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Abstract 

BACKGROUND: Children experiencing neurological impairment can experience limitations in their 

functional abilities. For people with severe physical disabilities, brain-computer interfaces (BCI) are a 

potential solution to access computers when other assistive technologies prove to be inaccessible. 

Although BCIs can help individuals accomplish a number of activities, some traditional BCI methods 

yield insufficient performance to be used in online applications. Hybrid BCI (hBCI) systems aim to 

improve the system’s performance by combining brain signal paradigms, or brain signals with other 

inputs.  

OBJECTIVES: The purpose of this study was to develop and test an EEG-based hBCI system using 

P300 and steady-state visual evoked potentials (SSVEP) simultaneously, and compare the performance of 

the developed hBCI against the pure P300 and SSVEP BCI in offline and online scenarios. 

METHODS: This study validated the system and potential measures with adults without disabilities. It 

includes two parts. The system was developed in part 1 with eight neurotypical adults who tested the 

system at different stages of design. Using the user-centered design, the system was modified based on 

the volunteers’ opinions and the final system was used in part 2. Six different neurotypical adults, divided 

into two groups, tested the system in part 2. The participants performed six sessions over three weeks, 

two with each paradigm (P300, SSVEP, hybrid). The second group used a system modified slightly to 

improve performance. The performed task was programmed so that three targets flickered at different 

frequencies to generate the SSVEP response and frames appeared semi-randomly to generate the P300 

response. The system was evaluated in accordance with Kübler’s usability measures of effectiveness, 

efficiency, and satisfaction. For the effectiveness, three types of accuracies were calculated during the 

sessions: offline, continuous and selection. For the efficiency, the response time for online sets was 

measured and the information transfer rate was calculated. For the satisfaction, the NASA TLX 

questionnaire was used to evaluate the workload of each paradigm. 
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RESULTS: For group 1, the average selection accuracy for the pure P300 was 83.33%±11.86, for the 

pure SSVEP it was 49.52% ±17.79, and for the hybrid it was 49.44% ±13.04. For group 2, the average 

selection accuracy for the pure P300 was 96.39% ±4.29, for the pure SSVEP it was 49.72% ±11.54, and 

for the hybrid it was 49.44% ±17.31. For group 1, the ITR for the pure P300 was 64.53 bits/min, for the 

pure SSVEP it was 6.73 bits/min, and for the hybrid it was 6.68 bits/min. For group 2, the ITR for the 

pure P300 was 111.27 bits/min, for the pure SSVEP it was 6.90 bits/min, and for the hybrid it was 6.68 

bits/min. The workload was calculated for each system (0 lowest and 10 highest). The average final 

workload was 3.27±1.59 for the P300, 5.02±1.22 for the SSVEP and 5.36±1.49 for the hybrid. Post-

analysis showed that the lower accuracy on the hybrid was a consequence of the lower accuracy of the 

SSVEP.  

CONCLUSION: The hybrid combination of the P300 and SSVEP did not result in the expected 

improvement in this study. The attempt to use a short sampling window size of 0.5s might account for the 

SSVEP’s poor performance, which consequently negatively affected the hybrid performance. Although 

changes made from group 1 to group 2 improved the time response for all paradigms, the changes were 

unable to sufficiently improve the SSVEP accuracy. Recommendations to increase the accuracy of the 

system are suggested for future studies. 
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“If it seem to thee that thou knowest many things and understandest them well enough, know at 

the same time that there are many more things of which thou art ignorant.” 

 

Thomas à Kempis, The Imitation of Christ 
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1 Introduction 

Children experiencing neurological impairment, e.g. living with cerebral palsy, stroke or spinal-cord 

injury, can have severe limitations in their functional abilities (Bauer et al., 1979). These conditions can 

limit the capacity to move, speak and perform other activities independently. Assistive technologies can 

enable independent participation in activities (Cook & Polgar, 2014). For example, individuals that have 

lower limb impairment can use power mobility to move to different locations, those with communication 

impairments can use a variety of communication systems, complete with applications that support 

computerized voice communication, and those with upper limb impairment can use switches and scanning 

to access wheelchairs, communication systems, and computers. For people with severe physical 

disabilities, the use of the brain-computer interfaces (BCI) can be a potential solution when other access 

methods may prove inadequate. BCI may provide access to power mobility, communication, and play, 

which are all activities that can improve quality of life (Carelli et al., 2017). BCIs can have different 

configurations to capture brain signals (Fernández et al., 2014; Luck, 2014; J. R. Wolpaw & Wolpaw, 

2012) This thesis focuses on non-invasive technologies for BCI, specifically electroencephalography 

(EEG) -based systems. 

A brain communicates through electrical activity. The outermost layer, called the cortex, is responsible 

for sensing signals that enter the central nervous system and issue brain signals (Purves et al., 2004). The 

cortex is traditionally separated into four regions: Frontal, Parietal, Occipital and Temporal. The Frontal 

region processes high-order executive functions; the Parietal receives and associates somatosensory, 

visual and auditory inputs; the Occipital mainly consists of the visual processing area; and the Temporal 

lobes are essential for memory, high-level visual and auditory understanding (Brodmann, 1909). In EEG, 

BCI input comes from electrodes that capture brain signals on the surface of the scalp. Electrodes are 

denominated according to the region they are located (F for Frontal, P for Parietal, O for Occipital and T 

for Temporal) (Report of the Committee on Methods of Clinical Examination in Electroencephalography, 

1958).  

The BCI can be described as a human/technology interface, which interprets brain signals to control other 

devices, as seen in Figure 1.1. Brain signals are processed in two stages, signal conditioning and 

classification. The signal conditioning stage aims to transform the EEG raw input, usually through 

amplification and filtering, so features of the brain signal can be extracted. Most BCI features are 

temporal, spectral or spatial and more than one can be extracted at a time, creating a feature vector. 

Features example can be amplitude, latency, and power spectrum density. The feature vector is then used 

by the classifier to identify patterns across trials and participants (J. Wolpaw & Wolpaw, 2012). The 
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classifier’s goal is to indicate the corresponding target selected based on the features of the signal. In 

some systems, calibration is required, which is commonly referred to as training. The training uses data 

collected offline to “teach” the classifier how to interpret new data input into the system. For online 

applications, a trained classifier is fed with unseen data in real-time. From the classifier, activity outputs 

are generated, which are used to control the desired activity device. 

Performance is the key factor for patients to decide to assistive systems or not. Huggins et al. (2011) 

interviewed 61 people with amyotrophic lateral sclerosis that could be potential BCI users. The authors 

found that the potential users expressed that accuracy is one of the most important parameters and it 

would only be acceptable to switch from a traditional assistive technology to BCI if the BCI system had 

classification accuracy of 90% or higher.  

Collinger et al. (2013) interviewed 57 veterans with spinal cord injury and found that the most important 

feature in a BCI system is independent operation. Blain-Moraes et al. (2012) interviewed eight individuals 

with amyotrophic lateral sclerosis who said using BCI can give them more freedom, but interviewees also 

 
Figure 1.1: Brain-computer interface functioning scheme 

https://www.mayoclinic.org/diseases-conditions/amyotrophic-lateral-sclerosis/symptoms-causes/syc-20354022
https://www.mayoclinic.org/diseases-conditions/amyotrophic-lateral-sclerosis/symptoms-causes/syc-20354022
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pointed out that “BCI technology in its current form would not be acceptable or appropriate” for daily 

activities (Blain-Moraes et al., 2012). The main reason for the unacceptability was the fatigue created by 

BCI. Fatigue can be solved or reduced by improving classification accuracy, which will diminish the 

number of times the user needs to correct his selection and, consequently, the time needed to perform 

activities. 

Another performance measurement is the Information Transfer Rate (ITR), which determines how much 

information is transmitted, considering speed and accuracy, and it can be compared across applications 

(Pierce, 1980).  

Although BCIs can help individuals accomplish a number of activities, some traditional BCI methods 

yield insufficient performance to be used in online applications (i.e. as a real-time system). Researcher 

have utilized a variety of techniques to attempt to increase BCI accuracy with mixed results due to 

complex methodological barriers (Batres-Mendoza et al., 2017). Complex algorithmic solutions and deep 

learning methods have the downfall of requiring powerful processing and in turn driving up time for 

analysis. Other approaches have looked at ways to improve classification performance using deep neural 

networks (Borhani et al., 2019; Jiang et al., 2019; Rong et al., 2020), but they needed extensive time 

offline to process training data and the classification performance was still below the expected standards. 

Another limitation of traditional BCI is that they rely on a single input signal (e.g. EEG), single source of 

stimulus (e.g. auditory, visual, tactile, etc.) or a single brain signal paradigm (patterns), and thus the 

system has an inflexible human-interface and less information to improve its performance (Zina Li et al., 

2019).  

Taken together, these limitations are driving hybrid BCI (hBCI) research toward becoming a desirable 

option. The main goal of hBCI is to improve BCI system performance through multi-modal signal inputs, 

e.g. combinations of different brain signals, BCI paradigms and/or other external device stimuli (J. 

Wolpaw & Wolpaw, 2012).  

The purpose of this study was to develop and test the software to implement a low-density EEG system 

hBCI system. Before using BCI with individuals who have disabilities, some authors have first validated 

the system and potential measures with adults without disabilities (Dovgialo et al., 2018). This strategy 

was used in this thesis in order to provide a baseline of how the system performs in more controlled 

conditions. The developed system will be tested with children in future research. It is expected that 

parameters will need to be adjusted for children, but that the overall system functioning will be similar to 

the adults. BCI research in general has mainly been tested with adults, and there is a lack of BCI 
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implementation in children (Kinney-Lang et al., 2016; Mikołajewska & Mikołajewski, 2014). There are 

challenges regarding children’s brain signals that have not been fully addressed. For example, how 

developmental changes throughout the childhood may affect EEG interpretation and alter acquisition 

techniques required for pediatric BCI, especially for children with disabilities (Kinney-Lang et al., 2016, 

2019). However, because of the potential for BCI to enable children with disabilities to access play and 

social activities, efforts should be made to develop BCI for them. 

After reviewing the research that has been developed around BCI and hBCI geared towards clinical 

applications, the hBCI study is presented. This study aimed to achieve three main objectives. First, to 

develop a hybrid-BCI system using P300 and SSVEP simultaneously. Second, to test if the hybrid 

surpassed single input BCI in classification accuracy and selection time. Third, to gather participants’ 

perceived satisfaction with the system. 

It is acknowledged that there are individual preferences about terminology around disability, but person-

first language was chosen for this thesis for individuals who have disabilities. Efforts were made to us it 

in a respectful manner. 
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2 Literature review 

A review of studies using BCI and hybrid BCI (hBCI) was performed to examine the different types of 

control paradigms used, and the hBCI combinations that have been applied. A brief analysis of the 

accuracies attained with different paradigms and classification algorithms is presented. The initial search 

terms used in the IEEE and Scopus databases and in Google Scholar were:  

“(Child* OR (young adults)) AND  

(Brain-computer Interface* OR BCI OR human-machine interface OR HMI OR human-computer 

interface OR HCI) AND  

(Electroencephalography OR EEG)”.  

Since few articles resulted from the search, research with adults were also included. 

Articles were included for review if they were regarding clinical applications (i.e., with an eventual 

targeted user population of people who have disabilities). Other papers were added based on reference list 

reviews and suggested related papers. 

2.1 Brain-computer interface studies 

The articles from the literature review are presented in the following paragraphs according to the 

paradigm that was used in the studies. A BCI paradigm is the experimental protocol or the set of tasks 

that elicit a specific type of brain activity (Hwang et al., 2013). In EEG-based BCI’s, there are three 

primary types of brain activity typically investigated: slow cortical potentials, sensorimotor rhythms and 

evoked potentials.  

Slow cortical potentials are invoked (i.e. originated by the person) when individuals up- or down-regulate 

their own cortical activity. Negative (down-regulating) and positive (up-regulating) slow cortical 

potentials depolarize and polarize, respectively, the cortical network, causing a brain activity level that 

can be detected and used for activity outputs. An early protocol example of slow cortical potentials is the 

contingent negative variation (Walter et al., 1964). This protocol utilizes a “slow-going negative event-

related potential” that occurs between a warning and a stimulus that requires a motor response” (Bareš et 

al., 2007). The main goal is to use this method without feedback; therefore, this modality requires long 

periods of training to become efficient. To train, the paradigm for new users is associating positive 

emotions to negative slow cortical potentials and relaxing activities to positive slow cortical potentials 

(Albrecht et al., 2017). 
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Sensorimotor rhythms are invoked when the frequency of the signal power changes in the sensorimotor 

area. These are self-induced, and no external stimuli are needed. Sensorimotor rhythms are movement-

related potentials, induced by either executing or imagining movement. Sensorimotor rhythms require a 

considerable amount of training to be well executed by BCI users (Lotze & Halsband, 2006). The most 

common paradigm for sensorimotor rhythms is motor imagery (MI), which consists of thinking about or 

attempting movement without necessarily performing an actual movement. Two different frequency 

power changes can be seen and classified, the event-related de-synchronization (ERD) and the event-

related synchronization (ERS). In ERD in typical developing adults, power decreases in the alpha (8 – 12 

Hz) and beta (18 – 26 Hz) bands before the MI is performed (frequencies may change at different 

developmental stages) (Lazarou et al., 2018); in ERS, power increases in the beta band after the end of the 

MI. These power changes have been used to control cursor movements, game applications and external 

devices (Lazarou et al., 2018). 

Finally, evoked potentials are natural brain responses to specific external stimuli. Two paradigms 

typically associated with this BCI paradigm are the P300 and Steady-State Evoked Potentials (SSEP). The 

P300 consists of a peak in the brain signal with a latency of 300 ms after the stimulus. P300 can be 

evoked through visual, auditory or tactile stimuli. In the P300 paradigm, stimuli are presented in a random 

order, with the participant needing to attend to the desired target stimulus. Each time the attended stimuli 

is activated, a P300 evoked potential is generated. For P300, the classification process aims to identify the 

characteristic signal peaks evoked by P300 stimuli. Usually, less training than MI is required for new 

users (Hwang et al., 2013) and the pattern is consistent across individuals. Also, independently of how 

many targets are presented, the selection is less complex because targets can be targets or non-targets only 

(multiple choices are reduced to a binary selection). But this method usually has insufficient ITR and has 

lower classification accuracy compared to other evoked potentials, e.g. SSEP (Lazarou et al., 2018).  

SSEP paradigms can be visual, Steady State Visual Evoked Potential (SSVEP), or auditory, Steady State 

Auditory Evoked Potential (SSAEP). SSVEP are elicited when flickering visual stimuli are presented at 

consistent (e.g. ‘steady’) frequencies. SSAEP works similarly to SSVEP, but differing sound frequencies 

are used (i.e. playing a sine wave sound at the given frequency). When the individual focuses on a 

particular stimulus, pyramidal cells resonate at the same frequency, and through power frequency analysis 

it is possible to distinguish the desired selection (Lazarou et al., 2018). Nevertheless, it is important to 

consider what frequencies are used. Some frequencies for visual stimulus between 12-25 Hz may induce 

seizure in people with photosensitivity (Fisher et al., 2005; Okudan & Özkara, 2018).  
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Another example of evoked potentials is the so-called error potentials (ErrPs) category. They are elicited 

by the brain when an error happens, i.e. when the output yielded by the system is not the same as that 

desired by the user. Some systems use the error potentials to correct misclassification and increase the 

accuracy, as in Yousefi et al. (2019) where the accuracy increased from 60% to 67% in real-time trials 

using ErrPs. 

2.2 Hybrid brain-computer interface studies 

Hybrid BCI can be achieved through three primary combinations of resources: data which joins multiple 

brain patterns, data which combines multisensory stimuli and data composed of multiple signals 

sources. Utilizing multiple brain patterns together is in effect combining two different types of brain 

activities, e.g. SSVEP and P300. In Pan et al. (2014), they combined SSVEP and P300 paradigms to 

detect awareness in several patients with brain injuries. A picture of a known relative appeared on the 

screen alongside with a picture of an unfamiliar face. Both pictures flickered at different frequencies 

(SSVEP component) and a white frame randomly appeared around the pictures, one at a time (P300 

component). While the patient focused on the familiar face, he was also instructed to count how many 

times the frame showed around the picture. The average accuracy was 72.01%, with some participants 

reaching as high as 100% and 96.67% during trials. Yin et al. (2015a) also combined SSVEP and P300 

paradigms for use in a speller. The average results from online trials report an accuracy increase from 

91.33% to 95.18%, with an increase of ITR to 50.14 bits/minute, compared to the 47.14 bits/minute 

previously reported.  

Other brain activity combinations, as in in Zuo et al. (2019), combined MI and P300 in a task where 

participants had to choose between two Chinese symbols on a screen. In their study, they classified both 

the P300 and MI but because P300 classifiers have high accuracy independently, compared to the steeper 

learning curve of MI, the overall output was dominated by the P300 classification only. However, the 

authors used the initial P300 outputs to help inform the MI classification. Once the MI classification 

output surpassed what the authors determined as a reliability threshold, the P300 and the MI classification 

were compared. If both outputs coincided, the selected output was maintained; if they diverged, and the 

reliability threshold was surpassed, the MI output was selected; otherwise, the P300 output was chosen. 

The overall average online accuracy of the system was 93.94 ± 5.19% using P300 + MI, which was 

higher compared to P300 (91.25 ± 9.04%) and MI (81.61 ± 8.79%) methods alone.  

Multisensory stimuli combinations evoke reinforced brain signal patterns through different sensory 

modalities (for example, audio-visual or visual-tactile). Carmona et al. (2020) combined visual and 

auditory stimulation through SSVEP and SSAEP paradigms. In the experiment, frequencies of 37, 38, 39 
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and 40 Hz were used to stimulate the participants visually and aurally (flashing and beeping frequency). 

Trials consisted of visual only, auditory only and joint visual-auditory modalities. The SNR increased 

considerably when using the visual-auditory modality (from 1.1 to 1.4, on average). The highest accuracy 

reached by one of the participants was over 95%, the average accuracy of the classified data from the 

electrode Oz was between 70 and 80% and the results ranged from approximately 48% to 95%. 

Moreover, they found that the results of classification from electrodes on non-hair positions (i.e., Tp9 and 

Tp10) were statistically similar to the results of classification from the occipital electrode (Oz). Yin et. al 

(2015b) combined tactile- and auditory-P300 modalities to create a multisensory hBCI. Four pairs of 

motors were attached to the participant’s waist and four computer speakers were laid out in a circle 

around the participant. Each speaker issued a voice saying its number as an auditory stimulus, and the 

corresponding motor vibrated accordingly. The average accuracy using this hBCI was of 88.67%, and the 

ITR of 10.77 bits/minute. Thurlings et al. (2014) also did a multisensory experiment in which they used 

P300 with visual and tactile stimuli. An actuation pair, composed of a small vibrating motor and an LED, 

was attached to a finger on each hand of the participant. The classification accuracy using only visual, 

only tactile and visual-tactile stimuli modalities was compared. The visual-tactile modality gave the 

highest accuracy rates in online trials, reaching an average of approximately 85%, surpassing the visual 

only or tactile only modalities, which had an approximate accuracy of 70%, as estimated from the 

published graphical data. 

Finally, an hBCI can combine multiple signal sources, such as the BCI and another type of interface like 

eye gaze or switch input. This combination of signal sources aims to extract signal paradigms from the 

same event simultaneously or from sequential events that are combined to accomplish an activity. 

Saravana and Reddy M. (2018) extracted signals simultaneously from an SSVEP paradigm and video-

oculography (VOG) (i.e. eye-tracking based on computational vision approach) system. In the 

experiment, participants selected letters on a virtual keyboard. While the letters flickered according to the 

stipulated SSVEP frequencies, the VOG system tracked participant’s gaze, allowing the system to 

increase its accuracy. Both inputs were combined and gave an online average accuracy of 94.99% with 

ITR of 82.78 bits/minute. In Huang et al (2019), multiple signals were combined sequentially using an 

hBCI based on MI and electrooculography (EOG), a technique that measures electrical signals related to 

eye movement. The participants selected among nine different options on a small screen to move a 

wheelchair. All options were cyclically highlighted one at a time, waiting for the user to blink once to 

indicate a selection. When the user blinked, the highlighted option would start flashing in the panel for 

confirmation. To confirm the selection, the user needed to raise their eye-brows. Then the participant used 

MI to move the wheelchair in the chosen direction. In online sessions, every 0.2 s of MI input were 
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compared to the offline training data. Depending on the similarity of the signal with one of the three states 

(right MI, left MI or idle), the 0.2 s input received a score. If the score surpassed the stipulated right- or 

left-threshold, the wheelchair would start moving towards the selected direction. The system could also 

control a robot arm, mounted on the wheelchair, which moved along pre-calculated trajectories. The user 

used EOG to select between two different bottles and the robot automatically brought the target bottle to 

the participant’s mouth. MI average online accuracy for the wheelchair was 88% and EOG was 96.2%. 

There are other hBCI that are not EEG-based. Schudlo and Chau (2018) combined three different signals 

from near-infrared spectroscopy (NIRS) BCI. NIRS can measure the concentration of oxygenated, 

deoxygenated blood and total hemoglobin in the brain. They used those three signals to compose their 

system. Also, Faress and Chau (2013) combined functional NIRS and functional transcranial Doppler 

ultrasonography to try improving the accuracy of the system. However, the techniques used in these 

projects are not useful for EEG-based BCI systems, thus, they will not be discussed further. 

2.3 Analysis and Comparisons of BCI and hBCI Studies 

All of the papers presented in the following analysis are listed in Appendix 2.  

2.3.1 Highest BCI accuracies 

The papers in Appendix 2 were examined to understand the impact of the paradigms and the combination 

of paradigms on accuracy. The eight highest accuracies are covered in detail and listed in Table 2.1. 

Zhang et al. (2017) used P300 to allow participants to select among cups they could drink from. The 

selection activated the robotic arm. The screen displayed four options to the participant: three cups that 

could be selected and an option to put the drink back on the table. After the selection was classified, the 

robotic arm picked up the selected cup and brought it to the participant’s mouth. This system’s P300 

classifier gave an accuracy of 97.5%. The study of Choi et al. (2018) proposed a method for users to play 

chess through the combination of SSVEP and EOG, where users could select the final-position for the 

chess piece through EOG and confirm the selection with SSVEP. They achieved accuracy results of 

85.8% for the SSVEP step and 96.3% for the EOG step. The authors also examined a joint P300 and EOG 

paradigm, but report this combination had a lower accuracy (<70% for the P300). They hypothesize the 

EOG and P300 combination was not as accurate because of signal interference, as signals captured by 

EOG electrodes are also captured by P300 electrodes and vice-versa. 

2.3.2 Paradigm and Activity 

The review showed that certain paradigms were used for certain activities. The relationship between 

paradigm and activities and their influence on successful BCI is further examined in this subsection. 
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Table 2.1 - Highest accuracies from the studies in Appendix 2 

Study Classification 

Accuracy [%] 
N. of Classes 

Paradigm 

(Carmona et al., 2020) ~95 2 SSVEP + SSAEP* 

(Z. Zhang et al., 2017) 97.5 2 P300 

(Yin et al., 2015a) 95.18 2 P300 + SSVEP 

(Saravanakumar & Reddy M., 

2018) 
94.99 2 SSVEP + VOG 

(Zuo et al., 2019) 93.94 2 MI + P300 

(Huang et al., 2019) 88 3 MI + EOG 

(Yin et al., 2015b) 88.67 2 
Tactile P300 + 

Auditory P300* 

(Choi et al., 2018) 85.8 2 SSVEP + EOG 

(Thurlings et al., 2014) ~85 2 
Tactile P300 + 

Auditory P300* 

Note. *:Paradigms with multisensory stimuli. 

2.3.2.1 Motor Imagery 

In general, sensorimotor paradigms (MI) are used in process-control activities. Table 2.2 outlines the 

average accuracies for each study in this section. Reported MI applications include moving a cursor from 

left to right on a monitor (Cincotti et al., 2008; J. Z. Zhang et al., 2019), moving robotic arms (Kim et al., 

2019; Meng et al., 2016), and wheelchairs (Huang et al., 2019). Other applications have used MI as an 

target selector (Zuo et al., 2019), where imagining a left-movement selected the left option and right-

movement selected the right option on a screen. Meng et al. (2016) describe a MI BCI system which 

moves a robot in 3-dimensional coordinates utilizing a sequential combination of “low dimensional 

controls” (i.e., using only two commands at a time). The first control moved the robot arm in a 2-

dimensional plane parallel to the table, where right/left MI moved the robot right and left respectively. 

For the second control, they categorized MI activity of simultaneous hand movement or resting state to 

allow the robot to move backwards (down) or forward (up), respectively depending on task requirements. 

Zhang’s et al. (2019) results were expressed through Cohen’s Kappa average. 
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Table 2.2 - MI studies from the studies listed in the Appendix 2 

Study Activity N. of Classes Result 

(Cincotti et al., 2008) Cursor Movement 2 Acc: 86.75% 

(Meng et al., 2016) Robot arm in 3D space 2, 4 Acc2: ~95%, Acc4: ~85% 

(Cho et al., 2017) Feedback 2 Acc: 67.46% 

(J. Z. Zhang et al., 

2019) 

Car and Cursor 

Movement 
2 Kappa: 0.46* 

(Kim et al., 2019) Robot arm in 2D space 2 Acc: 57.37% 

(Huang et al., 2019) Wheelchair 2 Acc: 88.00% 

Note. Meng et al. (2016) had two phases on their study, using 2 and 4 options for participants to 

select.*:Cohen’s Kappa cannot be translated to accuracy [%] because they are not directly comparable, 
Acc: Accuracy. 

2.3.2.2 Evoked Potentials 

Evoked potentials were used in goal-selection activities. Using the SSVEP paradigm, participants selected 

among options in game menus (Choi et al., 2018), commands to move a speller cursor (Ehlers et al., 

2012) or characters on a keyboard (Saravanakumar & Reddy M., 2018; Yin et al., 2015a). P300-based 

BCI were used to control a semi-automated robot (Z. Zhang et al., 2017), to play games (Choi et al., 

2018) or to make selections to test the system’s accuracy (Yin et al., 2015b; Zuo et al., 2019). 

Table 2.3 summarizes the studies’ average accuracies for evoked potentials paradigm. Ehlers et al. (2012) 

presented accuracies for different age ranges. It is important to note that the main task of the experiment 

was a spelling task using a 4-arrow cursor that might have influenced children to do worse than adults. 

From the tested frequencies in this study, the authors presented the medium range frequencies (13-17 Hz) 

for the SSVEP that gave the highest results for all groups. In group 1, the average age was 6.73 years old 

(y.o.) and the accuracy was 58%, in group 2 the average age was 8.08 y.o. and the accuracy was 53%; in 

group 3 the average age was 9.86 y.o. and the accuracy was 75% and in group 4 the average age was 

22.36 y.o. and the accuracy was 78%.  
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Table 2.3 - SSEP studies from the studies listed in the Appendix 2 

Study Paradigm Activity Accuracy [%] 

(Ehlers et al., 2012) SSVEP Command Selection 58; 53; 75; 78* 

(Choi et al., 2018) SSVEP Chess Game 85.8 

(Choi et al., 2018) P300 Chess Fame 67.8 

(Saravanakumar & 

Reddy M., 2018) 
SSVEP Virtual Keyboard 94.99 

(Carmona et al., 2020) SSVEP + SSAEP Feedback ~75 

(Yin et al., 2015a) SSVEP + P300 Virtual Keyboard 95.18 

(Yin et al., 2015b) 
Tactile P300 + 

Auditory P300 
Feedback 88.67 

(Thurlings et al., 2014) P300* Feedback ~85 

(Z. Zhang et al., 2017) P300 Command Selection 97.5 

Note. *Accuracy for Group 1 (6.73 y.o), Group 2 (8.08 y.o), Group 3 (9.86 y.o.) and Group 4 (22.36 y.o), 
respectively. 

 

2.3.3 Classifiers 

In the examined studies, there was a relationship between paradigms used and classifiers used. There 

are some features that provide more information depending on the type of brain activity. For example, 

common features extracted from SSEP paradigms have rich spectral information, and spatial information 

depending if it is visual, tactile or auditory, but poor temporal information. Linear discriminant classifiers 

are better suited for binary outputs, like P300 outputs (target versus non-target), because they are based on 

statistical regression and map the data into new spaces to maximize data separability (J. Wolpaw & 

Wolpaw, 2012). CCA classifiers use sinusoidal waves as reference signals for classification, making it a 

powerful tool to identify spectral components, present in SSEP modalities (Nakanishi et al., 2015). Power 

frequency classifiers look for changes in specific frequency ranges, and MI has defined bands of 

frequency that change (alpha and beta, especially) (J. Wolpaw & Wolpaw, 2012). However, although 

some paradigm-classifier combinations are more common, in an effort to surpass previous reported 

accuracies, many authors try different classifier combinations and new methodologies. 

The Paradigm-Classifier relationships are shown in Table 2.4. Most studies reported here used classifiers 

that fall under the linear discriminant category of classifiers, which are variations of the Fisher Linear 

Discriminant Analysis (LDA), such as Bayesian LDA (BLDA), Stepwise LDA (SWLDA) and regularized 

LDA (rLDA). From the analyzed studies, a relationship classifier-paradigm can be seen for both hybrid 

and single-paradigm BCI, such as LDA-P300 and CCA-SSVEP, as mentioned by Wolpaw & Wolpaw 

(2012) and Nakanishi (2015). Cho et al. (2017) was an exception, using LDA to classify MI, as well as 
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Zuo et al. (2019), using BLDA to classify both MI and P300. Cincotti et al. (2008) used statistical 

analysis (to assign significance to the frequencies for different conditions) to classify MI.  

Multisensory stimuli hybrids used the same type of classifier for both stimuli. Thurlings et al. (2014) and 

Yin et al. (2015b) combined visual and tactile P300 stimuli, and had for both paradigms a linear 

discriminant classifier. Carmona et al. (2020) applied a CCA classifer for both SSVEP and SSAEP 

stimuli. 

Table 2.4 - Classifier comparison among studies listed in the Appendix 2 

Type of 
Classifier 

Study Classifier Paradigm 
Type of 
System 

Hybrid Nature 
Accuracy 

[%] 

LDA 

(Z. Zhang et al., 2017) BLDA P300 BCI N/A 97.5 

(Yin et al., 2015a) SWLDA P300 hBCI P300 + SSVEP 95.18 

(Zuo et al., 2019) BLDA MI + P300 hBCI MI + P300 93.94 

(Yin et al., 2015b) 
BLDA 

P300* hBCI 
Tactile P300 + 
Auditory P300 

88.67 

(Thurlings et al., 2014) 
SWLDA 

P300* hBCI 
Tactile P300 + 

Visual P300 
~85 

(Choi et al., 2018) LDA P300 hBCI P300 + EOG 67.8 

(Cho et al., 2017) LDA MI BCI N/A 67.46 

(Yousefi et al., 2019) rLDA Evoked Pot. BCI N/A 67 

CCA 

(Yin et al., 2015a) CCA SSVEP hBCI P300 + SSVEP 95.18 

(Choi et al., 2018) CCA SSVEP hBCI SSVEP + EOG 85.8 

(Carmona et al., 2020) 
CCA 

SSEP* hBCI 
SSVEP + 

SSAEP 
~85 

r² (Cincotti et al., 2008) 
Statistical 

Analysis 
MI BCI N/A 86.75 

Note. Paradigms with * mean they were multisensory stimuli. Acronyms: LDA – Linear Discriminant 

Analysis, BLDA– Bayesian LDA, SWLDA – Stepwise LDA, rLDA – Regularized LDA, CCA – Canonical 

Correlation Analysis 

2.4 Summary of hBCI literature 

In this review, studies related to BCI and hBCI systems were reported and discussed. This section 

discusses further the overall findings reported. 

The hypothesis that hBCI in general have a better accuracy than single-paradigm BCI is supported, as the 

reviewed systems with hybrid combinations tended to have a higher accuracy. Five of the eight selected 

papers with hybrid systems reported surpassing the 90% minimum classification accuracy standard 

indicated by Huggins et al. (2011). Out of the highest accuracy studies, four studies used the SSVEP 
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paradigm as a component in the hybrid system, four used P300 and two used MI. Except for Carmona et 

al. (2020), all studies ran online trials. 

Although many studies state that their final goal is to implement this technology for people with complex 

needs, few of them actually tested their systems with people with disabilities. From the highest 

accuracies studies in Table 2.1, participants were between 21 and 37 years old; the average number of 

participants was approximately 10.67±4.36. In the studies where the same system was used by individuals 

with and without disabilities, accuracy results for individuals with disabilities were always lower. The 

system of Cincotti et al. (2008) had an accuracy of 86.75% for people without disabilities, but 66.57% for 

people with disabilities. The system of Pan et al. (2014) had an average accuracy of 95% for individuals 

without disabilities, while for people with complex physical needs it was 60.52%. Kim et al. (2019) tested 

their system with people with disabilities, giving an accuracy of 57.37%.  

Most reviewed studies chose their classifier and paradigm based on the final activity. In general, there are 

some paradigms that are more suitable for certain activities than others and some classifiers that are more 

suitable for certain paradigms, although this is not compulsory. Sensorimotor paradigms were mostly 

used for process-control activities such as movements, displacement and adjustment of intensity of 

activity. There are more robot-related activities using sensorimotor paradigms than evoked potentials. 

Similarly, evoked potentials paradigms were mostly used for activities that require the selection of targets, 

mimicking a button push. 

As noted in Hwang et al. (2013), the number of MI-based BCI studies has decreased and the majority 

of studies found in this review were mainly using P300 and SSVEP paradigms (as seen in the table of 

Appendix 2). This trend is potentially due to the lesser amount of time needed for training when using 

evoked potential paradigms, as compared to typical MI paradigms.  

2.5 Discussion of implementation for children 

The lack of systems developed and tested for and with children (Kinney-Lang et al., 2016; Mikołajewska 

& Mikołajewski, 2014) was reflected in this review: only 3 out of the 17 studies listed in the Appendix 2 

had children as participants. Some studies that included children reported a decay in performance in 

comparison to adults, while others did not show a substantial change. Ehlers et al. (2012) indicated an 

inverse relation between age and accuracy. But the spelling task in the study could have been a factor that 

contributed to the performance reduction for younger participants. Cincotti et al. (2008) and Pan et al. 

(2014) included younger participants in their studies (16 y.o.), but they did not have significantly lower 

accuracies than older participants (25-44 y.o. for Cincotti et al. and 19-70 y.o for Pan et al.). More studies 
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would be beneficial for the field, since the difference in BCI performance for adults and children is still 

inconclusive.  

The challenges that will arise when implementing BCI for children will need to be considered. One 

challenge commonly explored is how EEG signal features can change with age and development 

(Kinney-Lang, 2018). Matsuura et al. (1993) analyzed the dominant resting EEG frequency (idle) and 

noticed that it shifts with age. In children around 7 years it is 8 Hz and in adults it settles at 10 or 11 Hz 

(Ehlers et al., 2012). The authors also found that the lower the frequency of SSVEP stimulation, the 

harder it was to identify that frequency when dealing with younger participants. It will be important to 

consider the population age in future studies so that paradigm setup and pre-conditioning can be adjusted 

to ensure the best accuracy possible is being reached (Kinney-Lang et al., 2016).  

The trend that was observed in the use of paradigms, where most researchers opt to use evoked potentials 

over sensorimotor rhythms, could be beneficial for implementing BCI for children, since evoked 

potentials are easier to adjust for each individual’s signal features. Also, since evoked potentials require 

less training, as pointed by Hwang et al. (2013), children may be less frustrated than with other paradigms 

that require numerous calibration sessions. 
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3 Methodological approach 

The thesis has three objectives: 1) to develop a hybrid-BCI system with P300 and SSVEP; 2) to test if the 

hybrid surpasses single input BCI in classification accuracy and selection time; and 3) to gather 

participants’ perceived satisfaction with the system. 

The chosen BCI paradigms for the proposed hybrid system were the P300 and the SSVEP. This choice 

was based on the fact that both paradigms are endogenous behaviours, meaning they are naturally elicited 

by the brain when specific stimuli are presented (Hwang et al., 2013). This leads to less training needed 

for the system to classify most of the trials correctly, compared to exogenous behaviours which require 

learning to elicit specific brain signals (Abiri et al., 2019; Donchin et al., 2000). One study that attempted 

a similar hybrid combination was Pan et al. (2014). They used 10s of signal for processing to make sure 

the patients could recognize the stimuli. The experiment was online and patients achieved accuracies from 

64 to 78%. 

We wanted to make the hBCI not only accurate but also quick in determining the final output. Therefore, 

a 0.5 second sample window from stimulus onset was adopted for both the P300 and the SSVEP 

paradigm. Some studies use shorter sampling windows for P300 (Cecotti et al., 2010) but SSVEP studies 

typically use from 1.5 – 2s (Carmona et al., 2020; Ehlers et al., 2012; Pan et al., 2014). The use of a 0.5 s 

window was expected to be possible since the used frequencies had enough frequency gap to be readable, 

as determined by the minimum frequency resolution outlined in Equation ( 3.1 ) (Harris, 1978; Reyes & 

Forgach, 2016): 

∆𝑓 =
𝑓𝑠
𝑁

 
( 3.1 ) 

where 𝑓𝑠 is the acquisition frequency (250 Hz) and 𝑁 is the number of samples (125 samples, given 0.5s). 

That creates a frequency resolution of 2 Hz. The used frequencies were 6, 10 and 15 Hz, giving a 

minimum frequency gap of 4 Hz. Additionally, the highest stimulus frequency respected the Nyquist 

theorem (Diniz et al., 2002).  

3.1 Research Design 

A user-centred design (UCD) approach was used in this study, as suggested by Kübler et al. (2014) for 

BCI evaluation. The approach considers the usability of the system determined as effectiveness, 

efficiency, and user satisfaction. For the effectiveness component, accuracy was used. For the efficiency 

component, target selection time and information transfer rate (ITR) were used. For the satisfaction 

component, volunteers’ opinions were collected and their ratings on a workload measurement tool were 

gathered. 
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The system was tested in two parts. In part 1, the system and interface were developed with in-lab trials, 

the functionality of the system was validated, and potential enhancements were considered while 

gathering information about volunteers’ satisfaction. Volunteer opinions from part 1 helped to improve 

the interface and system performance, while informing on and providing practice for the experimental 

protocols applied in part 2. Part 2 included trials with BCI naive participants. The effectiveness of the 

system was measured through the accuracy, the ratio of correct classifications among all trials. Accuracy, 

is defined by Equation ( 3.2 ), 

𝐴𝐶𝐶% =
𝑇𝑃 + 𝑇𝑁

𝐴𝑙𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
 × 100 

 

( 3.2 ) 

in which TP is the number of true positives, which is when the positive outcome is predicted correctly by 

the classifier, TN is the number of true negatives, which is when the negative outcome is predicted 

correctly by the classifier and All Samples encompasses all the classifications made. The efficiency of 

each paradigm was measured by the time each online trial took to make a selection and the ITR. Since 

each trial took 0.5s, the selection time was calculated based on how many trials were needed for the 

system to decide on the final classification. ITR is the metric that determines how much information is 

transmitted, considering speed and accuracy, and it can be compared across applications (Pierce, 1980). It 

is given in bits/minute. The ITR was calculated with the Equation ( 3.3 ) found in Wolpaw and Wolpaw 

(2012): 

𝐼𝑇𝑅 = 𝑚 × (log2𝑁 + 𝑃 log2 𝑃 + (1 − 𝑃) log2
1 − 𝑃

𝑁 − 1
) 

 

( 3.3 ) 

where 𝑚 is the number of trials per minute, 𝑁 is the number of commands and 𝑃 is the accuracy of the 

system. Due to the logarithmic nature of the ITR calculation, the ITR increases exponentially when the 

accuracy gets closer to 100%. The satisfaction with the system was evaluated through the NASA TLX 

questionnaire (Hart & Staveland, 1988), a tool used to assess workload. In other words, satisfaction was 

evaluated as the participant's agreeability with the perceived effort required to accomplish the task. More 

details are provided in the Data collection and analysis section.  

3.1.1 Part 1 

Eight volunteers (2 men and 6 women) tested the system at different points of its development. They all 

tested the acquisition system by itself, gave opinions about the interface, tried each of the pure paradigms 

and the hybrid paradigm and had data collected for offline processing. Only two tested the system’s real-

time selection feedback mechanism (i.e. visual feedback about the system’s chosen target based on the 
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participant’s input) but no online data was saved. The number of sessions per volunteer varied from 1 to 

6. 

3.1.1.1 Materials 

3.1.1.1.1 EEG Hardware 
The EEG acquisition was done using OpenBCI Cyton, which had eight 24 Bit channels and an acquisition 

rate of 250 Hz. The OpenBCI cap contained silver-plated wet electrodes with electro-gel. 

3.1.1.1.2 Initial Interface 
The initially designed interface had three flashing squares, for the SSVEP stimuli, and an outline frame 

that appeared outside of the different squares in pseudo-random order. The frequencies used were 6, 10 

and 30 Hz. Based on Floriano et al. (2018), the colours used to create the flashing effect were green and 

red, to give maximum amplitude in mid-range frequencies from 15-25 Hz. All squares used the same 

colors for simplicity. No sounds were issued in-between trials or at the end of the experiment. Each 

square had, approximately, one quarter of the height of the screen. Figure 3.1 is a representation of the 

interface design. 

3.1.1.2 Procedure 

Each session had several training sets and, eventually, one online set. The experiment routine started with 

a three second count-down to prepare the participant. Then to cue the desired target, its colour changed to 

orange for three seconds. After the cue, the targets went back to their original colours and the stimuli was 

presented (depending on whether it was P300, SSVEP or hybrid). In the training sets, the squares 

flickered uninterruptedly for 10.5 seconds (3 squares × 7 repetitions per square = 21, 21×0.5s = 10.5s) 

Figure 3.1: Initial interface designed to stimulate SSVEP and P300 responses in users. 
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while the P300 frame appeared semi-randomly around squares for 0.5s with a duty cycle of 80%, i.e. 0.4s 

on, 0.1s off, in online sessions, the stimulation period was variable because stimuli were presented only 

until the selection function returned a final answer.  

In the training set, after the stimuli, a new cue was presented. The training set had no feedback about what 

was selected and served exclusively to train the classifiers. This set had a constant number of runs, since it 

was for the classifier generation. In the online set, feedback about what the selection function chosen was 

presented for three seconds after the trial ended before a new cue was presented. 

For the pure P300 paradigm, the volunteer was instructed to fixate their gaze on the cued square and 

count how many times it was outlined until a new cue was presented. For the pure SSVEP paradigm, 

volunteers were instructed to fixate their gaze on the middle of the cued square until a new cue was 

presented. For the hBCI, the volunteer was instructed to fixate their gaze on the middle of the square and 

count how many times it is outlined until a new cue was presented. 

For the classification of both paradigms, Linear Discriminant Analysis (LDA) classifiers by Sci-Kit Learn 

library were used (Pedregosa et al., 2011). The solver was set to singular value decomposition and no 

shrinkage.  

The interface and experimental routine were programmed from scratch. The Psychopy library was used 

for the creation of the visual interface (Peirce et al., 2019). BrainFlow was used to interface the headset 

and the script (BrainFlow, ©Andrey Parfenov). The code is all based in Python 3 with technical details 

provided in a previously published extended abstract (Mussi, 2021). (See Appendix 1) 

3.1.1.3 Results 

The signal conditioning methodology used in part 1 was the same as described below, in part 2. Some of 

the later results of part 1 are shown in the Table 3.1 below. The results were processed offline using the 

same algorithm and electrodes placement that were subsequently used in part 2 below. The average 

accuracies were generated via the 10-fold cross-validation. The stimuli presented were hybrid. Not all 

participants went through the same number of sets due to the informal nature of the sessions. 
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Table 3.1 - Data from last sessions in Part 1 

Volunteer Set P300 SSVEP 

V1 

 
 

1 72.0±12.8% 41.3±11.7% 

2 74.6±8.7% 32.3±7.8% 

3 70.4±7.0% 24.4±6.7% 

4 74.5±9.9% 33.4±10.1% 

5 76.8±12.5% 40.7±10.2% 

V2 

1 78.3±6.4% 28.8±7.1% 

2 83.1±9.6% 34.9±12.9% 

3 75.2±11.5% 40.1±9.6% 

4 83.1±8.4% 53.0±5.1% 

V3 

1 82.0±6.4% 78.3±8.1% 

2 75.2±9.4% 71.5±10.8% 

3 81.6±11.6% 68.7±4.7% 

4 85.0±6.9% 55.0±8.0% 

 

After doing the trials with the volunteers, some modifications were made to the interface based on their 

opinions, and to improve system performance.  

 Initially, the experiment schedule proposed two sessions per day, with one session of each of the 

pure paradigms or two of the hybrid, but volunteers complained about it being too much time 

focusing on the screen. Most volunteers were exhausted by the end of the first session, so the 

schedule was adapted to have only one session per day. 

 The initial frequencies used had a problem with harmonics (6, 10 and 30 Hz). The 10 Hz 

frequency created a second degree harmonic at 30 Hz, which induced the classifier to emit more 

false positives for 30 Hz when the real frequency was 10 Hz. Early on in the testing, the set of 

frequencies was changed to 6, 10 and 15 Hz, as used previously in the literature (Saravanakumar 

& Reddy, 2018).  

 The usage of green and red flashing to attain maximum signal amplitude was no longer needed, 

since the newly adopted frequencies fell below the 15-25 Hz mid-range for green and red. Also, 

the users did not like the flickering between green and red since they said it “blurred their view” 

more easily. The squares were changed to alternate between black and white for maximum 

contrast, as commonly used in the literature (Hsu et al., 2016; Yin et al., 2015a).  

 Another modification was the addition of a black cross in the centre of each square to help 

volunteers focus better at the flashing squares. 
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 By adding the cross, the SSVEP classification improved but the P300 worsened, probably 

because the cross narrowed the peripheral vision, making the P300 less visible. To accommodate 

for that issue, the squares were scaled down to about an eighth of the screen height.  

 Sounds were added to the end of each trial to help volunteers realize when a new trial was 

starting. 

3.1.2 Part 2 

This part was done with two groups of participants. Each group had three participants, and some minor 

adjustments were made in an attempt to improve the results from group 1 to group 2. Additionally, due to 

noisy conditions the experiment location was changed for group 2. The specific adjustments will be 

described in their respective sections.  

3.1.2.1 Participants 

Six adult men without disabilities and no experience with BCI were recruited from the University of 

Alberta (Table 3.2). Participants were between 18 and 29 years old (avg. 22.167±3.764), had normal or 

corrected to normal vision and were right-handed. The study acquired ethics approval from the Research 

Ethics Office (Pro00096816) and participants signed an informed consent form before proceeding with 

the study. No participants had any conditions that made them prone to seizures or photosensitivity. 

Participant 2 had a concussion five years before the experiment. Participants 1 to 3 were part of the first 

group of participants. Participants 4 to 6 were part of the second group of participants. 

3.1.2.2 Setting 

The location of the sessions was the assistive technology (AT) lab at Corbett Hall, University of Alberta, 

for group 1, and at the Eye Gaze lab at Corbett Hall, University of Alberta, for group 2.  

  



22 
 

Table 3.2 - Participants recruited for part 2 

Group Participant Age Additional Information 
Experiment 

Location 

1 

P1 21 - 

AT-Lab P2 23 
Concussion (18yo) 

Prescription glasses (-2.25, -1.5) 

P3 20 Prescription glasses (0.5) 

2 

P4 29 - 

Eye Gaze Lab P5 18 Prescription glasses (1.6) 

P6 22 Contacts (-3.5, -4) 

 

3.1.2.3 Materials 

3.1.2.3.1 Interface 
On a computer display, three squares with white centre areas flashed at different frequencies for the 

SSVEP component, and an outline frame appeared around the squares one at a time in a pseudo-random 

order for the P300 component (see Figure 3.2). For the SSVEP, the flashing effect of the squares was 

created by interpolating between black and white for maximum contrast. Because of the limited frames 

per second provided by the monitors available for this experiment (60 frames per second) the chosen 

frequencies were 15, 10 and 6 Hz. These frequencies were easily attained on the display because they are 

multiples of the monitor’s frames per second. When the classification was concluded, the selected 

square’s centre area briefly turned green in colour to indicate the classifier chose that square as selected. 

3.1.2.3.2 Signal Conditioning 
Before extracting features, both the P300 and the SSVEP signals were filtered digitally. First, a IIR notch 

filter was applied to suppress the 60 Hz artefact. Then, a FIR bandpass filter from 5 to 30 Hz was applied 

to attenuate the high and low irrelevant frequencies. Before applying each filter, a 75-sample-mirrored 

padding was added to each extremity of the signal. 

3.1.2.3.2.1 P300 conditioning 

Brain signals were recorded from the minimal optimal electrode positions (PO8, PO7, POZ, CPZ) 

methodologically identified by Speier et al. (2015). Speier at al. compared a four-electrode, six-electrode 

and 32-electrode configuration, and found no significant difference in ITR between configurations (28.92, 

29.94 and 31.90 bits/minute, respectively). The comparison among average accuracies in online trials had 

no statistical difference (73.21, 69.28 and 67.57%, respectively). Since the performance of the four-

electrode configuration was adequate compared to the larger configurations, the four-electrode 

configuration was chosen for this study so that less time would be needed for the preparation. 
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After filtering, the signal was down-sampled by a factor of 15. The down-sampled signal constituted the 

features used to classify the P300 data with the linear discriminant analysis (LDA) classifier. In total each 

feature sample contained 32 features (eight features per channel, four channels). 

3.1.2.3.2.2 SSVEP conditioning 

Brain signals were recorded from the electrodes positioned on the occipital region (channels O1, O2) 

from participants 1 to 3. For participants 4 to 6, the electrodes Pz, T5 and T6 were added (and a 

sweatband was used to tighten electrodes O1, O2, T5 and T6 to the scalp). For feature extraction, the 

technique presented by Fan et al. (2015) was used. For each channel, the sum of each target frequency 

±0.5 Hz on the power spectral density (i.e. 6, 10 and 15 Hz) and their immediate harmonics (i.e. 12, 20 

and 30 Hz) ±0.5 Hz constituted one SSVEP feature sample. In total, each feature sample contained 12 

features for group 1, and 30 features for group 2 (three frequencies, plus their harmonics, per channel). 

Filtered signals were classified using a multiclass LDA classifier. 

3.1.2.3.3 Selection functions 
The selection functions were only active during online sessions. To define a final output using the 

classification of each paradigm, the selection functions considered the accuracy of each classifier 

(calculated in the offline session, during training) and calculated the most likely final answer. A 

somewhat similar approach was taken by Zuo et al. (2019) where they used a predictive mean calculated 

with the BLDA (Bayesian Linear Discriminant Analysis) as the classification confidence for the selection 

between MI and P300. Depending on whether classification confidence lies above or below a 

threshold, calculated offline via cross-validation, the MI or P300 classification was selected. The general 

idea of the selector functions in this study was to give points to the paradigms according to their 

Figure 3.2: Final interface designed to stimulate SSVEP and P300 responses in participants. 
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classification accuracy, rewarding higher accuracies over lower accuracies. Figure 3.3 shows the concept 

behind the algorithms for each paradigm function. The output of the selection functions was used to 

provide feedback during the online trials and also to calculate the final accuracy of each paradigm. 

The selection functions worked with answer vectors that indicated what the selection score was for each 

target. For the SSVEP, each vector row corresponded to one target (𝑦𝑆); for the P300, since it had only 

target/non-target states (𝑦𝑃), the position (𝑝𝑜𝑠) in which the P300 stimuli appeared corresponded to a 

vector row. When one of the vector rows surpassed the decision threshold of 3, the corresponding target 

was selected as the final classification. A timeout was implemented in case the selection function did not 

reach the minimum decision threshold. In case of timeout, the target with the highest score was selected 

as the final answer. The timeout was set to 10.5 seconds (21 trials × 0.5s). 

3.1.2.3.3.1 Group 1 

For the P300, the answer vector 𝑃𝑉 was used to score the targets. Each index of 𝑃𝑉 corresponded to one 

of the selection scores corresponding to a position 𝑝𝑜𝑠. The scoring followed the logic of Equation ( 3.4 ), 

𝑃𝑉 =  {
𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 + 2 × 𝐴𝐶𝐶𝑃300 ,               𝑖𝑓 𝑦𝑃 = 1

𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 − 0.5 × 𝐴𝐶𝐶𝑃300 , 𝑖𝑓 𝑦𝑃 = 0
 ( 3.4 ) 

 

where 𝑝𝑜𝑠 was the position of the analyzed P300 stimuli, which equates to the vector’s index, 𝑦𝑃 was the 

P300 LDA classification output and the 𝐴𝐶𝐶𝑃300 was the accuracy calculated during the training session 

for the P300 classifier. If 𝑦𝑃 yielded a target (=1), the index corresponding to that target increases; if non-

Figure 3.3: General Algorithm for the selection functions 
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target (=0), that index decreased. The weight of +2 for the accuracy was chosen when 𝑦𝑃 = 1 so that a 

high accuracy could achieve a value close to the threshold that would only need one or two more trials to 

confirm the final selection. The weight of -0.5 was chosen if 𝑦𝑃 = 0 so the decrease could be a penalty 

that would not penalize a misclassification too much. 

For the SSVEP, the answer vector 𝑆𝑉 was used to score the targets. Each index of 𝑆𝑉 corresponded to 

one of the selection score of the classifier’s outputs. The scoring followed the logic of Equation ( 3.5 ), 

𝑆𝑉 =  {
𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 2 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃

𝑆𝑉𝑦𝑆̅̅ ̅̅ = 𝑆𝑉𝑦𝑆̅̅ ̅̅ − 0.5 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃
 ( 3.5 ) 

 

where 𝑦𝑆 was the SSVEP LDA classification, 𝑦𝑆̅̅̅ were the other positions different from the SSVEP LDA 

classification, and the 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃  was the accuracy calculated during the training session for the SSVEP 

classifier. The weights were established following the same logic as in the P300 selector, to reward 

quicker, and penalize moderately. 

The hybrid selection function combined the logic of both selector functions, Equations ( 3.4 ) and ( 3.5 ). 

However, instead of 2 × 𝐴𝐶𝐶, the hybrid selector added 2 points in case of a unanimous answer between 

the P300 and SSVEP. There were three vectors, one corresponding to the P300 LDA classifier 𝑷𝑽, one 

corresponding to the SSVEP LDA classifier 𝑺𝑽 and one for unanimous answers 𝑼𝑽, when both 

classifiers outputted the same target. They had sizes [3x1] in which each of the vector indexes 

corresponded to the selection score of a target (represented in Figure 3.4). The scoring followed the logic 

of Equation ( 3.6 ), 

𝑇𝑉 = 𝑈𝑉 +  𝑃𝑉 + 𝑆𝑉 = 

{
 
 

 
 
{

𝑈𝑉𝑦𝑆 = 𝑈𝑉𝑦𝑆 + 2,                             𝑝𝑜𝑠 = 𝑦𝑆

(
𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 + 𝐴𝐶𝐶𝑃300
𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃

) , 𝑝𝑜𝑠 ≠ 𝑦𝑆
, 𝑖𝑓 𝑦𝑃 = 1

(
𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 − 0.5 × 𝐴𝐶𝐶𝑃300

𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃
) ,                               𝑖𝑓 𝑦𝑃 = 0

 

 

( 3.6 ) 
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The logic first defined if the P300 classification was a target or a non-target. If the P300 was classified as 

a target, the logic verified if the position of the P300 matched the classification of the SSVEP. If the P300 

position and the SSVEP matched, then 𝑼𝑽 gets points. If they did not match, 𝑷𝑽 and 𝑺𝑽 get points. If the 

P300 was classified as a non-target, 𝑷𝑽 received a penalty, and 𝑺𝑽 increased proportionally to the 

SSVEP’s accuracy. After each trial, all the vectors were summed in the total answer vector 𝑻𝑽. 

3.1.2.3.3.2 Group 2 

For the P300, the logic was similar to Equation ( 3.4 ), and is presented in Equation ( 3.7 ). The only 

addition was that when the stimulus was classified as non-target, the other positions different from the 

analyzed P300 stimuli, increased by half its value (0.25), as a form of balancing for mistaken penalties: 

𝑃𝑉 =  {

𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 + 2 × 𝐴𝐶𝐶𝑃300 ,                        𝑖𝑓 𝑦𝑃 = 1

(
𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 − 0.5 × 𝐴𝐶𝐶𝑃300
𝑃𝑉𝑝𝑜𝑠̅̅ ̅̅ ̅ = 𝑃𝑉𝑝𝑜𝑠̅̅ ̅̅ ̅ + 0.25 × 𝐴𝐶𝐶𝑃300

) , 𝑖𝑓 𝑦𝑃 = 0
 ( 3.7 ) 

 

where 𝑝𝑜𝑠̅̅ ̅̅ ̅ were the other position indexes. 

For the SSVEP, the only modification to Equation ( 3.5 ) was a cumulative variable 𝑐, presented in 

Equation ( 3.8 ). It was initialized at 1 and increased by 10% for every new classification that matched the 

previous one, as a form of rewarding classification consistency. The cumulative variable returned to 1 

whenever the sequence was broken. 

𝑆𝑉 =  {
𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 2 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃 × 𝑐

𝑆𝑉𝑦𝑆̅̅ ̅̅ = 𝑆𝑉𝑦𝑆̅̅ ̅̅ − 0.5 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃
 ( 3.8 ) 

 

Figure 3.4: Vector scheme for PV. SV, UV and TV 
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For the hybrid, the functions were updated to match the selector functions, Equation ( 3.7 ) and ( 3.8 ), as 

seen in Equation ( 3.9 ). The other changes were: 1) 𝑈𝑉 received the sum of both classifier accuracies 

instead of +2, and 2) the weights of penalties and increments were divided by half, as a form of equally 

sharing the scoring power between both paradigms, 

𝑇𝑉 = 𝑈𝑉 +  𝑃𝑉 + 𝑆𝑉 = 

{
 
 
 
 

 
 
 
 

{
 
 

 
 
𝑈𝑉𝑦𝑆 = 𝑈𝑉𝑦𝑆 + 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃 + 𝐴𝐶𝐶𝑃300 ,       𝑝𝑜𝑠 = 𝑦𝑆

(
𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 + 𝐴𝐶𝐶𝑃300
𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃 × 𝑐

𝑆𝑉𝑦𝑆̅̅ ̅̅ = 𝑆𝑉𝑦𝑆̅̅ ̅̅ − 0.25 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃

) , 𝑝𝑜𝑠 ≠ 𝑦𝑆
, 𝑖𝑓 𝑦𝑃 = 1

(

 
 

𝑃𝑉𝑝𝑜𝑠 = 𝑃𝑉𝑝𝑜𝑠 − 0.25 × 𝐴𝐶𝐶𝑃300
𝑃𝑉𝑝𝑜𝑠̅̅ ̅̅ ̅ = 𝑃𝑉𝑝𝑜𝑠̅̅ ̅̅ ̅ + 0.125 × 𝐴𝐶𝐶𝑃300
𝑆𝑉𝑦𝑆 = 𝑆𝑉𝑦𝑆 + 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃 × 𝑐

𝑆𝑉𝑦𝑆̅̅ ̅̅ = 𝑆𝑉𝑦𝑆̅̅ ̅̅ − 0.25 × 𝐴𝐶𝐶𝑆𝑆𝑉𝐸𝑃 )

 
 
,                               𝑖𝑓 𝑦𝑃 = 0

 ( 3.9 ) 

Figure 3.5 exemplifies what values the vectors would receive under different input conditions in the 

function implemented for group 1 and 2. 

Figure 3.5: Behaviour examples of the hybrid fusion algorithm 
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3.1.2.4  Procedure 

In each of the sessions, participants tested one of the single input BCI paradigms (P300 or SSVEP, 

randomly assigned) or the hybrid BCI. To account for fatigue factors that can cause undesired variability 

in the results, sessions were scheduled for the same time of the day for each participant. Doing so can 

standardize the effects of secondary factors (such as hunger, tiredness, distress) on participants’ fatigue.  

Asking participants to do all the three paradigms allowed the hybrid BCI and the single input BCI to be 

compared in effectiveness (accuracy) and efficiency (processing time). It also gave participants the 

opportunity to experience both single input and hybrid BCI so they could give informed advice about 

their satisfaction with each paradigm. 

Before the first session, the purpose of the study was explained to each participant. There were 6 sessions 

in total over three weeks. Every experimental day, one session took place. The learning effect was 

attenuated by assigning paradigms to sessions randomly. Sessions were ideally scheduled in a way 

participants had at least one-day between sessions. Figure 3.6 shows a sample schedule for a participant’s 

sessions. 

In each first session with a new paradigm, the participant had an opportunity to practice so they could 

understand the interface and no results were saved. In subsequent sessions with the same paradigm, 

practice was offered but only provided if the participant asked for it. 

Afterwards, participants underwent five sets of data acquisition, as shown in Figure 3.7. The first set had 

no selection feedback and served exclusively to train the classifier(s). This set had more runs to allow 

Figure 3.6: Ideal participant schedule. 
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more data for the classifier(s) training. The four subsequent sets were online and presented feedback 

based on the classification.  

The training set was composed of 15 runs (5 repetition per target × 3 targets), each with a different target 

order to avoid participants subconsciously attempting to predict cues. Each run was composed of 21 trials 

(7 trials per target × 3 targets). Considering there were 3s for the cue display, each set took around 3m 

25s (0.5𝑠 × (15 𝑟𝑢𝑛𝑠 × 21 𝑡𝑟𝑖𝑎𝑙𝑠) + 3𝑠 × 15 𝑟𝑢𝑛𝑠). Each training session produced 315 trials for 

training the classifier (105 for each SSVEP frequency, and 105 targets and 210 non-targets for the P300). 

The subsequent online sets had the same number of runs but the number of trials varied depending on the 

selection functions. A timeout of 10.5s was implemented, as described above, in case the selection 

functions did not reach the threshold. Only one attempt was allowed per trial.  

As mentioned in part 1, for the pure P300 paradigm, the participant was instructed to fixate their gaze on 

the cued square and count the frame appearances, and for the pure SSVEP paradigm, the participant was 

instructed to fixate their gaze on the middle cross. For the hBCI, both were combined. 

Figure 3.7: A) Offline set of a Session, B) Online set of a Session.  
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After each session, the participants were asked to fill in a NASA TLX questionnaire regarding the 

following factors: Mental Demand (MD), Physical Demand (PD), Temporal Demand (TD), Performance 

(P), Effort (E) and Frustration (F). The questions asked for each factor are: 

1. How mentally demanding was the task? (Mental Demand) 

2. How physically demanding was the task? (Physical Demand) 

3. How hurried or rushed was the pace of the task? (Temporal Demand) 

4. How successful were you in accomplishing what you were asked to do? (Performance) 

5. How hard did you have to work to accomplish your level of performance? (Effort) 

6. How insecure, discouraged, irritated, stressed, and annoyed were you? (Frustration Level)   

Each factor was measured through a Likert scale from zero to 10, subdivided by half-points. When all 

sessions were concluded, a “comparison cards” page was given to each participant to determine a weight 

to apply to each factor. Each factor was compared against every other factor and the participant chose the 

one they felt was more important.  

 If any unforeseen events occurred or any verbal comments were made during the session, a file called 

“Session_Notes.txt” was created to report those occurrences. 

A list with all the steps of the session protocol is attached in Appendix 3. Additional steps to abide by 

COVID-19 restrictions and approvals to conduct research are in Appendix 4. 

3.1.2.5 Data collection and analysis 

3.1.2.5.1 Offline sets 
To calculate the offline accuracy, a 10-fold cross-validation evaluation was used. The average accuracy 

will be denominated “offline accuracy” hereafter. There was one offline accuracy for the pure P300 

session, one offline accuracy for the pure SSVEP session, and two offline accuracies for the hybrid 

sessions (the hybrid P300 and the hybrid SSVEP). 

3.1.2.5.2 Online sets 
During the online sets, every trial was classified and sent to the selector function. Therefore, two 

classifications were yielded after the online sets, the continuous accuracy and the selector accuracy. The 

continuous accuracy was calculated based on how many trials were classified correctly. The selector 

accuracy was calculated based on how many final answers matched the target stimuli. 

To calculate the selection time response of the selector function, the number of trials needed for a final 

answer was counted. Since every trial took half-second, the number of trials multiplied by 0.5 yielded the 
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selection time response. For each session, 60 selection time responses (15 selection times per set × 4 

online sets) were averaged together. 

3.1.2.5.3 Statistical analysis 
A one-way repeated measures ANOVA was used to compare group mean differences due to repeated 

measure design occurring in the accuracy and efficiency of paradigms. (Singh et al., 2013).  

To examine if there were learning effects between sessions, the values of the first and second sessions of 

each paradigm were compared. Other comparisons made were between the offline and online accuracies, 

the pure and hybrid paradigms, between groups, and between average response times. To reject the null 

hypothesis that the group means were statistically equal, the p-value = 0.05 was used. For the multiple 

comparisons between offline, continuous and selector accuracies, the Bonferroni correction was used 

(Bland & Altman, 1995). 

3.1.2.5.4 NASA TLX analysis 
In total, 15 comparison cards were presented, which was the total amount of weight that was distributed 

among factors. Since each factor was compared to the other 5 factors, the maximum achievable weight for 

a factor was 5. A weight value of 0 meant no importance and a value of 5 meant most influential on the 

final workload. Each factor rating was then multiplied by the resulting weight from the comparison cards. 

The final workload was calculated by summing all the weighted factors and dividing them by 15. Since 

each paradigm had two sessions, two final workloads were generated per paradigm. The average of both 

was considered the average final workload for that paradigm. 

The Cohen Kappa inter-reviewer agreement measurement was used to test if the participants consistently 

agreed in their ranking of the paradigms. Each comparison between participants yielded a score from 0 to 

1. As explained by Viera & Garrett (2005), there are six levels of agreement: 

 <0  Less than chance 

 0.01 – 0.20 Slight 

 0.21 – 0.40 Fair 

 0.41 – 0.60 Moderate 

 0.61 – 0.80 Substantial 

 0.81 – 0.99 Almost perfect 
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4 Results 

In this section, only results that are statistically significant (p<0.05) will be mentioned. More details on 

the statistical significance of the comparisons will be indicated in the tables.  

4.1 Offline results 

The average offline accuracies are shown in Figure 4.1 and Table 4.1. Single-paradigm sessions had only 

one offline accuracy, while the hybrid sessions had two offline accuracies (one for the SSVEP and one for 

the P300). Figure 4.1A presents the offline accuracies and the standard deviation (SD) for the first and 

second sessions of each participant. 

 

Table 4.1 - Average Offline accuracy comparison between 1st and 2nd session [%±STD] 

 P300 SSVEP Hybrid P300 Hybrid SSVEP 

 1st 2nd 1st 2nd 1st 2nd 1st 2nd 

P1 66.4±10.5 68.2±5.3 26.4±9.7 30.8±7.6 67.6±5.5 74.6±8.1 28±11.5 37.1±11.4 

P2 81.6±3.8** 74.3±6.3** 19.9±9 23.5±9.3 66.6±7.5 66.6±5.9 24.7±10.1 25.4±11.3 

P3 74.9±5.8 72.4±5.3 29.2±8.7** 48.9±7** 73.1±9.6 68.6±6.3 22.2±8.9 23.2±7.6 

P4 84.4±6.4 82.8±7.2 50.5±5.3 50.5±5.8 74.6±5.7 71.1±6.3 41.6±4.9 37.5±5.9 

P5 78.4±6.2 85.4±4.3 43.8±7.8 38.1±7.6 80±4.3* 87±5.1* 36.5±6.3 39.7±10.6 

P6 94±3.9 94.3±5.2 38.3±6.1** 52.4±5.5** 85.7±6.5 81.9±4.7 39.4±8.1 41.6±6.8 

Note. 1
st
 and 2

nd
 sessions are statistically different with *: p<0.05, **: p<0.01 

 

A) Average offline accuracies per session, B) Offline accuracies averaged per paradigm. The top plots refer to group 1 and the 

bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the hybrid system. P: participant, 
p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, S: session. 

Figure 4.1: Average Offline Accuracies 
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The results did not show any clear trend when comparing the first and the second session of each system, 

but some pairs had significant differences. Participant 2 had a better performance on the first P300 session 

compared to the second (81.6% and 74.3%, respectively). Participants 3 and 6 had more than 14% 

improvement in accuracy from the first to second SSVEP session. Participant 5 had a 7% improvement on 

the hybrid P300. 

The accuracies averaged across participants for each system is presented in Figure 4.1B. Comparing 

group 1 and 2, all paradigms had an increase in accuracy from group 1 to 2, as shown in Table 4.2. The 

P300 increased 13.6% (from 72.98 to 86.55) and the SSVEP increased 16% (from 29.78 to 45.61). The 

hybrid components increased 10.5% on the P300 (from 69.53 to 80.06) and 12.6% on the SSVEP (from 

26.77 to 39.36). 

Table 4.2 – Average Offline accuracy comparison between group 1 and 2 [%±STD] 

 Group 1 Group 2 Acc Diff 

P300 72.98±8.24 86.55±8.13 13.57* 

SSVEP 29.77±12.75 45.6±8.49 15.83* 

H P300 69.53±8 80.06±7.87 10.52* 

H SSVEP 26.77±11.49 39.36±7.39 12.59* 

Note. All average results from group 1 and group 2 are statistically different *: p<0.01 

 

4.2 Online results 

4.2.1 Continuous classification 

During the online sets, the new incoming data were classified continuously by the classifier trained during 

the offline set. Every session generated four continuous accuracies per paradigm, each corresponding to 

one online set. The average continuous accuracies per session are displayed in Figure 4.2A. Table 4.3 

contains the accuracies and an indication of the statistically significant differences between the first and 

second session.  
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Table 4.3 - Average online continuous accuracy comparison between 1
st
 and 2

nd
 session [%±STD] 

 
P300 SSVEP Hybrid P300 Hybrid SSVEP 

1st 2nd 1st 2nd 1st 2nd 1st 2nd 

P1 70.1±4.1 69.2±2.8 41.6±4.3 37.5±2.2 69±3.1 68.3±2.9 36.4±1.1 36.2±3.3 

P2 80.2±4.2* 72.4±2.4* 33.3±9.4 46.5±2.6 63.2±3.4* 70.5±3* 38.4±3.2 36.4±5.2 

P3 77.1±2.8** 65.8±3.1** 36±6.5 38.8±3.6 75.1±2.9** 65.1±4.3** 35.4±3.1 35.6±2.7 

P4 87.5±1.8 84.6±1.6 39.4±4.8 40.8±6.5 74.3±4.4 69.1±3.3 38.8±5.7 33.4±5.5 

P5 81.4±2.1 85.3±8.4 34.6±3.6 36.9±3.4 82.9±3.4 80.4±5.8 35.6±10.5 34.2±2.4 

P6 94.8±3 93.1±2.1 39.5±3.1* 46.1±1.9* 83.2±1.9 83±1.5 42.8±2.8 38.3±1.7 

Note. 1
st
 and 2

nd
 sessions are statistically different with *: p<0.05, **: p<0.01 

 

Only five paired sessions had significant differences. Participant 2, had a higher accuracy on the first 

session of the P300 (+7.8%) and higher second session for the hybrid P300 (+7.2%). Similarly, 

participant 3 had a higher second session for the P300 and the hybrid P300. Participant 6 had an accuracy 

increment of 6.5% from the first to the second session of the SSVEP.  

Figure 4.2B shows the average online continuous accuracy for all participants. The P300 paradigm had an 

increase in accuracy when comparing group 1 and 2, from 74.5 to 87.8% (+15.3%), respectively. The 

hybrid P300 component accuracies were also different. Group 1 had 68.5% and group 2 78.8% (+10.3%). 

A) Average Online Continuous Accuracies per Participant, B) Online Continuous Accuracies averaged per Paradigm. The top 

plots refer to group 1 and the bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the 
hybrid system. P: participant, p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, S: session. 

Figure 4.2: Average Online Continuous Accuracies 
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The continuous accuracy progress throughout the online sets can be seen in Figure 4.3. The purpose of 

graphing this data is to visually examine any trend or abnormality that may have happened within the set. 

Some noticeable occurrences were: participant 2 in the second session of SSVEP, had an increase from 

the first session in accuracy for all sets; participant 4 in both sessions with the hybrid P300, was 

consistently lower than his peers; and participant 6 in both sessions of P300, was consistently above 90% 

accuracy throughout all of the sets.  

  

P: participant, Acc: Accuracy, p3: P300, SS: SSVEP, Hp3: Hybrid P300, HSS: Hybrid SSVEP, s: set. 

Figure 4.3: Continuous Accuracies of each Set per Group 
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4.2.2 Selector classification 

The selector function received the classifiers’ outputs and calculated the most likely final answer, hence, 

each set had one selector accuracy and because there were four online sets per session, each session had 

four selector accuracies. For each participant, the averaged selector accuracy across sets is presented in 

Figure 4.4A and Table 4.4. 

Most participants presented no statistical difference between the first and second session. In group 1, 

participant 2 had an increment of 39.6% from the first to the second session of SSVEP and participant 3 

had a decrement of 25% from the first to the second session of P300.  

The average accuracy per paradigm was calculated based on all set accuracies for all session of all 

participants in the group (Figure 4.4B). Only the P300 had a significant increase from group 1 to group 2 

(+13.1%). The SSVEP and the hybrid had, approximately, the same outcome between groups. The 

SSVEP and the hybrid also had, approximately, the same outcome when compared in each groups.  

Table 4.4 - Average selector accuracy comparison between 1
st
 and 2

nd
 session [%±STD] 

 
P300 SSVEP Hybrid 

1st 2nd 1st 2nd 1st 2nd 

P1 78.3±13.7 78.3±10 65±17.5 40±7.7 46.7±7.7 41.7±12.6 

P2 95±3.3 86.7±5.4 33.8±1.8** 73.3±5.4** 51.7±17.5 56.7±15.9 

P3 93.3±0* 68.3±10* 41.7±17.5 43.3±12.8 55±13.7 45±12.6 

P4 96.7±3.8 93.3±5.4 45±12.6 50±11.5 55±25.7 35±19.9 

P5 95±3.3 93.3±5.4 40±9.4 48.3±13.7 48.3±22.7 48.3±11.4 

P6 100±0 100±0 53.3±10.9 61.7±3.3 58.3±10 51.7±12.6 

Note. 1
st
 and 2

nd
 sessions are statistically different with *: p<0.05, **: p<0.01 

A) Average Online Selector Accuracies per Participant, B) Online Selector Accuracies averaged per Paradigm. The top plots 

refer to group 1 and the bottom to group 2. The hashed bars represent the accuracies of the paradigms associated with the hybrid 
system. P: participant, p3: P300, SS: SSVEP, HY: Hybrid. 

 

Figure 4.4: Average Online Selector Accuracies 
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The set accuracies for each selector function are plotted in Figure 4.5. For the P300 sessions, group 2 had 

the most consistent results. Participant 2 was an outlier in the second session of SSVEP, with higher 

accuracies than the other two participants in his group. In most sessions with the hybrid, there was a 

downtrend from one set to the next for most participants in the first and second session (except for 

participant 6).  

4.3 Offline vs Online 

Figure 4.6 shows the offline accuracy and the two online accuracies, the continuous and the selector’s 

accuracy, for each group.  

Table 4.5 shows the average accuracy values and their differences. For group 1, all the compared average 

accuracies were significantly different, except for the accuracies of the P300 offline and continuous, and 

of the hybrid SSVEP offline and continuous. In group 2, all the compared average accuracies were 

significant, except for the accuracies of the P300 offline and continuous, of the SSVEP offline and 

P: participant, p3: P300, SS: SSVEP, HY: Hybrid, s: set. 

 

Figure 4.5: Set Selector Accuracies per Group 

A) Compariong the pure SSVEP and P300, B) the hybrid, and the hybrid P300 and SSVEP. The top plots refer to group 1 and 
the bottom to group 2. 

 

Figure 4.6: Comparison for the Offline, Continuous and Selector average accuracies 
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selector, of the hybrid SSVEP offline and continuous, and the hybrid SSVEP offline and the hybrid 

selector. For both groups, the selector accuracy was higher for the P300 and the SSVEP. The hybrid 

selector accuracy was about the average of the hybrid P300 and the hybrid SSVEP. 

Table 4.5 – Differences among average accuracies for each paradigm [%] 

 
Group 1 Group 2 

Acc Difference Acc Difference 

P300 O 72.979 
-0.523 

86.551 
1.247 

P300 C 72.456 87.798 

P300 O 72.979 
10.351** 

86.551 
9.838** 

P300 S 83.330 96.389 

P300 C 72.456 
10.874

**
 

87.798 
8.591

**
 

P300 S 83.330 96.389 

SSVEP O 29.775 
9.197** 

45.608 
-6.051** 

SSVEP C 38.972 39.557 

SSVEP O 29.775 
19.740** 

45.608 
4.114 

SSVEP S 49.515 49.722 

SSVEP C 38.972 
10.543** 

39.557 
10.165** 

SSVEP S 49.515 49.722 

H P300 O 69.533 
-1.018 

80.057 
-1.242* 

H P300 C 68.515 78.815 

H P300 O 69.533 
-20.089** 

80.057 
-30.613** 

Hybrid S 49.444 49.444 

H P300 C 68.515 
-19.071** 

78.815 
-29.371** 

Hybrid S 49.444 49.444 

H SSVEP O 26.773 
9.642 

39.362 
-2.186 

H SSVEP C 36.415 37.176 

H SSVEP O 26.773 
22.671** 

39.362 
10.082 

Hybrid S 49.444 49.444 

H SSVEP C 36.415 
13.029** 

37.176 
12.268** 

Hybrid S 49.444 49.444 

Note. Average accuracy comparisons are statistically different with *: p<0.0167, **: p<0.0033 with the 
Bonferroni correction. H: Hybrid, O: offline, C: continuous, S: selector. 

4.4 Efficiency 

The time response for each target depended on how many outputs from the classifier were necessary to 

reach the threshold of the final answer. Therefore, each target had a single time response associated with 

its accuracy. The time response for each session was averaged for all the 60 targets (15 targets per set × 4 

online sets). Figure 4.7A presents the averaged time responses for the first and second sessions of each 

participant. 
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Table 4.6 displays all average times for each paradigm. The table is color coded where the green pairs 

indicate a significant decrease, while the red indicate a significant increase in time. Out of the 18 paired 

sessions, 8 presented a decrease in response time from the first to second session. Participants 1, 2, 3 and 

6 had faster results on the second session of SSVEP. Participant 4 was the only one that did not have any 

significant change from the first to the second session in any paradigm. 

Table 4.6 - Average time response comparison between 1
st
 and 2

nd
 session [s±STD] 

 
P300 SSVEP Hybrid 

1st 2nd 1st 2nd 1st 2nd 

P1 8.6±2.8** 7.2±2.7** 7.9±2.4** 5.9±1.8** 7.8±2.9** 4.6±2.3** 

P2 4.8±2.6** 7±2.6** 9.9±1** 8.3±2.1** 7.1±2.9 7.1±3 

P3 6.6±2.6
**

 8±2.4
**

 6.1±2.3
**

 4.1±1.4
**

 7.5±2.8
**

 5.3±2.5
**

 

P4 3.5±1.8 3.7±1.8 3.2±1.3 3.1±1.1 6.3±2.5 5.6±2.1 

P5 3.9±2.3* 3.3±1.5* 3.9±1.6** 5.1±1.9** 4.8±1.6 4.6±1.8 

P6 2.8±0.9 3±1.1 4.9±1.9** 3±1.1** 4.9±7.5 4.2±3.5 

Note. 1
st
 and 2

nd
 sessions are statistically different with *: p<0.05, **: p<0.01 

Figure 4.7B shows the comparison of the systems’ response time between group 1 and 2. Group 2 took 

less time for all paradigms. The time response for the P300 went from 7.03 to 3.35 s, for the SSVEP from 

7.04 to 3.86 s and for the hybrid from 6.57 to 5.07 s. 

Table 4.7 shows the ITR calculated through Equation ( 3.3 ) for each paradigm and accuracy (offline, 

continuous and selector). The number of stimuli per minute was 96 for the offline and 84 for the online 

(𝑚), considering one stimulus was presented every half-second and 3s between runs and 3s to display the 

feedback. The number of commands was 3 (𝑁). The best ITR were from the P300 in group 2. The highest 

was the selector with 111.27 bits/min, then the continuous with 89.07 bits/min, followed by the offline 

A) Selector time responses per group, averaged from all sets’ time responses. B) Average accuracy across participants for group 
1 and 2. The top plot refers to group 1 and the bottom to group 2. P: participant, p3: P300, SS: SSVEP, HY: Hybrid. 

 

Figure 4.7: Selector Time Response per Group 
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with 84.56 bits/min. All P300 and hybrid P300 ITR remained above 35 bits/min. All the SSVEP and 

hybrid SSVEP ITR remained under 7 bits/min. The P300 and the SSVEP had higher ITR for the selector.  

Table 4.7 - ITR per paradigm 

 Group 1 Group 2 

Type 
Acc 

[%] 
ITR [bits/min] 

Acc 

[%] 
ITR [bits/min] 

P300 O 72.979 45.406 86.551 84.561▪ 

P300 C 72.456 44.194 87.798 89.071♦ 

P300 S 83.333 64.535 96.389 111.273
✝
 

SSVEP O 29.775 - 45.608 4.475 

SSVEP C 38.972 0.966 39.557 1.174 

SSVEP S 49.515 6.735 49.722 6.905 

H P300 O 69.533 37.763 80.057 63.816 

H P300 C 68.515 35.656 78.815 60.297 

H SSVEP O 26.772 - 39.362 1.103 

H SSVEP C 36.415 0.292 37.176 0.452 

Hybrid S 49.444 6.678 49.444 6.678 

Note. -: Accuracies below chance level have distorted ITR, so they were not considered, ▪: third best ITR, 

♦: second best ITR, ✝: best ITR, Acc: Accuracy, ITR: Information Transfer Rate, H: Hybrid, O: offline, C: 

continuous, S: selector. 

4.5 NASA TLX questionnaire 

Table 4.8 presents the adjustment weights that were applied for each factor attributed by the participants. 

Table 4.8 - Adjustment weights for the NASA TLX ratings 

 
PD F TD E MD P 

P1 0 5 4 1 2 3 

P2 0 2 5 2 4 2 

P3 3 0 1 4 2 5 

P4 0 2 1 5 3 4 

P5 0 1 5 3 4 2 

P6 0 4 1 2 4 4 

Avg. 0.5 2.33 2.83 2.83 3.17 3.33 

Note. PD: Physical Demand, F: Frustration, TD: Temporal Demand, E: Effort , MD: Mental Demand 

and P: Performance. The color code represents the weights from less important to more important with 

the colors in the following order: red, orange, yellow, light green, medium green and dark green. 

The average final workload for each participant over two sessions of each paradigm is presented in Figure 

4.8A. For all participants but participant 3, the P300 had the lowest load. For participants 1, 4, 5 and 6 the 

highest load was attributed to the hybrid, followed by the SSVEP. Participant 2 had similar ratings for the 

SSVEP and the hybrid and participant 3 was the only one that rated the SSVEP as the highest load. 
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An overall workload rating was calculated by averaging all participant's average final workloads for each 

paradigm. The result is presented in Figure 4.8B. The P300 load was significantly lower than those of the 

SSVEP and the hybrid. 

To compare the raw factors rating and the adjusted factors ratings, Figure 4.9 presents two radar charts 

showing the effects of the adjustment weights on the average of the average final workload of each 

paradigm. Low-rated factors had less effect on the final workload, such as Physical Demand (PD), while 

high-rated factors had more effect on the final load, such as Mental Demand (MD) and Performance (P). 

Physical Demand had the greatest decrease in rating when weighted. Factors Temporal Demand (TD), 

Effort (E) and Frustration (F) maintained a similar proportion after the adjustment. Overall, the P300 had 

the lowest loads for all factors, especially for Frustration. The hybrid had the highest Mental Demand and 

Temporal Demand, while the SSVEP had the highest Performance load. The SSVEP and the hybrid had 

similar Effort and Frustration ratings. All paradigms had low Physical Demand. 

A) Average NASA TLX Workload per Participant, B) Average NASA TLX Workload per Paradigm. P: participant, p3: P300, SS: 
SSVEP, HY: Hybrid. 

Figure 4.8: Average NASA TLX 

MD: Mental Demand, PD: Physical Demand, TD: Temporal Demand, P: Performance, E: Effort and F: Frustration. 

Figure 4.9: Raw and adjusted ratings of the NASA TLX factors 
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Cohen Kappa agreement scores were calculated among the comparison cards for each factor (Figure 

4.10A), among the individual factor ratings (Figure 4.10B) and among the final workload for each 

paradigm (Figure 4.10C) per participant. 

Most participants did not agree on the importance of each factor on the comparison cards. Only 

participants 2, 4, 5 and 6 had some agreement with each other. The individual factor ratings only had 

slight agreements. For the final workload between paradigms, only P1 and P3 agreed fairly. Therefore, 

most participants felt differently in regards to the factors’ importance, the factor ratings and the final 

workload for each paradigm.  

4.6 Session Notes 

Session notes and incidental comments can be seen in Appendix 5. 

4.7 Post analysis 

After the study, more examination of the data was done to explore the low SSVEP performance, and 

some tests were done offline to see about improving its performance. 

4.7.1 Further examination of the data 

4.7.1.1 Hybrid correlation with P300 and SSVEP 

The main reason for the hybrid’s low accuracy was the low SSVEP performance. To examine this 

hypothesis, Figure 4.11 shows the scatter plot with the line trend between the SSVEP or P300 component 

continuous accuracy and the hybrid selector accuracy. The accuracies were set to unit value. The linear 

trend calculated between both comparisons had a positive slope, indicating a proportional correlation. But 

Figure 4.11B has a stronger positive slope compared to Figure 4.11A indicating that the SSVEP had 

higher impact on the hybrid accuracy.  

A) Comparison Cards, B) the Individual Factor Ratings and C) the Final Workload. The agreement levels are <0: less than 
chance, 0.01 to 0.20: slight, 0.21 to 0.40: fair, 0.41 to 0.60: moderate, 0.61 to 0.80: substantial, and 0.81 to 0.99: almost perfect. 

 

Figure 4.10: Cohen Kappa agreement score between participants 
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4.7.1.2 Pure paradigms vs. hybrid paradigms 

In order to assess if the simultaneous combination of both P300 and SSVEP caused any deleterious effect 

to the accuracy of the paradigms compared to the pure form, the hybrid and the pure averages were 

compared and statistically analysed. Table 4.9 shows the accuracy differences (𝐴𝐶𝐶ℎ𝑦𝑏𝑟𝑖𝑑 − 𝐴𝐶𝐶𝑝𝑢𝑟𝑒). 

Most comparisons were statistically significant. The P300 had lower accuracies in all cases when 

implemented with the SSVEP. On the other hand, the SSVEP, in most cases, had no change when 

implemented along with the P300. The only exception was in group 1, for the offline accuracy 

comparison. Almost all the offline comparisons had a decrease in accuracy for the hybrid paradigms. 

Table 4.9 - Overall average accuracy difference between the hybrid and pure paradigms [%] 

  

Offline Continuous 

Group 1 
P300 -3.45* -3.94* 

SSVEP -3.00 -2.56 

Group 2 
P300 -6.49** -8.98** 

SSVEP -6.25** -2.38 

Note. Paradigms that are statistically different between the hybrid and pure paradigm with *: p<0.05, 
**: p<0.01 

4.7.1.3 Time response and accuracy 

The selector functions were designed so that the response time was smaller when the accuracy was 

higher. Since the selector function is weighted by the offline accuracy, higher accuracies add more points 

to their selected targets. So in theory, an inverse trend should be seen between time and accuracy. The 

relationship between the selector accuracy and the time response are shown in Figure 4.12. The only case 

where time is inversely proportional to accuracy is for the P300. The SSVEP had no relationship and the 

hybrid had a slight increasing proportional correlation between time and accuracy. The selector accuracies 

for the P300 were higher than the hybrid, and equivalent for the SSVEP and hybrid (see Figure 4.6). 

Thus, the expected behavior of inverse proportionality only applies for “high-enough” accuracies, like 

those of the P300. 

A) Continuous hybrid P300 versus hybrid Selector, B) Continuous hybrid SSVEP versus hybrid Selector. 

Figure 4.11: Scatter Plot with trend line between Accuracies 



44 
 

4.7.2 SSVEP improvement tests 

First, a progressive sample window was tested, where instead of keeping the window size to 0.5 seconds, 

the samples were compounded over time (i.e., the first window had only the first 0.5s sample; the second 

window had the first and second 0.5s samples; the 3
rd

 window had the first, second and 3
rd

 0.5s samples, 

and so on). Thus, the window size was 0.5s, and progressed to 10.5 seconds. This technique allows the 

signals still to be read every half-second, and is expected to improve feature quality, since it has an 

increasingly larger and redundant window size from which to extract the frequency information. All the 

other parameters were kept the same, i.e., the SSVEP conditioning was the same for each new window, 

the features were input to the same classifier, the 10-fold cross-validation method was used to assess the 

offline accuracies and the same electrodes were used for each group. The final accuracy from the 

progressive sample window are shown in Table 4.10 along with the offline accuracies for the SSVEP for 

all participants. 

Although there was a consistent improvement offline, due to the increasing window size at every 

incoming sample, the frequency-domain conversion also had increasing computational cost, making the 

processing slower. When this implementation was attempted online, the display could not flash at the 

intended stimuli frequency, causing the brain response to be unrecognizable by the classifier during the 

online sets. Therefore, this technique could not be implemented successfully in online trials.  

  

Figure 4.12: Selector Accuracy versus Response Time. 
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Table 4.10 - Comparison of offline SSVEP accuracies for progressive and static window size 

 Session 
Static half-second window 

[%] 

Progressive Sample window 

[%] 

P01 1st 26.4±9.7 80.3±6.9 

P01 2nd 30.8±7.6 75.2±5.6 

P02 1st 19.9±9 73.3±6.2 

P02 2nd 23.5±9.3 84.4±8.9 

P03 1st 29.2±8.7 85.4±7.9 

P03 2nd 48.9±7 78.3±9.5 

P04 1st 50.5±5.3 85.4±5.8 

P04 2nd 50.5±5.8 88.9±8.6 

P05 1st 43.8±7.8 86.7±7.9 

P05 2nd 38.1±7.6 84.5±5.4 

P06 1st 38.3±6.1 86.3±5.4 

P06 2nd 52.4±5.5 86.3±4.3 

 

Secondly, the Filter Bank method was tested for the 0.5 window (Chen et al., 2015). Similar to what was 

done by Chen et al., each sample underwent 10 sub-band filters, ranging from 5 to 105 Hz, to 

accommodate for harmonics. The original SSVEP conditioning function was modified to only contain the 

notch filter (since each sub-band of the filter bank was the new band-pass filter for the signal). The 

chosen filtering method for the filter bank was the sub-band method M3, since it had the best results in 

Chen et al.. Each sub-band ranged from a lower frequency, 𝑛 × 5, up to 105 Hz with an extra 2 Hz on 

each sub-band extreme (i.e., [3-107] Hz, [13-107] Hz,… [93-107] Hz). Then, the correlation coefficient 

of a CCA filter, compared to the paired sine-cosine waves of each one of the target frequencies and its 

first and second harmonics, were summed for each frequency. The summation was weighted to 

compensate for the magnitude decay of higher harmonics (the same optimal parameters used by Chen et 

al. were used). The final feature vector contained the summed weighted coefficients for each target 

frequency. To choose the final answer, the maximum value from the feature vector was chosen. Chen et 

al. had good results using 1.25 seconds at 1000 Hz down-sampled to 250 Hz, however, their results using 

a 0.5 second window at 250 Hz were around 33.33%, as in this study.  
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5 Discussion 

In this study, a hybrid BCI using P300 and SSVEP was tested by six participants over six sessions (two 

sessions per paradigm). Participants from group 2 (participants 4 to 6) tested a slightly modified system 

than group 1 (participants 1 to 3). Each paradigm was measured offline and online with respect to 

accuracy (offline, online continuous, and online selector), selection time and information transfer rate, 

and participant satisfaction. The hybrid accuracy, selection time and satisfaction were not as good as the 

pure P300, but they were better than pure SSVEP. The lower accuracy of the hybrid was a consequence of 

the lower accuracy of the SSVEP. 

5.1 Accuracy trend 

Overall, when analyzing the accuracies, there were no trends when comparing the first and second 

sessions for any accuracy type. Thus, we can infer that there were no learning effects between sessions. 

Events that happened, listed in Appendix 5 table, can be correlated to less accurate results. For example, 

in sessions where participants were sleepy (see Appendix 5) , the accuracy tended to be lower: participant 

1's first P300 session showed lower accuracies in the first sets; participant 2 in his first SSVEP session 

and his second P300 session had a lower accuracy; participant 3 on both his second sessions of P300 and 

SSVEP had lower accuracy; participant 4 had an accuracy low at the set 3 of his second hybrid session; 

participant 5, for the hybrid sessions had progressively lower frequencies. On participant 5's first SSVEP 

session, sudden noises started coming from the hallway from set 2 to 5. His accuracy improved after he 

wore his earbuds to attenuate noise. 

5.2 Group differences 

The offline accuracy was higher for all paradigms in the second group (see Figure 4.6), which may be due 

to the changes made to the system. For the SSVEP, adding electrodes likely added information 

redundancy and improved the quality of the feature vectors fed to the classifier. Also, the sweatband 

could have improved the contact of the electrodes against the scalp, reducing noise, for both the SSVEP 

and the P300. It is also possible that the different room for group 2 helped participants to concentrate 

better and see more contrast on the computer display, since it was a darker room. 

For the continuous and selector accuracies, only the P300 paradigms improved substantially from group 1 

to group 2, (+15.3% for the continuous and +13.1 for the selector, see Figure 4.6). The hybrid P300 

improved only for the continuous accuracy (+10.3%). This indicates that even with the adjustments made 

to the SSVEP, there was no accuracy improvement for the SSVEP. Most likely, the issue lies with the 

small window size that was attempted. Although it made theoretical sense from a signal-processing 

standpoint because of the frequency resolution (calculated with Equation ( 3.1 )), it appears that half-
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second did not have enough information to do the classification accurately using the described method. 

On the other hand, the P300 selector had an increased accuracy thanks to the modified selector function, 

which compensated for possible mistaken penalties.  

5.3 Why was the hybrid less accurate? 

It was hypothesized that the hybrid would have a higher accuracy and lower response time than both pure 

paradigms. The results showed that the hybrid had an accuracy similar to the average of the P300 and 

SSVEP accuracies or similar to the SSVEP accuracy. The hybrid’s low accuracy may result from some 

factors discussed in the following. 

5.3.1 Low SSVEP accuracy 

Since the system was designed to combine both paradigms, the consistent SSVEP misclassifications 

caused the hybrid selector’s low accuracy. Figure 4.12 shows that the SSVEP accuracy had a stronger 

correlation with the hybrid accuracy than the P300. That might indicate that unless the SSVEP achieves a 

higher accuracy, the high performance of the P300 will not be enough to improve the hybrid accuracy. 

To examine if the selector functions were the cause of the low accuracies, see Table 5.1, which 

summarizes the results of Figure 4.6. For each of the P300, SSVEP, hybrid P300 and hybrid SSVEP, the 

type of accuracy (offline, continuous, or selector) was examined to see which had the highest accuracy, 

which were tied for the highest, and which had the lower accuracies. The table shows that the selector 

functions were effective in raising the continuous accuracy for the pure P300 and the pure SSVEP and for 

the hybrid SSVEP. Thus, although the selector functions appear to work as intended on the pure 

paradigms, the hybrid selector could be improved by prioritizing the higher accuracy between the hybrid 

P300 and the hybrid SSVEP.  

Considering the sets where the hybrid SSVEP performed better (e.g. the second sets of the first session of 

participants 4, 5 and 6, which were 45.2%, 48.3% and 45%, respectively, see Figure 4.3), it is possible to 

see that the hybrid selector had a higher accuracy than the hybrid selector average (73.3%, 80% and 

66.7%, respectively, see Figure 4.5). SSVEP accuracies lower than 45% tended to penalize the hybrid 

selector’s accuracy, even if the P300 portion had accuracies close to 75%. 
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Table 5.1 - Highest accuracies comparison summary 

 P300 SSVEP 
Hybrid 

(P300) 

Hybrid 

(SSVEP) 

 O C S O C S O C S O C S 

G1 □ □ ☑ □ □ ☑ ▣ ▣ □ □ □ ☑ 

G2 □ ☐ ☑ ▣ □ ▣ ▣ ▣ □ □ □ ☑ 

Note. The columns marked with ☑ indicate the highest accuracy, ▣ indicate accuracies tied for the 

highest, and ☐ indicate the lower accuracies. O = offline, C = continuous, S = selector 

5.3.2 Accuracy reduction when combining paradigms 

Table 4.9 shows that when the P300 and the SSVEP paradigms were combined, both offline and 

continuous accuracies of the P300 dropped when comparing hybrid and pure P300. On the other hand, 

only in group 2, during the offline session, was there a significant decrease from the pure SSVEP to the 

hybrid SSVEP. 

The drop in P300 accuracy suggests that the P300 might have been harder to identify in the hybrid 

paradigm. As some participants suggested in their comments in Appendix 5, it was harder to count the 

P300 frame flashes while looking at the SSVEP flashing. The SSVEP flashing might have been 

distracting and made the participants miss one or more P300 stimuli. 

On the other hand, even with the added P300 frame appearances, it might be possible to assume that the 

SSVEP was not affected as much by the P300. Finding a different way to display the signals 

simultaneously might ease the multitasking load that was perceived in the presented configuration. 

5.3.3 Higher Mental demand 

When the participants tested the hybrid system for the first time, some of them verbally stated it was more 

overwhelming than the others (see Appendix 5). The hybrid paradigm had the highest Mental Demand 

among the three paradigms (see Figure 4.9). Only two participants felt sleepy during the hybrid sessions, 

possibly because the hybrid paradigm required multitasking. However, it still demanded a lot from the 

participants’ mental capacity. This increased participants fatigue during the session.  

5.4 NASA TLX 

Analyzing the NASA TLX results, we see that the P300 had the overall lowest workload and the hybrid 

had the highest. The hybrid having the highest workload could be expected since participants attributed 

the Performance and Mental Demand a higher importance than the other factors when weighting for the 

final workload and the hybrid had the highest score for both, as discussed above. 



49 
 

We also see that the SSVEP and the hybrid had similar workloads, which might indicate that the 

perceived workload of the SSVEP was transferred to the hybrid. We can see in Figure 4.9 that the 

Frustration, Effort and Physical Demand were perceived as equal for both paradigms. The pure SSVEP 

had a high Performance score (high scores indicate failed performance, and low scores indicate perfect 

performance), likely due to the lack of success the participants had with the SSVEP. The same lack of 

success was also felt in the hybrid. The inclusion of the P300 along with the SSVEP affected the Mental 

Demand, but also the perceived Temporal Demand. Since a there was more stimulation with the hybrid, 

participants may have felt more rushed. 

5.5 Limitations and future work 

One limitation was that the 15Hz frequency used was within the seizure-inducing frequency range. Some 

studies have shown that frequencies between 12 and 25 Hz have more potential to induce seizures (Fisher 

et al., 2005; Okudan & Özkara, 2018). When implementing this system in the future, it would be 

important to avoid those frequencies. 

The poor accuracy of the SSVEP was a limitation in trying to test the hypothesis that a hybrid would be 

better than either SSVEP or P300 alone. The poor SSVEP accuracy made the hybrid accuracy poor. Since 

a smaller static window did not work well enough to obtain a high accuracy for the SSVEP, future 

projects should use a larger window, but still keep the 0.5s window for the P300. This would make the 

minimum time selection be the required window length of the SSVEP. There would be a tradeoff, of 

slower time to select a target, for a higher final accuracy. Chen et al. (2015) have shown that it is possible 

to get window sizes of 1.25s with offline accuracies close to 90%. 

Additionally, when testing the progressive sample window, instead of combining all the windows up to 

10.5, there might be a possibility of finding a window length that does not require excessive 

computational power but that also increases the accuracy. Tests can be conducted offline to find the 

minimum window size that would provide an increment in accuracy and then it can be tested online to 

evaluate if the stimuli continue to be stable. 

In future projects, the selection function for the hybrid could be modified so that it prioritizes the higher 

performing paradigm (using logarithmic functions, instead of a linear one, for example). Although it 

would not solve the problem of the low accuracy of the SSVEP, this could be an extra mechanism to 

prevent an accuracy drop in the event that one of the paradigms does not perform properly. 

The hybrid combination of these two steady-state evoked potentials had low accuracy and a high 

cognitive load for these participants. An alternative could be to combine the P300 frame with a different 



50 
 

style of steady-state evoked potential. For example, the motion visual evoked potential (mVEP) uses 

flashing that emulates movement instead of flashing that is static (Guo et al., 2008; Ma et al., 2017). 

Depending on the simulated movement direction or speed, the brain has counter-lateral responses, which 

can help detect the participant’s desired selection (Punsawad & Wongsawat, 2017).  

Finally, to attempt to improve the hybrid accuracy, using a single feature set for both paradigms and a 

feature selector can also help improve the accuracy. Different strategies to combine both paradigms can 

change how the information is read by the classifier. Since all data would be unified, only one classifier 

would be needed and the selector functions would not need to be implemented. 

 

 

 

  



51 
 

6 Conclusion 

In this study a hybrid brain-computer interface was developed using SSVEP and P300 simultaneously. 

The display showed flashing squares at different frequencies that evoked the SSVEP responses, and a 

frame that appeared pseudo-randomly around each square evoked the P300 response. The signals were 

collected for 0.5s per trial, conditioned and then classified by two LDA classifiers. In part 1, eight 

volunteers tested different parts of the system, and the system and experiment were adapted based on the 

volunteer’s opinions.  

The results of part 1 showed that one session per day was the maximum that participants could undergo 

before experiencing mental fatigue. The colours of the squares were changed, since participants said 

green and red “blurred their view”. Finally, a cross was added to the squares, and the square sizes were 

changed to improve the simultaneous P300 and SSVEP visualization. 

In part 2, six male participants tested the hybrid and the pure paradigms. All underwent six sessions, two 

per paradigm (SSVEP, P300, and hybrid). The offline, online continuous and online selector accuracies 

were collected. The first three participants (group 1) tested the system resulting from Part 1. The last three 

participants (group 2) tested a system modified to improve accuracy and response time. 

The results of part 2 showed that the hybrid had 49.44% of accuracy, which was not higher than the pure 

paradigms, as expected. The overall best paradigm was the P300, getting up to 100% accuracy online. Its 

average accuracy was 83.3% for group 1 and 96.4% for group 2 with an ITR of 64.53 and 111.27 

bits/min, respectively. The SSVEP average accuracy was 49.5% for group 1 and 49.7% for group 2, with 

an ITR of 6.73 and 6.9 bits/min, respectively. The hybrid performed similarly for both group 1 and 2 with 

49.4% accuracy and 6.8 bits/min. The ITR was lower for both the SSVEP and hybrid, compared to the 

P300 because of the lower accuracies. 

The changes made in the system from group 1 to 2, improved the response times for all systems. The 

accuracy and ITR also improved for the P300, but had no significant impact for the SSVEP or the hybrid. 

Workload was measured to see how participants felt about using the system. Their ratings varied on each 

of the factors and they had different opinions about which factor was the most important. The averages of 

participant's adjustment weights indicate that the most important factor was Performance, followed by 

Mental Demand, followed by Effort and Temporal Demand. The lowest overall workload was for the 

P300 with 3.3, followed by the SSVEP with 5 and the hybrid with 5.4.  
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The overall results allow us to assume that, although it made theoretical sense, the 0.5s window size 

restricted the amount of information for the SSVEP classifier, making its performance low and directly 

impacting the hybrid’s accuracy. Even though the selector functions were programmed to consider the 

individual accuracies of the hybrid SSVEP and hybrid P300, the SSVEP had a greater impact on the 

hybrid’s final accuracy than the P300. Several options for improving the system in the future were 

suggested.  
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Appendix 2 

Studies Table 

Study (N = 17) Age Pop. Size Condition Paradigm Classifier Activity Accuracy [%] 

(Meng et al., 2016) 18 to 54 13 wo/ disability MI ERS/ERD filter Robotic arm 95 

(Cincotti et al., 2008) 12 to 35 4 w/ disability MI 
Statistical 

Analysis 
Cursor movement 66.57 

(Huang et al., 2019) 22 to 37 5 wo/ disability MI SVM Wheelchair 88 

(Pan et al., 2014) 16 to 70 8 w/ disability 
P300 + 

SSVEP 

SVM + Power 

Ratio Detection 
Option selection 60.52 

(Yin et al., 2015a) 18 to 35 13 wo/ disability 
P300 + 

SSVEP 
SWLDA + CCA Speller control 95.18 

(Yin et al., 2015b) 20 to 28 12 wo/ disability P300* BLDA Option selection 88.67 

(Zuo et al., 2019) 22 to 28 18 wo/ disability MI + P300 BLDA Option selection 93.94 

(Carmona et al., 2020) 29 ± 5 15 - SSEP* CCA Option selection 85 

(Thurlings et al., 2014) 22 to 26 10 wo/ disability P300* SWLDA Option selection 85 

(Saravanakumar & Reddy 

M., 2018) 
21 to 31 10 wo/ disability SSVEP 

Extended 

Multivariate 

Synchronization 

index 

Speller control 94.99 

(Z. Zhang et al., 2017) 19 to 21 8 wo/ disability P300 BLDA Robotic arm 97.5 

(Choi et al., 2018) 21 to 24 5 wo/ disability SSVEP CCA Chess game 85.8 
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(J. Z. Zhang et al., 2019) 6 to 18 26 wo/ disability MI 
PNN and Radial 

Basis Function 

Car movement 

and 

Cursor movement 

Kappa: 0.46 

(Kim et al., 2019) 37 and 47 2 w/ disability MI 
Artificial 

Potentials 
Robotic arm 57.37 

(Ehlers et al., 2012) 

G1: 6,73 

G2: 8,08 

G3: 9.86 

G4: 22,36 

11 

12 

14 

14 

wo/ disability SSVEP 
Bremen 

Algorithm 
Speller control 

58 

53 

75 

78 

(Cho et al., 2017) 24.8 ± 3.86 52 wo/ disability MI LDA Option selection 67.46 

(Yousefi et al., 2019) 29 ± 3 10 wo/ disability non-MI rLDA Option selection 67 

Note. Paradigms with * mean they were multisensory stimuli. Ehlers et al. (2012) presented results for four different age groups. 
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Appendix 3 

Session Protocols 

Protocols Steps 
Amount of time 
[min] 

Check 

Cleaning 

– pre-session 

Sanitize hands (with Isopropyl alcohol or water and 

soap) 
0.5 □ 

Sanitize chairs and desks where participant and family 

members are going to sit 
1 □ 

Cap and electrodes will be previously sanitized 0 □ 

Welcome 

Health assessment (following the AHS protocols): 

a) If it is the first session, collect contact 

information (from participants or family 

member(s)) 

b) Register date of experiment for tracking 

purposes 
c) If assessment indicates infection for 

participant or family member(s), session will 

be terminated 

5 □ 

If it is the first session, explain procedures and 

experiment objectives 
5 □ 

Technical 

Turn EEG device on and verify signal acquisition is 

working properly: 

a) If not, reboot device 

b) If problem persists, reboot computer 

2 □ 

Put electrodes (cap) on participant’s head 10 □ 

Adjust cap 
a) Pull and push cap until it reaches the right 

electrode spots 

b) Apply more gel where needed 

c) Tighten or loosen the cap to make the 

participant comfortable 

2 □ 

Verify impedance of each electrode. Repeat items 

above if: 

a) any electrode is below 5 ohms or above 100 

ohms 

b) participant feels uncomfortable 

c) electrodes are out of place in relation to the 

10/20 placement system 

1 □ 

Session Run a practice run where no results will be saved: 2 to 5   □ 
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a) Check after each practice run if participant 

feels comfortable with the system. Repeat as 

needed. 

Run the classifier training set: 

a) Set up video camera and hit record 

b) Turn on data collection 

c) Check if raw EEG data and results were 
stored in hard drive after first run 

d) After each run, allow a minute break if 

needed 

e) After the training is successfully completed, 

run the classifier training script 

 

5 to 15 □ 

Run the four feedback sets: 

a) After each run, allow a minute break if 

needed 

b) After each set, allow a 5 minutes break if 

needed 

20 to 60 □ 

Remove cap from participant’s head 0.5 □ 

Store data: 

a) Label data with date and participant code 

b) Add description stating any unexpected 

events or behaviours, if any 

2 □ 

Ask for participant member(s) opinion: 

a) fill the NASA TLX survey 

b) annotate any other verbal opinion/suggestion 

for the system or experiment 

5 □ 

Cleaning 

– post-session 

Clean cap with water and detergent 5 □ 

Brush electrodes to remove gel residues with water 

and detergent 
2 □ 

Sanitize used chairs and desks 1 □ 

Preparation Time 11.5  

Participant Time 57.5 to 110.5  

Total 69 to 122  
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Appendix 4 

Procedures and Approvals due to COVID-19 

Some extra procedures need to be considered for the safety of the researchers and the participants due to 

COVID-19. The following list of requirements were followed in accordance with the restrictions and 

guidance required by the University of Alberta: 

- Before each session, when entering the facility, a screening process will be done to ensure 

participants and parents or companions are feeling well 

- Contact information will be collected and stored for the duration of the study plus two weeks 

afterwards, in case an infectious case needs to be traced  

- Researchers and companions will wash their hands before and after contact with participants 

- Instructions on how to cough and sneeze safely will be reinforced 

- Personal protective equipment, namely masks, will be distributed for those who do not have one 

- At all times possible, social distancing will be maintained (2m apart). In situations where contact 

is needed, both participant and researcher will be using masks, and researchers will use protection 

googles.  

Before and after sessions, the chairs and equipment that were used by the participant and 

companions will be cleaned and disinfected with isopropyl alcohol. 

Approvals 

Special approvals and documentation were required to return to research activities during the COVID-19 

pandemic. The following approvals were granted before commencing the experiments: 

- University of Alberta 

o Ethics approval from the Research Ethics Office to suit safety measures 

o Environment Health and Safety (EHS) Return to Campus Plan 
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Appendix 5 

Notes taking during sessions  

The following table displays the notes and incidental comments registered during sessions. The comments 

were made by the participants about the system during the sessions. The comments were reproduced 

verbatim, except where indicated. 

 Sess. Paradigm Notes Incidental Comments 

P1 1 P300 
Feeling sleepy after lunch. 
Struggling to stay awake. 

- 

P1 4 Hybrid - 

It’s a little harder, but not too bad (referring to 
the hybrid compared to the others) 

 

I’m sorry, I think I counted one of them [P300 

frames] wrong 

P2 1 SSVEP 

Slept only 5 hours 

previous night. 

Struggling to stay awake. 

It is a lot of flashing, not going to lie* 

P2 3 Hybrid - The flashing part puts me to sleep a little bit* 

P2 4 SSVEP - This time it was nice! 

P2 6 P300 
Tired 

Struggling to stay awake 
- 

P3 1 SSVEP 

Reference fell off between 

sets 2 and 3, and was 

reattached. 

- 

P3 4 Hybrid - 
Should it [the counting] always be 7? I think I 

got 6. 

P3 5 P300 
Tired. 

Struggling to stay awake. 
- 

P3 6 SSVEP 

Slept only 4 hours 

previous night. 

Struggling to stay awake 

from sets 1-3. 

- 

P4 3 Hybrid - 
It is not that bad, but very similar to the first one 

[SSVEP] 

P4 4 Hybrid 

Struggling to stay awake 

during set 3. 

Feeling really tired during 

sets 3-5. 

I counted six this time 

P4 5 SSVEP - 
I feel this square [10 Hz] is the easier one to 

focus [on] 

P5 1 SSVEP 

Noise in the hallway 

during set 2. 

Used earbuds to block 

sound from sets 3-5. 

- 

P5 3 Hybrid 
Longer break between sets 

3 and 4 due to tiredness. 

There is way more going on. 
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I think I will take a longer break this time (after 

being asked if he needed a break) 

P5 5 Hybrid 

Feeling more tired than 

usual, especially from sets 

3-5. 

I definitely got one of them wrong 

[miscounted]* 

P5 6 SSVEP 

Feeling more tired than 

usual. 

Struggling to stay awake 

during set 3. 

- 

P6 3 Hybrid - 
I can still count well, but it’s more stuff at the 

same time 

Note. *: adapted comments. 

 


