

National Library of Canada

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

395, rue Wellington Ottawa (Ontario) K1A 0N4

Your tile Votre reference

Our file - Notre reference

AVIS

NOTICE

The quality of this microform is heavily dependent upon the quality of the original thesis submitted for microfilming. Every effort has been made to ensure the highest quality of reproduction possible.

If pages are missing, contact the university which granted the degree.

Some pages may have indistinct print especially if the original pages were typed with a poor typewriter ribbon or if the university sent us an inferior photocopy.

Reproduction in full or in part of this microform is governed by the Canadian Copyright Act, R.S.C. 1970, c. C-30, and subsequent amendments. La qualité de cette microforme dépend grandement de la qualité de la thèse soumise au microfilmage. Nous avons tout fait pour assurer une qualité supérieure de reproduction.

S'il manque des pages, veuillez communiquer avec l'université qui a conféré le grade.

La qualité d'impression de certaines pages peut laisser à désirer, surtout si les pages originales ont été dactylographiées à l'aide d'un ruban usé ou si l'université nous a fait parvenir une photocopie de qualité inférieure.

La reproduction, même partielle, de cette microforme est soumise à la Loi canadienne sur le droit d'auteur, SRC 1970, c. C-30, et ses amendements subséquents. UNIVERSITY OF ALBERTA

EVALUATION OF LAGOON TREATMENT IN ALBERTA

BY

DENNIS S. PRINCE

IN

ENVIRONMENTAL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING

EDMONTON, ALBERTA

FALL, 1993

National Library of Canada Bibliothèque nationale du Canada

Direction des acquisitions et des services bibliographiques

Acquisitions and Bibliographic Services Branch

395 Wellington Street Ottawa, Ontario K1A 0N4 395, rue Wellington Ottawa (Ontario) K1A 0N4

Your the Votre reference

Our life Notre reference

granted an author has The irrevocable non-exclusive licence allowing the National Library of reproduce, loan, Canada to sell copies of distribute or his/her thesis by any means and in any form or format, making this thesis available to interested persons.

L'auteur a accordé une licence non exclusive et irrévocable la Bibliothèque permettant à de Canada nationale du reproduire, prêter, distribuer ou vendre des copies de sa thèse de quelque manière et sous quelque forme que ce soit pour mettre des exemplaires de cette disposition des la thèse à personnes intéressées.

The author retains ownership of the copyright in his/her thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without his/her permission. L'auteur conserve la propriété du droit d'auteur qui protège sa thèse. Ni la thèse ni des extraits substantiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

ISBN 0-315-88100-3

UNIVERSITY OF ALBERTA RELEASE FORM

NAME OF AUTHOR: DENNIS SCOTT PRINCE TITLE OF THESIS: AN EVALUATION OF LAGOON TREATMENT IN ALBERTA DEGREE: MASTER OF SCIENCE YEAR THIS DEGREE GRANTED: 1993

Permission is hereby granted to the UNIVERSITY OF ALBERTA LIBRARY to reproduce single copies of the thesis and to lend or sell such copies for private, scholarly or scientific research purposes only.

The author reserves other publication rights, and neither the thesis nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission.

mis /

PERMANENT ADDRESS: Box 1177 Glenwood, Alberta TOK 2R0

Date:

Hug. 31, 1993

THE UNIVERSITY OF ALBERTA FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled **An Evaluation of Lagoon Treatment in Alberta** submitted by **Dennis 8. Prince** in partial fulfillment of the requirements for the degree of **Master of Science** in **Environmental Engineering.**

Tomel W. Smit

Daniel W. Smith - Supervisor

Stephen J. Stanley

Nosa 6. Egiebor

Date: <u>August 24, 1993</u>

Dedication

To my wife, Jan, for the encouragement to return to school and the sacrifices made in fulfilling that goal.

Abstract

An in-depth evaluation of municipal sewage lagoon treatment in Alberta was undertaken to establish the performance level of lagoon treatment technology. A common public perception is that lagoons are old technology that just stores the wastewater and little treatment takes place. The purpose of this thesis is to provide a factual evaluation of the actual lagoon performance.

The standards, impacts, concerns, effluent quality, and economics of lagoon treatment are the main topics in this thesis. A literature review provided an overview of lagoon treatment with emphases on their operation in regions where ice cover occurs. The standards of other provinces were summarized and compared to Alberta's standards. Alberta's standards were found to be the most stringent of a *y* province and were the only province requiring anaerobic cells and 365 days of storage.

The areas of concerns and economics were investigated by means of a survey of lagoon operators. The survey results showed that the vast majority of lagoon operators do not receive complaints about lagoon systems. The annoyance complained about the most was odour (17% of sites). The economic analysis demonstrated that lagoons tended to be the least costly treatment alternative but the relationship was sensitive to land value.

The questions of effluent quality and impacts were addressed by analyzing the effluent records for most of the lagoons in Alberta. The lagoons with anaerobic cells and fall discharge produced effluent quality that was superior to mechanical plants for all parameters except TSS. The 4S-2L lagoons with fall discharge and 12 months of storage had an average BOD and TSS of 6 mg/L and 14 mg/L respectively. The consistency of this systems performance is also shown by the 95% confidence limit of the means being 8.2 mg/L and 18.8 mg/L respectively.

A time series sampling program of a discharging lagoon was conducted to ensure effluent quality was homogeneous throughout the discharge and to determine if lagoon records, which consist of grab samples, were representative of effluent quality. Overall it was found that effluent quality was generally consistent over the discharge period. The available lagoon upgrade techniques were reviewed and evaluated for possible application in Alberta. The important factors affecting lagoon treatment were determined to be season of discharge, month of discharge, anaerobic cells and storage time. The lagoon database for effluent quality also provided a means to evaluate the factors affecting lagoon treatment.

The minimal impact and good quality of effluents from lagoons is indicated by the modest dilution ratio required to meet water quality criterion. For lagoon systems with anaerobic cells a dilution ratio of only 1 to 1 required in the fall and a ratio of 10 to 1 is needed in the spring. Mechanical plants require a dilution ratio of roughly 1000 to 1 to meet receiving water criterion.

Acknoledgement

I wish to thank Dr. Dan W. Smith for the guidance and support provided throughout this project. I consider myself fortunate to have had the opportunity to perform this work under his direction. I also wish to recognize Professor Stephen J. Stanley's contribution to this thesis project as an advisor and member of my committee.

The assistance provided by Nick Chernuka and Rob Pyne of the Environment Engineering and Science program was invaluable to the detailed planning and execution of the laboratory portion of this work. The pleasant working atmosphere under which this study was done is a credit to the staff and students of the Environment Engineering and Science program.

The funding for this research project was provided by the Municipal Branch of the Standards and Approvals Division, Alberta Environmental Protection. The cooperation and assistance from that office was greatly appreciated and in particular the support of David Spink, Alvin Beier, and William Lee is recognized.

Lastly, I would like to thank the operators of the many wastewater treatment facilities that took the time to return the survey forms sent to them. The cooperation of the Village of Legal in the lagoon sampling program was also greatly appreciated.

Chapte	er			Page
1.0	OVER	VIEW	OF LAGOON TREATMENT	1
	1.1	Introdu	uction	1
	1.2	Objecti	ive	3
	1.3	History	y	3
	1.4	Techni	cal Aspects	5
		1.4.1	Sedimentation	6
		1.4.2	The Bacteria and Algae Symbiosis	7
			1.4.2.1 Algae	7
			1.4.2.2 Bacteria	10
		1.4.3	Anaerobic Digestion of Settled Organic Solids	11
		1.4.4	Nutrient Removal	12
			1.4.4.1 Nitrogen Removal	12
			1.4.4.2 Phosphorus Removal	14
		1.4.5	Natural Disinfection	15
		1.4.6	Higher Animals	17
	1.5	Factor	s Affecting Lagoon Processes	17
		1.5.1	Temperature	18
		1.5.2	Sun Light	19
		1.5.3	Wind	19
		1.5.4	Ice	20
		1.5.5	Snow Cover	20
		1.5.6	Detention Time	20
		1.5.7	Depth of Cells	21
		1.5.8	Configuration of Storage Volume	21
		1.5.9	Short Circuiting	22

Table of Contents

		1.5.10 Stratification	
		1.5.11 Raw Wastewater Characteristics	
	1.6	Physical Description	
	1.7	Seasonal Variation	
	1.8	Operational Requirements	
2.0	STA	NDARDS AND GUIDELINES	
	2.1	Introduction	
	2.2	Alberta Standards	
	2.3	Comparison to Other Jurisdictions	
	2.4	Summary	
3.0		LYSIS OF LAGOON EFFLUENT QUALITY	
5.0	3.1	Introduction	
	3.2	The Lagoon Database	
	5.2	3.2.1 Representative Sampling of Lagoon Discharges	
	3.3	Data Analysis Technique	
	3.4	Evaluation of Alberta's Lagoon Standards	
	J.4	3.4.1 Lagoon Performance	
		3.4.2 Mechanical Plant Performance	
		3.4.3 Evaluation of Standard Lagoon Effluent Quality	
		3.4.3.1 Lagoons 4S-2L	4.4
		3.4.3.2 Lagoons 2S-2L	
		3.4.3.3 Lagoons, 0S-1L and 0S-2L	
	3.5	Lagoon Treatment	
		3.5.1 Factors Affecting Lagoon Treatment	
		3.5.1.1 Size of System	
		3.5.1.2 Raw Wastewater Characteristics	

			3.5.1.3 Percent of Design Capacity
			3.5.1.4 Geographical Location
			3.5.1.5 Season of Discharge
			3.5.1.6 Month of Discharge
			3.5.1.7 Storage Time
			3.5.1.8 Lagoon Configuration
		3.5.2	Tools For The Evaluation of Significant Lagoon Factors
			3.5.2.1 Student T-Tests
			3.5.2.2 Cumulative Distributions
			3.5.2.3 Quasi-Factorial Analysis 56
		3.5.3	Evaluation of Significant Lagoon Factors
			3.5.3.1 Biochemical Oxygen Demand (BOD) 57
			3.5.3.2 Total Suspended Solids (TSS) 58
			3.5.3.2 Phosphorus (P)
			3.5.3.4 Ammonia
			3.5.3.5 Total Kjeldahl Nitrogen (TKN)60
		3.5.4	Summary
	3.6		riological Effluent Quality
	3.7		
			F LAGOON TREATED EFFLUENT 112
4.0	4.1		luction
			c Health and Wildlife
	4.2		Dilution Ratio
		4.2.1	Effluent Quality
		4.2.2	4.2.2.1 BOD
			4.2.2.2 TSS
			4.2.2.3 Phosphorus115

		4.2.2.4 Nitro	gen 116
		4.2.2.5 TDS	
		4.2.2.6 Total	and Fecal Coliforms
		4.2.3 Lagoon Effli	uent Impacts 118
		4.2.3.1 Lago	oon 0S-2L 118
		4.2.3.2 Lago	oon 2S-2L 118
		4.2.3.3 Lago	oon 4S-2L 118
		4.2.3.4 Activ	vated Sludge Plants
	4.3		Discharge 119
	4.4		Application 120
	4.5		
5.0	CON		
	5.1		
	5.2		
	5.3		ero-Results 132
	0.0		
			Pests
			e134
			nd Seepage135
			uality
	5.4		
6.0			S 142
0.0	6.1		
	6.2		
			ion Costs 143
	6.3	Capital Collstitues	

	6.4	Operating and Maintenance Costs	
	6.5	Present Worth Analysis	145
	6.6	Conclusions	146
7 .0	UPGR	ADE TECHNIQUES	164
	7.1	Introduction	164
	7.2	Available Upgrade Techniques	164
	7.3	Feasible Upgrade Techniques for Alberta	
		7.3.1 Continuous Summer Discharge	167
		7.3.2 Selected Month of Discharge	168
		7.3.3 Discharge Facultative Cell With Fall Discharges	
		7.3.4 In-Pond Chemical Treatment	
		7.3.5 Adding Short Detention Cell	
		7.3.6 Irrigation of Effluent	
		7.3.7 Aquaculture	
		7.3.8 Water Plants	
		7.3.9 Stationary Microscreens	
		7.3.10 Wetlands Treatment	
		7.3.11 Mechanical Microscreening	
		7.3.12 Upgrading to Aerated Lagoon	
		7.3.13 Disinfection	
		7.3.14 Miscellaneous Technique	
	7.4	Conclusions	
8 .0		CLUSIONS AND RECOMENDATIONS	
0.0	8.1	Conclusions	
	8.2	Recommendations	
	8.2	Proposals for Additional Studies	
חררי		ES	
KELL	CREINC		

APPENDIX A - OPERATOR'S SURVEY FORM	188
APPENDIX B - SURVEY RESULTS	191

List of Figures

		Page
Figure 1.1 :	Distribution of Community Sizes	27
Figure 1.2 :	A Schematic Facultative Lagoon	28
Figure 1.3 :	Alberta Environmental Protection's Standards and Guidelines	29
Figure 1.4 :	Lagoon Processes in Summer and Winter Conditions	30
Figure 3.1 :	Legal Lagoon Discharge	70
Figure 3.2 :	Plot of Ln(Mean) Versus Ln(Stdev) to Investigate Transformation	71
Figure 3.3:	Log-normal Distribution of Lagoon Data	72
Figure 3.4 :	Comparison of BOD Concentrations	73
Figure 3.5 :	Comparison of TSS Concentrations	74
Figure 3.6 :	Comparison of P Concentrations	75
Figure 3.7 :	Comparison of Ammonia Concentrations	76
Figure 3.8 :	Comparison of TKN Concentrations	77
Figure 3.9 :	Cumulative Distributions of Lagoons and Plants, BOD	78
Figure 3.10 :	Cumulative Distributions of Lagoons and Plants, TSS	79
Figure 3.11 :	Cumulative Distributions of Lagoons and Plants, P	80
Figure 3.12 :	Cumulative Distributions of Lagoons and Plants, Ammonia	81
Figure 3.13 :	Cumulative Distributions of Lagoons and Plants, TKN	82
Figure 3.14 :	BOD Versus Wastewater Flow 4S-2L	83
Figure 3.15 :	BOD Versus Wastewater Flow 2S-2L	84
Figure 3.16 :	Distribution of Flow/Design Capacity	85
Figure 3.17 :	% Capacity and Seasonal Variations in Effluent Quality	86
Figure 3.18 :	T-tests for % Capacity and Season of Discharge	87
Figure 3.19 :	BOD Versus % Capacity	88
Figure 3.20 :	TSS Versus % Capacity	89
Figure 3.21 :	Map of 4S-2L Spring Discharges	90

Figure 3.22 :	Map of 4S-2L Fall Discharges	91
Figure 3.23 :	T-tests of Geographical Distribution of BOD	92
Figure 3.24 :	T-tests of Geographical Distribution of TSS	92
Figure 3.25 :	Monthly Changes in Effluent Quality 4S-2L Lagoons	93
Figure 3.26 :	Monthly Changes in Effluent Quality 4S-2L Lagoons, T-tests	94
Figure 3.27 :	Monthly Changes in Effluent Quality (Storage Included), T-Tests	
	on BOD	95
Figure 3.28 :	Monthly Changes in Effluent Quality (Storage Included), T-Tests	
-	on TSS	96
Figure 3.29 :	T-tests of Treatment System BOD	97
Figure 3.30 :	T-tests of Treatment System TSS	98
Figure 3.31 :	T-tests of Treatment System P	99
Figure 3.32 :	T-tests of Treatment System Ammonia	100
Figure 3.33 :	T-tests of Treatment System TKN	101
Figure 3.34 :	Cumulative Distribution of Lagoon Systems BOD	102
Figure 3.35 :	Cumulative Distribution of Lagoon Systems TSS	103
Figure 3.36 :	Cumulative Distribution of Lagoon Systems P	104
Figure 3.37 :	Cumulative Distribution of Lagoon Systems Ammonia	105
Figure 3.38 :		
Figure 3.39 :	Half-Normal Plots for BOD	107
Figure 3.40 :	Half-Normal Plots for TSS	108
Figure 3.41 :	Half-Normal Plots for P	109
Figure 3.42	Half-Normal Plots for ammonia	110
Figure 3.43	Half-Normal Plots for TKN	111
Figure 4.1 :	Seasonal Flow Condition of the Bow River at Banff	128
Figure 4.2 :	Dissolved Oxygen Sag Curve	129
Figure 5.1 :	Distribution of the Number of Complaints Related to Lagoons	138

Figure 5.2 :	Distribution of the Severity of The Problem Related to Lagoons	39
Figure 5.3 :	Comparison of Odour Complaints to Size of Population	40
Figure 5.4 :	Comparison of Effluent Quality Complaints to Size of Population	41
Figure 6.1 :	Land Area Requirements for Treatment Alternatives	48
Figure 6.2 :	Land Cost Per Capita for Treatment Alternatives	49
Figure 6.3 :	Capital Construction Costs for Treatment Alternatives	150
Figure 6.4 :	Capital Construction Costs Per Capita for Treatment Alternatives	151
Figure 6.5 :	Operating and Maintenance Costs for Treatment Alternatives	152
Figure 6.6 :	Operating and Maintenance Costs Per Capita for Treatment	
	Alternatives	153
Figure 6.7 :	Operating and Maintenance Manpower Needs for Treatment	
	Alternatives	154
Figure 6.8 :	Distribution of Operating and Maintenance Manpower Needs for	
	Treatment Alternatives	155
Figure 6.9 :	Present Worth Costs for Treatment Alternatives	156
Figure 6.10 :	Present Worth Costs Per Capita for Treatment Alternatives	157
Figure 6.11 :	Indication of Confidence for Present Worth Costs	158
Figure 6.12 :	Indication of Confidence for Present Worth Costs Per Capita	159
Figure 6.13 :	Component and Overall Costs Per Capita for Aerated Lagoons	160
Figure 6.14 :	Component and Overall Costs Per Capita for Lagoons	161
Figure 6.15 :	Component and Overall Costs Per Capita for RBCs	162
Figure 6.16 :	Present Worth Costs Per Capita for Treatment Alternatives (Land	
-	@ \$24,710 Per Hectare)	163

List of Tables

Page

Table 1.1 :	Some Pathogenic Organisms and Their Removal Efficiencies	
Table 2.1 :	Design Criterion for Lagoons	
Table 3.1 :	Legal Lagoon discharge64	
Table 3.2 :	Lagoon Effluent Quality65	
Table 3.3 :	Mechanical Plant Effluent Quality	
Table 3.4 :	Effluent Quality for Populations Over and Under 100067	
Table 3.5 :	Summary of Total and Fecal Coliform Data 68	
Table 3.6 :	Comparison of Coliform Data	
Table 4.1 :	Dilution Required of 0S-2L Lagoon Effluents	
Table 4.2 :	Dilution Required of 2S-2L Lagoon Effluents 124	
Table 4.3 :	Dilution Required of 4S-2L Lagoon Effluents 125	
Table 4.4 :	Dilution Required of AS Plant Effluents	
Table 4.5 :	Tolerance of Selected Crops to TDS127	
Table 5.1 :	Summary of Non-Zero Results	
Table 7.1 :	Upgrading Techniques for Lagoons	
	• •	

List of Plates

Page

1.0 OVERVIEW OF LAGOON TREATMENT

1.1 Introduction

The term lagoon is widely used in society and has a variety of meanings. In this report the term lagoon relates to a shallow earthen basin designed for the purpose of primary and secondary treatment of wastewaters. In particular the report concentrates on its use in the province of Alberta. Other terms used in the literature for lagoons include wastewater ponds, stabilization ponds, and oxidation ponds.

Lagoons are a popular method of treatment and there is substantial literature about all facets of standard lagoon treatment practice but the controlled discharge lagoons used in Alberta are a unique subset of standard lagoons which normally have continuous discharge. Intermittent discharge lagoons are used to avoid effluent discharges during periods of poor effluent quality and low assimilative capacity of the receiving water that occurs in the winter due to ice cover. Not all the characteristics and processes of standard lagoons are applicable or of concern to lagoons with controlled discharge. As this report addresses lagoon treatment in Alberta the scope of the discussion will be focused on intermittent discharge lagoons however where applicable available literature on continuous discharge lagoons will be used to provide insights to many of the processes that are common to both modes of operation.

The public perception is that lagoons are simply wastewater storage facilities which provide little treatment. However, studies have repeatedly determined lagoons to be one of the best treatment alternative for small communities in terms of performance and economics. Many authors have listed the advantages and disadvantages of lagoon treatment and the lists are all very similar to one another. The following is a list developed from Karn (1979):

l

<u>ADVANTAGES</u>

- low energy usage
- reduced lab costs
- controlled seasonal discharges
- lower construction and operating costs
- accepts surge flow more readily
- low chemical usage
- less sludge disposal problem
- adaptable to land application of final effluent
- lower mechanical failure potential
- potentially increased design life
- wildlife habitat

DISADVANTAGES

- possible spring odour
- larger land usage
- operations somewhat dependent on climatic conditions
- possible ground water contamination
- potential for higher suspended solids

This report presents an in-depth study of lagoon treatment in Alberta and assesses lagoon performance in terms of effluent quality, minimization of impacts, public concerns, and economics. It also includes a comparison of Alberta Environmental Protection's lagoon standards and guidelines with the standards of other jurisdictions and discusses possible upgrade techniques for lagoon treatment. Often comparisons will be drawn to other treatment technologies to determine if there are other options that can better meet the treatment needs of small communities.

1.2 Objective

The objective of this thesis is the evaluation of lagoon treatment in Alberta. Included in this evaluation are in-depth analyses of the following aspects of lagoon treatment:

- standards and guidelines
- effluent quality
- impacts
- concerns
- economics
- possible upgrades

Comparisons to other treatment alternatives are made where applicable in order to establish which alternative best meets the treatment needs.

1.3 History

The history of lagoon treatment in Canada dates back to the 1940's (Fisher, 1967) while globally it seems the first lagoon treatment practices are found in China about 1000 years ago (Allum and Carl, 1970) but the history of the processes involved in lagoon treatment dates back to the beginning of time. Traditionally the natural processes in rivers have provided good mixing and aeration that has stabilized organic matter that found its' way into the water ways. For most rivers it has only been in the last few centuries that the natural treatment processes have been over loaded. The industrial revolution attracted people from rural farming areas seeking a better standard of living into large cities. This

tended to concentrate the wastes produced and in some locations over loaded the natural treatment processes in the water ways with a variety of organic and inorganic materials. The industrial activity also brought new additions of these materials onto the natural treatment processes in the rivers and lakes. The over loading of the ratural purification system of the water bodies caused drastic changes like declines in fish and other aerobic aquatic organism populations, unsightly appearances, and severe odour problems. In North America the problems were most severe in central Canada and eastern United States where the population and industrial activity was centered. The changes in water bodies did not go unnoticed and a public outcry erupted that demanded measures to correct the situation. Treatment systems evolved with the goal of stabilizing the materials in the wastewater before discharge into water bodies. The systems that developed matched the needs of the communities. Large communities developed sophisticated and operationally complex systems with relatively short detention times that required large amounts of energy to stabilize the wastewater. The treatment system that best met the needs of small communities where suitable land was available was the lagoon.

Fisher (1967) reported that Alberta led Canada in lagoon treatment and was the first to use lagoons in 1947. He also (Fisher *et al.*, 1968) gave a brief history of lagoons in Canada and commented on how the growth of this treatment practice was almost exponential in the 50's and 60's. In Saskatchewan there were 275 municipalities being served by lagoons by the end of 1965. Manitoba's first lagoons where constructed in 1955 and by 1961 there were 29 lagoons in operation. Alberta's first lagoon was built in 1947 and by 1960 there were 114 lagoons in use. In 1956 Ontario built the first lagoon in that province and by 1964 there were 43 installations. Prince Edward Island first used lagoons in 1957 and there were 10 lagoons in use in 1965. Lagoons began being used in New Brunswick in 1959 and there were 9 lagoons in operation in 1963. Nova Scotia had one lagoon in operation in 1962 and Newfoundland had not used lagoons by 1965.

In 1990 there were 392 municipally owned treatment facilities in Alberta (Alberta Environment 1990) and 315 or 80% of them are lagoon systems. Figure 1.1 demonstrates that lagoons in Alberta are mainly used by small communities with 70% of the lagoon systems serving populations of less than 1000. Mathavan *et al.* (1989) reported that Saskatchewan had 189 of 242 treatment facilities (78%) using lagoon technology. Lagoons continue to be the mainstay for wastewater treatment in small communities.

1.4 Technical Aspects

Early lagoons consisted of simply one cell which was used for treatment and storage. With a greater understanding of processes involved in lagoon treatment designs have improved to include a number of cells each with different objectives. The three types of cells commonly used in a lagoon system are anaerobic, facultative, and storage cells. The anaerobic or short detention cells are sedimentation cells with detention times in the order of days, due to high organic loading they are generally devoid of oxygen so that the biological processes are anaerobic. The facultative or treatment cells have detention times in the order of months and have aerobic conditions near the surface and anaerobic condition in the bottom portion. Aerobic, anaerobic, and facultative microorganisms are all involved in the treatment process in these cells. The storage cells have detention time of several months up to a year and aerobic conditions predominate during ice free periods with only a small portion of the bottom water being anaerobic. During periods of ice cover the cell becomes anaerobic.

Wastewater treatment by lagoons relies on many complex and interrelated processes which when managed properly can provide a robust overall treatment process

that consistently provides a good quality effluent. The main wastewater treatment stages that are of interest in lagoons are as follows:

- sedimentation of organic and inorganic solids;
- anaerobic digestion of settled organic solids;
- the symbiotic relationship between bacteria and algae;
- nutrient removal; and
- natural disinfection.

This is not an all-inclusive list of the processes that take place in a lagoon but the processes listed are the ones of major importance to wastewater treatment.

The discussion of the above processes that follows is intended to provide a general understanding of lagoon treatment to the level required for the evaluation of Alberta lagoons in later chapters. An exhaustive review on the subject of lagoons can be found in other sources (McKinney, 1982; Middlebrooks *et al.*, 1978; Smith and Finch, 1985)

1.4.1 Sedimentation

Sedimentation as summarized by Eckenfelder (1989) can be divided into three classifications: discrete, flocculent, and zone settling. The nature of the particles determines the type of settling. In discrete settling the particles do not change shape, size, or density. Flocculent settling occurs when particles agglomerate, changing their size and settling velocity. Zone settling involves a flocculent suspension which forms a lattice structure and settle as a mass. Discrete settling deposits grit in the vicinity of the inlet to the lagoon and flocculent settling is responsible for the removal of the biological flocs that form and is of interest in facultative lagoon performance (Tikhe, 1975). Zone settling occurs in the bottom portion of the lagoon, where high oxygen uptake rates cause anaerobic conditions to prevail in these sludge blankets. Suspended solids removal of 40 to 70% due to sedimentation alone is reported in the literature (Bouthillier and Brown,

1971; Brisbin *et al.*, 1967). The largest absolute reduction of effluent quality parameters is attributed to sedimentation. Sedimentation is the only process substantially improving wastewater quality when ice cover and cold temperatures in the winter slow down the biological processes.

1.4.2 The Bacteria and Algae Symbiosis

The term symbiotic refers to two or more species that are reciprocally dependent on one another and because bacteria and algae can occur separately in nature, the relationship is not truly symbiotic in the strict sense of the word (Ganapati, 1975). The term symbiosis is used with a more general meaning when referring to the bacteria-algae relationship. The loose bacteria-algae symbiosis is illustrated in the aerobic zone in Figure 1.2. Algae require a supply of CO₂ which is a waste product of bacteria metabolic activity and in turn bacteria requires a supply of oxygen which is a waste product of algal photosynthesis. Golueke (1977) stated that in the loose symbiosis between algae and bacteria, the algae are more dependent on the bacteria because of the inability to utilize complex organic compounds as a nutrient source and the need for bacteria to break them down. A discussion of algae and bacteria follows.

1.4.2.1 Algae

McKinney (1982) explained that much of the research on algae has been devoted to classifying and naming of the various algal species however little is known about the characteristics of these species, therefore identification of the family or group of algae is of interest because the accompanying characteristics are not known (McKinney, 1982). The four major divisions of algae that are of interest to wastewater lagoon treatment are: *cyanophyta* (blue green algae), *chlorophyta* (green algae), *euglenophyta* (motile green algae), and *chrysophyta* (yellow-brown algae). The identification of the main algal groups in wastewater lagoons is an important indicator of the treatment state in the lagoon (McKinney, 1982).

Algae use energy from light to combine stable CO_2 with water, nitrogen, phosphorus and other elements to produce unstable protoplasm and oxygen. This cell protoplasm undergoes continual endogenous respiration which appears as just the reverse of the first reaction.

> Algae Photosynthesis $5CO_2 + 3H_2O + NH_3 \xrightarrow{\text{light}} C_5H_9O_{2.5}N + 5\frac{1}{4}O_2$

Endogenous Respiration $C_5H_9O_{2.5}N + 5\frac{1}{4}O_2 \rightarrow 5CO_2 + 3H_2O + NH_3$

The key to algae providing a net oxygen gain to the treatment system lies in the fact that only 80% of the algae mass is biodegradable under endogenous respiration. The non-biodegradable residual is basically the cell wall structure. Endogenous respiration consumes the protein in the cell which is the store of the nitrogen. The composition of algae changes somewhat depending on age because of this consumption of protein. Young algae cell composition is cf the form $C_5H_9O_{2.5}N$, while older algae cells have a composition of $C_9H_{17}O_6N$ (McKinney, 1982).

Abeliovich and Weisman (1978) suggested that algae may not only use CO_2 as a carbon source but may also be able to assimilate organic matter, he found that 15% of algae carbon in a high rate oxidation pond was derived from glucose which was artificially introduced. He further speculated that algae may not be able to compete for the easily assumable organic matter with the bacteria.

Algae growth rate is much slower than bacteria mainly because the algae are larger. Goldman and Graham (1981) found the growth rate of *chlorella* (a green algae) to be 2.1/day which means the cells double every 11.4 hours. In ideal conditions of light and nutrient availability growth occurs unimpeded until nutrient and light become limiting. Azov *et al.* (1982) found that CO_2 was the limiting nutrient in determining the algae cell production. In a high rate oxidation pond ammonia concentrations above 2.0 mM and a pH of over 8.0, inhibits photosynthesis and growth of algae cells (Abeliovich and Azov, 1976). The pH fluctuations are a result of the consumption and evolution of carbon dioxide. Figure 1.2 shows aerobic bacteria produce CO_2 which lowers the pH and algae consume CO_2 in the day time which raises the pH resulting in higher pH near the surface. At night algae continue autorespire and produce CO_2 which lowers the pH and results in daily pH fluctuations. High pH will cause the precipitation of phosphates and CaCO₃, this is the only way algal respiration activity affects alkalinity.

McKinney (1982) stated that temperature has a dramatic effect on algae; a change of 10°C causes the metabolisation rate to change by a factor of two. He commented that one of the most important temperature effects on algae is the large scale die-off that occurs with a sudden drop in temperature and speculated it may be due to ice crystals forming inside the cells.

At times the natural sunlight intensity exceeds algae requirements. When this occurs the organisms adjust their depth in the water column to find optimal light conditions, even nonmotile algae can change position to find optimal light conditions (McKinney, 1982). Goldman (1979) stated that the efficiency of conversion of solar energy to algae biomass is less than 5% due to; only light in the visible region (400 to700 nm) being useful for photosynthesis, only 45% of the total suns energy reaches the algae, and the efficiency of algal cells. He found the intrinsic characteristics of the photosynthesis

9

process limit the maximum algae biomass yield to 30 to 40 g dry wt /m²/day and this rate is only sustainable over the short term. Due to the rapid generation period of algae, certain . species tend to dominate through natural selection regardless of which algae is used as an inoculum. Goldman (1979) found sunlight more important than temperature when determining dominant algae species. Eckenfelder (1980) found that the dominate algae group is mainly dependent on temperature and light intensity while El-Gohary *et al.* (1991) found the dominate algae group varied with lagoon detention time and noticed a relationship between algal growth and ammonia and nitrate concentrations (ammonia decreased and nitrate increased with increased algal concentration). The lagoon studied by El-Gohary was dominated by green algae (*scendesmus*) and only *oscillatoria* was present in good numbers from the blue green algal group for 50 to 60 days of detention time. Uhlmann (1978) investigated the rate of algae production as it depends on temperature, nutrient load, and detention time and found the values as high as 50 mg dry weight /(L·d).

1.4.2.2 Bacteria

The bacteria in wastewater lagoons have the ability to completely metabolize the organics found in the wastewater under aerobic conditions (McKinney, 1982). Facultative bacteria dominate the bacteria populations because lagoon systems at times experience anaerobic conditions. The dominant group of bacteria is determined mainly by the seasonal temperature fluctuations and competition for food. The most common bacteria found in lagoons are achromobacter, pseudomonas, and flavobacter (McKinney, 1982). Aerobic and strictly anaerobic bacteria are present given the right conditions. Anaerobic bacteria are discussed later under the topic anaerobic digestion.

The protoplasm of bacteria is essentially the same material as algae protoplasm. Studies indicate the composition of bacteria protoplasm is represented by the formula $C_5H_9O_{2.5}N$ (McKinney, 1982). Bacteria use the process of metabolism to generate protoplasm (more bacteria) and the energy required for maintenance comes from endogenous respiration (the degradation of cellular material). The metabolisation of organic matter can be represented by the following reaction:

organic mater + bacteria + O_2 + nutrients \rightarrow more bacteria + CO_2 + H_2O

Like algae, 80% of the bacterial mass is endogenously biodegradable and roughly 20% is inert volatile suspended solids. Under optimal conditions approximately 1/3 of the organic matter in the wastewater is oxidized to furnish the energy to convert the remaining 2/3 to cell mass. Based on heat of combustion of cell mass, one gram of BOD5 metabolized will produce 0.85 grams of bacterial mass (McKinney, 1982).

The studies on the growth rate of aerobic bacteria indicate a rate of 0.2 to 0.3/hr (DeBoer *et al.*, 1981) which means a doubling of bacterial mass every 20 min. The maximum rate of growth will continue limited only by the speed at which the bacteria can metabolize the substrate until either the food or other nutrients becomes limiting or until the microbial mass interferes with the individual bacteria acquiring food. The growth rate is also temperature dependent. Seasonal changes in metabolism rates in bacteria in cold climate were investigated by Halvorson *et al.* (1969) and found the highest metabolism rate from the bacteria in the summer with warm temperatures but he also determined the metabolism rate in the winter while slower still had a contribution to wastewater stabilization. Miller (1967) stated that psychrophilic microorganism do exist and grow at appreciable rates at very low temperatures.

1.4.3 Anaerobic Digestion of Settled Organic Solids

When the oxygen supply cannot maintain DO concentrations the lagoon system becomes anaerobic. Anaerobic metabolisation processes gain only 3 to 6% of the energy

gained aerobically and require 7 to 10 times as much organic matter to produce the same protoplasm (McKinney, 1982). Anaerobic bacteria do not metabolize the organic wastes to stable CO₂ but change it to a simpler form. The slower and more energy demanding anaerobic processes cannot compete with aerobic bacteria for limited substrate in aerobic conditions and only establish populations in anaerobic conditions. The anaerobic digestion of the settled organic solids takes place in the sludge layer that is completely devoid of oxygen. The digestion is a two stage process of converting the organic matter into a intermediate acid which is then converted into methane (see Figure 1.2). There are two groups of bacteria that perform these steps and they are aptly referred to as acid formers and methane generators. These bacteria function best in the meso or thermo temperature ranges. The temperatures in Alberta lagoons are below optimum for most of the year so that the rate of anaerobic digestion is below optimum.

1.4.4 Nutrient Removal

1.4.4.1 Nitrogen Removal

The three major processes that remove nitrogen from lagoon systems are nitrification-denitrification, volatilization, and uptake and sedimentation by bacteria and algae.

The nitrification-denitrification process is a series of microbially catalyzed redox reactions. Nitrification is the oxidation of ammonia nitrogen to nitrite and then to nitrate in aerobic conditions, the following equations show the chemical processes (Snoeyink and Jenkins, 1980):

 $2NH_4^+ + 3O_2 \rightarrow 2NO_2^- + 4H^+ + 2H_2O$ (Nitrosomonas - aerobic conditions) $2NO_2^- + O_2 \rightarrow 2NO_3^-$ (Nitrobacter - aerobic conditions) The microbes that catalyze these reactions gain little energy from the process and therefore generate little biomass. In the activated sludge process a significant population develops because of solids recycle practices but in lagoons the populations remain small and long detention times are required to provide appreciable nitrification.

Denitrification is the reduction of nitrate to nitrogen gas in anaerobic conditions. The following equation details the chemical reaction:

 $2NO_3 + 12H^+ + 10e^- \rightarrow N_2(g) + 6H_2O$ (facultative microbes - anaerobic condition)

Facultative microbes have the ability to use nitrites and nitrates as their electron acceptor rather than oxygen acquiring only slightly less energy. The process must take place in anaerobic condition and the nitrogen gas produced has a low solubility and once saturation is reached may be transferred to the atmosphere following gas transfer principles.

Sparling and Stibbard (1989) set up air sampling units on a lagoon surface to collect gases and found that nitrogen was evolving at a rate that exceeded the rate expected by temperature and pressure changes. This is good evidence that denitrification was occurring in lagoon system. The authors stated that the processes are temperature and time dependent.

The volatilization of ammonia can be a significant factor in nitrogen reduction. The partial pressure of ammonia in solution increases with increasing pH and therefore algal activity causing high pH in lagoons will increase ammonia volatilization. Other factors that increase ammonia losses to the atmosphere are increased wind speed and increased

temperature (Strattion, 1968, 1969; Weiler, 1979). Stratton (1968) quantified the effect of temperature and pH on the volatilization of ammonia from a stream and predicted a 50% reduction in ammonia concentration in 11 hours in a stream with pH 8.5 and temperature of 20°C.

Nitrogen removal by uptake and later sedimentation by bacteria and algae is not a significant process in nitrogen removal. As previously stated, an appreciable amount of nitrogen is taken up in the production of new bacteria and algae cells but most of this nitrogen is in the protein of the protoplasm which is biodegraded and released through endogenous respiration. There is only a small portion of the cellular nitrogen in the cell wall which is the stable portion of the bacteria or algae cells that settles out.

McKinney (1982) stated that blue-green algae have the ability to fix atmospheric nitrogen which would add nitrogen to the wastewater.

1.4.4.2 Phosphorus Removal

Phosphorus removal can take place by two processes; first, it can be assimilated into the cell structure of algae and bacteria and settled out in the inert portion of the cell mass after the cell dies; second, the conditions of high pH which can occur near the surface of a lagoon due to algae activity can precipitate the phosphorus. Bogan (1961) found through laboratory studies and pilot scale tests that algae reduced orthophosphate concentrations below 1 mg/L in 6 to 12 hours with adequate light (100 to 200 lumen), and he also found that this much light does not penetrate lagoons past roughly 300 mm deep. This report does not address endogenous respiration releasing most of the phosphorus back to the system. Golueke (1977) and Moutin, *et al.* (1992) stated that the greater part of phosphorus removal was due to precipitation due to drastic pH fluctuations and not assimilation by algae.

1.4.5 Natural Disinfection

One of the goals of wastewater treatment is the protection of public health. The wastewater characteristic of main concern to public health is the microbial quality of the effluent being discharged to the receiving environment. Table 1.1 is a summary of the common pathogenic microorganisms found in feces and the removal efficiencies of treatment processes. The table indicates that lagoons are capable of the highest removal efficiencies using natural disinfection. The natural disinfection processes that take place in a lagoon include: sedimentation, adsorption to solids, radiation from the sun, predation by other organisms, and nutrient deficiencies. Many factors have been related to natural disinfection processes, they are: temperature, pH, detention time, number of cells, depth, turbidity, algae growth and concentration, organic loading, and sunlight intensity (Davies and Gloyna, 1972; Johnson *et al.*, 1978; Marais, 1974; Mckinney, 1982; Slanetz *et al.*, 1970; Little *et al.*, 1970; Bowles *et al.*, 1979; Qin *et al.*, 1991; Parker, 1962; and Curtis *et al.*, 1992). Amin and Ganapati, (1972) discussed the uncertainty and difference of opinion that exist about the dominant processes of natural disinfection and states that they agree that purification takes place during storage, however how it is affected is unknown.

There is consensus that temperature, detention time, and number of lagoons are significant factors in the natural disinfection processes (Slanetz *et al.*, 1970 and Little *et al.*, 1970). Curtis et al. (1992) proposed a mechanism of disinfection that can rationalize much of the confusion and contradiction about natural disinfection processes. They demonstrated that sunlight induced damage called photooxidation may be the dominate natural disinfection process. The UV rays from the sun do not provide a major component of disinfection because they do not penetrate the lagoon more than 300 mm. The longer wave lengths of light that are not absorbed and penetrate deeper into the pond activate key sensitizers (which they think are humic substances) which form active oxygen forms that

damage the cells. The process is strongly affected by the oxygen concentration which is related to algae population and BOD, and is chemical in nature and therefore affected by temperature and pH. This approach can explain much about past findings as many of the factors previously determined important can be related to pH, temperature, and DO. There are interesting tradeoffs and balances illuminated with this theory, the impact of humic substances providing sensitizers (increasing disinfection) will be played off against their ability to attenuate light penetration (decreasing disinfection) and the amount of algae producing oxygen (increasing disinfection) will again be played off against the reduction of light penetration due to algae.

Grimason *et al.* (1993) looked at the occurrence and removal of *giardia* and *cryptosporidium* in Kenyan wastewater Lagoons. *Giardia* was found in 9 of 11 raw wastewater samples investigated and in 6 of the 11 *cryptosporidium* was found in the raw wastewater. None of the lagoons had *cryptosporidium* in the final effluent and one lagoon was found to have *giardia* in the effluent. The minimum detention time required for the removal of both was 37.3 days.

Davies and Gloyna (1972) investigated the effects of algae species on the die-off of indicator organisms and found a higher die-off rate with mixed species than one particular species. McGarry and Bouthillier (1966) studied the survival of *salmonella typhi* in lagoons and found nutrient loading and temperature to be factors that affect the rate. Marais (1974) found that die-off rates of indicator organisms in lagoons followed Chick's law dN/dt = -KN and that lagoons in series had improved removal over a single lagoon with the same detention time.

Mara (1989) conjectured that maintaining a stratified storage lagoon, which acts like a shallow lagoon, may perform better in terms of bactericidal action even if the

16
detention time is shorter. Wind breaks to maintain stratification were considered to be useful.

1.4.6 Higher Animals

Protozoa and higher animals play a roll in lagoon treatment by feeding on bacteria and algae. McKinney (1962) gave an account of the role of protozoa, crustaceans, and rotifers in lagoons. The most important group was ciliata, the ciliated protozoa which are highly motile and efficiently capture bacteria. Typical genera of crustaceans found are *cyclops, daphnia*, and *moina*. *Daphnia* was reported to be the most important crustacean (McKinney, 1962). *Rotifers* clean up large organic particles, algae, bacteria, and cellular debris (McKinney, 1962). Deborn et al. (1977) studied aerated lagoons in Nova Scotia for *daphnia* population density changes throughout the year and found that *daphnia* increased in size (4.4 mm) and in population (800/L) during the spring and population decreased to zero in January and he estimated that at the peak population density, the lagoon contents were being filtered through the daphnia once in 24 hours. In field work done for this report on lagoon effluent from the Village of Legal, boatsman, backswimmer, *daphnia* (many), dragonfly larvae, and leaches were identified in the effluent.

A lagoon system studied by Mara (1989) found *daphnia* grazing vigorously on algae in the storage lagoon and they were unable to find *daphnia* in previous cells. He speculated that it was due to the higher ammonia concentrations in previous cells.

1.5 Factors Affecting Lagoon Processes

The factors that affect lagoon processes can be classified into two categories; first, those factors related to climatic conditions and second, the factors which are controlled by

the design or operation strategy of lagoon systems. The two sets of factors that affect lagoon treatment are as follows:

Climatic Factors	Design or Operational Factors
Temperature	Detention Time
Sun light	Depth of Cells
Wind	Configuration Of Storage Volume
Ice	Short circuiting
Snow Cover	Stratification
	Raw Wastewater Characteristics

1.5.1 Temperature

Cooler temperatures slow bacteria and algae metabolism, a 10° C temperature change causes about a two fold change in metabolism for both bacteria and algae (McKinney, 1982). Temperature is also an important factor in determining the dominant algae and bacteria species and groups in the lagoon system. The poorer performance of lagoons reported in the cooler seasons is an indication of the effects of temperature on lagoon treatment.

As previously discussed the biological processes in anaerobic cells are slower at low temperatures which make the cells predominately sedimentation and sludge storage cells for all but a few months of the year in Alberta.

The impact of temperature on controlled discharge lagoons depends on the season of discharge. The effluent quality of a fall discharge is not dependent on summer temperatures because there is adequate time for wastewater treatment even at low rates but the rapid drop in temperature in the fall is important because it kills a large portion of

.

the algae which settle and do not leave with the effluent. Spring discharges are dependent on temperature because time between ice melt and discharge is not long enough to be independent of biological reaction rates.

1.5.2 Sun Light

The sun is the driving force in lagoon treatment. The production of algae which provides oxygen to the system is tied to the hours and intensity of sunlight which is also a factor in the natural disinfection process. The northern locations with the long hours of sunlight in the summer have increased potential for algae and oxygen production and natural disinfection. The ice and snow cover of the winter months limits the effectiveness of sunlight related processes.

1.5.3 Wind

Wind increases surface aeration, evaporation and mixing. Middlebrook (1978) states that early lagoon designs tried to maximize the effects of wind action while later designs tried to minimize the wind effects because mixing was no longer desirable and surface aeration was not considered a significant factor.

There are some that advocate mixing to be beneficial to lagoon treatment while others argue that better treatment can be accomplished by minimizing mixing. Those that promote mixing base it on the increased aerobic zone of activity while those against mixing extol the benefits of the lower anaerobic zone which should be maintained. McKinney (1982) states that wind is an important physical factor to lagoon treatment because it provides mixing. Excessive wind can also cause berm erosion and protection of the banks may be necessary.

1.5.4 Ice

The development of ice cover means that the water has an average temperature below 3.98 °C. The warmest water (highest density) will be at the bottom of the lagoon and the coldest at the top (0 °C). The ice seals the surface of the lagoon to the diffusion of oxygen. Oxygen transfer to the lagoon is an important factor in maintaining aerobic conditions. Algae may continue to produce limited amounts of oxygen under the ice cover. However, the rate may be very low due to the low temperature. The associated anaerobic process rates are low at these low temperatures leaving sedimentation as the main process affecting the wastewater during ice covered periods.

1.5.5 Snow Cover

Snow cover reduces or prevents sunlight from reaching the liquid water. As a result any algae living in the water column will not be able to carry out photosynthesis and will continue to respire. Endogenous respiration will lead to the death of the algae. Depending on density and size the algae may agglomerate and settle to the bottom of the lagoon.

1.5.6 Detention Time

Detention time represents the amount of time available for treatment processes to occur in the wastewater and combined with a given process rate will determine the level of treatment possible. The actual detention time in a continuous discharge cell due to the occurance of short circuiting and stratification can only be determined by tracer studies.

The detention time in anaerobic cells is based on the time needed for settling (order of days) while detention time in facultative cells is based on treatment time needed (one to two months). In a controlled discharge lagoon the overall detention time is known and is established primarily based on the desired time of discharge for the receiving environment which is usually well in excess of the time requirements for treatment, although treatment time may be limited for spring discharges.

1.5.7 Depth of Cells

The most important effect of depth on lagoon ecology is the decreasing light penetration with increasing depth (Middlebrooks *et al.*, 1978). Sunlight penetrates only the top portion of a lagoon cell so that the depth of the cell will reflect the level of dependence the treatment processes have on sunlight. The anaerobic cells are deep (3 to 3.5 m) because sunlight is not important to the cell processes which are settlement and storage of raw wastewater solids (deeper cells have more economical berm area to storage volume ratio). Oswald (1968) suggested making anaerobic cells as deep as possible. The facultative treatment cells are 1.5 m deep to allow the sunlight to establish aerobic conditions in a significant upper portion of the lagoon while protecting the anaerobic conditions desired in the lower portions. The storage cells are deeper than the facultative cells because of the much longer period available to continue the natural disinfection process. In controlled discharge lagoons the storage cell functions as a treatment cell for the wastewater stored over winter and depth becomes important.

1.5.8 Configuration of Storage Volume

Middlebrooks (1978) stated that multicelled systems are superior to one cell lagoons because of reduced short circuiting, reduced erosion, and more flexible operation with the disadvantage being increased cost of construction. Short circuiting is not a problem in the storage cells of controlled discharge lagoons which means multicelled storage is not a great advantage with controlled discharge lagoons. The effects of fetch length on wind induced erosion may warrant consideration. In controlled discharge lagoons the size of the cells is controlled by the detention time and depth which factors have been discussed previously.

1.5.9 Short Circuiting

In the storage cells of controlled discharge lagoons short circuiting is not a concern but the anaerobic and facultative cells can be affected by short circuiting. Finney and Middlebrooks (1980) found that models being used for facultative lagoon design gave inconsistent results because of the lack of knowledge about the actual detention time in the lagoon and stated that improved performance due to lagoons in series is probable due to reduced short circuiting. Short circuiting will not have a significant impact on the effluent quality in controlled discharge lagoons unless drastic short circuiting is occurring in the anaerobic cell flushing solids into the facultative cell and similarly to the storage cell.

1.5.10 Stratification

Stratification is generally a result of density differences caused by temperature. Temperature differences are cased by sun light warming the surface of the lagoon and by the influent wastewater usually being warmer than the cell wastewater. There is generally limited mixing between stratified layers of the lagoon cells unless wind action can generate sufficient currents. Stratification increases short circuiting and as previously discussed this is not a problem in the storage cell but may cause problems in the anaerobic and facultative cells.

As discussed earlier, Mara (1989) suggested that a stratified storage cell may provide improved natural disinfection.

1.5.11 Raw Wastewater Characteristics

McKinney (1982) stated that for municipal wastewater the lagoon effluent has no relation to influent and variation in effluent quality are more a function of temperature, wind mixing, solids separation, detention time and algal growth than to influent characteristics.

1.6 Physical Description

Lagoon systems in Alberta are made up of a combination of the three different types of lagoon cells; anaerobic, facultative and storage. Anaerobic lagoons in Alberta are characterized by; detention time of 2 to 5 days, depths of 3.0 to 3.5m, zero dissolved oxygen, and the dominant process taking place is sedimentation. There is also some anaerobic digestion taking place but due to sub-optimum temperatures, the rate is slow. Facultative lagoons are characterized by; detention time of a few months, depths of around 1.5m, aerobic conditions at the surface and anaerobic conditions near the bottom, and the dominant process is the bacteria-algae reduction of soluble substrate (sedimentation, nutrient removal, and disinfection are also important). Storage lagoons are characterized by; 8 to 12 month detention time, 2.5 m max. depth, aerobic conditions (except in the spring when it will be similar to a facultative lagoon.), and the main processes microbial removal of nutrients, natural disinfection and continued settling.

Common piping and valve arrangements are summarized in Figure 1.3. The anaerobic cells can operate in series or parallel with overflow to the facultative cell. The lagoon cells are contained by earthen berms topped with soil and vegetation, shore protection is sometimes necessary. Plates 1.1 and 1.2 are photos of the lagoon at the Village of Legal and it is an example of the physical appearance of a well maintained lagoon.

1.7 Seasonal Variation

The most important seasonal effects that take place in lagoons are due to temperature change and the resulting ice and snow cover. The biological population distributions and process rates are significantly affected by the temperature changes (McKinney, 1982). Although some researchers have found aerobic conditions under moderate ice cover, (Sparling, 1967 *cirri*) the rapid temperature drop that kills the algae combined with heavier ice and snow cover explains the anaerobic conditions that predominate Alberta lagoons in the winter.

The seasonal differences in the different types of lagoons can be seen in Figure 1.4 where biological activity is greatly decreased. In the winter operating conditions, the lagoon is providing primary treatment only. Slaughter *et al.* (1979) reported BOD₅ of 90 mg/L, ammonia of 16 mg/L, and hydrogen sulfide of 26.1 mg/L in a Ontario lagoon discharging in February and reported fish mortality due to the toxic effects.

Most problem causing conditions occur in the lagoon at the time of spring breakup. The anaerobic conditions that have prevailed over winter produce a population of a sulfur reducing bacteria *desufovibrio* which reduce sulfates to hydrogen sulfide and if the pH is low (algae have not established an aerobic zone and higher pH) the hydrogen sulfide will escape into the atmosphere causing odour problems, one of the main concern with lagoon operation. The rising spring temperatures and wind may cause the pond to turn over or mix which is also associated odour problems. Thus there are often complaints about odour problems at spring breakup time (McKinney, 1982).

1.8 Operational Requirements

Lagoons require little operational time and skill level which is one of the major advantages of this treatment technology. The basic operational activities of a lagoon system as outlined by Alberta Environmental Protection (1988) are:

- checking of any mechanical parts for wear or corrosion;

- grass and weed control two or three times a year;
- checking for sludge accumulation in anaerobic cell;
- consulting affected parties before discharge; and
- discharging the lagoon.

Heinke and Smith (1988 b) outlined the operation and maintaince of lagoon systems in the north and the discussion included the items in the following list.

Operation	<u>Maintenance</u>
Normal operation	Berms and liners
Checking of system	Inlet and outlet structures
Control of wastewater levels	Outfalls
Sampling	Odour problems, weed and insect control
Record keeping	Fencing and signs
Safety	Maintenance of access road
	Sludge management

	0 0	(adapted	l from Heinke	et al., 1988
Organism	Disease	Primary sedimentation (% removal)	Activated sludge (% removal)	Lagoon (% removal)
VIRUSES		0 to 30	90 to 99	99.99 to 100
Adenoviruses	Various ailments	•		
Coxsackie viruses	Various ailments			
Echoviruses	Various ailments			
Hepatitis A virus	Infectious hepatitis			
Norwalk agent	Gastroenteritis			
Polioviruses	Poliomyelitis			
Reviruses	Various conditions			
Rotaviruses	Gastroenteritis			
BACTERIA				
Campylobacter fetus	Gastroenteritis	Not reported	00 40 00	>>99.99
Escherichia coli	Gastroenteritis	50 to 90	90 to 99	99.99 to 100
Salmonella spp.	Salmonellosis	50 to 90	90 to 99	99.99 10 100
S. typhi	Typhoid fever	As above		
S. paratyphi	Paratyphyiod fever	As above	00 (. 00	99.99 to 100
Shigella spp.	Shigellosis	50 to 90	90 to 99	100
Vibrio cholerae	Cholera	50 to 90	90 to 99	100
Yersinia enterocolitica	Yersiniosis	Not reported		
PROTOZOA		Net repeated		_
Balantidium coli	Balantidiasis	Not reported	-	-
Cryposporidium	Diarrheal disease	10 10 to 50	- 50	100
Entamoeba histolytica	Amebiasis	10 to 50	50	100
Giardia lamblia	Giardiasis	10 10 50	-	-
HELMINTHS (OVA)		50 to 70	80 to 100	100
Echinococcus granulosus	Hydatidosis			
Ech. multiloculais	Hydatidosis			
Enterobius vermicularis	Enterobiasis			
Mymenolepis nana	Hymenolopiasis			
Echinococcus granulosus				
Ech. multiloculais				

 Table 1.1 : Some Pathogenic Organisms and Their Removal Efficiencies (adapted from Heinke et al., 1988 a)

Figure 1.2 : A Schematic Faculatative Lagoon (adapted from Oswald, 1968)

Design Average Daily Flow m^3	Number of Anaerobic Cells	Requirements for Facultative cell(s)	Requirements for 12 Month Storage Cell(s)
Less than 70	0	YES*	YES Max. depth = 2.5m*
70 - 250	0	YES	YES Max. depth = 2.5m
250 - 500	2	YES	YES Max. depth = 2.5m
Greater than 500	4	YES	YES Max. depth = 2.5m

Wastewater Stabilization Pond Requirement

* Revised in 1989

Figure 1.3: Alberta Environmental Protection Lagoon Requirements Adapted from "Standards and Guidelines For Municipal Water Supply, Wastewater, and Storm Drainage Facilities. (1988)

Example of Lagoon Layout, Anaerobic and Facultative Cells (Legal, Alberta) Plate 1.1:

Plate 1.1 : Example of Lagoon Layout, Storage Cell (Legal, Alberta)

2.0 STANDARDS AND GUIDELINES

2.1 Introduction

This chapter presents the standards and guidelines for lagoon treatment in Alberta and draws comparisons to standards of other jurisdictions. The focus of this discussion is the aspects of the design standards that effect effluent quality or the level of impact on the environment. The intent of this evaluation is to determine if Alberta's standards are comparable to other standards and to insure that the province is not lagging far behind the rest of the country with any innovative improvements to lagoon designs.

2.2 Alberta Standards

The recently passed Environmental Protection and Enhancement Act, Regulation 119/93 states the following:

- 5(1) A wastewater system and a storm drainage system must be designed so that they meet at a minimum
- (a) the standard and design requirements set out in the latest edition of the Standards and Guidelines for Municipal Waterworks, Wastewater and Storm drainage Systems published by the Department, or
- (b) any other standard and design requirements specified by the Director.

Section 5.4 of Alberta Environmental Protection's Standards and Guidelines for Municipal Waterworks, Wastewater and Storm Drainage Systems (AEP's Standards and Guidelines) defines the minimum wastewater treatment requirements as the provision of best practicable technology (BPT). The section continues, "while consideration is given to the surface water quality in the province, the major factor used to establish wastewater treatment levels is the provision of affordable and demonstrated treatment technologies, i.e., BPT." Lagoons with 12 months of storage are identified as treatment alternatives that meet the BPT guideline.

Lagoons providing 12 months of storage are not governed by end of pipe effluent quality standards as are continuous discharge mechanical plants. The requirements for lagoons are detailed design standards and configurations based on average daily flow. Facilities meeting these detailed design standards are in compliance with regulations. Figure 1.3 summarizes lagoon configuration and design requirements. AEP's standards and guidelines stipulates design standards for many other aspects of lagoon design, the following is a list of headings discussed under lagoon treatment:

5.5 Wastewater Stabilization Ponds

- 5.5.1 General Requirements
- 5.5.2 System Components and Configuration
 - 5.5.2.1 Anaerobic Cell(s) 5.5.2.2 Facultative Cell(s) 5.5.2.3 Storage Cell(s)
- 5.5.3 Design Considerations
 - 5.5.3.1 Setback Distances
 5.5.3.2 Physical Site Constrains
 5.5.3.3 Fencing
 5.5.3.4 Warning Signs
 5.5.3.5 Access
 5.5.3.6 Surface Runoff Diversion
- 5.5.4 Seepage Control
 - 5.5.4.1Seepage Control Criteria
 - 5.5.4.2 Site Selection and Investigations
 - 5.5.4.3 Liner Design
 - 5.5.4.4 Groundwater Monitoring
 - 5.5.4.5 Detailed Liner Standards

5.5.5 Construction Features

5.5.5.1 Berms
5.5.5.2 Inlet Structures
5.5.3 Outlet and Drain Structures
5.5.4 Flow Measurement

5.5.6.1 Sizing 5.5.6.2 Depth 5.5.6.3 Configuration

5.5.7 Operation and Maintenance

While many of these sections and subsections are important to the successful operation of a facility, the focus of this evaluation centers on the guidelines in section 5.5.2 because they determine effluent quality.

2.3 Comparison to Other Jurisdictions

Design criteria from other Canadian Provinces were obtained to compare with Alberta's. Provinces investigated included British Columbia, Saskatchewan, Manitoba, Ontario, Newfoundland, New Brunswick, and Nova Scotia while standards from P.E.I. and Quebec were not received. The three design criteria used by the provinces investigated are; surface loading rates (kg BOD₅ / ha•day), detention time, and effluent quality standards. With controlled discharge lagoons of a given depth, the surface loading rate and the detention time are coupled together by BOD₅ concentration of the raw wastewater, and as a result they are really the same factor. Effluent quality is determined by facility design and time of discharge. The number and type of cells, and the detention time is the criterion used for comparison of standards. Table 2.1 is a summary of the current standards and guidelines for lagoon design from several provinces. The table illustrates three different styles of regulations. Sewage treatment standards in British Columbia are based on effluent quality and the dilution capacity of the receiving water. Some communities in B.C. require no treatment at all. Ontario refers to the US EPA for design standards which are general guidelines that specify loading, number of cells, and depth and while guidance is given for the other criteria, specific design requirements are not. The remaining provinces listed in the table use a very detailed design standard which stipulates most aspects of lagoon design.

The prairie provinces are the only ones that require controlled discharge on all lagoon designs. Saskatchewan and Manitoba stipulate roughly six months of storage while Alberta requires 12 months. Most provinces want at least two cell used in the lagoon designs however none other than Alberta require anaerobic cells. The requirements for depths of cells are similar in all jurisdictions. Alberta and Newfoundland allow roughly 5 $m^3/(ha \cdot d)$ seepage through the liner while New Brunswick and Nova Scotia allow 40 $m^3/(ha \cdot d)$.

2.4 Summary

This analysis has demonstrated that Alberta's standards are not only comparable to other jurisdictions but often superior. Alberta is the only province the stipulates 12 months of storage and the requirement of anaerobic cells.

Province	Loading	Controlled Discharge	Detention Time days	Multiple Cella	Cell Depth	Liner	Seepage **	Setback Distance
British Columbia \$	British Columbia Site specific effluent quality standards that depend on .	ity standards (that depend on dilution, no	dilution, no detailed lagoon standards				
Alberta	N/A	S,	Anaerobic 2 days Facultative 60 days Storage 365 days	• 0A-IF-IS flow < 70 m ⁻³ 2A-IF-IS flow < 250 m ⁻³ 4A-IF-IS flow < 250 m ⁻³	• 0A-1F-1S flow < 70 m ⁻³ Anserobic cell 3.0 to 3.5 m Natural in situ liners - 0.9m 2A-1F-1S flow < 220 m ⁻³ Facultative cell 1.5m Compacted clay - 0.6m 4A-1F-1S flow > 2.50 m ⁻³ storage cell min = 0.5m, max = 2.5m meet secpage requirements		max K (m/s) = (5.2 x 10^-9 m/s x T(m)) / (2+T(m)) design K = lab K x 0.1	300 m to nearest resident
Sadvatchewan	Primary cell 30 kg BOD/ (ha-d)	<u>ę</u>	Combined storage 180	min of 2	Treatment cell min=0.6m, max=1.5m Storage cell min=0.3m, max=2.1m	meet secpage requirement	l 5 cm/a? (0.3m of 10^-7 clay)	300 m to resident 600 m to built up area 460 m to shore of water body
Manitoba	Primary cell 44.6 kg BOD/ (ha-d)	5 <u>,</u>	Nov 1 to May 15, 197 days	not specified	тіп = 0.3 т тах = 1 5 т	normal cases 1 meter of 10^-7 cm/s	see liner	457 m to community 305 m to resident
Ontario	19.6 kg BOD/ (ha-d) aite specific	site specific	site specific	mis; two max size 8 ha	Treatment cell 1.8 th Storage cell 2.7 m	site specific	site specific	none specified
New Brunswick	35 kg BOD/ (ha-d) 500 people / ha	if ice expected	sufficent for BOD reduction	nin (wo	Treament cella 5 to 1 8 m Stornee cella 2.0 m min depth 0 6 m	meet seepage requirements	meet seepage requirements max K (m/s) = 4.6 x 10°-8 m/s x 1 2(m)	
Nova Scotia	22 kg BOD/ (ha-d) 250 people / ha	site specific	sufficent for BOD reduction	min two s:nall continutities one max size 5 ha	Treatment cells 1.5 to 1.8 m Storage cells 2.0 m min depth 0.6 m	min 0 5 m compacted clay	пых К (m/s) = 4.6 х 10°-8 m/s х Т(m) / (Д(m)+Т(m)) 40 m ⁻³ /Лы-d) design K= lab K x 0.1	habitation 150 m built up areas 300 m
Newfoundland	20 to 30 kg BCD/(ha-d	aite specific	Newfoundland 20 to 30 kg BOD/(ha-d site specific ontrolled discharge 180 da Flow through 90 to 120 day	min three y small communities two	min = 0.6m, max = 1.8m	meet seepage requirements	тых Қ (тти's) = (3.0 х 10°-9) х Т(тлп) 4 68 т [°] 3(ћа-d)	hobitation 450 m
• A = anacrobi	• A = anacrobic. F = facultative, S = storage	storage						

• A = anacrobic, F = facultative, S = storage •• T = liner thickness, D = lagoon depth Table 2.1 : Design Criteria for Lagoons (see current provincal guidelines)

37

3.0 ANALYSIS OF LAGOON EFFLUENT QUALITY

3.1 Introduction

The purpose of this chapter is two fold, first Alberta Environmental Protection's (AEP) lagoon standards are evaluated for effluent quality and second an in-depth analysis of lagoon treatment is performed.

The first major section of this chapter is an overview of the database used in the evaluation of lagoon effluent quality. The question of grab samples being representative of lagoon effluent quality is addressed. This section also discusses the tools and methodology of data manipulation.

In the second major section of this chapter only lagoons meeting AEP's standards and guidelines are analyzed to determine the level of treatment provided through the guidelines. Each lagoon configuration recommended by AEP is evaluated for the effluent quality parameters biochemical oxygen demand (BOD), total suspended solids (TSS), phosphorus (P), ammonia, and total Kjeldahl nitrogen (TKN). Comparisons to other treatment technology standards and performance are made.

The third major section of this chapter uses all the lagoon data available to provide an in-depth look at lagoon treatment. Significant factors affecting lagoon effluent quality are identified and used to group the lagoon sites. The effluent quality parameters BOD, TSS, P, ammonia, and TKN were addressed individually and comparisons are made to establish the relative importance of the significant factors to each effluent quality parameter.

3.2 The Lagoon Database

The evaluation of lagoon effluent quality was based on over 500 samples taken from 190 lagoons mostly between the years 1983 and 1986 and 1500 samples taken from mechanical plants between the years 1982 and 1992. The samples were collected and analyzed by AEP staff as part of licensing requirements for mechanical plants and in a continuing effort to assess lagoon effluent quality. Results of the sampling program were recorded in a database using the NAQUADAT format. A total of 28 parameters were listed in the database and though the data was not complete for all samples, the major parameters were usually present.

The location and date of each sample was identified and other information like type of treatment system, design capacity, average flow, detention time, and drainage route was obtained from the AEP Facilities Survey document (1990). Several issues of the facilities survey from different years were referenced to ensure correct identification of the treatment system that was in place at the time of sampling. This other information was linked to the sample analysis results and used for sorting and grouping of the data.

The data was down loaded from AEP mainframe computers to a personal computer database format. The software packages used to transform the data, generate summary statistics, and link the data to other information were Clipper® and dBase IV®; while spreadsheet work like statistical testing and table and chart generation was accomplished with Microsoft Excel®. Lotus Freelance® was also use in graphical applications.

3.2.1 Representative Sampling of Lagoon Discharges

The database of lagoon effluent quality was based on single grab samples taken during lagoon discharges. While the timing of the samples was not specified, discussions with AEP staff indicated a waiting period of a day or two after the valve had been opened before the discharge was sampled. To determine if large variations in effluent quality occurred during discharges and hence determine if the grab samples were representative of the overall quality, a detailed monitoring of effluent quality was completed. The site selected for the investigation was the Village of Legal which is located one hour northwest of Edmonton. Daily samples were taken over the17 day period the lagoon discharged and were analyzed using procedures outlined in "Standard Methods for the Examination of Water and Wastewater" (1992) for biochemical oxygen demand (BOD), total suspended solids (TSS), volatile suspended solids (VSS), total coliforms (TC), and fecal coliforms (FC). Lagoon levels were also measured and surveyed in order to give an estimate of the daily discharge volume. The results and graphical representation of the data can be found in Table 3.1 and Figure 3.1. The data shows that except for spikes at the start and finish of the discharge the parameter levels remain fairly constant. A possible explanation for the one spike in the middle of the discharge is that at about this time the bottom of the ice cover lowered to the tops of the weeds causing the flow to no longer go over the weeds but through them and the higher velocities generated in the vicinity of the outlet may have sheared material off the weeds. The results of similar work by Milos and Beier (1978) show more variability in quality than was found in the Legal lagoon but except for the start and finish the effluent quality was fairly constant.

Based on this analysis it is concluded that the database of lagoon grab samples was generally representative of overall effluent quality in the lagoon discharges.

3.3 Data Analysis Technique

The data analysis involved the grouping of the treatment sites and the calculation of statistics (means and standard deviations) for the comparison of effluent quality. The methods used for these activities are briefly explained.

Statistical comparison tests were used extensively to establish the significance in the differences between the methods of treatment. The test used was the student t-test because there was generally not enough sites to use the more powerful normal distribution. The null hypothesis for any of the comparisons between the means was that the means were equal and the alternate hypothesis was that one mean was greater than the other. The null hypothesis was rejected and one mean was said to be significantly greater if the α value (which is the probability of type one errors, or the probability the difference noticed was due to chance alone) was less than 5%. Frequently in later discussions α values are given to indicate the level at which the differences noticed are significant.

The use of the t-test requires two conditions; first, the data within the groups is normally distributed and second, the variance is homogeneous between the two groups. If the data is not normally distributed a transformation may be used to transform the data to a normal distribution. Box *et al.* (1978) outline a technique for determining what transformation is necessary for a group of data to become normally distributed. The slope of the regression line of lagoon data groups in Figure 3.2 is an indication that a log transformation is required (slope of 1.00 indicates log transformation, see Box *et al.* (1978)). Figure 3.3 is a distribution of lagoon data with an idealized log-normal curve overlaid which demonstrates the log-normality of the data. Based on these findings all further data manipulation and statistical calculations was performed on the natural logarithm of the data. Constant or homogeneous variance between two data sets is established using the f-test (Box *et al.*, 1978). If two groups of data fail the f-test (variance is not the same) other statistical test are available for comparisons of means. In Figures 3.30 to 3.34 the negative α values indicate that the data groups failed the f-test but application of other tests did not give different results.

The means and standard deviations of the treatment groups are based on site averages of effluent quality.

3.4 Evaluation of Alberta's Lagoon Standards

3.4.1 Lagoon Performance

Lagoon systems are a treatment option that meets the best practicable technology standard as outlined in section 5.4 of AEP's "Standards and Guidelines for Municipal Water Supply, Wastewater, and Storm Drainage Facilities" (AEP's Standards and Guidelines). As discussed earlier, configuration of the lagoon system depends on the size of the population being served, as outlined in Figure 1.3. The AEP's Standards and Guidelines no longer recommends lagoons with only one cell, however these systems will be included in this part of the report because it has only been recently changed. The minimum storage requirements are twelve months for any lagoon system that discharges to an Alberta drainage course. Although, if the final effluent is used for an approved municipal wastewater irrigation program, the required storage time may be reduced. For this initial discussion consideration was only given to lagoon systems with 12 month storage. The effect of storage along with other factors will be considered in later discussions. It is important to note that the season of discharge was not taken into account here because the guidelines only state that fall discharge was preferred to spring however it was not a requirement. Lagoon configurations are referred to as "4S-2L" which indicates 4 short or anaeroLic cells and 2 long detention cells (1 facultative cell and 1 storage cell).

The performance of the lagoon configurations outlined by AEP for the parameters BOD, TSS, total Kjeldahl nitrogen (TKN), ammonia, and phosphorus are summarized in Table 3.2. The average, upper and lower 95% confidence limits of the mean, the number of sites that the data was based on, and the number of samples taken at those sites are listed.

3.4.2 Mechanical Plant Performance

For the purpose of comparison, the effluent quality parameters for other treatment technologies used in Alberta have also been compiled . The other treatment technologies include activated sludge plants (AS), aerated lagoons (AL), rotating biological contractors (RBC), and extended aeration (EA). These treatment technologies will be referred to as mechanical plants due to the mechanical energy used in the treatment system. The data for the mechanical plants was obtained from the same source as the lagoon data and spans roughly the same time period. There was more data available for mechanical plants than for lagoons, even though there were many more lagoons in Alberta, because the mechanical plants were sampled monthly and lagoons were sampled on an as required basis.

Table 3.3 contains a summary of the data available on mechanical plants for the same five parameters listed for lagoons. Also listed in the table are the average, upper and lower 95% confidence limits of the mean, the number of sites that the data was based on, and the total number of samples taken.

3.4.3 Evaluation of Standard Lagoon Effluent Quality

The data listed in Tables 3.2 and 3.3 is presented in a graphical format in Figures 3.4 through 3.13. The bench marks used for comparison of the lagoon effluent quality will be Alberta's standards and guidelines for wastewater effluent quality, the performance of other treatment technologies (data from Table 3.3), surveys of natural concentrations from Canadian Council of Resource and Environment Ministers (1987), and other physically significant water quality values. For comparison these limits and values will be listed on the figures. The limits set for ammonia by Canadian Council of Resource and Environment Ministers (1987) are pH and temperature dependent so that a succinct assessment was not possible with the information given.

3.4.3.1 Lagoons 4S-2L

The 4S-2L lagoons performed similarly to 2S-2L lagoons in terms of BOD with an average of 9.1 mg/L and an upper 95% confidence limit of 11.4 mg/L. Figures 3.4 and 3.8 give a good indication of how well this lagoon design has performed. These systems were well within the BOD standards for any treatment facility and almost 85% of these facilities produced effluent that was roughly half of the BOD standard for mechanical plants servicing less than 20,000 people. The effluent from these lagoons was statistically significantly lower ($\alpha < 5\%$) in BOD than the effluent from all the mechanical plants.

The lagoon system with the lowest TSS average was the 4S-2L design. The average TSS for these systems was 20.4 mg/L with an upper 95% confidence limit of 25.6 mg/L which is very close to the guideline for mechanical systems servicing less than 20,000 people. In comparisons to the mechanical systems, all the mechanical systems were numerically better than this lagoon configuration but not all were significantly better ($\alpha =$ 1.5%, 30%, 13%, 0.5% for AS, AL, EA, and RBC respectively). The Figures 3.5 and 3.10 give a graphical representation of these comparisons. It is important to recognize the different composition of TSS from lagoons and TSS from mechanical plants. The majority of lagoon TSS is algae which occurs naturally in the environment and depending on how long it survives after discharge will determine if the net impact on the oxygen balance of the receiving environment is positive or negative. Mechanical plant TSS will be comprised of unsettled organic matter of wastewater origin and bioflocs, both materials are foreign to the receiving environment.

The average concentration of phosphorus in the effluents of the 4S-2L lagoons was 2.2 mg/L and the upper 95% limit was 2.8 mg/L. This average was lower than the average concentration of phosphorus in the effluents of all types of mechanical plants and significantly lower than all but AS plants where the α value was 20 %.

The 4S-2L lagoon discharges had an average ammonia concentration of 1.3 mg/L and the upper 95% limit of the mean was 2.2 mg/L. This average was significantly lower than the average concentration of ammonia in the effluents of all types of mechanical plants except for EA plants. Figures 3.7 and 3.12 show the ammonia levels for the 4S-2L lagoon were within the limits plotted from Canadian Water Quality Guidelines (limits based on fish toxicity and are pH and temperature dependent).

Lagoons with the 4S-2L configuration have produced effluents with an average TKN of 5.3 mg/L and an upper limit of 6.6 mg/L. This average was significantly lower than AS plants and aerated lagoons and while the average is lower than RBC plants, the difference was not significant. EA plants had the same average as the 4S-2L lagoons but the data was not as tightly grouped. In Figure 3.8 these comparisons were plotted and the range of TKN data was above the natural concentration range of TKN in western surface waters which is 0.15 to 2.6 mg/L and Figure 3.13 indicates that roughly 20% of these systems were within this range.

45

3.4.3.2 Lagoons 2S-2L

The 2S-2L lagoons perform almost identically to the 4S-2L lagoons for removal of BOD. The average concentration was 9.7 mg/L with an upper limit of 12.5 mg/L. These systems were within the BOD standard for any treatment facility and almost 90% of these facilities have produced effluent that meets BOD standards for mechanical plants. The effluent from these lagoons was statistically significantly lower in BOD than the effluent from the mechanical plants (see Figures 3.4 and 3.9).

For the lagoon configuration of 2S-2L the average value of TSS was 21.9 mg/L with an upper limit of 33.6 mg/L. The majority of the facilities were within the 25 mg/L mechanical plant standard but roughly 35% of them were over that limit. All the mechanical plants were lower in terms of average TSS when compared to this lagoon configuration and the significance of the differences depended on the type of plant ($\alpha = 3.5\%$, 23%, 15%, 1.5% for AS, AL, EA, and RBC respectively). Figures 3.5 and 3.10 give a graphical representation of these comparisons.

The level of treatment for phosphorus removal in the 2S-2L lagoon configuration was similar to the 4S-2L lagoon with an average effluent concentration of 2.0 mg/L and an upper limit of 2.9 mg/L. The Figures 3.6 and 3.11 show that this level of treatment was lower than all the mechanical plants and differences were significant for all except when compared to A.S. plants where the α value was 15%.

The average ammonia concentration in the effluents discharged from 2S-2L lagoons was 1.4 mg/L with an upper limit of 4.2 mg/L. This average was numerically lower than the average values for the AL, AS, and RBC mechanical plants with the α

values for significance being 0%, 15%, and 11% respectively. The average for EA plants was very similar to the 2S-2L system.

The 2S-2L lagoon discharges had an average TKN concentration of 6.8 mg/L with the upper limit of 9.9 mg/L. For TKN levels the 2S-2L lagoon effluents were significantly lower than the AL, lower than AS but not significantly, and higher thar RBC and EA plants but the difference was not significant. Figures 3.6 and 3.11 demonstrate these comparisons graphically.

3.4.3.3 Lagoons, 0S-1L and 0S-2L

The 0S-1L and 0S-2L lagoon systems had similar performance for all the parameters under discussion except for TSS (this can be seen in Figures 3.2 to 3.11). These two configurations will be discussed together.

These lagoon systems did not perform as well as the previous systems with the average BOD value of about 25 mg/L which is the guideline for mechanical systems less than 20,000 people. Roughly half of these lagoon systems exceeded this guideline as shown in Figures 3.4 and 3.9. The effluents from AL and EA systems were significantly lower in BOD than these lagoons, the other mechanical systems were lower but the difference was not as significant (α was 6 to 11% for RBC and 10 to 15% for AS plants).

The 0S-1L and 0S-2L lagoon configurations had average levels of TSS of 33.4 mg/L and 46.9 mg/L with upper limits of 53.6 mg/L and 65.3 mg/L. The 0S-2L system had a lower average TSS but this difference was not significant ($\alpha = 16\%$). The majority of the facilities were above the 25 mg/L mechanical plant standard. All the mechanical plants had lower average TSS levels and these differences were statistically significant. The Figures 3.5 and 3.10 give a graphical representation of these comparisons.

The average phosphorus concentration in the effluents of the 0S-1L and 0S-2L lagoons was 3.3 and 3.6 mg/L with upper limits of 6.4 and 5.4 mg/L. The phosphorus levels in the mechanical plants were similar to these lagoons and the only difference was that the upper limits of these lagoons were higher than the mechanical plants (see Figures 3.6 and 3.11).

The effluents of 0S-1L and 0S-2L lagoon systems had average ammonia concentrations of 3.7 mg/L with upper limits of 18.0 mg/L and 9.5 mg/L respectively. AS and RBC mechanical plant effluents were similar to these lagoon system effluents. EA plant effluents were significantly lower in ammonia. The AL plant effluents were higher in ammonia than the 0S-1L and 0S-2L systems but the differences were not as significant with α values of 15% and 8% respectively (see Figures 3.7 and 3.12).

The 0S-1L and 0S-2L lagoons have produced effluents with average TKN concentrations of around 12 mg/L and upper limits of 18 to 22 mg/L. Figures 3.6 and 3.11 show that the RBC and EA plants produced effluents that were significantly lower in TKN than the 0S-1L and 0S-2L lagoons. AS plant effluents were lower in TKN but the data does not indicate significant differences. The AL plant effluents were higher in TKN than the 0S-1L and 0S-2L but again the differences were not significant (see Figures 3.8 and 3.13).

3.4.4 Summary

The 4S-2L and 2S-2L lagoon configurations produced effluents that had lower levels of all the parameters except TSS when compared to the mechanical plants and often the differences were statistically significant. The mechanical plants compared to 0S-1L and 0S-2L lagoon configurations had significantly lower levels of BOD and TSS and the levels

48

of P, ammonia, and TKN were lower but not significantly. The comparison of effluent quality between different lagoon configurations showed systems with short detention cells have better average effluent quality than systems without in terms of all the parameters investigated however BOD was the only parameter that was significantly different.

3.5 Lagoon Treatment

3.5.1 Factors Affecting Lagoon Treatment

The several factors that can affect the effluent quality from a lagoon treatment system are the lagoon configuration (number of short detention cells, number of long detention cell), month of discharge, season of discharge, geographical location, storage time, percent capacity of the system, size of the system (population served), and raw wastewater characteristics. An effort has been made to examine all of these factors to determine which had an impact on lagoon effluent quality. The effluent quality parameters used to determine a factor's significance were BOD and TSS. The treatment facilities were then sorted into representative groupings and comparisons were made without the interference of hidden variables. The important factors were also analyzed to determine their relative and absolute (to a lesser extent) importance in the removal of regulated parameters like BOD and TSS and other parameters of interest like TKN, ammonia, and P.

3.5.1.1 Size of System

Figure 1.1 shows that 85% of the 154 lagoon facilities in the database served populations of less than 2000 people and 50% of facilities served 500 or less. To determine the effect that facility size has on the effluent quality, BOD and TSS data was plotted against the facility size (wastewater flow rate). Figures 3.14 and 3.15 show that

the data does not correlate well with the flow. Further analysis done by grouping all facilities with a population less than 1000 persons (roughly 400 m^3/day) and comparing them to those communities with a population greater than 1000 persons showed that there was no real difference in the effluent quality (see Table 3.4).

The analysis indicates that facility size was not a significant factor in determining the effectiveness of the lagoon treatment systems.

3.5.1.2 Raw Wastewater Characteristics

Sufficient data was not available for an apalysis of the effect of the raw wastewater characteristics. McKinney (1982) stated that due to the nature of lagoon treatment raw wastewater characteristics have little influence on effluent quality and that effluent quality is determined by other factors. For municipal lagoons the effect of raw water characteristics was assumed negligible.

3.5.1.3 Percent of Design Capacity

One of the concerns in the lagoon data was many of the treatment facilities design capacity far exceeded the current need. Figure 3.16 presents the distribution of percent of capacities that facilities were currently operating at and indicates that 30% of the lagoon facilities in the database were being used at less than half the design capacity. The changes that will occur to a lagoon system operating at less than the design capacity include the storage cell not reaching the design depth and cells that overflow to the next cell will have detention times longer than the design detention time.

The data was analyzed to determine the impact operating at less than the design capacity had on the effluent quality. Figures 3.17 and 3.18 showed with fall discharges there was no significant difference in the BOD or TSS for different percent of capacities.

The spring discharges do not demonstrate any significant differences in BOD but there was one case where the difference in TSS was significant.

BOD and TSS have also been plotted verses the percent of capacity at which the facility was operating. The wide distribution of data in Figures 3.19 and 3.20 indicates a poor correlation.

It can generally be concluded that percent of design capacity was probably not an important factor in determining the effluent quality of this type of lagoon systems.

3.5.1.4 Geographical Location

In evaluating this factor sites were mapped with symbols that indicate the BOD quality of the effluent. Figures 3.21 and 3.22 are maps showing the geographical distributions of 4S-2L (or better) lagoon effluents with spring and fall discharges. Figure 3.22 has also been overlaid with a map showing the geographical distribution of annual hours of sunshine throughout the province. From visual observation of the figures there seemed to be no correlation between BOD effluent quality and location or hours of sunshine. A statistical analysis comparing the lagoons from the different sunshine regions did not show a correlation between sunshine and effluent quality (see Figures 3.23 and 3.24 for BOD and TSS respectively).

The lagoon data did not demonstrate that geographical detailon was a factor in determining effluent quality in the Province of Alberta. There were examples of excellent lagoon effluents being produced in some of the most northern climates.

3.5.1.5 Season of Discharge

The season of discharge was an important factor to the BOD quality of the effluent as shown in Figure 3.29 where the treatment systems on the left were sorted in order of lowest to highest average BOD. All the fall discharges had lower BOD than the spring discharges regardless of configuration. The trend of TSS was not as defined as shown in Figure 3.30. In some cases fall discharges had not performed as well as some spring discharges although the majority of fall discharges were better than the spring discharges.

The season of discharge was a significant factor in the effluent quality with respect to BOD and TSS.

3.5.1.6 Month of Discharge

A concern in the analysis of the lagoon data was the effluent quality varying within the time frames used for the seasons. In other words the months of the season may have been significantly different from one another in terms of effluent quality. The season of winter in this report was assumed to include December, January, and February; spring included March, April, and May; summer included June, July, and August; and the fall months were September, October, and November.

Figures 3.25 and 3.26 are a summary of means and standard deviations of 200n systems grouped by month of discharge and configuration.

In the spring there was a significant decrease in BOD from April to May and a significant increase in TSS. This is expected in a lagoon system because through the winter months there is little to no soluble BOD removal because the lagoon is ice covered. After the ice was gone and the algae began to establish aerobic conditions there was a
decline in BOD. Although the metabolism rate of the aerobes was slower at the colder temperatures, it seems that in about one to two months of ice free treatment the effluent quality was lowered below the 25 mg/L BOD level. The rise in the TSS can be explained by the increased algal activity due to the ideal conditions of nutrients and sunlight that existed after the ice cover had melted.

The fall discharges showed significant differences in effluent quality between the different months. Both the BOD and the TSS were significantly higher in September than October and November. The explanation for this was discussed in detail earlier, in short the cold weather caused algae populations to die off which lowered both the BOD and TSS. The BOD ievels in all months of the fall were considered excellent. The levels of TSS in the September discharges were high and the decrease in October and November was important for these systems to produce a good effluent in terms of TSS.

An evaluation of the effect of the month of discharge coupled with storage time was undertaken to see if the trends noted above apply to both 6 and 12 month storage times. Figures 3.27 and 3.28 are a summary of t-tests performed on 4S-2L lagoon data sorted by month of discharge and storage time. Of interest in these figures are lagoons with the same storage time compared at the different months. The data from the lagoons with 6 and 12 months of storage had the same results as the pervious discussion in that there was a drop in BOD from April to May and from September to October and there was a increase in TSS from April to May and drop in TSS from September to October. The change in effluent quality was statistically significant for the 12 month storage lagoons but not for the 6 month lagoons.

The month of discharge was a significant factor in the quality of lagoon discharges. When storage time was taken into account the trends with the month of discharge were the same but the level of significance was not as high with 6 month storage lagoons.

3.5.1.7 Storage Time

In Figures 3.27 and 3.28 (which were also referenced in evaluation of the month of discharge) comparisons between the same month of discharge and different storage times indicate that in terms of BOD the lagoons with 12 month storage had a lower BOD than lagoons with 6 months of storage but the differences were not very significant. Storage time seemed to be more important in the spring ($\alpha = 14\%$, 12% for Apr. and May) than in the fall ($\alpha = 46\%$, 25%, and 14% for Sep., Oct., and Nov.). In Figure 29 it shows storage time had a significant impact on the BOD levels in the 2S-2L systems in both the spring and fall.

For TSS the analysis was not as clear, spring discharges were not consistent and storage time did not seem to be an important factor. The months of September and November had significantly lower TSS with 12 months verses 6 months of storage but October showed little difference.

In summary, the time of storage factor was sometimes significant for the effluent quality parameters of BOD and TSS with 12 months of storage proving superior to 6 months. Storage time was more important to the BOD levels in the spring than the fall. TSS levels depended more on storage time in the fall than in spring.

3.5.1.8 Lagoon Configuration

It is clear from Figures 3.29 and 3.30 that the configuration of lagoon treatment system was an important factor in effluent quality for both BOD and TSS. The

significance of configuration to the BOD level was shown by the order in which they appeared in Figure 3.29 with 4S-2L coming first and 0S-1L appearing last in both the fall and spring seasons. The significance of configuration to TSS was not as well defined but the trend was still the same (see Figure 3.30). The different configuration components did not readily show significance, it was not immediately clear from the analysis if the short or the long detention cells were the important components.

3.5.2 Tools For The Evaluation of Significant Lagoon Factors

The significant factors were determined to be season of discharge, configuration, month of discharge, and sometimes storage. All of these factors except month of discharge (because there was not enough data) were used to group the lagoon sites and calculate means and standard deviations for BOD, TSS, TKN, ammonia, and P. The data groups were compared in three different ways; first by performing t-tests on the means, second by comparing cumulative distributions of the data groups, and third they were used in a quasi-factorial analysis to determine qualitatively and somewhat quantitatively the relative order of importance of the factors.

3.5.2.1 Student T-Tests

Figures 3.29 to 3.33 contain the results of the t-tests comparing the different groups of data to each other for the five different parameters. In performing the t-tests data groups were sorted in ascending order for each of the parameters and then each group was compared with the other groups determining the α value (which is the probability of type one errors, or the probability the differences noticed are due to chance alone) and this value was recorded on a grid corresponding to the two groups being compared. The data was log-normally distributed so that the standard deviation was only

applicable with the logarithm of the data, therefore instead of listing the standard deviation the upper and lower 95% confidence limits of the mean were listed.

3.5.2.2 Cumulative Distributions

The graphical representation of the data groups is in Figures 3.34 to 3.38, cumulative distributions of the each configuration type were plotted with each data point showing the season of discharge and storage time. The cumulative distributions of the data give a good indication of how well and how poorly the treatment systems performed and enable a comparison of groups of data at other regions of the distribution other than the mean value.

3.5.2.3 Quasi-Factorial Analysis

The factorial analysis was an attempt to qualify and quantify to a lesser extent the relative importance of the factors to the effluent quality parameters. The four factors used in the analysis and the value of the factors were; short detention cells (present or not), long detention cells (one or two), season of discharge (spring or fall), and storage time (six or 12 months). The weakness in this analysis was that confidence varied for the means of the different factorial sets. Some of the factorial sets had up to 26 sites to estimate the mean value of the parameter in question while the estimates of others sets were based on one site and in one case there was no site to base an estimate. In checking the robustness of the results and it was found that significant factors were not reduced to insignificance even when extreme values were used. This indicates that it was more likely to make errors of false negatives than of false positives in identifying factors which were significant. Generally there was some degree of confidence in the factors identified as significant but there may have been significant factors not identified due to the lack of data in some areas.

To determine which factors or interactions were significant the half-normal plot was used (see Figures 3.39-3.43). This method of analysis assumes random errors are normally distributed and that the values of insignificant effects are random errors. There were 15 effects, four main effects or single factor effects, six two factor interactions, four three factor interactions, and one four factor interaction. The absolute value of the effects were ranked from smallest to largest and assigned a percentile based on the ranking and were plotted on half normal probability paper. If all the effects were insignificant they would have been normally distributed and plotted as a straight line, any points that deviated from the straight line were not normally distributed and therefore significant effects.

3.5.3 Evaluation of Significant Lagoon Factors

This section contains a performance evaluation of the different lagoon strategies for the five parameters of interest (BOD, TSS, P, ammonia, and TKN).

3.5.3.1 Biochemical Oxygen Demand (BOD)

Figure 3.29 shows that the 2S-2L or 4S-2L, 12 month storage, and fall discharges had the best BOD effluent concentration with an average BOD concentration of 5.5 to 6.0 mg/L and an upper 95% limit of roughly 8.0 mg/L. This was excellent effluent quality and a tight confidence interval meant that facilities with this treatment configuration had consistent performance. Although these two lagoon configurations had the lowest average BOD the t-test analysis showed that they were not significantly better than most of the lagoons with a fall discharge (the exception being those with no short detention cells). The analysis also showed that all but one of the fall discharge lagoons (the exception being 0S-1L, 6 month storage, and fall discharge) had the upper 95% confidence limits of the mean below the 25 mg/L which is the AEP guideline for mechanical plants serving populations of less than 20,000. The 2S-2L or 4S-2L lagoons with 12 month storage and spring discharge also had an upper limit of less than 25 mg/L.

The cumulative distributions of the various lagoon configurations in Figure 3.34 reconfirmed and graphically illustrated what was found in the t-test analysis which was that systems with short detention cells perform better than those without, fall discharges were superior to spring, and storage time was not always important.

The half-normal plot in Figure 3.39 showed that season of discharge was the most important factor to the BOD quality of the effluent with roughly 15 mg/L difference between fall and spring discharges. Short detention cells were also shown to be important with a 9 mg/L difference between systems with short detention cells and those without. Long detention cells and storage time were not demonstrated to be important factors. Although storage time did not prove to be a significant factor through the factorial analysis, it seemed to be important with some spring discharges. This analysis has identified the major factors of importance but the factors it has not identified can not be ignored as unimportant because of the variability in the data. There were notable exceptions to these findings, for example, storage was not identified as important in this analysis but the t-tests in Figure 3.29 showed that the 2S-2L configuration was significantly sensitive to storage time for both the spring and fall discharges.

3.5.3.2 Total Suspended Solids (TSS)

The t-tests for TSS in Figure 3.30 show the lagoon configurations with short detention cells and two or more long detention cells have performed similarly in the removal of TSS. The best treatment was by lagoons with short detention cells, at least two long detention cells, 12 month storage, and fall discharge where the average TSS concentration was roughly 15 mg/L and the upper 95% limit was around 25 mg/L. The

remainder of the lagoon systems had upper 95% limits over the 25 mg/L mark. Further interpretation of results was difficult because there were many inconsistencies in the data. There did seem to be a trend which indicated that the systems without short detention cells did not perform as well as systems with short detention cells.

The cumulative distributions in Figure 3.35 show graphically what was said in the previous paragraph, which was that systems with short detention cells were tightly grouped over the entire range of the curve and they were lower in TSS than the systems without short detention cells.

Even though the t-tests hint that some of the factors were significant in the reduction of TSS in lagoon discharges, the factorial analysis in Figure 3.40 was not able to confirm these inferences. None of the factors were identified as significant by the factorial analysis.

It appears that short detention cells were important to the TSS levels and in certain instances storage was important also but there were many inconsistencies in the data. Month of discharge, which was identified earlier as a significant factor but not included in this analysis, may be the most important factor for determining TSS levels in lagoon effluents.

3.5.3.2 Phosphorus (P)

Figure 3.31 shows that the lagoon systems with fall discharges were generally better than the systems with spring discharges which was confirmed by the factorial analysis in Figure 3.41 that shows that season of discharge was the only significant factor and that the difference between spring and fall discharges was roughly 1.4 mg/L. The cumulative distribution curves in Figure 3.38 show that the 4S-2L configuration was superior throughout the entire curve, while the 0S-1L system was the poorest treatment throughout the entire curve. The data indicates that in systems with the total number cells (both short and long detention) greater than one there was noticeably lower P concentrations.

3.5.3.4 Ammonia

Figure 3.32 shows that fall discharge lagoons usually had lower ammonia concentrations than spring discharge lagoons and the differences were significant. The cumulative distributions in Figure 3.37 show fairly tight groupings which indicates that lagoon configuration was not important although the 4S-2L systems were superior throughout the entire curve. In the results of the factorial analysis in Figure 3.42 season of discharge was the most important factor with a difference between spring and fall discharges of roughly 4.6 mg/L. This figure also showed that storage time was a significant factor to the removal of ammonia in lagoon effluents with a difference between 12 and 6 month storage of roughly 3.0 mg/L.

3.5.3.5 Total Kjeldahl Nitrogen (TKN)

In Figure 3.33 lagoon systems having the lowest values of TKN were those with fall discharge and short detention cells. The cumulative distribution curves in Figure 3.38 showed that the 4S-2L configuration was superior throughout the entire curve, while the 0S-1L system was the poorest treatment throughout the entire curve. Figure 3.38 also showed that the 0S-2L systems were noticeably lower in TKN than the 0S-1L systems. The data indicated that systems with the total number cells (both short and long detention) greater than one had lower TKN concentrations than single cell systems. The factorial analysis in Figure 3.43 show that season of discharge was the only factor that was significant with a difference of about 4 mg/L between spring and fall discharges.

3.5.4 Summary

The analysis of lagoon treatment has demonstrated that season of discharge, lagoon configuration, storage time, and month of discharge were all significant factors in determining effluent quality. The season of discharge was the most significant factor and the factorial analysis estimated the effect of fall versus spring discharge to be 15 mg/L reduction for BOD, 1.4 mg/L reduction for P, 4.6 mg/L reduction for ammonia, and 4.0 mg/L reduction for TKN. While season of discharge did not prove significant for TSS levels, there appeared to be improvements in TSS quality in the fall. The lagoon configuration was important and the presence of short detention cells proved significant for BOD in the factorial analysis with an effect of 9.0 mg/L. The presence of long detention cells did not have a significant impact on effluent quality. Storage time was important to effluent quality parameters and particularly to levels of ammonia with an estimated effect of 4.6 mg/L reduction between 12 and 6 months of storage. BOD levels in the spring were also affected by storage time. The month of discharge proved to be an important factor for BOD and TSS but due to insufficient data further analysis was not practical.

3.6 Bacteriological Effluent Quality

Table 3.5 is a summary of total and fecal coliform data collected by Alberta Environmental Protection from randomly selected lagoon discharges in, 1985. The data is divided into groups depending on the lagoon design and the time of discharge. The table also shows the storage time in months of each facility but the data is not grouped by these different times. The data has a log-normal distribution and for this reason the natural logarithm of the data has been used to calculate the mean and standard deviation. For the many data points that are not within the experimental range a plus (+) or minus (-) sign appears, in these cases the data used for calculations is the data shown. Table 3.6 is an account of comparisons done between the means using the students t-test. The percentages represent the α value in a statistical significance test i.e. the probability the difference between the means is due to chance. Although there may appear to be large differences between some of the means, significance is deceiving because the data is log-normally distributed so reference must be made to Table 3.6 where t-tests were performed on the natural logarithms of the means.

The data confirms that fall discharges are of better bacteriological quality than spring discharges. This is evident by the comparison of overall fall to overall spring coliform counts where total and fecal coliform concentrations were 10² and 10¹ per 100 mL respectively in the fall and 10³ and 10² respectively in the spring. The data demonstrates that the "4S-2L Fall" discharges are significantly better than all others, to 95% significance, except "2S-2L Fall" were it is not as significant. It is also interesting that none of the other means are different from each other to the 95% significance level, which may be due to the fact that many of the data points exceeded the experimental range of the lab analysis. The means for the spring discharges are probably much higher than calculated and if the true means were known one would expect that the "2S-2L Fall" would be significantly better than the spring discharges. Any differences between the lagoon designs for the spring discharges are obscured for the reason stated above.

3.7 Conclusions

Treatment facilities meeting AEP's standards and guidelines for lagoon design produce an excellent effluent that, for smaller communities, was comparable to mechanical plant effluent and for larger lagoon systems was superior to mechanical plants for all but one parameter investigated. The lagoon design was comparable to mechanical plants for

TSS but not superior. The difference in composition between lagoon TSS and mechanical plant TSS must be recognized.

Season of discharge was demonstrated as the most important factor affecting lagoon treatment in Alberta. Other factors that also proved significant were lagoon configuration, storage time and month of discharge.

This analysis confirms that lagoon discharges in the fall are of superior bacteriological quality than spring discharges. The analysis also shows that the 4S-2L design and a fall discharge produces a significantly superior bacteriological effluent compared to 0S designs and any spring discharges. The 4S-2L design is only marginally better than the 2S-2L design.

																				5	
FC	COL./100ml.			6.3	2.7	1.7	1.7	0.0	0.0	0.3	1.3	3.7	1.0	•	'	1	0.0	0.0	0.3	1.7	
TC	COL./103mL			283.3	56.7	103.3	103.3	43.3	16.7	9.3	21.3	8.0	6.0	4.7	9.3	24.7	15.3	16.7	21.3	22.0	5 22 34 EK
BOD	mg/L			1.5	1.0	1.3	1.3	1.3	1.3	2.2	1.6	2.6	2.2	2.7	2.9	3.0	3.5	3.1	4.1	4.6	
VSS	Lig/L			1.1	1.2	1.2	1.2	1.2	1.I	1.4	1.6	2.2	1.6	1.4	2.0	2.4	3.0	3.2	4.2	4.8	
TSS	mg/L			6.1	5.8	5.1	4.6	4.6	4.4	4.5	46	8.0	4.2	4.1	4.7	5.4	10.4	8.0	8.7	9.8	
TEMP.	DEG. C		8	2	0.5	0.3	0.8	1.3	1.0	1.0	1.0	0.5	0.5	1.0	2.0	1.8	2.0	2.0	2.0	2.0	
VOLUME	DISCHARGE	m^3		-	2446	6376	11375	16885	18208	24306	29299	32242	35175	38863	42153	4¢149	45904	_	48317	49025	
LAGOON	FLEVATION	E		19.089	19.040	18.961	18.860	18.748	18.72!	18.596	18.493	18.432	18.371	18.294	18.225	18.183	18.146		18.095	18.096	
TIME	<u></u>		11:10 AM	5.10 PM	10:10 AM	7:20 AM	6:45 AM	3:45 PM	7:15 AM	7:55 AM	8:15 AM	8:25 AM	8:15 AM	7:15 AM	4:45 PM	8:35 AM	8:30 AM	9:10 AM	9:40 AM	9:00 AM	
DATE			4-Nov	4-Nov	5-Nov	6-Nov	7-Nov	8-Nov	9-Nov	10-Nov	11-Nov	12-Nov	13-Nov	14-Nov	15-Nov	16-Nov	17-Nov	18-Ncv	19-Nov	20-Nov	
SAMPLE #			START	-	2	ŝ	4	5	9	7	∞	6	10	11	12	13	14	15	16	17	

Table 3.1 : Legal Lagoon Discharge

CONFIGURATION	mean	lower 95%	upper 95%	n	# SAMPLES
	mg/L	mg/L	mg/L		
	BOD				
Lagoon - 4S, 2L	9.09	7.25	11.39	29	55
Lagoon - 2S, 2L	9.67	7.52	12.44	16	26
Lagoon - 0S, 2L	25.45	17.52	36.97	13	24
Lagoon - 0S, 1L	23.39	15.24	35.92	8	14
	TSS				
Lagoon - 4S, 2L	20.39	16.25	25.58	30	57
Lagoon - 2S, 2L	21.90	14.28	33.58	15	25
Lagoon - 0S, 2L	33.41	20.82	53.64	13	24
Lagoon - 0S, 1L	46.92	33.72	65.28	8	14
	TKN				
Lagoon - 4S, 2L	5.25	4.22	6.55	30	57
Lagoon - 2S, 2L	6.82	4.69	9.92	15	25
Lagoon - 0S, 2L	11.53	7.54	17.63	13	23
Lagoon - 0S, 1L	12.15	6.76	21.85	8	14
Lugoon					
	NH3				
Lagoon - 4S, 2L	1.25	0.72	2.16	0c	56
Lagoon - 2S, 2L	1.39	0.46	4.22	15	25
Lagoon - 0S, 2L	3.73	1.47	9.45	13	23
Lagoon - 0S, 1L	3.66	0.74	17.96	8	14
Eugeon do, 12					
	Р				
Lagoon - 4S, 2L	2.18	1.69	2.83	30	57
Lagoon - 2S, 2L	1.98	1.35	2.92	14	24
Lagcon - 0S, 2L	3.56	2.34	5.44	13	23
Lagoon - 0S, 1L	3.27	1.68	6.36	8	14

Table 3.2 : Lagoon Effluent Quality

CONFIGURATION	mean	lower 95%	upper 95%	n	# SAMPLES
	mg/L	mg/L	mg/L		
	BOD				
A. Sludge	18.47	15.08	22.63	9	696
Aerated	16.16	13.91	18.77	25	401
Ext. Aeration	14.69	10.11	21.35	10	181
RBC	17.46	14.35	21.25	10	252
	TSS				
A. Sludge	11.65	7.76	17.50	9	696
Aerated	18.84	15.95	22.25	25	407
Ext. Aeration	15.28	9.03	25.85	10	178
RBC	11.44	9.70	13.49	10	254
	TKN				
A. Sludge	8.36	5.49	12.74	ì	699
Aerated	14.49	11.50	18.25	·5	407
Ext. Aeration	5.37	3.10	9.29	10	179
RBC	6.57	4.75	9.08	10	261
	NH3				
A. Sludge	3.33	1.45	7.61	9	696
Aerated	9.06	6.28	13.06	25	397
Ext. Aeration	1.31	0.44	3.93	10	173
RBC	3.44	1.99	5.95	10	257
	Р				
A. Sludge	2.79	1.66	4.69	9	397
Aerated	3.72	2.93	4.72	25	396
Ext. Aeration	3.58	2.88	4.45	10	173
RBC	3.75	3.06	4.60	10	257

Table 3.3 : Mechanical Plant Effluent Quality

	AVE.BOD mg/L	AVE.TSS mg/L	VE.TK mg/L	AVE.NH3 mg/L	AVE.P mg/L
POP. UNDER 1000	14.56	20.90	8.89	4.39	2.84
POP. OVER 1000	15.41	23.27	9.81	4.45	3.02

,

Table 3.4 : Effluent Quality for Populations Over and Under 1000
--

•

					LAGOONS 4	5, 2L(or m				
			1	FALL DIS					ISCHARGE	
Municipality	/ lagoon	/ storage	TC	Ln(TC)	FC	Ln(FC)	TC	Ln(TC)	FC	Lm(FC)
Maneparity	config	months	count/100mL		count/100mL		count/100mL		count/100mJ.	
Bernhead	35, 2L	7	10	2 30	10 -	2.30		8.99	3600	8.19 8.99
Beaumont	35, 2L	12					8000 +	8.99	8000 +	8.93
Boyle	4S, 2L	12	10 -	2.50	10 -	2.30				
Camrose	45, 2L	7			20	3.00				
Clyde	4S, 2L	12			•		10 -	2.30		23
Fox Creek	45.4L	7			30	3.40		8.99	6900	88
Kitacoty	45,4L	12					120	4.79	10 -	23
Lamont	45.2L	7	740	6.61	100	4.61	8000 +	8.99	420	6.0
Mundare	45, 3L	7	1				10 -	2.30		2.30
Ponoka	45, 4L	12	1				8000 +	8.99	8000 +	8.9
Redwater	45, 3L	7			8000 +	8.99		8.99	8000 +	8.9
Runbey	45, 3L	7	80	4 38	10 -	2.30		8.99		8.9
Spruce Grove	45, 5L	6					2400 +	7.78	2400 +	7.7
Viking	45, 2L	6			10 -	2.30		9.15		5.7
Vabamun	45, 3L	7			10 -	2.30		4.91	4 -	1.3
Warburg	45, 3L	12					2400 +	7.78	2400 +	7.7
Westlock	45, 2L	7					8000 +	8.99	7600	8.9
Breton	45, 2L	12	20	3.00	10 -	2.30]	
Evanaburg	45, 2L	7	170	5.14	4.5	1.50			1	
Gippour	45, 3L	6	1		10 -	2.30				
Glendon	45, 21,	12	100	4 5]	10.	2.30				
	48, 2L	12			10 -	2.30			l	
Hay Lakes	45, 11, 45, 2L	7	1		10.	2.30				
Legal	45,2L 45, 2L	12			2	0.69			i	
Marwayne	9.9.61.	MEAN	57	4.05		2.83	1627	7.39		6.5
		ST. DEV.	1	1.60		1.84		2.91		2.9
		# samples	1 7	7	1 16	16		15	15	1

					LAGOONS 2	S, 2L(or m	ore)			
			T	FALL DIS	CHAROE			_	ISCHARGE	
Municipality	/ lagoon config	/ storage months	TC count/100mL	Ln(TC)	FC count/100mL	Ln(FC)	TC count/100mL		FC count/100mL	Ln(FC)
Ardmore	2S, 2L	12			244	5.50	8000 8000 +	8.99 8.99		2.30 8.99
Ardroman	25, 2L 25, 2L	6 12	8000 +	8.99	294	3.30	8000 +	8.99	8000 +	8.99
Bavdf Calmar	23, 21. 28, 21	7			700	6.55		7.78 7.78		7.78 7.38
Chauvin	2S, 2L	12	4.5	1.50	2	0.69	2400	1.10	1000	7.50
Lougheed Josephburg	25, 2L 25,11.	7	8010 +	8.99	-	8.50	8000 +	8.99	8000 +	8.99
Waskatenau	2S. 2L	12	10	2.30	10 -	2.30 2.30			ļ	
Willingdon	2S, 2L	12 MEAN	232	5.45		4.31	5355	8.59		7,40
		T DEV		4.10		3.00		0.62 6		2.60 6
		# samples	4	4	6	6	<u> </u>		L	`

					LAGOONS 0	5, 1L(or m	ore)			
			T	FALL DIS	CHARGE				ISCHARGE	
Municipality	/ lagoon	/ storage	TC	Ln(TC)	FC	Ln(FC)	TC	Ln(TC)	FC	Ln(FC)
ntumenpanny	config	months	count/100mL		count/100mL		count/100mL		count/100mL	
Alliance	05, 1L	7			80	4.38		8.99		7.90
Bruce	05, 2L	12					350	5.86	70	4.2
Entwistle	0S, 2L	6			60	4.09				
Fort Kent	0S, 2L	12			1		8000 +	8.99		6.5
Pickardville	05, 1L	8					8000 +	8. 9 9	8000	8.9
Radway	05, 1L	6			8000 +	8.99				
Uncas School	05, 2L	6					14	2.64	1 -	0.00
Alder flats	05, 2L	12			10 -	2.30				
Clandonald	05, 1L		1		5000	8.52				
Cynthia	05, 1L	7	2400 +	7.78	2400 +	7.78				
Edberg	05, 1L	12			2700	7.90				
Forestburg	05, 3L	12	ļ		10 -	2.30	1			
Fultonvale	05, 2L		8	2.08	4 -	1.39			1	
Galahad	05, 2L	12			10 -	2.30			Į	
Lalay	05, 2L	12			2000	7.60				
Noerlandia	05, 1L	12	120000	11.70	800	6.68				
Winfield	0S, 2L	12	50000	10.82	250	5.52				
TT date to		MEAN	3276	8.09	214	5.37		7.09	1	5.5
		ST DEV.	{	4.35		2.72		2.83		ž
		# samples	4	4	13	13	5	5		
OVERA	.11	MEAN	245	5.50	56	4.02	2021	7.61		6 5
CVERN		ST DEV		3.43		2.61		2.28	1	2.9
		# samples	15	15	1	35	26	26	26	2

Table 3.5 : Summary of Total and Fecal Coliform Data

25, 2L S 05, 1L S 5355 1202 6 5 03 17 6 5 03 17 04 508 798 698 798 698 798 698 798 698 798 698 798 698 243 1008 48 368 313 368 13 35 6 5 98 558 13 35 93 568 14 928 34 1009 34 1009 34 1009 518 518				Comparison	n of Total Co	Comparison of Total Coliform Means (using t-test)	: (using t-test	_			
MEAN 57 232 3276 1627 5355 1202 ST. DEV. 5 61 77 12 2 17 ST. DEV. 5 61 77 12 2 17 ST. DEV. 5 61 77 12 2 17 ST 1008 438 56 03 -03 -03 50 3276 4 58 -1008 418 248 93 508 3276 4 58 -1008 418 248 93 508 3276 5 48 508 698 828 248 1008 232 1202 5 738 109 688 798 508 245 15 308 988 223 109 48 508 2021 26 0 128 798 548 1008 2021 26 12 74 214<			TYPE	4S, 2L F	2S, 2L F	0S, 1L F	4S, 2L S	•	0S, 1L S	Overall Fal Overall Spr	Dverall Spr
ST. DEV. 5 61 77 12 2 17 27 7 1008 438 56 5			MEAN	57	232	3276	1627	5355	1202	245	2021
rec MEAN # samples 7 4 4 15 6 5 57 7 1003 434 54 01 $v34$ 56 5 232 4 43 1003 414 244 93 508 3276 4 56 5 41 201 98 241 1004 3276 5 48 503 693 828 243 1008 245 15 306 983 223 101 48 568 245 15 306 983 223 101 48 568 2021 26 03 128 738 788 318 668 2021 26 03 124 51.1 43 353 2021 794 666 1643 253 35 8 17 74 214 666 148 363 17			ST. DEV.	ŝ	61	LĹ	12	2	17	31	10
	Tvne / Discharge	MEAN	# samples	7	4	4	15	9	5	15	26
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	4S. 2L Fall	57	7	1008	438	58	80	<u>ن</u> ه	48	308	98
3276 4 54 -13 1008 684 794 694 1202 5 48 508 698 828 243 1008 245 15 308 988 223 101 48 368 2021 26 08 223 101 48 368 2021 26 08 223 101 48 368 2021 26 08 128 738 318 668 2021 26 08 128 738 318 668 AMBAN 17 74 214 45.2LF 25.2LF 05.1LS 253 ST. DEV. 6 20 15 19 13 35 gc MEAN #samples 16 6 13 15 6 5 17 16 1008 174 18 04 04 254 554 74 6 174 19 16 144 524 1006 34 164 14 304 1006 554 144 96 554 514 13 305 144 524 160 34	2S. 2L Fall	232	4	438	1008	418	248	98	508	2 86	128
1202 5 4% 50% 69% 82% 24% 100% 245 15 30% 98% 22% 10% 4% 36% 245 15 30% 98% 22% 10% 4% 36% 2021 26 0% 12% 73% 79% 31% 66% 2021 26 17 74 21 4% 253 55% MEAN 4% 45% 21 74 214 66% 1643 253 ST.DEV. 6 20 15 10% 1% 13 35 gc MEAN # samples 16 6 13 15 6 5 74 6 17% 1% 1% 1% 1% 35% 714 13 1% 45% 10% 1% 36% 5% 74 6 1% 1% 1% 1% 3%	05. IL Fall	3276	4	58	80 	100%	68\$	798	698	228	138
245 15 308 988 228 106 48 368 2021 26 08 128 738 788 319 668 2021 26 08 128 738 788 319 668 Comparison of Fecal Coliform Means (using t-test) Comparison of Fecal Coliform Means (using t-test) AEAN 17 74 05 13 253 MEAN 17 74 214 666 1643 253 17 16 1006 174 214 666 1643 253 17 16 1006 174 13 15 6 5 214 13 14 304 149 36 56 214 13 14 304 149 56 56 214 13 14 304 149 56 56 214 13 14 304 149 524 94 666 15 04 14 524 94 54 666 15 06 94 149 526 556 666 1643 56 56 34	0S, 1L Spring	1202	S	48	50%	869	828	243	1008	368	668
2021 26 08 128 738 738 318 668 Comparison of Fecal Coliform Means (using f-test) Comparison of Fecal Coliform Means (using f-test) ARAN 17 74 214 666 16413 253 RAN 45.2L 20.0 15 19 13 35 RAN 4 samples 16 0.6 13 15 6 5 17 16 1006 174 16 13 13 35 17 16 1006 174 16 13 13 35 18 666 15 0.6 13 14 92 55 1643 6 94 14 52 6 5 5 1643 55 96 14 93 14 92 5 1643 55 96 14 5 6 5 5 1643 5 93<	Overall Fall	245	15	308	886	22%	108	48	368	1008	28
Comparison of Fecal Coliform Means (using t-test) Comparison of Fecal Coliform Means (using t-test) TYPE 4S. 2L F 2S. 2L F 0S. 1L S 0S. 1L S MEAN 17 74 214 666 1643 253 RAN #samples 16 1004 17 14 01 03 55 17 16 1006 174 18 04 04 56 55 17 16 1006 174 18 04 04 94 554 17 16 1006 554 1004 304 144 926 214 13 18 03 1006 554 556 556 666 15 06 148 306 146 926 556 1643 6 03 1008 556 556 556 556 1643 5 06 148 306 1006 528 556 <	Overall Spring	2021	26	08	128	738	78%	318	668	28	100%
Comparison of Fecal Coliforn Means (using t-test) TYPE 4S, 2L F 2S, 2L F 0S, 1L F 4S, 2L S 2S S 0S, 1L S 0S, 1L S MEAN TYPE 4S, 2L F 2S, 2L F 0S, 1L F 4S, 2L S 2S1 0S, 1L S NEAN TYPE 4S, 2L F 2S, 2L F 0S, 1L F 4S, 2L S 2S1 0S, 1L S RAN MEAN 17 16 17 74 214 666 13 35 74 6 17% 100% 5% 14% 9% 5% 214 13 1% 45% 100% 5% 14% 9% 5% 214 13 1% 45% 100% 5% 14% 9% 5% 666 15 0% 14% 30% 100% 5% 5% 5% 1643 6 0% 14% 5% 14% 5% 5% 253 5% 10% 14%											
TYPE 4S. 2L F 2S. 2L F 0S, 1L F 4S. 2L S 0S, 1L S 0S, 1S 0S, 1S 0S, 1S 0S, 1S 0S, 1S<				Compariso	n of Fecal Co	oliform Mean	s (using t-test	()			
MEAN 17 74 214 666 1643 253 ST. DEV. 6 20 15 19 13 35 ST. DEV. 6 20 15 19 13 35 I7 16 1006 178 18 01 03 5 74 6 178 1006 55 142 98 54 214 13 18 456 1006 55 143 328 666 15 01 148 303 1006 52 55 1643 6 01 303 1006 52 55 55 1643 6 01 303 1007 52 55 55 1643 6 01 148 52 55 55 1643 5 33 1007 52 55 55 55 55 35 55 55 55			TYPE	4S. 2L F	2S. 2L F	0S, 1L F	4S. 2L S		0S, 1L S	Overall Fal Overall Spr	Overail Spr
ST. DEV. 6 20 15 19 13 35 17 16 1006 174 6 13 15 6 5 74 6 174 16 1006 354 148 94 56 214 13 14 13 14 94 56 56 56 666 15 04 148 303 1006 309 146 328 1643 6 03 148 303 1006 526 556 1643 6 09 523 1007 54 556 556 253 5 32 148 523 1007 348 1643 6 92 556 556 556 556 253 5 33 1007 528 1007 348 66 35 358 1007 558 346 1008 253 5 33 103 558 558 348 1009 68 <td< th=""><th></th><th></th><th>MEAN</th><th>17</th><th>74</th><th>214</th><th>666</th><th>1643</th><th>253</th><th>56</th><th>681</th></td<>			MEAN	17	74	214	666	1643	253	56	681
(c MEAN # samples 16 6 13 15 6 5 17 16 100% 17% 18 0% 0% 3% 74 6 17% 100% 35% 14% 9% 5% 214 13 1% 100% 3% 14% 9% 5% 666 15 0% 14% 30% 100% 3% 14% 2% 1643 6 0% 9% 14% 30% 100% 34% 1643 6 0% 9% 12% 100% 34% 253 5 3% 14% 30% 100% 34% 253 5 3% 12% 5% 34% 100% 253 5% 3% 12% 5% 34% 100% 256 3% 10% 2% 5% 34% 100% 6 3% 12% 5			ST DEV	9	20	15	19	13	35	14	19
No. 17 16 1006 178 18 08 38 74 6 178 1006 356 148 98 558 214 13 18 458 1008 309 148 328 666 15 06 148 308 1066 526 558 1643 6 09 98 529 1008 349 1643 5 39 1006 526 558 253 5 39 149 529 349 253 5 319 128 09 349 26 35 103 818 128 03 1608 56 35 06 119 249 519 518 518	Tune / Discharge	MFAN	# samples	16	Q	13	15	9	5	35	26
74 6 178 1006 358 148 98 558 214 13 18 458 1008 309 146 328 214 13 18 458 1008 309 146 328 666 15 08 148 308 1006 528 558 1643 6 09 94 148 528 1008 348 253 5 38 558 349 1008 348 253 5 310 126 0 12 258 349 1008 6 35 103 818 126 0 12 258 349 1008 6 35 06 118 248 558 518 518 518	1S 21 Fall	1	16	1008	178	18	60	8 0	99 99	108	66
214 13 18 458 100% 30% 14% 92% 666 15 0% 14% 30% 100% 52% 55% 1643 6 0% 9% 30% 100% 52% 55% 253 5 3% 55% 93% 55% 34% 1643 6 0% 9% 92% 55% 100% 34% 253 5 3% 55% 92% 55% 34% 100% 56 35 10% 81% 12% 0% 11% 25% 681 26 0% 11% 24% 93% 51% 51% 681 0% 11% 24% 93% 51% 51%	2S 21. Fall	74	9	178	1008	458	148	86	558	813	118
666 15 0% 14% 30% 100% 52% 55% 1643 6 0% 9% 14% 52% 54% 54% 1643 6 0% 9% 14% 52% 54% 34% 253 5 3% 55% 92% 55% 34% 100% 56 35 10% 81% 12% 0% 1% 25% 681 26 0% 11% 24% 93% 51% 51%	0S. IL Fall	214	13	1.8	458	1005	30£	148	926	128	248
1643 6 09 98 148 529 1008 349 253 5 39 558 929 558 349 1008 253 5 39 558 929 558 349 1008 56 35 103 818 128 03 16 258 681 26 03 103 249 1008 258 258 258 681 26 03 113 248 518 518 518 518 518 coin hacterial connet net 100mL 04 118 248 933 518 518 518	4S. 2L Spring	666	15	08	148	308	1008	528	55%	60	969
253 5 3 55 55 34 1008 56 35 103 818 128 03 16 258 681 26 03 113 248 518 518 518 518 681 26 03 113 248 933 518 518 518	2S. 2L Spring	1643	9	ê0	đ₽ Ci	148	523	1005	348	13	513
56 35 10% 81% 12% 0% 12% 25% 2 681 26 0% 11% 24% 93% 51% 51% 2 681 16% 24% 93% 51% 51% 2 66 11% 24% 93% 51% 51% 2 66 11% 24% 93% 51% 51%	0S. 1L Spring	253	Ś	ar M	558	926	5 8 8	345	1008	258	516
681 26 05 118 248 983 518 518 re in hardenial counts per 100mL	Overall Fall	56	35	104	818	128	0 8	(#) [1	258	1005	03
actor means are in bacterial counts per 100m ¹ .	Overall Spring	681	26	0.6	118	350	988	518	518	66	1008
	note: means are i	n bacterial	counts per 1()0mL							

Table 3.6 : Comparison of Coliform Data

•

Figure 3.4 Comparison of BOD Concentrations

73

Figure 3.5 Comparison of 1SS Concentrations

Figure 3.6 Comparison of Phosphorus Concentrations

75

Figure 3.7 Comparison of NH3 Concentrations

76

Figure 3.8 Comparison of TKN Concentrations

Figure 3.13 : Cumulative Distributions of Lagoons and Plants, TKN

Figure 3.17 : % Capacity and Seasonal Variations in Effluent Quality

						1					ſ				ſ	
_				Capacity	F8 2.7%	La X	Fa 75% Fa 100%	Fa 100%	51.5	5. 9.	Sp 75 %	Sp 75% Sp 100%	51.75	53	Su 7	Su 100-
<u> </u>				BOD	5.6	6.7	67	7.5	23.0	26.3	173	181	84	168	7.4	180
				Upper 95%	12.6	111	HI3	12.2	481	516	30.9	33.3	264	346		
				Lower 95%	2.5	40	•	4.7	110	134	97	98	27	82		
Cepecity	BOD	Upper 95%	Upper 95% Lower 95%	u	4	0	7	12	'n	oc	s	0	• •	61	-	-
Fa 25%	5.64	12 61	2.52	4	508	369	368	285	95	1	6] fi	305	6		
Fa 50%	6 67	11 05	4.03	0	369	508	498	375	8.0	80	24	1.	361	7.		
Fa 75%	671	11.32	3 98	1	369	498	508	388	28	90	ι. γ	29	358	7.6		
Fa 100%	7.55	12.23	4 66	12	298	378	388	50%	38	•0	48	28	434	128		
Sp 25%	23.00	48.13	66 01	3	38	82	29	er B	508	424	962	35.	118	316		
Sp 50%	26 27	51.60	13.37	80	19	% 0	•0	90	428	508	214	228	1 6	288		
Sp 75%	17 29	30.88	9.68	s	36	28	28	4.6	862	219	503	478	148	484		
Sp 100%	18 06	33.27	9.80	10	38	18	23	28	358	922	479	508	178	468		
Su 25%	8 42	26.44	2 68	2	308	368	358	438	119	80	148	178	508	214		
Su 50%	16.83	34.59	8.19	7	86	79	78	125	318	288	488	468	219	504		
Su 75%	7.44			-												
Su 100%	17.95			-												

4S-2L TSS	
LAGOON	

				Cepecity	Fa 25% Fa 50% Fa 75% Fa 100%	Fa 50%	Fa 75%		So 25%	Ş S		So 75% So 100%	Su 25%	Se Sol	Su 15%	Set 100
					116	20.4	0 71									
				201	0.01	C.02	10.0	10.7	7.67	0.0	ę.	£77	<u>6.0</u>	11.8	2	210
				Upper 95%	21.7	32.8	26.0	26 1	53.3	62.5	64 2	33.3	25.9	397.7		
				Lower 95%	8.5	12.9	10.8	10.9	16.0	961	33.2	14.9	9.0	13.0		
Capacity	TSS	Upper 95%	Lower 95%	E	4	6	80	12	ŕ	80	Ś	9	2	2	-	
Fa 25%	13.59	21.75	8.49	4	508	168	298	306	58	e.	60	101	396	%		
Fa 50%	20.54	32.81	12.86	6	168	50%	278	28%	234	86	28	408	308	48		
Fa 75%	16.78	26.04	10.81	80	298	278	508	498	811	38	80	188	438	21		
Fa 100%	16.90	26.08	10.95	12	308	28%	498	508	138	38	18	194	434	28		
Sp 25%	29.23	53.26	16.04	E	58	238	118	138	508	378	108	269	128	161		
Sp 50%	35.04	62.53	19.64	80	38	96	38	38	378	508	258	118	118	174		
Sp 75%	46.15	64.19	33.17	s	90	28	9 0	1.9	108	258	508	28	18	238		
Sp 100%	22.28	33.34	14.89	10	108	408	189	194	268	119	28	508	238	38		
Su 25%	15.30	25.87	9.05	2	398	308	438	438	128	118	1	238	50%	128		
Su 50%	71.84	397.71	12.98	2	38	48	28	28	169	179	238	38	128	50%		
Su 75%	58.15			-												
Su 100%	21.00			-												

Figure 3.18 : T Tests for % Capacity and Season of Discharge

Figure 3.21 : Map of 4S-2L Spring Discharges

Figure 3.22 : Map of 4S-2L Fall Discharges

				Regoin	-	7	e	4	S	9
				MEAN	2.52	13.36	10.50	96.6	4.67	6.89
				Upper 95%	3.9	22.4	15.6	12.0	6.6	12.6
Sunshine				Lower 95	1.1	4.3	5.4	7.9	2.8	1.1
Regoin	BOD	Upper	95%Lower 95	u	2	8	6	26	9	2
	2.52	3.89	1.15	2	508	158	103	8£	148	149
5	13.36	22.42	4.31	∞	158	50%	362	148	78	263
ñ	10.50	15.61	5.38	6	108	298	50%	418	53	293
4	96.6	12.02	7.90	26	38	148	418	508	19	223
s	4.67	6.59	2.75	9	148	78	53	16	508	183
ور	6.89	12.63	1.14	2	148	268	288	228	188	508

Figure 3.23 : T Tests for Geographical Distribution of BOD (Lagoons 4S-2L or more)

				Regoin	-	2	3	t	5	9
				MEAN	12.69	21.65	18.43	21.43	18.21	22.00
				Upper 95%	22.9	31.4	25.6	26.6	26.6	43.9
Sunshine				Lower 95	2.5	11.9	11.2	16.2	9.8	0.1
Regoin	TSS	Upper 95%	Lower 95		2	8	6	26	6	2
	12.69	22.88	2.51	2	508	218	268	193	268	263
7	21.65	31.39	11.90	80	218	508	308	483	318	455
m	18.43	25.64	11.22	6	269	308	508	ମ୍ବଳ ସମ ତ୍ୟ	438	358
7	21.43	26.62	16.24	26	1 GB	44 10 44 14	19 19 19 19 19 19	503	308	4.0.4
Ś	18.21	26.62	26.62 9.80	6	268	(반 (년)	00 F	308	508	354
6	22.00	43.91	0.09	2	26%	498	359	488	358	508

Figure 3.24 : T Tests for Geographical Distribution of TSS (Lagoons 4S-2L or more)

Figure 3.25 : Monthly Changes in Effluent Quality, 4S-2L Lagoons

93

				Month	-	2	~	-	\$	\$	7	œ	•	2	=	2
				BOD			76	31.5	16.5	11.6	4.7	19.2	12.2	6.3	68	
				Upper 95%			17.2	46.7	24.7	1.61		30.5	16.2	8.6	12.7	
				Lower 95%			34	21.3	11.0	7.0		12.0	9.2	4.7	36	
Month	BOD	Upper 95% Lower 95%	Lower 95%	6	ļ		2	15	14	3	-	2	01	21	13	
-								-								
7																
m	7 58	17.15	335	7			105	18	108	218		108	116	361	458	
4	31.51	46 70	21.25	51			•1	508	2.6	58		208	80	•0	0	
Ś	16 45	24.66	10 98	2			101	28	50%	238		408	148	•0	1	
v	11.59	19.07	7.04	e			214	28	234	\$0\$		148	438	8	238	
٢	4.70			-												
80	19.16	30 53	12 02	ы			104	204	408	148		508	119	24	129	_
0	12 22	16 21	9.21	10			118	60	148	439		1:8	508	1.6	7.	
9	631	8.56	4 66	21			364	۲. ۲	90	88		24	•1	501	418	
11	681	12 71	3 65	13			450	đ Ú	14	238		124	76	418	501	
12								:								

													ĺ		
				Month	 2	ť	4	٠.	ø	-	**	•	2	11	12
				TSS		278	241	40.8	59.4	20.0	18.7	36.3	163	152	
				Upper 95%		109.7	360	657	195.4		471.	576	112	206	
				Lower 95%		70	16.2	253	181		14	22 8	12.7	11 2	
Month	TSS	TSS Upper 95% Lower 95%		u		2	15	14	e.	-	2	2	2	n	
-															
ы															
m	27 80	109 69	30°2			\$05	414	234	241		348	33%	131	111	
-	24 13	35.96	16 19	ź		4:1	508	5	58		346	101	5		
v.	40.78	65 70	16.52	14		8 51	58	508	276		138	1.E	0		
ø	\$9 44	19541	18.08	~		248	9.	274	508		148	194	õ	•5	
2	80.02			-											
80	18 74	47 14	57 L			348	346	139	149		505	146	381	125	_
0	¥: 9	57.56	22 83	10		328	108	∎ E	191		149	508	0	0	
01	16 33	21 05	12 67	អ		4 C T	an Si	8 0	đ.		9 ù C	3	505	361	
=	15 17	20 63	91 11	13		1 8 1 1 1 1	æ 17	•0	ð		323	5	19	504	
5															

Figure 3.26 : Monthly Changes in Effluent Quality, T Tests

LAG00	LAGOON 4S-2L BOD	ß					Ì	Ì		-	IT MONTH	Ħ			Ì						9	6 MONTH	н				
					HINOM	NV	Ē	MAR	ž	MAY	<u>г</u> 12	ณ พ	AUG SEP	С б	T NOV	/ DEC	IAN	Ē	MAR	APR	MAY	- 1 1 1 1	N N	NUC SE	5 2 2 2	NON F	v DEC
					800			76	1.12	129	•	47 15	131 11	113 55	5 4.7					3-7 2		180	7	= - 6%	••	*	
					Lower 99%			F	14.7	5.6	••		<u>۲</u>	11	:					216 1	201					::	
					Upper 9.9%			17.2	39.4	17.9	11		=	182 75						• • •	10			~~~~	16 6 10	10+ 452	F 1
HINOM	STORAGE	00	Lower 95% Upper 95%	Upper 9.9%	BODN			2	•	-	~	_	_	\$	-					•	+	1		1	1	•	
NVI																											
Ē							•																				
MAR	13	7.58	335	17 15	2			501	9 E	101	358		7	210 20	201 221					12	111			-	151		5
APR	12	24.06	14 69	11 60	v			9 E	\$0\$		99				0	•0				148	166						
MAY	13	12.87	8. 8	17 89	٢			101	E	501	191			120	08 1	•				6	121			.,	368		166
5	21	16.9	6.0	14.45	2			156	58	191	501			100	88 144					۳.	151				5	12	1.01
Ę	8	R .4			-																						
VND	13	15.10			-										:	I											
ŝ	13	56.11	7.07	18.22	~			214	5	166	166			501	E 11	96				•1	124				151		13
Ŕ	12	\$.51	4.07	7.48	\$ 0	_		201	•0	10	8			1 5	106 105	<u> </u>				0	0						111
NON	13	4.66	2.69	8 06	80			224	10	1	141				105 10E					80	80					169	••
DEC																											
NVI																											
Ē																											
MAR																											
¥4	φ	17.76	21.58	16:59	۰			28	141	•0	M			:	•	•0				\$0\$	111				•	•0	16
МАҮ	v	21.04	10.21	43.37	7			111	166	121	151			128	0	•				=	\$08					:	174
5	ve	17.95			-																						
Ę																											
DNV	¢	0(.)2			-																			l			ſ
Æ	vo	11.72	8.25	16 6 5	•			159	ţ	368	241			461		٩E				•	141				105	121	424
ğ	s	6.86	1 3	10 85	8			418	6	ŧ	926			128 2	254 16	161				80	•1				124	\$05	182
NON	v	18.6	2.13	45.20	•			424	124	100	481			424	11 IL	148				B E	174				424	281	201
DEC																											
Figur	e 3.27 : l	Monthly	Figure 3.27 : Monthly Changes in Effluent Quality (Storage Included), T Tests on BOD	s in EM	uent Qui	ality (Stora	ge In	clude	d), T	Tests	on B(<u>lo</u>	1	l		l										

LAGOON	LAGOON 4S-2L TSS	S								12	12 MONTH	Ŧ								5	6 MONTH	E			ł	ł	
					HUNOW	NVI	Ē	MAR	APR	MAY J	JUL NUL	J. 1 AUG	63 0	ь С	T NOV	DEC	NVI	Ē	MAR	APR M	MAY	- NN	л М	S DOV	° R	× S	NOV DEC
					TSS			8.42	212	412	100.0	20.0 11.7	.7 25.7	.7 16.2	2 11.5					36.3	37.6 2	21.0	~	30 0	66.4	164 2	20
					Lover 95%			7.0	- CII	275	346		13.0	0 10.8	8 82		_			1 531	15.8			~	38.7	11 I II	15.4
					Upper 95%			109.7	39.7	71.2 2	5 682		50.7	7 24.3	3 162		-		-	45.1 8	7 68				752 2	ลี	34.5
HINOM	MONTH STORAGE	TSS	Lower 9.9% Upper 9.9%	Upper 99%	E			7	•	-	-	_		-	•				-	•	-	_	-	_	-	=	•
NVI																											
821							1			[
MAR	12	27.80	7 05	109 69	7			105	358	228	148		Ŧ	468 16	161 58	-				474	381				61	161	116
APR	12	2112	0(11	39 66	s			356	501	1	16		m	351 24	241 5	51				1 16	174					152	10
MAY	5	4 2	27.50	71.18	7			228	÷	\$0\$	8		1	110 0	•0 •0					101	180				130	5	58
201	13	10 001	34 SS	05'682	7			148	1 E	8	501			5	10					16	164				151	10	21
Ę	2	80			-																						
AUA	13	% 11			-								ł			Г											
£3	ü	23 69	13 01	£7.05	s			464	358	111	. 85		۰ 	501 12	124 2	24				181	274				54	•••	131
S	21	16 19	09 Ot	87	•			164	240	5	5			121 50	501 121	•				16	÷				•0	484	161
NON	11	11 51	8 16	16 23	æ			5	15	5	0			24 1:	124 504						•				5	86	28
DEC																											
NY																											
Ē																		L			ſ						
MAR																											
APR	v	20.92	15.35	45 15	o			424	116	101	ŧ		•	464	t đi	•:				504	241					F	195
YAN	÷	37.58	15.80	17 68	٢			391	176	162	169			123						12	50%				191		224
ND	4	817			-																						
ษ																											
OIV	v	90 QV			-																			L		Ì	ſ
8	9	8	69 85	-15-	•			6.	•	134	156			5	0 10	•				F	191				105	5	5
5 S	ø	16 44	1.1	1017	ŝ			166	162	5	5			111 4	6 1 97	te				•	•0				5	201	9 11
ACM	•	00 20	97.51	3. X.	-			1 20	121	•	1		*	•	191	5				• 60	123]		17	5
Sec																	_										
Figure	: 3.28 : N	vonthly	Figure 3.28 : Monthly Changes in Effluent Quality (Storage Included), T Tests on TSS	s in EMı	uent Qui	ılity (Storag	te Inc	Indec	D, T]	fests c	on TS	Ş														

			-			~	-	-	-	-	-	=	=	3			1	:	=	1				:			7	:	:	:	:
				STRTION 21.		17 17	2	r z	4	2 2	a 22	ï	11	17 17				÷	<u>+</u> "				1	+	+	<u> </u>	+	+	-	+	
				8		5.6	0 6.9	6.7	5.0				10.1	-			1.4	1.4		1 7	+			-		1 .			1	+	
				•	-	2	-	:	-	•	•	•			• •	ä	2	:	-	=	•	~	-	-	-	-	-	-		<u> </u>	
	8	Lover 351	Upper 954	•																		ļ		┢	-	-	<u> </u>		·	ţ-	+
SPERC 6	2.16			-		$\left - \right $										<u> </u>			┢			ļ			┢	-				1	┦──
LALL 12	5.40	3.66	7.98	8		201	361 241	191		121		4 73	16	11	16	68	10	80	8	8	8	••	8	5		8	8	8	8	8	8
FALL 12	5.97	4.37	9.15	16		161 5	501 315	1 234		168 1	861 861	101	110	•	18	6	.0	8	8	5		:	8	8		8		1		8	8
FALL 12	6.93	3.95	12.16	7			105 010	1 454		2 126	204 294	1 258	254	106	:	5		8	5	=	5	5	8	5						8	3
9 ITH	7.26	4.75	11.10	15		191 2	231 454	11 501		151 - 1		872 8	261	101	18	24		8	:	:	8	01 51	8	=		8	8			8	3
FALL 12	8.46			-			_								$\left - \right $					\vdash	_					-		1	<u> </u>	T	<u> </u>
FALL 6	8.72	1.32	17.57	-		129 1	164 329	1351		80	101 101	121	\$0\$	294	214	•	1 70	11			1 11-	10 91	:	5	\vdash	2	1	=	5	8	8
ralı 6	8.80	7.16	10.82	-		1	131 281	11 - 133		Ę	501 491	101	11	274	169		1 51	10	14	11	0 10	00		2	-	-			8	8	5
Lapoon - 41, 21 SUMMER 12	8.86	5.35	14.65	-		1 16	102 101	112 11		10	491 501	121	409	294	194	:	1 61	11	÷	20	0	8	:	:	-	2	2	12 11	6	80	8
Lapton - 23, 11, FALL 6	9.67	1.86	19.24			1	101 254	31 271		121	434 424	105 11	468	160	201	169	011 0	38	108	5	2 42	111 12	20	2		:	:		=	:	18
· 23. 11. MLL 12	10.26	3.67	28.73	~		-	111 254	56 268		101	101 100-	10 464	208	151	156	121	1 101	er -	101	111	-61 -51	191	5	134			38 26	101 74	~	*	=
Lagcon - 29, 2L FALL 6	10.81	7.41	15.79	=		:	101	101		162	276 296	160 11	131	9	120	H	*	ž	E		- 24	24 201	16	Ş			08	24 11		0.0	60
Lagoon - 03. 21 FALL 12	12.60	7.50	21.17	و		=	=	•		214	161 191	10 201	1 354	324	201	926	1 278	11	22%	151	108	11 174	41	104		15	28			6 T	6
Legoon - 03, 21 FALL 6	14.10			-			_	_				_								_				_							
_	14.69	10.11	21.35	10		8		12 12		*	-	1	220	Ę	٧٢	201	1 11	110	NC	274	221 168	1 224	56	111	-	••	28	11 3	11 10	50	80
Lagoon - 45, 2L 3PRING 12	15.26	11.02	21.14	=		8	8			7		61 111		:	5	Ę	105	ATC	100		268 208	197		111	-	;	-	5	10 N	80	80
	16.16	13.91	18.77	ŝ		8	8	8		Ξ	8	82 80	- 51	ŗ	-	2	1 161	\$	47¥	Ĩ	291	101 101	21	-5		-11	8	-20	10	8	8
Legcon - 05, 11, 1ALL 12	16.84	12.08	23.48	-		8	8	:		=	-	10	-	1	NZ.	ž	Ĭ	17.	5	Ę	10 10	112 24	101	194		11			:		=
21. 319116 12	17.31	12.59	23.80			5	8			=	-	21 61	111	5	151	w2	1	356	161	505	1	100 110	111	171	·	-11		121 5		11	8
	17.46	14.35	21.25	2		5	8	10		Ę	8	97 90	-61	-26	101	ž	1 261	301	Ę	Ę	5	151 244		-110			- 38 -	-74 -38	14	80	08
	18.47	15.08	22.63	6		5	8	10		=	8	12	1 - 51	12	2	197	107 15	131	328		351 54	111 105	1 120	-164		128	15	W- 111-	11-11	8	8
Lagoon - 45, 21. sueech 6	20.89	15.52	28.10	~		=	=	5		:	8	51 110	161 1	101	E	12	1 244	13	248	ŝ	201.3	116 506	376	36%	_	358 2	279 3	344 254	4 176	128	:
Legoon - Di, IL FALL 6	24.06	16.27	35.58	٢		8	8	10		=	8	17	15	:	ų	*	15	2	11	Ē	2	111 111	105	454	-	364	301 3	NC2 195	120	78	:
4L SPRING 12	25.42	10.27	62.94	-		8	6	21 21		5	2	r v	111	:	101	Ξ	111	5	191	- 121	-116 -168	101 10	1 454	\$01	-	441	111	401 JSA	A 258	184	141
Contect Stabilizet'n	26.56			-			-	_			_	_				_											_				
2L 3PNING 6	27.99	16.20	48.34	13		8	8	10		2	1.	¥ 12		:	5	-		1 -21	17	Ę	-88 -128	126 15	361	ţ		9	•	407 VGF	1 276	204	5
· 41. 3L SPRING 12	28.14	18.83	42.05	10		8	8	10		=	8	11		8	2		26 28	8	5	5	-	-51 270	100	414	_	5 N 5	50%	112 105	1 234	144	
Legoon - 43, 3L 3PRING 6	28.21	11.70	68.05	-		5	5			5	-7	5 1	1 101	Ň	F		78 68	38	161	121	1- N-	111 341	1 361				501 5	111 105	111	239	-
Legon - 03, 1L _ gening 12	32.50	14.75	71.64	-		10	8			ñ	:	21 31	9 70	=	÷	_		1 - 14		58	- 11-	- 41 254	1 239	356		404	170 4	111 501	1 424	111	238
Legoon - 23, 2L 5MING 6	35.90	21.84	59.03			10	8	10		5	8	00	1 21	8	=	-	11 01	1 01	Ş	-	- 11-	11 11-	121	254		279	C 1(2	110 421	105	368	254
31 Lagoon - 01, 1L SPRING 6	41.50	23.96	71.87	و		8	10	10		5	8	:	2	8	Ξ	_	10	10	12	=	5	121 10		101		No.	141 2	10 102	310 369	ŝ	396
Legoon - 03, 2L 3PRING 12	46.47	27.31	79.09	7		80	10	10 10		10	8	10 01	11 10	80	10	-	08 08	1 01	11	80	10	16 10	1 11	149		134	1 10	170 21	234 254	396	501
33 Lagoon - 43, 4L SPRING 6	53.07	32.10	87.74	-		8	8	10 10	_	8	8	10	:	8	5	_	10	00	0	5		-		101					111 101	285	101

Figure 3.29 : T Tests of Treatment Systems, BOD

			$\left[\right]$		-	~	-	-	-	-	·	-		11 12	1	=	2	2	=		8		8	2	ž	1	1	-	20 29	<u> </u>	=	n	=	
				STATION	¥	3 tud	2	 ;;		t. Mere	ŧ	2			<u> </u>		z	2	<u> </u>	<u> </u>	<u> </u>	2	12		77	#			~	~		1	=	
				Ê		11.6		14.6	1.21 5.21	1.11 E.	17.2	-		21.0 21.6	- I. I	1 22.1	2.1	25.6	26.1 2	27.0 26	.0 20.7	7 20.6	29.6	21.3	17.11	14.4	1.1	3.6	36.0 39.	*		6.1		
				N.C.	2	•	:	-	=	-	•	-	3	-	~	-	~	=	=	-	-	-=	-	-	2	-	-	-	-	-•	-	•	-	
STATION	Ë	tower \$51 U	Upper 951	NEL				-	_	_			-	_					-	_			\square						_					
1 MC	11.44	9.70	13.49	10	505	111-	111-		1-11-	-161	ñ		- 6	- 1-	-14 04	-10	5	Ę	8		8	60 68	_	-16	8	5	8	5	8	80		8	8	
2 A. sludge	11.65	7.76	17.50	9	-476	501	194	224	241 2	22%	158			31	78 -108	1 61	-	28	8	-	-	21	_	21	0	=	8	5	8	28 08		8	ő	
1 Legoon - 45. 21 PALL 12	14.44	11.09	18.80	17	111-	194	50%	161	1 161	121	162		÷	68 11	111 - 168		:	ž	10		-	28 08	_	-11	6	=	5	8	5	11	5	8	8	
4 Lagoon - 23, 21 FALL 12	14.55	10.52	20.14	5	•	121	161	8	461 4	451	289		-	134 13	161- 161	1 124	r.	10	1		12	11 15		-54		:	:	Ξ		-	19- 11	8	8	
5 Lagoon - 45. JL FALL 12	15.17	7.99	28.78	7	-174	246	101	461	501	161	404	÷	-184	191 25	106 - 105	1 231	862 1	134	Ę	-	74 105	Ŧ		96	5	2	3	5	-	-		-	=	
6 Est. Aeretion	15.28	9.03	25.85	10	-161	224	424	454	5 163	201	404		1 11-	170 24	241 -298	122	224	101	ž	_	61	۲. ۲	_	36	"	5	3	-	:	2	*	~	-	
7 Lagcon - 45. 41 FALL 12	17.10			-					$\left \right $											-								_	-	_	_			
LALL	17.17	10.99	26.84	+	38	154	294	284	401	808	ş		154	22 826	291 -261	1 271	174	226	101	_	110 169		_	161	76	5	-	3	3	2	51 17	~	8	
9 Lagoon - 85. 2L 3PRING 6	17.50			1						-		-	_							\neg	_					-	-	_						
10 Aersted	18.01	15.95	22.25	25	08	11	÷	- 10	- 101 - 1	-174	156		508 -2	-294 23	254 - 324	102 1	101	- 16	78			-	_	ŗ	10	-	Ξ	5	8	-10		8	8	
11 Lagcon - 45. 21 FALL 6	20.99	14.14	31.16	15	-11	31	61	11	1 11	11	121		2.94	500	131 - 181	5	101	285	176	~	201 211		_	164		11	121	ĩ		1	11	5		
12 Lagoom - 23. 11. FALL 6	21.65	11.20	41.85	-	-11	76	111	NCT	251 2	241	294		167	ž	105-105	1 461	166 1	ž	187	-	281 301	10.2	_	276	101	1	1	169	161 2	216 176	122	:	-	
13 Lagoon - 45, 4L SM14G 12	21.74	21.36	22.13	2	08	-108	-161	- 111-	- 308 - 2	- 294	-268	÷	- 125-	- 401 - 50	-501 501	1 - 474	1 251	111-	100-	-	126 - 156	162 - 16	_	100-	-248	-204	Ę		-111-2	-276 -186	110- 11	-101	-	
14 Lagaon - 45. 31 FALL 6	22.72	10.85	47.58	-	-11	68	ĸ	124	2 1(2	221	×75				461 -474	19		-	NC		N2E	341 2et	_	Ő	211	229	191	201	191 2	241 151	1 270			
15 Lagcon - 45. 2L SUMER 6	25.10	17.70	35.60	2	08	"	ï	r.	231 2	224				301	162 166	5	505	.,	151		5	165 163	_	ŝ	ñ	107	102	294	274 3	324 244	151	151		
16 Lagoon - 25, 21 FALL 6	25.58	14.77	44.30	11	Ę					101	224		- 1	201 3	110- 110		1 494	\$	÷	-	-	19[10)	_	ñ	361	5	ž		2 112	201 171	19 261	5	10	
11 Lagoon - 45. 3L SPRING 12	26.72	18.12	39.41	10	0	:	-	28	F		1			211 2	100-162	112	451	451	501	-	5	10 10	_	2	"	269	12	1	2 12	1	107-101	10	-	
18 Lagoon - 01. 21. TALL 6	27.00			-				İ														_							-+		\dashv	_		
10 Lagress - 23. 21 SPRING 6	27.95	17.47	44.73	æ	10		-		F				2	208 21	201 - 320	121	12	ŧ	Ξ	-	201	461	_	ş	341		2	3	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	271 19	167	1	-	
28 Lagcon - 81. 21 3MING 12	28.70	14.58	56.50	2	C.	2%	26	58	101	-	161		Ę	211	126- 106		5	401	Ę	-		5	_	5	160		2	1	Ē	321 261		210	1	-
21 Laycon + 45, 21 gmmt 6	28.87	20.03	41.61	5	08	5	8	1	:	ž	:		=	11	162-102	107		361	110	-	5	107 111	_	5	361	ñ	I	-	2	261 11	ns- nt	1	-	
22 Contact Statilizat'n	29.56			-				_	-				-	-		_	_			+	-	-	_	\square			+		-	+	_	_		
21 Lagren - 23, 21 SPRING 12	31.31	14.84	66.03	•	-11	2	• -	-5	-	=	191		-	2	116- 112	2	1	966	ñ		•	11	_	5	:	ŧ	5	:	-		160 160	-	_	
24 Lapces - 65, 25 SPRIMS 12	32.01	21.56	17.50	1	5	8	8	:	-	-	-		8	-	111 - 24	17	1	264	12	-		331 361	_	ŧ	3		5		_	_			_	- 1
25 Lagren - 45. 31 SPR105 6	34.39	18.39	61.29	-	8	:	:	2	7	5	\$		=	-	107 - 208	52	2	52	240	+			╞	\$	_ I	ş	\$			-				
26 Lagorn - 43. 41 - 5 MING 6	34.46	22.95	51.76	-	8	••	•0	1	5	15				1 12	111-111		107	201	12	+	-	364 314	-	5	10	ş	ş	5		Ĩ	381 421	2	ĩ	
21 Lapove - 85. 11. FALL 6	34.56	19.85	60.14	-	5	0	8	=	=	-	\$		8		161 -228	102 12	1 291	244	254		291 3	341 234	-	5	-	ş	\$	\$	3	5		1	1	-
29 Lagoon - 13, 11 3 PRIMI 6	35.96	19.29	67.03	2	5	•0	5		5	ŧ	61		8	1	161 -191		274	249	-	+	-	1.2 160	-	ŝ	38%	5	ş	151	5	111 151	1		12	
29 Lapcon - 63. 24 - 509603 12	39.11		125.70	-	6	~	÷	Ļ	-=	5	121		-	~	216 -276	N 241	121	241	ĩ	+	2 0 12	320 261	-	1	24	5	5	5	-	10		-		
16 Lapove - 09. 21 FILL 12	39.90	20.79	76.59	v	5	••	8	=			5		5		107- NCI	11 151	1	110	1	-+		261 231	┯┥	<u> </u>	200	ž	ž		=		5	121		
11 LANNA - 23. 15 FALL 12	40.82	96°9	240.18	-				F		:	176		-28		110- 152	11 2.1	1	261	102-	╉		175- 100	-	ž							131 201		·	
32 Lapore - 85. 11 FALL 12	41.35		80.75	-	3	8	8	8	2	2	~		5	5	101-10	111	1150	121	:	+	Ì	210 14	-	201	224	234	2	*	-	5	421 461			
31 LAGNON - P3. 11 SPETHE 12	19.61	37.59	65.55	-	-		3	0	:	-	6		:	-	-	11 31	-	104	3	-			-	214	1	E	101	E			10- 0:0		\$	_

Figure 3.30 : T Tests of Treatment Systems, TSS

					-		•	-	-	•	•	2		ต ส	"	:	1				17	n	2		2		12 12	-	*	F	#	[=
			5		21 21	7 7	12	ž	11 12	1	4	я Н	а 2	7	H	1 ab	Ĩ	ה ג	*	3		:	E 2			11	#	<u> </u>		ž	=] #
					1 1.1	1.1 1.6	1.6	•	1.91	1.0 1.9	C-2 0	2.4	2.4 2.	2.7 2.1	2.0	9 .2	¢.5	2 9 2	1.1	1.2		3.4	3.6	2			•••			4.6		:
				E	~	-	2	-	-	-	-	•			-	-	•	-	-	-	•	-	=	2	=	-	•	2	-	•	2	-
starica	•	Lover 951.	Upper 951	z		_			-	-		_		-	_			-	\neg	_					┥	-	\neg	-				
1 Lapcon - 45, 21. SUMER 6	05	0.03	31.87	~	50	- 11	-281	12-	-	110- 150	_	- 12	~	101- 112	12 10		-151	54	1- 111-	141- 151-	1 201	101-1	5-	-2	÷	-156	- 11	10- 16-		-	-24	F
2 Lapcon - 23, 21, TALL 12	2 1.30	0.76	2.24	-	-	\$01	*	191	-	201 101	_		-13	-	121		5	5	5	2	=	24	δ	8	8	=	2	6 8	8	8	0	ę
3 Lagoon - 03, 2L SPEING 6	1.58	_		1					_	_			-	_	_				_							_						
6 149000 - 43. 21. FALL 6	1.65	1.10	2.46	15	- 201	261	201	100	-	196 166		178	-261 1	101	61 161		2	:		51 6	61 71		8	10	8	ñ	ň	19 0	80 80	0.0	08	80
5 140004 - 45. 21 FRLL 1	1.79	1.29	2.48	17	-221	161	nic	1 501	_	41 (2)		201	- 201 1	10	71 101		10	21	51	68 6	61 71	1 31	08	10	5	21	11	14 0	08 08	10	01	10
6 Lagoon - 03, 2L FALL 6	1.68		_							-																						
1 140000 - 28, 11 PALL 1	1.91	0.74	4.93		150	246	۶Ľ	5		5	195	- 150	- 176 -	212	251 251		251	1	228	216 151	102 11	160	Ŧ	=	Ę.		154	2	U U		-	=
B Lagoon - 45. JL FALL 6	1.92	1.29	2.86		-316	181	361	120		8	501	11	25%	271 21	110 112		201	*		- <u>1</u>	51 121	101	-	ñ	8	2	:	2		8	8	10
1 1174 18 18 - 4000 1	12 2.28			1																												
10 Lagoos - 43, 31 FALL 1	12 2.39	1.27	4.52	6	22%	16	179	1 201		15 155	110	50%	- 501	42%	121 121		361	201	111	301 254	54 281	1 221	۰. ۱	ŕ	F,	151	1	-	5 E	-	-	18
11 Lagoon - 41, 4L 3 MING 12	2.40	2.35	2.46	2	5	-154	-261	1 -201	5	-374 2	251	105-	201	- 459 - 45	-421 -651		-404	341	- 166-	11 151-	106- 111	1 -201	:	-169	5	-	1- 1(2-	121 -159		;	*	8
12 Lagoon - 89, 21 FALL 1	12 2.66	1.22	5.79	6	211	10	101	11		2 120	276	ŝ	15	501		_	ş	Ę	÷	195 101	111 13	111	101-1	134	Ę	1	1	161	121 121	:		
13 Lapton - 25, 21 FALL 6	2.71	1.73	4.24	11	134	34	61	4 J	-	251 2	112	381	-121	1	105		Ę	5	÷	100	101 101	112	1-150	101	Ę	1	2	1				11
14 Legoon - 03, 11. 199130 12	12.75	0.77	9.85	•	274	124	169	101 1	-	354 3:	314	121	-151	4	105 167	_		101-	ij	•••	414 A14	110	1-276	ñ	117	Ĩ	ž	1	161	1 -161	101 - 108	16-
15 Contact Stabilizat's	2.76			1		_				-	_		_						-	-	_	_	_				-	-	_	_		
16 A. Sludge	2.79	1.66	1.69	6	-156	z	_	11 11	\neg	251 2	107	19	5	461	10 U	_	ş	1	5	2	11 11	110	-191	1	-151	112	112	1	101		-	*
17 Lapoon + 45, 21 SUMER 12	12 2.82	1.72	4.62	-	-224	5	1			241 1	11	361	150	161	161 131	_	169	ŝ	161	¥	NE NE	165 1	1 161	201	1	1		-		*	-	=
18 Legoon - 45, 21 3 PRING 12	12 2.83	1.87	4.30	13	-119	21	-	41 51		221	101	ñ	16[-	-	441 411	ļ	ŧ	Ę	5		100 110	110	-191	121	-151	224	122	10	-	5		=
19 Lagoon - 25, 21 SPRING 12	12 3.02	1.74	5.26	٢	191-	-	-	51 61		2111	151	ñ	126-	5	201 441	_	428	165	5	50	11 II	1 31	1-274	238	127-		ž	-	161 131	10	~	ž
30 TTLL 11 11 12 . 400001 02	6 3.23	2.27	4.60	-	-166	21	-	61 61	-	154	3	250	Ξ	36	111 112	-	376	110	176		201 431	10 454	126	ñ	2	5	2	7	12			6
21 Lagoon - 23, 11 FALL (e 3.26	1.61	6.58	-	208	:		11 11		201	121	ž	-30	ž	34 41	-	ž	126	Ň		131	197 10	171	356	916		369	269 2	266 201	1	-	-
22 Legoon - 03, 1L FALL (6 3.41	1.93	6.02	~	11-	2	_			161 1	6	12	-281	111	274 374	-	110	162	11	100	451 461	5		Ĩ	-11	Ĩ	-	2	25% 211	-	101	\$
23 Ext. Meration	3.58	2.88	4.45	10	-5	5	-	0		Ŧ	-	ŗ	Ξ		-156 -276	_	161-	101	-191	-271 3	10 120	10- 110	5	5		ŝ	-331	102	101 102-	-	-	6
24 Aersted	3.72	2.93	4.72	25	12-	5	-	10		5	2	۶	191-	154	108 - 228		10	61	121	211	10	100 150	5	\$	167	ŝ	100		241 21	210 100	-	82
25 990	3.75	3.06	4.60	2	Ŧ	8	-	01 08		Ę	8	-	5	- 161 -1	-114 -248	-	-151	3	-121	2 122-	2	11C- 11E	-	431	8	5	101-	201 -2	101 107-	5	*	8
26 Legoon - 03, 1L FALL	12 3.89	2.67	5.67	4	-151	=	_	36 26			20	151		241	NE 161	-	238	129	ž	200 2	251 34	JAL 381	35	454	5	8	ε	-	11 140	111 251	1 161	•
27 Lagoon - 45, 3L 9PRING 6	6 4.06	1.72	9.56	4	178	28	_	16 16		13	8	91	NC2-	251	201 32	ñ	231	ŝ	ž	1	321	364 376	- 35A	404	108-	5	5	131	1	191 361	8 279	
28 Lapons - 05, 11. SPRING 6	4.29	2.67	6.88	6	-94	60	_	11 11		-	2	16	121	161	111 24	241	144	5	131	191 2	211 24	261 284	12	110	281	Ĩ	5	9	5	421 394	1 279	61
29 Legoon - 45, 2L SPRING 6	6 4.37	2.87	6.66	13	- 61	10	-	10		19		1	-150	121		1	101	-	5	161	ž Vž	261 251	162-10	241	-284		-	1	50	451 421		101
10 Lagoon - 05, 2L 5991965 12	12 1.58	3.01	6.96	7	-68	6	-	01 01		ŧ	=	8	ų	121		16		٦	:	1	150 20	201 211	10	218	101	110	16	5	458	101 105	1 26	-
31 Legoon - 25, 2L SPRING 6	6 4. 63	3.44	6.24	8	ş	8	-	10 10		2	8	2	=	=	191-15	5	99	-	3	101		151 101	"		151	2	2	ž.	-	111 201	120	-
32 Lagoon - 45, 3L SMING 12	12 5.01	3.86	6.50	2	-21	5		10 10		=	5	-	ñ	Ŧ	201-108	-	2	8	2	-	-	101	-	:	5	ĩ	2	2	2	161 151	8	2
33 Lagoon - 45, 4L 3PRING 6	• 7.53	5.92	9.58	-	N-	6	-	10 10		:		-	10	Ŧ	2	Ę.	2	6	Ξ	-	8		10	17	8	=	1	5	108	-	5	8

Figure 3.31 : T Tests of Treatment Systems, Phosphorus

				ł					ł			1						16 1 17	2			;	ļ		ł				T		
				31	STATION 1L	1	21	21	21 22	۲ ۲	ŧ	Arra	ت د	~	II.	11		-	2	<u> </u>		(<u>"</u>	3	2	<u>י</u> וו	erate 2L	2	Ħ	12	2	
					- 	5.0	\$ 0.\$		•	0.9	1.2	1	1.5 2.0	2.2	2.5	2.8	2.9 2.	0.6 0.5				3.4 3.6	3.6	1.1		9.11 1.4	.0 12.0	· · · · ·	1.1		16.1 19.7
		-			E NOW	-	-	5	9	2 15	-	• 2	-	-	•	•	7	=	-	=	2	-	-	-	-	22	•	=	-	-	
station	2	Di Lor	Laver 931 Up	Upper 951	NCM	_			-			-	_	_							-					-	_	_			-
1 Lagoon - 23, 1L FALL	2	0.45 0	0.08	2.62	ء س	501 411	1 151	11	164	JB1 161		181	101 111	111	161	131	-	10	:	ŧ	2	-		ñ	ĩ	5	10	•	5	8	5
2 Lagoon - 45, 31, FALL	21	0.54 0	0.14	2.05	-	441 501	1 491	180	369 3	388 168		1 11	11 13	101	1 124	101		120	5	ñ	24			21	5	5	10	10	10	6	8
3 Lapoon - 23, 21 PALL	2	0.55 0	0.10	2.98	-	151 191	105 11	101-	361	101 191		201 2	228 176	111	1 16%	136	58	181	10	ñ	 R	-20		÷	ž	8	6 10	80	5	5	1- 11
4 Lagoon - 45, 21 PALL	12	0.66 0	0.37	1.17	17])	314 381	13 - 404	501	- 398 - 3	-376 134		124 1	116 7	71 41	1 54	41	11	51	11	01	08	0		08	11	0	08 08	1 01	1 0	01	04
5 Lagoon - 03. 2L FALL	2	0.82 0	0.11	5.88	6]]	361 361	1 391	165-	501	481 351		1 100	131 274	10 231	241	228	121 2	268	151	"	-	-61		16	861	•	04 -14	1 01	-11	-11	-21 -21
6 Lagoon - 43, 21 SU	summer 6 0.	0.95 0	0.01	160.11	2] 3	100 100	10 401	146-	181	501 441		_	401 361	155 13	351	124	254 3	358	278	211	-194 -1	-141		208	254	- 11	-21 -41	1 -21	- 31	96-	n- n-
1 Lapon - 41, 21 TALL		1.19 0	0.51	2.76	15 1	181 164	191 194	NCI	351	105 111		E 153	N62 N6E	11 244	1 231		101 2	238	124	ž	5	÷		£	:		10	6 6	8	6	5
0 [18000 - 43, 41 EALL	12	1.22			-							-	-				-				-	_				-					-
9 Ext. Aeration	1.	1.31 0	0.44	3.93	10 1	164 174	107 14	124	100	121 451		105	110 111	167 11	162 1	250	161 2	812	101	126	101	· 11		110	128	10	0 10	10 10	8	10	16 -14
18 14000 - 61, 31 FALL		1.52 0	0.48	4.75	-	141 174	122	111	NCE	101 391		444	160 105	191 361	1354	110	271 2	254	278	20%	169	16		154	101	10	10 10	10	80	10	14
11 Lepoon - 45, 41 FALL	8	2.02 0	0.43	9.56	4	101 101		78	276	368 294		341 3	105 16E	11 11		101		ų,	3ű	Ĩ	201 2	211		261	261	:	-	10	1	Ę	12 - 12
12 Legoon - 45, 21 SU	SUMMER 12 2.	2.22 0	0.52	9.47	5	114 104	141		2.04	244		291 3	368 479	10 501	1 461	63	401	11	361	ž	2 110	250		201	268	1	11 21	1 -10	-	Ę	N24
13 Lagoon - 03. 11 FALL	12	2.54 0	0.26 2	25.02	1	164 124	28 168	58	241	154 234		291 3	351 441	() 461	201	101	461 4	•11	441	424	1- 160	- 361		116	301	- 110-	-41 -61	1 - 31	۰5ء	- 54	11- 16
14 Legoon - 25. 1L FALL	6	2.80 0	0.39 2	20.25	4	134 104	111	41	224	324 204	_	258 3	318 408	06 038	401	2	1.11	6	Ę	454	C- 909	160-		391	151	н-	•	NC - N2	Ę	ų.	11 -51
15 Lagoon - 45, 21 5P	SPRING 12 2.	2.87 1	1.03	7.96	13		44 54					16% 2	176 175	74 404	461	494	501 4	101	461	441	428 - 3	- 181		Jer	30%	-11	11 - 31	1-1	- 24	12-	5
16 Lagoon - 65, 41, 3P	SMING 12 2.	2.94 1	1.92	4.50	2	104 124	24 184	5	261	151 231	_	274 2	254 381	1	Ę	163	5	105	į	476	451			Ę	ž	5	-		6	8	Ξ
17 Lapon - 81. 21 3P	amine 6 3.	3.05	_		_	-	_		-	_		-					\neg	_			_		_		_			_			
10 Lapcon - 23. 21 SP	SM106 12 3.	3.13 0	0.72	13.53	8		••	=	151	271 121		1	271 361	100 191			161	1	\$05	\$	7 - 20	-ts	_	Ş	131		-11 -61	- I	-5	¥-	19- 18
19 Lepon - 23, 21 FALL	•	3.17 1	1.27	7.88	=			80	*	211		121	110 102	11 34	**	151		5	-	8	E	:	_	5	Ĩ	=	~	51 -11	-1	Ę	17- 11
28 A. Sludge	3.	3.33 1	1.45	7.61	6		20 31	.0	- 10	-194 64		104	161 20	201 311		-	121	151	474	174	501	171	_	Ę	ž	=	-		=	Ę	2
21 186	3.	3.44 1	1.99	5.95	10		12 - 11	10	- 61 -	-141 41		N	12 10	211 254	1 - 361	166 -	166-	11	- 451	ŧ	÷	8		\$3	11	8	8	10	6	8	8
72 Contact Stabilizat's	'n	3.64	_	-	-	-	_		-	_			_										_			-	-				+
23 Lapoon - 03, 21. TALL	•	3.65	-		-	_			-			-		_									_			-		_		1	-+
24 Lapoon - 95. 11 FALL	•	3.69 1	1.37	9.92	~	~	20	8	ŗ	201 71		-	151 26	261 201		ž	Ĩ		6	17	-	5		ş	Ĩ	-	2		2	Ŧ	=
25 Lagoon - 01. 11. 31	3 PR 212 12 5.	5.25 0	0.57	49.18	-		51 71		136	251 01		128	181 26	261 268	1 34	151	5	ž	151	110	E- 820	111-		5	8	-201	161 - 191	-10	51-	¥.	191 - 154
26 Arrated	ő	9.06 6	6.28	13.06	25	0 0	00 00	1 01	0	10 11-		80	08	11 11	n- II	к-	Ę	5	ŗ	Ę	Ξ	5	_	2	102-	~ 100	102 122	171	-	:	2
27 Lagoon - 45, 21 81	sparage 6 11	11.76 6	6.54	21.14	13		04 04	10	10	-24 01		80	1	10 18	1 -41	1	11	15	4-	-	-	8		ñ	1	2	101	5	ñ	ž	111
26 Lapcon - 21, 21 81	series 6 11	11.97 6	6.56	21.84	8		80 80	10	¥1-	- 44		90	1 10	10 20	1 -61	51	Ę.	10	5	~	=	5		ñ	161-	1 102	105 111	190	ž		201 151
29 Lagoca - 45, 35 - 51	SPRIMS 12 12	12.43 E	8.27	18.70	10		00 00	10	5	-24 04		80	10	81- 80	1 - 31	16.	-10	11	¥6-	-10		80		Ξ	Ę	-	(U)	8	Ĩ	22	250 114
36 Legoon - 81, 21 SI	serve 12 13	13.66 9	9.01	20.72	7		10	80	-10	-34 CF		8	1- 10	11- 11-	1 -51	- 11	•2•	10	s.	ŗ	:	5		ž	-154	141	111 111	ž,	ŝ	ñ	
31 Legoce - 33, 11 31	serves 6 15	15.93 1	11.02	23.02	و	0	00 00	00	-16	10 10-		69	08 -1	-11 -11	1 -51	ų.	17-	6	-5	-	=	5		÷	Ę		261 24	52	30	ş	11 33
32 Lagcon - 45, 31 31	smine + 16	16.14 9	10-6	28.91	•		61 11	10	-28	10 18-		11		21 31	1 91	1	5	-	:	۶	2	5	_	-	ĩ	124	291 281	52	-	Ŧ	5
33 Lapcon - 43, 42 31	sterns 6 19	19.65 1	13.86	27.86	•	60	e1 - 14	1 01	12-	-76 06		-10	- 40	-29 -29	9 - 76	-54	۲ <u>-</u>	5	-69	×,	-	5		*			151 161	11	-	5	ž

Ammonia
Systems,
[reatment
I Tests of T
.32 : T T
Figure 3

		ſ	F	T	F	-	1	⊢		t	F	┢	⊢		+	-	1		t	\mathbf{F}	+	┝	1			ľ	t	$\left \right $	\mathbf{F}	$\left \right $		
		T					-	1 -	•	-	•								_	. †	=		+	-+-	=	=		+		<u>+</u> -	7	=
				_	-	+		+	+		+	+	-			+			3					=	=	-			1-	-1-1	=	:
					-	-		<u> </u>				<u> </u>	+	<u> </u>	+	+	÷	-		+	-	-	-				+-	1			2	-
Plaitice	ł		ii ii			<u> </u>					+	-					·		·	+		+	-	-	·	*			-	•	•	•
Lagram - 46, 41. PALL 12				1		-														+	┢	-		L			t	┢	┢	┢	┢	1
Layoon - 40, 32 Public LT	3.60	1.96	6.62	1	-	504 -4	16 141	162 116	121	181	191	1	1	3	"	и и и	~	=		=	-		1		1	1	6		-			
Lagram - 43, 71, 7121 17	3.67	2.97	4.55	5		5	105	121 126-	5	Ę	r.	5	- 4	10		10	L	1		=							=	=			1	
Lagues - 20, 21, 7444 12	4.17	2.24	7.75	7		5- 11E	- 324 56	501 J.U	1 251	201	201	251	102		<u>~</u>	18 112-				F		1				i	1	5	1	<u> </u>	1	
Lagoon - 28, 11 PALL 12	16.2	2.44	11.59	3		251		341 501	1 501	16	t 61	ğ	1111	291	-	122 111-	1				L		_	1			=		1	1	1	
Lagons - 10, 21. PALL 6	\$5.34	3.58	7.97	5		- 151	-51 2:	251 581	1 301	142	461		ונכ ו	241		121 111-	3				L.,	L	<u> </u>		1		6	6		1		
tre. Assertion	76.3	3.10	9.29	10	-	111	-11 21	ZIN 691	181	\$0\$	11		120 1	112	<u> "</u>	-361 364	177	L		Ĩ					L	_	=	1 =				
Lagens - (11, 71, Palls 4	5.59	3.07	10.16	+		141	11 21	201 461	1 461	119	501	15	1 401.	Ĩ	╞╴	162 116-	191			<u> </u>	L		<u> </u>			<u> </u>	:				1	
Legens - 88, 25 Philes 6	5.85			1							-	-									1		_	1.				+				-
10 Lagram - 10, 11 TALL 1	6.02	2.58	14.00	4		101	61 2:	121 121	101	113	15	5	1 461	Ę	F	102 111	12 1	121		ñ	1	121	107			1	=	1:				
Lagoon - 00, 21, PALL 12	6.45	2.89	14.37	9		141	41 26	201 311	1 331	160	401	19	1 501	ŧ	ŀ	UC 150-	L			i	112	÷	<u> </u>		1-	1	:	F	1	1	1	_
-	6.57	4.75	9.08	10			10	91 291			311	5	117	201	ļ	162 129				L	-		<u> </u>		-	-	6	1		1	4	
Laguen - 00, 21. PALL 6	6.70			1			_										ļ			Į				L		1		-		1	L_	-
Laguen - 18, 45 Eratus 12	7.10	16.9	7.29	~		- 11	2-16	116- 112-	1-311	-30	116-	110-	1 - 451	128	Ľ.	501 - 441	NE- 11	146-1		Ę	2- 102	= 12	4E- UI	112-11	-		ş	:	1	12 12		
Laguen - 28, 21. PALL 6	7.66	5.00	11.73	=		=	5	61 221	121	161	162	100	1 341	29%	1	- 441 501	Ĩ			Ner.						L	11	5			I	L
4. Iludo	8.36	5.49	12.74	6		12	5	41 161		121	161	162	1 271	191	7	14E 11E-	105 11	501		1	2 142	L				1	=	5				1
27 Legeon - 40, 25 BOX200 12	8.39	5.48	12.85	=		21	5	1		111	H	241	1 276	201		16[16[-	105 10	105 1		Ĩ	310 2	231 23	126-122	24		L	=	1	=		Ļ	
Contact Stabilisst'n	9.39			-			_		_											\vdash			_		L							
Lagern - 20, 11. 7ALL 6	9.64	4.54	20.44	•	_	Ŧ	5	11 H	101	1	151	122	1 261	161	-	-311 JOL	nt In	301		ă	ъ Ş	10	10 M	1	162 1	1	:	1	5	1	1	ñ
20 Laguen - 12, 25 RUMER 12	10.42	5.07	21.43	2		-	6	1	1 61	:	'n	=	1 211	101	ŗ	NEZ 102-	11 291	1 301		441	501 4	5	631 631	1	<u> </u>		Ĩ	5	Ξ	1		
21 lagon - 78, 21 0MIM 12	10.48	6,69	16.44	æ		=	6	1	-	5	=	ñ		5	-	111 122	11 241	1 241		ä	5 169	501 45	454 - 441	162 11	1 341	101	ę	ñ	Ŧ	5	1 28	1
Lagram - 01, 11 PALL 6	10.94	7.11	16.84	-		=	5	19	12 1	ŧ	5	ă	1	Ŧ	-	111	10 201	112 11		Ĩ	451 4	451 56	501 - 46t	121	1 371	141	11	ĸ	16		12 10	=
Lagran - 10, 21. pullets 6	12.05	0.43	337.72	~	_†	121		101 101	11-141	-11	12	ñ	1 291	102-	-7	112- 165-	10-11	116- 1		Ę	631 - 6	- 44	-461 501	105 11	1 -381	ne-	121-	- 182-	c- 10C-	.)[-]1(-	1.2-	-261
Lagean - Di, 11	12.13	3.68	37.85	-		=	5	197 15	19	*	I	Ĩ	1	5	7	211	162 UI	1221		Ĩ	-	31.65	421 501	105 10	1-501	-314	1231	-181	281 2	162 182	191-164	i,
Lagoon - Da, 11 PALL 12	12.17	9.15	16.19	-		=	5	21	1	3	=	•	11 13	ñ		2	121 131	-		ñ	111	30	376 - 581	11 -501	1 501	294	181	61			1 21	5
Annual	14.49	11.50	18.25	25		5	5		10	5	5	=		6			11					101 1/	ne- 11	11E- 11	1 291	195	102	161		101 101	:	~
Lapon - (1, 21 SPLIM 6	16.98	11.85	24.33	2	╡	:	5	1	10	8	5	=	-	5				=		=	ñ	5	n -321	11 231	1 101	231	105	111	401	111 151	1 254	121
Lapons - 11, 31, anum 12	17.75	13.84	22.77	9		5	5	5	5	5	5	8	11-11	5		=	8	6		-	5	=	112-11	101-104	۲. ۱۹	161	131	SON	451 3	111 111	11 231	5
lapon - 21, 21. BRUIM 6	18.23		26.18			-	8	1		5	8	-		5	\neg	-		=		5	=	=	186- 18	10 201		LI I	401	Ş	105	14E 199	11	121
Legens - 01, 26 BRAZING 12	18.97	12.79	28.15	~		5	8		5	5	8	-	11 21	5		2		-		5	5	-	41 -301	107		144	150	140	461 5	501 441	111	
Lagons - 41, 31. mentine 6		12.26	32.33	-		5	5	12	10	=	=	-		5		2	21 21	~		=	Ξ	5	61 - 34	11 23	7	101	121	NEC	ur	411 501	11 eu	191
Logson - 00, 15 WRING 6	20.73	15.22	28.23	٥		5	5	10	8	5	5	-	11	5		8	10			ä	5	24	12- 12	191 - 101	1 21		231	LEZ	111	nn 44	105 11	1
23 Lageon - 18, 15 BPAING 6	25.68	25.68 20.85 31	31.62	4		10	8	10	1	8	5	-11	11- 11	8	_	0 10	10	1 11		21	ŧ	=	11 -261	11 - 136	1 1	1	121	61	121	161 191	11 11	1 301

Figure 3.33 : T Tests of Treatment Systems, TKN

4.0 IMPACTS OF LAGOON TREATED EFFLUENT

4.1 Introduction

The discussion of the impact of lagoon treated municipal wastewater is not too different from any treatment applied to municipal wastewater except that there is not a continuous discharge. The earlier chapter on effluent quality has demonstrated that lagoons meeting the Alberta Environmental Protection's design guideline produced effluents which were comparable or superior to other common treatment options for most effluent quality parameters. In situations where effluent quality governs the impact, lagoon effluents will be comparable or superior to other treatment options.

This chapter deals with the impacts of lagoon treated effluent in terms of, public health and wildline, adjacent properties and ground water, fall versus spring discharge, and suitability for land application.

4.2 Public Health and Wildlife

The level of impact of any effluent discharge to a water course is dependent on the dilution ratio (discharge flow rate/water course flow rate), the quality of effluent, the sensitivity and assimilative capacity of the receiving water, and the down stream uses of the receiving water.

4.2.1 Dilution Ratio

The volume of flow of the receiving body and the volume of flow of the lagoon discharge are the factors that determine the dilution ratio. The distance required for any discharge to become completely mixed across the receiving channel is roughly 200 to 300 channel widths down stream depending on stream characteristics. This discussion deals with the completely mixed dilution ratio.

The flow of rivers and streams varies seasonally and depending on the size and nature of the catchment. Figure 4.1 (Bow River at Banff) shows the variation in the normal and extreme discharge at this site. This figure demonstrates the common characteristics of rivers which are at peak flow during the spring runoff period and lower flows in the early spring and fall. The spring runoff varies in timing and intensity depending on the river and the catchment. Rivers fed by mountain snowpacks seem to get high spring discharges in May-June-July while rivers fed by lower elevation snowpacks and spring rain peak in April-May-June (Environment Canada, 1990). The rivers fed by mountain snowpacks tend not to have as extreme spring runoff peaks and low fall discharges as the rivers fed by spring rains and lower snow packs. It is not uncommon for many streams to stop flowing in the fall (Environment Canada, 1990, Kellerhal *et al.*, 1972).

The discharge rate from lagoons is roughly 10 to 20 times the wastewater inflow into the facility assuming 36 to 18 day discharge duration respectively and 12 months of storage. There are tradeoffs when considering the benefits of controlled discharge facilities versus continuous discharge facilities. Controlled discharge has the benefit of avoiding seasons of poor assimilative capacity or high recreational use of the receiving water while the disadvantage is the discharge rate is much higher.

To maximize the dilution ratio of a lagoon discharge the timing of the discharge must coincide with the high discharge period of the receiving stream and the duration of the discharge maximized.

4.2.2 Effluent Quality

The effluent quality parameters used in assessing the impact of lagoon effluents on public heath and wildlife are BOD, TSS, P, ammonia, nitrate/nitrite, TDS (total dissolved solids), and total and fecal coliforms.

A brief discussion of the ways these effluent quality parameters affect the receiving water follows.

4.2.2.1 BOD

The major impact of BOD on a receiving water is the depletion of dissolved oxygen (DO) that occurs in the receiving water as the effluent is stabilized. The consumption of the DO by the microorganisms stabilizing the effluent decreases the DO concentration while reaeration and photosynthesis replenished the oxygen consumed. The natural DO concentrations of the receiving water are determined by a balance between the oxygen sinks and sources. The natural DO concentration of the receiving water varies seasonally with temperature fluctuations and natural organic loading due to non-point sources. The sag in DO concentrations after a point source discharge like a lagoon upsets the natural balance that has been established and the natural process of oxygen transfer adds oxygen to the water to restore the balance. A simple model first presented by Streeter and Phelps (Krenkel and Novotny, 1980) illustrates the effect these processes have on the DO concentrations in a stream or river (see Figure 4.2). It is important to note that this is a simple representation of a very complex process, predicting the rate that the BOD of an effluent will be exerted in the natural environment depends on many site specific factors. Greenfield and Elder (1926) stated that there was an initial lag phase in the exerted BOD incubated at 2° to 6° C probably due to an inadequate population of microbes acclimatized to these temperatures. Figure 4.2 is intended to demonstrate the general trends of the DO sag curve and should not be taken as complete. The figure shows the DO levels decrease as the BOD is exerted and then it flattens off and returns to the previously assumed levels due to oxygen transfer. A problem occurs if the BOD is too high in the wastewater and the natural oxygen transfer processes cannot meet the rate the BOD is being exerted and the DO concentrations drop below the levels that are required by the aquatic biota in the receiving body. The DO concentration necessary for most fish is established at 6.0 mg/L and 5.0 mg/L for later and earlier stages of life respectively (Canadian Council of Resource and Environment Ministers, 1987). In situations where there is ice cover the natural reaeration processes cannot function and the DO concentrations will remain at lower levels without being replenished. Hickey (1989) suggested a receiving water criterion of 5 mg/L BOD₅ for maintaining DO levels for fish.

4.2.2.2 TSS

The Canadian Council of Resource and Environment Ministers (1987, hereafter CCREM, 1987) describe the impact of TSS on the receiving environment as having a significant effect on organism succession due to shading, abrasive action, habitat alteration, and sedimentation. The limits set by CCREM (1987) to ensure fish suffer no ill effects are 10 mg/L added to background concentrations unless the background TSS is greater than 100 mg/L when the limit is 10% of background. Lagoon TSS is mostly algae (Hickey *et al.*, 1989) which is naturally occurring in the receiving waters while TSS from mechanical plants is composed of matter of wastewater origin that did not settle out in the clarification process.

4.2.2.3 Phosphorus

Phosphorus is an element that is essential for plants to grow and the absence of phosphorus will limit the amount of plant growth in water as well as land. Middlebrooks *et al.* (1978) explains that phosphorus is often the limiting nutrient in aquatic systems simply because the ratio of phosphorus to other nutrients in the cell material greatly exceeds the

ratio found in water and land masses. If phosphorus is the limiting nutrient and it is then added to a water body by wastewater effluent discharges or from non-point sources like runoff from agricultural operations where it is being used in fertilizers, then the water body could sustain increased weed and algae growth. Receiving water limits for phosphorus are not set by CCREM (1987) because the impacts are sites specific. When phosphorus removal is a requirement in wastewater treatment the guideline is 1 mg/L.

4.2.2.4 Nitrogen

Nitrogen can cause problems in receiving water in four ways; first, nitrogen in the form of nitrate can be a limiting nutrient and the addition of it can cause eutrofication of the water body, second, nitrogen in the form of unionized ammonia and nitrate is toxic to fish at low concentrations, third, oxygen is consumed through nitrification where ammonia is oxidized to nitrate and then to nitrite, and fourth, nitrates may produce a condition known as methemoglobinemia (blue babies) in infants under 6 months of age (Krenkel and Novotny, 1980).

The portion of total ammonia in the toxic unionized form is dependent on the concentration of ammonia, temperature, and pH. Yake and James (1983) proposed the setting of ammonia limits taking into account probabilistic pH and temperature conditions in the receiving stream. The rate of volatilization of ammonia is greater in streams than ponds due to mixing and Stratton (1968) predicts the half-life of ammonia discharges to streams to be 11 hours at pH 8.5 and temperature of 20°C. The ammonia receiving water quality guideline for the protection of fish is 1.37 mg/L at pH of 8.0 and temperature of 10°C (CCREM, 1987).

As with phosphorus, a guideline for algae growth is not set for nitrate concentrations in the receiving water because it is a site specific value however, CCREM (1987) stipulates that concentrations that stimulate prolific weed growth should be avoided. The drinking water guideline for nitrate and nitrite is 10 mg/L and 1 mg/L (as N) and combined nitrate/nitrite is 10 mg/L (CCREM, 1987). The guideline for stock watering is 100 mg/L combined nitrate/nitrite (CCREM, 1987).

4.2.2.5 TDS

The TDS guideline for drinking water is 500 mg/L and is based primarily on aesthetic consideration (CCREM, 1987). Water with high TDS consumed in large amounts can cause physiological upset and ultimate death in most animals. The TDS guideline for stock watering is 3000 mg/L and waters with 10,000 mg/L are unsuitable for livestock. For irrigation, if the TDS levels do not exceed 1000 mg/L then salination should not be a problem (CCREM, 1987). Depending on the type of soil and crop grown waters with TDS of up to 3500 mg/L are suitable for irrigation (CCREM, 1987).

4.2.2.6 Total and Fecal Coliforms

The coliform group of bacteria are a useful indicator of the bacteriological quality of water. Generally only some of the fecal coliform are considered pathogenic but because they are present in the intestinal tract of warm blooded animals in great numbers (1x10⁹ organism per gram of feces), they are a good indication of the possible presence of other pathogenic organisms. *Enterococci* and *Escherichia coli* are better indicators than total and fecal coliforms for water quality for swimmers and recreational uses however the only data available is total and fecal coliforms. The CCREM (1987) stipulates a guideline for bathing and recreational use as an average of 200 fecal coliforms per 100 mL while the guideline for irrigation is 100 fecal and 1000 total coliforms per 100 mL.

4.2.3 Lagoon Effluent Impacts

Tables 4.1, 4.2, and 4.3 are summaries of the mean and 95th percentile values of the previously discussed parameters for the lagoon configurations 0S-2L, 2S-2L, and 4S-2L with 12 month storage respectively. Table 4.4 shows the data for AS plants. The tables also include the dilution ratio required to achieve the desirable receiving water concentrations for various uses. Some 95 percentile values are excessively high because of the limited number of samples used to estimate the value.

The various lagoon configurations were evaluated in terms of the dilution ratio necessary to meet receiving water criterion of the quality parameters. The mean values were discussed primarily because some 95 percentile numbers are misleading.

4.2.3.1 Lagoon 0S-2L

Table 4.1 indicates that the mean fall discharge of a OS-2L lagoon required a dilution of 1 to 3 in order to meet the receiving water criterion for TSS. In the spring the average dilution necessary was 1 to 9 and is dictated by the ammonia levels although the fecal coliform requirement would probably have been 1 to several hundred.

4.2.3.2 Lagoon 2S-2L

The largest dilution ratio required for the average 2S-2L lagoon with fall discharge was 1 to 1.1 for TDS concentration for drinking water. The governing spring dilution ratio was 1 to 15 for fecal coliform levels (see Table 4.2).

4.2.3.3 Lagoon 4S-2L

The ratio of only 1 to 0.8 was required for the average fall 4S-2L discharge to meet the criterion for phosphorus and TDS (drinking water). The spring dilution necessary was 1 to 5.7 for the fecal coliform requirement (see Table 4.3).

4.2.3.4 Activated Sludge Plants

The average dilution ratio required by AS plant effluents was 1 to 2.7 and 1 to 1000 for BOD and coliforms respectively (see Table 4.4).

4.2.4 Summary

This evaluation has demonstrated that with reasonable dilution ratios the average lagoon effluents have met receiving water quality criterion for the protection of public health and wildlife. Once again this analysis shows the superiority of the lagoon configurations with short detention cells. Increased dilution ratios are required in the spring to compensate for poorer effluent quality. The dilution ratio required by AS plants was two orders of magnitude greater than the 4S-2L lagoons and was governed by the total and fecal coliform counts.

The 95 percentile dilution ratios in the spring were high in a few parameters especially in terms of coliforms which are a concern for recreational use of the receiving water. This indicates that some of the lagoon sites in the spring may have trouble meeting receiving water criterion. To minimize the impact of lagoon effluents, spring discharges should be planned for maximum duration within the window of highest effluent quality (month of discharge), highest receiving water flow, and lowest recreational use.

4.3 Spring Versus Fall Discharge

While effluent quality in some fall discharges does not require any dilution to meet receiving water criterion, discharging a lagoon to a dry river bed or an almost stagnant stream is not desirable. The fall flow conditions in some water courses is such that spring discharge should be considered. The effluent quality varied greatly from spring to fall discharges as was previously discussed and is evident in Tables 4.1 to 4.3. The spring discharges were of lower quality than fall with BOD roughly 3 times greater, TSS 2 times, phosphorus 2 times, ammonia 5 to 10 times, nitrate/nitrite and TDS no change, and coliforms counts were as much as 15 times greater in the spring. Lagoon discharges were also more variable in the spring than the fall (see 95 % values) as chapter 3 demonstrated, spring effluent quality varied greatly with month of discharge. Coliform data showed a large degree of variance with the 95% values 3 orders of magnitude above the average.

The peak spring flow of a river or stream is often 10 or more times the fall flow rates (Figure 4.1) and in some cases higher spring flows may be of poorer water quality. The higher flow rates in the spring could possibly provide the necessary dilution to make up for the lower effluent quality for all the parameters but the erratic coliform data is reason for concern. The high 95% counts indicate that sufficient dilution may not be available and the receiving water criterion for coliforms may be exceeded.

The analysis indicates that spring discharges may be a reasonable alternative in terms of all effluent quality parameters. The decision of spring versus fall discharge should be based on site specific factors of seasonal receiving water flow and local lagoon performance (due to variability in the spring effluent quality).

4.4 Suitability for Land Application

The suitability of lagoon effluent for irrigation is discussed for the impact on public health and livestock and impact on the farming operation.

Bell (1976) studied the dieoff rate of fecal coliforms on alfalfa irrigated with sewage lagoon effluent and found that exposure to sunlight for 10 hours resulted in complete dieoff of the coliforms and suggested that the two days of sunlight will adequately protect livestock from salmonella and enteropathogenic *E. coli* infection. Bell and Bole (1978) also studied fecal coliform dieoff in the soil due to irrigation with sewage lagoon effluent and interpreted the results as indicating that the soil no longer constitutes a serious public health hazard for entric diseases two weeks after irrigation with sewage lagoon effluent. Both of these studies where done near Lethbridge, Alberta.

CCREM (1987) states that the guideline of total and fecal coliform counts for irrigation is 1000 and 100 per 100 mL respectively. Tables 4.1 to 4.3 show that average fall discharges of lagoons with short detention cells met the guideline for irrigation. The spring discharges require some dilution but irrigation is usually not necessary in the spring. There is no coliform data available for Alberta lagoons in the summer which is the common irrigation period. Summer time coliform counts are likely low based on the high rate of treatment and the long hours of sunlight in the early spring, and the examples of spring discharges with low counts (see Table 3.5, chp. 3).

The guidelines for the impact of irrigation water quality on the farming operation depend on the soil and crop types (CCREM, 1987). The discussion of soil conditions concludes that sandy soils are more tolerant to higher concentrations of the major ions of concern. The major ions of concern for irrigation are bicarbonate, chloride, sodium, and TDS. The salinity or TDS of irrigation water is an extremely important factor because an increase in salinity in the soil solution increases the osmotic pressure which reduces the amount of water available for plant consumption. Excess water must be applied to move a portion of the salts out of the root zone in order to avoid salt accumulation. Guidelines for TDS are in Table 4.5 and the chloride guideline is 100 mg/L for sensitive crops and 700

mg/L for tolerant crops. Table 4.5 and the average TDS concentrations for lagoons in Tables 4.1 to 4.3 indicate that lagoon effluents are suitable for most crops grown in Alberta. The average concentration of chloride in the three lagoon configurations is below 100 mg/L. The sodium guideline based on a calculation with hardness and numerical guidelines for bicarbonate are not given.

This analysis indicates that with average conditions lagoon effluents are suitable for use in irrigation. Manuals are available that give detailed instructions on the operation of wastewater irrigation (see Environment Canada, 1984).

4.5 **Conclusions**

The impacts of municipal treated effluents are minimized by lagoon treatment. The advantage of controlled discharge avoiding ice covered receiving waters out weighs the disadvantage of higher discharge rates. Lagoons with short detention cells have better effluent quality and require less dilution than lagoons without short detention cells. The fall discharges of 2S-2L and 4S-2L lagoons require roughly 1 to 1 dilution to meet the receiving water criterion for all the parameters investigated. AS plants require much higher dilution ratios due to the higher coliform counts in the effluent. Spring discharges required increased dilution but the increase is similar to the increased spring flows of receiving waters. The question of fall versus spring discharge should be evaluated on site specific criteria of seasonal receiving water flow rates and local effluent quality. Effluent quality and specifically coliform counts may be a concern in spring discharges and if spring discharges are necessary upgrading the effluent quality may be required. Irrigation water quality is based on the type of soil and crop but lagoon effluent is suitable in average conditions for most crops.

			Effluent Concentration	ncentration			Receiving			Dilution Ratio Renuired	io Required	
		Fall			Spring		Water	Reason for		Fall	S	Sprine
	Mean	95 percentile	No of	Mean	95 percentile	No of	Criterion	Criterion	Mean	95 percentile	Mean	95 nercentile
Variable	mg/L	mg/L	Samples	mg/L	mg/L	Samples	mg/L					
BOD	12.6	76.3	v	46 S	1 400	٢	0 \$	fich DM mainteach	-	:	,	5
			>	2.01		-	2.1	(Hickey 1090)]	ž	66	80
TSS	39.9	383.3	9	28.7	301.1	2	10	fish impact (CWQG)	3.0	37	1.9	જ
Phosphorus	2.7	39.5	9	4.6	19.6	7	0.1	algal growth *	1.7	38	3.6	61
Ammonia	0.8	758.4	6	13.7	57.9	7	1.4	fish toxicity ** (CWQG)	0.0	553	0.6	41
Nitrate / Nitrite	0.4	2185.3	m	0.2	112651.4	m	10	drinking water (CWQG)	0.0	218	0.0	11264
							001	stock watering (CWQG)	0.0	21	0.0	1126
TDS	1627.3	5540.2	Q	1164.8	4934.5		500	drinking water (CWQG)	23	10	1.3	8.9
							3000	stock watering (CWQG)	0.0	0.8	0.0	0.6
							500-3500	irrigation **** (CWQG)	0.0	0.6	0.0	0.4
Total Coliforms org./100 ml	:	:		:	:		1000	irrigation (CWQG)				
Fecal Coliforms	2.1E+02	8.6E+04	13	:	:		100	irrigation (CWQG)	1.1	854		
org./100 ml							200	bathing / recreation (CWQG)	0.1	427	-	
Table 4 1 · Di	Intion Pac	SU Jo Pozini	1 1000	Dicoho				Table 4.1 : Dilution Bound of 08. 21.1 come Discharge 4.2 in David Braining Braining Compared in Street				

Table 4.1 : Dilution Required of 0S-2L Lagoon Discharges to Achieve Desired Receiving Water Concentrations Format of figure taken from Hickey, 1989 * effluent limit when P removal required

** pH=8.0, 10 deg C (79) *** note : Coliform data is missleading, many samples exceeded the range of analysis of 8000 org/100 ml, see data table in Chp. 3 *** depends on crop and soil type, 3500 mg/l used for dilution calculation note : Dilution Ratio = (Effluent quality / Criterion) - 1

•

			Effluent Concentration	ncentration			Receiving			Dilution Ratio Required	o Required	
		Fall			Spring		Water	Reason for		Fall	S	Spring
	Mean	95 percentile	No of	Mean	95 percentile	No of	Criterion	Criterion	Mean	95 percentile	Mean	95 percentile
Variable	mg/L	mg/L	Samples	mg/L	mg/L	Samples	mg/L					
BOD	5.4	21.4	~	17.3	53.3	~	5.0	fish DO maintenance	0.1	m	2.5	10
TSS	14.6	44.9	7	31.3	436.7	~	10	(Hichey 1989) fish impact (CWQG)	0.5	ñ	2.1	43
Phosphorus	1.3	8.6	7	3.0	20.7	7	1.0	algal growth *	0.3	œ	2.0	20
Ammonia	0.6	192.8	7	3.1	551.4	80	1.4	fish toxicity ** (CWQG)	0.0	140	1.3	401
Nitrate / Nitrite	0.4	1.6	7	0.6		7	00 100	drinking water (CWQG) stock watering (CWQG)	0.0 0.0	00	0.0 0.0	
TDS	1069.7	8073.7	٢	1.197.7	5359.5	80	500 3000 500-3500	drinking water (CWQG) stock watering (CWQG) irrigation **** (CWQG)	1.1 0.0 0.0	1.7 1.7 1.3	1.4 0.0 0.0	9.7 8.0 0.5
Total Coliforms org./100 ml	2.3E+02	1.1E+10 ***	4	5.4E+03	3.0E+04 ***	9	1000	irrigation (CWQG)	0.0	10671989.9	4.4	29.1
Fecal Coliforms org./100 ml	7.4E+01	3.1E+05	Q	1.6E+03	2.2E+06 ***	Q	100 200	irrigation (CWQG) bathing / recreation (CWQG)	0.0	3084 1541	15.4 7.2	22327.1 11163.1
		000 -	1 10			· •						

Table 4.2 : Dilution Required of 2S-2L Lagoon Discharges to Achieve Desired Receiving Water Concentrations Format of figure taken from Hickey, 1989 • effluent limit when P removal required

** pH=8.0, 10 deg C (79)

•••• note : Coliform data is missleading, many samples exceeded the range of analysis of 8000 org/100 ml, see data table in Chp. 3 •••• depends on crop and soil type, 3500 mg/l used for dilution calculation note : Dilution Ratio = (Effluent quality / Criterion) - 1
			Effluent Co	Concentration			Receiving			Dilution Ratio Required	io Required	
		Fall			Spring		Water	Reason for		Fall	SI	Spring
	Mean	95 percentile	No of	Mean	95 percentile	No of	Criterion	Criterion	Mean	95 percentile	Mean	95 percentile
Variable	mg/L	mg/L	Samples	mg/L	mg/L	Samples	mg/L					•
		•										
BOD	0.9	23.4	16	15.3	57.1	13	5.0	fish DO maintenance	0.2	4	21	10
TSS	14.4	47.1	17	32.0	158.3	13	10	fish impact (CWQG)	0.4	4	2.2	15
Phosphorus	1.8	7.7	17	2.8	15.4	13	1.0	algal growth *	0.8	2	1.8	14
Ammonia	0.7	8.8	17	2.9	179.4	13	1.4	fish toxicity ** (CWQG)	0.0	s	1.1	130
Nitrate / Nitrite	0.5	18.3	15	0.3	9.9	7	10	drinking water (CWOG)	0.0	I	0.0	0
							100	stock watering (CWQG)	0.0	0	0.0	0
TDS	893.6	3482.5	17	838.6	4952.1	13	200	drinking water (CWQG)	0.8	6	0.7	8.9
							3000	stock watering (CWQG)	0.0	0.2	0.0	0.7
							500-3500	irrigation **** (CWQG)	0.0	0.0	0.0	0.4
Total Coliforms	5.7E+01	3.5E+03	٢	1.6E+03	3.7E+05	15	1000	irrigation (CWQG)	0.0	2.5	0.6	365.8
		6 0E 103	21	2 7 E 102	3 05 106	31	2			0		1006 0
	1./ETUI	0.05102	01	0./ETU2	0.75700	2	3			•		0.0400
org./100 ml				•			007	bathing / recreation (CWQG)	0.0	~ 1	2.3	1947.4
		010-1	1 10				-					

Table 4.3 : Dilution Required of 4S-2L Lagoon Discharges to Achieve Desired Receiving Water Concentrations

Format of figure taken from Hickey, 1989 • effluent limit when P removal required

** pH=8.0, 10 deg C (79)

******* note : Coliform data is missleading, many samples exceeded the range of analysis of 8000 org/100 ml, see data table in Chp. 3 ******** depends on crop and soil type, 3500 mg/l used for dilution calculation note : Dilution Ratio = (Effluent quality / Criterion) - 1

			Effluent Col	Concentration			Receiving			Dilution Ratio Required	tio Required	
.		Fall			Spring		Water	Reason for		Fall	S	Spring
	Mean	95 percentile	No of	Mean	95 percentile	No of	Criterion	Criterion	Mean	95 percentile	Mean	95 percentile
Variable	mg/L	mg/L	Samples	mg/L	mg/L	Samples	mg/L					
BOD	18.5	38.5	6				5.0	fish DO maintenance	2.7	7		
TSS	11.6	50.8	6				01	(Hichey 1989) fish impact (CWQG)	0.2	4		
Phosphorus	2.8	18.3	6				1.0	algal growth *	1.8	17		
Ammonia	3.3	66.4	6				1.4	fish toxicity ** (CWQG)	1.4	47		
Nitrate / Nitrite	4.7	52.8	6				00 1	drinking water (CWQG) stock watering (CWQG)	0.0 0.0	40		
SQT	622.4	1450.2	6				500 3000 500-3500	drinking water (CWQG) stock watering (CWQG) irrigation **** (CWQG)	0.2 0.0	2 0.0		<u></u>
Total Coliforms org./100 ml	1.0E+06	estimated					1000	irrigation (CWQG)	0.666			
Fecal Coliforms org./100 ml	1.0E+05	estimated					200 700	irrigation (CWQG) bathing / recreation (CWOG)	999.0 499.0			
Table 4.4 : Dilution Required of Activated	lution Rec	luired of Ac	tivated SI	udge Plar	nt Discharge	s to Achie	sve Desire	Sludge Plant Discharges to Achieve Desired Receiving Water Concentrations	ncentratic	Suc		

Format of figure taken from Hickey. 1989 • effluent limit when P removal required •• PH=8.0. 10 deg C (79) ••• hole : Coliform data is missleading. many samples exceeded the range of analysis of 8000 org/100 ml, see data table in Chp. 3 ••• depends on erop and soil type. 3500 mg/l used for dilution calculation note : Dilution Ratio = (Effluent quality / Criterion) • 1

			(adapted inc	om CCREM, 1987
Not Tolerant	Slightly Tolerant	Moderately	Tolerant	Very Tolerant
TDS < 500 mg/L	TDS < 800 mg/L	Tolerant	TDS < 2500 mg/L	TDS < 3500 mg/L
U	-	TDS <1500 mg/L		
Fruits & berries	Fruits & berries	Fruits & berries	Fruits & berries	Fruits & berries
Strawberry	Boysenberry			
Raspberry	Currant	Vegetables	Vegetables	<u>Vegetables</u>
	Blackberry	Spinach	Beet	Asparagus
Vegetables	Gooseberry	Cucumber	Zucchini	
Bean	Plum	Tomato		Field crops
Carrot	Grape	Squash	Field crops	Soybean
	Apricot	Brussel sprout	Rape	Safflower
Field crops	Peach	Broccoli	Sorghum	Oats
Bean		Turnip		Rye
	Vegetables		Forages	Wheat
Forages	Onion	Field crops	Oat hay	Sugar beet
	Parsnip		Wheat hay	Barley
	Radish	Forages	Brome, mountian	
	Pea	Brome	Tall fescue	Forages
	Pumkin	Alfalfa	Sweet clover	Barley hay
	Lettuce	Big trefoil	Reed	Tall wheatgrass
	Sweet corn	Beardless	Canary grass	
	Potato	Wildrye	Birds foot	
	Celery	Vetch	Trefoil	
	Cabbage	Timothy	Perennial	
	Kohlrabi	Crested wheatgrass	Ryegrass	
	Caulifower	-		
	Field crops			X
	Cowpea			
	Broadbean			
	Flax			
	Sunflower			
	Corn			
	Forages			
	Clover			
	Berseem clover			

Table 4.5 : Tolerance of Selected Crops to TDS

(adapted from CCREM, 1987)

•

Figure 4.1 : Seasonal Flow Condition of the Bow River at Banff (adapted from Alberta Environment, River Forecasting Centre 1992)

Figure 4.2 : Dissolved Oxygen Sag Curve (adapted from Krenkel and Novotny, 1980)

5.0 CONCERNS

5.1 Introduction

Lagoon design and operations manuals are intended to minimize nuisances that cause public concern (Alberta Environment, 1988). The major public concerns arising from the operation of a lagoon are odours, appearance, seepage, insects, and the quality of the effluent.

Odour problems are often reported as the most challenging operational concern and are often linked to breakup in the spring. At the time of spring breakup the lagoon is anaerobic due to the winter ice cover and as temperatures rise the activity of anaerobic microbes producing sulfate also increase. A rapid temperature increase does not allow algal populations to become established and provide an aerobic - high pH surface to the lagoon to prevent these sulfate compounds forming hydrogen sulfide which cause the odour problem (McKinney, 1982). Fisher (1967), stated that odours in the north are associated with spring breakup and factors affecting odours in Saskatchewan, Alberta, and Manitoba are organic over loading and perhaps high sulfate concentrations. The relationship between sulfate and H₂S is pH dependent and can be expressed as follows:

> $SO_4^{=}$ + organic mater $\rightarrow S^{=}$ + H₂O + reduced organic matter $S^{=}$ + 2H⁺ \rightarrow H₂S

At pH of 7, 80% is in the H_2S form, decreasing pH shifts the reaction toward H_2S .

Seepage from lagoons can cause problems for adjacent properties and ground water. Some earlier lagoon designs did not pay necessary attention to the hydraulic characteristics of the liner and seepage became a problem. Operational problems and the level of public concern for these problems is investigated in this section of the report.

5.2 Analysis Approach

In an effort to assess public concern with respect to municipal wastewater treatment systems a survey was conducted. Surveys were sent to the operators of 354 treatment facilities on Alberta Environmental Protection's (AEP's) records. The operators were asked to report the number of complaints a year they receive in the categories of odour, insect and pests, appearance, flooding, leakage or seepage, and effluent quality. The operators were also asked to indicate their opinion of the severity of the problem on a scale from one to ten. There was space provided in the survey for any comments or clarification that operators could provide. The level of response to the survey was surprising with over 78% of surveys returned. Appendix A contains a copy of the survey sent to the operators and Appendix B contains a list of survey results.

The survey gauges two very different opinions. The number of complaints represents the public's perception of the treatment facility. These perceptions may be based on facts or feelings or headlines in news reports. A common aspect of public complaints is that one vocalized complaint may represent many non-vocalized complaints. The operator's perception of the problem is indicated by the grade given for severity. These perceptions are from someone with generally a more knowledgeable point of view but who may also have somewhat of a vested interest (i.e. the job). The survey results should be interpreted with a balance between the operator's and the public's point of view, an operator may be aware of a problem the public has not complained about or the public may complain about a problem the operator feels is unimportant. Figures 5.1 and 5.2 presents distributions of the number of complaints received annually and the severity of the problem as perceived by the operator for lagoon systems. The figures show that in a vast majority of facilities there are no complaints received and operators do not feel that there was a problem with the different items of concern. The distributions show that most of the facilities that did receive complaints received only a very few (three or less) and there were only a very few operators that reported the severity of any problem over three on the scale. There are notes that give any clarification or comments that the operators included in the survey for the facilities that received many complaints (over five) or reported severe problems (over five on the severity scale). The figures show that there is only a small number of facilities that have high number of complaints or severe problems without a reasonable explanation.

5.3 Analysis of Non-Zero-Results

Table 5.1 contains a summary of the non-zero (non-zero meaning one or more complaints or more than one on the scale from one to ten for severity) survey results that have been broken down by treatment technology and lagoon configuration. Listed for each site and category are the number of non-zero responses, the percent of sites with non-zero responses, and the number of complaints per 10,000 people.

The last row of Table 5.1 that summarizes all lagoons indicates that in five of the six categories of concerns the operators reporting non-zero complaints and severity of problems is less than ten percent of the sites and many of these categories are even below five percent of the sites. The category of odour received more complaints with 17% of the sites reporting odour complaints.

5.3.1 Odour

Although the category of odour had the most complaints, Figure 5.1 shows that most lagoons received no complaints. A common clarification made by operators reporting odour complaints or problems was that they occurred in the spring or when the wind blew in an unusual direction. This is expected as odours can be generated immediately after the ice cover melts. Anaerobic cells can also cause some odours throughout the year.

The breakdown of non-zero complaints in Table 5.1 indicates that large lagoon systems have more odour problems than small systems. The 4S-2L systems and systems with more than 4S-2L had 27% and 46% of sites receiving complaints which is considerably more than 0S-1L, 0S-2L, and 2S-2L systems that received complaints at 5%,17%, and 3% of sites respectively. The opinions of operators compare in a similar manner. The number of complaints per 10,000 people also confirms these findings with 4S-2L and greater systems have 21 complaints per 10,000, while 0S-1L, 0S-2L, and 2S-2L systems have 3, 36, and 4 complaints per 10,000 respectively. This suggests that the larger systems (4S-2L and greater) can have several times more complaints per capita than smaller systems.

It was not clear why larger lagoon configurations receive more complaints than smaller ones. Figure 5.3 investigated the relationship between the facilities receiving complaints and size of population served. The figure shows that 30% of the complaints were from smaller communities (< 750) which account for 70% of the sites and 70% of the complaints were from larger communities (> 750) which account for only 30% of the sites. An investigation into the relationship between distance from facility to community and odour complaints yielded no correlation. Larger lagoon configurations may have received more complaints because they generate more odours due to larger surface area or alternatively because the larger communities they serve were more sensitive to odour problems than smaller communities. The reason for the complaints is secondary however to the revelation that larger lagoon configurations (which serve larger populations) received more odour complaints and operators felt odour problems were more severe.

In the comparisons of lagoon systems to mechanical plants only facilities of similar size were used in order to avoid any confusion in the results. A comparison of the largest lagoon systems (systems with more than 4S-2L, avg. pop. 1786) to aerated lagoons and RBCs (avg. pop. 2423 and 2989) showed that larger lagoons were more likely to receive complaints and operators felt odour problems are more severe. The mechanical plants also received fewer complaints per 10,000 people than large lagoon systems.

5.3.2 Insects and Pests

The survey shows that insects were not a problem in lagoon treatment. Most of the 3% (7 of 222) of lagoon sites that received complaints about insects said the people did not attribute the problem to the lagoon system. Two of the lagoon sites (Swan Hills and Stirling) that had ranked the severity of the insect problem at six and eight out of ten attribute the problem to other factors in the surrounding area.

5.3.3 Appearance

The appearance of the lagoon systems was not a significant problem with only 4% of the sites receiving complaints. There were many operators that commented that most of the people in the community did not know where the lagoon was, these are examples of well sited facilities. The configuration of the lagoon systems did not have an effect on complaints received about the appearance of a facility.

5.3.4 Flooding

The survey indicates that most lagoon systems do not have a problem with flooding and in the cases where there was a problem, communication between the operator and the affected parties minimizes the impact. In most cases flooding resulting from lagoon discharges is due to poorly defined drainage courses. Table 5.1 shows that 10% of the lagoon sites had received complaints about flooding and that only 5% of the operators ranked the problem severity greater than one. Figure 5.2 showed that no operator had ranked the severity of flooding higher than three which indicates that operators felt that any flooding problems that may have existed were under control. A frequent comment made in the surveys when flooding was a problem was that the lagoon operators must communicate well with the people affected by the flooding in order to minimize the impact.

5.3.5 Leakage and Seepage

The majority of lagoons did not report a seepage problem and most that did, reported some remedial action had been taken. Table 5.1 shows that 8% of the lagoon sites have received complaints about seepage and that 7% of the operators rank the problem severity greater than one. A frequent comment made when complaints were received was that the situation was investigated to see if there was a problem and then remedial action was taken. If a seepage problem is confirmed it may require major remedial action. An example of this is the lagoon at Magrath where they reported a seepage problem and indicated that a new system was being designed. The different lagoon configurations maintain roughly a constant rate of complaints and operator problem severity estimates.

5.3.6 Effluent Quality

The survey reported that few sites received effluent quality complaints and larger lagoon systems (4S-2L or more) received a majority of the complaints. Table 5.1 shows that 6% of the lagoon sites had received complaints about effluent quality and that 5% of

the operators ranked the problem severity greater than one. Table 5.1 also indicates larger lagoon configurations (systems with more than 4S-2L) received complaints at a higher rate than other configurations and accordingly Figure 5.4 confirms most of the complaints came from larger communities (>1700). The complaints from the larger lagoon systems may be due to a public perception problem because in earlier chapters of this report the effluent quality of these larger lagoon systems was found to be excellent and of better quality than smaller systems.

5.4 Conclusion

The analysis of public concern over lagoon treatment showed that insects, appearance, and effluent quality are not a significant problem and that a few lagoon facilities have problems with odours, flooding, and seepage. The survey data on odour trouble demonstrated that most lagoons, especially small systems, had no odour problems and those that did have some problems said the problems were minor and short lived, usually for a short time in the spring or when the wind deviated from its' traditional direction. The few facilities that have had flooding problems as the lagoon is discharged said the impacts of these problems was greatly reduced by communicating with the people affected. Most facilities that received complaints about seepage from the lagoon said they first verified the complaints and then took remedial action which may have meant extensive repairs.

The vast majority of lagoon systems did not report any problems or public complaints about the treatment facilities and operators of systems that did report problems did not feel the problems were severe.

_						T		*
EFFLU		- *1	- 5	0 X	0 8	→ &	- \$	28 II
EFFLU	2 96 0.6	- 118	- 22 3.2	2 11% 12.0	1 3% 0.5	ы Уру 2.1	4 15% 1.0	4 8% 1.3
LEAK	0	- £	58 58	0 g	4	2 S96	4 15%	2 %
LEAK		• \$	→& E	%9 989 90	n \$	ه ۲۲ ه ۵.6	3 12% 0.4	81 82 87 1:1
FLOOD	0	1 %11	- £	2 11%	2 6%	≁ %	- 4	5% II
FLOOD	C g	ا 11% 0.6	4 9% 12.1	3 17% 18.0	3 2.7 2.7	6 14% 2.5	2 8% 0.5	22 10% 2.2
APPEAR	3 13%	3 33%	• š	0,000	2 6%	2 5%	+ 15%	5% 2%
APPEAR	ంశ్రీ	2 22% 3.4	0 %	6.0 % -1 6.0	3% 3% 0.5	2 5% 1.0	1 4% 0.6	9 4% 11.2
INSECT SEVERITY	3 13%	0 0%	0 %	0 %	2 6%	1 2%	3 12%	8 49%
INSECT	ం శ్రీ	1 11% 0.3		0 80	4 12% 7.8	- 23% 1:5	0 %0	7 3% 1.3
ODOUR SEVERITY	5 22%	2 22%	1 2%	2 11%	9% 3%	15 34%	9 35%	38 17%
ODOUR COMMENT	2 9% 1.1	2 22% 14.3	2 5% 3.2	3 17% 36.1	1 3% 6.4	12 27% 21.0	12 46% 20.8	37 17% 17.4
	# NONZERO % NONZERO PER 10,000	# NONZERO % NOIJZERO PER 10,000	# NONZERO % NONZERO PER 10,000	# NONZERO % NONZERO PER 10,000	# NONZERO % NONZERO PER 10,000	# NONZERO % NONZERO PER 10,000	# NONZERO % NONZERO PER 10,000	# NONZERO % NONZERO PER 10,000
	AERATED LAGOON # OF SITES= 23 AVE. POP.= 2423 TOTAL POP.= 71, 197 F	S= 9 2= 2,989 2= 34,851	S= 43 2:= 126 2:= 6,181	LAGOON 05,2L # OF SITES= 18 AVE. POP.= 87 TOTAL POP.= 1,664	S= 33 2= 479 2:= 18,700	LAGOON 45,2L # OF SITES= 44 AVE. POP.= 906 TOTAL POP.= 52,316	MORE 48,21. # OF SITES= 26 AVE. POP.= 1,786 TOTAL POP.= 78,101	ALL LAGOONS # OF SITES= 222 # NONZER AVE. POP.= 338 % NONZER TOTAL POP.= 182,795 PER 10,000

Table 5.1: Summary of Non-zero Results

system replaced with acrated lagoon

problem decreased in past 3 to 4 years

odour problem when wind blows from north 🥌

odours a problem at certain time of year and wind from southeast

odours noticable on heavy damp August nights-

no comments.

only occur at spring thaw -

 $\overline{\mathcal{M}}$

250

Figure 5.2 : Distribution of Severity of Problem Related to Lagoons

6.0 ECONOMIC ANALYSIS

6.1 Introduction

An important consideration in the selection of the "best" treatment for municipal wastewater is the cost of building and maintaining the treatment facility. This economic analysis discusses lagoon treatment, aerated lagoons (AL), and rotating biological contactor plants (RBCs) which are viable alternatives presently being used in Alberta for wastewater treatment in smaller communities (i.e. less than 15,000). A rough indication of costs of the three treatment technologies has been obtained by means of a survey of treatment facility operators. Of the 354 surveys sent to treatment facility operators, 260 have been returned. This analysis groups facility costs into three categories; land costs, capital construction costs, and operating and maintenance costs. The analysis is based on cost versus population plots with regressions that indicate the trends in the data. There has not been an in-depth analysis of variance to establish confidence regions for the regression lines because there is not a reliable way to estimate the variability in the survey results. An indication of the level of confidence in the regression lines is the degree of scatter in the data points in the figures that accompany the subsequent sections. The limitations of the analysis are such that the results cannot predict treatment facility costs with a certain degree of error for a given population size, however the results do provide a guideline for relative costs of the treatment alternatives and estimates of costs which will be useful in the preliminary stages of facility planning.

6.2 Land Costs

The evaluation of the land costs based on the survey results did not yield conclusive results because information received was based on the parcel of land that the treatment facility was located and not the amount of land required by the treatment facility. Some of the facilities are situated on parcels of land that are much larger than

what is actually required by the treatment facility and the cost of the extra land obscures the results. Another problem evaluating land costs was the many site specific factors affect the value of land making comparisons of one site to another difficult. To avoid these problems the comparison of treatment technology land requirements was based on the amount of land required to treat the wastewater of a given community size and where necessary a land value of \$2471 per hectare or \$1000 per acre was assumed (the sensitivity of assumed land cost was also investigated). The estimates of the land required were based on the Alberta Environmental Protection's guidelines of facility size and setback domances to property lines. Figure 6.1 shows the amount of land required for lagoon facilities is roughly 10 times greater than what is required for AL and RBC plants. Figure 6.2 shows the land costs per capita (based on design population) for the different treatment types and population sizes and it demonstrates that lagoon land costs are much greater than AL or RBCs.

The review of land requirements for the treatment technologies indicated that lagoons require much more land than AL and RBC plants.

6.3 Capital Construction Costs

Survey results for capital construction costs of treatment facilities were reasonable enough to use as the basis for the analysis. For comparison, facility construction costs have been converted to 1993 dollars using the consumer price index on total goods published by Statistic Canada (Stats. Can. - Cat. No. 11-010, May, 1993). Figure 6.3 presents the total capital construction costs versus population and Figure 6.4 indicates the costs per capita versus population (both figures based on design population). The regression lines and data points indicated that for most populations, lagoons were the least expensive of the treatment alternatives and RBCs were the most expensive. However, for populations of less than 2000 people the average RBC plant became cheaper than both lagoons and AL. Variability in the data was evident by the individual sites, there were examples of ALs built for less than a lagoon for the same population size even though the regression lines indicate the opposite. Given the variability in data, differences in the regression lines of lagoons and AL were not large enough to be considered significant.

6.4 Operating and Maintenance Costs

The survey has supplied a breakdown of operating and maintenance costs but for this analysis the combined operating and maintenance costs and manpower requirements will be used to compare the treatment alternatives. Figure 6.5 shows operating costs versus population and Figure 6.6 the costs per capita versus population (both figures based on actual population served). The regression lines indicate that for all populations, the operating and maintenance costs for lagoons were much less than RBCs which are the most expensive alternative. The difference in the relative costs was pronounced, in spite of the variability in the data. Generally AL were several times more expensive to operate and maintain than lagoons and RBCs were as much as 10 times more expensive than lagoons.

Figures 6.7 and 6.8 summarize survey results for the manpower requirements of treatment alternatives. The relative position of the treatment alternatives was unchanged with lagoons requiring the fewest person days per year to maintain and operate and RBCs needing the most. Manpower requirements for RBC plants increased at a higher rate with increased population than lagoon or AL facilities.

A maintenance problem with the lagoon technology is berm erosion, the frequency of berm erosion has been assessed. The survey showed that 62 of the 220 lagoon surveys returned (28%) had berm erosion trouble and the most common remedial action was lining the berms with waste rubble, rip rap, and a few sites used old tires. A novel technique used at two sites was to put log booms on the lagoons to reduce wave action.

6.5 Present Worth Analysis

The overall economic evaluation of treatment alternatives is based on the combined cost of each alternative. Combining the different costs can be done by first converting all cost into either an annual cost or a present worth cost by assuming an interest rate and a design life for the facilities. The present worth approach is pursued in this analysis with an assumed design life of 25 years and an interest rate of 6%. The capital construction costs were previously converted to present worth form and present worth land costs have been estimated by assuming a land value of \$2471 per hectare. Operating and maintenance costs that will be paid out over the life of the facility were converted into present worth dollars. The design life of the facilities was assumed to be 25 years for all alternatives, however an argument could be made that with fewer mechanical parts a lagoon facility may have a longer design life than RBCs or AL therefore the assumption of similar design life was conservative toward lagoons which results in estimated lagoon costs being slightly higher than necessary. There is a point of inconsistency in combining the costs because a facility's operation and maintenance costs were based on actual population served while its' land and construction costs were based on design population. To avoid this inconsistency the regression curves of the three types of costs have been combined instead of combining costs of each site.

Figures 6.9 and 6.10 indicate total present worth costs and present worth costs per capita of treatment alternatives versus design population (note: these amounts relate to facilities operating at design capacity). The figures indicate that lagoon facilities had the lowest present worth costs of the treatment alternatives. AL facilities cost roughly twice

as much as lagoon facilities and RBCs ranged from 3 to 7 times as costly as lagoons. An evaluation of confidence region intervals was not appropriate with the data but an indication of the confidence is given in Figures 6.11 and 6.12 where present worth costs of actual sites are plotted versus design population. In order to combine the costs in these figures, operation and maintenance costs were based on design population which under estimated the cost, especially for the mechanical plants. The figures indicate that there is a high degree of confidence in determining one treatment cost is more expensive than another but there is much less confidence in predicting the actual magnitude of cost differences.

Figures 6.13 to 6.15 give a graphical representation of changes in the component costs and of the overall treatment costs for the three treatment alternatives.

To check the sensitivity of the analysis with respect to land value the information in Figure 6.10 was recalculated in Figure 6.16 with an assumed land value of \$24,710 per hectare or \$10,000 per acre. Comparing the two figures it can be seen that cost differences between lagoons and AL shrank dramatically with increasing land values but the relationship to RBC costs was roughly the same.

6.6 Conclusions

When considering only the construction and maintaining of a wastewater treatment facility, economic analysis indicated lagoon treatment to be least expensive of the three alternatives considered for communities with less than 15,000 people (moderate land values assumed). Lagoons had much higher land requirements, slightly lower capital construction cost, and much lower operating costs than RBCs and AL. When costs were

combined in present worth dollars lagoons were overall least expensive. The analysis was somewhat sensitive to land values which were site specific depending mostly on the economic activity in the community and land quality. While a detailed analysis of variance was not appropriate, the data points indicate with a degree of consistency that RBCs were the most costly alternative and lagoons were the least costly (see Figures 6.9 and 6.10). For populations of less than 1000 people the cost difference between RBCs and AL facilities was much smaller.

Figure 6.8 : Distribution of Operating Manpower Needs for Treatment Alternatives

	2000 3000 5000 5000 8000 9000 10000 14000 15000	4 3 3 2	609 521 467 429 400 377 338 342 329 317 306 299 281	205 167 145 130 118 110 102 97 92 87 84 80 77 75
		•		

Figure 6.13 : Component and Overall Costs Per Capita for Aerated Lagoons
000 (
COSTS PER CAPITA (\$ ي ق ڭ ڭ څ څ ک				\bigotimes		×		× F		× E					
NOILINU	1000	2000	3000	4000	5000	0009	000/	000V	0006	10000	00011	12000	13000	000+1	15000
	x	\$2	27	8	25	22	24	24	ន	R	ผ	R	R	ч	n
CAPITAL JOST	164	328	281	231	230	215	202	132	81	176	169	164	159	81	હા
OPERATING COST	8	ŧ	8	33	58	ĸ	3	21	8	18	17	16	2		2

Figure 6.14 : Component and Overall Costs Per Capita for Lagoons

`

161

-	9 <u>8</u> 51	•	1,777	ž
-	14000	0	1,657	132
	000£1	0	382,1	55
-	12000	o	1,512	212
	00011	-	1,435	ង
	10000	-	35€,1	ង
-	806		<i>13</i> 23	%
	0008	-	1,186	28
	0004	-	560,1	Ŕ
	809		86	R
	2005	-	2 6	375
	807	-		\$
	80	2	38	ß
	2000	e	518	678
	80	v	9 <u>7</u>	5901
COSTS PER CAPITA (\$	POPUALTION		CAPITAL COST	OFFRATING COST

Figure 6.15 : Component and Overall Costs Per Capita for RBCs

7.0 UPGRADE TECHNIQUES

7.1 Introduction

The previous evaluation of effluent quality demonstrated that lagoon systems meeting AEP's standards and guidelines produced exceptional effluent. Systems in compliance with the guidelines have no need of upgrade techniques to improve effluent quality except when extenuating circumstances exist. Examples of circumstances that may require upgrade techniques are:

- facilities forced to discharge in the spring due to hydraulic characteristics of receiving environment;
- facilities that are not required to upgrade to current AEP standards and guidelines;
- facilities operating at design capacity may increase capacity and avoid expansion or upgrading to a mechanical treatment system; and
- if improved effluent quality is required due to site specific situations (i.e. nutrient removal).

7.2 Available Upgrade Techniques

The topic of upgrade techniques for lagoon treatment is widely researched in the literature. TSS (algae) removal, nutrient removal, and disinfection are the common themes of the research. Most of the work has been with lagoons in temperate climates with continuous discharge and the information may be difficult to extrapolate to colder climates with intermittent discharge. Many of the techniques described in the literature do not meet the criteria that have made lagoons the best practicable technology for small communities. Generally they require high maintenance, operational costs, and skill levels which do not match the capabilities of small communities. Middlebrooks commented (Middlebrooks *et al.*, 1974) that it set ms impractical to couple a unit process which has a disadvantage of high operating costs to a lagoon which has the advantage of low operating costs. Due to

the intermittent discharge of Alberta lagoons, large capital expenditures on upgrade equipment that sit idle for 11 months of the year seem inappropriate as well. The upgrade techniques which have characteristic high capital and operating costs are not reasonable options in Alberta unless communities could share the cost of mobile equipment and operators.

The different techniques of upgrading lagoons vary in terms of effort required, capital cost, operation cost, operator skill, and effluent quality capabilities. The following table lists information on upgrade techniques, the list has been roughly ordered in terms of cost of implementation:

Technique	Effectiveness in Alberta	Benefits Gained	Capital Cost	Operating Cost	References of northern experience
Operational- Continuous summer discharge	Demonstrated to be effective, depends on receiving environment	- Lower discharge flow rate - increased capacity	none	very low	This report; Beier, 1979; Beier and Turnbull, 1980; Beier, 1983; Milos and Beier, 1978.
Operational- Selected month of discharge for optimal effluent quality	Demonstrated to be effective	- improved effluent quality	none	very low	This report; Beier, 1979; Beier and Turnbull, 1980; Beier, 1983; Milos and Beier, 1978.

Table 7.1 : Upgrading Techniques for Lagoons

Technique	Effectiveness in Alberta	Benefits Gained	Capital Cost	Operating Cost	References of northern experience
Operational- Discharge facultative cell in fall discharge	Only theoretical	- increased capacity	nonc	very low	This report; Beier, 1979; Beier and Turnbull, 1980; Beier, 1983; Milos and Beier, 1978.
In pond chemical treatment	Demonstrated to be effective	- improve effluent quality - may accommodate twice a year discharge increased capacity	low	low to medium	Finch, 1984
Adding a short detention cell where none exists	Demonstrated to be effective	- improved effluent quality	low to mcdium	very Low	This report; Beier, 1979; Beier and Turnbull, 1980; Beier, 1983; Milos and Beier, 1978.
Baffling treatment cell	May be effective	Plug Flow operation in treatment cell, increased detention time and effluent quality	low to medium	very Low	
Effluent for irrigation	Demonstrated effective	- no discharge to water course - water for irrigation	low to medium	low to medium	Black <i>et al.</i> , 1984; Environment Canada, 1984
Aquaculture	Interesting possibilities but usefulness doubtful	- improve effluent quality - fis ^{1,} production	low to medium	low to medium	
Stationary	Interesting	- reduce TSS -	low to medium	low to medium	Fukunaga <i>et</i> <i>al.</i> , 1991
microsceening Wetlands treatment	possibilities some experience in the north performance not proven	algae - improved effluent quality	medium (land costs)	low	Slupsky and Frith, 1971
Mechanical microsceening	some experience promising results	- improved effluent quality (TSS)	high	medium	

Technique	Effectiveness in Alberta	Benefits Gained	Capital Cost	Operating Cost	References of northern experience
Upgrade to aerated lagoon	Proven effective but major reconstruction needed	- improved effluent quality	very high	medium	Vallance, 1990
Dissolved air flotation	Effective with chemical treatment and filtration (bulky sludge problem)	- improvea effluent quality	very high	very high	
Out of pond chemical treatment	proven effective but usually need filtration step	- improved effluent quality	very high	very high	
Mechanical addons	Proven effective	improved effluent quality	very high	very high	
UV disinfection	effective in cold climates, high TSS is a problem	- Improved bacteriological quality	high	medium to high	
Ozone disinfection	effective in cold climates, ozone must be produced on sight	- Improved bacteriological quality	high	very high	
Chlorine disinfection	effective in cold climates but toxic residuals are a concern	- Improved bacteriological quality	low to medium	low to medium	

7.3 Feasible Upgrade Techniques for Alberta

A brief overview of upgrade techniques that seems practical for the situation in Alberta follows.

7.3.1 Continuous Summer Discharge

The earlier sections of this report have demonstrated that except for TSS (due to algae) lagoon effluent quality in the spring improves greatly after approximately two months of ice free treatment. Beier (1980) showed that the TSS levels decreased in the summer. This indicates that a continuous discharge over the summer may be feasible and impacts on the receiving environment could be reduced because of lower effluent discharge rate. The benefits of this upgrade technique are increased capacity of the lagoon

due to reducing storage time to 8 or 9 months and possibly reducing impact on receiving environment.

As Beier (1980) stipulated, effluent not disinfected should not be discharged to recreational waters during summer. Continuous discharges throughout the summer may require some algae removal and disinfection.

Continuous summer lagoon discharges are a cost effective operational upgrade but if additional TSS removal and disinfection are required the cost becomes prohibitive.

7.3.2 Selected Month of Discharge

The evaluation of effluent quality (section 3.5.1.6) has indicated the optimal months for effluent quality in the spring and fall seasons to be May and October. If receiving stream discharges are favorable lagoon discharges should occur in these months to minimize the impact on the receiving environment.

The cost for this operational upgrade is negligible and the benefits are a reduced impact on the environment.

7.3.3 Discharge Facultative Cell With Fall Discharges

The drawing down of the facultative cell in fall discharges will increase the lagoon capacity by roughly 15 percent. The excellent effluent quality of the fall discharges of the 4S-2L and 2S-2L lagoon systems indicates that the poorer quality facultative effluent may be assimilated and improved before it is discharged from the storage pond. Further work is needed to demonstrate the impact on discharged effluent quality.

This operational upgrade increases the capacity and may delay expansion of facilities operating near design capacity.

7.3.4 In-Pond Chemical Treatment

The study conducted by Finch (1984) at Gibbons, Alberta demonstrated in-pond alum treatment improved effluent quality of spring discharging lagoons significantly. The study proved in-pond alum treatment to be an effective upgrade option for lagoons forced to discharge in the spring.

Finch (1984) reported capital costs of \$8400 (1984) and operating cost of 7ϕ per m³ of wastewater treated with an alum dose of 304 mg/L of Al₂(SO₄)•18 H₂O. The low cost and effective treatment leave in-pond chemical addition an attractive upgrade option.

El-Gohary *et al.* (1991) investigated algae removal and found efficient separation of algae was achieved with alum dose of 5.14 mg Al³⁺/l(almost one log unit of reduction of chlorophyll). Bond and Mowry (1989) found that chemical coagulants could be used effectively on pond effluents to remove algae. The doses required for optimal suspend⁻¹ solids removal was 60 to 100 mg/L alum, the discharge was also acceptable for BOD and phosphorus. They found lime could be used as well especially if ammonia is a problem. They tried polyelectrolytes with alum and found no significant improvement.

Airaksinen (1978) and Balmer and Bjarne (1978) describes the use of chemical precipitation used in the lagoon inlets to improve effluent quality in the winter in Finland and found that BOD and phosphorus removal were increased from 50% to 70 and 90% respectively but, he commented that the sludge accumulation was a problem. Folkman and Wachs (1972) found that lime was capable of removing algae and reducing nutrient levels

in wastewater pond effluents and doses of roughly 600 mg/L of CaO were required for effective removal.

In-pond chemical treatment has proven effective both for costs and effluent quality improvement and is a useful upgrade technique. There may be slight difficulties with sludge accumulation but volumes will not be great.

7.3.5 Adding Short Detention Cell

Lagoon system designs that do not include short detention cells do not perform as well as systems with short detention cells. The addition of a short detention cell to an existing lagoon should be considered as a possible upgrade technique. The benefit of this upgrade technique is to improve effluent quality.

The retro-fitting of an operating lagoon with a short detention cell may require novel berm designs and construction techniques but costs should not be prohibitive.

7.3.6 Irrigation of Effluent

The use of irrigation as an upgrade technique was discussed in chapter 4 of this report. In summary, irrigation with lagoon effluent is a viable option but analysis must be done to ensure compatibility with soil and crop types. The benefits of irrigating with wastewater effluents include the elimination of discharges to natural drainage courses and crops under irrigation benefit from the nutrients protection the wastewater effluents.

The irrigation of wastewater effluents is an e mouve upgrade technique as long as precautions are use to avoid any microbial exposures to people or livestock.

7.3.7 Aquaculture

There is much written about successful aquaculture operations in lagoons but Middlebrooks *et al.* (1974) states that some of the high success rate is due to the inordinate amount of care given to study and test facilities and predicts that systems are not rugged enough to operate well with low levels of maintenance associated with lagoon facilities. The author concludes that aquaculture for protein production is practical but is unusable as a treatment step. Krishnamoorthi *et al.* (1973) related the vast experience gained in India over the years in the operation of fish ponds fertilized with sewage (raw) and said that the sewage needed to be diluted in order to avoid inhibiting the fish or causing algae blooms that made the ponds anoxic and caused fish mortality. Nyholm *et al.* (1978) used pilot scale tests to see if nutrients could be removed using algae and used fish to graze the zooplankton in order to maintain a stable ecosystem. Duffer (1974) related personal communication with A. Husley from Little rock Ark⁻¹ Sas where Asian silver carp obtained on an experimental basis removed high concentratic in p^{d-1} set in 24 hours.

The practice of aquaculture is untested in northern lagoons and may be hampered by operational difficulties. Aquaculture is of questionable value to lagoon treatment in Alberta.

7.3.8 Water Plants

Dinges (1978) demonstrated effective use of hyacinth culture in conjunction with a lagoon system to produce BOD5 and TSS removal of 97 and 95% and stated that hyacinths could be grown in cooler climates on a seasonal basis. Middlebrooks *et al.* (1974) stated that bio-production in wastewater lagoons is not a useful technique for improving effluent quality.

The use of water plants as an upgrade technique is of questionable value.

7.3.9 Stationary Microscreens

A researcher in Japan found good TSS removal by placing microscreens in front of the lagoon outlet (Fukunaga *et al.*, 1991). This use of microscreens would be well suited to the short discharge times associated with the intermittent discharge lagoons in Alberta.

7.3.10 Wetlands Treatment

Hartland-Rowe *et al.* (1974) wrote an extensive report on the use of swamplands for sewage effluents and commented it was a viable option. Mudroch and Capobianco (1979) studied the effect of treated effluent on marsh land and found that the vegetation had changed and there where higher concentrations of some heavy metals in the sediments. Slupsky and Frith (1971) evaluated wetlands treatment in Hay River N.W.T. and indicated that the system is effective but that travel to the receiving stream should be 10 km.

7.3.11 Mechanical Microscreening

The development of microscreen materials has evolved from the 23 micron stainless steel that had operating problems and did not produce consistent effluent quality to the 1 micron polyester materials that are viable alternatives for upgrading lagoon systems (Beier, 1979). Middlebrooks (1974) concluded that mechanical microscreening is effective and requires little maintenance and is a viable alternative for upgrading lagoon effluent quality.

7.3.12 Upgrading to Aerated Lagoon

Vallance (1990) explained that the upgrading of a lagoon to an aerated lagoon is a viable option. The existing facility can be used to some extent alcough the cells will need

to be deeper (at least 2.5m and preferable 3.5m) and leaking berms will have to be fixed. The anaerobic cells can either be abandoned or converted to truck dumping basins. Disadvantages include: disposal of accumulated sludge, handling flows during conversion, and unacceptable location or odour problems.

Leininger (1977) stated that when costs we compared, the option of building a new wastewater treatment plant or upgrading a lagoon will usually result in staying with the lagoon.

While Vallance (1990) maintained the benefit of the original capital investment, the project was similar to the construction of a new facility except the land was already owned. The expansion of the lagoon will almost certainly have a lower capital and operating cost than converting to an aerated lagoon.

upgrading to an aerated lagoon does not seem to be the least costly alternative but other actors may dictate does of aerated lagoons (i.e. odours).

7.3.13 Disinfection

Hom (1972) investigated chlorination of lagoon effluents while trying to avoid the destruction of the algae cells. With a chlorine dose of greater than 2.0 mg/L the effluent BOD increased drastically. Johnson *et al.* (1978) developed a mathematical model for the disinfection of lagoon effluents and in most cases found a combined chlorine residual of 0.5 to 1.0 mg/L sufficient to reduce fecal coliform concentrations below 200/100 mL. The author also discussed the negative effects of a plorinated by-products on the receiving environment.

Betzer (1980) demonstrated algae recovery by ozone floatation from wastewater effluent and said the dual benefit of obtaining two high quality products (algae and effluent) made the ozone floatation attractive.

Adams *et al.* (1987) demonstrated UV radiation and sedimentation of lagoon effluents and found 50% reduction of BOD₅ and 80% reduction in fecal coliforms.

The absents of harmful residuals make ozone and UV radiation attractive options for disinfection of lagoon effluents.

7.3.14 Miscellaneous Technique

Incorpora (1978) investigated the possibility of using waste heat from an industrial process to improve the efficiency of a wastewater treatment facility and found that it may be feasible in some circumstances. This technique does not have wide application possibilities.

7.4 Conclusions

The AEP standards and guidelines for lagoon design produce excellent effluent and only when extenuating circumstances exist is there a need for upgrade techniques to be considered. Lagoon facilities could use operational upgrades and maintain compliance with mechanical plant effluent standards and increase the capacity of the system by as much as 50%. There may be less impact on the receiving environment with continuous summer lagoon discharge than changing to a continuous flow mechanical plant because winter discharges are avoided. Other instances where upgrades may be useful are with spring discharges, facilities not required to meet current standards, and where the

receiving water is sensitive or the use of the wastewater effluent is such that improved effluent quality is required.

If there is a need for upgrade techniques the inexpensive operational upgrades should be investigated first before more expensive techniques are considered. The upgrade techniques that appear to be most appropriate for the Alberta situation are operational upgrades, in-pond chemical treatment, additional short detention cells, and land application of effluents. Other options that are unproved but may be useful are stationary microscreens and wetlands treatment.

175

8.0 CONCLUSIONS AND RECOMENDATIONS

8.1 Conclusions

The following are conclusions drawn from the analysis of lagoon treatment:

- The Alberta Environmental Protection's guidelines for lagoon treatment are the most stringent in the country. Alberta is the only province that requires 365 days detention time and anaerobic cells which the study concluded are important in obtaining a good quality effluent.

-The lagoons meeting AEP's guidelines have produced good effluent that is superior to mechanical plants in all the parameters except TSS where it is still comparable.

-The important design factors to lagoon treatment are season of discharge, month of discharge, the presence of short detention cells, and storage time. The 4S-2L lagoons with fall discharge and 12 months of storage had an average BOD and TSS of 6 mg/L and 14 mg/L.

- The question of spring or fall discharge should be evaluated on a site specific basis to minimize the impact on the receiving water through the best combination of maximum dilution ratio, maximum effluent quality, and minimum impact on the recreational use of receiving stream.

- Generally, lagoon effluents are suitable for irrigation water.

- The evaluation of public concerns about lagoon treatment facilities showed that the vast majority of facilities received no complaints. Of the plants receiving complaints, odours were the category of highest concern with 17 % of the lagoon facilities reporting odour complaints. Except for a few sites, operators felt that odour occurred for short periods of time in the spring and that the problem was not severe.

-The results of the economic survey of treatment facilities indicated that generally lagoons are the most economical treatment option in terms of capital, land, and operation and maintenance costs.

- There are many upgrade techniques available for lagoons but facilities that meet the AEP's standards usually do not require improved effluent. Some of the operational techniques may increase lagoon capacity with only minimal increase in impact. Upgrades may be useful in improving spring effluent quality.

-The impact of the average lagoon treated effluents on public health and wildlife is minimal for lagoons with short detention cells. Fall discharges require roughly 1 to 1 dilution ratio and spring discharges require 1 to 10 to meet CCREM (1987) receiving water criterion. The spring discharges were variable and there were facilities with poor spring effluent, especially high coliform counts that required extremely high dilution ratios. The dilution required by mechanical plants is roughly 1 to 1000 and is governed by coliform counts.

8.2 Recommendations

The following are recommendations for lagoon treatment practices in Alberta:

- Due to the variability of spring discharges, poorly performing lagoons with spring discharge should be identified and efforts made to improve the effluent quality, perhaps using some of the upgrades discussed in chapter 7.

-Short detention cells provide significant improvement to effluent quality and should be included in all future facilities and may be retro fitted to existing facilities.

8.2 **Proposals for Additional Studies**

- Proper baffling of the treatment cell should improve performance, particularly for spring discharges.

- The comparison of indicator microorganism concentration in various lagoon discharges to their concentrations in mechanical plants should be evaluated. The quality of mechanical plant discharges may be improved by a storage lagoon.

- The treatment cell of a spring discharge lagoon does not affect the effluent quality which is governed by the quality of the wastewater stored over winter. Improved effluent quality in the spring may be possible if the treatment cell was on the other end of the storage cell. The storage cell could act as the treatment cell while filling in the summer and the treatment cell could be filled and isolated for the later part of the summer and through the winter. The treatment cell would have excellent effluent quality the following spring and could be used for final polishing and will have good microbial characteristics. Given two months of ice free treatment in the spring the storage cell will have low BOD and high TSS. Completely discharging the storage cell through the treatment cell over a 30 day period may gain considerable effluent quality improvement. Baffling the treatment cell would insure detention time. This theory can be tested on an existing facility with some temporary piping and pumping.

REFERENCES

- Abeliovich, A. and Azov, Y. 1976. Toxicity of Ammonia to Algae in Sewage Oxidation Ponds. <u>Applied and Environmental Microbiology</u>, <u>31</u>, 6, 801-806.
- Abeliovich, A. and Weisman, D. 1978. Role of Heterotrophic Nutrition in Growth of the Algae Scenedesmus in High-Rate Oxidation Ponds. <u>Applied and Environmental Microbiology</u>, <u>35</u>, 1, 32-37.
- Adams, V.D., Nieminska, E.C. and Borup, M B. 1987. Ultraviolet Radiation and Sedimentation of Wastewater Lagoon Effluents. <u>Wat. Sci. Tech.</u>, <u>19</u>, 12, 359-361.
- Airaksinen, J.U. 1978. Improvement of the Quality of Water Pond Effluents in Northern Areas by Chemical Pre-Precipitation. <u>Prog. Wat. Tech.</u>, 10, 5/6, 899-906.
- Alberta Environment. 1988. <u>Standards and Guidelines For Municipal Water Supply.</u> <u>Wastewater, and Storm Drainage Facilities.</u> Edmonton Alberta.
- Alberta Environment, 1990. <u>Alberta Water and Wastewater Facilities Survey</u>. Municipal Branch, Standards and Approvals Divison, Environmental Protection Services, Edmonton Alberta.
- Allum, M.O. and Carl, C.E. 1970. The Role of Ponds in Wastewater Treatment Proc. Second Int'l Symp. on Wastewater Treatment Lagoons, R. McKinney ed. Kanasas City, Mo., p7-10.
- American Public Health Association, 1992. <u>Standard Methods for the Examination of</u> <u>Water and Wastewater</u>, 18th ed..
- Amin, P.M and Ganapati, S.V. 1972. Biochemical Changes in Oxidation Ponds. Journ. Water Poll. Control Fed., 42, 2, 183-200.
- Azov, Y., Shelef, G. and Moraine, R. 1982. Carbon Limitation of Biomass Production in High Rate Oxidation Ponds. <u>Biotechnology and Bioengineering</u>, 24, p579-594.
- Balmer, P. and Bjarne, V. 1978. Domestic Wastewater Treartment With Oxidation Ponds in Combination with Chemical Precipitation. <u>Progr. Water Technol.</u>, 10, 5/6, 867-880.
- Beier, A.G. 1979. <u>Sewage Lagoon Effluent Quality Evaluation II</u>. Pollution Control Division, Alberta Environment, Edmonton Alberta.
- Beier, A. and Turnbull, J.H. 1980. <u>A Report on Sewage Lagoon Continuous Effluent</u> <u>Discharge Evaluation, April - September, 1979</u>. Unpublished report of Polution Control Division, Alberta Environment. Edmonton Alberta.

- Beier, A.G. 1983. <u>Sewage Lagoon Effluent Quality Evaluation III, 1979-1983</u>. Municipal Engineering Branch, Pollution Control Division, Alberta Environment, Edmonton Alberta.
- Bell, R.G 1976. Persistence of Fecal Coliform Indicator Bacteria on Alfalfa Irrigated with Municipal Sewage Lagoon Effluent. J. Environ. Qual., 5, 1, 39-42.
- Bell, R.G. and Bole, J.B. 1978. Elimination of Fecal Coliform Bacteria from Soil Irrigated with Municipal Sewage Lagoon Effluent. J. Environ. Qual., 7, 2, 193-196.
- Betzer, N., Argaman, Y. and Kott, Y. 1980. Effluent Treatment and Algae Recovery By Ozone-Induced Foatation. <u>Water Research</u>, 14, p1003-1009.
- Black, S.A., Graveland, D.N., Nicholaichuk, W., Smith, D.W., Webber, M.D. and Bridle, T.R. 1984. Manual For Land Application of Treated Municipal Wastewater and Sludge. Manual EPS 6-EP-84-1, Environmental Protection Programs Directorate.
- Bogan, R. H. 1961. Removal of Sewage Nutrients by Algae. Public Health Reports, 76, 4, 301-308.
- Bond, M.T. and Mowry, B. 1989. Removal of Algae from Waste Stabilization Pond Effluents. NTIS Pub. PB89-143598/AS, Springfield, Va.
- Bouthillier, P.H. and Brown, G.D. 1971. Anaerobic Lagoons Provide Treatment for Edmonton Packing Wastes. <u>Water and Polution Control (Can.)</u>, 109, 11, 27-29.
- Bowles, D.S., Middlebrooks, E.J. and Reynolds, J.H. 1979. Coliform Decay Rates in Waste Stabilization Ponds. Journ. Water Poll. Control Fed., 51, 1, 87-99.
- Box, G.E.P., Hunter, W.G. and Hunter, J.S. 1978. <u>Statistics for Experimenters</u>. Publisher John Wiley & Sons, Inc.
- Brisbin, K.J., Forsberg, C.R., McDonald, R.A. and McGrath, N.W. 1967. Anaerobic Waste Stabilization Ponds. <u>Water and Polution Control (Can.)</u>, 105, Dec..
- Canadian Council of Resource and Environment Ministers, Task Force on Water Quality Guidelines. 1987. <u>Canadian Water Quality Guidelines</u>. Water Quality Objectives Division, Water Quality Branch, Environment Canada, Ottawa, Ontario.
- Curtis T.P., Mara D.D. and Silva S.A. 1992. Influence of pH, Oxygen, and Humic Substances on Ability of Sunlight to Damage Fecal Coliforms in Waste Stabilization Pond Water. <u>Applied and Environmental Microbiology</u>, Apr. 1992, p1335-1343.

- Davies, E.M. and Gloyna, E.F. 1972. Bacterial Dieoff in Ponds. J. of San. Eng. Divison. Proceedings of American Society of Civil Engineers., Feb. p59-69.
- DeBoer, W.R., Kruyssen, F.J. and Wouters, J.T.M. 1981. Cell Wall Turnover in Batch and Chemstat Cultures of Bacillus Subtilis. J. Bact., 145, p50-60.
- Deborn, G.R., Hayward, J.A. and Quinney, T.E. 1977. Studies on *daphinia pulex* leydig in Sewage Oxidation Ponds. <u>Can. J. Zool.</u>, <u>56</u>, p1392-1401.
- Dinges R. 1978. Upgrading Stabilization Pond Effluent By Water Hyacinth Culture. Journ. Water Poll. Control. Fed., May, p833-845.
- Duffer, W.R. 1974. Lagoon Effluent Solids Control by Biological Harvesting. Symposium Proceedings, Upgrading wastewater Stabilization Ponds to Meet New Discharge Standards. <u>Utah Water Research Laboratory, Utah State University, Logan, Utah</u>, p187-190.
- Eckenfelder, W.W. Jr. 1980. <u>Principles of Water Quality Management</u>. CBI Publishing Co. Inc., Boston.
- Eckenfelder, Jr. W.W. 1989. Industrial Water Polution Control, 2nd ed. McGraw-Hill, Inc.
- El-Gohary F.A., Abo-Elela S.I., Shehata S.A. and El-Kamah H.M. 1991. Physico-Chemical-Biological Treatment of Municipal Wastewater, <u>Wat. Sci. Tech.</u>, 24, 7, 285-292.
- Environment Canada. 1984. Manual for Land Application of Treated Municipal Wastewater and Sludge. EPS 6-EP-84-1, Environmental Protection Programs Directorate, March 1984.
- Environment Canada. 1990. Historical Streamflow Summary, Alberta. Inland Waters Directorate, Water Resourses Branch, Water Survey of Canada, Ottawa, Canada.
- Folkman, Y. and Wachs, A.M. 1972. Removal of Algae From Stabilization Pond Effluents by Lime Treatment. <u>Water Research</u>, 7, p419-435.
- Finch, G.R. 1984. Effect of Chemical Coagulation on Removal of Fecal Coliforms from a seasonal Discharge sewage Lagoon. M.Sc. Thesis in Environmental Engineering, Department of Civil Engineering, Edmonton, Alberta, Fall 1984.
- Finney, B.A. and Middlebrooks, E.J. 1980. Facultative Waste Stabilization Pond Design. Journ. Water Poll. Control. Fed., 52, 1, 134-147.

- Fisher, C.P. 1967. Waste Stabilization Ponds in the Canadian North. International Conference on Water for Peace, Washington, D.C., 4, p154-163.
- Fisher, C.P., Drynan, W.R. and Fleet, G.L. 1968. Waste Stabilization Pond Practices in Canada. "<u>Advances in Water Quality Improvement</u>"ed. Glonya, E.F. and Eckenfelder Jr, W.W., 1968, Water Resourses Symposium No.1, University of Texas Press, p435-449.
- Fukunaga, I., Takamizawa, K., Inoue, Z., Hasebe, T., Konae, M. and Hatano, K. 1991. Effluent Pollution Control of Osaka North Port Dredged Soil Disposal Site (North Section-Site II & III). <u>Wat. Sci. Tech.</u>, 23, p1619-1628.
- Ganapati, S.V. 1975. Biochemical Studies of Algal-Bacterial Symbiosis in High-Rate Oxidation Ponds with Varing Detention Periods and Algae. <u>Arch. Hydrobiol.</u>, <u>76</u>, 3, 302-367.
- Goldman, J.C. 1979. Outdoor Algal Mass Cultures II. Photosynthetic Yield Limitations. Water Reseach, 13, p113-136.
- Goldman, J.C. and Graham, S.J. 1981. Inorganic Carbon Limitation and Chemical Composition of Two Freshwater Green Microalgae. <u>Appl. Environ. Microbiol.</u>, <u>41</u>, 1, 60-70.
- Golueke, C.G. 1977. Using Plants for Wastewater Treatment. <u>Compost Science</u>, Sept./Oct., p16-20.
- Greenfield, R.E. and Elder, A.L. 1926. Effect of Temperature on Rate of Deoxygenation of Diluted Sewage. Industrial and Engineering Chemistry, 18, 3, 291-295.
- Grimason A.M., Smith, H.V., Thitai, W.N., Smith, P.G., Jackson, M.H. and Gridwood, R.W.A. 1993. Occurrence and Removal of Cryptosporidium SPP. Oocysts and Giardia SPP. Cysts in Kenyan Waste Stabilization Ponds. <u>Wat. Sci. Tech.</u>, 27, 3-4, 97-104.
- Halvorson H., Ishaque, M. and Lees, H. 1969. Microbiology of Domestic Wastes. II. A Comparative study of the Seasonal Physiological Activity of Bacteria Indigenous to a Lagoon. <u>Canadian Journal of Microbiology</u>, <u>15</u>, p563-569.
- *Hartland-Rowe, R.C.B. and Wright, P.B. 1974. Swamplands for Sewage Effluents Final Report. Environmental-Social Program Northern Pipelines, Department of Biology, University of Calgary.
- Heinke, G.W., Smith, D.W., and Finch, G.R. 1988 a. <u>Guidelines for the Planning, Design</u>, <u>Operation and Maintenance of Wastewater Lagoon Systems in the Northwest</u> <u>Territories, Volume I - Planning and Design</u>, for The Department of Municipal and

Community Affairs Government of the Northwest Territories Yellowknife, Northwest Territories.

- Heinke, G.W. and Smith, D.W. 1988 b. <u>Guidelines for the Planning, Design, Operation</u> and <u>Maintenance of Wastewater Lagoon Systems in the Northwest Territories</u>, <u>Volume II - Operation and Maintenance</u>. for The Department of Municipal and Community Affairs Government of the Northwest Territories Yellowknife, Northwest Territories.
- Hickey, C.W., Quinn, J.M. and Davies-Colley, R.J. 1989. Effluent Characteristics of Domestic Sewage Oxidation Ponds and Their Potential Impacts on Rivers. <u>New</u> Zealand Journal of Marine and Freshwater Research, 23, p585-600.
- Hom, L.W. 1972. Kinetics of Chlorine Disinfection in an Ecosystem. Journal of Sanitary Engineering Divison, American Society of Civil Engineering, Feb., p183-194.
- Incropera, F.P. 1978. <u>Analysis of the Control and Performance of Algal-Wastewater</u> <u>Stabilization Ponds.</u> Technical Report No. 104, Purdue University Water Resources Reasearch Center, West Lafayette, Indiana 47907.
- Johnson, B.A., Wight, J.L., Middlebrooks, E.J., Reynolds, J.H. and Venosa, A.D. 1978. Mathematical Model for the Disinfection of Waste Stabilization Lagoon. Journ. Water Poll. Control. Fed., 50, p2002-2015.
- Karn, R.V. 1979. The Interrelationship of Theory, Design, Operation, and Maintainace of Controlled Discharge Wastewater Stabilization Ponds, <u>Proceeding of 52nd Annual</u> <u>Water Pollut. Control Fed. Conference</u>, Session 44, October 11, 1979.
- Kellerhal. R., Neill, C.R. and Bray, D.I. 1972. <u>Hydraulic and Geomorphic Characteristics</u> of Rivers in Alberta. River and Surface Hydrology Report 72-1, Research Council of Alberta.
- Krenkel, P.A. and Novotny, V. 1980. <u>Water Quality Management</u>. Academic Press, Inc., Harcourt Brace Jovanovich, Publishers.
- Krishnamoorthi, M.P., Abdulappa, M.K., Sarkar, R. and Siddiqi, R.H. 1973. Productivity of Sewage Fertilized Fish Ponds. <u>Water Research</u>, 9, p269-274.
- Leininger, K.V. 1977. Remove Algae and High Costs Together. <u>Water and Wastes</u> Engineering, p32-35.
- Little, J.A., Carroll, B.J. and Gentry, R.E. 1970. Bacteria Removal in Oxidation Ponds. <u>2nd International Symposium for Waste Treatment Lagoons</u>, Kansas City, Missouri.

- Mara, D.P. 1989. Big is Not Best with Waste Stabilization Ponds, <u>Water Quality</u> <u>International</u>, No. 1, p28-29.
- Marais, G.R. 1974. Fecal Bacterial Kinetics in Stabilization Ponds. Journal of the Environmental Engineering Division, p119-139.
- Mathavan, G.N. and Viraraghavan, T. 1989. Lagoons in Cold Climates and Their Performance in Saskatchewan. <u>Proc., Annu. Conf., West. Can. Water Sewage</u> <u>Conf., p51-66.</u>
- McGarry, M.G. and Bouthillier, P.H. 1966. Survival of S. Typhi in Sewage Oxidation Ponds. Journal of the Sanitary Engineering Division, ASCE, Aug., 1966, p33-43.
- McKinney, R.E. 1962. Microbiology for Sanitary Engineers. McGraw-Hill Book Co., New York. p 146.
- McKinney, R.E. 1982. <u>Algal Based Wastewater Treatment Systems. Conf. Can. Soc. for</u> Civil Eng. Edmonton, Alberta, May 26, 1982, p 41.
- Middlebrooks, E.J., Porcella, D.B., Gearheart, R.A., Marshall, G.R., Reynolds, J.H. and Grenney, W.J. 1974. <u>Evaluation of Techniques for Algae Removal From</u> <u>Wastewater Stabilization Ponds.</u>, Review Paper, Utah Water Research Laboratory, College of Engineering, Utah State University, Logan, Utah, January 1974.
- Middlebrooks E.J., Jones, N.B., Reynolds, J.H., Torpy, M.F. and Bishop, R.P. 1978. Lagoon Information Source Book. Ann Arbor Science Publishers Inc.

Miller, A.P. 1967. <u>The Biochemical Bases of Psychrophily in Microorganisms, a Review</u>. Institute of Water Resources, University of Alaska, Collegde, Alaska 99701.

- Milos, J.P. and Beier, A.G. 1978. <u>Sewage Lagoon Effluent Quality Evaluation III, 1979-1983</u>. Municipal Engineering Branch, Pollution Control Division, Alberta Environment, August 1983.
- Moutin, T., Gal, J.Y., El Halouani, H., Picot, B. and Bontoux, J. 1992. Decrease of Phosphate Concentration in High Rate Pond by Precipitation of Calcium Phosphate: Theoretical and Experimental Results. <u>Wat. Res.</u>, 26, 11, 1445-1450.
- Mudroch, A. and Capobianco, J.A. 1979. Effects of Treated Effluent on a Natural Marsh. Journ. Water Poll. Control. Fed., 51, 9, 2243-2256.
- Nyholm, N., Sorensen, P.E., Olrik, K. and Pedersen, S.D. 1978. Restoration of Lake Nakskov Indrefjord, Denmark, Using algal Ponds to Remove Nutrients from Inflowing River Water. <u>Prog. Wat. Tech.</u>, 10, 5/6, 881-892.

- Oswald, W.J. 1968. Advances in Anerobic Pond Systems Design. <u>Adv. in Wat. Qual.</u> <u>Improv., Wat. Res. Symp. No. 1.</u> Univ. of Texas Press, Austin, Texas.
- Parker, C.D. 1962. Microbial Aspects of Lagoon Treatment. Journ. Water Poll. Control. Fed., 32, 2, 149-161.
- Qin, D., Bliss, P.J., Barnes, D. and FitzGerald, P.A. 1991. Bacterial (Total Coliform) Dieoff in Maturation Ponds. <u>Wat. Sci. Tech.</u>, 23, 1525-1534.
- Slanetz, L.W., Bartley, C.H., Metcalf, T.G. and Nesman, R. 1970. Survival of Enteric Bacteria and Viruses in Municipal Sewage Lagoons. <u>2nd International Symposium</u> for Waste Treatment Lagoons, June 23 - 25, Kansas City, Missouri.
- Slaughter, R., Boland, B. and Thornley, S. 1979. Quality of Sewage Lagoon Discharges During Winter and Impact on Stream Water Quality and Biota. <u>Canadian</u> <u>Hydrology Symposium: 79-Cold Climate Hydrology Proceedings.</u> Vancouver, B.C. National Research council of Canada, p547-558.
- Slupsky, J.W. and Frith, R. 1971. <u>Report on Town of Hay River Sewage Lagoon</u>, Hay River, N.W.T.. Department of Environment. Public Health Engineering Divison, Edmonton, Alberta.
- Smith, D.W. and Finch, G.R. 1985. <u>A Critical Evaluation of the Operation and</u> <u>Performance of Lagoons in Cold Climates</u>. Environmental Engineering Technical Report 85-2, Department of Civil Engineering, University of Alberta, Edmonton, Alberta.
- Snoeyink, V.L. and Jenkins, D. 1980. <u>Water Chemistry</u>. Publisher John Wiley & Sons, New York.
- Sparling, A.B. 1967 cir. Winter Operation of Sewage Lagoons in Manitoba. Dept. of Health, Environ. Sanit. Sect., Winnipeg, Man.
- Sparling, A.B. and Stibbard. 1989. Denitrification in a Waste Stabilization Pond. Proc., Annu. Conf., West. Can. Water Sewage Conf., p187-195.
- Strattion, F.E. 1968. Ammonia Nitrogen Losses from Streams. J. San. Eng. Div. American Society of Civil Engineering, 94, p1085-1091.
- Strattion, F.E. 1969. Nitrogen Losses from Alkaline Water Impoundments. J. San. Eng. Div. American Society of Civil Engineering, 95, p223-231.
- Tikhe, M.L. 1975. Aerofac Aerated Lagoons. J. Water Polution Control Federation, 47, 3, 626-629.

- Uhlmann, D. 1978. The Upper Limit of Phytoplankton Production as a Function of Nutrient Load, Temperature, Retention Time of the Water and Euphotic Zone Depth. Int. Revue ges. Hydrobiology, 63, 3, 353-363.
- Vallance B. 1990. Conversion of Facultative Lagoons to Mechanically Aerated Lagoons, Proc. Annu. Conv. - West. Can. Wastewater Assoc., 42, 129-136.
- Weiler, R.R. 1979. Rate of Loss of amnionia from water to the Atmosphere. J. Fish. Res. Board Can., 36, p685-689.
- Yake, W.E. and James, R.K. 1983. Setting Effluent Ammonia Limits to Meet In-Stream Toxicity Criteria. Journ. Water Poll. Control Fed., 55, 3, 303-309.

APPENDIX A - OPERATOR'S SURVEY FORM

Municipal Sewage Treatment Facility Survey

Information is required to help complete a study on municipal sewage treatment technologies. You are requested to complete this questionnaire keeping in mind that the questions refer to the treatment system only and not the collection system. Any extra comments or information concerning the treatment facility would be appreciated.

Name of the person filling out this survey	Phone #
Name of municipality	
Name of municipality Population served by facility ?	
IDENTIFY TREATMENT SYSTEM	
Lagoon # short retention cells(<30 days)	
<pre># long retention cells(>30 days)</pre>	
Discharged every months	
Acrated Lagoon	
RBC Plant	
Activated Sludge	
Other	
LOCATION	
Nearest resident of the municipality is located what distance	to the treatment facility?(meters)
The treatment facility is located in what direction(North, No	ortheast. etc.) from the
municipality?	
CONCERNS	
Odours:	
How many complaints a year from residents do you receive a	about the odours generated by the treatment
facility?	
Comments	
On a scale of 1 to 10 (1=small, 10=very severe) how would	you rank the severity of the odour problem to
	you tank the seventy of the oddar problem to
the residents?	
Comments	
Insects and Pests:	
How many complaints a year from residents do you receive :	about the insects and nests generated by the

How many complaints a year from residents do you receive about the insects and pests generated by the treatment facility?_____ Comments_____

On a scale of 1 to 10 (1=small, 10=very severe) how would you rank the severity of the insect and pest problem to the residents?_____ Comments

Appearance:

How many complaints a year from residents do you receive about the appearance of the treatment facility?

Comments

On a scale of 1 to 10 (1=small, 10=very severe) how would you rank the severity of the appearance to the residents?_____

Comments

Downstream Flooding:

How many complaints a year from residents do you receive about any downstream flooding due to the operation of the treatment facility?_____

Comments

On a scale of 1 to 10 (1=small, 10=very severe) how would you rank the severity of any flooding problems to the residents?

Comments

Leakage or Seepage:

How many complaints a year from residents do you receive about any leakage or scepage from the treatment facility?_____

Comments

On a scale of 1 to 10 (1=small, 10=very severe) how would you rank the severity of any leakage or seepage problems to the residents?_____

Comments

Effluent Quality:

How many complaints a year from residents do you receive about the quality of the effluent discharged from the treatment facility?

Comments

On a scale of 1 to 10 (1=small, 10=very severe) how would you rank the severity of the residents concerns over effluent quality?_____

Comments_____

ECONOMICS Operation and Maintenance:

No. of person days a year to operate facility?______ No. of person days a year to maintain facility?______

For the items in the following table please estimate the amount of money expanded annually in the O&M of the treatment facility. Indicate your estimate by checking the appropriate box.

ITEMS									
	\$0	\$0	\$500	\$1000	\$2000	\$5000	\$10,000 to	\$20,000 to	Specify if amount is off the scale
Labour	0	to \$500	to \$1000	to \$2000	to \$5000	to \$10,000	\$20,000	\$30,000	\$
	S 0	\$ 0	\$ 500	\$1000	\$ 1500	\$2000	\$2500	\$3000	Specify if amount is off the scale
Material		to \$500	to \$1000	to \$1500	to \$2000	to \$2500	to \$3000	to \$3500	s off the scale
		L	0			-	-	_	- <u></u>
	\$ 0	\$0 to	\$500 to	\$1000 to	\$1500 to	\$2000 to	\$2500 to	\$3000 to	Specify if amount is off the scale
Equipment		\$500	\$1000 □	\$1500 □	\$2000	\$2500	\$3000 □	\$3500 □	s
	\$ 0	\$ 0	\$500	\$1000	\$1500	\$2000	\$2500 to	\$3000 to	Specify if amount is off the scale
Fucl	0	to \$500	to \$1000	to \$1500	to \$2000	to \$2500	\$3000	\$3500	\$
		SO	\$ 500	\$1000	\$ 1500	\$2000	\$2500	\$3000	Specify if amount
Power	\$0	50 to \$500	to \$1000	to \$1500	to \$2000	to \$2500	to \$3000	to \$3500	is off the scale
	•		D		0	D		۵	s
	S 0	\$ 0 to	\$500 to	\$1000 to	\$1500 to	\$2000 to	\$2500 to	\$3000 to	Specify if amount is off the scale
Other	D	\$500 □	\$1000	\$1500 □	\$2000	\$2500	\$3000 □	\$3500 □	s
	\$ 0	S 0	\$500	\$1000	\$2000	\$5000 to	\$10,000 to	\$20,000 to	Specify if amount is off the scale
Total		to \$500	to \$1000	to \$2000	to \$5000	\$10,000	\$20,000	\$50,000	\$

Have there been any berm erosion problems? YES or NO If yes what corrective measures have been taken?_____

Capital Costs: (give costs to the nearest \$1000)

Land cost.

The cost (indicate the year of the dollar value) of the land that the facility is located on? _______.

 Construction cost.
 \$ yr_____
 Design Population ______

 Original construction costs______
 \$ yr_____
 Design Population ______

 Upgrade project_______\$ yr____
 Design Population ______
 Design Population ______

Thank you for your cooperation in providing this information.

APPENDIX B - SURVEY RESULTS

191

•

COMMUNITY	TYPE	đQđ	TREATMENT	STORAGE	LOCATION	LOCATION	odour	odour	meet	mect	#DOCHT	NOCER	Poor	poq	N N N	1	outer o	
		SERVED			DISTANCE	DIRECTION	comp	sever	comp	Sever		-	comp.		× dux	8		Ę
ACME	VILLAGE	527	LAGOON 45,2L		•	7 .	0	6	0	-	0	-	-	r 1	0		0	_
ALDER FLATS	HAMLET		LAGOON 25, IL		80	A	0	-	•	-	41	~	F 1	••	•	-	0	-
ALIX	VILLAGE	787	LAGOON 45,4L	EVAP	1500	z	r1	-	•	-	0	-	•		0	1	•	-
AMISK	VILLAGE	200	LAGOON 1S, IL		906	MN	0	~1	•	-	0	-	0	-	•	-	•	
ARDMORE	HAMLET	¢.	LAGOON 25,2L		800	s	0	-	0	-	o	-	•	-	0	_	-	-
ARDROSSAN		105+3SCHOOL	LAGOON 25,2L	12	0051	MM	0	-	0		0	-	•	-	•	-	0	-
ARROWWOOD	VILLAGE	142	LAGOON 0S, 2L		906	ω	•	-	•		0	-	•	-	0	-	0	
ATHABASCA	TOWN	¢	AERATED LAGOO		ſ	z	0	-	•	-	0	÷	0		•	-	0	-
BARONS	VILLAGE	260	LAGOON OS, JL	13	800	×	0	-	•	-	0	-	•	-	•	-	•	-
BARRHEAD	TOWN	4160	AERATED LAGOO		1000	SE	0	-	¢	-	•		•	~	0	-	•	
BASHAW	TOWN	829	LAGOON 4S, 3L		4000	ш	80	-	•	-	•	-	•	-	•		•	-
BASSANO	TOWN	0611	LAGOON 4S, IL		2500	ш	0	-	•	-	¢	-	•		•	-	c	-
BEAVERLODGE	TOWN	1779	LAGOON 45, IL		400	s	•	-	•	-	0	-	0	-	•	-	0	-
BEISEKER	VILLAGE	639	LAGOON 25,2L	ø	400	ш	•	~	0	-	•	-	•	-	-		0	-
BENTLEY	VILLAGE	<u>8</u>	LAGOON 25,2L		150	MS	0	-	0	-	•	-	0	-	•	-	0	-
BERWYN	VILLAGE	ŝ	LAGOON 45,2L		2200	SE	•	-	0	-	**	-	•	-	-	-	0	-
BEZANSON	HAMLET	¢.	LAGOON 0S, IL		9 5	SW	•	-	0	-	•	-	•	-	0		c	-
BIG VALLEY	VILLAGE	350	LAGOON 45,2L		¢.	SE	•	-	0	-	•	-	•	-	•	-	•	-
BITTERN LAKE	VILLAGE	169	ė		1000	z	•	-	0	-	•	-	•	-	0		•	-
BLACK DIAMOND	N TOWN	1727	LAGOON 05,3L		e .	¢.	0	-	0	-	¢	-	•	-	•	-	0	-
BLACKFALDS	TOWN	1800	AERATED LAGOO		0051	٢	0	•	•	-	•	-	0	-	0	-	0	-
BLACKFOOT	HAMLET		LAGOON 0S, JL	12	800	z	•	-	•	-	•		•	-	0	1	0	-
BLACKIE	VILLAGE		LAGOON 05,2L	Ŷ		NE	•	4	0	-	0	-	-	÷	-		•	-
BLUE RIDGE	HAMLET	081	LAGOON 05, IL	12	2000	MN	•	-	•	-	•	-	•	-	0	-	•	-
BLUESKY	HAMLET	¢.	LAGOON 13,1L	12	1000	ш	•	-	0	-	0	-	•	-	•	-	•	-
BON ACCORD	TOWN		AERATED LAGOON		¢.	s	~	4	•	-	•	-	•	-	0	-	0	-
BONNYVILLE	TOWN	5132	LAGOON 45,2L	12	30	SE	•	4	0	-	0	-	•	-	•	-	•	-
BOTHA	VILLAGE		LAGOON 15, 1L	12			0	-	•	-	0	-	•	-	•	-	•	-
BOWDEN	TOWN	936	LAGOON 45,2L	12	0001	SW	•	-	•	-	•	-	•		•	-	•	
BOYLE	VILLAGE	710	LAGOON 25,2L	9	1600	MN	•	-	•	-	•	-	7	-	•	-	•	-
BRETON	VILLAGE	511	LAGOON 45,2L	12			•	-	•	-	•	-	•	-	•	-	•	-
BROOKS	TOWN	9433	LAGOON 75,5L	9	2500	ш	•	-	•	-	•	-	•	-	•	-	-	-
BRUCE	HAMLET		LAGOON 05,2L	24	650	₹	2	-	•	-	-	-	-	-	•		•	_
BUFORD	HAMLET		LAGOON 0S, IL	24	800	¥	•	-	•	-	o	-	•		•	-	0	
BUGSBY	HAMLET		LAGOON 05,1L	12	1000	MNN	•	-	•	-	•	-	•	-	•	-	•	-
BURDETT	VILLAGE		LAGOON 0S, IL	Ŷ	200	MN	•	-	05	-	•	-	•	-	~	•	c	2
CALMAR	TOWN		LAGOON 4S,2L	12	<u>8</u>	MN	2	7	•	-	0	m	•	-	•	-	•	-
CAMROSE NEW	CITY		AERATED LAGOO		1000	SE	•	-	•	-	•	-	•	-	•	-	•	-
CAMROSE OLD	CITY	~	LAGOON 4S, 5L	٢	1000	SE	8	2	¢	-	0	-	•	-		-	•	-
CANMORE	TOWN		RBC		75	ŝ	\$	œ	-	-	2	1	•	-	•	-	~	\$
CARBON	VILLAGE	437	LAGOON 2S, 3L	12	1000	ш	•	-	•		•	-	•	-	•	-	•	-
CARDSTON	TOWN	4000	RBC		<u>8</u>	NE	•	-	•	-	•	-	•	-	•	-	•	-
CARMANGAY	VILLAGE	259	LAGOON 25, IL	IRRIGATION	5 0	z	v	-	0	-	0	-	0	-	•	-	•	-
CAROLINE	VILLAGE	452	AERATED LAGOO		8 00	s	•	-	0	-	0	-	•		•	-	m	•
CARSELAND	HAMLET	550	AERATED LAGOON		1000	SE	•	-	0	-	•	-	•	-	3	-	•	-
CASTOR	TOWN	1000	LAGOON 4S,2L	12	1000	MN	•		•	-	•	-	•	-	0	-	0	-
CAYLEY	VILLAGE	243	LAGOON 05, IL	د.	400	ш	-	-	•	-	0	-	•	-	•	-	•	-
CHAMPION	VILLAGE	366	LAGOON 0S, IL	12	¢.	NE	0	-	•	-	•	-	•	-	05	-	•	-
CHAUVIN	VILLAGE	3600	LAGOON 25,2L	24	0091	ш	•	-	•	-	•	-	•		•	-	•	-
CHIPMAN	VILLAGE	239	LAGOON 4S,2L	NOT DISCH.	800	B	•	-	•	-	•	-	•	-	-	-	•	-

.

	1											-																																				
륗	ž	-	-	-	-		-	-	-	-	-	-	-			- •					• -	. –	-	•	-	-	-				•	-	-	-					• -	• -	• -	• -		• •	. —	~	-	-
hah	comp	•	•	•	•	c	•	•	•	•	c	¢	0	•	• •	• •	•	5 0	•		• c		• •	e	•	•	•	-	•	.	• •	``	¢	0	•	•	•	• e	• e	, c	, c	> -	- c		• •	0	0	0
Ĭ	scver	-	-	-	7		-	-	4	-	-	-	-			- •	- •					• -		-	-	-	-	-				. 11	-	-												. –	-	-
Ĕ	comp	•	•	•	-	•	-	•	•	•	c	•	•	0	0	•	• •	•	• •	•	• c	• c	, 0	•	0	0	o	0	• •			• •	0	•	•	•	,		, c	•	, c	> <	5 0	• c	; c	. 0	0	•
Poog	sever	-	-	-	-	-	-	-	-	-	-	-	-	-										-	-	-	-	-			- ~		-	-	-											• =•	-	
poot	comp.	•	•	•	•	•	0	•	•	¢	¢	•	0	0	0	0	• •				,	, c	, 0	-	•	•	•	0	•	• •	,	• •	•	0	0		.				, ,	> c	> <	, c	> c) o	. 0	. 0
appear		-	-	1	-	7	-	-	-	-	-	-	-	-	-	-	- •	-					· –	-		-	-	-	-				-	-	-					- •				- •	n -		• •	
annear a	i	•	•	•	•	0	•	•	•	•	o	•	•	•	0	0	0 1	o ,	• •	• •	,		, o	• •	0	0	•	•	0	• •		• •	•	•	•	0 (-			•		2 0	• •	2 0	, ,	, c	, <u> </u>	• •
unsect a	ever c	-				ч	-	-	-	-	-	-		-	-	-	 ,						•	-	-		-	-	-			• 14	1	-						- •								
insect	comp.	0	0	0	0	•	•	•	•	0	0	•	0	0	0	•	0	0	• •				ۍ د	, 0	0	0	•	c	0	•			0	0	•	•	• •			• •	0 4	0	•	•	•	. c	, c	
odour	EVET CI	-	-		-	7	-			_	Ś	-	4	-	-	-	-	-							_	_	-	-	_				-	-	4		- 1	7.			- -	-	-	r +				
odour o	сотр. ж	0	0	•	•	•	•	•	2	0	7	0	2	•	•	•	•	•	•						. 0	. 0	0	•	•	0			0	0	7	•	•	•	0	0	•	•	_	0	0 (5 (> c
																		~															Ŧ															
LOCATION	DIRECTION	A	s	SW	ш	z	SE	SE	SE	SE	SE	M	ţ,	A	MN	SW	ш	MNM	SW	ш <u>ह</u>	N C :	2 4	з ш	, MN	NE	NE	NE	ω	z	SW		NE NE	NORT	MS	SE	ŝ	3	ŝ	z	W	HZ.	ш	s	ш ;	Z	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	25	ц Ч
LOCATION	DISTANCE	3000	3000	1600	NONE	1000	800	1200	6000	0 9	300	800	500	475	Э	¢	300	1000	1500		40100	2	20051	0091	•	2 00	800	2000	0001	9	0001	6 6	1605127	800	7,50	1000	8	r	0	1500	1000	2000	250	9.	89	r Ş	R §	B¥
STORAGE		EVAP	12	RRIGATION	12		£		9	¢.	Ŷ	12	12	12	12	12	00	12	12	12	0			: 2				0				2 4												÷	<u>ب</u> ه	2 2	2 4	• :
TREATMENT		LAGOON 4S,2L	LAGOON 05, IL	LAGOON 45,4L	LAGOON 0S, IL	AERATED LAGOON	AERATED LAGOO	AERATED LAGOO	LAGOON 4S, 3L	LAGOON 15, IL	LAGOON 25, IL	LAGOON	LAGOON 25, IL	LAGOON 25, IL	LAGOON 25,3L	LAGOON 45,2L	LAGOON 03, IL	LAGOON 1S, IL	LAGOON 0S, IL	LAGOON 45,3L	LAGOUN US, IL		LAGOUN US 7L	LAGOON 25.5L	AERATED LAGOO	LAGOON 45.2L	LAGOON 0S, IL	AERATED LAGOO	LAGOON 05, IL	LAGOON 05, IL	AERATED LAGOON	LAGOON 25.21.	LAGOON 45,2L	LAGOON	LAGOON 45,2L	LAGOON 45,3L	LAGOON 05, IL	LAGOONOS, 2L	LAGOON 15,2L	LAGOON 25,2L	LAGOON 05.3L	LAGOON 05, 1L	LAGOON 05,2L	LAGOON 45,2L	LAGOON 45,4L	LAGOON 05,2L		
aQa	SERVED	806	189	3500	103	5320	1350	6200	7818	260	114	8	355	290	193	1800	100	8	8	3	5	100	502	9 8	1000	06	561	7300	185	5	0041	(9) (9)	725	<u>10</u>	118,	615	9	SII	51	29 2	8	6/1	•	e Se	0011	821	<u></u>	ę i
TYPE		HAMLET	HAMLET	TOWN	VILLAGE	TOWN	VILLAGE		TOWN	HAMLET	VILLAGE	1 22	VILLAGE	VILLAGE	VILLAGE	TOWN	HAMLET	HAMLET	HAMLET	VILLAGE	VILLAGE	NMOI	VILLAGE	VILLAGE			VILLAGE	NWOL	VILLAGE	HAMLET	TOWN	VILLAGE	VILLAGE	HAMLET	TOWN	¢.	HAMLET	VILLAGE	HAMLET	VILLAGE					TOWN	VILLAGE		VILLAGE
COMMINITY		CLAIRMONT	CLANDONALD	CLARESHOLM	CLUNY	COALDALE	COALHURST	COCHRANE	COLD LAKE /GRA	COLINTON	CONSORT	COUNTY OF FORT 79	COUTTS	COWLEY	CREMONA	CROSSFIELD	CYNTHIA	DAPP	DEBOLT	DELBURN	DELIA	DEVON	DEWBERKY	DONNELLY	DRATON VALLEY	ECKVILLE	EDBERG	EDSON	EGALESHAM	EGREMONT	ELK POINT	ELNUKA	EVANSBURG	FABYAN	FALHER	FAUST	FAWCETT	FERINTOSH	POOTNER LAKE	FOREMOST	FURESTBURG	RURT ASSINIBON	FORT KENT	FORT VERMILLON	FON CREEK	GALAHAD CIBCURNULE	GIRCUNVILLE	GLENWCOD

COMMUNITY	TYPE	POP SERVED	TREATMENT	STORAGE	LOCATION DISTANCE	LOCATION DIRECTION	odour comp	odour sever	unect comp	maect sever	comp	appear sever	flood comp	Bred		Ĭž	alian p	
GRASSLAND	HAMLET	8	LAGOON 05.2L	ដ	450	z	•	-	•	-	•	_	-	-		-	-	-
GREEN ACRES	TRAILER PAR	2000		EVAP	1000	¥	11	-	0	-	c	-	0	_	•		. 0	
GRENNSHIELDS	HAMLET	\$\$	LAGOON	EVAP		z	0	-	•	-	0	-	0	-	c	-	•	-
GRIMSHAW	TOWN	2812	LAGOON 85,5L	12	1000	SE	~	-	0	-	0	-	0	-	0	-	0	
GROUARD	•	372	LAGOON 25,2L	11	1000	ш	0		0	-	0	-	0	-	•	-	¢	-
GUNN	VILLAGE	105	LAGOON 05.2L	12	899	z	•	-	0	-	0	-	c	-	•	-	•	-
GWYNNE	HAMLET	110	LAGOON 05, IL	12	1000	SW	•	-	0		0	-	ž	-	0		0	-
HAIRY HILL	VILLAGE	02	LAGOON 05, 1L?	1221	800	SE	•	-	0	-	0	-	•	-	0	~	0	_
ANNA	TOWN	3000	LAGOON 45,2L	9	1000	s	0	-	•	-	0	1	c	-	•	-	c	_
HAY LAKES	VILLAGE	327	LAGOON 45.2L	1	800	ESE	0	-	0	-	0	_	I	_	0	_	0	-
HAYS	HAMLET	<u>10</u>	LAGOON OS.2L	11	1500	NE	c	-	•	-	•	-	0	1	0	-	0	-
HAYTER	HAMLET	\$	LAGOON 05, IL	EVAP	477	SW	0	-	•	-	0	-	0	-	•	-	• •	
HIGH LEVEL	TOWN	3000	LAGOON 45,2L	9	0001	SE	m	4	•	-	•	-	•	-	0		"	1
HIGH PRAIRIE	TOWN	3000	LAGOON 4S.3L	Q	800	z	-	æ,	0	_	0	-	0	-	0	-	0	-
HIGH RIVER	TOWN	c	AERATED LAGOON		6400	NE	• •					·					, c	
HILDA	HAMLET	44	LAGOON IS.IL	EVAP	1000	NE	0	_	0	_	0	-	. 0		•		• •	
HINES CREEK	VILLAGE	423	LAGOON 4S 2L	12	750	NE	•				-			-			. c	
HOLDEN	VILLAGE	1	LAGOON 4S 21.	: ;\$	1610	z		-		-		. –						• -
D # 22	\$	921	LAGOON OS IL	2	1000	: 11	, c		, c	•	• c		, -	• -	• •		• -	
ID #17 FAST	: •	27. 27.6	I AGOON 25 21	: •	5	, an	• e	•	• c		• c		• <		, c		, ,	• •
ID ALT EAST					1001	ju	, c		, c		• •	• -	, ,		•	• •	• c	
	. 5	3 5	I ACOON	- 2	0001	3 6	• •		, c		•		•				•	
ID 18 NOPTH				1		2	, c		• c		• •		• •		- c		.	
ID 20	. 8	2		12	402	NE	• •	•	• c		• •	•	, a		, c		, c	• -
INNISFAIL	TOWN	1817		CONTIN		MIS	<u> </u>	• •	. c		• •			• •	, c		• c	
INNISERFE	VILLAGE	950				E N	2 0	, –	, e	•	• c	• -	• =				• c	•
IRMA	VILLAGE	442				SE											• •	
IRRICANA	VILLAGE	817				z	0	-	• •	-					. 0	-	• •	-
IRVINE	NWOT	326		12		NE	0	-	0	_	•	_	0	-	•	-	•	-
ISLAY	HAMLET	280	LAGOON 25,2L	12	6 4	SE	12	4	. 6	_	•	-	0	_	•	-	0	_
JARVIE	HAMLET	906	LAGOON 05, IL	2	1500	WNW	0	-	0	-	•	-	0	-	0	-	0	
JOSEPHBURG	HAMLET	8	LAGOON 2S, IL	7	750	MN	0	-	0	-	•	-	0	-	0	-	0	-
JOUSSARD	ć	277	LAGOON 45, IL	12	800	NE	•	-	•	-	•	-	0	-	0	-	0	-
KAVANAUGH	HAMLET	67	LAGOON 05, IL	12	800	SW	•	-	0	-	•	-	•	-	0	-	•	-
KILLAM	TOWN	Ċ	LAGOON 4S,2L	12	1610	SE	•	-	•	-	0	-	•	-	•	-	•	-
KING MAN	HAMLET	8	LAGOON 0S2L	12-24	1000	NE	0	-	•	-	0	-	0	-	0	-	•	-
KINUSO	VILLAGE	4 00	LAGOON 0S, IL	¢.	ŝ	¥	•	-	•	-	0	-	•	-	•	-	•	-
KITSCOTY	VILLAGE	8	LAGOON 45,4L	12	<u> 8</u>	NE	•	7	•	-	0	-	•	-	•	-	•	-
LA CRETE	HAMLET	1200	LAGOON 45,2L	12	1000	NE	0	7	•	-	0	-	•		•	-	•	-
LACOMBE	TOWN	7050	LAGOON 4S, 3L	ø		NE	20	1	0	-	•	-	•	-	•	-	m	ч
LAMONT	TOWN	1560	LAGOON 4S, 2L	Ŷ	200	MN	•	4	o	1	•	-	•	-	-	-	•	m
LAVOY	VILLAGE	60	LAGOON 0S, IL	12	750	ш	•	-	•	-	0		-	-	•	-	•	-
LEGAL	VILLAGE	579	LAGOON 4S,2L	12	800	NE NE	•	-	0	-	¢	-	-	7	-	4	•	-
LETHBRIDGE	CITY	63000	A. SLUDGE			×	7	m	•	-	•	-	0	-	•	-	•	-
LINDEN	VILLAGE	475	LAGOON 252L	EVAP	0001	s	c	-	•	-	0	-	0	-	0	-	•	-
LITTLE SMOKY	HAMLET	8	LAGOON 05,11.		1200	SE	0	-	•	-	•	-	•	-	0	-	•	-
MAGRATH	TOWN	1743	LAGOON 25,2L	9	260	ш	•	-	•	-	•	-	•	-	•	•	•	-
MALLAIG	HAMLET	220	LAGOON 05, IL	Q	800	MS	•	-	•	-	•	-	0	-	•	-	•	-
MANNING	TOWN	1139	AERATED LAGOON		800	NE	•	-	•	-	¢	7	•	-	•	-	•	-
MANOLA	HAMLET	175	LAGOON	NOT DISCH	1000	MSS	•	-	•	-	•	-	•	-	•	-	•	-

COMMUNITY TYPE	POP	TREATMENT	STORAGE	LOCATION	LOCATION	odour	odour	insect	insect	appear	appear	poot	poog	kak	kak	qualit	Auelit
	SERVED			DISTANCE	DIRECTION	comp.	sever	comp.	sever	comp.	SCVEL	comp.	scver	800	sever	comp	sever
MARIE-REINE WP	200	LAGOON	12	400	NE	•	e	0	14	•	m	•	-	•	-	•	-
MAYERTHORPE TOWN	1700	LAGOON 45,3L	9	400	ш	•	-	•	-	•	-	•	-	•	-	•	-
WD BADLANDS #7 79	165	RBC	CONTIN	5	WITHIN	0	-	•	-	•	-	•	-	•	-	•	-
WD BADLANDS #1 70	240	EXT AREATION	CONTIN	<u>10</u>	WITHIN	•	-	•	-	•	-	•	-	•	-	•	-
WD NO IN W	140	LAGOON IS, IL EV	EVAP	1000	SE	0		•	-	•	-	•	-	•	-	0	
MD PINCHER CRE ?	450	LAGOON?	12	200	ш	•	7	•	-	•	-	•	-	•	-	•	-
MD ROCKY VEIW 2	350	LAGOON 4S,2I,	EVAP	¢	SE	0	-	•	-	•	-	0	-	0	-	0	-
MD SMOKY RIVE ?	85	LAGOON ??	12	<u>8</u>	s	0	-	•	-	•	_	11	-	0	-	•	_
MD SMOKY RIVE ?	65	LAGOON ??	12	300	s	•	-	•	-	0	-	•	-	•	_	•	-
MEADOWVIEW SCHOOL	8	-	1 IN 10 YEARS	09	z	0	-	•	-	0	-	•	-	•	-	.	-
MEDICINE HATTY T	200 UNITS	LAGOON	12	8	ŝ	•	-	0	-	•	-	•	-	•		•	-
MELOD MEADOW 2	130	ü		200	MN	•	-	•	-	•	-	o	-	0	-	•	-
METISKOW HAMLET	00	LAGOON 0S, IL	12	914	3N NE	•	-	•	-	0	-	•	-	0	-	•	_
MILK RIVER TOWN	926	LAGOON 3S,2L	NOT DISCH	008	SE	61	-	•	-	•	-	•	-	0	-	•	_
MILLET TOWN	1703	LAGOON 4S.2L	12	80	s	1		0	-	•	-	0	-	0		•	-
MIRROR VILLAGE	487	LAGOON 25,2L	EVAP	800	z	0	-	•	-	•	-	•	-		-	0	-
MORRIN VILLAGE	250	LAGOON 25,2L	12	800	ш	°	-	•	-	0	-	•	-	•		•	-
MULHURST / N E.P HAMLET	2000	LAGOON 3S, 3L	12	1000	ய	0	-	•	-	~	7	2.5	-	•	-	0	-
MUNDARE TOWN	909	LAGOON 4S, 3L	٢	0001	SW	-	-	•	-	0	-	•	-	•	-	•	
	ŝ	LAGOON 45,2L	NOT DISCH	1200	SE	0	-	•	-	0	-	0	-	0	-	•	-
7	1589	RBC	CONTIN	700	NE	0	-	0	-	c	7	•	-	¢	-	•	-
VID	2,90	LAGOON 05,1L	8	280	SW	•	-	•	-	•	-	0	-	-	-	•	¢
~	275	LAGOON 1S, IL	12	1000	SE	0	-	•		0	-	•	-	•	-	•	-
	404	LAGOON 45,2L	12	700	MN	•	-	•	-	0	-	7	11	0	-	-	7
	115	LAGOON 0S.IL	12	350	NE	0	-	0	-	•	-	÷	3.5	•	-	2	25
NURTHLAND SCH SCHOOL		LAGOON 25.1L	٤.			•	-	•	-	1	r 1	•		•	-	¢	-
OHATON HAMLET	118	LAGOON 25,2L	12	800	MN	0	-	•	-	•	-	•	-	0	-	•	-
OKOTOKS TOWN	7200	RBC	CONTIN	1000	SE	0	-	•	-	•	-	0	-	•	-	•	-
OLDS TOWN	5300	RBC		800	8	0	-	•	-	•	-	•	-	0	-	0	
ONOWAY VILLAGE	670	LAGOON 45,2L		0001	ш	•	-	0	-	c	-	•	-	•	-	•	
OYEN TOWN	1041	LAGOON 25,2L	9	3200	SW	•	2	•	-	J	9	•	-	•	2	•	-
PARKLAND VILLA ?	1600	AEARATED LAGO		9 2	NE	m	-	•		¢	-	•	-	•		•	-
PATRICA HAMLET	8	LAGOON 0S. IL		905	ш	•	-	0	-	•	-	0	-	0		•	-
PEACE RIVER TOWN	9699	LAGOON 45.0L	-	0 9	MN	05	ч	•	-	-	-	•	-	03	-	60	-
PEORIA HAMLET	2	LAGOON 0S.2L GR		¢	SE	•	-	•	-	c	-	•	-	0		•	-
PIBROCH HAMLET	900	LAGOON 0S. IL		700	SSW	¢	-	0	-	•	-	•	-	0	- •	•	
-	300	LAGOON 0S. IL		1200	MS	•	-	•	-	0	- 1	0		0 0		-	
۳	1559	AERATED LAGOO		80	ŝ	0	7	0	e4 -	0	14	0				,	
NOX	253	LAGOON 4S, 3L		575	NE	0	-	•	-	0	-	0		• •		•	
PONOKA TOWN	5700	AERATED LAGOO		<u>9</u>	NE	•		•	-	0	-	e 1			- •		
RAINBOW LAKE TOWN	1100	LAGOON 45, 2L		1000	SE	0		0	-	0	-	0	- 1	•	- 1	. .	- ,
RAYMOND TOWN	0116	LAGOON 45,2L		8	£	m	7	•	-	0	-	-	m -	•	7	-	
RED DEER CITY	58656	AS		8 00	H H	•	4	0	-	•	-	•		0	- •	0 1	
RED DEER COUNTY	125	LAGOON	NOT DISCH	008 80	s	¢	-	0	-	0	-	0	·			2 4	
RED DEER COUNTY		LAGOON 0S.2L	NOT DISCH	440	SW	•	-	0	-	•	-	0	-	÷ (
	8	LAGOON	11	810	SE	•	-	0		c ,		2 4		•		- 6	
						•	-	•		• •		•					
	80	LAGOON 4S.3L	ø	1 200	Z	¢	-	•								, c	• •
ALLEY	8	LAGOON IS, 2L	12	1000	SE	•		•		2 0		2 "		> c		, c	• -
RIMBEY TOWN	1561	LAGOON 6S, 2L	9	٢	S	-	-	•	-	-	-		•	,	-	,	-

COMMINITY	TVDE	2	TDEATMENT	STOD AGE	1 OCT ATION	I OCTION								I		ļ		ſ
		SERVED			DISTANCE	DIRECTION										an a		Į
ROCHESTER	HAMLET	8	LAGOON IS.2L	1	84	SE	•	-	c	-	•	Ł		/ -		5		Į.
ROCKY MOUNTAL TOWN	TOWN	5407	AERATED LAGOO	CONTIN	2000	Z	•	-	. 0				, o					
ROCKY RAPIDS	0	061	LAGOON?	80	300	SE	0	_	•		. 0			•	, o	• _		
ROCK YFORD	VILLACE	318	LAGOON 45,2L	12-24	009	s	¢	-	0	-	0		•	-	0	_	. 0	_
ROLLEYVEIW	HAMLE.	8	LAGOON 05, 1L	12	200	MN	•	-	0		0	-	0	-	0	-	0	_
ROUND HILL	\$	138	LAGOON	77	80	NE	•	-	0	-	•	-	•	-	0	-	0	_
RUMSEY	VILLAGE	70	LAGOON EVAP	EVAP	400	SW	0	-	0	-	•	-	•	-	0	-	0	_
R YCROFT	VILLAGE	634	LAGOON 25,2L	12	1000	Z	•	-	0		•	-	•	-	0	-	0	-
SANGUDO	VILLAGE	101	LAGOON 45,3L	Q	<u>8</u>	S	•	m	c	-	•	m	•	-	0	-	0	
SCHULER	HAMLET	ç	LAGOON 05,2L E	VAPORATIO	1000	NE	•	-	0	-	•	-	•	-	•		¢	_
SEXSMITH	TOWN	1256	LAGOON 45,2L	2	3000	ய	-	2	*	-	•	Ś	-		0		Ψ,	•.
SHAUGHNESSY	HAMLET	296	LAGOON 2S,2L	12	240	NE	•	-	0	-	0	-	。	-	0	-	0	_
SMOKY LAKE	TOWN	1054	LAGOON 4S, 3L	12	200	NE	8	3.5	0		0	7. Y	•		0.5	*	0	_
SPIRIT RIVER	TOWN	1044	LAGOON 35,3L	12	500	z	-	7	•	-	•	-	0	-	0		0	_
ST. ISIDORE	HAMLET	200	LAGOON 25,2L	12	400	MN	•	7	-	н	•	-	0	-	0	_	0	-
ST. PAUL	TOWN	5100	CONTACT STABILI	CONTIN.	500	s	0	-	•	-	•	-	0	1	0	-	0	_
STANDARD	VILLAGE	329	LAGOON 45,2L	12	675	SE	•	1	•	-	•	-	•	-	•	-	0	
STAVELY	TOWN	528	LAGOON 25,3L	12	90£	ш	•	-	•	-	•	-	0	-	0		0	_
STIRLING	VILLAGE	5 2	LAGOON 25,2L	EVAP	2600	MN	•	-	~	*	•		•	-	0	-	•	_
STRATHCONA	COUNTY	SCHOOL	LAGOON 05,2L	96	VIN	VN	•	-	0	-	0	-	0	•	0	-	0	_
STRATHMORE	TOWN	4500	LAGOON 75,6L	12	4000	ŝ	•	-	0	-	0	-	0	-	0	-	0	-
SUFFIELD	HAMLET	ç	LAGOON 25,2L	EVAP	2 005	Я	•	-	0	-	0		•	-	0	-	¢	
SUNDRE	TOWN	1800	AERATED LAGOO	CONTIN.	765	z	o	-	0	-	0	-	Ð	-	0	_	0	_
SUNNYBROOK	HAMLET	74	LAGOON 05, IL	12	1600	A	•	-	0	-	0	-	0	-	0	-	0	-
SWALWELL	HAMLET	59	LAGOON 0S, IL EV	EVAP	8	MS	0	-	0	-	0	-	•	-	0	-	•	-
SWAN HILLS	TOWN	2400	LAGOON 55,2L	13	650	SW	•	-	0	Ŷ	0	-	•	-	0	-	•	_
SYLVAN LAKE	NWCL	4500	LAGOON 55,4L	12	1000	ш	*1	4	•	-	0	7	0	-	0		0	-
TABER	TOWN	6660	RBC/AERATED LA		2000	MN	0	-	•	-	•	1	•	-	0	-	0	-
TANGENT	HAMLET	65	LAGOON 0S, IL EV		20	ш	0	-	0	-	•	-	•	-	•	-	0	_
THERIEN	.IAMLET	¢	LAGOON 05, IL	12	800	ш	•	-	•	-	•	-	•		•	-	•	_
LHORHILD	VILLAGE	300 2	LAGOON 25, IL	12	¢	s	0	-	•	-	•		•	1	7	-	•	-
THORSBY	VILLAGE	700	LAGOON 45,2L	12	800	NE	•	-	•	-	•	-	•	-	•	-	•	_
TOFIELD	TOWN	1620	LAGOON 25,3L	12	420	z	•	-	0	-	•	-	0	1	•	7	0	-
TOMAHAWK LAG	-	120	LAGOON 0S, IL	9	300	ш	o	-	0	1	۰	-	•	-	•	-	•	
TROCHU	TOWN	1010	LAGOON 4S,2L	12	7920	ENE	•	-	o	-	•	-	0	-	0	-	•	-
TWILIGHT	¢.	8	LAGOON 05.1L	12	¢	SW	•	-	•	-	0	-	0	-	0	-	•	-
STTIH ONLL	TOWN	1107	LAGOON 45,21	13	350	s	5	Ś	0	-	•	-	•	-	•	1	0	-
VALHALLA	HAMLET	45	LAGOON IS, IL	EVAP	350	SE	•	-	•	-	•	-	0	-	•	-	•	-
VALLEYVIEW	TOWN	2200	LAGOON 4S,2L	12	350	MN	•	-	0	-	0	-	•	-	0	-	•	-
VEGREVILLE	TOWN	5500	LAGOON 45,6L	12	750	NE	0.5	7	c	7	Ś	-	•	-	1	11	0.5	-
VERMILION	TOWN	4500	EXT. AERATION		1000	NE	•	-	•	-	0	-	•	-	•	-	•	-
VIKING	TOWN	6011	LAGOON 45,2L	9	1500	ш	~	•	0	-	•	-	•	-	•	-	•	-
VITINA	VOLLAGE		LAGOON 25,2L	9		s	•	-	•	-	•	-	•	-	0		0	-
VIOLET GROVE	HAMLET	ŝ	LAGOON 05,2L	8	400	s	•	-	•	-	•	-	•	-	0	-	•	-
VULCAN	TOWN	1407	LAGOON 4S,2L	13	400	SE	0	80	•	-	•	-	•	-	0		•	-
WABAMUN	VILLAGE	603	LAGOON 4S,2L	9	1000	z	•	-	0	-	o	-	•	-	•	-	•	-
WABASCA	HAMLET	2000	AERATED LAGOO	CONTIN	300	z	0	7	0	7	0	-	•	-	0	-	•	-
WAINWRIGHT	TOWN	¢.	AERATED LAGOO		850	3	•	-	0	-	•	-	•	-	0	-	•	-
WANDERING RIV		921	LAGOON IS, IL	12	ŝ	NE	•	-	•	-	•	-	•	-	-	7	•	-
WARBURG	VILLAGE	519	LAGOON 4S, 3L	12	305		•	-	•	-	•	-	-	-	•	_	•	-
COMMUNITY	TYPE	POP.	TREATMENT	STORAGE	LOCATION	LOCATION	odour	adour	insect		appear	appear	tiood	1000	Ka ka			
------------	---------	--------	----------------------	---------	----------	-----------	-------	-------	--------	-------	--------	--------	-------	-------	-------	-------	-------	------
		SERVED			DISTANCE	DIRECTION	comp.	sever	comp.	sever	comp.	sever	comp.	sever	comp.	sever	comp.	NCC.
WARNER	VILLAGE	ć	LAGOON 25, IL	9	1000	NE	0	-	-	3	0	-	0	1	•	-	0	-
WARSPITE	VILLAGE	75	LAGOON 05,2L	12	1000	SE	۰	-	•	-	•	-	•	-	•	-	•	-
WASKATENAU	VILLAGE	256	LAGOON 25,2L	12	800	s	•	-	•	-	•	-	•	-	-	-	•	-
WATINO	HAMLET	14	LAGOON 0S,2L GR	EVAP	1500	w	•	-	•	-	•	-	•	-	•	-	•	-
WEMBLEY	TOWN	1382	LAGOON 45,2L	12	<u>8</u>	NE	-	7	•	-	•	-	o	-	•	-	•	~
WESTLOCK	TOWN	4700	LAGOON 45,2L	7	80	3	•	m	•	-	0	-	•	-	•	-	•	
WESTWIND	PARK	130	LAGOON	12	400	S	•	-	0	1	•	-	•	-	•	-	•	_
WHITECOURT	TOWN	7000	A.S.		202	NE	•	-	•	-	o	-	•	-	•	-	•	-
WHITELAW	HAMLET	¢.	LAGOON 1S, IL	12	¢	ЯE	•	-	0	-	•	-	•	-	•	-	0	
MILLINGDON	VILLAGE	353	LAGOON 25,2L	9	800	NE	0	-	•	-	o	-	•	-	0	-	•	-
WIMBORNE	HAMLET	8	LAGOON 0S, IL EV	EVAP	2500	A	•	-	c	-	•	-	0	-	•	-	0	
WINFIELD	HAMLET	250	LAGOON 0S,2L	12	200	MS	•	-	•	-	•	-	•	-	0	-	•	-
VOUNGSTOWN	VILLAGE	245	LAGOON 0S, IL	ć	6	w	-	1	0	-	•	-	•	-	•	-	•	-

COMMUNITY	TYPE	dod	TREATMENT	STORAGE	OPER	MAINT	LABOUR	MATERIAL	EOUIPMENT	FIEL.	BOWER	OTHER	TOTAL	DEPN
		SERVED			DAYS	DAYS	COSTIS	COSTS	costrs	COSTS	costs	COSTS	COSTS	ERROSION
ACME	VILLAGE	527	LAGOON 4S, 2L	-	•	z	8	995 1	Ş	ŝ	0	0	8	VES
ALDER FLATS	HAMLET	061	LAGOON 23, IL	12	ŝ	0	2000	ŝ	8	1000	0	9	<u>89</u>	2
VTLX	VILLAGE	78 2	LAGOON 45,4L	EVAP	2	~	1000	ş	200	<u>9</u>	0			YES
AMISK	VILLAGE	200	LAGOON IS, IL	EXFILTRAT		Ś	<u>8</u>							Q
ARDMORE		¢.		12	¢.	¢.	2000	1500	<u>8</u>		<u>8</u>	805	2000	2
ARDROSSAN	_	105+3SCHOOL	_	13	7	9	2000	<u>8</u>					2000	0N
ARROWWOOD	VILLAGE	142	LAGOON 05,2L	12	•	•	•	•	•	•	•	o	•	Ŷ
ATHABASCA	TOWN	¢.	AERATED LAGOO		011	160	30000	3000	3000	8	0000#	2000	71500	0X
BARONS	VILLAGE	760	LAGOON OS, 3L	12	365	365	10000	2500	3500	0	3737		20000	YES
BARRHEAD	TOWN	4160	AERATED LAGOO		63	٢	20000	Š	ŝ	<u>8</u>	3000		51500	<u>9</u>
BASHAW	TOWN	829	TE'SP NOODVT	12	1	5	2000	1000	ŝ	<u>8</u>	2000		00001	YES
BASSANO	TOWN	0611	LAGOON 45, IL	CONTIN	2	5	5000				<u>8</u>			Q
BEAVERLODGE	TOWN	6771	LAGOON 4S, IL	٢										ş
BEISEKER	VILLAGE	639	LAGOON 23,2L	9										2
BENTLEY	VILLAGE	8 0	LAGOON 25,2L	9	\$	\$	10000	2000	3000	1000	•	<u>9</u>	20000	YES
BERWYN	VILLAGE	8	LAGOON 45,2L	13	¢.	¢.	2000	15000	15000	0	0	0	5000	YES
BEZANSON	HAMLET	¢.	LAGOON 0S, 1L	12	ก	ŝ	5000	1000	1000	200	1500		5000	Q
BIG VALLEY	VILLAGE	350	LAGOON 45,2L	9	ą	COMB.	200	<u>500</u>					ŝ	Ņ
BITTERN LAKE	VILLAGE	169	ć	12	7	2	0001	500	1000	500				YES
BLACK DIAMOND		1727	LAGOON 05,3L	2	•	8	10000	2000	88	0	0	200	10000	YES
BLACKFALDS	TOWN	1800	AERATED LAGOO		45	ห	5000	1000	0001	0	29500	5200		ç
BLACKFOOT	HAMLET	180	LAGOON 05,3L	12	8		24000		00011		1500		14900	Q
BLACKIE	VILLAGE	303	LAGOON 05.2L	9			12072		1600		1462	4214		
BLUE RIDGE	HAMLET	180	LAGOON 0S, IL	12	n	~	2000	5 00	50	0	0	0	2000	ON N
BLUESKY	HAMLET	¢	LAGOON IS, IL	12	0	10	1000	2000	200	200				ş
BON ACCORD	TOWN	1460	AERATED LAGOON		ส	65	20000	1500	ŝ	8 8	0099		00005	YES
BONNYVILLE	TOWN	5132	LAGOON 45,2L	12	Ś	20	5000	1000	1500	8	•	•	10000	Ŷ
BOTHA	VILLAGE	174	LAGOON 15, IL	12	13	12	8	<u>8</u>	20	20	0	•	99 90	ž
BOWDEN	TOWN	936	LAGOON 4S, 2L	12	2	8		2500		•	•			YES
BOYLE	VILLAGE	710	LAGOON 25,2L	v	ጽ	8	5000	1000	5000	1000	•		5000	YES
BRETON	VILLAGE	511	LAGOON 45,2L	13	1	4	8	2500	2 0	8	•	•	<u> 200</u>	ş
BROOKS	TOWN	5693	LAGOON 75, 5L	v	¢.	¢.	1000	8	ŝ	•	•	•		YES
BRUCE	HAMLET	3	LAGOON 05,2L	24										0N N
BUFORD	HAMLET	\$	LAGOON 05, IL	24	8	ጽ	2000			<u>80</u>		9 9	<u>500</u>	Q
BUGSBY	HAMLET	300	LAGOON 0S, IL	12	5	13	2000	20	9 2	<u>8</u>	•	•	2400	ð
BURDETT	VILLAGE	2800?	LAGOON 05, IL	Q	2	2	5000	8	•	•	0	•	2000	Ŷ
CALMAR	TOWN	1400	LAGOON 4S,2L	12		8	2000	3000	1000	8	2000		20000	YES
CAMROSE NEW	СПТ	13700	AERATED LAGOO		¢.	¢.	60000	10000	10000	ŝ	0000		170500	0N
CAMROSE OLD	CITY	13700	LAGOON 4S, SL	•										
CANMORE	TOWN	8 2	RBC				70000	15000	20000	3000	45000		177300	Q
CARBON	VILLAGE	437	LAGOON 25,3L	12	7	Ś	20	2500	0	•	•	•	5000	Ŷ
CARDSTON	TOWN	4000	RBC				50000		4000		38000			Ŷ
CARMANGAY	VILLAGE	259	LAGOON 25, IL	IRRIGATION	Ś	7	0001	ŝ	8	•	•	•	0001	Ŷ
CAROLINE	VILLAGE	452	AERATED LAGOO	CONTIN	ដ	ដ	\$000	1000	1000	•	5500	•	10000	ON
CARSELAND	HAMLET	550	AERATED LAGOON		260	COMB.	30000	۸	^	۸	۸	30000	5000	NO
CASTOR	TOWN	1000	LAGOON 45,2L	12	2	Š	2000	2000	2000	•	1500	0	5000	YES
CAYLEY	VILLAGE	243	LAGOON 0S, IL	ė	0	22	¢.	Ċ	¢.	ć	¢.	ć	۴.	YES
CHAMPION	VILLAGE	366	LAGOON 0S, IL	12	24	COMB.	10000	8633	0	•	0	2456	20000	YES
CHAUVIN	VILLAGE	3600	LAGOON 2S,2L	24			1000	80	•	<u>8</u>	•	1500	5000	NO
CHIPMAN	VILLAGE	239	LAGOON 4S, 2L	NOT DISCH.	8	COMB	2000	3000	3000	ŝ	2000	12326	23530	NO

. VIIIIIIIIIIIII	TVDC	aUa	TPEATMENT	STOP AGE	CDEP 1	MAINT	I APOUR	MATERIAL	FOUIPMENT	FUEL.	POWER	OTHER	TOTAL	BERM
		SERVED			•	DAYS	COSTS	costs	COSTS	COSTS	COSTS	COSTS	COSTS	ERROSION
CLAIRMONT	HAMLET	8	LAGOON 4S.2L		Ł	01	5000 2000	1000	0001	8	2500	ŝ	10000	YES
9	HAMLET	8		12	8	,	2400		1200				3600	YES
	TOWN	3500		IRRIGATION	4	9	1000	1000	5 0	80	6500		9500	Q
CLUNY	VILLAGE	103	LAGOON 05, IL	12	4	4	<u>500</u>	•	•	0	0			YES
COALDALE	TOWN	5320	AERATED LAGOON		-	8	5000	1000	0009		26000	ŝ	38500	Q
COALHURST	VILLAGE	1350	AERATED LAGOO	•	8	90	10000	0001	1500	1000	7900			2
COCHRANE	TOWN	6200	AERATED LAGOO		120	8	30000	35000	35000	1000	21000		\$0000	2
COLD LAKE /GRA	TOWN	7818	LAGOON 4S, 3L	9	8	ጽ	5000	1500	0001	200	•	3000	10000	YES
COLINTON	HAMLET	260	LAGOON 1S, IL	2	12	12	1000		200				2000	02
CONSORT	VILLAGE	114	LAGOON 25, IL	9	0.5	0.5	200	500	0	•	•	•	1001	
COUNTY OF FORT 77	2	8	LAGOON??	12	m	-	8	•	0	•	•	•	8	2
COUTTS	VILLAGE	355	LAGOON 25, IL	12	4		<u>8</u> 0	20				8	0001	YES
COWLEY	VILLAGE	290	LAGOON 2S, IL	12	ม	23	<u>8</u>	20	8	2 00	8	•	ŝ	ç
CREMONA	VILLAGE	56E	LAGOON 25,3L	12	¢.	16	200	2 0	200	\$ 00				ş
CROSSFIELD	TOWN	1800	Tregon 45,2L	12	<u>8</u>	48	8	2 0	1500	200			2000	YES
CYNTHIA	HAMLET	<u>8</u>	LAGOON 05, 1L	80	Š	~	9 ;	<u>8</u>	2 0	200	0	•	2000	YES
DAPP	HAMLET	8	LAGOON IS, IL	12	2	12	2000	ŝ	•	202	1500	•	3100	ş
DEBOLT	HAMLET	01	LAGOON 05, 1L	12	8	8	0001	•	•	•	•	0	1000	0X
DELBURN	VILLAGE	35	LAGOON 45,3L	12	107	COMB	12000	5000			8700	5000	30700	Ŷ
DELIA	VILLAGE	861	LAGOON OS, IL	9	4	Ś	200	2 0 20	<u>8</u>	ŝ	8 0		200	2
DEVON	TOWN	4100	RBC		730	COMB							185800	92
DEWBERRY	VILLAGE	203	LAGOON 05,2L	12	8	20	80							Ş
DONALDA	VILLAGE	22	LAGOON 15.2L	12	*1	7	500	ŝ	ŝ	8 8	•	•	80	2
DONNELLY	VILLAGE	421	LAGOON 25.SL		20	20	1000	1000	1000	•	•			ş
DRATON VALLEY		7000	AERATED LAGOO		1200	300	20000	2500	7000	•	15000	15000	000611	Q 2
ECKVILLE		00	LAGOON 45,2L		51	01	5000	1500	1000	0 5	0	<u>8</u>	10000	YES
EDBERG	VILLAGE	135	LAGOON 05, IL	12	•	0								2
EDSON	TOWN	7300	AERATED LAGOO	Ŭ	52	1	11000	1700	6300		25000	4000	54000	YES
EGALESHAM	VILLAGE	185	LAGOON 05, IL		ጽ	ጽ	2000	1000	1000	<u>8</u>	35	1000	2002	2
EGREMONT	HAMLET	33	LAGOON 0S, IL		17	17	90 <u>9</u>	20	200	•	Š	8	10000	S :
ELK POINT	TOWN	1400	AERATED LAGOON		12	12	1000	•	•	•	4930	Ş.	10000	2
ELNORA	VILLAGE	265	LAGOON 25,3L		0	0	1000	8	1000	ĝ	0	0	2000	£ !
ENTWISTLE	VILLAGE	8 3	TZSP NOODVT		ą	40	ŝ	•	200	100	8			<u>a</u> 9
EVANSBURG	VILLAGE	ĩ	LAGOON 45,2L	8	365	365	2002	3500	3500		8		00002	2 2
FABYAN	HAMLET	8	LAGOON		0	4	2000		5	550		0001	5000	VFS
FALHER	TOWN	081	LAGOON 45,2L		R 1	23	<u> </u>		200	3	, E	2	10001	Ş
FAUSI					9;	9:		3	5	5	ļ	0	2500	ş
PAWCE 1	MAMLE!	8 3		-	2 -	2 •	89 5	5	8	8	• 0	0	1000	YES
		<u>}</u> ;			- :			5	unit	9	0	0	5005	YES
FUULINER LANE	NULLET	: ;		-	1 -	2 4	2001		95	ŝ	0	ŝ	2000	YES
FUKEMUSI					• •	•	201	2	5	5	0	0	1000	YES
		È :				•	uuu.	, Ş	5	0	0	o	2000	£
FUEL ASSIMINATION		<u>}</u>			n f	.	2	0001	1000		8	1000	5000	2
FURI NENI					. 9			0001	1000	ŝ	0			Q.
I CITLE VERMILLON			I ACOON AS A		2	2	500	60	0001	<u>Ş</u>	8067		67324	£
CALANAN	VIIIAGE	3	I VCOON OS JI		1 1	ang BNB	5	8	ŝ	9 5	8	8		8
GIRON INVILLE	VILLAGE	3	LAGOON 25.2L		ŝ	1.50	005	0001	1000	<u>9</u>	20002		2000	YES
GLENWOOD	VILLAGE	ŝ	LAGOON 25.2L	: vo	•	-	8	<u>8</u>	8	ŝ	0	۰	§	£
GRANUM	TOWN	371	LAGOON 25.3L	12		,	0005							YES

BERM ERROSION	Ŷ	YES	2	LES NO	YES	Ŷ	Ŷ	YES	Ŷ	YES	<u>9</u>		2 2	QN	YES	YES	YES	Ş	9	NO VES	NO VES	N ~ ES	N N N 7 ES N	1 ES 0 0 0 1	X X X X X X X X X X X X X X X X X X X	Y ES N N N N N N V FES	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	× ÿ ← N N N N N N N N N N N N N N N N N N	× ÿ ← N N N N N N N N N N N N N N N N N N	×	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	× ÿ ← N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	N N N N N N N N N N N N N N N N N N N	× × × × × × × × × × × × × × × × × × ×	ਲ਼ ਲ਼ ੑੑੑੑੑੑੑੑੑੑੑੑਲ਼ ਲ਼ /b>	× ÿ	N N N N N N N N N N N N N N N N N N N
TOTAL	995	000	10000		001	2000	0 9	2000	000 <u>5</u>	<u>8</u>	COOL	10000	137600	2000	<u>ş</u>	10000			1000	1000 5000	100°0 5000	10000 \$000 10000	10000 \$000 10000 96000	10000 \$000 \$0000 \$0000 \$0000	100°0 5000 100°00 96000 500	10000 \$000 \$0000 \$000 \$00 \$00	10000 5000 10000 96000 500 500 7400	1000 5000 5000 500 500 500 500 500 500 5	10000 5000 5000 500 500 500 500 500 5000 5000 5000 5000	10000 8000 8000 8000 8000 2400 2400 8000 80	10000 8000 8000 8000 800 800 2400 2400 24	10000 8000 8000 8000 800 800 800 8000 8000 8000 8000	1000 500 500 500 500 500 500 2000 10000 2000 2	10000 5000 5000 5000 5000 5000 5000 500	10000 5000 5000 5000 500 500 5000 5000	10000 5000 5000 5000 5000 5000 5000 500	10000 2000 2000 2000 2000 2000 2000 200	10000 2000 2000 2400 2400 2400 2000	10000 5000 5000 5000 5000 5000 5000 500	10000 5000 5000 5000 5000 5000 5000 500	10000 5000 5000 5000 5000 5000 5000 500	10000 5000 5000 5000 5000 5000 10000 10000 200000 200000 200000 2000000	10000 5000 5000 5000 5000 5000 10000 10000 2000000	10000 5000 5000 5000 5000 5000 5000 500
OTHER COSTS				ł	0	<u>9</u>	8	•	0	•	c	, 002	0	•	8					1000	, 1000	, 1000 1	1000 4000	1000 * 000 * 000	1000 4000 1000	000 000 0000 0000	000 0 000 0 000 0 0	1000 4000 1000 0	1000 4000 1000 0	1000 4000 10000 2000 2000 2000 2000 2000	1000 4000 0 0 0 2000 2000	1000 4000 0 0 0 000 500 0 0	1000 2000 2000 2000 2000 2000 2000 2000	1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1000 200 200 200 200 200 200 200	1000 400 1000 500 500 500 500 500 500	1000 60 33,00 33,00 50 50 50 50 50 50 50 50 50 50 50 50 5	1000 4000 1000 3300 3300 3300	1000 4000 1000 1500 1500 1500 1500 24000	1000 400 1000 1000 1000 1500 1500 240000 400 400 400	1000 400 1500 240000 240000 240000 500 500 500 500 500 500 500	1000 4000 1000 1000 11500 500 500 500 500 500	1000 400 1000 1000 1500 1500 240000 240000 240000 3500 0 240000 1500 0 1500 0 1000 10	1000 1000 1500
POWER COSTS				3500	0	•	300	0	•	0	0	1	95000	•	9		- Ş	Ş		2000	2000	2000 1000	2000 1000 v	000 000 1000 0	2000 1000 0 0	500 500 60 500 500 500 500 500 500 500 5	2000 2000 0 0 0 2000 2000 0 0 0 2000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 0 0 0 0 00 200 0 0 0 0 00	300 0 0 0 0 0 <u>0</u> 0 300 300 0 0 0 0 0 <u>0</u> 0 300	0 00 0 00 0 0 00 00 00 00 00 00 00 00 0	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 0 0 0 0 0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	, , , , , , , , , , , , , , , , , , ,	500 00 00 00 000 00 00 00 00 00 00 00 00	200 200 200 200 200 200 200 200 200 200	2000 2000 2000 2000 2000 2000 2000 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200	200 200 200 200 200 200 200 200 200 200
FUEL COSTS				<u>8</u>	3 00	80	0	Ş i	ğ «	5	0	005	0	1000	9	Ş	33	8		2 00	§ ~	00 ° 00	00 ° 00	0 20 100 v	80 90 100 - 80 80 90 90 90	200 0 20 <u>100</u> 200 200 0 200	200 0 200 100 200 200 200 200 200 200 20	80 % 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80 80 90 90 <u>80 - 30</u> 80 90 90 90 90 90 90 90 90 90 90 90 90 90	80 80 80 90 <u>6</u> 30 80 80 80 80 80 80 80 80 80	20 20 20 20 20 <u>6</u> - 20 20 20 20 20 20 <u>6</u> - 20	∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞	o 22 22 22 22 22 22 22 22 22 22 22 22 22	2°°°8°8°8°8°8°°8°8°°8°8°°8°8°8°8°8°8°8°	% ~ <u>8</u> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	% ∘ <u>8</u> ∞ ∞ 8 ∞ 8 ∞ ∞ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈ 0 ≈	200 <u>0</u> 000000000000000000000000000000000	. % ° % ° % % % % ° ° % ° % % % ° %	80 10 10 10 10 10 10 10 10 10 1	80 80 80 80 80 80 80 80 80 80	00 00 00 00 00 00 00 00 00 00 00 00 00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	8 2 2 0 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200 200 200 200 200 200 200 200 200 200
EQUIPMENT COSTS	ŝ			5000	6 <u>9</u>	Ş.	0	<u>8</u> 5	<u>ş</u> -	5	8	3500	0	1000	992 1992	001	0001	1000		1000	000 2	1000 2000	1000 2000 - 3 200	1000 2000 - 3 2000 - 3 200	200 500 - 2000 2000 2000 - 2000 2000 - 2000	0 200 30 100 - 2000 - 2	1000 200 200 200 200 200 200 200 200 200	1000 200 200 200 200 200 200 200 200 200	1000 2000 0 2000 2500 0 2000 2500 0 2000	1000 2000 3000 3000 2000 2000 2000	1000 2000 3000 3000 2300 3000 1000	1000 2000 2000 2000 2000 2000 2000 2000	100 20 0 00 22 20 0 0 0 0 0 0 0 0 0 0 0 0	1000 2000 - 2000 - 2000 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000 2000 - 2000 - 2000 - 2000 - 2000	1000 2000 2500 2500 2500 2500 2500 2500	1000 2000 2000 2000 2000 2000 2000 2000	1000 2000 2000 2000 2000 2000 2000 2000	1000 1000 1000 1000 1000 1000 1000 100	1000 2000 1500 1500 1500 2500 1500 1500	000 2500 2500 2500 2500 2500 2500 2500	000 000 000 000 000 000 000 000 000 00	100 2000 2000 2000 2000 2000 2000 2000	1000 2000 2000 2000 2000 2000 2000 2000	1000 2000 2000 2000 2000 2000 2000 2000
MATERIAL COSTS	Ş	8 <u>8</u>	000	0	0	8 9	0 j	ĝ	o c	•	<u>8</u>	3000	200	R S	ğ o		1500	1500	1000		~ {	~ 0 <u>5</u>	\$00 \$2000 ~ *	\$00 \$00 \$00 \$00	500 500 500 500	500 5000 5000 5000 500 500 500 500 500	200 20 20 20 20 20 20 20 20 20 20 20 20	200 20 200 200 200 200 200 200 200 200	\$\$\$\$ \$\$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	× 2000 2000 2000 2000 2000 2000 2000 200	× 2000 20 20 2000 20 20 20 20 20 20 20 20	× 82 82 82 82 82 82 82 82 82 82 82 82 82	~ % <u>%</u> % % % % % % % % % % % % % % % % %	∾ 82 85 86 88 88 88 88 88 88 88 88 88 88 88 88	× 80 80 80 80 80 80 80 80 80 80 80 80 80	× 82 82 83 83 83 83 83 83 83 83 83 83	~ 83 80 80 80 80 80 80 80 80 80 80 80 80 80	<pre></pre>	× 2000 200	× × × × × × × × × × × × × × × × × × ×	× × × × × × × × × × × × × × × × × × ×	× 2000 200	× × × × × × × × × × × × × × × × × × ×	× 80 80 80 80 80 80 80 80 80 80
LABOUR COSTS		805	3200	200	1000	000	<u>.</u>		99 99	3	9 9.	1000	37600 500	R S	2 8	2000	5000	2000	5000	•	r. Ş	500 500	200 37000 5000	- 200 37000 500 500	2 500 5000 5000 2000		2000 2000 2000 2000 2000 2000 2000	³ 7000 37000 500 5000 2000 2400 2000 2000	~ 500 37000 5000 5000 2000 2000 2000 2000 2000	, 200 3000 2000 2000 2000 2000 2000 2000	, 2000 337000 2000 2000 2000 2000 2000 200	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	, 500 37000 5000 5000 2000 1000 2000 2000 2000 2	, 5 500 5000 5000 5000 1000 10000 10000 10000	, 5 500 5000 5000 5000 1000 1000 10000 10000 10000	, 9 500 5000 5000 5000 1000 1000 500 500 10000 10000 10000 2000	 31000 3000 3000 3000 3000 3000 300 /ul>	, 3 500 5000 5000 5000 5000 1000 10000 10000 10000 2000 2	, 5 500 5000 5000 5000 5000 10000 10000 10000 10000 10000 10000 100000	, 500 57000 5000 5000 5000 5000 10000 10000 10000 10000 10000 10000 5000 5000 5000 5000 5000 5000	 , /ul>	 31000 500 /ul>	, 9 500 5000 5000 5000 5000 1000 1000 1000	 31000 500 500 500 500 500 500 500 2000 2000 1000 1000<
MAINT DAYS 12	2	-	ន	'n	••••			- <u>-</u>	3 6		\$	8	~ ~	. ¥	COMB	5	15	Ś	12		⊳. †	, r MB	7 COMB. 0	7 7 0 12	COMB.		COMB. 2011 21 25 25 25 26 25 26 27 27 27 27 27 27 27 27 27 27 27 27 27	 4 5 6 14 12 6 14 15 9 14 12 14 14 15 14 /ul>	COMB: 0 0 23 4 1 2 2 4 2 2 4 2 2 4 2 2 4 2 2 4 2 2 2 4 2		× − 00 0 0 12 12 0 0 18 0 0 3 7 12 0 0 18	× − 00 0 1 1 2 8 8 2 + 8 8 9 • • •	COM	COMB COMB 2 2 2 4 5 3 3 2 4 5 2 0 0 B 3 2 3 2 4 5 3 2 4 5 2 4 5 2 0 0 B	COMB COMB 1 2 2 4 5 3 3 2 4 1 2 0 0 BB 1 4 5 5 4 7 4 1 2 9 5 1 4 1 5 0 0 BB	د مر ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	~ ~ 0 0 0 0 2 4 5 2 8 5 4 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~~2000 2011日 - 2012日 - 2012日 - 2013日 - 20131日 - 20131日 - 20131日 - 20131日 - 201310 - 201310 - 201310 - 201310 - 201310 - 20131000 - 20131000 - 20131000 - 20131000 - 201310000000000000000000000000000000000	~~~ 00 COMB 3 2 2 2 2 2 2 4 2 2 5 5 7 2 2 8 2 1 2 0 0 BB 3 2 0 2 5 5 6 6 5 7 ~ ~ 3 8 2 7 4 5 5 7 1 2 0 0 BB	COMB COMB 3120 8 20 20 20 20 20 20 20 20 20 20 20 20 20	COMB COMB 1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	COMB COMB 3328 8 8 32 4 5 2 5 5 5 5 7 9 9 2 2 5 4 5 2 9 5 1 2 0 0 8 9 1 20 5 8 8 8 3 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		~~2000 2011 2012 2013 2013 2013 2013 2014 2015 2015 2015 2015
OPER. DAYS	2	o	£	2	- •	4 6		- 9	2 •	•	2	8	183 •	. •	3	0	0	2	2,		•	. 00	2 20	• 2 <u>8</u> •	- 2 2 9 2 1	2 2 0 2 8	2 2 2 0 30	- 2 2 2 2 2 -	- 22 × 22 × 23 %	- 26 - 27 - 27 - 27 - 27 - 27 - 27 - 27	- 98 2 × 12 2 - 28 8 3 4	- 8 2 o 1 2 - 1 8 8 9 e e	- 88 8 6 5 8 - 5 8 8 8 6 0 8 -	- 28 2 - 2 - 2 8 2 - 0 28 2 - 3 2 2 - 2 8 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 28 2 - 0 2	- 22 22 - 22 - 22 - 22 23 20 - 0 10 23 23 0 - 0 23 23 - 2	- 52 22 23 - 52 23 - 52 23 29	2 ~ 2 2 3 5 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~ 2 ~	- 22 - 22 - 22 - 22 - 22 - 22 - 22 - 2	- 95 2 2 2 2 2 2 - 2 - 2 2 2 2 - 2 2 2 2 2 2	~ 98 ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	- 98 28 8 × 88 28 28 28 2 8 28 2 8 2 8 2 2 2 2 2 2	- 28 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2 × 2	- 98 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	- 98 2 8 2 8 2 8 2 8 9 9 9 9 9 9 9 9 9 9 9 9
8	EVAP	EVAP	12	12	2 :	: <u>F</u>		, 21	: 2	EVAP	9	9	FVAP	12	: ×	12	¢.	¢.	2	:		CONTIN	CONTIN.	CONTIN.	CONTIN.	CONTIN. 21 ~ 12 12 ~ 13	CONTIN. 2 2 2 12 2 12 12 12 12 12 12 12 12 12 12	CONTIN. 2 12 12 12 12 12 12 12 12 12	CONTIN. 2 12 12 12 12 12 12 12 12 12	CONTR. CONTR.	CONTIN • 12 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2 • 2	CONTIN. 	CONTIN. 	CONTIN. 	CONTIN. • 12 - 12 - 12 - 12 - 12 - 12 - 12 - 12	CONTIN. • • • • • • • • • • • • • • • • • • •	CONTIN. 	CONTIN. 	CONTIN. • • • • • • • • • • • • • • • • • • •	CONTIN. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CONTIN. 	CONTIN. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CONTIN. 	CONTIN. CON
TREATMENT LAGOON 0S.2L	TE'SO NOODYT	LAGOON	LAGOON 85,5L	LAGOON 25,2L	LAUOUN 05,2L	LAGOON OS IL 20	LAGOON 4S.2L	LAGOON 45.2L	LAGOON OS, 2L	LAGOON 05, IL	LAGOON 4S, 2L	LAGOON 4S, JL	AEKATED LAGUUN LAGOON IS 11.	LAGOON 4S.2L	LAGOON 45,2L	TVCOON 03' IT	LAGOON 2S,2L	LAGOON 0S, IL	LAGOON AFRATED I AGOO			RBC																						20
POP SERVED 66	2000			226								8, -						_	52 1300	2		5837																						
TYPE HAMLET	TRAILER PAR	HAMLET	TOWN	VILLACE	HAMLET	VILLAGE	TOWN	VILLAGE	HAMLET	HAMLET	TOWN	TOWN	HAMLET	VILLAGE	VILLAGE	£ :	• •	~ *	÷.	2		TOWN	VILLAGE	TOWN VILLAGE VILLAGE	TOWN VILLAGE VILLAGE VILLAGE TOWN	Town Village Village Town Hamlet	town Village Village Town Hamlet Hamlet	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET AMLET	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET AMLET TOWN	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN VILLAGE VILLAGE	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN VILLAGE VILLAGE	TOWN VILLAGE VILLAGE VILLAGE HAMLET HAMLET HAMLET TOWN TOWN VILLAGE VILLAGE VILLAGE VILLAGE	TOWN VILLAGE VILLAGE VILLAGE TOWN HAMLET HAMLET TOWN VILLAGE HAMLET TOWN TOWN	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN YILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE TOWN TOWN	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN VILLAGE VILLAGE VILLAGE VILLAGE TOWN TOWN	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET AMLET TOWN TOWN TOWN TOWN VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN TOWN TOWN VILLAGE VIL	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN TOWN TOWN TOWN TOWN VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET HAMLET TOWN VILLAGE VIL	TOWN VILLAGE VILLAGE TOWN TOWN HAMLET HAMLET HAMLET TOWN TOWN TOWN TOWN VILLAGE VILLAG	TOWN VILLAGE VILLAGE TOWN HAMLET HAMLET HAMLET TOWN TOWN VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE TOWN TOWN TOWN	TOWN VILLAGE VILLAGE HAMLET HAMLET HAMLET HAMLET TOWN TOWN VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE VILLAGE TOWN VILLAGE VILLAG
GRASSLAND	GREEN ACRES	GRENNSHIELDS	GKIMSHAW	Ð	GWYNNE	HAIRY HILL	ANNA	HAY LAKES	HAYS	HAYTER	HIGH LEVEL	HIGH PKAIRLE HIGH RIVFR	HILDA	HINES CREEK	HOLDEN	ID # 22	D#17EAST		D 18 NORTH	D 20		LAIL	'AIL	REE	AIL REE INA	All REE VNA	AIL REE INA E	AIL REE E E HBURG	AIL FREE E HBURG	MIL FREE ANNA E BURG AND AND AND AND AND AND	ANL REE E HBURG ARD NAUGH WAN	ANL FREE E HBURG ARD MAN MAN	ANL REEE E ARD ARD MAUGH MAUGH OTY OTY	ANL REE E ARD ARD ARD ARD ANN ANN ANN ANN ANN ANN ANN ANN ANN AN	ANA ANA ANA ANA ARD ARD MAN MAN MAN MBE ETE MBE	ALL REEE ARD ARD MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN	AIL REE ARD ARD ARD ARD OT VAUGH VAU VI	AIL REE MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN	AND REE ARD ARD ARD OTY OTY OTY OTY C	ARD REE ARD ARD ARD ARD AARD AARD AARD A	AIL REE ARD ARD ARD ARD ARD ARD ARD REI REI REI REI REI REI REI REI REI REI	ANA REEE ANA ANA ANA ARD OT MAN MAN MAN MAN MAN MAN MAN MAN MAN MAN	ANA REEE ANA ANA ANA MAN MAN MAN MAN MAN MAN MAN	INNISFAIL INNISFREE IRNA IRUNE IRVNE IRVNE IRVNE IRVNE IRVNE IRVNE IRVNE IRVNE INSVANUGH KILVE LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT LAVNT MALLAIG MANNING MANNING

COMMUNITY TYPE	đQđ	TREATMENT	STORAGE	OPER	MAINT	LABOUR	MATERIAL.	EOUIPMENT	R.F.	POWER	OTHER	TOTAL	RFRM
	SERVED				DAYS	COSTS	COSTS	costs	costs	COSTS	COSTS	COSTS	ERROSION
MARIE-REINE WP	200	LAGOON	12	12	14	2000	1000	1000	\$ 0	•		\$000	Q
MAYERTHORPE TOWN	-	LAGOON 4S, 3L	9	Ś	10	<u>5</u> 0		5 00	80			2005	9 <u>2</u>
22 ADLANDS #7	165	RBC	CONTIN	180		30000	3000	1500	0001	3000	2000	5000	N.N
WD BADLANDS #7 7	240	EXT AREATION	CONTIN	365		30000	3000	2000	1000	3500	4000	50000	VN
WD NO 135	140	LAGOON IS, IL EV	EVAP	-	LITTLE								YES
MD PINCHER CRE ?	450	LAGOON?	12	7	2	20		200	5 00				ş
MD ROCKY VEIW ?	350	LAGOON 4S, 2L	EVAP	-	-	500	00 5 :	80	80			80	0X
MD SMOKY RIVE ?	85	LAGOON 7	12	~	9	2000	8 0	1000	80	ŝ	8 0 20	2000	ş
MD SMOKY RIVE 7	65	LAGOON ??	12	Ś	10	2000	<u>8</u>	1000	<u>500</u>	8	2 0		õz
MEADOWVIEW SCHOOL	_	LAGOON	1 IN 10 YEARS	-	11	202	۰	90 5	0	0	0	•	Ŷ
MEDICINE HATTO ?	200 UNITS	LAGOON	12	<u>0</u>		10000				1500			ON
- MOGA		üi		^	35	100	100	<u>8</u>	8	•	0	350	ç
METISKOW HAMLET	_	LAGOON 0S, IL	12	c	¢.								ş
MILK RIVER TOWN		LAGOON 3S.2L	NOT DISCH	8	Ş	10000	2000	٥	•	Ð	2000	20000	9 2
		LAGOON 45,2L	1	20	0	2000	8	80	805	0	•	2000	ç
	NGE 487	LAGOON 25,2L	EVAP		8	2000	Û	0	0	3000		2000	Q.
MORRIN VILLAGE		LAGOON 25,2L	12	5	15	1000	1000	2500	1000	0	0	10000	•
MULHURST / N.E.P HAMLET	LET 2000	TE'SE NOODVTI	12	13	ន	5000	1000	8	1500	•	Ş	10000	C Z
MUNDARE TOWN	009	LAGOON 45,3L	٢	360	260		7500					20000	Ç X
	ы Ш	LAGOON 4S,2L	NOT DISCH	1	v .	00001							YES
NANTON TOWN	N 1589	RBC	CONTIN	280	52	30000	0005	0006		22300	1500		Š
_		LAGOON 05, IL	36	-	4	200		9	•	0	6	•	£
NEW NORWAY VILLAGE	AGE 275	LAGOON IS, IL	12	4	1	2000	9 9	0001	ŝ	0	0	2000	YES
Z		LAGOON 45,2L	12	"	\$	500	o	<u>50</u>	202	•	•	2000	YES
NEWBROOK HAMLET	LET 115	LAGOON 0S, IL	2	1	17	5000	8	20	<u>8</u>			10000	2
AND SCH		LAGOON 25, IL	£ :	4	0	5000	20	1000	1000			0001	YES
	H	LAGOON 25,2L	12	•	ſ	5000	3500	0	•	0051		10000	ş
OKS		RBC	CONTIN	375	180	63000	14200	8700	27000	49000		161900	
		RBC		365	365								
'AY	ij	LAGOON 45,2L	48	•	64	90¢	ŝ	ŝ	8	•		8	ç
OVEN TOWN	N 1041	LAGOON 25,2L	9	8	ጽ	00001	2500		85	3500		\$000	£
VILLA	-	AEARATED LAGO	13	8	180	00001	8	2000	•.	2000	1500	20002	£
	F	LAGOON 05, IL	2	~	-	ğ	0	0	c	0	0	<u>8</u>	ş
UVER	96999 N	1 AGOON 45,0L	CONTIN	8 9	2000	20000	2500	3000	0091	3500	3500	\$0000	ž
PEORIA HAMLET		LAGOON 05,21. GR	EVAP	-	٢	1000	20	200				2000	ş
		LAGOON 05, IL	2	ŝ	15	2000	20	8	ŝ	0	0	2650	£
_		LAGOON 0S, IL	2	5	15	2000	9 9	<u>8</u>	8	•	0	2700	S.
E		AERATED LAGOO	CONTRN	8	•	20000	3500	200 2	14700	NCL <	3500	20003	£
NS	H	LAGOON 45,3L	8	6 4	15	2000	20	1500	<u>8</u>	o	ŝ	2003	YES
		AERATED LAGOO	9	咒	8	10000	1500	3000	0	4950	•	20000	YES
RAINBOW LAKE TOWN	N 1100	LAGOON 4S.2L	11	0	10	1000	2000	1500				2005	YES
_		LAGOON 4S.2L	ц	100	<u>951</u>	10000	1500	2000	1500	2500	00xi	20000	£
-	σ,	AS		3250	780	790000	108000	150010	68000	434050		1550000	YES
-	NTY 125	LAGOON	NOT DISCH	Ŷ	r 1	1000	•	0	•	•	ŝ	2002	<u> </u>
RED DEER COUNTY	Ë	LAGOON 05,2L	NOT DISCH	Ŷ	.,	2 00	<u>8</u>	o	•	•	0	ŝ	YES
	NTY 200	LAGOON	11	44	5 ,	1002	1000	<u>8</u>	0	1500	ŝ	10000	ş
	EDICINE HAT												ÿ
		LAGOON 45.3L	Ŷ	<u>с</u>	2	000	1500		1	•			2 :
ALLEY		TESI NOODAL	2	9.	я	1000	٥	•	•	•	0	89	5
RIMBEY TOWN	4161	LAGOON 6S. 2L	ч			60 0	80	802					YES

BERM	ERROSION	Q.		YES	Ŷ	ž	Š	2	YES	YES	52	YES	Q	NO	YES	Ŷ	Q	Q	Q	Ŷ	YES	YES	ş	02	ç ç	VES	VES	YES	Q X	0 N	ON	YES	YES	YES	YES	02	YES	0N	0N	YES		YES	NO	YES	Ŷ	YES	Q	YES	Q I	22
TOT. L	COSTS	9001	00065	2000		2000	0005	9			2005	0	10000		20000	2000		2000	10000	2000	2000		2000	20000		0000		781500	2000		0005		٢		20000	8	\$0000	5000	2000	8500		50000	10000	5000				\$1038	5000	
OTHER	COSTS		1500	c	0001	<u>9</u>	c	0	0051		0001	0	0	0	•		1000		1000		0	3500	1000	0057 55		•	anot	000			00 5		٢		0				•			1000		0				0	80	
POWER	COSTS		4000	•	1500		0	•	1500	3500	1000	0	0	0	00	0	42000	80		1500	0	1500	0	3300	c	1600	10500	155000			0	•	¢	•	•		2500	1500	•			3000	1500	8	5 00		7500	27142	0001	
RUEL	costs		<u>9</u>	<u>8</u>	<u>8</u>	Ş	c	•	200	9	200	0	0	200	<u>8</u>	8	9	0		<u>8</u> (•	0	8	1000		9	000	6500			500	2 0	٢	0	Ş.	Ş .	1000	200	200	1000		1500	1500	20	200	200	3000	200	00	
EQUIPMENT	costs	00 5	2000	1000	0 9		c	<u>8</u>	2500	<u>9</u>	1000	•	1000	9	3000	1500	7000	o		Ş,	0	001	1000	0067	Ş	0001	3000	10000	90 5		905	1000	c	<u>8</u>	1000	9	0051	1000	200	3000		2000	1000	200	1000	2000	2000	2000	200	
MATERIAL	COSTS		3500	<u>Ş</u>	Ş		00X	Ş.	1000	2500	9 9	•	ŝ	2000	3000	8	0006	1000	1	8	00	0067	00		c	2500	3000	31000	500		500	500	•	005	2500	8	5500	0001	0	2500		3000		500	5000	1000	1500	500	\$00	
LABOUR	COSTS	<u>9</u> .	0005	<u>8</u>	1000	0007 •	- ²	8	20002	000	2000	•	2000	2000	2000	000	20000 20000	00X	0001	0001	0007	0001			9	2000	20000	1000	1000		2000	2000	• ،	1000	10000	8	00006	2002	<u>8</u>	2000		20000	2000	200	2000	5000	3000	30000	5000	
MAINT		12	99	2	= :	ŝŕ	• 5	₽ ;	R -	-	4	- !	<u></u>	Fi :	n 1	8	2:	C7	-CMB	• •	2 2	3	5	2 5	3	5	1460	100	~	¢.	2	8	6		ç ,	7 8	2, •	~ :	q :	20	395	8	7	Ś	2		261	2	2	>
	SIVA	2	9	r	- :	3	c	-	ş.			- !	-	51	- :	9 :	2:	Q 8	, ,		۰ ¥	Q,	ş	3 8	50	\$	1460	283	-	٠	-	4	6	4	4	;	81	8	74	2	375	8	7	\$			261	170	22 875 1	-
STORAGE	!	2	NITNCO	ec i	12-24	2 2	47 6 / 10		2 、	•	VAPORATION	- :	2 :	2 2	2 :	21	CONTIN	2 5		TVAL AK	s :	21 E V • U	CONTIN	17	EVAP	12	12			12	12	13	12	v :	2 :	2 !	21	EVAP	2	12		9	9	36	12	9	CONTIN		2 2	14
TREATMENT	1 1000110 11	LAGOON 15.2L	AERATED LAGOO	LAGOON	LAGOON 45,2L	LAUOUN US, IL					LAGOON 0S,2L E	LAGOUN 45,2L	LAGOON 25,2L	LAGOON 4S, JL	16,85 MOODAJ	LAGOUN 25,2L	LUNIALI STABILI	LACOON 75,2L		LACOON AS 21	LACOON 75.41	1 ACOON 75,0L	AEDATED 1 ACOD	LAGON 05 11.	LAGOON 0S. IL EV	LAGOON 55,2L	LAGOON 55,4L	RBC/AERATED LA	LAGOON 0S, IL EV	LAGOON 05, IL	LAGOON 25, IL	LAGOON 45,2L	LAGOON 25,3L	LAGOON 05, IL	LAGOON 45,2L		LAGOUN 45,2L	LAGOUN IS, IL	LAGOUN 45,2L	LAGOON 4S,6L	EXT. AERATION	LAGOON 4S, 2L	LAGOON 2S,2L	LAGOON 05,2L	LAGOON 4S,2L	LAGOON 4S,2L	AERATED LAGOO	AERATED LAGOO	LAGOON IS, IL	10,00 10,000,01
POP	DERVEU	8	2407	<u>s</u> :	318	8 2				.						107				7	•		5			~	4500	6660					_		010 10							6011					•		<u>8</u>	
TYPE	UAM ET	TOUL	NMOI			nomuci	VILLAGE				TOUL	NWO I	TOWLET	TOWN	NAMET	TOULD	VILLAGE	TOWN	VIII AGE	COINTY	TOWN	HAMIET	TOWN	HAMLET	HAMLET	TOWN	TOWN	TOWN	HAMLET	HAMLET	VILLAGE	VILLAGE			I OWN	TOWA	10MN	TOUL	NMOI	NMOI	TOWN	NMOL	VOLLAGE	HAMLET	TOWN	VILLAGE	HAMLET	TOWN	?? VILLAGE	
COMMUNITY	DOMESTED	ROCHESTER		RUCKT KAPIUS	POLLEVVENU	POIND HILL	RIMSEY	P V P V P V P V P V P V P V P V P V P V	SANGI IDO		SCHULEK	SLADMIN CUNECOV	I SCANDUNESS I	SMUKY LAKE	STINI NIVER	ST DAIN	STANDARD	STAVELY	STIRI INC	STRATHCONA	STRATHMORE	SUPPERD	SUNDKE	SUNNYBROOK	SWALWELL	SWAN HILLS	SYLVAN LAKE	TABER	TANGENT	THERIEN	THORHILD	THORSBY	TOPHELD	TRACTURE			I WO TILLS		VALLET VIEW	VEGKEVILLE	VERMILION		VILINA	VIOLET GROVE	VULCAN	WABAMUN	WABASCA	WAINWRIGHT	WANDERING RIV	******

COMMUNITY	TVPF	POP	TREATMENT	STORAGE	OPER	MANT.	LABOUR	MATERIAL	EOUIPMENT	FUEL	POWER	OTHER	TOTAL	BERM
	2	SERVED			DAYS	DAYS	costs	COSTS	COSTS	COSTS	COSTS	costs	COSTS	ERROSION
WARNER	VILLAGE	ċ	LAGOON 25, IL	9	8	8	10000	3000	1500	1500	0		20000	ĊN.
WARSPITE	VILLAGE	75	LAGOON 0S,2L	12	365	365	5000							CN
WASKATENAU	VILLAGE	256	LAGOON 25.2L	12	•	Ś	1000	500	500	300	1000	•	2000	YES
WATINO	HAMLET	14	LAGOON 0S.2L GR	EVAP	-	1	1000	2 00	200				2000	ON
WEMBLEY	TOWN	1382		12	20	~	5000	3500	500	200	1000		5000	YES
WESTLOCK	TOWN	4700	LAGOON 45.2L	٢	3657	3657	10000	3500	1500	\$00	3500	Š	2000	CN
WESTWIND	PARK	130	LAGOON	12	9	9	2005	90 5	500		<u>8</u>		0001	CN N
WHITECOURT	TOWN	7000	A S		140	140	54695	51611	0006	2500	31741		109102	Q
WHITELAW	HAMLET	•	LAGOON IS.IL	12	2	9	1000	1500	500	5 00				ç
WILLINGDON	VILLAGE	353	LAGOON 2S.2L	9	-	-1	<u>80</u>	00 %	500	\$00			1000	ç
WIMBORNE	HAMLET	8	LAGOON 05.1L EV	EVAP	0.5	0.5	500	0	0	0	•	0	ĝ	Q
WINFIELD	HAMLET	250	LAGOON 0S.2L	12	7	던	2000	500	5 00	1000	0	<u>8</u> 0	5000	ç
VOUNGSTOWN	VILLAGE	245	LAGOON 0S, IL	¢.	6	¢.	10000	1000	500		1000	1000		Q

210,000 1977 374,000 1983 850,000 1983 5,000 1985 5,000 1985 4,718,848 1982 4,718,848 1982 1,200,000 1986 1,200,000 1995 171,000 1993 171,000 1993 171,000 1993 174,000 1976 155,000 1976 155,0000 1976 155,0000000000000000000000000000000000		23,750 8,164 8,164 1,000 1,000 11,000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,00000000	<u>ر</u>	- EXAP EXAP 12 12 12 12 12 12 12 12 12 12 12 12 12	LAGOON 45.2L LAGOON 25.1L LAGOON 25.1L LAGOON 25.1L LAGOON 25.2L LAGOON 25.2L LAGOON 25.2L AERATED LAGOO LAGOON 45.1L LAGOON 45.1L LAGOON 45.2L LAGOON 45.2L	LAGOON 45.21 LAGOON 25.11 LAGOON 25.11 LAGOON 25.21 LAGOON 25.21 LAGOON 25.21 LAGOON 25.21 LAGOON 25.21 LAGOON 45.11 LAGOON 45.11 LAGOON 45.11 LAGOON 45.21 LAGOON 45.21 LAGOON 45.21 LAGOON 45.21 LAGOON 65.31 LAGOON 65.31 LAGOON 05.31 LAGOON 05.31 LAGOO
374,000 850,000 850,000 534,000 5,4000 1,200,000 1,200,000 1,24,18 1,200,000 1,24,000 1,24,000 1,24,000 1,24,000 1,55,000 1,55,000			ŝ	25,000 28,000 3,164 1,000 11,000 10,0000 10,0000 10,0000 10,0000 10,0000 10,0000 10,00000000	LAGOON 25.11 12 26,000 LAGOON 15.11 EXFILTRAT 1 LAGOON 15.11 EXFILTRAT 5 LAGOON 15.11 EXFILTRAT 5 LAGOON 25.21 12 1,000 AEMTED LAGOO 12 12 1,000 AEMTED LAGOO 12 12 1,000 LAGOON 45.11 12 1,000 LAGOON 45.11 0 12 7 LAGOON 45.11 0 12 7 LAGOON 45.11 0 12 0 LAGOON 45.11 12 1,000 LAGOON 45.11 12 1,000 LAGOON 45.11 12 1,000 LAGOON 45.21 6 1,2,000 LAGOON 45.21 12 1,000 LAGOON 45.21 6 1,2,000 LAGOON 45.21 6 1,0,000 LAGOON 45.21 12	LAGOON 25.11 12 26,000 LAGCON 15.11 EXTLTRAT 1 LAGCON 15.11 EXTLTRAT 1 LAGCON 25.21 12 12 8,164 LAGCON 25.21 12 1,000 LAGCON 25.21 12 1,000 LAGCON 35.31 12 1,000 LAGCON 45.31 12 1,000 LAGCON 45.11 0 12 000 LAGCON 45.11 0 12 000 LAGCON 45.11 0 12 000 LAGCON 45.11 12 1,000 LAGCON 45.11 12 1,000 LAGCON 45.21 6 12,000 LAGCON 45.21 6 12,000 LAGCON 45.21 6 12,000 LAGCON 45.21 6 12,000 LAGCON 45.21 12 1,000 LAGCON 45.21 6 12,000 LAGCON 45.21 6 2,000 LAGCON 45.21 12 1,000 LAGCON 65.11 12 1,000 LAGCON 65.11 12 1,000 LAGCON 65.11 12 2,000 LAGCON 65.11 12 1,000 LAGCON 65.11 12 1,0
850,000 9,000 509,428 514,000 514,000 1,200,000 12,000 12,000 124,000 134,0000 134,000 134,000 134,0000 134,0000 134,0000 1				es.000 es.000 1,000 1,000 1,000 12,000 12,000 12,000 10,000 10,000 10,000 10,000 10,000 10,000 11,000 10,000 10,000 11,000 10,000 11,000 1	LAGOON IS, IL EXPLITRAT 9, 000 LAGOON IS, IL EXPLITRAT 9, 11 LAGOON 25, 21 12 1, 000 LAGOON 05, 21 12 1, 000 LAGOON 05, 11 12 1, 000 LAGOON 05, 11 12 7, 1, 000 LAGOON 45, 11 20 17 7, 7 LAGOON 45, 11 20 17 7, 7 LAGOON 45, 11 2000 LAGOON 45, 11 7 7, 7, 000 LAGOON 45, 11 2, 10, 000 LAGOON 45, 21 12 12, 000 LAGOON 45, 21 12 12, 000 LAGOON 45, 21 12 12, 000 LAGOON 45, 21 12 10, 000 LAGOON 45, 21 12 10, 000 LAGOON 05, 11 12 10, 000	LAGCON IS,IL EVAP SU00 LAGCON IS,IL EVAP S000 LAGCON IS,IL EVAILTRAT S000 LAGCON IS,IL EVAL S164 LAGCON IS,IL EVAL S164 LAGCON IS,IL II S164 LAGCON IS,IL II S164 LAGCON IS,IL II S164 LAGCON IS,IL II S100 LAGCON IS,IL II II AGCON IS,IL II II LAGCON IS,IL II II LAGCON IS,IL<
509.428 514,000 514,000 5,14,000 4,718,848 4,718,848 4,718,848 4,718,848 4,718,848 1,200,000 124,000 25,000 155,000				8,164 7 1,000 1,000 12,000 12,000 12,000 12,000 10,000 12,000 10,000 12,000 10,000 12,000 11,000	LAGOON IS.1L EATLINE LAGOON SZ.2L 12 8164 LAGOON SZ.2L 12 1,000 LAGOON SZ.2L 12 1,000 LAGOON SZ.1L 12 9 LAGOON SZ.1L 12 9 LAGOON SZ.1L 12 9 LAGOON SZ.1L 12 9 LAGOON SZ.1L 23,000 LAGOON SZ.1L 12 LAGOON SZ.1L 12 LAGOON SZ.1L 12 LAGOON SZ.1L 1 LAGOON SZ.1L 1 LAGOON SZ.1L 1 LAGOON SZ.1L 1 LAGOON SZ.1L 6 LAGOON SZ.1L 7 <	LAGOON IS.LI EATLINAT 12 8164 LAGOON SZ.ZI 12 8164 LAGOON SZ.ZI 12 8164 LAGOON SZ.ZI 12 91 LAGOON SZ.LI 12 70 LAGOON SZ.LI 12 700 LAGOON SZ.LI 12 700 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 12,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 10,000 LAGOON SZ.LI 6 25 LAGOON SZ.LI 6 25 LAGOON SZ.LI 6 25 LAGOON SZ.LI 6 25
25,200 5,000 5,000 4,718,848 4,718,848 1,200,000 1,200,000 124,000 124,000 124,000 124,000 124,000 155,000				25,000 1,000 3,000 11,000 10,0000 10,0000 10,00000000	LAGOON S2,2L 12 9 LAGOON 05,2L 12 1,000 AERATED LAGOO 23,000 AERATED LAGOO 12 AERATED LAGOO 12 AERACON 05,1L 12 AERACON 45,1L 12 LAGOON 45,1L 7 LAGOON 45,1L	LAGOON S2,21 12 9 LAGOON 05,21 12 1,000 AERATED LAGOO 12 1,000 AERATED LAGOO 25,000 LAGOON 45,11 12 7 AERATED LAGOO 12 7 AERATED LAGOO 12 7 AERATED LAGOO 12 7 AERACON 45,11 12 7 LAGOON 45,11 7 7 LAGOON 55,11 7 7 LAGOON 55,11 7 7 LAGOON 55,11 7 7 LAGOON 55,11 7 7 LAGOON 52,11 6 12,000 LAGOON 52,12 6 10,000 LAGOON 53,11 12 10,000 LAGOON 53,11 12 10,000 LAGOON 53,11 12 10,000 LAGOON 53,11 2 7 PAGOON 53,11 12 10,000 LAGOON 54,11 12 10,000 LAGOON 54,11 12 5,000 LAGOON 54,11 12
5,000 5,000 4,718,848 1,200,000 1,200,000 120,000 1993 90,000 124,000 25,000 25,000		1961 973 1973 1976 1990 1985 1985 1979 1976 1992 1992	1961 973 1973 1976 1988 1988 1979 1975 1975 1976 1976	1,000 1961 25,000 1973 5,700 1973 5,700 1976 12,000 1996 12,000 1986 10,000 1985 10,000 1985 10,000 1985 25,000 1967 1,000 1963 1,000 1963	Accoon 05,21 12 1,000 1861 AERATED LAGOO 12 1,000 1861 LAGCON 05,31 12 25,000 1973 LAGCON 45,31 12 7 9 LAGCON 45,31 12 7 9 LAGCON 45,31 7 9 973 LAGCON 45,31 7 9 973 LAGCON 45,11 7 9 973 LAGCON 45,11 7 9 976 LAGCON 45,11 7 9 976 LAGCON 25,21 6 1,000 989 LAGCON 25,21 6 1,000 989 LAGCON 45,21 12 10,000 989 LAGCON 45,21 12 10,000 986 LAGCON 45,21 12 10,000 987 LAGCON 45,21 12 10,000 987 LAGCON 45,21 12 10,000 197 AGCON 45,21 12 10,000 197 LAGCON 45,11	LAGOON 0S,2L 12 1,000 1861 LAGOON 0S,3L 12 1,000 1861 AERATED LAGOO 12 25,000 1973 LAGOON 0S,3L 12 7 7 7 AERATED LAGOO 12 7 7 971 LAGOON 4S,1L 7 5,700 1973 LAGOON 4S,1L 7 5,700 1973 LAGOON 4S,1L 7 5,700 1975 LAGOON 4S,1L 7 5,700 1975 LAGOON 4S,1L 12 45,000 1980 LAGOON 4S,2L 6 12,000 1985 LAGOON 4S,2L 12 10,000 1985 LAGOON 4S,1L 12 10,000 1985 LAGOON 4S,1L 12 10,000 1985 LAGOON 4S,1L 12 10,000 1987 LAGOON 4S,1L 12 10,000 1987 LAGOON 4S,1L 12 10,000 1987 LAGOON 4S,1L 12 100
4,718,848 4,718,848 1,200,000 422,478 7 124,000 124,000 25,000 426,000		* 1973 1976 1976 1988 1988 1985 1985 1992 1992 1992	, 1973 1973 1976 1976 1988 1988 1979 1975 1975 1976 1976	25,000 1973 2,000 1973 5,700 1976 3,000 1976 1,000 1986 10,000 1986 10,000 1985 10,000 1975 2,000 1967 2,000 1967 1,000 1967 1,000 1963	12 25,000 1973 12 25,000 1973 12 25,000 1973 1 5,700 1973 6 12,000 1990 12 45,000 1998 12 45,000 1998 12 10,000 1979 6 2 2 9 12 10,000 1979 6 12 10,000 1979 7 9 12 1,000 1979 13 1,000 1979 13 1,000 1967 6 13 2,000 1967 13 1,000 1971 13 1,000 1000 1000 100000000000000000000	AERATED LAGOO 7 7 LAGOON 05.1L 12 7 97 LAGOON 05.1L 12 7 97 LAGOON 05.1L 12 7 97 LAGOON 45.1L 7 97 97 LAGOON 45.1L 7 97 97 LAGOON 45.1L 7 97 97 LAGOON 45.1L 7 9700 975 LAGOON 45.1L 7 9700 976 LAGOON 45.1L 12 10,000 986 LAGOON 45.2L 12 10,000 986 LAGOON 45.2L 6 7 9 LAGOON 65.1L 12 10,000 197 LAGOON 05.3L 6 7 9 LAGOON 05.3L 6 7 9 LAGOON 05.3L 6 7 9
1,200,000 1,204,78 422,478 1983 9,000 1993 90,000 25,000 25,000		973 973 1976 1976 1980 1980 1979 1977 1992 1992	1973 1976 1976 1976 1988 1988 1988 1979 1976 1976	23,000 1973 7 100 1973 3,700 1976 3,000 1976 12,000 1976 45,000 1979 12,000 1979 7 1,000 1977 25,000 1967 25,000 1967 1,000 1963 1,000 1963	12 25,000 1973 12 25,000 1973 7 5,700 1973 6 13,000 1976 6 12,000 1996 12 45,000 1998 12 10,000 1989 12 10,000 1979 6 7 7 12 10,000 1979 6 7 9 12 1,000 1979 6 12 2,777 1992 12 2,777 1992 12 1,000 1967 6 2,777 1992 12 1,000 1967 6 12 2,577 1992 12 1,000 1967 6 12 2,577 1992 12 1,000 1967 6 12 2,577 1992 12 1,000 1967 7 10 1000AACRE 1976	LAGOON 05,31. 12 LAGOON 05,31. 12 AERATED LAGOO 25,000 LAGOON 45,11. 7 LAGOON 45,11. 12 LAGOON 45,21. 12 LAGOON 45,21. 6 LAGOON 65,31. 1 LAGOON 65,31. 1 LAGOON 15,11. 1 LAGOON 15,11. 1 LAGOON 15,11. 1 LAGOON 15,11. 12 LAGOON 15,11. 12 LAGOON 15,11. 12 LAGOON 15,11. 12 LAGOON 15,11. 1000 <
1.200,000 422,478 1985 9 1993 90,000 124,000 25,000 155,000		1973 1973 1976 1976 1988 1988 1988 1985 1992 1992 1992	973 1973 1976 1976 1976 1988 1976 1977 1976 1976	25,000 1973 7 9 973 5,700 1976 3,000 1976 12,000 1996 45,000 1979 7 9 9 10,000 1979 7 1957 7 1957 25,000 1967 1,000 1963 1,000 1963	25,000 1973 12 ? ? ? CONTIN ? 5,700 1979 6 3,000 1976 6 12,000 1976 12 10,000 1989 12 10,000 1979 6 ? ? 12 10,000 1979 6 ? ? 12 10,000 1979 6 ? ? 12 1,000 1979 6 2 ? 12 2 300 1967 6 1,000 1967 6 2 300 1967 7 12 2,000 1967 7 12 2,000 1967 8 12 2,000 1967 1 2 2,000 1967 1 2 2,000 1963 1 2 2,000 1973 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	AERATED LAGOO 23,000 973 LAGGON 45,1L 12 7 910 LAGOON 45,1L CONTIN 5,700 1973 LAGOON 45,1L CONTIN 5,700 1973 LAGOON 45,1L CONTIN 5,700 1973 LAGOON 25,2L 6 3,000 1976 LAGOON 25,2L 6 12,000 1980 LAGOON 45,2L 12 10,000 1975 LAGOON 45,2L 6 7,000 1985 LAGOON 45,2L 6 7 9 LAGOON 45,3L 12 10,000 1975 LAGOON 05,3L 2 7 9 LAGOON 05,3L 2 9 1975 LAGOON 05,3L 1 2 9 1975 LAGOON 05,3L 1 2 9 1975
42,418 1985 7 1993 90,000 124,000 25,000 426,000 155,000		, 1910 1973 1976 1976 1988 1988 1988 1988 1988 1988 1988 1976	, 1910 1973 1976 1976 1988 1976 1976 1976	 , /ul>	12 7 9 ONTIN * 1910 1 5,000 1973 6 3,000 1975 6 12,000 1995 12 45,000 1986 12 10,000 1985 6 12 10,000 1975 7 7 9 9 12 10,000 1975 6 2 9 9 12 10,000 1975 00 2 9 9 12 10,000 1975 13 5,000 1979 12 2,000 1975 12 5,000 1993 00N 12 1000/ACRE 12 5,000 1993	LAGOON 45,1L 12 7 7 LAGCON 45,1L CONTIN 7 1910 LAGCON 45,1L 7 7 1910 LAGCON 45,1L 7 7 1973 LAGCON 45,1L 7 7 1973 LAGCON 45,1L 1 7 1973 LAGCON 45,1L 12 10,000 1975 LAGCON 45,2L 12 10,000 1985 LAGCON 45,2L 6 7 7 LAGCON 45,2L 12 10,000 1975 LAGCON 45,2L 12 10,000 1975 LAGCON 45,2L 12 10,000 1975 LAGCON 15,1L 2 7 7 1957 LAGCON 15,1L 12 10,000 1975 1957 LAGCON 15,1L 12 1,000 1953 1657 LAGCON 15,1L 12 1,000 1953 1656 LAGCON 15,1L 12 1,000 1953 1656 LAGCON 15,1L 12 1,000 1953 1656 LAGCON 15,1L
1985 7 1993 90,000 124,000 25,000 426,000		1910 1973 1976 1976 1985 1985 1985 1985 1983 1993 1993	1910 1973 1976 1996 1990 1979 1979 1976 1976 1976	 910 5,700 12,000 12,000 13,000 13,000 1985 10,000 1985 10,000 1975 10,000 1975 10,000 1975 10,000 1976 10,000 1976 10,000 1976 10,000 1976 10,000 1976 10,000 1963 10,000 1976 10,000 /ul>	CONTIN * 1910 7 5,700 1973 6 3,000 1976 6 13,000 1976 12 45,000 1986 12 45,000 1985 6 7 7 7 12 10,000 1977 7 7 7 12 10,000 1977 7 7 7 12 1,000 1977 12 2,500 1977 12 2,500 1977 12 2,500 1973 12 1,000 1973 12 1,000 1973 12 1,000 1973 12 2,500 1973 12 2,500 1973 12 2,500 1973 12 2,500 1973 12 2,500 1973	LAGOON 45.1L CONTIN * 1910 LAGOON 45.1L 7 5,700 1973 LAGOON 35.2L 6 12,000 1976 LAGOON 45.1L 12 45,000 1976 LAGOON 45.2L 12 45,000 1976 LAGOON 45.2L 12 45,000 1986 LAGOON 45.2L 12 10,000 1986 LAGOON 45.2L 6 7 9 LAGOON 45.2L 12 10,000 1979 LAGOON 45.2L 6 7 9 95 LAGOON 45.2L 12 10,000 1979 95 LAGOON 45.2L 12 10,000 1979 95 LAGOON 45.3L 12 10,000 1967 1967 LAGOON 05.3L 12 1,000 1967 1967 LAGOON 05.3L 12 1,000 1967 1967 LAGOON 05.3L 12 1,000 1967 1966 LAGOON 05.3L 12 5,000
1993 90,000 124,000 25,000 426,000		1973 1976 1980 1988 1985 1979 1993 1993 1993	1973 1976 1990 1980 1985 1979 1976 1976 1976 1976	5,700 1973 3,000 1996 12,000 1996 45,000 1986 45,000 1985 7 7 10,000 1987 7 1,000 1967 2,500 1993 1000 ACRE 1976 1,000 1963	7 5,700 1973 6 3,000 1976 6 12,000 1980 12 45,000 1980 12 10,000 1985 6 ? ? ? 12 10,000 1979 12 10,000 1979 12 1,000 1967 6 3 992 12 2,599 1993 20N 1000/ACRE 1976	LAGOON 45,1L 7 5,700 1973 LAGOON 25,2L 6 3,000 1976 LAGOON 25,2L 6 12,000 1990 LAGOON 35,2L 12 41,000 1990 LAGOON 45,2L 12 10,000 1980 LAGOON 45,2L 6 7 7 P 12 10,000 1981 LAGOON 45,2L 6 7 7 P 12 10,000 1987 LAGOON 45,2L 6 7 7 LAGOON 05,3L 12 10,000 1997 LAGOON 05,3L 2 7 7 LAGOON 05,3L 12 1,000 1967 LAGOON 05,3L 12 1,000 1967 LAGOON 05,1L 12 1,000 1993 AERATED LAGOON 12 1,000 1993 LAGOON 05,1L 12 1,000 1993 LAGOON 15,1L 12 1,000 1993 LAGOON 15,1L
	-	1976 1980 1985 1979 1977 1987 1993 1993	1976 1980 1985 1979 1979 1992 1992	3,000 1976 12,000 1980 45,000 1989 7 9 979 7 10,000 1979 7 9 979 2,500 1993 1000ACRE 1976 1,000 1963	6 3,000 1976 6 12,000 1990 12 45,000 1990 12 45,000 1988 6 ? ? ? 12 10,000 1979 12 10,000 1979 6 1,000 1967 6 1,000 1967 6 2,000 1967 12 5,000 1993 20N 12 1000/ACRE 1976	LAGOON 135,2L 6 3,000 1976 LAGOON 25,2L 6 1,000 1980 LAGOON 25,2L 6 12,000 1980 LAGOON 35,2L 12 10,000 1985 LAGOON 35,1L 12 10,000 1985 LAGOON 05,1L 6 7 7 P 12 10,000 1979 LAGOON 05,3L 2 7 957 LAGOON 05,3L 2 7 957 LAGOON 05,3L 2 7 957 LAGOON 05,3L 12 1,000 1967 LAGOON 05,3L 6 2,000 1967 LAGOON 05,3L 12 1,000 1967 LAGOON 05,1L 12 1,000 1993 AERATED LAGOON 1000AACRE 1993 LAGOON 05,1L 12 1,000 1993 LAGOON 15,1L 12 1,000 1963 LAGOON 15,1L 12 1,000 1963
	-	1990 1985 1985 1979 1977 1993 1993	1990 1985 1985 1979 1979 1992 1992	12,000 1990 45,000 1986 7,000 1979 7 10,000 1979 7 1,000 1967 2,500 1993 1000ACCRE 1976 1,000 1963	6 12,000 1990 12 45,000 1980 12 10,000 1979 6 7 7 12 10,000 1979 7 7 12 10,000 1977 6 1,000 1977 6 257 1992 12 2570 1993 20N 1000/ACRE 1976	LAGOON 25,2L 6 12,000 1990 LAGOON 84,2L 12 45,000 1985 LAGOON 84,2L 12 10,000 1985 LAGOON 84,2L 6 7 7 LAGOON 84,2L 6 7 950 LAGOON 85,1L 12 10,000 1979 LAGOON 05,3L 2 7 1957 LAGOON 05,3L 2 7 1957 LAGOON 05,3L 1 2 7 97 LAGOON 05,3L 1 2 7 97 LAGOON 05,3L 6 2,577 1967 1967 LAGOON 05,3L 1 2 7,000 1967 LAGOON 05,1L 12 1,000 1963 166 LAGOON 15,1L 12 1,000 1963 166 LAGOON 15,1L 12 1,000 1963 166
	-	1980 9 1979 1977 1977 1993 1993	1980 9 1979 1977 1993 1993	45,000 1980 10,000 1985 7 10,000 1979 7 7 7 7 9 10,000 1967 2577 1992 5,000 1963 10004ACRE 1976 1,000 1963	12 45,000 1980 12 10,000 1985 6 7 9 12 10,000 1979 2 7 10,000 1967 6 1,000 1967 6 257 1992 12 2,000 1967 6 257 1992 20N 1000/ACRE 1976	LAGOON 45.2L 12 45.000 1980 LAGOON 45.2L 12 10,000 1985 LAGOON 45.2L 5 7 7 LAGOON 45.2L 12 10,000 1979 LAGOON 45.2L 2 7 7 LAGOON 45.2L 12 10,000 1979 LAGOON 85.3L 2 7 7 LAGOON 85.3L 12 1,000 1967 LAGOON 85.3L 12 1,000 1967 LAGOON 85.3L 12 1,000 1967 LAGOON 05.3L 12 1,000 1967 LAGOON 05.3L 12 5,000 1993 LAGOON 05.1L 12 5,000 1993 LAGOON 15.1L 12 1,000 1963 LAGOON 15.1L 12 1,000 1963
	2	1985 979 1957 1967 1967 1976	1985 1979 1967 1983 1976	10,000 1985 10,000 1979 10,000 1967 2500 1967 2500 1993 1,000 1963 1,000 1963	12 10,000 1985 6 7 7 12 10,000 1979 20 2 7 9 12 1,000 1967 6 1,000 1967 12 2,000 1993 20N 1000/ACRE 1976 12 1000/ACRE 1976	LAGOON 05,1L 12 10,000 1985 LAGOON 45,2L 12 10,000 1979 LAGOON 45,2L 12 10,000 1979 LAGOON 05,3L 12 1,000 1967 LAGOON 05,3L 12 1,000 1967 LAGOON 05,1L 12 2,5 ^m 1992 LAGOON 05,1L 12 2,5 ^m 1992 LAGOON 15,1L 12 5,000 1993 AEATED LAGOON 15,1L 12 1,000 1963 LAGOON 15,1L 12 1,000 1963
	-	2 1979 1957 1967 1967 1976	2 1979 1957 1967 1967 1976	, 1979 1977 1967 1968 1993 1976	6 ?? ? 12 10,000 1979 2 ? ? 00 12 1,000 1967 6 1,000 1967 12 2,000 1992 12 5,000 1993 12 1000/ACRE 1976 12 1000/ACRE 1976	LAGOON 45,2L 6 7 7 1 12 10,000 1979 1 12 10,000 1979 1 12 10,000 1979 1 12 10,000 1971 1 12 1,000 1967 1 12 1,000 1967 1 12 1,000 1967 1 12 1,000 1993 1 12 2,500 1993 1 12 2,500 1993 1 12 1,000 1993 AERATED LAGOON 13,1L 12 1,000 1 12 1,000 1993
د د	2	1979 1957 1967 1992 1976	1979 1957 1967 1992 1976	1979 967 1967 1993 1976 1976	12 10,000 1979 2 3 1977 2 7 3 12 1,000 1967 6 2,990 12 5,000 1993 20N 1000VACRE 1976 12 1000VACRE 1976	7 12 10.000 1979 LAGCON 0S,3L 2 7 1957 AERATED LAGOO 7 7 1957 AERATED LAGOO 12 1,000 1957 LAGOON 0S,3L 12 1,000 1967 LAGOON 0S,1L 12 1,000 1967 LAGOON 0S,1L 12 5,000 1993 LAGOON 0S,1L 12 5,000 1993 AERATED LAGOON 13,1L 12 1,000 1993 LAGOON 1S,1L 12 1,000 1993 166 LAGOON 1S,1L 12 1,000 1993 166
221,000 1979	2	1957 967 1967 1992 1976	1957 - 2 1992 1976	2 2 1967 1992 1976 1976	2 2 1957 20 2 3 3 6 257 1997 6 257 1992 201 12 5,000 1993 201 12 1000/ACRE 1976	LAGOON 05.3L 2 7 1957 ARATED LAGOO 2 7 7 7 LAGOON 05.3L 12 1,000 1967 LAGOON 05.3L 12 1,000 1967 LAGOON 05.1L 12 2,570 1992 LAGOON 15,1L 12 5,000 1993 ARATED LAGOON 15,1L 12 1,000 1963 LAGOON 15,1L 12 1,000 1963
19,516 1973 ? 1957				2 1967 1993 1976 1963	00 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	AERATED LAGOO 7 7 7 LAGOON 05.31. 12 1,000 1967 LAGOON 05.11. 12 2,97 1992 LAGOON 05.11. 12 5,000 1993 AERATED LAGOON 15.11. 12 1,000 1963 LAGOON 15.11. 12 1,000 1963
e i				1967 1993 1976 1963	12 1,000 6 5 12 2,5 12 5,000 2014 12 10000ACRE 12 10000ACRE	LAGOON 05.3L 12 1,000 1967 LAGCON 05.3L 6 5 992 LAGCON 05.1L 12 5,000 1992 LAGCON 05.1L 12 5,000 1993 AREATED LAGOON 10000ACRE 1976 LAGOON 15.1L 12 1,000 1963 LAGOON 15.1L 12 1,000 1963
30,000 1967				1992 1976 1976	6 25 12 25 12 5,000 20N 12 10000ACRE 12	LAGOON 05.21. 6 LAGOON 05.11. 12 25.00 1992 LAGOON 05.11. 12 5,000 1993 AERATED LAGOON 13.11. 12 1,000 1963 LAGOON 15.11. 12 1,000 1963
				1992 1976 1963	12 25 ⁵⁰ 12 5,000 30N 1000/ACRE 12 1000/ACRE	LAGOON 05.1L 12 2.5 ^{co} 1992 LAGOON 15.1L 12 5,000 1993 AERATED LAGOON 12,1L 12 1,000 1963 LAGOON 15,1L 12 1,000 1963
100,000 1975				6661 1976	12 5,000 DON 1000/ACRE 12 1000/ACRE	LAGOON IS,IL 12 5,000 1993 AERATED LAGOON 1000/ACRE 1976 LAGOON 45,2L 12 1,000 1963 LAGOON 15,IL 12 1,000 1963
				1976 1963	00N 1000/ACRE 12	AERATED LAGOON 1000ACRE 1976 LAGOON 45,2L 12 1,000 1963 LAGOON 15,1L 12 1,000 1963
700,000 1977				1963	12	LAGOON 45,21. 12 LAGOON 15,1L 12 1,000 1963
1,200,000 1981				1961		LAGOON 15, 1L 12 1,000 1963
28,000 1963 100 5500	ក		1963		12 1,000 1963	•
£					12	LAGOON 4S.2L 12
ć		2861	5,000 1982			6 5,000
518,000 1980		6261	52,000 1979		12 52,000	12 52,000
_		1976			6 48,000	6 48,000
					24	LAGOON 05,2L 24
127,903 1985		1985		-	24 25,403	LAGOON 05, IL 24 25, 403
61,590 1978		1978	-	-	12 3,000	LAGOON 05,1L 12 3,000
20,000 1965		1965		8,000	6 8,000	LAGOON 05, 1L 6 8,000
2,200,000 1986		9861	120,000 1986		12 120,000	LAGOON 45,2L 12 120,000
3 1960		1959	? 1959		8	AERATED LAGOO
				7	LAGOON 4S,SL 7	7
3,000,000 1976		-	_	-	1,500,000	RBC 1,500,000
170,000 1976		1976	52,500 1976	-	52,500	12 52,500
_		1984			94,000	64,000
		1992			3.000	IRRIGATION 3.000
		1080		10,0		AFPATED ACON CONTIN 0 221
		1200		177'2		
				i.	NOV	AEKATED LAGOON
100,000 1976		1976	8		12 10,000	LAGOON 4S,2L 12 10,000
¢.		¢.	i i			ć
2 1955		1955	2 1955	6.	د د	د د
		1980	19.000		24 19-000	24 19-000
		0041		000 ¹ /1		
275,700 1980		1980	0861 000'66		000.66	LAGOUN 45, 2L NUL DISCH. 95,000

COMMINITY	TVPE	dOd	TREATMENT	STORAGE	1_AND	YEAR	LAND #2 YE	YEAR CC	CONST Y	YEAR D	DESIGN L	JPGRADE #1	YEAR D	ESIGN U	UPGRADE #1 YEAR DESIGN UPGRADE #2 YEAR DESIGN	YEAR	DESIGN
		SERVED			cost		cost	J			POP.	COST		POP	COST		ð
CLAIRMONT	HAMLET	006	LAGOON 4S,2L	EVAP	130,000	1982		50	896,671 1	1983	2200						
CLANDONALD	HAMLET	189	LAGOON 0S, IL	12	1,200	1961											
CLARESHOLM	TOWN	3500	LAGOON 45,4L	IRRIGATION	¢.	1978		11	800,000	86	20000						
CLUNY	VILLAGE	103	LAGOON 0S, IL	13	۰.	۰.				1980	250						
COALDALE	TOWN	5320	AERATED LAGOON		20,000	1970		2.1	-	1985	10000						
COALHURST	VILLAGE	1350	AERATED LAGOO	ŋ	10,000	\$79I		80	812,277	1975	2500						
COCHRANE	TOWN	6200	AERATED LAGOO		¢.	¢.			ç	ç	. .						
COLD LAKE /GRA	TOWN	7818	LAGOON 4S, 3L	9	335,000	1981		2	80,000	1982	10500						
COLINTON	HAMLET	260	LAGOON 15, IL	¢.	18,000	1992			¢.	ç	•						
CONSORT	VILLAGE	114	LAGOON 25, IL	Ŷ	700	1974		4	000'0	1974	1500						
COUNTY OF FORT 77		8	LAGOON	12	150	1980			3,500	1980	500						
COUTTS	VILLAGE	355	LAGOON 25, IL	12	20,000	3861			¢.	1960	8	20,000	1985	000			
COWLEY	VILLAGE	290	LAGOON 25, IL	12	¢.	e .		Ē		¢.	840						
CREMONA	VILLAGE	393	LAGOON 25.3L	2	¢.	1982				1962	300	2500007	1982	8			
CROSSFIELD	TOWN	1800	LAGOON 45,2L	12	ć	¢.				¢.	ſ						
CYNTHIA	HAMLET	100	LAGOON 0S, IL	80	¢.	¢.			¢	9361	250						
DAPP	HAMLET	8	LAGOON 1S. IL	12	000'6	0661			49,000	0661	ŝ						
DEROLT	HAMLET	001	LAGOON 95.1L	12	600,6	1976		7	17,943	9161	¢.						
Det BIRN	VILLAGE	3	LAGOON 4S.3L	12		ç			•	c	e.						
DEI 14	VILLAGE	8	LAGOON OS IL.	, vo	165	8561		•	47,790	1958	28 0						
	TOUN			ı	150,000	1992				1963			REPI	REPLACEM	4,100,000	1992	7000
DEVON	VILLACE		I ACOON DS 21.	5	•	1964			24,000		WACER						
DEWBERKT			LACOON 15 21	: :		•					250	199,850	1990	310			
INDIALUA		95	LACOON 25 SL	12	42,000	1980		•	06,000		1100						
DO FTON 1 1 1 1 1		1	AFBATED LACOO	!	000 011	1000			00.00		4000	150,000	1861	\$000	1,700,000	6961	8008
DKALON VALLEY		000/		•	000 L C			, .	000 02		1000	•					
ECKVILLE	NMOL	<u> </u>	17'56 NOON 12'51	• 5		<u> </u>		•		•	•						
EDBENG		001	AFD ATED 1 ACOD	21 MITNO													
		2007/	I ACTON OS II		¢	¢			¢	8961	200						
CORLESSING		i a	I ACCON DS 11	EVAD	\$ 400	1080		•1	308,000	1981	87						
ELIC POINT	TOWN	0071	AFRATED LAGOON		•	ſ			• •	•	•						
EI NORA	VILLAGE	265	LAGOON 25.3L		3.500	1976		-	145,000		4 00						
ENTWISTLE	VILLAGE	480	TYGOON 452L	9					150,000	575	ŝ						
EVANSBURG	VILLAGE	725	LAGOON 45,2L	=	5.000	0861			120,000	1961	200						
FABYAN	HAMLET	<u>8</u>	LAGOON	EVAP	7,000	1982			250,141	282	6						
FALHER	TOWN	1180	LAGOON 45,2L	2	ç	1977		. •	336,000	1771	0062						
FAUST	ŗ	379	LAGOON 4S,3L	<u>с</u>	r	•			•	1975							
FAWCETT	HAMLET	30	LAGOON 05, IL	12	4,202	1979			141,828	6/61			0001				
FERINTOSH	VILLAGE	115	LAGOON0S,2L	NONE	36.000	6861			148,000	1960	ĝ.	100°00	00/				
PROTNER LAKE	HAMLET	75	LAGOON 15,2L	12	۴.	۴			•								
FUREMOST	VILLAGE	282	LAGOON 25,2L	NONE	۰.	ſ			•	r	•						
FURESTBURG	VILLAGE	967	LAGOON 05.3L	멉	28,740	1979	168,000	1979	1.200								
FORT ASSINIBOIN	N HAMLET	179	LAGOON 05, 1L	2	¥1	<u>.</u>			50,000	1978	ŝ						
FURT KENT	HAMLET	ſ	LAGOON 05,2L	<u>1</u>	3.010	1977	2,750	1979	27,590	1979	Ş.						
R'RT VERMILION	N HAMLET	800	LAGOON 45,2L	Ŷ	321,071	1992			ç	1978	r						
FON CREEK	TOWN	0062	Trecon 45,4L	ø													
GALAHAD	VILLAGE	158	LAGOON 05,2L	2	SINR	ſ			238,105	1982	R						
GIRONNILLE	VILLAGE	676	LAGOON 25.2L	년 ·					2000	1078	Ş						
GLENWOOD	VILLAGE	<u>ę</u> :	LAGOON 25,2L	o <u>'</u>	10,000	5661			~~~	2				ľ			
GRANIM	TOWN	115	TYC: NO DA	-													

COMMUNITY	TYPE	đ	TREATMENT	STORAGE	TAND	YEAR	LAND #2 YEAR	CONST	VEAR	DESIGN	LIPCRATE AL	VEAP DESIGN			VEAD DECKT	E CLAN
		SERVED			cost			COST		đQ.	COST	5			Ś	RUP
GRASSLAND	HAMLET	8	LAGOON 05,2L	12	40,000	1992		¢.	•		373.000	100	ſ			
GREEN ACRES	TRAILER PA	2000	LAGOON 05,3L	EVAP	۴.	1949		¢.	1975		000 05	1985				
GRENNSHIELDS	HAMLET	s	LAGOON	EVAP	¢.	•		278,691	1985	I¥	543	1990	8			
GRIMSHAW	TOWN	2812	LAGOON 83,5L	12	113,000	1987		550,000	1987	6500						
GROUARD		5	LAGOON 25,2L	12	۰ `	•		190,000	1982	680						
GUNN	VILLAGE	6	LAGOON 05,2L	21	40004	<u>66</u>		256,000	1661	ſ						
GWYNNE	HAMLET	0[]	LAGOON 0S, IL	12	65,000	1982		142,800	1983	¢.						
HAIRY HILL	VILLAGE	2	LAGOON 05, 1L??	1277	5,000	1984		¢.	•	٢						
HANNA	TOWN	800	LAGOON 4S,2L	9	c .	¢.		ć	¢.	¢.						
HAY LAKES	VILLAGE	327	LAGOON 45,2L	12	127,76	1978		283,700	1978	8						
HAYS	HAMLET	2	LAGOON OS,2L	12	¢.	۰		150,000	1861	200						
HAYTER	HAMLET	8	LAGOON 05, IL	EVAP	5,000	1961		52,819	1861	<u>6</u>						
HIGH LEVEL	TOWN	3000	LAGOON 45,2L	9	32,000	1979		550,000	1980	2000						
HIGH PRAIRIE	TOWN	2000	LAGOON 4S, JL	9	40,000	1976		328,000	1976	2000						
HIGH RIVER	TOWN	•	AERATED LAGOON		320,000	8861		3,400,000	1988	10000						
HILDA	HAMLET	ş	LAGOON IS, IL	EVAP	20,000	1961		628,575	1861	163						
HINES CREEK	VILLAGE	2	LAGOON 45,2L	12	¢	¢.		¢.	۰.	•						
HOLDEN	VILLAGE	Ę	LAGOON 45,2L	36	81,000	1961		652,000	1983	800						
ID # 22	8	<u>8</u>	LAGOON 05, 1L	12	1,200	1980		100,000	1980	200						
ID #17 EAST	ć	275	LAGOON 25,2L	¢,	•	¢.		184,697	1981	ŝ						
ID #17 EAST	¢.	8	LAGOON 05, IL	ć	0	¢.		73,465	1982	200						
ID #21	3	52	LAGOON	12	10,000	1982		. £ :	1982	8						
ID 18 NORTH	ć	1300	AERATED LAGOO		¢.	۰.	•	¢.	¢	د.	ſ					
ID 20	Ę.	ę	LAGOON??	12	10,500	1981		45,463	1981	250						
INNISFAIL	TOWN	5837	RBC	CONTIN	135,000	1977		2,264,000	1977	8000	400,000	1987	8000	674,000	1661	8000
INNISFREE	VILLAGE	250	LAGOON 15,3L	¢	42,876	1961		385,200	ć	<u>8</u>						
IRMA	VILLAGE	442	LAGOON 45,2L	12	c .	1974		150,000	1974	1500						
IRRICANA	VILLAGE	817	LAGOON 25, IL	¢.	10,572	1974		~	1974	<u>89</u>						
IRVINE	TOWN	326	LAGOON 25, IL	12	1,000	1978		¢	۴.	350						
ISLAY	HAMLET	280	LAGOON 25,2L	12	1,500	1967		40,000		120	5,000	6861	037			
JARVIE	HAMLET	306	LAGOON 05, IL	12	2,000	1977		52,908	1977	8						
JOSEPHBURG	HAMLET	8	LAGOON 25, IL	7	¢.	¢.			ć	•						
JOUSSARD	6	277	LAGOON 4S, IL	12	Ŀ	۰.		117,250	1981	008						
KAVANAUGH	HAMLET	49	LAGOON 0S, IL	12	17,478	1985		163,669	1985							
KILLAM	TOWN	۰.	LAGOON 45,2L	12	195,473	1982		823,583	1982	2000						
KING MAN	HAMLET	2	LAGOON 052L	12-24	18,336	1961		407,885	1981	200						
KINUSO	VILLAGE	8	LAGOON 0S, IL	ć	SED NO COST	ST		£ :	6961							
KITSCOTY	VILLAGE	£ :	LAGOON 4S,4L	12	4,000	1975		191,667	1975	8	97,850	1981	1500			
LA CRETE	HAMLET	1200	LAGOON 45,2L	12	26,875	1992		¢.	¢.	¢.,						
LACOMBE	TOWN	7050	LAGOON 4S, 3L	9	44,000	E1913		450,000	1977	800 000						
LAMONT	TOWN	1560	LAGOON 45,2L	ø	59,057	1970		79,000	1970	3500						
LAVOY	VILLAGE	<u>8</u>	LAGOON 0S, IL	12	¢.	1976		¢.	ċ	200						
LEGAL	VILLAGE	579	LAGOON 45,2L	12	20,000	¢		150,000	1972	800	171,000	8/61	2000			
LETHBRIDGE	CITY	63000	A. SLUDGE		220,000	6661		38,000,000	6861	80000						
LINDEN	VILLAGE	475	LAGOON 252L	EVAP	c .	¢.		73,000	1979	2 00						
LITTLE SMOKY	HAMLET	8	LAGOON 0S, IL		CROWN	1982		159,436	1982	¢.						
MAGRATH	TOWN	1743	LAGOON 2S,2L	9	13,500	1972		110,262	1972	1300						
MALLAIG	HAMLET	220	LAGOON 05, IL	9		1976		50,000	1976	0						
MANNING	TOWN	1139	AERATED LAGOON		1,800	5761		250,000	1975	2500						
MANOLA	HAMLET	175	LAGOON	NOT DISCH	5,000	6261		40,000	0261	250						

TYPE 1	POP.	TREATMENT	STORAGE	LAND	YEAR	LAND #2 YEAR COST	CONST	YEAR	DESIGN POP.	UPGRADE #1 COST	YEAR D	POP.	YEAR DESIGN UPGRADE #2 POP. COST	YEAR DESIGN POP.
417		1 ACOON	5	1 846	<u>s</u>		65 000		1975					
5 5	3	LAGOON JE JI	2 4	01-011					0					
		RBC	Z	MD OWNE	1987		350,000	1987	1200					
		EXT AREATION		5,000	1976		275,000	1976	350					
-	140	LAGOON IS, IL EV	EVAP	19,000	1979		79,000	1980	350					
•	450	LAGOON?	12	20,000	8861		315,000	1988	8					
•••	350	LAGOON 45,2L	EVAP	158,000	1983		384,000	583	1500					
	85	LAGOON ??	21	1,800	9861		34,387	1986	<u>8</u>					
	\$	ILAGOON ??	12	1,800	9861		29,763	1986	20					
	8	LAGOON	IN 10 YEAR	0	1982		20,000	1982	8					
	200 UNITS	LAGOON	11				100,000	1975		25,000	0 2661	1992 UU HOMES		
	061	ü		¢.	¢.		¢.	•	20					
	100	LAGOON 05,1L	12	1,500	1985		61,877	1985	8					
	926	LAGOON 35,2L	NOT DISCH	1,749	1964		232,000	1975	800					
	1703	LAGOON 4S,2L	12	325,000	1983		2,200,000	1985	3000					
	487	LAGOON 25,2L	EVAP	12,500	197 5		345,000	1976						
	250	LAGOON 25,2L	12	e .	¢.		¢.	•	c					
	2000	LAGOON 35,3L	12	70,000	1986		360,000	1986	c .	200,000	1989	. .		
	8	LAGOON 45,3L	1	c	•		¢	•	¢.					
	498	LAGOON 45.2L	NOT DISCH	36,000	1982		559,547		<u>8</u>					
	1589	RBC	CONTIN				84,000	1972		1,800,000	1381	2005		
	250	LAGOON 0S.IL	36	6,586	0861		40,000	1980	220					
	275	LAGOON 1S, IL	12	50,000	1975		200,000	1975	ŝ	300,000	<u>86</u>	000		
	2	LAGOON 45.2L	12	45,000	1978		£							
	115	LAGOON 05.1L	12		1961		203,000	1981	¢.	45,000	1992	115		
		LAGOON 25, IL	£.						8					
	118	LAGOON 25,2L	12	10,000	1977		250,000	1977	2002					
	7200	RBC	CONTIN											
	5300	RBC		¢.	e ~		c	c .	.					
	670	LAGOON 45,2L	48	۰.	۴.		¢	¢.	2500					
	1001	LAGOON 25,2L	v	62,800	8861		980,000	1988	c .					
	1600	AEARATED LAGO	12	¢.	¢.		•	۰.	•					
	8	LAGOON 0S.IL	12	5,000	1975		130,000	1975	2					
	9699	LAGOON 45.0L	CONTIN	¢.	1961		30,000	1992	12000					
	2	LAGOON 05,2L GR	EVAP	3,000	1982		81,000	1982	8					
	001	LAGOON 05.1L	면	10,000	1979		11,798	1979	Š					
	ş	LAGOON 0S 11.	12	3.500	1977		115.000	1977	ş					
		AEPATED 1 ACOD	NILNO	000 01	1074		721.800	1975	2500					
				200.92	1061		581,000	1961	1000					
					0.00		000 058	0/01	10000					
	200	AEKATED LAGOU		n nimi	22			LYOI	•	6 .	1987	1500		
	0011	LAGOON 4S, 2L	ដ	•	r .		• •	<u>R</u>						
	0010	LAGOON 45,2L	2	¢.			•	ŝ						
	56656	A.S.		3,200,000	1992		18,000,000	5961	78000					
	521	LAGOON	NOT DISCH.	21,000	1979		67,000	1 286	5					
	•	LAGOON 0S 2L	NOT DISCH	62,000	r		186,000	1982	3					
	002	LAGOON	1	40.825	1961		95,000	196 1	8					
ц.	SEE MEDICINE HAT													
	8	LAGOON 45,3L	Ŷ	¢	r		240,000	1968	3500					
	8	LAGOON IS, IL	11	¢	ſ		٢	ſ	•	74,785		-		
	1937	LAGOON 65, 2L	Ŷ	ſ	¢.		•	•	۰	2,800,000	1991	8		
					ļ									

POP SERVED	E LAND YEAR LAND 7 YEAR COST COST 10,000 1992	CONST YEAR COST >	UR DESIGN POP	UPGRADE #1 COST	YEAR DE	DESIGN UPGRADE 12 POP COST	E NEAR
z		, 1977	621				
318 LAGOON 45,2L 12-24 3: 66 1 ACOON 65 11 12 23	2461		-				
t LAGOON 24	1979	420,000 1979	99. 99.				
LAGOON EVAP EVAP	2661	-					
634 LAGOON 25,2L 12 23 401 LAGOON 45 31 6 10	1978	150,400 1978 750,000 1078	8 8 8				
LAGOON 05,2L VAPORATIO							
LAGOON 45,2L 7	1974	1014	14 800				
LAGOON 25,2L	ć						
1054 LAGOON 45,3L 12 1044 LAGOON 35,1L 12	5,000 1985 20.0 3, 3, 3	20,000 1968 20,000 1968	8 250 -	1,700,000	1985	1500	
LAGOON 25.2L	1981	, 1087	. 5				
CONTACT STABILI CONTIN.	0 1992	8		500.000	1988	10000	
12	1979		_				
LAGOON 25,3L 12	ż	? 1955	55 350	325,000	1986	1000	
LAGOON 25,2L EVAP		8					
L LAGOON 05,2L 36							
D AFRATED LAGOO CONTIN	1087		8 8 8 8				
LAGOON 08, IL 12	1984			3.800	1989		
LAGOON 05, IL EV EVAP	1980		100				
LAGOON 55,2L 12	ć	700,000 1976		000'1		3500	
LAGOON 5S,4L 12 1	S 1954			250,000		2000 450,000	0 1984
6660 RBC/AERATED LA 33	350,000 1984 350,000 1984 5,000 5,000 1984 5,000 5,000 1982 5,000 1982 5,000 1982 5,000 1982 5,000 1982 5,000 1	11,000,000 1983 110,000 1000	1983 10000	2,500,000	1985 1	12000	
LAGOON 05, IL 12	1861						
-	1972						
	00 1983	0	•				
LAGOON 25,3L	6						
	•	0	Ś				
1010 LAGOON 45,2L 12 90 LAGOON 05 11. 17	, 1001 U	2 UMD 10	? 1500 1064				
	19761	_	1978 1500				
45 LAGOON IS, IL EVAP	1986						
			1976	450,000	1992	6000 887,000	6661 0
12	245,000 1977 1,33	21 000,866,1	1980 20000				
EXT. AERATION							
Ŷ	5,500 1977 850	850,000 19	1977 3000				
9							
LAGOON 05,2L 36	6,000 1977		e.				
1407 LAGOON 45,2L 12	? ? 300	300,000 19	1975 5000				
-	¢		i i				
2000 AERATED LAGOO CONTIN.		ć	i i	700,000		1500	
AERATED LAGOO	10 ACRES			1,300,000	E661	00001	
-	1983 774	774,641 19	1983 400				
519 LAGOON 45,3L 12	i i	•	~				

COMMUNITY	TYPE	POP	TREATMENT	STORAGE	LAND	YEAR	LAND #2	YEAR	CONST.	YEAR	-	UPGRADE #1	YEAR	DESIGN	DESIGN UPGRADE #2	YEAR	DESIGN
		SERVED			cost	ĺ	COST		COST		Pop.	COST		POP.	COST		POP.
WARNER	VILLAGE	ċ	LAGOON 25, IL	9	č	с.			65,000	1966	200	30,000	6791	200			
WARSPITE	VILLAGE	75	LAGOON 05,2L	12	¢	1962			•	1962	150						
WASKATENAU	VILLAGE	256	LAGOON 25,2L	12	¢.	¢.			200,000	1978	751						
WATINO	HAMLET	14	LAGOON 0S,2L GR	EVAP	28,000	1982			221,000	1982	ş.						
WEMBLEY	TOWN	1382	LAGOON 45,2L	12	1,000	1957	28,000	1977				208,000	1977	1260			
WESTLOCK	TOWN	4700	LAGOON 45,2L	7	200,000	1992			1,700,000	¢.	3000	¢.	¢.	10000			
WESTWIND	PARK	130	LAGOON	12	5,000	1977			25,000	1977	200						
WHITECOURT	TOWN	7000	A.S.		73,875	1977			1,200,000	1977	6009	1,500,000	1995	12000			
WHITELAW	HAMLET	¢	LAGOON 15,1L	12	3,000	6661			¢.	1980	6003						
MILLINGDON	VILLAGE	353	LAGOON 25,2L	Q	22,870	9161			221,074	1976	<u>8</u>						
WIMBORNE	HAMLET	8	LAGOON 0S, IL EV	EVAP	3,000	1981			2,500	1981	8						
WINFIELD	HAMLET	250	LAGOON 0S,2L	12	2,500	1964			46,380	1964	۰.						
YOUNGSTOWN	VILLAGE	245	LAGOON 05, IL	ć	•	۰.			•	1959	Ř						