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ABSTRACT
In this study, three-dimensional natural convectlon in- a
rectangular cavity was 1nvestlgated u51ng a numerlcal method

called SIMPLE C. Situations of two «cavity’ geometrxes were

studied.

2

In the situation of Ax=Az=0,2 cav1ty, effect  of
‘Raylelgh number for the hor1zontal cav1ty and effegt of tilt

nangle for flxed Raylelgh number were examined. For the

horlzontal- cav1ty the flow patternjisﬁa S—shaped'parallel_

shear flow in the pﬂimary plane,:superimposed with two pairs
of counter-rotating~ﬂortice§ in.the;lateral secondary plane.

For the Rayleigh number of range 50 to 10¢, no fundamental

change in flow pattern was found. When the cavity was tilted

S

from -90° to 90°, three flow regimes, horizontal, modified
and filament 'pattera, L 0Ok over sequehtiallyg:SkeWing the
cavity and the way‘tolimbose the temperature gradient on the
system had no funaamental effect on the flow battern.

For the.Ax=$ and Az=1 cavity, diffementi;paths were
followed in changing the orienﬁation'of'fhe eavif& while.the
Ra¥geigh number was fixedl§1-107xxwﬁeh the cavity was skewed
from A to D, gradual tran51t10n from a transve(se cell to a
longltudlnal roll was observed and no bifurcation was found
along path AD In tﬁe 51tuat1on of rolllng, a reglon of
about 10° near B where the solut1on was branched was fpund,
In athe situation. of t11t1ng, the.blfuract10n~reglenfwae'ae

large as 45° from B. In the bifurcation region, the flow
g

pattern can ‘be either a longitudinal roll or .a series of

ot

v
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transverse

, ‘ 1 . .
rolls depending upon the initial input.

o~
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I. INTRODUCTION

o A - 3
A. PRELIMINARY . -

5
: ’ . : L. /.
~All - fluid f£flows occurring on the earth are’ subject to

gravitational forqe. When the‘teméerature is. not uniformly
distributed . in the ffiuid,f this,temperature"nbnuuiformity
will generally cause f'density;.‘nenUniformityf:"Iftb th
temperature'gradient is,perallel and,opposite'to,thewgrayit;
vector, the fluid will remain statlonary, thus creetingi the‘
-51tuat10n of stable- stratification. If the temperature
gradient has the .same airection as the gravity vector,
ficonbection rwili set ‘in 1f ‘the magnltude of the temperature
‘gradlent exceeds a certaln threshold value ~In the 4gnstance
when - the temperature gredlent in the fluld,is uot parallelﬂ,
'to the gravity‘vector, convection.eets invhoweyer'smaili‘the
magnitude . of . the temberature gradient. Thié€ kind of
convection, caused by the udnuniformity of the temperature
(thus .density) in the fluic under the act1on of grav1ty, 1s
called natural convectlon, or free convectlon ‘in cqntrast to
forced conyeetion_caused_by mechanical means.
R Once natural'convectiqh happens, the energy and mass
transport fluxes in | the fluid are changed. 'Natural
convection,may,e%ther play a aominaut role ‘(pure natural
EOnvection) or alter the transpert process significantly
(mixed convection). : | |
< ‘ &
Natural convection is one of the most common phenomena

in nature. It ranges from the motion of the mantle of the"



-

earth to the formation of the ozone layer resulting in a
very Qiae spéctrum of peoplétﬁrﬁm different fields studying.
the phehomena. They includevgeophysists énd astrqﬁhysists,
'meperologiéts, oceénographers, “applied mathematiéians and
engineers; with each group cf people»gmphaSis'is placed on a
"different aspect of  .the problem. The éngineerré main
interests afé3¢n the»pfoblems_of everyday life and his major
"‘tésk is to predict thepwbéﬁévior of a physical system
(idealized‘or not) under various conditidns so aé to provide
guidlines for industrial designs.  The economic and
teéhﬁoloéibél developments in - the p-st twébdgcades have
shifted the engineering emphasis more &nd more on energy
consefvatiov and ecological consideratfons.,This shift has
stimulated aciivities in research aimed at an understééding
'of natural convection in many natural and technological
situations: this understanding, for instance, 1is essential
to designs of energyfefficieﬁt devites and the development
of possible new energy sources; and ifi is also essential to
the monitoring-'ahd 'controilihg'of enviromentalvpollution.
-Technblogical demands. and theildevelopmeﬁt of ~computing
fechniques in recent decades habe greatiy increésed
investigations in this area. It is beiieved théﬁ this trend
will persist'thfqugh the 1990's.[1,2]
| Natﬁfal convection can be classified into external flow
and internal flow. When the mass of fluid is completely
confihed in a cavity made of rigid walls and the temperature

gradient in the fluid 1is caused by the nonuniformity of



temperature on the walls, the resultant ;Eiural convectién
is an internal flow. If the fluid is not completly containedl
by a <cavity of rigid walls and thelteépe:ature gradient in
the fluid is causedlby either a sur}ace, line or a point
energy source, -the natural convection is:an external fiow.,
Examples of the‘lattér case are: natural convéction along a
§ertical piane with ~a higher temperature than that of the
fluid (sgrface source); the plume of a candle 1in the air
(can be idealized as point source). |

Examples of internal natural convection are aSundant.
Among these, two of\technological interesf are convection in
building elements (cavity wallé, double-glaze windows) and
convectidhf in a thermosyphon.'These two instances actually
represent the two opposite . directions in application of
natural convection. We knowi that natural convection will
increase enérgy transport ability (heat transfer rate) of
the fluid in the cavity substantially. In some situations
this increase;ié desirable while in others the increase is a
- nuisance.s In; tﬁe situation of building elements, whét we
want 1s to gét bette} insulation to prevent heat 1loss
through the‘:elements. So tﬁé main task is how to suppress
natural convéc;iqn; In the situation of thermoéyphon, on the
other hﬁfdi the'task_is to enhance theinatural convection,
and thus 1increase ﬁhe ehefgy transport ability of the
thetmosypﬁﬁn. ‘In history, both applications have been the
mqtivation.for ;esearch in natural convection; |

R |
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Whatever the appliéétion, an undefstanding of basic
physics of - natural convection is essential. In ,many
appliqﬁtions, the rectangular cavity is the common geometry
" because it is geometrically relativély simple. Yet natural
cohvection in it has all the characteristics of natural
convection 1in an ehclosure. So in this study, we.will use
the réctanéular cavity as the fluid container. ! This
rectapgulaf box (we will wuse cévity, enclosure and box
imterchgngabily to refer to the same thing) can vhéve ‘one
Qéii'wkepg unifo;mly at‘a high temperature and Ehe opposite
wall.at a  low temperature; four other walls can have
perfectly éonducting or perfectly insulating surfaces.

The behavior of' the sysfem is génefally_ determined by
five geometric and physical faqtbrs. They are the size of
the box, the orie&tation of the box with respect to the
gravity,  the magnitude énd direction of the temperature
graaient imposed on the system and the fluid contained 1in
the box. 1In this study air is used as the fiuid'in the box
and the direction of the temperature gradient 1is always
fixed relative to the box axes. This reduces the determining
factors to three: the size and orientation of the  box and
the magnitudg of the ‘'temperature gradient. All of these
factors can be properly specified by dimensionless
pérameters which will be discussed in due course. In the
next section, the method to describe the geometry of the box
will Dbe introduced. The parameter to describe the magnitUde

of the temperature gradient will be given in next chapter.



B. GEOMETRY OF THE SYSTEM

The size of the box is specified by three iengths:,w,.H
and S, as shown in Fig.I-1. . isg the width of the gap
between the}heated and the cooled walls. H (height) denotes
ﬁhe'lsngef dimension of the remaining two leaving S (span)
for \the last dimension. We Can alternatively define two
diﬁensioniess parameters, called aspect ratios, to describs
the geometry of the box. Ax=H/W and Az=S/W are aspect ratios
in the X- and Z—di;ections-rsspectively. The coordinates/are
indisated on: the figure.

Thevcoordinaté system 1is fixed to the box in thes
followihg way. Choose one of the fou; corners on the hsated
surface of the ?ox as the origin of the system, :aﬁd three
radiating édgesvfroﬁ this point as three axes of X, Y‘and Z.
The direction of Y-axis points to the negative temperaturé
gradient direction,(i.e.\pbints from the heated wall to tﬁe
cooled wall. The Xiéxissifes aiong the longer one of the two
'remaining edges, anélthe Z-axis l*es along the shorter-sne,
‘with their dlrectlons such that the (X,Y,2) system will form
a right-handed coordlnate system When the two edges, other
‘than that of the tempera%ure dlrectlon aré of equal length,
the X-axis <can be arranged along any one of the two edges
with the Z-axis along the other to make thé (X,Y,2) system a’

-right-handed system. It can be seen that not all the four
N poSsiblé choices of coordinate-sysfems aréiequally good. Two

of them will locate the box in the region.of 2<0. The other

two are equivalent and locate the box in the region of 2>0. -

»
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"Figure I.T7 Geometry of the system



In aue course, we -will fix the coordinate system ifh this
way. Having fixed the coordinate system on the box, we can.
now develop the method to describe the orieptation'of the
box with respect to gravity.

The orientation of the box with respect to gravity can
be generaily described byv three orientation angles which
coul®@” be any set of three independent space angles. To
select the appropriate angles, it 1is desirable to first
distinguish reference cohfigurationé to which an arbitary
orientation of the box can be referred. A classical
~configuration -called the vertical cavity in 'the literature
can servé as a reference. This is the léase in which’ the
X-axis 1is parallel but opposite to the gravity vector. In
this sthdy this is called configuration A (A for  brevity).
We define configuration B as the orientation of the >ox ir
which the Y-axis is parallel and opposite to the gravity
vector. This corresponds to the classical Benard-Rayleigh
convectiois situation (heated from beldw){; C is the B
configuration inverted, that is, when the box is heated from
above, and the Y?éxis is parallel to, and has ﬁbe same sense
as, the grévity vector. ‘When tbé/;;%xis is parallel and
opposite to the gEavity,i we say the systém is ~in

N ' N
configuration [D. These four configurations are illustrated

in fig.I-1.

. . A . . | .
It 1s can be easily seen that starting £from one

reference configurabion,'and rotating the box about any axis
by 90°, we can get another one. Three angles-are defined to

(R4



N8
aescribe these processes. When we are viewing the box from
Z=-o, rotatiﬁg the box counterfclock—wisely, 'the angle
traveled is called the tilt angle «. Similarly, viewing from
Y=+=, rotating the box counter-clock-wisely, we define a
skew 'angle 6. Viewing from X=+e, rotating the box
counter—clock—wiéely, defines the roll angle y. With the
above definitions, we can see that B can be obtaihed from A
by a rotation of a;90°, or from D by a rotation of 7=90°:
Simila?ly, C can’ be obtained either from A with a=;90° or
from D with y=-90° and D from A (6=90°) or from B (y=-90°).

"Two observations about the orientation of the box with
respect totéravity are:

1. Any arbitrary orientation of the box- can be uniquely
specified knowing a reference configuration and the
three angles defined above. .

2. Taking A as the reference, the domain of -90°<  a<90°,
0<0<90°,-90° <y<90° would cover all possible physically
independent configurations.

] It should}bé’noted here-that the behavior of thé sysfém

is rather complicated, especially around tﬁé configurétioh B

Qhere bifurg;tion of the solution may be expected, and thus

implying hyéferesis behavior. The final state of the system

is then not. only dependent on the temperature difference
imposed, box size and orientation, but also on the intial
condition  of the system or.the path through which the final

orientation is obtained. So it is important to distinguish

different paths by which a fipal state is obtained. To Fake -

[,

™



, ‘ ‘ 9
the difc;iption _ élear and concise, for arbitary
configurétions a and b say, we use ab to denote the process
in Ygich b is obtainedey starting from a andﬁrotating the
appropriate angle through 90°.,Thus‘path AB is the process
that starts from A, rotates o through 90° to get B. AB could
be different from DB, say. *

Having stated the problem we are solving and detined

‘ 3 ‘
the geometrical parameters to describe the system (more
parameters will be 1introduced later), we will examine the

work that has been done to date in 'this area in the

remainder of this chapter.

C. REVIEW OF EXISTING. WORK

The literature of ngtural convection in a rectangular
cavity is huge. In ?%is review we can only briefly examine a
small part‘of it which is the most pertinent to this study.

Because o% the many possibilities of <changing = the
parameteré describing the system, the number of special
cases 1s numerous. _However, two cases regarding the
orientation of the cavity are the most studied and serve as
a point of departure: the wvertical cavity convection and
Benard conveétién,-corfequnding to configuration A and B in.
our notation. Theée two cases will be the subject of this
review too. We will first look at what has been done in the

two-dimensional vertical céavity. Then the three~dimensionél

and the Benar@ convection problems will be briefly revieweda,
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Vertical Cavity: two-dimensional

Although there are two or three pieces of wearlier
experimental work, it is generally considered that the paper
of G. W. Batchelor [3], 1954, was the first one of this kind
ajdreésed to the problem of natural convection ig a'verticél
cavity. This work,  motivated by the'-dduble-g&aze window
problem, was a theoretical one in wﬁich th extreme cases
were exémined; the case of 1low Rayleigh number orb large
asbect {atio and the case of very high Rayleigh number.
(Ra=Bg(Th—To)w3/uK is called the Rayleigh number which
characterizes the relative magnitude of byoyancy and viscoué
force. More detailed discussion will be givén later in the
next ‘chapter). In the first case, he concluded, in regions
not too near the top and ‘bottom walls, the. flow ‘héd a
parallel, S-shaped_'velociﬁy profile wifh the fluid rising
along the heated wall and descending along the cooled wall.
The temperature‘ profile was found to be 1inear‘across the
gap between the two walls of different.‘temperature. Heat
transfer 'was by 'conduction. For the case of high Rayleigh
number, bduhdary.layers would be formed‘alohg the walls. An
isothermal, cohstan;—vo:ticity core existed in the interior
of the cavity between gﬁe two béundary -layers. ﬁe derived
equations - of boundary layers without solving them. G. Poots
L4] latér solved these bounaary\layer equations using the
isothermal constant-vorticity core conditions and compared
his predictions with experimental resulﬁg then ayailable. 1t

is surprising %§Pat they agreed gquite well cénsidering‘the
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fact‘ that the assumed core <condition was incorrect, as
revealed later. . |

Eckert v& Ca:lsoﬁ (5] measured fhe temperature
distribution in an air 1ayer> contained by tQé ,verticél
plates of different temperatures. Their"~ré§u1ts clearly
showed that, contrary to¢Bétchel6f;s assumption, the core
region jwaS'bﬁot"isothermal buT“father- stjatified in the
.vvértiéélvdirection.-This also implied that the core region
could not have a rigid-body like fétation but stayed
stationary. This rééolvedvtheaquegtiOn Qf whether the core
is an isothermal -constaﬁt—vofticity one or a stratified
stationary one; both afe'mathematically possible from t;e
governing equations. . o 'k.

Arouhd 1965, Elder [6,7] shéwed:bbfh eipégimen@aliy'aﬁd
numerically ' the existence of secondary flow in the interior
of the cavity when the Rayleigh number is'sufficientlyvhigh.i
The discovery ;f secondary flow stimulated further interest
in phe studyrof instability and the occurrence of 'secondafy
and tertiary " flow. Later studies veither confifmed dr“
discovered new aspects of inséability -of the  systems:
experimentally, theoretically ana numéricélly. Papers on
this subject area are a great many. Several .Snés of
importance are listed in‘the feferences [8;9,10,11,121!

Paralleling the ab&ve éffort, much work has been done
in‘developing heat transfer correlations in order to providg
guidelines for engineering desién; Several ‘:ekcellenf'

accurate correlations are available and can be found in
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reference [13]. '

. . fteerore than thirty yearé 04\ reséarch, natural
convegtion in a vertical cavity is cuite well understood aé
long as it is.taken"as a two-dimens. ~~al Qroblem. The major
conclusions can be summarized as fo.lowing:

1. d f Ra < 10°, Conduction régime: Cﬁbic velocity profile,
linear tempefature profile.
2. 10° < Ra < 5x10", ':qnsition Regime. ‘ ¢
3. Ra > 5x10°*, éoundary layer regime characterized by:
a. Boundary layers along two walls like wall jets.

b. Spationafy thermal stratified core.

A
c. 1/4 power heat transfer correlation. /
4. Ra > 10*: Secondary flow 1in form of multi-cellular

'cats-eye' structure sets in.

5.- Ra > 8x10°%: Tertiary flow caused by secondary shear sets

in.

6. Ra > 10’: Flow becomes unsgeady. Traveliing waves were
observed. . |

7. Ran10“ - 10’: Turbuience prevails. j, . -

Three-dimensional Flow

The . aforementioned work - is primérily - modeled
‘two-dimensionally. This 1is wvalid when weither the third
dimension is very  large' or extremeiy small. .
Three-dimensional features of natural- convéction in

enclosures were not seriously considered until. the mid-70's

when the development of computing techniques, hard and
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three-dimensional flow pdssible.

The paper by Ozoe~2t. al. [14] is probably the first

attempt to solve the three-dimensional problem numerically.

At about the same time, Mﬂ}linson & de Vahl Davis [15] made

a

more c¢omplete study of the three-dimensional effect on

natural convection in the vertical cavity. Highlights of the

conclusions from this paper are:

1.

The flow " is not two-dimensional if the third dimension

of the cavity is comparable with the other dimensions

(Az=0(Ax)=0(1)).

2. There 1is a weak flow in-the third dimension which is
caused by: a) the interaction between the pn;%ary
circulation and the side wall; and b) the temperatﬁre
gradient in that direction.

3. The Nusselt number (Nu) for’the three-dimensional - model
is lower than that for the correéponding two-dimensional
model. |

Several papers have appeared 1in the past decade on
_three-dimensional natural convection. . Besides the most
géneral conclusions mentioned above, there were many
specific properties noted. The three-dimensional flow

structure and the associated heat transfer property are

usually quite complicated and problem dependent. Case study

[N

is perhaps more appropriate than trying to state generc.

conclusions. Two examples of <case studies are given 1n

referencks [11] and [12]. Three-dimensionaﬁ’ natural

.y
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convection is still an area of fast growth and discovery.

Benard-Rayleigh Convection

When the system is in configuration B, _ce rain
fascinating flow features will show up due to the
coincidence of the temperature gradient = imposed on the
system and .the gravitétional acceleration vector. Actually,
the4'study of the system in configuration B has been a
debating ground for physists and applied mathematicians, and
the fléwr in this case wa: given a classical name -
Benardhkayleigh Convection, after. the hames of two pioneers
of this ﬁiela. Accumulated for about 90 years, publications
in this area are simply too numerous to cover in his
review. So we will only menfion some of the most important
contributions in order to lay a background for our ‘future
study.

At the Yurn of the century, H. Benard discovered thé
regular hexagonal flow pattern in é molten spermaceti layer
(about 'mm thick) heated from below [18]. This éxperimental
discovery opened up a new research area; Lord Rayleigh, in
1916, first theoretically predicted the onset of convection
in an infinite horizontal flgid layer heated from below and
confined between two free boundaries by  solving a set -of
linearized governing equations [19]. The book by S.
Chandrasekhar éummarized all the liﬁeér' thedry results to

date and is still the best source book on this subject today

[20]. S. H. Davis [21] and I. Catton [22], by. applying the
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Galerkin method to the linearized governing equations,
prediéted the onset of convection and the éfeferred mode, of
motion in boxes of aifferent aspect ratio. Their prediction
was confirmed experimentally by Stork and Muller [23]. K. H.
Winters and T. W. Brown recently found that for . Rayleigh
..umber slightly higher than the cripical Rayleigh number,
rolls pafallel to both long and short sides of the box are

possible flow patterns [35].

~

While the 1linear thedry  predicted the onset ' of
. convection, the non-linear theory achieved 1little in
explgining various phenomena observed in experimehté. Two
excellent teview articles on this problem, with emphéé&s on
non-linear. theory, are given in references [24] and ﬁL25].
‘Without going further into details, we list below the—mgﬁbr
conclusions for the Benard-Rayleigh convection. | N ;
Linear ’théory has been véry successful in predicting
the onset of cbnvection in both two-dimensional and
thrée*dimensional gedﬁetries:
1. ﬂRa<Ra¢, there is no motion.
2. Ra>RaC, convection sets in and the heat transfer rate.
increases substantially.
3. Raz=1707'for an infinite fluid layer (two-dimensional)-
4, In three-dimensional situations: Ra_=Ra_(Ax;Az) exist,
#nd a series d( roils with axes parallel to the shorter -
side wall is usually considered to be the flow pattern g™

f

Non-linear theory 1is unable to answer questions such

as:



16
| s
What is the planform: rolls, rings or polygons ?

What 1is the role of initial conditions in determining

‘the flow pattern ?

What is the correlation’ between the wave number and
Rayleigh number:
14
a. theory: wave number increases as Ra increases.
~

b. experiment: wave number decreases as Ra increases.

Is there nonlinear subcritical cecnvection ?

“agh
A1



I1. FORMULATION OF THE PROBLEM

A

In the previous chapter, the model system was described
, _

and five geometrical parameters describing the configuration

f the system were defined. Two of the parameters have
egard to the size of tie box: Ax and Az; three of them
:ribe the orientation: «, 6 and Y. We are now in a
position to study the fluid and its motiPn under the actions
of gravitational force and temperaturelgraaient. First, i;/
section A, the governing equations will be introduced. Then,
by normalizing this set of equations in secﬁion B, two
dimensionless parameters, known as the Rayleigh number, Ra,
and the Prandtl number, Pr, will be identified. In section
C, several qualitative properties of the governing’'equations

and the boundary conditions are explored. . "

A. FORMULATION

Conservation Laws
The governing eguations for this system are  the
mathematical Statehen}s of the <conservation laws. If the
- viscous dissipatioﬂ}ofﬁkhergy in the fluid is neglected, the
equations for conservatibh of mass, momentum and energy can

be written as:

a.

Dp v =

]—D?-F/)VV—O a (I1.1)

p% = -V-P + uV’V ‘+ pg (I1.2)
) .

17
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= kv?2T \ (11.3)

The D/Dt 1is the material derivative which consists of
contributions from both the local and advective time rate of
change. It should be>noted here that the density of thJ’
fluid is variable and connected with the temperature and
pressure through the eqguation of sﬁate; So, in general, this

equation must be supplemented to close the set of equation.

Boussinesq Approximation :

. Two difficulties may arise here. First, the equation of
state of a fluid may not be known accurately. ‘Second,
greater "diffi&ulties would be encountered in developing the
method for solving cdmpressible flow. So it is‘ extremely
difficult, if not impossible,-to solve the problem without
making some assumptions to simplify the situation. The
common practice in simplifying the situation is to introduce:

the so-called Boussinesq approximation, invented by J.

Boussinesg in 1903 [26]. This assumption is §alid 1fs

1. The temperature of the fluid 1is not too high, as
variable physical properties of the fluid ma§ result.

2.‘ The temperature difference between the heated and cooled
‘walls 1is not too great and therefore the quadratic and
higher tefms of this difference may be neélected when
the density is expanded as a Taylor Series .in
‘temperature difference.

The scope of validity of this approximation is another topic

&
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of interest, and a recent discussion on this problem is
given in reference [27]. In all the situations considered
" here, the parameﬁer» range 1is well within the boundary‘of
validity. So this approximation will be employed throughéut
this study without further notice. o
From now on, we will restrict ourselves to Newtohian,
Boussinesgian air. More specifically, the followfng
assumptions about the air are made:
1. Air has constant physical properﬁies (viscosity, thermal
diffusivity, etc.).

2. There is no viscous dissipation.: \

3. Density variations are negligiﬁle'except when buoyanéy
is concerned.

4, The density change in the bﬁoyancy term is so small that
it does not depend on the pressure and can be linearized
in terms of temperature change.

Considerations are also restricted to situations of steady

motion, i.e.,‘the local»time derivative ié zero.

Now the Boussinesqg approximation will be used to
simplify eq. (II.1—3)Z’First'leﬁ us choose a reference state
at vwhich the fluid has density po and temperature T,. The

<

choice of this reference state 1is quite arbitrary but a

\

natural choice 1is

To = 0.5(Th+TC)

S

where Th and Tc refer to temperatures of the heated and

¥
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cooled walls, respectively. We have assumed that

P = Po ~ 5(T’To)
‘.$\ where B=-(1/p)(ap/’~T)P is the thermal expansion coefficient.
Finally the buoyanc: term becomes,

J

pg - B(T-To)g

Now split the pressure into two = (static and dynamic)

'parts.

The static pressdre, Po, is to balance the hydrostatic head
" of the fluid, ife., the first‘part of the buoyancy. This
ctatic pressure has no effect\on the_flow pattern. It only
serves as anvgrbitrary datum éﬁglobviously depends on the

<)

choice of the reference state. So,

—VP0+ .DOg =0 /,

i

The dynamic pressure is the difference of the total pressure
and the static pressure, It is this patt of the pressure
which 1s Tresponsible for the details of the flom-patterns.
It is interesting‘to‘see that there.is no separate eguation

to determine the pressure; nor is it prescibed. The dynamic
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pressure is determined 1in the sense that the flow ba ern
calculated from the equation of motion szt satisfy /the
continuity equation. From a different angle, we may viéw the
continuity equétion as an implicit equation which determines
the pressure by démanding the result of the pressure. This
viewpo&nt is very helpful'when later the continuity gquation
ig. transformed into an equation for pressure to solve the
governing equation numerically. n

Finally, the simpli%ied gg;erning equations can be

written down as:

V-V =0 , (I1.4)
: N
p(V-V)V = -VP + uV?V - pBg(T-T,) (11.5)
3
pCpV-VT = kV2T . (11.6)

The above governing equations in vector form can be
written in component form. Using the coordinate arrangement
of the last chapter and referring the orientation angles to

the configuration A, the component form equations are:

g%+g—§y’+%§=o (11.7)

1 2y . B*U . 3°U
23x T VRt eyt e

+ Bg(T-To) ‘cosa-cosé (11.8)

oU oU U 1 9P

U'a—)‘{"*’V'aY"'WH—

Sew
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oV oV . _1 oP 02V 2V BZV)

oV 1
Uz * Vag * Y3z = pay T VR T e toare
’Q\ - + Bg(T-T,) -sina-cosé (11.9)
oW . 3V oW _ _1 3P 02W ¢ 3'W , 3°W
Usx * Vay * Yoz = paz T Y axT t awr *toaze)
+ Bg(T-T,) -siné (11.10)
T T 3T _ 32T . 9T . B2T ,
U'B-R' + VW + W'gi = K}(sz + BYZ + azz) (11.11)

E \\
AN
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Boundary Conditions
The boundary conditions of né—slip on the walls are
édopted for the three components ofishe velocity, i.e.,
U=V=W=20on all six walls.\7
Thrée kinds ofvtémperature boundary condition will be
used 1in thﬁs stuay. They are ' |
1. BC1: Isothermal heated and covoled opposite  walls of
temperatures Ty | and T, reséectively, with four
perfectly conducting connécting walls  of linear
temperature distribution along Y, i.e.:

T

Th for Y;O

T=T for ¥=W
C

T=T,  -(T

h h—TC)Y/w‘for_x=O, X=H, =0, 2=S.

2.',BC2:"Isothermal heated and cooled opposite walls ,with//’//

four perfectly insulated connecting walls:
i

TETh for Y=0

=T for Y=WwW
c

3T/3X=0 for X=0 and X=H



8T/82=0 for Z=0 and Z=S
3. . BC3: Perfectly insulated heated and cooled . walls with
four 'pe;fectly conducting walls of linear ﬁempefature
distribution in the Y-direction, i.e.,
« 9T/3Y=0 for ¥Y=0 and Y=W
T=Th—(Th-T'c)Y/W for x";Q, X=H,.Z=O, 2=S.
A R
B. NORMALIZATION
NormalizatiOn wili now be empldyed toe transform the

governing equations into a more appropriate form. Proper

normalization of the governing equations would bring us at

least three benefits. .
1. A group of non-dimensional fimilarity parameters (wh éﬁjl
. can completely deifne the physical process of the

system) can be identified. ,

2. By scaling each term in the normalized equations, the
relative importancg of eaéh;term for a given éef of
parametérs can be determined, and thus reasonable
épproximationé-can be made, or some "~ qualititive (order
of magnitude) estimaﬁe of the behavior of the system can
be obtained. This kind of estimate is very ﬁseful in
‘having some idea of what result we should anticipate.

3. By choosing proper scales, we can make the normalized
field variables<(V.and T) of order unity.‘This provides

better control‘%ver the numerical p:oceduré employed to

. solve the equations.
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It is obvious tha;\there cannot be a universally wvalid

set of scales which enables us to get all the aforementioned

three bgnefits. Since our concerns are priméri;y control

over the Vnumerical procedure, the third criterion will be
emphasized %ith somé compromise to others.

The scales (characteristic qqantities) for each

variables in this study are chosen to be:

s

Variable : Scale
X ' H
Y . w
Z ' ° S -
U

Ax/(Bg[Th—To]w)

v V(BgLT, ~To1W)

W - Azy (Bg[T, ~To JW)
T '/> : Th_TO

p 7 Bg(T, -To )W

. Substituting the above scales into egs.(II.7-11), and
using lower ‘case letters to represent the normalized

a\‘&“" 3 ) ’ e
variables, we can %rite the normalized equations as follows:

B—y*'E:O (11.12)

DOCV(u) = —X;T-%E + DOCD(u) + %;-¢:cosa-cos€ (I1.13)
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“DOCV(v) = —%5 + DOCD(V) % ¢ -sina-cosé ' (11.14)
DOCV (w) = —X;?%E-f DOCD(w) + %E-«p-sine ' (I1.15)
DOCV(¢) = %f DOCD (¢) - (II..16)
where
DBCV = U%— + v%§‘+ W%E

and

- _ ; 1 .az az . 1 .al
D%)CD = l/(ZPr/Ra) (sz 3X 2 + a¥2.+ Az? azz)

are D1fferent1a1 Operators for ConVe‘lon and COﬂDUCthﬂ
respectlvely,
=_(T-To)/ T ~-To) is the normalized temperétﬁre{

Ré=Bg(Th ~T, )W /vk is the Raylelgh number; ;}

P:=v/x is the Prandtl number.
As a result of'normalization,utwo more parameters, Ra

and Pf, describing the system appear} fhe‘Rayleigh number

charaéteriieg»the relative magnitude of the buoyancy and tHe‘

viscous force. Ra is deterﬁined;4bj the magnitude of thi?,

temperature ggad'\nt,_the geometry and the fluid wused. 6ﬂ

_the other’>hand, -ﬁhe ‘Prandtl number is a propérty of. the

fluid and characterizes the relative ability of the fluid to

transport momentum versus heat. In this study, Pr is fixed @
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a- 0..71.

- The homalieed boundary conditions follow aétohatitally.
Taking the BCI as an example:’ B
u=v=w=0 on all walls. |
¢=1 for yid

¢:—1{f%r y=1

¢=1-2y for x=1, x=1, z=0, z=1,

C. SOME OQUALITATIVE CONSIDERATIONS . OF  THE GOVERNING

EQUA‘IONS

Symmetry
- e
‘For‘ the set - of equatidns (II.12716)/end BC1, -BC2 and

:BC3; some sorts of symmetry ex1%k %ﬁie can be seen clearer

by mov1ng the orlgln of the coordlnate system to the center

of -the cavity such ‘that the - nqtmallzed domain is
—O.5<x,y;;<0.5,

- e Centro-syﬁmetfy. ‘ Transforming ‘the variable
(f?y,z;u,v,wf¢) to'(—x,fy,-z;—uhjv/-w,—¢), we find that
the _governing' eqﬁations Y(II;12—16) and the'-three
boundaty,coﬁdition sets are left unchanged. InQatiance
under “ the above trahsfbrmation ‘means _nat 1f
(x,y,z2,u,v,w,9) is a splption to - the preblem,
‘(?x,—y,—z,—u,—v,ew,-¢) is also a: solution to the

A
-

problem., This is equivalent to Stating that the solution
J ,

of the problem is anti-s mmetrlc abo the center of the
. o

ol

cavity. This property 1is- 'regardless of -the

)



> - | 27

» 1

orientatipn ofvthe.cavity. When the orientatioq of the
cavity is more restricted, "more symmetfy pfopérties
which are very useful from a computational point‘of view
exist.

2. XY plane éentro-Symmetry. For situétions‘of 6 =vQ,.the
equations and boundary conditions are ‘invariant if we
make the transformationﬂ(xﬁy,ufv,¢) 4+ (-x,-y,~u,=v,-¢).
Thié implies that at each z—seétioh the . xy-plane

| solution 1is anti—symmeﬁric about the <center of the
plane.

3. 2z central-plane - symmetry. Again  when 4 = 0,
t:ahsformation of (z,w) = (-z,/-w) will not change the

forms of both  governing equations and boundary
conditiohs; This 1is equivalént to stating that the
z-central plane is like 5 mirror. The sélution on® one
side of the z-middle plane is exactly the mirror image
of the other side of this plane, i.e. u, v and ¢ are
symmeﬁric and w is ahti-symmetric abopt the z=0.5 plane.
The symmetric properties of the solution just revealéd

are &ery useful. The first two s?mmetriciprope;ties of the
soluxibn can serve - as a .check on the " validity of he
solution. Taking advantange.of the third one, we can model
only half of the domain to save computing effort and to
obtain hiéﬁer .écéﬁrécy of the solution by placing a given
number of nodes in a smailép space. .
. o
An important point to be emphasized here is that the

symmetric solution discussed is not a necessary reguirement.

.
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. In other words, the equations and boundary conditions do
. v

admit to non-symmetric solutions and in many cases they do

occur. This kind of non-symm=atric solution is observed when

_he system 1is at or near configurétion‘%. More about - this

will be discussed later.

Circuiaﬁion; Pfiméryland‘Secondary Planes
Two vecforé play.the determining role in a natural

conv;ction system: the Gravitational Acceleration (GA)

vector and the Temperature Gradient (TG) . vector. The

direction ot the-gravity vector is fixed downward while the

direction of the temperature gradient at each point within

S

the -fluid is \variable.' Although the TG is impoftanﬁ in.
~determining the’behavior of the system, it does not appear
explicitly in the govérning equations; nor does the angle
between the two vectors. Actually, the TG is imposed on the-"

system by the boundary conditions. In this study, the TG

thus imposeé will be referrea to as the Global Temperature
Grédient (GTG) ‘whiCB will, together with otherc:onditions,
determine thé velocity and temperature distributions in the
fluid. As the result of fluid motion; the TG at each point
is different from the GTG aﬁd will- be called the Egggl

Temperature Gradient (LTG). ’

It can be proven,'using the governing equations, that
it is the angle ¢ between GA and TG which determines whether

convection will set in (see [28], for example). Three

situations are possible:

%
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"

1. ¢=1807, the “.uid is stébly stratified and no motﬁon
will occur, , |
-2, ®=0°, no motion will occur u;til the magnitude of the

températﬁre gradieﬁt exceeds a certain threshél?.

3. -In all other situations the fluid motion oCccurs

immediately.

In this last situation, the primary feature of the flow
pattern around the point concerned can be predicted’
qualitatively ‘in the following way. The vectors GA and TG,
when not parallel to each other, will determine a unique
plahe.in,which.both veétors lie. The primary feature éf the
flow pattern néar a point will be a circulation in &his
plane. The directid% of the vorticity is given by thé vector
product of GA and TG (fig.II-1). The plane in which the

circulation occurs at a point will be called the Circulation

Plane (CP) at this pdﬁnt. 1t should Eg noted here that when
$=0° there is an infinite number‘ of possible circulation
planes, thUS*caUSing indefiniteness in the flow pattern.

| The CP just introduéed is a local property determined
by LTG and GA. For the whole system, thé ci~-culation plan

of the GTG will be called the Primary Plane. uujor events of

the fluid motion occur in the primary plane. Planes

vperpendicular to the primary plane and to one of the axes of

the coordinate system are Secondary Planes in which
three-dimensional effects of the flow pattern are best
exhibited. Once again, for configuration B the primary plane

’

is indefinite implying ambiguity of the flow patternjat'this
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111. METHOD OF SOLUTION

’
A. INTRODUCTION

The 'governing equations (II.12-16) form a set of
- coupled nonlinear partial di@ferential'equations. They can
not be solved analytically in a <closed form. The only
possible way to solve- them ‘is. ﬁo resort to a numerical
technique. _ | |

The Navier-Stokes equations (II.13-15) 'and energy
equation (11.16) are -examples of a general type of
»c;nvectioaniffusion equatibn which has convection terms,
diffusion terms and source terms. Thé& difficulty in solving
this type of equation¢;umerically lies in how to treat the
convection ‘ term. The  second order accurate central
difference scheme, which is suitable for solutions of the
conduction ‘equation, would lead to instability or divergence
of the solution for most practical cell Peclet number (or
Reynolds number). On the the chen hand,  the up-wind scheme
guarantees a converged solution‘by introducing an artificial
diffusion term which wiil hake the cell Peclet number always
small enough to ensure stability. But this artificial
diffusion term may cause . intolerable errors for small to
moderate cell Peclet‘nuﬁber%; hehée a dilemma which has ‘no
general resolution. A successful scheme is thways a
compromiée between accuracy and numerical stability.

. Besides the numerical stability problem, the

Navier-Stokes eguation has a problem of its own. The source.

32
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terms contain the pressure g{adieqt. The difficulty comes
out of the fact that the pressure is‘neithervprescribed nor
given explicitly by an eguation. Hence any attempt to solve
the Navier-Stokes equation must first answer the question:
how shbﬁld be the pressure term be treated. There are mainly
two ways of doing this. One is to cross-differentiate the
equations to eliminate the bressuﬁe terms at the cost of
incre;sing the oréer of the equationé and the number of
variables. 1In this method, one has to;ﬁroduce Supplemenpéfy
higher order boundary conditions required by the eguations.
This approach 1is often called the :streamline—vorticity
method since the dependent variables are. the stream function
and vorticity. An alternative way to overcome the difficulty
is to transform the continuity equation.into an equation for
pressure with the understanding.that the pressure is but an
agent to enforce the continuity requirement. This appfoéch
ieads to ~the SIMPLE—tYpe algbrithm. This approach is going

to be followed in this study.

Any numerical method is necessarily &
@ .

,approximation -
procedure applied to the} governing equations. There are
qguite a few well—developéd approximation procedures to solve
partial differential equations‘nowaday;i Two major classes
of procedures are the\Finite‘Difference Method (FDM)iand the
Finite Element Method (FEM). As many authors have -poihted'
out (e.q. [29,30]), these two classes of procedures can be

unified under the name of the Weighted Residual Method. In

this sense, the difference between different approximation
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procedures 1s but a matter of choice of different weighting
(trial) functions in approximating the 'real] functfons.-
Among. many possibilities,r FDM -and FEM utilize piece-wise
trial functions to make the to-bé-determined constants in
front of the trial functions to be the actual field values
at a set of discretized nodal Ipoints., Inh calculating the
values at these points, an approximation of the field
variables is obtained.

In the next section, a brief description of the
discretizatioﬁ procedure is given. In section™ C, an
algorithm called SIMPLE-C will be described. In section D,
some ?roblems concerning coding of the algorithm, control of
the preogram and accuracy  will be disqgﬁ;&d. In the last
section of this chapter, the wvarious ways of presenting

_ ;
three-dimensional flows will be briefly discussed.

B. DISCRETIZATION
v To illustrate the method, consider the energy egquation:

oV-Vé = V-(I'Vg) + S C(111.1)

As mentioned before, the trial (base) function in our method

is piece-wise unit functian on a series of 'finite volumes'.,
First, the whole domain  is d:vided into NxMxL small
rectangular volumes as illustrated in fig.III-1. N 1is the

‘number of divisiors in the x-direction and M and .L.iare those

for the y and z-direction respectively. Each small volume

: : | P

)

J‘\



L. divisions
-

AN

1 : ’ N
N divisions

Figure 1I11.1 Discretization of the computational domain
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thus obtained is called a finite volume and Vijk is used to
denote the finite volume of the ith in the x-direction, jth
in the y—direction“and kth in the z-direction.

.The trial function we are going to use is defined as:

Tijk(x,y,z)=1 if (x,y,2) e vijk

Tijk(x,y,z)=0 otherwise. . . (111.2)
L,
Multiplying the trial function\Tijk with the equation to be
discretized and integrating over the whole .domain, we . get
the discretized equation of No, (i,3,k):

JTijkpv-V¢dv = !Tijkv-(rv¢)dv + ITi.

ijdV

-

or
Jpv-V¢dV = [V-(TVe¢)dV + [SAV - (I11.3)

To evaluate the 1integral in (III.3), we focus our

attention on the sample finite volume depicted in fig.I111-2.
&

The center point of the finite volume, the calculated point,
1s designated as P and the neighboring points as E, W, N, S,
T and B. Points on the six surfacesvare called e, w, n, s, t
and b. The result of the integration can be written 1in the
form of an algebraic equation relating the variable value at

P with neighboring points:



¢
P T
1 t
/N
P
W w
s
e "
S
Ob‘
*B

Figure II1.2 A sample finite volume
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+ a ¢, + b (III.4)

The coefficients a incorborate the influence of the
neighboring points on the calculated point.v To calculate
theSe7 coefficients an interpolation function -between
neighkboring points must be chosen. It is the choice of these
{finterpolation functions that charécterizé the scheme
(upwinding, hybrid, etc.). We adopt hére the so-called
power-léw interpolation recommended by.Patankar [31]. This
is basicallyra hybrid scheme which reduces to .the ﬁpwind
'Scheme when the cell Pecletynumber is greater than 10 and
otherwiée 1s a 5th powér qurvev to approximate - the exact
profile in between the nodal points.‘After manipulations,

the coefficients can be shown to be:

ag = DA(]P_|) + MAX(-F_,0)
a, = DAL|P |) +.MAX(EW,O)
QN = D A(|P_|) + MAX(-F_,0)
ac = DA(|P_|) + MAX(F_,0)
ap = DAL[P ) + MAX(-F_,0)
ag = DL AC[PL]) + MAX(F_,0)
b = SAxAyAz '
ap=aE+aw+aN+aS+aT+aB
where
| Fe’= (pu)eAyAz D, = FeAyAz/(éx)e
Fw = (pu)wAyAz Dw'= FwAyAz/(éx)w
F o= (pv)nAzAx D, = FnAzAx/(éy)n ;
) "\\

&



el
]

< (pv) BzAx DS’= rSAzAx/(éy)é‘
F, = (pw)tAxAy 'Dt = FtAXAy/(éé)f
Fy ='(pw)beAy D, = FbeAy/(éz)b
and _ ’
P=F/D : '

A(|P}) = MAX(0,(1-0.1|P|)*)

The MAX’ié the function to pick up the largef one of the two.
arguments, V | |

'4'\‘ Knowing - the coéfficients, eq.(IIT1.4) 1is a  linear
algébraic equation which can be solved, togethef with the
boundary" COhditions,.using the TDMA algorithm; For details,

see [31].

C. ALGORITHM ‘

It has been noted thét the major difficulty in sblving
the NavierfStokes equations numerically resides in the
pressure. To overcome this difficulty, in. the SIMPLE_
algérithm, the -continuity equation is. transformed into an

equation for pressure. The  mathematical details of this ”

8 o

R

algorithm é?h be found in [31] and will not be repeated

4 o 1 . . <. .
SRSty “jﬁ@éedure consists basically of the fouZlowing

1. Integraté the Navier~%tokes equation throughout the cell
to get a relationship between the velocity . and the

pressure. N

2. Make approximations to this relation.
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-

3 -

3. Demand that the velocity satisfy contfnuity identically.
Determine the wvelocity correction necessary to‘satiéfy
this demand.

4. Use the Vélocity;presspye' relation to determine the
pressure correction necessary to give the velocity
correétion in step 3.° ‘

5. Update both pressure and velocity by adding their

L
X

‘corrections.

6. Repeat the aBove steps until the solution is converged

to some specified accuracy.
Various features can be added to make the algorithm

more usable. .An example is the SIMPLE-R, a ' revised version

of SIMPLE. What we will wuse in  this study is another

modified version of SIMPLE, the SIMPLE-C, which ‘follows

- exactly the procedure descrited above except .that it

incorporates an improved appioximation at step 2 which 1is
believed to" make' the algorithm more consistent (thus the
'C'). See [32] for details.

D. CONTROL AND ACCURACY OF THE PROGRAM °

The SIMPLE-C algorithm 1is realized 1in FORTRAN-77 .

language. The program has five subroutines and about six

'hundfed lines b;:code. It can adapt to a non-uniform grid

'system in any prg@scribed form as long as the control volume

is rectangular and canh hancle boundary = conditions of
Dirichlet, Neumann and mixed types” The complete code is

listed in theprbendix. -
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In this program, two levels of accuracy control are
implemghted. The first 1level is control over the constant
coefficient (lgebraic equations. This- control 1is in the
SOLVER in the form of a residual criterion., The second level
of control is exefpised éver the relative errors in the
dependent “variables for two consecutive iterations. This is
done by subroutine ERR. While the values for the first level
‘control are variable, that:fo; the second level is 1%.

As a téét of the validity of the program, the same
problem treated by Mallinson & de Vahl Davis was
re-calculated. ﬁisted”below is é comparisoh for Ax=1, Az=?

-

and Ra=10* with a 15x15x%x29 mesh:

Comparison with Reference [15]

Nu in [15] Our Nu ANu/Nu
2.20 ' 2.24 1.79%
. .,;}
Wiax ID [15] Our wmak . AW /W

2.286 ‘ 2.256 T.31%

It 1is seen that the agreement is excellent considering the
“fact thétﬁin this program the staggered grid --system 1is
empléyed while it was not in [15].

A consistency‘study was undertaken using seve%al mesh
" networks for Ax;Az=0.2\‘ The three mesh system tested were

11x51x11, 13x61x13 and 15x71x15 resulting in cubic  figmite

g
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volumes of 0.1, 0.0833 and 0.0714. It is found that even the
most . .coarse grid system can still catch all the features of
the flow structure. In terms .of revealing qualitative
features of the flow pattern, all three grid systems tested

~

‘a‘ were equally good. Compgrisons of representitive Nu obtained
] prbm é@tfgerent' grid = systems ére-shown in figs.III-3 and 4
gor‘the AxéAsz.Z, cavity ét A for séveral Ra; and at
Ra=2;5x10‘ for several tilt angle a. As the grid system
changes from 0.1 to 0.0833, the différence in Nu compared
. with "that obtained using the 0.0714 grid system goes from
about 1p~15% fo 3—5%.'So.it is reasonable to believe that
the accurécy :in Nusselt number obtained using the 15x71x15
grid system -is reliable within aboptgﬂ5—10%.‘ The flow
éattern, dn ‘the/cher hand, is qualitatively unchanged for

the three different mesh systems.

E. METHOD OF PRESENTATION

df speéial . interest in this study i@ the
thrée~dimensi§9al_“Structure of ,fhé flow pattern. it is
obviéusly not é#u é%sy task to present three-dimensional
reaiity on twordihensional papgg; There seems tb be no

et s 7

single best way to do the job.nMéﬁlinson ¢ de Vahl Davis
([15]) showed the fiow strﬁctﬁ%e:gy tracing a particle for a
certéin length of time. Tﬁggf method, good fér a certain
purposes, ig'also empléxéd by several other authors, »>ut it

has at least two drawbééks:ba) It does not give <clearly an

overall picture Jgé’fiﬁe whole flow field since only one

L7
R
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part{éle' is téaced. By following only a small part of the
fluid, some important features might be missed;* b) It is
very expenSive and time-consuming to integrate the velocity
to get a particle path, We will not wuse this method but
insteadishowbphe velocity at different cross sections of the
‘cavity. " &%"

Thereiﬁétg three normal planes for a three-dimensional
object. Each plane cgg be specified bf the names of -the axes’
which1 lie in thié‘pléné together with the distance from the
origiﬁ in the direction normal to the plane. For example, it
is cléar what ié meant by "the xy plane at z=0.3". By
,_plottiné out velocities af selected planes, the whole flow
structure can be constructed.

The velocity at a plane may be described using
three-dimensional arrows representing the velocities at
nodaf‘points in the plane. But the three-dimensional arrows
will be distorted and overlapping 1in a two-dimensional plane
thus making the picture difficult to read. Therefore .an
alternative 1is pursued. The velocity will be broken into
tangential and normal components‘ to the plane. The
tangential comp@gents are represented by two-dimensional
bar;ows in thé@iiﬁane and the normal bcomponent by a
three-dimensional surface over the plane, the distance from
the surface to the plane representing the magnitﬁde ’of the
normal velocity; By showing both tangential and normal
: i

velocity at wvarious planes, a vivid picture of the

three-dimensional flow can be portrayed.
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Eor - temperature, we will“ﬁ%ﬁpnstrate its distribution

W

not«by plotting the isothermalf*to%tours in a plane but

£

rather by the three-dimensional surfaces similar to those

used for normal velocity, since they are more vivid. .

Pl

Sy
L



IV. LONGITUDINAL TEMPERATURE GRADIENT Ax=0.2, Az=0.2 C'AVITY
In this chapter, aatural cohvection,in a slender box will be
studied. The lengest dimension, in the direction of the GTG;
is five times longer than the other ty%weimensions which are
equal. In section A,'the effect of iACteasing/the Rayleigh
number for configuratio; A is examine?. In sec{ion B, Ra is
kept constant at 2.5X10* while the effect of tilt from 4 is
examined. In section C, the effect: of skew from
confiéutation A is studied. )

For section A and B, the mid-z plane symmetry ex%@?s as
explained 1in chapter II. Taking advantage o{ thls symmetry,
calculations in the first two sections are carrled out using
a 15x71x8 mesh network covering half the computational

domain. In the absence of this symmetry, the results of the

third section .are obtained using a 13x51x13 mesh network

covering the whole computational domghb{

The Rayleigh number wused in this section is based on
the shortest length, H, 1i.e., Ra=BgATH’/vk. The Nusselt -
number is baseq on the heat transfer rate through all the
walls of the box not only the heated wall, the conventional
way. So; NUEQH/AKAT, where Q is the total heat flux through
all the walls of the box and A=H?+ 2HW is half the total
wall area of the box. : i A

When AxZH) the behavior of the system is determined by
the u velocity component which may therefore be used in a

classification of regimes. If Ax=0.2, on the other hand, the

longer dimension 1is the y-direction and the “important

47
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features of the 5ystem are reflected in the profile of the v

velocity. §9 we will try 1in  due course to compare the

#

pfofile of the v velocity in this cavity with the u velocity

in  the Ax21 cavity and thereby make an appropriate

classification of flow regimes. | (

A, CONFIGURATION A: THE EE‘F%,%T OE ?A;X ] . % R

In this conflgyratlon,sthe prlmary; ' % ;
plane The xy plane veloc1%ﬁes, espec1ally tﬁ; v‘ﬂ
play the determining role for this system. »J' mfg— Xy

4% a.the Xy
R

cPty,

plane velocities are plotted 1in flg 1v-1,2,3 for Ra=50,
2.5X10* and 10¢. Boundary cond1t10n§”%€1 have been used.

2 Fig.IV-1 shows a weak c1rculat10n in the dlrection
predicted by the working principle. of sectf;n II-C-2 (WP

I1-C-2), For Ra=50, the flow is so weak that it has no

3
-

effect on temperature distribution in the fluid. The LTG at
every point of the sjstem is the same as the GTG and lies
parallel to the y—axis; Correspondingly, the circulation
plane at each point is coincident with the primary plane. No
secondary flow appears. Heat is only transported through the
syétem at the heated and cooled walls by conduction. The
whole system_lbehaves like a solid 'under a temperature
graéient, and is thus in the conduction regime;

Fig.IV—é and 3 are at Rayleigh numbers for transition
and boundary layer flows, respectively, with Ax21 cavity.
Things are different for the Ax=0.2 cavity. It - has been

mentioned that for Ax21 cavity the most important velocity
! .
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component is u, in contrast to v for the Ax=0.2 cavity.
Classification of regimes made‘for the Ax21 cavity is based
on the behavior of u velocity. For the Ax=0.2 cavity,
however, the «criteria of claseification of regimes must be
based on the behavior of the v velocity. It is noted that,
at A, the driving force for u is buoyancy, while that for

the v is pressure gradient.g?he difference in the nature of

the driving force for u and v results in the difference in u

and v for the same nominal condition (same Ra). sThis

v 1

difference 1in behayior of the most important velocity
components for the Ax21 and Ax<1 cavities Jetermines that
the classification of regimes in one case doek not
necessarlly hold true 1in the other case; Indeed, from
fig.Iv-3. we can hardly find the ev1dence required for us to
consider the system being in a boundary layer regime in the
sense that two thin fluid, layers move in opposite d1rect1ons

.\‘

along theupog apd bottom walls without 1nterfer1ng with each

v

other and a large (c%mpared with boundary layers) statiounary
core exists in between these two layers (see Section I-C-1).

Actually, the v velocity, having a S-shaped profile, is more

or les§ '“%arallel shear flow as illustrated 1in . fig.IV-4.
The basac@ shape ‘of‘,the prof1le does not change with

ﬂ?l

1ncrea51ng Rayle1gh number although the strength of the flow.

* - does. 1ncrease. In summary, for conflgurat1on A, the primary
'0

s :

C1rculat1on 1ncreases its strength as Ra increases. The Vv

veloc1ty profile remains an .S- shaped parallel shear flow and

no boundary layer regime in the conventlonal sense exists
N , B .

Rey T




Figure IV.4 v velocity at different y, Ra=2.5x10*
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for Ra=50 to 10°.

Hav1ng looked at the flow in primary plane, the flow
oattern in the secondary planes will now be examined. As
soon as Ra 0(10%), the flow in the&cav1ty is strong enough
.toy make the temperature dlstrlbutlon dev1ate from a linear
d1str1butlon along y- dlrectlon. The LTG at each point ‘in theh
box is no longer c01nc1dent w1th the é%@:and correspond1ngly
the\c1rculatlon plane at each p01nt is d1fferent«vfrom the
primary -plane. Motion occurs in the secondary planes.
Fig.IV—S gives an example of the temperature distribution
for xz planes at several y positions.

To predict the flow pattern~in the secondary Xz Tplane
we can  resolve the LTG in the three axis directions. The
y-component of LTG will.maintain‘ the primary circulation.
The x-component is parallel to GA, and thus plays no role in
_determining the flow pattern. So it is the z-component of
LTG which is responsible for ‘the formation o; the flow
‘pattern in‘the xz secondary plane. From fig.IvV-5, it can be
seen that the temperature gradient points towards the mid—z
plane forlthe upper part of the_fluld and towards the side

~

z-walls for the lower portion of the box. According to the

principle fqr the prediction of circulation direction YﬁP‘
II!C-Z), tnerev should be two pairs of counter—rotating
vortices extending throughout the cavity. The directions of
‘the vortlces_ E}e ’euch that,the upper-right vortex (viewed,

' . »
from y=-«) has the direction of the positive y-direction and

"those of the others are: arranged’ accordingly. However,
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Figure IV.5 Temperature distribution along y, Ra=2.5x10"*
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because of the strong convecfion of'the primary flow, the
up-stream condition has - a determiﬁing effect on the
down-stream pattern. In another words, the flow’ pattern is
nét completély determined locally by the LTG but has to téke
the strong influence of upstream conditions into account.
Near .the heated wall (the same is true fofrthe cooled wall
: excegiyall the velocities have an oppositéfdirecgiond, under
the action of the strong buoyancy, the'fluid rises.with a
large u velocity. 1In 'this region there 1is no épparent
v?rticity in the vxz plade. Because of the strong- upstream
influencé, this‘kind of pa}tern prevails untilwabdut y=0.7."
After- about y=0.7, the low§r pai;f;E vortices forms and an
embryo of an upper pair wofl vortices appeérs. As we go
further dbwn the y-direction, the upper pair develops and
the lower pair adjusts accordingly. At the mid-y =xz plane,
two fully;developedu pairs of cOunte}—rotating vortices .are

established as shown in fig.IV-6.. ‘
The occurence of this secondary &flow caused by the

1

S ' ) L
z-component of the LTG is expected to increase the heat

Iy
vi'

%ranéfef -rate through the side, tbp and bottom walls since
it continuously turns the inner fluid out ana outer fluid
in, thus making a continuous intefchange of hot_gnd cold
_fluid. fhe contributions of heat transfer through each wall’

is plotted in fig.1V-7 from which it is evident that the

“

major contributions to heat transfer. come from the bottom

- and side walls. The contribution from the heated end wall is

minor (only 10-20%). ff\is\bélieved that the magnitude of

N

Steeea T
.
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.the heat flux thréugh the bottom and side walls 1is due to
the m1x1ng action of the secondary vortices. As an analoéy,

w5

the occugence of secondary vortices in developlng pipe flow
"would enhance the heat transfer rate by a factor of 5 to 8.
How much heat transfer enhancement.is due to the secondary
“{vortices in this case is still to be determined
quantitively. «

It 1is interesting to note that the secondary flow is
. ! \ T
intrinsically a three-dimensional propeéfty of* the system. In

a two-dimensional - model, there 1is no opportunity for

secondary vortices to. exist. Thus the comparison of o

two-dimensional and ‘three-dimensional results is likeiy'to
prov1de a Quantitive evaluation of how important the
'secondary ‘vortices afe in enhancing the héat transfer.
However,'caution should be employed when such_/;f\comparison
i1s made because the presenée of the z-walls not only
introduces secondary vorfites but also slows the primary
circulation down. This slowing down effect would offset the

enhancement induced by the secondary vortices and could

-

),

complicate the comparison.,

-Thus far, the GTG has Reen imposed on the system by
maintaining two end walls isothermally at dffferent
temperatures. There are other possible‘yays of a;ﬁieving the
same GTG on the system. BC3 1is the'bounQary condition in
which the side, top and bottom walls have'{é temperature

J.

gradient of desired magnltude but the two.end walls are
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adiabatic.: The Rayleigh number is stil; baséd on the GTG of
the system. Solutions were obtained using BC3 for Ra=10*,
2.5X10* and 10%. The solid curve in fig.IV-8 is the solution
using BC1 and the discrete circles are for BC3 Fig.IV-9
shows‘ the mid-z xy plane velocity for Ra=2.5X10* usingrBC3(
and méy be compared with fig.IV;2. It 1is concluded that 'the
ways by ~which the GTG  is imposéd visl uhimqutéﬁ£$ ?wsJ”‘

different ways of smposing GTG make no _sigﬁiffééﬁf s

difference in the solution as long as the resultant, GT¢ is « ; =

the same.

B. THE EFFECT OF TILT
In configuration A it was found that the flow pattern

remained essentially . the same for the range of Rﬁyleigh

number 50 t The flow Rattern is mainly two oppositelb

e

filaments %

s,

»which two pairs of lateral wvortices wéye'ﬁ'l
superimposed. This flow pattern will be referred to a tﬁé"' ‘
horizontal pattern. In this section, the Rayleigh number
will .be kept at 2.5X10*, while the effect of tilt on ‘the
flow patterns and heat transfer rates will be exgmined.
Throughout this section BC ¥ &ill be used. It will _bé - shown
that as a« goes from -90° to 85°, the flow pattérn undergoes
2 transitions which,vafe reflected 1in. the heat transfer
Eates. | |

The values of Nu versus tilt angle « measured from A isﬂ

plotted in fig.IV-10. From this figure, three regimes can be

identified. For «=-90° to 5°, Nu increases monotomically;
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1

for «=5° to 40°, Nu again increases monotonically but in a
slightly different way. For a245°, Nu decrases.
Corresponding . roughly to these regimes of Nu, three

different flow patterns take over sequentially.

Horizontal Pattern
| For a=-90° to 15°, detailed examination of tk- flow
pattern reveals that for all these configurations t ~re is
no substantial change in;flow pattérn. The flow pat. 21 1is
the same as that at A -- the horizontal pattern. However,
guantitive changes in the strength of the flow do occur.

At va=-@0°, the GTG has the same direction as GA. The
fluid is stably stratified and there is no fluid motion. The
LGT ,is the same as the GTG and conduction is the heat

2iﬁtransfer mechanism. As a increases from -90°, The GTG forms

3 an increasing  angle with GA -resulting 1in stronger and

_stronger primary circulation. The resultant LTG from the

lfprimary circulation 1in turn produces two paifs'bf vortices
= _ , g 2

"in the lateral xz plane.. This horizontal flow pattern
persists until «=20° where athe buoyancy near the end wall’

becomes strong enough to create a region of reverse flow.

Modif ie\? Horizontal Pattern

As @ goes béyond 20°, twd small regions‘of reverse flow
appear at the lower éorner of the heated wall and the upper
cofner of the cooled wall. This may be detected in fig.IV-11

which shows the xy . plane velocity at the mid-z plane for
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«=30°. These 'reéions of reverse flow result from the
buoyancy near the end walls. Take"the heated wall as an
example. Near the heated wall, there is always a region
where the temperature ¢ is greater than 2e:o.‘ As soon as
«>0°, this positive temperature would result in a positive
buoyancy in the y-direétion which tends to drive the flow in
the positive y—diréétion*cf. eg 'II1.14)). On the other hand,
the flow near the lower corner of the heated wall tends to‘
move in the negative y-direction to accommodate the over-all
primary circulation. If « 1is not too large (<20°), the
pressure gradient of the’primary circulation can overcome
the buoyancy so that no reverse.flow happens. If «a is/ large
enough (>20°), the resultant buoyancy near the heated wall
is so strong that part of the fluid near the lower corner is
driven  to move in the positive y-direction. This
back-flowing fluid will act like a wedge inserted in between
the primafy circulation and the bottom wall and force the
circulation to be separated from the bottom wall. This
separated'.flow will, as demonstrated in fig.IV-12, create a
stagnation point on the end wall. The fluid in the "wedge"
will circulate in the opposite direction to the priméry
circulation due the shear action at the interface .of the
"wedge".yThus a region of reverse flow is established.

~The reverse flow deécribed above will remain a local
phenomenon ‘as long as a<45°, The primary circulation 1is

still the dominating pattern for most of the cavity; near

the end wall region, it is forced by the reverse flow » be
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3

separated from.. the bottom wall. The resultant LTG is still

distributed in the £luid in such a way that two pairs of
\vortices appeér' in ﬁhe Xz plané. The Nusselt number keeps
.ncreasing as a 1ncreases because\ of the -ever stronger
primary circulation. This horizontal pattern, together with
the reverse regions produces the modified horizontal pattern
whﬁ%h persists until a=45° <
. : b

‘%ilément Pattern , | ’

| We know 4tbat " the ‘buoyancy iﬁ the y-direction 1is
depé%dent onféina. AS o increasesfu s0* does the ‘buoyancy.
With ever stronger buoyéncy,*the feyerse flow region near
the end wall is expanding. This exbanéidﬁ can be clearly
seen' on fiQ.IV—JZ. which shows how the stagnation point on
the end wall move;xtowatds the center. At the extreme case
of a=90°, the ;kagnétion-poidt is_expected to be situated
right on the center cofresponding to a Eémpleté~téké qyef of

the 4filément "pattern as shown in fig.IV-13, Actually, far

o . o :
below 90°, at «=45°, thgireverse flow has already grogn 'so

b

)

large that one ‘cannot- - regard-the'réverse flow'as b local
phenomenon. This istbelieved to be the boundary between the
~modified horizontal pattern . and the filament pattern in’

’

which a cemtral gore is surrounded by an annulus of fluid

SR . . L S |

flowing in the opposite direction. - : . ‘
The reasons fér setting, ‘the boundary at «=45°  are

. ) . s . .
'several. .First of all, at «=45° the Nu versus a curve

finally reaches a turning point to start a decreasing trend.
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Figure IV.13 Sketch of filament model
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v ) ' .
This cfkgical point would be expected to make a pattern

transitionT\Tn\the mogified horizontal pattern, there is

still a strong primary circulation which brinﬁs the hot

fluid from the heated end wall to the cooled end wall and’
fhyus the flow has an effective energy transport ability.‘For
the filament pattern,. the previously strong primary
circulatién has been shrinking with the reverse flow growing

gomparably strong, as sugdésted in fig.IVv-13. Hot fluid now

‘can travel to the cold wall only through a restricted path

in between the two reverse fows; thus the heat transfer

. ability of the convection is impaired. This overall picture

o
is confirmed by fig.IV-14. Thed second reason for treating

a=45° as the critical point is that the extension of the

.reverse flow itself is too big to be considered as a mere

.Q

modification. Fig.IV-15, as an ex;mple, éhoﬁs the v velocity
along the y—direétioé for a£60°f One can see that at y=1
(40% of the half 'length of the ;avity)'there‘is still
reverse flow.'with thris extension of pevefse ‘flow, it 1is
reasonable také the reverse fléw as a'major feature of the
flow pattern. Thellaét, but the most decisive reason is 'the
obsérvqtion- that when "a2456, éhé:£ﬁo pai}s of vortices in
the xz plane previoﬁsiy found for «<45° disappear and ére
replacéd' by sections of féuf filahentg (fig.IV-16). This is
why ﬁhe-name filémept'patterﬁlhés been used. -

, Once the  filament patteig prevaiié, for’peﬁsOns given
above, the:NQsSélt numbéf dropsﬁoff §Ha£§1y as a ~increéée$-
. IR : R , i C L e
further. This explains.the;éghavior eviden? in f§g.I1V-12,

o .
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C. THE EFFECT OF SKEW
A . : . _ .
When the box “is skewed from A at an angle 6, the GTG is

Qﬁch;nged but the primary plane wiil Fprm an anglé 6 with
the xy plane. Since the GTG is the same«as_that when the box
is at A, the flow pattern discussed in section A s not
e#pected to undergo-fundamental change. We may expect that
the primary circulation previously found in the xy plane at
" A  would now take place in the primary plahe. However, sing;
the nodal points for calculation are generally ‘not. located
on a primary pléne, the “pfima;y cipculaﬁién is hard to
bpresent. However, if the flow pattern is the same as that at
A, the secondary plane .velocity, which is edsy to check,
must have ﬁhe same pattern as before. Fig.IV—ﬁ7, shéwing_the
xz plane velocity at y=2.5, confirms-thét'the ¥low pattérn
{s essentialiy the same as that obtained.ﬁith,9=0°. For 6=0°
to 45° (because of symmetry, this is the whole 6 domain),
two pairs of counte%-rotating vdrtices are the pattern in
the xz plane. Thus skewing has no fundamental effect on the
flow paﬁtéfn. Changes are due to the adjusfment.to best 'fit
.the geométry.
D. éoNCLUSIONS . o o -
In this'chapger,'the thrée—dimensfonal étructﬁre,éf the

.

flow pattern .and. heat transfer properties of natural
- convection of' air in a Ax=Az=O.2,-ca€&£y under various
conditions were studied. The follﬁsing conclugﬁnns can be

"drawn from the study.
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., Because  of the driving force, the pressure gradient,
for the 'major velocity cdmponent, v, 'in this Ax=0.2 cavity
is different from the driving forcé) the buoyancy, for the
major velocity: component, u, in the Ax21 cavity; the flow

regimes division in the Ax>1 caQity is not . appropriate for

7thé Ax=0.2 cavity. There is a lack of evidence for

transitions of regimes for Ra=50 to 10°¢. For this range of

Ra, the primary flow“élways has an S-shaped velocity

-profile. As the result of the primarx'circulation, the LTG

&

becomes nonuniform and this . dPeates -two pairs of

counﬁer—rotéting, vortides in the %%Ee;al planes. These

vortices increaée the heat transfer rgié signif;cantly;
The‘way(bj'which the GTG fs imposed is relatively

unimportant in° determining the behavior 0§ §he systém as

demonstrated by substituting BC3 for BCT.

As the cavity 1is tilted from a=
different flow_patterns takevover Sequentialiy
to 20°, the flow patterﬁ is essentially the samejas,that for
a=0° and is thus.referred?to as the horizontal flow pattern.
For this~ flow pé%%g;ﬁ, the heat transfer rate increases

monotonically as the result of ever stronger circulation due -

to the ever stronger bubyancyAwhen a goes from -90° to 20°.

\

For a=20° to 40°, the buoyancies mnear the ‘end walls

will be strong .encugh to offset the primary circulation

pressure grad:en:t to create regions of reverse flow near the
~end walis. These end 'reverse flow negions will force the
- pramary crvcuration £o become separated {rom the boltdm  and



77

top walls to create two stagnation points on the end walls.

Yet for this range of «, the reverse flow regions remain a S

local phenomena and will not change the basic . features of
the horizontal flow pattern. This low pattérn is called'the°a

modified horizontal flow patterh.

As a245°, the reverse flow Fegions biéPme comparable igﬁ

with the dimensions of the cavity and the prévious

'modification' becomes a major fegtufé' of the flow. The
-~ N ~ . : .
original primary\circula;ioof under competition [ with thess

-

reverse flow, shrinks to a size that it is no longer
"primary' but fwo filaments of four comparably.gp}ong onés.
‘The secondary vortices in the lateral plane a;e;replaced by
filament sections. The original flow patternﬂ‘is completely'
destroyed and the/ fila@ené pattern ppévails. The . heat
transfer rate drops sharply as a result éf the impedance to
the advective mechanism of this pattern.

When the cavity is skewed; the GTG 1s left unchanged,

and ‘therefore there is no fundamental change of flow pattern 

from the unskewed case.
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V. TRANSVERSE TEMPERATURE GRADIENT Q£=5, Az=1 CAVITY.
In this chapter we will study the buoyant flow in a
cavity with Ax=5 and Az=1 while the Rayleigh number is kept
constant at 10*. By following several paths, transitions
between different flow patterns and associated heat transfer
rates are observed? New features of flow near ‘confiquration
B are investigated.
In section A, the system will be rotated foliowiné path
AD. At A, being the familiar vertical cavity, a sihgle
trarsverse cell with three-dimensional modification is the
flow patterﬁ. Then the box will be skewed up to 90° to get
the configuration D. At D, a single longitudinal roll (LR)
is the prevailing flow patgéﬁg. Between A and D, a gradual
transition from he transverse cell to the longitudinal roll
is observed;
In section B, paths DB and BD will be,follpwed. It ' is
Known that- B is the configuration of Benard-Rayleigh
convection. VLinear theory preaicts that a number of
transverse rolls (TR) Qith_roughly square-cross—section is
the motion modé. However, it 1is found‘thét the flow pattern

i1s heavily dependent on the initial condition. If nominally

~zero-value field variables are used as the starting point of

numerical iterationg six rolls appear in contrast to five

rolls for a -0.5 input. The situation is further complicated

by - the fact thaf by followingADB,,a longitudiﬁél roll would

‘be obtaifed at B, in_sharp,cohtrast, to the %%inear"theOry

o

_pnedicfion. The 11atter feature of bifurcation has not been

78
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reported before to the author's knbwledge.

In section C, the path IAB and paths BA with two
different initial.flow pattern at B will be investigated.
‘Once again, bifurcation at configurations near B was
observed. For example, at «=75° f;om,A, the flow pattern can
either be a single tranSvefsé'cell, five rolls or six rolls
depgnding upon the path that has been followed.

 In the first three sections, BC!1 is used throughout.

The computational domain is covered by, ,a 51x13x13 mesh

K .
. \ . .

network and no isymmetric property of sothlon 1s presumed. -

In section{@, cases for other mesh systems, 'various box

sizes andjﬁdiffe:ent boundary conditions are tested to see
tﬁe effect %ﬁchese factors. |

The préQ&ous sections are mainly for phenoménological
desCriptions ofwthg’flow paaterns and thHe associated heat
ﬁransfer rates. Since the sifuatioqgis rather complicated by
bifurcations near B, it désérvééw%ggé discussion. These are
the subjécts of section E. In*tﬁzé'section, we will try to

understand the behavior of the the system near configuration

B using the working principle devised in I1I-C-2 (WP II-C-2).
A. THE EFFECT OF SKEW

Configuration A4 f e
- B ) .
This is the classical vertical cavity in which, for

Ra=10*, the‘ flow does not possess a boundary layer. The

primary flow pattern as -shown in Fig.V-1 1is clearly in
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accord with the previous two-dimensional result, as
expected. However, because of the presence of the walls in
the z-direction, the flow is no longef two—dimens}onal. This

can best be seen from Fig.V-2 which is a top view of the

- v

plane flow near the top wall., Fig.V-3 illustrates the u
vel;city profile._Combining allkthe figures, the flow may be
piétured as follows. The rising flow near the bottom wall is
bi-maximal under the influence of the perfectly cénducting
z—Qa&ls (fig.v-3a). As the flow rises, the gtrength
incé@ases and the two local maxima converge (fig.v-3b). At

B4 . .
the mid-x plane, the maxima merge to form a single maximum

4 b

.and the flow reaches - the highest velocity (fig.v-3c).
Further wup in the x-direction, the flow lows down with the .
single maximum established. When approaching *close to the

wall, the flow diverges and a bi-maximal returninsg,flow

\ﬁdrmed (fig.v=2). The flow pattern is symmetric about the

{l S 4 . . s kS .
-z ’'plane and anti-symmetric about the mid-y plane.

!
;
5 l’
'

; . S ’ , ,
'At A ghs primary plane 1s the xy plane and a

twtfggngrsé cell ig\fbe ‘primary flow pattern. At D, the
‘pfimary plane is the yz plane,’and a longitudinal roll would
be expected to be the flow ;pazte;n. for a conf{guration
between A and D, the buoyancy force has components in both
the xy-plane and the yz—plane. Thus the>5holévfflow pattern
~can be considered és the superpbsition of the traﬁs&erse

u

cell and the 1ohgitudinal roLJ. However, since the motions:

<
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“B4
- _ o . . '

of .both the tranverse cell and the longitudinal ‘a;e. not

rigid bod4: rotations (or constant vorticity) a@ding the two

rotgting vectors to form a single roll with a new axis has -

i
- little meaning.
The relative magnitudes of the components, whichvchange

with 8, will detergine which flow mode plays the dominating

L

-role in forming the flow pattérn. In confiouration A, in the
ahseﬁce ﬂof a booyancy component1in-yz—oiane,‘the‘flow is a
eihgle transverse cell} while at the other end of the
spectrum, configuration D, the, flow pattern is a
longitudinal roll as the result of the buoyancy completeiy

lying in the yz-plane. The processsﬁ*Du through a skew angle

of 90°, is the proceiss in which the longltudlnal roll grows’

to full dominance and the transverse cell decays to nothing.

This process is well revealed by the yz-plane velocity

K
-

plots.

..

As soon as there is a non-zero skew angle, however.

small, the buoyancy hés a component in the yz-plane, This*

 component will establlsh 2’1ongitudiﬁa1~ roll. :'Fig.v—4,

'showihg the- yz- plane veloc1ty at x=2.45 for 6= 0°- 5°, 45°

E éha 9Q° 'glves us an 1deaiobf how the 1ong1tud1nal roll

) mw -
. . i
'vdevelops in the ‘central reglon of" the cav1ty Flg V- 4b shows,_

" ‘that for 6=5° there is a weak c1rculatlon
’{fig.v—4c shows that this circulation is well developed for
'9=45° in the central reglon Avay from the central reqgion
the longltud1nal roll is ev1dent untll 6=60°, as revealed by

fig.V-5 which plots the yz-plane,veloc1ty near the bottom

¢ yz plane,m

.
.
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end wall for several skew angles

Fig.V-6 shows the xz plane veloc1ty at y=0. 9583 while
Fig.V-7 provides _corresponding details at z=0,9583. These
.figures tell the same stor; about how the transverse cell at
A. gradnally transforms to a longitudinal ro%l as 6 changes
. from 0° to 90°. )

Fig.V-8 . shows the heat transfer rates for different
{SRew ‘angles. An immediate - observation is that the
longitudinal.‘roll creates higher heat transfer'than the
transverse cell (Nu at D is 19% . higher than that ’at A).
Having this ‘in mina;iit-is easy to explain the monotongcally
increasing trend of Nu when 6 exceeds 30° because the flow
becomes more and.more‘dominated by the longitudinal roll. In
‘the range of 0°<#<30°, . however, there is a competition
between .the‘two modes. More specifically,'for 0°<6<15°, the
flow is transverse cell dominated. The geometry of the flow
_ pattern and the cav1ty is not well matched thereby causing a
i.decrease in Nu. 'For 15°<6<30°, the longitudinal roll beoomes
more Aand more important bringing a reversal in Nu. The
longltudlnal roll domlnates at 6= 30°,.based on the4faot that

the Nusselt number isthigher than that at A.

' Throughout .the process A-D  (or D+4), the GTG ﬂeeps

~

perpendicular to GA. So for all the configurations, there is

no bifurcation- of any kind ‘ and . the . :solution is.

path-independent. For situations where "the GTG, or &

ksubstantlal component of .it, has the same direction'ﬂas the

-

GA, blfurcatlon 1s 11kely to occur. g

w
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S1
“ .
. B.' THE EFFECT OF ROLL

e

It has been shown that at configuration D the flow is a

al roll. On the other hand, previous studies
31) have shown tﬁat“five transverse rolls would be.
"o eférred~mbde in éonfiguration B. In the last'sectién,
it was noted that the flow experienced a ggadual transitién
from a  transverse cell to a longitudinal roll (and vice
veréa) by rotating thé cavity gradually from A to D (or D to
A).'.it was also found that between A4 and D the flow pattern
is unique regardiess of fhe path by which this configuration
was reached, i.e., for all the configurations between 4 and
D the fiow pattern is independént.of the‘ initialy-input‘ of
the numerical solution. 1In examining,thé beha*ior of the
H_systém in»configurations between D and B, the 'foliowing
vquestions néthrally come to mind. Fifst, Starting at D wiﬁh
. a longitudinal roll, will five transverse rolls be produced
vby rotating fhe box 90° about the x-axis to configuration B;
and is the behavior reversible ? Second, are the flow
patterns at configurations betwgen D and B path-independent

Let us start with configuration D and then rotate,the
box up to’90°_to_gﬁt‘conf&guration B. Then Eath BD will Dbe.
folloQéd by stérting with a flow pattérn'at-B-obtained‘from
a zero initial input. In this section the roll angle 'isii

"always measured from configuration D

"\
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Path DB ‘ ' 4
The‘curye cdnnecting the squaresein,fig.v-é shows * the
Nusselt number plotted against the roll angle k‘for path DB.
The monotonlcally decreasing behav1or of the curve for y230°
suggests that there 1is no abrupt transition in the flow
pattern since a- higher Nu would be expected for' the mode
with transverse rolls. Turning to the detalls of the flow
field, it is conflrmed that there is no transition from the

longitudinal roll to transverse rolls.

A Fig.v-10 shows the " yz-plane velocity at x=2t45 for
y=0°, .30°, 75° and 90°. According to this figure, the flow

change is only quantitive as 7y sweeps - through 90°. For y=0°-~
>

34° tte circulation 1increases slightly because of an .
"increase of buoyancy in the y-direction, resulting in an
increase in Nu. For y=30°-+90° the buoyancy in thr

z—direEtion continuously decreases causing a decrease in Nu.
As vy Iincreasesi a cro:ssectional view of the rollvchanges
from a "circle" at y=0° to an "ellipse" "with the primary .
axis of the "ellipse" continuously rotating _w'gh the skew
angle,vas can be seen . by comparing a, b, ¢ and 4 of
fig.v-10, Hewever, jall the changes are quantitive. 1In
configuration B the flow pattern nis still a iongitudinal
roll. ThlsNFonclu51on is also supported by flgs V-11 and 12
which are xy-plane 'and xz—plane velocity representations at
5 - A ,

~ One notable thing about configuration B is that, while

the governing equations and boundary conditions admit
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- solutions being -symmetric about the mid-z plane, the
olution obtained by rotatipg the.bo;,grom D to B does _ﬁot
possess’ this symmetric prope:ty.; This 1indicates,. 'asfwe
metioned before, that a symmetricl solutien 1§ only one
possible’solut1on of the governing equatloﬁs Caution should
therefore be exerc1sed wheh d;al1ng with conf1g:§at10ns neaa}
B using the' symmetric property .of . the solutign\pecause
non-symmetric solutions also appear to be possiBle. \
B Obtalned by Un.form Input
S It was shown in the last section that if a longltudunaL
rbll was. taken as the initial condltlon the flow pattgrné
é§ma1ned a longitudinal roll at B. However 'it~ is doubtful
that this longitudinal roll is the unique solutibn at B for
all kinds of initial inputs. In this’seétionu two different
uniférm field inputs aré>tried so that other possible\flo&
patterns at B may be studied.
First, @ nominally 2ero} (10—5)_field is used as input.
(We cannot input zero identically becéuée the Error Check
Subré&tine does not then work.) For this input, the solution
does converge to é vserigfv of tfansverse rolls; but six
instead of five. This can be séen‘most clearly at the mid-z
Xxy-plane as plottea'in fig.v—13} ﬁear béth end walls, the
flow goes downward as a result og applying the same physical
boundary cenditions for both walls and an isotfopic initial

condition in the end wall regions. This symmetry with

resgict to the two walls, necessitating an even number of
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rolié; ﬁp;oauced Six ro;ls for Ax=5., However, it is‘ﬁot
surpriéing that fhé_floQAis— not- strictly éymmetric about
2=2.5 plane  for reasons {expié{hed before. .For later
éoqyeniehceythis flow pattern will be referre@ to as B(GTR)

Beginning with a -0.5 unifbrm fiéid input, a five
‘transvergé.roll flow pattern 1s generated es éﬁown in
fig.v-14. Thé . anisotropic initial inpnt induced a
non-symmetric flo pattern with the fluid moving in opposit§3
directions in <c¢ne end regiohs. This in turn/induced (odd'
‘nﬁmbér)vfive transverse rolls.

inv terms of Beat transfer, transverse rolls are a much
more efficiéent energy transport system)| than a single
longitudinal roll near thevconfiguratioh " Also the 5-roll
is better than the 6-roll mode. Respective Nusselt number
for the 1LR, 6TR and  5TR modes are 1.45, 1.86 and 1.92,
respectivély. ( |

It has been shown that at least three flow patterns are
possible, each resulting from a different initial input. On

might wéll'aski how many more are possible and is there one

P
»

preferred (most stable)vmode?“We will try to answer these
guestions 1in section E. -Meanwhile,‘ the structure of a
typical.t:ansverse foll willibe examined in_detail.

The longitudiﬁal roll is almost two-dimensional because
of thevS:J'aspect ratid in the roll axis directioh. However,
for transverse rolls, since the z-direction has one of the
smallest dimensions, a strong‘ three-dimensional effect 1is

anticipated.. Actually, one can hardly call the flow pattern

/

/
/
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Qf a series of‘two;dimensiohal rolls as may‘be‘seen.by looking
at fig.v-iS which portréys the top viey'dé the plane'flo;v
near the top (cold) wall for B(6TR). It looks more like
. three jets, impinging on the wall and spreading the fluid
‘radially. |
| By cutting slices in the yz-plane along a typiéal roll,
a vivid picture of the three-dimensional nature of the\ flow
can ' be 8btained§ Fig.V-16 shows seQeral sections of the
number 3 roll in B(6TR). The réll is rbﬁghly anti-symmetric
about its rolling axis. In thé region where the fluid rises,
the flow first convergeé in the z—direction;i it then
approaches the'top wall and diverges to create an embryonic
péir of vortices at the upper corﬁers (fig.v—16anb),: Theée.
upper vortices form and grow, causing a%other‘ pair of
vortices to form beneath 1in order to make the flow
compatible (fig.V—1éc). At thegéentrél plane of the roll,
two pairs of co;ntér—rotating‘ vortices are- established
(fig.v-164d). It is found that every transversée roll
basically repeats this fléw structure regardless of \the
_numbers of rolls the péttern has.
Path BD ;
It appears ﬁhat‘either lonéitﬁdinal or transvérse rolls
are possible forms‘of flow pattern in configuration B. At D,
however, dnly. the fbnéitudinal roll is observed; It is,

therefore, interesting to trace the path BD b§ starting at B

with, ,say,,éix transverse rolls. Rolling the box back to D,
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var;ous #Btages of transition of the flow pattern from
transverse rolls tq a longitudinal roll can be observed.

Le; us first go back \to fig.v—9-and re-examine the
curve connecting the circles representing path BD. At B the
6-roll mode’is'used._lt can be.seen that Nu‘drope sharply as
Yy goes from 90° -+ 80°..For y<80°, the circles coincide witn
the squares indicating that it makes no difference whether
we follow path BD or DB in calculating the flow field for
these confiqurations. So the transition from 6TR to 1.R
“akes place between y=90° and 80°.

| Fig.v-17, being -a representative yz-plane view, shows
the process of transition very clearly. At y=88° 3
(fig.v-17a), the flow 1is still described by a ;rensverse
roll. At.y%85°, the longitudinal roll has grown _noticeably
and at. y=83°,-it dominatee, thus resulting in~ avéharp
decrease in Nusselt number. At y<80° there is no trace of
any kind of transverse roll, anly a complete lonc tudinal
roll, exactly the same as obtained by following path DB.

In :concImding this section, we answer the questions
 raised at the beginning of the section by saying that for
configurations of y<80°, the flovaaete:n is definitely a
longitudinal roll independent of path; while for y>80°; the"
".flow.,paftern is,branched, thus pefmittingvboth longitudinél
and transverse rolls of different numbers depending upon the

initial input. ‘ . (
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C. THE EFFECT OF TILT
\ In previous sections, several paths were followed by
rotating the box.in two ways: skewing and rolling. In the
process_of'skewing the'global temperature gradient is always‘
perpendiculer to gravity, while in the process of rolling

the = temperature gradient rbtates from perpendicular to

parallel (or opposite) to‘gravity; the longest dimension of

the box remaining horizonfal Besfdes skewing and rolllng,

there is another way ofﬁgotatlng the box: tiltirg, in which

process the temperature grédient rotates between horizontal:
and-vertical along with the longest dimension of ‘the box .

Starting from A, we can either tilt the bo# by 90° to get B

or by -90° to get C, thus having travelled along paths AB
and AC. Paths BA and CA are- also possible. All these

alternatives w1ll now be discussed. |

In this sectlon, the tilt angle a is measured from

configuration A.

Path AB

The flow pattern establlshed at A prevalls as long ' as
J
a<30°. Buoyancy in the y-direction appears to increase the

)
-

heat transfer as o increases from 0° to 30°. This is shown
in fig.V-18. . For «a berween 30° and 75°, no major change of
flow pattern is- observed. 'However there is a minor change
eohsisting» of a three dimensional modlflcatlon propagated
from ;he.end'wall'reglons to the 1nter10r.‘ For a>30° the

/
structure of the cell resembles that of a transverse roll,
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aS’diseusseaﬁin Section C. At a=80°" 'the single transverse
“’rdli' pattern "is disturbed as two regions of reverse flow
caused by local temperature graaient appear (fig.v-19), At
a=85°, the flow abruptly breaks 1nto fxve and a half rolls
thereby increasing the Nusselt number by 25.8%. This "5 5TR"
pattern remains up to @=90°. It can be seen from f1g v-20

that the left most roll is not very well developed and woulda

not be seen in the z wallrreglons. That is why it 1s-only

counted as a half roil.

Path B(6TR)-A4

Starting J?QR B(6TR),,the box:'is ;titted back:‘to 'A.
Between «=90° and 80° the flow pattern remainsvunchanged. At
‘a=75° the flow switches to a 4.5TR structnre‘aceombanied by
a small> decrease in Nusselt -number. At a=70°, thefﬁlbw
changes"to‘BTR with a greater -decrerse’uin Nu.i However'
lbetween «=70° and 60° the flow pattern, being relatlvely
stable, changes from 3TR to 2.5TR leaving the Nu almost
unchanged. For «=60° »45°, another big jump occurs in,both»
flow pattern and heat transfer rate. For aSQS“;\ the‘_ﬁJoQ
assumes the original single transverse cell. pattern erxactly
the same as ' that obtalned from following -path AB. The
Nusselt number'is plotted versus a in fig.V-21 with the flow
‘pattern labeled for each point. Fig.v-22 is a represent;ve

flow pattern which shows the 3TR pattern at «=70°.
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pPath B(LR)-A ,
v N .
Using the B(LR) askh the starting point, the aLove

proéess is repeated. The heat transfer rate and the flow

pattern at different angles is shown in fig.v-23. It is

interesting é% see tﬁat the flow immediately changes to a

5TR mode as a decreases to 85° thus leading to a huge jump

in Nu. At «=80° the the 5TR pattern, established at 85°, is

further developed. Transition from 5TR to 3TR, associated_

with a large decrease in Nu, takes place when « goes from

80° to 75°. Between «=75° and 70° the flow changes little..

Before the flow goes back to the single transverse cell’at

a<45°, however, the pattern undergoes transitions from 3TR.

to 2R for «a=70°-60°, and 2TR to 1TR for a=606*45°. Once
aéain, for confiqurations of a<45°, no bifurcation is
observed. Finally, fig.vV-24, taken és an example, shows,the
Q'fﬁféw'pgttern at a=80°. |

The evidence presented above suggests that there are two

~roughly equai regions of « e€ach with different solution

proprties. For 0°<a<45° the flow pattern is.a unique single

transverse cell independent of the initial inpgt; the heat
‘transfer rate is smooth and definite. For 45°€a590° thé floﬁ
pigte:n is branéhed\and complicated. The fingl pattern: for
any given configuration in this region ié_dependent on the
initial input and/or the path by ‘which this configuratibn

was reached. There is a certain amount of unpredictability

-- - - . . -~



114

V(d71)8 yied buore isqunu 3ITaSSNN £7°4A 8inbrg

s23J93( ‘0 . :
008 o'cH 0°0€ o'cY 00
.

27




:.
e @ = w & = o 0>
e S
.‘,/,__—\\\\ILE
VR EE R S N O
,////,-\\\ll:
I IVEEPEE N I ] &
N AV :/I’!"
l]lll""//l":
'Il\“-‘//l'
AN N SN S s/ e
N
Cr ]
:///,-_\s\\\‘..:
|ll/,___\\\\‘
rl&'l\..'_\\'\\'.:.
'\\\‘~-.|||,"
\\\\\___,//"“
s ———— oL, Lk
,,/,____.4\\\\.:
I///,‘—-\\\\\lP;
I.///"‘\\‘|'_
'//'/,-.lllll.:
l’,I,,.I/III
'III“"//I"_-'-_
.I\\\,_,///I"
.\\\\‘\._.—///ln
AN N SN e s g
.',,____‘\\\‘.:.
nl//z__‘\\\‘n
llll,_,\\\\l-
|l\\\._\\\\|:
|\\\\-,I|ll‘
\\\\\__/.//":
‘\\\*—'"’//-l'h
"’—_N\\\\"’E
,//,.__._\\\\\-
‘//./,—\\\"‘i:
,I/,,-\\llll—'
'l/,,.-lllll.
l'lll""’/.l":'
'lll“"//,' v
TR \_//.//I"o!'
|‘\\\a’///l.
l)\\\\'—"//"“
'\\\\~—-—-——-..:
e e .
e e e e e e e
Vos'e - on e oo'o.

a:

0.5,

80, path B(LR)A

Figure V.24 xy plane velocity, z

115



\
)
J/
116"
this region. As « gdes from 45° to 90° the unpredictability

. increases. For example, at- «=60° three possible flow

patterns are 1TR, 2TR and 2.5TR with Nu v rying between 1. 40"

and 1.75, a variation of 25%. At a=80° tR Sss1
patﬁerns_are 1TR,. 6TR and 5TR with Nu varying between 1.
and 1.91, <a variation of 30%. At a=90° bifurcétion'between
transvefse rolls and longitudinal roll is even observed.
This 1increasing trend of ‘uncertainty is believed to be
caused by the increasfhgiy important role which the vertical
.component of globél temperature gradient bla&s as «a goes'to
90°.

Finally, it is instructive to present the Nu histoéram
in terms of the number of trasverse :ollsf "Fig.,v-25 shows
this with 'O represénting the ;ongitudinal roll. It can be
seen that, a) 5TR is the mést effective heat transfer mode
probably due to ‘the geometry fitness; b) Nu éenerally
increaées with an Jncreasing TR number; c) the 4TR mode does

not appear to exist!

D. OTHER SITUATIONS

Paths AB and AC have also been calculated using the
mid~z plane symmetric 71x15x8 grid system for Ax=5 and Az=1.
For path AB, the results are gualititively the same as those
Eeportea in the last section. The single transverse cell

breaks up to 5.5TR at «=85°. For path - AC, the single

transverse cell hecomes wepakar anA woalbkor anA Finmnallw
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conduction. In this particular geometry, a different mesh
& : '
system ' makes no qualititive difference in the solution even

for configurations near B.

The Ax=1 and Az=2 cavity with BC2 has also’ been tested.
This is the»sa;e cavity geometry and boundary condifion as
that reported 1in [35]. It was reported in [35] that, for
Ra=20§b to 4460, at B, LR, 1TR, 2TR and the mixture of them
were possible flow ., patterns; each would ‘show up for a
different Rayleigh number. Oné‘Rayleigh number corresponded
to a unique flow pattern: However, if is found in this study
that, for Ra=10*, LR, ZTR and 3TR aré possible flow
patterns. The final flow pattern is détermingd by initial
input. It appears that changes in geometry of ‘the box and

boundary conditions do not alter the bifurcation situations

near B for sufficiently large Ra ( O(10*) ).
E. SOME THOUGHTS ON BENARD CONVECTION

’ Uniqueness Versus Bifurcation

a Most of fhe previous studies qf supercritical Benard
convection had a particular 6bjectivé in 'mina: to preéick
the planform and the wave number of the conveétion. Thié
6bjective is basea on the assumption that the planform and
wave number (flow pattern) Qnder certain prescribed

conditions are‘uniqué and completely predictable, at least



solution wh;ch is independent of the initial conditions: The
f\frequently. ~mentioned alternative flow patterns in
experimental reports are usually dishissed as exceptions
caused by uncertain factors, and thus taken to be
meaningless. It was believed that‘ the difference between

theory and experiment could be attributéd to: a) theklack_of

control over the experimental conditions and, b) the
inability . to ° solve the nonlinear governing equations
accurately. To overcome these difficulties, extremum

principles were introduced to help predict the flow pattern
([24,25]). According to these extremum principles, the flow
pattern for any givén Rayleigh number must be such that: a)
the resultant viscous dissipation rate is a minimum or, b)
the resultant heat transfer rate is a maximum or, c) the
entropy production rate of the system is an extremum.

In the present study, solﬁtions of the governing
equatioq were. obtained using'a\numerical ethod which is one
of the best methods known today in dealing with equations of
this type. Although the'results for the Ax=5 and Az=1 cavity
did shoy that the 5TR mode satisfied the maximum heat
transfer criterion and probably - the minimum Qiscous

sdissipation condition, it nonetheless was not THE solution.
| The evidence overwhelmingly suggests thatJthere is no un{que
1LR, S5TR, 6TR, etc. are all possible solutiﬁns. Which\ggp is

~

finallv realized avoears to be determined bv the initial
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pattern can not be'predicted unless the inital conditions
are specified.

The wunpredictability of a system géverned by |
deterministic laws 1is not unusual. It is only one more
manifestation of the intrinsic prdperties of most nonlihear
systéms. Recent  studies have shown (f33}34]) that even a.
‘bne—degree—of—?reedom nonlinear system may have chaotic
bcnavior.  So it is no surprise that a continuum having an
irfinite number of degrees of freedom governed by nonlinear
laws would exhibit certain degrees ofluhpredictability;

3

Formation of a .Flow Pattern

Mathématically, the Unpredictability of soluﬁions is an
intrinsic property of the nonlinear governing equations for
the systém at B. But no at;empt will be made here to study
this property in a mathematically strict manner. Howéver, by
appiying the wérking pfinciple for predicting the flow
péttern for a given temggrature gradient (WP II-C-2), we can
get some insight .into thé physical processes- involved.

When the TG is,ﬁot‘parallel to the GA, it will lead td
a ci;culation in fhe direction predicted by WP 11-C-2. Once.
convection occurs, the temperature distriQUtion,‘thus.the TG

distribution, will be  modified abcofdingly. If the

ciréulation alters the temperature distribution in such a

o~ — U R PU E o~ . Y . -
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circulation and temperature field are not mutually
reinforcing, then the flow pattern is not likely to be
stable and will be changed until a reinforcing interaction
is formed.
When the TG 1is parailel to GA, the «circulation
4 d{rection is indeterminate. For configuration B, ﬁhe TG
provided by the GTG 1is parallel to GA. So the pattern of
| motion (if any)_is not detérmihed by the GTG but ‘by locai
horizental temperature gradiepts (LHTG) providéd by means
other than the GTG. The LHTGT can be furn{shed by: a)
fluctuations in the fluid or, b) initial conditions, if'the
LHTG's are sucﬁ that a positive feedback loop of
temperature-circulation is formed, a certain flow pattern is
.likely to emerge. In the Qhole process, the GTG 1is only
acting as a source oﬁ‘énergy for motion of any permissible
flow pattern. The pat;;rn itself appears to be determined by‘
fhe LHTG's. If the initial condition and/or fluctuations are
to some deéree arbitary, so is the flow pattérnt‘i
We can take the B(LR) situation as an example. We know
that at D, thevtemperatﬁtebis sfratified in‘the z-direction
as a result of the LR conyeétion. There is a temperatﬁ;e
gradient in the pqsiﬁive'z—direction; When this LR pattern
~is used as input at B, this z-TG is a LHTG. According ‘to WP.

I1-C-2, the circuldtion direction under this LHTG is
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Validity of Numerical Methods

It has been shown that the solution at B is hpt unique.
but branched, and it ié not stable to certain disturbances.
Since a numerical method 1is nécessarily‘ an approximation
procedure, it will introduce inherent disturbances to fhe\
solution. Different solutions may be generated simply bx

applying, say, different grid systems. -

The

uestion _of how reliable a numerical solution is is

hard to answer.

(deserves full investig!.ion. Different
numerical methods, different grid systems for - the same

method, or even, thg” application of different sweéping

sequences when solving the algebriac equations, might make
substantial differences. But, hopefully, the'consistency of
qsingtexactly the same numerical"procedurQ, might, to some

degree reduce, if not remove, the ambiguity.

F. CONCLUSIONS

In. this chapter;’.naturalvconvecﬁion of air in a Ax=5
and -Az=1 cavity rotating along ;everal §§ths has been
studied. .The Rayleigh number was fixed at 10*. Transitions
between different flow patterns have been identified and the

associated heat transfer rates presénfed. Path-dependent

behavior of the System has been found for configurations

around: B. ‘ . . ‘ - K
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roll dominates. Along,path AD, the longitudinal roll 1is a
more ‘ef égtive“heat transfer mode. No solution bifuréégion
was found‘along AD because the GfG is always perpendicular
to GA. | |

The flow pattern for donfigurétions between D and B
obtained gs folléwing path AD 1is a léngitUnal roli. Thé,
femperature strafificétién in the z-direction caused by LR
’convectibﬁyhresulfs in é' TG in the z- dlrecthnn This TG
whlch is- horlzontal ‘at B, is respon51b1& for tél formatlon
"of the LR patpern at B. As for he%%\transfer, Nu increases
slightly between y=05 and  30° but Qecresef mbnotonicé}ly
from‘30°;to 90°.- ~ | 4 .

There is-a region of y spanning about 10° near B where
the ~ ‘solution’ is_ path—dependent. In this region, flow
patterns 6?xseveral transve;se rolls (TR) havé been found if
the initial cohdi;ion is a séries of:t:ansverse rolls. fhe
transverse rol} moae is- a much more effective heat transfer
mode than the LR mdde in this région;

When tilting the box.from A to- B; the path—dependent
region 1is much larger. For a<45°, the lew pat%ern is a
single trans%erse cell. For «=45° to 906 the flow pattern
can be 1TR, 2TR, 3TR, 5TR or GTB, the rgsg%plng variations
in Nu being as high as 30%. Folloﬁing_;ﬁlfpath AB, the 1TR
'pérSisted until a=?52 at which point 5.5TR's were suddenly
formed, Follow1ng the path 'B(6TR}Q\ the flow pattern

exhlblted a series of transitions w1fﬁ decreasing numbers of_

TR'S before finally settling down to ATR at a=45°. 'For the

-
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paﬁh B(LR)A, the system first jumped to 5TR at «=85° and
éhen repeated the same behavior as the B(6TR)A path. The
most effectlve heat transfer mode ' is 5TR and the least is LR
in configuration B

Limited studies of other situétions_ suggest that the
path-dépendent behaviér of the system has not been changed

by‘ the ’size of the bqﬁ, béundary conditions and the

‘computing grid'network._ |

when the GTG of the system is parallel to the Ga, tﬁe
flow pattern is .not‘aetermided by the GTG but by combine%
effects of local horizontal temperature gradients (LHTG).
The LHTG's are usually furnished by fluctuations in the
fluid or the 1initial conditions. The randomness .of the
mechanism in providing the ‘LHTG'S ‘determines that the
bifurcation of solution in this situation is a rule rather
than an exqeptiohf Previous attempts to wor? out a unigue
solution for a given set of'principle paraheters have thus
put the problem in a mislead}ng—pérspectivé}
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APPENDIX

LISTING OF PROGRAM

THIS IS A PROGRAM SOLVING NATURAL CONVECTION PROBLEMS

- PARAMETER(N=51,M=13,L=13 ,NN=N+1,MM=M+1,LL=L+1)
PARAMETER (NP=N-1,MP=M-1, Lp= L-1)
DIMENSION UP(N, MM LL), VP(NN M,LL) ,WP(NN,MM,L)
DIMENSION T(NN,MM,LL),PP(NN,MM, LL) P(NN,MM,LL)
DIMENSION U(N,MM LL) V( N,M, LL) W(NN MM,L),GRADT(MM)
DIMENSION DX(NN) DY(MM) DZ(LL) AP3(2 N, 2 M,2:L)

DIMENSION PX(NN),QX(NN),PY(MM) QY(MM) PZ(LL) QZ(L
DIMENSION AP1(2: N 2:M,2:L), AP2(2 N 2 M,2: L)

DIMENSION AE(2:N, 2 M, 2 L), AW(2 N,
DIMENSION AS(2:N,2:M,2:L),AT(2:N, 2 M,2:L)

DIMENSION
PSB(2:N, 2:
DIMENSION

,2:L),

S(2:N
(2
B(2

L) QSB(Z'N 2:L) ,ANB(2:N,2:L),CNB(2:N,2:L)

PWB(2:M,2:L),QWB(2:M,2:L) /AEB(2:M, 2: L),CEB(2:M,2:L)

DIMENSION

PBB(2:N,2:M),QBB(2:N,2:M) ,ATB(2:N,2:M),CTB(2: N 2 M)

DIMENSION SEB(2 M,2: L) SNB(2 N,2: L) STB(Z N,2: M)
CALL SYS$DISEXC(0 0,0, 4)

OPEN(5,FILE="D1'")

READ(5, *)AX,AZ,ANGL

READ(5,%)RY, PRD
READ(S,*)ALFV

READ(5, *)TOLV1, TOLV2 TOLT1,TOLT2, TOLP

READ(5, *)(DX(I)

READ(5,*) (DY(J), J—1 MM)

READ(5, %) (DZ(K),

READ(5, * )NCR, NCCR AMP
AAT=1. 0/(1 0- ALFV) '

SN=SIN(ANGL)
CN=COS (ANGL)
‘AX2=AX*AX
AZ2=AZ%AZ
RX=RY*AX2
RZ=RY*AZ2
AXI=1.0/AX

- AXI2=AXI=*AXI
AZI=1.0/AZ
"AZI2=AZI*AZI
RA=2.0*RY*RY*PRD
GX=1.0/RX ~
GY=1.0/RY
GZ=1.0/RZ
GTZ=GZ/PRD
GTX=GX/PRD
GTY=GY/PRD

LY AT Y ~ . 3
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NCC=0

INPUT INITIAL GUESSED VALUES FOR U, V AND T
OPEN(4,FILE='INPUT')
READ(4,11)(((up(1,J,K),I=1,N), =1,MM),K=1,LL)
READ(4,11)(((VP(I J, K),I—1 NN) ,J=1,M),K=1,LL)
READ(4,11) (((wP(I,J,K),I=1,NN),J=1,MM),K=1,L)
READ(4,11)(((T(I,J,K),I=1,NN),J=1,MM),K=1,LL)
READ(4,11)(((PP(1,J,K),I=2,N),J=2,M),K=2,L)
DO-22 K=1,LL :

DO 22 J=1,MM

DO 22 I=1,N

22 U(1,J,K)=UP(I1,J,K) 7
DO 24 K=1,LL P

DO 24 J=1,M

DO 24 I=1,NN -

24 v(1,3,K)=VvP(I,J,K)

DO 26 K=1,L

DO 26 J=1,MM

DO 26 I=1,NN

26 W(1,J,K)=WP(I,J,K)
APPLY BOUNDARY CONDITIONS
GRADT(1)=1.0

"DO 33 J—1,M

33 GRADT(J+1)=GRADT(J)-DY(J)-DY(J+1)
DO 45 K= 2,L

PSB(I,K
ANB (I

50 CEB

Kgg 55
55

PBB(I,

ATB(1I
55 CTB(

qA
£

L‘H(_,A

)
K)
1
K)
AEB(J,K)
J
)
J)=
1

SOLVING

, .0 :

U, AND W FOR GIVEN P AND T
1000 DO 75 2,L

2

QWB(J,

DO 85

GGG~
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120 I=2,NP *
CALL FLUX(DX(I+1) DX(I),T(1+1,J,K),T(1,J K) ST)
120 s(1,J,K)=0. 5*(Dx(1)wnx(1+1))*DY(J)*DZ(K}*AXI*ST*CN+~
+AXI2*DY(J)*DZ€K)*(PP(I J,K)-PP(I+1,J,K))
DO 130 K=2,L
DO 130 J=2,M
DO 130 I=2,NP
AE(I,J,K)=0.5%(UP(I,J,K)+UP(I+1,J,K)) (—‘
AW(I,J,K)=0, 5*(UP(I—1 J,K)+UP(I,J,K)) :
CALL FLUX(DX(I+1) DX(I) VP(I+1, J K) VP(I,J,K),A
CALL FLUX(DX(I+1),DX(I) VP(I+1 J—1 K) VP(I J- 1
CALL FLUX(DX(I+1),DX(I), WP(I+1 J, K) WP(I J,K), A
CALL FLUX(DX(I+1),DX(I),WP(I+1,J,K- 1) WP(I J, K-
130 CONTINUE
CALL COEF(DX,DY,DZ,AP1,AE, AW AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,NP,M,L,0,1, 1 ALFV)
CALL SOLVER(AP1 AE, AW AN Ap AT AB,S,U,PX,0QX,PY QY PZ,Q2Z,
+PSB,QSB,ANB, CNB SNB PWB ,QWB, AEB, CEB SEB ,PBB QBB ATB,CTB,STB,
+N,M,L,NN,MM,LL, N ,MM,LL,ALFV TOLV1)
DO 2go K=2 ,L _
DO 220 J=2,MP
DO 220 I=2,N ~ {
CALL FLUX(DY(J%1),DY(J),T(I,J+1,K),T(1,J,K),ST)
220 S(1,J,K)=0. 5*DX(I)*(DY(J)+DY(J+1))*DZ(K)*ST*S +
+DX(I)*DZ(K)*(PP(I J,K)-PP(I,J+1,K)) <,
DO 230 K=2,L
DO 230 J=2,Mp ¥
DO 230 I=2,N 7 '
CALL FLUX(DY(J+1),DY(J),UP(I,J¥1,K),UP(I,J,K),AE(I,J,K))
CALL FLUX(DY(J+1),DY(J), UP(I-1 J+1 K) UP( I-1,J3,K),AW(I,J,K))
AN(I,J,K)=0. 5*(vp(1 J, K)+VP(I J+1 K))
AS(I,J,K)=0.5%(VP(1,J-1 K)+VP(I J,K)) .
CALL FLUX(DY(J+1) DY(J) WP(1I, J+1 x) ,WP(I,J,K),AT(I,J,K))
CALL FLUX(DY(J+1) DY(J),wp(I,J+1,K—1),WP(I,J,K—1),AB(I,J,K))
230 CONTINUE © ,
CALL COEF(DX,DY,DZ,AP2,AE,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,N,MP,L,1,0,1,ALFV) - .
CALL SOLVER(AP2 AE AW AN AS AT ,AB,S,V,PX,0QX,PY,QY,P2,0QZ,
+PSB,QSB,ANB CNB SNB PWB QWB AEB CEB SEB PBB, QBB ATB,CTB,STB
+N,M,L,NN,MM,LL, NN ,M,LL,ALFV, TOLV1)
DO 720 K= 2 LP
DO 720 J=2,M
DO -720 1=2,N
CALL FLUX(DZ(K+1),DZ(K),T(I,J,K+1),T(I,J,K),ST)
720 S(I,J,K)=AZI2*DX(I)*DY(J)*(PP(I,J,K)-PP(I,J,K+1))
DO 730 K=2,LP
DO 730 J=2,M
DO 730 1= 2\

-—-'—-3?12

!

CALL FLUX(DZ(K+1) DZ(K),UP(I,J,K+1),UP(I,J,K),AE(I,J,K))
CALL FLUX(DZ(K+1),DZ(K),UP(I-1,J,K+1),UP(I-1,J,K),AW(I,J,K))
CALL FLUX(DZ(K+1),DZ(K),VP(I,J,K+1),VP(I,J,K),AN(1,J,K))
CALL FLUX(DZ(K+1),Dz(K),VP(I,J-1,K+1),VP(I,3-1,K),AS(I,J,K))

LN A A e e -
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730 CONTINUE

CALL COEF(DX,DY,DZ,AP3,AE,AW,AN,AS,AT,AB,GX,GY,G2Z,
+NN,MM,LL,N,M,L,N, M LpP,1, 1 0, ALFV)

CALE SOLVER(AP3 AE AW AN AS AT ,AB,S,W,PX,0X,PY,QY,PZ,Q2Z,
+PSB,QSB,ANB,CNB, SNB PWB QWB AEB CEB SEB PBB QBB ATB,CTB,STB,
+N,M,L,NN,MM,LL, NN MM L, ALFV TOLV1)

PRESSURE CORRECTIONS —~
DO 310 K=2,L b ‘

DO 310 J=2,M

DO 310 I= 2,N ' _ l
310 s(1,J3,K)=DY(J)*D2(K)*(U(1~1,J3,K)-U(1,J,K))+
+Dz(x)*Dx(I)*(v(I,J—1,K)~V(I,J,K))+
+DX(1)*DY(J)*(W(I,J,K~-1)-W(I,J,K))

DO 320 K=2,L = .

DO 320 J=2,M

w(2,J,k)=0.0

320 AE(N,J,K)=0.0

DO 330 K=2,L
DO 330 J=2,M
. DO 330 I=2,NP
AE(I,J,K)= AA1*AXI2*DY(J)*DZ(K)*DY(J)*DZ(K)/AP1 1,J,K)
330 AW(I+1 J,K)=AE(I,J,K)
DO 340 K=2,L
DO 340 Lﬁ2,N
AS(1,2,K)=0.0
340 AN(I,M,K)
DO 350 K=2,L
DO 350 J=2,MP
DO 350 I=2,N
AN(I,J,K)= AA1*DZ(K)*DX(I)*DZ(K)*DX 1)/ap2(1,J, K)

350 AS(I J+1,K)=AN(I,J,K)
DO 353 J=2,M
DO 353 I=2,N

B(I1,J,2)=0.0 )

353 AT(1,J,L)=0.0
" DO 357 K=2,LP
DO 357 J=2,M
DO 357 1=2,N _ B
AT(I,J,K)=AA1*AZI2*DX(I)*DY(J)*DX(1I)*DY(J)/AP3(1,J,K)
357 AB(I,J,K+1)=AT(I,J,K) .

DO 360 K=2,L
DO 360 J=2,M P
DO 360 1=2,N .
360 AP1(I,J,K)=AE(I,J,K)+AW(I,J, K)+AN(I J,K)+AS(I,J,K)
++AT(I,J,K)+AB{I,J,K) A

CALL SOLVER(AP1 AE AW,AN,AS,AT,AB,S,P,PX,QX,PY QY PZ,Q2Z,

=0.0

+PSB,QSB,ANB, CNB SNB PWB QWB AEB CEB SEB PBB QBB ATB,CTB,STB,

"~ +N,M,L,NN,MM,LL,NN, MM LL, 1.0, TOLP)
DO 365 K=2,L
DO 365 J= ?'M
DO 365 1= 4 N

-~ - - - -~ - -\ — fav mae =\
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DO 370 I=2,NP

370

u(1,J,K)=0(1,J, K)+AE(I J,K)/DY(J
DO 380 K=2,L"

DO 380 J=2,MP

DO 380 I=2,N

380

\hizb

J)/DZ(K)*(P(I,J,K)-P(I+1

s
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rJr>K)

v(I,J,K)=v%ﬁ;J,K)+AN(I,J,K)/Dz(x)/nx(l)*(P(I,J,K)—é(i,ai1,x)

DO 385 K=2,LP

DO 385 J=2,M

DO 385 I=2,N

385
W(I,J,K)=W(I,J,K)+AT(I,J,K)/DX(1
DO 390 K=2,L

DO 390 I1=2,N

DO 390 J=2,M

390 pPP(I,J,K)=PP(I,J,K)+P(I,J,K)
SOLVING T

RNUO=RNU "~

DO 450 K=
DO 450 I
QSB(I,K)
450 SNB(I,
DO 453 K=2,L

DO 453 J=2,M
QWB(J,K)=GRADT(J)

453 SEB(J,K)=GRADT(J)
DO 455 J=2",M

DO 455 1=2,N
OBB(I,J)=GRADT(J)

455 STB(I,J)=GRADT(J)
DO 420 K=2,L .

2,L

2,N -

1.0
K)=-1.

0

HnmnmNNoN~
e o~
"
o
o

<cacs -~ ~
ESSCCu v lnk

o e

AS(I,J,R)=V
AT(I,J,K)=W(
AB(I,J,K)=W(I
430 CONTINUE

CALL COEF(DX,DY,DZ,AP1, AE AW, AN AS

+NN,MM,LL,N,M,L,N, M L, 1 1 1,1.

CALL SOLVER(AP1 AE AW AN AS AT/AB,S,T,PX,QX,PY,QY,PZ,Q2Z,

) /DY(J)*(P(1,J,K)-P(1,J,K+1)

/

.AT,AB,GTX,GTY,GTZ,

_+PSB,QSB,ANB, CNB SNB PWB QWB AEB, CEB SEB PBB QBB ATB,CTB,STB,
+N,M,L ,NN,MM,LL, NN MM LL 1.0, TOLT1)

NCC NCC+1
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END IF }
NCOUNT=NCOUNT+ 1 ,

F(NCOUNT.GE.NCR) THEN
GO TO 4000, : ' .
"END IF. v : :
RNU=0.0 . ) . .
DO 500 K=2,L. . ~
DO 500 I1=2,N

500 RNU= RNU+DX(I)*DZ(K)*(T(I,1,K)7T(I,2,K))
ERT=RNU-RNUO"

ERT=ABS (ERT)
- ERT=ERT/RNU
" IF(ERT.GT.TOLT2) THEN
DO 503 K=2,L -
DO 503 J=2,M
DO 503 I=2,NP
503 UP(I,J,K)=U(I,J,K)
DO 505 K=2,L .- ' s e
DO 505 J=2,MP ' o
DO 505 I=2,N
505 VP(I,J,K)=V(I,J,K)
DO 507 K=2,LP
DO 507 J=2,M
DO 507 I=2,N
507 wP(!,J,K)=W(I,J,K)

GO TO 1000

END IF

CALL ERR{UP,U,N,MM,LL,EU)

CALL ERR(VP,V,NN,M,LL,EV) , ¢

CALL ERR(WP,W,NN, MM L,EW)

IF (EU.GT. TOLV2 OR.EV.GT.TOLV2. OR. EW GT.TOLV2) THEN
DO 520 K=2,L

DO 520 J=2,M

DO 520 I=2,NP

520 UP(I,J,K)=U(I,J,K)

DO 530 K=2,L

DO 530 J=2,MP

DO 530 I1=2,N

530 VvP(I,J,K)=V(1,J,6K)

DO 540 K=2,LP

DO 540 J=2,M

DO 540 I1=2,N o

540 WP(I,J,K)=W(I1,J,K) K

GO TO 1000

"END IF

4000 X=2.0xRY*RY*PRD

X=ALOG10(X)

RNU=RNU/DY%(2)

Y=ALOG 10 (RNU) : ,
OPEN(7,FILE="'OUTPUT') , - ' , '



134

WRITE(?, )(((PP(I J,K),I= 2 N),J=2,M),K=2, L)
WRITE(7,111)AX,AZ ANGL
. WRITE(7,222)RA,X
WRITE(7,333)PRD
WRITE(7,444)RNU,Y
WRITE(7,555)N,M,L
WRITE(7,666)NCOUNT, TOLP .
WRITE(7,777)EU,EV,EW,ERT
11 FORMAT(13E15.5)
111 FORMAT('Ax:',F5.2,' Az: ! Angl:‘,F5.2)
. 222 FORMAT('Ra:',E11.3," Log Ra}k ' E13.5)
- 333_FORMAT('Pr:',E11,3)
444 FORMAT('Nu:',E14.5,' LogNu:',E14.5)
555 FORMAT( 'Mesh: ',13,in712,'x',12)
666 FORMAT('NCOUNT:',I15,' TOLP',E15.5) _
777 FORMAT('Eu:',E10.3,'  Ev:',E10.3,' Ew:',E10.3,"
Et:',E10.3 ~ '
STOP
END
SUBROUTINE FLUX(DF,DB,VF,VB,OPT)
o/ (DF+DB)
OPT=R#* (DB*VF+DF*VB)
RETURN
END
SUBROUTINE PWRLW(GXY,WW,DDS,DS, JUU)
F=DDS*WW
. DDI=GXY*DDS /DS
P=F/DDI
.0-0. 1*ABS(P)
x X*x*x*x*x . .
X=AMAX1(0.0,X)
IF (JUU.EQ.1) THEN
WW=DDI *X+AMAX1(-F,0.0)
ELSE
WW= DDI*x+AMAx1(F,o.0)‘
END IF - .
RETURN - -.7
vEND - ‘
SUBROUTINE COEF(DX DY,DZ,AP,AB,AW,AN,AS,AT,AB,GX,GY,GZ,
+NN,MM,LL,N,M,L,NX,NY,NZ,JX,JY, JZ AL)
; DIMENSION DX(NN) DY(MM) DZ(LL) A (2 N,2:M,2:L)
DIMENSION AE(2:N,2:M,2:L),AW(2:N,2:M,2 L),AN(2: %,2
DIMENSION AS(2:N,2:M,2:L) ,AT(2:N,2:M,2:L),AB(2:R,2
ALI=1.0/AL.
DO 25 K=2,NZ
DO 25 J=2,NY
DO 25-1=2,NX
IF (JX.EQ.1) THEN
DXE=O.5*(DX(I+1)+DX(I))
DXW=0.5%¥(DX(T)Y+NX(T-1))

»

L)
:L)

NN

M,
:M,



.DDX 0.5%(DX(I1)+DX(I+1))

END IF

IF (JY.EQ.1) THEN
DYN=0.5%(DY(J+1)+DY(J))
DYS=0. 5*(DY J)+DY(J—1))
DDY=DY (J)

ELSE

DYN=DY (J+1)

- DYS=DY(J)

DDY=0. 5*(DY(J)+DY(J+1))
END IF .

. IF (JZ.EQ.1) THEN

DZT=0,5%(DZ(K+1)+DZ(K))
DZB=0.5%(DZ(K)+DZ(K-1))
DDZ=DZ (K)

ELSE

DZT=DZ (K+1)

DZB=DZ(K) : .
DDZ=0.5%(DZ(K+1)+DZ(K))
END IF

AEW=DDY*DDZ"
ANS=DDZ*DDX
ATB=DDX#*DDY

CALL PWRLW(GX,AE(I,J,K),

AEW,DXE, 1

)

CALL PWRLW(GX,AW(I,J,K),AEW,DXW,0)

CALL PWRLW(GY,AN(I,J,K)

,ANS,DYN,

1) .

CALL PWRLW(GY,AS(I,J,K),ANS,DYS,0)

CALL PWRLW(GZ,AT(I,J,K)
CALL PWRLW(GZ,AB(I,J,K),

AP(I,J,K)= ALI*(AE(I J K)+AW(I J, K)+AN(I J, K)+

,ATB,DZT,

ATB,DZB

+AS(I J,K)+AT(1,J, K)+AB(I J, K))

25 CONTINUE
RETURN
END

1)
,0)
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SUBROUTINE SOLVER(AP,AE,AW,AN,AS,AT,AB,S,QQ,PX,0X, PY QY,
+PZ2,Q0Z2,PSB,QSB,ANB CNB SNB PWB QWB AEB CEB SEB,PBB QBB

+ATB CTB, STB N,M,L,NN, MM LL NX,NY,NZ, ALF TOL)

: DIMENSION (2 N 2:M, 2 L) AW(Z N, 2 M,2: L) AN(2:N,2:M,2: )
,2:M,2:L) ,AT(2:N,2:M,2:L) ,AB(2:N,2:M,2: ’)
12:M,2:L),S(2:N, 2 M, 2 L) QQ(NX,NY NZ)

DIMENSION“AS(
DIMENSION AP(2
DIMENSION

PSB(2:N,2:L),QSB(2:N,2:L)
*DIMENQJON :
PWB(2:M,2:L) QWB(2'M 2:L),

DIMENSION

,SNB(2:N,2:L)

,CNB(2:N,2:L)

SEB(2:M,2:L),CEB(2:M,2:L)

PBB(2:N,2:M) QBB(2 N,2:M),STB(2:N,2:M),CTB(2:N,2:M)

'DIMENSION ANB(Z N,2: L) AEB(Z M,2: L) ATB(2 N,2: M) b

DIMENSION PX(NN) QX(NN) ‘PY(MM) QY(MM) PZ(LL) ,QZ(LL) -

NXP=NX-1
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‘DO 10 I=2, pr :

10 s(1,4, K) s(1,dJ, K)+A1*AP(I J,K)*QQ(I,J,K)"

100 DO 30 K= 2, NZP

DO 30 I=2,NXP.

PY(1)=PSB(I,K)

QY(1)=Q0SB(I,K)

DO 35 J=2, NYP

ST=S(I,J, K)+AE(I J,K)*QQ(I+1,J,K)+AW(I,J,K)*QQ(1-1,J K)
++AT(I,J,K)*QQ(I,J,K+1)+AB(I,J,K)*QQ(I,J,K-1)

PY(J)= AN(I J, K)/(AP(I J,K)- AS(I J, K)*PY(J—1))

35 .

QY(J)= (ST+AS(I J,K)=  (J-1))/(AP(1,J,K)-AS(1,J, K)*PY(J 1))
QY(NY)=(SNB(I, K)+CNB(1 K)*QY(NYP))/ ANB I,K)*% CNB(I K)*PY(NYP))
QQ(I,NY,K)= QY(NY)

DO 40 J= 1,NYP :

40 QQ(I, NY J,K)=PY(NY- J)*QQ(I NY-J+1,K)}+QY(NY~-J)
30 CONTINUE

DO 50 K=2,NZP
DO 50 J=2,NYP'
PX(1)=PWB(J,K)
" QX(1)=QWB(J,K)
DO 55 I1=2,NXP
ST=S(1,J, K)+AN(
++AT(I,J,K)*Q0(
PX(1)= Am 1,J,K)
55 o :
QX(I)=(ST+AW(I, J K)*QX(I-1))/(AP(I,J,K)-AW(I, J,K)*PX(1-1))

QX (NX)=(SEB(J, K)f&ﬁB(J K)*QX NXP)) /(A EB(J K)-CEB ( J,K)*PX NXP))
QO(NX,J;K) = QﬁANX)ﬁ‘Q

- DO 50 1_1 N&Rw -
50 QQ(NX- I J K
DO 150 J=2 Nypw,
DO 150.1=2,NXp &
PZ(1)=PBB(I,J) : "
Qz(1)=QBB(I,J)

DO 155 K=2,NZP

& .

1,J,K)*QQ(I,J+1,K)+AS(1,g,x)*QQ(I,J—1;K)4
1,J,K+1)+AB(I,J,K)*QQ(1,J,K-1)
/(AP(I,3,K)-AW(I,J,K)*PX(I~-1))

7

‘””x—I)*QQ(NX—I+1,J,K)+Qx(Nx—1)

ST=S(1,J, K)+AE(I J,K)*QQ(1+1,J,K)+AW(I,J,K)*QQ(I-1,J,K)
++AN(I,J,K)*QQ(T, J+1 yK)Y+AS(I,J,R)*QQ(1,J-1,K)

PZ(K)= AT(I J; K)/(AP(I J,K)- AB(I ,J,K)*PZ(K-1))

155

QZ(K)=(ST+AB(I,J,K)*QZ(K-1))// ,J,K)~AB(I,J,K)*PZ(K-1))

QZ(NZ)=(STB(I,J)+CTB(I,J)*QZ (i
QQ(I,J,N2)=QZ(NZ)

DO 160 K=1,NZP o
160 QQ(I,J,NZ—K)=Pz(Nz§§)*QQ(1,J,Nz-w~1)+QZ(NZ_K) .
150 CONTINUE ’ . »

ER=0.0

DO 60 K=2,NZP

nNn AN 1-2 NVD ~

"(ATB(1,J)-CTB(1,J)+PZ(NZP))



