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Abstract

Co-location pattern mining is a class of techniques to find associations among spa-

tial features. It has a wide range of applications varying from business to science.

Our work is motivated by an application in environmental health where the goal is to

investigate whether the maternal exposure during pregnancy to air pollutants could

be a potential cause to adverse birth outcomes. Discovering such relationships can

be defined as finding spatial associations (i.e. co-location patterns) between adverse

birth outcomes and air pollutant emissions. However, the increasing complexity of

the application problems poses new challenges that traditional approaches are un-

able to address well. For instance, comparing and contrasting spatial groups is one

such complex task posed as a research question in our application problem. Further-

more, traditional co-location pattern mining techniques heavily rely on frequency

based thresholds which discard underrepresented rare patterns and find exaggerated

noisy patterns which may not to be equally prevalent in unseen data. To address

limitations in frequency based methods, some association studies propose to use

statistical significance tests. The use of a spatial data transactionization mecha-

nism helps exploiting such statistically significant association mining methods to

find strong co-location patterns more efficiently. Towards this end we propose a

novel approach, AGT-Fisher, to achieve the task of transactionization and using

statistically significant dependency rules to find strong co-location patterns more

efficiently. Our experiments reveal that the proposed AGT-Fisher could indeed help

in finding co-location patterns with a better statistical significance. Furthermore

to compare spatial groups we introduce two new spatial patterns: spatial contrast

sets and spatial common sets, and techniques based on AGT-Fisher to mine them

efficiently. Our evaluation reveals that the contrast sets we found can successfully
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distinguish one group from the others. We also propose a new visualization frame-

work, VizAR, to interactively visualize complex spatial patterns such as the ones we

intend to discover. With the proposed methods and the VizAR tool, we discovered

that air pollutants such as heavy metals, NO2, PM2.5, PM10 and TPM are frequently

associated with adverse birth outcomes.
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Chapter 1

Introduction

Recent advancements in science and technology have led to a massive collection

of unconventional and rich datasets in various fields varying from telecommunica-

tion to environmental health. Spatial data sets are one such highly important, rich

dataset type that have recently started to gain attention. Although traditional spatial

statistics and GIS analysis techniques have been around for some time they are un-

able to cope with the new challenges imposed by increasingly complex spatial data

mining tasks. This necessitates the need to implement new data mining methods

which are not only capable of handling the massive size of the big spatial data but

also is capable of addressing non-conventional knowledge discovery tasks in spatial

datasets.

Spatial data mining can be defined as a branch of data mining which intends to

discover previously unknown interesting patterns from spatial datasets. Spatial out-

liers (e.g. detection of bad traffic sensors), co-location patterns (e.g. symbiotic rela-

tionships between species based on location), spatial classifiers (e.g. prediction of

habitats of endangered species), and spatial clustering (e.g. crime hotspots) are four

of the most important types of tasks of interest in spatial data mining [38]. There

are a wide range of important applications to discover these patterns in many do-

mains, such as earth and atmospheric sciences, environmental health, and telecom-

munications. The significance of the impact of some of these applications and the

complexity of the research questions posed by them require to think beyond the

traditional methods and to develop novel techniques to solve them.
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1.1 Motivation

Environmental health—a branch of public health—is a very important research field

which concerns about all the aspects of natural and man made environments that can

affect the health of humans. This is closely related to the environmental protection

which in general is concerned with protecting the natural environment to safeguard

the whole ecosystem. Addressing the challenges posed in environmental health can

make a huge impact on improving the lives of humans while benefiting the whole

ecosystem. Challenges in environmental health heavily involves analysing datasets

with natural and artificial geographic features such as communities where people

live, facilities which emit industrial air pollutants as well as studying the impact of

climate in the geographic regions which are affected by those features. This brings

us to spatial data mining which can accomplish such complex geographic analysis

tasks.

Particularly in our current work, we are motivated by a challenging research

question in environmental health: “Do air pollutant emissions play any role in ad-

verse birth outcomes?” We collaborate with the researchers at the Canadian Neona-

tal Network (CNN)1 and the Department of Pediatrics at the University of Alberta

to discover such potential relationships between industrial air pollutant emissions

and adverse birth cases in 21 Canadian cities. When forming hypotheses to an-

swer this question, maternal exposure to air pollutants during the pregnancy has to

be well understood. In fact there are many studies [17] suggesting that associa-

tions between air pollutants and adverse birth outcomes exist. Most of such studies

follow traditional statistical models [17], epidemiological methods, or cohort stud-

ies. However, discovering such associations turns out to be a spatial data mining

problem where the goal is to find co-location patterns based on the overlap of air

pollutant emission regions and maternal mobility regions during pregnancy. Such

co-location patterns can explain which combination of industrial air pollutants are

co-located or in near proximity with adverse birth outcomes hinting possible asso-

ciations. A sample dataset with co-location patterns discovered is shown in Fig-

1http://www.canadianneonatalnetwork.org/portal/
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Figure 1.1: Sample dataset with point spatial features. Instances of feature sets

{+, ◦} and {⋆,▽} are often located close to each other [29].

ure 1.1. When dealing with rich datasets which contain data from multiple spatial

regions, which have to be treated separately to identify locally and globally signifi-

cant co-location patterns, one has to look beyond the traditional co-location patterns

such as the ones shown in Figure 1.1. For instance, given adverse birth cases from

multiple cities in a country like Canada, a valid research question leading to such a

mining task would be “Is there any specific combination of industrial air pollutants

that are more significantly associated to low birth weight in Toronto area than any

other city in Canada?” To answer such questions not only the classical co-location

patterns, but also discriminative co-location patterns which can contrast a particu-

lar spatial group from the others or as we define it, spatial contrast sets could be

of great interest. On the other hand some other researcher might be interested to

know about which co-location patterns that are co-located with instances of a par-

ticular adverse birth outcome such as LBW is significant or prevalent in at least

half of the geographic areas under study (i.e. spatial common sets). There are

three major challenges when dealing with interdisciplinary problems as complex as

above: 1) Finding rare but statistically sound co-location patterns; 2) Comparing

various spatial groups to discover locally unique or globally consistent significant

co-location patterns; and 3) Visualizing discovered co-location patterns. Traditional

co-location pattern mining techniques, which are primarily based on neighbourhood

relationships and join based approaches [37], are not capable of effectively and ef-
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ficiently finding rare but significant patterns owing to the fact that they heavily rely

on defining a global prevalence or neighbourhood distance threshold [44]. Given a

strict prevalence threshold value this could lose many rare but statistically signif-

icant patterns while a low threshold is given a large number of patterns detected

could become noisy and not useful. Addressing this limitation, a transaction based

approach relying on association rule mining techniques has been proposed to find

statistically significant co-location patterns [29]. Although this approach is capable

of dealing with extended spatial objects and was able to find rare but statistically

significant patterns, it was unable to find patterns beyond traditional co-location

patterns which were restricted to treat all the given data instances as belonging to

a single spatial region. In such methods, patterns which are only significant in a

sub-region of the larger spatial region can be falsely ignored as insignificant in the

whole spatial region. Moreover such global pattern mining approaches cannot be

extended to compare spatial groups and regions to find discriminative or common

co-location patterns which would be valuable to researchers who are interested only

in a particular spatial subgroup or only in a particular group in multiple locations.

Although there exists a class of data mining techniques called contrast set mining

to discover similar discriminative associative patterns to characterize a particular

class from other classes in non-spatial datasets [33], a variant which can discover

significant contrast sets to contrast spatial groups (i.e. spatial contrast sets) does

not exist. Moreover, in the literature, no significant approach has been proposed

to discover association patterns which are consistently significant in many spatial

regions (i.e. spatial common sets). In any knowledge discovery task, visualization

plays a major role to convey the discovered patterns. Hence, several approaches

have been suggested in the past to visualize co-location patterns as well. Most of

such approaches are restricted to a single level of abstraction such as visualizing

patterns in the geographic space (i.e. pattern level abstraction) [14]. When visu-

alizing a complex co-location pattern results set, a single abstraction visualization

scheme might not be sufficient. Developing a visualizing scheme which provides

multi levels of abstractions to better understand, compare and contrast co-location

patterns in multiple regions is an open challenge in the literature.

4



1.2 Problem Definition

Co-location pattern and contrast set mining have strong foundations in the associ-

ation rule mining problem domain. Hence, we formulate our core framework to

discover spatial patterns around association rule mining techniques. In association

rule analysis, we deal with a transaction database D such that each sample trans-

action E in D can be defined as a vector of size m. Let A = {A1, A2, ..., Am} be

a set of feature-value pairs (i.e. A1 = (f1, vf1) where f1 ∈ F is a feature and vf1

is its corresponding value) called items. Then a transaction E can be defined as a

vector consisting of feature-value pairs {Ai, Aj, ..., Ak} ⊂ A. Given these values,

an association rule can be defined as in Definition 1.

Definition 1. An association rule is an implication of the form X =⇒ Y where

X ⊂ A, Y ⊂ A and X ∩ Y = ∅.

Confidence c in X =⇒ Y is the percentage of data instances in D containing

X also containing Y (i.e. P (Y |X)). Support s for X =⇒ Y is the percentage

of data instances in D containing X ∪ Y . Traditional algorithms discover strong

association rules by verifying that their s and c exceed some user defined thresholds

[6]. Classification Association Rule (CAR) are a special case of general association

rules [8, 30]. Given a set of class labels C = {c1, c2, ..., cq} where each instance E

in D is associated with a class label ci and |C| = q, a CAR can be defined as an

association rule of the form X =⇒ ci. In such a rule X ⊂ A and ci ∈ C.

Given a spatial database S, using a suitable transactionization technique if it can

be transformed into a transaction database DS where multiple spatial instances are

aggregated into one transaction based on proximity, item set AS represents a set of

spatial feature-value pairs and ES represents the data instances in DS . Given these,

based on the definition of the association rules, a co-location rule can be defined

as in Definition 2 [31].

Definition 2. A co-location rule is an implication of the form X =⇒ Y where

X ⊂ AS , Y ⊂ AS and X ∩ Y = ∅.

Contrast sets are another class of important associative patterns which are used

5



to characterize a particular class and contrast it from the others. It can be defined as

in Definition 3 [36].

Definition 3. Contrast sets are conjunctions of attribute-value pairs, X ⊂ A, de-

fined on mutually exclusive classes from C such that no Ai ∈ X occurs more than

once.

Contrast sets can be discovered using CARs. STUCCO algorithm [10] is one of

the foremost technique to mine contrast sets. Originally, if set X in class association

rule X =⇒ ci suffices STUCCO deviation conditions as defined in Equation 1.1

and 1.2, then X is considered as a contrast set for class ci which can distinguish

ci from the other classes. Condition in Equation 1.1 imposes that the support of a

contrast set is significantly different across various groups. The second condition in

Equation 1.2 imposes that the difference of support of a contrast set across different

groups is sufficiently large.

∃i,jP (X|ci) 6= P (X|cj) (1.1)

max
i,j

|support(X, ci)− support(X, cj)| ≥ min dev (1.2)

Spatial contrast sets can be recognized as a specific case of general contrast sets

where the classes which are used to contrast are in fact groups in geographic space.

This problem is further explored in Chapter 4. Spatial common sets are another

type of association patterns which also can be defined as conjunctions of attribute

value pairs on mutually exclusive classes similar to contrast sets as in Definition 3.

However, the significance conditions of common sets are slightly different to that

of contrast sets. Conditions to find common-sets as defined in Chapter 4 verify

that the difference of statistical significance of a particular pattern among various

groups are below a certain threshold and the pattern exists in a user defined fraction

of the groups under study. No significant work exists to define or find common sets

in spatial or non spatial datasets. Lessons learned from existing works in contrast

set mining such as STUCCO are useful in devising methods to find spatial contrast

sets and spatial common sets.
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1.3 Thesis Statements

To address the drawbacks and limitations posed by previous works, in this thesis we

investigate the application of statistically significant dependency rules to discover

advanced spatial patterns. In doing so, we pose the following theses:

Thesis 1 Statistically significant dependency rules can be used to efficiently and

effectively detect statistically sound co-location patterns irrespective of

their prevalence.

Thesis 2 Statistically significant dependency rules can be used to efficiently and

effectively discover statistically sound spatial contrast and common sets.

Thesis 3 Visualization tools can be devised to effectively explore a large number

of co-location patterns in various spatial regions and can be helpful in

discovering as well as interpreting spatial contrast and common sets.

1.4 Thesis Contributions

Summaries of our major contributions while investigating the theses we posed are

as follows:

1. A proposal of a novel grid based transactionization algorithm, AGT, for spa-

tial datasets.

2. We introduce two novel types of spatial patterns: 1) Spatial contrast sets; and

2) Spatial common sets, and propose two new algorithms, DiSConS and DiS-

ComS, to efficiently and effectively mine those patterns that are statistically

significant, in a spatial dataset.

3. A proposal and implementation of a visualization system, VizAR (Visual-

izing Spatial Association Rules), to visualize spatial patterns such as co-

location patterns, spatial contrast and common sets.
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4. A proposal of a design for a novel spatial pattern discovery framework: Di3SP

(Discovering Statistically Significant Spatial Patterns), to mine and visualize

statistically significant co-location patterns, spatial contrast and common sets.

5. We present the spatial patterns discovered by using the above spatial pattern

discovery tools and techniques, indicating potential association between sets

of various industrial air pollutants and adverse birth outcomes in 21 cities in

Canada. This is the first time that co-location pattern mining techniques have

been applied to solve this particular problem in environmental health.

1.5 Research Methodology

The work in this dissertation is motivated by an interdisciplinary research problem

in Environmental Health—finding relationships between industrial air pollutants

and adverse birth outcomes. This is one of the primary goal of the Data Mining

and Neonatal Outcomes (DoMiNO) project team which we are part of. DoMiNO

project involves an interdisciplinary team of researchers including investigators

(from computing sciences, neonatology, pediatrics, epidemiology, bio-statistics and

knowledge translation areas) from five universities across Canada / US includ-

ing University of Alberta and knowledge users from government (Health Canada),

Canadian Perinatal Programs Coalition and social organizations (the Canadian Part-

nership for Children’s Health & Environment). Due to the interdisciplinary nature

of the project and the motivating problem we base our research methodology on

the CRISP-DM (CRoss-Industry Standard Process for Data Mining) process. In the

following, we discuss the various phases of our methodology.

1.5.1 Problem Understanding

Discovering potential associations between industrial air pollutants and adverse

birth outcomes is realized as a spatial pattern mining task. Most closest pattern

mining approach which could be of interest in the context of this problem would

be co-location pattern mining methods. However, the stakeholders of the DoMiNO

project are interested in not only finding rare but statistically sound relationships
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between air pollutants and Adverse Birth Outcome (ABO)s, but also on compar-

ing various spatial groups to discover discriminant or common association patterns.

This requirement has been emphasized mainly due to the fact that the DoMiNO

works with various levels of data from provincial (e.g. the province of Alberta)

to National (e.g. Canada). To understand unexplained phenomenon in such lev-

els it is necessary to look beyond traditional co-location pattern mining techniques.

With this initial understanding of the problem we surveyed the existing literature

on spatial co-location patterns mining techniques to understand the drawbacks and

limitations in existing works. Furthermore we also surveyed another set of impor-

tant techniques called contrast set mining to understand how to compare two groups.

The lessons learned in this phase were useful in coming up with new pattern mining

methods in the later stages of the research.

1.5.2 Data Collection and Preprocessing

We are primarily interested in two levels of data: Provincial level and City level,

at this stage of our work. ABO data was collected by practitioners from the par-

ticipating health organizations of the DoMiNO project. Provincial ABO data for

Alberta was obtained from Alberta Perinatal Health Program (APHP) and ABO

data for major cities in Canada was obtained from CNN. An expert guided data

collection was carried out to obtain industrial air pollutants from NPRI (National

Pollutant Release Inventory) and climate data from Environment Canada to carry

out the research.

Once we obtained the raw datasets it has been transformed into a relational

schema to ease the storage and preprocessing. Due to the privacy concerns of the

patient data, we undertook necessary anonymization steps before further analysis.

Following that we applied tokenization, aggregation, table lookups and joins, re-

dundancy operations, spatial indexing, and etc. to clean and construct a focused

rich spatial dataset.
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1.5.3 Designing Analytical Methods

Based on the lessons learned during our literature survey, we designed a new grid

transactionization technique—to transform spatial datasets into an easy-to-mine

transaction database—and a set of novel co-location pattern mining techniques

which are capable of building hypotheses to the questions asked by the stakehold-

ers of the DoMiNO project. Those pattern mining techniques are designed to dis-

cover rare but statistically significant co-location patterns and discriminating (i.e

patterns which can contrast a particular group from the others) or common co-

location patterns for various spatial groups. Most of these novel techniques utilize

the insights from the existing techniques and are inspired by the questions posed

by the DoMiNO stakeholders. Especially all the methods are designed to utilize

statistically significant dependency rules to test their efficacy in finding relevant as-

sociations. Furthermore, our analytical methods can easily incorporate temporal

information if available. However, the chemical emission data we use do not con-

tain such information yet. Hence, we do not explore the temporal aspects of our

methods in current study. Due to the abstract nature of the original problem during

the research cycle, we had to revisit the problem understanding phase more than

once during designing of the analytical methods.

1.5.4 Evaluation

Our evaluation of the developed methods to find significant rules is carried out in

two phases:1) We validate the efficiency and effectiveness of the usage of statisti-

cally significant dependency rules in the pattern mining methods we propose; and

2) With the help of external experts and knowledge users in DoMiNO project we

evaluate the quality of the associations we discovered to verify the applicability of

our techniques in solving the intended real world problems.

Internal Evaluation

Internal evaluation is primarily carried out on well known transaction or frequent

itemset mining datasets from public domain to validate the efficacy of our proposed

methods in discovering intended patterns successfully.
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External (Expert) Evaluation

External evaluation primarily focuses on the success of the proposed algorithms

in discovering associations which can form hypotheses that are actually relevant

to the stakeholders of the DoMiNO project. This evaluation is performed with

the help of the investigators and experts in pediatrics, neonatalogy, medicines and

environmental health from DoMiNO team. Their feedback is helpful in tweaking

the parameters and configurations of the proposed models.

1.5.5 Dissemination

Some of the methods and results proposed in this thesis are published in peer-

reviewed journals and conferences [33, 29]. Some other manuscripts are still under

review. We also presented the associations of ABOs and air pollutants we discov-

ered at the two-day DoMiNO full team workshop held at University of Alberta in

August, 2016.

1.6 Outline of the Thesis

We present our literature survey on related association pattern mining techniques

in general in Chapter 3. Here, we provide an overview of the work on spatial as-

sociation patterns such as co-location patterns and its counterpart association rules.

In addition a review on contrast set mining to find discriminating patterns between

groups is also presented.

In Chapter 3 we present our surveys, methods and experiments on devising

a statistically significant co-location pattern mining approach using statistically

significant dependency rules. We first present the survey we carried out to re-

view existing work on co-location pattern mining to learn the drawbacks and the

ways to overcome the limitations in them. There we introduce our novel grid-

transactionization technique and how can statistically significant dependencies can

be effectively used in combination with grid transactionization to find statistically

significant co-location patterns. The foundation of our Di3SP framework is based

on these techniques. We apply our proposed co-location pattern mining approach
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to mine association patterns of industrial air pollutants and ABOs on APHP provin-

cial ABO dataset from Alberta. We present our evaluation of the discovered patterns

with the help of domain experts. In this chapter we also validate our approach with

the experiments in public transaction datasets. This is the first component in our

spatial pattern discovery framework.

In Chapter 4, we extend our co-location pattern mining framework proposed in

Chapter 3 by introducing two new algorithms, DiSConS and DiSComS, to mine two

novel types of patterns called spatial contrast sets and spatial common sets. We ini-

tially present our survey of the literature to understand existing techniques to com-

pare and contrast two groups. Then we proceed to introduce what it means to com-

pare spatial groups and define spatial contrast and common sets. We propose two

novel algorithms to mine statistically significant spatial contrast and common sets

based on the approach suggested in Chapter 3. We also present the results produced

by applying the implemented proposed techniques on CNN ABO dataset from 21

Canadian cities to find discriminative or common spatial association patterns be-

tween industrial air pollutants and adverse birth outcomes among CNN cities. We

also present proof to the validity of our approach using a synthetic dataset. This is

the second component in our spatial pattern discovery framework Di3SP.

We outline our proposed spatial pattern visualization scheme VizAR in Chap-

ter 5. How to overcome challenges when visualizing co-location patterns in mul-

tiple spatial regions, spatial contrast sets and spatial common sets are explored in

that Chapter. This is the third and the final stage of our spatial pattern discovery

framework.

In Chapter 6 we conclude our work. There we summarise our results and dis-

cuss the impact of the discoveries we made addressing one of the major research

challenge faced by the health informatics community. We also discuss the impact

and the applicability of our proposed frameworks, methods, and tools in various

applications, contexts and in datasets. We also discuss what can be done to extend

the current work and any limitations in our proposed work.
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Chapter 2

Related Work

This thesis is mainly focused on discovering three types of spatial association pat-

terns: 1) Co-location patterns; 2) Spatial contrast sets; and 3) Spatial common sets.

These three types of patterns have strong ties with patterns of interest in the areas

of association rule mining, co-location pattern mining and contrast set mining. In

this chapter we review some of the major methods in those areas to understand the

above connection and to learn limitations in them.

2.1 Association Rule Mining

Spatial association patterns, or in particular co-location patterns, have strong roots

in traditional association rule mining techniques. Hence, understanding the strengths

and weaknesses in existing association rule mining techniques is essential to design

new spatial association pattern mining techniques. An association rule is an impli-

cation of the form X → A where X and A are subsets of items from I = i1, i2, ...im.

I is the set of unique items in a given transaction database D. These rules intend

to discover relationships between variables or items in datasets. For instance the

X → A rule explains that if the items or variables in the set X occur or exist to-

gether, then the items in set A will also co-occur or coexist along with X . Various

measures can be used to determine the strength of such an implication rule. Two

commonly used measures are called support and confidence. Given a transaction

database D where each transaction or data instance T (i.e. T ∈ D) is a subset of

items I existing in that transaction, support and confidence can be defined as in
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Equation 2.1 and 2.2 respectively.

support(X → A) =
|T ;X ∪ A ⊂ T |

|D|
(2.1)

confidence(X → A) =
|T ;X ∪ A ⊂ T |

|T ;X ⊂ T |
(2.2)

The first algorithm proposed to mine association rules based on support and

confidence is called Apriori [7]. Apriori exploits the monotonicity property of the

support measure and mine for frequent itemsets. Monotonicity property states that

if an itemset is frequent in a dataset all the subsets of that itemset are also frequent.

Apriori starts by discovering all frequent single items and expand them to larger

itemsets as long as their support is above the predetermined threshold. Once all

such frequent itemsets are found, discovering association rules is straightforward

given the confidence threshold. However due to computational inefficiency of this

approach in high dimensional large datasets, more robust approaches such as FP-

Growth [21] and ECLAT [47] have been proposed. These approaches either use

efficient tree data structures or efficient methods to compute the support without

generating candidate subsets to achieve a much higher performance improvement

over the traditional Apriori algorithm. Although efficient, the underlying measures

(i.e. support and confidence) used in FP-Growth and ECLAT are as same as in

Apriori. Hence the discovered patterns are similar in any association rule mining

algorithm based on support and confidence measures given that same threshold val-

ues are applied.

All of the above support-confidence based rule mining techniques face sev-

eral downsides. For instance, determining the support and confidence threshold

is harder. If a low threshold for support or confidence is used, the resulting set

might be consisted of a very large number of noisy and useless rules. On the other

hand if a stringent threshold is used, the model may face the risk of loosing rare but

significant patterns [40]. To mitigate some of these drawbacks several of previous

works introduced additional rule quality measures such as the lift to measure the de-

pendency between antecedent and the consequent. Despite having these additional

measures most of the traditional association rule mining techniques are strongly

dependent on support and confidence thresholds.
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2.2 Co-location Pattern Mining

Many techniques have been proposed in the past to discover co-location patterns.

Understanding the drawbacks and limitations of those techniques leads to design

better co-location mining methods. Co-location patterns are a specific type of asso-

ciative patterns which represent sets of features whose data instances are co-located

in the geographic space. In other words co-location patterns can be defined as as-

sociation patterns or rules in spatial datasets. Traditionally frequency or prevalence

based techniques have been used to detect co-location patterns. However, in recent

years statistical tests based co-location pattern mining techniques have gained much

more attention. We discuss about some of the statistical tests based approaches in

Chapter 3.

Traditional co-location rule mining techniques are mainly based on the neigh-

borhood relations and participation indices [37]. In such methods, co-location pat-

terns were of the form C1 =⇒ C2(PI, cp), where C1 and C2 are spatial feature

sets, PI is the participation index or the prevalence measure for the given rule and cp

is the conditional probability. The given rule is considered prevalent or interesting

only when at least PI% of the instances of each of the features in the rule form a

clique with the instances of every other feature in the same rule according to a de-

fined neighbourhood relation. Similar to association rule mining, these techniques

use (k-1) candidate sets to generate (k) candidate sets. To find rare patterns, some

of the previous works have introduced a new measure called max participation ratio

maxPR% where, if maxPR% instances of at least one of the features in the given

pattern form a neighbourhood relation with instances of all the other features in

the same pattern, then that co-location pattern is considered prevalent [23]. Some

methods have also considered extended spatial objects to find co-location patterns.

One such method prunes the candidate patterns if the region covered by the fea-

tures in the given pattern is below a certain coverage ratio threshold [44]. Most

of these techniques depend on user defined thresholds for interestingness measure

and detect a large number of noisy patterns when the threshold is low, and lose

rare but interesting patterns if the threshold is high. In one of our works [29] we
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have provided a comprehensive review and drawbacks in the traditional methods.

Furthermore we continue our discussion on statistical test based co-location pattern

mining in Chapter 3.

2.3 Contrast Set Mining

Previous works show that characterizing a group or a class to contrast it from others

is a challenge as important as clustering or classification tasks. Such a characteri-

zation can be meaningfully performed with the help of association patterns. For in-

stance, when given a clinical dataset with two clusters, healthy and non-healthy, an

intriguing question researchers would like to ask is: “what are the key variables that

can differentiate between healthy and non-healthy people?” The difference between

contrasting groups in such situations can be described using conditional probabil-

ities [36]. As an example consider, P (Healthy|Smoking ∧ Exposure − to −

carcinogens) and P (Non−healthy|Smoking∧Exposure− to− carcinogens).

These conditional probabilities can be interpreted as association rules as follows:

(Smoking ∧ Exposure − to − carcinogens) =⇒ Healthy and (Smoking ∧

Exposure − to − carcinogens) =⇒ Non − healthy. The antecedents of these

rules could be representing a contrast set [36]. Although contrast set mining is

the primary technique used in the literature to find such patterns, there are several

other related techniques such as emerging pattern discovery, subgroup discovery

and treatment learning which has attempted to pursue goals close to that of contrast

set mining but with different specific objective / optimization functions.

In contrast set mining literature there are two main pattern discovery approaches

followed. The first approach—the traditional approach—is focused on implement-

ing dedicated techniques to find contrasting patterns whereas the second approach

is relied upon association rule mining methods to find contrasting patterns. Some

techniques in both of the above approaches adapt statistical significance tests in dif-

ferent levels and forms to confirm the significance of the patterns found, while the

others primarily rely on frequency based measures.
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2.3.1 Traditional Approaches

Contrast sets were first introduced through the STUCCO [10] algorithm as a way to

contrast a specific group from the others. As explained in Section 1, STUCCO uses

two deviation conditions to find such strong contrasting patterns. The first condition

enforces that the support of a contrast set is significantly different across various

groups while the second condition makes sure that difference is large enough. The

CIGAR method [22] follows up the work of STUCCO by adding more pruning

conditions based on correlation and support. Although some form of statistical tests

are used to quantify the significance of support difference, most of these traditional

approaches like STUCCO and CIGAR depend on frequency based thresholds such

as group support, and prone to the limitations imposed by them.

2.3.2 Association Rule based Methods

The contrast set learning problem is intrinsically connected to the association rule

mining problem where several of the previous methods directly exploit this con-

nection. One advantage of this approach is that this allows us to use the existing

vast array of well developed association rule mining techniques to find more effec-

tive contrast sets efficiently. Traditional approaches such as STUCCO and CIGAR

emphasize on representing the contrast sets as first-kind of association rules which

take the form: Group =⇒ Contrast− set [10, 22]. However, techniques such as

MagnumOpus that rely on association rule mining techniques are primarily based

on the second-kind of rules which take the form: Contrast − set =⇒ Group

[42, 36]. Recent works in the literature have empirically proven [36] that only the

second-kind of contrast sets are possible.

Previously it is argued that contrast set mining is simply a specific case of asso-

ciation rule mining task [42]. To prove that, MagnumOpus software has been used

to mine second-kind of association rules and the antecedents of the mined rules

were compared against the contrast sets mined by the STUCCO. The results proved

that MagnumOpus was able to extract all the contrast sets mined by STUCCO plus

some additional rules. However, the results were unable to clearly conclude that
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having more rules is better or not. MagnumOpus software tests the improvement

of the confidence of a rule over its immideate generalizations using binomial sign

tests or Fisher’s exact test among other measures to prune rules. It is claimed that

to find statistically significant rules the criterion used by MagnumOpus is insuffi-

cient [18]. Especially it is being proved that the rules found in MagnumOpus are

redundant. These findings further challenge the usage of rules found by Magnu-

mOpus as contrast sets. On the contrary, in a different data set it is found that

MagnumOpus only detects a subset of the contrast sets found by STUCCO. On the

otherhand, Terry Peckam [2] disagrees and argues that MagnumOpus only detects

a subset of the contrast sets detected in STUCCO [22]. Other approaches have

been proposed recently to use traditional association rule mining techniques such

as Apriori in combination with the STUCCO deviation conditions to discover con-

trast sets. The approach was simply to mine classification association rules of the

form X → Group (i.e. second-kind association rules) with user defined support-

confidence thresholds and use STUCCO constraints to prune out the irrelvant rules.

In another work Apriori based association rules have been used to find contrast sets

in brain stroke datasets [26]. All such techniques which are based on Apriori like

algorithms [6] inherit limitations imposed by their support and confidence thresh-

olds.

2.3.3 Other Related Methods

There are two other related classes of techniques called, emerging pattern discovery

and subgroup discovery, which shares some of the objectives of contrast set mining

task [34]. Similar to contrast sets, emerging patterns are also association patterns

which aim to “capture emerging trends in time stamped data” [16]. Typically, an

emerging pattern in class C1 over class C2 is recognized using growth rate measure

as defined in Equation 2.3.

growth rate(X) =
support(X ∪ C1)

Support(X ∪ C2)
(2.3)

where support(X∪C1) is the relative frequency of data instances having X itemset

and belonging to C1 over number of data instances belonging to class C1. If this
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growth rate is larger than a given threshold it is considered as an emerging pattern

in class C1. On the other hand sub group discovery methods also use Apriori like

algorithms to mine for association rules but they use different objective functions

to optimize for the classification accuracy [34]. Both emerging pattern mining and

subgroup discovery tasks are aimed at building a classification model using the pat-

terns discovered. Hence, to quantify the quality of the patterns, often classification

accuracy related measures have been used such as the one shown in Equation 2.4 .

WRAcc(X,C) =
p+ n

P +N
×

(

p

p+ n
−

P

P +N

)

(2.4)

where p is the number of true positive, n is the number of false positive, P is the

number of actual positives and N is the number of actual negatives.

2.4 Discussion

Existing association rule mining frameworks have been primarily focused on fre-

quency based measures such as support and confidence to measure the quality of

the rule. This causes certain drawbacks such as high noise or loss of rare patterns.

To mitigate this, alternative rule mining approaches have been proposed recently

which uses statistical significance tests to measure the rule quality. This is further

discussed in Chapter 3. Usage of such such statistical tests could eliminate the lim-

itations posed by frequency based methods and able to find rare but statistically

significant patterns.

Traditional co-location pattern mining frameworks also pose several drawbacks

mostly due to the dependency with frequency or prevalence based measures to

quantify the quality of the patterns [29]. Hence, such traditional approaches could

either miss rare patterns or add lot of noise to the resulting pattern set depending

on the level of threshold selected. This motivated the usage of statistical significant

tests, similar to the association rule mining literature, to find co-location patterns.

Moreover, instead of developing specific co-location mining techniques it is encour-

aged to exploit existing association rule mining frameworks with a suitable transac-

tionization approach due to various advantages it brings [5, 29]. For instance, given

the vast array of existing AR mining techniques catering various concerns such
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as efficiency and effectiveness, designing a co-location pattern mining algorithm

which can address similar concerns becomes relatively less complex if built on AR

mining techniques. Similarly, exploiting association rule mining techniques to de-

sign better contrast set mining algorithms would allow to focus on better pruning

mechanisms by being able to rely on the efficiency and the quality of the candidate

sets produced by using a suitable association rule mining algorithm. We emphasize

the usage of statistical significance tests in such association rule mining algorithms

when discovering spatial patterns. Mainly because it can efficiently eliminate pat-

terns which do not show true statistical significance and it can find patterns which

are rare but statistically significant.

On the contrary, techniques in emerging pattern mining and subgroup discovery

show much less concerns about statistical significance of the patterns. They primar-

ily focus on building better classification systems [34]. Although the pattern quality

measures in these different pattern mining techniques are indirectly compatible to

some level, contrast set mining techniques primarily vary because of the statistical

significance tests used while catering for different trade-offs with other additional

frequency based measures.

In this thesis our primary objective is efficient and effective discovery of three

types of patterns as we explained above. Although a number of studies have been

performed on one of those pattern types—co-location patterns—no significant prior

works have been carried out to find other two types of patterns, contrast sets and

common sets for spatial data. Although some work exist in emerging pattern mining

literature to discover spatial patterns due to the differences in objective functions

and lack of statistical significance in the patterns found requires further work to

be carried out in the problem domain [13, 15]. On the other hand in the literature

not many works have been carried out to find common association patterns among

different groups. A proper framework and evaluation criterion become essential to

tackle the common set discovery problem when it comes to complex datasets such

as the spatiotemporal data.
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Chapter 3

Statistically Significant Spatial

Co-location Patterns

One of the primary objectives of our work is to find significant co-location pat-

terns. In this chapter we outline the problem and current state-of-the-art in finding

“significant” co-location patterns, discuss our proposed approach and present our

experimental results.

3.1 Background

Co-location pattern mining is an important class of spatial data mining algorithms

which aims to discover relationships and associations among various spatial fea-

tures. More specifically a co-location pattern can be defined as a “set of spatial

features which are often located together in spatial proximity”. As an example

consider Oxpecker, a bird species which forms a symbiotic relationship with large

mammals such as Impalas and Zebras. Because of this relationship, Oxpeckers are

restricted to the neighbourhood of such large mammals forming a co-location pat-

tern. Discovering such patterns among other similar species is helpful in learning

unknown symbiotic relationships. Similarly, there is a wide range of applications

of co-location pattern mining in earth and atmospheric sciences, environmental and

health sciences, telecommunications and many more. However, in this thesis we

are specifically interested in answering a particular research question in environ-

mental health: “Do industrial air pollutants have any impact or associations with

adverse birth outcomes?” This problem can be directly converted to a co-location
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pattern mining problem where the objective is to find co-location rules of the form:

industrial air pollutant set → ABO where the instances of participating an-

tecedents and consequent features can be seen to co-occur in the near geographic

proximity.

When searching for co-location patterns, frequency based methods fail due to

the usage of ambiguous prevalence thresholds and inability to capture rare patterns.

On the other hand, in co-location patterns, quantifying the dependency between the

antecedents and the consequent could be a great way to measure the significance of

the rule. Although the confidence measure attempts to capture this dependency in

terms of conditional probability, there is no guarantee that the measured confidence

level of a rule would hold in unseen data. In other words the dependency of a rule in

observed data should not be merely by chance but it should have a true dependency

in future data or in other sampled datasets as well. Statistical significance tests can

be used to quantify this notion of true dependency. In Chapter 2 we also concluded

that association rule based techniques could be of great use when designing new co-

location pattern mining methods. Hence in this Chapter we discuss how statistically

significant dependencies (rules) could be used to accomplish this task.

3.1.1 Problem Definition

Given a spatial dataset S where s ∈ S (i.e. instances in spatial dataset) can be de-

fined as a vector, s = [long., lat., featurei, othercontextualdata, ...], consisting

of longitude, latitude, spatial feature ID (e.g. Pollutant1, Pollutant2, ABO1, ...)

and other contextual data such as climate information (e.g. average wind speed and

direction). This S dataset can be transformed into a transaction dataset DS using a

suitable transactionization algorithm [29]. In such an event, ES ∈ DS is a vector

representing a single transaction, where ES = [ID, feature1 ∈ {0, 1}, feature2 ∈

{0, 1}, ...]. ES defines a neighborhood relationship based on the s spatial instances.

A transaction represent a set of spatial features whose instances from S are in the

close spatial proximity (e.g. a spatial clique based on a given distance threshold).

Under these conditions an association rule mining technique can be applied to DS

as any other transaction database and find association rules which would be inter-
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preted as co-location rules as defined in Definition 2.

Given a co-location rule, X → A, the dependency between X and A is tradi-

tionally measured by using an empirical p-value. Empirical p-value of a co-location

rule is computed by taking the fraction of simulated datasets which yield a higher

prevalence measure or the confidence value of that rule than in the observed data.

If this fraction (i.e. p-value) is lower than a given level of significance then the rule

can be identified as statistically significant. The simulated datasets are generated to

comply with the null hypothesis which states that there is no dependency between

the instances containing antecedent features with the instances containing the con-

sequent features. However, other statistical significance tests such as Fisher’s exact

test and χ2 test are more flexible and extensively used in the recent literature.

3.1.2 Related Work

In recent years, some methods were designed to use statistical significance tests to

find dependency rules (i.e statistically significant association rules) in association

rule analysis as well as co-location pattern mining. In the following we discuss

some of the important work in this area.

Statistically Significant Association Rules

MagnumOpus is one of the early notable algorithms to consider statistical signif-

icant tests to find association rules [43]. However, due to various issues such as

redundancy and inefficiency in early methods, better approaches were suggested in

recent years. StatApriori [19] and its successor Kingfisher [18] are two such algo-

rithms proposed recently to mine statistically significant dependency rules. Out of

these the Kingfisher algorithm is proven to be far more efficient and effective in

finding non-redundant statistically significant dependency / association rules [18].

Given an association rule X → A, Kingfisher estimates the statistical significance

of the dependency between X and A using Fisher’s exact test. If X and A are truly

independent the probability pF (i.e. p-value) of occurring observed or stronger

dependency by chance can be computed using a cumulative hypergeometric distri-
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bution in Fisher’s test as depicted in the Equation 3.1.

pF (X → A) =
J
∑

i=0

(

m(X)
m(XA)+i

)(

m(¬X)
m(¬X¬A)+i

)

(

n

m(A)+i

) (3.1)

where J = min{m(X¬A),m(¬XA)}, n is the number of total transactions, and

m(.) computes the frequency of transactions containing the given items [20]. King-

fisher also identifies X → A as a redundant rule if there exists a rule, Y → A where

Y ⊂ X and M(Y → A) is equally good or better than M(X → A). Here the M is a

goodness measure such as Fisher’s p-value. Kingfisher uses enumeration trees, ef-

ficient search mechanisms and pruning heuristics to efficiently search the solution

space to find such significant rules. Other than Fisher’s exact test, χ2-test is also

used to find the statistical significance of association rules in the literature. How-

ever, Fisher’s exact test is empirically proven to be effective, efficient and much

scalable compared to the χ2-test [18].

Statistically Significant Co-location Patterns

SCCP algorithm was originally introduced to use empirical p-values to find statis-

tically significant co-location patterns [9]. SCCP defines “a co-location patterns is

statistically significant at level α if the probability (p-value) of seeing, in a dataset

conforming to the null hypothesis, a participation index value of C larger than or

equal to the observed PI-value is not greater than α”. Null hypothesis in this case

would be that instances belonging to different features are distributed across the

geographic space independent of each other. PI-value can be defined for a given

pattern, C = P,Q,R, where P,Q and R have nP , nQ and nR instances respec-

tively, as follows. If nC
P , n

C
Q and nC

R are number of distinct instances of P,Q and R

which participate in pattern C then the participation ratio can be defined for each

feature as
nC
P

nP
,
nC
Q

nQ
and

nC
R

nR
. Given these PI-value of C can be defined as the minimum

participation ratio out of all three participation ratio calculated for the P,Q and R

features. Once an R number of simulated datasets are generated using random-

ized test, the empirical p− value = R≥PIobserved+1
R+1

. However, the effectiveness and

efficiency of this approach can be dependent on the way the randomized datasets

are generated when given the null hypothesis. To avoid such issues, standardized
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significance tests such as χ2 test and Fisher’s exact test could be good alternatives.

More recently a novel grid transactionization mechanism was introduced to

transform the spatial dataset into a transaction dataset and to use traditional support-

confidence threshold values, instead of PI-value, to compute the empirical p-value

[4]. This approach took extended spatial objects as well into account. However, it

was less scalable, due to the fact that it performed a brute-force search on all the

possible patterns to find the statistically significant ones. The main reason of this

brute-force search strategy was that the statistical significance is not a monotonic

property. Hence, usage of Apriori like search algorithms is not possible to cut off

the search space. This has constrained the algorithm to define a fixed length of three

for rules in order to deal with the high computational complexity.

To eliminate the limitations (e.g. fixed size co-location patterns) in the above

transactionization-based method another algorithm, CMCStatApriori, has used a

constrained version of a statistically significant association rule mining technique

called StatApriori [19] on a transactionized spatial dataset [31]. This approach uses

Z-scores to apprxoimate an upperbound for the p-value and employs efficient search

strategies to prune the large search space. However, a more efficient and effective

algorithm to StatApriori, named Kingfisher has been suggested in the recent litera-

ture to find statistically significant dependency rules using Fisher’s exact test [20].

Based on this, in our work we primarily employ Fisher’s exact test based statistical

dependency rules in combination with a novel transactionization approach to find

co-location patterns.

3.2 AGT-Fisher to Mine Co-location Patterns

We propose an improved co-location pattern mining approach, AGT-Fisher, based

on a new grid based transactionization method and Fisher’s exact test. AGT-Fisher

transforms a spatial dataset into a transaction dataset and uses statistically signifi-

cant dependency rule analysis techniques to find co-location patterns. Algorithmic

process of AGT-Fisher is consisted of two major steps: 1) Transactionizing the spa-

tial dataset; 2) Mining for statistically significant association rules.
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3.2.1 Aggregated Grid Transactionization

Transactionization helps to transform a spatial data set consisted of extended spa-

tial objects to a set of transaction data. This immensely helps to use existing as-

sociation rule mining techniques on them for the purpose of finding co-location

patterns. However, due to the limitations in previous transactionization approaches,

such as window-centric and reference-centric models, a grid based transactioniza-

tion, Non-aggregated Grid Transactionization (NGT), method was proposed [29].

This method also has certain limitations such as when there is a reference feature,

the “combined effect” from multiple non-referential general features which do not

overlap with each other was ignored. More specifically, the NGT method derives

transactions based on the features whose buffer regions overlap a particular grid

point. To elaborate this consider an example scenario given in Figure 3.1. In this

example let us consider three spatial features A,B and C. A2, B2 and C2 are spatial

instances of those features. A static circular buffer region surrounding the spatial in-

stances represent the area affected by them. The scenario given in Figure 3.1(a) rep-

resents an occasion where the buffer regions of all three instances intersect. How-

ever in the scenario presented in Figure 3.1(b) there is no intersection among the

buffer regions of all three instances. Assume that C feature represent a patient (i.e.

reference feature) and both A and B features represent some adverse environmental

conditions (i.e. general features). Although instances of C is exposed to adverse

conditions B and A in both scenarios, the original grid transactionzation NGT [29]

is capable of capturing this relationship only when there are grid points which are

overlapped by all three buffer regions, such as in Figure 3.1(a). Since there are no

common overlaps, in the scenario presented in Figure 3.1(b) NGT is unable to find

transactions which has all A,B and C features. Addressing this issue we propose

that when given a reference feature such as C, the scenario given in Figure 3.1(b)

should produce valid transactions consisting of all A,B and C features. To achieve

this, we propose Aggregated Grid Transactionization (AGT) method avoiding the

limitation in the previous transactionization method.

Our proposed aggregated grid transactionization procedure is outlined in Al-

gorithm 1: GetAGTransactions(S). Given a spatial dataset S, Algorithm 1 initially
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(a) (b)

Figure 3.1: Intersection of neighboring extended spatial objects: (a) An intersection

of buffer regions of feature A,B, and C exist; (b) An intersection of buffer regions

of feature A,B, and C does not exist

generates a set of grid points by overlaying a grid with a suitable granularity level

(e.g. 0.5, 1 or 2 km) over the geographic space covering the instances in S. Each

point in this grid can be seen as a representation of a specific part of the correspond-

ing geographic space. Once the grid points are obtained, then Algorithm 1 defines

buffer zones around spatial objects in S. Defining such buffer zones is specific from

problem to problem. We show how to define such buffers in the case of our moti-

vating application in Section 3.3 of this Chapter. In the dataset of our motivating

application we have two types of spatial objects: 1) ABO cases, and 2) Chemical

emission points. The buffers are defined accordingly. In the next step of the algo-

rithm the constructed grid is imposed over the dataset S. Figure 3.2(a) illustrates an

example dataset with buffers around spatial point instances, and a grid is laid over it

in Figure 3.2(b). Similarly, buffers can also be created around linear and polygonal

spatial objects. In a two-dimensional space, grid points represent a square regular

grid. Due to the spheroid shape of the Earth, a grid used for real-world applications

becomes irregular. However, with a careful choice of a grid granularity this fact

should not considerably affect the accuracy of the results as we explained in our

previous works [29].

A grid point may intersect with one or several spatial objects and their buffers.

A transaction is defined as a set of features corresponding to these objects. Hence

each grid point can be considered as a potential candidate to obtain a transaction as

shown in the Algorithm 1 (see line 5-8). The granularity of the grid should be cho-

sen carefully for each application, and it may depend on an average size of a region

covered by a spatial object and its buffer. According to our previous work [29], with
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Algorithm 1 GetAGTransactions(S)

1: T = ∅: set of transactions

2: G: set of grid points

3: Build buffer zones around spatial objects of S

4: Impose a grid G over the dataset S

5: for all point g ∈ G do

6: t = get a set of features whose instances contain g

7: T = T ∪ t

8: end for

9: if Reference Feature Exists then

10: for all set Tg ∈ {T Grouped By Reference Feature ID} do

11: CombEffS = min| set Tgf ∈ {Tg Grouped By General Feature ID(s)}|
12: CombEffT = CombEffS × Aggregate Tg

13: for all set Tgf ∈ {Tg Grouped By General Feature ID(s)} do

14: RemSet = CombEffS × TOP Tgf

15: T = T\ RemSet

16: end for

17: T = T∪ CombEffT

18: end for

19: end if

20: return T

(a) (b) (c)

Figure 3.2: Grid Transactionization: (a) A sample spatial dataset with point feature

instances and their buffers; (b) A grid imposed over the space; (c) Grid points which

intersect with buffers are used to create transactions [29]

careful consideration, we have chosen 1 km as the grid granularity level. Previous

NGT approach is only consisted of the steps from 1-8 in Algorithm 1. If a reference

feature is given (e.g. adverse birth outcome), in the next part of the algorithm, our

AGT method aggregates the set of obtained transactions to derive transactions rep-

resenting the combined effect we previously explained. To perform that, initially all

the transactions in T are grouped by the distinct instance IDs of the reference fea-

ture and the algorithm iterates over the resulting set of transaction groups (i.e. Tg) to

aggregate them (see line 10-18). In each iteration, Tg is again grouped by the gen-
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eral feature IDs other than the reference feature (e.g. chemical1,chemical2,...) and

the minimum size of such a group Tgf is obtained. This is the maximum number

of transactions (i.e. CombEffS; see line 11 in Algorithm 1) which can be aggre-

gated to represent the combined effect of all the general non-overlapping features

that only overlap with the same reference feature instance. All the features in the

Tg can be combined to obtain a single transaction representing the combined effect.

This transaction is added CombEffS times to the final transaction set. CombEffS

number of transactions from each of the group Tgf is removed from the final trans-

action set (see line 13-16 of Algorithm 1) to balance out the support of newly added

aggregated transactions.

3.2.2 Fisher’s Test to Find Significant Rules

The usage of traditional association rule mining techniques, which are primarily

based on the support-confidence framework, to identify co-location rules, imposes

few major limitations as we previously discussed. On the other hand, association

rules can be viewed as dependency rules and the statistical significance of the de-

pendency might not be related to the frequency at all. Hence to address the limi-

tations in traditional support-confidence rule mining frameworks, it has been pro-

posed to adapt an association rule mining approach based on statistical significance

tests. Given a rule X → A, such tests are designed to test the dependency between

X and A. Null hypothesis in such a test will be “X and A are independent of each

other”. The statistical significance of the dependency between X and A is tested

by computing the p-value, the probability that the observed or a stronger depen-

dency would have occurred by chance. If this p-value is smaller than a given level

of significance α the null hypothesis can be rejected and it can be accepted that the

dependency between X and A is statistically significant.

Fisher’s exact test is a statistical significance test which can assess two cate-

gorical variables are non randomly dependent on each other or not. For instance

consider the two categorical variables X and A in X → A rule. X determines

either all the items in the antecedent of the given rule are present or not in a given

transaction whereas the A determine either the consequent of the rule is present or

29



not in a given transaction. This can be represented in a 2×2 contingency table as in

Table 3.1. Given this table, the hypergeometric probability of obtaining this partic-

Table 3.1: 2×2 contingency table for the X and A variables in rule X → A

A ¬A Row Total

X m(XA) m(X¬A) m(X)

¬X m(¬XA) m(¬X¬A) m(¬X)

Column Total m(A) m(¬A) m(X)+m(¬X)=n

ular arrangement of values in the observed data when the null hypothesis is that A

and ¬A are equally likely to be co-occur with X is given in Equation 3.2.

p =

(

m(X)
m(XA)

)(

m(¬X)
m(¬X¬A)

)

(

n

m(A)

) (3.2)

Let NXA is a random variable representing the absolute frequency of XA oc-

curring together. Dependency between X and A are stronger than observed in a

given dataset if NXA > m(XA) where m(XA) is the frequency of event XA in

observed data. Fisher’s p-value can be computed by accumulating all the probabil-

ities of possible datasets containing at least m(XA) data instances confirming the

co-occurrence of XA event. Hence, the Fisher’s p-value can be computed using the

following cumulative hyper-geometric distribution as given in Equation 3.3.

pF (X → A) =
J
∑

i=0

(

m(X)
m(XA)+i

)(

m(¬X)
m(¬X¬A)+i

)

(

n

m(A)+i

) (3.3)

where J = min{m(X¬A),m(¬XA)}, n is the number of total transactions, and

m(.) computes the frequency of transactions containing the given items. Given a

level of significance (e.g. 0.05) this p-value pF could be used to determine whether

a given rule is statistically significant or not. If the computed p-value is lower than

the level of significance the null hypothesis can be rejected and can conclude the

dependency in the rule X → A is statistically significant. Another important task in

statistically significant rule discovery is to identify redundant rules. A rule, X → A

can be identified as redundant if there exists a rule, Y → A where Y ⊂ X and

M(Y → A) is equally good or better than M(X → A). Here the M is a goodness

measure and in our specific case it can be considered as the Fisher’s p-value.
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We use the above explained Fisher’s exact test based framework to discover sta-

tistically significant dependency rules in a transactionized spatial dataset. The final

result would yeild us a set of statistically significant co-location patterns. King-

fisher algorithm [20] implements an efficient branch and bound search mechanism

on an enumeration tree to detect such non-redundant and statistically significant

association rules based on Fisher’s exact test framework we described. Hence we

use a constrained version of this implementation to successfully detect non redun-

dant and statistically significant co-location rules. We constrained the Kingfisher

algorithm to only produce co-location rules of the form X → A where A is one

of the desired outcome or groups such as Small for Gestational Age (SGA),LBW

or PTB. Further information regarding the implementation of the search strategies,

proofs and mechanisms of the Kingfisher algorithm can be found in [20]. As same

in Kingfisher, in our work too we do not attempt to solve the multiple comparison

issue and define a level which a rule could be called significant in a statistical sense

[20]. Instead, we mainly focus on using Fisher’s p-value as a goodness measure to

rank and compare rules. Solutions to the multiple test could be found in [41].

3.3 Results and Evaluation

We conducted experiments to validate our proposed AGT-Fisher approach and to

discover potential associations between industrial air pollutants and adverse birth

outcomes to address our motivating application problem. In this section we discuss

these experiments and results.

3.3.1 Datasets

We primarily worked with two sets of data: 1) Spatial data for adverse birth out-

comes and industrial air pollution; and 2) Association pattern mining datasets. The

first dataset was used to address our application problem and the second dataset was

used to validate the statistical soundness of the rules we detected.
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Adverse Birth Case Analysis Data

When addressing our motivating research question regarding the associations be-

tween air pollutants and adverse birth cases, our primary dataset is an adverse birth

outcome dataset which is collected by Alberta Perinatal Health Program (APHP)

during the time period of 2006-2012 from the province Alberta. We compiled this

original row dataset to obtain 333,247 birth cases with their geolocations. In this

dataset there are three main adverse birth outcomes of interest to researchers: 1)

Preterm birth (PTB) - a birth that takes place more than three weeks before the

baby is due (22,733 cases); 2) Low birth weight at term (LBW) - cases when the

weight of the baby is less than 2500g and the gestational age is on or above 37

weeks (5,485); 3) Small for Gestational Age (SGA) - those whose weight is on

or below 10th percentile for the gestational age according to Kramer statistics [27]

(29,679 cases); and 4) Pregnancy outcome - describing the birth is a still birth or a

live birth.

To obtain the air pollutant information in Alberta, we used the datasets from

the National Pollutant Release Inventory (NPRI) of Canada [12]. We only con-

sidered the air pollutant emissions from each of the industrial facilities within the

time period of 2005-2012. This dataset contains data on estimated yearly releases

of 60 chemicals/pollutants in approximately 1400 locations. The minimum and

maximum average yearly release of any chemical in the dataset is 1 kg and 85,000

tonnes, respectively.

Finally, to model the air pollutant dispersion and to extend chemical release

points to buffer regions we used weather data from Environment Canada. In par-

ticular we are interested in historical data for wind speed and direction in Canada.

We obtained this data from 26 monitoring stations in Alberta from Environment

Canada.

Association Pattern Analysis Data

In the statistically significant rule analysis literature, publicly available association

pattern analysis datasets have been used to validate the quality of the rules found

[20]. Similarly, we also use association rule mining datasets from FIMI Repository
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[1] to evaluate the capability of our approach to find statistical sound patterns which

would also hold significant in unseen data. Table 3.2 presents a summary of the

FIMI datasets we used. These datasets vary in their characteristics and used by

other researchers in the domain to test the robustness of frequent itemset mining

methods. Hence, given a association rule mining method which performs well in

these datasets, it could be expected to perform well in other transaction datasets as

well.

Table 3.2: FIMI Datasets: n=no. of rows, k=no. of items, tlen=avg. transaction

length

Data n k tlen

Chess 3196 75 37.0

Mushroom 8124 119 23.0

T10I4D100K 100000 870 10.1

Accidents 340183 468 33.8

Pumsb 49046 2113 74.0

Retail 88162 16470 10.3

3.3.2 Preprocessing

We mainly preprocess the spatial datasets to discover associations between air pol-

lutants and ABO cases. In this problem we deal with two types of spatial data: 1)

Adverse birth outcome cases (ABOs), and 2) Chemical emission points. Originally,

both of these are point spatial objects. We extend these two types of points objects

to represent the maternal mobility range of adverse birth outcome cases and the

dispersion of air pollutants more accurately. We define buffer regions around these

spatial points as proposed in our previous work [29]. For ABO cases we define a

circular buffer region with a fixed radius (e.g. 5 km) originating from the maternal

geolocation. This buffer region represents the maternal mobility range during the

pregnancy. The example dataset provided in Figure 3.3 is consisted of ABO cases

and chemical emission points. Figure 3.3(b) visualizes the static circular buffer

regions of ABO cases in contrast to the pollutant emission points.

On the other hand, the distribution of a particular pollutant in a given region

is not uniform. It could depend on the type of the pollutant, amount of release,
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weather conditions (wind, precipitation) in the region, topography, etc. We consid-

ered some of these factors such as pollutant release amount, toxicity, wind speed

and direction when defining the buffer zones of chemical emission points. However,

we do not intend to reinvent a comprehensive air pollution distribution model which

requires to consider many other variables. Instead, we attempt to capture some im-

portant real world attributes with available data to improve the overall accuracy of

our findings.

Firstly, we use the yearly amount of average chemicals released by a facility in a

given location to determine their buffer sizes. On Figure 3.3 (b) buffer zones around

chemical points are based on the amount of their yearly release at that location.

For example, the instance C1 affects a larger zone than the instance C3 which has

a smaller amount of emission. As we previously presented [29] we defined the

radius of these buffers as the natural logarithm function of the amount of chemicals

released at the given location.

Secondly, we consider the wind speed and direction when modelling the dis-

persion of a chemical. In particular we assume that the original circle buffer will

be morphed into an elliptical buffer region based on the average wind speed and

direction in that location. Figure 3.3(c) depicts these elliptical buffer regions. This

model is further explained in our previous work [29]. In this model we assume that

the area affected by the pollutant is the same irrespective of the wind speed and di-

rection. However the affected region can be different based on the wind speed and

the direction. We interpolate the wind fields data from Environment Canada, as we

suggested in our previous study [29], to obtain the average wind speed and direc-

tion in chemical emission points. Subsequently, the lengths of the major semi-axis

a and minor semi-axis b of the new elliptical buffer region can be computed using

the following equations.

a = r + γ|~v|, (3.4)

b =
r2

a
, (3.5)

where r is the radius of the original circle, ~v is the wind speed, and γ is the stretching

coefficient. In our experiments we have used 0.3 as the stretching coefficient. This
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Figure 3.3: Extending spatial objects: (a) An example spatial dataset (A - Adverse

Birth Outcomes, B and C - Pollutants); (b) Buffer sizes of pollutants vary depending

on the amount of release; (c) Buffer shapes of pollutant emission points change with

the wind direction and speed (as indicated by arrows) [29]

dataset can be directly used in the AGT method we described previously to obtain

a transaction dataset.

3.3.3 Experimental Results

We performed the AGT method on the above preprocessed spatial dataset consist-

ing of ABO cases and industrial air pollutant emission cases in Alberta and obtained

a transaction dataset. The grid granularity measure we used was 1 km. Then we

applied the constrained Kingfisher algorithm to obtain statistically significant de-

pendency rules from the above transaction dataset. We used a level of significance

of 3.7 × 10−44 to obtain a set of 237 very significant co-location patterns. We rec-

ommend to relax this level of significance up until 0.05. However the final decision

should be based on the application problem and the expert opinions. A summary of

findings is presented in the Table 3.3.

HCL, Xylene, toluene, Isopropanol and Chromimum or pollutants under the

heavy metal category are frequently presented in the antecedents of patterns we

found (at least in a 10% of the patterns). Some interesting co-location patterns we

discovered for Alberta are Chromimum & Toluene → PTB, SulfurDioxide

& Chromimum → LBW and Chromium → SGA. However, in APHP data,

we have not considered widely known air pollutants such as NO2 and Particulate
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Table 3.3: Summary of the co-location patterns found in APHP data

ABO Variable Results Most Common Antecedents

Pregnancy Outcome

53 rules were

detected indicating

pregnancy outcome

is a stillbirth

Hydrochloric Acid,

Xylenes, Toluene,

2-Butoxyethanol,

Chromium metallic,

Isopropanol, Ethylene

LBW

22 rules were

detected indicating

a low birth weight

Hydrochloric Acid,

Chromium metallic,

Toluene, Isopropanol,

Xylenes

SGA

65 rules were

detected for small

for gestational age

variable

Hydrochloric Acid,

Chromium metallic,

Isoporpanol, 2-Butoxyethanol,

Toluene, Xylenes, Ethylene

PTB

97 rules were

detected for preterm

birth variable

Hydrochloric Acid,

Chromium metallic,

Toluene, Xylenes,

Isopropanol, Ethylene,

2-Butoxyethanol

Matter (PM) which causes adverse health effects. In our city wide analysis with

CNN dataset (refer to Chapter 4) we expanded the industrial air pollutant set under

study to include these important pollutants.

3.3.4 Evaluation

We evaluate our proposed approach to find statistically significant co-location pat-

terns under two different aspects. Firstly, we evaluate the internal mechanisms of

the approach to produce quality patterns and secondly we empirically investigate

the quality of the industrial air pollutant and adverse birth case associations we

found, with the help of DoMiNO experts from the application domain.

Effect of Aggregated Grid Transactionization

We compared our AGT transactionization method with a grid transactionization

method without aggregation [29] to evaluate the effectiveness of our proposed ap-

proach. We used APHP ABO dataset with the level of significance 0.05 to dis-

cover co-location patterns with AGT-Fisher and NGT-Fisher (Non Aggregated Grid
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Transactionization with Fisher’s Test). A summary of our results is given in Ta-

ble 3.4. We used lift, as shown in Equation 3.6, to measure the quality of the two

Table 3.4: Effect of Aggregated Grid Transactionization

Method Transactions Rules Avg. Lift

AGT-Fisher 30200 3594 16.9

NGT-Fisher 31412 1270 8.9

different rules set. Lift can measure the dependency between the antecedent and the

consequent of the rule. If the lift is 1 it means that the antecedent and the consequent

are independent of each other whereas if it is larger than one they are dependent on

each other. The average lift of the rules found when NGT was used is lower than

the average lift of the rules when AGT was used. There are 1119 common patterns

found by both methods. The average lift of those is 14.49. This indicates that the

rules NGT shares with AGT method are statistically sound ones. Moreover, the

average lift of the rules, discovered only when AGT method is used is 17.98. This

clearly indicates that the AGT method can yield statistically sound rules.

lift(X → A) =
support(X ∪ A)

support(X)× Support(A)
(3.6)

leverage(X → A) = support(X ∪ A)− (support(X)× Support(A) (3.7)

Effect of Statistically Significant Dependencies

The objective of our approach is not only to discover patterns prevalent in observed

dataset, but also to find patterns which are significant in unseen data. To test this

we carried out a set of experiments using the association rule mining dataset from

FIMI repository. We used the following cross-validation scheme: Each dataset was

partitioned 5 times to a training set and a testing set. In each of these 5 times,

we used 2/3 of the randomly picked data as the training dataset and 1/3 of the

randomly picked data as the testing dataset. In each training set we used Fisher’s

test to find 100 best rules, with the constrained Kingfisher algorithm. The level of

significance used is 0.05. This set of 100 rules were then evaluated in testing set for

their quality and statistical soundness. We used lift (see Equation 3.6) and leverage

(see Equation 3.7) to assess the statistical dependency of the rules in the testing
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data. In this experiment, root mean squared error of lift (RMSElift) and leverage

(RMSElift) can quantify the quality of our approach. If the discovered rules are

equally strong in the future/test data, then the RMSElift and RMSEleverage values

should be close to zero. On the other hand larger values indicate that the dependency

can either be significantly stronger or weaker. A summary of our results is shown

in Table 3.5. Our results have shown that in four out of six datasets we obtained

near optimal values (i.e. close to zero) for the RMSElift and for RMSEleverage

we achieved near optimal values in all the datasets indicating that the statistical

dependencies of the rules found will hold in future data as well. In Table 3.5 we

also report the average support, confidence, lift and leverage in training data as well.

A similar set of experiments performed in one of the previous works [20] proved

that Fisher’s exact test achieves better RMSEs in lift and leverage than χ2 test.

Although χ2 test helped to achieve better average lift values in training rules, the

RMSE is very high in most of the datasets, indicating that exaggerated training lift

values might not hold strong in unseen data. Above study concludes that Fisher’s

test is more robust and effective than the χ2 test or z-score based tests (such as

the ones used in StatApriori [19, 31]) in finding statistically significant dependency

rules.

Table 3.5: Summary of the evaluation in FIMI data
Dataset Sup. Conf. Lift Leverage RMSElift RMSEleverage

Mushroom 0.2213 0.9701 4.4349 0.1678 0.2017 0.0058

Chess 0.3558 0.6952 1.9933 0.1502 0.0842 0.0071

T10I4D100K 0.0073 0.8867 68.2132 0.0073 5.4311 0.0007

Accidents 0.2394 0.8695 3.8535 0.1112 0.3199 0.0007

Pumsb 0.4492 0.9889 2.2726 0.2369 0.0304 0.0011

Retail 0.0097 0.6142 137.4570 0.0043 39.1123 0.0006

Expert and Empirical Evaluation

We evaluate the relevance of the co-location patterns discovered, regarding the ad-

verse birth outcomes and the industrial air pollutants, with the help of experts in en-

vironmental health and pediatrics. Most of the co-location patterns discovered with

AGT-Fisher indicate the involvement of chemicals, such as Xylene and Toluene,
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that are proven to cause various health hazards [25]. On the other hand heavy met-

als such as Chromium, Cadmium, Lead and Arsenic are well known carcinogens

and toxic air pollutants to cause various health hazards including Cancer [39, 24].

In our results we also discovered that many patterns associate heavy metals with ad-

verse birth outcomes. When presented our results to the experts in the domain and

in the DoMiNO from environmental health and related disciplines, it is concluded

that many patterns discovered are worth further investigating.

3.4 Discussion

In this chapter we presented our approach to use statistically significant dependen-

cies to find significant co-location rules. In our approach we introduced a novel

grid transactionization mechanism and discussed the applicability of Fisher’s ex-

act test to find statistically significant co-location patterns. In our experiments we

showed that our proposed grid-transactionization can be helpful in finding statisti-

cally sound rules better and the rules found with Fisher’s exact test can be statisti-

cally significant in not only in observed data, but also in future data as well. This

proposed AGT-Fisher approach function as the foundation to the analytical methods

we introduce in Chapter 4.

In grid transactionization, a particular grid point might capture more than one

buffer region for a particular feature, implying more contribution from that feature

than the other features in that particular location. On the other hand in a proba-

bilistic dataset, an existential probablity might be assigned to a particular feature to

indicate its impact on a specific grid point. In our proposed AGT approach, we do

not assign weights to items in a transaction to represent such probabilities or recur-

rent items. We simply consider each item present in a transaction holds an equal

weight in that transaction. However, the usage of the weighted itemsets or account-

ing for the recurrence of items could improve the accuracy of the model and can

better represent the real world conditions [46]. The application of Fisher’s exact

test to handle such probabilistic or recurrent datasets should be further investigated.

The rules we discovered to address our motivating problem present some in-
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teresting patterns to investigate further. However the results are subjected to the

level of significance used in the experiments. Determining the level of significance

should be done with the help of the domain experts. Based on this number of rules

discovered can be varied. However this does not affect the efficiency or the scala-

bility of the algorithm.

In next chapter we discuss how the patterns we discovered using AGT-Fisher

can be used to discover more advanced types of spatial patterns such as spatial

contrast sets and spatial common sets.
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Chapter 4

Spatial Contrast and Common Sets

To address our motivating application problem of finding associations between air

pollutants and adverse birth outcomes, we work with different levels of spatial data

varying from provincial to national. Specifically in our collaboration with the CNN

team, we work with 21 cities across all Canada. Although the co-location patterns

we discovered in the previous chapter can explain which combination of industrial

air pollutants are co-located with adverse birth outcomes hinting possible associa-

tions in a given spatial region, they are inadequate to understand the similarities and

differences between multiple spatial regions such as the cities in the CNN dataset.

To address this, we introduce two novel spatial patterns called spatial contrast sets

and spatial common sets, and techniques to mine them. Furthermore we present our

experimental results and evaluation of the techniques.

4.1 Background

Some of the statistically significant co-location rules we detected using the pro-

posed AGT-Fisher approach for various spatial regions could be used to uniquely

characterize and contrast a particular spatial group (e.g. preterm birth cases in

Toronto or low birth weight cases in Vancouver) from the others. On the other hand

some co-location rules can be useful to represent patterns which are consistently

statistically significant across various spatial regions. The former type of rules are

useful in identifying unique patterns specific to various spatial groups while the

latter helps to recognize global co-location patterns which can be generally seen
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in many spatial groups of interest. In this context, spatial groups can be defined

as mutually exclusive groups represented by a particular class and associated with

a particular spatial location. Preterm birth cases in Vancouver, Low birth weight

cases in Edmonton, and Small for gestational age cases in Hamilton can be consid-

ered as some of the spatial groups existing in our motivating application. Especially,

the first type of rules are useful to discover associations between air pollutants and

some ABOs, which are specific to a particular spatial region leading to take neces-

sary actions to handle the condition locally. On the other hand, the second type of

co-location patterns are useful to recognize globally common co-location patterns

between industrial air pollutants and ABOs leading to take necessary actions and

creating policies to affect a larger spatial region or a country as a whole. Towards

this goal we further analyze the co-location rules we detected with AGT-Fisher un-

der the following two pattern classes: 1) Spatial contrast sets: to identify unique

patterns which can characterize or contrast a particular group in a given spatial re-

gion; and 2) Spatial common sets: to identify patterns which can commonly be seen

across various spatial regions/groups.

4.1.1 Problem Definition

As we explained in Chapter 2, contrast sets can characterize a particular group of

data instances and can be used to contrast them from the data belonging to other

groups. When dealing with spatial data mining problems identifying contrast sets

for groups in specific spatial regions could be of great use to understand which

unique sets of variables that are associated with a particular outcome or class in a

given spatial region can contrast the same outcome occurring in other regions. We

propose a novel type of contrast sets called Spatial Contrast Sets to achieve this

goal. A formal definition for spatial contrast sets is given in Definition 4.

Definition 4. A spatial contrast set is a conjunction of spatial and non-spatial

attribute-value pairs (i.e. Ai = Vij , ..., Ak = Vkl where Ai ∈ A, Ak ∈ A, and in the

case of binary variables Vij ∈ {0, 1} and Vkl ∈ {0, 1}) defined on mutually exclu-

sive groups G11, ..., G1,p, ..., Gq,1, ..., Gq,p, where Gx,y ∈ Gs and Gx,y = {Cx, Ly};

Cx ∈ C is the class membership and Ly ∈ L is the location of the group. Further-

42



more, q is the number of mutually exclusive classes and p is the number of mutually

exclusive spatial regions exist in the given dataset.

Given a statistically significant co-location rule of the form X → Gx,y, X is

a spatial contrast set for the group Gx,y over any other groups of interest Gp,q ∈

Gs \ {Gx,y} if Equation 4.1 and 4.2 holds ∀Gp,q ∈ Gs \ {Gx,y} .

pF (X → Gx,y) ≤ pF (X → Gp,q) (4.1)

max
p,q

|support(X,Gx,y)− support(X,Gp,q)| ≥ min dev (4.2)

where the pF (X → Gx,y) is the Fisher’s p-value for the co-location pattern and

support(X,Gx,y) is the support of X in the subset of data that belongs to Gx,y. The

first constraint tests whether a candidate contrast set is more statistically significant

in the associated spatial group than in the other groups. The second constraint tests

whether the support of a candidate contrast set is sufficiently large in the associated

spatial group than in the other groups. These constraints can be used to find contrast

sets among three different types of spatial groups as follows:

1. If we fix that ∀y = q we can contrast data which belongs to the same spatial

region but in different classes.

2. If we fix that ∀x = p we can contrast data which is in the same class but

belongs to different spatial regions.

3. ∀x and ∀y we can contrast data which belongs to different classes in different

spatial regions.

Based on the type of application these conditions can be used interchangeably to

find interesting spatial contrast-sets.

As opposed to spatial contrast sets which are helpful in contrasting a particular

spatial group from the others, another type of patterns of interest would be the ones

which can characterize or represent a set of similar spatial groups. For example

a particular feature value combination set X can be consistently significant in all

of the spatial groups, (PTB, Toronto), (LBW, Edmonton), (SGA, Calgary), etc.

Such patterns could be useful to identify important feature sets which are associated
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with many adverse birth outcomes in various spatial regions. We define such sets

as Spatial Common Sets and the same formal definition for spatial contrast sets

(i.e. Definition 4) can be used to define spatial common sets as well. Given a

co-location pattern X → Gx,y, a set of spatial groups, Gs, a MinFrac threshold

and a maximum deviation threshold, max-dev, X is a spatial common set if for all

groups Gx,y ∈ Gs′ , Gp,q ∈ Gs′ the constraints given in Equation 4.3 and 4.4 can be

sufficed and the |Gs′ | > MinFrac threshold where the Gs′ ⊂ Gs .

pF (X → Gx,y)− pF (X → Gp,q) ≤ max pF diff (4.3)

|support(X,Gx,y)− support(X,Gp,q)| ≤ max dev (4.4)

max pF diff is a user defined threshold to control the variation of significance of

a common set among the given set of spatial groups. max dev is the maximum

support difference, allowed to be between any two different groups in the given set

of groups. The first constraint makes sure that the statistical significance of the

common set does not vary significantly across spatial groups. The second condition

makes sure that the support of the spatial common set does not vary significantly

across spatial groups. Similar to spatial contrast sets, we can find common sets for

three different types of spatial groups:

1. If we fix that ∀y = q we can find patterns common in data which belongs to

the same spatial regions but different classes.

2. If we fix that ∀x = p we can find patterns common in data which belongs to

different spatial regions but in the same class.

3. If ∀x and ∀y we can find patterns common in data which belongs to different

classes in different spatial regions.

4.1.2 Related Work

In the contrast set mining literature, spatial contrast sets mining is an under ex-

plored area and no significant prior work has been done. However, some work exist

in the emerging pattern mining literature to find emerging patterns in spatial data.
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One approach proposes a multi-relational approach to find emerging patterns in spa-

tial datasets [13]. This approach assumes that spatial data are given in a relational

database with a schema defining the spatial relationships between the tuples in the

tables. Then they use a frequent pattern mining based emerging pattern discovery

program to discover patterns which have a higher growth rate in one class than the

other. However this approach does not attempt to distinguish between spatial groups

in terms of the spatial region combined with the class. Instead it assumes that all the

data belongs to the same spatial region and focuses on characterizing classes in that

region. This contrasts with our definition of spatial groups as we explained previ-

ously. In addition, this approach, similar to emerging pattern discovery, completely

is based on frequency based thresholds and any statistical dependencies between

groups and patterns are ignored. Another approach was proposed to mine emerging

patterns for binary classes in spatial data [15]. They use a reinforcement learn-

ing based method with growth rate to find optimal emerging patterns. However,

as the other emerging pattern mining approaches, the above method also follows a

frequency based approach and targets goals different from ours.

Common sets mining in general is an underexplored area in the literature. No

significant prior work has been performed to define the problem, let alone devising

techniques to find such patterns. However, lessons learned from contrast set mining

literature can be largely exploited to develop common set mining techniques.

4.2 Spatial Contrast/Common Set Mining Algorithms

Addressing limitations in the previous approaches, we propose, two novel tech-

niques to efficiently mine statistically significant spatial contrast and common sets.

As similar to an association rule based contrast set mining approach, our proposed

spatial contrast/common set mining techniques are based on the AGT-Fisher co-

location pattern mining approach we proposed in the previous chapter.
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4.2.1 DiSConS: Discovering Spatial Contrast Sets

To discover statistically significant spatial contrast sets we propose a novel algo-

rithm, DiSConS (Discovering Spatial Contrast Sets). A pseudo code of the DiS-

ConS algorithm is provided in Algorithm 2. DiSConS first generates all the clas-

sification co-location rules (i.e. counterpart of the classification association rules

in the spatial context) of the form X → Gci,l for each location l ∈ L using AGT-

Fisher. Only the subset of the dataset belonging to the spatial region l is used when

the AGT-Fisher procedure is invoked. Evaluation metrics of interest (e.g. Fisher’s

p-value pF and support(X,Gci,l)) is saved for each rule, M(X → Gci,l). In the

next step the algorithm performs spatial contrast set mining for each spatial group.

In this step we check whether a candidate contrast set of a particular spatial group

satisfies the constraints provided in Equation 4.1 and 4.2 against all the other spa-

tial groups under analysis. If these constraints are satisfied then the candidate set is

added to the results as a spatial contrast set.

Algorithm 2 DiSConS

INPUT: Database S, Attributes A, Classes C, Locations L, Level-of-Significance

α, Spatial-Groups Gs

1: CANDS=2DHashTable()

2: for all Location l in L do

3: SCARl = AGT-Fisher(Sl, A, C, α)

4: for all rule X → Gci,l in SCARl do

5: if CANDS[l][ci] == ∅
6: CANDS[l][ci] = HashTable()

7: CANDS[l][ci][X] = M(X → Gci,l)
8: end for

9: end for

10: CSET=2DHashTable()

11: for all Gx,y in Gs do

12: CSET [Ly][Cx] = [∅]

13: for all X in CANDS[Ly][CX ].keys() do

14: if ∀ Gp,q ∈ Gs \ {Gx,y} Equation 4.1 and 4.2 are TRUE

15: CSET [Ly][Cx].append(X)
16: end for

17: end for

RETURN CSET
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4.2.2 DiSComS: Discovering Spatial Common Sets

To discover statistically significant spatial common sets we propose a novel algo-

rithm, DiSComS (Discovering Spatial Common Sets). A pseudo code of the DiS-

ComS algorithm is provided in Algorithm 3. Similar to DiSConS, DiSComS also

first generates all the classification co-location rules of the form X → Gci,l for each

location l ∈ L applying AGT-Fisher in the subset of the dataset belonging to that

spatial region. Antecedents of each of the retrieved rule are added to the candidate

spatial common set pool. Evaluation metrics of interest is also saved for each re-

trieved rule. In the next step, the algorithm performs spatial common set mining

. For each candidate common set, the algorithm searches for subsets of the spa-

tial group set of which the member spatial groups can suffice the Equation 4.3 and

4.4. If any such subset exists where the size of that subset is larger than or equal

to a MinFrac fraction of all the spatial groups under analysis, then the candidate is

added to the final results set.

Algorithm 3 DiSComS

INPUT: Database D, Attributes A, Classes C, Locations L, Level-of-Significance

α, Spatial-Groups Gs, MinFrac

1: CANDS=2DHashTable()

2: CANDP= ∅
3: for all Location l in L do

4: SCARl = AGT-Fisher(Sl, A, C, α)

5: for all rule X → Gci,l in SCARl do

6: CANDP = CANDP ∪ X

7: if CANDS[l][ci] == ∅
8: CANDS[l][ci] = HashTable()

9: CANDS[l][ci][X] = M(X → Gci,l)
10: end for

11: end for

12: CSET=∅
13: for all Candidate Set X in CANDP do

14: GrCnt = |Gs′ ;Gs′ ⊂ Gs, ∀(Gp,q ∈ Gs′, Gx,y ∈ Gs′) Equation 4.3 and 4.4 is

TRUE}|
15: if GrCnt

|Gs|
≥ MinFrac

16: CSET = CSET ∪ X

17: end for

RETURN CSET
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4.3 Results and Evaluation

We carried out a set of experiments to evaluate the DiSConS and DiSComS al-

gorithms as well as to discover discriminating or common air-pollutant-ABO co-

location patterns across 21 Canadian cities, using those algorithms. In this chapter

we discuss these experiments and the results we obtained.

4.3.1 Datasets

We primarily worked with two sets of data: 1) Spatial data for adverse birth out-

comes and industrial air pollution; and 2) Contrast set mining datasets. We used the

first dataset to find interesting patterns while addressing our application problem

and the second dataset to validate the analytical methods we use.

Adverse Birth Case Analysis Data

As part of the attempt to address our motivating application problem we investi-

gated on discriminative/common air-pollutant-abo co-location patterns in 21 Cana-

dian cities using our proposed spatial contrast and common set mining algorithms.

In this investigation we primarily used adverse birth outcome datasets from CNN.

CNN adverse birth outcome dataset is collected during the time period of 2006-2010

from NICUs (Neonatal Intensive Care Units) across 21 cities in Canada. We com-

piled this original row dataset to obtain 32,836 adverse birth cases with their ge-

olocations. We grouped this dataset according to 19 Census Metropolitan Areas

(CMAs) in Canada. In this dataset there are three main adverse birth outcomes of

interest to researchers: 1) Preterm birth (PTB); 2) Low birth weight at term (LBW);

and 3) Small for Gestational Age (SGA).

To obtain the air pollutant information of the CMAs of interest in Canada, we

used the datasets from the National Pollutant Release Inventory (NPRI) [12] of

Canada. More specifically we chose industrial facilities within the 100 km radius

of each of the Census Metropolitan Area (CMA) polygons. We only considered

the air pollutant emissions from each of the industrial facilities within the time

period of 2005-2010. This dataset contains data on estimated yearly releases of 127
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chemicals. The minimum and maximum average yearly release of any chemical in

the dataset is 1 kg and 85,000 tonnes, respectively.

Finally, to model the air pollutant dispersion and to extend chemical release

points to regions we used weather data from Environment Canada. In particular

we are interested in historical data for wind speed and direction in Canada. We

obtained this data from 47 National Air Pollutant Surveillance stations in Canada.

Contrast Set Mining Data

To validate the capability of statistically significant dependencies to function as

better candidate contrast sets, we have used 16 association pattern mining datasets

from the UCI Machine Learning Repository [3]. All the instances in these datasets

are labeled and belong to multiple classes. The minimum number of classes in any

dataset is 2 and the maximum number of classes in any dataset is 10.

4.3.2 Preprocessing

As in the APHP dataset, used in the experiments in Chapter 3, in the CNN dataset

we also deal with two types of point spatial data: 1) Adverse birth outcome cases

(ABOs), and 2) Chemical emission points. Originally, both of these are point spatial

objects. We followed the same procedure explained in Chapter 3 to extend these

spatial objects to represent the maternal mobility regions and the distribution of the

industrial air pollutants. However, although we proposed to interpolate the wind

fields data from Environment Canada in Chapter 3 and in our previous study [29] to

obtain the average wind speed and direction in chemical emission points; in CNN

dataset, due to insufficient data, an interpolation is not possible. Hence we simply

attribute the wind speed and direction (i.e. ~v) of the nearest weather station to each

of the chemical emitting facilities respectively.

We also have preprocessed all the contrast set mining datasets from UCI ML

repository by discretizing their numerical attributes using the LUCS -KDD Soft-

ware Library [2].
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4.3.3 Experimental Results

According to DiSConS and DiSComS, we initially applied the AGT-Fisher method

on each one of the subsets of the air-pollutant-abo spatial data belonging to CMAs.

This meant that we perform the aggregated grid transactionization and co-location

pattern discovery on each of the CMA mutually exclusively. The identified co-

location patterns are of the form X → ABOi where ABOi ∈ SGA,PTB,LBW

and X is a combination of industrial air pollutants. The level-of-significance we

used is 0.05. The summary of our obtained results is provided in Table 4.1.

Table 4.1: Summary of the rules found with AGT-Fisher in CMAs in Canada

CMANAME # SGA Rules # PTB Rules # LBW Rules # Total Rules

Calgary 84 77 98 259

Edmonton 109 128 139 376

Fredericton 9 1 16 26

Halifax 111 92 142 345

Hamilton 2076 2181 2254 6511

Kingston 20 17 22 59

London 311 315 482 1108

Moncton 12 12 4 28

Montreal 230 236 305 771

OttawaGatineau 57 71 130 258

Quebec 89 120 0 209

Regina 83 85 82 250

Saint John 137 157 139 433

Saskatoon 53 53 50 156

St. John’s 5 5 3 13

Toronto 730 846 734 2310

Vancouver 104 81 98 283

Victoria 0 0 4 4

Winnipeg 180 110 191 481

On average we discovered 730 co-location rules per census metropolitan area.

The maximum number of co-location rules obtained for a single CMA was 6511

for Hamilton. For the given level of significance defined by the experts (i.e. 0.05)

minimum number of rules, 4, were obtained for the CMA of Victoria. Interestingly,

Total Particulate Matter (i.e. TPM - airborne Particulate Matter with an upper size

limit of approximately 100 microns) is present in 1797 co-location rules from all the
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rules from different CMAs associating with one of the three adverse birth outcomes.

Some of the other most common antecedents in the rules were NO2, CO, Lead,

Methanol, Toluene, Xylenes, PM2.5 (Particulate Matter≤2.5 microns) and PM10

(Particulate Matter≤10 microns), Arsenic, 2-Butoxyethanol and Isopropanol.

Spatial Contrast Sets

Based on the location set L consisting of 19 CMAs and the class set C consisting of

three ABOs, using DiSConS, we discovered two types of interesting spatial contrast

sets out of the three described previously. Those two types are as follows.

1. Patterns contrasting ABO groups in the same location

2. Patterns contrasting same ABO in different locations

As an example for the first type of spatial contrast sets let us consider the CMA

of Vancouver. In Vancouver, PTB has only two contrast sets out of all the 81 unique

antecedents (2.4%) in the candidate rules found (i.e. X in the rule X → PTB),

which contrast PTB cases from LBW and SGA cases in Vancouver. Those two

contrast sets are: {Methanol & Toluene & Isopropanol & CO} and {Toluene & Iso-

propanol & CO}. The significant reduction in patterns (i.e. from 81 to 2) using this

method can be helpful in efficiently locating specific associations for a particular

adverse outcome in a given location. For the LBW cases we found two contrast

sets out of 98 (2.0%) air pollutant itemsets in Vancouver. Those two are as follows:

{Methanol & Toluene & NO2} and {PM (Total Particulate Matter) & Cadmium}.

Similarly, these contrast sets can be reported for other CMAs with all three ABOs

as well.

On the other hand for the second type of spatial contrast sets let us consider

the CMA of Vancouver and class PTB again. When contrasted with PTB cases in

other 18 CMAs in Canada, we discovered five contrast sets for PTB cases in Van-

couver out of 81 significant patterns (6.1%). Some of them can be reported as fol-

lows:{Methanol & NO2 & Benzene}, {Benzene & CO & PM10}, and {Benzene &

Methanol & PM2.5}. These five sets can contrast the PTB cases in Vancouver from

the PTB cases in other CMAs. On the other hand for PTB cases in Calgary, we
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detect eight sets out of 77 significant patterns (10.3%) which can contrast the group

from PTB cases in other CMAs such as Vancouver and Toronto. Some of those

sets are as follows: {Asbestos}, {2-Butoxyethanol, Toluene,CO}, and {NO2, Iso-

propanol, Xylenes}. Similarly we can detect spatial contrast sets of type 1 and type

2 for any set of spatial groups of interest to locate more specific patterns effectively

narrowing down the results set.

Spatial Common Sets

Similar to spatial contrast sets, based on the location set L and the class set C, we

focus on discovering a single type of interesting spatial common sets out of the three

types described previously, using DiSComS algorithm (i.e. to find common sets for

a particular adverse birth outcome in different CMAs). To find such spatial sets, in

addition to the MaxSig threshold we also use a MinFrac threshold of 0.3 (30%) to

specify at minimum in how many spatial groups we would like to see a particular

common set exist. For instance let us consider the task of discovering common sets

for PTB cases in different CMAs. We found 42 spatial common sets which are

associated with PTB cases in at least 30% of the CMAs. One top such spatial com-

mon set we discovered is that {Lead (and its compounds)} is associated with PTB

in 12 of 19 CMAs (63%) such as Toronto, Vancouver, Ottawa, Quebec, Edmonton,

Montreal, etc. Other than that, in this 42 sets, interesting spatial common sets such

as {PM10, CO}, {Total Particulate Matter, CO}, {PM2.5}, {NO2, Total Particulate

Matter}, {Arsenic and arsenic compounds}, {Toluene}, and {Xylene} exist. We

observed that these common sets are also commonly associated with other ABO

types as well.

4.3.4 Evaluation

We evaluate our algorithms based on the analytical methods we used and the knowl-

edge they discover. Two main analytical methods we used in our proposed spatial

contrast and common set mining methods are, aggregated grid transactionization

and the Fisher’s exact test to find statistically significant dependencies. We eval-

uated the effectiveness of the above methods in the previous chapter. However,
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in DiSConS and DiSComS algorithms we use the statistically significance depen-

dencies found with AGT-Fisher to discover contrast set and common set in spatial

data. Hence, in this chapter we evaluate the effectiveness of statistically significant

dependencies to find contrast sets. Furthermore, we evaluate the quality of discov-

ered spatial contrast and common sets in CNN dataset with empirical evidence and

expert opinions.

Effect of Statistical Significant Dependencies to Find Contrast Sets

To investigate the applicability of the statistically significant dependencies to find

contrast sets, we used the contrast sets obtained by applying DiSConS on 16 datasets

fron the UCI-ML repository. Since, these datasets have no spatial attributes, we

skipped the transactionization process in the DiSConS algorithm and found con-

trast sets for groups of the type 1 (i.e. contrasting data belong to the same spatial

region but different classes) to build an associative classifier, CS2 (Classification

based on Statistically Significant Contrast Sets), similar as CBA [32]. Bypassing

transactionization procedure and searching for contrast sets of type 1 effectively al-

lows to find contrast sets for non spatial datasets using DiSConS algorithm. Having

a better classification accuracy with CS2 than with CBA would mean that we have

identified contrast sets which can meaningfully differentiate classes than the gen-

eral association rules. As shown in Algorithm 4 (line 3-6), CS2 first recognizes the

subset of contrast sets which can contribute to classify a given data instance. Then,

based on the class, it categorizes this subset of rules. Aggregate function sum can

be applied to each of these categories to obtain a representative measure for each

class. Subsequently a class can be assigned to the data instance by using another

aggregate function min on the representative measures.

We have compared the classification accuracy of CS2 with several other standard

classifiers on UCI datasets to evaluate the quality of our resulting contrast sets.

However, we emphasize that our target is not to build a classifier and outperform

the accuracy of dedicated classifiers. Instead, our goal is to achieve a moderate or

similar accuracy compared to the standard classifiers to indicate that we discover

accurate contrast sets. In our experiments we used a level of significance of 0.05
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Algorithm 4 CS2

INPUT: Database D, Object O, Attributes A, Classes C, Level-of-Significance α

1: CSet = DiSConS(D, A, C, ∅, α, C)

2: CSetnew = ∅
3: for all c-set c in CSet do

4: if c.antecedent ⊆ O.antecedent

5: CSetnew = CSetnew ∪ c

6: end for

7: Divide CSetnew to subsets based on class labels: S1, S2, ...Sn

8: for all Si in S1, S2, ...Sn do

9: sum all the ln pF values in each subset

10: end for

11: Assign the class with lowest some of pF to O

RETURN O.label

and a minimum groups support difference of 10%. The classification accuracies

of the methods we used in our experiments are reported in Table 4.2. We chose

rule based classifiers, C4.5 [35], CBA [32] and CPAR [45], to compare. Average

accuracy in all 16 datasets indicates that CS2 outperforms one out of three other

standard rule based classifiers while having a very close accuracy to the other two.

This is a strong indication that statistically significant dependencies can provide

quality contrast sets.

Expert and Empirical Evaluation

We evaluated our findings by comparing them against the results from the environ-

mental health and pediatrics literature and with the help of experts in the domain

from the DoMiNO team at the University of Alberta. Most of the studies in the lit-

erature emphasises the involvement of monitored urban criteria pollutants like CO

(Carbon Monoxide), NO2 (Nitrogen Dioxide) and Particulate Matter (i.e. PM2.5,

PM10 and Total Particulate Matter) [28, 11] with adverse birth outcomes such as

SGA, PTB and LBW. Most of the spatial common sets we discovered for CMAs in

Canada include these air pollutants within them. This provides a good indication to

the quality of the patterns we discovered. Furthermore we presented our discovered

contrast patterns to the domain experts who validated that some of the rules we dis-

covered are interesting and worth further investigation. In particular, we found that
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Table 4.2: Comparison of classification results: C4.5, CBA, CPAR and CS2.

Dataset #cls #rec C4.5 CBA CPAR CS2

adult 2 48842 78.8 84.2 77.3 80.88

anneal 6 898 76.7 94.5 95.1 83.4

breast 2 699 91.5 94.1 93.0 80.98

flare 9 1389 82.1 84.2 63.9 79.99

glass 7 214 65.9 68.4 64.9 69.18

heart 5 303 61.5 57.8 53.8 57.16

hepatitis 2 155 84.1 42.2 75.5 81.54

horseColic 2 368 70.9 78.8 81.2 70.33

ionosphere 2 351 84.6 32.5 88.9 74.92

iris 3 150 91.3 93.3 94.7 94.67

led7 10 3200 73.8 73.1 71.3 72.75

mushroom 2 8124 92.8 46.7 98.5 94.97

pageBlocks 5 5473 92.0 90.9 92.5 89.77

pima 2 768 71.7 74.6 74.0 65.11

wine 3 178 75.8 49.6 88.2 90.95

zoo 7 101 91.0 40.7 94.1 94

Average 80.2 69.1 81.7 80.04

heavy metals such as Arsenic, Lead and Cadmium can be attributed as industrial air

pollutants and potential causes for adverse birth outcomes, through the discovered

patterns. These should be further investigated and studied with the help of domain

experts to find them as qualitatively sufficient to formulate research hypotheses.

4.4 Discussion

We introduced two novel type of spatial patterns called spatial contrast sets and

spatial common sets in this chapter. DiSConS and DiSComS are two efficient novel

techniques we propose to mine those patterns. These two algorithms are built on

AGT-Fisher approach we outline in Chapter 3. We evaluate our analytical methods

for their effectiveness in using statistically significant dependencies to find intended

patterns. Our results show that our methods can produce contrast sets which can

distinguish two or more classes better.

With the help of domain experts we collaborated from the DoMiNO team, we

investigated the spatial contrast and common sets we discovered to find out whether
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they can form plausible research hypotheses for further investigation by environ-

mental scientists. From our patterns, we discovered that chemicals and substances

such as NO2, Particulate Matter, CO, and heavy metals such as Lead, Cadmium

and Arsenic are commonly associated with many of the adverse birth outcomes

across many Canadian cities. Most of this chemicals are empirically well known

to cause adverse health effects and the environmental health community carry out

many studies to assess their involvement in such cases. Hence, our results conform

to this existing knowledge and hypotheses. In addition to these, we also produce

many patterns which could explain the adverse health effect when combination of

industrial air pollutants exist. This could be really helpful in future studies for the

researchers in application domain because most of the traditional studies are de-

signed to focus on the effect of one variable at a time.

Our proposed methods are easily extensible to consider temporal information

and find contrasting patterns in spatio-temporal groups as well. On the other hand

usage of other measures such as leverage in place of support or lift in place of

Fisher’s p-value can be suggested when using the conditions in the algorithms. In-

terpretation of the patterns we discover can be changed based on this. Hence, by

discussing with the experts in the domain, more insights can be obtained and a

better model can be designed to serve the goals of the application problem.
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Chapter 5

VizAR: A Visualization Framework

for Co-location Patterns

In any knowledge discovery task visualization plays a key role in transferring the

discovered knowledge to the end users (in our case pediatricians, medical practition-

ers, environmental scientists, etc.). In this chapter we propose a novel framework,

VizAR, to visualize various spatial patterns we have explained in the previous two

chapters.

5.1 Background

Visualization is traditionally recognized as any technique to create images, dia-

grams, maps, videos or animations to convey a message. It is a very effective tool

which can help to communicate complex ideas and experimental results across dis-

ciplines since humans are more visual learners. However, with recent advancement

in data science, the traditional visualization paradigm is shifting towards more in-

teractive visualization systems to allow the end knowledge users to more actively

engage in understanding knowledge discovered through the data mining process. In

this chapter we explore on devising such an interactive visualization framework for

spatial patterns.

5.1.1 Problem Definition

In this thesis we primarily focus on three types of spatial patterns: co-location pat-

terns, spatial contrast sets and spatial common sets. The latter two patterns are in
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fact two special cases of the former pattern type. Our motivating problem demands

to work with single spatial regions such as provinces as well as multiple spatial

regions such as cities or census metropolitan areas in Canada. Hence, we outline

the problem of visualizing spatial patterns, considering the different levels of com-

plexities spatial datasets could have. We define that visualizing spatial patterns in

multiple spatial regions can be done under the following three abstraction levels.

1. Lay of the Land: Visualize all the co-location patterns discovered for all the

spatial regions under study.

2. Pattern/Regional Level: Investigate the characteristics of a specific co-location

pattern in various spatial regions or investigate all the co-location patterns in

a particular spatial region.

3. Instance Level: Investigate a specific co-location pattern in a specific spatial

region to understand instance distribution and the nuances of the contributing

geographic factors.

When devising a visualization framework to implement the above abstraction levels

an interactive approach should be followed to allow the user to navigate through

various levels of interest to gain knowledge.

5.1.2 Related Work

Traditionally to analyze and visualize geographic information or spatial data, pro-

prietary software systems with a comprehensive set of tools have been built (e.g.

ESRIs ArcGIS). However when the visualization is not coupled with the analyti-

cal methods provided by such systems it is not a trivial task to visualize patterns

discovered by a third party algorithm or software.

Although the association rule mining community—a closely related field to co-

location pattern mining—have extensively worked on various ways to visualize as-

sociation patterns, only a limited number of approaches have been proposed to visu-

alize co-location patterns [14]. One such approach [14] propose a clustering based

approach to visualize co-location patterns in a map. Most of such proposed schemes
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are focused on developing comprehensive visualization schemes for instance level

visualization or clustering approaches to visualize patterns as clusters of instances

on a given spatial region. Such approaches can be classified as pattern/regional level

of abstraction under our problem definition. This limits the levels of abstractions

provided by those scheme. Moreover, user interactivity in such systems are also

minimal.

On the other hand, to visualize contrast sets, few approaches have been proposed

based on horizontal bar charts. An example of a such a visualization is provided in

Figure 5.1. However, these approaches have limitations when it comes to visual-

izing contrast sets in multiple classes [34]. On the other hand there are no known

work in the literature focusing on visualizing spatial contrast or common sets.

Figure 5.1: Visualizing Contrast sets with bar charts

5.2 VizAR Framework

To allow the knowledge users or other researchers to explore the patterns we dis-

cover, we propose a novel interactive visualization framework called VizAR to vi-

sualize spatial co-location, contrast and common sets. In contrast to the traditional

approaches, that target pattern/regional level abstraction, VizAR provides a simpli-

fied, yet a complete visualization scheme targeting all three levels of abstractions

provided in our problem definition.
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5.2.1 System Design

The VizAR system consists of three main visualization modules. Each module

represent one of the abstraction layers previously defined. We devise various visu-

alization tools in each of these modules to visualize the patterns accordingly. As

presented in the system design diagram in Figure 5.2, following are the three main

modules of the VizAR system:

1. Overview Level

2. Pattern/Regional Level

(a) Regional Level

(b) Pattern Level

3. Instance Level

Figure 5.2: System Design of the VizAR Framework

VizAR communicates with a central database to access the patterns to visualize, the

transactions which support a selected pattern, and various other meta data. It also

interacts with cloud services to access various kinds of resources such as maps. User

interaction with the VizAR system starts from the overview level. The overview

level is designed to provide an interface to the user, presenting all the patterns for a

selected spatial dataset. Various types of interfaces can be implemented to provide

such overviews. It could either be a filter allowing a user to browse only a subset
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of selected patterns leading to the pattern level module in the next layer or a bubble

chart representing all the rules in all the spatial regions under study. Selecting a

specific bubble from such a chart could lead to the regional level module in the next

layer. Regional level module is designed to visualize the significance of the selected

pattern in various spatial regions. From the regional or pattern level a particular

pattern for a particular spatial region could be singled out to further investigate. This

leads to the instance level, where the distribution of the transactions contributing to

a particular patterns and the other geographic features could be closely investigated

on an interactive map. In the next section we discuss few of the interfaces we

implemented under these modules and how one can navigate through the patterns

to discover .

5.2.2 Implementation

We implemented a prototype of the VizAR framework as a web application. The

VizAR system is completely independent of the algorithms or programs used to

discover the spatial patterns. The only input required to the system is the set of

discovered rules, their quality measures and the set of transactions. All these can

be stored and queried back from a database.

Interactive Visualization Tools for Overview Level

In our prototype we implemented two types of visualization tools for a user to start

with in the overview level. The first prototype tool, as shown in Figure 5.3, provides

an interactive filter to apply constraints for the antecedents set and the consequent to

obtain a desired subset of the patterns. Based on the user requirements, further con-

straints can be implemented to target specific subsets of the patterns to investigate.

This particular tool implements the idea of constraint based rule analysis. Instead of

applying the constraints during the mining process we apply the constraints in the

post-mining stage. Some examples of the constrains which can be implemented are,

item exclusions, item inclusions, and thresholds on item recurrence or the quality

measure. Once the constraints are selected the result will display a bar chart visu-

alizing the distribution of the rules subset based on the size of the antecedent set. If
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a particular bar is selected only the subset of rules with the selected antecedent set

length would be displayed as the output.

Figure 5.3: A prototype of an interactive filter to be used in the overview level

The second tool we implemented is more suitable to visualize all the patterns

discovered in all the spatial regions under study (i.e. CMAs in Canada). As shown

in Figure 5.4, we use bubble charts to implement a prototype for this tool. The y

axis of the bubble chart represents the CMAs where the relative distances between

x axes represent the approximate relative geographical distances between CMAs.

More sophisticated charts, such as the ones that uses a primary vertical axis for

the longitude and a secondary vertical axis for the latitude where a line drawn con-

necting two points in the vertical axes would represent a specific location, exist.

However, since the CMAs we consider does not have drastic changes over the lat-

itude lines, we simply considered a single vertical axis to represent the locations.

The x axis in the given bubble chart represents the rules. A bubble in this overview

visualization represents a co-location pattern. The size of the bubble vary according

to the support of that rule in the corresponding geographic area or CMA. All the

bubbles are color coded based on the statistical significance of the rule (i.e. log(p-

value)). Yellow is the lowest statistical significance level where red is the highest

statistical significance levels. If the chart is analyzed along the vertical lines, the

support and the statistical significance variation of a specific rule in various spatial

regions can be clearly observed.
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Figure 5.4: A prototype of an interactive bubble chart to be used in the overview

level (each bubble represents a pattern where the size is corresponding to the support

and the color is corresponding to the statistical significance)

Interactive Visualizations for Pattern/Regional Level

Once the filtering constraints are applied in the first prototype tool we described

for the overview layer, it would lead to the next level where the selected subset of

patterns are shown and allowed to be explored. This tool would simply provide a flat

representation of the patterns in the subset. However when an individual pattern is

selected it would lead to the next level where the instance distribution of that pattern

is visualized. On the other hand if a bubble is clicked in the second visualization

tool we explained for the overview module, it would lead to two different interactive

visualization tools as shown in Figure 5.5. One visualization would represent the

distribution of a selected pattern in various CMAs with the corresponding support

and color coded statistical significance level. The other visualization uses radar

charts to show how the support contrasts from one CMA to another.

In particular radar charts are a good alternative visualization scheme to repre-

sent (spatial) contrast sets. Especially because it can distinguish the support of a

particular pattern in one region/class than the others, in a more contrasting manner.

Hence we further explore the usability of such chart types to discover contrast/com-
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Figure 5.5: A prototype of a geochart and a radar chart to be used in the regional

level

mon sets. Wind roses are an interesting type of charts, very similar to radar chart,

which are used to visualize the relative frequency of wind speed at a place. These

type of radar charts or wind rose graphs could be used to visualize spatial as well

as temporal variation of support/strength of a particular pattern more meaningfully.

For example consider a scenario where variation of the support of a particular co-

location pattern of industrial air pollutants and an ABO has to be visualized for

various spatial regions in different months. Based on the climate changes, impact

caused by an air pollutant also can change. Hence, understanding how the strength

of a spatial contrast set can change over the time is very important and can be help-

ful in changing environmental and industrial policies. An example for a such a

scenario is given in Figure 5.6.

Interactive Visualizations for Instance Level

When a specific pattern for a specific spatial region is selected from any one of the

visualization tools discussed in the previous level, it would lead to the final instance

level visualizations. In this level, we mainly visualize the supporting transactions

or data instances in a map so that their distribution can be understood well. An ex-

ample is given in Figure 5.7. Furthermore, additional information such as chemical

dispersion can be added to this visualization to better understand the impact of the
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(a) Support distribution in

January

(b) Support distribution in

February

(c) Support distribution in

December

(d) Annual Support distribu-

tion

Figure 5.6: How the support distribution of a contrast set vary across time

pattern. One such visualization is depicted in Figure 5.8. In both these visualiza-

tions green circles represent that the rule is valid in that instance, where as the red

circles represent that the rule is invalid in those transactions.

5.3 Discussion

In this chapter we outlined the system design of a novel interactive visualization

framework to visualize spatial patterns. We also presented our prototype visualiza-

tion tools developed under this framework. These tools we devised can be effec-

tively used to find spatial contrast sets, common sets and can be helpful in further

investigating on the distribution of the instances of a particular pattern in the local

region. VizAR does not depend on the rule mining technique. Any rule mining

technique can be used to find co-location or association patterns for a given trans-

action dataset. This rules found can be used as the input to the VizAR system.

Our proposed three layer level of abstraction can provide a solid outline to anyone

who wishes to extend the VizAR system to a particular application problem. Un-

der these three levels various visualization tools can be developed. However, the
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Figure 5.7: A prototype of an interactive map to be used in the instance level

Figure 5.8: A chemical dispersion information to the instance level prototypes

usability of such tools depends on the users. We demonstrated the VizAR system

to the DoMiNO team. Experts in the DoMiNO team found that VizAR is a very ef-

fective system and can be helpful in discovering answers to the research questions

they have. The feedback we received from the user community could be useful to

implement novel visualization tools and to improve/extend the existing functions.
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Chapter 6

Conclusions and Future Work

In Chapter 1 we put forward three theses which can be summarized as, statistically

significant dependencies could be efficiently and effectively used to find valid spatial

co-location patterns, contrast sets and common sets, and visualization tools can be

devised to effectively explore such large space of spatial patterns. In light of the

work done, as presented in Chapter 3, 4 and 5, we revisit these theses in this chapter

to arrive at conclusions and to understand the future avenues of research.

6.1 Conclusions

In this work we addressed the problem of using statistically significant dependen-

cies to find various spatial patterns and devising visualization schemes to discover

knowledge using them. In particular, we are motivated by an important problem in

the environmental health domain to find spatial associations between industrial air

pollutant and adverse birth outcomes. This particular problem can be transformed

into a spatial pattern mining problem or more specifically to a co-location pattern

mining problem. Co-location pattern mining and its counterpart association rule

mining are two well-studied problems in the data mining community. However,

most of the existing techniques to find such association patterns, heavily depend on

the frequency based thresholds which are hard to determine and pose several draw-

backs. In such methods, if a low threshold is defined, the final result would include

a very large number of noisy rules whereas a stringent threshold means that rare

rules could be lost. In recent years association rule mining community has shown
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interest in adapting statistical significance tests to measure the quality of an associa-

tion rule in terms of the strength of the dependency between the antecedents and the

consequent. Subsequently, a few very recent works in co-location pattern mining

also adapted statistical test based approaches to find strong co-location patterns. On

the other hand, rather than developing dedicated co-location pattern mining tech-

niques, a spatial dataset can be transformed into a general transaction dataset and an

association rule mining technique could be applied to find co-location patterns. The

advantages presented by this approach lead the co-location pattern mining commu-

nity to adapt similar approaches when devising better co-location pattern mining

algorithms. Moreover this opened up a new avenue of research to use statistically

significant dependency (i.e. association) rule analysis techniques with a suitable

transactionization approach to find statistically significant co-location patterns.

The increasing complexity of the spatial datasets and spatial data analysis tasks

have introduced novel analytical problems to the community. For instance, in

our application problem important research questions such as “what kind of air-

pollutant sets are commonly co-located with a particular adverse birth outcome in

major Canadian cities?” or “what kind of air-pollutant sets can distinguish the oc-

currence of a particular adverse birth outcome in a particular city from the others?”

motivate to devise new spatial pattern mining techniques since the traditional co-

location patterns alone cannot answer such questions. Contrast set mining tech-

niques target a very similar problem to find discriminating association patterns

which can differentiate data instances belonging to different classes. Despite this,

spatial variants for contrast set mining techniques remains an under explored area.

Although in emerging pattern mining—a research area which shares some of the

objectives with contrast set mining—techniques have been developed to consider

spatial information as well, they neither attempt to address the same contrast set

mining problem we are interested in nor include any statistically significant tests

in their approaches. On the other hand finding common association patterns in

multiple groups also remains an area that is not well explored.

Addressing the limitations in existing analytical methods to find required spatial

patterns in our motivating problem, we propose a set of novel analytical methods
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and tools to use statistically significant dependencies to discover statistically signif-

icant spatial co-location rules, contrast and common sets. In doing so we focused

on the following four major challenges: 1) Transactionizing a spatial dataset; 2)

Discovering statistically significant co-location patterns; 3) Comparing and con-

trasting spatial groups; and 4) Visualizing co-location patterns. We proposed a

novel grid transactionization method, AGT (Aggregated Grid Transactionization),

to address some of the limitations posed in existing spatial data transactionization

approaches. A spatial dataset transactionized using AGT method can be used with

Fisher’s exact test to find statistically significant co-location rules. To do so we

proposed AGT-Fisher approach. AGT-Fisher uses a constrained version of an effi-

cient algorithm called Kingfisher to mine statistically significant dependency rules

using Fisher’s exact test. To compare and contrast spatial groups, we introduced

two novel spatial pattern types called spatial contrast sets and spatial common sets.

We defined that spatial contrast sets and spatial common sets are two special cases

of the general co-location patterns. Hence, we proposed two new algorithms, DiS-

ConS and DiSComS, to efficiently mine those patterns based on the output of the

AGT-Fisher approach. DiSConS algorithm is designed to find co-location patterns

which can uniquely characterize and contrast a particular spatial group from the

others, whereas the DiSComS algorithm is intended to find co-location patterns

that are significantly common in many spatial groups. To let the knowledge users

meaningfully explore the resulting patterns we devised a novel co-location pattern

visualization system called VizAR. All these methods and tools can be combined

into a single framework, Di3SP (Discovering Statistically Significant Spatial Pat-

terns), to use statistically significant dependencies to discover statistically signifi-

cant spatial co-location rules, contrast and common sets. System architecture of the

Di3SP framework is provided in Figure 6.1. Di3SP framework is designed to ad-

dress four major challenges: Modules 1,2, 3 and 4, and 5 in Figure 6.1 represent the

analytical methods and tools we devised to address these challenges respectively.

Our experiments revealed that our proposed AGT method can indeed aggregate

a subset of the intended transactions based on a reference feature to address the

“combined exposure effect”. Moreover, when compared with a previous grid trans-
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Figure 6.1: System Design of the Di3SP Framework

actionization approach AGT was able to obtain better average lift indicating the

statistical dependency of the rules it finds. To evaluate whether the statistically sig-

nificant dependencies can actually capture rare but statistically significant patterns

which will also hold for unseen data, we performed experimentation on a set of fre-

quent itemset mining datasets. This experimentation revealed that the rules found

with Fisher’s exact test can maintain a very stable lift and leverage (i.e. RMSE is

very close to zero) in multiple train and test datasets. Moreover, most of the rules

have a very low support threshold which would not have been feasible to retrieve

if a frequency based threshold is used. These results verify our thesis 1, that sta-

tistically significant dependencies indeed can find rare, stable and significant rules

which also hold true in unseen data. Furthermore, we constructed a rudimentary

associative classifier based on the contrast sets we found using statistically signifi-

cant dependencies to validate the effectiveness of the discriminating patterns found.

When this associative classifier, CS2, is applied to several datasets from UCI ML

repository and compared against few standard rule based classifiers, it is revealed

that it maintains a very close classification accuracy as other standard classifiers.

We emphasize that our goal is not to build a classifier but to find patterns which

can discriminate classes or groups. This result and our previous results with AGT-

Fisher indeed verify our thesis 2, that statistically significant dependencies could be
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used to find statistically sound contrast/common sets.

We applied our analytical methods on the provincial ABO datasets from APHP

and Canada wide cities’ ABO datasets from CNN to address the research questions

posed by our motivating application problem. In those experiments, we discovered

a number of potential and interesting air pollutant(s) associations with adverse birth

outcomes. We found that air pollutants such as NO2, Particulate Matter (PM), CO

and heavy metals such as Lead, Cadmium and Arsenic are commonly associated

with adverse birth outcomes in many spatial regions. This conforms to the existing

knowledge in environmental health regarding the involvement of these chemicals

in causing adverse health effects. In addition, the discriminating patterns we found

reveal signature patterns which can uniquely characterize a specific spatial group

and contrast it from the others. These patterns could be of great interest for further

research as well as making local and global policies to mitigate these adverse con-

ditions. We used a prototype of our VizAR framework during a full team meeting of

the researchers of the DoMiNO project to allow the domain experts and knowledge

users to browse through the discovered patterns. Their positive feedback indicates

that VizAR is indeed successful in transferring the knowledge we intended. Further-

more the researchers agree that most of the patterns we found are interesting and

worth further investigations. This demonstrates our third thesis which states that

visualization tools can be devised to effectively explore a large number of various

types of co-location patterns.

6.2 Future Research

The work we did in collaboration with the DoMiNO team is currently an on-going

work. Some of the methods we introduced, tools we devised and knowledge we

discovered need further investigations. Following, we list some of the current and

future research avenues which we are working on and expect to investigate.

1. AGT-Fisher approach currently works with only binary transactions and choose

to ignore that recurrent items might exist. On the other hand in probabilis-

tic datasets an item might be associated with an existential probability. Al-
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though there are association rule analysis methods developed to handle recur-

rent items and uncertain datasets, further research has to be carried out to use

statistical significance tests such as Fisher’s test for that purpose.

2. In AGT-Fisher we have used a level of significance of 0.05 with Fisher’s test

as a rule of thumb. However, a discussion need to be carried out with domain

experts for what level of significance with which other threshold conditions

(e.q. minimum support, lift or leverage) should be used to find spatial patterns

which would be of relevance for them.

3. The contrast/common set mining algorithms we introduced can be easily gen-

eralized to include other type of rich information such as time. This would

effectively allow a user to find contrast sets or common sets among more

complex type of groups such as spatio-temporal groups. This has to be fur-

ther investigated with a suitable application problem and datasets.

4. Although contrast sets can be evaluated with the help of an associative clas-

sifier, no recognized evaluation criterion exists for common sets. Further

research has to be done to come up with an evaluation method for common

sets and conduct a more comprehensive evaluation on our proposed common

set discovery program.

5. The patterns we discovered should be further evaluated and investigated closely

for their quality with the help of domain experts. Currently we are collabo-

rating with researchers from the DoMiNO team who follow different GIS or

epidemiological approaches to address the same problem to identify overlaps

between the knowledge discovered by each different method.

6. When demonstrated a prototype of the VizAR program to the domain experts

several feedback and comments were received, which could be helpful in

improving the prototype. For instance, adding chemical distribution, varying

the significance of the patterns according to the time, add additional filters

such as item exclusions are some of them. While some of these comments
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can be immediately addressed, some may require further investigations prior

to execution to be carried out.
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