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Abstract

BACKGROUND: Children experiencing neurological impairment can experience limitations in their
functional abilities. For people with severe physical disabilities, brain-computer interfaces (BCI) are a
potential solution to access computers when other assistive technologies prove to be inaccessible.
Although BClIs can help individuals accomplish a number of activities, some traditional BCI methods
yield insufficient performance to be used in online applications. Hybrid BCI (hBCI) systems aim to
improve the system’s performance by combining brain signal paradigms, or brain signals with other

inputs.

OBJECTIVES: The purpose of this study was to develop and test an EEG-based hBCI system using
P300 and steady-state visual evoked potentials (SSVEP) simultaneously, and compare the performance of

the developed hBCI against the pure P300 and SSVEP BCI in offline and online scenarios.

METHODS: This study validated the system and potential measures with adults without disabilities. It
includes two parts. The system was developed in part 1 with eight neurotypical adults who tested the
system at different stages of design. Using the user-centered design, the system was modified based on
the volunteers’ opinions and the final system was used in part 2. Six different neurotypical adults, divided
into two groups, tested the system in part 2. The participants performed six sessions over three weeks,
two with each paradigm (P300, SSVEP, hybrid). The second group used a system modified slightly to
improve performance. The performed task was programmed so that three targets flickered at different
frequencies to generate the SSVEP response and frames appeared semi-randomly to generate the P300
response. The system was evaluated in accordance with Kiibler’s usability measures of effectiveness,
efficiency, and satisfaction. For the effectiveness, three types of accuracies were calculated during the
sessions: offline, continuous and selection. For the efficiency, the response time for online sets was
measured and the information transfer rate was calculated. For the satisfaction, the NASA TLX

questionnaire was used to evaluate the workload of each paradigm.
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RESULTS: For group 1, the average selection accuracy for the pure P300 was 83.33%=11.86, for the
pure SSVEP it was 49.52% £17.79, and for the hybrid it was 49.44% +13.04. For group 2, the average
selection accuracy for the pure P300 was 96.39% +4.29, for the pure SSVEP it was 49.72% +11.54, and
for the hybrid it was 49.44% +17.31. For group 1, the ITR for the pure P300 was 64.53 bits/min, for the
pure SSVEP it was 6.73 bits/min, and for the hybrid it was 6.68 bits/min. For group 2, the ITR for the
pure P300 was 111.27 bits/min, for the pure SSVEP it was 6.90 bits/min, and for the hybrid it was 6.68
bits/min. The workload was calculated for each system (0 lowest and 10 highest). The average final
workload was 3.27+1.59 for the P300, 5.02+1.22 for the SSVEP and 5.36+1.49 for the hybrid. Post-
analysis showed that the lower accuracy on the hybrid was a consequence of the lower accuracy of the

SSVEP.

CONCLUSION: The hybrid combination of the P300 and SSVEP did not result in the expected
improvement in this study. The attempt to use a short sampling window size of 0.5s might account for the
SSVEP’s poor performance, which consequently negatively affected the hybrid performance. Although
changes made from group 1 to group 2 improved the time response for all paradigms, the changes were
unable to sufficiently improve the SSVEP accuracy. Recommendations to increase the accuracy of the

system are suggested for future studies.
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Preface

This is an original work by Matheus Gongalves Mussi. The research project of which this thesis is a part,
received research ethics approval from the University of Alberta Health research Ehtics Board: “Access to

Play through a non-invasive Brain Computer Interface”, Pro00096816  AME2, November 20, 2020.
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“If it seem to thee that thou knowest many things and understandest them well enough, know at
the same time that there are many more things of which thou art ignorant.”

Thomas a Kempis, The Imitation of Christ
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1 Introduction

Children experiencing neurological impairment, e.g. living with cerebral palsy, stroke or spinal-cord
injury, can have severe limitations in their functional abilities (Bauer et al., 1979). These conditions can
limit the capacity to move, speak and perform other activities independently. Assistive technologies can
enable independent participation in activities (Cook & Polgar, 2014). For example, individuals that have
lower limb impairment can use power mobility to move to different locations, those with communication
impairments can use a variety of communication systems, complete with applications that support
computerized voice communication, and those with upper limb impairment can use switches and scanning
to access wheelchairs, communication systems, and computers. For people with severe physical
disabilities, the use of the brain-computer interfaces (BCI) can be a potential solution when other access
methods may prove inadequate. BCI may provide access to power mobility, communication, and play,
which are all activities that can improve quality of life (Carelli et al., 2017). BCIs can have different
configurations to capture brain signals (Fernandez et al., 2014; Luck, 2014; J. R. Wolpaw & Wolpaw,
2012) This thesis focuses on non-invasive technologies for BCI, specifically electroencephalography

(EEQG) -based systems.

A brain communicates through electrical activity. The outermost layer, called the cortex, is responsible
for sensing signals that enter the central nervous system and issue brain signals (Purves et al., 2004). The
cortex is traditionally separated into four regions: Frontal, Parietal, Occipital and Temporal. The Frontal
region processes high-order executive functions; the Parietal receives and associates somatosensory,
visual and auditory inputs; the Occipital mainly consists of the visual processing area; and the Temporal
lobes are essential for memory, high-level visual and auditory understanding (Brodmann, 1909). In EEG,
BCI input comes from electrodes that capture brain signals on the surface of the scalp. Electrodes are
denominated according to the region they are located (F for Frontal, P for Parietal, O for Occipital and T
for Temporal) (Report of the Committee on Methods of Clinical Examination in Electroencephalography,
1958).

The BCI can be described as a human/technology interface, which interprets brain signals to control other
devices, as seen in Figure 1.1. Brain signals are processed in two stages, signal conditioning and
classification. The signal conditioning stage aims to transform the EEG raw input, usually through
amplification and filtering, so features of the brain signal can be extracted. Most BCI features are
temporal, spectral or spatial and more than one can be extracted at a time, creating a feature vector.
Features example can be amplitude, latency, and power spectrum density. The feature vector is then used

by the classifier to identify patterns across trials and participants (J. Wolpaw & Wolpaw, 2012). The

1



classifier’s goal is to indicate the corresponding target selected based on the features of the signal. In
some systems, calibration is required, which is commonly referred to as training. The training uses data
collected offline to “teach” the classifier how to interpret new data input into the system. For online
applications, a trained classifier is fed with unseen data in real-time. From the classifier, activity outputs

are generated, which are used to control the desired activity device.
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Figure 1.1: Brain-computer interface functioning scheme

Performance is the key factor for patients to decide to assistive systems or not. Huggins et al. (2011)
interviewed 61 people with amyotrophic lateral sclerosis that could be potential BCI users. The authors
found that the potential users expressed that accuracy is one of the most important parameters and it
would only be acceptable to switch from a traditional assistive technology to BCI if the BCI system had

classification accuracy of 90% or higher.

Collinger et al. (2013) interviewed 57 veterans with spinal cord injury and found that the most important
feature in a BCI system is independent operation. Blain-Moraes et al. (2012) interviewed eight individuals

with amyotrophic lateral sclerosis who said using BCI can give them more freedom, but interviewees also
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pointed out that “BCI technology in its current form would not be acceptable or appropriate” for daily
activities (Blain-Moraes et al., 2012). The main reason for the unacceptability was the fatigue created by
BCI. Fatigue can be solved or reduced by improving classification accuracy, which will diminish the
number of times the user needs to correct his selection and, consequently, the time needed to perform

activities.

Another performance measurement is the Information Transfer Rate (ITR), which determines how much
information is transmitted, considering speed and accuracy, and it can be compared across applications

(Pierce, 1980).

Although BClIs can help individuals accomplish a number of activities, some traditional BCI methods
yield insufficient performance to be used in online applications (i.e. as a real-time system). Researcher
have utilized a variety of techniques to attempt to increase BCI accuracy with mixed results due to
complex methodological barriers (Batres-Mendoza et al., 2017). Complex algorithmic solutions and deep
learning methods have the downfall of requiring powerful processing and in turn driving up time for
analysis. Other approaches have looked at ways to improve classification performance using deep neural
networks (Borhani et al., 2019; Jiang et al., 2019; Rong et al., 2020), but they needed extensive time

offline to process training data and the classification performance was still below the expected standards.

Another limitation of traditional BCI is that they rely on a single input signal (e.g. EEG), single source of
stimulus (e.g. auditory, visual, tactile, etc.) or a single brain signal paradigm (patterns), and thus the
system has an inflexible human-interface and less information to improve its performance (Zina Li et al.,

2019).

Taken together, these limitations are driving hybrid BCI (hBCI) research toward becoming a desirable
option. The main goal of hBCI is to improve BCI system performance through multi-modal signal inputs,
e.g. combinations of different brain signals, BCI paradigms and/or other external device stimuli (J.

Wolpaw & Wolpaw, 2012).

The purpose of this study was to develop and test the software to implement a low-density EEG system
hBCI system. Before using BCI with individuals who have disabilities, some authors have first validated
the system and potential measures with adults without disabilities (Dovgialo et al., 2018). This strategy
was used in this thesis in order to provide a baseline of how the system performs in more controlled
conditions. The developed system will be tested with children in future research. It is expected that
parameters will need to be adjusted for children, but that the overall system functioning will be similar to

the adults. BCI research in general has mainly been tested with adults, and there is a lack of BCI



implementation in children (Kinney-Lang et al., 2016; Mikolajewska & Mikotajewski, 2014). There are
challenges regarding children’s brain signals that have not been fully addressed. For example, how
developmental changes throughout the childhood may affect EEG interpretation and alter acquisition
techniques required for pediatric BCI, especially for children with disabilities (Kinney-Lang et al., 2016,
2019). However, because of the potential for BCI to enable children with disabilities to access play and

social activities, efforts should be made to develop BCI for them.

After reviewing the research that has been developed around BCI and hBCI geared towards clinical
applications, the hBCI study is presented. This study aimed to achieve three main objectives. First, to
develop a hybrid-BCI system using P300 and SSVEP simultaneously. Second, to test if the hybrid
surpassed single input BCI in classification accuracy and selection time. Third, to gather participants’

perceived satisfaction with the system.

It is acknowledged that there are individual preferences about terminology around disability, but person-
first language was chosen for this thesis for individuals who have disabilities. Efforts were made to us it

in a respectful manner.



2 Literature review

A review of studies using BCI and hybrid BCI (hBCI) was performed to examine the different types of
control paradigms used, and the hBCI combinations that have been applied. A brief analysis of the
accuracies attained with different paradigms and classification algorithms is presented. The initial search

terms used in the IEEE and Scopus databases and in Google Scholar were:
“(Child* OR (young adults)) AND

(Brain-computer Interface* OR BCI OR human-machine interface OR HMI OR human-computer
interface OR HCI) AND

(Electroencephalography OR EEG)”.
Since few articles resulted from the search, research with adults were also included.

Articles were included for review if they were regarding clinical applications (i.e., with an eventual
targeted user population of people who have disabilities). Other papers were added based on reference list

reviews and suggested related papers.

2.1 Brain-computer interface studies

The articles from the literature review are presented in the following paragraphs according to the
paradigm that was used in the studies. A BCI paradigm is the experimental protocol or the set of tasks
that elicit a specific type of brain activity (Hwang et al., 2013). In EEG-based BCI’s, there are three
primary types of brain activity typically investigated: slow cortical potentials, sensorimotor rhythms and

evoked potentials.

Slow cortical potentials are invoked (i.e. originated by the person) when individuals up- or down-regulate
their own cortical activity. Negative (down-regulating) and positive (up-regulating) slow cortical
potentials depolarize and polarize, respectively, the cortical network, causing a brain activity level that
can be detected and used for activity outputs. An early protocol example of slow cortical potentials is the
contingent negative variation (Walter et al., 1964). This protocol utilizes a “slow-going negative event-
related potential” that occurs between a warning and a stimulus that requires a motor response” (Bares et
al., 2007). The main goal is to use this method without feedback; therefore, this modality requires long
periods of training to become efficient. To train, the paradigm for new users is associating positive
emotions to negative slow cortical potentials and relaxing activities to positive slow cortical potentials

(Albrecht et al., 2017).



Sensorimotor rhythms are invoked when the frequency of the signal power changes in the sensorimotor
area. These are self-induced, and no external stimuli are needed. Sensorimotor rhythms are movement-
related potentials, induced by either executing or imagining movement. Sensorimotor rhythms require a
considerable amount of training to be well executed by BCI users (Lotze & Halsband, 2006). The most
common paradigm for sensorimotor rhythms is motor imagery (MI), which consists of thinking about or
attempting movement without necessarily performing an actual movement. Two different frequency
power changes can be seen and classified, the event-related de-synchronization (ERD) and the event-
related synchronization (ERS). In ERD in typical developing adults, power decreases in the alpha (8 — 12
Hz) and beta (18 — 26 Hz) bands before the MI is performed (frequencies may change at different
developmental stages) (Lazarou et al., 2018); in ERS, power increases in the beta band after the end of the
MI. These power changes have been used to control cursor movements, game applications and external

devices (Lazarou et al., 2018).

Finally, evoked potentials are natural brain responses to specific external stimuli. Two paradigms
typically associated with this BCI paradigm are the P300 and Steady-State Evoked Potentials (SSEP). The
P300 consists of a peak in the brain signal with a latency of 300 ms after the stimulus. P300 can be
evoked through visual, auditory or tactile stimuli. In the P300 paradigm, stimuli are presented in a random
order, with the participant needing to attend to the desired target stimulus. Each time the attended stimuli
is activated, a P300 evoked potential is generated. For P300, the classification process aims to identify the
characteristic signal peaks evoked by P300 stimuli. Usually, less training than MI is required for new
users (Hwang et al., 2013) and the pattern is consistent across individuals. Also, independently of how
many targets are presented, the selection is less complex because targets can be targets or non-targets only
(multiple choices are reduced to a binary selection). But this method usually has insufficient ITR and has

lower classification accuracy compared to other evoked potentials, e.g. SSEP (Lazarou et al., 2018).

SSEP paradigms can be visual, Steady State Visual Evoked Potential (SSVEP), or auditory, Steady State
Auditory Evoked Potential (SSAEP). SSVEP are elicited when flickering visual stimuli are presented at
consistent (e.g. ‘steady’) frequencies. SSAEP works similarly to SSVEP, but differing sound frequencies
are used (i.e. playing a sine wave sound at the given frequency). When the individual focuses on a
particular stimulus, pyramidal cells resonate at the same frequency, and through power frequency analysis
it is possible to distinguish the desired selection (Lazarou et al., 2018). Nevertheless, it is important to
consider what frequencies are used. Some frequencies for visual stimulus between 12-25 Hz may induce

seizure in people with photosensitivity (Fisher et al., 2005; Okudan & Ozkara, 2018).



Another example of evoked potentials is the so-called error potentials (ErrPs) category. They are elicited
by the brain when an error happens, i.e. when the output yielded by the system is not the same as that
desired by the user. Some systems use the error potentials to correct misclassification and increase the
accuracy, as in Yousefi et al. (2019) where the accuracy increased from 60% to 67% in real-time trials

using ErrPs.

2.2  Hybrid brain-computer interface studies

Hybrid BCI can be achieved through three primary combinations of resources: data which joins multiple
brain patterns, data which combines multisensory stimuli and data composed of multiple signals
sources. Utilizing multiple brain patterns together is in effect combining two different types of brain
activities, e.g. SSVEP and P300. In Pan et al. (2014), they combined SSVEP and P300 paradigms to
detect awareness in several patients with brain injuries. A picture of a known relative appeared on the
screen alongside with a picture of an unfamiliar face. Both pictures flickered at different frequencies
(SSVEP component) and a white frame randomly appeared around the pictures, one at a time (P300
component). While the patient focused on the familiar face, he was also instructed to count how many
times the frame showed around the picture. The average accuracy was 72.01%, with some participants
reaching as high as 100% and 96.67% during trials. Yin et al. (2015a) also combined SSVEP and P300
paradigms for use in a speller. The average results from online trials report an accuracy increase from
91.33% to 95.18%, with an increase of ITR to 50.14 bits/minute, compared to the 47.14 bits/minute

previously reported.

Other brain activity combinations, as in in Zuo et al. (2019), combined MI and P300 in a task where
participants had to choose between two Chinese symbols on a screen. In their study, they classified both
the P300 and MI but because P300 classifiers have high accuracy independently, compared to the steeper
learning curve of MI, the overall output was dominated by the P300 classification only. However, the
authors used the initial P300 outputs to help inform the MI classification. Once the MI classification
output surpassed what the authors determined as a reliability threshold, the P300 and the MI classification
were compared. If both outputs coincided, the selected output was maintained; if they diverged, and the
reliability threshold was surpassed, the MI output was selected; otherwise, the P300 output was chosen.
The overall average online accuracy of the system was 93.94 £ 5.19% using P300 + MI, which was
higher compared to P300 (91.25 & 9.04%) and MI (81.61 + 8.79%) methods alone.

Multisensory stimuli combinations evoke reinforced brain signal patterns through different sensory
modalities (for example, audio-visual or visual-tactile). Carmona et al. (2020) combined visual and

auditory stimulation through SSVEP and SSAEP paradigms. In the experiment, frequencies of 37, 38, 39



and 40 Hz were used to stimulate the participants visually and aurally (flashing and beeping frequency).
Trials consisted of visual only, auditory only and joint visual-auditory modalities. The SNR increased
considerably when using the visual-auditory modality (from 1.1 to 1.4, on average). The highest accuracy
reached by one of the participants was over 95%, the average accuracy of the classified data from the
electrode Oz was between 70 and 80% and the results ranged from approximately 48% to 95%.
Moreover, they found that the results of classification from electrodes on non-hair positions (i.e., Tp9 and
Tp10) were statistically similar to the results of classification from the occipital electrode (Oz). Yin et. al
(2015b) combined tactile- and auditory-P300 modalities to create a multisensory hBCI. Four pairs of
motors were attached to the participant’s waist and four computer speakers were laid out in a circle
around the participant. Each speaker issued a voice saying its number as an auditory stimulus, and the
corresponding motor vibrated accordingly. The average accuracy using this hBCI was of 88.67%, and the
ITR of 10.77 bits/minute. Thurlings et al. (2014) also did a multisensory experiment in which they used
P300 with visual and tactile stimuli. An actuation pair, composed of a small vibrating motor and an LED,
was attached to a finger on each hand of the participant. The classification accuracy using only visual,
only tactile and visual-tactile stimuli modalities was compared. The visual-tactile modality gave the
highest accuracy rates in online trials, reaching an average of approximately 85%, surpassing the visual
only or tactile only modalities, which had an approximate accuracy of 70%, as estimated from the

published graphical data.

Finally, an hBCI can combine multiple signal sources, such as the BCI and another type of interface like
eye gaze or switch input. This combination of signal sources aims to extract signal paradigms from the
same event simultaneously or from sequential events that are combined to accomplish an activity.
Saravana and Reddy M. (2018) extracted signals simultaneously from an SSVEP paradigm and video-
oculography (VOG) (i.e. eye-tracking based on computational vision approach) system. In the
experiment, participants selected letters on a virtual keyboard. While the letters flickered according to the
stipulated SSVEP frequencies, the VOG system tracked participant’s gaze, allowing the system to
increase its accuracy. Both inputs were combined and gave an online average accuracy of 94.99% with
ITR of 82.78 bits/minute. In Huang et al (2019), multiple signals were combined sequentially using an
hBCI based on MI and electrooculography (EOG), a technique that measures electrical signals related to
eye movement. The participants selected among nine different options on a small screen to move a
wheelchair. All options were cyclically highlighted one at a time, waiting for the user to blink once to
indicate a selection. When the user blinked, the highlighted option would start flashing in the panel for
confirmation. To confirm the selection, the user needed to raise their eye-brows. Then the participant used

MI to move the wheelchair in the chosen direction. In online sessions, every 0.2 s of MI input were



compared to the offline training data. Depending on the similarity of the signal with one of the three states
(right M1, left MI or idle), the 0.2 s input received a score. If the score surpassed the stipulated right- or
left-threshold, the wheelchair would start moving towards the selected direction. The system could also
control a robot arm, mounted on the wheelchair, which moved along pre-calculated trajectories. The user
used EOG to select between two different bottles and the robot automatically brought the target bottle to

the participant’s mouth. MI average online accuracy for the wheelchair was 88% and EOG was 96.2%.

There are other hBCI that are not EEG-based. Schudlo and Chau (2018) combined three different signals
from near-infrared spectroscopy (NIRS) BCI. NIRS can measure the concentration of oxygenated,
deoxygenated blood and total hemoglobin in the brain. They used those three signals to compose their
system. Also, Faress and Chau (2013) combined functional NIRS and functional transcranial Doppler
ultrasonography to try improving the accuracy of the system. However, the techniques used in these

projects are not useful for EEG-based BCI systems, thus, they will not be discussed further.

2.3 Analysis and Comparisons of BCI and hB(I Studies
All of the papers presented in the following analysis are listed in Appendix 2.

2.3.1 Highest BCI accuracies

The papers in Appendix 2 were examined to understand the impact of the paradigms and the combination
of paradigms on accuracy. The eight highest accuracies are covered in detail and listed in Table 2.1.
Zhang et al. (2017) used P300 to allow participants to select among cups they could drink from. The
selection activated the robotic arm. The screen displayed four options to the participant: three cups that
could be selected and an option to put the drink back on the table. After the selection was classified, the
robotic arm picked up the selected cup and brought it to the participant’s mouth. This system’s P300
classifier gave an accuracy of 97.5%. The study of Choi et al. (2018) proposed a method for users to play
chess through the combination of SSVEP and EOG, where users could select the final-position for the
chess piece through EOG and confirm the selection with SSVEP. They achieved accuracy results of
85.8% for the SSVEP step and 96.3% for the EOG step. The authors also examined a joint P300 and EOG
paradigm, but report this combination had a lower accuracy (<70% for the P300). They hypothesize the
EOG and P300 combination was not as accurate because of signal interference, as signals captured by

EOG electrodes are also captured by P300 electrodes and vice-versa.

2.3.2 Paradigm and Activity
The review showed that certain paradigms were used for certain activities. The relationship between

paradigm and activities and their influence on successful BCI is further examined in this subsection.



Table 2.1 - Highest accuracies from the studies in Appendix 2

Study Classification N. of Classes Paradigm
Accuracy [%]
(Carmona et al., 2020) ~95 2 SSVEP + SSAEP*
(Z. Zhang et al., 2017) 97.5 2 P300
(Yin et al., 2015a) 95.18 2 P300 + SSVEP
(Saravanakumar & Reddy M., 94.99 5 SSVEP + VOG
2018)
(Zuo et al., 2019) 93.94 2 MI + P300
(Huang et al., 2019) 88 3 MI + EOG
) Tactile P300 +
(Yin et al., 2015b) 88.67 2 Auditory P300*
(Choi et al., 2018) 85.8 2 SSVEP + EOG
. Tactile P300 +
(Thurlings et al., 2014) ~85 2 Auditory P300*

Note. *:Paradigms with multisensory stimuli.

2.3.2.1 Motor Imagery

In general, sensorimotor paradigms (MI) are used in process-control activities. Table 2.2 outlines the
average accuracies for each study in this section. Reported MI applications include moving a cursor from
left to right on a monitor (Cincotti et al., 2008; J. Z. Zhang et al., 2019), moving robotic arms (Kim et al.,
2019; Meng et al., 2016), and wheelchairs (Huang et al., 2019). Other applications have used MI as an
target selector (Zuo et al., 2019), where imagining a left-movement selected the left option and right-
movement selected the right option on a screen. Meng et al. (2016) describe a MI BCI system which
moves a robot in 3-dimensional coordinates utilizing a sequential combination of “low dimensional
controls” (i.e., using only two commands at a time). The first control moved the robot arm in a 2-
dimensional plane parallel to the table, where right/left MI moved the robot right and left respectively.
For the second control, they categorized MI activity of simultaneous hand movement or resting state to
allow the robot to move backwards (down) or forward (up), respectively depending on task requirements.

Zhang’s et al. (2019) results were expressed through Cohen’s Kappa average.
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Table 2.2 - MI studies from the studies listed in the Appendix 2

Study Activity N. of Classes Result
(Cincotti et al., 2008) Cursor Movement 2 Acc: 86.75%
(Meng et al., 2016) Robot arm in 3D space 2,4 Accy: ~95%, Accy: ~85%
(Cho et al., 2017) Feedback 2 Acc: 67.46%
g() 129.)Zhang etal., f/{a;vz;r;geirrsor ) Kappa: 0.46*
(Kim et al., 2019) Robot arm in 2D space 2 Acc: 57.37%
(Huang et al., 2019) Wheelchair 2 Acc: 88.00%

Note. Meng et al. (2016) had two phases on their study, using 2 and 4 options for participants to
select. *:Cohen’s Kappa cannot be translated to accuracy [%] because they are not directly comparable,
Acc: Accuracy.

2.3.2.2 Evoked Potentials

Evoked potentials were used in goal-selection activities. Using the SSVEP paradigm, participants selected
among options in game menus (Choi et al., 2018), commands to move a speller cursor (Ehlers et al.,
2012) or characters on a keyboard (Saravanakumar & Reddy M., 2018; Yin et al., 2015a). P300-based
BCI were used to control a semi-automated robot (Z. Zhang et al., 2017), to play games (Choi et al.,
2018) or to make selections to test the system’s accuracy (Yin et al., 2015b; Zuo et al., 2019).

Table 2.3 summarizes the studies’ average accuracies for evoked potentials paradigm. Ehlers et al. (2012)
presented accuracies for different age ranges. It is important to note that the main task of the experiment
was a spelling task using a 4-arrow cursor that might have influenced children to do worse than adults.
From the tested frequencies in this study, the authors presented the medium range frequencies (13-17 Hz)
for the SSVEP that gave the highest results for all groups. In group 1, the average age was 6.73 years old
(y.0.) and the accuracy was 58%, in group 2 the average age was 8.08 y.o. and the accuracy was 53%; in
group 3 the average age was 9.86 y.o. and the accuracy was 75% and in group 4 the average age was

22.36 y.o. and the accuracy was 78%.
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Table 2.3 - SSEP studies from the studies listed in the Appendix 2

Study Paradigm Activity Accuracy [%]

(Ehlers et al., 2012) SSVEP Command Selection 58; 53;75; 78*
(Choi et al., 2018) SSVEP Chess Game 85.8

(Choi et al., 2018) P300 Chess Fame 67.8
s:;g;aﬁ%ggllag)& SSVEP Virtual Keyboard 94.99

(Carmona et al., 2020) SSVEP + SSAEP Feedback ~75

(Yin et al., 2015a) SSVEP + P300 Virtual Keyboard 95.18

(Yin et al., 2015b) li‘giltlgry oo " Feedback 88.67

(Thurlings et al., 2014) P300* Feedback ~85

(Z. Zhang et al., 2017) P300 Command Selection 97.5

Note. *Accuracy for Group 1 (6.73 y.0), Group 2 (8.08 y.o), Group 3 (9.86 y.o.) and Group 4 (22.36 y.0),
respectively.

2.3.3 Classifiers

In the examined studies, there was a relationship between paradigms used and classifiers used. There
are some features that provide more information depending on the type of brain activity. For example,
common features extracted from SSEP paradigms have rich spectral information, and spatial information
depending if it is visual, tactile or auditory, but poor temporal information. Linear discriminant classifiers
are better suited for binary outputs, like P300 outputs (target versus non-target), because they are based on
statistical regression and map the data into new spaces to maximize data separability (J. Wolpaw &
Wolpaw, 2012). CCA classifiers use sinusoidal waves as reference signals for classification, making it a
powerful tool to identify spectral components, present in SSEP modalities (Nakanishi et al., 2015). Power
frequency classifiers look for changes in specific frequency ranges, and MI has defined bands of
frequency that change (alpha and beta, especially) (J. Wolpaw & Wolpaw, 2012). However, although
some paradigm-classifier combinations are more common, in an effort to surpass previous reported

accuracies, many authors try different classifier combinations and new methodologies.

The Paradigm-Classifier relationships are shown in Table 2.4. Most studies reported here used classifiers
that fall under the linear discriminant category of classifiers, which are variations of the Fisher Linear
Discriminant Analysis (LDA), such as Bayesian LDA (BLDA), Stepwise LDA (SWLDA) and regularized
LDA (rLDA). From the analyzed studies, a relationship classifier-paradigm can be seen for both hybrid
and single-paradigm BCI, such as LDA-P300 and CCA-SSVEP, as mentioned by Wolpaw & Wolpaw
(2012) and Nakanishi (2015). Cho et al. (2017) was an exception, using LDA to classify MI, as well as
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Zuo et al. (2019), using BLDA to classify both MI and P300. Cincotti et al. (2008) used statistical

analysis (to assign significance to the frequencies for different conditions) to classify MI.

Multisensory stimuli hybrids used the same type of classifier for both stimuli. Thurlings et al. (2014) and
Yin et al. (2015b) combined visual and tactile P300 stimuli, and had for both paradigms a linear
discriminant classifier. Carmona et al. (2020) applied a CCA classifer for both SSVEP and SSAEP

stimuli.
Table 2.4 - Classifier comparison among studies listed in the Appendix 2
Type of . . Type of . Accuracy
Classifier Study Classifier Paradigm System Hybrid Nature %]
(Z. Zhang et al., 2017) BLDA P300 BCI N/A 97.5
(Yin et al., 2015a) SWLDA  P300 hBCI P300 +SSVEP 95.18
(Zuo et al., 2019) BLDA MI+P300  hBCI MI + P300 93.94
: BLDA « Tactile P300 +
oA (Yin et al., 2015b) P300 hBCI Auditory P300 88.67
. SWLDA « Tactile P300 +
(Thurlings et al., 2014) P300 hBCI Visual P300 ~85
(Choi et al., 2018) LDA P300 hBCI P300 + EOG 67.8
(Cho et al., 2017) LDA MI BCI N/A 67.46
(Yousefi et al., 2019) rLDA Evoked Pot. BCI N/A 67
(Yin et al., 2015a) CCA SSVEP hBCI P300+SSVEP 95.18
CCA (Choi et al., 2018) CCA SSVEP hBCI SSVEP + EOG 85.8
CCA « SSVEP +
(Carmona et al., 2020) SSEP hBCI SSAEP ~85
. . Statistical
r? (Cincotti et al., 2008) . MI BCI N/A 86.75
Analysis

Note. Paradigms with * mean they were multisensory stimuli. Acronyms: LDA — Linear Discriminant
Analysis, BLDA— Bayesian LDA, SWLDA — Stepwise LDA, rLDA — Regularized LDA, CCA — Canonical
Correlation Analysis

2.4 Summary of hB(l literature
In this review, studies related to BCI and hBCI systems were reported and discussed. This section

discusses further the overall findings reported.

The hypothesis that hBCI in general have a better accuracy than single-paradigm BCI is supported, as the
reviewed systems with hybrid combinations tended to have a higher accuracy. Five of the eight selected
papers with hybrid systems reported surpassing the 90% minimum classification accuracy standard

indicated by Huggins et al. (2011). Out of the highest accuracy studies, four studies used the SSVEP
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paradigm as a component in the hybrid system, four used P300 and two used MI. Except for Carmona et

al. (2020), all studies ran online trials.

Although many studies state that their final goal is to implement this technology for people with complex
needs, few of them actually tested their systems with people with disabilities. From the highest
accuracies studies in Table 2.1, participants were between 21 and 37 years old; the average number of
participants was approximately 10.67+4.36. In the studies where the same system was used by individuals
with and without disabilities, accuracy results for individuals with disabilities were always lower. The
system of Cincotti et al. (2008) had an accuracy of 86.75% for people without disabilities, but 66.57% for
people with disabilities. The system of Pan et al. (2014) had an average accuracy of 95% for individuals
without disabilities, while for people with complex physical needs it was 60.52%. Kim et al. (2019) tested

their system with people with disabilities, giving an accuracy of 57.37%.

Most reviewed studies chose their classifier and paradigm based on the final activity. In general, there are
some paradigms that are more suitable for certain activities than others and some classifiers that are more
suitable for certain paradigms, although this is not compulsory. Sensorimotor paradigms were mostly
used for process-control activities such as movements, displacement and adjustment of intensity of
activity. There are more robot-related activities using sensorimotor paradigms than evoked potentials.
Similarly, evoked potentials paradigms were mostly used for activities that require the selection of targets,

mimicking a button push.

As noted in Hwang et al. (2013), the number of MI-based BCI studies has decreased and the majority
of studies found in this review were mainly using P300 and SSVEP paradigms (as seen in the table of
Appendix 2). This trend is potentially due to the lesser amount of time needed for training when using

evoked potential paradigms, as compared to typical MI paradigms.

2.5 Discussion of implementation for children

The lack of systems developed and tested for and with children (Kinney-Lang et al., 2016; Mikotajewska
& Mikotajewski, 2014) was reflected in this review: only 3 out of the 17 studies listed in the Appendix 2
had children as participants. Some studies that included children reported a decay in performance in
comparison to adults, while others did not show a substantial change. Ehlers et al. (2012) indicated an
inverse relation between age and accuracy. But the spelling task in the study could have been a factor that
contributed to the performance reduction for younger participants. Cincotti et al. (2008) and Pan et al.
(2014) included younger participants in their studies (16 y.o.), but they did not have significantly lower
accuracies than older participants (25-44 y.o. for Cincotti et al. and 19-70 y.o for Pan et al.). More studies
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would be beneficial for the field, since the difference in BCI performance for adults and children is still

inconclusive.

The challenges that will arise when implementing BCI for children will need to be considered. One
challenge commonly explored is how EEG signal features can change with age and development
(Kinney-Lang, 2018). Matsuura et al. (1993) analyzed the dominant resting EEG frequency (idle) and
noticed that it shifts with age. In children around 7 years it is 8 Hz and in adults it settles at 10 or 11 Hz
(Ehlers et al., 2012). The authors also found that the lower the frequency of SSVEP stimulation, the
harder it was to identify that frequency when dealing with younger participants. It will be important to
consider the population age in future studies so that paradigm setup and pre-conditioning can be adjusted

to ensure the best accuracy possible is being reached (Kinney-Lang et al., 2016).

The trend that was observed in the use of paradigms, where most researchers opt to use evoked potentials
over sensorimotor rhythms, could be beneficial for implementing BCI for children, since evoked
potentials are easier to adjust for each individual’s signal features. Also, since evoked potentials require
less training, as pointed by Hwang et al. (2013), children may be less frustrated than with other paradigms

that require numerous calibration sessions.
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3 Methodological approach

The thesis has three objectives: 1) to develop a hybrid-BCI system with P300 and SSVEP; 2) to test if the
hybrid surpasses single input BCI in classification accuracy and selection time; and 3) to gather

participants’ perceived satisfaction with the system.

The chosen BCI paradigms for the proposed hybrid system were the P300 and the SSVEP. This choice
was based on the fact that both paradigms are endogenous behaviours, meaning they are naturally elicited
by the brain when specific stimuli are presented (Hwang et al., 2013). This leads to less training needed
for the system to classify most of the trials correctly, compared to exogenous behaviours which require
learning to elicit specific brain signals (Abiri et al., 2019; Donchin et al., 2000). One study that attempted
a similar hybrid combination was Pan et al. (2014). They used 10s of signal for processing to make sure
the patients could recognize the stimuli. The experiment was online and patients achieved accuracies from
64 to 78%.

We wanted to make the hBCI not only accurate but also quick in determining the final output. Therefore,
a 0.5 second sample window from stimulus onset was adopted for both the P300 and the SSVEP
paradigm. Some studies use shorter sampling windows for P300 (Cecotti et al., 2010) but SSVEP studies
typically use from 1.5 — 2s (Carmona et al., 2020; Ehlers et al., 2012; Pan et al., 2014). The use of a 0.5 s
window was expected to be possible since the used frequencies had enough frequency gap to be readable,
as determined by the minimum frequency resolution outlined in Equation ( 3.1 ) (Harris, 1978; Reyes &
Forgach, 2016):

_fs (3.1)
Af—N

where f; is the acquisition frequency (250 Hz) and N is the number of samples (125 samples, given 0.5s).
That creates a frequency resolution of 2 Hz. The used frequencies were 6, 10 and 15 Hz, giving a
minimum frequency gap of 4 Hz. Additionally, the highest stimulus frequency respected the Nyquist
theorem (Diniz et al., 2002).

3.1 Research Design

A user-centred design (UCD) approach was used in this study, as suggested by Kiibler et al. (2014) for
BCI evaluation. The approach considers the usability of the system determined as effectiveness,
efficiency, and user satisfaction. For the effectiveness component, accuracy was used. For the efficiency
component, target selection time and information transfer rate (ITR) were used. For the satisfaction
component, volunteers’ opinions were collected and their ratings on a workload measurement tool were

gathered.
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The system was tested in two parts. In part 1, the system and interface were developed with in-lab trials,
the functionality of the system was validated, and potential enhancements were considered while
gathering information about volunteers’ satisfaction. Volunteer opinions from part 1 helped to improve
the interface and system performance, while informing on and providing practice for the experimental
protocols applied in part 2. Part 2 included trials with BCI naive participants. The effectiveness of the
system was measured through the accuracy, the ratio of correct classifications among all trials. Accuracy,

is defined by Equation ( 3.2 ),

TP+TN
100

ACC% = —————— X
CC% All Samples (32)

in which TP is the number of true positives, which is when the positive outcome is predicted correctly by
the classifier, TN is the number of true negatives, which is when the negative outcome is predicted
correctly by the classifier and All Samples encompasses all the classifications made. The efficiency of
each paradigm was measured by the time each online trial took to make a selection and the ITR. Since
each trial took 0.5s, the selection time was calculated based on how many trials were needed for the
system to decide on the final classification. ITR is the metric that determines how much information is
transmitted, considering speed and accuracy, and it can be compared across applications (Pierce, 1980). It
is given in bits/minute. The ITR was calculated with the Equation ( 3.3 ) found in Wolpaw and Wolpaw
(2012):

1-P
ITR = m X <log2N+Plog2P+(1 — P)log, )

N-1 (3.3)

where m is the number of trials per minute, N is the number of commands and P is the accuracy of the
system. Due to the logarithmic nature of the ITR calculation, the ITR increases exponentially when the
accuracy gets closer to 100%. The satisfaction with the system was evaluated through the NASA TLX
questionnaire (Hart & Staveland, 1988), a tool used to assess workload. In other words, satisfaction was
evaluated as the participant's agreeability with the perceived effort required to accomplish the task. More

details are provided in the Data collection and analysis section.

3.11 Partl

Eight volunteers (2 men and 6 women) tested the system at different points of its development. They all
tested the acquisition system by itself, gave opinions about the interface, tried each of the pure paradigms
and the hybrid paradigm and had data collected for offline processing. Only two tested the system’s real-

time selection feedback mechanism (i.e. visual feedback about the system’s chosen target based on the
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participant’s input) but no online data was saved. The number of sessions per volunteer varied from 1 to
6.

3.1.1.1 Materials

3.1.1.1.1 EEG Hardware
The EEG acquisition was done using OpenBCI Cyton, which had eight 24 Bit channels and an acquisition

rate of 250 Hz. The OpenBCI cap contained silver-plated wet electrodes with electro-gel.

3.1.1.1.2 Initial Interface
The initially designed interface had three flashing squares, for the SSVEP stimuli, and an outline frame

that appeared outside of the different squares in pseudo-random order. The frequencies used were 6, 10
and 30 Hz. Based on Floriano et al. (2018), the colours used to create the flashing effect were green and
red, to give maximum amplitude in mid-range frequencies from 15-25 Hz. All squares used the same
colors for simplicity. No sounds were issued in-between trials or at the end of the experiment. Each
square had, approximately, one quarter of the height of the screen. Figure 3.1 is a representation of the

interface design.

_~ P300 Stimulus
>

_~ SSVEP Stimulus

Lk

Target 2

@ 10 Hz

Figure 3.1: Initial interface designed to stimulate SSVEP and P300 responses in users.

3.1.1.2  Procedure

Each session had several training sets and, eventually, one online set. The experiment routine started with
a three second count-down to prepare the participant. Then to cue the desired target, its colour changed to
orange for three seconds. After the cue, the targets went back to their original colours and the stimuli was
presented (depending on whether it was P300, SSVEP or hybrid). In the training sets, the squares
flickered uninterruptedly for 10.5 seconds (3 squares X 7 repetitions per square = 21, 21x0.5s = 10.5s)
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while the P300 frame appeared semi-randomly around squares for 0.5s with a duty cycle of 80%, i.e. 0.4s
on, 0.1s off, in online sessions, the stimulation period was variable because stimuli were presented only

until the selection function returned a final answer.

In the training set, after the stimuli, a new cue was presented. The training set had no feedback about what
was selected and served exclusively to train the classifiers. This set had a constant number of runs, since it
was for the classifier generation. In the online set, feedback about what the selection function chosen was

presented for three seconds after the trial ended before a new cue was presented.

For the pure P300 paradigm, the volunteer was instructed to fixate their gaze on the cued square and
count how many times it was outlined until a new cue was presented. For the pure SSVEP paradigm,
volunteers were instructed to fixate their gaze on the middle of the cued square until a new cue was
presented. For the hBCI, the volunteer was instructed to fixate their gaze on the middle of the square and

count how many times it is outlined until a new cue was presented.

For the classification of both paradigms, Linear Discriminant Analysis (LDA) classifiers by Sci-Kit Learn
library were used (Pedregosa et al., 2011). The solver was set to singular value decomposition and no

shrinkage.

The interface and experimental routine were programmed from scratch. The Psychopy library was used
for the creation of the visual interface (Peirce et al., 2019). BrainFlow was used to interface the headset
and the script (BrainFlow, © Andrey Parfenov). The code is all based in Python 3 with technical details
provided in a previously published extended abstract (Mussi, 2021). (See Appendix 1)

3.1.1.3  Results

The signal conditioning methodology used in part 1 was the same as described below, in part 2. Some of
the later results of part 1 are shown in the Table 3.1 below. The results were processed offline using the
same algorithm and electrodes placement that were subsequently used in part 2 below. The average
accuracies were generated via the 10-fold cross-validation. The stimuli presented were hybrid. Not all

participants went through the same number of sets due to the informal nature of the sessions.
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Table 3.1 - Data from last sessions in Part 1

Volunteer Set P300 SSVEP

1 72.0£12.8% 41.3£11.7%

Vi 2 74.6+8.7% 32.3+7.8%
3 70.4+7.0% 24.446.7%
4 74.5+9.9% 33.4+£10.1%
5 76.8£12.5% 40.7+10.2%
1 78.3+6.4% 28.8+7.1%

V2 2 83.1£9.6% 34.9£12.9%
3 75.2+11.5% 40.1+£9.6%
4 83.1+8.4% 53.0+5.1%
1 82.0+6.4% 78.3x8.1%

V3 2 75.2+9.4% 71.5+10.8%
3 81.6£11.6% 68.7+4.7%
4 85.0+6.9% 55.0+8.0%

After doing the trials with the volunteers, some modifications were made to the interface based on their

opinions, and to improve system performance.
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Initially, the experiment schedule proposed two sessions per day, with one session of each of the
pure paradigms or two of the hybrid, but volunteers complained about it being too much time
focusing on the screen. Most volunteers were exhausted by the end of the first session, so the
schedule was adapted to have only one session per day.

The initial frequencies used had a problem with harmonics (6, 10 and 30 Hz). The 10 Hz
frequency created a second degree harmonic at 30 Hz, which induced the classifier to emit more
false positives for 30 Hz when the real frequency was 10 Hz. Early on in the testing, the set of
frequencies was changed to 6, 10 and 15 Hz, as used previously in the literature (Saravanakumar
& Reddy, 2018).

The usage of green and red flashing to attain maximum signal amplitude was no longer needed,
since the newly adopted frequencies fell below the 15-25 Hz mid-range for green and red. Also,
the users did not like the flickering between green and red since they said it “blurred their view”
more easily. The squares were changed to alternate between black and white for maximum
contrast, as commonly used in the literature (Hsu et al., 2016; Yin et al., 2015a).

Another modification was the addition of a black cross in the centre of each square to help

volunteers focus better at the flashing squares.



e By adding the cross, the SSVEP classification improved but the P300 worsened, probably
because the cross narrowed the peripheral vision, making the P300 less visible. To accommodate
for that issue, the squares were scaled down to about an eighth of the screen height.

e Sounds were added to the end of each trial to help volunteers realize when a new trial was

starting.

3.1.2 Part2

This part was done with two groups of participants. Each group had three participants, and some minor
adjustments were made in an attempt to improve the results from group 1 to group 2. Additionally, due to
noisy conditions the experiment location was changed for group 2. The specific adjustments will be

described in their respective sections.

3.1.2.1 Participants

Six adult men without disabilities and no experience with BCI were recruited from the University of
Alberta (Table 3.2). Participants were between 18 and 29 years old (avg. 22.167+3.764), had normal or
corrected to normal vision and were right-handed. The study acquired ethics approval from the Research
Ethics Office (Pro00096816) and participants signed an informed consent form before proceeding with
the study. No participants had any conditions that made them prone to seizures or photosensitivity.
Participant 2 had a concussion five years before the experiment. Participants 1 to 3 were part of the first

group of participants. Participants 4 to 6 were part of the second group of participants.

3.1.2.2 Setting
The location of the sessions was the assistive technology (AT) lab at Corbett Hall, University of Alberta,
for group 1, and at the Eye Gaze lab at Corbett Hall, University of Alberta, for group 2.
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Table 3.2 - Participants recruited for part 2

Group Participant Age Additional Information E])igzzlﬁnéim
P1 21 -
! P2 23 Prescriiggflugslsalssnes( 1(831(;)5 15  ATLab
P3 20 Prescription glasses (0.5)
P4 29 -
2 P5 18 Prescription glasses (1.6) Eye Gaze Lab
P6 22 Contacts (-3.5, -4)

3.1.2.3 Materials

3.1.2.3.1 Interface
On a computer display, three squares with white centre areas flashed at different frequencies for the

SSVEP component, and an outline frame appeared around the squares one at a time in a pseudo-random
order for the P300 component (see Figure 3.2). For the SSVEP, the flashing effect of the squares was
created by interpolating between black and white for maximum contrast. Because of the limited frames
per second provided by the monitors available for this experiment (60 frames per second) the chosen
frequencies were 15, 10 and 6 Hz. These frequencies were easily attained on the display because they are
multiples of the monitor’s frames per second. When the classification was concluded, the selected

square’s centre area briefly turned green in colour to indicate the classifier chose that square as selected.

3.1.2.3.2 Signal Conditioning
Before extracting features, both the P300 and the SSVEP signals were filtered digitally. First, a IIR notch

filter was applied to suppress the 60 Hz artefact. Then, a FIR bandpass filter from 5 to 30 Hz was applied
to attenuate the high and low irrelevant frequencies. Before applying each filter, a 75-sample-mirrored

padding was added to each extremity of the signal.

3.1.2.3.2.1 P300 conditioning

Brain signals were recorded from the minimal optimal electrode positions (PO8, PO7, POZ, CPZ)
methodologically identified by Speier et al. (2015). Speier at al. compared a four-electrode, six-electrode
and 32-electrode configuration, and found no significant difference in ITR between configurations (28.92,
29.94 and 31.90 bits/minute, respectively). The comparison among average accuracies in online trials had
no statistical difference (73.21, 69.28 and 67.57%, respectively). Since the performance of the four-
electrode configuration was adequate compared to the larger configurations, the four-electrode

configuration was chosen for this study so that less time would be needed for the preparation.
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After filtering, the signal was down-sampled by a factor of 15. The down-sampled signal constituted the
features used to classify the P300 data with the linear discriminant analysis (LDA) classifier. In total each

feature sample contained 32 features (eight features per channel, four channels).

P P300 Stimulus

r'd

E _SSVEP Stimulus
k//

Target 1 Targer 3
@o iz @ 15 Hz

Figure 3.2: Final interface designed to stimulate SSVEP and P300 responses in participants.

3.1.2.3.2.2 SSVEP conditioning

Brain signals were recorded from the electrodes positioned on the occipital region (channels O1, O2)
from participants 1 to 3. For participants 4 to 6, the electrodes Pz, T5 and T6 were added (and a
sweatband was used to tighten electrodes O1, O2, T5 and T6 to the scalp). For feature extraction, the
technique presented by Fan et al. (2015) was used. For each channel, the sum of each target frequency
+0.5 Hz on the power spectral density (i.e. 6, 10 and 15 Hz) and their immediate harmonics (i.e. 12, 20
and 30 Hz) £0.5 Hz constituted one SSVEP feature sample. In total, each feature sample contained 12
features for group 1, and 30 features for group 2 (three frequencies, plus their harmonics, per channel).

Filtered signals were classified using a multiclass LDA classifier.

3.1.2.3.3 Selection functions
The selection functions were only active during online sessions. To define a final output using the

classification of each paradigm, the selection functions considered the accuracy of each classifier
(calculated in the offline session, during training) and calculated the most likely final answer. A
somewhat similar approach was taken by Zuo et al. (2019) where they used a predictive mean calculated
with the BLDA (Bayesian Linear Discriminant Analysis) as the classification confidence for the selection
between MI and P300. Depending on whether classification confidence lies above or below a
threshold, calculated offline via cross-validation, the MI or P300 classification was selected. The general

idea of the selector functions in this study was to give points to the paradigms according to their
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classification accuracy, rewarding higher accuracies over lower accuracies. Figure 3.3 shows the concept
behind the algorithms for each paradigm function. The output of the selection functions was used to

provide feedback during the online trials and also to calculate the final accuracy of each paradigm.

The selection functions worked with answer vectors that indicated what the selection score was for each
target. For the SSVEP, each vector row corresponded to one target (ys); for the P300, since it had only
target/non-target states (yp), the position (pos) in which the P300 stimuli appeared corresponded to a
vector row. When one of the vector rows surpassed the decision threshold of 3, the corresponding target
was selected as the final classification. A timeout was implemented in case the selection function did not
reach the minimum decision threshold. In case of timeout, the target with the highest score was selected

as the final answer. The timeout was set to 10.5 seconds (21 trials X 0.5s).

P300 SSVEP Hybrid

Add points to Add points to Unanimous F, - ) Different
o X Yes P300=SSVEP? No, =~ .
target row target row Classification Classifications

P300 SSVEP
Target? Target?

P300
Target?

— Group 1 & 2

Take points Take points Add points Take points
away from non- away from non- to SSYEP away from P300
target row target rows target row non-target row

Balancing for Take points away
mistaken SSVEP non-target
penalties rows

Balancing for

Group 2
mistaken penalties

Figure 3.3: General Algorithm for the selection functions

3.1.2.33.1 Group1
For the P300, the answer vector PV was used to score the targets. Each index of PV corresponded to one

of the selection scores corresponding to a position pos. The scoring followed the logic of Equation ( 3.4 ),

PVpos = PVpos + 2 X ACCp3q, ifyp=1

pv = { .

where pos was the position of the analyzed P300 stimuli, which equates to the vector’s index, yp was the
P300 LDA classification output and the ACCp3oo Was the accuracy calculated during the training session

for the P300 classifier. If yp yielded a target (=1), the index corresponding to that target increases; if non-
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target (=0), that index decreased. The weight of +2 for the accuracy was chosen when yp = 1 so that a
high accuracy could achieve a value close to the threshold that would only need one or two more trials to
confirm the final selection. The weight of -0.5 was chosen if yp, = 0 so the decrease could be a penalty

that would not penalize a misclassification too much.

For the SSVEP, the answer vector SV was used to score the targets. Each index of SV corresponded to

one of the selection score of the classifier’s outputs. The scoring followed the logic of Equation ( 3.5),

SVyS = SV)’S + 2 XACCSSVEP
SV = o o (3.5)
SVYS SVyS 0.5 x ACCSSVEP

where ys was the SSVEP LDA classification, ys were the other positions different from the SSVEP LDA
classification, and the ACCsgypp Was the accuracy calculated during the training session for the SSVEP
classifier. The weights were established following the same logic as in the P300 selector, to reward

quicker, and penalize moderately.

The hybrid selection function combined the logic of both selector functions, Equations ( 3.4 ) and ( 3.5).
However, instead of 2 X ACC, the hybrid selector added 2 points in case of a unanimous answer between
the P300 and SSVEP. There were three vectors, one corresponding to the P300 LDA classifier PV, one
corresponding to the SSVEP LDA classifier SV and one for unanimous answers UV, when both
classifiers outputted the same target. They had sizes [3x1] in which each of the vector indexes
corresponded to the selection score of a target (represented in Figure 3.4). The scoring followed the logic

of Equation ( 3.6 ),

( UV, = UV, + 2, pos = yg
| {/PV,,s = PV,,s + ACC ' =1
< pos pos P300>’ pos i}’s’ lf yp
TV =UV+ PV +SV = SVyS = SVyg + ACCssyep
| (PVpos Vpos 0.5 x ACCp300 if yp =0 (3.6)
\\ su, = su, +ACCssysr )’ Yp =
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The logic first defined if the P300 classification was a target or a non-target. If the P300 was classified as
a target, the logic verified if the position of the P300 matched the classification of the SSVEP. If the P300
position and the SSVEP matched, then UV gets points. If they did not match, PV and SV get points. If the
P300 was classified as a non-target, PV received a penalty, and SV increased proportionally to the

SSVEP’s accuracy. After each trial, all the vectors were summed in the total answer vector TV.

PY SV uv TV
PY{o] S0} Urioj Tvio}
pos =10 ¥=10 pos=v§=10
Pri1} N7 UKy g

pas =1 »§=1 pos=y§=1

P2} Si72] eyrz) TVf2]

pos — 2 »S§-2 pos —pS -2

Figure 3.4: Vector scheme for PV. SV, UV and TV

3.1.2.3.3.2 Group 2
For the P300, the logic was similar to Equation ( 3.4 ), and is presented in Equation ( 3.7 ). The only
addition was that when the stimulus was classified as non-target, the other positions different from the

analyzed P300 stimuli, increased by half its value (0.25), as a form of balancing for mistaken penalties:

PVpos = PVpos + 2 X ACCp300, ifyp=1

PV = <PVpos: PVpos — 0.5 ><ACCPsoo> if yp =0 (3.7)
PVos = PVpgs +0.25 X ACCpsgp)’ :

where pos were the other position indexes.

For the SSVEP, the only modification to Equation ( 3.5 ) was a cumulative variable ¢, presented in
Equation ( 3.8 ). It was initialized at 1 and increased by 10% for every new classification that matched the
previous one, as a form of rewarding classification consistency. The cumulative variable returned to 1

whenever the sequence was broken.

S‘/yS = S‘/yS + 2 X ACCSSVEP X cC
SV =18V = SV_ — 05 x ACC (3.8)
Vs — Vs . SSVEP
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For the hybrid, the functions were updated to match the selector functions, Equation ( 3.7 ) and ( 3.8 ), as
seen in Equation ( 3.9 ). The other changes were: 1) UV received the sum of both classifier accuracies
instead of +2, and 2) the weights of penalties and increments were divided by half, as a form of equally

sharing the scoring power between both paradigms,

f|(UVys = UVys + ACCssyep + ACCp3o0,  POS = Ys

4 PVpos = PVpos + ACCp300 ) ifyp=1
[| SV =SV, +ACCssypp X |/ Pos # Vs

k SVys = SV — 0.25 X ACCssygp

TV = UV + PV +5SV = | )
PVyos = PVpos — 0.25 X ACCp309 \

SV, = SV, + ACCssyrp X C / Ye

SVys = SVys — 0.25 X ACCssygp

~

Figure 3.5 exemplifies what values the vectors would receive under different input conditions in the

function implemented for group 1 and 2.

Inputs

y L Group 1 Group 2
Condition p p
+2 +TACCp300tACCggvEP
yp=Lpos=1ys=1 vy Uy
TACCp300 +ACCp300

PV PV
yp=1,pos=0,y5=1 +ACCqqypp +ACCggyEp*c

SV SV

0.25%ACCssyp
-0.5%ACCp300 -0.25%ACCh300
PV PV

+0.125*¥ACCp3qq
yp=0,pos=2,y5=0

+ACCgsvEp +ACCsgvpp*e

!

SV SV

-0.25*ACCqgvEp

Figure 3.5: Behaviour examples of the hybrid fusion algorithm
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3.1.2.4  Procedure

In each of the sessions, participants tested one of the single input BCI paradigms (P300 or SSVEP,
randomly assigned) or the hybrid BCI. To account for fatigue factors that can cause undesired variability
in the results, sessions were scheduled for the same time of the day for each participant. Doing so can

standardize the effects of secondary factors (such as hunger, tiredness, distress) on participants’ fatigue.

Asking participants to do all the three paradigms allowed the hybrid BCI and the single input BCI to be
compared in effectiveness (accuracy) and efficiency (processing time). It also gave participants the
opportunity to experience both single input and hybrid BCI so they could give informed advice about

their satisfaction with each paradigm.

Before the first session, the purpose of the study was explained to each participant. There were 6 sessions
in total over three weeks. Every experimental day, one session took place. The learning effect was
attenuated by assigning paradigms to sessions randomly. Sessions were ideally scheduled in a way

participants had at least one-day between sessions. Figure 3.6 shows a sample schedule for a participant’s

sessions.
[ Mon Tue Wed Thu Fri Sat Sun
— Day 1 Day 2
o ,
§ P300 SSVEP
Sessions 1 Sessions 2
Day 3 Day 4
o~ ay ay
! Hybrid SSVEP
g BCI
Sessions 3 Sessions 4
n Day 5 Day 6
- Hybrid
] 3
§ BCI P300
Sessions 5 Sessions 6

Figure 3.6: Ideal participant schedule.

In each first session with a new paradigm, the participant had an opportunity to practice so they could
understand the interface and no results were saved. In subsequent sessions with the same paradigm,

practice was offered but only provided if the participant asked for it.

Afterwards, participants underwent five sets of data acquisition, as shown in Figure 3.7. The first set had

no selection feedback and served exclusively to train the classifier(s). This set had more runs to allow
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more data for the classifier(s) training. The four subsequent sets were online and presented feedback

based on the classification.

[ Set1 | Set2 | set3 | Seta |  Set5 |
\/
[ Runi [ Rw2 [~ ] Runi4 [ Runl5 |
\/
[ Trall | Trial2 | _ ~ | Trial20 | Trial21l |
[ Set1 | set2 | Set3 | set4 |  Set5 |
\/
I Run 1 | Run 2 | : : : | Run 14 | Run 15 |
[ it [ | Trialn |

Figure 3.7: A) Offline set of a Session, B) Online set of a Session.
The training set was composed of 15 runs (5 repetition per target X 3 targets), each with a different target
order to avoid participants subconsciously attempting to predict cues. Each run was composed of 21 trials
(7 trials per target X 3 targets). Considering there were 3s for the cue display, each set took around 3m
25s (0.5s x (15 runs x 21 trials) + 3s X 15 runs). Each training session produced 315 trials for
training the classifier (105 for each SSVEP frequency, and 105 targets and 210 non-targets for the P300).

The subsequent online sets had the same number of runs but the number of trials varied depending on the
selection functions. A timeout of 10.5s was implemented, as described above, in case the selection

functions did not reach the threshold. Only one attempt was allowed per trial.

As mentioned in part 1, for the pure P300 paradigm, the participant was instructed to fixate their gaze on
the cued square and count the frame appearances, and for the pure SSVEP paradigm, the participant was

instructed to fixate their gaze on the middle cross. For the hBCI, both were combined.
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After each session, the participants were asked to fill in a NASA TLX questionnaire regarding the
following factors: Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD), Performance
(P), Effort (E) and Frustration (F). The questions asked for each factor are:

1. How mentally demanding was the task? (Mental Demand)

How physically demanding was the task? (Physical Demand)

How hurried or rushed was the pace of the task? (Temporal Demand)

How successful were you in accomplishing what you were asked to do? (Performance)

How hard did you have to work to accomplish your level of performance? (Effort)

A

How insecure, discouraged, irritated, stressed, and annoyed were you? (Frustration Level)

Each factor was measured through a Likert scale from zero to 10, subdivided by half-points. When all
sessions were concluded, a “comparison cards” page was given to each participant to determine a weight
to apply to each factor. Each factor was compared against every other factor and the participant chose the

one they felt was more important.

If any unforeseen events occurred or any verbal comments were made during the session, a file called

“Session Notes.txt” was created to report those occurrences.

A list with all the steps of the session protocol is attached in Appendix 3. Additional steps to abide by

COVID-19 restrictions and approvals to conduct research are in Appendix 4.
3.1.2.5 Data collection and analysis

3.1.2.5.1 Offline sets
To calculate the offline accuracy, a 10-fold cross-validation evaluation was used. The average accuracy

will be denominated “offline accuracy” hereafter. There was one offline accuracy for the pure P300
session, one offline accuracy for the pure SSVEP session, and two offline accuracies for the hybrid

sessions (the hybrid P300 and the hybrid SSVEP).

3.1.2.5.2 Online sets
During the online sets, every trial was classified and sent to the selector function. Therefore, two

classifications were yielded after the online sets, the continuous accuracy and the selector accuracy. The
continuous accuracy was calculated based on how many trials were classified correctly. The selector

accuracy was calculated based on how many final answers matched the target stimuli.

To calculate the selection time response of the selector function, the number of trials needed for a final

answer was counted. Since every trial took half-second, the number of trials multiplied by 0.5 yielded the
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selection time response. For each session, 60 selection time responses (15 selection times per set X 4

online sets) were averaged together.

3.1.2.5.3 Statistical analysis
A one-way repeated measures ANOVA was used to compare group mean differences due to repeated

measure design occurring in the accuracy and efficiency of paradigms. (Singh et al., 2013).

To examine if there were learning effects between sessions, the values of the first and second sessions of
each paradigm were compared. Other comparisons made were between the offline and online accuracies,
the pure and hybrid paradigms, between groups, and between average response times. To reject the null
hypothesis that the group means were statistically equal, the p-value = 0.05 was used. For the multiple
comparisons between offline, continuous and selector accuracies, the Bonferroni correction was used

(Bland & Altman, 1995).

3.1.2.5.4 NASA TLX analysis
In total, 15 comparison cards were presented, which was the total amount of weight that was distributed

among factors. Since each factor was compared to the other 5 factors, the maximum achievable weight for
a factor was 5. A weight value of 0 meant no importance and a value of 5 meant most influential on the
final workload. Each factor rating was then multiplied by the resulting weight from the comparison cards.
The final workload was calculated by summing all the weighted factors and dividing them by 15. Since
each paradigm had two sessions, two final workloads were generated per paradigm. The average of both

was considered the average final workload for that paradigm.

The Cohen Kappa inter-reviewer agreement measurement was used to test if the participants consistently
agreed in their ranking of the paradigms. Each comparison between participants yielded a score from 0 to

1. As explained by Viera & Garrett (2005), there are six levels of agreement:

e <0 Less than chance
e 0.01-0.20 Slight

e (.21-0.40 Fair

e (.41-0.60 Moderate

e 0.61-0.80 Substantial

e (0.81-0.99 Almost perfect
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4 Results

In this section, only results that are statistically significant (p<0.05) will be mentioned. More details on

the statistical significance of the comparisons will be indicated in the tables.

4.1 Offline results

The average offline accuracies are shown in Figure 4.1 and Table 4.1. Single-paradigm sessions had only
one offline accuracy, while the hybrid sessions had two offline accuracies (one for the SSVEP and one for
the P300). Figure 4.1A presents the offline accuracies and the standard deviation (SD) for the first and
second sessions of each participant.

A Average Offline Accuracies per Session B Average Offline Accuracies per Paradigm
Group 1
100
- 75 %
&
C 50 %
p3 51 < -
. p3S2 7
5551 0
W S552 Hybrid wrm P300
Hp3 S1 Group 2 e SSVEP

wwe Hp3 52 100
HSS 51
word HSS S2

%

%

P300 Hybrid

Acc [%]
s B 8 @

Figure 4.1: Average Offline Accuracies
A) Average offline accuracies per session, B) Offline accuracies averaged per paradigm. The top plots refer to group 1 and the
bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the hybrid system. P: participant,
p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, S: session.

Table 4.1 - Average Offline accuracy comparison between 1st and 2nd session [%=STD]

P300 SSVEP Hybrid P300 Hybrid SSVEP

1 st 2nd 1 st 2nd 1 st 2nd 1 st 2Ild

Pl  66.4+10.5 68.2+5.3 26.449.7 30.8£7.6 67.6£5.5 74.6£8.1 28+11.5 37.1+11.4

P2 81.6+3.8" 74.3+£63" 19.9+9 23.549.3 66.6+7.5 66.6£5.9 247+10.1  25.4+11.3

P3  74.9+5.8 72.4+53 29.24+8.7"  48.9+7" 73.149.6 68.6£6.3 22.248.9 23.2+7.6

P4  84.4+6.4 82.847.2 50.5+£5.3 50.5+5.8 74.6+5.7 71.1+£6.3 41.6+£4.9 37.5£5.9

P5  78.4+6.2 85.4+4.3 43.8+7.8 38.1+£7.6 80+4.3" 87+5.1 36.5+6.3 39.7£10.6

P6  94+3.9 94.3+5.2 38.3+6.17 5244557 85.7+6.5 81.9+4.7 39.448.1 41.6£6.8

Note. I and 2" sessions are statistically different with *: p<0.05, **: p<0.01
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The results did not show any clear trend when comparing the first and the second session of each system,
but some pairs had significant differences. Participant 2 had a better performance on the first P300 session
compared to the second (81.6% and 74.3%, respectively). Participants 3 and 6 had more than 14%
improvement in accuracy from the first to second SSVEP session. Participant 5 had a 7% improvement on
the hybrid P300.

The accuracies averaged across participants for each system is presented in Figure 4.1B. Comparing
group 1 and 2, all paradigms had an increase in accuracy from group 1 to 2, as shown in Table 4.2. The
P300 increased 13.6% (from 72.98 to 86.55) and the SSVEP increased 16% (from 29.78 to 45.61). The
hybrid components increased 10.5% on the P300 (from 69.53 to 80.06) and 12.6% on the SSVEP (from
26.77 to 39.36).

Table 4.2 — Average Offline accuracy comparison between group 1 and 2 [%+STD]

Group 1 Group 2 Acc Diff
P300 72.98+8.24 86.55+8.13 13.57"
SSVEP  29.77+12.75 45.6+8.49 15.83"
HP300  69.53+8 80.06+7.87 10.52
HSSVEP  26.77+11.49 39.36+7.39 12.59"

Note. All average results from group 1 and group 2 are statistically different *: p<0.01

4.2 Online results

4.2.1 Continuous classification

During the online sets, the new incoming data were classified continuously by the classifier trained during
the offline set. Every session generated four continuous accuracies per paradigm, each corresponding to
one online set. The average continuous accuracies per session are displayed in Figure 4.2A. Table 4.3
contains the accuracies and an indication of the statistically significant differences between the first and

second session.
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Figure 4.2: Average Online Continuous Accuracies
A) Average Online Continuous Accuracies per Participant, B) Online Continuous Accuracies averaged per Paradigm. The top
plots refer to group 1 and the bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the
hybrid system. P: participant, p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, S: session.

Table 4.3 - Average online continuous accuracy comparison between 1° and 2" session [%=STD]

wer P300
werd SSVEP

P300 SSVEP Hybrid P300 Hybrid SSVEP
lst 2nd lst 2nd lst an 1st 2nd

Pl 70.1+4.1 69.242.8  41.6+43  37.5422  69+3.1 68.3+2.9  36.4+1.1 36.243.3
P2 80.2+42°  72.442.4° 333494  46.542.6  63.2+3.4  70.5+3" 38.443.2  36.4+5.2
P3  77.1+2.87  65.843.17  36+6.5 38.843.6  75.1+2.97  65.144.37  35.4+3.1 35.642.7
P4 87.5+1.8  84.6+1.6  39.4+4.8  40.846.5  743+44  69.1433  38.8+57  33.445.5
P5  81.4+2.1 85.348.4  34.6+3.6  36.943.4 829434  80.4+58  35.6£10.5 34.242.4
P6  94.8+3 93.142.1 39.543.1°  46.1£1.9°  83.2+1.9 83+1.5 42.842.8 38.3+1.7

Note. I" and 2" sessions are statistically different with *: p<0.05, **: p<0.01

Only five paired sessions had significant differences. Participant 2, had a higher accuracy on the first

session of the P300 (+7.8%) and higher second session for the hybrid P300 (+7.2%). Similarly,

participant 3 had a higher second session for the P300 and the hybrid P300. Participant 6 had an accuracy

increment of 6.5% from the first to the second session of the SSVEP.

Figure 4.2B shows the average online continuous accuracy for all participants. The P300 paradigm had an

increase in accuracy when comparing group 1 and 2, from 74.5 to 87.8% (+15.3%), respectively. The

hybrid P300 component accuracies were also different. Group 1 had 68.5% and group 2 78.8% (+10.3%)).
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The continuous accuracy progress throughout the online sets can be seen in Figure 4.3. The purpose of
graphing this data is to visually examine any trend or abnormality that may have happened within the set.
Some noticeable occurrences were: participant 2 in the second session of SSVEP, had an increase from
the first session in accuracy for all sets; participant 4 in both sessions with the hybrid P300, was
consistently lower than his peers; and participant 6 in both sessions of P300, was consistently above 90%

accuracy throughout all of the sets.

Online Accuracies Progression per Set - Continuous

Group 1 Group 2

=
(=]
[=]

p3 Acc [%]
4
+

33

100

S5 Acc [%]

13 & TR S A et T P1
P2
100 v 3
—— P4
+- P5
+ P

Hp3 Acc [%]
3
-

33

100

HSS Ace [%]

33 ETTTTTI Y b aae e S - L] ST

52 3 s4 s5 52 s3 s4 s5 52 s3 s4 s5 52 s3 s4 s5
1% Session 2" Sesgion 1% Session 2™ Session

Figure 4.3: Continuous Accuracies of each Set per Group
P: participant, Acc: Accuracy, p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, s: set.
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4.2.2 Selector classification
The selector function received the classifiers’ outputs and calculated the most likely final answer, hence,
each set had one selector accuracy and because there were four online sets per session, each session had

four selector accuracies. For each participant, the averaged selector accuracy across sets is presented in
Figure 4.4A and Table 4.4.

A Average Online Accuracies per Session - Selector B
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Figure 4.4: Average Online Selector Accuracies
A) Average Online Selector Accuracies per Participant, B) Online Selector Accuracies averaged per Paradigm. The top plots
refer to group 1 and the bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the hybrid
system. P: participant, p3: P300, SS: SSVEP, HY: Hybrid.

Most participants presented no statistical difference between the first and second session. In group 1,

participant 2 had an increment of 39.6% from the first to the second session of SSVEP and participant 3

had a decrement of 25% from the first to the second session of P300.

The average accuracy per paradigm was calculated based on all set accuracies for all session of all
participants in the group (Figure 4.4B). Only the P300 had a significant increase from group 1 to group 2
(+13.1%). The SSVEP and the hybrid had, approximately, the same outcome between groups. The

SSVEP and the hybrid also had, approximately, the same outcome when compared in each groups.

Table 4.4 - Average selector accuracy comparison between 1°* and 2" session [%=STD]

P300 SSVEP Hybrid

lst 2nd lst 2nd lst 2nd
Pl 78.3+13.7 78.3+10 65+17.5 40+7.7 46.7+7.7 41.7+12.6
P2 95+3.3 86.7+5.4 33.8+1.8" 73.3+£5.4" 51.7+17.5 56.7+15.9
P3  93.3+0 68.3+10" 41.7+17.5 43.3+12.8 55+13.7 45+12.6
P4 96.7+3.8 93.3+£5.4 45+12.6 50+11.5 55+25.7 35+£19.9
P5  95+3.3 93.3+5.4 4049.4 48.3+13.7 48.3422.7 48.3+11.4
P6  100+0 1000 53.3+10.9 61.743.3 58.3+10 51.7£12.6

Note. 1" and 2" sessions are statistically different with *: p<0.05, **: p<0.01
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The set accuracies for each selector function are plotted in Figure 4.5. For the P300 sessions, group 2 had
the most consistent results. Participant 2 was an outlier in the second session of SSVEP, with higher
accuracies than the other two participants in his group. In most sessions with the hybrid, there was a

downtrend from one set to the next for most participants in the first and second session (except for

participant 6).
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Figure 4.5: Set Selector Accuracies per Group
P: participant, p3: P300, SS: SSVEP, HY: Hybrid, s: set.

4.3 Offline vs Online
Figure 4.6 shows the offline accuracy and the two online accuracies, the continuous and the selector’s

accuracy, for each group.

A Offline and Online comparison - P300 & SSVEP B Offline and Online comparison - Hybrid
100 100
— 75 —_ 75
Z + g 2
o 50 o 50
B I & T
25 Fa
= Offline
0- i 0
P300 SSVEP — ;"“:““5 HP300 H SSVEP Selectar
100 J I ector 100
T 7 1
a9 &
o 50 o 50
3 I & ac
25 )
0 ]

P300 SSVEP HP300 H SSVEP Selector

Figure 4.6: Comparison for the Offline, Continuous and Selector average accuracies
A) Compariong the pure SSVEP and P300, B) the hybrid, and the hybrid P300 and SSVEP. The top plots refer to group 1 and
the bottom to group 2.

Table 4.5 shows the average accuracy values and their differences. For group 1, all the compared average
accuracies were significantly different, except for the accuracies of the P300 offline and continuous, and
of the hybrid SSVEP offline and continuous. In group 2, all the compared average accuracies were

significant, except for the accuracies of the P300 offline and continuous, of the SSVEP offline and
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selector, of the hybrid SSVEP offline and continuous, and the hybrid SSVEP offline and the hybrid
selector. For both groups, the selector accuracy was higher for the P300 and the SSVEP. The hybrid
selector accuracy was about the average of the hybrid P300 and the hybrid SSVEP.

Table 4.5 — Differences among average accuracies for each paradigm [%]

Group 1 Group 2
Acc Difference Acc Difference
P300 O 72.979 86.551
-0.523 — 1.247
P300 C 72.456 87.798
P300 O 72.979 o 86.551 .
10.351 9.838
P300 S 83.330 96.389
P300 C 72.456 o 87.798 .
10.874 8.591
P300 S 83.330 96.389
SSVEP O 29.775 . 45.608 .
9.197 -6.051
SSVEP C 38.972 39.557
SSVEP O 29.775 . 45.608
19.740 _— 4114
SSVEP S 49.515 49.722
SSVEP C 38.972 . 39.557 .
10.543 10.165
SSVEP S 49.515 49.722
HP300 O 69.533 80.057 .
-1.018 — -1.242
HP300 C 68.515 78.815
HP300 O 69.533 . 80.057 .
- -20.089 -30.613
Hybrid S 49.444 49.444
HP300 C 68.515 " 78.815 .
- -19.071 -29.371
Hybrid S 49.444 49.444
H SSVEP O 26.773 39.362
9.642 — -2.186
H SSVEP C 36.415 37.176
H SSVEP O 26.773 . 39.362
- 22.671 — 10.082
Hybrid S 49.444 49 .444
H SSVEP C 36.415 ” 37.176 s
- 13.029 — 12.268
Hybrid S 49.444 49 .444

Note. Average accuracy comparisons are statistically different with *: p<0.0167, **: p<0.0033 with the
Bonferroni correction. H: Hybrid, O: offline, C: continuous, S: selector.

4.4 Efficiency

The time response for each target depended on how many outputs from the classifier were necessary to
reach the threshold of the final answer. Therefore, each target had a single time response associated with
its accuracy. The time response for each session was averaged for all the 60 targets (15 targets per set X 4
online sets). Figure 4.7A presents the averaged time responses for the first and second sessions of each

participant.
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Table 4.6 displays all average times for each paradigm. The table is color coded where the green pairs
indicate a significant decrease, while the red indicate a significant increase in time. Out of the 18 paired
sessions, 8 presented a decrease in response time from the first to second session. Participants 1, 2, 3 and
6 had faster results on the second session of SSVEP. Participant 4 was the only one that did not have any

significant change from the first to the second session in any paradigm.

Table 4.6 - Average time response comparison between 1°' and 2" session [s+STD]

P300 SSVEP Hybrid

lst 2nd lst 2nd lst an
Pl 864287 724277 794247  59+1.87  7.8+29"  4.6+2.3"
P2 4.8+26°  7£2.67 9.9+17 83+2.17  7.1£2.9 7.143
P3  6.6£2.6°  8+2.4" 6.142.3"  4.1+147  7.5£2.87 53425
P4  3.5+1.8 3.7+1.8 3.241.3 3.1+1.1 6.342.5 5.642.1
P5  3.9+2.3" 3.3+1.5 3.9+1.6°  5.0£1.9°  4.8+1.6 4.6+1.8
P6  2.8+0.9 3+1.1 49+1.9"  3+1.17 4.9+7.5 42435

Note. I* and 2" sessions are statistically different with *: p<0.05, **: p<0.01

Figure 4.7B shows the comparison of the systems’ response time between group 1 and 2. Group 2 took
less time for all paradigms. The time response for the P300 went from 7.03 to 3.35 s, for the SSVEP from
7.04 to 3.86 s and for the hybrid from 6.57 to 5.07 s.
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Figure 4.7: Selector Time Response per Group
A) Selector time responses per group, averaged from all sets’ time responses. B) Average accuracy across participants for group
1 and 2. The top plot refers to group 1 and the bottom to group 2. P: participant, p3: P300, SS: SSVEP, HY: Hybrid.

Table 4.7 shows the ITR calculated through Equation ( 3.3 ) for each paradigm and accuracy (offline,
continuous and selector). The number of stimuli per minute was 96 for the offline and 84 for the online
(m), considering one stimulus was presented every half-second and 3s between runs and 3s to display the
feedback. The number of commands was 3 (N). The best ITR were from the P300 in group 2. The highest

was the selector with 111.27 bits/min, then the continuous with 89.07 bits/min, followed by the offline
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with 84.56 bits/min. All P300 and hybrid P300 ITR remained above 35 bits/min. All the SSVEP and
hybrid SSVEP ITR remained under 7 bits/min. The P300 and the SSVEP had higher ITR for the selector.

Table 4.7 - ITR per paradigm

Group 1 Group 2
Type Acc ITR [bits/min] Acc ITR [bits/min]
[%0] [%]
P300 O 72.979 45.406 86.551 84.561"
P300 C 72.456 44.194 87.798 89.071°
P300 S 83.333 64.535 96.389 111.273"
SSVEPO  29.775 - 45.608 4.475
SSVEPC 38972 0.966 39.557 1.174
SSVEPS 49515 6.735 49.722 6.905
HP3000  69.533 37.763 80.057 63.816
HP300C 68515 35.656 78.815 60.297
HSSVEPO  26.772 - 39.362 1.103
HSSVEPC  36.415 0.292 37.176 0.452
Hybrid S 49.444 6.678 49 444 6.678

Note. -: Accuracies below chance level have distorted ITR, so they were not considered, »: third best ITR,

¢ second best ITR, T: best ITR, Acc: Accuracy, ITR: Information Transfer Rate, H: Hybrid, O: offline, C:
continuous, S: selector.

4.5 NASA TLX questionnaire
Table 4.8 presents the adjustment weights that were applied for each factor attributed by the participants.

Table 4.8 - Adjustment weights for the NASA TLX ratings

PD F TD E MD P
Pl 0 5 4 1 2 3
P2 0 2 5 2 4 2
P3 3 0 1 4 2 5
P4 0 2 1 5 3 4
P5 0 1 5 3 4 2
P6 0 4 1 2 4 4
Avg. 05 233 283 283 3.17 333

Note. PD: Physical Demand, F: Frustration, TD: Temporal Demand, E: Effort , MD: Mental Demand
and P: Performance. The color code represents the weights from less important to more important with
the colors in the following order: red, orange, yellow, light green, medium green and dark green.

The average final workload for each participant over two sessions of each paradigm is presented in Figure
4.8A. For all participants but participant 3, the P300 had the lowest load. For participants 1, 4, 5 and 6 the
highest load was attributed to the hybrid, followed by the SSVEP. Participant 2 had similar ratings for the
SSVEP and the hybrid and participant 3 was the only one that rated the SSVEP as the highest load.
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An overall workload rating was calculated by averaging all participant's average final workloads for each
paradigm. The result is presented in Figure 4.8B. The P300 load was significantly lower than those of the
SSVEP and the hybrid.

A B General Final NASA TLX Workload
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Figure 4.8: Average NASA TLX
A) Average NASA TLX Workload per Participant, B) Average NASA TLX Workload per Paradigm. P: participant, p3: P300, SS:
SSVEP, HY: Hybrid.

To compare the raw factors rating and the adjusted factors ratings, Figure 4.9 presents two radar charts
showing the effects of the adjustment weights on the average of the average final workload of each
paradigm. Low-rated factors had less effect on the final workload, such as Physical Demand (PD), while
high-rated factors had more effect on the final load, such as Mental Demand (MD) and Performance (P).
Physical Demand had the greatest decrease in rating when weighted. Factors Temporal Demand (TD),
Effort (E) and Frustration (F) maintained a similar proportion after the adjustment. Overall, the P300 had
the lowest loads for all factors, especially for Frustration. The hybrid had the highest Mental Demand and
Temporal Demand, while the SSVEP had the highest Performance load. The SSVEP and the hybrid had

similar Effort and Frustration ratings. All paradigms had low Physical Demand.

MAverage Factor NASA TLX Ratings
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Figure 4.9: Raw and adjusted ratings of the NASA TLX factors
MD: Mental Demand, PD: Physical Demand, TD: Temporal Demand, P: Performance, E: Effort and F: Frustration.
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Cohen Kappa agreement scores were calculated among the comparison cards for each factor (Figure
4.10A), among the individual factor ratings (Figure 4.10B) and among the final workload for each
paradigm (Figure 4.10C) per participant.
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Figure 4.10: Cohen Kappa agreement score between participants
A) Comparison Cards, B) the Individual Factor Ratings and C) the Final Workload. The agreement levels are <0: less than
chance, 0.01 to 0.20: slight, 0.21 to 0.40: fair, 0.41 to 0.60: moderate, 0.61 to 0.80: substantial, and 0.81 to 0.99: almost perfect.

Most participants did not agree on the importance of each factor on the comparison cards. Only
participants 2, 4, 5 and 6 had some agreement with each other. The individual factor ratings only had
slight agreements. For the final workload between paradigms, only P1 and P3 agreed fairly. Therefore,
most participants felt differently in regards to the factors’ importance, the factor ratings and the final

workload for each paradigm.

4.6 Session Notes

Session notes and incidental comments can be seen in Appendix 5.

4.7 Post analysis
After the study, more examination of the data was done to explore the low SSVEP performance, and

some tests were done offline to see about improving its performance.

4.7.1 Further examination of the data

4.7.1.1  Hybrid correlation with P300 and SSVEP

The main reason for the hybrid’s low accuracy was the low SSVEP performance. To examine this
hypothesis, Figure 4.11 shows the scatter plot with the line trend between the SSVEP or P300 component
continuous accuracy and the hybrid selector accuracy. The accuracies were set to unit value. The linear
trend calculated between both comparisons had a positive slope, indicating a proportional correlation. But
Figure 4.11B has a stronger positive slope compared to Figure 4.11A indicating that the SSVEP had
higher impact on the hybrid accuracy.
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Figure 4.11: Scatter Plot with trend line between Accuracies
A) Continuous hybrid P300 versus hybrid Selector, B) Continuous hybrid SSVEP versus hybrid Selector.

4.7.1.2  Pure paradigms vs. hybrid paradigms

In order to assess if the simultaneous combination of both P300 and SSVEP caused any deleterious effect
to the accuracy of the paradigms compared to the pure form, the hybrid and the pure averages were
compared and statistically analysed. Table 4.9 shows the accuracy differences (ACChyprig — ACChyre).
Most comparisons were statistically significant. The P300 had lower accuracies in all cases when
implemented with the SSVEP. On the other hand, the SSVEP, in most cases, had no change when
implemented along with the P300. The only exception was in group 1, for the offline accuracy

comparison. Almost all the offline comparisons had a decrease in accuracy for the hybrid paradigms.

Table 4.9 - Overall average accuracy difference between the hybrid and pure paradigms [%]

Offline Continuous
Group | P300 345 -3.94°
SSVEP  -3.00 -2.56
Group 2 P300 —6.49: -8.98"
SSVEP  -6.25 -2.38

Note. Paradigms that are statistically different between the hybrid and pure paradigm with *: p<0.05,
Kk,
2 p<0.01

4.7.1.3 Time response and accuracy

The selector functions were designed so that the response time was smaller when the accuracy was
higher. Since the selector function is weighted by the offline accuracy, higher accuracies add more points
to their selected targets. So in theory, an inverse trend should be seen between time and accuracy. The
relationship between the selector accuracy and the time response are shown in Figure 4.12. The only case
where time is inversely proportional to accuracy is for the P300. The SSVEP had no relationship and the
hybrid had a slight increasing proportional correlation between time and accuracy. The selector accuracies
for the P300 were higher than the hybrid, and equivalent for the SSVEP and hybrid (see Figure 4.6).
Thus, the expected behavior of inverse proportionality only applies for “high-enough” accuracies, like

those of the P300.
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Figure 4.12: Selector Accuracy versus Response Time.

4.7.2 SSVEP improvement tests

First, a progressive sample window was tested, where instead of keeping the window size to 0.5 seconds,
the samples were compounded over time (i.e., the first window had only the first 0.5s sample; the second
window had the first and second 0.5s samples; the 3™ window had the first, second and 3™ 0.5s samples,
and so on). Thus, the window size was 0.5s, and progressed to 10.5 seconds. This technique allows the
signals still to be read every half-second, and is expected to improve feature quality, since it has an
increasingly larger and redundant window size from which to extract the frequency information. All the
other parameters were kept the same, i.e., the SSVEP conditioning was the same for each new window,
the features were input to the same classifier, the 10-fold cross-validation method was used to assess the
offline accuracies and the same electrodes were used for each group. The final accuracy from the
progressive sample window are shown in Table 4.10 along with the offline accuracies for the SSVEP for

all participants.

Although there was a consistent improvement offline, due to the increasing window size at every
incoming sample, the frequency-domain conversion also had increasing computational cost, making the
processing slower. When this implementation was attempted online, the display could not flash at the
intended stimuli frequency, causing the brain response to be unrecognizable by the classifier during the

online sets. Therefore, this technique could not be implemented successfully in online trials.
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Table 4.10 - Comparison of offline SSVEP accuracies for progressive and static window size

Static half-second window  Progressive Sample window

Session %] [%]
PO1 I 26.4+9.7 80.3+6.9
P01 ond 30.8+7.6 75.2+5.6
P02 I 19.949 73.346.2
P02 ond 23.549.3 84.4+8.9
P03 1 29.2+8.7 85.4+7.9
P03 ond 48.9+7 78.349.5
P04 1 50.5+5.3 85.4+5.8
P04 ond 50.5+5.8 88.9+8.6
P05 I 43.847.8 86.7+7.9
P05 ond 38.147.6 84.5+5.4
P06 1 38.346.1 86.3+5.4
P06 ond 52.4+5.5 86.3+4.3

Secondly, the Filter Bank method was tested for the 0.5 window (Chen et al., 2015). Similar to what was
done by Chen et al., each sample underwent 10 sub-band filters, ranging from 5 to 105 Hz, to
accommodate for harmonics. The original SSVEP conditioning function was modified to only contain the
notch filter (since each sub-band of the filter bank was the new band-pass filter for the signal). The
chosen filtering method for the filter bank was the sub-band method M3, since it had the best results in
Chen et al.. Each sub-band ranged from a lower frequency, n X 5, up to 105 Hz with an extra 2 Hz on
each sub-band extreme (i.e., [3-107] Hz, [13-107] Hz,... [93-107] Hz). Then, the correlation coefficient
of a CCA filter, compared to the paired sine-cosine waves of each one of the target frequencies and its
first and second harmonics, were summed for each frequency. The summation was weighted to
compensate for the magnitude decay of higher harmonics (the same optimal parameters used by Chen et
al. were used). The final feature vector contained the summed weighted coefficients for each target
frequency. To choose the final answer, the maximum value from the feature vector was chosen. Chen et
al. had good results using 1.25 seconds at 1000 Hz down-sampled to 250 Hz, however, their results using

a 0.5 second window at 250 Hz were around 33.33%, as in this study.
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5 Discussion

In this study, a hybrid BCI using P300 and SSVEP was tested by six participants over six sessions (two
sessions per paradigm). Participants from group 2 (participants 4 to 6) tested a slightly modified system
than group 1 (participants 1 to 3). Each paradigm was measured offline and online with respect to
accuracy (offline, online continuous, and online selector), selection time and information transfer rate,
and participant satisfaction. The hybrid accuracy, selection time and satisfaction were not as good as the
pure P300, but they were better than pure SSVEP. The lower accuracy of the hybrid was a consequence of
the lower accuracy of the SSVEP.

5.1 Accuracy trend

Overall, when analyzing the accuracies, there were no trends when comparing the first and second
sessions for any accuracy type. Thus, we can infer that there were no learning effects between sessions.
Events that happened, listed in Appendix 5 table, can be correlated to less accurate results. For example,
in sessions where participants were sleepy (see Appendix 5) , the accuracy tended to be lower: participant
I's first P300 session showed lower accuracies in the first sets; participant 2 in his first SSVEP session
and his second P300 session had a lower accuracy; participant 3 on both his second sessions of P300 and
SSVEP had lower accuracy; participant 4 had an accuracy low at the set 3 of his second hybrid session;
participant 5, for the hybrid sessions had progressively lower frequencies. On participant 5's first SSVEP
session, sudden noises started coming from the hallway from set 2 to 5. His accuracy improved after he

wore his earbuds to attenuate noise.

5.2  Group differences

The offline accuracy was higher for all paradigms in the second group (see Figure 4.6), which may be due
to the changes made to the system. For the SSVEP, adding electrodes likely added information
redundancy and improved the quality of the feature vectors fed to the classifier. Also, the sweatband
could have improved the contact of the electrodes against the scalp, reducing noise, for both the SSVEP
and the P300. It is also possible that the different room for group 2 helped participants to concentrate

better and see more contrast on the computer display, since it was a darker room.

For the continuous and selector accuracies, only the P300 paradigms improved substantially from group 1
to group 2, (+15.3% for the continuous and +13.1 for the selector, see Figure 4.6). The hybrid P300
improved only for the continuous accuracy (+10.3%). This indicates that even with the adjustments made
to the SSVEP, there was no accuracy improvement for the SSVEP. Most likely, the issue lies with the
small window size that was attempted. Although it made theoretical sense from a signal-processing

standpoint because of the frequency resolution (calculated with Equation ( 3.1 )), it appears that half-
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second did not have enough information to do the classification accurately using the described method.
On the other hand, the P300 selector had an increased accuracy thanks to the modified selector function,

which compensated for possible mistaken penalties.

5.3 Why was the hybrid less accurate?

It was hypothesized that the hybrid would have a higher accuracy and lower response time than both pure
paradigms. The results showed that the hybrid had an accuracy similar to the average of the P300 and
SSVEP accuracies or similar to the SSVEP accuracy. The hybrid’s low accuracy may result from some

factors discussed in the following.

5.3.1 Low SSVEP accuracy

Since the system was designed to combine both paradigms, the consistent SSVEP misclassifications
caused the hybrid selector’s low accuracy. Figure 4.12 shows that the SSVEP accuracy had a stronger
correlation with the hybrid accuracy than the P300. That might indicate that unless the SSVEP achieves a

higher accuracy, the high performance of the P300 will not be enough to improve the hybrid accuracy.

To examine if the selector functions were the cause of the low accuracies, see Table 5.1, which
summarizes the results of Figure 4.6. For each of the P300, SSVEP, hybrid P300 and hybrid SSVEP, the
type of accuracy (offline, continuous, or selector) was examined to see which had the highest accuracy,
which were tied for the highest, and which had the lower accuracies. The table shows that the selector
functions were effective in raising the continuous accuracy for the pure P300 and the pure SSVEP and for
the hybrid SSVEP. Thus, although the selector functions appear to work as intended on the pure
paradigms, the hybrid selector could be improved by prioritizing the higher accuracy between the hybrid
P300 and the hybrid SSVEP.

Considering the sets where the hybrid SSVEP performed better (e.g. the second sets of the first session of
participants 4, 5 and 6, which were 45.2%, 48.3% and 45%, respectively, see Figure 4.3), it is possible to
see that the hybrid selector had a higher accuracy than the hybrid selector average (73.3%, 80% and
66.7%, respectively, see Figure 4.5). SSVEP accuracies lower than 45% tended to penalize the hybrid

selector’s accuracy, even if the P300 portion had accuracies close to 75%.
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Table 5.1 - Highest accuracies comparison summary

Hybrid Hybrid
(P300) (SSVEP)

O C S O C S O C S O C S
Gl O O O O (=] [ O O O
G2 O O O] O ] @ & O O O

P300 SSVEP

Note. The columns marked with M indicate the highest accuracy, [ indicate accuracies tied for the
highest, and [Jindicate the lower accuracies. O = offline, C = continuous, S = selector

5.3.2 Accuracy reduction when combining paradigms

Table 4.9 shows that when the P300 and the SSVEP paradigms were combined, both offline and
continuous accuracies of the P300 dropped when comparing hybrid and pure P300. On the other hand,
only in group 2, during the offline session, was there a significant decrease from the pure SSVEP to the

hybrid SSVEP.

The drop in P300 accuracy suggests that the P300 might have been harder to identify in the hybrid
paradigm. As some participants suggested in their comments in Appendix 5, it was harder to count the
P300 frame flashes while looking at the SSVEP flashing. The SSVEP flashing might have been

distracting and made the participants miss one or more P300 stimuli.

On the other hand, even with the added P300 frame appearances, it might be possible to assume that the
SSVEP was not affected as much by the P300. Finding a different way to display the signals

simultaneously might ease the multitasking load that was perceived in the presented configuration.

5.3.3 Higher Mental demand

When the participants tested the hybrid system for the first time, some of them verbally stated it was more
overwhelming than the others (see Appendix 5). The hybrid paradigm had the highest Mental Demand
among the three paradigms (see Figure 4.9). Only two participants felt sleepy during the hybrid sessions,
possibly because the hybrid paradigm required multitasking. However, it still demanded a lot from the

participants’ mental capacity. This increased participants fatigue during the session.

5.4 NASATLX

Analyzing the NASA TLX results, we see that the P300 had the overall lowest workload and the hybrid
had the highest. The hybrid having the highest workload could be expected since participants attributed
the Performance and Mental Demand a higher importance than the other factors when weighting for the

final workload and the hybrid had the highest score for both, as discussed above.
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We also see that the SSVEP and the hybrid had similar workloads, which might indicate that the
perceived workload of the SSVEP was transferred to the hybrid. We can see in Figure 4.9 that the
Frustration, Effort and Physical Demand were perceived as equal for both paradigms. The pure SSVEP
had a high Performance score (high scores indicate failed performance, and low scores indicate perfect
performance), likely due to the lack of success the participants had with the SSVEP. The same lack of
success was also felt in the hybrid. The inclusion of the P300 along with the SSVEP affected the Mental
Demand, but also the perceived Temporal Demand. Since a there was more stimulation with the hybrid,

participants may have felt more rushed.

5.5 Limitations and future work

One limitation was that the 15Hz frequency used was within the seizure-inducing frequency range. Some
studies have shown that frequencies between 12 and 25 Hz have more potential to induce seizures (Fisher
et al., 2005; Okudan & Ozkara, 2018). When implementing this system in the future, it would be

important to avoid those frequencies.

The poor accuracy of the SSVEP was a limitation in trying to test the hypothesis that a hybrid would be
better than either SSVEP or P300 alone. The poor SSVEP accuracy made the hybrid accuracy poor. Since
a smaller static window did not work well enough to obtain a high accuracy for the SSVEP, future
projects should use a larger window, but still keep the 0.5s window for the P300. This would make the
minimum time selection be the required window length of the SSVEP. There would be a tradeoff, of
slower time to select a target, for a higher final accuracy. Chen et al. (2015) have shown that it is possible

to get window sizes of 1.25s with offline accuracies close to 90%.

Additionally, when testing the progressive sample window, instead of combining all the windows up to
10.5, there might be a possibility of finding a window length that does not require excessive
computational power but that also increases the accuracy. Tests can be conducted offline to find the
minimum window size that would provide an increment in accuracy and then it can be tested online to

evaluate if the stimuli continue to be stable.

In future projects, the selection function for the hybrid could be modified so that it prioritizes the higher
performing paradigm (using logarithmic functions, instead of a linear one, for example). Although it
would not solve the problem of the low accuracy of the SSVEP, this could be an extra mechanism to

prevent an accuracy drop in the event that one of the paradigms does not perform properly.

The hybrid combination of these two steady-state evoked potentials had low accuracy and a high

cognitive load for these participants. An alternative could be to combine the P300 frame with a different
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style of steady-state evoked potential. For example, the motion visual evoked potential (mVEP) uses
flashing that emulates movement instead of flashing that is static (Guo et al., 2008; Ma et al., 2017).
Depending on the simulated movement direction or speed, the brain has counter-lateral responses, which

can help detect the participant’s desired selection (Punsawad & Wongsawat, 2017).

Finally, to attempt to improve the hybrid accuracy, using a single feature set for both paradigms and a
feature selector can also help improve the accuracy. Different strategies to combine both paradigms can
change how the information is read by the classifier. Since all data would be unified, only one classifier

would be needed and the selector functions would not need to be implemented.
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6 Conclusion

In this study a hybrid brain-computer interface was developed using SSVEP and P300 simultaneously.
The display showed flashing squares at different frequencies that evoked the SSVEP responses, and a
frame that appeared pseudo-randomly around each square evoked the P300 response. The signals were
collected for 0.5s per trial, conditioned and then classified by two LDA classifiers. In part 1, eight
volunteers tested different parts of the system, and the system and experiment were adapted based on the

volunteer’s opinions.

The results of part 1 showed that one session per day was the maximum that participants could undergo
before experiencing mental fatigue. The colours of the squares were changed, since participants said
green and red “blurred their view”. Finally, a cross was added to the squares, and the square sizes were

changed to improve the simultaneous P300 and SSVEP visualization.

In part 2, six male participants tested the hybrid and the pure paradigms. All underwent six sessions, two
per paradigm (SSVEP, P300, and hybrid). The offline, online continuous and online selector accuracies
were collected. The first three participants (group 1) tested the system resulting from Part 1. The last three

participants (group 2) tested a system modified to improve accuracy and response time.

The results of part 2 showed that the hybrid had 49.44% of accuracy, which was not higher than the pure
paradigms, as expected. The overall best paradigm was the P300, getting up to 100% accuracy online. Its
average accuracy was 83.3% for group 1 and 96.4% for group 2 with an ITR of 64.53 and 111.27
bits/min, respectively. The SSVEP average accuracy was 49.5% for group 1 and 49.7% for group 2, with
an ITR of 6.73 and 6.9 bits/min, respectively. The hybrid performed similarly for both group 1 and 2 with
49.4% accuracy and 6.8 bits/min. The ITR was lower for both the SSVEP and hybrid, compared to the

P300 because of the lower accuracies.

The changes made in the system from group 1 to 2, improved the response times for all systems. The

accuracy and ITR also improved for the P300, but had no significant impact for the SSVEP or the hybrid.

Workload was measured to see how participants felt about using the system. Their ratings varied on each
of the factors and they had different opinions about which factor was the most important. The averages of
participant's adjustment weights indicate that the most important factor was Performance, followed by
Mental Demand, followed by Effort and Temporal Demand. The lowest overall workload was for the

P300 with 3.3, followed by the SSVEP with 5 and the hybrid with 5.4.
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The overall results allow us to assume that, although it made theoretical sense, the 0.5s window size
restricted the amount of information for the SSVEP classifier, making its performance low and directly
impacting the hybrid’s accuracy. Even though the selector functions were programmed to consider the
individual accuracies of the hybrid SSVEP and hybrid P300, the SSVEP had a greater impact on the
hybrid’s final accuracy than the P300. Several options for improving the system in the future were

suggested.
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Development of a simultaneous Hybrid Brain-Computer Interface using SSVEP and P300

Matheus G Mussi
University of Alberta (Edmonton)

INTRODUCTION

People experiencing neurological disorder can have severe limitations in their functional abilities [1]. They usually
rely on assistive technology to perform daily activities [2], but sometimes they are difficult to control. Brain-
computer interfaces (BCI) are a potential assistive technology solution. This technology is feasible for people with
complex physical needs because in many cases, the disorders do not affect the cognition extensively [3-7].
Traditional BClI methods, nevertheless, yield insufficient performance to be used in real-time applications and are
hard to operate independently, which are important criteria for end-users [8,9]. Individuals experience fatigue
when low accuracy rates require them to repeat entries and correct selections. Traditional BCl rely on a single
input signal (e.g. EEG), single source of stimulus (e.g. auditory, visual, tactile, etc) or a single brain signal
paradigm (pattern). This causes the system to have low information transfer rate, an inflexible human-interface
and less information to improve its performance [10]. Hybrid brain-computer interfaces aim to improve on
performance and speed through multi-modal signal inputs, combining different brain-signals, BCI paradigms or
other external device input [11].

There are many hybrid brain-computer interface (hBCI) systems that use various combinations of brain signals
and physiological signals or other devices. Nonetheless, very few papers explain the details of how to ‘assemble’
an hBCI. This paper explains the development of software capable of displaying simultaneous stimuli of SSVEP
and P300 which will be used in future research with children with disabilities.

ARCHITECTURE
Interface

For our system'’s display, there will be three squares that have coloured centre areas that flash at different
frequencies for the SSVEP stimuli, and an outline edge that will appear around the squares one at a time in a
pseudo-random order for the P300 stimulus, as shown in Fig. 1.

For the SSVEP, squares will create the flashing effect by interpolating between colors, as proposed by [12]. The
chosen frequencies are 30, 10 and 6 Hz, to avoid seizure-inducing ranges. When the classification is concluded,
the selected square’s centre area will briefly turn white in colour to indicate the classifier chose that square.

Program

For the online operation of the system, threads are

needed to avoid delays in the execution of e B

processes that need to be concurrent. The these colors ' P300 Stimulus
architecture of the program is based on a main <
section that initializes other threads and variables, urget 3 ge fre _ SSVEP Stimulus
the experiment thread, which displays the squares [
on the screen using Psychopy, the acquisition
thread, the feature extraction threads (SSVEP and
P300 specific) and the classification threads. The
overall architecture scheme can be seen in Fig. 2. @ 10 He

Target 2

To synchronize the functioning of the different
paradigms, the program is based on threading
event and standardized intervals. Every half
second, a new P300 stimulus is presented and the Target | 13
buffered data is pre-processed and sent to the @6 Hz @ 30 Hz
classifier for training or validation. Events are sent
to the active threads and their function is
synchronized, avoiding data loss. An important

Figure 1. Interface illustration for simultaneous
SSVEP and P300 paradigms

1
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note on threading events is that they have a built-in wait function, which avoids unnecessary loops and protects
Python’s synchronization primitives.

To transfer data from one thread to the other, threading queues are used. They are needed because Global
variables are not supported by threads. Queues have a first-in-first-out method and they are emptied every time
the get method is used.

DEVELOPMENT

The developed system is Interface
based on Python3®. The

libraries used are freely [:‘ n D |:| D n

available online and the
software should be

compatible with many BCI ug D D D u D D n D n D I:]
headsets, depending

primarily on the BrainFlow
library. This system was s )
tested with the OpenBClI E—
Cython board. The

system runs in a Windows PA00 Fiag

10 operational system, 2
but most of the -
installations should also
work with Linux. Mac
users might experience
some compatibility issues
with some headsets
(especially due to the | Conditioned Dats 1
deprecation of Future SSVEP Threaa P300 Thread
Technology Devices
International (FTDI) chip
drivers, which hinders the
use of the OpenBCl
board).

Setting up the
experiment on a new [ [ Trainingiciassiying | ] [ T trainingiciassiying | |
computer I I

Individual Classifications

This sub-section explains T

the installation of all the Fusion Thread
necessary resources to
create a hBCI system with [ ] Hignestaceuracy has priority | |
visual stimulation. The

steps below are meant to _
be done in sequence. ——  Outpu

Requirements

The basic requirements
for the system are: 1) Python 3.6.6, 2) Anaconda3 and 3) Psychopy3. Python 3.6.6 is currently the most up-to-
date version that supports all the required packages. In addition to Python, Anaconda was used to maintain all the
specific libraries for this system separated from other libraries in the operational system. Psychopy3 is a package
used to manipulate screen elements to create stimuli for the users.

\ 4

CCA Ciasaifier Thread LDA Classifier Thread

Figure 2. Overview of the program architecture scheme

Creating an environment with Anaconda with Psychopy3

Environments are directories containing specific packages which do not affect other environments. This gives the
ability of installing packages and package versions that are project-specific [13]. For this project, the environment
is based on an environment containing Pychopy3. This method avoids compatibility issues.

Firstly, the Anaconda3 executable [14] and the Psychopy3 environment file (psychopy-env.yml) [15] need to be
downloaded. Anaconda needs then to be installed and the Psychopy file saved in an accessible folder. Once

2
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anaconda3 is installed, through the Anaconda Powershell, navigate to the folder containing the Psychopy file and
enter conda env create -n psychopy -f psychopy-env.yml to create the environment named
“psychopy”. To activate the environment, in the Powershell, enter conda activate psychopy.

Once the environment is running, some packages are needed (some packages are OpenBCl Cython-specific).
Most of them need to be installed via conda install -c command, but some are installed through pip
install. The packages are cython, pyserial, matplotlib, piglet (v.1.4.10), numpy, pygtgraph
scipy, pandas, pylsl, and Pillow.

The specific Pyglet version needs to be 1.4.10 instead of newer versions because some later versions yield the
error “WMF Failed to initialize threading: err.strerror” when using threads. Depending on the application, some dll
files can be missing and also generate errors. If the errors “The program can’t start because
VCRUNTIME140D.dlIl is missing from your computer” or “The program can't start because ucrtbased.dll is missing
from your computer” appear, the dil's need to be downloaded and pasted in the C:/Windows/System32 folder.

Installing BrainFlow

BrainFlow is a library to parse and obtain biosensory data from devices. This library allows an easy connectivity
between electroencephalography (EEG) headsets and the computer/program. The strengths of this library over
others are its easy implementation, its board versatility (e.g. a few lines of code can easily adapt the program to
receive signals from OpenBClI Cython or g.tec Unicorn) and its vivid community, which gives vast support through
Slack. To install BrainFlow in the environment, enter python -m pip install brainflow.

Installing Scikit-learn

Scikit-learn is a library for predictive and data analysis. It provides simplicity and a vast range of tools to classify
and analyse data. The classifiers in this library will be implemented for the system’s decision making. It can also
be installed in the environment with conda install scikit-learn.

Remove excessive signal latency

In some boards, the default latency can cause the signal to be read incorrectly or in chunks. To avoid these, the
latency needs to be decreased. This can be done by going to the Device Manager (Right click on My
Computer/This PC, then Properties and select Device Manager). Then, the port setting needs to be adjusted:
expand the Ports (COM & LPT) list, right click the serial port corresponding to the device (e.g. COM3) and select
Properties. In Properties, go to the Port Settings tab, then Advanced, and then change Latency Timer (msec) to 1.

Working with BrainFlow

BrainFlow gives the developer the ability to connect and start streaming from within the code. The minimum
sequence to connect to a board is the following:

import brainflow

from brainflow.board shim import BardShim, BrainFlowInputParams, BoardIds
from brainflow.data filter import DataFilter, FilterTypes, AggOperation
BoardShim.enable dev board logger ()

params = BrainFlowInputParams ()

params.serialport = ‘COM3’

board id = BoardIds.CYTON BOARD.value

board = BoardShim(board id, params)

board.prepare_session()

board.start stream()

data = board.get board data()

Each board needs a specific set of parameters. To see what parameters are needed, refer to [16]. For the
board id variable, the board in use should be called (e.g. if using the g.tec Unicorn, use board id =
BoardIds.UNICORN BOARD.value). The data streamed from the board comes in a single array which contains
timestamps and sensory data.
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FUTURE RESEARCH

This hBCl is currently undergoing testing and the next steps are 1) tests with adults with and without disabilities,
using a User Centred Design approach to improve the system and 2) experiments with children with disabilities to
see its efficacy in clinical applications.
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Appendix 2
Studies Table

Study (N =17) Age Pop. Size  Condition Paradigm Classifier Activity Accuracy [%]
(Meng et al., 2016) 18 to 54 13 wo/ disability MI ERS/ERD filter Robotic arm 95
(Cincotti et al., 2008) 12 to 35 4 w/ disability MI itr?:ls;;csal Cursor movement 66.57
(Huang et al., 2019) 22 to 37 5 wo/ disability MI SVM Wheelchair 88
(Pan et al., 2014) 16 to 70 8 w/ disability g?S,(\)/OEP }S{Ztli\g D;Ltec}t)i(())\r,lver Option selection 60.52
(Yin et al., 2015a) 18 to 35 13 wo/ disability IS):;(\)/OEP SWLDA + CCA  Speller control 95.18
(Yin et al., 2015b) 20 to 28 12 wo/ disability P300* BLDA Option selection 88.67
(Zuo et al., 2019) 22 to 28 18 wo/ disability MI + P300 BLDA Option selection 93.94
(Carmona et al., 2020) 20+5 15 - SSEP* CCA Option selection 85
(Thurlings et al., 2014) 221026 10 wo/ disability P300* SWLDA Option selection 85
Extended
ﬁir;‘éa{‘é‘;k“mar & Reddy 403 10 wo/ disability ~ SSVEP g’[y‘;lglvrﬁ?;z oo Speller control 94.99
index
(Z. Zhang et al., 2017) 19 to 21 8 wo/ disability P300 BLDA Robotic arm 97.5
(Choi et al., 2018) 21 to 24 5 wo/ disability SSVEP CCA Chess game 85.8
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(J. Z. Zhang et al., 2019)

(Kim et al., 2019)

(Ehlers et al., 2012)

(Cho et al., 2017)

(Yousefi et al., 2019)

6to 18

37 and 47

G1:6,73
G2: 8,08
G3:9.86
G4: 22,36

24.8 +3.86

29+3

11
12
14
14

52

10

wo/ disability

w/ disability

wo/ disability

wo/ disability

wo/ disability

MI

MI

SSVEP

MI

non-MI

PNN and Radial
Basis Function

Artificial
Potentials

Bremen
Algorithm

LDA

rLDA

Car movement
and

Cursor movement

Robotic arm

Speller control

Option selection

Option selection

Kappa: 0.46

57.37

58
53
75
78

67.46

67

Note. Paradigms with * mean they were multisensory stimuli. Ehlers et al. (2012) presented results for four different age groups.
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Appendix 3

Session Protocols

Protocols Steps Amount of time Check
[min]
Sanitize hands (with Isopropyl alcohol or water and 05 5
soap) '
Cleaning . Sanitize chairs and desks where participant and family
— pre-session . . 1 o
members are going to sit
Cap and electrodes will be previously sanitized 0 i
Health assessment (following the AHS protocols):
a) If it is the first session, collect contact
information (from participants or family
member(s))
b) Register date of experiment for tracking | 5 o
purposes
Welcome c¢) If assessment indicates infection for
participant or family member(s), session will
be terminated
If it is the first session, explain procedures and 5 5
experiment objectives
Turn EEG device on and verify signal acquisition is
working properly: ) 5
a) Ifnot, reboot device
b) If problem persists, reboot computer
Put electrodes (cap) on participant’s head 10 o
Adjust cap
a) Pull and push cap until it reaches the right
electrode spots ) 5
Technical b) Apply more gel where needed
c) Tighten or loosen the cap to make the
participant comfortable
Verify impedance of each electrode. Repeat items
above if:
a) any electrode is below 5 ohms or above 100
ohms 1 o
b) participant feels uncomfortable
c) electrodes are out of place in relation to the
10/20 placement system
Session Run a practice run where no results will be saved: 2to5 o
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a) Check after each practice run if participant
feels comfortable with the system. Repeat as
needed.

Run the classifier training set:
a) Set up video camera and hit record
b) Turn on data collection
¢) Check if raw EEG data and results were
stored in hard drive after first run

d) After each run, allow a minute break if Stols
needed
e) After the training is successfully completed,
run the classifier training script
Run the four feedback sets:
a) After each run, allow a minute break if
needed 20 to 60
b) After each set, allow a 5 minutes break if
needed
Remove cap from participant’s head 0.5
Store data:
a) Label data with date and participant code )
b) Add description stating any unexpected
events or behaviours, if any
Ask for participant member(s) opinion:
a) fill the NASA TLX survey 5
b) annotate any other verbal opinion/suggestion
for the system or experiment
Clean cap with water and detergent 5
Cleaning Brush electrodes to remove gel residues with water )
— post-session and detergent
Sanitize used chairs and desks 1
Preparation Time 11.5
Participant Time 57.5t0 110.5
Total 69 to 122
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Appendix 4

Procedures and Approvals due to COVID-19

Some extra procedures need to be considered for the safety of the researchers and the participants due to

COVID-19. The following list of requirements were followed in accordance with the restrictions and

guidance required by the University of Alberta:

Before each session, when entering the facility, a screening process will be done to ensure
participants and parents or companions are feeling well

Contact information will be collected and stored for the duration of the study plus two weeks
afterwards, in case an infectious case needs to be traced

Researchers and companions will wash their hands before and after contact with participants
Instructions on how to cough and sneeze safely will be reinforced

Personal protective equipment, namely masks, will be distributed for those who do not have one
At all times possible, social distancing will be maintained (2m apart). In situations where contact
is needed, both participant and researcher will be using masks, and researchers will use protection
googles.

Before and after sessions, the chairs and equipment that were used by the participant and

companions will be cleaned and disinfected with isopropyl alcohol.

Approvals

Special approvals and documentation were required to return to research activities during the COVID-19

pandemic. The following approvals were granted before commencing the experiments:
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University of Alberta
o Ethics approval from the Research Ethics Office to suit safety measures

o Environment Health and Safety (EHS) Return to Campus Plan



Appendix 5

Notes taking during sessions

The following table displays the notes and incidental comments registered during sessions. The comments

were made by the participants about the system during the sessions. The comments were reproduced

verbatim, except where indicated.

Sess. Paradigm Notes Incidental Comments
Pl 1 P300 Feeling §leepy after lunch. )
Struggling to stay awake.
1t’s a little harder, but not too bad (referring to
the hybrid compared to the others)
Pl 4 Hybrid -
I’m sorry, I think I counted one of them [P300
frames] wrong
Slept only 5 hours
P2 1 SSVEP previous night. It is a lot of flashing, not going to lie*
Struggling to stay awake.
P2 3 Hybrid - The flashing part puts me to sleep a little bit*
P2 4 SSVEP - This time it was nice!
Tired
P2 6 P300 Struggling to stay awake )
Reference fell off between
P3 1 SSVEP sets 2 and 3, and was -
reattached.
: X o T
P 4 Hybrid ) Should it [the counting] always be 7? I think I
got 6.
Tired.
P3 > P300 Struggling to stay awake. )
Slept only 4 hours
previous night. )
P3 6 SSVEP Struggling to stay awake
from sets 1-3.
. It is not that bad, but very similar to the first one
P4 3 Hybrid - [SSVEP]
Struggling to stay awake
. during set 3. e
P4 4 Hybrid Feeling really tired during I counted six this time
sets 3-5.
P4 5 SSVEP ) I feel this square [ 10 Hz] is the easier one to
focus [on]
Noise in the hallway
during set 2.
P3 ! SSVEP Used earbuds to block )
sound from sets 3-5.
P5 3 Hybrid Longer break between sets There is way more going on.

3 and 4 due to tiredness.
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I think I will take a longer break this time (after
being asked if he needed a break)

Fecling more tired than I definitely got one of them wrong

P5 5 Hybrid usual, espec31_aslly from sets [miscounted]*
Feeling more tired than
P5 6 SSVEP usual. -

Struggling to stay awake
during set 3.

I can still count well, but it’s more stuff at the

P6 3 Hybrid - .
same time

Note. *: adapted comments.
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