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Oil Sands Research and Information Network 

The Oil Sands Research and Information Network (OSRIN) is a university-based, independent 

organization that compiles, interprets and analyses available knowledge about managing the 

environmental impacts to landscapes and water affected by oil sands mining and gets that 

knowledge into the hands of those who can use it to drive breakthrough improvements in 

regulations and practices.  OSRIN is a project of the University of Alberta’s School of Energy 

and the Environment (SEE).  OSRIN was launched with a start-up grant of $4.5 million from 

Alberta Environment and a $250,000 grant from the Canada School of Energy and Environment 

Ltd. 

OSRIN provides: 

 Governments with the independent, objective, and credible information and 

analysis required to put appropriate regulatory and policy frameworks in place 

 Media, opinion leaders and the general public with the facts about oil sands 

development, its environmental and social impacts, and landscape/water reclamation 

activities – so that public dialogue and policy is informed by solid evidence 

 Industry with ready access to an integrated view of research that will help them 

make and execute environmental management plans – a view that crosses disciplines 

and organizational boundaries 

OSRIN recognizes that much research has been done in these areas by a variety of players over 

40 years of oil sands development.  OSRIN synthesizes this collective knowledge and presents it 

in a form that allows others to use it to solve pressing problems. 
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REPORT SUMMARY 

The Alberta oil sands provide a major benefit to the province as an economic driver.  At the 

same time, their responsible exploitation, particularly in mitigating the environmental impact of 

oil extraction stands as a significant challenge to be addressed.  One of the most contentious 

aspects is the reclamation of tailings ponds, vast reservoirs of post-processing water and solids 

mixed with a variety of industrial compounds.  Microbiological processes from bacteria and 

archaea have been previously shown to be at play in the tailings ponds and are factored into 

plans for their reclamation.  However, the impact of microbial eukaryotes, known in all other 

environments to play a role in the food web, has been relatively poorly addressed.  This will be 

important to know, particularly in light of end pit lake plans for reclamation moving forward. 

To better understand the microbial communities in the tailings ponds for improved reclamation 

planning, we have begun using next generation sequencing (NGS) methods to understand the 

microbial eukaryotic communities present in tailings.  We also compare results from two 

different NGS strategies, metagenomic versus amplicon based, to assess a productive strategy for 

analyses going forward. 

Metagenomic data sequenced using the Illumina platform from a tailings sample were obtained 

via the Hydrocarbon Metagenomics project.  Amplicon data were generated in the lab from 

extracted genomic DNA from the same environmental sample that generated the metagenome 

data and sequenced using the Illumina platform.  Informatic analyses of these datasets were run 

to obtain ecological measures (rank abundances, diversity indices, taxonomic affiliation). 

Both the metagenomic and amplicon datasets confirmed the presence of a diverse community of 

microbial eukaryotes in the tailings.  The overall taxonomic affiliations of the sequences were 

broadly consistent.  However, the amplicon-based study gave vastly more data than the 

metagenomic one, showing a large additional set of low abundance organisms present in the 

sample. 

The community of microbial eukaryotes in the tailings pond is real, non-trivial and diverse.  The 

breadth of the community within different ponds, at different spatial distributions and seasons 

should be explored to better understand the extent of what is present and how it changes 

periodically through the year so as to better plan reclamation efforts. 

The amplicon-based analysis gave ~1,600x more data and revealed a much more complex 

picture of eukaryotic diversity.  While metagenomic approaches give a broader picture of all 

genes from all microbes in the environment, for the specific question of assessing eukaryotic 

diversity an amplicon based approach is recommended at the present time. 
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1 INTRODUCTION 

1.1 Tailings Ponds and Microbiology for  Reclamation 

The Alberta oil sands are one of the biggest deposits of bitumen in the world, extending over 

77,000 km
2
 and distributed in three geographic areas: Athabasca, Cold Lake, and Peace River 

(Chalaturnyk et al. 2002).  They consist of a mixture of highly viscous semi-solid crude oil, 

quartz, silts, clay, and water (Chalaturnyk et al. 2002).  These reserves are one of the most 

important suppliers of U.S. oil, and contain about 26,798 m
3
 (169 billion barrels) of bitumen 

(Energy Resources Conservation Board 2012), which is of a comparable magnitude to the 

world’s reserves of conventional petroleum.  The oil sands are a substantial driver for the 

Canadian economy.  In 2012-13, royalties from the oil sands were $3.56 billion, and in 2012 the 

energy sector accounted for over 22% of Alberta's GDP (Government of Alberta 2014).  The oil 

sands therefore have global significance as energy reservoirs and economic drivers.  However, 

their exploitation is also a source of environmental concern. 

During the process of extraction of mined oil sands, steam, solvents and/or hot air are injected to 

reduce the viscosity of bitumen and mechanical energy is used to separate the different 

components (Clark and Pasternack 1944).  As result, a very large volume of sludge and 

wastewater with byproducts from the extraction process such as phenolic compounds, polycyclic 

aromatic hydrocarbons (PAHs) and naphthenic acids is produced (Nix and Martin 1992), and 

retained on site in tailings ponds that occupy 176 km
2
 (Canadian Association of Petroleum 

Producers 2014), and contain a total volume of 720 million m
3
 (Simieritsch et al. 2009). 

Options to reclaim tailings include: (1) placing tailings in mined-out pits and capping them with 

water to form a lake (Hrynyshyn 2012); and, (2) drying the tailings through a variety of 

processes and capping with a soil cover to create wetland or upland ecosystems.  In both cases 

the resulting environment is likely to be exposed to process-affected water (OSPW).  Therefore 

understanding the starting composition of organisms within the tailings ponds is an important 

first step in reclamation planning. 

Understanding the role of microbially driven processes is an integral part of reclamation efforts.  

Extensive work on the prokaryotic communities of the tailings ponds has demonstrated the role 

of microbes in both the beneficial settling of tailings solids and degradation of hydrocarbon 

(Siddique et al. 2006) and byproducts, and the detrimental production of greenhouse gasses 

(e.g., H2S)(Siddique et al. 2010).  Recently, the microbial communities have been examined in a 

more global way via the use of Next Generation Sequencing (NGS) technologies to describe the 

entire communities of the tailings ponds (An 2013). 

1.2 Microbial Eukaryotes and Their Roles in the Environment 

All of the efforts summarized above have focused on the prokaryotic (bacterial and archaeal) 

components of the communities, leaving aside microbial eukaryotes.  However, it is clear that 

eukaryotes play key roles in microbial ecosystems as primary producers (photosynthesis and 

incorporation of nutrients), decomposers, or predators that regulate prokaryotic populations 
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(Walker et al. 2011).  They also participate in mutualistic or parasitic relationships with 

eukaryotes on the higher levels of the food web.  In marine environments, all of these complex 

interactions have been dubbed the microbial loop (Azam et al. 1983, Fenchel 2008). 

Various environments including freshwater, soil, and marine have been studied for their diversity 

of microbial eukaryotes (e.g., Bailly et al. 2007, Lovejoy et al. 2006, Richards et al. 2005).  

However, comparatively less has been established about the microbial eukaryotes in 

environments that have been anthropogenically influenced. 

1.3 Microbial Eukaryotes and Their Roles in Petrochemical Impacted Environments 

A few studies have examined the effect of petrochemicals, primarily on phytoplankton, in 

oceanic environments (e.g., Ozhan et al. 2014).  Microcosm work showed that introduction of 

crude oil was generally harmful to most phytoplankton groups, and the dispersants were highly 

toxic (Ozhan and Bargu 2013, Pickney 2012).  Surprisingly, this effect was non-uniform across 

taxa and some groups (e.g., the diatom Pseudonitzia spp.) actually showed improvement upon 

addition of the oil (Pickney 2012).  Starting conditions of the microcosms, such as seasonality, 

type of oil added, and nutrient content all affected the results (Ozhan and Bargu 2013).  This 

highlights the fact that addition of hydrocarbons in an environment will affect community 

structure, but not necessarily in a straight forward or easily predictable manner.  It also raises the 

possibility that petrochemical-enriched environments could allow the growth of previously 

uncharacterized organisms that, in other environments, would be outcompeted. 

Additionally, examination of the organisms showed that the addition of hydrocarbons to the 

media or microcosm can produce alternations at the genetic and cellular level.  It was shown that 

hydrocarbons can cause modification in organellar function, with plastids
1
 being most heavily 

affected (Wang and Zheng 2008).  Early experiments also showed that ciliates
2
, when grown in 

the presence of crude oil, showed modified endomembrane organelles (Wyndham and Costerton 

1981).  Of particular relevance to the tailings ponds, it was shown that PAHs caused a reduction 

in expression of genes responsible for photosynthetic or cell division in diatoms (Bopp and 

Lettieri 2007).  This gives rise to the hypothesis that organisms found living in hydrocarbon-

enriched environments such as the tailings ponds may well exhibit unusual cell biology either as 

short-term responses to stimuli (altered gene expression) or due to long-term adaptation 

(genomic changes). 

We have recently reported the first description of microbial eukaryotic communities in the 

tailings ponds (two ponds, from two different companies) using whole community molecular 

ecological methods (Aguilar et al. submitted).  Therein we showed the communities not only 

existed, but were diverse, and dominated by taxa normally found in marine environments.  This 

is consistent with the high salinity of the ponds themselves and with the prokaryotic communities 

characterized from these sites (An et al. 2013).  Some of the eukaryotic sequences identified 

                                                 

1 See http://en.wikipedia.org/wiki/Plastid 

2 See http://en.wikipedia.org/wiki/Ciliate 

http://en.wikipedia.org/wiki/Plastid
http://en.wikipedia.org/wiki/Ciliate
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were highly similar to those found in other environments previously, but others differed and 

could only be placed as members of larger clades, thus suggesting that novel organisms exist in 

these environments.  This study was greatly facilitated by the recent advances in DNA 

sequencing technology and their application in microbial ecology. 

1.4 Metagenomic vs. Amplicon Based NGS Strategies For Microbial Ecology 

The field of microbial ecology is currently undergoing a revolution, stemming from this adoption 

of new DNA sequencing technology.  The traditional approach to study microbial communities 

was the use of cultures and microscopy, which are laborious and time consuming.  Furthermore, 

these methods are strongly biased as many species cannot be easily grown in culture conditions.  

Incorporation of molecular methods enabled the use of multiple cloning, PCR and Sanger 

sequencing to characterize microbial communities, certainly an improvement over visual 

techniques alone.  However, the advent of next generation sequencing (NGS) has reduced the 

costs and processing time of the samples, enabling a more in-depth knowledge of microbial 

communities, and detecting even the rarest organisms. 

There are two predominant approaches to using NGS to address questions of microbial ecology, 

metagenome- and amplicon-based.  Each holds theoretical advantages and disadvantages.  The 

use of metagenomes has the advantage of being a more unbiased approach.  As this strategy is 

based on random sequencing across all genomes present in the sample, information is obtained 

about bacteria, archaea and eukaryotes simultaneously.  It also provides information about both 

functional genes and taxonomically useful regions.  On the other hand, the amplicon strategy 

consists of the use of primers to amplify a specific region of the genome using the polymerase 

chain reaction (PCR).  The small subunit ribosomal DNA (ssu rDNA) gene is most commonly 

used due to its historical use as a taxonomic marker and thus the extensive reference databases 

available against which to compare the obtained information for identification.  This approach 

has the advantage of allowing for specificity in the question being asked as the primers can 

effectively target given taxonomic groups (e.g., eukaryotes to the exclusion of bacteria or 

archaea).  However, primers may also have differential affinity for particular groups and so 

biases can exist that over-represent some organisms and exclude others.  Both methods are 

compatible and together provide a more complete view of the community. 

1.5 Research Objectives 

In this report we address two related questions: 

1. What information can be obtained about the microbial eukaryotic communities of the 

tailings ponds using NGS? 

2. What are the relative advantages of amplicon and metagenomic NGS strategies 

going forward.  Should one be used to the exclusion of the other to describe tailings 

pond microbial eukaryotic communities? 
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2 METHODS 

2.1 Sample Description 

2.1.1 Site Information 

To make our analysis as comparable as possible, we analyzed samples from the same source, the 

pipe transferring tailings from Mildred Lake Settling Basin (MLSB) to West In-Pit (WIP)
3
, 

operated by Syncrude Canada Ltd.  Access to the metagenome data and the extracted whole 

genomic DNA from this sample was generously provided by Dr. Julia Foght, University of 

Alberta, under the auspices of the Hydrocarbon Metagenomes
4
 project (Genome Canada). 

2.1.2 Sequencing Information for Metagenome and Amplicon Samples 

DNA was extracted and the metagenome was sequenced as previously described (An et al. 

2013).  Genomic DNA was amplified using universal primers for the V4 region of the small 

subunit of the ssu rDNA gene of eukaryotes (Stoeck et al. 2010), and using the following PCR 

conditions 95 °C for 5 minutes, 10 cycles of touchdown PCR
5
: 95 °C for 30 s, 60 °C for 30 s 

(decreasing at 0.5 °C/cycle), and 72 °C for 30 s, 30 cycles of regular PCR: 95 °C for 30 s, 55 °C 

for 30 s, and 72 °C for 30 s, 72 °C for 5 minutes.  Amplicon libraries were created according to 

published protocols (16S Metagenomic Sequencing  Library Preparation document
5
) and 

sequenced along with 20% PhiX control at 9pM on an Illumina MiSeq using a 500 cycle v2 kit 

for a paired end 250 bp run.  Importantly, we analyzed both a metagenome and amplicon study 

derived by Illumina sequencing, so as not to introduce sequencing platform as a variable into the 

study. 

2.1.3 Bioinformatic Analyses of the Obtained Sequences 

The metagenome has been assembled using CLC Genomics Workbench and is publically 

accessible in IMG-ER under the accession number JGI ID Ga0010868.  The V4 amplicon 

sequences were bioinformatically processed following several steps using the software Mothur.  

Firstly, a quality filtering based on removing any sequences that were too short or contain 

misreads, ambiguous bases, or long homopolymers was carried out.  After that, potential 

chimaeric sequences formed by two pieces from different organisms, were identified and 

removed.  Finally, sequences were compared to an existing database (SILVA
6
) of classified 

sequences to assign a taxonomic placement using BLAST
7
. 

                                                 

3 Longitude 111.55 W and latitude 57.02 N 

4 See http://www.hydrocarbonmetagenomics.com/ 

5 See http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html  

6 See http://en.wikipedia.org/wiki/Touchdown_polymerase_chain_reaction  

6 See http://www.arb-silva.de/  

7 See http://blast.be-md.ncbi.nlm.nih.gov/Blast.cgi  

http://www.hydrocarbonmetagenomics.com/
http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html
http://en.wikipedia.org/wiki/Touchdown_polymerase_chain_reaction
http://www.arb-silva.de/
http://blast.be-md.ncbi.nlm.nih.gov/Blast.cgi
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Once classified, the composition and abundance of the samples were evaluated.  Statistical 

analyses were performed using the package vegan from R.  Measures for richness and diversity 

(i.e., Shannon and Simpson indexes) were calculated and the structure of the communities was 

studied using plots with the relative and absolute abundances of the taxonomical groups. 

2.2 Total ssu rDNA Sequences and Eukaryotic ssu rDNA Sequences per Sample 

The small subunit ribosomal DNA gene was used to assess the microbial community in both the 

metagenomic and amplicon samples.  While this is the gene targeted in the amplicon-based 

studies, in the case of the metagenomic sample, this information was extracted from the IMG 

database
8
.  We then went on to assess the total number of sequences, and relative classifications 

of the sequences based at the level of taxonomic Domains (Bacteria vs Archaea vs Eukaryotic) 

and within eukaryotes. 

One of the theoretical advantages of an amplicon-based study is the increased depth of coverage 

of the gene of interest.  Consistent with this, the amplicon sample contained 28,271 SSU 

sequences, while the metagenome contained 248 ssu rDNA sequences.  Of those sequences, all 

28,271 of the SSU sequences in the amplicon sample were eukaryotic SSU sequences, as 

compared to only 17 of the sequences derived from the metagenome. 

3 RESULTS 

3.1 Classification 

The ssu rDNA sequences were classified against the SILVA database, at the third level of 

classification.  This gives an intermediate picture – neither too big nor overly specific in the 

taxonomic assignment. 

3.1.1 Proportion of Bacterial vs. Archael vs. Eukaryotic 

The amplicon-based study was performed using eukaryote specific primers.  This approach was 

successful, and yielded no prokaryotic sequences in our analysis.  By contrast the metagenome 

gave a picture of the overall microbial community, with only 6.85% of the sequences being 

derived from eukaryotes (Figure 1). 

                                                 

8 See http://img.jgi.doe.gov/ 

http://img.jgi.doe.gov/
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Figure 1. Relative proportion of total ssu rDNA sequences classified by domain. 

This graph shows the percentages of bacterial, archael and eukaryotic ssu rDNA 

sequences present in the MLSB metagenome dataset. Note that the number of non-

eukaryotic ssu rDNA sequences in the amplicon dataset was 0 and thus the data are 

not shown. 

3.1.2 Classification of Eukaryotic Sequence at Level 3 of SILVA Database 

Both Shannon and Simpson diversity indexes (Table 1) were calculated for the two samples 

studied.  The metagenome showed a much lower richness value (number of taxonomic groups 

present in the sample), but higher diversity indexes (measures of how evenly the organism are 

distributed across the groups present in the sample).  This can be explained by the lower capacity 

of the metagenome to detect rare organisms.  Rare groups contain a much lower proportion of 

the organisms that affect the diversity measurements when put together with the most abundant 

groups.  These results are consistent with the rank abundance plots of the two samples (Figure 2). 

Table 1. Diversity indexes for the metagenome and amplicon samples. 

 Metagenome Amplicon 

Richness 44 8 

Shannon index 1.931598 1.756537 

Simpson index 0.8208465 0.7681661 
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Figure 2. Rank abundance plots of metagenome and the amplicon samples based on SSU 

classification using SILVA database. 

The horizontal axis represents the abundance rank. The most abundant taxon is given 

rank 1, the second most abundant is 2, etc. 

The vertical axis represents relative abundance of the taxa.  The metagenome sample 

showed a curve with a shorter tail than the amplicon sample, suggesting a more even 

distribution of the groups in the later case. 

Accumulation curves (Figure 3) were also calculated for both samples.  This allowed us to assess 

the extent to which the study has been exhaustive and how close are our results to the true 

numbers of the organisms present in the tailings ponds.  The curve for the amplicon dataset was 

much closer to reaching a horizontal asymptote than was the metagenome dataset.  This clearly 

shows that the amplicon analysis is a more exhaustive method and provides much more detailed 

information about the eukaryotic community than the metagenome. 
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Figure 3. Accumulation curves for the metagenome (top) and the amplicon sample (bottom) 

based on SSU classification with SILVA. 

The horizontal axis represents the number of sequences considered and the vertical 

axis the number of accumulated taxa.  Sequences were randomized 100 times and the 

accumulated numbers of taxa with an increasing number of sequences were 

calculated.  The solid lines represent the accumulation curves obtained with the 

“exact” method of the “specaccum” function from the R package vegan, and the 

textured areas correspond to their standard deviations. 
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3.2 Comparisons of Community Structure and Hypothesis Generation 

The classification of sequences using SILVA database (Figures 4 and 5) showed that in both the 

metagenome and the amplicon-based analyses Nucletmycea LKM11, Cercozoans, Fungi and 

Chlorophyta are dominant groups.  However, the amplicon analysis also revealed a higher 

number of low abundance groups of organisms that were not detected in the metagenomic 

analysis. 

 

Figure 4. Relative abundance of eukaryote groups found in the tailings ponds amplicon (left) 

and metagenome (right) sample based on a SILVA classification of the SSU. 
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Figure 5. Absolute abundance of eukaryote groups found in the tailings ponds amplicon and 

metagenome sample based on a SILVA classification of the SSU. 

4 DISCUSSION 

This report provides the first analysis of metagenomic versus amplicon-based data of microbial 

eukaryotes from a tailings pond.  Importantly for comparability, we used samples from the same 

tailings pond and as far as possible used the same analytical tools and assessment measures 

between the samples.  Overall, the work reinforces the findings, from metagenomic data alone 

(Aguilar et al. submitted), that diverse microbial eukaryotes are present within the ponds and 

thus need to be taken into account when considering the overall microbial community. 
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It is worth noting that the major groups of organisms identified in both samples were consistent.  

This was despite the massive difference in the total number of eukaryotic ssu sequences sampled 

in the two datasets (Figure 5).  Overall this trend suggests that the initial glimpse shown by the 

metagenome dataset is still representative of the overall microbial eukaryotic community.  What 

is missing is the extent to which the groups dominate and the tail of vastly lower abundance 

organisms also present in the sample.  These low abundance groups may nonetheless be 

important, as we currently have no information about the community dynamics of the tailings 

ponds due to physical stratification of the ponds, or seasonality. 

It is tempting to interpret the identity of the organisms found in the samples in the light of the 

chemistry of the tailings ponds.  However, given these results are only from a single 

metagenome and amplicon-based sample, care should be taken in doing so.  This is even further 

reinforced by the fact that using a different database, somewhat different taxonomic assignments 

were made for the same metagenome sample.  Further investigation into the effect that the choice 

of database plays on taxonomic assignment is warranted, as is more robust assignment of the 

sequences by phylogenetic analysis. 

What is clear is that regardless of the precise taxonomic assignments, the microbial eukaryotic 

communities are complex and warrant much more extensive investigation.  

4.1 Advantages of Amplicon Data 

The second aim of the project was to assess the relative strengths and weaknesses of 

metagenomic versus amplicon-based strategies to studying the microbial eukaryotic community 

of the tailings ponds.  The advantages of using amplicon-based approaches to assess microbial 

eukaryotic communities are manifest in this report.  Due to the focus on a single region of a 

single gene, equivalent sequencing efforts are able to yield far greater depth into the overall 

community.  The 1/12 of the MiSeq run
9
 here yielded ~1,600 times more sequences than the 

metagenome dataset.  Thus while the metagenome did show that microbial eukaryotes are 

present, the amplicon data enabled an assessment far deeper into the abundant and the rare 

members of the community.  It also gave a more complete picture of the community, reaching 

near saturation in the accumulation curves, while the metagenome clearly just scratched the 

surface. 

As well, since the amplicon data are derived from the homologous region of the ssu rDNA gene, 

the sequences are directly comparable at the operational taxonomic unit (OTU) level.  

Unfortunately, due to time considerations and limits on computational resources, the OTU 

analyses were not possible to include in this report.  Theoretically, these would give far more 

precision in the assessment of abundance, as compared to metagenomic data. This is because, 

due to the random nature of metagenomic data, the sequence obtained for a given ssu rDNA gene 

does not necessarily correspond to the same region in every case.  Consequently, sequences that 

                                                 

9 As the library reported here was run along-side 11 others, it corresponds to 1/12th of the total sequence obtained in 

that sequencing run. 
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share the same taxonomic classification at a given rank might not be the same actual organisms 

or could in fact be portions of the same individual sequence. As future analyses move into 

comparisons of fine-scale spatial distribution (vertical and horizontal) within a given pond (and 

thus potentially an assessment of succession as tailings are added over time), seasonality within 

the same pond, or between ponds, it will be even more important to be able to assess whether the 

same organisms versus the same types of organisms are responsible for differences between 

samples. 

4.2 Advantages of Metagenome Data 

Although amplicon-based data have clear advantages, there are other theoretical advantages to 

taking a metagenomic approach.  Firstly, is the issue of bias.  Because amplicon-based studies 

are based on an initial PCR step, this introduces a danger of primer bias.  As metagenomic data 

uses total DNA this risk is eliminated.  Furthermore, because of the amplicon study design, 

eukaryotic sequences alone were targeted.  This yielded vastly more depth of enquiry into the 

sample.  However, the whole metagenome provided information about the bacterial, archaeal and 

eukaryotic components, thus giving a broader view of the microbial community.  Finally, 

although not utilized in this study, the metagenome does give information beyond the one gene 

of interest.  For enzyme discovery, particularly where the taxonomic information is less central 

to the question being asked, a metagenomic approach obviously yields far more relevant 

information. 

Although the fact that the metagenomes do not always give sequence information for the same 

region of the ssu rDNA gene can be a disadvantage limiting analyses at the OTU level, in some 

cases it can yield more sequence data for the gene of interest than an amplicon-based strategy, 

which is intentionally limited to the V4 region.  As more sequence can give more phylogenetic 

information, this can lead to greater precision to the taxonomic assignment of a given sequence.  

As an example, in the recent metagenomic study of tailings ponds (Aguilar submitted), it was 

possible to use all sequences over 1,000 bp in length found in the metagenomes and subject them 

to phylogenetic analysis.  To perform an equivalent study starting from an amplicon-based 

strategy, this would require follow-on experiments using PCR to obtain the entire sequence 

before being able to do phylogenetic placement or identification of the cell by fluorescence in-

situ hybridization. 

5 CONCLUSIONS 

We have here demonstrated the feasibility and utility of metagenomic and amplicon-based 

strategies to understanding microbial eukaryotic communities in tailing ponds.  These 

components, although of relatively low abundance compared with prokaryotes, are diverse and 

non-trivial and thus should be taken into consideration in any future assessments of microbial-

based strategies for management and reclamation. 

Metagenomic and amplicon-based analyses have both theoretical and demonstrated strengths in 

assessing the microbial communities in the tailings ponds.  The value of their respective use 

depends in large part on the question being asked.  For assessments of community structure of 
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microbial eukaryotes only, a targeted amplicon-based strategy is clearly superior.  For 

assessments of the entire community, it is possible that an amplicon-based strategy with 

universal primers (i.e., those that can amplify both prokaryotic and eukaryotic sequences) is 

advisable.  If information beyond the taxonomic composition of the environment is required, 

then the metagenomic approach begins to be more attractive.  In such a case, far more depth of 

sequencing of each individual sample would likely be advisable in order to overcome the 

relatively shallow picture obtained in the single metagenome that was analyzed here. 
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7 GLOSSARY 

7.1 Terms 

Accumulation Curve 

The more intensively a community of organisms is studied, the more likely it is to find a higher 

number of the organisms that are actually present.  The accumulation curve is a graphical 

representation of the number of taxonomical groups found using a given sampling effort.  The 

probability of finding new organisms progressively decreases as our knowledge about the 

community grows.  In other words, the more we know about the system, the more difficult it gets 

to learn something new.  This causes the curve to have a flattened appearance (saturation) when 

most of the taxonomical groups are found. 

Amplicon 

Region of DNA produced via an amplification reaction, in this case by a polymerase chain 

reaction. 

Archaea 

One of the three fundamental “Domains” of life, as assessed by phylogenetic methods that judge 

genetic distance and by a suite or shared morphological features that are exclusive to these 

organisms.  These cells lack a nucleus enclosed by a membrane.  They possess lipids that are 

based on an ether linkage of their acyl-glycerides to the phosphate backbone and possess a 

specialized isoprenyl lipid. 

Base Pair 

DNA is assembled of polymerized deoxyribonucleic acids (referred to as a base).  Each DNA 

chain is composed of two polymers whereby the corresponding subunits interact or pair-up via 

hydrogen bonds.  The unit of two bases that are bonded, one on each chain, are deemed a base 

pair. 

Bioinformatic 

The use of computational methods to analyze biological information, in this case DNA sequence. 

Often this involves large-scale analyses of data and may involve programming or modification of 

scripts for use on computational clusters, rather than the use of ‘out of the box’ software. 



 

16 

Chimaeric Sequence 

In the sequencing process, using a “paired end read” approach, the same DNA molecule is read 

from both ends (5’ and 3’).  Therefore an important step of the post-processing bioinformatic 

analysis is pairing up of sequences that the correct reads from both ends of the same DNA 

molecule.  In cases where the program incorrectly assembles reads from two different molecules 

and treats it as a new or unique sequence, this is deemed a chimaeric sequence. 

Clade 

All organisms that are the descendents of a common ancestor. 

Eukaryote 

One of the three fundamental “Domains” of life, as assessed by phylogenetic methods that judge 

genetic distance and by a suite or shared morphological features that are exclusive to these 

organisms.  Although defined by the presence of genomic DNA enclosed by a double lipid 

bilayer (the nuclear envelope/endoplasmic reticulum), the presence of other organelles such as 

the Golgi body, mitochondria-related organelle, endosomes are also often taken as pan-

eukaryotic features. 

Homopolymer 

Any substance that is composed of a single repeating subunit.  In this case, this refers to regions 

of DNA that have the same single DNA base in succession. 

Metagenome 

The composite assemble of all genomic DNA, from many different organisms, found in an 

environment. 

Next Generation Sequencing 

Refers to a set of post-sanger sequencing methodologies that produce large numbers of, often 

short, reads.  Also treated as synonymous with “high through-put” sequencing.  In this case we 

use the Illumina platform. 

Operational Taxonomic Unit (OTU) 

This term describes a proxy for “species-level” identity in DNA sequences derived from the 

environment, where the organisms from which the DNA was taken were not identified.  An OTU 

made up of numerous sequence “reads” would be regarded as representing numerous instances 

of the organism from which the DNA sequence came.  However in cases where an organism has 

more than one copy of the DNA sequence, there may not be a linear 1:1 match between number 

of reads and number of organisms. 

Paired End 

Protocol for next generation sequencing where the same molecule is sequenced from both 

directions and the reads are matched. 
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Prokaryote 

Cells that do not have their genomic DNA enclosed by a membrane.  Can be either Bacteria or 

Archaea. 

Richness 

The total number of taxonomical groups present in a community. 

Sequence 

The order of bases in a DNA chain or molecule. 

Shannon Index 

A measure of diversity that simultaneously takes into account how many taxonomical groups are 

present and how evenly distributed the organisms are across the groups.  The index increases 

both with an increasing number of groups and with a more uniform distribution of the organisms 

between the groups.  It is a measure of entropy in the system, as the higher the number of groups 

and the more equally distributed the individuals between the different groups the more difficult is 

to predict to which group one randomly selected individual belongs to.  The formula used for its 

calculation is: 

 

Where R is the number of groups and p is the number of individuals that belong to each 

group.  

Simpson Index 

A measure of diversity based on similar principles as the Shannon index.  It is calculated using 

the formula below: 

 

Where R represents the number of groups and p is the number of individuals that belong 

to each group. 

7.2 Acronyms 

bp Base Pairs 

DNA Deoxyribonucleic Acid  
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NGS Next Generation Sequencing 

OSPW Oil Sands Process-affected Water 

OSRIN Oil Sands Research and Information Network 

MLSB Mildred Lake Settling Basin 

PAH Polycyclic Aromatic Hydrocarbon 

PCR Polymerase Chain Reaction 

SEE School of Energy and the Environment 

WIP West In-Pit 
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