F' may have multiple atoms connected by A and/or V, the atom conjunction and

(5.18)

atom disjunction rules may determine conformances for variables in £ (C’,, C'y, etc.)
which are different from the conformances of the input argument sets (C,, Cq, etc.).
This allows for predicates which restrict or enhance the types of p.

Example 5.5 Consider the following query against the sample database of Fig-
ure 2.4.

“Find all TextObjects whose keywords include "cycling” and which can be
displayed in color.”

An object algebra expression equivalent to this query is

TextObject™ oy «cycling’ e<t>.keywords A 1 (DisplayObject™)
“True"=<d>.1sColor A
d==t

where ¢ ranges over TextObject* and d ranges over DisplayObject*. The type lattice of
Figure 2.4 is simple enough that one can tell by inspection that the only displayable
TextObjects are Nodes. However, in a more complex schema, there could be many
subtypes at various levels in the lattice which conform to both TextObject and Dis-
playObject. Thus it is appropriate to query over TextObject* and DisplayObject* and
force membership in both sets via the atom (d == t) rather than having the query
range directly over the Node type.

We next show how the type inference rules could be used to derive a conformance
of {Node} for the query result. We intentionally say “could be used” since a specific
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inference engine is not specified and the order in which rules will be applied is un-
known. The only thing we can state (or require) of the type inference process is that
it terminate when each occurrence of a variable has the same conformance associated
with it.

We assume the predicate is initially annotated with type information reflecting
the arguments to the query. TO and DO are used as a shorthand for TextObject and
DisplayObject respectively.

“cycling” e<t {TO}>.keywords N “True” =<d:{DO}>.isColor N d:{DO} ==1:{TO}

al a2 a3z

Type inference proceeds by applying rules to derive new types for variables. We first
apply object identity rule 5.8 to atom a3 as follows

ILAFt:A{TO}
ILAF d:{TO} ==t:{TO}

resulting in the following annotated predicate.
“cycling” €<t {TO}>.keywords N “True” =<d:{DO}>.isColor N d:{TO} ==1:{TO}
Next, atom conjunction rule 5.12 is applied as follows

I,AF (a1 N ay)/[d:{DO}],a3/[d:{TO}]
I,AF ((ay ANaz) ANaz)/[d: MSC~Y( DO, TO)]

resulting in the following annotated predicate.

“cycling” e<t :{TO}>.keywords N “True” =<d:{Node}>.isColor
AN d:{Node} ==1:{TO}

Note that MSC~'(DO,TO) would not just be the singleton set {Node} if there
were several types which inherited from both TextObject and DisplayObject. Object
identity rule 5.8 is applied to atom as again resulting in the following annotated
predicate.

“cycling” e<t :{TO}>.keywords N “True” =<d:{Node}>.isColor
AN d:{Node} == t:{Node}

Applying atom conjunction rule 5.12 again as follows

I,AF (ay N as)/[t:{Node}],a1/[t:{TO}]
ILAF ((ay Naz) ANay)/[t: MSC~Y(Node, TO)]

results in the annotated predicate

“cycling” e<t:{Node}>.keywords N “True” =<d:{Node}>.isColor
AN d:{Node} == t:{Node}
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in which all occurrences of a variable have the same conformance. The last step
applies the rule for select expressions to determine the result of the overall query.
Substituting into rule 5.18 gives

I,AF (an Nag Nas)/[t:{Node},d:{Node}]
I,AF (TextObject™: {TO} 04y nasnas) (DisplayObject™:{DO})) : {Node}

Note that the nature of atom as causes d and ¢ to have the same conformance.
Variables not related by the == operator will usually not have the same conformance.

&

The remaining two rules for the generate and map operators are similar to that
for select.
Generate:

LAEF/[r:Chq:C g O]
AR (Q:Crp (Q2:Co. .. Qr:Ch)) = O,

Similar to the rule for select expressions, this rule states that the result of a generate
operation has the same conformance as that derived for the result variable r in the
predicate F', (.

Map:

(5.19)

I AF<q:Cr. qr:Cr>mlist: {t}
],A|_ (Ql:Cl = mlist <Q202Qk0k>) . {t}
This rule states that the result of a map operation has the same conformance as that
derived for the multi-operation <q ... qgp>.mlist.

(5.20)

To summarize, the lack of homogeneity in the results of object algebra expres-
sions may cause later expressions which use such a result to be type inconsistent.
The conformance was defined as the set of types all members of a set of objects are
guaranteed to conform to. An algorithm was developed to determine a most specific
conformance. This provided the basis for a suite of type inference rules which deter-
mined the conformance of object algebra expression results based on the conformances
of the argument sets.
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Chapter 6

Rewriting Object Algebra
Expressions

6.1 Introduction

This chapter introduces equivalence preserving transformations rules for object al-
gebra expressions. The full suite of rules consists of algebraic and semantic rules.
Algebraic rules create equivalent expressions based upon pattern matching and tex-
tual substitution. Semantic rules are similar, but they are additionally dependent on
the semantics of the database schema as defined by the class definitions and inheri-
tance lattice.

The overall goal of expression transformation is to reduce the cost of query eval-
uation. Haas et. al. [HFLP89] make the distinction between two rule based query
transformation techniques: ‘query rewrite’ and ‘plan optimization’. Query rewrite is
a high level process where general purpose heuristics drive the application of trans-
formation rules. Plan optimization is a lower level process which transforms a query
into the most cost effective access plan based on a specific cost model and knowledge
of access paths and database statistics. The rules presented here are intended for use
during query rewrite. Plan optimization is discussed in Chapter 7.

The focus of the chapter is on rule specification as opposed to rule application.
Recent work on rule based transformation systems [GD87, HFLP89, HP88, RH86]
has shown their viability as a method for improving queries. However, the work has
shown that although the search and transformation engine can be generalized, the
rules themselves are specific to the data model. Thus, defining appropriate rules is a
major challenge.

6.2 Transformation Rule Notation

Transformation rules will be written as F£; < Fy which specifies that expression £
is equivalent to expression F,. Restricted rules, which are only applicable when
condition ¢ is true, are written as E; < E, [Fre87]. Conditions are a conjunction
of functions which determine properties of argument sets, predicates and variables
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used in a rule. Function ref(F, (vy,...,v,)) is true when vy,..., v, are the only vari-
ables referenced in the predicate F. Function gen(F,v) tests whether the predi-
cate F' contains a generating atom for the variable v. Similarly, res(F,v) is true
when predicate F' restricts values of v. For example, gen(F,?) is true in the case of
F = (t €<qr,g2>mlist) and false in the case of F' = (¢ =p<t, ¢1>.mlist). Further-
more, res(F,v) = = gen(F,v).

Chapter 4 defined the object algebra select and generate operations as

P OF <Q1 e Qk>
Q1 7, (Q2--- Q)

P(p) A Qui(qr) A+ A Qilar) A Fi(p,q1s-- -5 q1) J6.1)
Q1(Q1) TARERNA Qk(qk) A FQ(pv qiy ... 7%) G62)

These two expressions are identical except that (6.2) does not define a universe of
discourse for p thereby implying that F, in some way generates values for p from
41, - - -, qx. To simplify proofs in later sections, the following definition will be used.

Definition 6.1 Select/Generate Set Notation:

{ P | EIQI Tt qu F(pv qi,-- -, Qk) } = { 510’5%<<QQIQ .‘ .‘ Q§Z> 1g ;Z;((I;?p]j)

In other words, the set definition for select and generate operations can only be
distinguished by the properties of predicate F'. If F'is defined as restricting values of
p, then the operation is a select. If F'is defined as generating values for p, then the
operation is a generate. O

An arbitrary expression in a list of expressions is referenced using the notation
(E1...E;...FE,) where ‘..." denotes zero or more occurrences of some F;. For exam-
ple, the rule

indicates that the result of a select operation is independent of the ordering of the
arguments between ‘(” and ‘)’. The set being restricted must appear before the select
operator o, thus there is no rule to change the position of P. This is not the case
for generate operations as the target variable does not correspond to one of the input
sets. The next two rules state that the outcome of a generate is independent of the
operand ordering.

Qe vp (- Qy-.) & Qyyp (- Qu...) (6.4)
Qb (.Qy...Q...) & Qurb(...Q....Q,...) (6.5)

Section 3.1 introduced the map operator as a special case of generate. This can
be captured by the conditional rule:

Q17 (Q2...Qr) & Q1 —miise (Q2...Q) (6.6)

where condition ¢ insures that F' = (t ==<q1, ..., q>.mlist).
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We introduce the abbreviations ()set, Rset and Sset to replace QQ1...Q%, R1... Ry
and S ...5,, respectively. For example:

P op (Qset, Rset, Sset) &S Pogp (Q1...Qk, Ry ... R, 5 ... 5) (6.7)

where condition ¢ is ref(F, (p, g1y ooy Qhy 1y .oy 71, 815+« 8m)).  As before, a lower
case letter represents an object variable which ranges over the set denoted by the
corresponding upper case letter, (i.e., ¢; € Q;, r; € R; and s; € 5;).

6.3 Identities

This section presents rules which are identities in the object algebra, i.e., there are
no conditions associated with them.

Theorem 6.1 Set Identities:
The following equations summarize the rewrite rules for binary set operators. These
are conventional set operators that can be found in any set theory textbook (see, for

example, [SM77]).

PU(QUR) & (PUQ)UR (6.8)
PUQNR) & (PUQ)N(PUR) (6.9)
P-(QUR) & (P-Q)n(P—R) (6.10)
P-(QNR) & (P-Q)U(P—R) (6.11)
PN(QUR) & (PNQ)U(PNR) (6.12)
PN(QNR) & (PNQ)NR (6.13)
P-(Q-R) & (P-Q)U(PNQNR) (6.14)
(P-Q)—R < (P-Q)N(F—R) (6.15)
(PUQ)-R & (P-R)U(Q-R) (6.16)
(PNQ)—-R & (P-R)N(Q-R) (6.17)

Proof: Equations (6.8) through (6.17) are valid as P, @ and R denote sets of objects
where set membership is determined by object identity and the algebra operations
—, U and N operate on object identities. O

Theorem 6.2 Commutativity of Select:
(P op, (Qset)) op, (Rset) < (P op, (Rset)) op, (Qset) (6.18)

Proof: The result of P op, (Qset) is the subset of P for which Fy(p, ¢1,. .., qx) is true.
Call this result P’. Then P’ o, (Rset) represents the LHS of (6.18) and is the subset
of P" which satisfies Fy(p',r1,...,7). Since P’ C P the final result contains those
elements of P which satisfy both Fi(p,q,...,q) and Fy(p,r,...,r) independent of
the order in which they are obtained. O
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Theorem 6.3 Commutativity of Difference with respect to Select:
(P—Q) op (Rset) < (P op (Rset)) —Q (6.19)

Proof: The result of (P — Q) op (Rset) does not contain any members of () since the
selection is applied to (P — @) which is disjoint with (). Thus the selection criterion
can be applied to P alone and members of () removed afterwards. O

Theorem 6.4 Distributivity of Union with respect to Select — A:
(PUQ) or (Rset) < (P op (Rset))U(Q op (Rset)) (6.20)
Proof: Let (P UQ) op (Rset) be written as
(PUQ)— X (6.21)

where X represents those elements of (P U Q) which do not satisfy F' and each € X
is a member of P or () or both. Replace X by Xp U Xy where Vo € Xp, 2 € P and
Vo € Xg,x € . Substituting into 6.21 and rewriting according to 6.16 gives

(P —(XpUXq))U(Q—(XpUXg)) (6.22)

Each element in X is either in @) alone or in (@ N P) in which case it is also in Xp.

Thus (P — (Xp U Xg)) = (P — Xp) since those elements which are in () alone do not
contribute to the difference. By similar argument, (Q — (Xp U Xg)) = (@ — Xg).
Applying these identities to (6.22) gives

(P = Xp)U(Q - Xq) (6.23)

Since Xp (Xg) represents those members of P (Q)) which do not satisfy predicate F,
6.23 is equivalent to the right hand side of 6.20. O

Theorem 6.5 Distributivity of Union with respect to Select — B:

Pop(Qi...(Q:UQy)...Q)

Proof: Let ¢, € (@, U @,). Then the LHS of (6.24) returns the p components
of each vector <p,q1,...,quy, -, > 10 P X Q1 X -+ X (Q; U Q) X -+ x Qf which
satisfies F'(p,q1,. .-, quys---,qxr). Distributing union across cartesian product gives

PxQuxx(QuUQy) x - xQp &
(P Qux X Qo X Qu)U(P X Quxoe X Q% x Q)

Thus the LHS of (6.24) is the union of p compo-
nents of each vector <p,q1,...,¢e,...,q> 1n P X @y X -+ X QX -+ X Q) which
satisfies F(p,q1,.-., 4z, --.,qx) and p components of each vector p,q1,...,qy,.-.,qk
in P xQyx--+xQy,x - x Qf which satisfies F(p,q1,...,qy,...,q) which is equiv-
alent in meaning to the RHS of (6.24). O

57



Theorem 6.6 Distribulivily of Intersect with respect to Select:
(PNQ)or (Rset) & (P op (Rset)) N (Q oF (Rset)) (6.25)
Proof: Let (P N Q) op (Rset) be written as
(PNQ)—X (6.26)

where X represents those elements of (P N @) which do not satisfy predicate F' and
each x € X is a member of both P and (). By the definition of intersection, X =
Xp = Xg where Vo € Xp, 2 € P and Vo € Xg,z € (). Rewriting (6.26) using (6.17)
gives
(P = (XpNXo))U(Q—(Xp N Xg)) (6.27)
Substituting Xp for the first occurrence of X and Xg for the second occurrence of X
gives
(P = Xp)N1(Q - Xo) (6.29)
Since Xp (Xg) represents those members of P (()) which do not satisfy the qualifying
formula F', 6.28 is equivalent to the right hand side of 6.25. O

Theorem 6.7 Distributivity of Union with respect to Generate — A:

(PUQ) vp (Rset) & (P Ap (Rset)) U(Q p (Rset)) (6.29)

Proof: Predicate F' in the LHS of (6.29) generates an object denoted by ¢ for each
vector <(pq),r1,...,r>1in (PUQ) x Ry X -+ x R;. Distributing union across carte-
sian product gives

(PUQ) X Ry X+ xR & (PXxRyx--xR)U(QXRyx--+x R)6.30)

Thus the LHS of (6.29) is the union of objects denoted by ¢ when predicate F

is evaluated for each vector <p,ri,...,r> in P X Ry X --- x R and each vector
<Gy Ty ,m> 10 @ X Ry X --- X R; which is equivalent in meaning to the RHS of
(6.29). O

Theorem 6.8 Distributivity of Union with respect to Generate — B:

P b Qi (QaUQy) .. Q)
S (PAp Qi Qoo Qi) U (Prp Q1@ Qi) (631)

Proof: Applying identity (6.5) to the LHS of (6.31) gives

PAap Qi (Q:UQy)...QK & (Q:UQy) yp (Qu...P...Qx) (6.32)

The remainder of the proof follows that of Theorem 6.7. O
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Theorem 6.9 Distributivity of Union with respect to Map:

(PUQ) st (Rset) & (P v—puse (Rset))U (6.33)
(Q — st (Rset))
P oois Q1 (QuUQ)) . Q) & (P i (Qrn Qo Q) U (6.30)
(P =miist (Q1---Qy ... Qk))

Proof: Identity (6.6) can be used to rewrite the left hand side of (6.33) and (6.34)

as the following equivalent generate operations.

(PUQ) st (Rset) = (PUQ) vk (Rset)
P i Qe (QeUQy)- Q) & P (Qre(QUQy) - Q)

The remainder of the proof follows that of Theorems 6.7 and 6.8. O

Example 6.1 Consider the query on the sample database of Chapter 2 “Return the
root nodes of all documents which are either about cats or about dogs”. Let

d range over the class Document

Fi  be the atom (“cats” e<d>.keyWords)
Fy  be the atom (“dogs” €<d>.keyWords)
n  range over Node objects

Then we can use the following object algebra expression to implement the query

((Doc or, () U (Doc o, (1)) = rotvoae ()

and apply rule 6.33 to get

((Doc or, () =rooinose () U (Doc or, () = roovoae ()

The transformation is shown graphically on the right hand side of Figure 6.1. &

e Mo |n ...........
: 1 : (6.33) :
o bootNode| & TN U
n A . / \
ootNode . U ootNode ootNode
d /d./ ...... d d... ... d
O VF, (6.38)§ OF, OF, OF, OF,
4 : | d | d d d
Doc Doc Doc Doc Doc

Figure 6.1: Transformations of examples 6.1 and 6.2.
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6.4 Select Rewrite Rules

Theorem 6.10 Factorization of Cascaded Selects:
(P op, (Qset)) op, (Rset) < (P ogp (Qset)) N (P o, (Rset)) (6.35)

Proof: Let P’ represent P op (Qset), i.e., the subset of P which satis-
fies Fi(p,q1,...,q5). Then P op, (Rset) is the subset of P’ which satisfies
Fy(p'yre, ... ). Since P’ C P, the final result contains those elements of P which
satisfy both Fi(p,q1,...,qr) and Fx(p,r1,...,7). Thus the LHS of (6.35) can be

rewritten as

{rlBpgsa) s 0 ApIEp a0}

which is equivalent in meaning to the RHS of (6.35). O
Theorem 6.11 Conjunctive Select Predicate — A:

P o(pam) (@set, Rset) & (P op (Qset))N (P op, (Rset)) (6.36)
where:

c: ref(F1, (pyqr...qx)) N res(Fi,p) A ref(Fy, (pyri...10)) N res(Fa,p)

Proof: Taking into account condition ¢, the LHS of (6.36) can be written as

{pl 3¢ 3gIreIn (Filpqrs--oq6) A Fa(pyri,..m)) }

Since Fy does not reference ry,...,r; and F; does not reference ¢y, ..., g, the exis-
tential quantifiers can be distributed across the conjunction as follows

{p|391"'3% Fl(p7QI7-"7Qk) A drye--dr FZ(pvrlv-"vrl)}

This can be simplified to
{p|F(p) N Fap) } (6.37)

which is also the definition for set intersection. Thus it can be written as
{pl ) }n{p] Fp) }
Expanding F'y and F’y again gives
{pl3q--- 3 Filpqr,--sq0) Y0 p [ Fre--- I Falpyre,.oom) )
which is equivalent in meaning to the RHS of (6.36). O
Theorem 6.12 Disjunctive Select Predicates:
P o(rvm) (@Qset, Rset) & (P op (Qset))U (P op, (Rset)) (6.38)

where:
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c: ref(F1, (pyqr...qx)) N res(Fi,p) A ref(Fy, (pyri...10)) N res(Fa,p)

Proof: The proof mimics that of Theorem 6.11 except that equation (6.37) now
becomes

{p|F(p) vV I"2(p) } (6.39)

which is the definition for set union. O

Example 6.2 The union subquery ((Doc op, ())U (Doc op, {))) of Example 6.1
matches the right hand side of rule 6.38. Substituting Doc for P and () for Qset and
Rset we can apply rule 6.38 right to left resulting in

((Doc or, () U (Doc or, (1)) & Docomur) ()

This transformation is shown graphically on the left hand side of Figure 6.1. <
Theorem 6.13 Conjunctive Select Predicate — B:

P o(pam) (@set, R, Sset) & P op (Qset,(R oF, (Sset))) (6.40)
& P op (Qset, (R v (Sset))) (6.41)

where:

er:oref(Fy, (poqre o oqeyr)) A ref(Fy, (rys1...8m)) A res(Fy,r)
exoref(Fy, (poque o qeyt)) A ref(Fy, (1,1, 81...8m)) A gen(Fa,t)

Proof: Taking into account condition ¢;, the LHS of (6.40) can be written as

{p|3q1"'3qk73r351"'35m (Fl(p7q17-"7q1mr) A FZ(rvslv"'vsmv))}

Since Fy does not reference sy,...,s, and F, does not reference ¢y, ..., gz, the exis-
tential quantifiers can be distributed across the conjunction as follows

{p|3r(EIQIEIQk Fl(p7q17"'7q]€7r) A EISI"'EISm FQ(rv‘Slv"'7Sm) )}

This expression can be rewritten as

{p|33q- Fax Fi(p.ar,. - qu7’) } (6.42)

where the universe of discourse for r’ is defined by
R/ = {T|E|31---E|Sm FQ(T,Sl,...,Sm)} (643)

Equation (6.42) is equivalent in meaning to P op (@set, R') while R’ of equation
(6.43) is equivalent in meaning to R op, (Sset). Together these two expressions are
equivalent to the RHS of (6.40).

The proof for (6.41) mimics the previous one with the exception that (6.42) be-
comes

{p|3t3qi-- g Filp.qus- - qiet') } (6.44)

where the universe of discourse for ¢’ is defined by
T = {t]3Irdsy - Ts, Fo(rys1,.00y8m,t) O (6.45)
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Example 6.3 Consider the query “Find all documents written by the child of a
computer scientist and a doctor”. Let

d range over the class Document

p1  range over the class Person

pe range over the class Person

¢ range over Person objects which are children
a; be the atom (¢ ==<d>.author)

az be the atom (“computers” €<p;>.expertise)
as be the atom (“medicine” €<py>.expertise)
as be the atom (¢ €<py, p2>.children)

The following object algebra expression can be used to represent the query
Doc 0 (4 naznasnag) (Person, Person)

This expression satisfies the conditions of rule 6.41 when we substitute a; for Fj,
(ag A as A aq) for Fy, Doc for P, { } for Qset, Person for R and Person for Sset.
Applying rule 6.41 with these substitutions gives

Doc 0 (4, naynasnag) (Person, Person) < Doc o4, ((Person V(a1 Aasnas) (Person)))

This transformation is shown graphically on the left hand side of Figure 6.2. <

........... |d doo oo d
0-(11...(14 0-(11 0-(11
: Person.: S N S N
. 2 - . c o : 3 :
- Doc Person: Doc - Vay,az,0 - Doc- Vay :
(6 4¥7’ ‘Person Person | Gaz Tas

Figure 6.2: Transformations of examples 6.3 and 6.4.

Theorem 6.14 Factoring Generate from a Conjunctive Select:
A special case of rule 6.41 occurs when the select predicate contains a generating
atom for the set being restricted (Figure 6.3).

P o(mar) (@set, R, Sset) & (P op (Qset))N (R v, (Sset)) (6.46)

where:
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c: ref(F1, (pyqr...qx)) N res(Fi,p) A ref(Fy, (p,r,s1...8m)) N gen(Fz,p)
Using the same techniques as in the previous proofs, (6.46) can written as
{pl3q- 3q Filpqr, . qe) YO p [ Frdsy- - Fsm Fo(p,r sty ssm) |

Applying Definition 6.1 and condition ¢, this expression is equivalent in meaning to

the RHS of (6.46). O

P | P
N
. / \K
o Vg
P Fl 7F2
P g7 T Sy

P Qset R Sset

Figure 6.3: Graphical representation of rewrite rule 6.46.

6.5 Generate Rewrite Rules

Theorem 6.15 Conjunctive Generate Predicates:

P ’yfFl/\F2) (Qset, Rset) & (P op (Qset)) Y, (Rset) (6.47)
B (P oy, (Qset) ol (Rset) (6.4
& (P v (Qset)) op, (Rset) (6.49)

where:

er:oref(Fy, (poqrooqr)) N res(Fi,p) A ref(Fy, (pyr...r,t)) A gen(Fy,t)
exoref(Fy, (poqr e oqeyu)) A gen(Fiyu) A ref(Fy, (re...rptu)) A gen(Fa,t)
ezt oref(Fy, (poqre o quyt)) A gen(Fi,t) A ref(Fy, (rq...m,t) A res(Fa,t)

Proof of (6.47):
{t]3IpFqr--- Fge Fi(p,quy-oovqr) A Fry---Fr Fy(pyre, ..o r,t)) }
{t]Plp) N Jqr---Fqx Filp,qry. - yqe) A Fre--- 3 Fo(p,re, ..., t) b
Grouping the first two terms and changing P(p) to a quantifier yields
{t]3Ipdq - g Fi(p,qry-ooyqr) A Fry---Fr Fy(pyr,.. ) }
Substituting P’(p) for the first term gives

{ t | Pl(p/) A EIrl"'zlrl FQ(plvrlv-"vrlvt) } (650)
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where
P = {p|3p3gi---3Fqx Fi(p.qi,-- -, q1) } (6.51)

Equation (6.50) is equivalent to P’ 4, ([set) while equation (6.51) is equivalent to
P op (Qset). These two expressions can be combined to yield the RHS of (6.47).
Proof of (6.48):

{ l | EIpEIQIEIQk Fl(p7q17"'7q]€7u) A EIrl"'zlrl FQ(Tl,...,T[,t,U) }

Substituting U’(u’) for the first term yields

{¢|U (W) AN Trye-Frp Foy(rg, ooyt } (6.52)
where

U = {w|3pIqi-- g Filp,ar, - -5 qrow) 3 (6.53)
Equation (6.52) is equivalent to U’ v, (Rset) while equation (6.53) is equivalent tp
P yp (Qset). Together these are equivalent to the RHS of (6.48).
Proof of (6.56):

{ 1 | Elpzlql EIQk Fl(p7q17-"7q1mt) A EIrl "'Elrl FZ(rlv-"vrlvt) }
Substituting 77(¢') for the first term gives
{7y AN By 3 Fo(ry,...om, 1) } (6.54)

where

T = {t|3p3q- 34 Fpyqis- - qet) ) (6.55)
Equation (6.54) is equivalent to T op, (Rset) equation (6.55) is equivalent to
P 7, (Qset). These two expressions can be combined to yield the RHS of (6.56). O

Example 6.4 Consider the subquery Person ¥ n,,a., (FPerson) of Example 6.3
where

ay = “computers” €<p;>.expertise
az = “medicane” E<py>.expertise
ay = ¢ ELpy, p>.children

which returns the children which have a doctor and computer scientist as parents. The
subquery satisfies the conditions of rule 6.47 when we substitute ay for Fi, as A ay4
for Fy, Person for P, ¢ for ¢, { } for @set and Person for Sset resulting in the
transformation

Person v, aguna, (Person) & (Person oo, () Vone, (Person)

Ideally we would like to apply this rule again to break out atom as which restricts
the variable py ranging over the class Person. Noting that the ordering of argument
sets does not affect the result of a generate operation, we can apply rule 6.4 to give

(Person 04, () Yeuna, (Person) < Person v, .., ((Person o4, ()))
Now we can apply rule 6.47 again to break out atom a3 as follows.
Person v, ., ((Person o4, ())) < (Person o, () Ya. ((Person oq, ()))

The result of these steps is shown on the right hand side of Figure 6.2. &
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A special case of the generate operation occurs when the predicate generates values
for the target variable (which does not range over an argument set) and also for a
variable which does range over an argument set.

Theorem 6.16 Factoring Generate from a Conjunctive Generate:
P ’yfFl/\F2) (Qset, R, Sset) & ((P i, (@set)) N R) 7}572 (Sset) (6.56)
where:
c: ref(Fy, (pyryqr...qe)) N gen(Fy,r) A rvef(Fy, (rit,81...8,)) A gen(Fa,t)

Proof: The condition states that I} generates values for r while I, generates values
for the target variable £. Similar to rule 6.46, we now have two sources of values for
r; the argument set R and the generating atom in Fj. Since the final values of r
must exist in R and be generated by Fi, we can break [} out into its own generate
operation and intersect the result with R prior to generating values for ¢. O

6.6 Semantic Rewrite Rules

This section presents transformations for object algebra expressions which utilize
semantic information embodied in the data model, its restrictions, and the class in-
heritance graph. As each database has its own class lattice with a unique distribution
of objects across those classes, the applicability of these transformations is highly de-
pendent on the database state. The intent is that a query optimizer! with access
to simple database statistics can easily adapt its optimization choices to the current
database state. Four primary themes will be developed. First, a simple rule regarding
class extents is presented. This is followed by the identification of binary operators
which default to known solutions in special cases. Lastly, a transformation which de-
pends on type consistency considerations is presented. In the following, ¢; will denote
a class while C; and C denote the extent and deep extent of ¢; respectively.

6.6.1 Deep Extent Expansion

Theorem 6.17 Deep Extent Frxpansion:

Each occurrence of C* in an object algebra expression can be replaced by
CUCiU---UC, where {c¢,¢1,...,¢,} is the set containing ¢ and all its n subclasses.
Proof: Operands to object algebra operators are sets of objects. At the leaves of a
query tree these sets of objects represent either a class extent or a class deep extent.
The data model states that the deep extent of class ¢, ext*(¢), is the union of the
extents of all classes in the subtree of the class lattice rooted at ¢. Thus

ext™(c) = ext(c) U ext(er) U --- Ueat(c,)

!Even though the terms ‘optimum’ and ‘optimization’ are used frequently in relation to query
processing, optimality in this context needs to be interpreted somewhat loosely. There 1s a significant
amount of parameter estimation incorporated into cost function parameters. Thus, the decisions are
optimal to the extent that these estimates are accurate.
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which is equivalent in meaning to the theorem statement. O

Example 6.5 Given the class lattice in Figure 6.4 the following expression holds:
Cf op <> f= (01U02U03UC4) op <>

This example implements a full expansion of the classes in a deep extent. Of course,
any subset of a union which identifies a deep extent can be replaced by the deep
extent as well. Thus

(CLUCLUCY) oF ()

is also an equivalent expression. &

Croot
/ \
(8] Cy
/ \
Co C3
\
Cyq

Figure 6.4: A simple class lattice.

6.6.2 Semantic Transformations for Binary Operators

Knowledge about the class lattice can be used to identify and reduce special cases
of binary operations. In order to discuss these special cases in a uniform manner,
a binary relation which captures information about the class inheritance graph is

defined.

Definition 6.2 Deep FExtent Qverlap: The notation ¢ 5/ ¢; denotes that
de; e = A ¢ X e, de, CF and €3 have elements in common. The relation v/
is reflexive, symmetric but not transitive. O

Theorem 6.18 The following special cases of binary operations are identified:

1. C1NCy = ¢ when ¢ # ¢y.
Proof: The data model states that an object may be a member of only one
class, i.e. the extent of any two distinct classes is disjoint.

2. Cl — 02 == Cl when (&1 7£ Cy.

Proof: The proof follows from the previous case.
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3. CiNC =Cy when ¢ X ¢.
Proof: By definition of the < and <7 operators it is clear that if ¢; < ¢y then
all elements in €y are also in C3. Since no member of ¢; can be a member of
any other class, the assertion is true.

4. C1NCy = ¢ when ¢ Y.
Proof: By Definition 6.2, C; (which includes C7) and CJ have no elements in
common when ¢; y/¢s.

5. ChLUCS =5 when ¢; < c;.
Proof: By definition, CJ includes all elements in the extent of each class which
is a subclass of c.

6. C1 —C5=C1 when ¢1 # 3 Aey £ co.
Proof: The condition ¢; # ¢y implies that ¢; and ¢y have no members in com-
mon, i.e. C4 N Cy = ¢. ¢; A ¢z implies that no subclass of ¢; or ¢; has members
in common. Thus € and € have no elements in common.

7. Cf — Cy = Cf when ¢; yes.
Proof: By definition, ¢; ¢z means that C;NCY=¢. Since Oy C (7,
CrNCy = ¢ as well.

8. C7NC5 = ¢ when ¢ Yes.
Proof: By Definition 6.2.

9. CTNC; =UC¢; X ep Nep = ¢g when ¢ 7 ¢
Proof: Let ¢q1,..., ¢, be all the classes in the subtree of the class inheritance
graph rooted at ¢;. Applying Theorem 6.17, C7 N C can be rewritten as:

(CrrU---UCy,)NCS
Applying equation 6.12, this is equivalent to
(CunNCHU---U(C,,NCT)

As shown in 3 above, each term (Cy; N C5) = Cy; when ¢1; < es.

10. C7UCs =5 when ¢ =< ¢,.
Proof: By Definition 6.2, ¢ < ¢; = (7 C (5.

11. C7 — C5 = Cf when ¢; Yes.
Proof: By Definition 6.2 ¢; e = C;NCy = ¢. O

These transformations are summarized in Table 6.1

6.6.3 Other Semantic Transformations

Transformation rules may rely on type consistency to determine their applicability.
Consider the following rules.
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Table 6.1: Special cases of the binary operators.

| Rule Condition |

Cl N CQ = Q§ (8] Co

Cl - CQ = Cl (8] Co

Clﬂ02*201 CleQ

Cl N C; = ¢ (8] WCQ

ClLJCQ*:CQ* CIjCQ

01—05201 (&1 CQ/\ClﬁCQ

Cf - 02 = Cf (8] WCQ

Cf N C; = ¢ (8] WCQ

CinNnC;=UC; | 2N 2eahNe Ve
CTUCJZCJ CIjCQ

01* - C; = 01* (8] WCQ

Theorem 6.19 Associativity of Select with respect to Intersect (Figure 6.5):

where:

c: I is identical to F' except each occurrence of p is replaced by r.

oF

(o ali

P

Qset R

(b)

Q) set

(P op (Qset)) N R & (P op (Qset)) N (R o (Qset))
é} Pn (R Ofp <Q86t>)

Figure 6.5: Graphical representation of Theorem 6.5.

(
(

6.57
6.58

(o ali

)
)

Proof: By definition, intersection returns only those objects which are present in

both input sets. From a pure set theory perspective, any restriction which removes
objects from one input set only, automatically excludes those objects from the result
of the intersection. In addition, the restriction could be applied equally well to the
other input set instead and generate the same result. This is because intersection is
not dependent on operand ordering and “doesn’t care” which input set is missing the
excluded objects. By a similar argument, the restriction could be applied to both
input sets without affecting the result.

Referring to Figure 6.5, the restriction in (a) is given by the select operation
P op (Qset); i.e., the input set P is being restricted by predicate F'. Let us first
examine the transformation from (a) to (b).
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The expression depicted in (a) is considered type consistent if the methods in
predicate ' are defined on all types represented by the objects in P. Note that P
(R) may be a heterogeneous set of objects if it represents the result of a subquery as
opposed to the extent of some class. The transformation from (a) to (b) is valid only if
the expression in (b) is a legal. This means the subquery R op (@Qset) in (b) must be
type consistent, i.e., the methods in predicate I" are defined on all types represented
by the objects in R. According to condition ¢ on the transformation rule though, the
methods in F' are identical to those in ['. Thus, the validity of the transformation
from (a) to (b), and by similar argument from (c) to (b), is dependent on both the
database and the nature of the subqueries which produce P and R.

Once these transformations are shown to be valid, we can conclude that the equiv-
alence of expressions (a) and (¢) is valid by the characteristics of intersection discussed
previously. If the restriction can legally be applied to both input sets, then intersec-
tion only requires that it be applied to one of them. O

6.7 Rule Application

The focus of this chapter is on the specification of transformation rules as opposed
to their application. However, some comments on the application of the rules are in
order. Several rule based optimizers have been reported [GD87, HP88] which could
be adapted to apply the rules developed here. The main component of these systems
is a pattern matching engine which matches subexpressions of a query against rules.
In addition to the matching of subexpressions, the firing of rules is dependent on the
satisfaction of user defined functions such as gen(F,v) and res(F,v).

There is, however, one major difference between our rules and those of the EXO-
DUS [GD87] and Starburst [HP88] optimizers. Their rules are based on expressions
of fixed arity, e.g., two operand joins, while our rules can have varying numbers of ar-
guments, e.g., (Jset, Rset, Sset. An inefficient solution to this incompatibility would
be to define rules for all possible set sizes and combinations. A better approach would
be to modify the pattern matching engine to accommodate arguments to expressions
which are sequences (sets).

Several heuristics can be used to drive the rewriting process. A common heuristic
is to push operations which reduce intermediate result sizes as far down the tree as
possible. The result is that operand sets are are reduced as early as possible thereby
minimizing the input to operations higher up in the query tree.

Another heuristic is to eliminate redundant or useless cross product genera-
tion. The semantics of select, generate and map operations require that the pred-
icate (or method applications in the case of a map) be evaluated for each el-
ement in the cross product of the argument sets. For example, the predicate
F in P op (Qset, Rset) is evaluated once for each vector <p,qi...qp,71...7>
€ PxQix...xQrx R x...xR,. When F consists of the subformulas
Fi(p,q1...qx) and Fy(p,ry...1) then the r elements of the vector are not used in eval-
uating £y and the ¢ elements are not used in evaluating F. Assuming that the cost
of generating the cross product grows non-linearly with respect to the number of sets
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(here k+1+41), it is cheaper to generate smaller cross products, P x Q1 X ... x Qj
and P x Ry X ... x R; respectively.

One effect of applying these rules is that an operation with a complex predicate
is split into multiple operations whose predicates are subformulas of the original one.
This can be beneficial in several ways. Assume that access plans contain calls to
an object manager interface which has the ability to apply single atom predicates
to streams of objects. Simplifying predicates during query rewrite will reduce the
complexity of access plan generation as there is a closer mapping between predicates
and individual object manager calls. Another benefit is that applying a rule may
expose operations which can be performed in parallel. This becomes more important
as distribution is considered.
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Chapter 7

Generating Query Execution
Plans

7.1 Introduction

This chapter addresses the last step in the query processing methodology of Figure 1.3,
namely access plan generation. Access plan generation is the process of mapping
high level representations of queries (e.g., relational or object algebra expressions) to
sequences of data manipulation operators which are present in the physical system. In
the case of the relational data model [Cod70], there is a close correspondence between
algebra operations and the low level primitives of the physical system [SACT79]. The
mapping between relations and files, and tuples and records may have contributed to
this strong correspondence. However, there is no analogous, intuitive correspondence
between object algebra operators and physical system primitives. Thus any discussion
of access plan generation must first define the low level object manipulation primitives
which will be the building blocks of access plans.

We call this low level object manipulation interface the Object Manager (OM)
interface. Object managers have received attention lately in the context of dis-
tributed systems [BHJL86, DLA8S, MG89, VKC86], programming environments
[Dec86, Kae86, VBD89] and databases [CDRS86, CM84, EE87, HZ87, Kim88]. These
object managers differ in terms of their support for data abstraction, concurrency and
object distribution. In addition, they are typically oriented towards “one-at-a-time”
object access which is an inefficient paradigm for query processing. We define a new
OM interface which maintains many features of previous object managers but oper-
ates on streams of objects. We then develop algorithms for generating access plans
whose processing steps are calls to the stream oriented object manager interface.

The rest of the chapter is organized as follows. Section 7.2 presents the object
manager interface. Two algorithms for developing query execution plans are devel-
oped. The algorithm of Section 7.3 is simple but may not find best plans. Section 7.4
presents a more complex algorithm which finds all feasible plans and shows how OM
cost functions can be used to select a best plan.
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7.2 The Object Manager

There are two primary concerns in generating access plans. The first is to decompose
the object algebra operators union (U), difference (—), select (op), map (— nust) and
generate (7k) (especially those with complex predicates) into a sequence of simpler
operations which more accurately reflect the interface provided by a real object-based
system. In other words, we are defining a lower level of abstraction than that pro-
vided by the data model and object algebra thus far, and treat access plan generation
as the mapping of object algebra expressions to the new abstraction interface. The
second concern is that in order to maintain the data abstraction provided by behav-
iorally defined objects we can not make assumptions about how objects are stored
and implemented.

Object algebra expressions which are the input to the access plan generation
process have several important characteristics:

1. They can be represented as graphs whose nodes are object algebra operators
and whose edges represent streams (sets) of objects. Thus intermediate results
do not have any structure. In fact, the intermediate results can be thought of
as streams of individual object identifiers.

2. Some algebra operators (op,7k) are qualified by a predicate. Predicates are
formed as a conjunction of atoms, each of which may reference several variables.
The variable corresponding to the result of the algebra operation is called the
target variable.

3. Variables used in multiple atoms of a predicate imply a ‘join’ of some kind; i.e.,
objects denoted by the variable must satisfy several conditions concurrently.
When object variables overlap in multiple atoms, the ‘join’ relationship becomes
complex and may involve several variables at once.

The last point, namely implied ‘joins’ between object variables within a predicate,
is the driving factor behind the query execution and access plan strategy. Consider
the predicate F' for the select operation P op (O, R, S,T)

F = o==(<p,q,r>mq1) AN (¢ €1) N (¢ ==<s>.m3) (7.1)

where p is the target variable and O, P, R, S, T are inputs to the operation. All values
for g are generated by the atoms in the predicate. The result of this select operation
can be defined as

{o | F(o,p,q,r,s,t)is true for <o,p,r,s,t>€ OxPxRxSxT} (7.2)

Table 7.1 identifies which variables are referenced in each atom (numbered left to
right) and reflects the dependencies between the variables. It should be clear from
the table that an object denoted by ¢ must satisfy all atoms concurrently. However,
if we are to respect the data abstraction afforded by objects, then it is not possible
for the query processor to directly evaluate all three atoms concurrently as required.
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olplg|r|s|t
al | x| x|x|x (0 ==<p, q,r>.mq)
a? X x| (qg€et)
a3 X X (¢ ==<s>.my)

Table 7.1: Dependencies between variables in a predicate.

Instead, it is more likely that we call upon another agent which can perform individual
operations on objects that correspond to the individual atoms. This would then
require the ability to keep track of the combinations of variables in O x P x R xS xT
which satisfy F'. This intuition leads to the following design decisions.

1. The low level operators used to generate an access plan for an algebra level
operator will consume and generate streams (sets) of tuples of object identifiers.
The notation [a, b, ¢, - - -] is used to denote a stream of tuples of object identifiers
of the form {<a,b,c,--->}. For convenience this is called an oid-stream in the
remainder of the chapter. This way, relationships among variables and the
atoms they satisfy can be maintained over a sequence of operations.

2. There exists an ‘object manager’ interface which performs low level operations
comparable to individual atoms in a predicate.

The following section defines the object manager interface.

7.2.1 Object Manager Interface Specification

The object manager interface specifies a calling sequence and semantics for performing
operations on oid-streams. Four operation types are defined:

I OMuy([w1], [e2], [o]) — stream union

2 OM g ([11], [22], [0]) — stream difference
3 OM.,u([t1],- -, [tn], [0], meth, pred) — atom evaluation
4 OMu([t1], ..., [2a], [0]) — stream reduction

where [¢,] and [o] denote input and output oid-streams respectively. The semantics
of the OM calls are described next.

(1) Stream Union: This operator generates the union of the two input oid-streams.
Streams [i1] and [i3] must reference the same variable names though not nec-
essarily in the same order. The operation is analogous to the relational union
operator. The output oid-stream contains those tuples which are present in [¢4]
or [i3] projected onto the variables identified by the output specifier [o].

(2) Stream Difference: This operator generates the difference of the two input oid-
streams. Streams [i1] and [i3] must reference the same variable names though
not necessarily in the same order. The operation is analogous to the relational
difference operator. The output oid-stream contains those tuples which are in
[21] but not in [i5] projected onto the variables identified by the output specifier
[].
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(3) Atom Evaluation: This operator applies the (optional) method given by

meth to each member of [i1] X ... X [i,] creating the intermediate oid-stream
[11] X ... X [t,] X [res] where res is the result of the method application for
each 71,...,17, combination. Next, the predicate predis applied to the interme-

diate oid-stream and the result is projected onto those variables given in the
output stream identifier [0]. More specifically:

o [i1],...,[is] denote a set of oid-streams which represent the input to the
object manager call. A variable name may appear in only one input stream.

o [0] denotes the oid-stream which will be returned as output of the object
manager call. A variable name may appear only once in the output stream.
Variables referenced in the oid-stream [o] are a subset of those in the input
streams or the special identifier res.

e meth is an optional method application specifier of the form
<a,b, ¢, --->.mname, where a, b, c,--- correspond either to variables in the
input streams or are the textual representation of an atomic value. The
special identifier res denotes the result of the method application and can
be referenced in the output stream and predicate.

e pred is an optional predicate on objects in the input streams and/or re-
sult of the meth field. The full set of permissible predicates is given in
Table 7.2. Variables in the predicate correspond either to variables in the
input streams, the special identifier res or are the textual representation
of an atomic value (denoted by const in the table).

Table 7.2: Predicates allowed in OM,,,; calls.

0, == 0]‘

0; € 05

0; =13 05

const = o

const € o

0 € const

const =g, 0

An OM.,,; call must have either a method or a predicate specified, and can
have both if required. If specified, the method is always applied before the pred-
icate is evaluated. The special identifier res denotes the result of the method
application and can be referenced in the output stream or predicate only if a
method is specified.

The input streams may contain variables which are not referenced in the output
stream, the method or the predicate. In this case the respective oids in the in-
put streams are ignored. Variables referenced in the input streams and output
stream but not in the method or predicate are carried through without modi-
fication. In this case, the unreferenced oid in each input tuple which satisfies
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the predicate after the optional method has been applied is copied unchanged
to the corresponding output tuple. There is no relationship or restrictions on
the ordering of variables in the input streams and output stream.

Example 7.1 Consider the atom evaluation operation
OM.,.i([a, b], [c], [res, ¢], <c,a>.m,b € res)

The semantics of this operation are given by the following algorithm.

for (each tuple t: <a,b,e> € [a,b] X [c]) begin — iterate over x-product
let res be the object returned by <t.c,t.a>.m' method application
if (1.6 € res) then — set value inclusion

add tuple <res,t.c> to the output stream
end <

(4) Stream Reduction: This operator combines and reduces the number of input
streams by performing an equi join on those variables which are common to all
input streams. This requires that all input streams have at least one variable
name in common. The semantics of the operation is best described using an
example.

Example 7.2 Consider the stream reduction
OMu([a, b, c],[b,d,cl,[e, e, b],[a,b,e])

The variables common to all input streams are b and ¢. We can rewrite the
operation as

OMy([a, by, c1], [ba, d, 2], [€, €3, bs], [a, b, €])

in order to differentiate the different sources for variables b and ¢. The input
streams are first combined by taking their cross product which results in the oid-
stream [a, by, ¢1, by, d, ca, €, 3, b3]. The final result stream is of the form [a, b, €]
and contains only those tuples from the previous intermediate result where

(bl :bgzbg)A(Cl 202203). <>

7.3 Access Plan Generation

Access plan generation can be thought of as creating a mapping from object algebra
expression trees to trees of object manager operations. A query is initially represented
as a tree of object algebra operators as shown in Figure 7.1(a). Edges in the figure
have been annotated with oid-stream labels to indicate that a set of objects, e.g., P,
can be considered a stream of individual objects, e.g., [p], as well. One unique feature
of object algebra expression trees is that all edges represent streams of single objects,
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Figure 7.1: Mapping object algebra expression trees to object manager operation
trees.

never streams of multiple objects. This is due to the closed nature of the algebra
which insures that the output of any operation can be used as input to another.

The graph in Figure 7.1(b) represents an access plan corresponding to the algebra
tree on the left. An access plan graph is a graph whose nodes are OM operators and
whose edges are oid-streams. It is evaluated from the leaves to the root. The subtrees
within dotted boxes are sequences of object manager operations corresponding to
individual algebra operators of the original query. Edges which do not cross subtree
boundaries may represent streams of tuples of objects (e.g., [p,¢] and [s,0]). In
addition, streams may be used as input to multiple object manager operations within
a subtree, e.g., [¢].

The following sections shows how the mapping to object manager operators is
performed for each of the object algebra operators (U, —, o, st and v%). For
ease of presentation, how these operations can be mapped to access plan graphs is
first discussed intuitively and then formal algorithms are developed.

7.3.1 Union and Difference Operations

The union and difference operators map directly to their object manager counterparts.
Inputs and output of these two algebra operations are always unary streams of objects
even though OMy and OM 4z accept streams of tuples of object identifiers.

1'We use the notation t.c to denote component ¢ of tuple ¢.
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7.3.2 Map Operation

Reviewing briefly, the map operator Q1 —ny.m, (Q2,...,Qk) denotes the multi-
operation <qi,...,qr>.my...m, where <gqi,...,qp> are drawn from @y X ... X Q.
Since the object manager interface can only apply one method per call, the multi-
operation must be decomposed into individual method applications. Determin-
ing which ¢; are a parameter for a given m; has been treated previously in
Chapter 5 and is not repeated here. Figure 7.2 depicts how the map operation

Q1 Py memams (@2, Qs, Q4, Qs, Qs, Q7) is represented as a sequence of OM opera-
tions. The formal steps to perform this transformation is given in Algorithm 7.1.

[res]
|
My OM.,.i([rs], [g7], [res], <rs, gr>.ma, ¢)
[7}/
ms [q7] OM.,.i([r2], [gs); [ge], [73], <r2, g5, ge>.m3, 73 == res)
[r}/
my | [gs) [ OM.,.i([r1], [gsl; [ga, [r2), <71, g3, a>.m2, 7y == res)
[T}V
mi1 | [gs] [qa] OM.,u([q1], [¢2], 1], <q1, g2>.m1, 71 == res)
[1] [g2]

Figure 7.2: Access plan generation for a sample map operation.

Algorithm 7.1 Create access plan graph for the map operator
Input: Object algebra map operation of the form Q1 —pm, (Qz2,..., Q)
Output: Access plan graph ¢

begin
let G:=¢ — initialization (1)
use the type inference rules of Chapter 6 to create mappings m; — ¢z, ..., q, where:(2)
— ¢ denotes the i* method in mq---m,
— z denotes the subscript in ()1, ..., Q% of the second argument to m;
— y denotes the subscript in )y, ..., @y of the last argument to m;
let 7o := ¢4 (3)
for (: :=1 to n) begin (4)
add node OM.,,i([ric1], [qs], - - -5 (@), [Fi)s <rict, Qo - - oy @>mg, 17 == res) to G(5)
if (this is not the first node to be placed) then (6)
add an edge to ¢ connecting the output of the node placed on the previous (7)
pass to the first input ([r;_1]) of the node placed on this pass (8)
endif (9)
endfor (10)
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end Algorithm 7.1

7.3.3 Select and Generate Operations

The select and generate operators introduce complexity into access plan generation
due to their use of predicates. At first it may appear that the two should be treated
separately as select returns a subset of an input set while the generate generates
objects from those in the input sets. But from the perspective of low level access
plan creation, they are quite similar. Consider again the selection predicate of Equa-
tion 7.1. Even though the operation is a selection, the predicate generates values for
¢. There is no inherent difference in complexity between predicates for selections and
those for generate operations. The only real distinction between the two is that the
target variable of a generate operation does not correspond to one of the input sets.

Figures 7.3 and 7.4 illustrate several possible access plans, specified as access plan
graphs, for the select example whose predicate is given in Equation 7.1. Nodes in
these access plan graphs are either OM,,,; operations corresponding to individual
atoms of the predicate or OMy operations for reducing intermediate oid-streams.
OM.,,,; nodes are labeled with the atom they represent (al, a2 or a3) while OM,
nodes are labeled with the X symbol.

The first requirement in creating these access plans is to rewrite the predicate such
that each atom does indeed correspond to just a single object manager call. This is
done by applying the following rewrite rules.

1. Given an atom of the form const = var where const is the textual representation
of an atomic value and var is some object variable, remove the atom from the
predicate and replace each occurrence of var with the text of const.

2. Replace all occurrences of atoms of the form
(multi-opy 6 multi-ops)
with
(multi-opy 6 new_var) A (new_var 6 multi-ops)

where new_var is a newly introduced object variable currently unused in the
predicate and 6 € {=,==,€,=3}. This insures there is only one multi-
operation per atom.

3. Expand each multi-operation into a sequence of single method applications.
This is identical to the steps performed for the map operator in Section 7.3.2.
Using the map operation of Figure 7.2 as an example, the following equivalence
would be used:

<41, 92, 43, 4, 45, 46, q7>-M1.M2.m3.My = 11 ==<q1, @2>.m1 N\
Ty ==<T1,¢3, q4>.1M2 A
T3 ==<72,¢5,¢6>.M3 A
res ==<rs, ¢7>.My
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where r; and res are previously unused object variables.

Table 7.3 illustrates how each of the simplified atoms is mapped to an object manager
call. The table shows all variables from the input streams being carried through to
the output stream merely to illustrate the full extent of possibilities. Typically the
output stream would be a subset of the input stream variables. The “x” character
denotes the sequence of all variable names o, a, b, - - -.

Table 7.3: Mapping simplified atoms to OM,,,; calls.

‘ ‘ Object Manager Call ‘ Comment ‘

a == OM.,.([a, b], [*], ¢,a == b) res(a, b)

0 ==<a,b,-->.m OM.,u([a, b, -], [*],<a,b,-->.m, ) gen(o)

OM.,u([o,a,b, -], [*], <a,b,--->.m,o==res) res()

a€b OM.,.i([0], [*], ¢,a € b) gen(a)
OM.,u([a, b], [*], ¢, a € b) res(a, b)

0 €<a,b,-->m OM.,u([a, b, -], [*],<a,b,-->.m,o0 € res) gen(o)

OM.,.([o,a,b, -], [*], <a,b,--->.m,o0 € res) res()

<a,b,--->m € o OM. ([0, a,b,- -], [*], <a,b, - >.m,res € o) res(x)
a=gb OM.,.([a, b], [*], ¢, a = b) res(a, b)

0 =p<a,b,--->m OM.,.([0,a,b, -], [*], <a,b,--->.m,o0= res) res()
const =<a,b,-->m | OM,,u([a,b, -], [*], <a,b,--->.m,const =res) |res(a,b,---)
const € o OM.,.i([0], [0], ¢, const € o) res(o)
const €<a,b,--->m | OM_ u([a,b, -], [¥],<a,b,-->.m,const € res) | res(a,b,---)
<a,b,--->m € const | OM. u([a,b,- -], [*],<a,b,-->.m,res € const) | res(a,b,---)
const =g 0 OM.,.i([0], [0], ¢, const = o) res(o)

OM (| <

const = <a,b,--->.m

We are now ready to consider, in some detail, the alternative access plans in
Figures 7.3 and 7.4 for the sample select operation. Each access plan assumes that
atoms in the predicate are sorted into a partial dependency order where values for
non-input variables are generated before they are used; i.e., an atom which generates
g comes before an atom which uses ¢. In the predicate of Equation 7.1 variable
q is ‘generated’ twice, once by a2 : ¢ €t and again by a3 : g ==<s>.ms, and only
‘referenced’ in a2 : 0 ==<p, ¢,r>.my. Thus one of either a2 or a3 must be performed
before al. However, once values for ¢ have been generated by one of these atoms,
the semantics of conjunction allow us to think of the remaining atom as restricting
q as opposed to generating new values for ¢. As long as oid-streams for all variables
referenced by the remaining two atoms are present, their ordering is irrelevant. The
access plans of Figures 7.3 and 7.4 express some of the variations which are possible
within this framework.
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Plan 1 [p]

al OMSU&]([07P7Q7T]7[p]7<p7q7r>-m170 == 7“68)
[0,p,9,7]
a3 OMSW]([Ovpv q,7, 5]7 [07}77 q, T], <8$>.Mg, q == TGS)
[0,p,q,7,5]
/az\ OM.,u([o], [pl, [r], [s], [t], [0, p, 4,7, 5], 6,0 € 1)

Plan 2 [p]

al OMeval([Q]v [0]7 [p]v [T]v [P]a <p,q,r>.m1,0 == res)

a2 | [o][p][r] OM.,.([q], [1],[q], 0, q € 1)

a3 | [1] OM.,.i([s], [q], <s>.1m2, ¢ == res)
[L]
Plan 3 Dr]
al OM...ai([q], [o], [P [r]. [p], <p; ¢, 7>m1, 0 == res)

a3 [0] [p] [T] OMeval([q], [8], [q], <8>.Mg, ¢ == res)

Cl2 [S] OMeval([t]v [Q]v ¢7 q € t)

Figure 7.3: Access plans for the sample select operation.

80



Plan 4

a2 |~ a3
| |
[t] []
Plan 5 [f]
X
[Pyg \Q ..........
al |~ a3
3/ |
612 o] [p]lr] 5]
[t]
Plan 6 [p]
|
X
[Pyg \Q ..........
al |~ a?
3/ |
T% o] [p][r] 1]
[]

OM....([¢], [e], [p], Ir], [P, <p, ¢, >.m1,0 == res)

OMM([p, Q]v [Q]v [P])
OM....([¢], o], [p], Ir], [ps 4], <ps q,7>.m1, 0 == res)
OM.,..([s], [q], <s>.ma, ¢ == res)

OM..,...([1];[q], 6,9 € 1)

OMM([p, Q]v [Q]v [P])
OM....([¢], o], [p], Ir], [ps 4], <ps q,7>.m1, 0 == res)
OM.,.([t],[q]. 6.q € 1)

OMeval([5]7 [Q], <$>.Myg, § == TGS)

Figure 7.4: More access plans for the sample select operation.
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Plan 1: (Figure 7.3) In this plan, the first OM operation® consumes atom a2 and
creates an output oid-stream which contains those variables required by the
remaining unconsumed atoms (al,a3). Since ¢ is not referenced by either al
or a3 it can be omitted from the output oid-stream. It is important to realize,
though, that the OM operation to do this (designated by a2 in the diagram)
requires taking the cross product O x P x R x S x T. In other words, an OM
operation always takes the cross product of all its input oid-streams prior to
applying a method and evaluating a predicate. The next object manager call
consumes atom a3 and drops variable s from its output since it is not required by
the remaining unconsumed atom (al). The last object manager call consumes
the remaining atom and includes only the target variable in its output stream.

In summary, variables which represent generated objects are added to the in-
termediate oid-stream upon generation, e.g., ¢. Variables in the intermediate
oid-stream are dropped by the last object manager call which references them,
e.g., t. The final object manager call includes only the target variable in its
output.

Plans 2,3: (Figure 7.3) These two plans are similar to the first except that cross
products of some variables are delayed until just before the object manager
call which requires them. Since al is the only atom which references variables
o, p and r, prior OM calls for atoms a2 and a3 need not carry through these
variables without using them. Plans 2 and 3 differ only in which atom is chosen
to generate values for ¢ first.

Plan 4: (Figure 7.4) This plan exercises another interpretation of the semantics of
conjunction: if two atoms generate values for the same variable, then the final
set of values is the equi join of the separately generated values. This paralleliza-
tion technique has been combined with delayed cross products to minimize the
size of parameters to object manager calls. For example, if we had performed an
early cross product as in plan 1, then the input to ¢ € ¢ (a2) would be [o, p, r, s, 1]
which has many more tuples than there are unique values of t.

Plans 5,6: (Figure 7.4) These two plans utilize the same semantic principles as in
plan 4, only in a different fashion. As before, cross products are delayed as
long as possible. The two atoms which generate values for ¢ are performed
in parallel. The output of only one of these atoms is combined with o, p and
r to restrict values of p and to generate the oid-stream [p, ¢]. However, unlike
earlier restrictions, both p and ¢ are retained in the output stream of this object
manager call. There are now two oid-streams containing values for ¢, [¢] and
[p,q]. The final oid-stream representing the target variable p is created by
performing an OM operation on the two streams and projecting over the p
component.

ZRecall that OM operator trees are evaluated bottom up.
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Some generalizations about the relative merits and drawbacks of these access plans
can be made. It would seem that ‘just in time’ cross product generation is beneficial as
it reduces intermediate oid-stream sizes, both in cardinality and in arity. Cardinality
is reduced since restrictions are performed on the oid-stream prior to subsequent
cross products. Arity is reduced as new variables are introduced only when needed
rather than at the start of the subquery. The argument for delayed cross product
generation would be even stronger if the complexity of the cross product operator grew
non-linearly with respect to either the number of fields or the stream length. The
parallelization performed in plans 5 and 6 looks beneficial initially, but has several
drawbacks. One is that values for ¢ are not restricted as much as they are in all
the other plans prior to being used in later operations, e.g., to restrict p. Second,
the intermediate oid-streams are larger since ¢ must be carried through until the final
OM, operation. Plans 2 and 3 are similar to 4 in that they perform all restrictions on
q as early as possible. Their relative merits would depend on the efficiency of parallel
operations followed by an OMy operation versus the sequential implementation.

Creating Select/Generate Access Plans

This section develops an algorithm for generating type 2 and 3 plans; i.e., delayed
cross products combined with early restriction. The algorithm takes three inputs:
(1) a set of atoms corresponding to a predicate which has been rewritten using the
simplification rules presented earlier, (2) a set of variable names identifying inputs to
the object algebra level operation, and (3) the name of the target variable. Output
is an access plan graph. The algorithm uses a hypergraph [Ber73] representation
of the predicate. The hypergraph contains one node for each unique variable name
referenced in the atoms of the predicate and is initialized with an edge for each atom
which covers all nodes corresponding to variables referenced in the atom. (Note that
edges in a hypergraph define subsets of its nodes.) The nodes are marked as either
red or green. A green node indicates that values for this variable exist, either because
the variable is a member of the algorithm’s second input parameter or because an
object manager call has generated the values. A red marking indicates that values do
not exist, i.e., the variable may not be used yet. The node markings are initialized to
reflect the variables which represent inputs to the object algebra operation. The initial
hypergraph corresponding to Equation 7.1 is shown in Figure 7.5-A. The algorithm
proceeds by successively placing into the access plan graph OM,,,; operations for
atoms (hypergraph edges) until all atoms have been placed. An atom is eligible for
placement in the access plan graph if all the nodes in its corresponding edge are green,
or only one node is red but it represents a variable whose values are generated by the
atom. The complete algorithm is given below.

Algorithm 7.2 Create access plan for Select/Generate operators
Inputs:

1. set of simplified atoms aq, ..., a,
2. set of input_variable names
3. target variable name ¢
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Output: Graph of object manager operations ¢

begin
let H be the initialized hypergraph for ay,...,a, (1)
let G be the output access plan graph — initially empty (2)

let stream_vars represent variables in the intermediate oid-stream — initialized to ¢ (3)

while (there are edges in H) begin (4)
let @ € H be an edge (atom) eligible for placement (5)

— all variables are green or one is red and generated by the atom, and

— if stream_vars is non-empty a references all variables in stream_vars

if (stream_vars = ¢) then

let ::=0
else

let 7 :=1

let in_stream; := stream_vars
endif

for (all nodes n; € a | n; € V. A n; ¢ stream_vars) begin
let in_stream i) = n;
endfor
let out_stream contain any variables which edge a shares with other
edges in H and t iff ¢ is a member of any n_stream
add OM, i ([in_stream4], ..., [in_stream;], [out_stream], meth, pred) to G w
method meth and predicate pred reflect atom a as per Table 7.3
if (this is not the first atom to be placed) then
connect in_stream; to out_stream of node placed on the previous pass
endif

let stream_vars := out_stream

= = == = = e~
S Tk W — O O o ~1

er

e T e e e =

PO Y =

— N oo o
o= o
= o

[N]
]

color all nodes n; € a green
remove edge a from H
endwhile
end Algorithm 7.2

DO
=

SN TN TN TN N
[N} DO
24 o
e N e N e

Example 7.3 We apply Algorithm 7.2 to the predicate of Equation 7.1. The result
of each pass through the while loop is shown in Figure 7.5. Figure 7.5-A shows
the initialized hypergraph prior to running the algorithm. Note that the node for
g is red while all others are green. During the first pass through the while loop
both atoms a2 and a3 are eligible for placement because all but one node in their
respective hypergraph edges are green and each atom generates values for the single
red node. Atom al is ineligible at this point as it does not generate values for the
red node. Assuming atom a3 is chosen at random, Figure 7.5-B shows the nodes and
edges added to the output graph. At the end of the first pass, ¢ is colored green since
values now exist for it and the edge for atom a3 is removed from the hypergraph.
The result of pass two is shown in Figure 7.5-C. Both remaining atoms are eligible
for placement and we assume atom al was randomly chosen. The out-stream of the
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corresponding OM call is [¢, p] because (1) atom al overlaps with a2 on ¢, and (2) p
is the target variable. Pass three places the remaining atom, a3. <.
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Output Graph Empty

C) green

a2 a3_|[o] [p][r]

D)

(al
(: )ﬂ
i
3

green

grfen grfen |

Figure 7.5: Building an access plan using Algorithm 7.2.
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7.4 Select/Generate Access Plans Revisited

The previous section introduced the notion of an access plan as a tree of object man-
ager operations. QQueries expressed as trees of object algebra operators are converted
to access plans by mapping each operator in the algebra tree to a corresponding
subgraph of object manager operations. Algorithms were developed to perform this
mapping for union and difference (Section 7.3.1), map (Section 7.3.2), and the select
and generate operators (Section 7.3.3).

This section examines the mapping process for select and generate operators in
more detail. Algorithm 7.2 is quite limited in that it can only generate access plans
which are a linear sequence of OM,,,; operations. Specifically:

e only one access plan is generated,

o the ordering of multiple eligible OM operations is determined by random choice
and does not allow a cost based analysis of different orderings,

e object manager operations are never performed in parallel, and
o OMy is not used to reduce intermediate oid-streams.

Ideally one would like to generate a family of access plans from which a best plan
can be chosen based on some cost criteria. With respect to the select predicate of
Equation 7.1, this would imply that the algorithm generate all feasible plans including
those of Figures 7.3, 7.4 and Example 7.3.

To assist in an exhaustive generation of access plans, the notion of a join template
[RR82] is extended to define a processing template. A processing template represents
a family of logically equivalent access plans and is used as an intermediate formalism
in mapping object algebra query trees to access plan graphs. A processing template
for the predicate of Equation 7.1 is given in Figure 7.6.

A processing template consists of two types of nodes: stream nodes and operator
nodes. Stream nodes (drawn as rectangles in Figure 7.6) represent intermediate results
in a tree of object manager operations, i.e., access plan. In other words, stream
nodes reflect the variables present in an intermediate oid-stream and the atoms which
were evaluated to produce them. Since there are conceivably many ways to produce
equivalent oid-streams, each stream node in the processing template represents an
equivalence class of oid-streams.

Each stream node has two fields. The top field denotes the object variables present
in the oid-stream. The bottom field denotes which atoms have been evaluated in order
to create the oid-stream, but does not indicate the order in which the atoms were
evaluated. We will refer to these atoms as being consumed by the stream node.

Operator nodes (drawn as circles in Figure 7.6) denote the OM,,,; or OMi
operations in a select or generate access plan. As in the access plans of Section 7.3,
an operator node is labeled with an atom number (al, a2, etc.) if it corresponds to
a OM.,,; operation and with X if it is a stream reduction operation.

Stream nodes with no consumed atoms, i.e., the leaf nodes, represent the original
input streams of an object algebra select or generate operator. We define the final
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node as the stream node in the processing template whose variables field contains just
the target variable of the object algebra operator and whose atoms consumed field
contains all the atoms in the object algebra operator’s simplified predicate. The final
node is always node 0.

Edges represent the flow of tuples from one operator node to the next. Individual
access plans are represented by connected subgraphs of the processing template which
cover all leaf nodes and the final node.

Referring to Figure 7.6, nodes 1 through 5 represent the original input streams to
the algebra operation of Equation 7.1 and node 0 represents the final result. Node 6
is the result of the object manager operation OM,,.([s], [¢], <s>.m2, ¢ == res) and
node 7 is the result of OM,,.([t],[q], ®,q € t). Each of these nodes represents an
equivalence class of size one as they each only have one input. Node 8 represents
an equivalence class with three members. Using oid-streams subscripted with their
processing template node numbers to indicate their source, the following OM calls all
create the equivalent output denoted by stream node 8.

OM.,u([dle, [t]s [qls, @20 € 1)
OM..ui([q];, [5]y: [qls, <s>.1m2, ¢ == res)

OMM([Q]677[Q]77 [q]s)

Careful examination of the diagram will reveal that it includes all of the access plans
of Figure 7.3 and 7.4. As an example, solid edges in the processing template of
Figure 7.7 correspond to the access plan shown in the same diagram.
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Figure 7.6: Processing template for the predicate of Equation 7.1.
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Figure 7.7: Relationship between a processing template and an access plan.
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The goal then is to develop an algorithm which, given a select or generate operation
in the object algebra, returns a processing template which enumerates all possible
access plan graphs for that operation. The algorithm is first described using an
extended example and then a more formal definition is provided.

7.4.1 Extended Processing Template Example

This example will show how the processing template is developed for the object alge-
bra operation of Equation 7.1. An initial processing template is created by identifying
the input streams of the algebra operation and placing nodes for each of them. In
the example the input streams are [o], [p], [r], [s] and [t] corresponding to nodes 1,
2, 3, 4 and 5 respectively. The final node, node 0, is also placed in the processing
template. Its variables field contains either the variable being restricted in the case
of a select operation or the target variable in the case of a generate operation. The
example operation is a selection on the input set P, thus p is placed in the final node.
Similarly, all atoms of the reduced predicate (al,a2,a3) are placed in the final node’s
consumed atoms field.

Once the initial processing template is created, the following steps are repeated
until it is no longer possible to create any new stream nodes. Fach iteration of the
following steps is referred to as a pass through the algorithm.

Pass 1

Recall that processing template stream nodes represent oid-streams which can be
combined to evaluate atoms or to remove duplicates. The first step of each pass then,
is to enumerate all possible ways of combining stream nodes. The algorithm given
in [OL88] for join enumeration is modified slightly such that it does not produce
combinations where a stream node is combined with itself (self-join). The final node
is not included in the enumeration. Enumeration of the initial processing template
results in the following permutations of stream nodes. Each permutation is shown as
a set of node numbers and the sets are organized by size.

1: {1} {2} {3} {4} {5}

2: {1,2} {1,3} {2,3} {1,4} {2,4} {3,4} {1,5} {2,5} {3,5} {4,5}

3: {1,2,3} {1,2,4} {1,3,4} {2,3,4} {1,2,5} {1,3,5} {2,3,5} {1,4,5}
{2,4,5} {3,4,5%

4: {1,2,3,4y {1,2,3,5% {1,2,4,5} {1,3,4,5} {2,3,4,5}

5: {1,2,3,4,5}

Similar to the filtering process described in [OL88], each permutation is tested to
determine whether it is a useful combination of stream nodes. The filtering process
is described next.

Each permutation of stream nodes defines mappings to sets of variables and sets of
consumed atoms. For example the permutation {1,2,5} defines the mapping shown
in Figure 7.8.

We define two interesting types of mappings:
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permutation - consumed atoms
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Figure 7.8: Mappings from stream node numbers to variables and atoms.

1. The variable sets are disjoint and, together, all the variables exactly match
those required by an atom which has not been consumed by any of the nodes
in the permutation. In other words, an unused atom can be consumed using
exactly those streams represented by the nodes in the permutation. We can
now create a third mapping from the permutation under consideration to a
set of atoms which can be consumed by the combination of streams in the
permutation. Figure 7.9 shows this extended mapping for three permutations
of the first pass.

—— {0}
— {p}

— it} — {s} — {t}
{1,2,5—={ } {4} —= (a3} {5} —= {a2}
Loy > Lgy® Ly

—{ } e E U !

—{ } atoms eligible for placement

Figure 7.9: Extended mappings from stream node numbers to consumable atoms.

The first permutation, {1,2,5}, does not meet our criteria while the other
permutations do. Although the variables which {1,2,5} maps to are disjoint,
they do not exactly match the variables required by an unconsumed atom. The
third mapping is to a set of atoms ({a3}) as opposed to a single atom (a3)
since it is possible that several atoms can be consumed using the combination
of streams in the permutation under consideration.

For each permutation with a non-empty set of eligible atoms, we consume each
atom in the set by adding a stream node and operator node with appropriate
connections to the processing template. In Pass 1, permutation {4} leads to the
placement of stream node 6 and the operator node labeled a3 while permutation
{5} leads to placement of stream node 7 and the operator node labeled a2.
No other placements are possible. Since each stream node in the processing
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template represents an equivalence class of oid-streams, we do not always place
a new stream node. If a stream node already exists with the appropriate set
of variables and consumed atoms, only the operator node is added and the
appropriate connections made.

2. One or more variables are replicated in each of the variable sets. Discussion of
this case is deferred to Pass 2 since the condition does not occur during Pass 1
in this example.

At the end of the first pass the processing template consists of stream nodes 0-7 and
the OM operations which connect them. Appendix B summarizes the additions made
during each pass.

Pass 2

Pass 2 begins by again enumerating all possible combinations of stream nodes. How-
ever, since the contents of a stream node are not modified after it is initially added
to the processing template (only new connections are made), we only need to enu-
merate all new permutations of stream nodes which were not considered in any of the

previous passes. This results in the following new permutations.

1:
2:
3:

{6} {7}

{1,6> {2,6} {3,6> {4,6} {5,6 {1,7} {2,7} {3,7} {4,7y {5,7} {6,7}
{1,2,6} {1,3,6 {2,3,6} {1,4,6} {2,4,6} {3,4,6} {1,5,6} {2,5,6} {3,5,6%
{4,5,6} {1,2,7F {1,3,7} {2,3,7} {1,4,7} {2,4,7} {3,4,7F {1,5,7} {2,5,7%}
{3,5,7} {4,5,7F {1,6,7} {2,6,7} {3,6,7} {4,6,7} {5,6,7}

: {1,2,3,6} {1,2,4,6} {1,3,4,6} {2,3,4,6} {1,2,5,6} {1,3,5,6} {2,3,5,6%}

{1,4,5,6} {2,4,5,6} {3,4,5,6} {1,2,3,7} {1,2,4,7} {1,3,4,7} {2,3,4,7}
{1,2,5,7% {1,3,5,7} {2,3,5,7} {1,4,5,7} {2,4,5,7} {3,4,5,7} {1,2,6,7}
{1,3,6,7} {2,3,6,7} {1,4,6,7} {2,4,6,7} {3,4,6,7} {1,5,6,7} {2,5,6,7}
{3,5,6,7} {4,5,6,7}

: {1,2,3,4,6} {1,2,3,5,6} {1,2,4,5,6} {1,3,4,5,6} {2,3,4,5,6} {1,2,3,4,7}

{1,2,3,5,7} {1,2,4,5,7} {1,3,4,5,7} {2,3,4,5,7} {1,2,3,6,7} {1,2,4,6,7}
{1,3,4,6,7} {2,3,4,6,7} {1,2,5,6,7} {1,3,5,6,7} {2,3,5,6,7} {1,4,5,6,7}
{2,4,5,6,7} {3,4,5,6,7}

: {1,2,3,4,5,6} {1,2,3,4,5,7} {1,2,3,4,6,7} {1,2,3,5,6,7} {1,2,4,5,6,7%}

{1,3,4,5,6,7} {2,3,4,5,6,7%}

: {1,2,3,4,5,6,7}

As before, we build the mappings of stream node permutation to variables and

consumed atoms and apply the filtering criteria. In this pass, both types of mappings
which we consider interesting occur.

1. Mapping type 1 — the variable sets are disjoint and together, all variables exactly

match those required by an atom which has not been consumed by any of the
stream nodes in the permutation. These criteria are met by permutations {4,7},
{5,6}, {1,2,3,6} and {1,2,3,7}. The mapping to variables and consumed

93



atoms for two® of these permutations are shown in Figure 7.10. Referring to

— {o}
— {p}
— {a} {r}
— {t} — {a}
(5,6) — {a2} {1,2,3,6+— {al}
L {a3) L {a3)
L {} {}
L {}
L {}

Figure 7.10: Node permutations to eligible atom mappings for pass 2.

Appendix B we see that in order to consume atom a2 using the oid-streams from
nodes 5 and 6, node 8 must be created. However, permutation {4,7} would
result in an identical stream node, thus we just make the connections to node
8 rather than create a new stream node when processing permutation {4,7}.
This maintains the notion of a stream node representing an equivalence class of
oid-streams.

Permutations {1,2,3,6} and {1,2,3,7} also meet our criteria and result in
the creation of nodes 9 and 10 respectively.

2. Mapping type 2 — one or more variables are replicated in each of the variable
sets. This condition means that several stream nodes exist with values for the
same variable(s) and that an OM operation can be used to combine and reduce
the oid-streams. Permutation {6,7} meets this criteria for variable ¢ as shown
in Figure 7.11.

{4}

— {a}
{6,7}
L (a2

{a3}

Figure 7.11: Node permutation with replicated variables.

Each stream node in the permutation represents values for variable ¢ generated
by a different set of atoms. In other words, node 6 represents values for ¢
generated by atom a3 while node 7 represents values for ¢ generated by atom

3Picked for illustrative purposes only.
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a2. The nodes are joined by an OMy operation and all variables required
by unconsumed atoms are carried through to the output oid-stream. In this
case, the output oid-stream would contain only the variable ¢ and would have
consumed atoms a2 and a3. Since this is equivalent to node 8, we only add
the OMy operator node and make connections to node 8 rather than create an
entirely new stream node.

Pass 3

Enumeration of all previously unevaluated stream nodes results in the following inter-
esting permutations: {1,2,3,8}, {7,9}, {8,9}, {6,10}, {8,10} and {9,10}. All of
these permutations cause insertion of operator nodes only and do not cause any new
stream nodes to be added to the processing template. The first permutation consumes
an atom resulting in the placement of a OM,,,; operation while all others result in
OM, operations. A further criteria is applied to the OMy creating permutations
which was not mentioned earlier.

Each of the stream nodes in the permutation must add to the consumed atoms
field of the result. For example, permutation {6,9} is not acceptable as all of node
6’s consumed atoms ({a3}), are already represented in those of node 9 ({al,a3}).
Appendix B summarizes the connections added in this pass.

The algorithm terminates after Pass 3 because no new stream nodes were created
in this pass. In other words, enumerating all stream node combinations again will
not result in any permutations which were not evaluated previously.

The full sequence of steps for exhaustive access plan enumeration is given in

Algorithm 7.3 below.

Algorithm 7.3 Build Select/Generate Processing Template
Inputs:

1. set of simplified atoms aq, ..., a,
2. set of input_variable names
3. target variable name ¢

Output: Processing template, Pt(V, F'), enumerating multiple access plans

— Names denoting a set of items begin with an upper case letter, e.g., Pt is a set of
processing template nodes.

— Names denoting a set of sets are completely upper case.

— All other names are lower case.

define ENUM(t)

to return the set of all permutations of numbers in [1,...,7]. For example,

ENUM((3) returns the set {{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}}.
define max_node() to return the highest numbered node in Pt.

define existsnode(Var_set, Atom_set) to return the number of the node in Pt with
Var_set and Atom_set in its 'variables’ and "atoms consumed’ fields respectively,
or —1 if such a node is not found.
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define add_node(Var_set, Atom_set) to add a node with the given parameters to Pt.
Nodes will be numbered consecutively starting at 0.

define connect(From_nodes,to_node,using) to connect the nodes in From_nodes to
to_node in Pt via the OM operation defined by using.

define Retained_vars(Var_set, Atom_set) to return the set of variable names which
should be retained in the output stream after the variables in Var_set are used
to consume or join the atoms in Atom_set. This is identical to the technique
used to determine which variables to retain in the intermediate stream used in

Algorithm 7.2.

define Find_consumable_atoms(Var_set, Atom_set) to return a set of atoms which
can be consumed using the variables in Var_set and assuming the atoms in
Atom_set have already been consumed. This is similar to the technique used in
Algorithm 7.2 to pick an eligible atom only here all eligible atoms are returned
rather than selecting just one atom at random.

begin

— initialization

let Pt:=¢ (1)

add_node({t},{as,...,a,}) — final node of Pt is node 0 (2)

for (each v € V') begin (3)
add_node({v},{ }) — one node for each input stream (4)

endfor (5)

let USED :={} - set of node permutation sets which have been evaluated (6)

let continue := true — insure one pass through while loop (7)

— main algorithm

while (continue) begin (8)
continue := false 9)
~ Node_set denotes a set of node numbers such as {1,3,5}, i.e., a permutation
for (each Node_set € (ENUM (max_node()) — USED)) begin (10)

let USED :=USED U Node_set (11)

— n denotes a node number in Node_set

— n.Vars denotes the variables field of Pt node n

— n.Atoms denotes the atoms field of Pt node n

let U_atoms :={ a | In(n € Node_set A\ a € n.Atoms) }— atom union (12)
let U_vars:={ v|3n(n € Node_set Nv € n.Vars) }— variable union (13)
let I vars:={ v|Vn(n € Node_set = v € n.Vars) }- var intersection (14)

if (Vni,n2 € Node_set, (ny.Vars Nny.Vars) = ¢) then (15)
— no two nodes in Node_set have any variables in common
let Atoms_to_consume := Find_consumable_atoms(U_vars, U_atoms)(16)
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for (each a € Atoms_to_consume) begin
let Rvars:= Retained vars(U_vars, (U_atoms U a))
if ((to-node := existsnode( R_vars, (U_atoms U a))) = —1)

N TN
— =
oo I
NN

—+
=
]

n(19)

let to_node := add_node( R_vars, (U_atoms U a)) (20)

let continue := true (21)

endif (22)
connect(Node_set, to_node, OM,yq : @) (23)
endfor (24)

endif
if (/_vars # ¢) then
— there are variables common to all input streams
if (Va € U_atoms(3'n € Node_set | a € n)) then
— each node contributes at least one new element to U_atom

S
DO
24

N

V2)
—~
jep)

26)

let Rvars:= Retainedvars(U_vars,U_atoms) (27)
if ((to_node := existsnode(R_vars,U_atoms)) = —1) then(28)
let to_node := add_node(R_vars,U_atoms) (29)
let continue := true (30)
endif (31)
connect(Node_set, to_node, OM) (32)
endif (33)
endif (34)
endfor
endwhile

end Algorithm 7.3

7.4.2 Choosing the Cheapest Plan

Output of the enumeration algorithm described above is a processing template which
identifies a family of logically equivalent query execution plans. FEach connected
subtree of edges in the processing template which includes all initial nodes and the
final node is a valid plan. But which is the best plan?

Section 7.2 defined an object manager interface but our research does not address
its implementation. An implementation design would be highly dependent on the
object representation, the technique used to bind method code to objects and other
system parameters. Thus, although a specific cost function is not proposed, we assume
that the object manager is capable of using oid-stream statistics to derive a cost for
calls to its interface.

Appropriate oid-stream statistics might be stream cardinality and information
about the classes represented in the stream. For a given call, the object manager
could derive a processing cost and statistics for the resulting output oid-stream. A
processing template could then be annotated with cost information as follows.

Initially only leaf nodes (which are stream nodes) of the processing template would
have stream statistics associated with them. If the leaf nodes correspond to the leaf
nodes of the original object algebra query, then they represent the extent or deep
extent of classes in the database and their statistics are readily available. Otherwise
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the leaf nodes represent the output of a previous subtree of object manager calls and
the output oid-stream statistics of the appropriate subtree are attached.

Working from leaf to root in the processing template, the object manager cost
function is used to assign a processing cost to each operator node as well as a set
of stream statistics for the stream node the operator feeds into. All operator nodes
and stream nodes in the processing template can be annotated with cost and sta-
tistical information in this fashion. The total cost of any specific access plan within
the processing template is the sum of the operator costs which are included in the
access plan’s subgraph. If time information is included in the cost function, then
when operator nodes execute in parallel, only the longest running operator should be
included in the sum.

Note that cost information can not be used to prune the search space of the pro-
cessing template generation algorithm. The search space of the algorithm is defined
by the number of stream nodes present in the processing template at the start of each
pass. This value can only be affected by the criteria used to define the “interesting
permutations” which cause new operator and stream nodes to be created.
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Chapter 8

Conclusion

This chapter summarizes the results presented in the thesis, identifies the contribution
and novelty of the work, and provides direction for future research in the area.

8.1 Summary of Research

This thesis developed a query processing methodology for object-oriented databases
which parallels that for relational databases. Chapter 1 motivated the work by demon-
strating how ad hoc object-oriented query mechanisms do not make the distinction
between declarative and procedural forms of a query and are not optimized for perfor-
mance. Relevant topics in advanced database modeling, query languages and query
processing techniques were reviewed and their effect on this thesis was discussed. A
brief summary of several prototype implementations which influenced the work was
provided in Appendix A.

A formal object-oriented data model was presented in Chapter 2 which served as
a foundation for the rest of the thesis. Objects are viewed as instances of abstract
data types called classes. Classes define methods which provide the only access to
their instances. Classes can be organized into a lattice based on behavioral inheri-
tance. Databases are defined in terms of constraints on objects, classes and methods.
Legal database operations consist of applying (sequences of) methods to objects. A
database schema representing a hypertext application was developed for use in sub-
sequent examples.

Chapter 3 presented an object calculus for declarative specification of queries.
The object calculus is similar in form to the tuple relational calculus but differs in
several fundamental respects. First, object calculus expressions define sets of single
objects, not sets of tuples of objects. Second, any method defined on a class can be
used to form predicates. Lastly, expression results need not range over sets explic-
itly referenced in the expression. The predicate subcomponents responsible for this
were termed generating atoms. A query safety criterion was developed based on the
properties of generating atoms.

Chapter 4 presented an object algebra for procedural specification of queries. The
algebra is object preserving meaning that queries must return objects which already
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exist in the database. Input and output to algebra operators are sets of objects. A
restricted form of object calculus expressions was defined and an algorithm presented
for translating restricted expressions in the calculus to trees of algebra operators.

A type consistency theory for object algebra expressions was developed in Chap-
ter 5 which allows algebra operations to consume and produce non-homogeneous sets
of objects. Type consistency was defined in terms of a set of type inference rules. The
rules determine the result type of an algebra operation based on the input arguments’
types. An algorithm for and determining type inclusion relationships was developed
to support the inference rule mechanism.

Chapter 6 presented a suite of equivalence preserving rewrite rules for logical opti-
mization of object algebra expressions. Two kinds of rules were developed: algebraic
and semantic. The applicability conditions for algebraic rules are strictly syntactic
meaning that a straightforward pattern matching mechanism can be used to drive a
rule based optimizer. Semantic rules also have a syntactic applicability condition, but
additionally require that some schema and query dependent conditions be met. These
conditions might include the type consistency of alternate forms of subexpressions or
satisfaction of inclusion relationships in the database schema.

Techniques to generate access plans for object algebra expressions were developed
in Chapter 7. The interface and semantics of an object manager subsystem which
implements primitive operations of the data model on streams of objects was initially
defined. Next, algorithms were developed to map individual algebra operators to
graphs of object manager operations. This first set of algorithms demonstrated the
intuition behind the mapping process but produced inefficient access plans. A second
algorithm was developed which uses an extension to relational join templates, the
processing template, to enumerate all possible access plans for object algebra select
and generate operations. Techniques for annotating the processing template with cost
information and reducing the search space of the algorithm were discussed.

8.2 Contribution and Novelty

The primary contribution of this thesis is its formal approach to query models and
query processing in object-oriented databases. Most developers of post-relational
data models (semantic, =1NF, functional) have felt obliged to cover the same ground
that was done for the relational model, e.g.. precise model definition, formal query
languages, query safety criterion, proofs about properties of the model. However,
object-oriented database proponents have tended to either map a loosely defined data
model to the relational or implemented their model in an ad hoc manner. This thesis
demonstrates that a formal approach in the context of the object-oriented model is
possible and develops several novel results.

1. The safety criterion of Chapter 3 is the only one known to us for systems which
view objects as instances of abstract data types.

2. The type consistency theory of Chapter 5 is more complex, but significantly
less restrictive than other typing constraints proposed to date. The discov-
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ery that some combinations of predicates can increase rather than reduce type
information is a new result.

3. The algebraic rewrite rules of Chapter 6 show that a rule based optimizer can
be used for improving queries in an object-oriented database. The semantic
rewrite rules are, to our knowledge, the first to use class schema information to
modify queries.

4. The object manager interface of Chapter 7 combines system support for prim-
itive object operations with stream operations in a unique fashion. Use of the
processing template to enumerate logically equivalent families of access plans
shows how relational plan optimization techniques can be adapted to object-
oriented databases.

8.3 Directions for Future Research

The work presented in this thesis suggests many interesting areas for future research.
One important area is to investigate how extensions to the data model can be inte-
grated throughout the entire query processing methodology. For instance, primitive
operations such as shallow and deep equality [KC86], additional predefined value
types other than atomic, set or structural (e.g., tuple values [AGOPS88]) or paramet-
ric types such as Set[t] [S790] would significantly enhance the usefulness of the model.
Each addition to the basic data model must be propagated through the methodology
of Figure 1.3. This means it must be incorporated into the calculus and algebra,
type inference rules need to be developed, logical equivalences must be proven and
the object manager interface must be extended. Performing this exercise for several
extensions would provide insight into the tradeoffs between maintaining the proposed
query processing methodology and completeness of the data model.

Improving the query languages is another important topic. The object calculus,
while expressive, is not user friendly. Design of a user query language, perhaps an
object SQL [Lyn88, Ont89], would enhance usability and uncover many programming
language integration issues. The object algebra can be extended in two respects. The
first is to provide support for object creating operations. This raises many philosoph-
ical as well as technical issues. For example, what is the class of an object created
by such an operation and what methods are defined on 1t7 Should such objects, and
their new class, persist after execution of the query? The second extension to the ob-
ject algebra involves support for universal quantification. This could be achieved by
allowing quantification in predicates or by defining the algebra to operate on tuples
of objects and providing a division operator similar to that of the relational alge-
bra. Both approaches may affect the scope of transformations possible during logical
optimization and the generation of access plans.

Designing an object manager implementation is another important area of re-
search. Such a design must address many related issues such as object representa-
tion, physical partitioning of logical entities such as classes and their extents, object
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buffering, indexes, and how and when method code is bound to objects. The de-
sign also is affected by the underlying hardware architecture, e.g., uni-processor or
multi-processor, and the available operating system services.

The access plan generation scheme proposed in this thesis assumes that the logical
transformation rules of Chapter 6 have been used to ameliorate the original object
algebra query prior to plan generation. Plan generation then only replaces each
individual algebra operator with a “best” subtree of object manager calls. In other
words, the overall shape of the query tree remains that which was arrived at during
logical optimization. An area of future research indicated by this methodology is
the development of equivalence preserving rewrite rules for trees of object manager
operations. Such rules would allow global optimization of the entire access plan as
opposed to merely picking “best” subtrees. Another interesting topic would be to
develop an access plan generation strategy which cycles back and forth between the
logical algebra optimization phase and the access plan generation phase. This would
allow interleaving transformations which change the shape of the query with the
introduction of access plan subtrees possibly resulting in more efficient plans.
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Appendix A

Survey of Implementations

This appendix briefly summarizes several object-oriented programming environments
and database systems which are relevant to the work presented in this thesis.

A.1 Smalltalk-80

Smalltalk [GR85] is an object-oriented programming language which includes a
language kernel, a programming paradigm and user interface. The first version,
Smalltalk-72, was developed by Alan Kay as part of the Dynabook project at Xerox.
Several versions have followed with Smalltalk-80 being the most common version in
use today. All entities in a Smalltalk system (variables, complex structures, classes,
literals, processes) are considered objects which are instances of some class. The
programming paradigm includes “message sending” as a means to initiate actions,
specialization via subclassing and inheritance.

Smalltalk’s significance lies in its uniform, understandable approach and early ex-
istence. Detracting from its acceptance are its performance and closed, single user
environment. Various schemes such as type checking [Joh86] and improved object
management [Kae86, Sta84] have been proposed to improve performance. A dis-
tributed version [Dec86] provides multi-user capability but does not improve the in-
terface to other programming environments.

A.2 POSTGRES

POSTGRES [RS87, SR86, Sto86] is a successor to the INGRES [Sto76] relational
database system which supports ADTs, relation attributes of type procedure and
some forms of inheritance. Other aspects of its design address versioning [Sto87] and
a rule subsystem [SHH8T].

Users can extend POSTGRES by defining new atomic data types using an ADT
definition facility. Defining an ADT requires specification of its name, internal repre-
sentation, default value and operators. User defined associativity and precedence of
ADT operators is used to correctly parse queries. The ADT implementor must also
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supply sort, restrict and join procedures which the query optimizer uses to maintain
indices and to compute restrict and join selectivities.

Relation attributes may be any atomic data type (including ADTs) or procedures
which are sequences of POSTQUEL query language commands. Procedures may be
unique to a tuple or common to a relation. When defined on a relation the procedure
references numerical identifiers (e.g., , $1, $2, etc.) which select attribute fields of the
current tuple at run time. A relation may be defined to inherit relation schemes from
other relations when it is initially declared.

Despite supporting data abstraction and inheritance POSTGRES is not consid-
ered an object-oriented database. The database implementor does not “see” a new
data model and has the responsibility to properly (efficiently) map the application
semantics to ADTs, relations and procedures in the context of the relational model.
Finally, aside from utilizing some user defined characteristics of ADTs, traditional
relational query processing techniques are used.

A.3 EXODUS

The EXODUS project is a toolkit approach to building and extending database sys-
tems [Car86]. It is a modular system intended to provide a collection of kernel facili-
ties enabling semi-automatic generation of application specific DBMSs. The storage
manager [CDRS86] provides concurrency control, recovery and versioning for arbi-
trary sized storage objects. The optimizer generator [GD87] builds a rule based
query optimizer from query algebra specifications. A type system and the E pro-
gramming language [CDV88, RC89], an extension to C++, provide the ability to
define ADTs and their associated operations. A database implementor can use these
tools to quickly build an application specific DBMS.

The EXODUS type system supports complex objects with identity and inheri-
tance. The query language is based on QUEL [Sto76] with extensions for nested
sets, aggregate functions and a unique mix of object and value oriented semantics.
However, since QUEL is tuple oriented and based on the relational calculus, the un-
derlying query processing is primarily relational in nature. The optimizer generator
has not been applied to an object algebra at this time.

A.4 Starburst

Starburst is an extensible relational database which supports externally defined data
types called EDTs' [HFLP89, WSSHS&8]. The main goal of the project is to efficiently
process queries which use EDTs as opposed to significantly enhancing the relational
data model.

Query processing is considered to have two distinct phases: query rewrite [HP88,
OL88] and plan optimization [LFL88, Loh88]. Query rewrite translates queries to

L'EDTs are similar to POSTGRES ADTs.

104



equivalent ones for better performance. Examples of useful rewrites are semantic
transformations, elimination of redundant joins in queries with views, and predicate
migration. Plan optimization refers to the more traditional cost based optimization
activities such as determining the methods and order of joins and the methods for
accessing tables.

Starburst implements both phases of query processing using rule based systems in-
stead of embedding optimization strategies in algorithmic code. This allows the “how”
of individual query manipulation steps to be specified independent of “when” they
will be applied. The EDT implementor can specify transformations on expressions
containing EDTs without concerning himself with the details of optimization. The
database insures that any available transformations will be applied if they improve
the query. Starburst’s success in isolating transformation semantics while providing
a generic rule engine to apply them allows other query processing studies such as this
thesis to take a rule based approach.

A.5 Iris

Iris 1s a prototype object-oriented database developed by Hewlett-Packard Laborato-
ries [DKL85, Fis87, Fis88, LK86]. Its data model definition was heavily influenced by
Daplex [Shi81] and is based on three concepts: objects, types and functions. Functions
can be defined in various ways. Stored functions are implemented as tables which
map input values to result values. Derived functions are specified in terms of other
functions. Foreign functions are implemented in a general purpose programming lan-
guage and allow access to underlying file systems, specialized storage managers and
algorithmic generation of data. The storage subsystem is currently built on top of
Allbase, Hewlett-Packard’s relational DBMS. This subsystem is similar to RSS of
System R and supports transactions, concurrency control, recovery and indexing.
Iris provides three interfaces: an object SQL [Lyn88], a graphical browser and a
procedural interface. The object SQL adds to relational SQL (1) the ability to directly
reference objects in addition to keys, and (2) the ability to use functions in WHERE
and SELECT statements. SELECT statements return tuples of values and/or object
identifiers. Predicates are a conjunction of terms consisting of function calls, object
references, literal values and relational operators such as =, <, etc. The relational
operators are defined only on the types Integer, Real, Bitstring and Charstring
thereby insuring that user defined (abstract) types may interpret their value domains
as required by the application. Despite the completeness of object SQL as an OODB
query facility, the requirement to map queries to a relational subsystem has precluded
investigating new methods for evaluating queries in an object-oriented database.

A.6 GemStone

GemStone is an object-oriented database system based on Smalltalk [CM84, MSOP86,
PS87]. Several extensions have been made in order to create a multi-user, persistent
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environment. GemStone is a two component architecture where Stone roughly cor-
responds to the object memory and Gem corresponds to the virtual machine of the
standard Smalltalk implementation. Multiple Gem processes can exist concurrently,
each managing a user interface and communicating with a shared Stone process. Con-
current users are supported by managing a shadow copy of the object space for each
user session with conflicts reconciled by an optimistic concurrency control scheme.

One of GemStone’s goals is to support efficient associative access via indices
[MS86]. Indexing was chosen to be on object structure as opposed to how objects
respond to messages since this could be supported at the Stone (object memory)
level. In Smalltalk, object structure is defined by a set of named, untyped instance
variables. However, indexing on instance variable names requires that every member
of an indexed collection must have that index variable. Thus, instance variables in
GemStone are typed and the inheritance model is extended to include inheritance of
instance variable types as well as names.

The GemStone data manipulation language, OPAL, provides constructs for the
general query mechanism described in Section 1.2 where a block of code is applied
to each member of a collection. A rudimentary query sublanguage is also defined
which allows specifying predicates as conjunctions of comparisons on index expres-
sions [MS88]. This is very restrictive in that only indexable components of objects
(i.e.,, instance variables) can be referenced in a predicate. Arbitrary methods defined
on a class may not be used.

A.7T 0O,

The goal of the Oy project is to combine database technology and programming
language technology into a cohesive system using the object-oriented paradigm. In
order to be language independent, O, provides only a type model [LRV88] and DDL
while allowing methods associated with types to be written in a variety of languages.
The type model includes set, list and tuple constructors for defining complex types.
Inheritance is based on the set inclusion semantics developed in [Car84].

A first prototype has been demonstrated [Ban88b] and progress on components
of a second version are reported in [VBD89]. A key feature of the second version
is support for both a “development mode” and an “execution mode”. Development
mode is similar to the Smalltalk run time environment where method lookup is done
dynamically and tuple attributes are accessed by name. In execution mode methods
are loaded statically and tuple attributes (as well as other items) are accessed by
physical offsets. These two modes are intended to maintain the desirable features
of an interpretive development environment while providing the performance of a
compiled environment when required.

An unpublished technical report is referenced in [VBD89] which proposes a query
language for Oz. There is no indication whether this is a declarative or procedural
language. However, it is likely that predicates are similar to those proposed in this
thesis as the predefined operations on primitive types are similar. The O, type system
supports value and identity equality operators on all types and set inclusion operators
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on set types which are analogous to =, ==, € and = developed in Chapter 3.

A.8 ORION

ORION is a full featured object-oriented database developed in Common Lisp at
Microelectronics and Computer Technology Corporation (MCC) [Ban87, Kim87,
Kim88]. It represents a bold attempt to integrate many object-oriented con-
cepts into a single system: versions, composite objects [KBC87], schema evo-
lution [BKKKS87], transaction management [GK88] and predicate based queries
[BKKS88, KKD89, Kim89].

A query language was proposed in [BKKS88] which supports arbitrary code blocks
augmented with quantification as predicates. It was shown that a one-to-one mapping
between relational queries and object-oriented queries is possible if only unary meth-
ods are allowed. However, the corresponding relational queries may be inefficient due
to the joins required to reconstruct complex and set valued objects. A more detailed
analysis of queries is given in [KKD89, Kim89] which classified queries by the manner
in which evaluation traverses the class hierarchy. The concept of explicit and implicit
joins between classes is also introduced.

Unlike the approach proposed in this thesis, ORION evaluates queries using the
standard facilities for method evaluation built on top of the Common Lisp base. In
this respect, although the system has contributed to understanding the nature of
queries, it has not developed a new query processing paradigm.
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Appendix B
QEP Algorithm Output

%% INITIAL processing_template ***
1: Variables: o
Atoms:
2: Variables: p
Atoms:
3: Variables: r
Atoms:
4: Variables: s
Atoms:
5: Variables: t
Atoms:
Final: Variables: p
Atoms: 1,2,3
*** Pass # 1
Adding node 6
Variables: q
Atoms: 3
Connecting node(s) 4 to node 6 using atom a3
Adding node 7
Variables: q
Atoms: 2
Connecting node(s) 5 to node 7 using atom a2
*** Pass # 2
Adding node 8
Variables: q
Atoms: 2,3
Connecting node(s) 5,6 to node 8 using atom a2
Connecting node(s) 4,7 to node 8 using atom a3
Connecting node(s) 6,7 to node 8 via equi-join
Adding node 9
Variables: q,p
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Atoms: 1,3
Connecting node(s)
Adding node 10

Variables:

Atoms: 1,2
Connecting node(s)
*** Pass # 3 .
Connecting node(s)
Connecting node(s)
Connecting node(s)
Connecting node(s)
Connecting node(s)

1,2,3,6 to node 9 using atom al

q,pP

1,2,3,7 to node 10 using atom al

7,9 to node 0 via equi-join
8,9 to node 0 via equi-join
6,10 to node 0 via equi-join
8,10 to node 0 via equi-join
9,10 to node 0 via equi-join
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