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ABSTRACT

The effects of anelasticity on the propagation of
seismic waves through a layered homogeneous isotropic
medium are examined. The theory of linear viscnelasticity
is used to model the anelasticity. This shows that plane
waves propagating through viscoelastic media are generally
inhomogeneous i.e they have different direction of
propagation and attenuation (Buchen (1971), Borcherdt
(1973)) . The angle between the propagation and the
attenuation vectors is called the attenuation angle Y. 1In
previous studies on computation of synthetic seismograms
for viscoelastic media, using a ray theory, an arbitrary
value of Yy was chosen leading to different raypaths for
different choices of ¥. It is possible to remove this
arbitrariness by using a stationary ray approach. This
consists of computing the viscoelastic ray parameter for
which the phase function is stationary. The ray parameter
being a function of y and 8, the propagation angle, the
unique value of this ray parameter leads to unique values
for these two angles. The coordinates of the raypath
associated to this computed ray parameter are complex
numbers. This introduces the concept of complex rays.
However reflection and transmission coefficients,
geometrical spreading and ray synthetic seismograms can be
computed using this procedure without concern for the

details of complex raypath coordinates. All the results



obtained are for P-SV waves and frequency independent loss
factors. The reflection and transmission coefficients
exibit some differences in phase and in certain cases in
amplitude too with the results obtained for perfectly
elastic media. These differences mainly occur in the
vicinity of critical incidences. The computations of
synthetic seismograms show that the difference in amplitude
between the elastic and anelastic cases before encountering
any critical incidence is mainly due to the dissipation of
the energy of the particle motion along the ray path. The
elastic and anelastic geometrical spreadings are

practically identical even after any critical incidence.
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CHAPTER 1

INTRODUCTION

Studies o0f seismic records indicate that the
propagation of seismic waves through the earth is affected
by the effects of anelasticity. It is then necessary to

include these effects in the computation of synthetic

seismograms. To model the anelasticity the theory of
linear viscoelasticity is used. It assumes that an
anelastic material has "memory" i.e the state of the

material at a given time depends on its history up to the
given time. This theory allows the calculation of the loss
factors for each different model. The 1loss factor é
characterises the anelasticity (or the internal friction)
of a material. Using the theory of linear viscoelasticity
the wave amplitude A is proportional to E'/2, E being the
peak strain energy stored in the volume of the material,

and é-can be defined as
AA
A

from which the amplitude variations due to absorption can
be determined.
A lot of research on seismic waves propagating in

viscoelastic media has already been carried out (Buchen



(1971), Borcherdt (1973), Krebes (1980)) and the results
are briefly restated in chapters 2 and 3. They introduce
the concept of inhomogeneous plane waves., These waves have
an amplitude which varies along the wavefront and they are
characterised by different direction of propagation and
attenuation. The angle between the propagation and
attenuation vectors is called Yy the attenuation angle and
can vary from —90o to +90°. Consequently in order to trace
a ray for a specified horizontal distance between the
source and receiver in a linear viscoelastic medium two
angles must be determined: the propagation angle.® and the
attenuation angle Y. For a perfectly elastic medium only 0
needs to be known. In previous methods of computing
synthetic seismograms for plane layered viscoelastic media,
using a ray theory approach, the value of Y was chosen
arbitrarily. Knowing 7Y the propagation angle 0 is
determined from Snell's law and two point ray tracing.
This means that the raypath is not unique and different
values of Yy produce different raypaths which is a contrast
with the elastic case. The main purpose of this thesis is
to investigate the use of a method which determines the
initial value of the attenuation angle, for the computation
of synthetic seismograms in viscoelastic media. This
method called the stationary ray method was developed by
Hearn and Krebes (1990) and is presented in chapter 4. It
is based on Fermat's principle and consists of computing

the anelastic ray parameter for which the phase function is



stationary.

New expressions for the geometrical spreading and
for the reflection and transmission coefficients for an
interface formed by two viscoelastic media are calculated
using this stationary ray method (chapters 5 and 6). These
expressions are then used to compute simple synthetic
seismograms for P-SV waves in the case of a point source at
the surface (chapter 7). For convenience, in all the
numerical computations the loss factor is assumed to be
frequency indépendent.

All the results are compared with the analogous
results obtained for the elastic case in order to observe
and to better understand the effects of anelasticity on the

propagation of seismic waves.



CHAPTER 2

PROPAGATION OF VISCOELASTIC PLANE WAVES

A review of the basic steps of the development of
the theory of viscoelastic plane waves propagating in a
homogeneous isotropic linear viscoelastic medium is given
in this chapter (Borcherdt 1973,1977; Silva 1976; Buchen
1971 (a)).

For such a medium the general form of the stress-

strain relation is

oy(t) = 5ij Ae - 1) Eﬁgtﬂ dr + 2[ p(t - r)——de;jt(t) dr

=81jl(t)*dekk(t)+2u(t)*deij (2.1)
(elastic case: Oiy=Aexdij+2Heyy)

where Gtﬁt) and e”(t) are the time dependent stress and
strain tensors and A(t) and H(t) are the time dependent
Lame parameters. The symbol * denotes the Stieltjes
convolution (see Fung(1965)). The strain tensor e;;(t) can

be written

eyy = %‘ (ug, + uy,1) (2.2)



where u,, 1i=1, 2, 3 is the particle displacement or
displacement vector. The Einstein summation convention

being used in all the equations

— =V o
e = €, t e, +te,, = ©u (2.3)

represents the dilation: the relative change in volume due

to strain state. Knowing the bulk modulus K(t) is given by

K(t) = A(t) + % Hit) (2.4)

Equation (2.1) can be broken up into bulk and shear

components:

O, (t) = 3K(t) * de,, (t)

and (2.5)

Oy ;(t) = 2u(t) * de;,(t) for i#j

The same calculations are also performed in the perfect

elastic case. The stress-strain relation can be rewritten:

Gy (t) = 8 ,K(t) * dey (t) + 2j(t) * deyy - 8y 2 p(t) * dey(t)
3

(2.6)

The equation of motion for infinitesimal motion is given by



azui
ot?

where p is the density of the medium. Substituing (2.1)

(2.7)

Gy, 4 =pi.1'1 =p

into (2.7) yields the following equation
[Me) + we)]*a (V(V T)+ue) * a (V7E) = pd (2.8)

The convolutions make the representation in the time domain
quite tedious. The Fourier transform of equation (2.8) is

then taken (see Appendix 1) and gives

(A + MV[VI)+MVE = -pufd (2.9)
where
3 = fﬁ e-ior gt
A=ANo = imf Mt) e-tot gt (2.10)
0

M=Mo = io I u(t) e-iec 4t

Introducing u, the transformed displacement potential in

terms of Helmholtz's relation

-

T = VO +Vx¥Y with VW¥=0 (2.11)



and inserting (2.11) into (2.9) lead to the Helmholtz

equations for the P and S potentials & and ¥:

V2o + k%, @ =0
(2.12)
VZE + kzs ; = 0
where
2 ?
k2, = @ = p
o (Aw)+ 2M(w)
(2.13)
k’s = @ - o' p
p° M)

The velocities of P and S waves, respectively a and P
become complex and frequency dependent. A general solution

of the Helmholtz equation

V’FE+ kK*F =0 (2.14)
has the following form

F o= £, eilkd) (2.15)

This can be applied to P waves with k=k, and F=® and

to S waves with k=kg and F=%¥. The final solution is



then given by

F = FpeAf elt? (2.16)
where

XK = P + iA (2.17)

; is the propagation vector. It is perpendicular to
the planes of constant phase (;-? = constant). The phase

velocity i.e the velocity of the propagation of the planes

of constant phase.is given by

5N = —@ % (2.18)
Re{k)

”~ -

where P is a unit vector in the direction of P.

A is the attenuation vector. It is perpendicular to
the planes of constant amplitude (A-T = constant) and it is
such that e-AT represents the spatial decay of the wave.

Using equation (2.17) the square of hd is determined

and equal to

(2.19)

R
»

k2 = k-k = P? - A%+ 2i
where

;-Z = DPA cosY (2.20)



Y is the angle between ; and K and it is called the
attenuation angle. When y=0 (; and ; are parallel) the
viscoelastic plane wave is homogeneous. When Y#0 (; and A
are not parallel) the viscoelastic plane wave is
inhomogeneous meaning that its amplitude varies along a
wavefront. Y has to be between -gl and I} so that the
amplitude of the wave never increases in the direction of
propagation.

P and A have now to be expressed in terms of the

medium properties. Writing
x2 = Relk?) + iImk?) = P2 - A% + 2iPAcosy (2.21)

the following expressions are obtained

N p=

|p|

) + o o b}

cos?y
(2.22)

|l

2 ’ 2)|2 [HdRYP i ?
L -re(k?) + \[Re(k I+ —;;T}

(Borchexrdt (1973))
The loss factor for P and S are given by

of = M
Mg

and (2.23)



Q;l - (A + 2M>I
(A + ZM)p
Starting from
K2 = !9% (2.24)
v
where
vi = §%§Q for S waves
and (2.25)
v = Aiﬁghl for P waves

an expression of k? in terms of Q! and vy, the homogeneous

wave speed, is determined:

2 2
k2 = @ - @ 2 (1 + igY) (2.26)
v? vi [1 + 41 + Q7
where
= 0
vy = 2.27)
"7 Re() ‘

(2.26) can be used for P waves taking k=k;, Vp=V., and
Q" '=0p' and for S waves taking k=ks, v,=vys and Ql=Qs!. The

complex frequency dependent wave speed is then given by

v o= v 1+ 41+ o7 (1 - 107 (2.28)

2(1 + Q‘ﬂ

and the final expressions of P? and A? are

10



-2
1+ 1+ -2
p2 - @ cos?y

vi [1 + 41 +9?

(2.29)

-2
-1 + 1+ -2
Az = @ cos?y |

vi [1 + 41+ Q72

for P and S waves.

For a non-dissipative medium Im(k?)=0. From equation
(2.19) it is deduced that Im(k?)=0 when A=0 or y=:t—g-l-.
Conversely, if X=0 or y=% El the medium is non-dissipative.
Consequently the following statement is also valid: the
medium is dissipative if and only if X#O and yY#% 121 These
results then show that the only type of inhomogeneous piane
wave propagating in a non-dissipative medium (i.e
X;tO and y=1% %) does not propagate in a dissipative medium,
and vice versa. This difference in the nature of
inhomogeneous waves in the two types of material shows
that the theories of elasticity and viscoelasticity are
different.

Equations (2.18) and (2.22) show that the phase

speed of an inhomogeneous wave (i.e 0 < |y| S ]21) is lower

than the one for a homogeneous wave

|%a] < |val (2.30)

and that the maximum attenuation of an inhomogeneous wave



is greater than that for an homogeneous wave
[arsl > |l (2.31)

Finallly we can say that in viscoelastic medium, steady

state harmonic plane waves take the form
exp (ioft - t) (2.32)

which is the form of the solution of the wave equation.

(2.32) can be rewritten as
exp [-X‘?] exp[i(;-_r‘ - O)t)] (2.33)

T is then the complex phase function and it is given by

X-T
T = (2.34)
w
only propagation in the x-z plane is assumed. Consequently

the wave vector k = (ky,k;) = P + iA has to satisfy

2
k? = k2+ k% = m; = p? - A% + 2iPA (2.35)
v
where v is the complex frequency dependent wave speed. For
a specified value of Y, Y #-E}, and knowing v, and Q, P, *

the phase velocity and A are determined uniquely using

12



(2.29). The choice of y for a ray is discussed later in

the thesis.

13



SNELL'S LAW IN VISCOELASTIC MEDIUM

In this chapter Snell's law in viscoelastic media is
going to be demonstrated for one type of plane waves: SH
waves. The final result is of course valid for the other
type of plane waves: P and SV waves.

The incident, reflected and transmitted waves at a
boundary separating two viscoelastic meéedia V and V' are
shown in figure 1. A rectangular system of coordonates
(X, 3, 2} is chosen such that the space occupied by
medium V is described by z20. The expressions of the
complex wave vector ; for the incident, reflected and

transmitted waves are

Kinc.) = x(inc.)X + k(inc.),2
Kref.) = xl(ref.)% + k(ref.),2 (3.1)
Ktran.) = kltran.)% + k(tran.),z

The incident and reflected waves being in the same medium

k(inc.), = klref.)x = kx and k(inc.), = -klref.), = -dp (3.2)

hence
K(inc.) = k& - dpZ
(3.3)
Kref.) = k& + dgz



Figure 1: Incident, reflected and transmitted rays
at a boundary separating two anelastic

media



where

dg = + p.v. V2 - k2, k% = k¥, = kit (3.4)

For the transmitted wave

k' = kix - dé? (3.5)

——
L]

dg = +p.v. k'? - k2, = K(crans) ¢ K(cransk = Kx (3.6)

The symbol p.v. means the principal value of the complex
square root, i.e the complex square root for which the
argument that the root makes in the complex plane lies
petween -90° and +90°. To set up the reflection refraction
problem which leads to Snell's law, the media V and V' are
in welded contact with a common plane boundary. As it was
stated earlier, SH case is only considered consequently the
particle motions are purely transverse parallel to the
boundary. The welded contact between V and V' is specified
by requiring that the stress and the displacement across
the boundary are continuous, hence at 2z=0

—
- [
u = u

and (3.7)

O3 = 052 (631 = 633 = 0)

Borcherdt (1977) demonstrated that for SH steady state

harmonic plane waves, the displacement field is given by



I

re {1k xB) eilr- 7 - o))

= |n| eA T cos(;-? - ot + arg(D)) X, (3.8)
where
B = 2,%, + z3% (3.9)
¥ = Belii-al (3.10)
and
D = (23%; - z1%3) (a - i?) (3.11)

z, and z; are arbitrary complex numbers chosen such that
V4¥=0. X, and X3 are real unit vectors in x, and x,
directions. P and K are in x;-x3 or x-z plane. The
particle motion is linear and perpendicular to the plane of

P and A (Figure 2). Using equation (3.8) and considering

the real and imaginary parts, u and u' can be written

T = Dy el - o) § 4 py, etline 7 - a) G
and (3.12)
;: = Dtran ei(-k.tnn-; - (l)t) ’y\ — D' ei(l-(..'? - (m:) ’y\

The expressions of ©G,, and O;, are obtained with the
equation of the stress tensor for steady state harmonic

case:

Aw) 6 355 + 2 Mw)eyy (3.13)

Q
&
[

where

0 = ex = Vau (3.14)



Figure 2: Parameters for SH waves particle motion



(3.13) is obtained by inserting u = U exp~i® which is the
steady state harmonic condition on the displacement into
(2.1). As previously stated, the displacement of the

particles for the SH case is given by

u = VxV¥ (3.15)

—

where W is given in (3.10) and the dilation 6 is such that

8 = Vu = V-(Vx‘l’) = 0 (3.16)
hence
Gj_j = —iMD (aizkj + 8j2ki) ei(;'? = (l)t) (3 .17)

Using (3.17) the expressions 0,, and O;, are

-iMDj ¢ (k:hm) ei(;”“'? - m) - iMDyet (kS,.,) ei(:"'r? - mt)

032 =

and (3.18)
6, = -iMp' (ki) il 7 - )

but
kipe = Kzpe = =dg = -ki3,, = -kz

and (3.19)
ks = k, = -dg

(3.18) can be written

O3, = “iMDinc dB ei(-k.”‘:'; - wt) + iMD et dB ei(;""? - m)

and (3.20)



G;;, = -1iMD dg eux - wy

The restrictions implied by equation (3.7) yield these two

following relations:

Dipceiken® + D  seikeux = D' elkx

MdgD; pcelikwet - MdgDrereikmx = M'dgD etk (3.21)

The ccmplex amplitudes being independent of the spatial
coordinates x, y, z, equation (3.21) implies that

Keye = Kume = Kx (3.22)
which leads to the anelastic form of Snell's law.
k, = P, + ia, consequently A, and P, must be continuous

across the boundary and Snell's law is now composed of two

parts:

Pxie Pmt = Pxewn = kuix = Px

and (3.23)

Bipe = Brur = By = ki = A

Referring to figure 1, (3.23) can be written as

P, sin®; = P, sinB, = P sin@ = Kk,

A, sinf0, 1) = A sinl8, -y) = 2" sinld -y) = ke (3.20)



‘{uc Lay palamelLer p wnicn 1s now complex can then be
expressed as
<% - () ) - upe

P ® ® + i ® = v (3.25)
where a is the complex angle between k and the vertical z
axis and v is the complex frequency dependent wave speed.
(Re a0 # 8). Snell's law implies that p has the same value
for the incident, reflected and transmitted waves, then for

a ray of m segments propagating through a sequence of flat

horizontal homogeneous anelastic layers (Figure 3)

p=_5_l£_°‘_1=3i21=ain_q'_= ,,,,,,,, (3.26)
Vi V2 v'

Two new expressions of P and A can also be written using
equation (3.25) for a wave travelling in the positive x and

z directions

;=Re(mp)§+Re( L -p2|2
V2
(3.27)
A = Ir((wp)§+Irr< _lz__pz z
v

This means that if v, the homogeneous phase speed and Q the
quality factor are known and a value of p is determined
(see next chapter), ; and X can be calculated using (2.28)
and (3.27). 0O the angle of propagation and Y the angle of

attenuation can also be calculated.



For the case excluded 1in chapter 2, 1i.e |'Y|=—I;l
corresponding to the case of an inhomogeneous elastic plane

wave, Q is infinite, the complex wave speed v is such that

z (3.28)

-

and consequently, knowing a value for p and using (3.27), P

and A can then be calculated.



B

Figure 3 top: A typical ray of m segments

bottom: A blowup of the first ray segment



CHAPTER 4

STATIONARY RAY

It is clearly stated in chapters 2 and 3 that in
order to trace the ray corresponding to a plane wave
propagating from the source through viscoelastic layers to
the receiver, the propagation angle 6 and the attenuation
angle y for the first ray segment have to be determined for
a given epicentral distance. In the perfect elasticity
case, only 0 needs to be determined. Previous work on the
computation of ray synthetic seismograms for anelastic
media seemed to indicate that there was no specific
physical rule in the choice of ¥. Authors simply assigned
arbitrary values to the initial attenuation angle (Krebes
and Hron 1980, Kelamis et al 1983, Bourbie and Gonzalez-~
Serrano 1983) such that y lies between -90° and +90°. From
this value of ¥y and for a given offset the initial
propagation angle, the raypath, the travel time and the
amplitude can be determined. This clearly means that in
contrast with the elastic case there is no unique raypath
since different values of Y produce different raypaths with
different propagation angles. Consequently this approach
is not satisfactory.

In this chapter the method discussed by Krebes
(1990) for calculating the initial attenuation angle 1is

treated. It is based on Fermat's principle: the proper



"value of y is the one which generates the ray with the
smallest travel time. This method censists of calculating
the value of the anelastic ray parameter (a complex number)
for which the complex phase function (equation 2.34) is
stationary. The anelastic ray parameter being a function
of both angles Y and 0, the initial values of these two
angles can be obtained from this ray parameter giving a
unique ray path. This method was previously used by Buchen
(1971) in Lamb's problem for an SH line source in a
viscoelastic media. Rays determined by this method are
called "stationary rays" because their ray parameter makes
the complex phase function stationary. Such rays are
"complex rays", i.e the spatial coordinates of points on
their raypaths are complex numbers. The case of a complex
ray propagating through a stack of viscoelastic layers and
the case of a complex ray propagating through a
viscoelastic medium such that the velocity varies
continuously with the depth are also mentioned in this

chapter.

4.1 Ray Tracing In Viscoelastic Media:

Let us recall the complex phase function defined in

chapter 2 as



k- T K. .
1 = r _ x X + ke 2z (4.1)

® () o

For a viscoelastic homogeneous medium, T can be rewritten

using (3.25). The new expression is
T = px + 2z ..1_ - p2 (4.2)
v2

where p is the complex ray parameter, V the complex
frequency dependent wave speed and x the horizontal
distance between source and receiver. Consequently for a
ray of m segments propagating through a stack of flat

horizontal homogeneous layers (figure 3), T is given by

m
g1 1V

where X is the offset, i.e the horizontal distance between
source and the receiver located at the end-points of the
ray, hj and v, are the layer thickness and the complex wave
speed of the j':h layer. T is then a function of p, the ray
parameter. The real part of T is the actual travel time of
the ray and the imaginary part is associated to the
attenuation due to absorption. Using (2.24), (3.25) and

(3.4) it is easy to show that

dg = +p.v.‘\/k2—ki = a{+p.v./\/—12-—p2’ (4.4)
v



In chapter 3 the way of choosing the sign of dg and d'g for
the transmitted ray is described. Consequently the same
rule is applied for the sign of the complex square root of
equation (4.3).

The commonly approach used in the computation of a
raypath and the ray amplitude in viscoelastic medium is now
discussed. To calculate T for a given offset X the ray
parameter p has to be determined. The old approach assumed
that, for all j, the propagation vector gjwas parallel to

the jth ray segment, consequently X is given by

N -, sin 65 _ g Re(p) 1
X=9 %x5=9 hy——2 =3 hyo (4.5)
=1 =1 cos B85 P 1 - @?Re(p)?
p?
]

All the angles 9j and Yy for j 2 2 can be calculated using
Snell's law (3.24) once Y, and 0, have been determined. If
a value of ¥, is chosen arbitrarily and the medium
parameters (density, v4, Q) are given, the take-off angle
0, is determined by solving the equation (4.5). Knowing
P,, A,, 0, and ¥;, p can be calculated using (3.25) and
consequently T for the corresponding ray is known using
equation (4.3). This approach was used by some authors to
produce synthetic seismograms in viscoelastic media. For
instance Krebes and Hron (1980) compared ray synthetic
seismograms for several values of Y,. It is unsatisfactory
because different values of ¥, produce different values of

0, and consequently different travel times, all satisfying



raypath between source and receiver which is unlike the
elastic case. Futhermore the real travel time, the
attenuation, the reflection and transmission coefficients
and the geometrical spreading are all function of Y. The
variations of the geometrical spreading as a function cf ¥
have been treated by Krebes and Hearn (1985). Different
choices of Y would then result in different waveforms and
different arrival times for a same pulse.

There exists another approach based on a more nearly
wave-method analysis (Richards, 1984; Hearn and Krebes,
1990) . The anelastic wave field at the receiver is
expressed as an integral over p. This integral is
evaluated by the method of the steepest descent to obtain
the ray approximation. This method gives a unique value for
p which is the saddle point of the phase function = in the
p integral. This value of p is the solution of the

equation k?ﬁ = 0. Differentiating equation (4.3) over p and
p

equating the expression obtained to 0 gives

v: h m m
X = L M = Z hy tanoy = 2 X3 (4.6)
3=1

m
V1 - p? v} j=1

where o is the complex incidence angle for the jth ray
segment, i.e the complex angle between ky and the vertical.
Equation (4.6) is similar to equation (4.5) but the complex

quantities @y, vy, P in (4.6) replace the real quantities



numbers, the sum in equation (4.6) has to give the real
number X. Equation (4.6) then represents a system of two

equations

i Re(xj) = X

(4.7)

m

Y Infx;) = 0

3=1

which has two unknowns 8, and 7v,. Solving the equation
(4.6) gives a unique value for p and consequently a unique
value for O, and for ¥,. Then using equation (4.3) T can be
determined. A new expression for 1T is obtained by

inserting (4.6) into (4.3):

T = Y s (4.8)

j=1 Vj A1l - p2v2j

Equation (4.8) has the same form as the equation for the
travel time in the elastic case but vy and p are now
complex quantities. In this method there is no arbitrairy
choice of ¥,, Y, and 0, have to satisfy equation (4.6).
Richard (1984) discussed Lamb's problem for
anelastic media and showed that the correct raypath is
calculated using the saddle point of T. Moreover Hearn

(1985) showed that in a treatment of the problem of a point



source 1n a V1SCOEeLlasSTlC Mealum LYLlIg OUVEeL a DSSYucuLs vs
viscoelastic layers, the saddle point used to approximate
the transmitted wave field integral giving the field at a
point below the stack of layers is the saddle point given
by the solution of equation (4.6).

Numerical computations have already been performed
by Hearn and Krebes (1990) for primary rays. They show
that the stationary rays have smallest real travel time
and highest value for Im(T) compared to raypaths generated
by several arbitrary choices of value for . Stationary

rays then satisfy the Fermat's least time principle

4.2 Complex Rays:

As already mentioned in chapter 4, stationary rays

are complex rays. This is demonstrated as follow:

ey s . , sin oy
rewritting equation (4.8) with p = ——;?—— yields

m
= 53
T = }E v (4.9)
=1
hy ) ) , ,
where sy = ———. Since v; 1s a complex quantity the
cos Qj
jth ray segment has a complex arc length s;. The travel
time of the ray is given by Re(t). Equation (4.6) shows

that the horizontal distance traversed by the jth ray



Xj = hj tan aJ (4.10)

is also a complex quantity for complex a;. If the sum of

equation (4.6) is performed up to a number n lower than m,

h h

the x™" coordinate of the n° segmenﬁ is complex. The ray
starts at the source in a real space then goes into complex
3-D space in which the Cartesien coordinates x, y, z are
complex as it propagates and ends up at the receiver in
real space. This only represents a convenient mathematical
way of describing the wave motion. There is no physically
real interpretation of the propagation.

In the case of a heterogeneous medium, the phase

function T is equal to

ds) = 1To(so) +f;d(-§) (4.11)

where s is the arc length which is generally complex and v
the complex frequency dependent wave speed. The analysis
of equation (4.11) is similar to the one in inhomogeneous

elastic case and yields

dx . +__p vz (4.12)

e T

(4.13)

dt + 1l
TN
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of the ray path if the z-axis is directed to the bottom.
The integrals of equations (4.12) and (4.13) give x the
horizontal coordinate and T as functions of depth =z.

Expressions of g& and gl in a heterogeneous viscoelastic
z z

medium have the same form as the ones obtained in the

elastice case (Hron, ART 1984) except that p and v are now

complex quantities.

Two cases of complex rays have been investigated by
Krebes (1990). The first one is the propagation of a
complex ray through a sequence of homogeneous viscoelastic
layers and the second one is the propagation of a complex
ray through a medium in which the velocity varies
continuously with depth.

In the first case for a given offset X the
expressions obtained by integrating equations (4.12) and

(4.13) are identical to equations (4.6) and (4.8) as long

as

f dz = 2y = Zj1 < ihj, j =1, 2.... (4.14)

™1

2 is the z coordinate of the endpoint ot the jth segment
and z, is the z coordinate of the source with x(zy) = 0. hj
being a real quantity this implies that Im(zj)=Im(zr1) for
all j. The source and receiver lying in the real space, i.e

Im(zy) =Im(z,), we then obtain



Im(zy) = Im(zy ) 0, 3=1, 2 .... (4.15)

Consequently the endpoints of each ray segment have real 2z
coordinates. The z coordinates of the other points on the
raypath are generally complex. Equations (4.6) and (4.12)
also show that the x coordinates of all the points on the
raypath except for the source and receiver are complex.
For a ray which is symmetric about an axis down its middle,

equation (4.6) can be written as

m m/2
X = 2__p_vl_hj_ = 22__&1&!_ (4.16)

=1 V1 - p?v} =1 Y1 - p2v}

consequently % is real and this ray has three points in
the real space: the source and the receiver points and the
midpoint.

In the second case, a vertically inhomogeneous
viscoelastic medium in which the wvelocity varies

continuously with depth is considered i.e
v(z) = v, + az (4.17)

v and v, are the complex frequency dependent wave speeds
respectively at a depth z and at the surface and 'a' the
velocity gradient. Based on the symmetry of the problem it

is assumed that there exists a turning point located at a



elastic case). At this turning point dz=0 and consequently

%f = oo, This implies, using equation (4.12) that pv(Z)=1.
The integration of equation (4.12) using the conditions
pv(Z)=1, x(0)=0 (at the source) and x(0)=X (at the
receiver) to determine the constants of integration for

downgoing and upgoing parts of the raypath gives

x(z) = %—X:t—l—'\ll - p2v(z) (4.18)

pa

where + corresponds to the upgoing part and - to the

dawngoing one and where
X = 5%«/1 - p*v} (4.19)

Then using equation (4.19), a solution for p is determined

1l (4.20)
Vo 1 + ‘_xa_)z

2V0

Equation (4.18) can be squared to obtain
- ;_4.)2 Yo - (_1_2
‘x 2 +(z + af oa | (4.21)

This is the equation of a circle of radius é%-and of centre
located at(gq -%}L To obtain a new expression of x as a

function of 2z equations (4.17) and (4.20) have to be



inserted into (4.19) to yield

= 1 Vo . [ax ) _ a,y
%(z) SX & E{\/l + (Zvo) (1 + VOz) ) (4.22)

Equation (4.21) implies that sg-and %f must be real. The
velocity v being dependent on the depth z, z is also a real
quantity. From equation (4.22) it is deduced that x is
real and consequently the whole ray is in the real space.

Knowing that éL and z are real and using equation (4.17)
0

gives

V(Z) _ a
70—' = 1 + Ve z (4.23)

which is a real quantity. This implies that the argument
is independent of z, i.e the phase angle of v(z) is equal
to the phase angle of v, and consequently using equation
(2.28) Q is independent of =z. This example 1is quite
particular since the concept of a complex ray leads to a
ray which lies in the real space.

These two examples show the nature of stationary
rays in two very common cases in seismology.

The stationary ray method discussed in this chapter
is then going to be used to compute synthetic seismograms
for P-SV waves in layered viscoelastic media since it
eliminates the arbitraryness in the choice of ¥ and obeys

Fermat's principle. The complex phase function 1T being



calculated with the value OI tne ray pdrameresr p, 20Lucivu
of equation (4.6), the other factors affecting the ray
amplitude such as geometrical spreading and
reflection/transmission coefficients also have to be
calculated at the same value of p. Unfortunately the
formulae already developed to evaluate these factors are
inappropriate since they were obtained with a non-
stationary ray approach. The determination of new
expressions for geometrical spreading and
reflection/transmission coefficients using a stationary ray

approach is the object of chapters 5 and 6.



CHAPTER 5

GEOMETRICAL SPREADING IN VISCOELASTIC MEDIA

Krebes (1980) has treated the problem of body-wave
propagation in a homogeneous isotropic linear viscoelsatic
medium using asymptotic ray theory. He has then obtained
an expression for the geometrical spreading of a
viscoelatic wave generated at the surface by a point
source. The development closely follows standard
applications of asymptotic ray theory to elastic wave
propagation (Cerveny and Ravindra (1971) and Hron and
Kanasewich (1971)). In this chapter the main steps of
Krebes' development, i.e the calculation of the equations
required to obtain the amplitude coefficients and the
determination of the zeroth order amplitude coefficients
for P and S waves are presented here for the sake of
completeness. Complex rays, which were introduced in
chapter 4 are now used to obtain an expression for the
geometrical spreading in a viscoelastic medium.

Let us recall the equation of motion for linear

viscoelastic waves in a homogeneous isotropic medium:

[Me) + ple)] * oV(v T) + ue) * dv?E) = pid (5.1)

The general solution of equation (5.1) is given by



UE, t) = —1Hf Wz, ©) s() eide - 47, ol 4o (5.2)
2

where S(®) is the spectrum of the source pulse and T the
complex phase function already mentioned in chapters 2 and
4, ﬁ includes quantities related to reflection and
transmission at boundaries, the geometrical spreading etc.
Asymptotic ray theory is now used in order to solve
equation (5.1). ﬁ has to be expanded as a power series in
tﬂ; with coefficients ﬁn==(?, ©) which are generally
frequency dependent for viscoelastic waves. Using Taylor's

-
expansion, W =(?, w)can be written as

- . < [ (Ao))"
W=I\r, w + Aw) = (5.3)
E o) - 3|78 Lo

n=0

Inserting equation (5.3) into (5.2) yields

T, t) = #I-Re Y Wz, o) sf& o) do (5.4)

n=0
o

where

sn(é, 0)) = é(a?)— elod

y

and (5.5)
£ = t -1t, (’3)f



Using the following properties of s,:

Spn = dsy n-1
ag
and (5.6)
VSn = "Sn_1VT
expressions for V(V -G), V4 and U are obtained
VVE) = Lre] ¥ YV sy - 50 VAV W) +
I1 n=0
L3
S0 VTHVE - 5, V[V W) do (5.7)
Vi = Lre| I rsaodVifW, - spil2Veva, + W, V)
I n=0
[}
+ anZWn] do (5.8)
i = Lre| Y Wsp: a0 (5.9)
n n=0

@

Inserting equation (5.7), (5.8) zad (5.9) into the equation

of motion yields



p Re Z;V'nsn-z do = Re [(k + u) * d{ Z [Sp-2 Vc(Vt-W,,)
n=0

n=0
)

- sot(V[Vei) + VAV W) + 5. V[V W) e

spxat] I tsae (vof, - s, |2Vt vH, + W,V + s, VW, do)
n=0

L}

(5.10)

In equation (5.10) the general term has the form

1(t) * d{j sl ®) FT, ©) dm} m=0, 1, 2 (5.11)

which is equal to

I
=
t
Y
g
hv

e) * of )

{I-sn_m(n—t, w) F (T, o) dm} dn

I Srna(N-T, ©) F Y, o) dw’ dn

n
aa—
=
T
2

ap——

(5.12)

where equation (5.5) was used.

Let ¢ be equal to (t - M) equation (5.12) can be

written as



\
|

Ut) = a| ) = f 1{0) {f Snemetlt-0-1, ©) F(T, ©) do

do
(5.13)
Using equation (5.5) again, we can show that
sn_m_l(t -6 -1 (o) = s, (&, m) ime-ie (5.14)
Equation (5.12) is finally expressed as
Ut) » 4} = 1(0) {f ime-i% s, (¢, o) F T, o) dw} dd
w !

0

= {iw f - o) e-iot d¢} sa-dr ©) B, @) do

®)

{5.15)

Letting

o) = icof 1t) e-ier gt

as in (2.10) and using (5.15), equation (5.11) is equal to

l(t) * d{j- Sn—m(gr 0)) E'n(}-"l CO) dm} = f‘sn-m(zu (1)) L((!)) Fn(-r.r 0.)) dw

(5.16)



Consequently using (5.16) and (2.10) we can write for

instance

n=0

M) * af f S (50-2VAVTH,) = saa(V(VT W) + VAV W)} +

n=0

an(V -fv'n) ] dw} = f Z [Asn-,_Vc(V'c-ﬁn) -

Asar V{710, + VAV W) + As YV W) 1 do

Equation (5.10) then becomes

Re EI SodpW,) d0 = Re Y, {I s.dA + M) V{V1H,) do
o n=0 Ju

n=0

- r SaalA + MXV(Vt-;v.n) + Vt(V ﬁn» dw + f sn(A + MXV(V ?mn)} dw

(7)) ()}
(~ - ) . =
+ sn_zM(V‘l:)ng do - j s,,_lM(z('Vt~V)w,, + anZt) 4w
1 @1
+ ( snMVZ?En 4w} (5.17)

Ja

Another way of writing this equuation is

Re Zj [Sn-zﬁ("r ?N.n) - sn--lil"[r an) + S,,Lan)] do = 0
)

n=0

(5.18)



where

ﬁﬁc 4 ;’;n
;’KT ’ ;q’n

(A + Mvdvei,) + (Mvef - ok,

(A + M) (V(Vt-ﬁn) + V1{V fﬂn)) + (5.19)
%’nvzz + 2(VI-V);J.,,)

(A + M) V[V w,) + MV,

o)

[}

Defining W_, W., = 0, equation (5.18) can be rewritten as

Re i f-[sn(ér ) (e, Woo - Mz, Woor) + f(ﬁn))] do = 0 (5.20)

n==2

Equation (5.20) is true if and only if

NMt, Woup) - M1, Wou) + LT, W) = 0 n=-2, -1, .. (5.21)

or

;Ktr -V;o) = 0
Nt, @) - Mt, W) = 0 (5.22)

;‘I’ltr ;’;ne*z) - ;’I‘(T, —V;m-l) + E(Tr -V-’;n) = 0 n=20,1, 2 ...

Using

;11, ;i) = 0

two new equations are obtained



(A + M) V.Vt (Vt-ﬁo) + (M(V*t:)2 - p) (K_N.O-V‘t)
(A + 2M) (vaf - p] Ve = o© (5.23)

1—\;{1, ;v.o) Vz

aﬁd

(A + M) (VTXV'C) (Vt-_v;o) + (M(V'c)2 - p) (;v.oth)
[M (vef - p] (—v;oth) = 0 (5.24)

ﬁ(t, ﬁo) x V1

ﬁo-Vt and WoxVT are not generally equal to 0

simultaneously. The same note can be made for
2 2

(A + 2M) (Vt) - p and (M (Vt) - p). Consequently the system

formed by equations (5.23) and (5.24) has two solutions,

i.e

i
o

(vef P = L, WxVt

and (5.25)

= -12- ;\T.Q'V‘t = 0

(vef' -

o

These are the eikonal equations. As already mentioned in

chapter 2, the complex phase function T is equal to

{

— - -
- r AT
+ i——
0]

k- T
T = —_— =
()

o

(5.26)

For either P or S waves VT is equal to



(5.27)

hence equation (5.25) and (2.13) are identical. Using the
equations (5.22) the amplitude coefficients ﬁn can be
calculated. A Oth order approximation is considered, it is
then not necessary to know ﬁn for all n. Only the zeroth
order amplitude coefficient, i.e ﬁo, for P and S waves are

calculated.

5.1 P Waves

For P waves

-—

Wo = Wogp (5.28)

where tp is the complex unit vector for P waves and it is

equal to

—

ty = X = o Wi (5.29)
kel

To determine Wy, ﬂt, Wo)-V't is calculated:



ﬂr, —V;o)-V’t = (A + M) (V(VT--VEO)-V’I: + (Vt)z(V'ﬁo» +

M(Vzt(Vr-ﬁo) + 2((V1-V);1’0}V1:) (5.30)
It is known that
(vef = L
a2
\" -ﬁo = V~(w0aV'c) = aViVw, + aonZt
;J.O-V‘t = W V.Vt = woa(Vt)z = Wa&

ViV, = (VoVot, = (VeVu,) &,
(since the medium is homogeneous)

Vive i) - Ve Veva) = L1 (Vivw)

hence
Mt, W)Vt = (A + M) [é(Vwo-Vt) + &wovzt + V—Z-S’-Vr} +
M%avie + 2(7Vw,)|
- (A——*a—z-M—) [WoV%t + 2(Ve-Vio)
= po [wovzt + Z(Vt-Vwo)] (5.31)
and then

[H'c, ;W.o)‘V‘I:] W, poL [W?,Vz'c + Z(VI-VWo)]
poL [w%Vzt + VT-V(WO)Z]

= pa V-[(onVt] (5.32)

ﬂt, wn)-Vt also has to be calculated

ﬁ(t, ﬁn)-Vt = (A + M) (;J.n-V't) (Vt)z + [M(V‘t)2 - p] (ﬁn-Vt)
(#5934 + M) (Ve + MeF - p)

[(A ; 22M) b

(W.ve) = o (5.33)




The second equation of (5.22) which is
ﬁ('tr W1) - ;’K‘E, Wo) = 0

implies that

Mt, W)Vt = o0 (5.34)
and consequently

v wPvy = o (5.35)

The concept of a ray tube about a central ray can now be
introduced. It is defined as a very narrow pencil of rays
connecting two wavefronts of the central ray at different
times t, and t with t, < t (Figure 4) AS is the length along
the ray path in the direction of ; between the two
wavefront surfaces do(S,) and do(S). AS and the distances
between the rays bounding the ray tube are infinitesimal
quantities. Using Gauss' divergence theorem when the
integration over the volume V of the ray tube is performed

leads to

I V {wo)2ve] av = f (WP Vtde = 0 (5.36)

v



where do6 is an element of area on the ray tube. Knowing

that V1 is equal to
vi = L(p + iA) = l(PP + iAA) (5.37)
(0] 0]
where P and A are real unit vectors and

do, A-do = do cosy (5.38)

o)

Q.

Ql
|

the following equation is determined

wPEp.-do + il (W 2A%. 4o
( o)w ljk c)m

I(Wo)zvt' CE;

2 ([(woFac]s - [(woFac)e)

+i§ﬁm9§1 ((woacs - [(WoPaols) = 0 (5.39)

Equation (5.39) implies that

([(Wo)zdo]s - [(Wo)zdo']so) = 0 (5.40)
Consequently
dolSg
WlS) = WolS 5.41
os) ao(s) ol So) ( )

Equation (5.41) allows to calculate W, at any point S on
the ray if W, is known at S,. It has the same form as the

corresponding result obtained in the elastic case (Cerveny
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and Ravindra (1971)). This was expected because it is a
purely geometrical result describing the geometrical
spreading of a wave. The attenuation term is taken into
account by the imaginary part of 1, or in other words by
the expression of the geometrical spreading (see last

paragraph of this chapter).

5.2 S Waves

For S waves

Wo = Wity + Wots (5.42)
where t, and t3 are complex unit vectors. t, and t; are
given by

t; = ¥xks, t3 =¥ (5.43)

where ¥ = n, the real unit vector perpendicular to P and A

(see chapter 3). The vectors tp, tz, t; are orthogonal. To

determine Wy, ﬂt, wo)- t;, 1 = 2, 3 has to be calculated. %

”~

having the same direction as tg,



ti'VT = 0
and

ao'vt = 0

Consequently

I_"It, ;V.o) Ei = M[Z((VTV){’;C)) Ej_ + ﬁgvzt Ej_] i

but

=
e
o
-

|

and

((VT'V);;O}' Ei

Equation (5.45) can

ﬂtr ;V.o) Ei =

and

[ T, ;V.o) EJ.] Wé

For S waves

for S waves

]
N
-

(ngz + ng:;) Ez + (W%Ez + ng:;)' E]

Wi+ Ws = WS

(V‘C'VW%Az" Ei + (V‘C'VW%)Ea' Ei
(Vi-vid) + (Vi-vid)
(Ve Vi) i=2,3

then be written as
M[WéVZ'c + 2ve Vw't,)]

- MW + 2fve-viwf)]
= MV (ve Vi)

(5.44)

{5.45)

(5.46)

(5.47)

(5.48)

(5.49)



(vef = ‘-312- - & (5.50)
hence
M, 30',,) = (A + M) (ﬁn-Vt)Vt + {M(V‘t)z - p] W,
= (A + M) (Wn-Vt)Vr (5.51)
and
Nt, W)t = 0 i=2,3 (5.52)

Consequently, knowing that
;\;{T: 51) - p;(‘f: ﬁo) = 0

from equation (5.22) implies that

Mt, W)ty = 0 i=2,3 (5.53)
and
i)e
vlwipve = o (5.54)
Equation (5.54) has the same form as equation (5.35) for P

waves. Introducing the concept of ray tube again and using

the same development as for the P wave case leads to

dRSo i .
WolS) = ’v —= WplS =2, 3 5.55
é( ) ddS) O( 0) i ( )

which once again has the same form as the corresponding

result in the elastic case (Cerveny and Ravindra (1971)).



5.3 Geometrical Spreading

An expression for the geometrical spreading of a ray
propagating through a layered homogeneous isotropic linear
viscoelastic medium is now calculated. As mentioned at the
begining of this chapter the notion of complex .ay is used
to calculate the geometrical spreading for this case.
Although it is difficult to give physical interpretations

to complex rays: an expression for the geometrical

spreading can ! ed without concern for the fact that
the raypath c- t2s are complex quantities. For
instance i:: ch::. -~ 4, the complex phase function 7T is

determined for a giren complex ray, knowing its complex ray
parameter p. Re(T) is the real travel time and Im(T) is the
attenuation due to absorption. The same approach is used
in the calculation of the geometrical spreading in linear
viscoelastic media.

A ray of m segments propagating through a sequence
of flat horizontal homogeneous layers is considered (Figure
5)» Oy is the endpoint of the jth ray segment at an
interface. As demonstrated in paragraph (5.1) and (5.2)
the amplitude coefficient at any point S on the raypath can

be calculated using

do{S,)
do(s)

Wols) WolSo) (5.56)




Figure 5: A typical ray in homogeneous layered

medium



In the case of figure 5, the amplitude coefficient at the

endpoint K is equal to

N do{K [ as'(0,)
W) = do{0;) X ddozl)
..... Rp-1 X 4/ do(gm‘)l) wKo) (5.7)

where Rj, j=1, 2, ....m-1 is the reflection/transmission

coefficient at Oy, the prime refers to quantities
associated with reflected or transmitted wave at Oy and the
unprimed quantities are associated with the incident wave
at 0;. K, is considered to be at a unit distance from the

source and O, = K. Equation (5.57) can be written as

wK) = T 5] HRJW(KO) (5.58)

diK ml d Oj
UK, Ko = »\/——a” || (5.59)

L(K, K,) is the geometrical spreading factor of the ray.

where

It now seems appropriate to introduce the notion of

complex rays in the calculation of L(K, K,). To evaluate
do{K)
do(Ko)

mentioned earlier it is dificult to visualise complex rays

has to be determined. As

(5.59) an expression of

and to give them a physical interpretation. Figures 4 and
6 represent the ray tube and the change in the cross

sectional area of the ray tube at an interface for real



- -

situation in real space but ali the calculations will be
performed with complex quantities defined in chapter 4.
Consequently all the results obtained are in general
complex. Starting with the cross-sectional area at K the

expression of do(K) in the complex plane is
dolk) = (cos oK) dx) (x ddo) (5.60)

where x is the complex is the complex horizontal distance
traversed bty the ray, ¢, is the complex azimuthal coordinate
at K, and ot(K) is the complex angle between the complex
wave vector atK and the vertical z-axis. x is dependent on
z and o, = a(K,) which is the complex angle o at the

source. Hence the expression of the complex quantity dx is

d
gx = X g, + 9% gy (5.61)

ot 0z

From figure 4 we see that dz = 0. We then assume that
dz = 0 for the complex ray too. The cross-section of a

spherical wave at the source i.e dO, = do(K,), in the

e lex space is given by do, = sine, d¢, do,.
Cre.. - ruently

x {=—| cosalK) doy, dg X (a_x cosofk)
ddK) 80:0 _ aao (5.62)

\ = []
dolK-; sinoy doy ddg sindo



Figure 6: Change in the cross-sectional area

of the ray tube at an interface
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doy{0;) _  cos 60y
do{0;) cos 6 (03)

where 0 and ' are the real angle of incidence and
transmission and doy0;) and dog0s) are the cross-sectional
areas for the incident and transmitted real rays. It is
reasonable to assume that the same property exists for
complex rays with the c¢omplex angle of incidence and of

transmission a{0;) and a'!oj), consequent.y we can write

AGgl0+ cos 040:
dodoy) _ cos alo) 5.6
do4Cs) cos @'(0)

The medium is homogeneous hence a'(Oj) = a(0;+1). Using

this fact and equation (5.59) yield
-1
mH dO’R(Oj) _ /cos G‘Ol)_ _ cos 0Og (5.64)
1 ¥ dog0y) cos {On) V cos afK)

Consequently, inserting equation (5.62) and (5.64) 1into

(5.59) gives

uK, Ko) = '\/X 'éa?lx- cotly (5.65)
0

The complex epicertral distance is given by



where

X3 = hj tana; (5.67)

as already seen in equation (4.6): hy is the thickness of
the layer containing the j”h ray segment, x; is the complex
horizontal distance traves sed by the jth ray segment and «.

is the complex incidence angle for the jth ray segment.

0
5&; has to be calculated. It is known that
0

x Y

tana; = 2 = Xa (5.68)
nj kz,

where
kzy = +p.v. k? - ki (P, SV, or SH waves)

and using equescion (3.22)

ks« = kj sinay; = ko sindp (5.69)

The subscript '0' refers to quantities at K, and the '+'
sign was chosen (see chapter 3). Consequently x. is equal

te

hj ko sinQg
k.

X (5.70)

1
and



dk
- Z: .
axj kz, COSOy (aao sinQg

—L = hikg (5.71)
da, (szz |
(éia
must be evaluated:
aao
(akzl) _ (&\/(Q - ki’)
aao 8(10
a2 ak’-)
1 ] I3
= - (5.72
2k, (aao d0to )

2

Knowing that kj = m; and using equation (2.28) showing
v
3

that vy is independent of o, yields

ok
(__u o _ ke Ok L L ke o cosa (5.73)
aao kzj aao kz;

Equation (5.71) can be rewritten as

dx hk 2 in?
o 3 o 23%0 | osa, + K2 COSGo Sin Go (5.74)

and finally 52% is equal to
0

hy

dx & 0%y - D (2 .2 ) N
j=1 j=1 %y j=1 (kza

) (5.75)

Using equation (2.35) it is easy to show that



bl B LA VY]

) Vj

and
2
k3 = 522- (5.77)
Vo
hence
ox
— = kg COSO k3 sin‘a
aaL, ° o (o cosa + (i3 o z: o’ cos3a
vihj sin‘a, 1w Vih;
= kg cosOg + 9 L —_—
m
h vy
= 59—%§§22 —3 3 (vo cos?ay + vi sin ao) (5.78)
51 V5 cos’a;
Equation (5.78) can be simplifyed. Snell's law in

anelastic media shows that

vj sinl@y = vo sinoi; (5.79)
consequently

0x = h: v

= - kg cosOg ) (5.80)

d0g o j=1 cos’a;

Using equations (5.76), (5.70) and (5.66), an expression

for x is obtained

% = ihj ko sintg v _ ko sinog z'“: hsv; (5.81)
i @ cosay @ ! cosa; '

Finally inserting equations (5.80) and (5.81) into (5.65)

yields



— e
UK, Ky = ,\/7ko sinQg 2 hyvy ko COsQgy Z hivy cosQly

4
w cosQty ® cos3(xj sin0yg

i=1 3=1

sQ hivy | v
LK, K,) = =25%0 iy (5.82)
Vo jo1 COSOy j=1C033aj

The expression of the geometrical spreading L(K, K,) for

viscoelastic media obtained using the complex ray method
has the same form as the one given by Cerveny and Ravindra
(1971) for perfectly elastic media. The difference is that
the velocities and the angles are complex and frequency
dependent in the viscoelastic case. Krebes and Hearn
(1990) mentioned that the ray theory formula for the
geometrical spreading, obtained using the complex ray
method has to be identical in form to that for perfectly
elastic medium due to the elastic-viscoelastic principle.
This principle states that exact solutions for viscoelastic
problems can be obtained by replacing appropriate
parameters from exict solution oF elastic problems with

complex frequency-dependent ones in the frequency domain.



CHAPTER 6

REFLECTION AND TRANSMISSION COEFFICIENTS

As already mentioned the problem of the reflection
and transmission of harmonic plane waves incident on a
plane boundary separating two homogeneous isotropic linear
viscoelastic media was treated using a non-stationary ray
approaach (Krebes 1980). In this chapter the same problem
is treated with a stationary ray approach. This introduces
the notion of complex rays in the treatment (see chapter
4). As in chapter 5 the figures enclosed in chapter 6 show
the problem in real space but all the calculations are
performed with complex gquantities from following the
concept of analytical continuation from real axis into a
complex plane. In the first part, the notations and
assumptions used to study the above problem are stated.
The second part is concerned with the determination, from
the boundary conditions, of the system of 6 equations in
order to obtain the reflection and transmission

coefficients. This system is then solved in the last part.

6.1 Notations and Assumptions

In 'Introduction to ART in Seismology' (Hron 1984),

the problem of reflection and transmission for elastic



waves is treated using some notations and asSumptious.
Similar notations and assumptions can be used in this
chapter keeping in mind that we now work with complex rays.
This means that the system of the wave vectors are complex.
Figure 7 shows the intersection of the plane of incidence
of the ray with the boundary Y in real space. The upper
and lower media are both homogeneous isotropic elastic
media. Medium 1, i.e the upper medium, into which the real
s-axis is oriented along the normal to the interface X at
the point of incidence O, has Lame parameters A,, M, and
volume density p, and contains the incident and reflected P
and S waves. Medium 2, i.e the lower medium, has Lame
parameters A,, Hp and volume density p, and contains the
transmitted P and S waves. In the viscoelastic case the
situation is similar but both media are homogeneous
isotropic linear viscoelastic, Ay, M, and A,, M, are now
complex and frequency dependent and are given by equations
(2.10). In figure 7 the surface ¥ is assumed to be smooth
in the vicinity of the point of incidence O allowing the

construction of tangent plane intersecting the plane of

incidence in the x-axis. The positive orientation of the
x-axis is chosen iu such a way that
(Veo) & > 0 (6.1)

€, is the unit vector along the z-axis. The direction and

orientation of the third Cartesian axis y is given. by



/‘?; PR (v=1)
) T e
3 ls n
o, l
P (v=0) {r,
6,
0,
“ A, By Py
[+)
- kz: Ha, py
8, l2
- N2
|
‘-’ R P: (V=2)
p) 64 W)
RS;(V=4)

Figure 7: 1Intersection of the plane of incidence

of the ray with the boundary X



-

E, = € X & (6.2)

The same system of cartesiian axes is used to study the
problem of reflection and transmission coefficients in
viscoelastic media with complex rays.
In the case of normal incidence the choice of x and
y axes 1is arbitrary as no converted phases are generated
upon the incidence of the ray at O (same as elastic case).
Using equations (5.2) and (5.4) a ray series for

each of the existing complex rays can be written as

WE, o) = Y W, o) £t - oF, o) (6.3)
n=0

where

£t - WE, ) = st o (6.4)
of equation (5.5). The corresponding displacement is then
equal to

T, t) = L Rre f W(T, o) do (6.5)

I1 o

but we will solve the problem in terms of the complex
quantities. The subscript v has the following values:
v = 0: incident ray (medium 1)

1: reflected P ray (medium.1l)

v

2: transmitted ¥ ray (medium 2)

<
Il



\Y 3: reflectedl - ray (mcciv 1)

V = 4: transmitted S ray (medium 2)
In figure 7, twe unit vectors B’v and Iv are defined in the
plane of incidence, for each ray. Hv is equal to vyV1y and
is along the ray. Iv is perpendicular to the ray, 1i.e

-l.v-Vtv = 0 so that
1, = (-1t g x 1y (6.6)

The same conventions can be used for the viscoelastic case.

Two complex unit vectors Zq’v and ry are defined for each
0 . — L] .

existing complex ray. qy is the complex unit vector for P

waves and is equal to
dy = VVVTV @‘.’), ,

where T, is the complex travel time for the corresponding
ray. <Tv is corthogonal to the complex ray, i.e Ty'Vty =0

and

g

Ty = (_1)V+1 -e.y X av (6.8)

Ty is the complex unit vector for SV waves. A third vector

for SH waves is defined as

My o= m o= & (6.9)



Consequently each vector ﬁv) can be written as
=(n) (n)>

WV = NV dy + T{,n)’;v + V{,n)ﬁ{ (6.10)

"'(n) — e d —
where Wy , Qv, Ly and m are complex vectors and where

Ni,") = ;V.S,n)- Efv: complex component along the ray
(n) “An) - .
Ty = Wy * Iy: complex component perpendicular to

the complex ray lying in the plane of incidence.
Vv) = ﬁ?la: complex component perpendicular to

the plane of incidence.

6.2 Boupndary Conditions For Viscoelastic Waves Ipn The Case

of Two Solid Media In a Welded C

The boundary conditions for two solid homogeneous
isotropic linear viscoelastic media in welded contact
require the stress and the displacement to be continuous.

The total displacement in media 1 and 2 can be

written as

Uy = 9 U and U, Y o (6.11)
V=°,1,3 v=214

Then the boundary conditions imposed on the displacement

vectors are



and

O3 j(a) = O3 jaz

1,

3

(6.12a)

(6.1cD)

These boundary conditions must be completed by the boundary

condition for the complex phase function 1, requiring that

on the boundary Z

T

Using the coordinate system defined in paragraph

can be written as

hence for

where

V1

v =

vV =

is
is
is
is

is

Jt = Jt -
%. T x> ¥ oy &
Vi, = ‘—,lg(sinao Ex
Vi, = %(sinal Ex
Vi, = ;,lz-(sinaz Ex
Vi; = % (sina3 Ex
Vi, = ;E-(sinaq Ex
the complex angle of
the complex angle of
the complex angle of
the complex angle of
the complex angle of

Q
aQ
4

+ 0 - cosOg
+ 0 + coso,
+ 0 - cosQ;
+ 0 + cos,

+ 0 - cosQ,

incidence

reflection
refraction
reflection

refraction

€:)

-

€,

-

€

for P
for P
for S

for S

(6.13)
(6.1), Vz

(6.14)

(6.15)
waves
waves
waves
waves '



The sign of the z component was determined using the
analogy with the elastic case (Figure 7). The wave speeds
v,'s 1in equations (6.15) are all complex and frequency

dependent. Applying Snell's law in anelastic media to our

problem yields

p = Sinty _ sind, _ sinQ, _ sin0s _ sinQ, (6.16)
Vo v Va2 V3 Vg
hence
ot 0
v _ °h (6.17)
ox 0x

Equations (6.15) also give

Ity
= = 0
dy
and (6.18)
ity  _ vil COSOy
Syl (-1) -

cosa, is equal to a complex root, the uniqueness of the
solution is achieved by implementing the radiation
conditions for anelastic media requiring an exponential
decay of f,(t - %) for a ray going away from the interface.
Using equation (3.27) to show the directions of ; and A We
can see that in order to obtain this exponential decay tns

real and imaginary parts of p, the ray parameter and the

real part of § must be positive. The imaginary part of the



B WS Ly DUl LildaL LlEe JUL pPLOUUCT - A Iemdlns positive, A
negative value from this dot product would result in an
amplitude growth for a ray going away from the contact
point between the ray and the interface. This is not
physically possible.

The directions of the reflected and transmitted
complex rays at O on the boundary are determined using

Snell's law for anelastic media. £&till using the cartesian

coordinate system €, &, €, the complex components of ﬁv)
can be written as

vﬁ? = MYsinay + Tcosay

Wy = v v=0,1,2, 3, 4 (6.19)

o

(-1 'NMcosoy + (-1)Tsinay

The boundary condition reqiiring the contini:ity of the
displacement across the boundary leads to three equations
in terms of amplitude coefficients. Inserting Juations

(6.5) and (6.11) into equation (6.12a) yields

Re °—&9V('r', w) dow (6.20)

@

Re mv(?, m) do =

[ v

2

i 1
v=0,1,3 I1 -2,4 I1

Using equation (6.4) gives



Z L Re Z ;;(Vn ;r (D) fn(t - Tv) dw

v=0,1,3 n=0
L
= (6.21)
Y Lre | ¥IwAE, o £dt - w) do
v=2,4 n=0
L}
For equat ~ '6.21) to be true, we must have
A Y. —11'- —
Y O, o &t -w = Y WIE o £l - 1) (6.22)
v=0,1,3 v=2,4
for each value of n. Using egu2tion (6.13), equation

(6.22) can finally be written as

fn(t - T\l)[ z ;v'g‘i'f" (D)] ® fn(t - Tv) 4 z ;\;*(vn -1':‘", (0]
v=0,1,3 {v=2.4
y & - 3w (6.23)
v=0,1,3 v=2,4
()

Writing the vector Wy in terms of its complex x. y., 2

comporients lead to the following esuations

Z (N(v")sinav + T(v")cosav) = 2 (N(v")sina\,- + v“)f.:os(lv) (6.24a)
v=0,1,3 v=2,4
Y oA = Y WY (6.24Db)
v=0,1,3 v=2,4
Y (-1 cosa + (-1)T{sinay) =
v=0,1,3
Y (-1 "M Vcosay + (-1¥1s inay) {6.24c)

v=2,4



E ¥ A =X = 318~ Qppevacil
requiring the continuity of the stress tensor components
across the boundary in order to obtain three equations in

terms of amplitude coefficients.

steady-state

given by

oij =

harmonic case in

ANw)V U 8;; + 2M(o)

(see chapter 3)

Using equations (5.2) and (6.4;, U can be written ' as

The expressions of G,,, O,, and O,, are then:

ouﬁn

rey

Lpe| ), ?«;(v")(}', o) £t - ) dn

TI n=0

[}

= A, V{1
2l n=0

oM, 2] L
z 2[1 n=0

1> udTu ayaiu

M) VT + 2My
[V A

fA4t - 1) do

-

Y WE, o) £t - 1) do

[l_ aul + égi
2 l95 a1

UL tne pounqaary condaicion

The stress tensor for the

linear viscoelastic media is

z ﬁf,"’(?, o) £t - 1) do] +

/



- ) -
= L Z[AVV (W2, o) £4e - w) - sza(wﬁ,z fs(zt T"))} dw

2l J b
- n avfﬁ)
= _L 2 A (Vf ';;{I) + 7 V ;;vn)\ + 2Mv af ,(n) + fn V.. } do
o ’ 3z 3z
21 J
[ - .
ne+ .1 n / oW
= = Z [ ('AVVTV -V‘;(v ) + 2M- -W(n ) + AV '-V?v) + ZMy a\z'z)

oo " 3
Ozz = -I%I_Re Z fn‘{’n‘;’? )r wvr) dw (6.27)

n=-1
ux

where ¥, is given by

{_'(n*l) —‘(r')) (n*l{Av + ZMVCO 2(1\,\ - (n*l{MvSinZ—q_\/_)}
WV wV = vy | ) vy
i n
[AVV a oM a‘;ﬁ] (6.28

o - x| 5[]
xz 2[1 n=0

“]dw

Vo ow)
- L { -£,. 1M»{'”%’ atVw‘"’ + Myf (awf,‘ i )] do
ZII n—o x
le = 'l_ Re il(;q‘(vn+1)l ;v.(vn)) d*') (6'29)

[i n=-1

o

dw



where ¥, is given by

A s e
LA LN 6
v oz ox (6.30)

and finally

L3 W) del]

Oy z(a) =

] oty (n 61:,, n (BW‘“’ awf,"’)]
e n§=o[ fa- IM‘{ wf,y w‘ ) My£ % —-z—ay dw

Oy, = L ge z fncbn(;q.(vml)r ;;(vn)) dw (6.31)
Il -1

@

where P, is given by

= [_4|vCOSQy [n+1) (-_x_
(Dn hdv \ —) Vv V£ + k 32 + ay

WM et
oMy dw‘”‘) (6.32)

The requirement of the continuity of the stress tensor

components O,,, O,, and O,, can be written as

Ox2 z l—l.v) = Oy 2 IIv (6.33a)
v=0,1,3 v=2,4 <

Oy z KV) = 0, 2 Gv (6.33b)
v=0,1,3 v=2,4

G D TIV) = Gy 2, Uy (6.33c)

v=2,4



implying

s (5 el ) o -

J v=0,1,3 ‘n=-1
Ls}

Jr ) (Z ann(V—&s/nﬂ)r W’)) do (6.34a)
v=2,4 ‘n=-1
f.
J v=<§1.3

®y

f )Y (Z £a o, W’)) do (6.34b)

z £, ¢n(a£’n+1)’ E‘;(vn))) do =

n=-1

v=2,4 \n=-1

(" .
5 (5 erlt, #Y)eo -
J‘l v=0,1,3 ‘n=-1
T )
2 kz Lt W) ao (6.34c)

J v=2,4 \n=-1
o

For equations (6.34) to Je true, we must have for each

value of n

)y Wiy, @) - 3% e, &) (6.35a)
v=0,1,3 v=2,4
2 (Dn(;v‘(vml)’ ;1‘(\?)) - z d’n(;;s/nﬂ)r m’n)) (6.35b)
v=0,1,3 v=2,4

py w ey, W) Y w i, W) (6.35¢)

v=0,1,3 v=2,4



Equations (6.35) lead to three other equations:

Vv ox

|

_awyln+1)Ysin2ay (n+1)cos20, a‘w":’ a“fv",))
021 M"[( 1 feindey) o ofcos )*(a: *

v=0,1,3

My [(-I)VN(vml‘%} N T(n~11c032av) N (ag(f‘) , aw(vnt)

v=2,4 v Y Vv ox
(6.36a)
e n n
My [(-apessaen (2, 0
v=0,1,3 ! v 0z dy
5 a8, 2]
vag 4 v vy VY 0z dy
(6.36b)

. n)
z [_Ngml‘l\v + 2Mvc032a!) N T&nuins‘l,rQav) + Avv‘wvn) + M a‘_""v,
v

Vv
v=0,1,3 Jz

Vv ’ Vy az

~ 2 2+ s n)
‘L _N(vnlrl‘Ay + LMVCOS av} + Tvn#l{Mvs 1n2(1v) + AVV';;(Vn) + 2M aW‘vl ]
=2

v=2,4

(6.362)

The two sets of equations (6.24) and (6.36) can be combined
to give one set of six homogeneous equations for six
principal components N(ln) (reflected P wave); N(Z")
(transmitted P wave); T¢), W) (reflected S waves) and TV,
V‘,,n) (transmitted S waves). Cousequently the reflection and

transmission coefficients can be determined by solving this

system which is finally written the following way:



2 4
Yy (~1)sinon? + Y (-1)cosa,T{"
v=1 v=3

2
Y (-1 ising + Y (-1) ¥ cosayT

v=0,3,4 v=0

2 4
Z (—l)vcosavN(v") - Z (—l)vsinast,n)
vel v=3

2

Z (-1 cosoun™ + 2 (-1Psino, "

v=0,3,4 v=0

2 4
Sin20,,,(n) cos20y . {n) _ (n)
> MECED) + 3 M, - @

v=1 v=3

2 4 .
Z(_l) Av + Z&VCOSZQV}N(;) + Z (_1)v+1MvSlI‘1,3(XVT(Vn)

v=1 v=3

V=i

i(‘l)vV(vn) = 22:("’:”6"”\1‘(\,")

0z dy

54* M, S28%(m) 24: (_1)w-3.,o+1Mv[aw9;-l) , awgq)J
et VV v

v=0

@

v=3
2
_1)dvo+1pg COSOy,(n) -
+‘§o( )M n= 0, 1, 2,..(6.37)
where
2
in20 cos20.
o = Y (-1)hem RO 4§ (o1)Seim, S0t ser)
v=0, 3,4 W( ) ;;o)
4 n-1 n-1
oW oW,
+ - v+8,,o+1M ' + 20 :I
2( 1) 0z ox

v=0

and



nl)
Cb‘zn) z( 1)\“5,0[1\ vV “(n 1) + oM BW( } z( 1)"'8"°[ sanavT(n)

v=0

+ z (- 1)v.s,o+1‘/\v + 2Mvcos2a\,, N(n) (6.38)
Z

v=0,3,4

The system (6.37) looks like the one obtained for the
elastic case (see chapter 4 of ART, Hron 1984), the
diffenrences being that the real quantities 8,, v,, A,, My,
and the real amplitude coefficient components are replaced
by the complex quantities a,, v,, A,, M,, and the complex
amplitude coefficient components obtained using a complex
ray approach.

As mentioned earlier a plane wave approach 1is
considered. It is then not necessary to calculate N?%
Tsﬂ,and v@’ for all n. Only the zeroth order of the theory
is considered.This means that the system (6.37) will be

solved for n = 0 only.

6.3 Resolution Of The System

Solving the system for a = 0 simplifies the
calculations considerably. The differential operations
applied to the term ﬁ&” are squal to 0 and the system
breaks into two separate systems. The first four equations
corresrpond to the P-SV case and the last two to the SH

case.



6.3.1 SH waves
By solving the system formed by these last two

equations the reflect:un and transmissic. coefficients for
.'" waves can be determined. In this zase the incident
w.re, i.e for v = 0 is an SH wave and tanere is no reflected

and transmitted P and SV waves. The system can be written

as

v(oo) + V(3°) - V(40)

{(6.39)
M, cost {0) _ M3 cosas (o) _ Ms cos@y (o)
N s P O R W

Using the fact M, = My = M, and v, = v, for medium 1 and

M, = M, for medium 2, the solution of the system (6.39) is

equal to
o)
VaCOSOly = D-~3. 0%
Vi _ PV 0o~ P:- - .
v(o°) P1VoCOSO3 + Povirintidly
and
\Alo) 3 2p1VoC05a0 6 41)
\’go) pIVoCOsa;; + p2\74cosa4 .

The reflection and transmission coefficients for SH waves

W) )
respectiely —‘;(%Tand—i— have the same form as those
0

£

for the elastic case (Aki and Richards, 1980) but vy, v,, O
and @, are now complex quantities. This is not a surprise.

Aki and Richavds ¢1980) clearly state that since Snell's



law in anelastic media can be written p = i%%g-where a and
v are complex, all the formulae obtained for reflection and
trancmissiorn coefficients in the e_astic case can be
applied to the anelastic case by replacing the real elastic

constants with their complex analogs defined earlier.

6.3.2 P~SVY waves

The zeroth order of the theory is still considered.
The system formed by the first four equations of (6.37) has
then to be solved in order to obtain the reflection and
transmission coefficients for P and SV waves. n being
equal to 0, the P and SV waves do not have any additional
components consequently N3=N4=T0=T1=T2=0 for an incident P
wave and N3=N4=N0=T1=T2=0 for an incident. 3 wave.

Starting with an incident P wave fhic system obtained

[N
2]

—sinOtlzIl - cosOL;T—3 + sinazN—z + cosoth—4 = sinQg
No No No No
ccse.“f»lil- - sina313- + cosazy—l - sinmz"; = cos0yg
0 No No No
' 1
Ml—sinzal-N—l + p3v3c052a3-T—3- + M—zsinzaz—b"?—
Vi No No V2 NQ

Tq Mo .
+ v, CO0S204— = —=sin2Q
P4 4N Vo 0

0



- At 2Mjcos?; Ny + Pavisin2o,=d + [A? 1 2M,cos2a, [Ny
Vi No No V2 I

2
_ [Ao + 21‘\,400cos ao] (6.42)

- PsVvyS inZGq?—i
No

In the case of an incident S wave, the system of

four equations becomes

-sin(xlN—1 - cosag—T—l + sinazyl + cosa4’—ri = cosly
Tp To To To
- cosalﬁl + sina3z3- - cosazﬁz- + sinaq—T—“— = sin0yg
To To To To
MlsinZ(ll-I\!L + p3v3cosza3ﬁ + -&sinZazy—z-
2! To T, V2 To
+ p4v4c032a4%1- = poVQCOSZGQ
To

A+ 2M1cosza1}y_x _ p3v3sin2a323- _ A zMzcosZaz]&
V1 To To vz by

+ p4v4sin2a4$—4 = N3veSin2a, (6.43)
0
Both systems were solved using the method of the
determinants. The final expressions of the coefficients
for an incidence from the upper medium, i.e medium 1, are

given in Appendix 3 with the following convention:

P1P1 = N,/N, P1S1 = T,/N,
P1P2 = N,/N, P1S2 = T,/N,
S1P1 = N,/T, S1S1 = T3/T,

S1P2 = N,/T, S1S2 = T,/T,



For an incidence from the lower medium, i.e medium 2, the
coefficients are called P2P2, P2S2, P2P1, P2Sl1l, S2P2, S2S2,

S2P1 and S2S1 and are also given in Appendix 3.

6.4 Reflection at a Free Surface

The reflection coefficients at a free surface are
obtained by vanishing stress at the surface. The system

(6.36) then becomes

n-1) w(n 1)
v [ (n)sin2a 120520k ¢3‘w(\,x R )]
[(1)‘N___vv+1*~.__v) (az 3 = 0

v=0,1,3
(5.44a)

n-1) n-1)
aw:;,L a"Jv, )-l =0 (6.44b)

z ~dy /]
2 N(vn{Av + 2MvCOSza7) + T( ‘M¥51n2a\,) + A V-‘(n 1) +2M aw(n 1)]

Vy

2 M [(-1)v veosty (

v=0,1,3

v=0,1,3 "
= 0 (6.44c¢)

Still considering the zeroth order of the theory the system
(6.44) is only solved for n = 0. Consequently there is

3till no adcditional <component for P and S waves, the

IR VPN S0 P () R (80 _ 1)
differential term J‘?("" ’ aw(‘" ’ Yy ’ aw("‘ ‘ V-;vs, Y and -ﬂ(x’—
dz dx 0z dy 9z

are thenn equal to 0 and the system breaks again into two
separate systems: the first and third equations correspond

to the P-SV case and the second one to the SH case.



6.4.1 SH waves

Equation (6.44b) can be rewritten

cos0,. o) cost, (o) _
M, 200y -1\43_;3—_\1‘3 - 0 (6.45)
In this case My = M; and v, = v,;, the reflection

coefficient is then equal to

W
Vi - Mgcosag vy = 1 (6.46)
V‘o) Vo M3C05a3

%
o)

angle ofincidence, it is constantly equal to 1 like in the

at free surface does not depend on 0@, the complex

elastic case.

6.4.2 P=-SV waves

For the P-SV case, the system formed by equations

(6.44a) and (6.44c) can be written

{0)sin20 dcosZqu (o)sin2a, (o)cos20,  _
M, [No T + T(o ——VT— - MlNl —-———vl + M3T3 ——————'Va = 0
(6.47a)
(0YA\g + 2Mgpcos?og ,I(o)MQsinZQ N(o A, + 2M,cos?a;
~Np Vo + Tp o - N v,
+ T?ﬁW351n203 - 0 (6.47b)

V3

An incident P wave is first considered, T?) = 0 and the
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system obtained is

Mysin20g N(lo) M;sin204 T(3°) M;cos20, - 0
- - = (6.48a)
Vo o) vy o) V3
0 0
Ay + ZMOCOSZQQ\ (Al + 2M1coszal\\ () Ty  Mssin2a, - 0
Vo J (0) Vi (00) V3
(6.48Db)

Solving the system (6.48) leads to the two reflection

coefficients at a free surface:

sin2a3sin2a1M1 _ Ao + 2M1C032ao

N(IO) _ V1C082a3 Vo 6.49

< : ) (6.49)

Ny (st(xgsanalMl + A+ 2M1cosza1)

V108203 Vi

and

(0) A1 + 2M1 Osza1

Ty _ 2sin2¢11v3 Vi

N(oo) v1C05203 (sin2a3sin2a1M1 + Al + 2M1C052a1)

v,c0520; Vi
(6.50)

The case of an incident S wave is now investigated, N(oo) =0

and the system (6.47) becomes

Mocos20g _ (o) M;sin20y _ (o) Micos2a;  _ (6.51a)
Vo (0) Vi (0) V3 '
MoSinzao _ &) A1 + 2M1COSZ(11 _ T(_-_;o) M3sin2a3 = 0
Vo (00) Vi T(OO) V3

(6.51b)



The two reflection coefficients are then equal to

(0) [COSZ(!:;Vl (Al + 2M1cosza1 _ Mjsin20,
_'I:L = V3Sin2a1 Vl Vo J (6 52)
T(oo) cos2Q,vy [Ay + 2M1coszg) + Mgsin2a,
visin2o Vi Vo
and
M;3sin20;
0 et hedimddubndbd™
§gl _ Cos2asv; 2 V3
T(oo) v3sin2oy cos203vy; [A; + 2M1C082a1) + MoSinzao)
vi3sin2o, Vi Vo
(6.53)

6.5 Surface Conversion Coefficients

A receiver located at the earth's surface i.e at the
interface of a medium and a vacuum records the disturbance
caused by an incident wavefront at that point and the
disturbances resulting from the two reflected wavefronts.
In our case the medium considered is homogeneous isotropic
and anelastic and the x, y and z components of the
displacement recorded by the receiver i.e dx, dy, dz are

given by the L H S of system (6.24):

de = Y (¥sinay + Tcosow) (6.54a)
v=0,1,3

4 = 3y W (6.54b)
v=0,1,3

d, = 2 ((-l)v"le,”)cosav + (-l)VTf,")sinav) (6.54c)

v=0,1,3
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Once again the zeroth order of the theory is considered
hence the first and third equations correspond to the P-SV

case and the second one to the SH case.

6.5.1 SH waves

The surface conversion coefficient for an incident

d
SH wave is called CST and equal to ;ﬁs. Equation (6.54b)
0

gives
g, = v+ W% (6.55)
hence
W)
CST = 1 + —— (6.56)
v(o")

0)
“3i_ peing equal to 1 (see 6.46) CST is therefore always

o)

equal to 2.

6.5.2 P-SV waves

For an incident P wave the surface conversion
coefficients are called CPE and CPV respectively for the
norizontal and vertical directions of the displacement and

are equal to 5%? and ihL. Equations (6.54a) and (6.54c)
Np

no)

yield
dx = N(oo)sinao + N(1°)sina1 + Tgo)cosag, (6.57a)

d, -N(o°)cosao + N(lo)cosal - Tgo)sina3 (6.57b)
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hence
CPH = 31na1(§%g + 1) + I%% cosO3
No No
and
(0) (30) _
CPV = cosal( () ) - N?) sin0;

N(0)

Using expressions (6.49) and (6.50) for —— ) a
N

CPV can be determined.

For an incident S wave the same

d —=—

(0)

N(0°’

(6.58)

(6.59)

CPH and

reasoning is

applied. The surface conversion coefficients are called

( )

CSH and CSV and areequal to G and (i). Equations
To

and (6.54c) now yield

(0) (0)

eosay + N

dy = sin; + T3 'cosOj3
d, = T(oo)sinao + N(lo)cosal - T(3 )sina3
hence
(0) N(0)
CSH = cost sina
? ( ) o ) !
&) {o
CSV = sinos |1 + —— coso
’ T(o) () '
0 0

(0)

Using expressions (6.62) and (6.63) for —ﬁs a

CSV can also be determined.

nd

(0)
( )

(6.54a)

(6.60a)

(6.60b)

(6.61)

(6.62)

CSH and
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6.6 Examples of Anelastic Coefficients

In order to have an idea of how the anelastic
reflection and transmission coefficients look some examples
of anelastic reflection and transmission amplitudes and
phases are plotted.

The expressions of the coefficients were obtained
using the form etelt - 1) for steady state harmonic plane
waves. To be consistent with chapters 2 and 3 the
computations were performed using the form gialt - t), The
formulae for the coefficients are still valid. The final
results are simply complex conjugate to the results which
would have been obtained using eiele - 1),

Figure 8 contains all the plots of the sixteen
coefficients of the P-SV case for interface A (table 1),
the top graph being the amplitude the bottom graph the
phase. Curve #1 represents the elastic case (all the Q7!
are set equal to 0) and curve #2 represents the anelastic
case. The phase graphs show that elastic and anelastic
coefficients have opposite phase after the first critical
angle. As far as the amplitude is concerned, differences
between elastic and anelastic cases are observed only in
the vicinity of the critical angle and for only four
coefficients: P1P1, S1P1, S1S1 and S1S2. Figure 9 contains
the graphs of eight coefficients for interface B (table
1) . This second interface is formed with two media which

are much more anelastic. The eight coefficients represent
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all the possibilities for an incident ray from the upper
medium in the P=~SV case. Curves #1 and 2 represent
respectively the elastic and the anelastic cases. Curve #3
in the amplitude graph has the same parameters as curve #2
except for QP2 and QS2 which are now set equal to 80.
Differences in amplitude and phase between elastic and
anelastic cases are again observed but they are now more
obvious and they start shortly before the critical angle,
especially with an incident P wave. The phase graphs show
that the transition from sub-critical to super-critical
phases is much smonther in the anelastic case. The same
comment can be made for sub and super critical amplitudes
especially for an incident P wave. This would tend to
indicate that the influence of critical angle for the
linear viscoelastic case is not as sharp as for the elastic
one, Krebes (1980) reached the same conclusions for
incident SH waves.

Curve #3 shows greater differences than curve #2
when they are both compared to the elastic case. This
would show that the difference in amplitude between
elastic and viscoelastic coefficients is dependent on the
contrast of Q between the two media composing the
interface. Krebes (1983) showed for SH waves that the
anelastic coefficients have same amplitudes as the elastic
coefficients when the anelastic media forming the interface
have equal quality factors.

The last comment is about the amplitude of the
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anelastic coefficient S181. After the critical angle for
5152 the amplitude decreases down to a minimum then
increases to finally be very close to 1 for great angles of
incidence. This oscillation also seems to be dependent on
the contrast of Q. This behaviour was rather unexpected
since it is very different from the elastic case.
Brekhovskikh (1980) shows that the behaviour of
viscoelastic coefficients can be very different from that
of elastic coefficients.

Figures 10 and 11 show the effects of elastic and
anelastic coefficients on a wavelet. The reasons for
having chosen this particular wavelet are explained in
chapter 7. Figure 10 contains four cases computed with
interface A and figure 11 contains three cases computed
with the interface B. For each graph the top left wavelet
is the source. The top right one is the elastic response
plotted with the same scale. The bottom left wavelet is
the elastic response replotted with a new scale and then
following are the anelastic responses plotted with this
same new scale. The meaning of the numbers is the same as
for the graphs of the coefficients. The wavelets were
computed at the angles of incidence corresponding to the
greatest differences in amplitude and phase between elastic

and anelastic cases.
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TABLE 1

Interfaces

VP Vs DEN QP

(km/s) (km/s) (g/cc)

Medium 1 4.2 2.4 2.1 67
A

Mediuvm 2 6.1 3.5 2.6 100

Medium 1 1.85 0.3 1.92 20
B

Medium 2 2.19 0.9 2.30 40

VP: elastic wave velocity for P waves
VS: elastic wave velocity for S waves
DEN: density of the medium

QP: quality factor for P waves

QS: quality factor for S waves



Figure 8:

P-SV coefficients obtained with interface A.
Curve #1 represents the elastic case.

Curve #2 represents the anelastic case.

VP1l, VS1, DEN1 are parameters of medium 1.

VP2, VS2, DEN2 are parameters of medium 2.

93



PIP1 VP1=z4.200 VP2=6.100

o o o o

VS1=2.400 VS52=3.500
DEN1=2.100 DENZ2=2.600

QO"
.8+
.6+
41
.2-:.

010720730 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES
[Tt et -

: "1
mr l:::::::“ -[-
S L !
Oﬁ»:!'xal lllllllllllllllll .‘ 2

10 20 30 40 SO 60 70 80 S0
ANGLE OF INCIDENCE IN DEGREES



P1S] VP1=4.200 VP2z6.100
VS1=2.400 VS2=3.500
DEN1=2.100 DEN2=2.800

0.6 .= ......... [ PEPIDUP EPRrS 1|g..ﬁ._l1_....l,...%.¢ﬁ

1
0.4% 2
0-21' ?'
o T30 30740 50 60 80 a0
ANGLE OF INCIDENCE IN DEGREES
! i
1,2 !"" XX XK KX
Mrra ' axaaxxx e xxxxxx x CeeenxEERE 4
Y
O e e
0T 30 30 40 50 60 70 80 80

ANGLE OF INCIDENCE IN DEGREES



PIP2 VP1=z4.200 VP2=6.100
VS1=2.400 v52=3.500
DEN1=2.100 DBEN2=2.600

4

1
<+

[y
({JOR(DNO'I@
N WA AN W NN NN R

......

010 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES

b i .l..A JL‘

PP BNEPEPUE BPUTUPEr Gl DU U AT I OIS IS U D BT UPETE U SN S N W aey
T T+ T + T 1+ T+ g | + T

'ﬂ'--
.
i 1
Oxxxmnnmmnmmaxxxxxx
EPNTEES EPUPAT P AP B UVSrar S ar e | .LALL4,
- -

010 20 30 40 E0 80 70 80 90
ANGLE OF INCIDENCE IN DEGREES



97

P1S2 VP1=4.200 VP2=6.100
VS1=2.400 VS2=3.500
DEN1=2.100 DEN2=2.600

PEFUTTIYE I EP U AT S R Lo s a0y [ S ES PP PSP GT T N SV
. + 1 | 1~ t M BEAR an . an ae o t 4= -+
s s
3 3
+ b
e
.
3
[ 2
T F
< -t
. 1
+ 3
3
b | " 144. ..............................

0 10 20 30 40 50 50 70 80 90
ANGLE OF INCIDENCE IN DEGREES

—— — — R P }
2““ XXXy M ¥ XA XXX xUKK R T
b
+ 2 | 1 f
L
s
HE d -
4
1 ]
L 1.2 1 2
01>-~xxx' xxxxxxxxxxxxxxxxxxxxxxxxxx Xxxxx XK 1
L..Jl....|....|.L..1.....A.J. PPN A B

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



SIP1 VP1=4.200 VP2=6.100
VS1=2.400 VS2=3.500
DEN1=2.100 DEN2=2.600

O-B,ﬁ  PPRPANE ST RIS S PSS s s

[ 1
0.4 2
0.2
0 10590730 40 50 60 70 80 Q0
ANGLE OF INCIDENCE IN DEGREES
ZWFﬁriéfi:EIT o
m4
oftRescr e =

0 10 20 30 40 SO 50 70 80 90

ANGLE OF INCIDENCE IN DEGREES

48



99

S1S1 VP1=4.200 VP2=6.100
VS1=2.400 VS52=3.500
DEN1=2.100 DEN2=2.600

010 20 30 40 £0 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES

NEFEPEIY BPEPP P U SN IPEPIPN ISP [N P UPEPEI W O S
v I T v = — T
ALy 3 !
[ 1
1 2  xx
+ I.ux xxxxx <,
Tt T . EnREEXRXRERES
: Xk XXX Xxy x
1 x x 2
O.-u-xl'nzx xxxxxx ’l‘ 1
..............................

0 10 40 30 40 50 60 70 80 30
ANGLE OF INCIDENCE IN DEGREES



100

S1P2 VP1=4.200 VP2=6.100
V51=2.400 V52=3.500
DEN1=2.100 DEN2=2.600

PSPl EFEPET A AR Y SN PR AP RO BTN BPET PRV B EPEPRrE N AR
. 1+ T+ T+ -1 1 + ) T T +

..................... .1*4

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES

NPT EPRPEPE RPN N EPUPEPOPS BRI PO BT PP EPa Lot
t e ettt

2mr

b

1,2
TMgxxxxxx XX xRX

s

<

-
0%

TS S ..,41..+ .......................

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



101

5152 VP1=4.200 vP2=6.100
VS1=2.400 v§2=3.500
DEN1=2.100 DEN2=2.600

—
EN

l\.)-hOl)CDON

........................................... :

2]‘[J llllllllll 12 xxxxxxxxxxx
“‘--
4
1 xxxx®
Ofrxrxzznncber =2ee
.......................................

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



102

P2P2 VP1=4.200 VP2=6.100
VS1=2.400 VS§2=3.500
DEN1=2.100 DEN2=2.600

PP U EPAPET AT U ArEP ST UrUT AT I PR ST U SN IR UL B B R
. b+ bt 1+ 1+ o
}
3 1 L
0.21 3 ]
+
.“nl: _LLI‘L -l*;;n JA.IA'.‘A—L—A At

0 T0 20730740 50 €0 70 80 90
ANGLE OF INCIDENCE IN DEGREES

— NS S B - 4 1l - NS B
T
2“—-
4
L 3
4
1 1,2
TMgxxxxnxx I E X R EEEEEEERE &4 xx RHXNXXXXNKX
L
0 r
. <+
.HJ.. L LLL 14_‘ 4 .AJJLLLL._._.

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



103

P2S2 VP1=z4.200 VP2=6.100
VS1=2.400 V32=3.500
DEN1=2.100 DEN2=2.600

0 10 20 30 40 50 60 70 80 30
ANGLE OF INCIDENCE IN DEGREES

I e e o i mana e oo B e

12

TP o % %% % X 2 x % % 2 3¢ % % X x X XX XXX KX KKK XKK KK XX x e
!

0} 1
B I e B B o o B e o e

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



P2P1 VP1=4.200 VPZ2=6.100

VS1=2.400 VS2=3.500
DEN1=2.100 DEN2=2.600

1.4 .::t{.::;nr:u_LlL#,..:J,..:....= ....... PSS BN
f 1

1 .21 2

100'1"

0.8} AN

0.5+

0.4}

0.2+

P Y MUY EPE U ATl U EPA Ut ISR BT Ui PN SR PRy

vvvvvvvvvvvvvvv

0 10 20 30 40 50 60 70 80 90

ANGLE OF INCIDENCE IN DEGREES

PEPErYE BT | BT AT ) BRI BT | IS PRSP | Y
-+ +
2“’-- lllllll
1 2
s
L
L
nu-
L
s
[ 1.2 1
0-1 xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx ﬁ
.................................

0 10 20 30 40 50 60 70 80 90

ANGLE OF INCIDENCE IN DEGREES

104



105

P251 VP1=4.200 VP2=6.100
VS1=2.400 VS§2=3.500
DEN1=2.100 DEN2=2.600

PN I IPEPPEr EUPUrOr i AP ar DU S e | BRSBTS DA S Y
. MM ¥ AL I 1] L v v LI 1] v
. .
.
i 1
0.2t 2
.
.

‘..L....l‘,.. ....l....l..;..l....I....l4..;

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES

- -+ ++
2ny
|
a
L
L
m+ 4
! !
[ 1
1 2 1.
04“::::’ xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx o4
........................................

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES



106

S2P2 VP1=4.200 VP2=6.100
VS1=2.400  VS2=3.500
DEN1=2.100 DEN2=2.600

f

lA_AAlAL.Al‘_A“lAlll bt AAAI.A.AJ.AAL ......

0 1050730 40 50 60 70 80 Q0
ANGLE OF INCIDENCE IN DEGREES

-

b

b 3

q b
*

-

PR AA.‘;IAAJ'A‘AA bt b .!....l..* ......

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCICENCE IN DEGREES




5252 VP1=4.200 VP2=6.100
VS1=2.400 v52=3.500
DEN1=2.100 DENZ2=2.600

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE IN DEGREES

| [P B PN ST I SR i P
-t 1 -+ 4+ 4=t
2“’.- llllllllllll x
1 2 X x
XX x g
X gy
Xy,
1,2 . +
)
Wexxnxxx xxxxxx¥
x
xxX
1 lxl"‘-
xx X 4
0F  exeeeexxxxs
PPN BN TPV IR WP SO SPUPIP IV BN U U

0 10 50730 40 50 €0 70 80 90
ANGLE OF INCIDENCE IN DEGREES

107



S2P1 VP1=4.200 VP2=6.100
VS1=2.400 VS§2=3.500
DEN1=2.100 DEN2=2.600

0.6Le ........ bbbttt bttt ! PP S IS BRSSP

{
0.4 2 T
0.2 !
0 10 20 30 40 50 80 70 80 90
ANGLE OF INCIDENCE IN DEGREES
211.': JfA_.:JJJJ lj %_AVH# | 4
nig..‘.'i ............. ..;;;.:if:;::;
O s

0 10 20 30 40 50 60 70 80 90

ANGLE OF INCIDENCE IN DEGREES



5251 VP1=4.200 VP2=6.100
V51=2.400 vS§2=3.500
DEN1=2.100 DEN2=2.600

010720 30 40 20 80 70 80 90
ANGLE OF INCIDENCE IN DEGREES

................... [ U BT IO PGPS P
| 4t
- =zxxxx XA X AN XXX

2m SRRALLLLETETS .
[
[

m+ R
4
4
b

1'2 1 axwxxx

0 ...................... XX XXKRH XX XXX T

.......................................

ANGLE OF INCIDENCE IN DEGREES

LUz



110

Figure 9: P-SV coefficients cbtained with interface B.
(only incidence from upper medium is considered)
Curve #1 represents the elastic case.
Curve #2 represents the anelastic case.
Curve #3 represents a second anelastic
case: QP2 and QS2 are set equalt to 80
VP1, VS1, DEN1 are parameters of medium 1.

VP2, VS2, DEN2 are parameters of medium 2.
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Figure 10:

Effects of reflection and transmission
coefficients on a wavelet (4 cases
computed with interface A).

VP1, VS1, DEN1 are parameters of medium 1
VP2, VS2, DEN2 are parameters of medium 2

(Numbers have the same meaning as in Fig. 8)
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Figure 11:

Effects of reflection and transmission
coefficients on a wavelet (3 cases
computed with interface B).

VP1l, VS1, DEN1 are parameters of medium 1
VP2, VS2, DEN2 are parameters of medium 2

(Numbers have the same meaning as in Fig. 9)
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CHAPTER 7

SEISMOGRAMS

In this chapter the theory developed in the previous
chapters is used to compute simple synthetic seismograms.
The purpose is to evaluate the importance of including
viscoelastic geometrical spreading and viscoelastic
coefficients in the computation of synthetic seismograms
for waves passing through layered linear viscoelastic
media.

The zeroth order of the asymptotic ray theory is
used. The amplitude of motion of a ray propagating through
a model and reaching a receiver is given by an inverse

Fourier transform as
itlw
W = 1 s()g(_m)_i___ io(‘r-t) do® (7.1)
2l Lw)

where S(m) is the frequency spectrum of the source pulse
s(t), Y(o) ei®(® js the complex product of the anelastic
reflection and transmission coefficients for the specified
ray, Y being the relative amplitude and ¢ the relative
phase and L(®W) is the geometrical spreading given by
(5.82). 1T is the complex phase function. Its real part is
the arrival time of the ray and its imaginary part gives

the attenuation of the ray due to absorption. W(t) can



easily be determined using a Fast Fourier Transform (FFT)

algorithim, the term S X_gﬁ%;;ﬂﬂ having to be equal to zero

beyondsome Nyquist frequency.

In the computations, Q is assumed to be independent
of frequency. Consequently the velocity dispersion is
neglected and a constant velocity vy is used for all
frequencies. This assumption introduces an error in the
response however this error can be largely reduced Dby
considering a source pulse which exibits a high and narrow
peak at a dominant frequency f,. Most of the contribution
to the integral (7.1) will thus come from a narrow interval
centered about ® = o, = 2[If,. The dispersion in this
interval will be negligible. To reduce the errors in
arrival time caused by neglecting the velocity dispersion
the values of the constant velocity v, and the quality
factor Q used in the computations are the ones calculated
at the dominant frequency of the source pulse. Taking into

consideration all these factors the source pulse is chosen

to be

S(t) = ii_n_@gl‘_); (7.2)
1+ Fﬁﬂﬂ
n

Figure 12 shows the source pulse and its amplitude

spectrum.

The model used to compute synthetic seismograms is a



crustal model calculated by Silva (1976) (table 2). Both
the point source and the receiver are located at surface.
The rays considered are P1P2P3P3P2P1 and S152S3S3S2S1. The
vertical and horizontal components of the arrivals are
computed for elastic (Q! is set equal to 0 in each layer)
and viscoelastic cases (figures 13 and 14).

As expected there is no noticeable diffence in
travel time between synthetic seismograms computed in the
elastic and anelastic models. This is due to the fact that
stationary ray path satisfies the least time Fermat's
principle (see chapter 4). Considering the ray
P1P2P3P3P2P1 the difference in amplitude between elastic
and anelastic seismograms is only due to the
viscoelasticity of the media traversed. There is no
significant difference in phase. Figures 15 and 16
show the logarithm of the amplitude and the phase of the
product 17522 for the ray P1P2P3P3P2P1 at all epicentral
distances X until the ray does not exist anymore. Curve #1
is obtained using elastic geometrical spreading and elastic
reflection and transmission coefficients. Curve #2 1is
determined using anelastic geometrical spreading and
anelastic reflection and transmission coefficients. The
case formed by elastic geometrical spreading and anelastic
reflection and transmission coefficients is represented by
curve #3 and curve #4 1is obtained with anelastic

geometrical spreading and elastic reflection and
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TABLE 2

Crustal Model

Layer VP VS DEN QP QS H
(km/s) (km/s) (g/cc) (km)
1 4.2 2.4 2.1 67 30 1.4
2 6.1 3.5 2.6 100 45 8.2
3 7.3 4.2 3.0 180 80 12.9



Figure 13:

Seismograms obtained for the ray P1P2P3P3P2P1
First: vertical component (elastic case)
Second: horizontal component (elastic case)
Third: vertical component (anelastic case)

Fourth: horizontal component (anelastic case)
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Figure 14:

Seismograms obtained for the ray S$1528353S2S1
First: vertical component (elastic case)
Second: horizontal component (elastic case)
Third: vertical component (anelastic case)

Fourth: horizontal component (anelastic case)
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transmission coefficients. The "log amplitude" curves
clearly show no difference between all the cases described
above until X gets close to > km which corresponds to the
critical incidence for P waves between the third layer and
the half space. This is true for both vertical and
horizontal components. The same comment can also be
mentioned for the phase curves. The graphs also show that
the differences in amplitude and phase after this critical
incidence are mainly due to the anelastic coefficients.
Curves #2 and 3 are practically identical to each other in
each case and so are curves #1 and 4. This would tend to
show that the difference between elastic and viscoelastic
geometrical spreadings is negligible even after the
critical angle. The ray $1S2S353S2S1 is now investigated.
The attenuation due to absorption is much stronger in this
case since the quality factors for S wave are much lower
than for P wave. Hence only the highest peaks of the
arrivals can be observed on the seismograms since the
contribution of higher frequency components is mostly
eliminated (figure 14). Figures 17 and 18 show the
logarithm of the amplitude and the phase of the product
X—fi—" for the ray S1525353S2S1. The meaning of the
numbers is the same as for the previous case. The "log
amplituie" curves again show that the difference in
amplitude between elastic and anelastic seismograms is due

to the viscoelasticity of the media traversed. The
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logarithm of the amplitudes of the elastic and anelastic
products li?gare practically identical until X gets
close to 90 km except for the horizontal component where a
difference can be observed at X = 19.7 km. This two values
of offset respectively correspond to the critical incidence
for the coefficient S1S2 between the third layer and the
half space and to a minimum amplitude for the coefficient
S1S1 for this same interface. The phase curves show a
slight difference between elastic and viscoelastic
phases from X = 19.7 km. This difference becoming greater
when X approaches 90 km. This is true for both vertical
and horizontal components. Comparing curves #2 and 3 on
one hand and curves #1 and 4 on the other hand again show
that the differences observed in amplitude and phase are
mainly due to the viscoelastic coefficients. The
logarithm of the amplitude and the phase of the product
the product X—fﬁi were also computed for the converted ray
P1P2P3S3S2S1 (figures 19 and 20). Once again the
differences in amplitude and phase start from the vicinity
of a critical incidence (X = 54 km corresponds to the
critical angle of the coefficient P1P2 between the third

layer and the half space) and are due to the viscoelastic

coefficients.
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Figure 15:

Logarithm of the amplitude of the product

X—If‘ii for the ray P1P2P3P3P2P1 at all

possible epicentral distances.
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Figure 16:

Phase of the product 3Lf££ for the ray

P1P2P3P3P2P1 : = ' . vossible

epicentral u

Curve #1l: e -cometrical spreading
el: ~..c coefficients

Curve #2: anelastic geometrical spreading
anelastic coefficients

Curve #3: elastic geometrical spreading
anelastic coefficients

Curve #4: anelastic geometrical spreading

elastic coefficients
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Figure 17:

Logaritnm ¢f the amplitude of the £ woduct

b -3 f~r the ray S1S253S352S1 at all

t

pr3sible epicentral distances.
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Figure 18:

Phase of the product X_fﬁﬂ for the ray

$1528353S2S1 at all possible

epicentral distances.
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Figure 19:

Logarithm of the amplitude of the product

Y——f—iﬂ for the ray P1P2P353S2S1 at all

possible epicentral distances.
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Figure 20:

170

Phase of the product X_Fiﬁ for the ray
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CHAPTER 8

CONCLUSION

The stationary ray nethod has been used to compute
reflection and transmission coefficients, geometrical
spreading and simple synthetic seismograms for P-SV waves
in linear viscoelastic media because it satisfies both
Snell's law and the least time Fermat's principle. This
was not the case with the conventional ray method; Y the
attenuation angle had to be chozen arbitrarily consequently
the conventional ray method only satisfied Snell's law.

The results obtained for linear viscoelastic
reflection and transmission coefficients show differences
in phase and for certain co«fficients, in amplitude too
with their elastic analoy?. The phases of elastic and
viscoelastic coefficients azt spposite to each other from
any critical incidence. The diffence in amplitude when it
exists occurs in the vicinity of a critical incidence and
is dependent on the contrast of Q between the two media
forming the interface.

The simple synthetic seismograms were computed with
frequency independent loss factors. These computations
reveal that the difference in amplitude between wavelets
propagating in elastic and viscoelastic media before
encountering any critical incidence is mainly due to the

anelasticity of the media traversed. The results obtained



for the geometrical spreading using Silva model show
prartically no difference between the elastic and the
viscoelastic case even after a critical angle.

The stationary ray method shows the importance of
including viscoelastic reflection and transmission
coefficients in the computation of synthetic seismograms
for waves propagating through layered linear viscoelastic
media. Of course more computation using this same method
to represent the anelasticity is needed in order to draw
final conclusions, especially for the geometrical
spreading. The next step would be to produce for several
anelastic models synthetic seismograms showing all the
arrivals at a receiver, including the multiples, and

compare them with real data.



FOOTNOTES

[page 38]
Equatiss (5.5) contradicts equation (2.16&.. This 1is
pec: .z ~he calculations in chapter 2 were r~r:ormed using

the torm ei®T-t) whereas in chapter 5 the form el®*"® was
used. All the previous calculations on geometrical
spreading were performed using el@c-1 In order to Dbe
consistent this form is used again. The final result for

the geometrical spreading is of course valid for both

forms.
[page 73]
Since u(f, t) is the real response of the integral —l—I
21 °~
can be replaced by l—Ref (see 7ippendix ). To avoid
n
divergence problem at ®=0, the lowcr limit oi *he integral

is replaced by ®, where Q. is smell but greater than zero

(see ART, Hron (1984)).
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KPPENDIX 1

FOURIER TRANSFORM OF f(t) * dg(t)

f(t) and g(t) are two arbitrary functions of time t. The

Stieltjes convolution of £(t) and g(t) is given by

£(t) * dolt) = f flt - 1) 9%:—) dt (A 1.1)

-

Its Fourier transform is equal to

£f{w) * dg(w)

I = f £{t) * dgft) e-ior 4t

t
I flt - ) 9%31 dt| e 1oz dt (A 1.2)
T

-~

The integra®. >n region is shown on the following graph

th

_/tST

=1

Changing the order of integration yields




I = I flt - ) ei®t 4t —diﬂ dt

Let t-T = &, the t-integral becomes

j flt - 1) efot gt = e-iwr ( f(ﬁ) e-i05 dE

e-ior f(t) e-iot dt

if £(t) = 0 when t < 0. Then

I = f £f{t) e-iot 4t I g-iwt gg(ti) dt

Calculating the T-integral by part yields

ton

j e-iat dag(t) dt = [e-tor g(t)]: - I o{1) de-iwr

dt

-

= i f g(t) e i9* dt

(A 1.3)

(A 1.5)

(A 1.6)
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Finally

—
I

icoj £(t) e-iet dt I g(t) e-io* dt

Flo) X () (A 1.7)

=
il
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APPENDIX 2

THE INVERSE FOURIER TRANSFORM FOR A REAL RESPONSE

Considering a real response f(t) at the receiver,

f(t) being a real function of time t, we have

£fe) = £7t) (A 2.1)
where * means the complex conjugate. From its Fourier
transform

flo) = j £(t) e-iot dt (A 2.2)

we obtain

dou

o) = £'(t) el dt

L S
i

- H-w) (A 2.3)

Consequently we can write

1l

£(t)

1t fo) eit do
oI |

1 [J (o) eiot do + I f(w) elet do
=1 |



ot

j £(-0) e-iet do + I fo) eior dw
[} 0

r"

Il
=g

[Fla) et + Fo) et do

<Ne

0

( [(E(@) eier) + f(w) ei“"] dw

N
<1S
[

)

2 Re (F(0) ei®t) do

N
<l
—

o

Re f fw) etet dw (A 2.4)
0

!
=

If £(t) is a real function, the form -+ Re I can be used
rI 0

211

(5.2) satisfies (A 2.3) if the various terms are defined

instead of the form —LI . The integrand of equation

approriately for negative frequencies.
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APPENDIX 3
FORMULAE OF THE VISCOELASTIC REFELECTION

AND TRANSMISSION COEFFICIENTS

P1P1 = NP1 + NP2 + NP3 + NP4
DP

where

NP1 = X[K1 X(SI2 SI4 + B CO4) + S(CO3 SI4 + SI3 CO4) +
K2 X(CO3 B - SI3 SI2)]

NP2 = QIP(-SI2 SI4 - B CO4) + S(SI1 SI4 + A CO4) -
K2 X(SI1 B - A SI2)]

NP3 = ﬁ{?(—co3 SI4 - SI3 CO4) + Kl X(-SI1 SI4 -A CO4) -
K2 X(SI1 SI3 -A CO3)]

NP4 = -R[P(CO3 B- SI3 SI2) + K1 X{SI1 B - SI2 A) +

S(SI1 SI3 - A C03)]
and
DP = DP1 + DP2 + DP3 + DP4
where

DP1 = X[Kl X(-SI2 SI4 - B CO4) + S(-CO3 SI4 - SI3 CO4) +

K2 X(CO3 B - SI3 SI2)]



Dp2

DP3 =

DP4

I}

where

TP1 =

TP2 =

TP3 =

TP4 =

Q[P (-SI2 SI4 - B CO4) - S(-SI1 SI4 + A CO4) -

K2 X(SI1 B + A SI2)]

%[P(-CO3 SI4 - CO4 SI3) + K1 X(-SI1 SI4 + A CO4) -
K2 X(SI1 SI3 + A CO3)]

_R[P(CC3 B - SI3 SI2) + K1 X(SI1 B + 2 5I2) +

S(SI1 SI3 + A CO03)]

TP1 + TP2 + TP3 + TP4
DP

P1S1 =

-X[P(-SI2 SI4 -B CO4) + S(SI4 SI1 + A CO4) -

K2 X(SI1 B - A SI2)]

~X[P(-SI2 SI4 - B CO4) - S(-SI1 SI4 + A CO4) -
K2 X(SI1 B + A SI2)]

%[P(-Sll SI4 - A CO4) - P(-SI1 SI4 + A CO4) -
K2 x<si1 A + A SIl)]

-R[P(SI1 B - A SI2) - P(SI1 B + A SI2) +

S(SI1 A + SI1 A)]
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where

NP5 =

NP6 =

NP7

I

NP8

where

TP5

TP6

PlPZ = NPS + Npsl;?NP7 + NR&

-X[Kl X(SI4 SI1 + A CO4) + P(CO3 SI4 + SI3 CO4) -
K2 X(CO3 A -SIl1 SI3)]

Q[P(-SI1 SIA4

A CO4) - P(-SI4 SI1 + A CO4) -
K2 X(SI1 A + A SI1)]

X[P(-SI4 CO3

SI3 CO4) + K1 X(-SI1 SI4 + A CO4)
K2 X(SI1 SI3 + A CO3)]
-R[P(CO3 A - SI3 SI1l) + K1 X(SI1 A + A SIl) +

P(SI1 SI3 + A CO3})]

P1S2 = TPS + TPG + TP7 + TP8
DP

-X[-K1 X(SI2 A - B SI1) - S(CO3 A - SI3 SIl) +
P(CO3 B - SI2 SI3)]
Q[P(SI2 A - B SI1) - S(SI1 A + A SIl) +

P(SI1 B + A SI2)]
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TP7 = ﬁ[p(co3 A -SI3 SI1) + K1 X(SI1 A + A SI1) +
P(SI1 SI3 + A CO3)]
TP8 = -X[P(CO3 B - SI3 SI2) + Kl X(SI1 B + A SI2) +

S(SI1 SI3 + A CO3)]

NS1 + NS2 + NS3 + NS4
DS

S1Pl =

where

NS1

O[Kl X(SI2 SI4 + B CO4) + S(CO3 SI4 + SI3 CO4) +
K2 X(-CO3 B + SI2 SI3)]
NS2 = Q[K1 X(SI2 SI4 + B CO4) + S(CO3 SI4 -CO4 SI3) +

K2 X(-CO3 B - SI3 SI2)]

NS3 = ﬁ{Kl X(CO3 SI4 + SI3 CO4) - K1 X(CO3 SI4 - SI3 CO4) +
K2 X(-CO3 SI3 - SI3 C03).
NS4 = -R{K1 X(-B CO3 + SI3 SI2) - Kl X(-B CcA3 ~ SI2 SI3) +

S(CO03 SI3 + SI3 CC3)]

and

DS = DS1 + DS2 +DS3 + DS4

where



DS1 =

DS2 =

DS3 =

DS4

where

TS1 =

TS2 =

TS3

TS4 =

189
-X[Kl X(SI2 SI4 + B CO4) + S(CO3 sSI14 + SI3 CO4) +
K2 X(-C03 B + SI2 SI3))
QI-P(SI2 SI4 + B CO4) + S(SI1 SI4 - A CO4) +
K2 X(-SI1 B - SI2 A))]
ﬁ[-P(CO3 SI4 + SI3 CO4) - K1 X(SI1 SI4 - A CO4) +
K2 X(-SI1 SI3 - A CO3)]
-R[-P(-CO3 B + SI3 SI2) + K1 X(B SI1 + A SI12) +

S(SI3 SI1 + A CO03)]

DS

-X[Kl X(SI2 SI4 + B CO4) + S(CO3 SI4 ~ SI3 CO4) +
K2 X(-CO3 B -SI2 SI3)]

~Q(-P(SI2 SI4 + B CO4) + S(SI1 SI4 - A CO4) +

K2 X(-SI1 B - A SI2)]

ﬁ[—?(cos SI4 - SI3 CO4) - K1 X(SI1 SI4 - A CO4) +
K2 X(SI1 SI3 - A CO3)]

-R[P(CO3 B + SI3 SI2) + K1 X(SI1 B + A SI2) -

S(SI1 SI3 -A CO3)]



where

NS5

NS6 =

NS7 =

NS8 =

where

TSS =

TS6 =

TS7 =

NS5 + NS6 + NS7 + NS8
DS

S1P2 =

-X[Kl X(CO3 SI4 - SI3 CO4) - Kl X(CO3 SI4 + SI3 CO4) +

K2 X(CO3 SI3 + SI3 CO3)]
Q[-P(CO3 SI4 - SI3 CO4) - Kl X(SI1 SI4 - A CO4) +

K2 X(-SI1 SI3 -A CO3)]

Q[-P(CO3 SI4 + SI3 CO4) - Kl X(SI1 SI4 - A CO4) +

K2 X(-SI1 SI3 - A CO3)]
-R[-P(CO3 SI3 + SI3 CO3) - Kl X(SI1 SI3 -A C03) +

K1 X(-SI1 SI3 -A CO3)]

TS5 + TS6 + TS7 + TS8
DS

s1s2 =

-X{K1 X(SI2 SI3 + B CO3) + S(CO3 SI3 + SI3 CO3) +

K1 X(~B CO3 + SI3 SI2)]

Q[-P(SI2 SI3 + B CO3) + S(SI1 SI3 - A CO3) +

K1 X(-B SI1 - A SI2)]
§[-P(co3 SI3 + SI3 CO3) - Kl X(SI1 SI3 - A CO3) +

K1 X(-SI1 SI3 - A CO3)]
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TS8 = -Q{-P(-B CO3 + SI3 SI2)

S(SI1 SI3 + A CO3)]

p2pP2 = P1P1 pP2S2 = -P1S1
P2P1 = P1P2 P2S1 = P1S2
$2P2 = S1P1 $252 = -Sis1
S2P1 = S1P2 $2581 = S1S2
2 2
A=Rolv1-2R°1V3X
Vi
2
2 RO, V3 (K)
B =RO, V, - N
Va2
2
g7] = 2RO ViXEP

Vi

2 RO, V2 X S

SI2

V; N
SI3 = 2 RO, V, K1 X Q
SI4 = 2 RO, V, K2 X R

CO3 = RO, V, (1 - 2(K1 X)?)

+ K1 X(SI1 B + A SI2)

+
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co4 = RO, V, (1 - 2(K2 X)?)

N=y"1_ K1=y—— Kz:!_
V2 Vi Vi
X = sinq,
P = cosQ, S = cosa, Q = cosQ, R = cosQy,

(RO, is the density of the nth medium and V is the complex

velocity (see chapter 6 for legend))



