
 

 

 

 

Simulated Learning Model for Mineable Reserves Evaluation in Surface Mining Projects 

 

by 

 

Miguel Angel Cuba-Espinoza 

  

  

 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

 

 

Doctor of Philosophy 

 

in 

 

Mining Engineering 

 

 

 

 

 

Department of Civil and Environmental Engineering 

University of Alberta 

 

 

 

 

 

 

 

  

 

 

© Miguel Angel Cuba-Espinoza, 2014 



Abstract

The amount of information available for characterizing the geology of a deposit in-

creases over time due to the continuous acquisition of data during mining. Through-

out the lifetime of a mining project, the block model and the mining sequence are

periodically updated to account for this new data. The acquisition of additional data

increases the accuracy of the block model and clarifies the optimal mining sequence.

There has been extensive research on mine planning, but current techniques do not

consider the decrease in uncertainty as additional information becomes available.

Conventional paradigms assume either 1) the kriged model is correct and uncer-

tainty due to multiple realizations does not change the mining sequence, or 2) the

mining sequence is unrealistically adapted to each realization.

A new paradigm is proposed for evaluating minable reserves of surface mining

projects. This new paradigm accounts for the effects of the continuous acquisition

of additional information during the mining of the deposit. In the implementation,

multiple scenarios characterizing the dynamic nature of mining and data collection

are generated. Each scenario accounts for how the mine may develop over time as

new information is acquired. This provides a more realistic framework for evaluating

mineable reserves with an appropriate level of uncertainty.
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The new paradigm can be used to evaluate infill drilling. The acquisition of

additional information increases the revenue of the mining sequence as the block

model becomes progressively more accurate. However, this increment in the revenue

comes at the cost of implementing the infill program. In the new paradigm, the infill

drilling strategies are evaluated in terms of their contribution to profit, difference

between increment in revenue and cost of infill drilling.

The design of the mining sequence of the long-term plan may be problematic as

each scenario has its own version of the mining sequence. To overcome this problem,

the mining sequences of the scenarios are condensed into a few representative mining

sequences by implementing customized clustering techniques. These few represen-

tative mining sequences can be used to design the mining sequence of the long-term

plan along with contingency plans.
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Chapter 1

Introduction

The evaluation of mineable reserves is critical in the assessment of the economic

potential of mining projects. Because of the large amounts of money invested in the

development of a mining project, an over-estimation of its economic potential may

lead to significant economic losses. Similarly, an under-estimation of its economic

potential may result in a sub-optimal design or a missed profitable bussiness oppor-

tunity. Typically, the evaluation of mineable reserves consists of the construction of

a block model to characterize the relevant geology of the deposit and the design of a

long-term mine plan that aims to maximize the profit of mining the deposit. How-

ever, not all mining projects are driven by the maximization of profit. An example

are government-owned mining companies in which social and equity responsabilities

are needed to be fulfilled (Gillis, 1982). This thesis focuses on mining projects that

aim to maximize profit. Two types of block models can be built with Geostatistical

techniques: 1) estimated and 2) simulated. An estimated model typically consists of

one kriged block model where the estimate aims to minimize the estimation variance.

A simulated model consists of a set of equally probable realizations of the deposit,

that is, multiple block models that aim to reproduce the spatial variability of the

deposit. Based on these two types of block models, it is assumed that either: 1) the

kriged model is correct and uncertainty due to multiple realizations does not change

the long-term mine plan, or 2) the long-term mine plan is unrealistically adapted

to each realization. In this context, the block model considered, either estimated or
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simulated, is assumed to be static throughout the lifetime of the mining project.

In practice, the amount of information available to characterize the geology of

the deposit increases over time due to the continuous acquisition of additional in-

formation. This additional information is collected from different sources, including

geologic mapping, production data, and infill drilling. Thus, throughout the lifetime

of the mining project, the block model and the long-term plan are periodically up-

dated. In general, the acquisition of additional information increases the accuracy

of the block model, reduces uncertainty in ore/waste limits, and clarifies the opti-

mal mining sequence. As conventional paradigms do not anticipate the additional

information that will become available, their estimates of the profitability of the

mining project tend to be biased, either optimistic or pessimistic. In this thesis, a

new paradigm for evaluating mineable reserves that accounts for the dynamic acqui-

sition of additional information is proposed. This new paradigm is able to account

for the dynamic acquisition of additional information in the design of the long term

mine plan and the evaluation of mineable reserves. The scope of this research is

limited to the evaluation of open pit mining projects.

This chapter is organized as follows. In Section 1.1, the conventional paradigms

for evaluating mineable reserves are described and compared. The potential short-

comings of conventional paradigms due to not considering the acquisition of addi-

tional information are dicussed. In Section 1.2, the impact of additional information

on the evaluation of mineable reserves is discussed. A framework that considers ad-

ditional information permits a more realistic evaluation of mineable reserves than

conventional paradigms. In Section 1.3, the mining of the deposit is discussed as

a dynamic process. The dynamic behavior of the mining of the deposit makes the

acquisition of additional information also dynamic, thus, the design of the long-term

plan and the calculation of mineable reserves are required to be updated accord-

ingly. In Section 1.4, the problem to be addressed in this thesis is presented. In

Section 1.5, general aspects of the design of the long-term plan are summarized.

Two processes are described: 1) conventional, and 2) computer aided. An overview

of the computational algorithms used in the computer aided design process of the

2



long-term plan is presented.

1.1 Motivation

In mining, three types of studies are typically implemented in the evaluation of

exploration and mining projects: 1) scoping, 2) pre-feasibility, and 3) feasibility

(Gentry and O’Neil, 1992; Hustrulid and Kuchta, 1995; Dominy et al., 2002). These

three stages are also referred to as: conceptual, preliminary, and definite, respec-

tively (Dominy et al., 2002). The level of detail of each stage increases as the

evaluation progresses. In the scoping stage, the drill spacing is too wide and only

allows a global characterization of the deposit. This information only permits a

rough assessment of the economic potential of the deposit. In the pre-feasibility

stage, the level of geologic information defines the areas of the deposit that can be

extracted economically based on preliminary operating parameters of the mining

method considered. The calculated economic potential of the deposit is not yet

suitable for investment decisions. In the feasibility study, the geologic information

available permits an adequate geologic characterization of the deposit at a local

scale. The outlining of the mineable region in the deposit is more detailed than in

previous stages as the aspects of the mining method to be implemented are fully

investigated. The calculated economic potential of the deposit provides a base for

investment decisions.

1.1.1 Mineable Reserves

In the evaluation of mining projects, mineable reserves are calculated both in the pre-

feasibility and feasibility stages (Dominy et al., 2002). Steffen (1997) and Dominy

et al. (2002) considered that mineable reserves are also calculated at different time

scales. Dominy et al. (2002) referred to the mineable reserves calculated based on

the long- and short-term plans to as ’local reserve’ and ’production grade control

reserve’, respectively. This thesis is focused in the mineable reserves calculated in

the feasibility stage. The potential of an open pit mining project, from a business
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perspective, is characterized by its mineable reserve. The reliable calculation of the

mineable reserve is critical because of the considerable amounts of capital required

to be invested. The mineable reserve is considered to be exploitable with existing

operating conditions (Blondel and Lasky, 1956). The details of a mineable reserve,

including the economic potential, mineral inventory, and geometric configuration

of the regions to mine throughout time, depend on the long-term plan. In mining

literature, the term ’mineable reserve’ is also referred to as simply ’reserve’, ’ore

reserve’, and ’recoverable reserve’ (Hustrulid and Kuchta, 1995). There is extensive

literature regarding mineable reserves, including Grace (1983), Noble (1992), and

Hustrulid and Kuchta (1995).

The calculation of mineable reserves involves many factors that are unknown

at the time of the evaluation of the mining project (Lane, 1999). Dominy et al.

(2002) generalized some of the global factors involved. The global factors change

continuously throughout the lifetime of the mining project (Blondel and Lasky,

1956). There are various authors that proposed models to forecast some of these

factors, for example metal price, including Dooley and Lenihan (2005), Lemelin

et al. (2007), and Ahti (2009). However, Journel and Kyriakidis (2004) referred to

most of these factors as unpredictable. In practice, different assumptions are made

to forecast the factors involved (Blondel and Lasky, 1956). These considerations

introduce a degree of subjectivity in the calculation of mineable reserves. In this

thesis, the global factors are also assumed fixed.

In the evaluation of mineable reserves, the geology of the deposit is characterized

as a block model. Geostatistics is a standard practice for constructing the block

model of the deposit (Sinclair and Blackwell, 2002). The block model is built at a

resolution that approaches the smallest volume at which ore can be segregated from

waste based on mining specifications (Journel and Kyriakidis, 2004). Two types of

block models are typically built: 1) estimated and 2) simulated. In the estimated

block model, the variables are characterized by conditional means. These models

are constructed by implementing kriging techniques, which are widely discussed by

many authors, including David (1977), Journel and Huijbregts (1978), and Isaaks
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and Srivastava (1989). The use of conditional means introduces a smoothing effect

that leads to a reduction in the variability of the variables modeled. The smoothing

effect results in an under-estimation of high value regions and an over-estimation

of low value regions, respectively (Journel and Kyriakidis, 2004). In practice, this

problem is managed by tuning estimation parameters, however, this practice tends

to introduce conditional bias in the estimates. In the simulated block model, a set of

equally-probable realizations of the deposit are generated. Each of the realizations

of the deposit reproduce the variability of the variables modeled. The simulated

model permits a more complete evaluation of uncertainty than the estimated model

as conditional distributions and the global distribution are characterized (Journel

and Kyriakidis, 2004). The most popular technique implemented in mining software

is sequential Gaussian simulation. The construction of simulated models is widely

discussed by many authors, including Deutsch and Journel (1998), Goovaerts (1997),

and Chiles and Delfiner (1999). Based on these two types of block models, three

paradigms are typically considered for evaluating mineable reserves. Paradigm 1

relies on an estimated block model. Paradigm 2 relies on both an estimated and a

simulated block models. Paradigm 3 relies on a simulated block model.

1.1.2 Paradigm 1 - Estimation

In this paradigm, the geology of the deposit is characterized by a kriged estimate

model and the mining of the deposit is defined by one mining sequence (Figure

1.1). This paradigm precedes early developments of geostatistics. A shortcoming in

this paradigm is that the long-term plan is potentially sub-optimal as the estimated

model used often presents a smoothed and biased representation of the deposit

(Journel and Kyriakidis, 2004). Moreover, the direct calculation of the economic

block values based on the estimated variables may introduce error in the calculation

of the profit as the economic functions, used to calculate the economic block model,

are not linear. The profit and mineral inventory are reported as a single value

without reference to the uncertainty associated (Dominy et al., 2002; Journel and

Kyriakidis, 2004).
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Figure 1.1: Sketch of the evaluation of mineable reserves in Paradigm 1. The input
is an estimated model and the output is one mining sequence.

Although this paradigm is widely popular in the mining industry, its reliance

on only the estimated model makes it a limited alternative for evaluating mineable

reserves as the associated uncertainty cannot be quantified. Journel and Kyriakidis

(2004) discussed several factors related to the geologic characterization of the deposit

with estimated models that cannot be properly addressed in this paradigm, including

data sparcity, support effect, and information effect.

1.1.3 Paradigm 2 - Estimation with Uncertainty

This paradigm is an extension of Paradigm 1. In this paradigm, a set of simulated

realizations of the deposit are generated and used to evaluate the performance of

the long-term plan based on Paradigm 1 (Figure 1.2). All realizations are indepen-

dently processed through the single long-term plan to evaluate uncertainty in profit

and production. The potential production variability due to uncertainty can be as-

sessed. The inclusion of production variability in the calculation of profit is a more

realistic assessment of the economic potential of the mining project in comparison

to Paradigm 1. This assessment of uncertainty is pessimistic because the mine plan

does not adapt to any of the realizations; in reality, however, the mine plan will

adapt to discoveries of where the deposit is better or worse than expected.

1.1.4 Paradigm 3 - Simulation

In this paradigm, the deposit is characterized by a set of multiple realizations.

A set of mining sequences are generated, one for each realization (Figure 1.3). A
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Figure 1.2: Sketch of the evaluation of mineable reserves in Paradigm 2. The per-
formance of the mining sequence of Paradigm 1 is evaluated based on a set of
realizations of the deposit.

shortcoming in this paradigm is that, unlike Paradigms 1 and 2, because of the large

amount of realizations to process, the operating design of the mining sequences

cannot be implemented. Although useful information about the possible future

mining path is obtained, it is difficult for mining engineers to know how to manage

the multiple mine sequences. This means that there is no clear indication of how to

proceed with the mining of the deposit to achieve the profit assessed. Moreover,

the generation of realizations and optimization of the mining sequence on each

realization is computationally expensive. The uncertainty in the mineable reserves

is approached by the histogram of realized profits and mineral inventory values.

1.1.5 Comparison of Conventional Paradigms

These three paradigms are not directly comparable for two main reasons: 1) dif-

ferences in the type of mining sequence considered and 2) difference in the type
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Figure 1.3: Sketch of the evaluation of mineable reserves in Paradigm 3. The deposit
is characterized by a set of realizations. One mining sequence is generated for each
realization

of profit calculated. In the case of the type of mining sequence considered, the

mining sequence used in Paradigms 1 and 2 includes an operating design of the

mine, while in the case of Paradigm 3, the calculated block extraction sequence is

assumed as the final mining sequence in each realization. For comparison purposes,

it is considered that, as in the case of Paradigm 3, the mining sequence of Paradigms

1 and 2 is the calculated block extraction sequence without operating design. In

the case of the types of profit calculated, two types of profit are considered in the

three conventional paradigms: 1) planned and 2) realized. The planned profit is

calculated in Paradigm 1 from planning on the estimated model. The realized prof-

its are calculated in Paradigm 2 from processing the set of realization through the

long-term plan of Paradigm 1. The planned profit represents the expected profit

under the conditions of the input model. The realized profit represents an equally

probable profit scenario that could be achieved if the mining sequence is strictly im-
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plemented. In the case of Paradigm 3, as each mining sequence is calculated based

on a realization of the deposit, the planned and realized profits are equal.

Paradigm 1 can yield a wide range of planned profit values depending on how

the construction of the estimated model is tuned. The profit of Paradigm 1 can be

either larger or smaller than the realized profits of Paradigms 2 and 3 because the

tuning process is not part of the construction of the simulated model. In practice,

the estimated model is often optimistic (Journel and Kyriakidis, 2004). Paradigm

2 resembles an out-of-sample evaluation of the mining sequence of Paradigm 1. In

the out-of-sample evaluation, real or simulated information from a comprehensive

model is used to measure the performance of a decision model in terms of real-world

outcomes (Conejo et al., 2010). In Figure 1.4, a schematic comparison of the three

paradigms is presented.

Figure 1.4: Sketch of comparison of conventional paradigms in terms of their re-
spective profit calculated. In Paradigms 1 and 2, the planned and realized profits
are calculated, respectively. In Paradigm 3, the planned and realized profits are
identical.

In this comparison, the realized profit is preferred over the planned profit be-

cause it accounts for the peformance of the mining sequence. In this respect, only

Paradigms 2 and 3 are compared. The profit of Paradigm 3 is larger than Paradigm

2. In each realization, the profit of Paradigm 3 is calculated based on the optimal

mining sequence for each realization, while the profit in Paradigm 2 is calculated
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based on the mining sequence of Paradigm 1, which is sub-optimal for any given

realization. In Figure 1.5, an example of the comparison between Paradigms 2 and 3

in terms of the profit of the ultimate-pit is presented. The example consists of sim-

ulating one hundred realizations of a deposit, conditioned to a synthetic dataset of

twenty-eight drillholes, and calculating the profit of the realizations in two scenarios:

A) with respect to an optimal ultimate-pit calculated based on an estimated model,

and B) with respect to the corresponding optimal ultimate-pits of each realization.

The first and second scenarios represent Paradigms 2 and 3, respectively. Since the

profits calculated in Scenario B are optimal for each realization, no profit calculated

in Scenario A can be larger that of Scenario B. In this example, the ultimate-pit is

calculated for simplicity and illustration purposes.

Figure 1.5: Example of comparison of ultimate pit profits based on Paradigms 2
and 3. A: Scatter plot of ultimate-pit profits calculated in Paradigm 2 and 3. B:
Box plot of profits calculated in Paradigm 2 and 3.

The difference in the calculated profits, between Paradigms 2 and 3, is due

to the assumptions about uncertainty in the block model of the deposit that are

made during the design of the long-term plan. In Paradigm 2, it is assumed the

long-term mine plan is designed based on the available geologic information and it

will not change throughout the lifetime of the mining project. The long-term plan

is subject to errors as the information available is limited. In Paradigm 3, it is

assumed there is access to perfect knowledge of the deposit, even before mining the
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deposit. Therefore, there is no error during the mining of the deposit. In practice,

additional information is collected throughout the lifetime of the mining project,

which improves progressively the performance of the block model and the mining

sequence over time. Thus, the profit of the mining project is larger than calculated

in Paradigm 2, but smaller than calculated in Paradigm 3 as perfect knowledge of

the deposit cannot be achieved. Paradigms 2 and 3 present two extreme cases in the

evaluation of mineable reserves. Paradigm 2 is pessimistic as it assumes the initial

state of uncertainty in the deposit will remain static throughout the lifetime of the

mining project. Paradigm 3 is optimistic as it assumes there is access to perfect

knowledge of the deposit even before mining the deposit.

1.2 Effect of Additional Information

The geologic information available at the time of the evaluation of mineable reserves

does not remain static throughout the lifetime of the mining project. In practice,

additional information is acquired as it is budgeted as part of the design of the

long-term plan (Hustrulid and Kuchta, 1995). In Paradigm 2, the cost of additional

information is budgeted but not used. In Paradigm 3, although the cost of additional

information is budgeted, it is not necessary as it is assumed there is access to perfect

knowledge of the deposit. As the calculation of profit depends on the accuracy of

the block model (Froylan et al., 2004), the inclusion of additional information has

an impact on the profit of the mining project.

In Figure 1.6, the example discussed in Figure 1.5 is continued to illustrate the

effect of additional information. A new scenario that considers additional informa-

tion in the form of an infill campaign is discussed. In this new scenario, an infill

campaign is sampled from each realization of the deposit and added to the initial

dataset, thus generating a set of realizations of the acquisition of additional informa-

tion. As in the case of Paradigm 2, in the additional information scenario, the profit

of the ultimate pits is calculated based on the simulated model. In the example, the

budget allocated to collect extra information permits drilling eighteen additional
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drillholes. The use of the additional information results in an improvement with

respect to Paradigm 2. This improvement in the profit is sensitive to the spatial

configuration of the additional drillholes.

(A) Information scenarios

(B) Comparison of information scenarios

Figure 1.6: Example of impact of additional information in the calculation of
ultimate-pit profits. 1A, 2A, and 3A represent scenarios of information available,
Paradigm 2, Additional Information, and Paradigm 3, respectively, to calculate the
ultimate-pit of the deposit. B: Box plot of profits calculated in Paradigm 2, Ad-
ditional Information, and Paradigm 3 scenarios. Notice the estimated profit of the
Additional Information scenario is in between the estimated profits of Paradigms 2
and 3.

A common problem in the evaluation of mineable reserves is the information

effect (Chiles and Delfiner, 1999; Journel and Kyriakidis, 2004; Isaaks, 2005). The
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information effect considers the negative impact of the prediction error of the block

model used to design the mining sequence. At the time of production, this error

is measured as the difference between the long- and short-term block model. An

important contribution of the simulation of additional information is that it permits

the assessment of the impact of the information effect on the evaluation of mineable

reserves (Journel and Kyriakidis, 2004). In Paradigm 2, the profit considering only

having access to the initial information is calculated. In the additional information

scenario, the benefits of considering the additional information can be assessed by

comparing the correspoding profit to Paradigm 2. Paradigm 3 is an unrealistic

scenario where it is assumed to have access to perfect knowledge of the deposit.

The evaluation of mineable reserves can be studied in the context of decision

theory, since the choices made in the design of the long-term plan, including char-

acterization of ore and waste, specifying plant production capacity, and acquisition

of additional infill drillholes, have economic consequences (Journel and Kyriakidis,

2004). The most important aspect of decision theory used in this thesis is the

economic valuation of additional information. A formal evaluation of the effect of

upgrading the characterization of the geology of the deposit is carried out by as-

signing value to the additional information collected (Steffen, 1997). The difference

between the expected revenues of Paradigms 2 and 3 are referred to as expected

value of perfect information (EVPI) (Dimitrakopoulos and Ramazan, 2008). The

EVPI is the contribution to the revenue if the acquisition of perfect knowledge of

the deposit would be possible. Similarly, the difference between expected revenues

of the additional information scenario and Paradigm 2 is referred to as expected

value of sample information (EVSI). The EVSI is the contribution to the revenue

due to the collection of additional information. The EVSI is positive and always less

or equal than the EVPI (Eislet and Sandblom, 2010), that is, the additional infor-

mation has a positive contribution to the revenue. Froylan et al. (2004) considered

a similar framework to quantify the economic value of additional infill drilling. The

relationship between EVSI and EVPI is valid if the decision model remains static in

any state of information. Fenwick et al. (2008) discussed the effects of modifying the
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decision model as a result of additional information. In practice, mining parameters

are adapted as the global factors vary over time.

In the context presented, the economic potential of the mining project is assessed

in terms of the realized profit. Alternatively, the estimated profit can be also used. In

this case, the initial information scenario is Paradigm 1. The collection of additional

information adds uncertainty to the single profit of Paradigm 1 and makes it move

towards Paradigm 3. As the profit of Paradigm 1 is a single value that can be either

larger or smaller than the expected profit of Paradigm 3, the additional information

scenario accounts for how the extra dataset reduces the bias of the estimated profit in

Paradigm 1. The contribution of the additional information is difficult to interpret

because the source of the bias in the planned profit is mainly the tuning of the

estimation parameters. In Figure 1.7, a sketch of the contribution of additional

information based on estimated and realized profits is presented.

In this section, it is assumed that the additional information is collected once

during the lifetime of the mining project. The impact of additional information in

this context has been discussed by some authors. Froylan et al. (2004) proposed

a methodology to value the contribution of infill campaigns. Khosrowshahi et al.

(2004) considered the acquisition of of blasthole information with different degrees

of errors. Journel and Kyriakidis (2004) discussed the effect of blasthole information

in the evaluation of mineable reserves. Aspects including sampling error and classi-

fication error are covered. Boucher et al. (2005) proposed a methodology to quantify

the contribution of infill drilling to the profit of the mining project. Jewbali and

Dimitrakopoulos (2009) proposed a methodology to account for the effect of blast-

hole information in the calculation of the profit of the mining project. However,

this assumption is simplistic as in practice the additional information is collected

continuosly throughout the lifetime of the mining project.
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Figure 1.7: Sketch of comparison of contribution of additional information based on
estimated (top) and realized (bottom) profits. The Additional Information scenario
is represented as shaded regions to denote that the range of profits depends on the
amount of additional information acquired.

1.3 Dynamic Mining of the Deposit

From a global perspective, the main activities that take place in each period can be

classified into two groups: 1) design of the mine plan and 2) execution of the mine

plan. The design of the mine plan consists of: construction of the block model, design

of the mining sequence, and calculation of the mineable reserves. The execution of

the mine plan consists of: targeting of the next region of the mining sequence,

design of medium- and short-term plans to adapt the targeted region of the mining

sequence to meet planned production objectives at a smaller time scale (Jewbali

and Dimitrakopoulos, 2009). At the end of the lifetime of the mining project, the
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mining sequence that is executed consists of all the regions mined in each period,

and the profit of the mining project is a function of the executed net cash-flows

of each period. The point at which the planned profit matches the executed profit

depends both on the design of the long-term plan and the accuracy of the block

model.

The assumption that the long-term plan is static throughout the lifetime of

the mining project would be reasonable if the geologic characterization of the de-

posit is also static. However, as part of the execution of the mine plan, additional

information is collected from different sources, including surface mapping, drilling,

geophysical and geochemical surveys, and rock mechanic studies (Erickson and Pad-

gett, 2011). The periodic acquisition of additional information makes the geologic

characterization of the deposit evolve accordingly (Dominy et al., 2002). Thus, the

long-term plan should adapt following the changes in the block model. In this con-

text, the long-term plan depends only on the block model as the global factors are

assumed to be fixed throughout the lifetime of the mining project. A proper frame-

work for evaluating mineable reserves that accounts for the acquisition of additional

information should consider the dynamic behavior of the mining of the deposit. This

is the focus of this thesis.

1.4 Problem Statement

The conventional paradigms are different in terms of the assumptions regarding

the geologic characterization of the deposit. In Table 1.1, a comparison of these

paradigms is presented. The advantage of Paradigms 2 and 3 over Paradigm 1 is the

posibility of quantifying uncertainty in the mineable reserves because the inclusion of

simulated models in the evaluation. However, the profit values calculated are biased.

In expected value terms, Paradigm 2 yields a pessimistic profit as it considers that

no additional information will be collected in the future and the current state of

uncertainty of the deposit will remain static throughout the lifetime of the mining

project, while Paradigm 3 yields an optimistic profit as it considers that there is
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access to perfect information of the deposit even before mining the deposit. There

is no direct relatonship between the profit of Paradigm 1 and the expected profits

of Paradigms 2 and 3 because the tuning of the estimation model is not considered

in the simulated model.

Paradigm 1 Paradigm 2 Paradigm 3

Computational
requirement

low moderate high

Reports
uncertainty

no yes yes

Operating
design for im-
plementation

yes yes no

Bias in the
estimation of
profit

Profit can be
over or
underestimated
depending on
the tuning of
estimation
parameters.

Profit is
underestimated.

Profit is
overestimated.

Table 1.1: Comparison of conventional paradigms.

Most likely, the ’correct’ profit of the mining project is in between Paradigms 2

and 3. The acquisition of additional information, budgeted in the long-term plan,

contributes positively to the profit with respect to Paradigm 2. As the mining

progress, the acquisition of additional information reduces the uncertainty in the

block model and improves the efficiency of the long-term plan to forecast the cash-

flow and mineral production. The profit of Paradigm 3 is unrealistically high because

it considers error free mining conditions.

Thesis statement: The inclusion of the dynamic acquisition of additional

geologic information in the evaluation of mineable reserves yields a more real-

istic assessment of the economic potential of the mining project than current

conventional paradigms that do not account for it.
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1.5 Long-Term Planning

The design of the long-term plan follows the design of the final pit (Steffen, 1997;

Whittle and Whittle, 1999; Asa, 2002). The final pit represents the operating mine-

able limits of the deposit under present conditions. The design of the final pit, also

referred to as life-of-mine planning (Steffen, 1997), is a two-step process: 1) calcu-

lation of the base framework, and 2) operating design. The base framework is the

ultimate pit, which is calculated in the block model of the deposit as a shell that

represents the economic mineable limits at block resolution. The final pit is designed

by outlining the ultimate pit shell considering operating conditions, including final

ramps, mineable widths, and operating slopes. The objectives of the design of the

final pit are: 1) definition of the global inventory of mineable ore reserve within as-

sumed economic parameters, 2) definition of the production capacity for the life of

mine, 3) definition of infrastructure requirements, and 4) assessment of fixed capital

costs (Steffen, 1997).

The long-term plan is a roadmap of how the deposit will be mined on a period

basis. The duration of a period depends on company policies, typically one year.

In the long-term plan, different aspects of the mineable reserves are determined,

including mining objectives as scheduled regions, mineral inventory as production

targets, and economic potential as cash flow.

1.5.1 Conventional Design of the Long-Term Plan

The design of the long-term mine plan consists of three steps: 1) sequence planning,

2) mine scheduling, and 3) production scheduling (Mathieson, 1982). An additional

stage that consists of designing contingency plans to deal with potential problems

due to various aspects, including poor block model estimation, tonnage and/or grade

loss, and slope instability, can be also considered (Mathieson, 1982). The objectives

of long-term planning are: 1) maximize value for investors, 2) minimize risk for

investors, and 3) maximize life of the mining project (Steffen, 1997). In Figure 1.8,

the workflow of the conventional process to design the long-term plan is presented.
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Figure 1.8: Sketch of the conventional workflow to design the long-term plan.

In sequence planning, the final pit is divided into a set of mining stages com-

monly called expansions, phases, working pits, or pushbacks (Mathieson, 1982). The

mining stages provide an initial scheme of the mining path to develop the final pit.

As in the case of the design of the final pit, the most common technique consists

of two steps: 1) calculation of the base framework, and 2) operating design. The

base framework consists of a set of nested pits that are generated by varying the

metal price (Hustrulid and Kuchta, 1995). The mining stages are designed based

on the operating outline of the nested pits (Steffen, 1997). The mining stages are

designed so that the mineability of the final pit is guaranteed (Mathieson, 1982).

In mine scheduling, the final pit is also divided in a set of regions, however, un-

like the mining stages, each of these regions are meant to be mined in one period

(Mathieson, 1982). These regions are collectively referred to as mining sequence.

The mining stages have variable lifetime because they are designed based on oper-

ating constraints, while in the case of the mining sequence, the regions are designed

based on scheduling constraints (Mathieson, 1982). The mining sequence is designed

based on the configuration of the mining stages (Osanloo et al., 2008), and consists

of determining: 1) the operating geometry of the regions to mine, and 2) the tim-

ing in which these regions are mined (Whittle and Whittle, 1999; Halatchev, 2002).

In production scheduling, the performance of the mining sequence is fine tuned.

Alternative mining sequences are explored by considering variable production rate

and cut-off grade strategies (Mathieson, 1982). These alternatives are discriminated

based on an economic evaluation and comparison of their economic performance.
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1.5.2 Design of the Long-Term Plan Aided by Programming Mod-

els

Since the 1960s, mathematical programming algorithms have been introduced to aid

in the design of the final pit and the long-term plan. These algorithms consider large-

scale optimization problems that aim to maximize the profit of the mining project

subject to a set of specified constraints and assumptions (Osanloo et al., 2008).

The output of these algorithms is a block model in which the extraction period

of the blocks is indicated. In this thesis, this block model will be referred to as

the calculated mining sequence. The calculated mining sequence is not operational

as it does not account for real mining situations, but provides an initial guideline

to design the operating mining sequence (Mathieson, 1982). In the design of the

long-term plan, the inclusion of mathematical programming algorithms changes the

conventional workflow. Mathematical programming algorithms reduce the number

of stages of the conventional process to design the long-term plan (Gaupp, 2008).

In Figure 1.9, the workflow of the process to design the long-term plan aided by

mathematical programming models is presented.

Figure 1.9: Sketch of the workflow to design the long-term plan aided by mathe-
matical programming models.

It is debatable whether conventional or programming-model-aided workflow pro-

duces better long-term plans. For example, Gaupp (2008) states that making sepa-

rate decision in each stage of the conventional workflow compromises the optimality

of the mining sequence, and Lane (1999) states that mathematical programming

models cannot account for all the operating conditions that are considered in the

conventional workflow as planning is a creative activity whereas optimization is
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analytical. In practice, mining sequences generated based on programming models

permit mine planners to quickly evaluate a wider range of alternatives with different

mining parameters than in the conventional workflow.

1.5.3 Computational Algorithms Used in Long-Term Planning

In this section, an overview of the computational algorithms used to aid in the design

of the final pit and the long-term plan is presented. The techniques discussed are

either analytically optimal or heuristic. The analytically optimal techniques yield

a global optimal solution whereas the heuristic techniques approximate the optimal

solution, but are much less computationally demanding and easier to implement.

The different techniques to calculate the ultimate pit shell are extensively re-

viewed by many authors, including Wright (1990), Gaupp (2008), and Newman et al.

(2010). The two most popular techniques, based on its implementation in commer-

cial computer software, are: 1) Lerchs-and-Grossmann and 2) floating-cone. The

graph theory based algorithm proposed by Lerchs and Grossmann (1965) calculates

an ultimate pit shell that maximizes the undiscounted profit. This technique and its

extensions appear very often in literature (Newman et al., 2010). The floating-cone

technique proposed by Pana (1965) is the most representative heuristic technique

for calculating the ultimate pit shell. However, Kim et al. (1987) mentioned that

the floating-cone technique was initially developed by Kennecott Copper in 1961.

The sub-optimality of floating-cone is more evident when implemented in precious

metal deposits with erratic distributions (Kim et al., 1987). A comparison of three

techniques: 1) Lerchs-and-Grossmann, 2) maximum network, and 3) floating-cone,

conducted by Kim et al. (1987) showed that the sub-optimality of the floating-cone

technique, with respect to Lerchs-and-Grossmann and maximum network, is of the

order of 1%.

There is a wide range of techniques to calculate the mining sequence at block

resolution. These techniques are extensively reviewed by many authors, including

Gaupp (2008), Osanloo et al. (2008), and Newman et al. (2010). Gaupp (2008)

classified the mine sequencing techniques into two categories: 1) ultimate pit based
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and 2) comprehensive techniques. In the ultimate pit based category, the ultimate

pit is calculated before the mining sequence. These techniques tend to produce

sub-optimal results as they depend on the ultimate pit, which is calculated aiming

to maximize the undiscounted profit. The profit value used to characterize the

economic potential of the mining project is discounted. Some authors that proposed

techniques in this category are: Gershon (1987), Ramazan (2007), and Sattarvand

(2009). In the comprehensive category, the ultimate pit and the mining sequence

are generated simultaneously. These techniques aim to maximize the discounted

profit. Even when comprehensive techniques do not require the previous calculation

of the ultimate pit, they still require the input parameters defined during the design

of the final pit, such as global mineral inventory, production capacity, and required

infrastructure. Some authors that proposed techniques in this category are: Sevim

and Lei (1998), Ramazan and Dimitrakopoulos (2004a), and Froylan et al. (2004).

Osanloo et al. (2008) classified the mine sequencing techniques into two groups:

1) deterministic and 2) uncertainty based. In the deterministic techniques, the

inputs are assumed to be fixed and known. The impact of uncertainty is indirectly

accounted for by classifying blocks in the model of the deposit into: measured,

indicated, and inferred. Typically, in the calculation of the mining sequence, inferred

blocks are not considered and measured and indicated blocks are assumed to be

uncertainty free. Some authors that proposed techniques in this category are: Sevim

and Lei (1998), Ramazan (2007), and Sattarvand (2009). In the uncertainty based

techniques, the effect of uncertainty in the inputs are considered. The goal of these

techniques, along with the maximization of the profit, is the reduction of uncertainty

in the inputs to calculate the profit. Some authors that proposed techniques in this

category are: Khosrowshahi et al. (2004), Dimitrakopoulos and Ramazan (2008),

and Lamghari and Dimitrakopoulos (2012).
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1.6 Dissertation Outline

In this thesis, a new paradigm that incorporates the dynamic acquisition of addi-

tional geologic information in the evaluation of mineable reserves is proposed. In

Chapter 2, the details of the proposed paradigm are covered. Different implementa-

tion aspects, including simulation of the acquisition of different types of additional

geologic information, simulation of the dynamic features of the mining process, and

calculation of the profit of the mining project, are detailed. The scope and limi-

tations of this new paradigm are discussed. In Chapter 3, it is described how the

proposed paradigm is used as a tool for evaluating infill drilling strategies. The eval-

uation is carried out in terms of: 1) impact on the reduction of planned production

variability, and 2) impact on the economic performance of the mining sequence. A

methodology for evaluating cost-efficient infill programs is proposed. In Chapter

4, the set of realizations of the mining sequence are summarized into a few repre-

sentative alternatives that permit the operating design of the long-term plan. A

methodology based on clustering techniques to find major patterns in the mining

paths of the mining sequences generated is proposed. In Chapters 5, 6, and 7, ex-

amples that illustrate the implementation of Chapters 2, 3, and 4, respectively, are

discussed. Finally, in Chapter 8, the conclusions of this thesis and future research

ideas based on the proposed paradigm are presented.
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Chapter 2

Simulated Learning Model

Paradigm

In Chapter 1, the motivation for incorporating the periodic acquisition of additional

information in the evaluation of mineable reserves is discussed. The acquisition

of additional information is an inherent part of the mining process that it is not

accounted for in conventional paradigms. The lack of this aspect in the conventional

paradigms yields an incorrect calculation of the mineable reserve. In this chapter,

a new paradigm to evaluate the mineable reserve that accounts for the periodic

acquisition of additional information is proposed. This proposed paradigm is called

the Simulated Learning Model (SLM) because of the consideration of the mining of

the deposit as a computational learning process.

The uncertainty in the block model depends on the geologic information available

and affects negatively the performance of the mine plan in that the decisions made to

mine the deposit have to be adjusted to meet production targets. These adjustments

come at an increase in the mining costs, thus, reducing the profit margin of the

mining project. The conventional paradigms present extreme cases in the calculation

of the mineable reserve. In Paradigm 1, uncertainty in the block model is not

accounted for. In Paradigm 2, uncertainty in the block model remains static during

the lifetime of the mining project. In Paradigm 3, there is no uncertainty in the
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block model as it is assumed that perfect knowledge of the deposit is accessible before

mining the deposit. The SLM paradigm provides an intermediate and more realistic

framework, in which, during the lifetime of the mining project, the uncertainty in

the block model is reduced progressively because of the acquisition of additional

information.

This chapter is organized as follows. In Section 2.1, the framework of the SLM

paradigm is introduced. The inclusion of both mining and data acquisition strategies

in the evaluation of mineable reserves is discussed. In Section 2.2, the negative effect

of uncertainty in the calculation of the profit of the mining project is discussed. The

production variability is used as a metric to account for the effect of uncertainty in

the performance of the mining sequence. In Section 2.3, the workflow of the event

model used in the SLM paradigm to simulate the mining of the deposit is described.

The assumptions considered and implementation aspects are detailed. In Section

2.4, the SLM paradigm and conventional paradigms are compared. The comparison

is made based on the assessment of profitability of the mining project. Finally, in

Section 2.5, the limitations of the SLM paradigm are discussed.

2.1 SLM Framework

In conventional paradigms, the mine plan considers parameters and conditions re-

lated to the extraction and processing of the mineral in the deposit. For example,

configuration of mining regions, economic feasibility, and capacity of the processing

plant. In this thesis, these specifications are referred to as mining strategy and are

represented by a mining sequence algorithm. There are a wide variety of mining

sequence algorithms designed based on specific mining conditions. For example,

Wang and Sevim (1995) considers the closeness of the targeted regions, Akaike and

Dagdelen (1999) considers the use of dynamic cutoff and stockpiles, and Ramazan

and Dimitrakopoulos (2004b) considers aspects related to equipment access, blend-

ing, and production capacity. These algorithms aim to maximize the profit of the

mining project based on their specific conditions, thus, they result in different cal-
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culations of the mineable reserve.

In conventional paradigms, the block model and the mining sequence remain

static during the lifetime of the mining project. However, in practice, the amount

of information available for characterizing the deposit increases over time due to

the continuous acquisition of additional information. As a consequence, the block

model and the mining sequence are periodically updated to account for the new

data. The acquisition of additional information increases the accuracy of the block

model, reduces uncertainty, and clarifies the optimal mining sequence. As conven-

tional paradigms do not account for the continuous acquisition of additional infor-

mation, the calculation of the mineable reserve is not realistic. In the proposed SLM

paradigm, the effect of the acquisition of additional information in the mine plan is

accounted for. The calculation of the mineable reserve considers the generation of

multiple scenarios in which the dynamic nature of the mining and data acquisition

are characterized. In the proposed methodology, the mine plan depends on both

mining and data acquisition strategies.

2.1.1 Production Variability

The performance of the mining sequence depends on the geologic characterization

of the deposit. Ideally, in each period, the mining sequence is executed and the

planned production and economic targets are met. However, in practice, at the

end of each period, the geometry of the planned and executed regions are different,

as over the course of the period, the targeted mining region is adjusted by short-

term mine plans to meet planned production targets (Jewbali and Dimitrakopoulos,

2009). The geometric adjustment of the targeted mining region is due to the dif-

ference between the geologic characterization and the real geology of the deposit.

Although the planned production targets are closely met, there is a reduction in the

planned profit due to the extra expenses incurred in the adjustment of the targeted

mining region. In conventional paradigms, the geometric correction of the targeted

mining region to meet the planned production targets is not characterized because

of its complexity. A set of different approaches that account for the reduction of the
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planned profit are proposed by many authors. These approaches consider that the

mining sequence is strictly executed and the reduction of the planned profit is calcu-

lated as a function of discrepancy in production. Leite and Dimitrakopoulos (2007)

considers the deviations of ore and waste from production targets. Boucher et al.

(2005) considers the cost of block misclassification. Ramazan and Dimitrakopoulos

(2007), Dimitrakopoulos and Ramazan (2008) and Lamghari and Dimitrakopoulos

(2012) consider variability in ore tonnage, metal grade, and net metal quantity.

Two types of production are considered to report mineable reserves, 1) planned

and 2) executed. The planned production is calculated from the input block model,

which is used to calculate the mining sequence. The executed production is cal-

culated from a realization of the deposit, at the resolution of input block model,

within the limits of the targeted regions of the mining sequence. The conven-

tional paradigms consider different assumptions to calculate the mineable reserve.

In Paradigm 1, the mining sequence is calculated based on a estimated block model

and the mineable reserve is reported in terms of planned production. In Paradigm

2, the mining sequence is calculated based on a estimated block model and the

mineable reserve is reported in terms of executed production. In Paradigm 3, a set

of mining sequences are calculated based on the realizations of a simulated block

model and the mineable reserve is reported either in terms of planned or executed

production as both are identical.

The difference between the planned and executed production is used to quantify

the performance of the mining sequence. Many authors, including Dimitrakopoulos

and Ramazan (2004), Khosrowshahi et al. (2004), and Leite and Dimitrakopoulos

(2007), presented this discrepancy as production risk. In this thesis, this difference

is referred to as production variability. In Paradigm 1, the production variability

cannot be calculated as only the planned production is considered. In Paradigm 2,

the production variability is the result that the existing information remains invari-

ant during the lifetime of the mining project. This consideration is unrealistic as in

practice, additional information is collected dynamically during the lifetime of the

mining project. The additional information improves the performance of the mining
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sequence in reducing the production variability. Thus, the real production variabil-

ity is expected to be smaller than in Paradigm 2. In Paradigm 3, the production

variability is zero as it is considered that perfect knowledge of the deposit is acces-

sible before mining the deposit. This consideration is unrealistic as the presence of

geologic uncertainty ensures that the deposit cannot be mined perfectly. The pro-

posed SLM paradigm aims to account for the impact of the acquisition of additional

information to correct the production variability of Paradigm 2. The characteriza-

tion of production variability in conventional paradigms is unrealistic. The SLM

paradigm aims to characterize a more realistic production variability based on the

mining and data acquisition strategies considered. A correct characterization of the

production variability is important as it affects how the mineable reserve is reported.

2.1.2 Effect of the Dynamic Acquisition of Additional Information

The SLM paradigm accounts for the effect of the acquisition of additional informa-

tion, along with the mining strategy, in the calculation of the mineable reserve. In

the SLM paradigm, three sources of information are considered: 1) exploratory, 2)

infill, and 3) blasthole drilling. These sources contribute differently to the geologic

characterization of the deposit as they have different scales and sampling errors asso-

ciated. The exploratory information is collected before mining the deposit. The infill

and blasthole information are collected during the lifetime of the mining project.

The existing information depends on the development stage of the mining project.

If the deposit has not been mined, the existing information consists of exploratory

drilling. If the the deposit is already in production stage, the existing information

consists of all three drilling sources.

In the SLM paradigm, the lifetime of the mining project is divided into periods,

which can be annual or semi-annual, depending on company policies that dictate the

frequency in which the mine plan is required to be updated. In each period, infor-

mation from infill and blasthole drilling are collected following specific conditions.

The infill drilling information is collected to improve the geologic characterization of

the deposit for different purposes, including exploration, mine planning, or a combi-
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nation of them (Sinclair and Blackwell, 2002). The infill drilling information might

be of different types, e,g, diamond-core and air-reverse. The selection of the type of

infill drilling depends on many aspects, including implementation time, quality of

information, and cost of drilling. Metz (1992) discussed various types of drilling used

in exploration and mine development. In each period, the blasthole drilling is im-

plemented to fragment material and help in ore control during the mine operations

(Sinclair and Blackwell, 2002).

The dynamic behavior of the mining process resembles a computational learning

process. In computational or machine learning, a typical learning process consist of

two steps: 1) remembering, and 2) adapting (Marsland, 2009). A prediction model is

calculated to progressively better predict unsampled outcomes after each iteration.

In the beginning, the prediction model is calculated based on an initial training

dataset. After a set of outcomes are predicted, their real values are collected and

the system learns from the experience. The remembering step consists of including

the real values of the predicted outcomes of the training dataset. The adapting

step re-calculates the prediction model based on the updated training dataset. As

the updated training dataset contains more information than the initial training

dataset, the performance of the updated prediction model improves progressively.

In the mining case, the training dataset is the available geologic information

and the prediction model is the mining sequence. The mining sequence is used

to target mining regions and to forecast cash-flow throughout the lifetime of the

mining project. In each period, the next mining region of the mining sequence

is targeted for extraction. At the end of the period, the executed mining region

and cash-flow are different from what were calculated in the mining sequence, thus,

there is a prediction error. This difference is because the information available,

used to calculate the mining sequence, is limited. The learning process begins after

the additional information is collected during the period. In the remembering step,

the collected additional information is added to existing dataset. In the adapting

step, the estimated block model and the mining sequence are updated with the new

dataset. As mining progresses, the performance of the mining sequence to predict

29



the mining regions and cash flows improves.

Although the additional information considers both blasthole and infill drilling

sources, only the implementation of infill drilling can be planned. In the design of the

mine plan, a budget is allocated for the implementation of infill campaigns during

the lifetime of the mining project. This budget limits the amount of infill drilling

information that can be acquired. Three aspects are considered in the planning of

infill drilling: 1) spatial configuration of infill drillholes, 2) number of infill drillholes,

and 3) timing of drilling. In the case of blasthole drilling, the specifications of the

implementation and costs depend entirely on the mining operations. In this thesis,

the planning of infill drilling is considered in the data acquisition strategy and is

represented by an infill program for the duration of the lifetime of the mining project.

The future additional information cannot be considered directly in the calcu-

lation of the mineable reserve as it is not accessible at present time. In the SLM

paradigm, a stochastic approach is implemented to simulate the dynamic acquisition

of future additional information. The simulation of data acquisition generates a set

of equally probable scenarios of the mining of the deposit. In each mining scenario,

the data acquisition and mining strategies interact together in the generation of a

unique mining sequence. Each mining scenario accounts for how the future geology

of the deposit might reveal itself and its effects in the performance of the mining

sequence. In the SLM paradigm, the term ’existing information’ is used to refer

to the real information available at the moment of the calculation of the mineable

reserve and ’additional information’ is used to refer to the simulated future infor-

mation that is collected during the lifetime of the mining project. In Figure 2.1, a

sketch of the SLM framework is presented. In all the mining scenarios, the mining

regions of the first period are identical because there is no additional information,

thus, the first period relies only on the existing information.

The large majority of mining sequence algorithms are designed to maximize the

profit of the mining project in the framework of the conventional paradigms. These

algorithms consider that the estimated block model is static throughout the life-

time of the mining project. As in the SLM paradigm, the estimated block model is
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Figure 2.1: Sketch of the SLM framework to generate scenarios of the mining of the
deposit. The simulated future additional information is indicated by s.

dynamic, the maximization of profit after implementing these algorithms is not guar-

anteed. The SLM paradigm can be seen as a case of adaptive models in stochastic

integer programming. Dimitrakopoulos and Ramazan (2008) discussed the chal-

lenges of optimizing adaptive model problems in mine planning. The main diffi-

culty is that, in each period, the optimal decision has to be determined based on

a estimated block model built with limited available information. This available

information is updated as the mining progress and it is not accessible in time to

improve the efficiency of the decisions to mine the deposit.

Unlike conventional paradigms, where only the mining strategy is specified, the

SLM paradigm requires the input of both mining and data acquisition strategies

to calculate the mineable reserve. In the SLM paradigm, different mining sequence
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algorithms and data collection programs have to be explored together aiming to

maximize the profit of the mining project. The SLM paradigm allows assessing how

specific mining and data acquisition strategies would perform in a specific deposit.

As in the case of Paradigms 2 and 3, the mineable reserve of the SLM paradigm is

reported based on executed production. The SLM paradigm and Paradigms 2 and

3 are comparable if the same mining strategy is considered. In this comparison, the

effect of the specified data acquisition strategy in the calculation of the mineable

reserve can be quantified.

2.2 Calculation of the Profit of the Mining Project

In the SLM framework, the profit of the mining project is measured in terms of the

net present value (NPV). In each period, the net cash-flows are calculated as the

difference between the cash-flow and the capital expenses. The calculation of the net

cash-flow as discussed by Hustrulid and Kuchta (1995) is considered as a reference.

In this thesis, the cost of infill drilling is considered to be part of the capital expenses.

Thus, to account for the acquisition of infill information, the capital expenses is split

in: 1) budget allocated to implement the infill campaign and 2) sum of the rest of

the items. The net cash-flow is defined as:

NCF (D) = CF (D)− CAP (∆D) ,

= CF (D)− {CD (∆D) + CE} , (2.1)

where, NCF is the net cash-flow, CF is the cash-flow, CAP is the capital expenses,

CD is the cost of infill drilling, CE is the capital expenses without the cost of

infill drilling, D denotes the additional information available at the beginning of the

period, and ∆D denotes the additional information acquired over the course of the

period. The CF term is expressed as a function of D to indicate the mining sequence

depends on the information available. The CAP and CD terms are expressed as

a function of ∆D to indicate that these two terms depend on the amount of infill

information collected. The cost of blasthole drilling is included in the CF term as
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it is part of the operating cost.

In practice, because of the presence of uncertainty, the planned profit is not

achieved, but the executed profit, which depends on the real geology of the deposit

(Froylan et al., 2004). In each period, the adjustment of the planned mining regions

results in an increase in the estimated mining cost. For example, if less ore is found,

non-scheduled regions are targeted for extraction to compensate the production gap.

In an opposite case, if more ore is found, the surplus ore has to be stored in stockpiles

or the mining region is modified to achieve the production target. In the SLM

paradigm, the negative impact of the additional cost is accounted for as a function

of the production variability. The negative impact of the production variability on

the profit of the mining project is discussed by many authors, including Ramazan

and Dimitrakopoulos (2007), Dimitrakopoulos and Ramazan (2008), and Lamghari

and Dimitrakopoulos (2012).

In the SLM paradigm, the production variability affects the individual net cash-

flows. The impact of the additional cost on the CF term is accounted for based on

two cases: 1) surplus, and 2) insufficient production. The effect of the additional

cost is equivalent to penalize the income of the material produced as a function of

the excess production. In the case of insufficient production, it is considered that

the effect of additional cost is equivalent to the missing portion of the cash-flow due

to not reaching the production target. The cash-flow is calculated as:

CF (D) =


CF ′ (D)− η (Pr − Pt) ; if Pr > Pt

CF ′ (D) ; if Pr ≤ Pt
, (2.2)

where, Pt and Pr are the planned and executed production, respectively, CF ′ is

the cash-flow calculated based on the executed production, η is a penalty factor due

to production excess. The difference between Pr and Pt depends on the current

information availableD. The simulation of the executed production is conditioned to

the current available information at the end of each period. In the scheme presented,

the effect of production variability on the cash-flow is independent in each period. A
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more complex approach might consider the effect of compensating under-production

with over-production in consecutive periods.

In Figure 2.2, the production variability of a mining sequence is illustrated in

terms of extracted and planned ore material. In Equation 2.2, the CF term is

calculated as a function of one aspect of production, for example, ore tonnage or

net-metal content. In a more detailed evaluation, the calculation of the CF term

may include more than one aspect of production and different metal attributes. The

problem with the calculation of the CF term is the difficulty of the estimation of

the penalty factors for each aspect of production. Lamghari and Dimitrakopoulos

(2012) presented an example where the penalty factors of ore tonnage and net metal

content are calculated from historic data.

Figure 2.2: Sketch of the comparison between planned and executed production in
terms of ore tonnage.

The production variability affects negatively the performance of the mining se-

quence in terms of how much adjustment of the mining sequence would be necessary

to meet the production targets. The scheme presented is an approximate way to

account for the additional cost due under- and over-production. In practice, it is

very unlikely the mine would operate below capacity and incur the cost described

above. Nevertheless, this scheme permits the assessment of value of the additional

information.

The profit of the mining project is calculated as the sum of the discounted net
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cash-flows of all the periods. Based on Equation 2.1, the profit of the mining project

can be expressed as:

SNCF (Dt) = SCF (Dt)− {SCD (Dt) + SCE} , (2.3)

where,

SCF =

np∑
i=1

CFi (Di)

(1 + r)i
,

SCD =

np∑
i=1

CDi (∆Di)

(1 + r)i
,

SCE =

np∑
i=1

CEi

(1 + r)i
,

SNCF is the sum of discounted net cash-flows, SCF is the sum of discounted

cash-flows, SCD is the sum of discounted infill drilling costs, SCE is the sum of

discounted capital expenses other than infill drilling, Dt denotes the total additional

information collected during the lifetime of the mining project, i is the period index,

np is the number of periods, and r is the interest rate.

2.3 Simulation of Mining Scenarios

In the SLM paradigm, the mining of the deposit is simulated as a set of consecutive

periods in which a set of three events occur (see Figure 2.3). The workflow of events

accounts for the activities during the mining of the deposit that are relevant to

the calculation of the mineable reserve. The proposed representation of the mining

of the deposit allows including the mining and data acquisition strategies in the

simulation of the mining scenarios. The order of the three events that occur in each

period is:

Event 1: Consolidation of existing information.

Event 2: Design of the mining sequence.

Event 3: Acquisition of additional information.
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Figure 2.3: Sketch of the event-based representation of the mining of the deposit
implemented in the SLM paradigm.

The implementation aspects and details of the three events are described as

follows:

2.3.1 Event 1: Consolidation of Existing Information

This event consists of two steps: 1) consolidation of existing information, and 2)

construction of the estimated block model. In the first step, at the beginning of

the period, all the existing data is consolidated into one dataset. The consolidated

dataset grows periodically as extra information is simulated to be collected in each

period. In the first period, the consolidated dataset consists of only the existing

dataset. In the second step, an estimated block model of the deposit is built condi-

tioned to the consolidated dataset in the first step. For practicality, the variography

is calculated based on the existing dataset and remains static during the lifetime of

the mining project.
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2.3.2 Event 2: Design of the Mining Sequence

In this event, the mining sequence is calculated based on the estimated block model

built in Event 1. The calculation of the mining sequence considers the implemen-

tation of a mining sequence algorithm that accounts for the characteristics and

conditions of the specified mining strategy. In Section 1.5.3, the availability of a

wide range of mining sequence algorithms is discussed. Any of these algorithms can

be implemented. The region of the next period in the mining sequence is targeted

for extraction. This region is considered to be the best decision to mine the deposit

based on the information available. The mining sequence of the mining scenario

consists of all the regions targeted for extraction in each period. The continuous ac-

quisition of additional information makes the mining strategy to progressively make

more informed decisions as the mining of the deposit progress.

2.3.3 Event 3: Acquisition of additional information

This event consists of two steps: 1) simulation of mining the region targeted for

extraction, and 2) simulation of the acquisition of additional information. In prac-

tice, these two activities interact together and occur simultaneously. For simplicity,

these two activities are simulated to occur one after another. In the first step, the

region targeted for extraction is mined. In practice, this region is only a guideline

and the final region extracted is based on the short term plan. A set of short-term

and medium-term mine plans detail and adapt the mining of the deposit to achieve

the planned production targets, thus, the difference between planned and executed

production is small; ignoring unexpected downtime, the plant is fed continuously.

The adjustment of the region targeted for extraction is highly difficult to automate

and it is skipped. The mining of the current period is simulated by updating the

current topography, at the beginning of the period, so that the region targeted for

extraction is above the new topographic surface.

In the second step, the additional information consists of simulated blasthole

and infill drilling data. This activity is implemented in two steps: 1) calculation

of the configuration of samples, and 2) simulation of sample values. The spatial
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configuration of the blasthole samples depends on several factors, including mining

conditions, rock type, and plant requirements. For example, ore material requires

different fragmentation than waste material to be mined. For practicality, the spatial

configuration of blastholes is assumed to be a regular grid with generic operating

dimensions for each bench of the region targeted for extraction. The dimensions of

the grid are specified based on site specific conditions. The spatial configuration

of the infill drillholes depends on the data acquisition strategy. In Figure 2.4, a

sketch of three potential objectives of data acquisition strategies is presented. The

first case aims to aid the mine plan in the medium term by targeting regions in

the following periods. The second case aims to aid the mine plan in the long term

by targeting regions within the limits of the final pit. The third case aims to aid

the geologic exploration by targeting regions beyond the limits of the final pit. The

calculation of the position and configuration of the infill drillholes is automated

by implementing an algorithm that considers the objective of the infill campaign

and operating aspects. The objective of the infill campaign considers individual or

a combination of drilling objectives. For example, 35% of medium-term, 40% of

long-term, and 25% of exploration. The amount of infill drilling to be collected is

specified in the budget allocated for infill drilling as part of the project costs.

Figure 2.4: Sketch of three infill drilling objectives.

In the simulation of the sample values, the characteristics of the two sources of

additional information are aimed to be reproduced so that their different contribu-

tions in the construction of the estimated model are accounted for. The contribution

of infill drilling is higher than blasthole drilling because of the significant difference

in sampling error. Moreover, the contribution of infill drilling is variable as there are
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different types of drilling that can be implemented. For example, diamond drilling

has less sampling error than reverse circulation drilling, thus, its impact on updating

the estimated model is higher. The sample values are simulated conditioned to the

current consolidated dataset. The simulation of additional information has been

discussed by different authors. Knudsen (1995), Journel and Kyriakidis (2004),

Khosrowshahi et al. (2004), and Ortiz et al. (2011) considered the simulation of

blasthole data in terms of true value and sampling error. Jewbali (2006) considered

the use of co-simulation to generate realizations of blasthole data. Boucher et al.

(2005) considered the simulation of infill data based on sampling realizations of the

deposit.

2.4 Comparison of Paradigms

In this section, the SLM and conventional paradigms are compared in terms of how

the mineable reserve is reported. The SLM paradigm is considered directly compa-

rable to Paradigms 2 and 3 as the mineable reserve is reported in terms of executed

production. This is not the case for Paradigm 1 as the mineable reserve is reported

in terms of planned production. It is considered that all the paradigms share the

same mining strategy. The executed production is calculated based on a set of

simulated mining scenarios. The SLM paradigm and Paradigms 2 and 3 account

for uncertainty in different ways. In the SLM paradigm, in each mining scenario,

the initial uncertainty, based on the existing information, is reduced progressively

because of the periodic acquisition of additional information. In Paradigm 2, a com-

mon mining sequence is considered for all the mining scenarios, meaning the initial

uncertainty remains static during the lifetime of the mining project. In Paradigm

3, no uncertainty is considered as the mining sequence in each mining scenario is

executed perfectly.

In this comparison, the profit of the mining project in the SLM paradigm and

Paradigms 2 and 3 is calculated considering Equations 2.1 and 2.2. In these three

paradigms, the profit of the mining project accounts for uncertainty as it is ex-
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pressed as a function of the production variability. In Paradigm 2, the production

variability depends only on the existing information and the mining strategy imple-

mented. In the SLM paradigm, the production variability depends on the existing

information and the mining and data acquisition strategies. The acquisition of addi-

tional information has an effect on reducing the production variability, with respect

to Paradigm 2, thus, contributing to the increase in profit. In Paradigm 3, there

is no production variability as it is assumed the deposit can be mined perfectly. In

Figure 2.5, a comparison of the production variability of the SLM paradigm and

Paradigms 2 and 3 is presented. In this comparison, to summarize the information

of all the simulated mining scenarios, the production variability is measured, as a

metric of prediction error, in expected value terms, for example, mean-absolute-error

or mean-squared-error.

Figure 2.5: Sketch of production variability in Paradigm 2, SLM paradigm, and
Paradigm 3

The magnitudes of the production variability are reflected in how the profit of the

mining project is calculated. The profit of Paradigm 2 is pessimistic as the negative

effect of production variability is exaggerated. The profit of Paradigm 3 is optimistic

as the negative effect of production variability is not considered. The profit of the

SLM paradigm presents an intermediate case that is more realistic because the effect

40



of the acquisition of additional information in reducing the production variability is

accounted for. As the profit of Paradigm 1 is calculated based on planned produc-

tion, it cannot be directly included in the comparison. This profit can be greater

or lesser than the profit of the other three paradigms, depending on the tuning of

the estimation parameters during the construction of the estimated block model.

In Figure 2.6, a sketch of the comparison of the paradigms in terms of calculated

profit is presented. The difference between the profit of the SLM paradigm and

Paradigm 2 is due to the contribution of the acquisition of additional information.

The two sources of additional information, blasthole and infill drilling, contribute

differently in the reduction of the production variability. The contribution of the

blasthole source is fixed while the contribution of the infill source depends on the

data acquisition strategy. The SLM paradigm and Paradigm 2 cannot yield the

same results as the minimum contribution is due to acquisition of blasthole infor-

mation. The maximum contribution is due to the combined effect of the blasthole

drilling and an optimal infill program. The optimality of the infill program refers to

the best data acquisition strategy subject to the budget that allows acquiring infill

information in each period. The difference between the profit of Paradigm 3 and the

SLM paradigm represents the cost due to not having access to perfect knowledge

of the deposit. This gap is due to the negative effect of production variability and

the optimality of each of the mining sequences of Paradigm 3. The SLM paradigm

cannot close this gap because the production variability cannot be eliminated. The

acquisition of even more additional information does not necessarily help close this

gap as it comes at an extra cost.

In the comparison, the profit of the mining project is related to the degree of

uncertainty considered. This may not the case for the rest of the characteristics of

the mineable reserve. The other characteristics, including ore tonnage, net metal

quantity, and average metal grade, do not necessarily behave like the profit of the

mining project. For example, the ore tonnage in Paradigm 2 can be either greater

or smaller than Paradigm 3. The ore tonnage may not be proportional to the profit

of the mining project as the corresponding amount of waste material to be removed
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Figure 2.6: Sketch of comparison of SLM and Paradigms 1 and 2 in terms of calcu-
lated profit

could be greater to a point of reducing the profit margin.

2.5 Limitations

The evaluation of mineable reserves involves many other factors besides the geologic

characterization of the deposit, including metal prices, mining and metallurgical

technologies available, and local and international political environments. Because

of the extensive lifetime of mining projects, these factors are subject to variability

as a function of time. In conventional paradigms, these factors are assumed fixed

due to the inability to properly forecast them. In the SLM paradigm, these factors

are also assumed fixed.

In practice, additional data is collected from different sources, including surface

mapping, drilling, geophysical and geochemical surveys, rock mechanic studies. The

infill and blasthole sources are only part of this vast sources of information collected.

These sources, other than infill and blasthole drilling, are considered to have little

impact on the updating of the estimated block model. The SLM paradigms pro-

vides a simplified characterization of the evolution of the estimated block model

throughout the lifetime of the mining project.
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Although the SLM paradigm accounts for the evolution of the estimated block

model during the lifetime of the mining project, it is assumed that modeling pa-

rameters, including variography, definition of domains, and geologic structure of the

deposit, are static over time. This is due to real additional data is not accessible

at the time of the evaluation of mineable reserves. Thus, the reference of how the

modeling parameters adjust over time cannot be replicated. As a consequence, in

the SLM paradigm, the acquisition of simulated additional information makes that

the presence of uncertainty decreases monotonically. In practice, as more informa-

tion is available, the geologic understanding of the deposit can either improve or

worsen. In Figure 2.7, profiles of the simulated and real reduction of uncertainty

due to acquisition of additional information are presented.

(A) Evolution of uncertainty in the SLM paradigm

(B) Real evolution of uncertainty

Figure 2.7: Sketches of SLM (top) and real (bottom) profiles of evolution of geologic
uncertainty.

The implementation of the SLM paradigm is computationally more expensive

than that of conventional paradigms. Most of the computational work corresponds
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to the updating of the model and the calculation of the mining sequence. In the

simulation of the mining scenarios, these two tasks are repeated in each period

during the lifetime of the mining project.

2.6 Remarks

In this chapter, a new paradigm for evaluating mineable reserves termed the SLM

paradigm is presented. In this paradigm, the static behaviour of the estimated block

model and the mining sequence considered in conventional paradigms is replaced by

a dynamic behaviour. The continuous adaptability of the mining sequence due to the

acquisition of additional information is characterized as a computational learning

process. The SLM paradigm provides a more realistic framework for evaluating

mineable reserves when compared to conventional paradigms.

As only the existing data is accessible at the time of the evaluation of the mine-

able reserves, the acquisition of future additional information is simulated. Each

realization of the additional information leads to the generation of an equally prob-

able scenario of the mining of the deposit. The simulation of the acquisition of

future additional information helps to account for how the future geology of the

deposit may reveal itself and how it affects the mining sequence.

The majority of the existing mining sequence algorithms are designed to max-

imize the profit of the mining project in the context the conventional paradigms.

However, as the data acquisition strategy is not considered in the design these algo-

rithms, the performance of the resulting mining sequences is not necessarily optimal

in the context of accounting for the negative effect of presence of uncertainty. The

implementation of the existing mining sequence algorithms, in the context of con-

ventional paradigms, results either in an under- or over-estimation of the profit of

the mining project.
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Chapter 3

Evaluation of Infill Drilling

In Chapter 2, it is discussed that the direct implementation of a long-term plan

leads to production variability, with respect to the planned targeted production,

because of the presence of uncertainty in the block model. In practice, medium- and

short-term plans adjust the long-term plan to eliminate the production variability

so the targeted production is achieved. The extent of the adjustments depend on

the magnitude of the production variability. In economic terms, the adjustments

result in an increase in the planned mining costs, which reduces the profit of the

mining project. The continuous acquisition of additional information leads to the

periodic updating of the long-term plan and consequently a progressive reduction

of the production variability.

In the SLM paradigm, the dynamic behaviour of the long-term plan and its

associated production variability are accounted for by simulating the mining of the

deposit and the periodic acquisition of additional information over a set of scenarios

of the mining of the deposit. The SLM paradigm considers two sources of additional

information: 1) blasthole and 2) infill drilling. From the perspective of long-term

planning, although both sources contribute to improving the efficiency of the long-

term plan, only the data collection configuration of infill drilling can be customized

based on different strategies. In the case of blasthole drilling, the configuration of

the samples follows strictly the mined regions. In this chapter, the SLM paradigm is

used as a framework for evaluating the impact of different infill strategy alternatives
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as part of the design process of an infill program. Two metrics are discussed: 1)

reduction of the production variability and 2) impact on the profit of the mining

project.

This chapter is organized as follows. In Section 3.1, the definition of infill pro-

grams used in the SLM framework is described. This definition consists of the infill

objective and the amount of drilling in each period. In Section 3.2, the effect of

infill drilling on reducing of the production variability is discussed. The effect of

production variability is measured period-by-period and globally for each simulated

scenario of the mining of the deposit. In Section 3.3, the impact of infill drilling on

the profit of the mining project is discussed. The contribution to the profit is split

into: 1) contribution to the revenue, and 2) cost of infill program. It is shown that

the contribution to the profit provides a more reasonable metric for evaluating the

effect of infill drilling than the reduction of production variability. In Section 3.4,

aspects of the evaluation of infill strategies based on their contribution to profit are

discussed.

3.1 Definition of Infill Programs in the SLM Paradigm

In practice, the design of an infill campaign is a very difficult process as several as-

pects are involved, including geotechnical, geologic, and operating. The positioning

of the infill drillholes is restricted to available regions within the mining operations.

For example, it is not practical to position drillholes in unstable zones, final walls,

or main road accesses. Metz (1992) discussed that the method to establish a drilling

plan depends on various aspects, including type of deposit, stage of the project, and

implementation costs. Shaddrick (1987) discussed the impact of geologic charac-

teristics, including rock quality, openness, and water content, on the quality of the

drilling samples.

The design of individual infill campaigns can be viewed either as a static or a

dynamic problem. In static problems, the configuration of all the drillholes is set at

the same time, while in dynamic problems, the drillholes are positioned sequentially,
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considering previous sampling results. The design of the infill program is entirely

a dynamic problem, as each infill campaign depends on the previous collection of

information. Bickel and Smith (2006) and Smith and Thompson (2008) proposed

methodologies to design optimal oil exploration campaigns in a dynamic decision

framework. However, because of the large amount of additional information used

in mining and the complexity of the mining process, these methodologies cannot

be easily implemented in mining cases. In dynamic frameworks, the construction

of adequate models that characterize the learning process over time is important

(Bickel and Smith, 2006). The SLM paradigm accounts for the learning aspect of

the mining process, by simulating the adaptability of the mine plan as additional

information is collected.

In the SLM paradigm, individual infill campaigns are specified based on three

aspects: 1) objective, 2) amount, and 3) timing of drilling (see Section 2.3.3). From

the perspective of long-term planning, infill campaigns are not specified individually,

but jointly for the duration of the mining project. In the definition of infill programs,

the three aspects of the infill campaigns are set globally. The timing aspect defines

how the objective and amount aspects vary over time. In this thesis, the drilling

objectives and specifications of amount of drilling of all the infill campaigns are

referred to as infill strategy and configuration of amount of drilling, respectively.

For simplicity, the infill drilling only considers one type of data, otherwise, the

proportions of each type must be specified per period. In Figure 3.1, an example

of two infill programs, A and B, is presented. In the example, the configurations

of amount of drilling of the two infill programs are different, and, although the two

infill programs consider similar objectives: exploration, long-term and medium-term

planning, their infill strategies are also different as the range of periods in which they

are implemented vary as a function of time.

The performance of a particular infill program depends on the mining strategy

considered. For example, an infill program that focus on medium-term planning

performs differently for a mining strategy that considers an uncertainty-based min-

ing sequence algorithm than for a deterministic mining sequence algorithm. The
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Figure 3.1: Sketch of the definition of two infill programs.

former attempts to reduce uncertainty in the next regions and the latter is only

focused on maximizing profit. In the design of an infill program, it is required to

consider aspects of the mining strategy implemented.

The design of an infill program as an optimization problem is complex because of

the objectivity in the definition of the infill strategy. The infill strategy may consists

of several objectives. In practice, the decision of the infill strategy is made with the

participation of different departments, including mine planning, mining operations,

and geology, because of the many different factors involved. The configuration of

amount of drilling is relatively simplier to define compared to the infill strategy. In

the configuration of amount of drilling, it is specified the amount of infill drilling data

that is to be collected in each period, throughout the lifetime of the mining project.

In this chapter, the SLM paradigm is used as a framework to evaluate different

alternatives of specified infill strategies. In each infill strategy, the configuration of
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amount of drilling that maximizes the profit of mining project is explored. In the

following section, the contribution of implementing an infill program is discussed

based on two metrics: 1) reduction of production variability, and 2) increment to

the profit of the mining project.

3.2 Infill Drilling and Production Variability

The implementation of an infill program improves the accuracy of the block model

to characterize the geology deposit, thus, the production variability of the long-term

plan is reduced. In this chapter, the performance of an infill program to reduce the

production variability is quantified in terms of its improvement with respect to a

base case scenario. In the base case scenario, no additional information is collected

throughout the lifetime of the mining project. The effect of reduction of production

variability is discussed at two time scales: 1) period-by-period, and 2) global.

3.2.1 Production Variability: Period-by-Period

The profile of production variability quantifies the effect of uncertainty in each

simulated mining scenario by period. The production variability of the simulated

scenarios is represented by a profile of the mean absolute production error (MAEP).

In Figure 3.2, a sketch of the profiles of MAEP of three infill programs is presented.

The difference of the three profiles of MAEP , with respect to the base case, depends

on how the individual infill campaigns perform. Infill program 1 starts moderate in

the first periods and then it becomes more aggressive. Infill program 2 is moderate

for most of the periods. Infill program 3 is aggressive for most of the periods. In

a preliminary evaluation, the profile of MAEP helps to identify periods in which

more or less infill drilling would be required.

3.2.2 Production Variability: Global

For a global evaluation, the profile of MAEP of a mining scenario is summarized

into a single value, the sum of production gap (SPG). The SPG is calculated as
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Figure 3.2: Sketch of the effect of three infill programs on the reduction of the profile
of production variability.

the sum of the individual mean absolute production error of each period. In Figure

3.3, a schematic representation of the relationship between the SPG and the total

amount of infill data is presented. An example of two infill programs in which a

deposit is mined in six periods is considered for illustration purposes. The SPG

after implementing infill programs fall within a bounded region. The upper bound

corresponds to the contribution of the blasthole source only. This means the infill

drillholes have no effect on the mining sequence. For example, the infill drillholes

are far from the area of influence of the mining sequence, drilled in the last period,

or very close to existing drillholes. This condition is very unlikely and is only

considered to set a reference to quantify the effect of the infill source. For any

specific total amount of infill data, there is range of average SPG values, where the

minimum and maximum values correspond to the most effective and ineffective infill

strategies, respectively. The most ineffective infill strategy has no contribution in

the reduction of the average SPG. In the example, one infill drillhole is collected

per period. In infill strategy A, the six infill drillholes are positioned at the empty

regions near to the middle of the deposit. In infill strategy B, the six infill drillholes

are positioned very close to existing drillholes. In terms of effectively reducing

the SPG, the drilling configuration of infill strategy A is more efficient than infill

strategy B. The lower bound of the SPG region corresponds to the case when the

configuration of amount of drilling, for a given total infill data, is optimal in terms

of reducing geologic uncertainty. There is a limit to what any amount of infill data
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can contribute. This lower bound represents the largest contribution for different

total amounts of infill data based on a specified mining strategy. The minimum

SPG is achieved if the entire deposit is sampled as additional information and is

the MAEP of the first period as it cannot be eliminated. The lower bound as a

function of the total amount of infill drilling has an accelerated decrease that slows

down progresively as more infill information is collected.

Figure 3.3: Sketch of the relationship between the configuration of amount of drilling
and the infill strategy in terms of SPG.

In the case of an infill strategy, the corresponding SPG is a sub-region within the
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global SPG region. The lower bound corresponds to its maximum performance as a

function of the total amount of infill data. As in the case of the global SPG region,

the minimum SPG of the infill campaign is the MAEP of the first period. The rate

at which the lower bound converges towards the minimum SPG is specific for each

infill strategy. However, the comparison of different infill strategies in terms of their

lower bounds is not straighforward, as their convergence rates vary. In many cases,

it is not possible to decide which infill strategy is more efficient without specifying a

range of total amount of infill data. In Figure 3.4, the lower bounds of the average

SPG sub-regions of two infill strategies are compared.

Figure 3.4: Sketch of the comparison of average SPG sub-regions of two infill strate-
gies.

In Figure 3.5, the impact of the configuration of amount of drilling and infill

strategy aspects is illustrated in a two-part example. A synthetic deposit of reso-

lution 15 × 15 cells is considered. In the exercise, the acquisition of one additional

sample in addition to an existing dataset that consists of nine samples is evalu-

ated. The mining of the deposit consists of extracting regular panels of 5 × 5 cells.

The configuration of the existing dataset considers one sample at the center of each
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panel. The panels are extracted sequentially in descending order based on the av-

erage grade of the panels. The evaluation of the data acquisition is carried out

based on one hundred simulated mining scenarios. The first part of the example is

focused on the configuration of amount of drilling aspect (see Figure 3.5-left). In

the two cases considered, the additional sample is collected at the same location,

but in different periods. The sample collected earlier, case 1, has more impact on

reducing the production variability than the sample collected later, case 2. In case

1, the profile of MAEP improves from the second period onwards, while, in case

2, the profile of MAEP improves from the seventh period onwards. The second

part of the example is focused on the infill strategy aspect (see Figure 3.5-right).

In the two cases considered, the additional sample is collected in the first period,

but at different locations. In case 1, the additional sample is positioned in between

two existing samples. In case 2, the additional sample is positioned in between

four existing samples. As the sampling position of case 2 covers a larger unsampled

region than of case 1, the sampling position of case 2 is more efficient in reducing

the production variability. In the example presented, it is shown that for a specific

total amount of infill data there is a wide range of possible scenarios for reducing

the production variability because of the large number of parameters involved in the

design of the infill program.

In this section, it is shown that analyzing the configuration of amount of drilling

as an optimization problem, only aiming to minimize the production variability,

is inadequate. The solution would have to consider implementing an exhaustive

sampling of the entire deposit in the first period. Alternatively, the comparison

of infill strategies based on their efficiency to reduce production variability is also

inadequate, since the problem in this case consists of determining the range of the

total amount of infill data at which the infill strategies are evaluated. Although the

reduction of production variability is important to improve the efficiency of the long-

tern plan, economic aspects are also involved in the evaluation. The total amount of

infill data is associated with a cost, which affects the calculation of the profit of the

mining project. The cost of implementing the infill program prevents the sampling of
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Figure 3.5: Example of effect of the impact of configuration of amount of drilling
(left) and infill strategy (right) on profile of MAEP and average SPG. The units
of MAEP and SPG are units of mass.

the whole deposit as a feasible alternative. The inclusion of economic considerations

in the evaluation of infill strategies provides a more realistic cost-benefit framework

to measure the effects of implementing infill programs.
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3.3 Infill Drilling and Profit of the Mining Project

A proper design of infill drilling programs is important in the evaluation of mineable

reserves, as the cost of implementation is in the order of millions of dollars (Boucher

et al., 2005). The selection of an inappropriate infill drilling program has a nega-

tive impact, as a denser or a more sparse than necessary configurations result in a

reduction of the potential optimal profit margin of the mining project (Metz, 1992).

In this section, the effect of implementing an infill program is measured in terms

of how it affects the profit of the mining project. To quantify the impact of the infill

program, the base case scenario is considered as a reference. Based on Equation 2.3,

the profit of the base case scenario is expressed as:

SNCF (0) = SCF (0)− SCE, (3.1)

where, the Dt parameter is presented as zero to denote that neither blasthole nor in-

fill drilling information is collected. As no infill information is collected, the SCD(0)

term is zero.

The effect of acquiring additional information Dt on the profit of the mining

project is calculated as the difference in profit after collecting additional information

and the base case scenario. It is expressed as:

∆SNCF (Dt) = SNCF (Dt)− SNCF (0) , (3.2)

where, ∆SNCF (Dt) is the incremental profit due to the acquisition of additional

information. ∆SNCF (Dt) is used as the metric of performance. The acquisition of

additional information has two components that contribute positively and negatively

to the profit of the mining project (Boucher et al., 2005). The positive component

is due to the reduction of the costs associated to the production variability. The

negative component is due to the cost of implementing the acquisition of additional
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information. To account for both components, Equation 3.2 is expressed as:

∆SNCF (Dt) = ∆SCF (Dt)− SCD (Dt) , (3.3)

where, ∆SCF (Dt) is the incremental sum of discounted cash-flows, SCF (Dt) −

SCF (0).

The ∆SCF (Dt) term quantifies the total increment in the sum of cash-flows due

to the reduction production variability, that is, the benefits of acquiring additional

information Dt. The infill program is labeled as efficient if ∆SCF (Dt) > SCD(Dt).

In this case, the benefits of implementing the infill program exceed the cost of imple-

mentation. Thus, increasing the profit of the mining project. In case ∆SCF (Dt) <

SCD(Dt), the infill program is labeled as inefficient as its implementation reduces

the profit margin of the mining project.

For a specific total amount of infill data there is range of ∆SCF (Dt) in which

the minimum and maximum values correspond to sub-optimal and optimal infill

strategies, respectively. The variability in the corresponding SCD(Dt) is mainly

due to the discounting of the infill campaign costs in each period. In Figure 3.6, the

∆SCF (Dt) and SCD(Dt) components of ∆SNCF are presented as a function of the

total amount of infill data. The variability of ∆SCF (Dt) is represented as a region in

which the contribution of the infill data is bounded by two curves. The lower bound

corresponds to the contribution of only blasthole data. The upper bound corre-

sponds to the maximum contribution that can be obtained as a function of the total

amount of infill data. The upper bound has an accelerated growth and slows down

as the amount of total infill data increases. The upper bound of ∆SCF (Dt) shares

similar features as the lower bound of SPG(Dt) because ∆SCF (Dt) is directly af-

fected by production variability. The global maximum ∆SCF (Dt) is reached only

if the entire deposit is sampled as additional information, thus, the negative effect

of producion variability only affects the first period. The variability of SCD(Dt)

as a function of the amount of infill data is small compared to the variability of

∆SCF (Dt) that SCD(Dt) is presented as an straight line. The SCD(Dt) line
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marks the limit between efficient and inefficient infill strategies. The infill programs

with ∆SCF (Dt) above the SCD(Dt) line are the only ones that result in a positive

contribution to the profit of the mining project.

Figure 3.6: Sketch of effect of total amount of infill data on the components of the
profit contribution.

The ∆SNCF (Dt) region is calculated based on its components, ∆SCF (Dt) and

SCD, as specified in Equation 3.3. In this case, the efficient and inefficient infill

strategies are delimited by the zero profit threshold (Figure 3.7). The upper bound

of the ∆SNCF region has a concave downward shape because of the different growth

rates of the ∆SCF (Dt) and SCD components.

The exploration of infill strategies in the context of ∆SNCF may be intractable

because of the difficulty of the parameterization of infill strategies. The ∆SNCF

region can be used to be used to assess the economic performance of specified infill

strategies. This information can be later used to decide the infill strategy to im-

plement in the design of the infill program. The performance of a particular infill

strategy is a sub-region within the global ∆SNCF (Dt) region. This sub-region rep-

resents the potential contribution of implementing the infill strategy subject to the
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Figure 3.7: Sketch of effect of total amount of infill data on the profit contribution.

mining strategy considered. In Figure 3.8, the upper bounds of the ∆SNCF regions

of two infill strategies are compared. In the example, the maximum contribution of

infill strategy 2 M2 is larger than infill strategy 1 M1.

The evaluation of infill strategies based on ∆SNCF (Dt) is more reasonable

than considering SPG. For each infill strategy evaluated, the problem is focused

on finding the best configuration of amount of drilling that results in the largest

∆SNCF (Dt). The calculation of the maximum ∆SNCF (Dt) is difficult because

of the dimensionality of the configuration of amount of drilling. To implement

the evaluation, it is necessary to reduce the dimensionality of the configuration of

amount of drilling.

3.4 Simplification of the Configuration of Amount of

Drilling

The number of parameters of the configuration of amount of drilling is the number of

periods in which the infill program is implemented. For each infill strategy evaluated,
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Figure 3.8: Sketch of the comparison of profit contribution sub-regions of two infill
strategies.

exploring the configuration of amount of drilling in such a high dimensional space,

mapping the ∆SNCF (Dt) region, is impractical as it is computationally expensive.

To overcome this problem, the parameterization of the configuration of amount

of drilling is simplified based on two variables: 1) initial, and 2) final number of

drillholes, within a range of periods. The amount of infill data to collect in the

intermediate periods is set by the slope between the initial and final amounts.

In Figure 3.9, an example of the two-dimensional parameterization is presented.

For practicality, in each period, the amount of infill data is expressed in terms of

the number infill drillholes.

The proposed parameterization covers the most representative cases that would

be considered from a practical perspective: 1) gradually increasing, 2) gradually de-

creasing, and 3) constant amount per period. The performance of the infill strategy

is presented in the form of surfaces SCD(Dt), ∆SCF (Dt), and ∆SNCF (Dt). In

Figure 3.10, a schematic representation of these surfaces is presented.

For practicality, the mapping of the the ∆SNCF (Dt) surface can be initialized
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Figure 3.9: Sketch of the parameterization of the configuration of amount of drilling.
The configuration of amount of drilling is defined based on an initial and final number
of drillholes for a range of periods.

with a coarse grid to outline the limits of the efficient region. Then, subsequently

make the sampling configuration finer to search for the region with the largest

contribution. The region surrounding the largest contribution is taken as a reference

to explore more custom scenarios of the configuration of amount of drilling. For

example, drilling lengths can be tuned to improve the profit contribution.

3.5 Remarks

The SLM paradigm is used to evaluate the economic impact of infill drilling on the

profit of the mining project. The evaluation of infill drilling is more realistic in

the context of the SLM paradigm than in conventional paradigms as the dynamic

interaction between the mining and data acquisition strategies are accounted for.

In this chapter, the mining strategy is considered fixed. The infill program may not

necessarily perform efficiently with different mining strategies.
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Figure 3.10: Sketch of the surfaces of economic metrics of an infill strategy.

In practice, infill campaigns may consists of different types of drillholes, where

each of them have particular sampling errors and drilling costs associated. For

example, diamond core drilling has less sampling error than air-reverse drilling, but

it is more expensive. The implementation of less expensive type of drilling permits

to cover larger unsampled regions at the cost of reducing the quality of the samples.

This decision may be adequate for certain types of deposits depending on the mining

strategy considered. Although the framework presented in this chapter considers one

type of infill drilling, the evaluation of infill strategies can be extended to account

for different types of infill data. However, the implementation of the SLM paradigm

grows in complexity. In this case, the proportions of each type of infill drilling are

specified as part of the definition of the infill strategy.
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In this chapter, an important part of the design of the infill program consists

of evaluating a set of specified infill strategies. These infill strategies account for

operating aspects of the mining of the deposit. For each infill strategy, the most

efficient configuration of amount of drilling, that aims to maximize the profit of

the mining project, is explored. The infill strategy that yields the largest profit

contribution is proposed for implementation. It is not the goal of this chapter

to aid in the design the optimal infill program that maximizes the profit of the

mining project. The optimization of the infill program is challenging because of the

difficulty in the parameterization of the infill strategy. A simplified definition of the

infill strategy may result in an infill program that cannot be implemented because

of operating restrictions.
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Chapter 4

Clustering of Simulated Mining

Sequences

In the SLM paradigm, a set of calculated mining sequences that are subject to

specified mining and data acquisition strategies are generated. These calculated

mining sequences cannot be used in operating design because they present a large

number of mining alternatives to evaluate. In practice, the design of the operating

mining sequence could only consider a few mining alternatives. Planning on one

model is common, but it does not account for the variability in the evolution of the

mining of the deposit due to geologic uncertainty.

In this chapter, the simulated mining sequences are summarized in the form of

a decision network from which a reduced set of representative mining sequences can

be identified. The representative mining sequences correspond to the branches of

the decision network that are more likely to occur. These few representative mining

sequences can be evaluated to design the operating mining sequence. The construc-

tion of the decision network of the mining sequences relies on the implementation

of adapted hierarchical clustering techniques.

This chapter is organized as follows. In Section 4.1, the decision network of

the mining sequences is described. The branches of the decision network represent

schematic alternative directions that mining of the deposit could take. The nodes
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of the decision network are calculated by clustering the mining regions of the simu-

lated mining sequences. The connections between nodes are calculated in terms of

the frequency of associations between simulated mining regions in consecutive peri-

ods. In Section 4.2, aspects of clustering the mining regions of the simulated mining

sequences are discussed. The clustering of mining regions is not straightforward

because mining regions cannot be easily represented as point-like information. The

main challenge of clustering mining regions is to find an appropriate metric of com-

parison. In Section 4.3, the process of identifying representative mining sequences

from the decision network is described. The representative mining sequences are

identified from the branches of the decision network that are more likely to occur.

In Section 4.4, the simulated mining sequences are analyzed at a larger time scale

to identify large scale mining paths. The mining sequences at larger time scales are

specified by grouping consecutive periods so that the mining of the deposit only has

a few stages. The large scale mining paths provide supplementary information of

the representative mining sequences that can be used in the operating design of the

mining sequence.

4.1 Framework to Condense SLM Mining Information

In this section, a framework to summarize the calculated mining sequences of the

SLM paradigm is proposed. In Figure 4.1, an example of two 2D mining sequences

is presented. Each mining sequence is considered as a set of consecutive decisions to

mine a deposit. The decisions to mine Period 1 and Periods 4 to 6 are similar, while

there are two equally probable paths to mine Periods 2 and 3. This information

can be better presented in the form of a decision network. In operation research,

decision networks are extensions of bayesian networks (Koller and Milch, 2003) that

are graphical representations of uncertain decisions in the form of a directed graph

network (Shachter, 1986). The nodes represent alternatives of decisions and the

connections between nodes represent probabilistic dependences. Decision networks

are useful as they are compact representations of complex data and are intuitive
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(Shachter, 1986; Detwarasiti and Shachter, 2005).

Figure 4.1: Example of a decision network representation of two mining sequences.
A: Cross section of two mining sequences. B: Representation of mining sequences
as individual sequence of decisions. C: Representation of the two mining sequences
as a decision network.

In cases where the mining sequences are compared directly, the dissimilarity

would be expressed as a single value, thus possibly hiding similar features within

certain periods. The representation of the calculated mining sequences in the form

of a decision network provides a picture of how the mining sequences are related

on a period basis. In the proposed framework, the set of mining sequences are

condensed in the form of a decision network, where the nodes represent potential

regions that can be mined in each period, and the connections are order associations

between mining regions (see Figure 4.2). In this representation, the mining of the

deposit moves throughout the network, starting from the first to the last period,

choosing between different mining region alternatives that are available in each

period. Each branch of the decision network has an associated mining sequence.
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The representative mining sequences are identified from the branches that are more

likely to occur. As in the SLM paradigm the decision to mine the first period

consists of only one alternative, there is only one node at the beginning of the

decision network.

Figure 4.2: Sketch of a decision network representation of the first seven periods of
simulated mining sequences. The size of the circles represents the occurrence of the
mining regions. The bold connected branches represent the branches that are more
likely to occur.

The nodes of the decision network consist of clusters of similar simulated mining

regions. Each cluster has an associated representative mining region. Cluster analy-

sis is often used to classify datasets into meaningful groups by capturing similarities

present in the data (Duda et al., 2001; Tan et al., 2006). In this chapter, cluster-

ing analysis is implemented to classify the whole set of simulated mining regions in

each period into a reduced set of paths or trajectories. The connections between

nodes of the decision network are calculated as the frequency of associations between

simulated mining regions in consecutive periods.

The main characteristic of the decision network is that it needs to be simple, i.e.,

having a small number of nodes in each period. The presence of a large number of
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nodes increases the number of potential combinations of the associations in the de-

cision network. In this case, the purpose of summarizing the set of simulated mining

sequences is lost because the evaluation of the representative mining sequences tends

to be similar to evaluating the whole set of simulated mining sequences. The com-

plexity of the decision network depends on the degree of variability of the simulated

mining sequences.

The variability of the simulated mining sequences depends on two aspects: ge-

ologic uncertainty and mine planning parameters. These two aspects cannot be

controlled at the time of the construction of the decision network. The uncertainty

of the deposit depends on the existing dataset. The mine planning parameters

are specified as part of the design of the long-term mine plan. In the presence of

high geologic uncertainty, the scenarios of the evolution of the block model are very

different from each other, thus, the simulated mining sequences likely take very dif-

ferent paths. In presence of little geologic uncertainty, the block models are similar,

thus, the simulated mining sequences tend to follow similar mining paths. As more

real information is added to the dataset, the geologic uncertainty of the deposit

is reduced and the simulated mining sequences converge towards a unique mining

sequence. The mining strategy affects the variability of the mining sequences be-

cause it defines the geometric characteristics of the mining regions, including shape,

fragmentation, and position. For example, the simulated mining sequences are less

variable if mining conditions do not permit sub-regions or force that consecutive

mining regions are closer to each other.

4.2 Clustering of Mining Regions

The nodes of the decision network are identified by clustering the mining regions

of the simulated mining sequences, in each period. Among the different cluster-

ing techniques, hierarchical clustering is implemented mainly because the number

of clusters is not an input parameter. The clusters are identified by providing a

clustering threshold value that limits the maximum dissimilarity that is allowed
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between data elements in a cluster. In the literature, hierarchical techniques are

divided into agglomerative or divisive. In the agglomerative techniques, each data

element is considered to be one cluster, and data elements are merged until one

cluster is formed. In the divisive techniques, all elements start in one cluster, which

is divided until each data element is in its own cluster (Kaufman and Rousseeuw,

2005). The use of agglomerative clustering is discussed.

In the case of clustering point information datasets, each cluster can be rep-

resented by a data point elements. In each cluster, the representative data point

element of continuos attributes can be calculated by averaging the point data el-

ement in the cluster (Tan et al., 2006). This representative point data element

is referred to as cluster prototype. However, as the mining regions are not point

data, they cannot be averaged directly to calculate the prototype. The proposed ap-

proach to calculate the mining region prototypes consists of calculating their upper

and lower surfaces. The upper surface is the average of all the initial surfaces of the

clustered mining regions. The lower surface is the average of all the final surfaces

of the clustered mining regions. The blocks between the upper and lower surfaces

are considered as the mining region prototype. The prototypes are later refined by

removing very small sub-regions based on a minimum volume threshold.

4.2.1 Example of Hierarchical Clustering

An example of agglomerative hierarchical clustering is presented in Figure 4.3. The

dataset consists of point data elements of two attributes. The relationships between

the data elements are presented in the form of a dendrogram that is a tree-like plot

that presents how the data elements are related to each other (Fielding, 2007). The

dataset is classified into three clusters based on a clustering threshold of 0.30. The

clustering threshold produces an outlier near Cluster 1, which is a data element

that is not considered in any of the three clusters. The definition of the number of

clusters is subjective. Milligan and Cooper (1985) reviewed over thirty techniques for

defining the number of clusters and concluded that the performance of any criteria

depends on the nature of the dataset. A small clustering threshold results in a small
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dispersion of the data elements within the clusters, and a large clustering threshold

increases this dispersion, thus, making the clusters more generic.

Figure 4.3: Example of agglomerative hierarchical clustering. A: Data elements
of the example dataset. B: Classification of the data elements in three clusters.
Each cluster is represented by a data element called prototype. The size of the
prototypes is exaggerated to indicate the number of data elements in each cluster.
C: Agglomerative dendrogram of the data elements and clustering at 0.30 threshold.

The definition of clusters depends on the way data elements are compared. In the

previous example, the metric of comparison used is the Euclidean distance between

data points. Fielding (2007) discussed several other measures of distance, including

Chebychev, City Block, and Mahalanobis, that are also considered in most statistical

packages. These distances measure how different two data elements are. However,
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as the clusters start to form, the comparison between clusters is not straightforward

because clusters comprise more than one data element. Three typical approaches to

compare clusters are: 1) MIN, 2) MAX, and 3) group average. These approaches

are also referred to as graph-based definitions of cluster proximity (Tan et al., 2006).

In each of these types of comparison, the distance between clusters is calculated in

terms of the pairwise comparison of their individual data elements. MIN considers

the two most similar data elements of the two clusters. MAX considers the two most

different data elements of the two clusters. The group average comparison considers

the averaged distance between all the data elements of the two clusters. The group

average comparison is preferred as the average of the distances does not introduce

bias in the comparison.

4.2.2 Importance of Metric of Comparison for Mining Regions

The majority of the clustering techniques require that the data elements are mul-

tidimensional points in the Euclidean space (Halkidi and Vazirgiannis, 2008). The

majority of comparison metrics are designed for this type of data. However, as the

mining regions are non-point data elements, but volumetric objects, the conven-

tional comparison metrics cannot be implemented directly. Thus, it is necessary to

find a metric of comparison that accounts for the geometric festures of the mining

regions. The geometry of the mining regions in each period is quite variable, as it

may consist of one region or a set of sub-regions (see Figure 4.4). The complexity

in the geometry of the mined regions depends on the constraints of the mine se-

quencing algorithm implemented. For example, aspects of the mining regions that

are parameterized are: maximum fragmentation of the mining region, maximum

number of benches that can be mined, and minimum mining width.

The classification of volumetric datasets is carried out in applications such as

medical imaging, molecular biology, and metereology, where the comparison ac-

counts for the geometric shape of the objects (Ankerst et al., 1999). In these appli-

cations, the comparison is focused on finding similarities between data elements, for

which aspects including translation, rotation, and local detail of shapes, are consid-
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Figure 4.4: Two mining regions, A and B, with different geometric configuration
in the same period. The current topography is presented in gray and the mining
regions in red. The mining region A consists of two sub-regions. The mining region
B consists of one region.

ered as sampling errors that are to be corrected (Ankerst et al., 1999). However, in

the case of clustering mining regions, it is not only important to consider aspects

related to shape but also to position. Thus, these techniques cannot be directly

implemented.

In clustering analysis, the metrics of comparison considered have to satisfy spe-

cific conditions. In the case of a metric of dissimilarity, four conditions have to be

met to make the metric licit: 1) the metric is nonnegative, 2) the magnitude of the

metric is independent of direction, 3) the metric is zero when two elements are iden-

tical, and 4) when comparing three element objects, the magnitude of the metrics

should behave as the sides of a triangle. For practicality, semi-metrics can be used

instead of full metrics (Fielding, 2007; Goshtasby, 2012). Semi-metrics satisfy only

the first three conditions. In the case of the mining regions, the fourth condition is

difficult to meet. A large part of the research on hierarchical clustering is focused

on the derivation of the metrics of comparison, as they have a large impact on the

clustering performance (Castro et al., 2004).
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4.2.3 Region Distance

In this section, a semi-metric of dissimilarity called region distance is presented. This

semi-metric is calculated in terms of the average distance between the discretized

points of one mining region to the other mining region. The region distance is a

semi-metric of dissimilarity that is the distance from each region to the other. As

part of the calculation, the mining regions are discretized based on their respective

blocks. In each part, the distance from one region to the other region is calculated

as the average of the minimum distances from the discretized locations of the initial

region to the other region. The region distance, dr, is then calculated as the average

of the distances between the two regions. This semi-metric is expressed as:

dr (Va, Vb) =
dab + dba
na + nb

, (4.1)

where,

dab =

na∑
i=1

min
v∈Vb

‖ui − v‖ , ∀ u ∈ Va,

dba =

nb∑
j=1

min
u∈Va

‖vj − u‖ , ∀ v ∈ Vb,

Va and Vb are the two mining regions compared, u and v are the locations of dis-

cretized points within Va and Vb, respectively, and na and nb are the number of

discretized locations in Va and Vb, respectively.

The region distance allows accounting for the difference in the shape and po-

sition of two mining regions. When the mining regions overlap but their shapes

are different, the region distance is greater than zero as the discretized distances

from the non-overlapped discretized locations add up. The region distance is zero

when the two mining regions completely overlap and have identical shapes. How-

ever, when any of the two mining regions consist of small sub-regions, the region

distance may tend to underestimate the dissimilarity. In Figure 4.5, an example of

the effect of fragmentation in the region distance is illustrated. The region distance
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is used to calculate the dissimilarity of two cases: without sub-regions and with sub-

regions. In the case with sub-regions, the small sub-regions are positioned within

the perimeter of the other mining region. This particular configuration of the small

sub-regions means that the discretized distances are calculated within the perimeter

of each large sub-region, thus, underestimating the dissimilarity. The measure of

dissimilarity in the fragmented case with small sub-region drops 75% with respect

to the non-fragmented case. In practice, it is expected that mining regions are

moderately fragmented.

Figure 4.5: Comparison of the performance of the region distance semi-metric dr in
non-fragmented (top) and fragmented (bottom) cases. The two regions to compare
are coloured as gray and black.

A comparison between the region distance dr and an expression based on the

average of discretized distances between the two mining regions d0 is presented

in Figure 4.6. In the comparison, four configuration cases for two types of re-

gions, non-fragmented and fragmented, are considered. Both the regiond distance

dr and expression d0 account for the magnitude of separation between the two re-
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gions. However, the expression d0 fails to account for the case when both regions

overlap perfectly because the dissimilarity is greater than zero. This aspect inval-

idates the requirements of licit semi-metrics and has negative consequences during

the clustering of regions because the dissimilarity between elements is exagerated.

The clustering of regions with expression d0 would unnecessarily require a larger

threshold than if the region distance dr is used. Despite potential shortcomings of

semi-metric dr when comparing fragmented cases, it performs reasonably well when

the fragmentation of the regions is moderate.

4.2.4 Selection of Clustering Threshold

Along with the clustering threshold, another parameter to define clusters of mining

regions is the minimum number of data elements in each cluster. This parameter is

used to separate outliers from clusters. The clusters with fewer number of mining

regions than this parameter are set as outliers. A value of 10% of the total number

of mining sequences generated seems reasonable. In the construction of the decision

network, the outliers are not considered as nodes.

The clustering threshold is inversely proportional to the number of nodes identi-

fied. The simplification of the decision network, by increasing the clustering thresh-

old, tends to reduce the performance to capture the occurrence of representative

mining sequences because the comparison becomes more generic. In Figure 4.7, an

example of clustering non-fragmented regions is presented. A clustering threshold of

200 yields three clusters. If the clustering threshold is reduced to 100, the compari-

son between regions is more strict and Cluster 1 is split into two clusters. Similarly,

increasing the clustering threshold to 400 results in a more generic comparison, in

which Clusters 1 and 2 are merged.

In the case of clustering of mining regions, the clustering threshold is specified

as a function of the maximum clustering error allowed. In K-Means clustering of

continuous variables, the clustering error of a point data element is the distance to

its prototype (Tan et al., 2006). In this context, the clustering threshold forms a

circular perimeter around the prototype. Thus, the maximum separation distance
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Figure 4.6: Four cases of configurations of two types of regions, non-fragmented
(top-left) and fragmented (top-right). Comparison of region distance dr and average
discretized distance d0 (bottom) for the four cases presented.

between cluster elements is twice the clustering threshold, that is, the diameter of the

circular perimeter around the prototype (see Figure 4.8). The clustering threshold

is specified in terms of the maximum separation distance between cluster elements.

The maximum clustering error of a mining region with respect to its prototype

is half of the average spacing of the existing drilling campaign. As the maximum

separation between mining regions in a cluster is twice the maximum clustering
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Figure 4.7: Example of clustering of non-fragmented regions. Configuration of 2D
regions forming three clusters (top). Dendrogram of 2D regions considering the
region distance to measure dissimilarity and clustering threshold of 200 (bottom).

error, the clustering threshold is set as the average drilling spacing. Wilde (2010)

discussed the calculation of drilling spacing for two- and three-dimensional regions.

To be able to use the clustering threshold in the dendrogram, it is necessary to cal-

culate the equivalence of the average drilling spacing in terms of the region distance

semi-metric. The clustering threshold is calculated by selecting a set of mining re-

gions from the simulated mining sequences. Then, each mining region is duplicated

and separated, with respect to their centers of mass, a distance equal to the aver-

age drilling spacing. The clustering threshold is calculated as the average region

distance of the selected mining regions and their duplicates. The calculated value

represents the maximum clustering threshold that can be used in the dendrograms.

76



Figure 4.8: Example of implementation of a cluster threshold for a 2D dataset. A set
of fifty point elements and their corresponding prototype are presented. The cluster
error of the 13th data element is indicated. The clustering threshold is specified as
a maximum cluster error allowed of 1.5. The maximum cluster error is the radius
of the cluster threshold perimeter.

The practical clustering threshold that is finally used is calculated after inspecting

and tuning the maximum clustering threshold in all the dendrograms.

The reduction of the clustering threshold is beneficial as it reduces the clustering

error in the clusters identified. The adjusted clustering thresholds in each dendro-

gram are expected to be similar to try to maintain a constant average clustering

error in all the nodes of the decision network. This aspect will aid in the construction

of the mining sequences of the branches because all the mining region prototypes

are similarly representative of the mining regions in the clusters. However, adjusting

the clustering thresholds should not significantly increase the number of clusters or

the number of outliers in each period.

4.3 Selection of Representative Mining Sequences

The representative mining sequences correspond to the branch with the greatest

occurrence. The number of representative mining sequences to be identified from
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the decision network depends on the number of alternatives that can be evaluated

during the operating design of the mining project. Considering the different aspects

involved in the operating design of the mining project, including design of mining

operations, deployment of electrical infrastructure, and construction of transporta-

tion routes, it is considered that a range of three to five of the most representative

mining sequences is a practical number of mining alternatives to be evaluated.

The occurrence of a branch is calculated by adding up the occurrences of the

connections between nodes along the branch. The main branch is identified as the

branch with the largest occurrence. The derived branches are identified by ruling

out specific connections of the main branch. The derived branches correspond to

the branches that are most likely to occur under the consideration that the removed

connections do not exist. The representative mining sequences are not identified

based on the ranking of branches in terms of occurrences because the difference

between two representative mining sequences could be small and irrelevant. For

example, two mining sequences that are different only in the last period are not

significantly different.

As the decision metwork is a directed graph, the major mining patterns can be

identified by implementing the Dijkstra algorithm (Dijkstra, 1959) to find the branch

with the largest cummulative occurrence between the nodes. The Dijkstra algorithm

is typically implemented on directed graph-networks to solve the problem of finding

the shortest path between nodes. In the case of the decision network, the occurrences

of the node connections are multiplied by -1 and considered as the distance betwen

nodes. In this context, the main branch is identified by direct implemention of the

Dijkstra algorithm on the decision network. The derived branches are identified by

switching on and off specific node connections of the main branch and implementing

the Dijkstra algorithm in the modified decision network. The mining sequence of

a branch is built by putting together the mining region prototypes of their nodes.

In Figure 4.9, a sketch of two representative branches and their respective mining

sequences is illustrated. The mining sequences of the branches share the same

periodic production and net cash-flow estimates that were calculated in the SLM
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paradigm. This is because the mining sequences were calculated under the same

mining conditions.

Figure 4.9: Sketch of two representative branches and corresponding mining se-
quences. Decision network of simulated mining sequences and two representative
branches (top). The mining sequences of each branch are calculated from the pro-
totypes of the corresponding nodes (bottom).

4.4 Identifying Large Scale Mining Paths

A complex decision network can be simplified by merging consecutive periods. For

example, in Figure 4.1, if the second and third periods are merged, the two mining

sequences become identical. As periods are merged, the number of branches tend

to decrease and their corresponding mining sequences consists of fewer steps. The

merging of consecutive periods comes at the cost of making the decision network

more generic, thus, the identified mining sequences may not have the level of detail

necessary to be used in the operating design of the mining sequence. In this section,

generic mining sequences that consists of four to six merged periods are referred to
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as large scale mining paths and can be used as supplementary information in the

operating design of the mining sequence.

As the mining region of the first period is identical for all the simulated mining

sequences, the merging of periods is carried out from the second period onwards.

The new resulting decision network is much simplier. In Figure 4.10, a sketch of

the decision network of simulated mining sequences with merged periods and two

large scale mining paths are presented. The two large scale mining paths represent

different mining directions that the set of simulated mining sequences could take.

The large scale mining path 1 mines the deposit vertically. The large scale mining

path 2 mines the deposit horizontally.

Figure 4.10: Sketch of two large scale mining paths. Decision-network of simulated
mining sequences with merged periods (top). The two large scale mining paths
present different mining directions (bottom).
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4.5 Remarks

In the operating design of the mining sequence, only a few mining alternatives can

be evaluated. In practice, the operating design of the mining sequence is obtained

by implementing either Paradigms 1 or 2 as only one mining sequence is calculated.

Paradigm 3 is not implemented for this purpose because of the difficulty of having

to evaluate a large set of simulated mining sequences. The SLM paradigm also

generates multiple mining sequences. In this chapter, a methodology to condense the

simulated mining sequences of the SLM paradigm is presented, so this information

can be used in the operating design of the mining sequence.

The set of simulated mining sequences are summarized in the form of a decision

network. A few representative mining sequences are indentified from the branches

that are more likely to occur. The few representative mining sequences are suitable

to be used in the operating design of the mining sequence. The construction of the

decision network relies on the implementation of hierarchical clustering techniques

on the set of simulated mining sequences to calculate the decision nodes. As con-

ventional metrics of comparison only deal with point-like elements, a semi-metric of

dissimilarity called region distance is presented. The connections of the nodes are

calculated in terms of the frequency of associations between mining regions in con-

secutive periods. The decision network is expected to be simple in the sense that it

effectively condenses the information from the simulated mining sequences so a few

representative mining sequences can be identified. If the variability in the simulated

mining sequences is too high, it may not be possible to build a simpler decision

network. The proposed methodology aims to find a small number of representative

mining sequences only if they exist.

The decision network can be also used as a reference to design cost-effective infill

drilling programs. An infill drilling program can be planned to confirm or invalidate

the occurrence of a specific branch or branches. In this context, the infill drilling

program does not aim to reduce geologic uncertainty in the deposit, but to reduce

variability in the simulated mining sequences.
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Chapter 5

Example of Implementation of

the SLM Methodology

In this chapter, implementation aspects of the SLM paradigm, presented in Chapter

2, are described. For illustration purposes, an exercise that consists of calculating

the mineable reserve of a synthetic deposit is discussed. The exercise is designed

to focus only on the effects of the specified mining and data acquisition strategies.

The mining project is in the feasibility stage and the existing information from the

deposit consists of an exploratory drilling campaign. The mining strategy considers

the operating aspects to mine the deposit. The data acquisition strategy aims

to reduce uncertainty on a medium-term range. The pros and cons of the SLM

paradigm are examined in the context of a comparison of how the mineable reserve

is reported against conventional paradigms.

This chapter is organized as follows. In Section 5.1, aspects of the exercise

to calculate the mineable reserve are detailed. The characteristics of the deposit,

existing drilling campaign, mining parameters and data acquisition specifications

are described. In Section 5.2, the implementation details of the SLM paradigm are

discussed. This section consists of two parts: 1) description of the generation of a

mining scenario, and 2) reporting of the mineable reserve. In Section 5.3, the SLM

and conventional paradigms are compared in terms of the mineable reserve. In the
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comparison, three aspects of the mineable reserve are considered: 1) ore tonnage,

2) metal tonnage, and 3) profit.

5.1 Description of the Exercise

The exercise consists of evaluating the mineable reserves of a deposit in the feasibility

stage of a project. The dimensions of the deposit are 400m × 240m × 160m in x, y,

and z, respectively. An initial topographic surface is used to represent the original

state of the deposit before the mining. The existing information collected from

the deposit consists of an exploratory drilling campaign of twenty-eight vertical

drillholes in a regular drilling pattern of 50m × 50m. The elevation of the collar

of the drillholes depends on the initial topography. The drillholes are drilled down

to the vertical limit of the deposit (Figure 5.1). The resolution of the block model

is 100 × 60 × 40 blocks in x, y, and z, respectively, with a block size of 4m × 4m

× 4m. A constant block tonnage of 1MT per block is assumed constant for the

deposit. In case a block is intersected by the initial topographic surface, the block

tonnage is calculated based on the proportion of the block below the surface.

Figure 5.1: Existing exploratory campaign (black dots) and initial topography (sur-
face).

The exploratory drilling campaign is sampled from an unconditional realization
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of the deposit. The attribute simulated is metal grade in percentage units. The

metal content is the only attribute to calculate the mining sequence. A constant

value of 4.5% is added to the unconditional realization to make all the values positive.

Thus, the global distribution of the simulated attribute is normal with mean 4.5%

and standard deviation 1.0%. This distribution is considered to eliminate the effect

of outliers in the construction of the estimated block model. The variogram model

used to generate the unconditional realization is a spherical model with an isotropic

range of 80m.

Two destinations of mined material are considered: 1) ore blocks are sent to the

processing plant and 2) waste blocks are sent to the waste dump. The destination of

each block is calculated based on a cut-off grade of 4.5%. The plant capacity in each

period is 2500MT of ore material. The total project expenses without considering

the cost of the infill program is 100000 USD. This amount is spent at the beginning

of the mining project. The budget dedicated to implement the infill program is

20000 USD. This amount is spent during the first twelve periods of the lifetime of

the mining project. The total project expense is 120000 USD.

The mnining sequence algorithm searches regions in the deposit that satisfy the

plant requirements without considering the use of stockpiles. A customized GsLib

program described in Appendix A is used in the implementation. The geometric

configuration of the mining regions is constrained to have at most two sub-regions.

There is no restriction regarding the position of the sub-regions. The mining slope

of the mining regions is set to 45◦. There are no restrictions regarding the tonnage of

mined waste material. In each period, the algorithm selects sequentially the mining

regions that yield the maximum cash-flow. The algorithm keeps searching for mining

regions as long as the minimum planned ore production is above 1000MT and the

profit of the mining regions is positive. The revenue of a mining region is calculated

by adding up the economic values of the blocks, based on simulated attributes,

within the mining limits. The cash-flow is calculated as a function of revenue and

corresponding production variability. The economic value of each block Bv in USD
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units is calculated as:

Bvi =


(mp × zi × 22.046− core)× Tpi ; if zi ≥ 4.5%

−cwaste × Tpi ; if zi < 4.5%

,

where, mp is the metal price in USD/pound units, z is the block grade in percentage

units, core and cwaste are cost of mining ore and wate material in USD/MT units,

respectively, and Tp is the block tonnage in MT units, based on the proportion

of the block below the current topographic surface. The letter i denotes the in-

dex of the block. The metal price considered is 1USD/pound. The value 22.046

pound/MT represents the conversion from pounds to MT divided by 100 to convert

metal grade percentage to proportion. The cost of mining ore and waste material

is 48USD/MT and 45USD/MT, respectively. To account for production variability

in the calculation of the cash-flow, the penalty for over-production is 500USD per

1MT of produced metal. In the case of under-production, it is considered that the

penalty is the lost portion of the cash-flow due to not reaching the production target.

For illustration purposes, no discount rate is considered. A summary of the mining

specifications is presented in Table 5.1.

The budget of the infill program is distributed from Period 1 to 12 to implement

the following configuration of amount of drilling: eight drillholes from Period 1 to 5,

six drillholes from Period 6 to 9, and three drillholes from Period 10 to 12. In each

period, the infill campaign aims to reduce uncertainty in the medium term range by

targeting the most unsampled regions within an area of influence of the following

mining region. Along with the infill drilling campaign, blasthole drilling data is also

considered.

5.2 Implementation of SLM Paradigm

This section describes implementation aspects of the SLM framework and how mul-

tiple mining scenarios are generated. Each mining scenario is a realization of how the

deposit might be mined based on the specified mining and data acquisition strate-
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Specification Description

Project extent 400m × 240m × 160m in x, y, and z directions.

Block model resolution 100 × 60 × 40 blocks in x, y, and z directions.

Block size 4m × 4m × 4m in x, y, and z directions.

Block tonnage 1MT.

Cut-off grade 4.5%.

Plant capacity 2500MT.

Waste dump capacity infinite

Total project expenses
w/o infill drilling

100000 USD.

Infill program budget 20000 USD.

Mining slope 45◦

Metal price 1USD/pound

Cost of mining ore 48USD/MT

Cost of mining waste 45USD/MT

Penalty for
overproduction

500USD/MT

Table 5.1: Exercise specifications.

gies. The mineable reserve is calculated based on one hundred mining scenarios.

5.2.1 Simulation of Mining Scenarios

Each mining escenario is constructed sequentially based on the simulation of the

mining activities that occur in each period. These activities take place at the begin-

ning, during, and at the end of each period. For illustration purposes, the generation

of one mining scenario is described.

In the first period, the conditioning information available to build the estimated

block model consists of only the existing exploratory campaign. The estimated block

model is built by implementing simple kriging, using GsLib KT3D (Deutsch and

Journel, 1998). The stationary mean considered is 4.5%. In Figure 5.2, the existing

exploratory campaign and the starting estimated block model are presented.

The mining sequence is calculated based on the current estimated block model

and specified mining conditions. This mining sequence is also the mining sequence

of Paradigms 1 and 2. According to the current mining sequence, the lifespan of the

mining project is thirteen periods. The mining region of the next period is targeted
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Figure 5.2: Estimated block model, conditioned to the existing exploratory cam-
paign, used to plan the first period. A and C: Vertical east-west (north 144m) and
south-north (east 200m) cross sections of the estimated block model and drilling
information. B: Conditioning information of the estimated block model. D: Topo-
graphic surface at the beginning of the first period and references of the vertical
cross sections A (red line) and C (blue line).

for extraction. From this region, the planned ore material to produce is 2486MT

of with an average grade of 5.44%. The estimated metal production and cash-flow

are 135.27MT and 175434USD, respectively. In Figure 5.3, the calculated mining

sequence and the region targeted for extraction in the first period are presented.

After identifying the region to mine, the mining of the deposit and the acqui-

sition of additional information are simulated. In practice, the targeted region for

extraction is mined by continuously adapting the mine plan to reach the estimated

production target. The region mined ends up being different from the targeted re-

gion. The degree at which the mine plan is adapted depends on the precision of the

estimated block model within the limits of the targeted region. The adaptation of

the mine plan comes at an extra cost, which reduces the cash-flow of the current

period. For simplicity, it is assumed that the targeted region is strictly mined. Thus,

the estimated production is not reached. The extra costs due to adapting the mine
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Figure 5.3: Calculated mining sequence based on existing exploratory campaign. A
and C: Vertical east-west (north 144m) and south-north (east 200m) cross sections
of the calculated mining sequences. B: Current ultimate-pit in the first period. D:
Region to be mined in the first period (red region) and references of the vertical
cross sections A (red line) and C (blue line).

plan are assessed based on the production gap.

The mining of the deposit is simulated by calculating the updated topographic

surface. Each mining region has two associated topographies: 1) initial and 2) final.

The initial topography is the topographic surface at the beginning of the period.

The final topography, at the end of the period, is the updated initial topography

after considering the mining region is already extracted.

The executed production is calculated based on a realization of the deposit

within the limits of the targeted region. In this period, the realization is generated

conditioned to the existing exploratory campaign, using GsLib SGSIM (Deutsch and

Journel, 1998). The simulated ore material produced is 2422MT with an average

grade of 5.78%. The corresponding simulated metal production and revenue are

140.22MT and 186537USD, respectively. As there is a metal production surplus of

4.96MT, the cash-flow of the first period is calculated by penalizing the revenue as a

function of the excess in metal production. The corresponding penalty is 2478USD
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and the cash-flow is 184059USD.

The additional information is collected in the form of blasthole and infill drilling.

In the case of blasthole drilling, for simplicity, four data points are sampled randomly

from the assumed-true realization within the mining region limits. In this exercise,

this amount of sampled data points has been tuned to have a moderate impact on the

increment of the profit of the mining project that resembles blasthole drilling data.

Alternative and more complex approaches to simulate blasthole data are listed in

Section 2.3.3. The implementation of these approaches requires having access to the

blasthole sampling error. The implementation of these approaches would require

the use of estimation and simulation techniques that are able to integrate data

from different sources. In the case of infill drilling, the configuration of the infill

campaign is calculated sequentially, one infill drillhole at a time. The position of

each drillhole is calculated by identifying the areas with least drilling coverage. The

drilling coverage is expressed as:

dc (u) = col (u)× seq (u)× cnt (u)

where, dc is the drilling coverage, col is the standardized minimum distance to the

closest drillhole collar, seq is one minus the standardized minimum distance to mined

region, cnt is one minus the standardized distance to the center of the deposit, and

u denotes the position in terms of x and y coordinates. The col term accounts for

the existing drillholes. The seq term makes sure the next drillhole is located near

the mined region. The cnt term tries to avoid positioning the next drillhole near

the edge of the deposit. The position of the next drillhole, uddh, is the location

at which the drilling coverage dc is the maximum. The elevation of the drillhole

collar is the elevation of the initial topographic surface at location uddh. The data

values of the new drillhole are sampled from the assumed-true realization. The

newly sampled drillhole is added to the exploratory drilling campaign. In the next

iteration, the calculation of the position of the second new drillhole considers the

existing exploratory drilling campaign along with the first new drillhole. In Figure
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5.4, the calculation of the positions the first two new infill drillholes and the entire

infill campaign of the first period are presented.

In the second period, the conditioning information available to build the block

model consists of the existing exploratory campaign and the simulated additional

information in the previous period. The estimated block model is built below the

updated topographic surface after mining the region targeted in the first period. In

Figure 5.5, the estimated block model of the deposit, used to plan the second period

and its conditioning information are presented.

The mining sequence is re-calculated based on the new estimated block model

and specified mining conditions. The lifetime of the mining project is still thirteen

periods as there are twelve periods scheduled in the updated mining sequence. The

mining region of the next period is targeted for extraction. The geometric configu-

ration of the targeted region is different than the second mining region of the first

mining sequence, but positioned closely. This is because the simulated additional

information, collected at the end of first period, confirmed some of the features of

the first estimated block model. In other mining scenarios, the realizations of the

simulated additional information may invalidate these features and make the geo-

metric configuration of the targeted region significantly different in geometry and

position. From this region, it is expected to mine 2513MT of ore material with an

average grade of 5.47%. The estimated metal production and revenue are 137.64MT

and 179536USD, respectively. In Figure 5.6, the calculated mining sequence and the

region targeted for extraction in the second period are presented.

The simulated production is calculated conditioned to the available information

at the beginning of the second period, existing exploratory campaign and simulated

additional information in the first period. The simulated ore material produced

is 2480MT with an average grade of 5.68%. The simulated metal production and

revenue are 140.86MT and 186703USD, respectively. As there is a metal production

surplus of 3.20MT, the cash-flow of the second period is calculated by penalizing the

revenue as a function of the excess in metal production. The corresponding penalty

is 1601USD and the cash-flow is 185101USD.
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(A) Corresponding drilling coverage maps and collar positions of first (top) and second (bottom)
infill drillholes.

(B) Infill campaign of the first period and updated topo-
graphic surface.

Figure 5.4: Calculation of geometric configuration of first infill campaign.
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Figure 5.5: Estimated block model, conditioned to the existing exploratory cam-
paign and simulated additional data, used to plan the second period. A and C:
Vertical east-west (north 144m) and south-north (east 200m) cross sections of the
estimated block model and drilling information. B: Conditioning information of
the estimated block model. D: Topographic surface at the beginning of the second
period and references of the vertical cross sections A (red line) and C (blue line).

The acquisition of additional information is simulated as in the case of the first

period. The simulation of the mining of the following periods is repeated until no

more than 1000MT of ore material can be planned. The mining sequence of this

mining scenario consists of all the regions targeted for extraction in each period. In

this mining scenario, the deposit is mined in twelve periods.

The mineable reserve is calculated based on the simulated production of each

period. The presence of geologic uncertainty does not permit one to fully rely on the

estimated production to calculate mineable reserves. In Figures 5.7-A and -B, the

estimated and simulated ore tonnage and metal tonnage per period are compared.

Although in practice the estimated producion is achieved by fixing the mine plan in

each period, the extra costs incurred due to fixing the mine plan reduce the profit

margin of the mining project. This extra cost is accounted for in each simulated cash-

flow by penalyzing the revenue as a function of the variability between estimated
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Figure 5.6: Calculated mining sequence based on existing exploratory campaign and
simulated additional data. A and C: Vertical east-west (north 144m) and south-
north (east 200m) cross sections of the calculated mining sequences. B: Current
ultimate-pit in the second period. D: Region to be mined in the second period (red
region) and references of the vertical cross sections A (red line) and C (blue line).

and simulated metal production (Figure 5.7-C). The mineable reserve values of the

simulated mining scenario are summarized in Table 5.2. The profit of the mining

project is calculated by substracting the project expenses from the sum of cash-flows.

For simplicity, no reserve classification scheme is implemented. A classification of

blocks into proven, probable, and possible, to calculate the mining sequence, adds

more complexity to the problem. All the blocks in the deposit are considered in the

calculation of the mining sequence.

Ore
(MT)

Metal
(MT)

Profit
(USD)

Estimated 29563 1562.53 1274351

Simulated 28126 1530.37 1193597

Table 5.2: Comparison between reported estimated and simulated mineable reserves
of one simulated mining scenario of the SLM paradigm. The reported mineable
reserve corresponds to the simulated production.
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Figure 5.7: Summary of estimated and simulated production per period. A: Profile
of estimated and simulated ore tonnage. B: Profile of estimated and simulated metal
tonnage. C: Profile of estimated and simulated cash-flow.

5.2.2 Reporting Mineable Reserve Based on Simulated Scenarios

The one hundred mining scenarios allow for the assessment of uncertainty of different

aspects of the mineable reserve. In Figure 5.8, histograms of ore tonnage, metal

tonnage, and profit are presented. The reported mineable reserve depends on the

specified mining and data acquisition strategies. A different combination leads to a

different set of results, even when their implementation costs may be similar. For

example, by instructing the mining sequence algorithm to also reduce production

variability, the mineable reserves may suffer from not maximizing the global profit,

but benefit from reducing production gaps. The modification of the infill strategy

also affects the mineable reserve.

The lifetime of the mining project is on average thirteen periods and fluctuates
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Figure 5.8: Histograms of mineable reserve values calculated in the SLM paradigm.
A: Ore tonnage. B: Metal tonnage. C: Profit.

from eleven to fifteen periods. In Figure 5.9, a histogram of total number of periods

of the simulated mining scenarios is presented. To report the mineable reserve, it is

considered the lifetime of the mining project is thirteen periods.

Figure 5.9: Histogram of number of periods of one hundred mining scenarios.
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5.3 Comparison to Conventional Paradigms

The SLM and conventional paradigms are compared in terms of reported mineable

reserve. All the paradigms share the same mining strategy and project expenses.

This means that a similar infill drilling budget is considered in all the paradigms.

The comparison of the SLM paradigm against Paradigms 2 and 3 is made based on

a simulated block model of one hundred realizations. In the case of Paradigm 1,

only one scenario based on an estimated block model is considered.

In paradigm 1, the mining sequence is calculated based on the estimated block

model conditioned to the existing exploratory drilling campaign. The mineable re-

serve of Paradigm 1 is reported in terms of estimated production (see Table 5.3).

As the mining strategy tries to maximize cash-flow in each period, regions with

little proportion of waste material tend to be targeted first. However, these re-

gions do not reproduce the spatial variability of the metal attribute because of the

smooth characteristics of the estimated block model. This yields a high production

variability.

Ore
(MT)

Metal
(MT)

Profit
(USD)

Paradigm 1 32581 1681.68 1374789

Table 5.3: Reported mineable reserve in Paradigm 1, calculated based on estimated
production.

The mineable reserve of Paradigm 2 is reported in terms of the simulated pro-

duction of the mining sequence calculated in Paradigm 1. In contrast to the SLM

paradigm, the deposit is mined without collecting any additional information. Thus,

the production variability in Paradigm 2 is higher than the production variability

in the SLM paradigm. In Figure 5.10, histograms of ore tonnage, metal tonnage,

and profit calculated in Paradigm 2 are presented.

The mineable reserve of Paradigm 3 is reported in terms of the simulated pro-

duction of a set mining sequences, where each mining sequence is calculated based

on a realization of the simulated block model. The set of realizations are generated

conditioned to the existing exploratory drilling campaign. In this context, the de-
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Figure 5.10: Histograms of mineable reserve values calculated in the Paradigm 2.
A: Ore tonnage. B: Metal tonnage. C: Profit.

posit is mined considering perfect knowledge of the deposit. Thus, the acquisition

of additional information has no effect on reducing production variability as the de-

posis is mined perfectly. In Figure 5.11, histograms of ore tonnage, metal tonnage,

and profit calculated in Paradigm 3 are presented. The mineable reserve reported

is unrealistic as achieving perfect mining of the deposit is impossible.

In Figure 5.12, a comparison of production variability of Paradigm 2 and the

SLM paradigm, in terms of mean-absolute-error of produced metal tonnage, is pre-

sented. In these paradigms, the production variability negatively affects the per-

formance of the mining sequence to achieve the estimated production. The SLM

paradigm has less production variability than Paradigm 2 because the simulation

of additional information is considered on top of the existing drilling campaign. In

Paradigm 3, there is no production variability as perfect knowledge of the deposit
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Figure 5.11: Histograms of mineable reserve values calculated in the Paradigm 3.
A: Ore tonnage. B: Metal tonnage. C: Profit.

is considered before mining the deposit. Among these paradigms, the mineable re-

serve reported in the SLM paradigm is more realistic because it accounts for the

acquisition of additional information, which is part of the mining of the deposit.

In Figure 5.13, the paradigms are compared in terms of three characteristics

of the reported mineable reserves, ore tonnage, metal tonnage, and profit of the

mining project . The mineable reserve reported in Paradigm 1 cannot be compared

directly to the rest of the paradigms as it is the only one reported in terms of es-

timated production. Depending on how the estimated block model is tuned, the

reported mineable reserve of this paradigm could be greater or smaller than the

mineable reserves reported in the rest of the paradigms. In this case, Paradigm 1

over-estimates the potential of the deposit. The paradigms that report the mine-

able reserve in terms of simulated production, Paradigm 2, SLM paradigm, and
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Figure 5.12: Production variability of Paradigm 2 and SLM paradigm in terms of
mean-absolute-error of metal production.

Paradigm 3, present three cases of how the deposit might be mined based on the

geologic information available: 1) only initial information, 2) initial plus additional

information, and 3) complete information, respectively. The profit of the mining

project increases as the production variability decreases. This behavior is because

the mining sequence algorithm makes more precise decisions, to maximize the profit

of the mining project, as the uncertainty in the estimated block model is reduced.

In this exercise, the other characteristics of the mineable reserve also follow this

behavior. However, this is circumstantial as no restrictions regarding the amount of

waste material are specified. The production characteristics of the mineable reserve

are not necessarily related to the uncertainty in the estimated block model.

5.4 Remarks

In this chapter, an exercise that illustrates the calculation of the mineable reserve

in the context of the SLM paradigm is presented. In this paradigm, the mine plan

consists of a mining and a data acquisition strategies as opposed to conventional

paradigms, where only the mining strategy is considered. In the present exercise,

the mining strategy is specified as a mining sequence algorithm that targets the

most profitable regions. The data acquisition strategy is specified as a customized

algorithm that calculates the position of the infill drillholes with respect to how
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Figure 5.13: Comparison of reported mineable reserves in the SLM and conventional
paradigms. A: Ore tonnage. B: Metal tonnage. C: Sum of net cash-flow. In the
box plot legend, the letters q and n stand for quantile and number of samples,
respectively.

the deposit is being mined focusing on reducing uncertainty on the medium term

range. The mining and data acquisition strategies interact together to simulate how

uncertainty in the deposit evolves periodically.

The SLM paradigm and Paradigms 2 and 3 calculate the mineable reserve in

terms of simulated production. The impact of uncertainty on the calculation of

the mineable reserve is measured in terms of the production variability, which has

negative effects in the performance of the mining sequence. Paradigm 2 has the

largest production variability as only the existing information is considered. The

SLM paradigm has less production variability than Paradigm 2 as both the existing

information and additional simulated information are considered. Paradigm 3 is

unrealistic as it is considered that there is no variability in production. These three

100



paradigms present different versions of how the mineable reserve of a mining project

is reported. The SLM paradigm considers a more realistic aspects of the mining of

the deposit, thus, the reported mineable reserve characterizes better the potential

of the deposit.
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Chapter 6

Example of Evaluation of Infill

Drilling

In this chapter, implementation aspects of the methodology to evaluate the acquisi-

tion of future infill information, described in Chapter 3, are discussed. The exercise

presented in Chapter 5 is continued considering the infill program. In this exercise,

an infill program that considers an infill strategy which aims to reduce uncertainty

in the medium term is evaluated. The evaluation consists of finding the amount

and timing parameters that for the specified infill strategy results in a cost effective

infill program that aims to maximize the profit of the mining project.

This chapter is organized as follows. In Section 6.1, the exercise to find the

design parameters of the infill program is described. The exercise consists of eval-

uating a set of configurations of amount of drilling to find the one that aims to

maximize the profit contribution. In Section 6.2, aspects of the estimation of the

profit contribution are discussed. The profit contribution is estimated based on two

components, revenue contribution and drilling cost. The profit contribution is es-

timated for a range of parameters under study. In Section 6.3, the selection of the

best configuration of amount of drilling, from a set of candidates, is described.
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6.1 Description of the Exercise

The present exercise is prepared on the basis of the exercise discussed in Chapter

5. This exercise consists of defining the infill program of the mining project based

on an specified infill strategy. The goal of this exercise is to find the corresponding

configuration of amount of drilling that yields the most profit. The specified infill

strategy focuses on reducing uncertainty in the medium-term as the mining progress.

A time range of twelve periods is considered based on the average lifetime of the

mining project of the initial exercise. As in the case of the initial exercise, for

illustration purposes, the effect of the interest rate in the calculation of the profit of

the mining project is not considered.

As the infill program is to be implemented during the first twelve periods, the

configuration of amount of drilling is defined by the number of infill drillholes to

be collected in the first and twelfth periods. The amount of infill drillholes of the

intermediate periods is specified based on the linear projection between these two

parameters. For simplicity, all the infill drillholes are drilled down to the vertical

limit of the deposit. The sampling scheme consists of nine cases that are considered

for both of the first and twelfth periods: 0, 2, 4, 6, 8, 10, 15, 20, and 40 drillholes.

Thus, a total of 81 configurations of amount of drilling are initially evaluated. In

each mining scenario, the cost of infill drilling is calculated based on the amount of

infill samples collected in each period. This approach permits calculating the cost of

the infill program as a function of the amount of drilling. The cost of infill drilling

is assumed to be 10USD for each 4m drilled.

6.2 Calculation of Economic Metrics

The infill program is evaluated in terms of the increase in the profit of the mining

project. The profit contribution ∆SNCF is calculated based on two components:

1) contribution to the sum of cash-flow ∆SCF and 2) cost of infill drilling SCD.

For each of the 81 configurations of amount of drilling, these two components are

calculated in terms of the average of the SCF and SCD of the one hundred mining
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scenarios considered.

6.2.1 Contribution to the Sum of Cash-Flow

The contribution to the sum of cash-flow ∆SCF is calculated as the difference

of the SCF after implementing a specified infill program and the SCF without

collecting any additional information, which is also the SCF of Paradigm 2. The

characterization of the progressive growth of the SCF due to the acquisition of more

infill information is sensitive to the amount of mining scenarios considered. The use

of a small number of mining scenarios might introduce extra variability to the SCF

estimates. In Figure 6.1, the increment of the SCF is presented considering four

cases of number of mining scenarios: 25, 50, 75, and 100. The first three cases

do not characterize the relationship between the SCF and the amount of drilling

because of the limited number of mining scenarios. The use of one-hundred mining

scenarios results in a fair characterization of the behavior of the SCF as a function

of infill information acquired. The increment of the SCF considers implicitly the

acquisition of blasthole information along with infill information. In the amount of

drilling configuration (0,0), zero drillholes in the first period and zero drillholes in

the twelfth period, the ∆SCF increment is due to only blasthole information. This

configuration of amount of drilling yields the minimum SCF of the mining project.

The scheme of the 81 configurations of amount of drilling emphasizes the evalu-

ation of cases with moderate number of drillholes. The cases with moderate number

of drillholes are of more interest because of their reduced implementation cost. The

cases with a large amount of drillholes are sparsely sampled and evaluated for ref-

erential purposes. To analyze all the possible configurations of amount of drilling,

based on the two parameters for the first twelve periods, a surface of the ∆SCF

component is fitted based on the ∆SCF estimates of the 81 configurations of amount

of drilling (Figure 6.2). This ∆SCF surface is used to analyze the intermediate con-

figurations of amount of drilling that are not contemplated initially in the sampling

scheme. The fitted ∆SCF surface also aims to filter out the extra variability from

the ∆SCF estimates because of the use of a limited number of mining scenarios.
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Figure 6.1: Growth of SCF as a function of infill information acquired. The SCF of
Paradigms 2 and 3, based on one-hundred mining scenarios, are referential (dashed
lines). A: Case with 25 mining scenarios. B: Case with 50 mining scenarios. C:
Case with 75 mining scenarios. D: Case with 100 mining scenarios.

The growth of the ∆SCF surface starts accelerated and gradually slows down until

it reaches a plateau. The ∆SCF surface is bounded by the ∆SCF that corresponds

to the case of having access to perfect information minus the cost of uncertainty of

the first period.

The ∆SCF surface characterizes the response of configurations of amount of

drilling within the region of parameters under study. The form of the ∆SCF surface

depends both on the specified drilling strategy and the mining strategy considered.

In the ∆SCF surface, the configurations of amount of drilling that prioritize the

acquisition of drillholes in early periods perform better than the configurations of

amount of drilling that collect more drillholes in late periods. This is because the
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Figure 6.2: Fitted SCF contribution ∆SCF surface over region of parameters under
study. Left: Region of configurations of amount of drilling under study and corre-
sponding ∆SCF surface. The 81 configurations of amount of drilling are represented
as black dots. Right: Vertical cross section that corresponds to configurations of
amount of drilling in which a constant number of drillholes are collected per period.
The intersection of the ∆SCF surface is represented as a solid line. The dashed
line represents the ∆SCF component considering perfect information of the deposit
(Paradigm 3).

collection of drillholes in early periods tends to affect more mining regions than drill-

holes in late periods. Infill program designs with more acquisition of infill drillholes

in late periods are not efficient.

6.2.2 Cost of Infill Drilling

The cost of drilling SCD represents the expected cost of implementing an infill

program with a specified configuration of amount of drilling. Although blasthole

drilling is implemented, the cost associated is not charged in the SCD component

because it is already considered as part of operating expenses. As in the case of the

∆SCF component, the SCD component is also analyzed by considering a surface

that maps the region of parameters under study (Figure 6.3). The SCD surface is

fitted based on the SCD of the 81 configurations of amount of drilling. The SCD

estimates present much less variability than the ∆SCF estimates because the SCD

is implemented within a pre-defined range of periods.

The growth of the SCD surface is linear as it is proportional to the amount
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Figure 6.3: Fitted cost of drilling SCD surface over region of parameters under
study. Left: Region of configurations of amount of drilling under study and corre-
sponding SCD surface. The 81 configurations of amount of drilling are represented
as black dots. Right: Vertical cross section that corresponds to configurations of
amount of drilling in which a constant number of drillholes are collected per period.
The intersection of the SCD surface is represented as a solid line. The intersec-
tion of the ∆SCF surface is represented as a dotted line for reference. The dashed
line represents the ∆SCF component considering perfect information of the deposit
(Paradigm 3).

of infill information collected. In contrast to the ∆SCF surface, the SCD quickly

reaches the ∆SCF and keeps growing. In Figure 6.3-left, a comparison of these two

surfaces, for configurations of amount of drilling with constant number of drillholes

per period, is presented. The region of configurations of amount of drilling in which

the SCD is greater than the ∆SCF is considered profitable.

6.2.3 Contribution to Profit

The profit contribution ∆SNCF quantifies the economic impact of implementing

the infill program. As in the case of its components, ∆SCF and SCD, the ∆SNCF

is analyzed in the form of a surface for the region of parameters under study (Fig-

ure 6.4). The ∆SNCF surface is calculated by subtracting the SCD from the

∆SCF surface. The ∆SNCF surface has a concave downward shape because of

the growth characteristics of the ∆SCF and SCD surfaces. Based on a zero con-

tribution threshold, the ∆SNCF surface can be split in two sub-regions, positive
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and negative profit contribution. The positive contribution sub-region classifies the

configurations of amount of drilling that potentially yield an economic return after

implementation. The positive contribution sub-region is of main interest during the

evaluation of the acquisition of future infill information as the search of the most

cost efficient configuration of amount of drilling in focused in this sub-region. The

negative contribution sub-region classifies the configurations of amount of drilling

which implementation potentially result in economic losses.

Figure 6.4: Profit contribution ∆SNCF surface over region of parameters under
study. Left: Region of configurations of amount of drilling under study and corre-
sponding ∆SNCF surface. The 81 configurations of amount of drilling are repre-
sented as black dots. Right: Vertical cross section that corresponds to configurations
of amount of drilling in which a constant number of drillholes are collected per pe-
riod.

The sampling scheme of the 81 configurations of amount of drilling provides a

good characterization of the ∆SNCF surface. Thus, no additional configurations

of amount of drilling are needed to be evaluated to improve the characterization

of the current ∆SNCF surface. In case additional configurations of amount of

drilling were needed, they would target the region with high ∆SNCF to improve

the surface. The evaluation of additional configurations of amount of drilling would

involve repeating the calculation of the ∆SCF and SCD surfaces as discussed in

previous sections.
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6.3 Selection of Configuration of Amount of Drilling

The configuration of amount of drilling of the infill program is selected from an anal-

ysis of the ∆SNCF surface. A set of candidate configurations of amount of drilling

are identified by specifying a region of interest in the ∆SNCF surface. The region

of interest is defined by a threshold value with respect to the maximum ∆SNCF

of the surface. A threshold of 95% of the maximum ∆SNCF is considered in the

analysis. The maximum ∆SNCF in the surface is 29395 USD and the threshold for

defining the region of interest is set to 28000 USD. This threshold is slightly greater

than 95% of the maximum ∆SNCF . The selection of the configuration of amount

of drilling is carried out by analyzing the targeted region and the configurations of

amount of drilling in it (Figure 6.5). There are five configurations of amount of

drilling in the region of interest: (8,8), (10,6), (10,8), (10,10), and (15,4).

Figure 6.5: Profit contribution ∆SNCF surface divided in regions and selection
region used to identify candidate configurations of amount of drilling. Left: Profit
contribution regions greater or equal than 0, 10000, 20000, 24000, and 28000 USD.
Right: Profit contribution region greater or equal than 28000 USD and correspond-
ing parameters of configurations of amount of drilling (black dots).

An aspect to consider in the selection of the configuration of amount of drilling

is the reduction of the SCD. For example, if there are two configurations of amount

of drilling with different SCD that yield very similar ∆SNCF , the one that is

less expensive is preferred for implementation. This selection criteria is applied
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to all the candidate configurations of amount of drilling in the targeted region.

Among the five candidates, the two less expensive alternatives of configurations of

amount of drilling are (8,8) and (10,6). Their SCD are 30723 USD and 31349

USD, respectively. Any of these two configurations of amount of drilling are good

alternatives for implementation. In Chapter 7, the mining sequence of the deposit

is analyzed considering the (8,8) configuration of amount of drilling.

6.4 Remarks

In this chapter, the performance of a specified infill strategy based on the reduction of

uncertainty in the medium term is evaluated in terms of the contribution to the profit

of the mining project. The evaluation is focused on finding the best cost effective

configuration of amount of drilling that aims to maximize the profit of the mining

project. The performance of the infill strategy is analyzed based on three response

surfaces: 1) contribution to profit, 2) contribution to revenue, and 3) drilling cost. A

set of 81 configurations of amount of drilling are considered to calculate the response

surfaces. A subset of candidate configurations of amount of drilling is identified by

specifying a region around the maximum value of the profit contribution surface.

The preferred configuration of amount of drilling, among the candidate alternatives,

is selected considering a reduction in the cost of implementation.

A significant number of mining scenarios, in this case one hundred, are needed

to properly estimate the responses of the configurations of amnount of drilling. The

response surfaces are fit based on the estimated responses of the 81 configurations

of amount of drilling. The response surfaces filter the remaining variability due to

having access to only a limited number of mining scenarios.

Additional infill strategies can also be evaluated following the analysis presented

in this chapter. The performance of these infill strategies would be measured in

terms of their respective profit contribution surfaces. Aspects to consider in the

comparison of infill strategies would include: shape of the profit contribution surface,

configurations of regions around maximum profit contribution, and cost of drilling.
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The proposed methodology for evaluating infill strategies provides a rich source of

information for designing the infill program to implement.
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Chapter 7

Example of Clustering of

Mining Scenarios

In this chapter, implementation aspects of the methodology to summarize the mining

sequences generated by the SLM paradigm framework, described in Chapter 4, are

discussed. The mining sequences of the case selected in the exercise of Chapter 6,

eight infill drillholes per period, are considered as input. The goal of this exercise

is to identify a reduced set of mining sequences that can be used in the operating

design of the mining sequence.

This chapter is organized as follows. In Section 7.1, the steps to construct the

decision network are described. In each step, the implementation aspects, including

selection and interpretation of parameters, are described. In Section 7.2, aspects

of identifying major mining sequences are discussed. For illustration purposes, two

major mining sequences are evaluated. In Section 7.3, aspects of identifying large

scale mining paths are discussed.

7.1 Construction of the Decision Network

Step 1 - Selection of Range of Periods and Calculation of Dendrograms

The duration of the major mining sequences is set to fourteen periods because

the majority of the simulated mining sequences, 83%, span fourteen periods. This
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decision affects the design of the operating mining sequence as it establishes the

lifetime of the mining project.

For a duration of fourteen periods, a set of thirteen dendrograms, one per pe-

riod, is calculated. The first period does not require a dendrogram as all the mining

regions are identical. The calculation of the set of dendrograms requires the calcula-

tion of matrices of dissimilarity of the mining regions in each period. The matrices

of dissimilarity are computed considering the region distance semi-metric. As soon

as clusters begin to form, the dissimilarity between forming clusters is calculated by

considering the group average comparison, that is, the dissimilarity between forming

clusters is the average of the region distances between their mining regions. The

dendrogram is a structured representation of the matrix of dissimilarity.

Step 2 - Selection of Clustering Threshold and Definition of Clusters

The clustering threshold is used to classify the mining regions into clusters based on

the structured representation of the dissimilarities in the dendrogram. The selection

of the clustering threshold consists of: 1) calculation of the maximum clustering

threshold and 2) global adjustment of the clustering threshold.

The maximum value of the clustering threshold is the equivalent average drilling

spacing in terms of the region distance. The average drilling spacing is 50m as

the existing drillholes are positioned over a regular grid pattern of 50m × 50m.

The equivalent region distance of the average drilling spacing is calculated based on

sixty mining regions selected randomly from the simulated mining sequences, five

mining regions per period, from Period 2 to 13. Each mining region is duplicated

and separated a specified distance with respect to its center of mass. Then the

corresponding region distance is calculated. For illustration purposes, the selected

mining regions are evaluated for a range of separation distances from 0 to 80m. In

Figure 7.1-A, for each mining region, the region distance is presented as a function

of the separation distance. The variability in the region distance curves is due to

the differences in the geometry of the mining regions, including fragmented and

non-fragmented configurations. The equivalent region distance is calculated based
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on the average of the region distance curves. The equivalent region distance of 50m

is 18.46. Along with the selection of the clustering threshold, another parameter

needed to define clusters is the minimum number of mining regions. This value is

the 10% of the total number of simulated mining sequences. Clusters with less than

ten mining regions are labeled as outliers.

After inspecting the maximum clustering threshold in the set of dendrograms,

it is found that the clustering threshold can be reduced up to 10 without increasing

significantly the overall number of clusters identified for the majority the periods.

The reduction of the clustering threshold aids in reducing the dispersion of mining

regions within each cluster. However, in the case of periods 12 and 13, the den-

drograms show that the cluster definition is highly variable with respect to the rest

of the periods. The reduction of the clustering threshold causes 45% of the mining

regions to be classified as outliers. The reduction of the clustering threshold is ac-

cepted because of the positive effect in the majority of the periods evaluated. Based

on the region distance curves, the equivalent separation distance of a region distance

of 10 is 33.6m. In Figures 7.1-B and C, the cross-sections of two mining regions and

their respective duplicates, separated by 32m, are presented. These mining regions

and their duplicates provide an initial idea of the maximum expected dispersion of

the mining regions of a cluster.

In Figure 7.2, six out of thirteen dendrograms with their classification schemes

based on a clustering threshold of 10 are presented. Additionally, the clustering

threshold can be tuned by individually reviewing the cluster definition in each of

the thirteen periods. To maintain a standard dispersion of mining regions in each

cluster, the individual clustering thresholds cannot be widely variable. Maintain-

ing a standard dispersion of mining regions is important for assembling the major

mining sequences. In this exercise, a clustering threshold of 10 is kept and no local

refinement is implemented.

The maximum region distance between mining regions in a cluster can be slightly

greater than the clustering threshold specified because the group average comparison

is implemented. This discrepancy can be even larger if the MIN comparison is
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Figure 7.1: Hierarchical clustering threshold as a function of fluctuation of mining
regions to prototypes. A: Average (black) and individual (gray) equivalent region
distance of fluctuation of mining regions to prototypes. B and C: Cross sections of
mining regions and their duplicates separated a distance of 32m.

implemented. The maximum region distance in a cluster is equal to or less than

the clustering threshold only if the MAX comparison is implemented. However, the

group average comparison is implemented as it avoids bias in the forming of clusters.

In Figure 7.3, the total dispersion and the dispersion of the three clusters identified

in Period 5 are compared. The three clusters identified significantly reduce the total

dispersion of the mining regions. Notice some of the dissimilarities between mining

regions in clusters A5 and B5 are slightly greater than the clustering threshold

specified.

After identifying the clusters of mining regions, the decision network can be

assembled. The clusters are the nodes of the decision network. The connections

between nodes represent the frequency of the associations between mining regions

from period to period. In Figure 7.4, the decision network of the one hundred

simulated mining sequences is presented. The definition of clusters is consistent for

most of the lifetime of the mining project, except for Periods 12 and 13, where 44%

of the mining regions are considered outliers. This condition is accepted because

the cluster definition for the majority of the periods is consistent.

Up to this point, the decision network alone cannot be used to evaluate mining
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Figure 7.2: Dendrograms for periods 2, 4, 6, 8, 10 and 12 and their classification
schemes based on a clustering threshold of 10.
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Figure 7.3: Comparison of total dispersion of mining regions and dispersion of min-
ing regions in the three clusters identified in Period 5. A: Dendrogram of Period
5 and definition of clusters. B: Boxplot of dissimilarities between all the mining
regions and mining regions within each cluster in Period 5.

Figure 7.4: Decision network of one hundred simulated mining sequences. The nodes
are identified by a letter that denotes the cluster id in the period and a number that
denotes the period. The size of the nodes is related to the number of mining regions
in the cluster. At the bottom, for each period, it is specified the number of mining
regions considered in the valid clusters. The thickness of the connection lines denote
the frequency of the number of associations between mining regions in the clusters.
Connection lines with less than five lines are drawn as dashed lines.
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alternatives because representive mining sequences of the branches cannot yet be

calculated. To assemble mining sequences of the branches, it is necessary to calculate

the representative mining regions of each node.

Step 3 - Calculation of Mining Region Prototypes

The mining region prototype of a cluster is a mining region that is representative

of all the mining regions of a cluster. It is calculated as the intermediate region

between the averaged initial and final topography surfaces of all the mining regions

in a cluster. As averaged surfaces are used, there is the risk of finding very small

fragmented sub-regions in the intermediate region. To deal with this problem, a

volume threshold that controls the minimum volume of fragmented sub-regions is

specified. The volume threshold is set to 150 blocks, that is, sub-regions with vol-

umes less than 9600m3 are not considered part of the mining region prototype. The

average number of cells of the mining regions is 3900. Specifying a volume threshold

of 150 blocks means removing fragments of approximately 4% of the average volume

of the mining regions. The volume threshold is specified by inspecting the mining

region prototypes of all the dendrograms. It is recomended that the maximum vol-

ume threshold is 5% of the average volume of the mining regions. In Figure 7.5, the

mining region prototypes of the three clusters identified in Period 5 are presented.

At the time of assembling the mining sequences of branches of the decision net-

work, the mining region prototypes may not fit perfectly. The degree of overlapping

and/or gaps between mining region prototypes depends on the dispersion between

mining regions in the clusters.

7.2 Selection of Major Mining Sequences

The major mining sequences are identified from the most dominant branches of the

decision network, in terms of the cumulative occurrence of the connections. The

first dominant branch is identified by implementing the Dijkstra algorithm to find

the branch with the largest cumulative occurrence between the first and the last

period. This branch is referred to as the first dominant branch (Figure 7.6).
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Figure 7.5: Mining region prototypes of clusters identified in Period 5. The mining
regions of each cluster identified in the dendrogram, A5, B5, and C5, are in red and
the end surfaces are in gray.

A set of additional dominant branches can be identified by disabling connec-

tions focusing on evaluating different mining alternatives. The number of dominant

branches to identify depends on the number of alternatives that can be evaluated in

the operating design of the mining sequences. A second dominant branch is iden-

tified by evaluating connections in the periods where the decision network starts

to branch. In Period 3, the decision network splits in two directions. To identify

the second dominant branch, the connection that corresponds to the first dominant

branch, B3 to B4, is disabled. The second dominant branch is identified by imple-

menting the Dijkstra algorithm in the modified decision network to find the new the

branch with the largest cumulative occurrence (Figure 7.7). This branch is different

from the first dominant branch in the interval between Periods 4 and 7.

The major mining sequences are built by assembling the mining region proto-
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Figure 7.6: Branch with largest cumulative occurrence in the decision network. The
branch is highlighted with bold dashed lines as connections. The nodes that do not
belong to the branch are presented as empty circles with their connections removed.
The numbers of mining regions per period that support the main mining pattern
are indicated at the bottom.

types of the set of nodes along each branch. These mining sequences are named after

their respective branches. The mining sequences of the first and second dominant

branches are referred to as first and second major mining sequences, respectively.

In Figure 7.8, vertical cross-sections of the first and second major mining sequences

are presented. For comparison purposes, the range of periods that is different in the

two major mining sequences is coloured.

The dissimilarity between two mining sequences can be quantified in terms of

the sum of the region distances between their mining regions, in each period. In

this exercise, the dispersion of a major mining sequence is quantified as the average

of the dissimilarities between the major mining sequence and the simulated mining

sequences. The smaller the dispersion the more representative the major mining

sequence of the simulated mining sequences. In Figure 7.9, three branches are com-

pared in terms of the dispersion of their mining sequences: 1) first dominant branch,
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Figure 7.7: Branch with largest cumulative occurrence after disabling connection
B3 to B4 of the first dominant branch. The branch is highlighted with bold dashed
lines as connections. The nodes that do not belong to the branch are presented as
empty circles with their connections removed. The numbers of mining regions per
period that support the main mining pattern are indicated at the bottom.

2) second dominant branch, and 3) most unlike branch. The most unlike branch

is identified as the branch with the smallest cummulative occurence of connections.

For comparison purposes, the mining sequences of the three branches are compared

in the range of periods from 1 to 13 as the minimum number of periods of the mining

sequences is thirteen. The first major mining sequence is more representative than

the second major mining sequence. The mining sequence of the most unlike branch

is by far less representative than the first and second major mining sequences.

More simulated mining sequences are similar to the first major mining sequence

than to the second major mining sequence. The minimum dissimilarities of the

first and second major mining sequences are 28.1 and 69.5, respectively. In the

interval of dissimilarities between 0 and 100, 35% correspond to the first major

mining sequence and only 5% to the second major mining sequence. In the case

of the mining sequence of the most unlike branch, there are no simulated mining
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Figure 7.8: Mining sequences of first (top) and second (bottom) dominant branches.
A and B are the east-west and north-south cross sections of the mining sequence of
the first dominant branch. C and D are the east-west and north-south cross sections
of the mining sequence of the second dominant branch.

sequences in the range of dissimilarities between 0 and 100.

7.3 Identifying Large Scale Mining Paths

The large scale mining paths are identified in the same way as the major mining

sequences, except that consecutive periods are merged to reduce the number of

stages in which the deposit is mined. To cover the range of fourteen periods, four

period intervals are defined: A) Period 1, B) Period 2 to 5, C) Period 6 to 9, and

D) Period 10 to 14. The first stage only considers Period 1 as it is common for all

the mining sequences. The next two stages consists of four periods each. The last

stage consists of five periods to include the last remaining periods.

The decision network of the mining paths is built by clustering the merged

mining regions of each stage and calculating their respective connections. In each

dendrogram, the merged mining regions are less variable than the mining regions of
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Figure 7.9: Comparison of the average dissimilarity between the mining sequence
of three branches and the simulated mining sequences. A: First dominant branch.
B: Second dominant branch. C: Most unlike branch. Left: Dissimilarities between
the mining regions of the mining sequence of a branch and the simulated mining
sequences in each period. Right: Dissimilarities between the mining sequence of a
branch and the simulated mining sequences.
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individual periods as they tend to intersect more often. The maximum clustering

threshold for a separation distance of 50m, average drilling spacing of the exist-

ing drilling campaign, is 9.49. After inspection of the dendrograms, the clustering

threshold can be reduced up to 2 as the stages are closer to each other (Figure 7.10).

The resulting decision network of the merged periods only has two branches (Figure

7.11).

Figure 7.10: Dendrograms for stages 2, 3, and 4 and their classification schemes
based on a clustering threshold of 2.

The mining sequences of the branches of the decision network represent the large

scale mining paths. In Figure 7.12, the vertical east-west cross sections of the two

large scale mining paths are presented. In mining path A, the deposit is mined from

east to west and then vertically. In mining path B, the deposit is mined vertically.

Based on the ocurrence of the branches, mining path A (69%) is more likely to occur

than mining path B (10%).
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Figure 7.11: Decision network or merged mining regions to identify large scale min-
ing paths. The decision network consists of two branches.

Figure 7.12: Two identified large scale mining paths. A: east-west cross section of
first mining path. B: east-west cross section of second mining path.
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7.4 Remarks

In this chapter, an example that illustrates the implementation aspects of the pro-

posed methodology to identify major mining sequences is discussed. The input

dataset consists of the simulated mining sequences of the case identified in Chapter

6. The output consists of a few mining sequences that are representative of the

input dataset. The output mining sequences are named major mining sequences

and account for the variability in the simulated mining sequences due to presence

of geologic uncertainty under specified mining and data acquisition strategies.

In the example presented, the simulated mining sequences are able to be con-

densed in the form of a decision network that permits identifying major mining

sequences. The calculated clustering threshold is 18.46. In the majority of the pe-

riods, the configuration of mining regions allows for a reduction in the clustering

threshold to 10. However, in Periods 12 and 13, the variability of the mining re-

gions is high and does not permit a consistent clustering. In these two periods, the

clusters identified are supported by only fifty six mining regions. This high level of

variability is expected at later time periods. If this variability were encountered at

early time periods, then the proposed methodology may not work well. Then, it

would be necessary to reduce the geologic uncertainty by acquiring real additional

information, for example, additional exploratoty drilling campaigns.

In addition to the major mining sequences, large scale mining paths are also

identified as supplementary information that can be used in the operating design of

the mining sequence. The large scale mining paths are identified following the same

process to identify the major mining sequences, except the lifetime of the mining

project is divided into four stages by merging consecutive periods. The period

merging scheme significantly reduces the variability of the mining regions in each

stage, with respect to the mining regions in each period. The decision network of the

large scale mining paths consists of only two branches. Alternatively, the reduction

of variability due to merging periods can be exploited to help identifying major

mining patterns of highly variable simulated mining sequences. A moderate period

merging scheme can be implemented to reduce variability of problematic periods.
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Chapter 8

Conclusions

The three conventional paradigms to evaluate mineable reserves tend to provide an

unrealistic estimate of the economic potential of the deposit. Paradigm 1 does not

account for uncertainty in the mineable reserve and is very sensitive to conditional

bias, which potentially leads to either under- or over-estimate the economic potential

of the deposit. Paradigms 2 and 3 rely on a simulated model to report uncertainty

in the mineable reserve. However, in terms of estimating the economic potential of

the deposit, Paradigm 2 is pessimistic as it assumes the mining sequence does not

improve throughout the lifetime of the mining project as additional information is

acquired. Paradigm 3 is optimistic as it assumes the mining sequence is able to mine

the deposit perfectly. In practice, additional information is collected periodically

resulting in an improvement in the performance of the mining sequence with respect

to Paradigm 2. A more correct estimate of the economic potential of the deposit is

higher than calculated in Paradigm 2, but smaller than calculated in Paradigm 3.

The SLM paradigm accounts for the acquisition of additional information, along

with the mining strategy, to evaluate the mineable reserve. This characteristic allows

for a more correct estimate of the economic potential of the deposit with respect

to the conventional paradigms. The SLM paradigm accounts for uncertainty in

the mineable reserve based on a set of mining scenarios in which the acquisition of

additional information, blasthole and infill drilling, is simulated. In these mining

scenarios, how the mining sequence adapts and improves as the mining progress is
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accounted for. To design the operating mining sequence, the set of generated mining

sequences is summarized into a few representative alternatives. Additionally, these

reduced number of mining sequences can be also used to design contingency plans.

8.1 Contributions

A set of new approaches were developed or existing ones were adapted to aid in

the implementation the SLM paradigm. A list of these approaches is presented as

follow:

Event-based representation of the mining of the deposit: To simulate

the mining of the deposit, from the perspective of long-term planning, the lifetime

of the mining project is divided into time periods in which a set of events occur.

This modular representation of the mining of the deposit gives flexibility to analyze

different mining situations by considering customized events based on the aspects

under study.

Two-dimensional parameterization of amount of drilling of infill pro-

grams: The number of parameters to define the amount of drilling of an infill

program is the number of periods in which the infill program is implemented. Thus,

infill programs would have to be evaluated in high-dimensional spaces. From a prac-

tical perspective, the amount of drilling of an infill program can be defined by two

parameters, number of drillholes in the initial and final periods. The intermediate

amount of drilling is calculated based on a linear projection between the initial and

final number of drillholes. This two-dimensional parameterization permits to evalu-

ate the infill program based on surfaces of the response variables, including revenue

contribution, cost of drilling, and profit contribution.

Region distance metric to measure dissimilarity: A geometric comparison

of mining sequences is carried out to asses the magnitude of the difference in their

mining directions. As the geometric configurations of mining regions often consists of

complex volumes, conventional point-based metrics of comparison cannot be easily

implemented. The region distance metric is designed to compare mining regions

128



specifically accounting for their geometric configurations.

Representation of mining sequences as a decision network: A mining

sequence can be seen as a set of consecutive decisions made in each period. In

this context, a set of simulated mining sequences can be represented as a decision

network by analyzing dissimilarities in their mining regions, on a period basis. The

decision network significantly reduces the complexity of analyzing all the simulated

mining sequences at the same time.

Identification of patterns in mining sequence decision networks: Al-

though a decision network summarizes a set of simulated mining sequences, it does

not directly provide information regarding major patterns. The major patterns are

identified by implementing the Dijkstra algorithm on the decision network to target

branches with the largest frequency of connections under specified conditions. The

mining sequence of the major pattern consists of the prototypes of mining regions

of the targeted branch.

8.2 Future Work

The development of a methodology to identify regions in the block model that after

updated drive changes in the direction of the mining sequence would permit to design

efficient infill programs that aim to reduce uncertainty in the mining sequence. These

regions are not necessarily single variations in the block model but a combination of

them that are positioned at different locations and occur in different periods. These

regions also depend on the characteristics of the mining strategy implemented.

The inclusion of other sources of additional information, including geologic map-

ping, short-term drilling, and different types of infill drilling, in the implementation

of the SLM paradigm adds an additional degree of realism in the evaluation of the

mineable reserve. In practice, depending on the type of deposit, these other sources

play an important role in the calculation of the block model of the deposit.
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8.3 Final Remarks

The SLM paradigm relies on the implementation of estimation and simulation tech-

niques to update the block model, to simulate mined regions, and to simulate the

acquisition additional information. The two types of attributes that characterize the

geology of the deposit, continuous and categorical, are treated differently. In the

case of continuous attributes such as metal grades, standard kriging and simulation

techniques can be directly implemented or adapted to characterize the spatial dis-

tribuition of the attributes. In the case of categorical attributes such as rock type,

kriging and simulation of indicators can be adapted to characterize the geology of

the deposit. However, the use of indicator techniques limits the implementation of

the SLM paradigm to cases of deposits with consistent geologic structures. The

ocurrence of mid-size fractures, dikes, and faults, increases the complexity to char-

acterize the geology of the deposit. The use of other customized techniques may

have to be considered to evaluate deposits with complex geologic configurations.

In the SLM paradigm, the mining strategy is implemented as a mining sequence

algorithm that accounts for operating aspects to mine the deposit. Two types of

mining sequence algorithms can be implemented, mathematicaly optimal or heuris-

tic. A shortcome of mathematically optimal algorithms is that they tend to be

computationally expensive. These algorithms are designed in the context of con-

ventional paradigms, thus, the optimality of their results in the context of the SLM

paradigm is not guaranteed. It is recommended the mining strategy is implemented

in the form of a heuristic algorithm. Heuristic algorithms produce results that are

close to mathematically optimal and have the advantage that they are less computa-

tionally demanding. The practicality of heuristic algorithms permit the evaluation

of different mining strategies during the evaluation of mineable reserves.
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Appendix A

Mining Programs for the SLM

Paradigm

A set of three programs suited for implementing the SLM paradigm are discussed in

this section. These programs rely on an algorithm called Indexed Search Floating

Cone (ISFC) that is a variation of the conventional Floating Cone algorithm. These

three programs are for calculating: 1) the mineable limit, 2) the ultimate-pit, and

3) the mining sequence to design a long-term mine plan.

A.1 Indexed Search Floating Cone

In the conventional Floating Cone algorithm, the search and extraction of cones is

done following specified directions. In the ISFC algorithm, the search and extraction

of cones consists of three steps: 1) construction of an inventory of available cones, 2)

targeting and extraction of a candidate cone, and 3) updating the inventory of cones.

The inventory of available cones is constructed by indexing the cones that can be

extracted from the deposit within geometric limits. The searching of the candidate

cone is done by evaluating all the cones in the inventory that satisfy specified mining

conditions. The extraction of the targeted cone consists of removing it from the

inventory. The updating of the cone inventory is necessary as cones share blocks.

The programs based on the ISFC algorithm are described in the following sec-
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tions. The variables used in the parameter files are listed in Table A.1.

Variable Description

INPUT TOPO Filename of the input topographic 2D map.

INPUT MODEL Filename of the input 3D block model.

OUTPUT TOPO Filename of the output topographic 2D map(s). The
program MININGSEQUENCE BC generates more than
one surface.

OUTPUT MODEL Filename of the output 3D block model.

ID TOPO Column id of the topographic data used in
INPUT TOPO.

ID USDB Column id of dollar/block data used in INPUT MODEL.

ID TONB Column id of tonnage/block data used in
INPUT MODEL.

ID MATT Column id of material type data used in
INPUT MODEL.

CODE WST Code of material type that denotes ’waste’ material.

XNUM, YNUM, ZNUM Number of blocks in x, y, and z directions.

XINI, YINI, ZINI Origin of blocks in x, y, and z directions.

XSIZ, YSIZ, ZSIZ Size of blocks in x, y, and z directions.

M BASE Minimum radius of mining base at the bottom of
cones.

M SLOPE Minimum pit slope.

ORE TRG Ore tonnage target per period.

ORE TOL Approximation tolerance of ORE TRG.

NUM FRG Number of fragments of cones.

NUM REFP Optional parameter. Number of refining periods.
The default value is 10. The ’NUM PERIODS:’ tag is
required to identify this parameter in the ’extra’
section.

NUM REFF Optional parameter. Number of refining fragments.
The default value is 3. the ’NUM FRAGMTS:’ tag is
required to identify this parameter in the ’extra’
section.

Table A.1: List of variables used in the parameter files.

A.1.1 Program 1: Mineable Limits

This program identifies the blocks that cannot be extracted from the deposit due

to the geometric limits of the project and geotechnical constraints. The geometric
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limits of the project restrict the region where the mining operations can take place.

The set of geotechnical constraints, such as minimum pit slope, restrict the region

within the limits of the project that could be mined regardless of its economic value.

The input data consists of a 2D map with topographic elevations. The output

information consists of a 3D block model, where the non-mineable blocks are coded

with 1, and the rest of the blocks are 0. The parameter file template is presented in

Figure A.1.

Figure A.1: Parameter file template of MINEABLELIMITS.

An example is presented in Figure A.2. Two vertical cross-sections of the mine-

able limits of a deposit are presented. The black cells represent the blocks that

cannot be mined regardless of their economic metal content. The gray cells repre-

sent the mineable region of the deposit below the surface where the ultimate pit and

its corresponding mining sequence are calculated.

The algorithm searches and extracts all the cones that satisfy the specified con-

ditions such as the overall pit slope and the minimum radius of the mining base. To

satisfy the condition to not to mine beyond the limits of the project, the cones with

blocks below the surface that expand beyond the vertical projection of the limits

are rejected. The mineable limits consist of all the blocks that were not extracted

by the algorithm. The mineable limit narrows the search region to calculate the

ultimate-pit. In the implementation of the SLM paradigm, this module helps in the

evaluation of additional drilling by identifying sampling regions that are not rele-

vant to the mining sequence. The mineable limits can be also implemented along

with other algorithms such as Lerchs-and-Grossmann or Floating Cone to reduce
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Figure A.2: Cross sections, east-west (top) and north-south (bottom), of mineable
limits calculated based on initial topography and geometric mining constraints.

the computation time required to calculate the ultimate-pit.

A.1.2 Program 2: Ultimate-Pit

This program calculates the ultimate-pit. The calculation of an initial ultimate-pit

consists of an iterative process, where the algorithm searches and extracts cones

with the largest revenue taking into account the specified mining conditions. The

algorithm stops when there are no more cones with positive revenue. In this module,

the use of large volume cones reduces the flexibility extracting complex geometric

mining regions because the geometry of the mining cuts is mainly dominated by one

large single cone. To deal with this problem, a second algorithm is implemented to

refine the current ultimate-pit. The refining algorithm aims to identify the regions

that do not contribute to the overall revenue.

The input data consists of a 2D map with topographic information, and a 3D

block model with dollar/block values. The dollar/block values need to be calculated

considering the entire block, and not only the proportion below the topographic
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surface. The program internally weights the dollar/block values according to the

initial topographic surface. The program is designed this way to be able to handle

different initial topographic surfaces without having to calculate the dollar/block

values multiple times. The output information consists of a 3D block model, where

the blocks within the ultimate-pit are coded as 1 and the rest of the blocks are 0.

Also, a 2D map with the topographic information after mining the ultimate-pit is

generated. The parameter file template is presented in Figure A.3.

Figure A.3: Parameter file template of ULTIMATEPIT.

An example is presented in Figure A.4. The black blocks represent the ultimate-

pit and the gray blocks represent the region that is within the preliminary limits

but is rejected in the refining process. The inclusion of the gray blocks as part of

the ultimate pit leads to a reduction of the overall revenue of the project.

Unlike the conventional Floating Cone algorithm that extracts cones in speci-

fied directions and requires multiple passes to increment its efficiency, the module

to calculate the ultimate-pit limits searches and extracts cones based on a unique

indexed search, thus requiring only one pass.
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Figure A.4: Cross sections, east-west (top) and north-south (bottom), of unrefined
and refined preliminary ultimate-pit.

A.1.3 Program 3: Mining Sequence

This program calculates the mining sequence based on the the ultimate-pit. The

input information consists of a target ore tonnage and ore type to be mined in each

period along with the operating specifications. The number of periods is obtained by

dividing the tonnage of ore material in the ultimate-pit by the targeted ore tonnage

per period. The calculation of the mining cut of a period consists of evaluating

different geometric configurations of mining cuts that satisfy the specified mining

conditions. Among all the alternatives, the mining cut that yields the maximum

revenue is selected as the mining cut for the current period. This evaluation process

is repeated until the ultimate-pit is mined. The geometry of the mining region can

consist of complex shapes and sub-regions. The fragmentation of the mining regions

is controlled by a parameter.

The input data consists of a 2D map with topographic information, and a 3D

block model with dollar/block, block density, and material type information. The
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dollar/block values should be calculated considering the entire block. The output

information consists of a 3D block model. The blocks are coded based on the period

number in which they are expected to be mined. Also, a set of 2D maps with

topographic information at the end of each period is calculated. The parameter file

template is presented in Figure A.5.

Figure A.5: Parameter file template of MININGSEQUENCE BC.

In Figure A.6, two cross sections of a mining sequence are presented. The result-

ing scheduling of the ore material satisfies the ore tonnage constraint per period.

This mining sequence serves as a reference to design the operational mining se-

quence, where the proportions of ore and waste over the lifetime of the project are

kept consistent within period intervals so that the loading and hauling equipment

can handle the mining properly.

A.2 Comparison of Algorithms Based on Ultimate-Pit

Revenue

For verification purposes, the ultimate-pit program based on the ISFC algorithm

is compared against the versions based on conventional algorithms, Lerchs-and-
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Figure A.6: Cross sections, east-west (top) and north-south (bottom), of mining
sequence.

Grossmann and Floating Cone. The ultimate-pit programs based on the conven-

tional algorithms are from the commercial software package MineSight. The con-

ventional algorithms are considered referential to measure the performance of ISFC

algorithm to calculate the ultimate-pit. In the comparison, 25 block models at a

resolution of 100 × 60 × 40 blocks are generated based on unconditional simulated

realizations. An initial topographic surface is used to set the initial state of the de-

posits before the mining takes place and a constant density of 1MT/m3 is assigned

to all the material below the topographic surface. A pit slope of 45 is considered as

the mining geometric constraint.

To assess the performance of the ISCF ultimate-pit, its revenue is compared to

the revenues of the Floating Cone and Lerchs-and-Grossmann ultimate-pits. The

comparison focus on finding the gap of the heuristic algorithms with respect to the

optimal results. For each of the 25 realizations, proportions of revenue of ISCF and

Floating Cone ultimate-pits are calculated with respect to Lerchs-and-Grossmann
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revenue. On average, the ISFC algorithm performs bettern than Floating Cone.

In the example (Figure A.7), the revenue of the ISFC algorithm is 97.4% of the

Lerchs-and-Grossmann revenue compared to 92.1% for Floating Cone. The ISFC

algorithm also provides a smaller variability in the proportions of revenues compared

to Floating Cone.

Figure A.7: Comparison between ISFC and Floating Cone algorithms in terms of
approximation to optimal revenue.

The performance of the ISFC algorithm depends on the refining parameters. The

number of refining periods is important as it has a direct effect in the revenue of

the ultimate-pit. To illustrate the effect of increasing the number of refining periods

in the performance of the ISFC algorithm, six values are tested, from 10 to 20 at

intervals of 2. In Figure A.8, a boxplot of the proportions of ISFC revenues with

respect to Lerchs-and-Grossmann revenues is presented. The groups of proportions

of ISFC revenues are labelled from ISFC10 to ISFC20, where the last two digits

indicate the value of the number of refining periods considered. The proportion of

revenues of the initial ultimate-pit is labelled as Pre-ISFC. On average, even the

initial ISFC ultimate-pit performs better than Floating Cone ultimate-pit, however,

the variability of the revenues is higher. The implementation of the refining algo-

rithm results in an improvement in the performance of the ISFC algorithm. The
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effect in the improvement of the performance of ISFC algorithm is not linear. It

slowly approaches to the optimal revenue and reduces the variability of the revenues.

For the 25 realizations, a preferable value for the number of refining periods is 14.

Beyond this point, incrementing the number of refining periods does not produce

significant improvement in the revenues.

Figure A.8: Comparison of Floating Cone and ISFC with different number of refining
periods.

In terms of the computation time required, the ISFC algorithm using 20 refin-

ing periods is slightly faster than Floating Cone but much faster than Lerchs-and-

Grossmann.
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