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Abstract

A relativistic model for incoherent photoproduction of 7 mesons from
complex nuclei is developed. The elementary process is described
using an effective Lagrangian containing photons, nucleons, nucleon
resonances, and p, w, and n mesons. The nucleon and n wavefunctions
are obtained from relativistic wave equations using potentials that

simulate meson exchanges. Nuclear structure is incorporated by using

the Nuclear Shell Model.

Expressions are obtained for the reaction amplitude and the physical
observables for incoherent 7-photoproduction processes. Numerical
results are presented for a number of reaction scenarios. The cross
sections are found to be slightly smaller than those from a corre-
sponding nonrelativistic calculation. The cross sections for incoherent
n-photoproduction reactions are several orders of magnitude smaller
than those of quasifree processes and of comparable size to those of
coherent processes. The calculations are found to be quite sensitive

to the choice of parameters used in the effective Lagrangian.



The great mass of workers in between, connecting one step to another, are
improving all the time our understanding of the world, both from working at the
ends and working in the middle, and in that way we are gradually understanding

this tremendous world of interconnecting hierarchies.

Richard Feynman
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Chapter 1

Introduction

The 7 meson is an intriguing particle that plays significant roles in both nuclear
and particle physics. Until recently, experiments involving the n have been few
and somewhat crude. This is changing, though, because the advent of high duty-
cycle electron accelerators at JLAB (CEBAF), Bates, Mainz (MAMI), and Bonn
(ELSA) has allowed nuclear meson production reactions to be probed at high
enough energies to study n-photoproduction on complex nuclei. Data from these
experiments will permit the evaluation of previous theoretical work and assist
future theoretical research.

The 7 has a rest mass of (547.30+0.12) MeV /c? [2], which is about half that of
a nucleon and about four times that of a pion. It has a width of (1.18+£0.11) keV,
which corresponds to a lifetime of about 7 x 10™'9s. Its decay products include
2y (= 39% of all  decays), 3n° (= 32%), 7*7~=° (=~ 23%) as well as a plethora
of rare decays.

The 7 belongs to an SU(3) nonet of pseudoscalar mesons, therefore it has zero
spin and P = —1. Charge conjugation and G-parity are +1, hence CP = —1.

All its other quantum numbers are zero, including charge, strangeness, and most
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importantly, isospin. In terms of its constituent quarks, n = 7‘g(uﬁ + dd — 2s3).

The short lifetime of the n makes it impossible to prepare 7-beams in order to
investigate the n-nuclear potential with scattering experiments. The interactions
between 7 mesons and nuclei must therefore be studied using reactions that
produce the . From a theoretical standpoint, the least complicated of these
reactions is 7-photoproduction: v+ p — n +p. The threshold photon energy for
n-photoproduction on a free proton is E, = 709.3 MeV. If the target is a complex
nucleus, the recoil effects are less significant and the threshold decreases toward
the rest energy of the 7.

n meson research, both theoretical and experimental, is often based on the
precedents set by similar research endeavors involving m mesons. Being the
lightest of all mesons, 7 mesons cannot decay hadronically. This means that they
live a great deal longer than 7 mesons and are easier to manage experimentally as
a result. After the pions, though, the 7 is the most prolifically produced hadron
in intermediate-energy reactions. The theoretical simplicity of the n stems from
the fact that its electric charge and isospin are zero, so that Coulomb interactions
with the 1 can be ignored. More importantly, the zero isospin restricts the v+ .V
coupling to an isospin-% state. This is much simpler than the situation that
arises with the isospin-1 pions, where the v + N coupling can be isospin % or %

The N*(1535) is an Sy, nucleon resonance with a mass that is 50 MeV greater
than the combined mass of the 7 meson and a nucleon. This resonance is observed
to decay into an 77 and a nucleon almost fifty percent of the time. On the other
hand, the S;; N*(1650) resonance undergoes such a decay only a few percent of
the time. This is an unsolved problem for quark models of resonance structure.

Recent experiments have determined that the n.V scattering length is positive

and large. This result has prompted speculation about the existence of eta-mesic
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nuclei — bound or quasi-bound states of 7 mesons and nuclei.

The decays of the n often confront various conservation laws. As a result,
the study of n decay can test physics both within and beyond the Standard
Model. The major decay modes of the n are fairly well understood. n — 2y
is a second-order electromagnetic transition that is forbidden in the limit of
massless quarks. The strong decays n — 27 and n — 4w are forbidden by P
and CP invariance. Since 7 is an eigenstate of the CP operator, Nefkens [21]
suggests that a study of n — 47° would constitute a good test of CP invariance.
This would be a particularly useful experiment since CP violation has only been
observed in the neutral K meson system. Unfortunately, the sensitivity of present
n decay experiments would need to be improved by several orders of magnitude
in order to detect n = 4m°. The decay n — 3 is prohibited by charge symmetry
conservation, but it does occur as a result of the quark mass terms in the QCD
Lagrangian. By using charge symmetry breaking to examine 7° — 7 mixing, it
is possible to determine the mass difference between the up and down quarks.
This is of special interest since QCD prohibits the existence of free quarks, which
suggests that it is impossible to measure the mass of a quark directly. Precise
measurements of the decays n — 37°, n = 7°yy, and n — 7*7~ 7y will relate to
chiral perturbation theory, a promising approach to strong interaction processes
at low energies where QCD itself cannot be applied perturbatively. n decay
can also be used to test other conservation principles, such as lepton family
nonconservation in the decay n — pe. Explanation of any such decays requires
physics beyond the Standard Model.

Photoproduction reactions from complex nuclei can be classified into three
types, depending on what happens to the target after the initial interaction. In

a coherent process, the target is unchanged by the interaction. In an incoherent
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process, the interaction leaves the target in an excited state, but still intact. In
a quasifree process, the incident photon ejects a nucleon from the target during

the interaction. The notations for these processes are given in Table 1.1.

Process Notation
Coherent A(y,m)A
Incoherent A(y,n)A*
Quasifree | A(v,Np)A -1

Table 1.1: Classification of n-photoproduction processes on a target A

If we concern ourselves with any particular final state configuration of the
target and any ejected nucleons, we describe this as an exclusive photoproduction
reaction. On the other hand, if we only observe the n meson produced by the
interaction, it is an inclusive photoproduction reaction.

As a result of the upgrades to the research facilities mentioned earlier, there
are many 7-photoproduction experiments currently under way or planned for the
near future. In particular, researchers at MAMI have recently reported exper-
imental data for inclusive 7-photoproduction cross sections on p, d, '2C, *°Ca,
9Nb, and Pb for v energies up to 790 MeV [3, 4, 5]. Also, the CLAS collabora-
tion at JLAB is currently performing 7-photoproduction experiments on proton
and deuterium targets [6, 7].

Several groups have published theoretical descriptions of 7-photoproduction.
Due to the complexity of the problem and a dearth of experimental data from
which theoretical parameters can be constrained and to which results can be
compared, there have been a variety of interesting approaches.

Benmerrouche et al. [8] investigated 7-photoproduction on a single nucleon

within an effective Lagrangian approach (ELA). Their model included tree level
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contributions from nucleon resonances, t-channel vector mesons, and nucleon
Born diagrams. By optimizing fits to existing 7-photoproduction data, they
determined a set of phenomenological parameters for the effective Lagrangian.

Bennhold and Tanabe [9, 1] used a coupled channels isobar model, in which
the n-photoproduction reaction (7, 1) was related to (v, ), (7, n) and (7, n) reac-
tions. They assumed that the elementary operator is a one-body operator in the
nucleon space so that a t-matrix formalism arises. Tiator et al. [10] extended this
work by including Born diagrams along with p and w meson exchange diagrams,
all calculated using effective Lagrangians. Amplitudes for 7-photoproduction on
light nuclei were calculated in the plane wave impulse approximation (PWIA).
These treatments made use of the large body of data for reactions involving the
7 meson to obtain parameters such as the /NN vertex factor.

Lee et al. [11] used the t-matrix parameters obtained by Bennhold and Tan-
abe to calculate exclusive and inclusive n-photoproduction amplitudes in the
distorted wave approximation (DWA) for heavier nuclei such as '?C and *°Ca.
Their approach used nonrelativistic nucleon wavefunctions.

Carrasco [12] used the ELA to calculate inclusive photoproduction of 7 mesons
with the assumption that only the S;;(1535) nucleon resonance is involved. Final
state interactions of the 7 meson with the residual nucleus were accounted for
with a Monte Carlo approach.

Hombach et al. [13] modeled 7-photoproduction from complex nuclei, using
the coupled channel Boltzmann-Uehling-Uhlenbeck (BUU) formalism to describe
the final-state interaction of the n meson. Effenberger and Sibirtsev [14] refined
Hombach’s approach by applying Glauber formalism to the MAMI data for 7-
photoproduction [5] in order to deduce certain properties of n/V scattering.

Chen and Chiang [15] calculated a double differential inclusive cross section
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for -photoproduction on a '2C target by assuming that the underlying process
is quasifree and only involves the S);(1535) resonance.

Fix and Arenhével [16] used the ELA to obtain the cross section for coherent
n-photoproduction on *He and '2C in the near-threshold region, using only the
511(1535) and D,3(1520) resonances.

Hedayati-Poor and Sherif [17, 18, 19] developed a relativistic model for the
quasifree photoproduction of n mesons on complex nuclei. An ELA was used
and contributions from several nucleon resonances were included. The final state
interaction of the 7 meson was taken into account using 7-nucleus optical poten-
tials.

Peters et al. [20] used an ELA with a relativistic, non-local model to study
coherent 7n-photoproduction on spin-zero nuclei. Several optical potentials for
the n final state interactions were compared.

In this thesis, we will use the relativistic model developed by Hedayati-Poor
and Sherif [17] to examine the incoherent photoproduction of n mesons from

complex nuclei.



Chapter 2

Theory

For the last half-century, Quantum Field Theory (QFT) has been a highly suc-
cessful theory. In the realm of elementary particle physics, an experimental
measurement of the anomalous magnetic moment of the electron has verified its
predictions to 12 digits of precision [2]. It is somewhat paradoxical that some of
the more recent accomplishments of QFT are in areas of research where a theo-
retical prediction that agrees with experiment to within ten percent is a laudable
achievement.

One such area of research is nuclear physics, and in particular, the interactions
of complex nuclei with intermediate-energy scattering probes. The photoproduc-
tion of 7 mesons from complex nuclei is an interesting problem in this field for
at least two reasons. First, only recently has a fully relativistic field theoretic
model of this reaction been used to calculate observable quantities [17, 18]. Sec-
ond, there are several detailed experiments in progress, or planned for the near
future, that will provide us with a great deal of data for these types of reactions.
In this chapter, we will illustrate the ways in which QFT is used as part of a
model for 7-photoproduction.
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2.1 Resonances

As we shall soon see, nucleon resonances play an important role in meson photo-
production reactions. At the simplest level, we can describe a resonance as a very
short-lived particle whose existence is inferred from unusual energy-dependent
behavior of certain sets of experimental data. Baryon resonances can be pic-
tured as excited states of longer-lived baryons, differing in mass as a result of
a realignment of quark spins, for instance. Since these resonances have such
short lifetimes, often less than 102, it follows from the Heisenberg uncertainty
relation

AEAt>h (2.1)

that there will be a significant spread in the energy, and hence, the mass of a
resonance. We parametrize this phenomenon with a property called the width,
T, of a resonance. Experimentally, it is actually I that is measured, which allows
us to infer the lifetime of a resonance.

In order to completely parametrize a resonance, for our purposes, we need to
specify its mass, width, and parity, as well as its angular momentum and isospin
quantum numbers. The n meson has isospin zero, so we will only need to consider
isospin-% nucleon resonances. Based on the results of previous calculations [17,
18], only three resonances are expected to provide non-negligible contributions
to the processes that we are considering. Their properties are summarized in
Table 2.1. In this table, the nucleon resonances are labeled by N*(M), where M
is the mass of the resonance in MeV. We can also describe resonances by their
quantum numbers using the spectroscopic notation Lary2s). Here, I is the total
isospin quantum number, J is the total angular momentum quantum number,

and L represents the orbital angular momentum quantum number. Using a
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convention that dates back to atomic spectroscopy, we denote L = 0 by the
letter S, L =1by P, L =2 by D, and all higher L values with the sequence
of letters beginning with F. Another useful description is the J* convention,
whereby 7 represents the parity of the resonance, written as + or —.

There is an S;; resonance at 1650 MeV that decays less than 2 % of the time
to an 7 meson and a nucleon, in sharp contrast to the S); resonance at 1535 MeV
which decays this way nearly 50 % of the time. There is no explanation for these
dissimilar branching ratios. One of the long-term goals in nuclear physics is
to obtain a better understanding of the formation of resonances and how they

propagate within the nuclear medium.

Resonance | Lar) 24y JT Mass (MeV) | ['(MeV)
N*(1440) Py, (1/2)* 1440 350
N*(1520) | Dy | (3/2)" 1520 120
N*(1535) Su | (1/2)- 1535 150

Table 2.1: Properties of the three nucleon resonances that will be used in our

model

2.2 The Effective Lagrangian

In any QFT the starting point is a Lagrangian density that describes the free
dynamics of all the types of particles under consideration as well as the ways in
which they can interact. In a QFT of elementary particles, such as Quantum
Electrodynamics, the Lagrangian can be unambiguously written as a sum of free
Lagrangians for the individual particle types and interaction Lagrangians, which

can be constructed so that the resulting reaction amplitudes satisfy unitarity
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and gauge invariance. In nuclear physics, however, the fundamental particles are
protons, neutrons, resonances, and mesons. These are themselves composed of
quarks, so we should not expect to construct a QFT in terms of nucleons and
mesons that will be accurate at arbitrarily high energies. Nevertheless, in the
right situations, we can construct a reliable QF'T.

The first part of the effective Lagrangian arises from the description of nu-
cleons within the nuclear medium. The strong force is mediated by mesons; to
reflect this, Serot and Walecka developed a phenomenological model to describe
nucleon dynamics within a nucleus [22]. This model, in its most general form,
leads to coupled nonlinear field equations that cannot be solved. Even pertur-
bation techniques are useless due to the size of the coupling constants. For high
nuclear density, though, we can make the Mean Field Approximation, whereby
we replace the meson field operators with their expectation values. This re-
sults in a workable model that is known as Quantum Hadrodynamics (QHD).
QHD provides us with a theoretical justification for writing the wavefunction of
a bound nucleon, g, as a solution of the Dirac equation with scalar and vector
potentials, S(r) and V'(r), that approximate the meson exchanges responsible

for nuclear binding:
[@- 5+ B(M + S(r)) + V(r)] vs(Z) = E¥s(Z) (2.2)

Similarly, the n wavefunction, 7n(z), is obtained by solving the Klein-Gordon
Equation with the appropriate optical potential for the 7-nucleus system. This
differs from most other field-theoretic approaches to 7-photoproduction, such as
that of Lee et al. [11], which have used nonrelativistic wavefunctions for ¥(z),
obtained via the Schrodinger Equation.

The other part of the effective Lagrangian consists of all the possible inter-
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action terms. For the sake of simplicity, we can consider the elementary process
Y+p—n+p (2.3)

and ignore the fact that the proton might be bound within a nucleus. Our
roster of particles includes photons (which will be denoted by the subscript v),
nucleons (N), eta mesons (7), the p and w vector mesons (V), and the three

nucleon resonances (R) of Table 2.1. The interaction Lagrangian will then be
Lint = Lyvn + Lywn + Ly + Lynn + Lo + Loynr (2.4)

In reality, we will have (L,vr + Lyvr) terms for each of the three types of
resonances under consideration. The explicit forms of the terms in (2.4) are
presented in [8]. Due to the negative parity of the n meson, we could use either
a pseudoscalar or a pseudovector coupling for the n.VN vertex. Bennhold and
Tanabe [9, 1] found that the pseudoscalar coupling more accurately described

the data for the elementary reaction, therefore we have:

Lonn = —igannPYsum (2.5)
Lowy = —eBr,Ahb — 220, P (2.6)
Luny = —gVV* — S0V (27)
Lom = ::z,, o PPV (2.8)
For an S;; resonance,
Lovr = —igynr¥Rn+ Hec. (2.9)
es?

=——__P? ny .C. .

where H.c. denotes the Hermitian conjugate of the preceding term. Since a Py,

resonance differs from an S;; resonance only in its parity, the P;; resonance terms
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are easily obtained from (2.9) and (2.10) by including an additional 5 operator.
The D;3; resonance terms are quite complicated. The coupling constants that
appear in all these expressions must be determined from other experiments. Some
of these constants are subject to a great deal of uncertainty, in large part due to

a lack of comprehensive experimental data.

2.3 Derivation of the Reaction Amplitude

Having obtained an effective Lagrangian, we are now in a position to derive
expressions that will describe observable quantities. In this section we will see
in detail how the techniques of QFT can be used to write an expression for the
reaction amplitude, or alternatively, the S-matrix, for the reaction v + 4 —
n+ A*.

The S-matrix, which relates the initial state of the system (¢ — —oo) to the

final state (¢ — 00), is given by

S = i %//d"zld‘zn T{H[NT(:L’[) -~-7"[NT(1'11)} (2.11)

n=0

where T denotes the time-ordered product of the operators in the braces and

‘Hnt is the interaction Hamiltonian.

2.3.1 Relating S to the Interaction Lagrangian

Our first task will be to relate the factors of Hiyt in (2.11) to the Lint in (2.4).

Since Hn is related to Lyt by the Legendre transformation
Hivr(me, 06) = 3 15 — Lon (s Ok (2.12)
J

where

o= OLNT
F] 3(15,—

(2.13)



CHAPTER 2. THEORY 13
we see that
Hint = —LiNt (2.14)

provided 7; = 0 Vj. Looking at (2.6), (2.7), (2.8), and (2.10), though, we see
that Lyt contains factors of

F¥ =0gFAY — 9V A+ (2.15)
and

VW = grvY - ¥ VH (2.16)

so (2.12) states that Hyt is more complicated than Liyt. The extra terms that

we acquire are of the form

0L ;
NT 4. (2.17)
d6;
For example, suppose
Lint = Cp V¥ (2.18)

This resembles the second term in (2.7). Then

OLNT .
e V" = (Cou = Cua)V* (2.19)

so that the additional terms are not even covariant. Fortunately, the propagator
for V# will also involve noncovariant terms and it can be shown that these two
sets of noncovariant terms will always cancel [23]. As a result, we can use (2.14)
for all of our interactions.

Returning to (2.11), we now have

S = i %/.../d‘xl coodzy T{Liyr(z1) - - - LinT(Z0) } (2.20)

n=0
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2.3.2 Initial and Final States

The reaction amplitude is just the S-matrix element involving the initial and

final states:
= (f15]7) (2.21)

Z n,/ /d4$1 d'z, (fIT {Linr(z1) - .. LinT(z0) }H 7) (2.22)

n=0

In the elementary reaction (2.3), the initial state |i) consists of a photon and

a proton, so we can write
li) = af(k,) b, (K,) [0) (2.23)

where a"(k ) is the creation operator for a photon with momentum k and po-
larization r, and b}, (k ) creates a proton with momentum lc and spin s;. For
photoproduction on a nucleus, the initial state is a photon along with a target
nucleus. According to the nuclear shell model, we can treat the target nucleus
as a core along with a valence proton, so that

iy =dal(ky) Y. (Je.Jsi Mc, MplJi, Mi) [Ss.00(TB)? b oats |¢MC> (2.24)
JgMglJc

where b}, Y My Creates a bound proton with angular momentum quantum numbers
Jg and Mpg. The core |¢ﬁ?> has quantum numbers Jc and M¢ and since the
target nucleus has quantum numbers J; and M;, we incur the Clebsch-Gordan
coefficient (Je, Jg; Mc, M|Ji, Mi). [S14c(JB)] is a spectroscopic factor which
expresses the probability that the real target nucleus has the configuration given
in (2.24).
Similarly, the final state |f) can be written as

1/2

|f) = cI,(E,,) Y (Je,Jer; M, Mp|Jg, My) [SJ,JC(JB')]

JBI h’al JC

L, vtge [85:C)
(2.25)
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where cI,(E,,) creates an 77 meson with momentum ;. Note that while the angular
momentum quantum numbers of the initial bound proton change from {Jg, Mg}
to {Jp, Mp'} and those of the entire nucleus change from {J;, M;} to {J, My},
we assume that the core |¢ﬁ?> is unaffected by the interaction.

Using (2.24) and (2.25), (2.22) becomes

S = Y. Y (Je,Jsi Mc, Mg|Ji, Mi)(Je, Jor; Mc, Mp|Jy, M)
JaMglJc Jgr Mg

x [81,5¢(J8)]" [ 1pc(Jer) 1/22 / /a"xl .dz,

n—O

% (0161508 Cn(Ba)T {Liwr(31) .. Linr(2n) } 0} (B )b 01, ] 0) (2:26)

where we have used

(¢MC MC) (2.27)

2.3.3 Lowest-Order Contributions to Sy;

Each of the terms in the interaction Lagrangian contains exactly three field
operators, so it is clear from (2.26) that the lowest-order contributions to Sy;

will occur when n = 2. Therefore, to lowest order,

Sp=—3 [ [dady(FIT {Lur(e) Lo @)} (228)

By substituting (2.4) for LiyT, we obtain a number of terms in the time ordering
in (2.28), each consisting of the product of two specific interaction Lagrangians.
Only those terms whose fields, when written in second quantized form, can be
matched with the annihilation and creation operators in (2.26) will contribute
to Sy:.

Consider, for instance, the terms L, ygr(z)Lonr(Y) + Lonr(Y)Lonr(T), OF
equivalently, 2L,y r(z)Cynr(Y), where R represents an Sy, resonance. From (2.10)
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and (2.9), we see that this yields a contribution to Sy; of

R
Sk = —sareiy | [ @ty AT{[FRn - nRe] )
x [R50, F*™ 1 — 150, F* R () } i) (2.29)

where we have used

b, = O (2.30)

and

Pt = _pw (2.31)

in order to obtain the minus sign in the second factor of the time ordering
in (2.29). Next, we use Wick’s Theorem to rewrite the time-ordered product as a
sum of normal-ordered products permuted over every possible set of contractions.

We need ¥ and 7 in the normal ordering to match with |f) as well as v
and F# to match with [i). As a result, the resonance field operators must be

contracted. Since

R(z) R(y) = R(z) R(y) =0 (2.32)

there will only be two surviving terms in (2.29):

P 4
Si = gt [ [ @ty (1N [Fwin) R Rizhsow @)v(z)
+B(2) 150 F* (z) R(z) R@)v(w)n(v) } 1) (2.33)

2.3.4 Fock Space Calculations

For the n meson, with the second quantized form

1 s

@) = oy | 7 HER (kD) + BBk 2] (239
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we obtain
. 1 1,
(0] cq(kq)m(y) 10) = W_\/;_E_,, @7 (g, ) (2.35)
since
[ea(R), ch(R)] =6 (k- F) (2.36)
Similarly, for the electromagnetic field,
dsk —l T r1 4% 4
A(z) = o ,2 > / \/ﬁ_ *2 1 ol (F)e ] (2.37)
and therefore
d3k ~

[d ~ik-z __ ik-z BV LV B
(27) 3/2 Z/ \/m (ke k)e ] {kFel — K"} (2.38)

We need to evaluate
(01 oy P (@)al (Ry) 0) = ooty e el — kret}  (239)

but
—io, {keer - Kyet} =4 (m — W) {Rher — ket

= % [k‘y(r - ¢rﬁ7 - (rk'v + kv(r] (2.40)
= 2k,¢r
where in the last step we used ¢,f, = —k,¢;, since k,-¢, = 0. With (2.40), (2.39)
becomes
(O P (@)al ) 0) = 77 ﬁ ek og g, (2.41)

Finally, for a bound proton, the field operator ¥(z) can be written in second

quantized form as

¥(z) = Z[b,.u,. )+ diun ()] (2.42)
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where n refers to the angular momentum quantum numbers of any particular

bound state. If the proton was not bound, we would write

¥(z) 2 / G 3/2[ b(E)u,(k,x)+d:(E)v,(k,x)] (2.43)

An incoherent photoproduction reaction is characterized by the final nucleus
being an excited state of the initial nucleus. Since we are considering incoherent

n-photoproduction, we use (2.42) to write

(OI bJB'NIB’ ['l‘b(y ] bJBMB |0> uJBIA’IBI (y) UsgMp (-’L‘) (2.44)

with the provision that since % and u are Dirac spinors, we must put any 4 x 4
matrix operators, such as the ones in (2.41), between these two spinors so that

Syi is just a number.

2.3.5 Approximating the Propagator

Having completed the Fock space calculations, the last thing we need to evaluate
for the SF,- in (2.33) is the contraction of R(y) with R(z). Since, for an Sy,
resonance, R is a fermion field, the contraction results in the configuration space

Feynman propagator:

R(y)R(z) = iSr(y- 1)

_t / _Frt M _ikpiy-a)
2n)? _ M + e

From (2.33), we see that there are [ [ d*z d*y integrations remaining. In the limit

(2.45)

that the 7 meson and the proton in |f) are both plane waves, we can perform
the [d*z and [d*kp integrations explicitly {24]. The result that we obtain is
equivalent to writing

ﬁR-I-Z\/[R

4 —
k2 Mﬁd(y z) (2.46)

R(y)R(z) =
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and imposing overall four-momentum conservation for the reaction, without mak-

ing explicit assumptions about the particles in | f).

2.3.6 Putting the Pieces Together

Using (2.46) and the Fock space calculations (2.35), (2.41), and (2.44) in expres-

sion (2.33) for Sf, we obtain

1
SE = £ (Je, J; Mc, M|J;, M;)
f (2)3 \/ 2F, 2F, ,CJ%,B ,g:;a,

x(Je, Joi M, M| Jp, My) (S5, (T8)]' "2 [Suy0c (Jer)
x / B2V 4, (2) Tsyy Lipary(z) B(z) €70 (2.47)

1/2

where I's,, is a 4 x 4 matrix operator that can be written as

R
_ GavrEp ks + Mg fu + Mp ,
Cou =3z {kg g Pt bt (2:48)

The 7 comes from writing the @, s, (y) factor in (2.44) as

ﬁ"B' Mg (y) = ‘DBBI Mg (y)ﬂfo (2-49)

where ¥, a1, (y) is just the configuration space wavefunction of the final bound
proton. This proton will be denoted by the subscript p/. Similarly, ¥, ar, ()
corresponds to the initial bound proton, which will be denoted by the subscript p.

In (2.48), we have also used the momenta
ky = ky + ky (2.50)

and

ky = ky — k, (2.51)

to represent kg for the two terms in (2.33).



CHAPTER 2. THEORY 20

The structure of the total reaction amplitude, Sy;, is the same as for Sf;
in (2.47) except for [g,,, which is replaced by a different I" operator for every
pair of Lyt terms that contribute. We would then have

Syi = Y s (2.52)
All interactions (j)

For completeness, we will now list the remainder of the I operators [17].

ks + M
Fprotn = Gavio {7%2 M? ( oM ’6”“) &

w + M -
(21” kv + 1) ¢r k 11\/[2 75} (2.53)

R
_ YaNRE ks + Mn Ié., + Mp -
Ip, = MT A/—;R { k; ﬁvir k‘v(r [2 s (2.54)

/\tgg e“k:o‘m ktak,A' R /\vgv C”k"k

rv=m€uu,\a% kf—m%— '1mn fuu,\a’)‘om (2.55)
(1)
o _ fuveE v Es+Mp _ .0 8
Tp, = -——;Mm: Yo {75]‘71,911;4(2) Ry PP0o5(Y)1a (KB} — €2K2)
W+ Mp , ]
+ () - SR P, e} (259
2
Y s+ M "
o, = %"m—fM—‘;v {75k,,6.,,‘(Z)ﬁ i PtealX) (K6} — ) (s
+ Mg , ]
b isa(XKE ~ SR ENE porg, s} (230

where

B (V) = g + [— % (1+4V) + V] -~ (2.58)
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for V=X,Y,Z and

1 1 2
W = [ _ BV [NBEY  AVEB] - = RBEY 5

The quantities M, Mg, m,, and my represent the masses of the nucleon, the
appropriate nucleon resonance, the 7 meson, and the appropriate vector meson,
respectively. In equation (2.53), k, is the anomalous magnetic moment of the

proton. In equation (2.55), the four-momentum &k, is defined by

ke = ky — ky (2.60)

" 1 2
The quantltles GnNN, GaNR; Kf, ’\tv Gty /\vv v, anR K(R) and fr)NR K(R) are the

phenomenological parameters of the effective Lagrangian.

2.4 Feynman Rules

In the previous section, we saw how QFT can be used to write the reaction
amplitude for an incoherent 7n-photoproduction reaction. The required steps,
though straightforward, are tedious, so in this section I will present Feynman
rules with which we can quickly write expressions for the various terms of Sy;.
We start by looking at Feynman diagrams. In the absence of any knowledge
about the detailed form of the interactions, we would have, for the elementary

process ¥ + N — 1+ N, a Feynman diagram as in Figure 2.1.

Figure 2.1: Feynman diagram for a ¥y + N — n+ N reaction
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The interaction Lagrangian specifies the detailed form of the interactions. All
of the terms in our interaction Lagrangian contain three field operators, and so
each vertex in our diagrams will connect three lines. F*” represents a photon
line (which will be drawn as a wavy line), V#* a vector meson line (coiled line),
and 7 represents an eta meson line (dotted line). For the fermions, ¢ represents
a nucleon travelling into a vertex and v represents a nucleon travelling away
from a vertex. Both will be represented by a solid line with an arrow to specify
direction. Similarly, R and R represent resonances travelling to and away from
a vertex, and these will be represented by thick solid lines with arrows.

For each of the Lixt terms, we can now draw a simple vertex. The vertex
factors can be obtained by removing the field operators in Liyt. For example,
(2.5) gives

Lovy = —igpnN¥Ys¥T

which represents the vertex shown in Figure 2.2 with a vertex factor of —ig,yx7s.

Figure 2.2: The vertex specified by Lonvn

The next step consists of drawing all the possible Feynman diagrams, to any
given order, that are consistent with Figure 2.1, using the Lyt terms available.
Since we will be working in configuration space, each vertex must be labeled by

a spacetime coordinate. We will use = and y, and it will turn out to be a trivial
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detail once we encounter §*(z — y) factors in the propagators. To lowest order,
which turns out to be second order in our case, we have five distinct types of

diagrams, as shown in Figure 2.3.

Figure 2.3: The contributing Feynman diagrams to the y+ N — n+ NV reaction

Diagrams (a) and (b) are the s- and u-channel Born diagrams that use L,xn
and £L,yy. Diagram (c) is the t-channel vector meson diagram that uses Ly vy
and Ly,,. Diagrams (d) and (e) are the s- and u-channel resonance diagrams that
use L,ng and L,xp. We will have these two diagrams for each of the resonances

under consideration.
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The propagator for a spin-% resonance is given by (2.46) as

i ﬁg—fﬁ/—g 8z -y)
We can also use this expression for the nucleon propagator that will be required
in diagrams (a) and (b). The vector meson propagator needed in diagram (c) is
iAr(z — y) which, in the plane wave approximation, becomes

. 64(3: - y) kupkvu
B\ o0

The spin—% resonance propagator presents an assortment of complications, as is
evidenced by the form of equations (2.56) and (2.57) for I'p,,.

The second quantized forms of the fields we encountered in the last section
suggest the method with which we can account for external lines attached to a

vertex at z. For an outgoing n meson with four-momentum k,, include a factor
of
1 & (ky, x) (2.62)
(2r)¥2 foE, '
For an incoming photon with polarization ¢, and four-momentum k,. attached

to a vertex whose interaction Lagrangian contains F**, include a factor of
1 1
3/2
(2r)32 f2E,

If the Lyt term defining the vertex contains A¥, include a factor of

(kber — kver) e~ (2.63)

11 :
o B 2.64
@2 RE, T (264

For L.y, which contains a term with A* and a term with F** due to the anoma-
lous magnetic moment of a nucleon, treat the two terms as separate interactions,

electric and magnetic and add the contributions. For a free outgoing nucleon
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with four-momentum &, and spin sy, include a factor of

1 M _
| By e (26)

Note that this does not occur in an incoherent reaction, but we include it for
completeness. For a bound final-state nucleon with angular momentum quantum

numbers Jg and Mp., include a factor of

12
> (Jo,Jg; Mc, Mp:|Jg, M) [SJ,JC(JB')] Tyg M (Z) (2.66)
Jgr Mg

Similarly, for a bound initial-state nucleon, include a factor of

Z (Jc, JB; A/Ic, A/[BIJ,', A/[,) [cg.]i_](‘.(.la)]l/2 UJg Mg (.I.') (267)

Jg Mg
Take care to arrange these nucleon factors so that % is at the beginning and u is

at the end of the entire expression for Sy;.

For two-vertex diagrams, include a factor of i® = —1 and integrate over
all possible positions of the vertices: [ [d*z d*y. In this context, we do not
need to specify rules for loops since it is apparent that this effective field theory
will no longer be valid at sufficiently high energies. As a result, we would only
consider tree level contributions and acknowledge the impossibility of calculating

higher-order corrections using this model.

2.5 Observables

Having derived an expression for the reaction amplitude, which we will write for

a general diagram as

e 1
S = ‘/ (Je, IB; Mc, MplJi, M;)

x(Je, Jors Mc, Mp|Jp, My) [Ss40(8)]' "2 [SJ,JC(JB')]
x / B2y (@) T Uspriy(2) B)(z) €07 (2.68)

1/2
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we must now relate it to quantities that are experimentally observable.

2.5.1 Preliminary Simplifications

Since none of our interactions are time-dependent, we can factor the wavefunc-

tions ‘IISB, Mg () Wighs (z), ®;(z) and e~ into spatial and temporal parts:

‘I’BB, Mg (T) = eiE"'tw}B, Mg (E)
Uramp(z) = €7F8' Y 00, (E)
&) = eFien(@)
e—ikrz = gmiEat eil?.,-z':‘ (2.69)

Using (2.69) we can perform the temporal integration in (2.68),
/ dzo eEar+Ea~Es~ENt — 9x5(Ep, + E, — Eg — E) (2.70)

so that the reaction amplitude can now be written as

e / 1
Sfi = (21!’)2 2E,,2E—7 5(E31+E,,—EB—E7)

x Y Y (JoiJsi Mc, Mpl|Ji, M)

JcJeMp Jgr Mg

/2
x(Je, Jars M, Ma| 7, M) [S1,50(J8)] " [Ss00(J81)]

x [ 208,10, @) T ¥1gnia () 03(2) €572 (2.71)

Before we proceed further, we will find it convenient to define the integral
in (2.71) as
2= [ aul, i, (B T Vsgara () 03(2) €57 (2.72)
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2.5.2 Fermi’s Golden Rule

In any photoproduction reaction, the principal fundamental observable quantity
is the differential cross section. Fermi’s Golden Rule relates the differential cross
section to the reaction amplitude:

do = ISl d*p, (2.73)
- TJinc p” .

The factor of T in the denominator of (2.73) is usually taken to be the time
period of the interaction. When we square the §(Ey — E;) factor in (2.71), we
can cancel the factor of T by making use of the relation [25]

T

(6(E; - E)* = Y 6(Eys — Ei) (2.74)

The Jinc in (2.73) refers to the incident flux. In the laboratory frame, where the

target nucleus is initially at rest and the photon is incident at the speed of light,

we have

1 -
Jine = (2“)3 (2.70)

By defining
A= S (Je,Js Mc, Mg|J;, My) [Ssuc(T)'? (2.76)

JcJsMp
1/2
B= Y (Jo,Jeos Mc, MplJp, My) [S1psc(Ts)] (2.77)
JBIIWBI

as operators that act on Z, we can rewrite (2.73), using (2.71), (2.72), (2.74),

and (2.75) as

e2

do = 16m2E, E,

§(Eg + E, — Eg — E,) |ABZ* &*p,, (2.78)

. . . 2
or, using the dimensionless fine structure constant a = -,

a
4nELE,

do = §(Eg + E, — Ep — E,) |ABZ|* d*p, (2.79)
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2.5.3 The Recoil Factor

We will write the phase space factor d3p; in spherical coordinates:

dp, = pf,dp,,dQ,, (2.80)
Since
E2=p’+ml (2.81)
we have
2E,dE, = 2pydp, (2.82)

which allows us to rewrite (2.80) as
d*py = ppEqdEqdQy, (2.83)

Combining (2.83) with (2.79), we obtain

do o

—_— ’ —_ -— 2 .
= §(Eg + E, — Eg — E,) |ABZ|* dE, (2.84)

We would now like to integrate over E,. At first glance, the d-function in (2.84)
seems to make this integration trivial, but we must take note that the other

energies are not all independent of E,. Based on the é-function identity

1
J(f(x)) = ; mé(l‘ - .’L'.') (2.85)
where f(z;) = 0, we define the recoil factor
0
R= B—E',, (Eg + En — Ep — E,) (2.86)

With the recoil factor, the differential cross section (2.84) can be written as

do a
dQ, 4nE,

& P [ABZ[* (2.87)
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Now we will derive an explicit expression for the recoil factor in (2.87). The 4-
function from which this factor originates serves to enforce energy conservation.
In order to model the reaction more accurately, we will now allow a momentum
transfer to the core of the nucleus during the reaction so that the more general

energy conservation law follows from a factor of
0 (Ey+ Er— Er - E,) (2.88)

where Ep is the energy of the recoiling nucleus and E7 is the energy of the target.

Since the target is assumed to be stationary in the laboratory frame, we have

By = Pr+ By (2.89)

which leads to
ph =P + p} ~ 29, - P, (2.90)

and with g, -p, = pyp, cos b, we can differentiate both sides of (2.90) with respect

to py:
2PRQEE = 2p, — 2p, cos b, (2.91)
Opy
Opr y Dy
— = — — — cosf 2.92
dpy DPr DPr " (2.92)

The recoil factor in (2.86) is defined in terms of a partial derivative with respect

to E, and not p,, so we use (2.82) and

2ERdER = 2pgdpg (293)
to write
0Er prdpr/Er
= 2.94
OE, Pydpy/Ey ( )
so that
R =14 EnPrOpr (2.95)

E RPn ap,,
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Inserting (2.92) into (2.95) we obtain the final form of the recoil factor:

E p
R=1+-—"(1——7c030) 2.96
ER Py n ( )

2.5.4 Spin Summations

Now we are in a position to simplify the |ABZ|? factor in (2.87). If we do not
specify or detect the spin states of the incident photon, the target nucleus, and
the recoiling nucleus, then we must average over the spin states of the initial
particles and sum over the spin states of the final particles. Since the photon
has two possible spin states, as labelled by £, and the spin-J; target nucleus
has (2J; + 1) possible spin states, our differential cross section now takes the

form
do 1

aQ, 2027 +1) M ¢

(43
) TERM |ABZ|? (2.97)
b

The only part of |ABZ|* that depends on M; is the Clebsch-Gordan coefficient
in A. Similarly, the Clebsch-Gordan coefficient in B has the only My dependence.
Therefore, we need to evaluate

Q=) (Jo.Kp; Mc, Ng| Ji, Mi) (Je, Jg: Mc, Mg | Ji, Mi) (2.98)

M;

Note that Kg and Np are the dummy indices of summation resulting from A*A.
Also, we can ignore the complex conjugation since Clebsch-Gordan coefficients
are defined to be real. Now we will use some of the symmetry relations that
govern Clebsch-Gordan coefficients [26] in order to evaluate Q. Using

2J;+1

I
2
2J, + 1] (J, Ja; My, =M | Jo, = M)

(2.99)

(J1, Jo; My, M3 | J3, M3) = (-1)h-M [



CHAPTER 2. THEORY 31

and the fact that Jo and Mg differ by an integer so that (—1)XJ/c—Mc) = 1, we

have

Qo = Z 2J;+1
T V2K +1/2Jp+1
x (Jg, Ji; Mc, —M; | Kg,—NB) (Je, Ji; Mc, —M; | Jg, —MB)

(2.100)

Clebsch-Gordan coefficients obey the following orthogonality relation:

Z (Jl, JQ; 1\/[1, A/[2 I J, A/[) (Jl, JQ; A‘Il, l\/[g | J', A’I’) = JJ‘JréM,M: (2101)
My M2

Applying (2.101) to (2.100), we find that @ = 0 unless both

Ng = Mp (2.102)
and

Kg=Jg (2.103)

are satisfied. This allows us to rewrite (2.100) as

2J; +1

Q=2JB+1

(2.104)

Applying (2.104) to both the M; and M; summations in (2.97), we have

do a (2J;+1) p, S1,40(JB) S1yac(JB)) | 12
—_— i 7 : Z 2.105
a2, 8r R E, JB,ZMB Jaf,v";ta, 2 (2Jg +1) (2] +1) S )

where Z depends on Mp, Mg/, and &.

2.5.5 Units

Throughout the derivations of Sy; and do, we have been using natural units,
wherein i = ¢ = 1. Now we must examine the dimensions of the various factors

in (2.105) so that we can restore any necessary factors of & and c.
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The differential cross section, do, has dimensions of area, or length squared.
Since €, is measured in steradians, which are dimensionless, the left side of (2.105)
has dimensions of length squared. On the right side, a, J¢, Jg, Ja/, and R are
all dimensionless, as are the spectroscopic factors Sy, ;. (Jg) and Sy, 4.(Jp'). The
ratio ﬁ—.'."- is also dimensionless if we measure both p, and E, in the same units.
To remind us of this, we will multiply p, by a factor c. Looking at (2.72), we see
that Z is the spatial integral of two continuum particle wavefunctions times two
bound state nucleon wave functions that sandwich a I’ operator. The contin-

£ are dimensionless. The bound state wave

uum wavefunctions, ¢}(Z) and e~ikr
functions, w}a, g (Z) and Yyparp(Z), are normalized so that their combined di-
mensions cancel the dimensions introduced by the spatial integration. Looking
at (2.48), we see that if we calculate all £ and M quantities with dimensions of
inverse length, then [ will have dimensions of length. As a result, the right side
of (2.105) will have dimensions of length squared without the need for any other

additional factors of h or c.

2.5.6 Final Form of the Observables

Given the discussion in the previous section, we can rewrite the differential cross

section (2.105) as

do _a (2J5 +1) pyc Z Z ZSJiJC(JB) SJ,JC(JBr) |Zl2 (2.106)

dQ, 8 R B 50, .5 % 2Js+1) (27p +1)

4%,7 as a function of 6,, will be one of the observables of interest to us. We
are also interested in the total cross section, which is easily obtained by inte-
grating (2.106) over df2,. Since the initial configuration of the system possesses

azimuthal symmetry, we can use

dQ,, = sin 6, df,ds, (2.107)
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and integrate (2.106) over ¢, by multiplying by a factor of 27. This yields
o= 27r/ 49 ing, do (2.108)
- dQ,, n %¥n .

The last observable that we will calculate is the photon asymmetry. If we take
the two independent spin states of the photon, as indexed by &, to be linear
polarization states parallel and perpendicular to the reaction plane defined by

p, and py,, we can remove %Ze from (2.106) and calculate

do
doy = (_) (2.109)
dSly €ll
and
do
do, = (—) (2.110)
dsl, €L
Hence, we define the photon asymmetry to be

dO’" - dO'J_

4 doy + do;

(2.111)



CHAPTER 2. THEORY 34

Appendix 2.A Gauge Invariance

In this appendix we address the conditions under which the reaction amplitude
is gauge invariant.
As a starting point, we observe that the effective Lagrangian with which we

begin is explicitly gauge invariant. For example,

£71\N - —ew’YuA”w - wauu "'IJ (2-112)

4 M
when combined with the free Lagrangian terms for the fields ¢ and A*, is invari-

ant under the local gauge transformation

AP — A¥ + 0N (2.113)
¥ — ey (2.114)

The reaction amplitude,
SP ~ [ '8l 1y, (@) Ty Cigntg (@) Bya) e™* (2.115)

is gauge invariant if and only if the operator ['(;) is gauge invariant. We will now
show that all the I['(;) operators are gauge invariant except for the part of the
operator that arises from the first term of £,yn, commonly referred to as the
electric term.

Observe that whenever a term in the interaction Lagrangian contains F*“,

the subsequent Fock space calculation leads to a factor of the form
{kee” — ket (2.116)

as was shown in equation (2.38).

To test gauge invariance, we note that

€ — € +ak, (2.117)
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is the general gauge transformation that preserves the Lorentz condition
€k, =0 (2.118)

since k, - k, vanishes for the massless photon. When we have an expression
involving € and k., such as (2.116), we test gauge invariance by showing that
the transformation (2.117) leaves the expression unchanged. This is equivalent
to making the substitution

e — k, (2.119)

with the requirement that the resulting expression equal zero. By using (2.119)
on (2.116), we conclude that all operators arising from Lagrangian terms con-
taining F'*¥ are gauge invariant.

The electric term,

Ly = —ePy,A*Y (2.120)
does not contain FM, so the Fock space calculations alone do not guarantee
that gauge invariance is maintained. The terms in the I' operator that arise
from (2.120) are

s+ M + M ] (2.121)

b+ M
Let = gnvno [’Ys k2 M2 {+ f 3

Using ks = k, + k; and k, = ky + k,, where k; and ks represent the initial and
final nucleons, along with (2.119), we have

kL, +ki+M E 4 -k, +fr+ M
K2+ k2 + 2k, - ki — M2 TRZ 4 kS — 2k, k;— M2
(2.122)

We can use f,f, = 0 and k?, = 0 to simplify this expression. Also, suppose

et = gynno [’75

that the initial and final nucleons are on mass shell, so that k¥ — M? = 0 and
— M? = 0. This allows us to write (2.122) as

E+ M Er+ M ]

Lt = gpnnvo [’Ys %, ki ky+ kB —— "ok -k Ys (2.123)



CHAPTER 2. THEORY 36

k., commutes with M and almost anticommutes with £;:

ﬁiﬁr = kiuk'w’Y”’Y"

= kiuky [2¢" - ’7"7”]

= 2k;-ky — kK (2.124)
Similarly,
Erkr =2k -k — ks (2.125)
so that
_ ki—M kr—M ‘
Fea = gavno [ Y5y %, ki + 75 + %, -k, Eyvs — s
_ fi—-M kM
= ggNNT0 [ '75#‘7 21‘:'7 Tk, + 2/57 - kf #‘775 (2126)

In the limit of vanishing nuclear potentials, the initial and final nucleons are

governed by the Dirac equation for a free particle of mass M:
Uk —M)=0 (2.127)

(ki — M)¥: =0 (2.128)

Since we have \II}F\I!.- in equation (2.115) for Sy;, the first term of (2.126) vanishes
due to (2.128) and the second term vanishes due to (2.127).

To summarize, we have shown that almost all the parts of the reaction ampli-
tude are explicitly gauge invariant. One part, which turns out to be a very small
part of the amplitude, is only gauge invariant if the initial and final nucleons are
on mass shell and if the nuclear potentials can be neglected so that the initial

and final nucleons are well described by a free Dirac equation.



Chapter 3

Details of the Calculation

In the previous chapter we derived formal expressions for the reaction amplitude
and the observables that arise in an incoherent n-photoproduction reaction. Our
ultimate goal is to perform numerical calculations for the observables. To do
this, we need to take a closer look at our analytic expressions so that we can
eventually break such a numerical calculation down into manageable pieces. In
this section we will examine the steps that are taken in order to transform the
analytic expressions for the observables into simpler pieces for which we can write

computer code.

3.1 Kinematics
There are two perspectives from which we can look at the kinematics of our
reaction. From one perspective, our reaction is of the form

A+B—C+D (3.1)

where A is the incident photon, B is the target nucleus, C is the eta meson that

is produced, and D is the recoiling nucleus. We will refer to this perspective as

37
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the outer kinematics of the reaction. Alternatively, we observe that our reaction
model treats the target and recoiling nuclei as being composed of a valence
nucleon coupled to a core which does not participate in the reaction directly.
The momentum of this valence nulceon, both before and after the interaction,
enters into the model. We will refer to this partition of the energy and momentum

of a nucleus among its nucleons as the inner kinematics of the reaction.

3.1.1 Outer Kinematics

We are interested in the incoherent n-photoproduction reaction A(v,n)4*, which

we label using the subscripts v, 1, T, and R, so that we have
v+T —n+R (3.2)

We begin by defining a coordinate system. We take the direction of the
incident photon to be the z-axis so that in the laboratory frame the photon has
four-momentum

vt =(E,,0,0,p,) (3.3)
We define the reaction plane to be the plane spanned by the vectors p., and g,
The y-axis will be defined to be normal to this plane using the following pre-

scription:
ikl ) (3.4
|5y X D]

]

Figure 3.1 shows the orientation of the axes relative to the reaction plane.

In the laboratory frame, the target nucleus has four-momentum
pr=(Mr,0,0,0) (3.5)
Conservation of four-momentum implies that

ph+ror=ph+pk (3.6)
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X
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Figure 3.1: Definition of the coordinate system used for this reaction

Now we wish to obtain expressions for pj and pr- By the definition of our

axes,

0<6,<180°
by =0
0 < 0r <180°
or = 180°
so that the four-momenta of the outgoing particles take the form
= (Ey, pysinby, 0, p, cosf,)
P = (Er, —prsinfg, 0, prcoslr)

The energies and momenta of the outgoing particles are constrained by

2 2_ 2
E; —p,=m,

(3.7)
(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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and
E% —p%=M3 (3.14)
Furthermore,

Mg = Mr+E; (3.13)

where E, is the excitation energy of the final nucleus compared to the target
nucleus, which is assumed to be in its ground state.

Using equations (3.3), (3.5), (3.11), and (3.12) in the conservation law (3.6),

we obtain
E,+Mr=E,+Ep (3.16)
Dy sinfy — prsinfr =0 (3.17)
Dy = ppcos b, + prcosfr (3.18)

At this stage, we observe that there is only one effective degree of freedom in
the final state. This is because we are fully specifying the initial conditions and
we have only two particles in the final state. As a result, we have essentially four
unknowns in the final state: the energies and angles of the  meson and of the
recoiling nucleus. Equations (3.16), (3.17), and (3.18) provide three constraints
on these four unknowns. Given this situation, we need to specify only one of these
four variables in order to determine the final state completely. Since, according
to (2.106), we are calculating the differential cross section as a function of 8, we
will fix 6, at the start of the calculation. More specifically, we will calculate the
differential cross section for a number of different fixed values of 6.

Our next objective is to calculate E, in terms of 6, and the other fixed
parameters. Once we have achieved this, Er and 0z are easily found using the

equations already derived. By combining (3.17) with (3.18) so as to eliminate 8,
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we obtain
ph =P} + D2 — 2p,p, cos b, (3.19)

Using (3.14) and (3.16) to rewrite p%, we then have
(Ey + Mr)? + E? — 2E, (E, + Mr) — M} = p? + p2 — 2p;p,cos6,  (3.20)

Finally, using (3.13) and the fact that p, = E., for the massless photon, we end

o~ BE; +K\/E2~m2 =0 (3.21)

where the constants a, 3, and « are defined by

up with

a = M;+mi— Mj+2E,Mr (3.22)
B=2(E,+ Mr) (3.23)
k = 2E, cosf, (3.24)

From (3.21), we get a quadratic equation for E, which has solutions
af |K|\/a2 —m2 (6?2 - Kk?)
n= 62 _ I€2

One of these solutions is unphysical and arises when we square equation (3.21).

(3.25)

Since we explicitly require that E, > my, (3.21) leads to the condition

BE, - a
K

>0 (3.26)

If8, < 90° then k > O so that the constraint in (3.26) compels us to choose
the solution of (3.25) that has E, > §. Similarly, if 6, > 90° then k < 0 and
so we choose the solution of (3.25) that has E, < §.

It is worth pointing out that by setting the argument of the square root
in (3.25) to zero, we can solve for the reaction threshold:

— m’l _Tn_n Ez )
(E‘Y)th.reshold - m'l (1 + 21\/[’[') + Ez (1 + A’[T + —-QNIT (327)
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For a sufficiently massive target, the threshold is essentially the n mass. Nuclear

recoil effects raise the threshold somewhat for less massive targets.

3.1.2 Inner Kinematics

Our model for the elementary reaction process explicitly incorporates the four-
momentum of the particular nucleon that participates in the reaction. For ex-
ample, equation (2.48) shows that I's, depends on the four-momenta k, and k,.
These momenta, as defined in (2.50) and (2.51), are related to k, and ky. There-
fore, we need to specify these four-momenta in order to calculate the I" operators.
However, since the target nucleus remains intact after the interaction in an in-
coherent process, we cannot directly observe any of the nuclear constituents.
As a result, a certain degree of ambiguity arises whenever we discuss the inner
kinematics of the reaction.

We will choose the simplest option available to us, namely, that the four-

momentum of the nucleus is partitioned equally among its constituent nucleons:

1
B
k5 oA r (3.28)
1
” — ¥
ky = oA Pk (3.29)
where (fic) = 197.3MeV fm converts momenta from units of MeV to units

of fm™". Since the four-momentum of the nucleus, both before and after the in-
teraction, is completely specified by the outer kinematics, this choice completely
determines the inner kinematics as well. Having specified the inner kinemat-
ics, the only pieces missing in order to calculate the I' operators are numerical
parameters such as resonance masses, coupling constants and magnetic moments.

To conclude this section, we will now mention another approach to the prob-

lem of the inner kinematics. The calculation that we are performing is local, since
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we fix all of the momenta and integrate over spacetime points. Alternatively, we
could formulate a model that integrates over the momenta of the particles. In
this case, the indeterminacy of the inner kinematics would no longer be a prob-
lem since all possible partitions of the nuclear momentum would be accounted
for by these integrals. On the other hand, such a formalism introduces compli-
cations that are absent in our model, such as off-shell effects and cutoffs in the

propagators.

3.2 Particle Wavefunctions

One of the pieces that goes into calculating the reaction amplitude is Z, which,
as given by (2.72), involves a spatial integration of particle wavefunctions and
a " operator. In this section we will exhibit the ways in which the particle

wavefunctions are obtained.

3.2.1 Nucleon Wavefunctions

In Chapter 2, we discussed how Quantum Hadrodynamics (QHD) allows us to

write the wavefunction of a bound nucleon as the solution of the Dirac equation
[@- 5+ B(M + S(r)) + V(r)] ¢s(Z) = E¥s(Z) (3.30)

where the scalar and vector potentials S(r) and V(r) approximate the meson
exchanges that mediate the strong force which binds the nucleon to the rest of
the nucleus.

Since the scalar and vector potentials in (3.30) are explicitly spherically sym-

metric, the nucleon wavefunction ¥g(f) can be written as a four-component
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spinor with well-defined angular momentum in the form [27):

Fa(r) Ve, ()
wJBMB(f) = (3.31)
ign(r) ;‘V'fal JB(Q)

where

5=2Jp—Lpg (3.32)
yMal L () is a generalized spherical harmonic. Such functions are convenient
shortha.nd for the eigenfunctions of the angular momentum operators that are
constructed from linear combinations of products of spherical harmonics and
two-component spinors:

Vi, 15 (@) = z(LB, Ma—n,;zlfa,MB)Y“ﬂ “@xt,  (3.33)

u
By substituting (3.31) into (3.30), we see that the upper and lower radial compo-

nents of the nucleon wavefunction, fg(r) and gg(r), are related by the coupled

differential equations

[Es + M +5() - V(D) ga(r) = [ 2 *r""] far) (339
[Eg — M = S(r) = V(r)] fa(r) = - [;7 ;1 'r"B] gs(r)  (3.35)

where
Kp = (LB - JB)(2JB + 1) (3.36)

Provided we specify the potentials S(r) and V(r), in addition to the angular
momentum quantum numbers of the bound nucleon, equations (3.34) and (3.35)
can be solved numerically for the radial functions fg(r) and gg(r) which char-

acterize ¥g(%).
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One way to generate the potentials S(r) and V/(r) is to solve numerically
the coupled nonlinear QHD field equations that characterize the nucleons and
mesons in the nucleus. The resulting potentials are known as Hartree potentials.

The potentials that we will use are parametrized by Woods-Saxon functions:

Ws

S(r) = [T otr—Rs A3/ (3.37)
Wy

V(r) = TSRy Y (3.38)

R and D are the radius and diffuseness of the potentials and 4 is the mass
number of the nucleus. The denominators of (3.37) and (3.38) approximate
the radial dependence of the nuclear density. W represents the strength of the
potentials. The potential strengths are chosen so as to reproduce the binding
energy of the valence nucleon while conforming with the relative sizes of scalar
and vector Hartree potentials.

By way of example, consider a 1py proton in %0 with a binding energy
of 12.637 MeV. Table 3.1 lists the Woods-Saxon parameters for '®0, as obtained
in [27]. Figure 3.2 shows a graph of the radial wavefunctions fg(r) and gs(r)

that are numerically obtained using these parameters.

Parameter | Vector | Scalar
W (MeV) | 367.37 | -451.13
R (fm) 1.0176 | 1.0379
D (fm) 0.5728 | 0.6258

Table 3.1: Woods-Saxon binding potential parameters for O
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Radial Wavefunctions for the 1p, , Proton of '*o

-
fr(r)
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Figure 3.2: The upper and lower component radial wavefunctions of the 1p;

proton of 60

3.2.2 The Photon Wavefunction

Since the incident photon has a definite energy and direction, the photon wave-
function is a plane wave, as we have already seen. In the previous subsection, we
factored the wavefunctions of the bound nucleons into radial and angular parts.
This factorization will be used for the other wavefunctions as well. We can write

a plane wave in terms of spherical waves using [28]:

¢F% = 3 i\ [ar(2L + 1) jL(kr)Y2(Q) (3.39)
L

where k = |k| and ji(kr) is a spherical Bessel function of order L.
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3.2.3 The n Meson Wavefunction

The n meson is a spin-zero particle and is therefore described by the Klein-Gordon
equation

[0+ m2] &y(z) =0 (3-40)

which, for a time-independent interaction, reduces to
[V2+ B2] (@) =0 (3.41)

Equation (3.41) assumes that the 7 meson is a free particle from the moment it is
produced. This assumption might be a good approximation, but we would also
like to include the possibility that the n meson interacts with the nucleus after
it is produced. We can account for such final state interactions by including a

potential term in (3.41):
[V2+ 2 +U(r)] @n(@) =0 (3.42)

In subsection 3.2.6 we will discuss the details of this potential term.

We would now like to factor the  wavefunction into radial and angular parts,
as we did for the photon wavefunction. The situation is more complicated with
the n wavefunction for two reasons, though. First, the solid angle Q in (3.39) is
measured with respect to the axis defined by k. Since we have defined the z-axis
by the direction of IE,, we can use (3.39) for the photon wavefunction with the
understanding that Q is measured with respect to the z-axis. The n meson, on
the other hand, does not necessarily travel in the z-direction. Given that we still
want Q to be measured with respect to the z-axis, we have to make use of the

spherical harmonic addition theorem [26]

YY) = 2;:11‘2 (YME)) v M@ (3.43)
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to write a spherical harmonic defined with respect to the direction of the n meson
in terms of spherical harmonics defined with respect to the z-axis. The second
complication arises from the inclusion of the potential U(r) in (3.42). Since
the n meson is not a completely free particle, it will not be a plane wave and the
radial factors in the wavefunction will not be spherical Bessel functions. We will
denote these radial factors by v, (r). By analogy with (3.39), and making use
of (3.43), we can then expand the 7 wavefunction as

onl@) = dr 3 ity (r) (Y2 (k) Y2 (@) (3.44)

n My

Substituting (3.44) into (3.42), and noting that

18 L2
2
Vi=lam T H (3.45)
we obtain an equation for v, ():
19° L(L,+1 .
;W(T'UL.,) - _’?( :2 ). v, + (kg, + U(T)) v, = 0 (3.46)

Given U(r), equation (3.46) can be solved numerically to yield v, (7).

3.2.4 The Plane Wave Approximation

In the Plane Wave Approximation (PWA), we assume that the 7 meson does
not interact with the nucleus after it is produced. This is equivalent to setting
the potential U(r) in (3.42) and (3.46) equal to zero. With this substitution,
(3.46) can be explicitly solved for v, (r) with the result

v, (r) = ji,(kyr) (3.47)
Using (3.47) in (3.44) and referring to (3.43) and (3.39), we have

on(Z) = e E (3.48)
n
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in other words, the 7-meson wavefunction is indeed a plane wave.
When we use the PWA, the photon and 1 meson wavefunctions can be com-

bined:

&2 () = el Fn) (3.49)
With (3.39), this becomes
oy(3) €5 = an 3 itj (kr) (Y2 (R)) Y M(Q) (3.50)
LM

3.2.5 The Distorted Wave Approximation

In the Distorted Wave Approximation (DWA), we allow the n meson to interact
with the nucleus after it is produced. Since the 7 wavefunction is no longer a
plane wave, we cannot combine the photon and n wavefunctions as easily as we
did in (3.50). Instead, we combine (3.39) and (3.44) to write

o (E) €0 = 8rt Y Y it oL, + 11, (kyr)uL, ()

Ln,My L,

x Y (k) (Y2 () Y2, (Q) (3.51)
Comparing (3.51) with (3.50), we see that in each equation, exactly one of the
spherical harmonics carries a complex conjugation. On the other hand, we are
fixing the kinematics for the calculation from the beginning, so a spherical har-
monic of the form Y (k) is just a number, whereas a spherical harmonic of the
form YM(Q) is a function of an angle over which we will integrate. We will find
it useful to cast (3.51) in a form that is as similar to (3.50) as possible. In par-
ticular, we would like to write the spherical harmonic functions in (3.51) without

complex conjugation. Using the identity

(Y2(6,4))" = (-)M Y "(6, ) (3.52)
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on both of the Yf: " spherical harmonics in (3.51), we have three changes. First,
we pick up two factors of (—1)™7, but since M, is an integer, these factors do not
change the expression. Second, we replace M, with — M, in both of the spherical
harmonics. Since M, only occurs in these two places and we are summing over M,
from —L, to Ly, this change does not affect our expression either. The final
change is that we have moved the complex conjugation from Y,:’"(Q) to YLI:I" (kn).

as intended. As a result, we now have

-

oy(@) e = 8rt T Y it f2L, + 11, (Kr)us,(r)

LoMy Lo
x (Yih(ky)) Y2 (Q)Y2 (Q) (3.53)

3.2.6 n Optical Potentials

Whenever mesons are produced on a nucleus, the mesons are strongly affected
by their final-state interactions with the nucleus. Therefore, the wavefunction of
the n meson is given by the solution of the Klein-Gordon equation (3.42) which
contains a potential term U(r) to describe these final state interactions. This

potential term is often written as
U(r) = —2w,Vope(r) (3.54)

where wy, is the 7 energy in fm~' and V,u(r) is called the optical potential.
Hereafter, we will be working with U(r) directly and we will refer to this potential
as the optical potential.

The most common way to construct an optical potential is to use the tp
approximation

U(r) = tp(r) (3.35)
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where p(r) is the nuclear density and t is a parameter that is related to the

nN — N scattering amplitude f by

— (pn)LAB -
t= 47r—(pn)c1w f (3.56)

At this stage, the situation remains unclear. If we were interested in construct-
ing a 7 optical potential, we could proceed through the same reasoning as above.
Since the 7NV interaction is well known, both theoretically and experimentally, we
would have little trouble in finding the scattering amplitude in (3.56). Unfortu-
nately, the 7NV interaction is not so well understood and so we have to postulate
a plausible form for the scattering amplitude in order to construct the n optical
potential. We will look at two different optical potentials.

The first optical potential, which we shall denote by DW1, was used by Lee et
al. [11]. Using results from the coupled-channel approach of Bennhold et al. 1],

they parametrize the 7V scattering amplitude as

ay .
f = - 3.97
1 — iay(Py)conr + 38nTy(Pn)on (3.57)

with the parameters
a, = (0.25 +40.118) fm (3.58)
ry = (=5.71 —40.391) fm (3.59)
The second optical potential that we will use will be labelled DW3. It was

introduced by Peters et al. [20] using the results of Effenberger et al. [14]. Writing
the optical potential as a tp ansatz with no real part, they obtain

U(r) = i(3 fm®)pyp(r) (3.60)

We will now illustrate some of the features of these optical potentials. Fig-

ure 3.3 depicts the nuclear density function, p(r), as calculated in our computer
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program dw.for, for each of the three nuclei that we will be studying: '2C, 60,

and “°Ca. These functions are normalized so that

/p(r)dV =A (3.61)

where A is the total number of nucleons in the nucleus. In Figure 3.4, we show
the density-independent parts of the optical potentials. These parts correspond
to the ¢ factor in (3.55).

Nuclear Densities of 12C, 16O, and “°Ca

0.2
0.18
0.16
0.14
0.12 |

0.1
0.08
0.06
0.04
0.02

p(r) (fn™)

r (fm)

Figure 3.3: Graph of the nuclear densities for '2C, ®0, and °Ca
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Density Independent Factors in the Optical Potentials
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Figure 3.4: Comparison of the DW1 and DW3 optical potentials
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3.3 Evaluation of the Integral

One of the steps along the way to a calculation of the differential cross section

is to evaluate Z, which was first defined in (2.72) of Chapter 2 as

2= [@1v], 00 () T sgnip () 03(3) 57 (3.62)

In the previous section, we saw how to factor the wavefunctions that appear
in (3.62) into radial and angular pieces. Now we will use these results to express Z

in terms of radial and angular integrals.

3.3.1 Substituting the Wavefunctions

/ &z = / r? dr / do (3.63)

we can substitute the wavefunctions, as found in the previous section, into (3.62).

Using

The initial bound state nucleon wavefunction was given in (3.31) as

f8(r) Vs 1, ()
Yigma(T) = (3.64)
ZgB( )ygllal -’B( )

where Ly = 2Jg — Lg. Similarly, we can write the adjoint of the final bound

state nucleon wavefunction as
t = Mg t . Mg f -
Wt @ = |Tor) (Vi2,, @) —igw(0) (Vii7y,, @) | (65)

where L'y =2Jg — Lg.
In the PWA, we will use (3.50):

on(@) % = dm 3 i gukr) (¥2(R) ¥2'(@) (3.66)
LM
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where k = (E., - l}.,,), whereas in the DWA, we will make use of (3.53):

o)(2) B % = gri 3 S ibEn\ 2L, + 1 g (kyr)ug, (1)

LyMy Lo
x (Yo (k) Yol QY2 () (3.67)

Finally, we will write the 4 x 4 matrix operator I" in terms of four 2 x 2 matrix

'y T
r= " " (3.68)
Ty T2

For the PWA, when we substitute (3.31), (3.63), (3.66), and (3.68) into (3.62),

operators [';;:

we obtain

Zpwa =811 it (YM(K)) {RyAn + iRpgAra — iRgp A + Rog Az} (3.69)
LM

In the DWA, using (3.67) in place of (3.66), we have

Zpwa = 871’% Z iL"L"\/2L.,+1 Z(Y:’["(kn))‘
L My

'7vL'I

X {RffAu + ingA[z - iRnggl + Rgg"-lgg} (3.70)

Rxy and A;; are shorthand notations for the radial and angular integrals, re-
spectively. We will now examine their explicit forms for both the PWA and
DWA.

3.3.2 The Radial Integrals
In the DWA, the radial integrals that appear in (3.70) are defined by
Rxv = [ Xo(r)Ys(r)i, (kyr)ue, (kyr)rdr (3.71)

where Xp is either the upper or lower radial wavefunction for the final nucleon

bound state, as specified by the first subscript of Rxy, and Y} is either the upper
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or lower radial wavefunction for the initial nucleon bound state, as specified by
the second subscript of Rxy. Similarly, for the PWA, the radial integrals in (3.69)
are defined by

Rxy = /Xgr(r)Yg(r)jL(kr)r2dr (3.72)

All of the functions in (3.72) and (3.71) are calculated numerically as arrays
over the range of 0 fm to 20 fm with a radial lattice spacing of 0.04 fm. The radial

integrations are then performed numerically using Simpson’s rule.

3.3.3 The Angular Integrals

In the DWA, the angular integrals that occur in (3.69) are defined by

t
= Mg M My -0
ay= [ (W, @) TN @YiP@YL@de @)
where
: Lg if i=1
B = (3.74)
and
; Lg if j=1
=y ® " (3.75)
y if =
Similarly, for the PWA, the angular integrals in (3.69) are defined by
t
Ag= [V, @) Tadln (@ YMEQ)¥P(@d (3.76)
Notice that we have used
1
YP(Q) = — 3.77
0( ) \/‘T‘E ( { )

in order to include a second spherical harmonic in (3.76). This spherical harmonic

is used to bring the PWA angular integrals into the same form as the DWA



CHAPTER 3. DETAILS OF THE CALCULATION 57

angular integrals. Equation (3.69) already carries an extra factor of 213 to

compensate for this spherical harmonic. We will write this common form as

a=| (yL s ) AV () V(@) Y2,() do (3.78)

where A is a 2 x 2 matrix operator corresponding to [';;. To evaluate (3.78),

we are going to use a result derived in [24] which makes use of spherical tensor
techniques to express this angular integral in terms of 3-j and 6-j symbols.

The first step of this process is to rewrite A as a linear combination of the

2 x 2 identity matrix I, and the three Pauli spin matrices:
A=ChL+D-& (3.79)

This can be done by writing A explicitly as a 2 x 2 matrix and expanding the

right side of equation (3.79) so that we have
A A C+Ds D,-iD
i Az | 3 1 2 (3.80)
Ay Ap Dy+iDy C- Dy

which can be solved for the expansion coefficients C and D using

C = -]; (A1 + Ag) (3.81)
D = 3 (Azl + Ap) (3.82)
D, = -21— (Ag; — Ay2) (3.83)
Dy = 3 (Au-An) (3.84)

The Cartesian vector D is related to a spherical tensor of rank one by the trans-

formation
D L= D +1iD
1 \/_ ( )

D' = W (D; —iDy)

D® = D, (3.85)
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Similarly, we can transform & into a rank-one spherical tensor so that (3.79)

becomes

A=CL+) (-1)*Di*at (3.86)
n

Using this result, (3.78) can be broken down into
A=CS+) (-1)*Di* T (3.87)
N

where S and T/ are integrals that behave under rotations as a scalar and a

rank-one spherical tensor. They are defined by
s= [ (vt ) V(@) YAR(@) Y2, (@) 40 (3.88)

7= [ (9, @) ot 0y, @ V@ YL@ (389)

The next step, which is somewhat tedious, is to apply a number of theorems
and identities concerning angular momentum coupling to (3.88) and (3.89) in
order to write these integrals in terms of 3-j and 6-j symbols. The 3-j symbol is

a close relative of the Clebsch-Gordan coefficient; both are used when coupling

two angular momenta. The two are related by [26]

L L. L _\Li-La+Ma
( Ml Mz ;{ ) = (—1‘)'2‘—° (Ly, La; My, My | L3, M3) (3.90)
1 2 —Mj 3

where L = /2L + 1. The 6-j symbol is related to the Racah coefficient; both are

used when coupling three angular momenta. They are related by [26]

J S J
PR TR o (L)t Wy g, J, gy i, Jaa) (3.91)
Js J Ju

With these notations in place, we now proceed to write the final expressions for S

and T, as given in [24]:
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— 1 2J2+-—M2+z\rl3 L3L4J2Jl
4w

x 3 2A+1)— [1+( 1)ba+hitd]
A
Ja h L A
1/2 —1/2 0 )\ -Mx My My
Ly L Ly Ly A
3 Lg 3 Ly (3.92)
0 0 0/\ M 0 -M,

TF = \/g( 1)2J2+L2+u+M3 jzjlzsfut

Z [1+(_1)L2+L1+A]
A
Ly Ly A Ly L, A4
X
0 0 O M; 0 =M,
Ji 4 K J 4 K
x Y (2K +1) ' '
K —1/2 0 1/2 A/Il I‘JA I‘IIK

1 L K L, 1/2 J
x 2 2 1/2 % (3.93)
— i A/[‘Z 1‘/[;( 1 K 1/2

These are certainly formidable expressions, but as a result of all the selection
rules that apply to 3-j and 6-j coefficients, they can be evaluated quickly. Opti-
mizing the speed of the calculation is quite important since we have summations
over Mg and Mg, in addition to L and M for the PWA or L,, M,, and L,
for the DWA. These summations require the evaluation of as many as a billion

angular integrals like the one in (3.87) over the course of a DWA calculation!
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Appendix 3.A Parameter Values

To go beyond the analytic expressions for the reaction amplitude and the ob-
servables, we require numerical values for the parameters that appear in these
expressions, such as coupling constants, particle and resonance masses, magnetic
moments, and off-shell parameters. While some of these parameters, such as the
mass of the n meson, are very well determined experimentally, there are other
parameters that are not known so accurately. In this appendix we will tabulate
the numerical values that were used for the parameters in our calculations.
Table 3.2 shows the masses and widths of the particles we encounter. We
neglect the width of the 7 meson during our calculations since it is so much

smaller than m;,.

Particle | Mass (MeV) | Width (MeV)
n 547.30 0
p 938.27231 0
/] 770.0 153.0
w 782.0 8.5
Py, (1440) 1440 350
D,3(1520) 1520 120
511(1535) 1535 150

Table 3.2: Masses and widths of the particles in our calculations (2]

Many other parameters appear in the expressions for the [' matrix operators
in (2.48) and equations (2.53) through (2.57). These parameters were obtained
in [8] by fitting to existing data sets for -photoproduction experiments. We use
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the values obtained with a vector meson form factor cutoff of A2 = 1.2GeV?2.

Table 3.3 summarizes the coupling constants and magnetic moments in these

equations.
Parameter | Numerical Value || Parameter | Numerical Value
GnNN 4.1 Ap 1.06
GaN S, 2.01991 Ao 0.31
GnNPL 2.60322 (9)s 2.63
Kp 1.7928456 (9e)o 16.05
ks, 0.880317 (gv)w 10.09
Kpy, —0.00379488 (9¢)w 1.42
faNDis K1 15.306
FaNDis Ko 16.1189

Table 3.3: Coupling constants and magnetic moments used in our calculations

Finally, equation (2.58) refers to the off-shell parameters .X, Y, and Z. We

use the values in Table 3.4.

Parameter | Numerical Value
X -1
Y —0.025
Z 0

Table 3.4: Off-shell parameters used in our calculations
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With these parameters in hand, along with a complete set of kinematic infor-
mation, we are in a position to evaluate all the different I' matrix operators. Once
we have these operators, each in the form of a 4 x 4 matrix of complex numbers,
we can easily extract all the coefficients C and D{ that appear in equation (3.87)

for the angular integrals.
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Appendix 3.B The Spectroscopic Factors

Looking at equation (2.106), our final expression for the differential cross section,
we see that it contains the spectroscopic factors [Sy,.(J/5)] and [S Jr JC(JB:)].
When we first introduced these factors in section 2.3.2 to write the initial and
final bound state nucleon wavefunctions, we mentioned that these spectroscopic
factors were there to account for the probability that the real nuclei have the
shell-configurations that we assumed. In this appendix, we will see how to assign
numerical values to these spectroscopic values.

Using the nuclear shell model, we describe the ground state of a nucleus by
placing all of the protons and neutrons in the lowest energy shells such that the
Pauli exclusion principle is not violated. In Table 3.5, we show the hierarchy of

the nuclear shells, listed in order of increasing energy [29].

Shell | Occupancy

[ e e e )
%) [ W~ T~} [/
(S0 (X117 (ST (X112 [T

—
I

—
S~
(] (2]
co - N ()] N = [ &)

Table 3.5: Hierarchy and occupancy of nuclear shells

By way of example, let us consider an '®0 target. In the ground state. the
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eight protons in this nucleus fill all the shells up to and including the lpy shell.
The same can be said of the eight neutrons in this nucleus. Now suppose that we
fix the final state of the recoiling nucleus to be the 3~ state having an excitation
energy of 7.88 MeV. We would like to write the wavefunction of this state in
terms of the excitations of individual nucleons into higher energy shells. Using
a sophisticated shell model calculation, it was shown [30] that this excited state
is fairly well described by a single 1p — 1h excitation of a nucleon from the 1p,
shell to the 1ds shell. A similar result is given in Table 6.1 of [29], which w;.
show in Table 3.6.

p lf% lf% Id% 1d

R~ 1s7' 1syt 1p3' 1pzt  1pi!
2 2 2 2

2

-0.01 +0.01 +0.15 -0.20 +0.72
n | -0.02 +0.01 +0.15 -0.18 +0.60

Table 3.6: Wavefunction of the 3=, E,; = 7.88 MeV state of '60

The numbers given in Table 3.6 correspond to the coefficients of the different
1p — 1h terms in the wavefunction of the state. The large values in the last
column indicate that nearly 90 % of this state consists of the ld% - lpgl con-
figuration, with the remainder of the state consisting of small amounts of other
configurations. We will ignore these other configurations and assume that the
3, E; = 7.88 MeV state of '°0 consists solely of the 1ds — Ip;l configuration.

With this assumption, we have now determined one of the spectroscopic factors:
[Si0c(UB)] =1 (3.94)

In our calculations, we will be working with three different targets: '2C, ‘60,
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and “°Ca. For the '2C target, we will consider four different nuclear resonances
for the final state. Using the spectroscopic information in [30] and [31], we sum-

marize the resonance configurations in Table 3.7. In all six cases. the nuclear

Nucleus Resonance Configuration

2C | 1%, E, =1271MeV | 1p; - 1p3'
2C | 2%, B, =444MeV | 1py — lp3!
2C | 2%, E, =1611MeV | lp; - lp3’
2C |37, B; =9.641MeV | 1d; - 1p3'

60 | 37, B, =7.88MeV | 1d3 - 1p}'
2

OCa | 57, B, =448MeV | 1f; - ld;'
2

Table 3.7: Resonance configurations used in our calculations

excited states are fairly well described by a single 1p — 1h configuration, there-
fore we will be using (3.94) for the final state spectroscopic factor in all our
calculations. On the other hand, we see that three of the '2C resonances are pre-
dominantly described by the lp% - lpgl configuration. This implies that there
is not a one-to-one correspondence between the 1p — 1h descriptions of the ex-
cited states of a nucleus and the J™ descriptions. The resolution of this difficulty

requires a closer examination of nuclear structure. We will address this point
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again in the next chapter. For now, however, we will take a different approach
for the sake of a model calculation. Rather than specifying the precise nature of
the nuclear excited state and then inferring the dominant 1p — 1h configuration,
we will instead fix the 1p — 1h configuration and then infer a possible candidate
for the nuclear excited state. We will still use (3.94) for the final spectroscopic
factor.

Our next task is to determine the initial-state spectroscopic factor [Sy, . (JB)].
For 80, for instance, we have already decided that a 1p 1 nucleon is going to be
excited to the ld% shell so that a 3~ resonance with an excitation energy of
E. = 7.88 MeV will be formed. The problem that we encounter is that there are
two protons in the lp% shell, along with two neutrons, and we have no way of
knowing which of these nucleons is excited to the ld% shell. Furthermore, the
reaction formalism developed in Chapter 2 assumes that the nucleon is a proton.

Let us begin by addressing the first of these difficulties. If we assume that the
reaction can only take place on a proton in the 1p 1 shell, then we must multiply
the final cross sections by two since we have no way of knowing which of the ld%
protons participated in the reaction. The business of neutrons is not as clear. Ide-
ally, we would incorporate neutrons into our effective Lagrangian formalism from
the start. Unfortunately, we would not be able to obtain accurate parameters for
the terms involving neutrons since it is impossible to perform certain photopro-
duction experiments on free neutrons. Typically, we infer information about the
behavior of neutrons by doing photoproduction experiments with protons and
then repeating the experiments with deuterons. For example, in an experiment
at MAMI, Krusche et al. [4] investigated the 7-photoproduction reaction n(y, n)n
by doing the corresponding p(v,n)p and d(7, n)d experiments. They found that
for photon energies in the range 680 — 790 MeV, the 7-photoproduction cross
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sections for neutron targets were only two-thirds as large as the corresponding
cross sections for proton targets:
On
— = (0.66 £ 0.01) (3.95)
Op
At photon energies higher than we will be using, preliminary data seemed to

indicate that the two cross sections were roughly equal. For our purposes, we

will take

On _ 2
P =3 (3.96)

at all energies. As a result, the initial state spectroscopic factor will be taken to
be the number of protons in the 1p 1 shell, multiplied by the factor % in order to

account for the neutrons. In general, we are fixing Jg and Jp and setting

(SnacUa)] = (1+3) @Ja +1) (3.97

Equations (3.94) and (3.97) are the forms of the spectroscopic factors that will

be used to calculate the differential cross section (2.106).
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Appendix 3.C Tests of the Code

In order to calculate observable quantities for incoherent n-photoproduction re-
actions from complex nuclei, we have written several computer programs. In
addition, we have written extensive documentation files which thoroughly ex-
plain the detailed structure of the programs. In this appendix, we will briefly
show the overall structure of the programs and discuss some of the programming
tests that were performed in order to check the validity of the programs.

In our calculations, we are fixing both the initial and final states of the
interacting nucleon to a specific bound state with well defined angular momentum
quantum numbers, as opposed to an allowance for configuration mixing, whereby
the initial and final nucleon states would each be linear combinations of several
specific bound states. As a result, we require only one set of radial wavefunctions
for each of the initial and final bound state nucleons: fg(r), gs(r), far(r), and
g (r). The program bound.for calculates f(r) and g(r) for a bound nucleon and
writes these wavefunctions to a data file. We used this program to generate the
radial wavefunctions for a 1p 4 proton in 180 in Section 3.2.1, as displayed in
Figure 3.2. This program automatically checks that the wavefunctions satisfy

the correct normalization condition:

/ (fz(r) + g2(r)) r?dr=1 (3.98)

The documentation for this program is contained in bound.doc.

The program pw.for calculates the observables in the PWA, with the file
pw.doc containing the detailed documentation. Many of the subroutines in this
program have been borrowed from the code used in [19] to calculate observables
for quasifree 7-photoproduction from complex nuclei. The subroutines we added

were carefully scrutinized over the course of many months in order to ensure
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that every subcalculation yielded the correct result. Sometimes it was possible
to subject the program to more clever tests. For example, by setting the initial
and final bound states equal to each other, putting l;::, = E,,, and setting [" equal
to the 4 x 4 identity matrix, we verified that 2, as given by (2.72), was indeed
equal to one. We also verified that the summations over L and M in (3.69) are

indeed bounded by the selection rule
LLJg+Jg+1 (3.99)

which is obtained by a detailed inspection of (3.92) and (3.93).

The program dw.for, accompanied by the documentation file dw.doc, calcu-
lates the observables in the DWA. This code was obtained by modifying pw.for.
so that many of the programming tests carry over. In dw.for, we have sum-
mations over L,, M, and L,. The additional summation, as compared to the
PWA, implies that none of these summations is bounded from above by selec-
tion rules such as (3.99). Therefore, we needed to verify that these summations
converged. Since the time and memory required to perform a DWA calculation
is a very nonlinear function of the maximum number of partial waves, it was
important to carry these summations no further than was absolutely necessary.
We found that the differential cross sections converged to at least six decimal
places when the L, and L. summations were truncated at 30. The next test of
dw.for involved a DWA calculation with the optical potential U(r) set to zero. As
expected, the n meson radial wavefunctions matched the corresponding spherical
Bessel functions and the observables were identical to those of the corresponding
PWA calculation. Having completed this very important test, we then included
non-zero optical potentials in a DWA calculation and verified that the n meson

wavefunctions were properly distorted.



Chapter 4

Results for the Reaction A(y,n)A*

Having derived manageable expressions for the observables in an incoherent 7-
photoproduction reaction on a complex nucleus, we are now in a position to
examine the actual results of the calculations. In the first part of this chapter,
we will present the results of our model calculations. Here, we will examine the
effects of certain parts of our model relative to the rest. For example, some
studies of other types of n-photoproduction reactions have indicated that near
threshold the reaction is dominated by the formation of the S;;(1535) resonance.
We will investigate whether or not this behavior carries over to our reaction.
Also, we are keenly interested in the effects of the final state interactions that
are included in the DWA.

In the second part of this chapter, we will make some modifications to our
mode! in order to account more realistically for the effects of nuclear structure.
In particular, we will examine the consequences of these modifications to our
calculations for the 2+ excited states of '2C. We then intend to compare these
results to the incoherent 7-photoproduction calculations performed by Bennhold
and Tanabe [1] using a very different approach.

70
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In the third part of this chapter, we will repeat some of our model calculations
using a different parameter set. Our objective will be to examine the sensitivity

of our calculated cross sections to the set of parameters used.

4.1 Model Calculations

4.1.1 The %0(y,7)'%0*(37;7.88) Reaction

The reaction threshold for an 80 target, as given by equation (3.27), is about
560 MeV. Conversely, the accuracy of the model that we are using becomes
questionable beyond 1 GeV as other resonances begin to play a more significant
role and additional diagrams must be introduced. Therefore, we have performed
our calculations with photon energies ranging from 575 MeV to 975 MeV. We will
focus on the photon energies of 600 MeV, 750 MeV, and 900 MeV to illustrate
some of the features of our results. Figure 4.1 displays the differential cross
sections, averaged over both photon polarizations, for the %0(v,)!0*(3~;7.88)
reaction with E,, = 600 MeV. The upper graph shows the shape of the differential
cross sections, as a function of 8,, in the PWA and in the DWA, using both
the DW1 and DW3 optical potentials. The lower graph shows the differential
cross sections for the diagrams corresponding to each of the five contributing I’
operators, along with the total differential cross section, in the DWA using the
DW!1 optical potential. Figure 4.2 and Figure 4.3 display the same information
as Figure 4.1, except with photon energies of 750 MeV and 900 MeV, respectively.

Examining the upper graph in Figure 4.1, we see that the overall shape of
the differential cross sections, as a function of 6,, is somewhat like half of a
Gaussian distribution. The differential cross sections in the DWA are lower than

the corresponding PWA differential cross section, but the shapes are essentially
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the same. Turning to the lower graph, we see that the total differential cross
section results almost entirely from the contribution of the S;;(1535) resonance.
The p and w vector mesons, along with the D;3(1520) resonance and the proton
poles, make minor contributions, and the P;,(1440) resonance contribution is
negligible. Turning our attention to the upper graph of Figure 4.2, we notice
that although the shapes of the differential cross sections have not changed,
they have shifted toward decreasing 6,. The magnitudes of the peaks of the
differential cross sections have increased by a factor of about seven from those
of Figure 4.1. In the lower graph, there is now significant interference between
the S,1(1535) channel and the other reaction channels, despite the fact that
the size of the S);(1535) differential cross section relative to the others has not
changed appreciably. Finally, in Figure 4.3, we see in the upper graph that
the differential cross sections have decreased slightly from those of Figure 4.2.
The DW1 optical potential does not suppress the PWA differential cross section
as much as the DW3 optical potential does. The shape of the differential cross
sections is still unchanged but there is further scaling toward decreasing 6. In the
lower graph, there is substantial interference between the S;,(1535) channel and
the other reaction channels. The D;3(1520) resonance, the proton pole, and the
vector meson reaction channels are beginning to produce larger differential cross
sections. In addition, the shapes of the proton and vector meson differential cross

sections are noticeably different from that of the total differential cross section.

Now we turn to the photon asymmetry, as defined in (2.111). Figure 4.4 dis-
plays the photon asymmetry, as a function of 6,, in the PWA and in the DWA
using both the DW1 and DW3 optical potentials, for the $O(y,7)'*0*(3~;7.88)
reaction with E, = 600 MeV. Figure 4.5 and Figure 4.6 display the same in-



CHAPTER 4. RESULTS FOR THE REACTION A(~y,n)A* 73

E, =600 MeV
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Figure 4.1: Differential cross sections for the 'O(v,7)!®0*(37;7.88) reaction
with E, = 600 MeV. The upper graph shows the total differential cross sections.
The lower graph shows the contributions to the DW1 differential cross section

from the individual diagrams.
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Figure 4.2: Differential cross sections for the '®O(y,7)!60*(3~;7.88) reaction
with E, = 750 MeV
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E,= 900 MeV

450
400
350
300
550 [
200
150
100
50

do/dQ (nb/sr)

900 -
800
700
600
500
400
300
200
100

do/dQ (nb/sr)

6y,(deg)

Figure 4.3: Differential cross sections for the '®O(y,7)'*0*(37;7.88) reaction
with E, = 900 MeV
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formation as Figure 4.4, except with photon energies of 750 MeV and 900 MeV,
respectively. The significant feature of these graphs is that the photon asym-
metry is very small for those values of 6, where the differential cross section is
nonnegligible. For larger values of 8,, especially for the higher photon energies,
the photon asymmetry oscillates wildly between small and large positive values,
indicating a strong suppression of the reaction for photons polarized perpen-
dicularly to the reaction plane. Unfortunately, the vanishing differential cross
sections at these angles renders this interesting behavior unobservable.

Finally, let us examine the total cross sections. Figure 4.7 displays the to-
tal cross sections, as a function of the energy of the incident photon, in the
PWA and in the DWA using both the DW1 and DW3 optical potentials, for the
160(v, n)'80*(3~; 7.88) reaction. We see that for all three curves the total cross
section rises somewhat linearly for the first 100 MeV past the reaction threshold.
The curves then reach a maximum, after which they slowly tail off for increasing
values of E,. The maximum cross section for both of the DWA curves is about
half that of the PWA maximum. Whereas the DW3 cross sections remain half as
large as those of the PW over the entire energy range, the DW1 curve approaches
the PW curve for large values of E,. Furthermore, the peak cross section for the
DW!1 curve occurs at E., = 725 MeV, as opposed to E., = 700 MeV for the PW
and DW3 curves.
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Figure 4.4: Photon asymmetries for the %0(y,7)!®0*(3~;7.88) reaction with
E, = 600 MeV
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E,=750 MeV

Photon Asymmetry

Figure 4.5: Photon asymmetries for the '®O(v,7)'®0*(37;7.88) reaction with
E, = 750 MeV
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E, =900 MeV
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Figure 4.6: Photon asymmetries for the '®O(v,n)'°0*(37;7.88) reaction with
E, =900 MeV
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Figure 4.7: Total cross sections for the 0(y,n)'*0*(3~;7.88) reaction
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4.1.2 The 2C(y,n)'2C*(2%;4.44) Reaction

Switching our attention to a 2C target, we will first consider an excitation to the
(2*; 4.44) final state. Figure 4.8 displays the total cross sections, as a function of
the energy of the incident photon, in the PWA and in the DWA using both the
DW1 and DW3 optical potentials, for the 2C(y, n)'2C*(2+; 4.44) reaction. This
graph shares most of the features of Figure 4.7, but with two minor differences.
First, the maximum magnitudes of the total cross sections are larger than those
of the corresponding '®O curves by a factor of about three. Second, the PW and
DW3 curves peak at E., = 675 MeV, some 50 MeV lower than the DW1 curve.
Figure 4.9 shows the contributions to the differential cross section from the
different diagrams for the '2C(y, n)'2C*(2+;4.44) reaction when E, = 750 MeV.
The properties of these curves, apart from an overall scaling, are similar to the

differential cross sections shown in Figure 4.2.

4.1.3 The 2C(v,n)!2C*(2%;16.11) Reaction

In order to examine the dependence of the cross sections on the excitation energy
of the nuclear final state, we will now consider an excitation to the (27:16.11)
state of '2C. Figure 4.10 displays the total cross sections, as a function of the
energy of the incident photon, in the PWA and in the DWA using both the DW1
and DW3 optical potentials, for the 2C(y, n)!2C*(2%; 16.11) reaction. The most
striking feature of Figure 4.10 is that the DWA cross sections are of comparable
magnitude to the PWA cross sections. In particular, beyond E., = 775 MeV, the
DW!1 cross sections exceed those of the PWA. Despite this, a comparison with
Figure 4.8 indicates that all the cross sections have dropped by a factor of two
or three from the E,; = 4.44 MeV state to the E; = 16.11 MeV state.
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Figure 4.8: Total cross sections for the '2C(y, n)'2C*(2*; 4.44) reaction
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Figure 4.9: Differential cross sections for the 2C(y, n)'2C*(2%; 4.44) reaction with
E, = 750 MeV
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Figure 4.10: Total cross sections for the '2C(7, n)'?C*(2*; 16.11) reaction
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4.1.4 The 2C(y,n)!2C*(1%;12.71) Reaction

Our next objective is to examine the influence of the angular momentum of the
final nuclear state on our calculations. In Appendix 3.B, we stated that the
1py — lpgI transition in '2C could lead to either of the 2% states that we have
considered so far, as well as the 1+ state at 12.71 MeV. In Figure 4.11 we show
the total cross sections for the 2C(v,n)'?C*(1%;12.71) reaction. By comparison
with Figure 4.10, we see that the PWA cross sections are very similar to those for
the (2+;16.11) final state. On the other hand, both DWA cross sections exhibit

a suppression by a factor of about two.

4.1.5 The 2C(y,n)'?C*(37;9.641) Reaction

In Figure 4.12, we show the total cross sections, as a function of the energy of
the incident photon, in the PWA and in the DWA using both the DW1 and
DW?3 optical potentials, for the 2C(y,n)'3C"(37;9.641) reaction. This graph is
virtually identical to Figure 4.8, except that the magnitudes of the total cross
sections in Figure 4.12 are 50 % larger.
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Figure 4.11: Total cross sections for the 2C(«,n)'2C*(1%;12.71) reaction
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Figure 4.12: Total cross sections for the '2C(y,n)'2C*(37;9.641) reaction
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4.1.6 The ®Ca(y,n)*°Ca*(57;4.48) Reaction

Finally, we consider a %°Ca target. Figure 4.13 displays the total cross sections, as
a function of the energy of the incident photon, in the PWA and in the DWA using
both the DW1 and DW3 optical potentials, for the *°Ca(y,n)**Ca*(5~; 4.48)
reaction. This graph has most of the same properties as the corresponding graphs
for the reactions on other targets. The magnitudes of the cross sections are larger
than those on an '6O target, but smaller than those on a '2C target. Also, the
DW1 and DW3 cross sections are slightly smaller, relative to the corresponding

PW cross sections, for *®Ca than for '*0O and '2C.
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Figure 4.13: Total cross sections for the “°Ca(y,n)*Ca*(5~; 4.48) reaction
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4.1.7 Discussion of Results

Our calculations have indicated that the S;;(1535) resonance plays a very impor-
tant role in an incoherent n-photoproduction reaction, especially near threshold.
Studies of other n-photoproduction reactions, such as [17], have found similar
behavior. We also found that as we moved away from threshold, the other reac-
tion channels began to make larger contributions to the cross section and that
these contributions interfered strongly with those of the S;,(1535) resonance.

We performed DWA calculations using two different optical potentials for
the n meson. Both the DW1 and the DW3 optical potentials suppressed the
PWA cross sections by a factor of about two in the energy region with E, near
750 MeV. Whereas the DW3 optical potential provided such a suppression over
the entire range of E.,, the DW1 optical potential became weaker as E. increased
past 750 MeV. This behavior of the DW1 potential at higher energies is very
interesting, as it seems to suggest that many of the more energetic n-mesons are
able to escape from the nuclear vicinity without experiencing significant final-
state interactions with the nucleus.

The magnitude of the total cross section for incoherent 7-photoproduction
does not appear to be correlated with the size of the target nucleus. Our model
creates this effect by allowing only those nucleons in the outermost filled shell
to take part in the interaction. This is a reasonable limitation because we are
considering only low-lying nuclear excited states; such states usually arise from
simple 1p — 1h configurations involving the outermost filled shell. We attribute
the differences in the magnitudes of the total cross sections in Figures 4.7, 4.8,
4.10, 4.11, 4.12, and 4.13 to the sensitivity of the contributions to the total
cross section from individual diagrams to the changes in the angular momentum

quantum numbers of the nucleus and the interacting nucleon.
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4.2 Realistic Modifications to the Model

In the model calculations that we have performed thus far, we have used a very
simple description of nuclear structure. Unfortunately, the nucleus is an intricate
many-body system that cannot always be accurately described in such a simple
manner. Therefore, we will now introduce some modifications to our model that
will more accurately account for the realities of nuclear structure. By apply-
ing these modifications to our existing calculations, we will obtain reasonable

predictions for the cross sections of incoherent n-photoproduction processes.

4.2.1 Isospin Considerations

In Appendix 3.B, we deduced the final state spectroscopic factor by picking
a specific excited state for the recoiling nucleus and examining its shell model
configurations. For example, for the reaction on 2C, in the case where we specify
the final state to be the (2%;4.44) state, we concluded that this state essentially
corresponds to the transition of a nucleon from the lp% shell to the 1p 1 shell.
It is tempting to assume that there is a one-to-one correspondence between the
set of shell model transitions and the set of nuclear excited states. This is not
the case, because if we choose the (2+;16.11) state to be our final state instead,
we find that this state is also almost completely described by the lp% - lp?
configuration [30]. As a result, specifying the shell transition does not completely
determine the final state of the nucleus. One of the tools that we will require in
order to address this difficulty is the notion of isospin symmetry.

Isospin symmetry formalizes the symmetry of protons and neutrons, collec-
tively known as nucleons, with respect to the strong interaction. In direct analogy

to the description of the spin of an electron in quantum mechanics, we regard
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the proton and the neutron as the two states of a two-component spinor residing
in isospin space. We can then label any composite group of nucleons by two
isospin quantum numbers: T and T;. In particular, we can assign the quantum
number T', commonly called the isospin, to nuclei and their excited states. T,
is easily obtained by subtracting the number of neutrons in a nucleus from the
number of protons and dividing by two. In general, we will describe a nuclear
state with the notation (J*T; E;) where E; is in MeV. For closed-shell nuclei
like 12C, '80, and *°Ca, the ground state is (0*0; 0). When we create an excited
state from a 1p — 1h transtition, we are coupling a nucleon with a core. Both
are isospin-% objects, so the excited state will be either an isoscalar state with
T = 0, or an isovector state with T = 1. For the two 2% excited states of '2C that
we have been considering, it turns out that the state at 4.44 MeV is an isoscalar
state and that the state at 16.11 MeV is an isovector state.

In our calculations so far, we have not explicitly taken isospin into account.
On the other hand, in Appendix 3.B we discussed the results of an experiment at
MAMI (4] which indicates that 7-photoproduction reactions distinguish between
the protons and neutrons in the target. We will now incorporate some isospin
considerations into our model so that we can address the relative likelihoods of
exciting isoscalar and isovector nuclear states.

Consider the amplitude, A,, with which an incident photon interacts with a
specific proton in our target so that an  meson is photoproduced. Similarly, let
A, designate the corresponding amplitude for n-photoproduction from a specific

neutron in our target. Since, from equation (3.96), we have

2
5 =3 (4.1)



CHAPTER 4. RESULTS FOR THE REACTION A(v,n)A* 92

we know that
2
|An| = \/; [ (4.2)

We do not know, however, the relative phase between these amplitudes yet.
With the assumption that the reaction proceeds through the formation of the

511(1535) resonance, Krusche et al. [4] have determined that
An =(-0.80) A4, (4.3)

As we shall soon see, the fact that A, and A, have opposite phases has significant
implications for the connection between the magnitude of the cross section and
the isospin of the recoiling nucleus.

For incoherent n-photoproduction on an isospin-zero target, the recoiling nu-
cleus must be in either a T = 0 or a T = 1 state. Since the proton and the
neutron correspond to isospin states of I%, %) and |%, —%) respectively, we can
write

Ap = Ag + Ay (4.4)
An= Ao = A (45)

where A and A, are the amplitudes for isoscalar and isovector 7-photoproduction

processes on a nucleon, respectively. These equations can be solved for Ag and A,

to yield
Ao =5 (Ap = Ao (46)
A= 5 (A + Ad) (@7
Using (4.3), we then have
Ao = (0.1)A4, (4.8)

A= (0.9)4, (4.9)
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In our model, we calculate A,. Previously, we did not specify the isospin of
the final state and accounted for the effects of neutrons by multiplying o, by 2.
Based on (4.8) and (4.9), a more detailed treatment of isospin leads to the follow-
ing expressions for the total n-photoproduction cross sections for isoscalar and
isovector transitions:

gg = (O-OI)UTOT (4.10)

arj e O W

oy = (0.81)0’1'01' (4.11)

where oror represents the total cross section as obtained in our previous model
calculations. As we can see, the isoscalar cross section is heavily suppressed

relative to the isovector cross section.

4.2.2 Realistic Spectroscopic Factors

In our calculations so far, we have imposed perfect shell structure. By this,
we mean that the spectroscopic factors take on their maximum allowed values
and that the motion of each of the nucleons is independent. For the initial
spectroscopic factor, this implies that the target nucleus is in its ground state,
which is assumed to have all of the lowest-lying shells completely filled. For
the final spectroscopic factor, we assume that a given final state consists of a
single 1p — 1h configuration. In Appendix 3.B, we justified these assumptions by
referring to the shell model calculations of Gillet et al. [30, 31]. This justification
is somewhat specious, however, since these shell model calculations explicitly
restrict the model space to 1p — 1h configurations. A more realistic set of shell
model calculations was performed by Cohen and Kurath {32, 33]. They studied
the p-shell nuclei under the assumption that, above an a-particle core of s-shell

nucleons, all of the p-shell nucleons are interacting with each other. As a result,
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the model space for excited states is not confined to 1p—1h configurations. Using
this model, they determined spectroscopic factors that are more realistic than
the ones that we have been using so far. For a '2C target, the initial spectroscopic

factor is
3
[so ; (5)] = 2.85 (4.12)
In other words, the lp% shell is less than three-quarters full when '2C is in its

ground state. The final spectroscopic factor for excitation to the (2%0; 4.44) state

of 2C is

1 -
[82% (5)]’[:0 =0.55 \4.13)
Similarly, for excitation to the (2*+1;16.11) state of }2C, we have
[S (1)] 0.28 (4.14)
3 - = u. .
25 2 T=1

4.2.3 Transforming to the Center of Momentum Frame

We have performed our calculations in the laboratory (LAB) frame. This is also
the frame in which experimental results have been reported for 7-photoproduction
on complex nuclei {5]. On the other hand, since a target such as '2C, '6O, or
40Ca is very massive in comparison to the energy of the incident photon, it might
seem reasonable to assume that the calculations would hardly differ in the center
of momentum (CM) frame. For convenience, most theoretical calculations for
incoherent n-photoproduction, including those of Bennhold and Tanabe [1], take
place in the CM frame. We will now show how we can translate our calculations
to the CM frame.

The fundamental idea, when considering the relationship between the differ-
ential cross sections in the CM and LAB frames, is that an event which produces

an n meson and leaves the nucleus in a specific final state must be recognized
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as an event in any frame. In other words, the total number of event counts is
independent of the frame. The total number of event counts in a given frame can
be calculated by integrating the product of the cross section and the luminosity
over the time in which the beam was active. Since the luminosity is proportional

to the flux, we conclude that
Jem 0cm = JLaB OLaB (4.15)
where the incident flux is defined by

Urel
J = @) (4.16)

In the LAB frame, the photon is incident on a stationary target, so v,q¢ = 1. In
the CM frame, the target is moving toward the photon, so v, > 1. Therefore,
the total CM cross section, as given by equation (4.15), is slightly smaller than

the total LAB cross section:

1
1+ (I7rl/ET)cpm

The cross sections o¢ys and o4 are obtained by integrating over the differential

Oom = OLAB (4.17)

cross sections (-2 and (-2 , respectively. These differential cross
) CcM &/ LAB
sections are related by [34]:
(d_”) - ! . En ( do ) (4.18)
dQ ) cpe 1+ (Prl/Er)em PRE, \dQ) 4p .

The first factor in (4.18) accounts for the apparent difference in flux observed in
the two frames. The second factor is the Jacobian that relates the phase space
volume element d3p, in the two frames. Here, the primed variables denote the
CM frame and the unprimed variables denote the LAB frame.

When we apply equation (4.18) to our LAB frame differential cross section
for a 650 MeV photon incident on '2C, we find that the CM differential cross
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sections at forward scattering angles are reduced by a factor of about 1.27. For
lower photon energies or for more massive targets, we would expect the effect to

be smaller.

4.2.4 Results of the Modified Calculations

We will now examine the results of these modifications in the context of calcula-
tions where a 650 MeV photon is incident on '2C, and the nucleus is excited to
either the (2%0;4.44) state or the (2¥1;16.11) state. Using our original model,
the differential cross sections in the LAB frame for these two processes are shown
in Figure 4.14. The DW curves were obtained using the DW1 optical potential.
Based on the isospin analysis that we performed in Section 4.2.1, we now realize
that these differential cross sections have already been implicitly summed over
the isospin of the final state. We have applied the modifications discussed in
this section to these model calculations for the differential cross sections for the
12C(y,n)12C*(20; 4.44) and the 2C(y,7n)'2C*(2+1; 16.11) reactions. The results
of these modified calculations, expressed in the CM frame, are displayed in Fig-
ure 4.15. Comparing Figure 4.14 and Figure 4.15, we see two major features.
First, there is a substantial lowering of the differential cross sections. For the case
of the isoscalar transition, the differential cross sections are lowered by a factor of
about 500! Conversely, for the isovector transition, the differential cross sections
are only lowered by a factor of about 10. This isospin discrepancy, resulting
mainly from equations (4.10) and (4.11), comprises the other major feature of

our modified calculations.
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Figure 4.14: Model calculations for the '2C(y,n)'?C*(2*;4.44) and
12C(~, n)'2C*(2*; 16.11) reactions

4.2.5 Discussion of Results

Having completed realistic calculations for the 2C(vy,7)!2C*(2%0; 4.44) and the
12C(,n)!2C*(2+1; 16.11) reactions, we would like to see how our results compare
with other calculations for similar 7-photoproduction processes. In particular,
we would like to examine the relative sizes of coherent, incoherent, and quasifree
cross sections.

The only other theoretical study of incoherent 7-photoproduction was per-
formed by Bennhold and Tanabe [1] nearly a decade ago using a nonrelativis-

tic model. In Figure 4.16, we show the results of their calculations for the
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Figure 4.15: Modified calculations for the !'2C(y,7n)'?C*(2%0;4.44) and
12C(y,n)'2C*(2%1; 16.11) reactions

12C(y, n)'2C*(2+0; 4.44) and the '2C(y,n)!2C*(2+1;16.11) reactions. A compar-
ison with Figure 4.15 reveals that the shapes of the differential cross sections,
as well as the relative magnitudes of the isoscalar and isovector transitions, are
essentially the same in Figure 4.15 as they are in Figure 4.16. The actual mag-
nitudes of the differential cross sections in our modified calculations are lower
than those of Bennhold and Tanabe by a factor of about two. This behavior,
namely, that the relativistic calculations yield cross sections half as large as those
of nonrelativistic calculations, carries a precedent. Hedayati-Poor and Sherif [17)

studied the quasifree 7-photoproduction process using essentially the same reac-
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tion model that we are using for the incoherent process. When they examined
their results for the inclusive reaction [18], they found that their calculations fell
below the results of similar nonrelativistic calculations [11] by a factor of about
two. Therefore, our relativistic 7-photoproduction model yields results that are
qualitatively similar to those of corresponding nonrelativistic models. On the
other hand, the quantitative values of the cross sections are smaller in our calcu-
lations than in nonrelativistic calculations due to the inherent properties of the

relativistic model.

E, =650 MeV
60 T T T T T T T T

do/dQ (nb/sr)

Figure 4.16: Calculations of Bennhold and Tanabe for the angular distributions
of the reactions 2C(v,7)'2C*(2*1;16.11) and '2C(y, n)'2C*(2+0; 4.44), as taken
from Figure 19 of [1]
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Next, we would like to compare the magnitudes of our calculated cross sec-
tions for incoherent 7-photoproduction processes to the recent MAMI data for
the inclusive photoproduction reaction A(vy,n)X [5]. For a 650 MeV photon, we
can integrate the DW differential cross sections in Figure 4.15 to find the to-
tal cross sections for the '2C(y,7)'?C*(2+0;4.44) and '2C(y,n)'2C*(2+1;16.11)
reactions. The results are 1 nb and 11 nb, respectively. The experimental mea-
surement for the inclusive cross section yields 10 ub for n-photoproduction on
12C when E., = 650 MeV. We conclude that the quasifree process A(y, Nn)A—1
is the predominant contributor to the inclusive process and that the incoherent
cross sections are several orders of magnitude smaller than the quasifree cross
sections. Any attempt to detect incoherent processes in an experiment will face
the challenge of distinguishing between incoherent and quasifree reactions and
then filtering out the relatively small number of incoherent events.

Finally, we would like to draw a comparison between our calculations for in-
coherent 7-photoproduction and the calculations by Peters et al. [20] for coherent
n-photoproduction on spin-zero nuclei. For a 650 MeV photon incident on 12cC,
they calculate a total coherent cross section of about 2nb. Calculations by Fix
and Arenhdvel {16] also yield a total cross section of about 2nb for coherent
n-photoproduction for a 650 MeV photon incident on '2C. These coherent cross
sections are roughly the same size as the cross sections that we have calculated
for individual incoherent processes.

In fact, our model can be adapted to study coherent 7-photoproduction with
only a few modifications. First of all, the initial and final bound state wave-
functions for the interacting nucleon will be the same. As a result, the final
spectroscopic factor will be exactly one. Furthermore, every nucleon in the nu-

cleus will participate; not just the ones in the highest filled shell. Therefore, to
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the extent that the contributions of the various diagrams for a specific nucleon
transition are relatively unchanged, we can expect that the coherent cross sec-
tion should only be slightly larger than any individual incoherent cross section.
In practice, the specific spin and isospin selection rules that govern the coher-
ent process suppress most of the contributions to the reaction amplitude from
the S;1(1535) resonance and the p meson so that the coherent cross sections are

similar to the incoherent cross sections.

4.3 Sensitivity to Parameters

Every model that is based on an effective Quantum Field Theory requires a set
of phenomenological parameters to specify all of the couplings, masses, and other
constants that appear in the effective Lagrangian. These parameters are usually
obtained from experiments involving simple interactions of the different particles
in the effective Lagrangian. Unfortunately, it is often very difficult to obtain
precise determinations of some of these parameters, and as a result, it is natural
to wonder to what extent the final calculations depend on the initial choice of
parameters.

The parameters that we have used were obtained by Benmerrouche et al. (8]
using data for the elementary reaction v + p — n + p that predates the
recent experiments at MAMI [3]. These parameters do not agree as well with
the new elementary reaction data from MAMI. Using the new data, along with
the limitation that the only contributing resonances are the S;;(1535) and the
D13(1520), Fix and Arenhdvel [16] have obtained a new set of parameters for
the effective Lagrangian. When Hedayati-Poor and Sherif incorporated this new

parameter set into their model for inclusive 7-photoproduction, they found that



CHAPTER 4. RESULTS FOR THE REACTION A(v,n)A* 102

their calculated cross sections increased by about 50 %. This increase in the cross
sections brought their results into close agreement with the recent MAMI data
for inclusive n-photoproduction from complex nuclei [5]. In Table 4.1, we list all

of the changes made by Hedayati-Poor and Sherif in order to implement the new

parameter set.

Parameter | Old Value | New Value
Csas3s) | 150MeV | 160 MeV
gnNN 4.1 2.24
InNSu 2.01991 2.0846

Ksy 0.880317 | —0.958
fanDis KoY, | 15.306 37.75
favpis Ko | 16.1189 40.0

Table 4.1: Parameters changed in the new parameter set

In order to examine the effects of this new parameter set on our calculations.
we will look more carefully at the model calculations for the 12C(vy, n)'2C*(2*: 4.44)
reaction that we first explored in Section 4.1. The modifications that we discussed
in Section 4.2 will have no effect on the relative changes in our calculations in-
duced by the new parameter set. Also, we will only consider PWA calculations,
since the parameters in the effective Lagrangian only manifest themselves in the
[ matrix operator in expressions for the reaction amplitude such as (2.68).

In Figure 4.17, we show the total PW cross sections, as a function of E.,, for
both parameter sets. This graph shows that the cross sections obtained with the
new parameter set are about four times larger than those from the old parameter
set.

In Figure 4.18, we show the contributions of the different diagrams to the
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Figure 4.17: Comparison of the total PW cross sections for the

12C(y,n)'2C*(2"; 4.44) reaction using different parameter sets

differential cross section when E., = 750 MeV. We see that the 5,;(1535) and
the D3(1520) resonance diagrams provide the only non-negligible contributions
to the total differential cross section. The S;;(1535) contribution is about three
times that of the D;3(1520), and the two contributions interfere constructively, so
as to make the total differential cross section larger than either of the individual
contributions.

As a comparison, we can reexamine Figure 4.9, which showed the differential
cross sections for the 2C(y, n)'2C*(2+; 4.44) reaction with E., = 750 MeV using

the original parameter set. Here we see that the Sy;(1535) contribution is about
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Figure 4.18: Contributions from the different diagrams to the differential cross
section of the 2C(vy,n)'2C*(2*; 4.44) reaction when E, = 750 MeV using the new

parameter set

fifteen times that of the D;3(1520), and that the two contributions interfere
destructively.

The two differences that have arisen from the new parameter set are readily
explained by looking at the changes to the parameters given in Table 4.1. The [’
operator for the D;3(1520) resonance, as given by equations (2.56) and (2.57), is
proportional to a factor of fynp,, n‘;}s or fuNDys ngzs. The total D,3(1520) cross
section goes as the square of ['p,,, so the changes to fy¥p,s ngza and fynps ngzs

given in Table 4.1 result in an increase in the D;3(1520) cross section by a
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factor of about seven. Given that the S;;(1535) parameters are relatively stable,
we can easily see how the ratio of the S);(1535) contribution to the D;3(1520)
contribution decreases from about fifteen to about three when we use the new
parameter set. The constructive interference of the $1;(1535) and the D;3(1520)
amplitudes that we observe with the new parameter set results from the change
in the sign of g, in Table 4.1.

In summary, we have shown that our calculations are quite sensitive to the
numerical values of the parameters used in the effective Lagrangian. More work
needs to be done to constrain these parameters and, perhaps more importantly.

to interpret their relative signs correctly.



Chapter 5

Conclusion

In this thesis, we have developed a relativistic model to describe incoherent
photoproduction of 7 mesons on complex nuclei. The dynamics of the elementary
process are described with an effective Lagrangian containing photons, nucleons,
mesons, and nucleon resonances. In addition to the  meson, we include the p and
w vector mesons. We use three nucleon resonances: the P;;(1440), the $;;(1535).
and the D;3(1520). From this effective Lagrangian, we derive expressions for all
the different terms that comprise the reaction amplitude. Each of these terms
corresponds to a Feynman diagram, so we elucidate a set of Feynman rules that
automate these derivations.

This treatment of the n-photoproduction process is then extended to a nu-
clear target. The nucleon wavefunctions are obtained with the Dirac equation
using scalar and vector potentials that simulate the meson exchanges responsi-
ble for nuclear binding. The Nuclear Shell Model is used to describe nuclear
structure so that individual nucleons are labeled by their angular momentum
quantum numbers. Spectroscopic factors arise from the amplitude with which

a given nucleon state couples to a core state to yield a specific nuclear state.
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The wavefunction of the ) meson is a solution of the Klein-Gordon equation. An
optical potential serves to account for the interactions of the 7 meson with the
nucleus after the 7 meson is produced.

From the reaction amplitude, we derive expressions for the physical observ-
ables of the reaction such as the differential cross section and the photon asym-
metry. These expressions, while in an aesthetically pleasing analytic form, do
not immediately lend themselves to numerical calculations. Therefore, we exhibit
a series of procedures which transform these expressions into more manageable
ones. In the process, we introduce the Plane Wave Approximation (PWA) and
the Distorted Wave Approximation (DWA) as two different frameworks within
which we can perform numerical calculations. We introduce two different optical
potentials to describe the final-state interactions of the 7 meson with the nucleus.
We then discuss the computer programs that we have written to perform these
calculations.

We present the results of our calculations for a variety of different reaction
scenarios. In particular, we consider three different nuclear targets: '2C, '®0,
and ‘°Ca. We find that the S;,(1535) resonance plays the most important role in
the process, especially near the reaction threshold. Both of the optical potentials
that we consider cause the cross sections to be lowered from their PWA values
by as much as a factor of two, although the two potentials behave differently
with respect to the energy of the n meson. The photon asymmetries are found
to be quite small in the regions within which the differential cross section is
nonnegligible. The differential cross sections depend more heavily on the angular
momentum and energy of the final state of the nucleus than they do on the
identity of the initial nucleus.

The model calculations mentioned above were made more realistic by invoking
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the isospin dependence of the elementary amplitude. This allowed the calculation
of the cross sections for nuclear states with definite isospin. Surprisingly, we find
that reactions leading to isoscalar nuclear final states are heavily suppressed
relative to their isovector counterparts. Furthermore, the modifications that
we make to our model lead to cross sections that are significantly lower than
those of our original model calculations. This is to be expected since the latter
used maximum values of the spectroscopic factors and effectively summed over
possible isospin states.

We compare the results of one of our sets of calculations to a set of calcu-
lations obtained by other authors using a nonrelativistic model for incoherent
n-photoproduction. We find that our calculations yield cross sections that are
about a factor of two smaller than their nonrelativistic counterparts. This fea-
ture was also observed in previous comparisons of relativistic and nonrelativistic
calculations for quasifree 7-photoproduction reactions.

We also compare the results of our calculations for individual incoherent cross
sections to a set of calculations for coherent 7-photoproduction. We observe
that the incoherent cross sections are roughly the same size as the coherent cross
section.

We note that our predictions for the cross sections of a typical incoherent
process fall several orders of magnitude below the data for the inclusive 7-
photoproduction reaction. This indicates that the cross sections for the quasifree
process overwhelm those of the incoherent process. Consequently, experiments to
measure the incoherent process will face the challenge of distinguishing between
incoherent and quasifree events with enough precision to identify the incoherent
signal reliably.

Finally, we examine the dependence of our results on the choice of numerical
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parameters for the effective Lagrangian. Using a parameter set based on the
most recent data for elementary n-photoproduction reactions, we find that our
calculations are quite sensitive to changes in some of these parameters. In par-
ticular, the relative magnitudes and phases of the S;,(1535) and the D;3(1520)
parameters need to be more precisely determined.

There are a few notable areas within which improvements could be made to
our model and our calculations. From a numerical perspective, as mentioned
previously, a better description of the elementary 7-photoproduction reaction
would lead to more accurate and precise parameters in our effective Lagrangian.
In addition, there are discrepancies between the different optical potentials used
to describe the final state interactions of the n meson with the nucleus. A
better understanding of the 7N interaction, with particular emphasis on the
energy dependence of this interaction, would reduce the uncertainties in the
optical potential, and consequently, in our DWA calculations. One aspect of our
derivation of the reaction amplitude that is a prime candidate for improvement
is the set of approximations made to the propagators for the nucleons and the
nucleon resonances in Section 2.3.5. By allowing free propagation through the
nuclear medium, we have ignored any medium modifications that might affect
the propagation of these particles. Furthermore, we have used the assumption
that the particles at the vertices are plane waves in order to be able to evaluate
explicitly two of the four-dimensional integrals that we encounter. This results
in a zero-range description of the 7-photoproduction process.

The formalism and techniques that we have used are quite general and can be
applied to the theoretical study of a wide variety of reactions. In particular, there
has recently been a great deal of interest in strangeness, ranging from the strange

content of the nucleon, through strange nuclei, and all the way up to strange stars.
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In this spirit, our model could be used to investigate the photoproduction of K
mesons from nuclei. The study of these reactions would help us gain a better
understanding of K mesons and the properties of the strange nuclei that would

be left behind.
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