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ABSTRACT

This work consists of three parts: theoretical preparations, applications and
computational results. The theoretical part primarily addresses the basic prop-
erties and computational scheme of various equivariant degrees, including the
general equivariant degree, primary equivariant degree, twisted primary de-
gree, S'-degree and equivariant gradient degree (Part I). The second part con-
tains two types of applications of equivariant degree methods in the area of
cquivariant nonlinear analysis: the symmetric Hopt bifurcation and the exis-
tence of periodic solutions in autonomous symmetric systems (Part IT). The
last part presents an appendix of Sobolev spaces and a catalogue for several
groups (their subgroups, irreducible representations and basic degrees), mul-
tiplication tables and computational results obtained throughout the thesis

(Part III).
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1

Introduction

1.1 Motivation

The concept of symmetry, though as vague as the notion of harmony, and
as simple as the impression cvoked by regular geometric shapes, substantially
contributes as a fundamental central theme to the ultimate design of nature.
This has long been one idea that human beings have tried to comprehend in the
pursuit of order, beauty and perfection (cf. [178, 166]). The idea of symmetry
has been absorbed heuristically across human history, from architecture, to
visual art, to psychology, to education science, to musicology and sociology, not
to mention the interplay between arts and sciences (cf. [45, 151] and references
therein).

In a sense, symmetry itself has been instrumental in the development of
modern scicnces. Some of the most profound results of modern physics have
becn underlined by symmetries. The duality between mass and energy, as well
as between space and time, brought into light the special theory of relativity.
As the drama of physics moved from the classical to the quantum act, symme-
try was thrust into the limelight more than ever (cf. [186]). The mechanism of
symmetry breaking embodies one of the most powerful ideas of modern theo-
retical physics. It provides a basis for most of the recent achicvements in the
description of phase transitions in statistical mechanics as well as of collective
phenomena in solid state physics (cf. [148, 167, 183]). It has also made possi-
ble the understanding of the unification of weak, electromagnetic, and strong
interactions in elementary particle physics (cf. [167, 184]). |

Beyond the scope of modern physics, the presence of symmetry and its
consequences have been extensively observed in chemistry, neurophysics, com-
puter science, evolutionary ecology, sociology, and cognitive science (cf. 32, 56,
70, 82, 86, 161, 163, 171}). As the human perception naturally favors regular
structure, elegant designs or artistic forms, symmetry has left traces in a large
variety of dynamical systems (cf. [57, 76, 78] and references therein). While the
symmetry may very well satisfy our expression of beauty and perfection, very
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little is known about the impact of symmetry on the performance of dynamical -
systems.

Nevertheless, there is inevitably a struggle in each symmetry with a ten-
dency towards its breaking. The paradox resides in the failure of the symmetric
laws of nature to establish a unified world. The observable phenomena exhibit
overwhelmingly asymmetric diversity, which makes us believe that the natu-
ral processes are driven by a prize fight between the unified symmetry and
diversified broken symmetries.

Examples of a win on the breaking side include the earthquake resistance
failure of buildings, the occurrence of fluctuation in clectrical circuits, crashes
in clectricity transmission networks, or environmental break-down in ecology

models (ef. [13, 14, 15, 16, 77, 79, 81, 83)]).

1.2 Area and Subject

Facing the enormous range of symmetry and the multitude of its impact, one
seeks for a general understanding of the phenomena through a systematic and
formal study. The mathematical treatment of symmetry is put forward in the
language of group theory. Symmetry is understood as an intrinsic property
of a mathematical object which causes it to remain invariant under certain
groups of transformations, such as translation, rotation, reflection, inversion,
or more abstract operations. A handful of Hermann Wey!’s scientific works un-
derscored group theory and its application in symmetry, including The Theory
of Groups and Quantum Mechanics, Classical Groups: Their Invariants and
Representations, and Symmetry (cf. [176, 177, 178]). As the struggle of sym-
metry persists, the process of mathematical abstraction of symmetry develops
further, hoping to finally lead us to a mathematical understanding of great
generality (cf. [174; 48, 91, 58]).

Behind the seemingly chaotic and overwhelmingly asymmetric natural phe-
nomena, equivariant nonlinear analysis provides us with a kaleidoscope to
the chromatic manifestation of symmetry. Equivariant dynamical systems are
mathematical formalizations for a set of relations describing time-dependent
processes of natural phenomena, which exhibit certain symmetric properties
(cf. [34, 38, 78, 81, 159]). The equivariant nonlinear analysis serves for the
study of equivariant dynamical systems and deals with the impact of sym-
metry on the existence, multiplicity, stability and topological structure of the
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solution sct of nonlinear equations, bifurcation phenomena, the applicability
of different kinds of approximation schemes, etc. (cf. [7, 15, 57, 77, 78}).

Traditional methods used in equivariant nonlinear analysis include center
manifold and normal form reductions, Lyapunov-Schmidt reduction, algebraic
and geometric formalism of Lie group theory and transformation group meth-
ods (cf. [33, 34, 80, 121, 122, 123]), minimax methods for nonconvex function-
als, equivariant bifurcation theory, equivariant singularity theory, and theory
of critical orbits of invariant functionals (cf. [57, 76, 77, 79, 81, 140, 159]).

The topological degree theory, without considerations of symmetry, has a
long history which developed along successive steps of extensions and gencral-
izations. The oldest form of a degree is probably the degree of a smooth map [
from the unit circle S! into itself, also known as the “winding number”, or the
“rotational number”, which counts the total number of times f travels coun-
terclockwise around the origin. The mapping degree theory or its equivalent,
the theory of rotation of vector fields, emerged in the studies of L. Kronecker
and H. Poincaré, and was further developed in the works of L. Brouwer and H.
Hopf for the finite-dimensional case, J. Leray and J. Schauder for completely
continuous vector fields in infinite dimensional space (cf. [28, 29, 75, 128, 125]).
It was however, M.A. Krasnosel'skii who indicated that knowing the mapping
degree provides the answers to the qualitative theory of nonlinear operator
equations (cf. [110]).

The degree theory of Brouwer and its infinite-dimensional extension - the
Leray-Schauder degree, showed their weaknesses in certain circumstances re-
lated to the presence of symmetry. In particular, the Leray-Schauder degrec
often fails to detect periodic solutions in autonomous systems, due to the S*-
symmetry of periodic functions. A natural question arises: what is an adequate
theory of degree in the presence of symmetry?

In 1932, K. Borsuk observed for the first time that symmetries can lead to
restrictions on possible values of the degree, which then initiated a rigorous
study of the impact of symmetry on the homotopical properties of the maps
(cf. [24]). The subsequent developments were mainly due to P.A. Smith and
M.A. Krasnosel’skii (cf. [23, 65]). At the same time, Krasnosel’skii revealed pro-
found connections between the degree of equivariant maps and the equivariant
extension problem (cf. [109]), which leads to a development of the so-called
“geometric approach” (cf. [120] for the most recent results, and [101] where
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the case of linear abelian group actions is studied in detail) applying the con-
cept of fundamental domains to reduce the problem of equivariant extensions
to the case of free G-actions (cf. [120]) or fundamental cells (cf. [101]).

In 1967, Fuller defined a special index being a rational number known as
the Fuller index, which was the first attempt to assign to an autonomous dy-
namical system an Sl-equivariant homotopy invariant (cf. [67]). Though of its
theoretical importance, it is defined in an extended phase space, which makes
this invariant difficult to compute. In 1988, G. Dylawerski introduced a degree
theory for S'-equivariant maps between representation spheres (cf. [51]). For
a more general group of symmetries described by a compact Lie group G, a
degree theory of G-equivariant maps was introduced by J. Ize et al. in [97]
and rigorously studied in [101] for abelian groups. Independently, K. Geba et
al. constructed the S'-degree using the idea of normal approximations, where
connections between S'-degree and the Fuller index were also indicated (cf.
[52], see also [101}). Later, by applying similar constructions, a predecessor of
the so-called primary equivariant degree for a compact Lie group G was intro-
duced in [72]. Based on a result due to G. Peschke in [147], this primary degree
can be recognized as the “primary part” of the equivariant degree introduced
by Ize et al.

Contrary to the noncquivariant case, the homotopy structure of equivariant.
gradient maps is essentially different from those of non-gradient maps (cf. [146]
for nonequivariant case and [41] for equivariant case). In 1985, motivated by
the study of bifurcations of periodic solutions in Hamiltonian systems, E. N.
Dancer introduced an invariant for Sl'-equivariant gradient maps (cf. [40]).
His idea of associating topological invariants to S!-cquivariant gradient ficlds,
was further developed in several directions. In [44], E. N. Dancer and J. F.
Toland introduced a topological invariant for systems with first integrals. S.
Rybicki defined the S*-degree for equivariant orthogonal maps as an extension
of gradient maps in [153], which was generalized by J. Ize and A. Vignoli in
[101] for abelian compact Lie groups. The gradient equivariant degree in the
case of a general compact Lie group G, was introduced by K. Geba in [71].
This degree takes values in the Euler ring U(G), which is a generalization of
the Burnside ring by T. tom Dieck (cf. [47]). This equivariant gradient degree
contains implicitly the Dancer invariant which was mentioned above.

In comparison with traditional methods in equivariant nonlinear analysis,
such as the equivariant Conley index, Morse-Floer complex, minimax theory
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(cf. [18, 19, 64, 134, 150, 172, 173|) and the equivariant singularity theory (cf.
[57, 76, 77, 79, 81|, see also [7, 15] and references therein), the equivariant
degree theory has the following advantages: (cf. [5, 6, 10, 12, 13, 14, 17, 53, 55,
181, 118])

(a) Usage of the standard settings allowing efficient treatment of a large class
of differential equations with arbitrarily large symmetry groups;

(b) Transparent computational formulae translating the equivariant spectral
information of a linearized system into a topological invariant;

(¢) Effective computerization* of algebraic computations, and creation of a
database for classical symmetry groups collecting their subgroups, irre-
ducible representations and multiplication tables;

(d) Comprehensive form of the topological invariant, which contains full topo-
logical information about the solution set of considered systems.

1.3 Two Examples

To demonstrate the mechanism of equivariant degree methods included in the
thesis, we provide two examples of its application in equivariant nonlinear anal-
ysis. One looks into the Hopf bifurcation in a symmetric system of predator-
prey equations; the other investigates the existence of periodic solutions in a
symmetric Newtonian system.

1.3.1 Predation and Migration

Consider an ecosystem composed of 6 spatially symmetrically distributed
subcommunities represented in Figure 1.1. Each subcommunity involves a
predator-prey interaction between 2 species modeled by the Lotka-Volterra
equations (with a slight modification), while the ecosystem is organized by a
migration between every 2 adjacent subcommunities.

Recall the Lotka-Volterra equations, proposed independently by Alfred J.
Lotka in 1925 and Vito Volterra in 1926 describe predation dynamics:

y=—yly—dz),
* Special Maple © routines have been developed to assist effective computations of primary degree

with one free parameter, for several interesting symmetry groups. The most recent version is avail-
able at http://kravwcewicz.net/degree or http://www.math.ualberta.ca/~wkrawcew/degree.
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Fig. 1.1. Dihedral configuration of the ecosystem, where C; = (x4(¢), :(¢)) is the ¢-th community.

where z = z(¢) stands for the prey density and y = y(t) for the predator
density. The quantities @ and «y corresponds to the intrinsic growth rate of
the prey and the diminishing rate of the predator respectively; 3 and ¢ reflect
the predation impact factors on the growth rate of the prey and the predator
respectively. All the quantities «, 7y, 3, are assumed to be positive.

Assume that the predator-prey interaction in each subcommunity can be
modeled by a modified version of (1.1) (cf. [158, 66])
r = z(a + cx —
z (a+ex ﬁy)y., (1.2)
¥ = —y(y— oz — dy),

where ¢ and d are paramcters of returns. The case where ¢ and d are both
positive corresponds to the case of increasing returns, whereas the case where
both are negative corresponds to diminishing returns. The case where ¢ and d
have opposite signs corresponds to semi-increasing returns. Biologically, in-
creasing (resp. diminishing) returns in either species means that the growth of
that species is enhanced (resp. hindered) by increasing the species density.

To carry out a mathematical analysis to the system (1.2), we first introduce
the following shorthand notations

A=adb+v, B=pfy—ad C:=03+dc

For simplicity, assume that A, B and C' > 0. Then, the system (1.2) has the
following equilibria
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oo, (20). (03). (52).

among which the last onc is called the interior equilibrium. We arc interested
in the phenomenon of the Hopf bifurcation taking place in the neighborhood
of the interior equilibrium

el = (5.5).

where « is the parameter of bifurcation. To obtain the characteristic roots of
(1.2), we carry out the standard linearization of (1.2) at (z,(a), yo(x)) given
by

. __ cB 3B
. 0A dA :
y="5r+ 57y
Decnote by
eB BB
M, = [(5(_/1 Q } . (1.4)
c

Then, the characteristic roots of (1.2) are precisely the eigenvalues of M,. By
the implicit function theorem, a necessary condition for an occurrence of a Hopt
bifurcation at (z,(a), y,()) is that (1.2) has a purely imaginary characteristic
root. The corresponding value « is called a bifurcation center. It can be verified
that under the assumption (dA + ¢B)? < 4ABC, M, has a pair of complex
eigenvalues () = u(a) & iv(a) for

dA+cB AABC — (dA + cB)? .
’U(O[) = T, 'U((lf) = \/ 2(] . (10)

Solving u{a) = 0 for a, we obtain the bifurcation center of (1.2) at (z,(a), y.())

0 ve(B + d)
° d(e=16)

We are now in a position to analyze the ecosystem composed of 6 subcom-
" munities located in spatially symmetrically distributed habitats (cf. Figure
1.1). Assume that each subcommunity C; undergoes a predator-prey inter-
action described by the modified Lotka-Volterra equations (1.2) with (z,y)
replaced by (z;,v:), for i = 1,2,...,6. The ecosystem supports a mild migra-
tion between every 2 adjacent subcommunities, with the migration rate given
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by v > 0. Hardly any communities in ccology are identical, residing in pre-
cise symmetrically distributed locations, however, when dealing with a model
with accuracy-limited data, this idealization allows us to explore the symme-
try aspect of the dynamics, including its impact on the occurrence of Hopf
bifurcations in the system.

The mathematical description of this symmetric configuration is a symme-
try with respect to the dihedral group Dg*. For a population density vector
w = (T1,Y1,%2,Y2, -, T, Y5) € RZ each element of Dg acts as a linear
transformation of w. More precisely,

,u"(xly y17:]:27y27 R 7'7"67?/6) - (3;61 yﬁ, $17y17 e 7'7;57 y5)7

E("I"hyhx‘by?a o 'a-’zf'ﬁayﬁ) - (x(57y6;>$57y57 G 7$1ay1)'

Therefore, we consider an ccosystem of Dg-symmetrically located subcom-
munities of predator-prey interactions, which is modeled by

Ty = xi(a 4 exy — By) + vz — 20) + v(Timy — T4),

. 7 =12
Ui = —yily — 0z — dy,,;) + (Y — yi) + 7/(1111:—1 — Ui,

 2,...,6,

(1.6)
where z;, y; are the respective population density of the prey and predator in
the i-th subcommunity, and i = i+ 6 fori = 1,2,...,6 . It can be verified that
the system (1.6) is invariant under the action of the dihedral group Dg, which
is called a Dg-symmetric system. Our aim is to present a symmetric analysis
of the Hopf bifurcation phenomena occurring in the system (1.6) at its interior
equilibrium w,(a), where

wo(@) = (25(@), 4o(@), To(e0), Yol @), -, To(0), o))" € RY,
and « is the parameter of bifurcation.
The linearization of the system (1.6) at w,(a) can be written as -
w=Mw+ vCw, (1.7)

where w = (21,1, o, Yo, - . -, T6,Ys) " is the population density vector, the ma-
trix M represents the initial predation in subcommunities and the matrix C
stands for the interaction relation between adjacent subcommunities

* The group Ds is composed of 6 rotations 1, u, p?, p®, p?, p°, for p = ¢'% in the complex plane,

and 6 reflections , kp, ki®, kp®, kp*, kKp®, where k& denotes complex conjugation (cf. Appendix
A2.1.2 for more details).



1.3 Two Examples 9

M, 0 0 0 0 O =217 0 0 0 f
0O M, 00 0 O I =21 1 0 0O O
Mo |0 0Mo0 0 0| L |0 I -2 0 0
10 0 0 M,0 O o o o I =21 [ 0 |’
0 00 0M,Q0 0 0 0 I =2 I
000 0 0 0 M,] 7 0 0 0 I -2I]
for M, defined by (1.4) and I being the 2 x 2 identity matrix. Let o(C) be

the spectrum of C, which contains 4 elements & := 0, &, := —1, & = —3 and
€4 = —4. Denote by F(&) the eigenspace of & for k = 0,1,2,4. Since C is a
symmetric matrix, there cxists an orthogonal linear transformation matrix P

such that
Eolaxo 0 0 0

0 &ilixa 0 0
0 0 &laxs O
0 0 0 &loe

Moreover, the eigenspaces of C span the whole phase space
R = E(&) @ E(&) @ (&) @ I9(84)-

Since each (&) is invariant under the Dg action, it is isomorphic to a sum of
several copies of irreducible representations of Dg (c¢f. Appendix A2.2.4 for a
list). One can verify, in our case, we have E(&) ~ Vi & Vi, where Vy, stands
for the kth irreducible representation of Dg, for £ = 0, 1,2, 4. In particular, the
Vi-multiplicity of & is

c=p P

2, ifl=k

, ke {0,1,2,4}.
0, otherwise { !

my(&k) = 201, = {

By a change of coordinates q := P7w, the system (1.7) is transformed to
q= Mg, (1.8)
where

(M, +vé&l 0 0
M, + vé ] 0
M, +vé

0
0 0

7. 0 0 0

M: 0 0 0 Myt

0 0 0

0 0 0

OO OO

0
0

I/é.z[ 0
Mo + V§4]_
(1.9)
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Then, the characteristic roots of the system (1.6) at w,(a) correspond to
the eigenvalues of M, which can be determined by

) := Aa) + v,
=u(a) + vé tiv(a) k=0,1,2,4, (1.10)

where u(a) and v(«) are defined by (1.5). Clearly, my(ug(e)) = mu(€x) = Opx-

b

For each &, € o(C), by letting u(a) +v€; = 0, we obtain a bifurcation center

. ye(3 + d) 4 20€,C
L d(c— 6) ’

k=0,1,24.

Denote by i3, the purely imaginary characteristic root of (1.6) at o = a. To
detect the occurrence of possible Hopf bifurcations around «y, we associate
to each pair (ag, Fk) a bifurcation invariant w(ay, 3;) in terms of a twisted
equivariant degree for a completely continuous field.

More precisely”, by introducing an additional parameter of the unknown
period of possible bifurcating branches, we transform the system (1.6) to an
equivalent problem of finding 27-periodic solutions to a normalized system.
Based on this normalization, we can choose an appropriate functional space
W, which is an invariant space under the Dg x S'-action, where S ~ R/277Z
represents the temporal symmetries of 2w-periodic functions in W. Thereby,
we reformulate the normalized system to a Dg x S'-equivariant fixed-point
problem of a completely continuous map F : R2@ W — W, i.e. the problem
of finding z such that = F(¢, 3, ). Finally, by introducing an auziliary
function ¢ : R @ W — R, we arc able to restrain the bifurcating branches in
a neighborhood 2 of («, #) so to carry out a local analysis of a one-parameter
map §: R W — R& W composed by ¢ and F. Define

w(ak, ﬁk) :::D(;XSI—Deg(S, .Q)

The computation of the bifurcation invariants is based on

» a continuous deformation of F to a product map of §F : R'? — R'? and
S, REpW, - R W,, where W, =W o R'?%; ~
* For a concise presentation, here we only provide a brief description of this standard degree-

theoretical treatment to a symmetric Hopf bifurcation problem. For more technical details and
precise formulations, we refer to Chapter 6.
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the multiplicativity property of the twisted equivariant degree, which im-
plies (cf. Proposition 4.2.6)

Wk, Bi) =DxS*-Deg(F, 12) 0DexS-Deg(Fo, 2,), (1.11)

where 2 := 2NRY?, 2, := 2N(R*®W,) and o stands for the A(Ds)-module
multiplication in AY(Dgs x S') (cf. Appendix A3.14);

the concept of basic degrees deg,, (of no parameters) associated with the i-
th irreducible representation V; of )y, combined with the negative spectrun
o_ of §, gives rise to (cf. Subsection 4.1.3)

Dex$*-Deg(§, 2) = [[ [[(degy,)™", (1.12)
peEo— 4

where m; (1) is the Vi-multiplicity of p;

the concept of twisted basic degrees deg, | associated with the irreducible
representation Vj; of Dg x S!', combined with the notion of the crossing
numbers L (ag, i), gives rise to (cf. Subsection 4.2.4 and Lemma 3.3.4)

DexS'-Deg(Fo, 20) = > _tia(c, Bi) deg, . (1.13)

Jl

Based on the computational formulae (1.11)--(1.13), we provide a compu-

tational example of the Hopf bifurcation problem for the system (1.6). Take
the sample quantities

v =0.50, §=1.00, § = 0.50, ¢ =0.20, d = —0.30, v = 0.01.

In this case, we have the following bifurcation centers

ap = 0.78, a; = 0.68, ay = 0.48, ay = 0.38,

with the corresponding purely imaginary roots i3y

Bo = 79.44, B = 73.83, B = 62.29, B4 = 56.28.

The crossing numbers &, ;(ay, Ox) are

toa(ao, Bo) = t1a(ar, B1) = taa(az, B2) = ta1(a, B1) = 2.

Consequently, we have the values of bifurcation invariants w(ay, Ox) = 2deg,, |
for k = 0,1,2,4. Calling the Maple© routine command showdegree [D6], we
obtain
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w(aw, fo) = showdegree [D61(0,0,0,0,0,0,2,0,0,0,0,0)
= 2(Ds),

w(ai, 1) = showdegree [D6]1(0,0,0,0,0,0,0,2,0,0,0,0)
= 2AZg') + 2(D3) + 2(Dg) — 2(Z;)

w(ag, B2) = showdegree [D61(0,0,0,0,0,0,0,0,2,0,0,0)
=2(Zg’) + 2(D3) + 2(D2) — 2Z)

w(aa, B4) = showdegree [D6]1(0, 0,0,0,0,0,0,0,0,0,2,0)
= Q(ng

where each (IT%) refers to the conjugacy class of the subgroup H™ C Dy x S*
(cf. Example A2.1.1, Appendix A2) and the bold faced terms are related to the
concept of dominating orbit types, which satisfy certain maximality condition
according to the conjugation relation (cf. Subsection 6.1.6).

Conclusion. By Theorem 6.1.9 (ii), there exists at least 1 bifurcating branch
of periodic solutions at (a,, 3,) of symmetry at least (Dg); there exist at least 5
bifurcating branches of periodic solutions at (a1, 1) with 2 having symmetry
at least (Z§') and 3 having symmetry at least (D$); there exist at least 5
bifurcating branches of periodic solutions at (as, 32) with 2 having symmetry
at least (Zg) and 3 having symmetry at least (D3); there exists at least 1
bifurcating branch of periodic solutions at (cy, 84) with symmetry at least
(D).

Evidently, when o crosses the bifurcation centers a4 for & = 0,1, 2,4, the
total symmetry Dg x S? of the trivial solution w = 0 breaks down to different
subsymmetries (Dg), (Z§), (DY), (Z&), (D), (D¢) of nonzero solutions. The
broken symmetries captured by the invariants w(ay, k), in turn, entail the
appearance of nontrivial periodic solutions bifurcating from a = ay.

1.3.2 Newtonian Motions

Consider a system of 6 unit point masses P; (fori = 1,2, ..., 6) trajecting in R,
whose time-dependent position function = : R — R satisfies Newton’s second
law of motion, which states that the time rate of change of the velocity function
is proportional to a net force function F' : R® — R® applied on the particles.
‘Suppose that the system is autonomous and symmetric with respect to the
dihedral group Dg-action on R®. More precisely, F' is assumed to commute
with the Dg-action on R® i.e. F'(gz) = gF(z) for g € Dg and = € RE.



1.3 Two Examples 13
An cxample of such autonomous Newtonian system can be described by

(—3, = 4xq + 20 + 26 + a(z)(5z1 + T2 + T6),
—&9 = a1 + 42 + x3 + a(z) (21 + 5x2 + x3),
—iy = Ty + 4T3 + T4 + a(x)(T2 + T3 + T4),

(z)( )

4 ()( )
7 (z)(z3 + 5z4 + 5),
()( )

( )

x
x
(1.14)
—3:4:x;3+4m4+x5+a

—T5:T4+4T5+T()+(JT) T4—|-5.T5—|-T(,,

\—i“(‘, = x5 + 4xg + 1 + a(:v) Ts + dxg + T1),

where a : R® — R is given by a(z) = (5(z] + 25 + 23 + 25 + 22 + 28) + 2(z1 22 +
ToTs + T3Ts + Taks + TsTe + TeXy) + 1) 2.

We are interested in finding non-constant 27-periodic solutions to (1.14),
which can be formulated preciscly as finding nontrivial solutions to

i = (), |
{T(O) — z(27), #(0) = #(27), (1.15)

where the force function F' : RS — R® is represented by the right-hand side
of (1.14). Notice that [ behaves asymptotically linear at oo, meaning that
there exists a linear map As, such that F'(z) = Axz + o(z) as ||z|| — oo. Let
Ap = DF(0). We have

920002° 410001
292000 141000
A | 029200 4 _|014100
0 002920 “>~~lo001410 |’
000292 000141
200029 100014

which represent the linearized maps of I’ at 0 and oo respectively. Further,
one verifies that (o(Ag) Uo(A))N{k? : k=0,1,...} =0, which eliminates
the possibility of the linearized systems of (1.15) at 0 and co having non-zero
solutions. Therefore, it provides an admissible setting to detect a nontrivial so-
lution to (1.15) by inspecting the topological difference between the linearized
systems of (1.15) at 0 and at oo.

More precisely*, choose an appropriate functional space W, where the so-
lutions to (1.15) inhabit, and reformulate (1.15) as a Dg x S'-equivariant veri-

* We only provide a concise description of the degree-theoretical treatment to a symmetric
variational problem. For more technical details and precise formulations, we refer to Chapter 10.



14 1 Introduction

ational problem of finding critical points of a certain associated energy func-
tional @ : W — R, where S ~ R /277 represents the temporal symmetries of
the 2n-periodicity of functions in W. Thus, we have

x is a solution to (1.15) <= V&(z)=0, z € W.

By a compactness argument, V& is a. Dg x S'-equivariant completely continuous
field, to which the equivariant degree theory applies. By the spectral properties
of Ag and A., combined with the implicit function theorem, there exists a
sniall ball B, and a large ball B in W such that V&(z) # 0 for any boundary
points z € (0B.UJBp). By means of the gradient equivariant degree Vp, . si-deg,
we can associate to the system (1.15) two elements Vp  s-deg(V®, B.) and
Ve-deg (V®P, B) in a ring called the Euler ring U(Dg x S1). Roughly speaking,
in the context of the ring, one is allowed to multiply two gradient equivariant
degrees. Therefore, the difference

deg ., — degy ;:vvbﬁxs,_deg(V(p’ BR) - VD(,XS“deg(vq), Bs)

is a topological invariant capturing the existence of solutions to (1.15) in be-
tween 3. and Bg.

Computational techniques used for deg  — deg, are based on

» the linearization argument, which relays the computations of deg,, to the
computations of a linear isomorphism A, on W by

degp = Vf)ﬁxg]—deg(.Ap, B] (VI/)),

where Bi(W) denotes the unit ball in W and A, : W — W is defined
through A, for p € {0, 00};
» the reduction to the basic gradient degrees, denoted by

Degy := Vps-deg(—1d, B1(W)),

for an irreducible representation W of Dg x S'. Observe that Deg,,’s rep-
resent the gradient equivariant degrees of the simplest possible maps being
topologically nontrivial (cf. Definition 5.2.7);

» the multiplicity property of the gradient equivariant degree (inherited from
the ring multiplication in the Euler ring U(Ds x S')), induces a product
formula (cf. Subsection 5.2.2)
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deg, =[] H(Deg‘wk)mk(é)’ (1.16)

(€0 (Ap) K

where 0_(A,) stands for the negative spectrum of A4,, W; runs through a
catalogue of irreducible Dg x S)-representations and my(§) is the multiplicity
of ¢ with respect to Ws. Notice that the product in (1.16) is only essential
over finitely many terms, since A, is a compact perturbation of Id, there
exist only finitely many & € o_(A,) cach of which has a finite multiplicity.

By calling the Maple® routinc command showdegree [D6] , we obtain

deg ., —degy = —(D3?) — (Z&®) + (DY) + 3(D&) + (D®) + (757
—2(DP*y — (DY) — (D3) — 2(237%) + 2(Z3) — (D§?)
—(Z&%) + (D3) + (D3?) + 2(Dy?) + (D3) + (257)
—2ADP?) — (DY) = (D?) — (Zy%) + 2Z2), (1.17)

_|_
_|_

where each (™) refers to the conjugacy class of the subgroup H*™ C Dgx S*
(cf. Example A2.1.1, Appendix A2) and the highlighted terms are related to the
concept of dominating orbit types, which satisfy certain maximality condition
according to the conjugation relation.

Conclusion.

Based on the valuc of the invariant provided by (1.17), we conclude that there
cxist 11 nonconstant periodic solutions to (1.15), include 1 nonconstant so-
lution of symmetry at least (Dg>), 2 nonconstant solutions of symmetry at
least (231’3), 3 nonconstant solutions of symmetry at least (Dg’3), 2 noncon-
stant solutions of symmetry at least (Zg?), and 3 nonconstant solutions of
symmetry at least (D%?). '

Eminently, the initial symmetry Dg x S! of the stationary solution breaks
down to several subsymmetries of other physical states (nonconstant periodic

solutions), namely (D&%), (Z%), (D(ZH), (Z2') and (DZ?), being captured by
deg ., — degy.

1.4 Overview and Contribution

There are several different kinds of equivariant degrees appearing in the the-
sis: the general equivariant degree, primary equivariant degree, S'-equivariant
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degree, twisted primary degree, equivariant gradient degree and orthogonal
degree. Belonging to the same family of equivariant degrees, they are intercon-
nected to each other.

Let G be the compact Lie group of symmetries. The general equivariant
degree, usually denoted by deg,;, produces the primary equivariant degree as
its truncated part, which is written as (G-Deg . In turn, the twisted primary
degree G-Deg, is included as a twisted part of the primary degree, in the case
G = I' x St with I" being a compact Lie group. The S!-equivariant degree is
a special case of the twisted degree for G = S, and often written as S!-Deg.
On the other hand, the equivariant gradient degree denoted by V;-deg, is an
equivariant degree specially designed for gradient maps. It should be pointed
out that Vg-deg generally differs from deg ., which is due to the fact that con-
trary to the non-equivariant case, the homotopy classes of gradient equivariant
maps do not coincide with those of general equivariant maps. However, in the
case of ' being a one-dimensional bi-orientable compact Lie group, there ex-
ists a passage from V-deg to G-Deg, through yet another equivariant degree,
namely the orthogonal degree G-Deg®.

The equivariant degree introduced in [97], though of great importance in
theory, provides no generous hints of its computations in practice. In contrast,
the primary equivariant degree (with n-free parameters) shows a more efficient
aspect in its computational perspective.

In Chapter 3, we propose an axiomatic definition of the primary equivariant
degree, which lays down a convenient pavement for the usage of the primary
degree outside the context of its topological origins (cf. Proposition 3.2.5). In
particular, the primary equivariant degree with one free parameter proves to be
completely computable. Based on an axiomatic definition of the S'-equivariant
degree (cf. Theorem 3.4.4) and a recurrence formula (cf. Proposition 3.5.3), the
computations of primary G-equivariant degree (with one-free parameter) can
be systematically reduced to those of related S*-equivariant degrees.

Motivated by the study of symmetric Hopf bifurcation problems and the
existence of periodic solutions in symmetric autonomous systems, we explore
further properties of the primary equivariant degree for G = I' x S', where the
compact Lie group I" describes the spatial symmetry in considered dynamical
systems. :
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There arc two types of subgroups in [’ x S': the non-twisted subgroups
K x S', and the twisted subgroups K®! where K C I" (cf. Definition 4.2.1).
As nontrivial periodic functions only admit twisted subgroups of symmetries,
it is natural to introduce the twisted primary degree as the twisted part of the
primary equivariant degree, so to capture the presence of nontrivial periodic
solutions to the dynamical systems (cf. Chapter 4).

The twisted primary degree stands out as the most efficient topological
tool above others, contributing to the computerization of the equivariant de-
gree method. Several Maple© routines* have been developed to enhance the
speed of the algebraic computations. The computability of the twisted equiv-
ariant degree highly depends on its multiplicativity property, which is related
to certain module structure on its range (cf. Proposition 4.2.6). Examples of
multiplication tables for several groups are included in Appendix A3. By the
multiplicity property, the computations of the twisted primary degree can be
significantly reduced to the evaluations of the twisted basic degrees (cf. Defini-
tion 4.2.8). In Appendix A2, we prepare a catalogue of selected groups, their
irreducible representations and corresponding twisted basic degrees.

The equivariant gradient degree introduced by K. Geba, is an equivariant
degree theory specially designed for variational problems (cf. [71]). In Chap-
ter 5, our discussion starts with the range of the equivariant gradient degrees,
namely, the Euler ring. Though the gradient degree inherits a natural mul-
tiplicativity property from the ring structure, it is generally difficult to be

“determined due to the complexity of the Euler ring multiplicative structure.
However, as proved in Subsection 5.1.1, there exists a close relation between
the Euler ring and the module structures arising from the primary degree the-
ory (cf. Remark 5.1.13). Therefore, we speculate a possibility to construct a
passage from the gradient degree to the primary degree, in order to make the
computational resources available for the computations of the gradient degree.
It turns out that in the case where (G is a one-dimensional bi-orientable com-
pact Lie group (cf. [147]), such a passage is possible through a construction of
the equivariant orthogonal degree. Consequently, we establish computational
formulae of equivariant gradient degrees based on the passage (ef. Subsection
5.2.4).

*

Current routines are available for quaternionic group Qa, dihedral groups Da, for
N = 3/4,5,6,8,10,12, the tetrahedral group A4, octahedral group Si and icosahedral
group As. The most recent version is available at http://krawcewicz.net/degree or
http://www.math.ualberta.ca/~wkrawcew/degree.
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In Chapter 6 — Chapter 8, we apply the twisted primary degree method
to the study of Hopf bifurcations in equivariant dynamical systems. Roughly
speaking, a Hopf bifurcation is the phenomenon occuring around a stationary
solution = = z, to the system, undergoing a sudden change of stability, as a
parameter « crosses some critical value «, and thereby resulting in appearance
of small amplitude nontrivial periodic solutions near z,. In the language of
symmetry, the Hopf bifurcation precisely refers to the moment when the whole
symmetry of the stationary solution breaks down to smaller subsymmetries of
the nontrivial periodic solutions.

To study the bifurcation phenomena, we associate a bifurcation invariant
to each bifurcation center, by means of the twisted primary degree method.
The nontrivial value of the invariant provides a sufficient condition for an
appearance of Hopf bifurcations, and offers a symmetric classification of the
bifurcating branches indicating their least symmetries. Further, if the invariant
contains a nonzero ( K¥t)-term for a dominating orbit type (K1) (cf. Definition
6.1.7), then the exact symmetries of the bifurcating periodic solutions can be
detected (after rescaling the period). The main advantage of this method is
that it can be applied to different classes of equations in a standard manner
(cf. functional differential equations in Chapter 6, neutral functional differential
equations in Chapter 7 and the functional parabolic differential equations in
Chapter 8). The computational examples are listed in Appendix A4.1--A4.3
for selected groups of symmetries.

In Chapter 9 and Chapter 10, we study the existence of nontrivial peri-
odic solutions in equivariant autonomous dynamical systems. More precisely,
in Chapter 9, we consider a symimetric Lotka-Volterra type system with de-
lays, which arises naturally from an ecological model of symmetrically located
predator-prey interactions. As this symmetric system falls out of the category
of symmetric variational problems, only few topological methods are tradi-
tionally used. Unfortunately, some of those methods such as Leray-Schauder
degree, are ineffective for detecting nontrivial periodic solutions.

By introducing additional homotopy parameters to the system and estab-
lishing a priori bounds for the parameterized systems, we are able to define a -
topological invariant as a twisted primary degree (cf. Definition 9.1.1), which
detects the existence of multiple nontrivial periodic solutions to the original
system (cf. Theorem 9.1.2). Indeed, the appearance of different nontrivial pe-
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riodic solutions is engraved in the value of the topological invariants by their
broken subsymmetries.

It is appropriate to mention that the main content of the thesis is based
on several published journal papers co-authored by the author, namely [6, 11,
12, 13, 14, 68, 88, 152], and the catalogue of the groups and their represen-
tations is excerpted from [15]. Consequently, the scientific results included in
the thesis originate from collaborative research rather than being an individual
achievement.

1.5 Future Research

The methods and applications of the equivariant degree theory are far from
being complete. For a general eqﬁivariant degree, a development of the com-
putational methods for secondary equivariant degrees is needed. In the case
of primary degree and twisted primary degree, multiparameter cascs should
" be further explored, as well as their further connection with other equivari-
ant degrees. To expand the applications of the gradient equivariant degree,
we must establish effective methods for computation of Euler ring and basic
gradient degrees, including new data base for other interesting groups such as
SO(3) x S, U(2), U(2) x S'.

One can explore further potential applications to the existence of periodic
solutions in autonomous systems based on the a priori bounds techniques. An-
other interesting phenomenon is forced symmetry breaking, which takes place
when the total symmetry G of the system reduces to a smaller symmetry G,
under an asymmetric perturbation (cf. {34, 101]). By studying the homomor-
phism U(G) — U(G,) (resp. A(G) — A(G,)) induced by the inclusion map
G, — (G, it is possible to determine the equivariant degrees of the perturbed
system, thus allowing us to predict the forced symmetries of the system. Also,
it is interesting to study the global continuation of branches of solutions by
means of equivariant degree method, so as to have a global picture of the be-
havior of orbits of periodic solutions. Not the least, we can also investigate
the bifurcation from relative equilibria, doubly periodic and Hopf bifurcations
from periodic orbits (cf. [78]).
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Preliminaries

2.1 Basic Facts from Differential Topology

2.1.1 Smooth Manifolds

Throughout, a smooth manifold always means a separable paracompact ('*°-
smooth finite-dimensional manifold, and a smooth map between two manifolds
is assumed to be of class C*°. For smooth manifolds M, N and a smooth map
f: M — N, we denote by 7(M) the tangent bundle of M and 7,(M) the
tangent space of M at x € M; df : 7(M) — 7(N) stands for the tangent map
of f with df, : T.(M) — 7/,(N).

Definition 2.1.1. Let f : M — N be a smooth map between smooth mani-
folds. A point z € M is said to be regular if the rank of the induced map of
tangent spaces dfy : 7,(M) — T;)(N) is equal to dim N; otherwise z is called
critical. A point y € N is called a regular value of [ if f~1(y) does not contain
a critical point; otherwise y is called a critical value of f. By definition, y is a
regular value if f~!(y) = 0.

The concept of a regular value naturally extends to the notion of a map
transversally regular on a submanifold. More precisely, we have:

Definition 2.1.2. Let P be a smooth submanifold of a smooth manifold N
and k = dim N — dim P be the co-dimension of P in N, denoted by codimy P.
Then, a smooth map f : M — N is said to be transversally reqular with
respect to P, if for every x € f~1(P), the rank of the map

7o (M) 5 710y (N) — 7500y (N) /70y (P)

is maximal, i.e. equals to k.

Let us recall several well-known results.

Proposition 2.1.3. If f : M — N is transversally reqular with respect to
P C N, then the complete inverse image [~'(P) is a smooth submanifold of
M and codimy f~1(P) = codimy P, whenever f~1(P) # . '
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Corollary 2.1.4. Let f : M — N be a smooth map and y € N a regular value
of f. Then, f~Y(y) is a (dim M — dim N)-dimensional smooth submanifold of
M, whenever f~1(y) # 0.

Proposition 2.1.5. (SArp-BrownN THEOREM) Let M be a smooth compact man-
ifold and f : M — R* a smooth map. Then, the set of all critical values of f
has Lebesque measure zero in R¥. Moreover, the set of all reqular values of f
is open and dense in R¥.

Corollary 2.1.6. Let £2 C R" be an open set, [ : 82 — RF a smooth map and
K C £2 a compact subset. Take y € R* and € > 0. There ezists a smooth map
g 2 — RF such that y is a reqular value of g and

sup{[I/(z) — g()] 1z € K} <.

Another important consequence of the Sard-Brown theorem is related to the
realization of compact manifolds as submanifolds in RY. To be more specific,

Definition 2.1.7. A smooth map [ : M — N is called embedding if the fol-
lowing two conditions are satisfied:

(1) the rank of the induced map df; : 7.(M) — T)(N)isdim M forallz € M
(in particular, we must then have dim M < dim N);
(ii) f : M — f(M) is a homeomorphism.

We have:
Proposition 2.1.8. (WHITNEY THEOREM) Let M be a compact n-dimensional
manifold (possibly with boundary). Then: '

(i) M can be embedded into R*" ;
(ii)if g : M — R is a continuous map and € > 0, then there exists an
embedding f : M — R**1 such that

sup{[lf(z) — g(x)| : 2 € M} <.
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2.1.2 Oriented Vector Bundles

For an n-dimensional vector space V, we say that two ordered bases by =
(b1,ba,...,b,) and by := (b], 05, ..., 8,) of V determine the same orientation
of V' if the change-of-coordinates matrix from b; to b, has positive determinant.
An orientation in V| denoted by o, is a class of all ordered bases b, which de-
termine the same orientation in V. The pair (V, 0,,) is called an oriented vector
space with the orientation oy on V. There are only two possible orientations
of V, the other orientation of V' is denoted by —o,. The chosen orientation
oy will be called positive and a basis b representing oy is called positive basis
“in V. For a zero-dimensional vector space we adopt the convention to assign
+1 (resp. —1) to indicate the positive (resp. negative) orientation. The orien-
tation o, of the space R™, determined by the standard basis (e1, ..., e,) in R”,
is called the standard orientation of R™.

For two oriented vector spaces (V,0,,) and (W, 0,,), we denote by oy © oy
the natural orientation of the space V @ W (i.e. the orientation represented
by a positive basis of V followed by a positive basis of W) and we write
oyew = oy O ow. For an oriented vector space (V,oy), the vector space
R" ¢ V is always assumed to have the orientation o,, ® oy. For two oriented
vector spaces (V,0,) and (W, 0,,) of the same dimension, a linear isomorphism
AV — W is said to preserves the orientations of V and W if a matrix
representation of A, with respect to positive bases in V' and W has positive
determinant. In what follows, instead of writing (V, 0,,) we will simply say that
V is an oriented vector space, what will implicitly mean that there is a chosen
orientation oy on the space V.

Let £ = (p, I, B) be a vector bundle modeled on R". Suppose that for every
x € B, it is possible to choose an orientation class o, in the fiber p~!(z) in
such a way that there exists a family {(U;, ¢, )} of local trivializations of &
satisfying B = | J, U; and such that: :

(i) for all z € Uj, the linear isomorphism ¢, , preserves the orientations of
p~1(z) and the standard orientation of R™;
(ii) forx € U;NU;, thelinear isomorphism ¢, o ' preserves the orientation
i1% 3T
o, of p~1(z).
Then, we say that o := {0z }zep is an orientation sheaf of the vector bundle

&. A vector bundle € is said to be orientable if there exists an orientation sheaf
of £. An orientable vector bundle £ together with an orientation sheaf o, will
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be called an oriented vector bundle. For two vector bundles £ := (p, £, B) and
¢ = (p/, F', B) with orientations sheaves o = {0, }zep and og = {0/ }ren,
respectively, we denote by o¢ © og, the orientation sheaf {0, © 0} }rep on £BE,
and we say that the orientation og © o’g, of £ @ ¢ is induced by the orientation
o¢ of € followed by the orientation o of €.

We say that a manifold M is orientable if its tangent vector bundle 7(M)
is orientable. An orientation sheaf oy := 0,3y of T(M) is also called an ori-
entation of M. In such a case, we will simply write (M, 0p) to indicate that
M is considered with the specific orientation o0p4.

Suppose that (M, 0,) is an oriented submanifold of an oriented vector space
(V,ov). Then, the normal vector bundle v(M) of M in V has a natural orien-
tation o, induced from M and V', which satisfies 0, ® oar = {ov }renr. Such an
orientation o, on v(M) is called a positive orientation of v(M) induced from
V. :

Assume that f : M — N is a smooth map between two n-dimensional
oriented manifold. If for some = € M, the tangent map df; : (M) — 77 (N)
is an isomorphism, then we put signdf, = 1 if df, preserves the orientations of
T.(M) and 7,0, (N}, and sign df, = —1 otherwise.

2.1.3 Local Brouwer Degree

Let us recall the standard properties of the (local) Brouwer degree of continu-
ous maps from an oriented n-dimensional manifold to R™.

Let M be an oriented n-dimensional manifold and f : M — R™ a contin-
uous map such that K := f~1(0) is compact. The local Brouwer degree of f
(with respect to the origin) is the integer deg(f, M) satisfying the following
properties:

(1) (Appimivity) Let Uy and U; be two open disjoint subsets of M such that
K c Uy U U,. Then,

deg (f, M) = deg (f,U1) + deg(f,Us).

(2) (Homoropy Invariance) Let b : [0, 1] X M — R"™ be a homotopy such that
h~1(0) is compact. Then, deg (h(0,-), M) = deg (h(1,-), M).

(3) (Normarization) If f is a homeomorphism preserving the orientations of
M and R” then deg (f, M) = 1. If f reverses the orientations of M and R",
then deg (f, M) = —1.
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(4) (Recurar VaLue Properry) If [ is a smooth mapping such that 0 is a
regular value of f, then

deg(f, M) = Z sign df,,

xe f~1(0)

where sign df,, is 1 if df, : 7.(M) — R” preserves the orientations, and —1
otherwise.
(5) (Excision Properry) Let U C M be an open set such that f~1(0) C U,
then
deg (f, M) = deg ([, U).

Put B" := {z € R" : |z| < 1}, 8" := 9B". The local Brouwer degree also
satisfies the following important property:

(6) (Horr Prorerry) Two continuous maps
b0 (F7,5") = (R R"\ {0})

are homotopic if and only if deg(¢) = deg ().

Remark 2.1.9. In the case M is not orientable, the above degree is not cor-
rectly defined. However, the residue mod 2 of the integer is well-defined and
can be taken as a definition of the “mod 2 degree” in this case. Observe that
the mod 2 degree defined this way satisies properties (2) and (5). Moreover,
properties (1), (3) and (4) are also satisfied being understood in the sense of
the algebraic operation taken in Z,.

2.2 Elements of E(juivariant Topology and
Representation Theory

2.2.1 Basic Concept in Equivariant Topology

Hereafter, G stands for a compact Lie group. By a subgroup of G, we mean
a closed subgroup of G. Two subgroups H and K of G are conjugate if there
exists g € G such that K = gHg~!. Obviously, the conjugation relation is an
equivalence relation. The equivalence class of H is called a conjugacy class of
H in GG and will be denoted by (H). We denote by &(G) the set of all the

conjugacy classes (H) in G. For two subgroups H and K of G, we write
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(H) < (K), if HC g 'Kgfor some g€ G. (2.1)

The relation < defines a partial order on the set @((). For a subgroup H of
G, we use N(H) to denote the normalizer of H in G, and W (H) to denote
the Weyl group N(H)/H in G. Since H is assumed to be closed, N(H) is thus
also a closed subgroup of G. Morcover, since H is a closed normal subgroup in
N(H), hence W ({{) is a compact Lie group.

Definition 2.2.1. A topological transformation group is a triple (G, X, ),
where X is a Hausdorff topological space and ¢ : G X X — X is a continuous
map such that:

(i) @(g,o(h,z)) = p(gh,z) for all g, h € (G and z € X;
(ii) @(e,z) = 2 for all x € X, where e is the identity element of G.

The map @ is called a GG-action on X and the space X, together with a
given action ¢ of (7, is called a (-space. Similarly, one can define the right
G-action and call X a space-G (sometimes also called right G-space). We shall
use the notation gz, for ¢(g,z), and zg in the case of a space-G. For K C ¢
and A C X, we put K(A) :={gr:9€ K, z € A} and for g € G we write
gA:={gx 1z € A}. Aset A C X is said to be G-invariant, if G(A) = A.
Notice that if A is a compact set, ((A) is also compact. Observe that on any
Hausdorff topological space X, one can define the trivial action of (G by gz = x
forall g € G and z € X.

Let X be a G-space. For z € X, denote by G, := {9 € G : gz =z} the
isotropy group of x and by G(z) := {gz € X : g € G the orbit of z. A
G-action is called free on X, if G, = {e} for all z € X. The conjugacy class
(G;) will be called the orbit type of z. The symbol &(G; X)) stands for the set of
all orbit types occuring in X. For an invariant subset A C X and a subgroup
Hof Gweput A .={z e A: G, D H}), Ay ={zr € A: G, = H},
Aun = {z € A: (G,) = (H)}. By direct verification, A is N(H)-invariant,
as well as W (H )-invariant. Moreover, the W (H )-action on Ay is free.

For a G-space X, consider an equivalence relation ~ on X: & ~ y if and
only if y = gz for some g € GG. Denote by X/G the quotient set X/ ~. Then,
X /G endowed with the quotient topology is called the orbit space of X. For a
right G-space X, the orbit space will be denoted by G\ X.

Let 1 and (43 be compact Lie groups and assume X to be a Gi-space and
space-G» such that (¢12)g2 = g1(zg2) for all g; € Gy, i = 1,2, 2 € X. In this
case, we call X a Gj-space-Go, and the orbit space is denoted by G2\ X/G).
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In particular, a subgroup H (vesp. L) of G acts on G by the left (resp.
the right) G-action, so GG can be viewed as an H-space (resp. space-L). The
corresponding orbit space G/H (resp. L\G) is canonically identified with the
set of left cosets {gH : g € G} (resp. the set of right cosets {Hg : g € G}).
By the associativity of (+, G also becomes an H-space-L, with its orbit space
I\G/H being identified with the set of double cosets. ’

Definition 2.2.2. For two (G-spaces X and Y, a continuous map f : X —» Y
is called a G-equivariant map, or simply a G-map, if f(gz) = gf(z) for all
gEG. T€X.

For more details on the equivariant topology, we refer to [25, 47, 104].

2.2.2 Representation of Compact Lie Groups

Representations of a compact Lie group G are examples of G-spaces which are
of particular interest for us.

Finite-dimensional GG-Representations

Definition 2.2.3. A finite-dimensional real (resp. complex) vector space V is
called @ real (resp. complex) G-representation, if V is a GG-space such that the
translation map T, : V. — V, defined by Ty(v) := gv for v € V, is an R-linear
(resp. C-linear) operator for every ¢ € . An inner product (resp. Hermitian
inner product) {-,-) : VeV — R (resp. {-,-) : V@V — C) is called G-invariant,
if {gu, gv) = (u,v) for all g € G, u, v € W. A G-representation together
with a G-invariant inner product is called an orthogonal (resp. unitary) G-
representation.

A G-invariant lincar subspace V C Vs called a G'-subrepresentation of V.
Two representations V; and V; are called equivalent or isomorphic, if there is an
(G-equivariant isomorphism A : Vi — V,, and we write V; = V,. We say that V
is an irreducible G-representation, if it has no subrepresentation different from
{0} and V. Otherwise, V is called reducible.

Given a G-representation V, the map T : G — GL(W), T(g) = T,, is a
continuous homomorphism, which is in fact an analytic map (cf. [142]). Based
on the usage of the Haar integral for a compact Lie group, it can be proved
that every real (resp. complex) G-representation is equivalent to an orthogonal
(resp. unitary) representation 7' : G — O(n) (resp. T : G — U(n)).
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For two G-representations Vi and Vi, denote by L%(Vy, V) the space of
all linear G-equivariant maps A : V| — V;, and by GLY(V}, V;) its subspace
of all G-equivariant isomorphisms. Put LZ(V) := L%(V,V) and GLY(V) =
GLE(V,V).

In the case of two irreducible G-representations Vy and Vi, Schur’s Lemma
states that every equivariant linear map A : V; — Vs, is either an isomor-
phism or zero. It follows that every complex irreducible G-representation U
is absolutely irreducible, i.e. every equivariant linear map A : U — U satisfies
A = Md, for some A € C. Consequently, we have that dim¢ LE(U', U?) = 1
or 0 (where U' and U? are two complex G-representations). Using this fact,
it can be easily proved that every complex irreducible GG-representation of an
abelian compact Lie group (' is one-dimensional. In the case V is a real ir-
reducible G-representation, the set LY (V) is a finite-dimensional associative
division algebra over R, so it is either R, C or H, and we call V to be of real,
complex or quaternionic type, respectively.

Characters of GG-representations

For a finite-dimensional real (resp. complex) G-representation W, with the
corresponding homomorphism 7 : ¢ — GL(W), the character of W is the
function xw : G — R (resp. xw : G — C), defined by

Xw(g) =Tr (T(g))7 g€aG,
where Tr stands for the trace of the representing matrix.

The character is a class function, which takes a constant value on a fixed
conjugacy class. It carries the essential information about the representation.
For example, a real or complex representation is determined up to isomorphism
by its character. Also, if a representation is the direct sum of subrepresenta-
tions, then the corresponding character is the sum of the characters of those
subrepresentations (cf. [27]).

The characters of G-representations are mainly used in Appendix A2 to
distinguish different irreducible representations of G used in this thesis.

Convention of Notations

We use the letter V to denote a real G-representation, while the letter U
is reserved for complex G-representations. In the case the type of a G-
representation is not specified, we apply the letter W. By the completeness
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theorem of Peter-Weyl, a compact Lie group G has only countably many irre-
ducible G-representations (cf. [27]), so we assume that a complete catalogue,
indexed by numbers n = 0,1,2,3,..., of these irreducible representation is
available. In Appendix A2, we describe several such catalogues for the groups
used in this thesis. In the case of real G-representations, we denote them by Vg,
V1, Va, ... (where V, always stands for the trivial irreducible G-representation),
and in the case of complex G-representations, by Uy, U, Us, ... (where Uy is
the trivial complex irreducible (G-representation), and in the case the type of
an irreducible G-representation is not clearly specified as real or complex, we
denote them by Wy, Wi, W,, ...(where again W, is the trivial irreducible
G-representation).

Remark 2.2.4.In a special case G = [' x S! for a compact Lie group I,
notice that every complex irreducible I'-representation I; can be converted to
an real irreducible I" x S'-representation by

(v, 2w =2 (yw), (v,2) €' xS, wel;, (2.2)

where ‘- denotes complex multiplication. We denote by V;, the real I' x S*-
representation obtained in this way.

A summary of our convention is presented in Table 2.1.  Exceptional nota-

Real Complex Unspecified
G-representation V., U, sl W,
Irreducible
G-representation 1% U w
List of all irreducible
G-representations Vo, Vi, Vo, ... Uo, Ur, Us, ... Wo, Wi, Wa, ...
({VN}, HG=1Ix Sl)

Table 2.1. Notational convention for real and complex G-representations

tions will be applied to the irreducible S'-representations. We denote by U,
l=0,%x1,%£2,..., the complex S'-irreducible representation with the St-action
given by

dw=2w, ze€8, wel, (2.3)

A
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[

where is the complex multiplication. Similarly, for real irreducible S'-
representations, we will use the notation 'V, 1 =0,+1,£2,....

For a real vector space V, we denote by V¢ := CQrV the complexification of
V. Assume that V is a real G-representation. Then, V€ has a natural structure
of a complex G-representation defined by g(z ® v) = 2 Q@ gv, 2 € C, v € V.
It is also known that for a real irreducible G-representation V, the complex
G-representation V¢ is irreducible if and only if V' is of real type. Otherwise,
if V' has a natural complex structure, then V¢, as a complex GG-representation,
is equivalent to V @ V, where V is the conjugate representation of V. In this
case V is cquivalent to V as a complex G-representation, if and only if V is of
quaternionic type (cf. [27]).

Isotypical Decompositions

By the complete reducibility theorem, every finite-dimensional G-representation
V is a direct sum of irreducible subrepresentations of V| i.e.

V=VaVeo oy (2.4)

where V' is an irreducible subrepresentation of V and some of V¥’s may be
equivalent. This direct decomposition is not geometrically unique and only
defined up to isomorphism.

Among these irreducible subrepresentations, there may be distinet (non-
equivalent) subrepresentations, which we denote by Vi, ..., Vi, including
possibly the trivial one-dimensional representation Vy. Let Vi, be the sum of
~all irreducible subspaces V! C V equivalent to V. Then,

V=V,&V,® &V, | (2.5)

which is called the isotypz'cal decomposition of V. In contrast to (2.4), the iso-
typical decomposition (2.5) is unique. The subspace Vi, is called the isotypical
component of type Vi, (or modeled on Vi,).

It will be also convenient to write the isotypical decomposition (2.5) in the
form '

where each isotypical component V; is modeled on V;, according to a complete

list of irreducible G-representations {V;}. In particular, some V; in (2.6) may
be a trivial subspace.
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In the case of a finite-dimensional complex G-representation U, a similar
complex isotypical decomposition of U can be constructed, namely

U=UsdU ®---dUs,

where the isotypical component U; is modeled on the complex irreducible
(-representation U;, according to a complete list of complex irreducible G-
representations {Z/{,} .

Isotypical Decomposition of GL¢(V)

Let V be an orthogonal G-representation and let GLY(V) be the group of all
equivariant linear invertible operators on V. We have the following standard
algebraic facts on a decomposition of GLE (V).

Proposition 2.2.5. (cf. [106]) Consider the G-isotypical decomposition
V=V, ® &V, ' (2.7)

where a component Vi, is modeled on an irreducible representation Vy,. Then,

(i) GLE(V) = @, GLE(V4,);

(ii) for any isotypical component Vy,, from (2.7), we have GLY(Vi,) ~ G L(m,F),
where m = dim Vj, /dimVy, and F ~ GLY(Vy,), i.e. F =R, C or H, de-
pending on the type of the irreducible representation Vj, .

Banach (-Representations

Definition 2.2.6. A real (resp. complex) Banach space W is a real (resp.
compler) Banach G-representation, if W is additionally a GG-space such that
the translation map 7, : W — W, defined by Ty(w) = gw for w € W, is a
bounded R-linear (resp. bounded C-linear) operator for every g € G. A Banach
G-representation W is called isometric, if for cach g € G, T, : W — W is an
isometry, i.e. ||Tyw|| = ||w]| for all w € W. The norm ||-|| is called a G-invariant
norm.

- A closed G-invariant linear subspace of W is called a Banach G-subrepresent-
ation. Two representations Wy and W; are called equivalent or isomorphic, if
there 1s an G-equivariant isomorphism A : W; — W,. We say that W is
an irreducible Banach G-representation, if it contains no G-subrepresentation
different from {0} and W. Otherwise, W is called reducible.
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If W is a real (resp. complex) Hilbert space, the inner product (resp. Her-
mitian inner product) (-,-) on W is called G-invariant, if (gv, gw) = (v, w),
for all g € G, v,w € W. In this case, W is called an isometric Hilbert (resp.
unitary Hilbert) G-representation.

For a Banach (-representation W and r > 0, denote by
B(W):={weW : |Jw|| <r}.

Clearly, all the finite-dimensional GG-representations are examples of Banach
G-representations. Based on the usage of the Haar integral for G, it can be
proved that for every Banach G-representation W, it is possible to construct
a G-invariant norm on W equivalent to the initial one.

By the completeness theorem of Peter-Weyl, there exists at most countably
many irreducible Banach G-representations of a compact Lie group G. It is
also important to notice that all the irreducible Banach G-representations are
finite-dimensional (sec [106, 116]).

Consider a complete list of all irreducible Banach G-representations, de-
noted by {Wi}2,. Let W be an isometric Banach G-representation. Then,
every irreducible Banach G-subrepresentation of W is equivalent to W, for
some k. Moreover, there exists a closed G-invariant subspace Wy, called the
isotypical component of W corresponding to Wi, in which every irreducible
subrepresentation of type Wy is contained (cf. [15]). Define the subspace

Weo := @Wk | (2.8)
k

which is clearly dense in W. Consequently, W admits the following isotypical
decomposition

W =P Wi (2.9)
k

In particular, for every G-equivariant linear operator A : W — W, we have
that A(Wy) C Wy forall k=0,1,2,....
We have the following result

Proposition 2.2.7. (¢f. [15]) Given (2.8) and (2.9), for any finite subset X C
Weoo the subspace span G(X) spanned by the orbits of points from X, is finite-
dimensional and G-invariant.

For more information on Banach representations we refer to [106, 20, 116].
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2.2.3 G-Manifolds

Definition 2.2.8. A finite-dimensional smooth manifold M is a G-manifold,
if it is a G-space such that the GG-action on A is a smooth map.

A vector bundle (p, F, B) is a smooth G-vector bundle, if E and B are G-
manifolds and p : £ — B is an equivariant smooth mapping admitting smooth
local trivializations, as well as the map g : p~'(z) — p~!(gz) given by y — gy,
is an isomorphism of Banach spaces, for all g € G.

For a G-manifold M, the tangent bundle 7(M) of M is a smooth G-vector bun-
dle. Let W be a Riemannian GG-manifold, i.e. W has G-invariant Riemannian
metric (-, <) : 7(W) x 7(W) — R. Suppose that M is a G-submanifold of W.
Then, the normal vector bundle »(M) of M in W is also a smooth G-vector
bundle.

Definition 2.2.9. Let I1 be a closed subgroup of (' and let A be an [l-space.
Define an H-action on Gx A by ¢ : H x (G x A) — (G x A) with ¢(h, (g,a)) =
(gh™', ha), for h € H, g € G and a € A. The orbit space

GxA:=(GxA)/H
H

is called the twisted product of GG and A.

For the twisted product G X A, we denote by [g, a] the H-orbit of (g, a). Observe

that G x A is a G-space with the G-action ¢ : G X (G x A) — G x A defined
H o H
by &(¢', [9,a]) = [¢'g, a]. By direct verification, we have that

(i) (@ X A)/G is homeomorphic to A/H;

(ii) If A is also G-space, then G ﬁ A is G-homeomorphic to A.

Given a G-manifold, the following theorem describes the conditions of neigh-
borhoods of each orbit, which is fundamental in the study of the structure of
G-manifolds.

Theorem 2.2.10. (Slice Theorem) (cf. [104]) Let G be a compact Lie group
and M a G-manifold. For any x € M, the orbit G(z) is a G-invariant sub-
manifold of M. Let v denote the normal G-vector bundle of G(x) in M. Then
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the fibre v, over x of v is a representation space of the isotropy group G, so
that v is isomorphic to

G xv, > G/G,
as smooth G-vector bundles. Moreover, there exist a G-invariant open neigh-
borhood U of G(x) in M and a G-diffeomorphism [ : G >< v, — U such that

the restriction of f to the zero cross-section gives the G- dzﬁeomorphzsm from
G/G, to G(x) defined by 9G, w— gx.

Definition 2.2.11. Let M be a G-manifold. The image f(v,) of v, under the
G-diffeomorphism [ above is called a slice of G(x) at z, the representation v,
of G, is called a slice representation, and U is called a tubular neighborhood
around the orbit G(z). '

Theorem 2.2.12. ([cf. [104],[25]) Let-M be a G-manifold and H a subgroup
of GG. Then,

(i) My is @ G-invariant submanifold of M ;

(1) My /G s a manifold. If My is connected, then My /G is also con-
nected;

(#4) If (H) is a mazimal orbit type in M, then My is closed in M ;

() If (H) is a minimal orbit type in M and M/G is connected, then Mn/G
is a connected, open and dense subset of M/G;

(v) My is a W(H)-invariant manifold with free W (H )-action,

where the minimal and mazrimal orbit types are taken with respect to the partial
order relation (2.1).

Corollary 2.2.13. Let V be a finite-dimensional G-representation. Then, for
every orbit type (H) in V, the set Viyy is an invariant submanifold of V.
Moreover, the set Vi is an open W (H)-invariant dense subset of V.

2.2.4 Bi-Orientability of a Compact Lie Group

For a finite-dimensional smooth orientable G-manifold M, we say that M
admits a G-invariant orientation, if the G-action preserves an orientation of
T(M).
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It is easy to sec that every compact Lie group G, considered as a G-manifold
with the G-action defined by left translations (resp. right transtations), admits
a G-invariant orientation. In this case, we call this G-invariant orientation a
left-invariant orientation (vesp. right-invariant orientation) on G.

Definition 2.2.14. (cf. [147, 72])Let G be a compact Lie group. If G admits
an orientation which is both left-invariant and right-invariant, then G is said
to be bi-orientable.

Remark 2.2.15. (cf. [15]) The concept of bi-orientability is closely related to
the following problem: giwen a free G-manifold M and x € M, does the orbit
N := G(z) admit a natural G-invariant orientation? Since G acts freely on
M, there exists a (i-diffeomorphism g, : G — N given by p.(g) = gz, g € G,
for a certain fixed point x € N. Then, the G(~diffeomorphism naturally induces
an orientation oy on N from the orientation o¢ of (. By direct verification, in
order for this choice of orientation being independent of the choice of x, one
needs to require the orientation o being invariant with respect to right trans-
lations of G. On the other hand, the constructed orientation oy of the orbit N
is G-invariant, if and only if oy is invariant with respect to left translations of
G'. Consequently, an orbit (/{(z) C M admits a natural G-invariant orientation,
if and only if 4 is bi-orientable (see [147] for more details) .

Examples of bi-orientable compact Lie groups are abelian groups, finite groups
or those which have an odd number of connected components (in particular,
if (G is connected) (cf. [147]). The importance of the notion of bi-orientability
rests on the following:

Proposition 2.2.16. (cf. [147]). Let M be a free smooth finite-dimensional
G-manifold and let M /G be connected. Assume M admits a G-invariant ori-
entation. Let M, be a (fixed) connected component of M and put G, := {g €
G: gM,= M,}. Then, M,/G, is diffeomorphic to M /G as smooth manifolds.
Moreover, M, /G, is orientable if and only if G, is bi-orientable.

Consequently, under the assumptions of Proposition 2.2.16, if G, is bi-
orientable, then there exists an orientation on M /G in a canonical way.

Definition 2.2.17. Let X be a smooth finite-dimensional G-manifold. Assume
that (H) € &(G; X) is such that W(H) is bi-orientable, and X¥ admits a
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W (H)-invariant orientation, denoted by oyx. For z € X*, choose a natural
orientation oy of the orbit W(H)(z) C X# (cf. Remark 2.2.15). Denote by
S, a slice of W(H)(x) at 2 in X" (cf. Definition 2.2.11). An orientation og
on S, is called positive, if og followed by oy gives the initial orientation ox of
X In this case, the slice S, is called a positively oriented slice. Otherwise,
the slice will be called a negatively oriented slice.

Let V be an orthogonal (i-representation. Consider another orthogonal (-
representation R* @ V| where GG acts trivially on R¥, for & > 0. We will adopt
several notations: @(() stands for the set of all conjugacy classes (H) in G
such that dim W (H) = k; &x(G, V) denotes the set of all orbit types (H) in
R*¥ @ V such that (H) € &(G); &} (G C &,(G) stands for the sct of all
conjugacy classes (H) such that W(H) is bi-orientable; (G, V) C ¢,(G, V)
denotes the set of all orbit types (H) in R* @V such that (IT) € &} (G); A(()
stands for the free Z-module generated by @} (G).

2.3 Regular Normal Approximations

Let V be an orthogonal G-representation, and 2 C R*@&V be an open bounded
G-invariant subset (where n > 0 and G acts trivially on R™).

Definition 2.3.1. A continuous G-equivariant map f : R* &V — V (resp.
a pair (f, 2)) is called £2-admissible (resp. an admissible pair), if f(z) # 0
for all € 912. An equivariant homotopy h : [0,1] X (R* ® V) — V is called
£2-admissible, if by := h(t,-) is 2-admissible for all ¢ € |0, 1].

Many theoretical problems of the equivariant homotopy classification of f2-
admissible maps relate to the questions of how to separate zeros of different
orbit types, and how to choose representatives of equivariant homotopy classes
admitting reasonable transversality conditions. The first question gives rise to
the so-called normality condition, while the second one is more delicate, as the
equivariance “gets in conflict” with regularity. Therefore, one seeks for special
transversality requirements that are compatible with our considerations (for a
general discussion related to different G-actions on a domain and target, we
refer to [19, 101, 120]).

Definition 2.3.2. (cf. [72, 119, 120]). Let V be an orthogonal G-representation,
2 C R” @V an open bounded G-invariant subset and f : R* @V — V an
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f2-admissible G-equivariant map. We say that [ is normal in {2, if for every
a = (H) € ¢(G;2) and every z € f~1(0) N L2y, the following a-normality
condition at t is satisfied: there exists d, > 0 such that for all w € v, (f2,) with
Jol| < 6,

Jlo+w) = [(w) +w—w.

Similarly, an {2-admissible G-homotopy h : [0,1] x (R* & V) — V is called
a normal homotopy in 2, if for every a := (H) € &(G;2) and for every
(t,z) € h=1(0) N ([0, 1] x 2y), the following a-normality condition at (¢, z) is
satisfled: There exists 6,0y > 0 such that for all w € vy ,)([0,1] x §2,) with
“U)” < (5(,{7&,),

h(t,z+w) = h(l,2) + w = w.

Definition 2.3.3. (cf. [72, 119, 120]). Let 2 C R" @ V be an open bounded
invariant set and f : R*®V — V an 2-admissible (-equivariant map. We say
that [ is a regular normal map in {2 if

(i) f is of class C'
(ii) f is normal in £2;
(iii) for every (H) € ®((G; £2), zero is a regular value of

fn = flo, : Cn — v

Similarly, onc can define a regular normal homotopy in 2. The importance
of regular normal maps is outlined in the following propositions.

Proposition 2.3.4. (c¢f. [8], [120]) Let 2 C R* @V be an open bounded invari-
ant set, and [ : R*"®V — V an 2-admissible G-equivariant map being regular
and normal. Then for every x € f~1(0) N 2 we have dim (W (G.)) < n.

Proposition 2.3.5. (cf. [119], also see [120, 135, 187]). Let 2 CR* @V be an
open bounded invariant set and f : R"@V — V an 2-admissible G-equivariant
map. Then for every n > 0 there exists a regqular normal (in {2) G-equivariant
map f : R" @V — V such that supyep ||f(2) — f(2)|| < 1. Similarly, if
h:[0,1] x (R*® V) - V is an £2-admissible G- equivariant homotopy, then
Jor every n > 0 there exists a regular normal (in Q) G-equivariant homotopy
h:0,1] x R*&® V — V such that SUP( )efo,1] XQ||h(f xz)— h(t, )|l <n. In
addition, if hg and hy are reqular normal in §2, then ho = hg and 71] = hy.
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2.4 The Sets N (L, H) and Numbers n(L, H)

The sets N (L, [) and numbers n(L, IT) play an essential role in several recur-
rence formulae, based on which the equivariant degrees are computed.

Definition 2.4.1. (cf. [104]) Given two closed subgroups L C H of a compact
Lie group G, we define the set

N(L, ) = {g € gLy C U}.

and we put
N(L, H)
N(H)

where the symbol | X| stands for the cardinality of the set X.

n(L,H) = (2.10)

Remark 2.4.2. Since H is closed and the G-action on G itself is smooth, one
shows that N (L, H) is a closed subset of GG, hence it is a compact set. Morcover,
define an H-action on G by (h,g) v hg, for h € H, g € GG, then N(L, H) is
an H-invariant subsct of (;. Consider the H-orbit space N(L, H )/H.

(i) Define an N(IH)-action on N(L,H)/H given by ¢ : N(H) x N(L,H) —
N(L, H), where

o(n, Hg) = H(ng), forne N(H), g€ N(L,H).

By direct verification, the action is well-defined and the kernel of the action
coincides with I/, meaning that ¢(n,Ilg) = IIg if and only if n € II.
Therefore, N(L, II)/II is in fact a (left) W (I )-invariant subset of G, and
the W (H )-action is free.

(ii) Similarly, define an N(L)-action on N(L, H)/H given by ¥ : N(L) X
N(L,H) — N(L, H), where

Y(n',Hg) = H(gn'), forn' e N(L), g€ N(L,H).

One verifies that the action is well-defined and L lies in the kernel of the
action, meaning that for every l € L, (I, Hg) = Hg for all g € N(L, H).
Consequently, N(L, H)/H is a (right) W(L)-invariant subset of G.

‘On the other hand, consider (/I as an L-space, with the action given by
(I,gH) — lgH. Then, the L-fixed-point space (G/H)" is naturally a (left)
W (L)-invariant space. The following result is established in [104].
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Proposition 2.4.3. The map Ha — o' Hdefines a W(L)-equivariant home-
omorphism from N(L,IT)/H to (G/H)".

Moreover, we have the following (cf. [25])

Proposition 2.4.4. Let [, C H be two closed subgroups of the compact Lie
group G. Consider (G/H)* as the left W(L)-space. Then, the corresponding
orbit space (G/IYY /W (L) is finite.

Based on Proposition 2.4.3 and Proposition 2.4.4, we prove the following

Proposition 2.4.5. Let L C H be two closed subgroups of a compact Lie group
G. Then,

(i) dimW (L) > dimW(H);

(11) let M be a connected component of the set N(L, H)/H, then dim W (IT) <
dim M <dim W(L);

(iii) in the case dim W (L) = dimW(H) = k, we have the number n(L, H)
is finite and the set N(IL, HY/H is a closed k-dimensional submanifold of
G/H.

Proof: Since (i) is a direct consequence of (ii), we prove (ii) and (iii) only.

(ii) Combining Proposition 2.4.3 with Proposition 2.4.4, we have that
N(L,H)/H, when viewed as a right W(L)-space, consists of a finite num-
ber of W(L)-orbits. By the fundamental homomorphism theorem in algebra,
each of these W (L)-orbits is homeomorphic to W(L)/L, for some subgroup
Lo C W(L). As a connected component, M lies in one of these W (L)-orbit, as
a closed submanifold, with the dimension dim (W (L)/L,). Clearly,

dim (W(L)/L,) < dim W(L).

It follows that
dim M < dim W(L).
On the other hand, viewed as a right W (H )-invariant space, the set N(L, H)/H
is a free W (I )-space (cf. Remark 2.4.2(i)). Thus, the natural projection
p: N(L,H)/H — (N(L, HY/H)/W (H) ~ N(L, H)/N(H), (2.11)

is a fibre bundle with the fiber W (). Hence, we have the following dimension
relation
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dimM =dimp(M) +dim W(H) > dim W (H).
Therefore, we proved dimW(H) < dim M < dim W ().

(iii) In the case dim W(L) = dim W(H) = k, by (ii), every connected com-
ponent of N(L, H)/H has the same dimension %, being a submanifold of cer-
tain W (L)-orbit. Consequently, the set N(L, H)/H is a closed k-dimensional
submanifold of G/ H, and the fibre bundle (2.11) induces a dimension relation

k=dimN(L,H)/H = dim N(L, HY/N(H) + dim W (H)
— dim N(L, H)/N(H) + k,

which forces dim N(L, H)/N(H) = 0. By the compactness of N(L, H), the
orbit space N(L,H)/N(H) is also compact, which proves that the number
n(L, H) is finite. O

The number n(L, H) defined for two closed subgroups of GG with dim W (/1) =
dim W (L) has a very simple gcometric interpretation.

Lemma 2.4.6. Let L and H be two closed subgroups of a compact Lie group
G such that L C H and dim W (L) = dim W (H). Then n(L, H) represents the
number of different subgroups H in the conjugacy class (IT) such that L C H.
In particular, if V is an orthogonal G-representation such that (L), (H) €
P(G; V), L C H, then VN Vyyy is a disjoint union of exactly m = n{L, H)
sets of Vi, 7 =1,2,...,m, satisfying (H;) = (H).

Proof: Notice that N(I, H) can be rewritten as
N(L,HY={geG:LcCgHg'}.

Define H := {yHg™! : g€ G, L C gHg '} and amap b: N(L,H) - H
by b(g) = gHg™*, for g € N(L, H). Consider N(L, H) as a left N(H)-space
(cf. Remark 2.4.2(1)). By direct verification, b is constant on each N(f)-orbit.
Thus, there exists a natural factorization b : N(L, H)/N(H{) — H of b. It is
then easy to check that b is one-to-one and onto. By Proposition 2.4.5, the set

N(L,H)/N(H) is a finite set of order n(L, H). Therefore, by the bijection b,

(L H) also represents the order of H, i.e. the number of different subgroups
H in the conjugacy class (H) such that I, C H.

Assume now that V is an orthogonal G-representation, (L), (H) € &(G; V),
and L C H. Then, Vg C VE. Moreover, gVy C V¥ if and only if g € N(L, H).
On the other hand, gV = Vy if and only if g € N(H). Therefore, the conclu-
sion follows. U
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Remark 2.4.7. For g¢,, g € G, consider the two subsets N(L, H) and N(L, [N!)
of (i, where L := guLlg; !, II = gllg; " Define amap f : N(L,H) — N(L,H)
by f(g) := grgg;’. Tt is casy to check that [ is well-defined and it pro-
vides a homeomorphism between N(L, I) and N(L, I). Furthermore, con-
sider N(L, H) as a left N(H)-space and N(L, H) as a left N(H)-space (cf.
Remark 2.4.2(i)). Then, [ actually factorizes through the orbit spaces, as in-
dicated by a commutative diagram shown in Figure 2.4.7, where we used the
fact N(IT) = gy N(H )g, . In particular, f provides a homeomorphism between

N(L, H)/N(H) and N(L, H)/N(H).

N H) ——1 N(L, H)
p P
N(L,H)/N(H) / N(L,H)/N(H)

Fig. 2.1. Factorization through the orbit spaces.

By Remark 2.4.7, whenever N (L, H) # @ (or equivalently, n(L, H) # 0), we
can always choose L and H from the conjugacy classes (L) and (H), such that
L C H. In the case, this is not possible, it simply implies that N(L, IT) = §.

Given subgroups L C H C (i, consider the H-orbit space N(L, IT)/H (cf.
Remark 2.4.2). By the compactness of N(L, H)/H, it has only a finite number
of connected components, denoted by M;, ¢ =1,2,... k. Put

Dim N(L, H)/H = max{dim M; : i = 1,2,... k}.
Lemma 2.4.8. Assume that I C L C H are three subgroups of G. Then,
Dim N(L, H)/H < Dim N(L', H) /H.

Proof: Notice that N(L, H) C N(L', H), therefore

N(L H) _ N(U,H)
H H ’
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and the conclusion follows. , : Ol

The numbers n(L, H), whenever are finite, play an important role in the
computation of multiplication tables of Burnside rings and the corresponding
modules (and, therefore, may be used to establish partial results on the mul-
tiplication structure of the Euler ring U(G)). However, the main assumption
providing the finiteness of n(L, H) is not satisfied for arbitrary L < H C G.
Below we introduce a notion close in spirit to n(L, H).

Definition 2.4.9. Given subgroups L. C H C G, we say that L is N-finite
in H if the space N(I,, H)/H is finite. For a given subgroup H, denote by
MN(H) the set of all conjugacy classes (L) such that there exists L € (L) being
N-finite in H. For (L) € M(H), put

m(L, 1) :=|N(L, H)/H]|,

where | X | stands for the number of elements in the set X.

Remark 2.4.10. Let L C H C (.

(i) Take a subgroup ' C L. If I’ is M-finite in H, then L is N-finite in H
(cf. Lemma 2.4.8).

(i1) It follows from Proposition 2.4.5(ii) that, if W (L) is finite, then L is
MN-finite.

(iii) Finally, if W(L) and W ({I) are finite, then

m(L, 1) = n(L, H) - |W(H).

We complete this subsection with the following simple but important ob-
servation. '

Proposition 2.4.11. Let L C H C G. Consider the set N(L,H) C G as
an N(H)-space-N (L) (cf. Remark 2.4.2). Then, the corresponding orbit space
N(L)Z\N(L, H)/N(H) is finite, i.e. there exist g1, g2, ..., g € G such that

N(L,H) = N(H)gi N(L) U N(H)gaN(L) U - -- U N(H)ge N(L),

where N(H)g;N(L) denotes a double coset, for j = 1,2,... k, and Ll stands
for the disjoint union.
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Proof: Combining Proposition 2.4.3 with Proposition 2.4.4, we have that
N(L, H)/H, when viewed as a right W {(L)-space, consists of a finite number of
W (L)-orbits. This implies that there exist g1, 92, ..., 9m € N(L, H) such that

N(L,IT) = HpgW (LYW Hg;W (L) U - - U Hgp W (L)
C N(HYgN(LYUN(H)gaN(L)U---UN(H)gmN(L)
= N(ff)g,,“N(L) U N(If)gmgN(L) - N(}I)gmkN(L)y

for some gy, Gmas - - -y 9m,, € N(L, H). O

2.5 Fundamental Domains

Definition 2.5.1. Let ¢ be a topological group and X a finite-dimensional
metric -space. Let Dy C X be open in its closure D. Then D is a fundamental
domain of the (J-action on X if the following conditions are satisfied:

i) QD)= X;
(ii) g(D,) Nh(D,) = 0 for distinct clements g, h € @;

(iii)) X\ Q(D,) = Q(D\ D,);

(iv) dimD = dim X/Q, dim (D \ D,) < dim D, dim (X \ @(D,)) < dim X

where “dim” is the covering dimension.

Remark 2.5.2. The conditions (i)-(ii) imply that a fundamental domain is a
set of representatives of (G-orbits, whose interior contains at most one repre-
sentative from each orbit. The conditions (iii)-(iv) require some compatibility
of the fundamental domain and the group action. Notice that the fundamen-
tal domain is not necessarily unique, but typically chosen to be a convenient
connected part of the space.

Example 2.5.3. (i) Let @ :=Zy be the cyclic group of order N, generated
by ¢, and X := B; be the unit disk on the complex plane C, where € acts
as the multiplication by the complex number 61%, i.e. the rotation by angle
3—\7;-. In this case, a fundamental domain of Zy-action on B; is a sector of

27
angle .
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Fig. 2.2. Fundamental domain of the Zy-action.

(ii) Let @ := Dy be the dihedral group of order 2N, composed of Zy and
kZy, where k€ = —€k. Consider the unit disk X := B; C C, where £ acts
as rotation and « acts as the reflection with respect to the real line. In this
case, a fundamental domain is a sector of smaller angle %.

Fig. 2.3. Fundamental domain of the Dy-action.

In fact, a general result about the existence of a fundamental domain is
proved in [120]:

Proposition 2.5.4. Let G be a compact Lie group, and let X be a finite-
dimensional metric G-space on which G acts freely. Then a fundamental do-
main D C X always erists.

Definition 2.5.5. Under the notations of Definition 2.5.1, assume there exists
an open contractible subset Ty C X/@ such that the natural projection p :
X — X/Q induces the homeomorphism p|p, : Do — To. Then D is called a
reqular fundamental domain.
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Theorem 2.5.6. (cf.[12, 15]) Let G be a compact Lie group. For any smooth
finite-dimensional free GG-manifold X such that X /G is connected, there always
exists a reqular fundamental domain D.

Proof: Since every smooth connected manifold admits a (smooth) triangu-
lation (cf. [179], p. 124-135), the proof is essentially based on the following:

Lemma 2.5.7. Let M be a smooth connected n-dimensional manifold (in gen-

eral non-compact), and let S .= {9f aeJb k=0,1,2,. .. ,n} be a smooth
triangulation of M, where the sets of indices J* are countable. Then there

always exists a subset T, of M satisfying the following conditions:

(1) T, is open in M;

(it) T, is dense in M;

(iii) T, is contractible;

(iv) M \T, is contained in the n — 1-dimensional skeleton.

- . . E - 9 o [+ . - .
Proof: For a given k-dimensional simplex s*, we denote by s* its interior.
We call the n-dimensional simplices in & s7, sj, ...and begin our recursive
- . - Oy ad
definition with T} := 5% and S, := &\ {s}}.

Assume now that T,, and S,, C S are already constructed with T, being
open in M and contractible. If &,, still contains n-dimensional simplices, we
chose the minimal j,,,1 € N such that

(a) s;m, +1 E S"l;
(b) s”

.1 Ny contains an (n — 1)-dimensional simplex 32"}1 € Sp.

X ' o, )
We define T}, 1 := T, UsE ! Us?

km:f] Jm-+1
T,+1 is open in M and contractible.

and Sp,41 = Sy \ {87 g }. Clearly,

Fn+1? Kk

Let Tp := |U,, Tm and S, := (), Sm- By construction, T, is open and (by
connectedness of M) dense in M. Also, S, = M \ T, is a subset of the n — 1-
dimensional skeleton of S.

In order to show that T, is contractible, notice that T, is a CW-complex
and for every continuous map ¢ : S*¥ — T, k = 0,1,2,..., the image ¢(S*)
is compact, so it is entirely contained in some of the contractible sets T,.
Consequently, ¢ is null-homotopiec, hence m¢(7T,) = 0 for all k = 0,1,2,....
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- Therefore, T, is contractible (sce [165], Cor. 24, Chap. 7, Sec. 6) and Lemma
+2.5.7 is proved. O

Continuation of the proof of Theorem 2.5.6.

Let p : X — X/G be the natural projection. To complete the proof of The-
orem 2.5.6, we take the set T, C M := X/G provided by Lemma 2.5.7 and
consider the restriction of p over p~!(T,). The fiber bundle p : p~*(7,) — T,
by contractibility of T,, is trivial. Fix a trivialization ¥ : p=(T}) — G x T,.
We put D, := 971 ({1} x T,,). It is clear (cf. [120]) that D := D, is the regular
fundamental domain.

The proof of Theorem 2.5.6 is complete. U

2.6 G-ENRs and The Euler Characteristics

In this section, we inves.tigate the relationships among the Euler characteristics
of a G-ENR X, of its orbit space X/, and of its various kinds of fixed point
sets XH.

Definition 2.6.1. (i) A topological space X is called an ENR (Fuclidean
Neighborhood Retract), if there exist an open subset O of some Euclidean
space R™ and maps i : X — O, r: O — X such that ri = Id;

(i) Let G be a compact Lie group. If an ENR X is a G-space, O is a G-
invariant open subset of a G-representation R", and the maps ¢ and r are
G-equivariant, then X is called a G-ENR.

" A basic theorem of point set topology states that a separable metric space
of dimension < n can be embedded into R***! (cf. [92]). Hence,

Lemma 2.6.2. (¢f. [47]) A space is an ENR if and only if it is a finite-
dimensional, locally compact, separable, and locally contractible metric space.

For example, every compact manifold, with or without boundary, is an ENR
(cf. [87]). In case of G-ENRs, the following results are established in [102, 47].

Proposition 2.6.3. (cf. [47]) Let X be a G-ENR. Then the orbit space X/G
is an ENR.



2.6 G-ENRs and The Euler Characteristics 49

Proposition 2.6.4. (¢f. [102]) Let X be a G-space which is separable metric
and finite-dimensional. Then, X is a G-ENR if and only if X is locally com-
pact, has a finite number of orbit types, and for every isotropy group H C G,
the fixed point set X" is an ENR.

We have direct consequences of Proposition 2.6.4 (cf. [47]).

Corollary 2.6.5. (i) A finite G-complex X is a G-ENR;
(it) A differentiable G-manifold with a finite number of orbit types is a G-ENR.

One of the important properties of (compact) ENR spaces is

Proposition 2.6.6. (c¢f. [50, 87]) The singular homology groups H.(X) of a
compact ENR X are finitely generated, i.e. Hi(X) is finitely generated for all
k, and H(X) = 0 for sufficiently large k.

Consequently, the Euler characteristic of a compact ENR is defined. More
precisely, let X be a compact ENR, the Euler characteristic x(X) is defined
as the alternating sum

x(X): =) (=DfrankH,(X), (2.12)

>~

SNk

[43

where H,.(X) denotes the singular homology group of X, the “rank” counts
the number of free generators of the group, and the sum is essentially finite
(cf. Proposition 2.6.6). It is sometimes more convenient to compute x(X) by
the corresponding singular cohomology ring of X over reals (cf. [165])

x(X) =) (=DFdimH*(X). (2.13)

kol

gk

=(

In a similar way, one can define the Euler characteristic for a compact
ENR pair (X, A), denoted by x(X, A), using the relative singular cohomology
H*(X, A). In case of a non-compact ENR X, we define the Euler characteris-
tic x.(X) through the Alexander-Spanier cohomology with compact supports
*(X).

The following lemma indicates a relation between the Alexander-Spanier
and singular cohomology.
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Lemma 2.6.7. (cf. [165]) If (X, A) is a pair of paracompact Hausdorff spaces
being locally contractible, then there exists an isomorphism between the Alexand-
er-Spanier cohomology and singular cohomology, i.e. H*(X, A) & H¥(X, A),
for all k > 0, where HT*(X, A) stands for the Alerander-Spanier cohomology of
(X, A). |

Taking into account of Lemma 2.6.2, we have

Corollary 2.6.8. If (X, A) is a pair of ENIRs, then there exists an isomor-
phism between the Alexander-Spanier cohomology and singular cohomology,
i.e. HE¥(X, A) = HF(X, A), for all k > 0.

Consider the relation between the Alexander-Spanier cohomology with com-
pact supports and the usual Alexander-Spanier cohomology. The followings are
established in [165].

Lemma 2.6.9. (¢f. [165]) If X is a compact Hausdorff space and A is closed
in X, then there exists an isomorphism between the Alexander-Spanier coho-

mology with compact supports and the usual Alexander-Spanier cohomology,
ie. HF(X\ A) = [I¥(X, A), for all k > 0.

Corollary 2.6.10. (cf. [165]) If X is a locally compact Hausdorff space and
X1 is the one-point compactification of X, then there is an isomorphism

H¥X) = H*¥X?), for all k > 0, where H*(X") stands for the reduced
Alexander-Spanier cohomology of X *.

Based on Corollary 2.6.8 and Lemma 2.6.9, we have the following properties
of the Euler characteristics of the ENRs.

Lemma 2.6.11. Let (X, A) be a pair of compact ENRs. Then,
(1) the Buler characteristic x.(X \ A) is correctly defined in the Alezander-
Spanier cohomology with compact supports. Moreover,
Xo(X \ A) = x(X, A)
x(X) = x(X, A) + x(A) = xe(X \ 4) + x(4),

where x(-) denotes the Euler characteristic defined in the singular cohomol-
0gy.
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(it) (cf. [47]) let p - (X, A) — (Y, B) be a continuous map between compact
ENR’s such that p(X\A) = Y\B. Suppose that p : X\A — Y\B is a
fibration whose typical fibre I is a compact ENR. Then,

x(X, A) = x(F)x(Y, B).

Denote by 7" := S* x S! x ... x S! an n-dimensional torus (for n > 0),
which is an n-dimensional connected abelian compact Lie group.

Lemma 2.6.12. Let X be a compact T"-ENR space for n > 0. Then,

X(X) = x(X").

In particular, if X" =1, then x(X) = 0.

Proof: Take a decomposition of X by X = U  X(m), where each Xy
(H)yed(T™)

is an open T"-invariant subset of X. Since Xy is a fibre bundle with fibre

T"/H, x(X(n) is a multiple of x(T"/II) (cf. Lemma 2.6.11). Thus, by the

- additivity of x,

x(X) = ZX(;(X(H)) = Znn x(T"/H), (2.14)

(H) (H)
where ny = x.(Xun/T") € Z.

On the other hand, notice that for all H C T", the orbit space T™/H is
diffeomorphic to a connected abelian compact Lie group of dimension at least
one. Hence, it is a torus, and thus x(7T"/H) = 0. Therefore, the cssential
summand in (2.14) comes from (H) = (T"). It follows that x(X) = x(Xrny).
Since T" is abelian and T™ is the maximal isotropy in X, x(Xm)) = x(Xm) =
X(XT). O

Lemma 2.6.13. Let G be a compact abelian Lie group and X,Y two GG-spaces.
Denote by A the diagonal subgroup in G X G and consider X xY as A-space.
Define a left G-action on the orbit space (X X Y)/A by

p:Gx (X xY)/A—-(XxY)/A
(9, Alz, ) — Az, gy).

Then, for Alz,y) € (X xY)/A, its isotropy equals to GGy (i.e. the subgroup
of G generated by G4, G).
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Proof: Notice that since G is abelian, the action p is well-defined.

To verify the statement, take g € G such that A(z,y) = A(gz,y). Observe
that viewed as two A-orbits, A(z,y) coincides with A(z, gy) if and only if
Az, y) N Az, gy) # 0, i.e. there exists g1,902 € G such that (12, q1y) =
(g2, g2gy). This is equivalent to require that g7'g» € G, and g7 'gag € Gy,
which implies that g € g;'¢:G, C G,G,,.

On the other hand, if g € GGy, then there exist g, € G, gy € Gy such
that g = g.g,. Thus,

Az, gy) = Az, agyy) = Alz, g2y) = Alg, 'z,y) = Az, y),
i.e. g belongs to the isotropy group of A(z,y). 1

Corollary 2.6.14. Let X, Y be compact T"-ENRs, and A be the diagonal sub-
group of T x T". Assume that G, (G, # G, forall z € X, y € Y. Then,

(X x ¥)/4) =0.

Proof: ~ Consider (X x Y)/A as a left G-space. By Lemma 2.6.13,

(X x ¥)/A) = @ if and only if G,G, # C, for all z € X, y € Y, which
is satisfied by the assumption. Therefore, by Lemma 2.6.12, x ((X x Y)/A) =
X (X x ¥)/A)%) = x(®) = 0. O

Corollary 2.6.15. Let X, Y be compact T"-ENRs, and A be the diagonal sub-
group of T" xT™. Assume that dim G, +dim Gy < dimd, forallz € X,y €Y.
Then,

X(X X Y)/4) = 0.

In particular, it holds for G = S*, X' =yS =¢.

Proof: It is sufficient to observe that dim v, +dim G, < dim G implies that
G.G, # (. Hence, the statement follows from Corollary 2.6.14. O

Definition 2.6.16. A subgroup H C G is said to be of maximal rank if H
contains a maximal torus T" of G.

Proposition 2.6.17. Let H C G be a subgroup of G.

(i) If I is not of mazimal rank, then x(G/H) = 0.

(i1) If H is of mazimal rank, then Wy(T™) is finite and x(G/H) =
(We(T™)/\WWu(T™)|. In particular, x(G/T™) = [We(T™)|.
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Proof:

(i) If H is not of maximal rank, then GG/H admits an action of a torus
T* (0 < k < n) without T*-fixed-points, and the result follows from Lemma
2.6.12.

(ii) Assume H is of maximal rank. Then, for the proof of the finiteness of
Wn(T), we refer to [27], Chap IV, Theorem (1.5). Next, we have a fiber bundle
G/T™ — G/H with the fiber I1/T". Then, by Lemma 2.6.11(ii), x(G//T") =
X(H/T™) - x(G/H). On the other hand, by Lemma 2.6.12 and Lemma 2.4.4,
we have

X(H/T™) = x((H/T™)") = x(Nu(T")/T") = Wi(T")], (2.15)

from which the statement follows.

O

2.7 Completely Continuous and Condensing Fields

2.7.1 Measure of Noncompactness
For a Banach space E, denote by B(E) the family of all bounded sets in E.

Definition 2.7.1. A function p : B(E) — Ry :=[0,00) is called a measure of
noncompactness if it satisfies the following conditions for A, B € B(E)

(11)  p(A) = 0 <= A is compact,

(12)  p(A) = p(A),

(n3) if A C B then pu(A) < p(B),

(p4)  p(AUB) = max{u(A), u(B)},

(16)  p(nA) = Inln(A), n € R,

(16) A+ B) < u(A) + u(B),

(u7) ,u((*onv (A)) = p(A), where conv (A) denotes the convex hull of A.

An example of a measure of noncompactness is the so-called Hausdorff
measure of noncompactness.

Definition 2.7.2. The function x : B(E) — R, defined for A € B(E) by

X(A) :=inf{r > 0: XEIC]E X is finite and A C X +7rB1(0)}, (2.16)

1s call the Hausdorff measure of noncompactness.
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Proposition 2.7.3. The function x : B(E) — R, defined by (2.16) is a mea-
sure of noncompactness.

Proof: We need to verify that x satisfies the conditions (u1) — (7). Notice
that A C B(E) is relatively compact if and only if it is totally bounded, i.e.

Y 3 X is finite and A C X + €B,(0).
>0 XCE

If X = {z,,...,z,}, then the set

K

X +eBi(0) = | Bear) D A

K1

is called e-net for A, thus the condition (pl) immediately follows from the
definition of x(A). The condition (13) is trivially satisfied, so in order to show

(12) observe that x(A) < x(A) and we only need to show that x(A) > x(A4).
Put x(A) := a. Then '

¥ 3 Xis finite and A C X + (a + %)BI(O). (2.17)

e>0 XCE
Since A C X + (a+ 5) Bi(0) € X + (o +¢)B4(0), it follows from (2.17) that

vV 3 Xisfinite and A C X + (a +€)By(0),
>0 XCE

which implies that B
Y x(A) <ate=x(A)+e,

i.e. x(A4) < x(A).

To prove (125), observe that
B, (0) + B, (0) C By (0), 71,72 >0
thus if for some finite sets X' and X"
AC X' +rBi(0) and B cC X"+ ryBs(0)
then

A+ BC X’ + X”+ TlBl(O) + TzBl(O) C X+ (7“1 +T2)vBl(O),
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where X := X + Xy, and we get (u6). To show (u7), observe that for two
convex sets C, Cy C E, we have that 7+ is convex. Also, since conv (A+ B)
is the smallest convex set containing A + B, we immediately obtain

conv (A + B) C conv (A) + conv (B).

By (u3), x(A) < X(conv(A)). Let a := x(A), then by using (2.17) we have

vV 3 X is finite and conv (A) C conv (X) + (ZL‘ + :)B,(O),
e>0 XCE 2
Since X is finite, conv (X) is compact and by (u1) there exists a finite set
X' C E such that . '
conv(X) C X'+ 3 B(0),
which implies '

conv (4) € X'+ = By(0) + (o + %)B;(O) C X'+ (a+€)Bi(0),

2
thus
v x(conv(A)) < a+e=x(A)+e
1e. x(conv (A)) < x(A) and (u7) follows. The proofs of (u4) and (u5) are
straightforward. o

Proposition 2.7.4. Let E be a Banach space and B := B1(0) the unit ball
in E, and p a measure of noncompactness on B(E). If u(B) = 0, then E is
finite-dimensional. In other words, only in finite-dimensional Banach spaces
the unit ball is relatively compact.

Proof: Suppose that B is compact, then there exists a finite set X C E such
that B C X + % B. Put Ey = span (X). Clearly, dim Ey < oo and

—_ . 1 — 1 —
BCX‘F:}BCE()’F-?-B. (218)

By multiplying (2.18) by 3, we get

Thus,
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ECE()+E(j+

By induction, for every n € N

_ 1 o 1
BCE()—I-'Q“;B, i.e. BCD(E0+§;B):E(),

n=1

which implies

E = G nB C D nE, = E,.
n=1

n==1

2.7.2 Compact, Completely Continuous, and Condensing Maps

Let p be a measure of noncompactuess on B(E). Then, u can be extended to
a measure of noncompactness on B(R" ¢ E) by

p(A) == pu(rn(A)), AeBR"PE),
where 7 : R" ¢ E — E is the natural projection.

Definition 2.7.5. Let p be a measure of noncompactness on B(R" ¢ E). For
X CR"@E, a continuous map I': X — E is called

(i) a p-Lipschitzian map with a constant k& > 0, if u(F(A)) < ku(A) for all
A€ B(X);

(ii) a compact map, if X is bounded and p(F (X)) = 0;

(iii) a completely continuous map, if it is p-Lipschitzian with a constant k = 0;

(iv) a Darbé map with constant 0 < k < 1, if it is p-Lipschitzian with the
constant & € [0,1);

(v) a condensing map, if it is p-Lipschitzian with a constant & = 1 and
u(F(A)) < i(A) for every A € B(X) such that p(A) > 0.

Definition 2.7.6. A bounded linear operator L : R* @ E — E is called com-
pact, if L is a completely continuous map.

Proposition 2.7.7. Let G : R*" @ E — E be a Banach contraction with a
constant k € [0,1) and K : R* @ & — E a completely continuous map. Then
F(z) := G(z) + K(z) is a Darbé map with the same constant k, with respect
to the Hausdorff measure x of noncompaciness defined by (2.16).
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Proof: For y € E, denote by B (y) the ball of radius r centered at y in the
target space E. Take A € B(R" @ E), and suppose « := x(A). Then, for every
e > 0, there exists a finite set X = {z,...,znx} C R" @ E such that

N

A C | Base ().

i=1
Since G is a Banach contraction with a constant k € [0, 1), we obtain
a(A) C UG(H(W U Biain (G(22)) = G(X) + k(o + ) B} (0).
g1

Thus, x(G(A)) < k(a +¢€), for any € > 0, which implies that
X(G(A)) < bx(A).
On the other hand, by the properties of x

X((G 4 K)(A)) < x(G(A) + K(A))
< x(G(A)) + x(K(A)) = x(G(A))
< kx(A).

Therefore, [ is a Darb6 map with the constant k. » O

Proposition 2.7.8. Let U € R" @& E be an open subset and I7 : U — E
a continuously Frechét differentiable Darbé map with a constant k € [0,1).
Then, for every x, € U, the derivative L := DI'(z,) : R*" ®E — E is a Darbé
operator with the same constant k.

Proof:  As before, we denote by B.(z) (resp. B¥(y)) the ball of radius r
centered at z € R*®E (resp. at y € E). By the differentiability of F at z, € U,
we have that for every € > 0, there exists ¢ > 0 such that if ||z — z,|| < 4, then

1£(z) = F(zo) — L(z — z,)|| < ellz — || < &6,
which implies that
[z = zo) || < | F'(2) — F (o)l + 6.

Then,
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L(Bs(0) C FF(Bs(z,)) — I'(x,) + €6 B} (0).

Thercfore,

Ou(L(B1(0))) = u(I(Bs(0)) < pu(F (Bs(w,) — F(0) + €0 B;(0))
< u(F(Bs(@,)) + edu( B}(0))
< ku(Bs(e.)) + edu(B;(0))
= kou(B1(0)) + e0u(B; (0)),

which holds for every € > 0, thus we have p(L(B1(0)) < ku(B1(0)). It follows
that I, is a Darb¢ operator with the constant k. ]

Proposition 2.7.9. (¢f. [116]) Let L : E — E be a bounded Darbé operator.
Then, the linear operatorId — L : E — E is a bounded Fredholm operator of
index zero.

2.7.3 Completely Continuous and Condensing Fields

Definition 2.7.10. Let E be a Banach space, X CR"@®E and f: X - E a
continuous map of the form f =1Id — F, for F' : X — E. Then, the map f is
called

(i) a compact field on X, if F' is a compact map;

(it) a completely continuous field on X, if I is a completely continuous map;
(iii) a Darbé field on X, if I is a Darbé map;
(

iv) a condensing field on X, if I' is a condensing map.

A finite-dimensional degree theory can be extended in a standard way to the
so-called Leray-Schauder degree theory for completely continuous fields on a
Banach space E. Further extensions of the degree theory can be done for Darbé
fields and condensing ficlds on E. For more details from this perspective, we
refer to [116].
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Primary Equivariant Degree: An Axiomatic
Approach

The primary degree (with one parameter), as it was confirmed by a large
number of possible applications (cf. [5, 6, 10, 13, 14, 17, 53, 55, 181, 118]), is one
of the most effective tools for studying nonlinear equations with symmetries.
In particular, it provides a unique alternative to the equivariant singularity
method (cf. [79, 81, 94, 160]) for the treatment of symmetric Hopf bifurcation
problems. However, the effectiveness of the primary degree is not just limited
to symmetric bifurcation problems. This degree can also be applied to the
existence problems (e.g. periodic solutions in autonomous system, see Chapter
8) based on the usage of the a priori bounds.

The primary degree (which was originally introduced in [72]) is a “part”
of the general equivariant degree constructed by Ize et al. (cf. [97, 101]). The
general equivariant degree is a full topological invariant (defined as an element
of the stable equivariant homotopy group of sphere) expressing the obstruc-
tion for existence of an equivariant extension (without zeros) of a map from
a boundary of a bounded region onto its interior. The primary degree turns
out to be a computable part of the general equivariant degrec. In this chapter,
we present a new construction of the primary degree using normal approxima-
tions, fundamental domain techniques and connections to the classical Brouwer
degree. In order to facilitate its applicability, we also provide for the primary
degree a set of axioms (summarizing the main properties of the primary de-
gree) and the computational result called the recurrence formula (cf. [114] for
an earlier version in a slightly different setting), allowing its effective usage
outside the equivariant topological context.

The recurrence formula reduces computations of the primary degree of an
equivariant map to the computations of its S'-degrees on the fixed-point sub-
spaces. Since the S'-equivariant degree plays a crucial role in a development
of effective computational formulae for the primary degree, we derived a prac-
tical set of axioms for the S'-degree and, based on these axioms established
all the needed computational techniques. We also explore the notion of the -
so-called basic maps (i.e. the simplest equivariant maps having nontrivial pri-
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mary (G-degrees) with a particular attention given to basic S'-maps. The
obtained results allow further reductions of the computations, leading to a
computerization® of the equivariant degree method.

The chapter is organized as follows. In Section 3.1, we recall the definition
of the gencral equivariant degree and define the primary equivariant degree as
its part. In Section 3.2, we present a new construction the primary equivari-
ant degree via the usage of fundamental domains, where we indicate a direct
connection of the primary degree with the (local) Brouwer degrees of related
maps. The axiomatic definition of the primary degree is stated in Proposition
3.2.5. The notion of basic maps and C-complementing maps are introduced
in Section 3.3. Towards the computations of primary G-degree, we present a
splitting lemma (cf. Lemma 3.3.4). Section 3.4 contains an axiomatic definition
to the primary S'-degree and several computational formulac as direct consc-
quences of splitting lemma. In Section 3.5, we state and prove the recurrence
formula in the context of the primary degree with n-parameters for n < 1.

3.1 General Equivariant Degree

Let G be a compact Lie group, V be an orthogonal G-representation, and
2 C R"@® V be an open bounded G-invariant subset. Consider a continuous
2-admissible equivariant map f : 2 C R* @V — V, ie f: (2,002) —
(V,V\{0}). One can assign to the pair (f, £2) an clement, called the equivariant
degree and denoted by deg »(f, £2), in the abelian group /1 being stable limit
of the equivariant homotopy groups /Iy of maps (cf. [72, 15])

SRV V) = SRY @ V).

More precisely, take a large ball Br(R" & V) such that 2y C Br(R* & V),
where 2y := 2 UN and N is an invariant neighborhood of 92 such that
f(z) £ 0for all z € N. Let 7 : Br(R*@® V) — R be an invariant Urysohn
function such that

0 ifzel?,

n(z) = . (3.1)

1 if © ¢ -QN
Define F : ([—1,1] x Br(R" & V),0(|~1,1] x Bp(R"® V))) — (R® V,(R®
V)\ {0}) by
mMaple ®© routines have been developed to assist effective computations of primary degree

with one free parameter, for several interesting symmetry groups. The most recent version is avail-
able at http://krawcewicz.net/degreeor http://www.math.ualberta.ca/~wkrawcew/degree.
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F(l,z) = (L+ 29(x), f(z)), (L,z) € [~1,1] x Ba(Rr @ V). (3.2)

. The pair ([—1,1] x Br(0),8([—1, 1] x Br(0))) is G-equivariantly homcomor-
phic to (B(]R ®V),S(B(R® V)))7 so the map /' determines an equivariant
homotopy class [F] in IT,. Define

dego(/f, 2) = &1 € 1€, (3.3)
and call it a G-equivariant degree of f in 2.

The equivariant degree constructed above, which is a slight modification
of the construction given in [97], satisfics all the properties expected from any
reasonable degree theory, like existence, homotopy invariance, excision, suspen-
sion, additivity etc (cf. [72, 15, 101]). Roughly speaking, the equivariant degree
“measures” equivariant homotopy obstructions for fj5o to have an equivariant
extension without zeros over (2.

As it is shown in [8], the group /1¢ admits a splitting

n¢= @ mun,
dim W (H)<n
where IT(H) consists of all the elements in /7% generated by B(RY ™ ¢ V)-
admissible maps f : RV @V — RY @ V being regular normal maps with
zeros of the orbit type (H) only. Thus,

deg (f, £2) = z: ey, ey € TI(H).
dimW (I1Y<n

If dimW(H) = n, the component [/(H) is called primary, and if W(H)

is bi-orientable, II(H) ~ Z (cf. [147]). The projection of deg,(f,{2) onto
> 1I(H) is called the primary degree of f in (2 and is denoted by

(H)Yed(G,0)

G-Deg (f, 12).

The applicability of the primary degree depends heavily on its computabil-
ity. In the general case n > 0, the computation of the primary degree is a
complicated task. However, in the case n = 1, the primary degree seems to be
completely computable due to a reduction to the S'-degree using recurrence
formula (cf. Sections 3.4—3.5). In the case n = 2, one can look for a similar
reduction to the S x S'-degree (cf. [97] for results on S* x S'-degree). In the
case n > 2, the situation is much more complicated, since possible connected
components of W () may be different from n-tori.
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3.2 Primary Equivariant Degree with n Free Parameters

The primary degree introduced in [72], uses the regular normal approximations
and winding numbers of their restrictions to normal slices around the orbits
of zeros (cf. [51, 52, 116], where the case G = S! was considered). Since it
is well-known that the winding number admits an axiomatic definition as an
integer-valued function satisfying a list of certain properties (cf. {112, 188]), it
is natural to ask whether a similar axiomatic approach exists for the primary
degree. The answer turns out to be affirmative.

3.2.1 Construction

Take an f2-admissible G-equivariant map f : R*" @V — V and assume that
it is regular normal in 2. For (H) € ¢}(G, V), put [y = fio, and take a
canonical orientation on 2y /W (H) (cf. Proposition 2.2.16). Choose a regular
fundamental domain [ on 2y such that f5;*(0)N(D\ D,) = { (cf. Section 2.5,
Theorem 2.5.6). Put T, := p(D,). Since [ is regular normal, the set p(f7;' (0)N
D,) is finite, thus it is always possible to construct T, in such a way that
p(f5;'(0)) € T, The homcomorphism & := p~i|p, : T, — D), is called the
lifting homeomorphism.

Definition 3.2.1. Consider an f§2-admissible G-equivariant regular normal
map [ : R"@ V — V. We define the primary degree of f to be an element
G-Deg (f, £2) € AN (G) by

C]'Deg (f7 !2) = anh(Hi)7 (34)
=1

where the coefficient ny, corresponding to (H;) is defined by
ny, :=deg(fm, 0&1,), | (3.5)

with £ being the lifting homeomorphism and deg standing for the (local)
Brouwer degree of fy, (cf. Section 2.1.3). To certain extent, one can think
of ny, as the Brouwer degree of fy, on a fundamental domain D.

Iff:R*"®V — V is a general G-equivariant 2-admissible map (not neces-
sarily being regular normal in §2), then take a regular normal approximation
map f of f (cf. Proposition 2.3.5) and define

G-Deg (f, 2) := G-Deg (f, 12). (3.6)
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We will show that the primary degree given by (3.4)—(3.6) is well-defined.

Proposition 3.2.2. Let G be a compact Lie group, {2 C R" BV an open
bounded invariant subset and f :R" @&V — V an 2-admissible (-equivariant
map. Then, the primary degree given by (8.4)—(3.6) is well-defined.

Proof: (i) We first show that formula (3:5) is independent of a choice of a reg-

ular fundamental domain D. Suppose that D' is another regular fundamental |
domain such that f5'(0) 0 (D' \ D)) = 0, p(D.) = T with the lifting home-

omorphism & : T, — D! By applying the additivity property of the Brouwer

degree, we can assume, without loss of generality, that fgl(()) is composed of

a single orbit W (If)(z,) and put p(z,) = y,. Suppose that B, C T,N T, is a

contractible neighborhood of y,, put £, = £(B,), £}, = £'(B,) and we assume

x, € 1J,. Then, by excision property of the degree,

deg(fyo&,T,) =deg(fuoé&, B,), deg(fyof T,) =deg(fnof B,).

We will show that

d(‘g (fH ° 57 Bo) - d@g (fH o 6,7 b)o)' (37)

Case 1. z, € I, N F,. Observe that § 5, and {5 are sections of the (trivial)
bundle p : p~'(B,) — B,, thus there exists a continuous map p : F, — W(IT)
such that for every = € F,, we have

V() = pu(z)r € K,

and ¥ : F, — I is a homeomorphism since so are §p, and §l’ B, In particular,
i(z,) = 1 and F, is contractible. Therefore, there exists a homotopy gy of p
with a constant map p.(z) = 1. Put %(z) := w(z)z, i.e. ¥ is a homotopy
between ¥ and Idg,. Observe that ¢ = ¥ o ¢, therefore, by the homotopy
invariance of the degree, we have

deg(fuof,B,) =deg(fnoW¥ol, B,) = deg(fuoW,o¢, B,) = deg (fu o€, B,).

Case 2. z, € F,, N E.. In this case, there exists g € W(H_)-O_ such that gz, =:
x, € B,. Put D, := g(D,). Since W(H), acts freely, D := D, is a fundamental
domain with a lifting homeomorphism £ = g o £, and we put F, = ¢g(FL,). By
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the Sard-Brown theorem (cf. Proposition 2.1.5), we can assume that y, is a
regular point of the map fy o&. Since fy is W(H)-equivariant, we have

Juof=fyoglogof= "‘o,fHogO,E:g“loJ"nﬁ,

1.e.

gofuo&=fuog,
which implies that g, is also a regular point of f o€. Since the action of W(H)
preserves the orientation of the slice, we obtain immediately

deg(fuo&, B,) =deg(fuo £, B,).
Since z, € £, N ﬁo, the equality (3.7) folows from the Case 1.

(ii) We show that the formula (3.5) does not depend on a choice of a repre-
sentative f. Take two regular normal G-equivariant maps fy and fi, which are
equivariantly homotopic by an £2-admissible homotopy ¥ : [0, ] xR*@®V — V
with ¥y = fy and ¥, = fl (where ¥, :=W(t,-)). Let (H) € ¢,,(G, V) and choose
D' to be a regular fundamental domain for the W (Il)-action on £2y such that
(fo)u (O)N(D'\ D;) = 0. Denote by €' := (ppy) ™' : T, — 1, the correspond-
ing lifting homeomorphism. Then, by continuity of ¥, there exists 0 < ¢; < 1
such that 7y (¥)5' (0) N (D' \ D) = 0. Since for every 4; € [0, [y), the
map ¥, ¢ € [0,1,], is a regular normal homotopy between fy and fy = ¥, , it
follows from the homotopy property of the local Brouwer degree that

deg ((fo)u €', T,) = deg((fl)H o', T,).

By the compactness of [0, 1], there exists a (finite) partition 0 <, < --- <
tx = 1 and fundamental domains D', D? ... D* with the corresponding lifting
homeomorphisms &' := (pp: )™ : Ti — D:, such that

U @0 n 0"\ D) =0.
te(tim1,t:]

Consequently, by induction, we obtain

deg ((fo)r o &, T)) =deg (f)m 0 €', T)) = -~ = deg ((fx)mr 0 €, TY),

which implies

deg ((fo)u 0 €', T,) = deg ((fu)m 0 €, T7).
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Thus, Proposition 3.2.2 ig proved.
O

We will proceed with the basic properties satisfied by the primary degree.
To formulate the so-called normalization property, we start with the definition:

Definition 3.2.3. Let (' be a compact Liec group, V an orthogonal
G-representation and f : R" & V — V a regular normal map such that
f(z,) =0 with Gy, = Il and () € O} (G, V).

(1) Let Ug(s,) be a G-invariant tubular neighborhood around G/(z,) such that
J7H0) N Ug,) = G(x,). Then, [ is called a tubular map around G(z,).
(ii) In addition, take a positively oriented slice S,, to W(H)(z,) in R" @ V#
(cf. Definition 2.2.17). Call n,, = sign det D f¥ (70)]s,, the local index of f

at x, in Ug(,,) (here = flou and D stands for the derivative).

Proposition 3.2.4. (cf. [72, 101]). Let G, V, £2 and [ be as in Proposition
3.2.2. Then the primary degree defined by (3.4)—(3.6) satisfies the following
properties:
(P1) (Existence) If G-Deg ([, 2) = Y ny(H) is such that ny, # 0 for some
()
(H,) € &}(G, V), then there exists v € 2 with f(x) =0 and Gy D 1,.
(P2) (ApprtiviTy) Assume that £2, and (2, are two G-invariant open disjoint
subsets of £2 such that f~1(0) N2 C 2, U Q. Then,

G-Deg (f,2) = G-Deg (f, 2,) + G-Deg (f, 12,).

(P3) (Homotopy) Suppose h : [0,1] x R* @V — V is an 2-admissible G-
equivariant homotopy. Then,

G-Deg (hy, £2) = constant

(here hy == h(t,-,-), t € [0,1]).
(P4) (Suspension) Suppose that W is another orthogonal G-representation and
let U be an open, bounded G-invariant neighborhood of O in W. Then,

G-Deg (f x Id, 2 x U) = G-Deg ([, £2).

(P5) (NormavrizaTion) Suppose f is a tubular map around G(z,) with H := G,
and (H) € &}(G,V). Let n,, be the local index of f at z, in a tubular
neighborhood Ug(s,). Then,

G-Deg (f, Ug(a,)) = N, (H).
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(P6) (Erimination) Suppose [ is normal in 22 and Qp 0 [7H0) = @ for every
(H) € &G, V). Then,
G-Deg ([, §2) = 0.
(P7) (Excision) If f7H0) N 2 C 2y, where 2y C §2 is an open invariant

subset, then

G-Deg (f, £2) = G-Deg (f, 2).

(P8) (Hopr PrOPERTY) Suppose that 2 C R* @V is an open invariant subset
such that 2y /W (H) is connected for all (H) € &} (G,V) and 2k = 0
for all (K) € Ox(G,V) with k < n and all (K) € &,(G, V) \ & (G). Let
[, 9. R*®V -V be two 2-admissible G-equivariant maps such that

(-Deg (f, 2) = (-Deg (g, 22).

The‘n, f and g are G -equivariantly homotopic by an £2-admissible homotopy.

Proof: (P1): Assume [ is regular normal and (H,) € ¢/(G). Choose a
regular fundamental domain ) and the lifting homeomorphism ¢ : T}, — D, for
the W (I1,)-action on 2y,. By assumption, 0 # ny, = deg(fy, © &, T,). Then,
by the existence property of the (local) Brouwer degree, there exists y, € T,
such that fu,(€(y,)) = 0, i.e., fu,(x,) =0, where x, = £(y,) € D, C 24,, 50
that G, = H,.

In the general case, take a scquence {f,} of G-cquivariant £2-admissible
regular normal maps such that

sup [l fu(®) = F()] < .
TES2 n

Since for n sufficiently large f,, is G-equivariantly homotopic to f, it follows
that G-Deg ([, 2) = G-Deg(fn, £2). Since f,, is normal, we obtain [, 1(0) N
Ny, # B, thus there is a sequence {z,,} C 2y, such that f,(z,) = 0 for each
n sufficiently large. We can assume without loss of generality that z, — = as
n — oo and therefore f(z) = nlglolo fn(zn) = 0. Since Ve is closed, z € VHe

and consequently G, D H,.

(P2) — (P4), (P7): To establish these properties, one can use the same idea
as above: for a regular normal f (resp. h) the statements follow from (3.4),
(3.5)' and appropriate properties of the local Brouwer degree. In the general
case, it suffices to take regular normal approximations sufficiently closed to f
(resp. h) and use the standard compactness argument.
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(P5): Follows from the regular value definition of the Brouwer degree.
(P6): Follows from the definition of the primary equivariant degree.
(P8): We divide the proof in several steps:

Step 1. Local homotopies around zeros: Denote by ¢, (G, V) the set of
all orbit types in f~1(0) N {2, which is an invariant over the choice of all £2-
admissible G-equivariant maps taking the same value of G-Deg as f (by the
definition of the GG-Deg ). In particular, it is also the set of all orbit types in
g7 1(0) N 2. Without loss of generality (see Proposition 2.3.5), one can assume
that f and g are regular normal. Further, by the assumption and regular
normality (see Proposition 2.3.4), f and g only have zeros of primary orbit
type. For each (H) € ¥,,0(G, V), choose a regular fundamental domain D on
27 provided by Theorem 2.5.6 with 7, = p(D),) such that [ (0)N(D\D,) = @
and g (0) N (D\ D,) = 0, i.e. p(f5;'(0)) Up(g;;'(0)) C T,. Notice that T, is
contractible (in particular, connected). Thus, by the Hopf Property of Brouwer
degree,

deg (fu o€, T,) = deg(gir 0 &, To)

implies that fg is homotopic to gy by a certain homotopy hy on 2. This ho-
motopy can be extended, in a standard way (cf. [120, 47]), to a G-equivariant
homotopy between f and g on 2(y). By Proposition 2.3.5, this homotopy can
also be assumed to be regular and normal. Then, by using the normality condi-
tion, such a homotopy can be extended to an invariant neighborhood of §2,
say Np,, (denote this homotopy by hpg). Apply the same argument to each
(H) € @,0(G,V) and choose for any (H) an invariant closed neighborhood
Ny C Ng(H) satisfying the conditions: (i) Ny contains zeros of [ and g of
orbit type (H); (ii) Ngy N Ny = @ as (H) # (L). The collection of the “lo-
cal” homotopies {hy, ny t for all (H) € @,0(G, V), gives rise to the equivariant
homotopy between f and g on the closed invariant subset N :=| | Np.

Step 2. Extension of local homotopies: based on the local homotopies, define
amap hon A:= ({0} x 2)U ([0,1] x N)U ({1} x ) by letting A(0,-) = f(-),
h(1,-) = g(-) and h(t,z) = hy(t,z) for (t,z) € [0,1] x N and z of orbit type
(H). By construction, h is continuous G-equivariant. Using the equivariant
Kuratowski-Dugundji Theorem (see, for instance, [120], Theorem 1.3), extend
h equivariantly and continuously over [0, 1] x £2 and denote this extension by
h. In general, h may have new zeros.
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Step 3. Correcting h via Urysohn function: Put A = h7'(0) \ A (i.c. the
set of the “new zeros” of h). We claim that A is a closed subset in [0,1] x £2.
Indeed, take a sequence {(tn, zn)} from A, and supposc {(tn,zn)} — (Lo, 7,) In
[0, 1] x £2. By continuity of A, we have A='(0) is a closed subset in [0, 1] x £2, s0
(to,x,) € hL(0). By the normality of 4, one has: (t,,z,) & A, i.e. A is closed.
By construction, ANA = @, thus there exists an invariant Urysohn function
7 :[0,1] x 2 — [0,1] with n(A) =1 and n(A) = 0. Now, define a new map h
on [0, 1] x £ by: h(t,x) = h(t-n(t,z),x). It’s easy to see that h=1(0) = h~'(0),
thus & is a required homotopy between [ and g.

0

3.2.2 Axiomatic Definition

We are now in a position to statc an axiomatic definition of the primary cquiv-
ariant degree.

Proposition 3.2.5. Let G be a compact Lie group. There exists a unique func-
tion G-Deg assigning to each admissible pair (f,(2) an element
G-Deg ([, 2) = > nuy(H) in AL(G), which satisfies propertics (P1)—(P6)
listed in Proposition 8.2.4.

Proof: The existence part of Proposition 3.2.5 is provided by Propositions
3.2.2 and 3.2.4. To prove the uniqueness, take an arbitrary admissible pair
(/,£2). By the homotopy property, f can be assumed to be regular normal.
By additivity (i.e. excision) and elimination properties, we can assume that
2 N f71(0) contains points of the orbit types (H) € ¢}(G,V). Since [ is
regular normal, the set 2N f~1(0) is composed of a finite number of G-orbits.
Take tubular neighborhoods isolating the above orbits (this is durable, since we
have finitely many zero orbits). By the additivity, the primary degree of (f, £2)
is equal to the sum of degrees of restrictions of f to the tubular neighborhoods.
By the elimination axiom, the contribution of the secondary orbit types is equal
to zero. Finally, by the normalization property, the remaining orbits lead to
“local indices”, which determine uniquely the value of the primary degree
G-Deg (f, £2). O

We provide a computational example for the primary degree with 2-

parameters.

Example 3.2.6. Let ™V and 'V be the m-th and [-th irreducible represen-
tation of S! (¢f. Appendix A2) with m,l > 0. Put V := ™V @ 'V, which is
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naturally a T?-representation. Define a map d: R*@® V — V by
d(s, b, z,w) = (1= llzll +i(s + 0) - 2, (1= fJwll +i(s = 1)) - w)),

fors,t €ER, z€ ™Wand we W. Let 2 C R2® V be defined by
. ‘ . 1
2:={(s,t,z,w) ER*BV : *+* <1, 7 < Izl llwll < 2}

Clearly, the map d is a T?-cquivariant {2-admissible map. Also, by direct veri-
fication, the zero set d~'(0) N2 is composed of only one T*-orbit {(s,¢, 2, w) :
s =1 = 0,]z|| = llw|| = 1}, which is of orbit type (Z,, x Z;). Moreover,
the map d is a regular normal map on {2, since {2 = {2z, .z,)- Therefore, by
normalization property, we have

T?*-Deg(d, $2) = i - (Zy, x Ty),

where 7 is the local index of d at some point z, in the orbit. For simplicity,
choose z, := (0,0,1,0,1,0) written in real coordinates. Then, the slice S,, ~
{(s,t, 21,91, %2,%2) = 1 = y2 = 0}. Calculating the derivative Dd(z,) on the
slice 9,,, we have

1

0
0 0
0 -1}’
0 0

O = O

Dd(z,)]s,, =

To

— O = O

—1

and det (Dd(z,)|s,,) > 0. Notice that S,, is a negatively oriented slice (cf.
Definition 2.2.17). Therefore, T*-Deg(d, 2) = —(Zy, X Zy).

3.3 Basic Maps, C-Complementing Maps and Splitting
Lemma

3.3.1 Basic Maps and C-Complementing Maps

The S'-degree will be the main computational tool to evaluate the primary
G-degree for G = I'x St with I' being a compact Lie group. In order to estab-
lish the links between the S'-degree and the primary (G-degree, we introduce
the notion of the so-called basic maps and C-complementing maps. These two
types of equivariant maps (which can be considered as the simplest nontrivial
examples of G-equivariant maps with one parameter) appear naturally in the
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setting related to the existence of periodic solution problems (basic maps) and
symmetric Hopf bifurcation problems (C-complementing maps). The impor-
tant feature of these types of maps is that they have exactly the same primary
G-degrees. In fact, the C-complementing map can be viewed as a “suspension”
of the basic map (cf. Proposition 3.3.1).

Let G = I" x S and V be an orthogonal G-representation with V' = {0}
(notice that the S'-action induces a natural complex structure on V). Put

Q) ERGV : |t| < 1, % <ol <2}, (3.8)
o={(\necCaVv v <2, -;-< M < 4}, (3.9)

Suppose a : St — GLE(V) is a continuous map. We define b : RV — V
and f,: (C\{0}) x V - R&V by
bt,v) = (1—|lo|| +it) v, tER, vEYV, (3.10)
A
Rovoy = (Wl = = ol + o () o). @)

Similarly, define
o= (W= D+l L (5)0). @)
b= (t,v) = (1— vl —it)-v, teR, veV. (3.13)
It is easy to check that the pairs (b, £2), (b7, £2), (f,, O), ([, O) are admissible
pairs.

Proposition 3.3.1. Let G = I'x S! for I being a compact Lie group, V be an
orthogonal G-representation such that V5" = {0} and £2, O are given by (3.20)
and (3.9). Assume that a(\) = I_/A\—lld V=V, Ae C\ {0} and consider the
maps b and f, defined by (5.19) and (3.11). Then, f, is G-homotopic to a map
f1, which is a suspension of b on an open subset of zeros of fi. In particular,

G-Deg (f,O) = G-Deg (b, £2). (3.14)
Moreover, a similar property holds for b~ and f, (defined by (3.12) and (3.22))

G-Deg (f~,0) = G-Deg (b™, 12). (3.15)
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Proof: We only prove (3.26) and the proof of (3.27) is similar. Consider the
map

A
faMv) = (lAI(HvH bl L ) .
Define the function 7 : R — R by

0 ift <3
— 1 el 3
1 if £ > 3,

and 0(v) := n(||v]|), for v € V. Put

Jo(nv) = (1= 0(0)) (/1A 0) +v) + 0(v) fi(A, v), (3.16)

where (\,v) € O. Obviously, f; is G-homotopic to f, by an O-admissible
homotopy, so we have

G-Deg (f1,0) = G-Deg (fp,0), 0€[0,1].

By direct verification, f;(0) = ZoUZ; C 2, where Z; := {(/\, 0)eCapV:

(A = 1} and Z; = {(—5 v)eChpV:|v|= 1}. Define G-invariant open
tubular neighborhoods (2, and (2, around 7, and 7, respectively by

1 3 1
2y = {()\,v) '3 < N < 2 ]l < 5}
and
1 1 3
D=4 (\v) A+ < =, = 2
= {0 < g g < <3}

By the additivity property, we have
G-Deg (fo, O) = G-Deg (fo, {20) + G-Deg (fo, £21).

Since for (A\,v) € (2, we have fo(A\,v) = (1 — |A|,v), it follows from the
suspension property that

G-Deg (fo, £20) = G-Deg (@,, Bo),

where B, = {A € C: § < |\l <3} and ¢, : B, — R is defined by ¢,(\) =
1 — |A]. By the elimination property, we have G-Deg (@,, B,) = 0. Thus,
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G-Deg (f,0) = G-Deg (fy, 21).

1

Replacing in the R-component of (3.16) 0(v) (resp. ||v}]) by ||v|| - 5 (resp. 1),

onc obtains the map

fo(A ) = (—;-(5 1D, (1= ) + 0(0) l—i—[) m)

(L LA = GOl + @l = DA +3)
(36-1, 2/ ")

where (A, v) € 2 (recall, O(v) = Hz|[ — 4 on {2)).

Obviously, fo has no zeros on 0f2;. Moreover, for any (A, v) € 0§2; the
vectors fo(A,v) and fy(\,v) do not point the opposite dircetions. Therefore,
fo and [y are GG-homotopic by (2;-admissible homotopy and

G-Deg (fo, 1) = G-Deg (Jo, 21).

Next, replacing in the V-component of fp the value IA| (resp. 2
3 (resp. 1), one obtains the map

Fin ) = (%(3 o, 20 |Ivll6} T +3) U) |

where (A, v) € (2.

|v

—1) by

At this moment, we can apply the change of variables X = A + 3, leading
to the set 25 := {(N,v): |N| <1, 1 <|vl| <2} and after an appropriate
S!-homotopy) the map f; : 2, — R @ V, given by

~ (1 12(1 = el + (a+198)
)_ (50, v

fila+iB,v G ) , N=a+if,

(here, we used the fact that 3—|A| = 3— /(a — 3)2 + (8)? is S'-homotopic to
a, since | 8] < |N'| < §, which guarantees no zeros of such a homotopy crossing
0129), which is clearly (25-admissibly S'-homotopic to the map

hle+ip,v) = (a, (1 = [lo]| +i8) - v).
Obviously, f, is a suspension of the map b, therefore

G—Deg (-f—h QQ) = G_Deg (b7 Q))
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and since
G-Deg (f1, £22) = G-Deg (fy, £21) = G-Deg(f, O),

the equality (3.26) follows. O
Definition 3.3.2. Let V;; be an irreducible representation of I x S' (cf. Re-
mark 2.2.4), and §2;;, O;; be defined by (3.20) and (3.9) with V replace by
V;1. We call the map b defined by (3.19) the basic map associated with V;;,
and the map b~ defined by (3.22) is called the basic map of second type. The
map f, defined by (3.11) is called the C-complementing map and [, defined
by (3.12) will be called the C-complementing map of second type. In addition,
(f,051) (resp. (f~,0y,)) is called a C-complementing pair to (b, £2;;) (resp.
(07, £2;1))-

By Proposition 3.3.1, we have the following

Corollary 3.3.3. Let G = 1" x S! for 1" being a compact Lie group and Vj,
be an irreducible G-representation. Suppose £2;;, O;1, b, b=, fo and [, are as
given in Definition 5.5.2. Then, we have

G-Deg (f, Oj4) = G-Deg (b, 24),
G-Deg (7, 0;1) = G-Deg (b, 2;1).
- 3.3.2 Splitting Lemma

Lemma 3.3.4. (Sputting LEMMa) Let G = 1" x S' for a compact Lie group
I, Vi and Va orthogonal G-representations with V5 = {0}, i = 1,2. Put
V =V, & Va. Suppose that a; : S* — GLY(V}), i = 1,2, are two continuous
maps and a : S* — GLY (V) is given by

a(A) = a1(\) @ az(A), Ae St
Assume O and f, are defined by (3.9) and (3.11), respectively. Put
1
Oii={(\v) eCaviifull <2 5 <N <4},
A
o) s= (NGl = )+ sl + 2 () )
where 1 = 1,2, v; € V;. Then,

G_Deg (fth O) - G_Deg (ftn y O]) + G_Deg (ftwa 02)
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Proof: We can assume without loss of generality that a; : S' — GLY(V;) N
O(V;) is analytic, i.e. there exists an analytic extension of a; to a neighborhood
of S'in C (here O(V;) stands for the group of orthogonal operators on V,
7 = 1, 2). Introduce the functions ¢, : R = R, 1= 1,2,

1 if O <t < s Si:ﬁ*:j(gﬁ;ﬁ;
gi(t) = ¢ =L(t—t;) ifs; <t <t; where b= i+ s
0 if £ > 1, (_izni—(gi:(iQT)Q.

Then define for (A, v1,v2) € O C Ch Vi &V, the map
.}(N}L(/\,vl,vg) = (0()\,’0],?12),;31(/\,1)]),62(/\,’()1,112)),
with
G(N, v1,v2) = AN (JJur + val| = 1) + [lvg + vo

A
B0 on) = aaenl)or + (1 = el () o

|+ 1,

A
ﬂz(/\,vl,llfz) = (]1(“'01 + ’1)2”)’02 + (1 - (]](H”Ul -+ ‘1)2“)(12 (m) UVy.

The maps f, and J, are G-homotopic by an O-admissible homotopy.

Let us examine zeros of the map fa. It is clear that
Zo = {(/\, 0,0) : [\ = 1} c f7Y(0).

Observe that if (A vq,v2) € .};{1(0) is such that v; # 0 (Eesp, vy # 0) then
vy = 0 (resp. v; = 0). Indeed, suppose that (A vy, v2) € f;'(0) is such that
v1 # 0 # v2. Then, by comparing the norms of the both sides in the following

equalities: gz([|v1l[)vr = —(1 = gz([|o1])as (fq) vr and gi([lvs + 2| )2 = —(1 -
a1 (Jlvr + va a2 (ﬁ) vy, we obtain
e(lull) =1—qlul) and  a(or+o2f) =1 = a(llv + val)),

which implies

1
@(|lvil) = ar(ljvr +v2l]) = >
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so ||vi]] = 3 and |ju; + vaff = 4, but this is a contradiction because v is

orthogonal to v, and thus ||y + vz > [Jui]]-

U=

|
Then 0(A, v1,0) = 0and 5i(\,vi1) = 0imply |A| (% —1)+i+1=0,ie |A =2

On the other hand, since go(3) = 1,

1 A
S\ ) = 3 [?}1 + ay (l-/\—l> ?11} =0, v #0,

A satisfies the equation

A

Since the map w — dete|ld + a;(w)Id] is analytic in a neighborhood of S in
C, the equation
dete[ld + ay(w)ld] =0, we S,

has only a finite number of solutions, and consequently the equation (3.17)
also has finitely many solutions, say Ay, ..., A,. Put

] 1
ZM:{thﬁyHmﬂzg} k=1,...,n.

If (A, v1,0) € fa,_l(O), vy # 0, then (\,v1,0) € Zy U---U Z,. Similarly, if
(A, 0,v2) € f,71(0), va # 0, then |||l = 1 and [N = £ and there exists a finite

number of solutions A}, ..., A\l to the cquation

A 3

Put 7] := {( 10,0) o lugfl = é}, [ = 1,...,m. In this way, we have
proved that f7'(0) € ZyU ZyU---U Z, U Z, U---U Z' . By applying

the excision property to (G-invariant separating neighborhoods of Zi, 7],
k=0,1,...,n,l =1,...,m, and using appropriate deformations of fa on these
sets, we obtain the map f, such that fa,(/\,vl,vQ) = (6(\, v1,v2), B1(A, v1), v2)
for (\,v,v;) in a neighborhood of Zx, k = 1,...,n, and fy()\ v1,vy) =
(O(A, v1,v2),v1, B2(A, 0,v2)) for (X, vy, v2) in a neighborhood of Z], 1 = 1,...,m.

Notice that f, in a neighborhood of Zj is homotopic to a map without zeros.

The conclusion then follows from the suspension and excision properties. [
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3.4 Primary Equivariant S'-degree

To assist an effective computation of the primary equivariant degree with onc
free parameter, we formulate an axiomatic definition (of more practical mean-
ing than the one provided in Proposition 3.2.5) for the S'-degree, based on the
usage of the basic maps and folding homomorphisms (cf. Definition 3.4.1). For
the rest of this chapter, we assume that n = 1.

Denote by A1(S?) := A (S") the free Z-module generated by the symbols
(Zi), k=1,2,3,....

Definition 3.4.1. Consider an orthogonal S!-representation V, an open S!-
invariant bounded set 2 ¢ RGV, and an 2-admissible S'-equivariant map [ :
R& V — V. The primary degree S'-Deg (f, £2), also called the S'-equivariant

Sl‘Deg(fa “Q) - an,(zkz)* Nk, € L. (‘318)
1771

Notation 3.4.2 Denote by ‘W, for [ =1,2,3,..., the I-th real irreducible
representation of S' (cf. Appendix A2, Table A2.1). For cach I, there is an
associated basic map b (cf. Definition 3.3.2). To be more precise, b : R 'V —
'V by

b(t,2) = (1= |2] +1it) -2, (Lz)ER® V. (3.19)

We will also use the notation 2 for the admissible domain of b, i.e.
1
2= {(t,z)EIRéB ol <, §<|z|<2}. (3.20)

To formulate an axiomatic definition of S'-degree, we need the following:

Definition 3.4.3. For every integer m = 1,2, 3,..., we define the homomor-
phism 8, : S' — S by 0,,(7) = v™, v € S!. Define the induced homomor-
phism @, : A(8Y) — A(8T) by

Om(Zt) = (Zim), k=1,23,...,

where (Zy) are the free generators of A;(S?), and call it the m-folding homo-
morphism.
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Notice that if f : R® V — V is an f2-admissible S'-equivariant map
for an open bounded S'-invariant subset 2 C R @ V, then for every integer
m=1,2,3,..., we can define the associated m-folded S'-representation ™(V),
which is the same vector space V with the S'-action - given by

yev = (v =9"v, vE€S, veEV.

The map f : R® ™(V) —™ (V) is Sl-equivariant. The set {2 considered as
an Sl-subset of R ¢ ™(V) will be denoted by ™2. We will say that the pair
(f,™82) is the m-folded admissible pair associated with (f, £2).

3.4.1 Axiomatic Definition

The following theorem provides us with an axiomatic definition of the S'-
degree.

Theorem 3.4.4. There exists a-unique function, denoted by S'-Deg , assigning
to each admissible pair (f,£2) an clement S'-Deg(f,2) € A(S?) satisfying
the properties (P1) — (P4) (see Proposition 3.2.4 with G = S') as well as the
following ones:

(P5)’ (NormaLization) Let 'V be the first irreducible S'-representation and
b:R@ 'V — 'V be the basic map associated with 'V (cf. Notation 3.4.2).
Then, we have

S'-Deg (b, 112) = (Z).

(P6)’ (ELiminaTion) If V' is a trivial S'-representation, then
S'Deg(f,2)=0.

(F) (Forping) Let (V) be the m-folded representation associated with V, and
(f,™42) the m-folded admissible pair associated with (f,$2). Then

S'-Deg (f,™2) = 6,,[S"-Deg (£, 2)].

The proof of Theorem 3.4.4 is essentially based on the following lemma:

Lemma 3.4.5. Let f : R®V — V be a regular normal 2-admissible map
such that f~1(0) N §2 consists of one St-orbit G(z,). Suppose that G, = Z,
and denote by S,, the positively oriented slice at z, to the orbit G(z,) (cf.
Definition 2.2.17). Then,

S'-Deg (f,$2) = n, (Zy,),
where n, is the local index of f at x, (cf. Definition 3.2.8).
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Proof: Step 1: Unfolding the S'-Action.

Consider the S'-isotypical decomposition (2.6) of the spacc V. Assume that

= yo+yi+- - -+yr, where y; € V;. Notice that G, = ﬂ Gy , where G, = S!

and Gy, = Zy, for 1 < i <7 and y; # 0. Thus, we havo Ty, = S'N JD()Z’C“
which implies that k; is a multiple of &, if y; # 0.

In the case k; is not a multiple of k,, the isotypical component Vj; is orthog-
onal to R@® VZ* . By the normality assumption of f, on a small neighborhood
of G(z,), [ can be considered as the product map f, x Id, with f, := f[]R@VZ‘ko'
By the suspension property (P4), we have

S'-Deg (f,£2) = S'-Deg (f, x Id, 2, x B) = S'-Deg (f,, 12,),
where £2, = 2N (R @ V%) and B denotes the unit ball in (R & V%)L, Thus,
sign det D f(z,)ls,, = sign det Df,(z,)|s;_,
where S, = S,, N (R G Vo).

Thus, we can assume, without loss of generality, that k; =k, - n; for n; € Z
aud k, = ged(ky, ..., k). In this case, the subgroup Zj, acts trivially on V.
Define the new action of $' =~ S1/Z; on the space V, which is also an orthog-
onal S'-representation, and denote this new representation by V. Moreover,
the map f remains S'-equivariant with respect to this new action. Denote by
) the set 2 considered as an Sl-subspace of V. Consequently, ( f, £2) is the
k.-folded admissible pair associated with the admissible pair (f, Q). By the
folding property (F), we have

S'-Deg (f, 2) = 64, |S'-Deg (f, 2)].
To conclude the argument, it is sufficient to show that
S -Deg (f, 2) = no (Zy).
In the remaining part of the proof, we will assume that G,, = Z;.

Step 2: Reduction to a tubular neighborhood.
Take a tubular neighborhood (2 around the orbit G(z,), i.e.

7 = G20+ BASe,)), 0<e< |zl
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where S, is the positively oriented slice to the orbit G(z,) at x,. Then every
point z € {2 has a unique representation as vz, + yv, for some v € B.(S,.)
and v € S'.

Define the linear opcrator
A= Df('TO)ISIO : S:I;o -V,
and the map fy:= 2’ — V by

Jo(v(zo +v)) =v(Av), 7€ St v € Be(Sh,),

which is clearly S'-equivariant. By the excision property (P7’) and homotopy
property (P3), we have that

S'-Deg (fo,£2') = S*-Deg (f, £2).

Step 3: Reduction to One Isotypical Component.

We consider the path 2y = de+ (1= \)z,, A € [0, 1], where ¢ is a unit vector
belonging to the isotypical component V. Let S;, be the slice to the orbit
G(z,) at the point 7y, and By = {v € S, : ||v]| < e} for min{||z,||, 1} > & > 0.
We put §2, := G(x+By), Ay = Df(z,)5,. and define [y : 2, — V, A € [0, 1],
by

ISI,\

Ay +0)) =v(Aw), vES,,, yES.
By the excision property (P7)” and the homotopy property (P3), we have

S'-Deg (f1,21) = S'-Deg (f, 2)) = S'-Deg (o, 2') = S'-Deg ([, 2).

Notice that, using a path in the space of linear isomorphisms from S, to V', the
matrix A can be deformed to a block matrix A, which is Id on the isotypical

components Vj,, ..., Vi, . By the suspension property (P4), we can assume
that V =VC @ Vi, ec V.

Step 4: Reduction to Basic Maps.

Suppose that Vi = CF = R%* and e = (0,0,...,0,1,0). Sincé the orbit
G(e) consists of the points (0, 0, ..., 0, cosT, sin7) € R?, the tangent vector
to G(e) at e is the vector vag1 = (0,0,...,0,1), and consequently the slice
S. consists of all vectors of the form (ay, ag,...,a%-1,0), a; € R. By taking
the standard basis in 5., which in this case defines the positive orientation of
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Se, we can use the fact that there exists a path Ay (A € [0, 1]), in GL(2k, R)
connecting the matrix A to the matrix:

= .

00...00-1

01...00 O
Ape=| 1o

00...01 0

10...00 0

if sign det Df(x,)|s,, > 0, and

[ 0 0...00-1]

0 1...00 0
Avi= 0t

0 0...01 0

-1 0...00 0

if sign det D f(z,)|s,, < 0. The path A, defines an £2,-admissible homotopy
Sua(vle+v)) =v(Axw), veS, yes
Let us consider an element ({,v) € R @ V, which is represented as
(t,v) =vo+01+vyse, vy € VY o, eCcH! x {0} C Ck=V,, ve S seRy.
Then we have
Lot v) = folt,vo + 01 + yse) = [olv(L,vp + v~ 191 + se)
= v(A1(t,v0+ 701 + se) = y(vo + 7)) + vA(t, s)
=9 -+ 771 -+ ’)’Al (t, 8),

U N ~ 0 =17 .
L0 } if sign det D f(z,)|s,, > 0 and Ay = [_1 0 } if
sign det Df(z,)|s,, < 0. The above identities show that the map fz is “normal”
with respect to the vectors vy + ¥y, i.e. fo = fo X Id, where fo : R C — C is

given by:

where /11 =

f~2(t7’736) = W(Al(tas)% v E ‘917 RS ]R+7 t€R.
Therefore, by the suspension property (P4), we have

5'-Deg (f2,421) = S'-Deg (f~2, le),
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where 2, = {(t,2) e R® C : || < 1, 5 < |2| < 2} is equivariantly homo-
topically equivalent to (21, and the S'-action on C is the standard complex

multiplication.

Let us consider the maps b(t, z) = (1—|z|+it)-z and b~ (¢, 2) = (1—|z|—it)-2,
defined on §2y, to which we can apply the linearization procedure along the
orbit G(z,), zo = (0,1,0) € R&® C. More precisely, we consider the derivatives
Db(0,1,0) and Db~ (0, 1,0) restricted to S, which can be easily evaluated:

By = Db(0,1,0)5, = [0 _01} . B_ = Db (0,1,0)5, = [_01 _olJ (3.21)

Then, by applying the formula fi(t,7vs) := v(B«(t,s)), v € S, s € R, and
i € R, we observe that f, (resp. f_) is equivariantly homotopic to the basic
map b (resp. b7). Thercfore, if sign det Df(z,)]s,, = 1, then there exists an -
admissible homotopy between b and f,, and if sign det Ds, f(z,) = —1, then
there exists an £2)-admissible homotopy between b~ and f,. Conscquently, by
the normalization property (I’5) and Corollary 3.4.7, we obtain that

Sl'DCg (/7 Q) =Ny (Z1)7
which completes the proof. ]
Proof of Theorem 3.4.4

Existence. We claim that the primary degree defined by the formulae (3.4)—
(3.6) (with n = 1 and G = S*) satisfies the properties listed in Theorem 3.4.4.
Indeed, Properties (P1)—(P4), (P6)’ are provided by Proposition 3.2.4. Prop-
erty (P5)’ follows from (3.21). To show (F), consider an admissible pair (f, §2)
and the associated m-folded pair (f,”(§2)). By the homotopy and excision
properties, we can assume that f is regular normal on §2 (and, consequently,
.on ™(§2)). Take some orbit type (Zx) occuring in 2 and let D be a regular
fundamental domain for {2z,. Then D is a regular fundamental domain for
"(£2)z,,,.- Since f is the same for both cases, the result follows from (3.5).

Uniqueness. Let S]-D/\e/g be a function satisfying Properties (P1)—(P4), (P5)’,
(P6)’ and (F). Let V be an orthogonal S'-representation, 2 C R& V an S'-
invariant open bounded region, and f : R®V — V an equivariant £2-admissible
map. We will show that

S'"Deg (f,2) = S'-Deg (f, 12).



82 3 Primary Equivariant Degree: An Axiomatic Approach

By Proposition 2.3.5 and homotopy property (P3), without lost of generality
one can assume that f is regular normal. By the normality, there exists an open
S'-invariant subset 2, C £2 such that Z := [~1(0) N 25" = [1(0) N 2, i.c.
{2, is an isolating invariant neighborhood of 7. In addition, we can assume
that fin, (up to an £2,-admissible homotopy) is a product map f S Id, where
5= rovs', and Id is the identity operator on the space (R@ V5" )L, Then,
by the suspension property (P4) and the elimination property (P6)’, we have

§'Deg (f, 2) = 5 Deg ([* x 1, 025" x B) = §'Deg (1, 2") =0,

where 3 denotes the unit ball in (R @ VS')L.
Since [ is assumed to be rcgular, we have that

NN =208 z) U U S,

where S'(z;), j = 1,2,...,m, are isolated orbits. We can choose open invariant
sets £2; C 2 such that £2; D Sl(z;), ;N =0,i#7,4,7=0,1,2,...,m.
Then, by applying the additivity property (P2), we obtain that
S Deg (f,2) = S'-Deg (f. 20) + S'-Deg (f, 21) + - - + S'-Deg (f, 2m)
= §'Dog (/, 1) + -+ + §'-Dog (/, &),
For each of the orbits S'(x;), 7 = 1,...,m, we consider the positively oriented

slice S; at the point ;, and we denote by D;f(x;) the matrix of the derivative
Df(z;)s,, with respect to a basis in S; defining the positive orientation on it.

Applying Lemma 3.4.5 and Properties (’2), (P7)’, one obtains

kil m

S'Deg(f,92) =" ' Deg(f,£2;) = > _sign dot Df ()]s, - (Z,)

=1 j=1

= " S'-Deg(/,2;) = S'-Deg ([, 2).
j=1 -

We present some immediate consequences of Theorem 3.4.4.

Corollary 3.4.6. The S'-degree provided by Theorem 8.4.4 also satisfies
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(P7)’ (Excision) Assume £2, is an S'-invariant open subset of 2 such that
F7H0YN 2 C £2,. Then,

§'-Deg (f,12) = S'-Deg (f, 120).

(P9) (I-ti Basic Map) For every ]l = 1,2,3,... and the basic map b associated

with [-th irreducible S'-representation, we have (cf. Notation 3.4.2)

S'-Deg (b, '02) = (Z).

The proof of Corollary 3.4.6 is straightforward and we omit it.
Corollary 3.4.7. Letb :R@ WV — W, 1=1,2,3,..., be defined by

b(t,z)=(1-|e|—it)-z, teER, z€ V. (3.22)

Then,
S'-Deg(b™, 12) = —(Z). (3.23)

Proof: We consider the set

1
Q::{(/,,Z)GR@lV:|Ll<2, §<1Z'<2} ‘

and the function « : R — R defined by

1 if t<-1ort>3,
a(t) =< —t if —1<t<y,
T 1 : 1 3

Define the homotopy h: [0,1] x R® 'V — W by
ha(t, 2) = ()\(1 — 2]} +i((1 =) + )\a(L))) -z, z€ W, 1eR, Ae|0,1).

It is clear that hy is an f2-admissible homotopy such that ho(t, z) = i- z, which
implies (by (P1)) that S'-Deg (hy, £2) = 0 and, therefore (by (P3)),

S'-Deg (h1, £2) = 0. (3.24)

Obviously, Ay (0)N 2 ={(t,z) ER® V:|2|=1,¢t=0, 1}. Put
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2 ::{(tz)ER@ IV:M"|<%, %<[z[<2},

Then (by (P2) and (3.24))

S'-Deg (hy, £21) + S'-Deg (hy, £2) = 0. (3.25)
By (P7)’ (resp. (P3)), we have
S -Deg (hy, 2,) = §'-Deg (b™, 12) (rcsp. S'-Deg (hy, (22) = $'-Deg (b, 'Q2) )
Therefore, by (P9) and (3.25), S'-Deg (b7, 102) = —(Z)). O

3.4.2 Computational Formulae for S'-Degree

Based on the S'-degrees of basic maps, by Proposition 3.3.1, we obtain similar
result for C-complementing maps (cf. Definition 3.3.2).

Corollary 3.4.8. (i) Let (f, 'O) be a C-complementing pair to (b, 1§2). Then,

f is S1-homotopic to a map fi, which is a suspension of b on an open subset
containing zeros of fy. In particular,

St-Deg (f, '0) = $*-Deg (b, '02) = (7). (3.26)

(ii) Similarly, let (f~, 'O) be a C-complementing pair to (b~ 12). Then, f~
is S'-homotopic to a map [, which is a suspension of b~ on an open subset
containing zeros of f; . Moreover,

S'-Deg(f™, '0) = §'-Deg (b™, '2) = —(2Z;). (3.27)

As consequence of Splitting Lemma (cf. Lemma 3.3.4), we have the following
computational formulae of the S'-degree.

Corollary 3.4.9. Let 'V be the [-th irreducible S*-representation. Define
. A\ F _
Fowo) = (Wl =0 + o+ 1 () ). (oo,

where 'O is given by (3.9) (cf. Notation 3.4.2). Then, S'-Deg (f, 'O) = k(Z:).
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Proof: For the sake of definiteness, assume that k > 0 (the case £ < 0 can
be treated using a similar argument), and consider the map

fxId: OxB - R V@ [lveamea ’V],
| -
k-1
where By, = B('W) x .- x B('V) and B('V) denotes the unit ball in V.

'

k—1
Then, by suspension property,

S1-Deg (f, '0) = $'-Deg (f ¥ 1d, 'O x _Bk_1>.

Obviously, f x Id is equivariantly homotopic, by an 'O x Bj_i-admissible
homotopy, to f, given by (3.11), whercv € V= V& ---® Vand a: S! —
—

k
GL3' (V) is defined by

¥0...0

01...0 B
01(7): - ; 7615 .

00...1

By an 'O x Bj_i-admissible homotopy, f. is equivariantly homotopic to fp
given by
A
o) = (I =)+ I+ 1.0 () o).

with b : S' — GL%' (V) defined by

v0...0
Ov...0

by =1... .|, res.
00...v

Since S'-Deg (f, '©O) = S'-Deg (fs, 'O x Bi_1), by the Splitting Lemma and
Proposition 3.3.1, we have

Sl—Deg (f’ lo) — (Zl) 4+ (Zl) = k(Zl)

~
k

The proof of Corollary 3.4.9 is complete. O

By combining the Splitting Lemma and Corollary 3.4.9, we obtain
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Theorem 3.4.10. Let V be an orthogonal S*-representation with V= = {0},
admitting the isotypical decomposition (2.5). Let O (resp. fa) be defined by
(3.9) (resp. (3.11)). Then

$'-Deg (fa, O Zk (Z4),
where k; := deg (dctC oa/,,;,Sl), ai(A) == a(Mlv, : Vi, = Vi, fori=1,...,r

As an immediate consequence of Theorem 3.4.10, we obtain

Corollary 3.4.11. Let V and O be as in Theorem 3.4.10. Let k; € Z, 1 =
1,...,7, be given integers and assume that dime Vi, = m,. Define [+ O —

ReV by f(\vy,...,v4) = (!/\[(HUH — 1) + o]l + 1, Moy, ,/\kb‘vb,), where
Ae C\ {0}, vi e Wi,. Then

St Deg(f, O) ka Zy,).

3.5 Recurrence Formulae

In this section, we present two recurrence formulae. The first onc allows us
to reduce the computation of the primary (G-degree of one parameter to the
computations of the related S!'-degrees, while the second one facilitates the
computations of primary G-degree without free parameters.

3.5.1 One Parameter Case
To formulate this formula, we need the following notations.

Notation 3.5.1 Let V be an orthogonal S!-representation, 2 C R V
an open bounded S'-invariant set, and f : R® V — V an f2-admissible S!-
equivariant map. Consider the S'-degree defined by (3.18) and put

deg, (f,92) ==ny, ©=12,...,7

Observe that each of the integer coefficients ny, satisfies the usual additivity,
homotopy, excision, and suspension properties.
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For simplicity, we assume that

(%) for all (H),(K),(L) € #,(C) with (H) < (K) < (L) and (H),(L) €
&7 (G), we have that (K) € 7(G).

Remark 3.5.2. In all computational examples considered in this thesis, the
assumption (*) automatically verifies. In the general case, one needs to extend
the notion of the primary degree to include the relatively bi-orientable orbit
types and similar statement holds [12, 15].

Proposition 3.5.3. (Recurrence  Formurna)  Let Vo be an  orthogonal
G-representation, 2 C R & V an open bounded invariant subset and [ :
RV — V a G-equivariant 2-admissible map. Under the assumption (*),
we have that ‘

G-Deg(f,2)= > nu-(H),

(H)ed (G)

where

Zd()g 10"y = ST g, (I, 1) (W(H,) /S| /\W (11)/8"].
(HoY>(H)

Notice that a particular case of Proposition 3.5.3 was established in [114],
where the argument is based on the using the S'-fixed point index.

Proof: By the definition of ny, it is an algebraic count of W (H)-orbits in
y. Since dim W(H) = 1, it is diffecomorphic to a disjoint union of m copies of
S, where m = [W(H)/Sll In another word, nyg - |W (H)/S'| gives an algebraic
count of S'-orbits in 2y.

Observe that 27 = U QH(, To count the S'-orbits in 2y, it is sufficient

to do the counting ﬁrst in QH then subtract off those S!-orbits belonging to
g, for H, > H. In order to count the S'-orbits in 027 it is sufficient to
compute the value of S'-Deg (f#,£2%), then sum up the coefficients related
to (Zy) for all k € N, i.e. it equals to Zdeg L, 02H). On the other hand,

- |W(H,)/S'| represents the count of Sl-orbits in £2y,.

Therefore, we have
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nap WO SY = S deg (7, 27) = S gy, - W (H,) /S|

k Hy,DH
=Y deg, (f", 2"~ > n(H Hyny, - |W(H,)/S"],
k (Ho)>(H)

which completes the proof.
O

We provide an example of computation for a primary Dg X S'-degree using
the recurrence formula. The conventions of notations follow Appendix A2.

Example 3.5.4. Let (i = Dy x S! and take an irreducible G-representation
Vi1 =~ C @& C with the G-action given by

(v, ez, w) = e (77 2,977 w),
(1, €Y (2, w) = e - (w, 2),

where 7% = 1 and ¢ € S. Let b: R¢b Vo — Vo be the basic map associated
to Va1 given by

b(t,v) = (1— ||| +4t) v, tLeER, v € Vé,l,
and 2 :={(1,v) eRG Vs : [t] <1, 5 < |lv]| <2} (cf. Definition 3.3.2).

To cvaluate G-Deg (b, £2), we use an induction over the lattice of the orbit

types according to the recurrence formula. Since the orbit types occuring in
Vyu are (Z¢&), (D3), (D2) and (Z3), we suppose

G-Deg (b, 2) = ni(Zg") -+ n2(D3) + n3(Dz) + na(Z2),

for integers n; € Z, i = 1,2,3,4. Following the lattice of these four orbit
types (cf. Figure A2.12 with N = 6, j = 2 and h = 2), we first compute the
coefficients n, na, na for the maximal orbit types (Z%), (l) ), (D2) respectively.

Using the maximality of (Z¥) and the fact that dlmc(QZG ) = 1, we have that
S 1% L3 p

S'-Deg (b%", 2%’y = 1. (Z;). Taking into account W (Zg) = 7Z, x S, we then

have

ny = deg, (b5, 285°) J|W (Z12) /S|
=1/|%1 x S'/SY|
= 1.
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Similarly, we obtain that ny = ns = 1. To compute the coefficient ny4 for the or-
bit type (Zs), observe that £2%2 = 2. Thus, S'-Deg (b%2, §222) = S'-Deg (b, 12).
By the splitting lemma, S'-Deg (b, 2) = m - (Z;), where m = dimcf2 = 2.
Therefore,

ny = (deg (672, 272) —ny - N(Zy, Z2)|W (Z)/ S| — na - N(Za, DF)|W (D5)/ S
—na - N(Za, Da)|W(D2)/SH) [IW (Z2) /S|
=(2-1-2-1-1-3-1-1-3-1)/6
~ 1

7

where we use the facts N(Zy, Z2) = 2, N(Zy, D5) = N(Zy, Dy) = 3, W(ZE) =
W(Dg) = VV(Dz) =71 X S] and W(Zg) = D4 X Sl.

Consequently, G-Deg (b, 2) = (Z§) + (D§) + (D2) — (Zz). In fact, we just
computed the so-called twisted basic degree of V1 (cf. Definition 4.2.8).

3.5.2 No Parameters Case

Following the same idea as the proof of Proposition 3.5.3; we obtain (cf. [116,
5, 114, 47]) ‘

Proposition 3.5.5. (Rscurrence  Formuia) Let 'V be an  orthogonal
G-representation, 2 C V an open bounded invariant subset and f :V — V a
G-equivariant £2-admissible map. Then, we have that

G-Deg (f,92)= > nu-(H),
(H)EP(G)

where

ny = |deg (1,27 = 3" nm,n(H, Hy) W(H)|| [ 1W(H)].
(Ho)>(H)

As an illustration of the usage of the above recurrence formula, we compute
a primary Dg-degree without parameters. For the conventions of notations, we
refer to Appendix A2.

Example 3.5.6. Let G = Dy and take an irreducible GG-representation V; =~
R, which is induced by the homomorphism ¢ : D¢ — Zo with kerp = Ds.
Consider the basic map b := —Id : V; — V4 on the unit ball By := By(Vx)
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and compute G-Deg (—Id, B;). Observe that the only orbit types occuring in
V, are (Dg) and (Ds). Suppose that

G-Deg (b, By) = n1(Dg) + na(Ds).
Since B = {0}, we have that deg (bP¢, BY®) = 1. Thus
ny = deg (bPe, 2P%) /|W (Dg)| = 1.
Similarly, from BP* ~ R, it follows that deg (b”¢, BP*) = —1. Therefore,

ny = (deg (b3, BY*) — ny - N(Ds, De)|W (Do)]) /W (Ds)]
= (=1—=1-1-1)/2
=-1.

Consequently, G-Deg (b, B1) = (Dg) — (D3), which is indced the so-called basic
degree without parameters associated to Vy (cf. Definition 4.1.5).
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Twisted Primary Degree

In this chapter, we assume that G = I" x S for I” being a compact Lie group.
We introduce the so-called twisted equivariant degree, which is defined as a
truncated part of the primary G-equivariant degree with one free parameter.
The twisted equivariant degree turns out to be the most “computable” part
of the primary equivariant degree, and thus serves as an effective topological
tool in the study of various applied problems, including the I'-symmetric Hopf
bifurcation problems and the existence of periodic solutions in autonomous
systems (cf. Part 1I).

Among the important “predecessors” of the (twisted) S'-equivariant degree,
one should mention the rational-valued homotopy invariants introduced and
studied in [67, 40, 42, 44, 43].

The effective usage of the twisted equivaraint degree method highly depends
on an important property called the multiplicativity property, which is analo-
gous to the multiplicativity property of the classical Brouwer degree taken in
the integer ring Z. In the case of the primary degree without free parameters,
this property is related to a natural ring structure of its range Ag(!"), called
the Burnside ring. In the case of the twisted equivariant degree, it takes a form
of a A¢(I")-module multiplication in the range A{(/*x S'). The multiplication
in both cases expresses the orbit structure in a Cartesian product of two orbits.
In general, explicit multiplication tables for an arbitrary compact Lie group I
are difficult to establish. Nevertheless, based on certain recurrence formulae,
a series of examples of the multiplication tables are obtained and listed in the
Appendix A3 for I' equal to the quaternionic group (g, dihedral group Dy,
symmetry groups Ay, Sy, As and orthogonal group O(2).

By the multiplicity property, the computations of the twisted equivariant
degree can be significantly reduced to the evaluations of the twisted degrees
of the basic maps. Since the twisted degrees of basic maps (called basic de-
grees), stand out of context of any specific applied scheme and depend only
on the group I and its irreducible representations, the values of the basic de-
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grees can be computed systematically in advance, using certain recurrence
formulae, and simply included as a part of the database for the equivari-
ant degree methods. See Appendix A3 for examples of basic degrees, wherc
I' = Qs, Dy, Aq, Sy, As, O(2).

This chapter is organized as follows. In Section 4.1, we recall the Burnside
ring structure on Ag(/") and provide the recurrence formula for the multiplica-
tion operation. Also, we define the basic degrees in the setting of the primary
degree without parameters and present the corresponding recurrence formula.
In Section 4.2, we introduce the twisted subgroups of G = I' x S and define
ANG) € AH(G) as a Z-submodule generated by the conjugacy classcs of the
twisted subgroups in (. This submodule A%(G) has an Ag(/")-module struc-
ture, which can be determined by a recurrence formula. We also define the
twisted primary degree for G = 1" x S1 as a truncated primary degree, taking
values in A%((). Finally, the twisted basic degree will be introduced, which
plays an important role in obtaining all the computational results presented
in this thesis.

4.1 Burnside Ring and Basic Degrees without Free
Parameter

4.1.1 Burnside Ring

Recall that @¢(1") = {(H) : dim W (H) = 0. Denote by Aq(1") the free abelian
group generated by ®4(/"). In order to define the multiplication operation on
Ao(I"), observe that '

(I'/H x I'/K) /T = (I'/H x I'/K),/N(L)
C (I'/H x I'/K)*/N(L)
(
(

H

r/H" x I'JK") J(N(L)/L)
= (I'/HY x I'/KY) /W (L).
Since the spaces I'/HY and I'/ KL consist of finitely many N(L)/L-orbits and

by assumption, N(L)/L is finite, I'/H" and I'/K" are also finite (cf. [116]).
Consequently, the set (I'/II x I'/K) /T is finite.

Definition 4.1.1. Let I" be a compact Lie group and Ay(I") be the free abelian
group generated by @¢(I"). Define the multiplication on A¢(I") by
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(H)-(K)= ) nu(H,K)(L) (4.1)

(L)eo(I")

where (H), (K), (L) € ®¢(1") and np(H, K) denotes the number of elements in
the set (]j/[I X F/[()(L)/117 ie.

n(H, K) = |(I'/H x I/K) /T,

where | X| denotes the number of elements in the set X. In other words, the
number ny(H, K) represents the number of orbits of type (L) contained in the
space I'/H x I'/ K. Equipped with the multiplication given by (4.1), Ag(I") is
called the Burnside Ring of I'.

Notation 4.1.2  In the case (¢ == I' x S!, the Burnside ring Ag(I") can be
naturally identified with A¢(G) by ({1) — (H x S'). Throughout the rest of
this thesis, we will use this identification frecly and possibly without further
notice.

We refer to [116] for more details and proofs related to the above definition of
the Burnside Ring.

Remark 4.1.3. (i). The computations of the multiplication table for Ay(1")
can be effectively conducted using a simple recurrence formula (cf. Propo-
sition 3.5.5)

(L, IW () |n(L, K)|W (K)| — <~>E< )n(L', Dynz|W(L)|

T L([[ y K ) =
(W (L)|

(4.2)
(ii) Examples of Burnside ring multiplication tables are provided in Appendix

A3, for I' = Qg, Dg, D4, D5, D(;, A47 54, A5, 0(2)

4.1.2 Primary Degrees without Free Parameters

The Burnside'ring structure naturally endows the primary equivariant degree
without parameters, a multiplicativity property.

Proposition 4.1.4. Let I' be a compact Lie group and V; be a ['-orthogonal
representation, for i = 1,2. Assume that (f;, §2;) is an admissible pair in V;,
fori=1,2. Then, we have
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(P7’) (Muuripuicarivity) The product map [y X fo - Vi@V — Vi @V, s
1 X £29-admissible, and

]VV-DCg(fl X fg,, Q] X 02) == ]LDCg(fl,!?]) . ]‘-ch(fg, ..(22)7

where I'-Deg is the primary equivariant degree without free parameters and
‘.’ stands for the multiplication in the Burnside ring Ao(1").

4.1.3 Basic Degrees and Computational Formulae for Linear
Isomorphisms

In the case of no-parameter equivariant maps, the concept of being the simplest
possible equivariant maps having nontrivial degrees reduces to the —Id map
defined on a /['-irreducible representation.

Definition 4.1.5. Let V be a rcal irreducible representation of /. Consider
—Id : ¥V — V and its primary cquivariant degree (without free parameters)
(c¢f. Proposition 3.2.4--3.2.5). We call deg, := G-Deg (~1d, B1(V)) € Ao(]" x
STy >~ Ay(17) the basic degree (without free parameters) of /™ associated to the
irreducible representation V.

Remark 4.1.6. (i) The computations of the basic degrees without free pa-
rameters can be achieved using the following recurrence formula (cf. [116]).

Suppose that degy, = >  nz(L). Then,
(L)EPo(G)
(~)m = % n(L, D) mg - W (D)
(L)>(L)
ny = N (43)
W(L)|

where ny, = dim V*.
(ii) As examples, the basic degrees of I' = Qs, Dn, A4, Sy, As, O(2) are pro-
vided in Appendix A2.

It turns out that the computations of the primary degree without free pa-
rameters for general, usually nonlinear, /-maps, can often be reduced to the
computations for symmetric linear isomorphisms A: V — V' where V is a I'-
orthogonal representation. Based on the usage of the basic degrees and the mul-
tiplicativity property of the primary degree without free parameters (cf. Propo-
sition 4.1.4), we derive a computational formula for I'-Deg(A, B1(V)) € Ao(G).
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Since A : V — V is agsumed to be a symmetric linear ['-isomorphism, V
allows a I'-isotypical decomposition provided by the eigenspaces F{u) of A,

for u € o(A), namely
V= E@.
peo(A)

By applying suspension property, I-Deg(A, B1(V)) can be evaluated by
I'-Deg(A, By(V ™)), where V~ C V is the maximal subspace on which A is
negative definite. More precisely, let o (A) denote the negative spectrum of

A. Then,
V= @ Ew.
ueo_(A)

Morcover on V~, A is homotopic to —Id, which can be viewed as a product
map with respect to the above isotypical decomposition of V~, by homotopy
and multiplicativity properties, we have

I-Deg(A,Bi(V)) = [ I'Deg(~1d, Bi(E(p)).

Heo—(A)

A further reduction is possible, by viewing F(u) as a I'-invariant subspace
in V' and taking an isotypical decomposition :

E(p) = Lo(u) & Lu(p) @ - - & By (p),
where E;(u) is modeled on V; for i = 0,1,...,7. Put
m;(p) = dim F(p)/dimV;, i=0,1,2,...,r. (4.4)
and call it the V;-multiplicity of p.
By applying the multiplicativity property, we obtain

I-Deg(A Bi(V)) = [[ [](Z-Deg(~1d, Bi(vi)))™,

peo_(A) i=0
= [[ [](degy,)™®, (4.5)
pEo_(A) 1=0

where m; () is the V;-multiplicity of u (cf. (4.4)) and we used the identification
Ap(I") = Ap(G) (cf. Notation 4.1.2).
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4.2 Twisted Primary Degree

4.2.1 Twisted Subgroups of I x S?!

Let G := I' x §! for I" being a compact Lie group.

Definition 4.2.1. For a subgroup K C I, a group homomorphism ¢ : K —
St and an integer [ € Z, define a p-twisted [-folded subgroup by

Kob={(y,2) € K x 8" : ¢(y) = 2'}.

In the case [ = 1, we usc the notation K¥ and simply call it a twisted subgroup.

Remark 4.2.2. Notice that if I = K*®! is a twisted subgroup and (17) < (1),
then H is also a twisted subgroup. In particular, every subgroup Hy € (H) is
twisted. Consequently, it makes sense to talk about the lattice of the conjugacy
classes of twisted subgroups in I" x S*. Moreover, if dim W (K) = 0 and L¥™
is a twisted subgroup such that (L¥™) > (K%!), then by Lemma 2.4.5(i), we
have dim W(L) = 0 (where W(K) and W (L) are taken in I).

Denote by @ () the set of all conjugacy classes of the twisted m-folded sub-
groups I1 = K#®! [ = 1,2 ..., such that dim W(H) = 1. Let A'(() be the
free Z-module generated by ¢4(G).

We have the following

Proposition 4.2.3. Let II = K%' be a twisted subgroup such that () €
PL(E). Then, the Weyl group W(H) of H in G is bi-orientable and can be
equipped with the natural orientation induced from S*.

Proof: The twisted subgroup I = K%' is given by

Kol.= {(v,z) € K xS py)= zl},

and we have
N, x S§!

Ked
where N, = {y € N(K) : o(yky™') = ¢(k) V k € K}. In order to prove that
W (H) is bi-orientable, it is sufficient to show that there exists a non-vanishing
vector field X : W(H) — 7(W(H)) which is invariant with respect to both left
and right translations on W (H). For this purpose, consider the vector field

W(H) =
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XN, xS' — 7(N, x ') = 7(N,) x (5,

defined by
X(y,2) = (7, 2),v(2)),

where v(2) is a unit tangent vector at z on S'. More precisely, by using the
identification

r(SHcS'xC, 1(8Y)={(z,v)€S' xC:2 L},

we can put v(z) = iz € 7,(S') C C. Since S' is an abelian group, the vector
field X is invariant with respect to both left and right translations of the group
N, x St. Moreover, K¥ is a normal subgroup of N, x S!. By passing to the
quotient spaccs, wo obtain an invariant (with respect to left and right trans-
lations) vector field X : W(H) — 7(W(H)) such that the following diagram
commutes:

ay TP
T(Np x §') ——1(W (H))
X X

N, x §'—2 W)

where p: N, x St — N, x S'/H = W(H) is the natural projection. O

Corollary 4.2.4. Let I" be a compact Lie group and G = I' x S'. Then,
PHG) C DT (G).

4.2.2 Ao(I')-Module AY(I" x S') Structure

Proposition 4.2.5. The Z-module A1(G) admits a natural structure of an
Ao(I)-module, where Ao(I") denotes the Burnside ring, and the Ao(I)
-multiplication on the generators (R) € Ao(I') and (K#') € A(I" x SY), is
defined by the formula

(R) o (K1) = "my, - (L#Y),
(L)

where the numbers ny, are computed using the recurrence formula (cf. [12, 114])
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n(L,R)W(R)|n(LW,K%‘)[W(Kw)/sw— S @ L g WL /8%

(L)>(L) X
— . 4.6
= W (Te/5] (“.6)

v

where n(L, R) and n(L#* L9Y) are defined by (2.10), and |Y| stands for the
cardinality of Y.

The following multiplicativity property of the primary degree plays an im-
portant role in practical computations of the primary degree (cf. [17, 114]):

Proposition 4.2.6. Assume that (f1, 21) is an admissible pair in RV, W
is an orthogonal representation of 1", {2y is an open ['-invariant subset of W
and fo : W — W an-{2g-admissible I'-equivariant map. Then, we have

(P7) (MurmieLicativity) The product map fi X [u : RSV W — V @ W is
2y X {2y-admissible, and '

G-Deg (f1 X fo, £y X £29) = I"-Deg(fo, {20) 0 G-Deg (1, {21),

where 1'-Deg(fo, 20) € Ap(I) is the primary equivariant degree without free
parameters and ‘o’ stands for the Ao(1")-module multiplication provided by
Proposition 4.2.5.

Examples of Ag(!")-module multiplication tables are listed in Appendix A3,
where I' = Qs, D3, Dy, D5, Dg, Ay, S4, A5 and O(2).

4.2.3 Twisted Primary Degree

Let I" be a compact Lie group and G = I' x §' and P, : AJ(G) — AL(G)
be the natural projection onto AL((¥). Suppose that V an orthogonal G-
representation, 2 C R@&V an open bounded invariant subset and f : RV —
V an £2-admissible G-equivariant map. Define the twisted primary degree (or

simply twisted degree) of the map [ on {2 by the formula ’

G-Deg'(f, 2) := P,(G-Deg (f, 2)). (4.7)

Proposition 4.2.7. Let I' be a compact Lie group, G = I' x S*, V an or-
thogonal (i-representation, £2 C R &V an open G-invariant bounded set and

[ R®V —V an 2-admissible G-equivariant map. Then, the twisted primary
* degree defined by (4.7) satisfies the following properties:
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(P1) (Exwstence) If G-Deg'([,§2) = 32y nu(H) is such that ny, # 0 for
some (H,) € ®4(G), then there exists x € 2 with f(z) =0 and G, D H,.
(P2)' (Aportivity) Assume that 2, and $25 are two G-invariant open disjoint

subsets of £2 such that f~1(0) N2 C 2y U 2y. Then

G-Deg!(f, 2) = G-Deg(J, 1) + G-Deg (/, ).

(P3)! (Homoropy) Suppose h : [0,1] x RV — V is an 2-admissible G-
equivariant homotopy. Then,

G-Deg'(h,, 2) = const

(here hy := h(r,-,-), 7 €[0,1]).
(P4)" (Suspension) Suppose that W is another orthogonal G-representation and
let U be an open bounded (i-invariant neighborhood of 0 in W. Then,

G-Deg'(f x Id, 2 x U) = G-Deg(f, 2).

(P5)" (NorMaLIZATION) Suppose [ is a tubular map around G(z,), H = G,
(H) € #4(G), with the local index n,, of [ at z, in a tubular neighborhood
l](;(mo). Then,

G-Deg'([f, Uca,)) = na, (H).

(P6) (ELivinaTion) Suppose f is normal in 2 and 25 0 f~H0) = (@ for every
(II) € (G, V). Then,

G-Deg'(f,2)=0.

4.2.4 Basic Degrees with One Parameter

Definition 4.2.8. Let V;; be an irreducible representation of G = [ x ST,
b:R@V,; — V; be the basic map associated to V;; and £2;; as provided by
Definition 3.3.2. Then, the twisted primary degree deg v = G-Deg (b, 0;,1)
is called the twisted basic degree of V;;.

Remark 4.2.9. (i) The twisted basic degrees can be computed using the
recurrence formula (cf. Proposition 3.5.3). Suppose that

degy, , = Z nr(L).
(L)EPI(G)
Then, _ N
dim Vi — 57 n(L, L) ng - [W(L)/S"|
(L)>(L)
|W(L)/S"|

ng =

(4.8)



100 4 Twisted Primary Degree

(ii) As examples, the twisted basic degrees for I' = Qs, Dy, As, Sa, As, O(2)
are provided in Appendix A2.



5

Euler Ring and Equivariant Degree for
Gradient Maps

One of the most important feature of the Brouwer degree is the multiplicativity
property taken in the integer ring Z. Possible extensions of this property to the
primary equivariant degree are usually connected to the Burnside ring and rel-
evant module structures (cf. Chapter 4). It turns out that the multiplicativity
property is naturally valid for the so-called equivariant degree for gradient GG-
maps. This equivariant degree was introduced by K. Geba, in order to develop
equivariant degree methods for applications to the variational problems (cf.
[71, 101, 153]). The gradient G-degree takes values in the so-called Euler ring
U(G), which is a generalization of the Burnside ring, introduced by T. tom
Dieck in [47]. The multiplicative structure of U(G) is naturally related to the
multiplicativity property of the gradient equivariant degree, and is essential
for its effective usage.

Therefore, a better understanding of the ring structure of U((G) is cssential
for establishing the exact multiplication tables for scveral important groups.
It turns out that, in the case G = I" x S!, the ring structure on U(G) is closely
retated to the previously considered algebraic structures such as the Burnside
ring and Ay(I")-module A}(G) (cf. Remark 5.1.13). However, the multiplicative
structure in U(G), as defined in terms of Euler characteristics taken in the
Alexander-Spanier cohomology with compact supports, is in general difficult
to compute. Nevertheless, there are several techniques available towards this
direction: (i} induction over orbit types and reasonable recurrence formulae,
(ii) ring homomorphisms to other known structures U(G,) (for example taking
G, to be a maximal torus in () (iii) fibre bundles of specific orbit spaces
and techniques for computations of Euler characteristics. It is our belief that
natural module structures, related to multi-parameter primary degrees, may
also provide a clue to understand the algebraic structure of U(QG).

In the case (G is a one-dimensional bi-orientable compact Lie group, we
propose a passage from the gradient equivariant degree to the primary degree
with one parameter, by defining the so-called equivariant orthogonal degree (cf.
[152] for G = I' x S' with I" being finite), which reduces the computations
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of the gradient degrees to those of the primary degree and thus makes all the
computational tools (related to the primary degree) available for the applica-
tion of the gradient degree to variational problems. This technique is further
developed in Subsection 5.2.4, where it is applied (on the H-fixed point spaces)
to establish a connection between the gradient degree and twisted primary de-
gree for the case G = I" x St with I being a compact Lie group. Observe that
in the case of the gradient degree, the notion of basic maps simply coincides
with the map —Id : V — V, where V is an irreducible G-representation. We
will call the corresponding gradient degrees, the basic gradient degrees. For
convenience, the basic gradient degrees for G = I” x S! are listed in Appendix
A2 for I' = Qg, Dn, A4, Sy, Ay and O(2).

5.1 Euler Ring and Related Modules

5.1.1 Relation between Euler Ring, Burnside Ring and Other
Related Modules

Recall the definition of the Euler ring, which was introduced in [47].

Definition 5.1.1. Let ¢ be a compact Lie group. Consider the free Z-module
generated by @(Q), i.e.
U(G) = Z[9(G))].

Define a ring multiplication * : U(() x U(G) — U(G), on generators (H),
(K) € #(G) by

(H)«(K)= > ny(]), (5.1)

(L)ed(G)

where the coefficients are given by

1, = xo((G/H x G/K),/N(L)), (5.2)

where x. stands for the Euler characteristic taken in Alexander-Spanier coho-
mology with compact support (cf. Section 2.6). The Z-module U(G) equipped
with the multiplication * is called the Fuler ring of the group G.

Proposition 5.1.2. (GENERAL RECURRENCE Formura) Gwen (H), (K) € &(G),
one has the following recurrence formula for the computations of coefficients
ny in (5.1),

np = x((G/H x G/K)*IN(L) = Y~ ngx((G/D)Y/N(L)).  (5.3)
(Ly>(L)
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Proof: Let X := G//H x G/K. The projection X ;) — X3)/G is a fibre

bundle with fibre G/L, which implies that X(%)/N(L) — X5,/G is a fibre

bundle with fibre ((G/L)%)/N(I). By Lemma 2.6.11, we have
XX IN(D)) = X UG IN(L) - xel X ) /).
Therefore,

X(XPINL) = D7 xel X, /N(L))

(L)>(L)

= > XUG/LYIN(L)) - xe(X 3,/ G)
(D)=(L)

= 3 XUG/LYYN(L)) - xe( Xy /N(L))
(F)=()

= > X(G/DENL) -y
(L)>(L)

=ni+ Y g x((G/L)E/N(L))

(Ly>(L)

and the result follows.

O

The following fact plays an essential role in our computations of the multi-
plication structure in U(G).

Proposition 5.1.3. Let H, H be subgroups of G such that dimW(H) =
dimW (H) = 1. Assume that for any mazimal orbit type (L,) in the G-space
G/H x G/H, the group L, is finite. Let

(H)y=(H)= > ny(L). (5.4)

(L)ed(G)

Then, ng, = 0 for any finite subgroup L C G with dim W (L) = 1.

Proof:  Take a finite subgroup L C G with dimW(L) = 1. Clearly,
dim N(L) = 1. Consider (G/H)¥ as a left N(L)-space. By Proposition 2.4.3,
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(G/H)" is diffeomorphic to the right N(L)-space N (L, H)/H. By the assump-
tion that dim W (H) = dimW (L) = 1, N(L,H)/H is a closed 1-dimensional
submanifold of G/H (cf. Proposition 2.4.5(iii)). Similarly, N(L, ﬁ) /H is also
a compact 1-dimensional manifold. Put

~\L ~
X = (G/H X G/H) = (G/H)" x (G/H)",

which is then diffeomorphic to a compact 2-dimensional manifold N(L, H)/H x
N(L,H)/H.

We claim that each connected component of X has one orbit type (in fact,
one isotropy) under the N(L)-action. By a connected component of X, we
mean the product space of two S'-orbits in N(L, H)/H and N(L, }N{)/]:j re-
spoctively (where S' € N(L) is the connected component of ¢ € N(L)),
namely S'(Hg) x fl(lN{'j) for some ¢,g € (. Notice that when S' moves
(H g,ﬁ@) to (Hgv,ﬁ_?ﬁ) for some 7,5 € St the corresponding isotropy
changes from g7 'Hg NG 1Hg to v g gy N7 (g~ Hg)y. Tt suffices to
show that y~1(g~' ITg)y = g~  Hg and 3151 )7 = g~ H§. We only prove
the first equality (for arbitrary v € S$1), which is equivalent to show that S' C
N(g~'Hg). By assumption dim W (H) = 1, we have that dim N(g~'Hg) =
dim N(H) > dim W (H) = 1, which certainly implies that N (g~ H g) contains
St :

Consequently, the right N(L)-space X, though may have different orbit
types, each of its connected component shares the same orbit type. Since each
connected component is both open and closed, the structure theorem, though
initially designed for homogeneous spaces, remains valid, which claims that
X/N(L) is a smooth manifold. To determine the dimension, it is enough to
notice that, by assumption, V(1) acts on X by finite isotropies, hence X/N(L)
is a compact smooth manifold of dimension 1. Thus, x(X/N(L)) = 0.

In the case (L) is a maximal type in G/II x G/H, then

X = (G/H x G/ﬁ) )

Hence, n, = x(X/N(L)) = 0.
In the case (L) is not a maximal orbit type in G'/H x G/II, then
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n = xe ((G/H G/H’)L /N(L))
=X(X/N() = 32 Xl (G/H x G/H) IN(L).

(Ly>(L}

By induction on the lattice of orbit types in G/H x G/ H, we obtain that

Xe (((;/H x G/H)Ll IN(1)) =0,
for all finite I/ C ¢ and dim W (L'} = 1. ‘ O

Example 5.1.4. Let G := O(2) x S'. Then, we have that (we refer to Ap-
pendix A2 for conventions)

‘Po( 7) = {(0(2) x 1), (SO(2) x 8), (D, x S},
Py(G) = {(Zn x S’l) (O(2) % 24), (SO(2) X L), (Dn X Zy),

(0(2) ), (SO@)7), (D), (Dg:)}
02(G) = {(Zo x Za), (Z5+), (Z5,)}

(a) Take H = D, x Z;, H = Z,, x S*. Notice that (H),(H) € &(G), i.e.
dim W (#) = dim W ({I) = 1. Moreover, any isotropy subgroup in the G-
space G/H X G/H’ has the form of g1Hg7' C gzﬂg;l, for some ¢y,92 €
(. Since I is finite, we have that this isotropy must be finite as well.
Therefore, by Proposition 5.1.3, we have that n;, = 0 in (5.4) for (L) €

 A{(Dax Zy), (DEY), (D5}

(b) Using the argument similar to the one used in the proof of Proposition

5.1.3, one can show that if H and K are subgroups of G with dimW (H) > 1

and dim W(K) = 2. Then,

(H) * (K) = 0.

Indeed, assume that for some (1) € &(GF) one has that the coefficient ny,
in (H) = (K) is different from zero. Then, (L) < (K) which, by assumption
and Proposition 2.4.5(i), implies dim W (L) = 2. In particular,

N(L) D SO(2) x S* =T" (5.5)
Consider the space

X :=(G/H x G/K)" = (G/H)" x (G/K)" = N(L,K)/K x N(L,H)/H.
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Combining (5.5) with Proposition 2.4.11 implies that N(L, H) and N{L, K)
contain T2. Therefore, N(L, H)/H and N(L, K)/K admit T?-actions with-
out T2-fixed-points. By Lemma 2.6.13, x(X/T?) = 0. If N(L) = T?, then
X(X/N(L)) = 0. Another possibility for N(L) may be N(L) = O(2) x S*.
Then, using the same fibre bundle argument as in the proof of Proposition
5.1.3 one concludes that x(X/N(L)) =0 as well. If () is a maximal orbit
type in X, then the last equality implies ny, = 0. If (L) is not maximal, one
can use the same induction argument as in the proof of Proposition 5.1.3
to show that ny — 0.

Burnside Ring

Recall that the Burnside ring Ao(() is defined as the Z-module Ay(G) =
Z|Po(G)] equipped with a similar multiplication as in U(G) but restricted
only to regenerators from @o(G) (cf. Section 4.1.1), i.e. for (H), (K) € $o(Q)

(H)-(K)=Y nu(L)  ((H),(K).(L) € $o(G)),
(1)

where ny, = x((G/H x G/K)/N(L)) = (G/H x GJK)/N(L)| (here x
stands for the usual Euler characteristic). One can easily notice that the space

(G/H x G/K)1,/G is finite, thus
XUGTI  GIR )1y /G = (G % GJK) 1y [,

where | X| stands for the number of elements in X.

Observe that being a Z-submodule of U(G), the Burnside ring Ag(G) may
not be a subring of U(G), in general. Indeed, we have the following example

Example 5.1.5. Let G = O(2). By direct computation, we have (D,) -
(SO(2)) = 0, while (Dy,) % (SO(2)) = (Zy).

However, there is a connection between the rings U(G) and Ay(G). Take
the natural projection mg : U(G) — Ap(G) defined on generators (H) € ¢(G)
by
(H) if (H) € &o(G),
0 otherwise.

mo((H)) = {

(5.6)
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Lemma 5.1.6. The map my defined by (5.6) is a ring homomorphism, i.e.
mo((H) * (K)) = mo((H)) - m((K)), (H),(K) € ¢(G).
Proof: Assume (H) & @o(G) and

)+ (K) = Y ma(R)  ((R) € Q). (5.7)

(R)eP(G)

Then, for any (R) occuring in (5.7), one has (R) < (H), hence dim W(R) > 0
(cf. Proposition 2.4.5(1)). By definition of 7, mp((R)) = 0 and thus 7o((H) *
(K)) = 0. On the other hand, no((H)) - mo((K)) = 0 - mo(K) = 0.

Thus, without loss of generality, assume (H), (K) € ®o(G) and

(Hy«(K)= > mn(L)+ > myl).

(L)ePo(C) (L) edo(@)
Then,
mo((I) + (K) = > mum((L) = Y ny(L)
(L)Edo(C) (LYedo(G)
and
(H)-(K)= ), ni(L).
(L)EDo(C)
However,
n. = x.((G/H x G/K)))/N(L))
= x((G/H x G/K))L/N(L))
= |(G/H x G/K)L/N(L)|
=nf (5.8)
and the result follows. O

The following stated result is due to T. tom Dieck (cf. [47]). We provide an
alternative proof.

Proposition 5.1.7. Let (II) € &,(G) with n > 0. Then, (H) is a nilpotent
element in U(G), i.e. there is an integer k such that (H)* =0 in U(G).
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Proof: We will use induction and the fact that there is only finitely many
conjugacy classes of isotropies in the spaces G/H x --- x (G/H. Suppose that
k times

for £ > 1 we have the expansion

(1) = 3 ax(K), (5.9)

(K)

and assume that () a maximal element in the sum (5.9) with ay, # 0. We will
show that the expansion of the product (H)*"! does not contain the term (L)
with non-zero coeflicient. Indeed, by multiplying (5.9) by (H) we obtain

(IDFHE = " ag(K) + (1), (5.10)

(K)

then by the maximality of (L) we obtain that the only product (K) % (H) in
(5.10) that can lead to a term with (L)-cocfficient is (L) * (). Notice that (L)
is the maximal orbit type in G/H x G/L, thus

(G/H x G/L);, = (G/H x G/LYY = (G/H)" x (G/L)" = (G/H)* x N(L)/L.
Notice that (see Corollary 1.92 in [104])

(G/H)" x N(L)/L)/N(L) = (G/IN" x W(L))/W(L) = (G/I)".
Hence

X((G/H x G/L)LIN(L)) = x((G/H)* x N(L)/L)/N(L)) = x((G/H)").

Since W (H) acts frecly on (G/H)' = N(L,H)/H and dim W(H) > 0, the
maximal torus 7™ C W(H) (with m > 1) acts freely on (G/H)*, which
means ((G/H)*)T™ = . Then by Proposition 2.6.12, x((G¢/H)%) = 0, and the
conclusion follows. O

Combining Proposition 5.1.7 with Lemma 5.1.6 and the fact that the mul-
tiplication table for A¢(G) contains only non-negative coefficients (cf. formula
(6.8)), yields

Proposition 5.1.8. (c¢f. [73]) Let mo be defined by (5.6). Then, M = kermp =
ZIP(G) \ Po(G)] is a mazimal nilpotent ideal in U(G) and Ao(G) = U(G) /M.

Summing up, the Burnside ring multiplication structure in A¢(G) can be
used to describe (partially) the Euler ring multiplication structure in U(G).
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Twisted Subgroups and Related Modules
We resume the assumption that ¢ = I’ X S, where " is a compact Lie group.
In this case, there are exactly two sorts of subgroups H C G, namely,
(a) H=K xS* for K C I}
(b) ¢-twisted I-folded subgroups K#* (cf. Subsection 4.2.1).
Proposition 5.1.9. Let G = I' x S, where I' is a compact Lie group. Given

a twisted subgroup K®' C G, for some I € {0} UN and a homomorphism
o : K — 8 the following holds

dim (Ng(K#")) = dim (Nr(K) 0 Np(Kerg)) + 1. (5.11)

Proof:  For the homomorphism ¢ : K — S! put L := kery. Also, for
simplicity, write N(K%!) for No(K®!), and N(K) (vesp. N(L)) for N (K)
(resp. Np(L)).

Notice that N(K%!) = N, x S!, where
N, = {y € N(K) : p(vky™") = ¢(k), Vk € K}.
Hence, it is sufficient to show that dim N, = dim (N(K) N N(L)).
Case 1. ¢ is surjective.

By the fundamental homomorphism theorem of algebra, we have K/ ~ S
Fix an element ¢t € N(K) N N(L), define an automorphism A, : K — K by
h.(k) := vky~'. Since v € N(L), h, induces a homomorphism on the factor
group K /I, which will be denoted by 71.7. Then, we have the commutative
diagram shown in Figure 1.

o

K K/L~ 5"
hy li_l.y
K L4 > K/L~ S

Fig. 5.1. Commutative diagram for surjective .

For any fixed « in the connected component of e € N(K) N N(L), let o,
be a path from v to e. Then, this path induces a homotopic homomorphism
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h,, connecting h, to Id on K, as well as a homotopic homomorphism 71(,7
(:onnectingﬁy to Id on K/L ~ S'. It is well-known that any group automor-
phism on S! has the form of 2z +» 2" for some n € Z, and each represents a
distinct homotopy class in H,(S";7Z). Thus, we conclude that h, = Id. By the
commutative diagram in Figure 5.1.1, it is equivalent to claim that poh, = ¢,
i.c. o(yky™") = (k) for all k € K. Therefore, every v in the same con-
nected component of e € N(K) N N(L), actually belongs to N,. This implies
that dim (N(K)NN(L)) < dim N,. On the other hand, by direct verification,
N, € N(K) N N(L). Therefore, dim N, = dim (N(K) N N(L)).

Case 2. @ 1s not surjective.

Take any element « in the same connected component of e € N(K) N
N(L), and denote by o, a path from <y to e. Define ¢, : [0,1] x K — S
by @, (t, k) := (o, (t)k(0,(t))7!). Since ¢ is not surjective, @, has a discrete
image in S'. Hence, when restricted on a connected component, ¢, is constant,
so we have ¢(vky™!) = @(k) for all k in the same connected component of
K. Therefore, for any element v in the same connected component of e €
N(K), we have o(vky™") = @(k) for all k € K i.e. v € N,, which implies
dim N(K)NN(L) < dim N,,.. On the other hand, N, € N{K)NN(L). Therefore,
dim N, = dim (N(K) N N(L)). O

Lemma 5.1.10. Let I be a compact Lie group, G = I'x St and H = K¥* C GG
a tunsted subgroup. Then,

(i) 1<dimWg(H) <1+dimWpr(K);

(ii) any subgroup I C H is tuisted:

Proof: (i) The second inequality was established in [15], Section 5.1. To prove
the first inequality, observe that Ng(K#*') = N, x S' with K C N, C Np(K).
Thus,
N,xS" K xSt
Kol ° Kl
Consider a homomorphism ¢ : K x S — S* defined by ¥(v, z) = p(7)z~
Since 1 is surjective and keryy = K#! we obtain that dim K x S'/K#! =
dim S* =1 from which (cf. (5.12)) the statement follows.
(ii) It is obvious that H is twisted by the same homomorphism ¢. O

WG(K“"’Z) _

(5.12)

{

Corollary 5.1.11. Let GG be as in Lemma 5.1.10.
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(a) Let H be a twisted subgroup of G. Then, dim Wg(H) = 1 if dim Wy (K) =
0.
(b) Po(G)={(H): HCG, H=K xS', dimWp(K) =0} and thus

Ao(G) = Ao(I). (5.13)

(c) If Il = K is twisted in G, dimW () = 1 and (H) < (II) € &4(G),
then H is twisted in G and dimW(H) = 1.

Proof: Statement (a) follows directly from Lemma 5.1.10(i). Next, Lemma
5.1.10(i) excludes twisted conjugacy classes from @y(G). Since, for H = K x S’
for K C I', on has dim Wg () = 0 if and only if dim Wp(K) = 0. Hence, the
statement (b) follows.

To prove (c), observe that H cannot be a subgroup of type K x St since it
would imply dim Wy (K) = 1 and (K) < (K), which would be a contradiction
to Proposition 2.4.5(i) combined with (a). Consequently, H = K¥™ where 1 :
K — Slisa homomorphism, and since K C K, it follows that dim W,(]z ) =0,
which implies that dim W (IT) = 1 (cf. (a)).

O

Being motivated by Corollary 5.1.11, put

LG = {(H) € &(G): H = K*" for some K C I" with dim W,(K) = 0},
{ € ¢(G): dimWg(H) =1and (H) ¢ #'(G)},
GG = {(H) € 6(G) : dimWe() =k}, k> 2,

and define

As it was discussed in Subsection 4.2.2, there is a natural Ao([’)-module '

structure on A% (G) (cf. Proposition 4.2.5). By using Corollary 5.1.11, one can
establish a relation between the Aq(/")-module structure on AL (G) and the

ring structure on U(G).

To this end, take the natural projection 7, : U(G) — A{(G) defined by
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m () = {(H) if (H) € $4(G),

0 otherwise.
Propositiori 5.1.12. Let I" be a compact Lie group and G = I" x S*. ]f(ﬁ) €
(G with H = K x S' and (H) € ¢4(G), then
() + (1)) = (K) o ().
Remark 5.1.13. Proposition 5.1.12 indicates that the multiplication table in

the Z-module decomposition U(G) = A¢(G) & AL(G) b A*(G) can be described
by the following table

. Aa(G) 2 Ag(D) AL(G) A*(G)

Ao(G) = Ao(I) Ao(G)-multip +T Ao(I')-module multip +71% | 7.
ANG) Ao(I)-module multip +7. T +T. T.
A™(G) T. T T.

where Ty stands for an element from A*(G) and Th for an element from A} (G).

Table 5.1. U(G)-Multiplication Table for G = I" x S*

In the case [ is a finite group, we have the following result (cf. [152])

Proposition 5.1.14. For G = [’ x S! with [" being a finite group, the mul-
tiplication in U(G), when restricted to Ai(G) x A(G), is trivial, i.e. for any
(H),(K) € &:1(G), we have

(H)* (K)=0.

Proof: Let (H), (K) € #;(G). Take L C G such that (G/H x G/K)F # 0.
By dimension restrictions, we have (L) € @1(G) (cf. Proposition 2.4.5(1)).

Claim.  x((G/H x G/K)* /W (L)) = 0 for (L) € #,(G).

We prove the claim by showing that (G/H x G/K)\/W (L) allows an S'-
action without S'-fixed points.
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Observe that (G/H x G/K)' = (G/H)" x (G/K)"*. By Proposition 2.4.3,
the space (G/H)" is homeomorphic to N(L, H)/H, on which W (IT) acts freely.
Thus, the space (G/H)* is of dimension 1. On the other hand, by Proposition
2.4.4, (G/H)" is composed of a finite number of W (L)-orbits. Therefore, by the
dimension restriction, the isotropy subgroup W (L), of each point = € (G/H)*
is finite.

Take the connected component of the neutral element e € W (L), which is
diffeomorphic to S'. Consider the W (L)-space (G/IH)L as an S'-space. For
each z € (G/IN¥, the new isotropy is S = W(L), N S!, which forces S}
to be finite. Consequently, every connected component of (G/H)" allows an
Sl-action without S'-fixed points.

Similarly, every connected component of (G/K )& allows an S'-action with-
out S'-fixed points. Consider the product space (G/I)* x (G/K)" as an S'-
space by the diagonal action. Then, hy Lemma 2.6.13, we have

x(((G/H)Y x (G/K)")/S") =o.

To conclude that x (((G/H)" x (G/K)")/W (L)) = 0, it is sufficient to obscrve
that (G/H)* x (G/K)F)/S" — ((G/H)F x (G/K)¥)/W (L) is a trivial fibre
bundle with a finite fibre W (L)/S*. Uctaim

If (L) is a maximal orbit type in ((i/H)* x (G/K)*, then
ny = x((G/H x G/K), [W(L))

— x((G/H x GIK)" W (L))
— 0.

Otherwise, one applies the general recurrence formula (cf. Proposition 5.1.2)
and conclude that ny, =0 .

O

In the rest of this subsection, we present the computational formulae for the
Euler ring U(T™), where T" is an n-dimensional torus. The following statement
was observed by S. Rybicki.

Proposition 5.1.15. If (H), (K) € &(T"), and L = HN K, then
(L) ifdimHA+dimK —dim L =dim7™,

0 otherwise.

(H)'*(K)Z{
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Proof: Put G :=T" and obscrve that every compact abelian connected Lic
group is a torus. Since H and K are normal in G, the groups G/H and G/K
are tori. Take . = H N K. Since G is abelian, L is the only one isotropy in
(G/H x G/K)* with respect to the N(L) = G-action. Hence,

(H) « (K) = x ((G/H' < GJK)" /G) (L)
Next, N{L, H) = G, thercfore

(G/H x G/K)" /G — (G/H % G/K) /G.

Put M = (G/H x G/K) / G. Observe that M is a compact connected G-
manifold of precisely one orbit type (L). Thus, it is of dimension N :=
dimG/H + dimG/K — dimG + dim L = dim G — dim K — dim i/ + dim L.
If N :=0, then x(M) =1, and if N > 0, then there is an action of a torus on
M without G-fixed-points, so x(M) = 0 (cf. Lemma 2.6.12). O

The full multiplication table for U(7?) is presented in A3.19, Appendix A3,

5.1.2 Euler Ring Homomorphism

Let ¥ : ¢’ — G be a homomorphism between compact Lie groups. Then,
the formula ¢’z := ¥(g")z defines a left GG’-action on G. In particular, for any
subgroup /I C ¢, the map 9 induces the G’-action on GG/II with
S = (gHg ™). (5.14)

In this way, 9 induces a map ¥ : U(G) — U(G’) defined by

V((H) = Y xl(G/H)wmn /G )(H). (5.15)

(H")e2 (") :
We claim that

Lemma 5.1.16. The map ¥ defined by (5.15) is the Euler ring homomor-
phism.

Proof: Recall that, by Gleason Lemma, if X is a compact G-CW complex,
then the projection map Xy — X(ny/G is a fibre bundle with the fibre G/H
(cf. [25], p. 88, Theorem 5.8). Hence, by Lemma 2.6.11,
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Xe(X) =) el X)), xelXany) = Xel Xan) /@) - X(G/H).
(H)

Combining the formulae (5.2), (5.15), Lemma 2.6.11, one obtains
P((H) * (K)) = 7} _xe(G/H x G/K)1/G) - (L)

(L)

= Xe((G/H x G/K)(1)/G) - ¥(L)
(L)

=3 " %e((G/H x G/K)(1)/0)> " xe((G/L)wy/G') - (L)
(L) (L)

=33 x(G/H x G/K)1)/C)x-((G/ L)1 /G") - (L').
(L) (1)
On the other hand,
T (H) » 7(K) _
= Y xe((G/H)am /G - (H') % Y _xe((G/K)ucn/C') - (K)

(H") (K7)

= Y Xe((G/H)u» /G )xe((G/K )k /C) - (H') x (K')

(H7),(K")

= Y xlG/H)un/G X (GIK)xn/G') - Y x(G'/H x G /K )1 /G) - (L)
(H")(K") (L')

=Y. > xel(G/H)un /G ((G/K) (k) /G )xe((G'H x G [K") 1)/ G') - (L).
(L7 (), (")

Put
s = ZXc((G/H x G/K)1y/P)xe((G/ L)y /),
(1)
mpr = Z Xc((G/H)(H/)/G,)X(((G/I{)(K/)/GI)X(((G,/HI X Gl/K,)(Lr)/G,).
(H"),(K")

We need to show that for all G’-orbit types (L) in G/H x G/K

Ny =myg. (516)

Consider Uy = XC((G/H X G/[()(L/)/G,) = XC(((;/H X G/K)L//N(L,)) If
(') is a maximal orbit type, then

up = Xxe(G/H x G/K) [N(L') = x(G/H x G/K)¥ IN(L') = Y xe(G/H x G/K){1,/N(L),
(L)

where the union is taken over all (L)-orbit types occuring in (G/H x
G/K)¥ (considered as N(v(L'))-space) (cf. (5.14)). Using the fibre bundle
G/L — (G/H x G/K)qy — (G/H x G/K)1y/G, we get that (G/H x
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G/K){,/N(L') — (G/H x G/K)1,/G is a fibre bundle with the fibre
(G/L¥)/N(L'). Thus,
uy = x((G/H x G/K)Y IN(L")) = ¥ "x.((G/H x G/K){1,/N(L'))
(L)

=) Xe((G/H x GJK )y /C)x(G/LY ) IN(L))
(L)

=Y x(G/H x G/K)(1)/GC)x(((G/L)1:)/N(L')) = nus
(L)

In the case (/) is not a maximal orbit type, assume, by induction, that
ugz, = ny, for all (') > (L'). Then,

up =x(G/H x G/K)y /N (L))
= x((G/H x G/K)" IN(L) -~ > x(G/H x G/K);,/NL)

(LN>(L")
=x((G/H x G/K)" IN(LY) ~ 3" g,

(Ly>(L)
=Y xe((G/H x G/K)wy/C(G/L ) IN(LY) = D7 g
(L) (L)> (L")
= > > xG/H x G/K),/G)x((G/Ly,)/NL') — > ug
(L= ) (L7)>(L)
= Z g, — Z ugp, =ng + Z (ng, —up,) =mng
L)z (L) (L)>(L7) (Ly>(1ry

On the other hand, in the case (1) is a maximal orbit type,

(G/H x G/K)p/N(L') = (G/H x G/K)Y IN(L) = | ((G/H)ur x (G/K)uen)” JN(L),
() (K
where the union is taken over all (H')-orbit types (resp. (K')-orbit types)
oceuring in (G/H)* (resp. in (G/K)*"), considered as N(I/)-spacc. By us-
ing the fibre bundles G'/H" — (G/H)wy — (G/H)@w,/G and ¢'/K' —
(G/K) Ky — (G/K) /G we obtain the product bundle G'/H' x G' /K’ —
(G/If)([-{f) X (G/I{)(K/) — (G/]])(H/)/GI X ((;/f()(KI)/G”. Therefore,

(G/H) gy x (G)K) eV IN(L') = (G H) @y /G % (G K ) gery | G

is a fibre bundle with the fibre (G'/H’ x G'/K')¥' /N(L'). Consequently,
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up = x((G/H x G/K) /N = 3 ((G/H) i x (G/K)en)™ IN(L'))
(H").(K”)

= Y xl(G/H)un /G x (G/K)xn/G)x(G'/H x G'/K"Y IN(L')
(H”) (K’) :

= 5" X(G/H)un/G % (G/K)xn/C)X(G'/H x G'/K") [N(L'))
(H"),(K")

= 5" XelG/H) /G Yxe((G/K )y /G )X(G'[H' x G [K")1r [N(L))) = my

(H").(K7)

In the case (L') is not a maximal orbit type, by applying induction over the
orbit types in the same way as above,

xe((G/H x G/K) o [N(L')) = x((G/H x G/K) IN(L)) = 3wy,
(L)>(L")

= > (xUG/H) /G )x((G/K ) s,/ C)

(H")(K")
(G H < G KN NED) = YT u,
(L1)>(L)
= Z My, — Z vy, = mps + Z (mj, —uj,) =mp

(L)2(1) (Ly>(L") (L)>(L)

Therefore, the statement follows. O

Remark 5.1.17. A similar result was obtained implicitly in [47], with a proof
containing scveral omissions. We present hereby the proof of Lemma 5.1.16 for
completeness.

5.1.3 Euler Ring Structure on U(O(2) x S?!)

To establish the Euler ring multiplication on U(O(2) x S'), we discuss the ring
homomorphism 2 : G — G for the case G = T being a maximal torus in G
and ¢ : T" — G being the natural embedding. Then, the homomorphism ¥
takes the form '

vy = 3 XlG/ H)ao /T - (K), (5.17)

(K)ed(T™) ‘

with K = H'nT", H € (H). Observe that since all the maximal tori in a
compact Lie group are conjugate (see, for instance, [27]), the homomorphism
(5.17) is independent of a choice of a maximal torus in G.

We will show that ¥ can be used to find additional coefficients for the
multiplication formulae in U(G'). To compute ¥, we start with the following
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Proposition 5.1.18. Let T™ be a mazimal torus in G and the homomorphism
U is defined by (5.17). Then,

W) = W) + 3 (1),
(1)
where T = gTmg~' 0 T™ for some g € G and (T") # (T™).

Proof: By Proposition 2.6.17, the Weyl group W (7™) is finite and the coef-
ficient of W(T™) corresponding to (1T™) can be computed as follows (cf. 5.17):

Xl (GT™) )/ T™) = x((GT™)T [T = x((G/ T 1)
=x ((G/T") = x(G/T") = W (T

0

Proposition 5.1.18 tells us what is precisely the coefficient of ¥(7™) related
to T™. In general, to compute a coefficient related to an arbitrary (K) in (5.17),
one can use the following

Proposition 5.1.19. (Recurrence Formuna) Let T" be a mazimal torus in
G, 0 T — G a natural embedding, and & . U(G) — U(T") the induced
homomorphism of the Euler rings. For (H) € ®(G), put

(i) =3 nk(K),

(K)

where (K)’s stand for the orbit types in the T"-space G/H, i.e. K = H' NT"
with H' = gHg™! for some g € G. Then, for K = H' NT™,

nK:X<N(K’ Hl)/T") - Y ng (5.18)

H R
(K)>(K)
Proof: Put X :=G/H. Then,

X< ) Xgy/T™

(K)2(K)

which (since T™ is abelian) implies
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XX = Z Xgy/T") = Z X(Xg/T")-

K)2(K (K)2(K)

Therefore,
Xel Xie /T™) = x(XX/T™) = 37 Xl X /T™).
(K)>(K)

To complete the proof, it remains to observe that XX JT" = w JT™

(see Proposition 2.4.3) from which (5.18) follows directly. O

Example 5.1.20. Consider the natural embedding ¢ : T? := SO(2) x S —
0O(2) x S*, which induces the homomorphism of Euler rings ¥ : U(O(2) x S') —
U(T?). Using Proposition 5.1.19, one can verify by direct computations that:

w(0(2) x S') = (SO(2) x SY, W(SO(2) x S') = 2(S0O(2) x S")
(D, x SY) = (Z, x SY), W (L, X Sl) = 2(Zm x SY)
F(O2) x 7)) = (5()(2) x 7)), W(SO2) x 7)) = 2(SO(2) x Zy)

V(D X 7)) = (Zn, X L), (Lo, X L) = 2(Zogn, X L),
P(O(2)™1) = (SO(2) x Zy), w(Dy) = (Z n><Zz)
W(SO(2)7™") = (SO(2)7™) + (SO(2)—), w(Dg;) = (Z3;)
Wz = (2t + (25, V(Ze) = AZsp)

where all the symbols used follow the convention in Appendix A2.1.6.

We conclude this subsection with a brief explanation of how to use the
homomorphism ¥ : U(G) — U(T™) to compute the multiplication structure in
U(G). The knowledge of the Burnside Ring A(G) (cf. Subsection 4.1.1), the
Ag(G)-module AL(G) (cf. Proposition 4.2.5, Remark 5.1.13, Proposition 5.1.3)
as well as some ad hoc computations of certain coefficients in the multiplication
table for U(G) (cf. Example 5.1.4), may provide one with some information on
the structure of U(G). Thus, taking some (H),(K) € @(G), onc can cxpress
(H) * (K) as follows

(H) % (K) =) “ni(L)+ Y _zu(l), (5.19)
(L) (L

where ny, are “known” coefficients while z, are “unknown”. On the other hand,
Proposition 5.1.15 allows in principle to completely evaluate the ring U(7T™)
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(cf. Table A3.19). Since we also know the homomorphism ¥ (cf. Propositions
5.1.18—5.1.19), one has that

U((H)) x W ((K)) =Y np(L") € U(T), (5.20)
(L)

where all the coefficients nz» are “known”. Applying the homomorphism ¥
to (5.19) and comparing the coeflicients of the obtained expression with those
obtained in (5.20) (related to the same conjugacy classes) leads to a linear
system of equations over 7Z from which, in principal, it is possible to determine
some unknown coefficients in (5.19). However, it might happen that the number
of equations in the above linear system is less than the number of unknowns.
Summing up, the more partial information on U(G) we have, there is a better
chance to compute the remaining coefficients. We will illustrate the described
strategy by computing the multiplication table for U(O(2) x S1). Take G :=
O(2) x S'. Based on the above discussion and the known structure of the Euler
ring U(T?) in Table A3.19, we obtain the Euler ring structure for {/(O(2) x
S1). The multiplication table for U(O(2) x S*') is presented in Table A3.20,

Appendix A3. '

5.2 Equivariant Degree for Gradient G-Maps

Throughout this section, G is a compact Lie group (if not otherwise specified),
V is a GG-orthogonal representation and 2 C V is an open bounded G-invariant
subset.

5.2.1 Construction by K. Geba and Basic Properties

In this subsection, we follow the construction of the G-equivariant degree for
gradient G-maps introduced by K. Geba in [71] (which is denoted by Vs-deg ),
and discuss some of its basic properties. Based on these properties, we derive
an axiomatic definition for V-deg.

Definition 5.2.1. (i) A map f:V — V is called a gradient G-map if there
exists a G-invariant function ¢ : V — R of class C? such that [ = V.
Similarly, one can define gradient G-homotopy.

(ii) Let f:V — V be a gradient G-map. The pair (f, §2) is called a gradient
admissible pair, if f(z) # 0 for all x € 012. Two gradient admissible pairs
(fo, $2) and (f1, £2) are called gradient G-homotopic, if there exists a gradient
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G-homotopy h : [0,1] x V' — V such that h(0,-) = fo, h(1,:) = f, with
(h(t,-), 2) being gradient admissible for all ¢ € (0, 1).

Take z € V, put H := G, and consider the orthogonal decomposition of V
V =1,G(z) ® W, & v, (5.21)

where 7M denotes the tangent bundle of M, W, = 7,Viy) © 7.G(z) and
Ve 1= (s V(H))l. Suppose f: V — V is a gradient GG-map being differentiable
at 2 and f(z) = 0. The derivative D f(x) has a block-matrix form with respect
to (5.21)

0 0 0
Df(z) = |0Kf@) 0 |, (5.22)
0 0 Lf(z)

where K f(z) := Df(z)lw, and Lf(z) := Df(z)|,,.

Definition 5.2.2. (i) An orbit G(z) is called a regular zero orbit of f, if
f(z) = 0and Kf(z): W, — W, (provided by (5.22)) is an isomorphism.
Let F/_(x) C W, denote the generalized eigenspace of K f(z) corresponding

to the negative spectrum of K f(z). Then k, := dim £_(z) is called the
Morse index of the regular zero orbit G(z). Put
i(G(z)) == (=)@ (5.23)

or equivalently, '
i(G(x)) := sign det K f(x) = sign det Df(x)|w,
(ii) For an open G-invariant subset U of V{y such that U C V(y), and a small*
e > 0, put
NUe)={yeV r y=s+v,x€Unv L Vu,lv|<e},

and call it a tubular neighborhood of type (H). A gradient G-map f:V —
V, [ = Ve is called (H)-normal, if there exists a tubular neighborhood
N (U, ¢€) of type (H) such that [~ (0)N 2y € M(U,€) and for y € N(U,¢),
y=z+wv,ze€lU,vlnVm,

o) = o) + ol

or equivalently,
fy) = fz)+ o

* £ is assumed to be sufficiently small that the representation of y = z + v in N'(U, ¢) is unique.
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The concept of a generic pair plays an essential role in the construction of the
equivariant degree for G-maps presented in [71].

Definition 5.2.3. A gradient admissible pair (f,§2) is generic if there exists
an open G-invariant subset {2, C {2 such that

(1) fla, is of class Ot

(i) 7O NN C;

(iil) f~1(0) N £2, is composed of regular orbits of zeros;

(iv) For each (H) with f~1(0) N {2y # 0, there exists a tubular neighborhood
N (U, €) such that [ is (H)-normal on N(U,¢).

Theorem 5.2.4. (Generic ArrroxivatioN Treorewm, cf. [71]) For any gradient
admissible pair (f, £2) there exists a generic pair (f,,§2) such that (f,$2) and
([0, £2) are gradient G-homotopic.

Define the equivariant degree for a gradient admissible pair (f, 2) by

Ve-deg (f,02) == Ve-deg(fo,2) = Y ny-(I), (5.24)
(H)EP(G)

where (f,, £2) is a generic approximation pair of (f, £2) provided by Theorem
5.2.4 and
ny o=y iGE), (5.25)
(G )=(H) :
with G(z;)’s being the disjoint orbits of type (H) in /7 1(0) N £2.
We refer to [71] for the verification that V-deg(f, £2) is well-defined and
satisfies the standard properties expected from a degree.
Now, we are in a position to formulate an alternative axiomatic definition
of the degree for gradient G-maps.

Theorem 5.2.5. Let G be a compact Lie group, 2 C V be an open bounded
G-invariant subset and f : V — V be a gradient G-map. There exists a unique
function V g-deg associating to each gradient admissible pair (f, £2) an element
Ve-deg(f, 2) € U(G) such that the following properties are satisfied:
(P1) (Existence) If Vg-deg (f, 2) = Yony(H), is such that ny, # 0 for some
(H)
(H,) € (@), then there exists z, € 2 with f(z,) =0 and H, C G,.
(P2)(AppitiviTy) Suppose that 2, and §2; are two disjoint open G-invariant
subsets of §2 such that f~1(0) N 2 C 21U 2y. Then

vG*deg (f7 ‘Q) - VG—ng (f? Ql) + VG'deg (f> ‘(22)
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(P3) (Homotopy) If h : [0,1] x V. — V is a gradient G-homotopy being §?
admissible, then
Vg-deg (hy, £2) = constant,

where hy(+) == h{t,-) fort € [0, 1].
(P4) (Murmpicativity) Let Voand W be two orthogonal G-representations,

(f,$2) and (f, 2) two gradient admissible pairs, where 2 CV and 2 C W.
Then '

Ve-deg (f x f, 0 x Q) = Vg-deg (f, 2) x V-deg (f~, Q2),

where the multiplication *’ is taken in the Euler ring U(().

(P5) (Nowrmauization) Suppose (f,12) is a generic pair such that f~(0) N
N = G(z,), for some z, € 2 with H, = G, . Let N(U,¢e) be a tubular
neighborhood provided by Definition 5.2.3(iv) and i(G(z,)) be defined by
(5.23). Then

V-deg (f,_/\/’(Ug)) - 5((;($0>>(]Io>

(P6) (SuspensioN) Suppose that W is another orthogonal G-representation and
let O be an open bounded G-invariant neighborhood of 0 in W. Then

Ve-deg (f x 1d, 2 x O) = V-deg (£, Q).

Proof:  Fxistence. The existence of V-deg satisfying (P1)-(P5) is guaran-
teed by its construction as shown in [71]. The suspension property (P6) is a
direct consequence of (P4) and (P5). Indeed, by (P4), we have

Va-deg(f x Id, 2 x O) = Vg-deg ([, 2) x Vs-deg (Id, O).
Since (Id, O) is generic, by (P5),
Ve-deg (14, 0) = i({0}) (G) = (G),

which is the unit element in the ring U(('), thus (P6) follows.
Uniqueness. The uniqueness of V-deg (f, 2) is provided by (P5), which leads
to its analytic definition (cf. (5.24)—(5.25)). O

We complete this subsection with the following

Lemma 5.2.6. Let G be a compact Lie group, V an orthogonal G-represent-
ation, £2 C V an open bounded G-invariant set and f .V — V a G-gradient
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2-admissible map. Then, for every orbit type (L) in 2, the map [* = [|yr :
VE — Vs an 2%-admissible W (L)-equivariant gradient map. Moreover, if

Ve-deg ([,2) = > nk(K),

(K)ed(Q)
and
Vwaydeg (f5 0% = Y my(H),
(H)eP(W (L))
then,
ny = mz,, (5.26)

where Zy = {e} and e € W (L) s the identity element.

Proof: By homotopy property of the G-gradient degree, without loss of
generality, one can assume that f is generic G-map on 2. Thus, f is generic
W (L)-map on 2%. From the construction of G-gradient degree, formula (5.26)
follows. |

5.2.2 Computational Formulae for the G-Gradient Degree for
Linear Isomorphisms

The G-gradient degree as described in Subsection 5.2.1, contains a complete
topological information on the symmetric properties of zeros of f (cf. [41]).
However, the computation of V-deg (f, 2) is a complicated task, in general.
In several important cases from the application viewpoint, it is possible to use
the standard linearization techniques so that one can reduce the computation
of gradient degrees Vg-deg (f, §2) for general G-maps [ : V — V to the com-
putation of Vg-deg (A, Bi(V)) for symmetric linear isomorphisms A : V — V.

By applying suspension property, Vg-deg (A, B1(V)) can be evaluated by
Vg-deg(—Id, B1(V ™)), where V™~ C V is the maximal subspace on which A is
negative definite. Since —Id can be viewed as a product map with respect to the
isotypical decomposition of V'~ a further reduction is possible. In terms of the

spectra of A, we can write V— = @ E(u), where o :={uco : u<0}
peo_{A)
is the negative spectrum of A, and F(-) denotes the eigenspace.

Let {Wi}, k = 0,1,..., be the complete list of all irreducible G-represent-
ations. Since each F(u) is G-invariant, one can consider its G-isotypical de-
composition
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E(p) = Eo(u) @ () & - & L, (1),
where Fy(pe) is modeled on Wy, for k =0,1,2,...,k,. Put

my(p) = dim Ep(p)/dim Wy, k=0,1,2,...,k, (5.27)

which is called the Wi.-multiplicity of p.

By applying the multiplicativity properties, one obtains

ko
Ve-deg (A, Bi(V)) =[] [[(Verdeg(=1d, Bi(Wo))™W,  (5.28)
peEa_(A) k=0 :

where my(u) is defined by (5.27).

Notice that the values of V-deg (—1Id, B1(W;)) contribute as basic building
blocks to the value of V-deg (A, B (V)), and depend only on the irreducible
representation W,. Therefore, we introduce the following notion:

Definition 5.2.7. We call
Deg,y, = Vg-deg (—1d, Bi(Wr)), (5.29)

the basic gradient degree associated to W.

Remark 5.2.8. Observe that the computation of Deg,y, can be complicated
for an arbitrary . In.the rest of this section, we develop a method for the
computation of Deg,y,, in the case G = I" X S!, where I' is a compact Lie
group. The main ingredients of the method are

(i) for each (L) € &(G), the ny-coefficient of Deg,, can be computed via
the W (L)-gradient degree of the restriction to V¥ (cf. Lemma 5.2.6);

(i) if (L) € 4(G), then the computation of the related W(L)-gradient
degree can be done using a canonical passage via the so-called orthogonal
degree (cf. Subsection 5.2.3);

(iii) the computation of basic gradient degree related to the maximal torus-
action usually is simple, therefore the remaining (non-twisted) coeflicients ny,
can be computed using the homomorphism ¥ : U(G) — U(T™) and the infor-
mation obtained for the twisted orbit types.
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5.2.3 Passage through Orthogonal Degree for One-dimensional
Bi-Orientable Compact Lie Groups

In this subsection, assume that ¢ stands for a one-dimensional bi-orientable
compact Lie group. It turns out that, in this case, one can associate to a given
G-gradient (2-admissible map f : V — V, (or more generally, to an orthogonal
map (cf. Definition 5.2.9)), a G-equivariant map f : R@& V — V in such a
way that the primary degree of f is intimately connected to Ve-deg (f, £2).
Observe that in the case G = I" x S! with /" finite, a similar construction was
suggested in [152].

We start with the following definition.

Definition 5.2.9. A (J-equivariant map f : V — V is called G-orthogonal
on 2, 1if f is continuous and for all v € £, the vector f(v) is orthogonal to
the orbit G(v) at v. Similarly, one can define the notion of a (i-orthogonal
homotopy on (2. |

Clearly, any G-gradient map is orthogonal, however, one can easily construct
an orthogonal map which is not G-gradient (ef. [15] for instance).

To associate with an orthogonal map, a G-equivariant map and the corre-
sponding primary degrees, some preliminaries of related (G-orbits are necessary.

Take the connected component of e € (7, which is a maximal torus 7 of (3.
Choose an orientation on 7" and identify T with S'. The chosen orientation
on S! can be extended invariantly on the whole group G. We assume the
orientation to be fixed throughout this subsection.

Next, take a vector v € V and define the diffeomorphism
o GJGy — G(v),  @u(gGy) = gu. - (5.30)
Take the decomposition
V=vSaeVv, V=V (5.31)

If v € V5, then dimG, = 1 so that the orbit G(z) = G/G, is finite and,

therefore, admits a natural orientation.

Ifv & VS then G, is a finite subgroup of G, and by bi-orientability of
G, both (left ‘and right) actions of G, preserve the fixed orientation of G.
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Therefore, G/G, has a natural orientation, induced from G. Consequently, the
orientation obtained by (5.30) does not depend on a choice of the point v from
the orbit G(v) (cf. Remark 2.2.15). More precisely, consider v € V and the
map ¢, : G — G(v) given by

vu(g) =gv, g€G. (5.32)

Clearly ¢, is smooth and D, (1) : 71(G) = 71 (S') — 7,(G(v)). Since the total
space of the tangent bundle to S! can be written as ‘

(8" = {(2,7) € C x S': z = ity, t € R},

a tangent vector to the orbit. ¢ (v) can be represented by
R o o
T(v) == D, (1)(7) = }H% - [e”v = 'U} (5.33)

Notice that for any v € VS’ we have 7(v) = 0. Thus, by using the decompo-
sition »
V=vSav, Vv .= (5.34)

we have that a G-equivariant map f : V — V is G-orthogonal, if and only if
</(T7 U), (0* T(U))) = 07
for every v = (z,u) e V =VS @ V'

Summing up, in both cases (v € VS' and v & V'), G(v) admits a natural
orientation, although exhibits different algebraic and topological properties.
Hence, given an orthogonal map f, the orbits of f~'(0) belonging to V5" and
those belonging to V' \ V5! contribute in equivariant homotopy properties of
f in different ways, and one needs to treat these contributions separately.

Definition 5.2.10. Let f : V — V be a G-orthogonal on 2. Then, f is called
Sl-normal on 12 if ' ’

550 Vyeost Yy vsr ull <0 = flz+u) = f(z) +u (5.35)

Similarly, one can define the G-orthogonal S!-normal homotopy on 2.

We have an S'-normal approximation theorem.
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Theorem 5.2.11. Suppose that f : V — V is a G-orthogonal map on (2.

Then, for every € > 0, there exists a G-orthogonal S*-normal on 2 map f, :
V — V such that

Voer I1f(0) = fo(v)| <& (5.36)
In addition, if f is (2-admissible, then for ¢ < mgr;)“f(v)“, fo is also §2-
ve

admissible. Moreover, f, is G-orthogonally homotopic to f on {2 via a linear
G-orthogonal §2-admissible homotopy.

Similarly, if h: [0,1] x V — V is a G-orthogonal homotopy on §2, then for
every € > 0, there ezists a homotopy h, : [0,1] x V — V which is G-orthogonal
on 2 and S*-normal on 2 such that

Viewyepaxa 17t v) = ho(t, v)|| <e. (5.37)

In addition, if h(0,-) =: fo and h(1,-) =: fi are S*-normal on (2, then the
homotopy h, can be constructed in such a way that hy(0, ) = fo and ho(1,:) =
fi.

Proof: Consider the decomposition (5.34) of V. For v € V, we write v =
(z,u), where z € V5" and u € V'. Given § > 0, define the function 75 : R — R
by
0 if p<,
ns(p) = %ﬁ if § <p <26,
1 if p > 25,

(see Figure 5.2.3).

Fig. 5.2. Bump function 7s

Next, define the map f, : V — V by
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Jow) = [olz,u) == [(z,ms([lul)u) + (L — ns((Jul]))u. (5.38)

By construction, f, is G-orthogonal and S'-normal on 2 (with § as the S-
normality constant).

Put ¢, = rviér;)fo{[|f(v)[[}. By the £2-admissibility of f, e, > 0. We can

assume ¢ < %2. Otherwise, replace € with min{e, 22}, We claim that for cvery
such 0 < € < %, there cxists a proper o > 0, such that the map f, defined by
(5.38) satisfies

Voen I1f(v) = fo(v)|| <e. (5.39)
Since for any v = (z,u) € V with ||ul] > 26, [,(») = f(z,u) = Jf(v), it is
sufficient to show (5.39) for v = (z,u) € 2 with [ju]| < 26.

By the uniform continuity of [ on {2, there exists §, > 0 such that
_ . €
Ve 0=l <50 = @) = F@) <&

Choose § := min{%, £} > 0, thus for all v = (z,u) € 2 with |Ju|| < 26(<

61), 272
1f(v) = fo)ll = 1 f (2, u) — folz, u)|l
=/ (z,u) = S (@, ms(lul)u) — (1 = ns(jul]))ul
< (1 (@, u) = fl@;ns(llul)uw)ll + (1 —n((lwl))ul
< % +0< —62- + % = €.

By the assumption £ < £
. - 60
Ver IS0~ L)l <e< 2
Thus, for all v € 342,

Ifo@)ll = ()] = 1/ (v) = fo(w)]

Consequently, f, is £2-admissible.
Define the homotopy h : [0,1] X V — V by

Wt v) = fla, tu+ (1= Ons(lulw) + (1 = (0 = ns(llul))u,
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where { € [0,1]. It is clear that hA(0,:) = f, and A(1,-) = f. Notice that for
v € V with |Jul| > 20, A(¢,v) = f(z,u) = f(v). To check the f2-admissibility
of h(t,-), it is cnough to show that for all (¢,v) € [0,1] x 082 with |jull < 26,
we have ||h(t,v)]| > 0. Indeed,

Ih(t,0) = @I < N1/ (@ tu+ (1= Dms(lull)u) — (o, w)]
1@ = )1 = ns(ul))ul

< §+ff'ztf,_<_ %Jrg:gé %,
thus _ _
(o) 2 L@ = (e ) = S > o= 2 =2 >0

Cohsoqucntly, his an f2-admissible homotopy. In order to verify that h is
G-orthogonal on {2, we notice that for (¢,v) = (¢, z,u) € [0, 1] x £,

(hit, 2, ), (0, 7(w)) = (Fla, (¢ + (1 = Ou(lull ), (0, 7(w)))
(1= 01 = sl (0, 7(w)))) = 0.

The proof for GG-orthogonal homotopies is similar. g

We are now in a position to define an orthogonal degree and take a G-
orthogonal {2-admissible map [ : V — V. By Theorem 5.2.11, there exists
amap [, : V — V being G-orthogonal S'-normal on £2 and G-orthogonally
homotopic to f. Consider decomposition (5.34). Since [, is S'-normal, there
exists § > 0 such that for all z € 2N VS and u € %8

folx +u) = fo(x) +u, provided |ju|l <.
Take the set
Us ={(t,w) e (L, ) x R:v=z+u, ze€ VS uweV |u>35}, (540)
and define f, : R®V — V by
| Jolt ) i= fo@) +1r(2),  (Lv) €ROV, (5.41)
where 7(v) is given by (5.33). It is clear that f, is G-equivariant and Uj-

admissible.
= 1 1 . . s . 51 : aat
Set fo:= folys : VS — V5 which is G-equivariant and 2% -admissible.
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Definition 5.2.12. Let G be a onc-dimensional bi-orientable compact Lie
group. Consider a GG-orthogonal f2-admissible map f : V — V. Define the
orthogonal G-equivariant degree G-Deg®(f, £2) of the map [ to be an element
of Ap(G) & AT (G) C Ao(G) ® AL (G) =: U(G) given by

G-Deg(f,92) := (Degly(f, 2), Degs(£,2)), (5.42)
where B
Degl(f, 12) := G-deg(f,, 2°") € Ao(G), (5.43)
and N
Degg;(f, 2) = G-Deg (fo, Us) € AT(G), (5.44)

where (G-deg stands for the primary G-equivariant degree (cf. Chapter 3).

We claim that the definition (5.42)-(5.44) is independent of the choice of a
G-orthogonal S'-normal approximation f,. Indeed, assume that [/ : V — V is
another S'-normal approximation of [ such that

Yo I£(0) = Fi(0)] < &=+ inf {1 ()]} (5.45)

4vedn

Let ¢ be the S'-normality constant of f/ and Us be given by (5.40). Define
f‘Z:REBV—» V by

It v) = [l(v) +ir(v), ({v)eRaV.

Put 0 := min{J, ¢'}, and define Us by (5.40). By the excision property of the
primary degree, we have

X Deg (F,, Us) = G-Deg (F,, Us),

and
G-Deg (F,,Us) = G-Deg (F, Us').

Also, by (5.45), we have that f, and f/ are G-orthogonally homotopic on £2. In
particular, f,|, s and f)|,,s1 are I'-homotopic on 25" thus, by the homotopy
property of the primary degree,

I-Deg(f,, 2%') = I-Deg(f, 25)).

Moreover, F, and F are G-orthogonally homotopic on Us, so by the homotopy
property of the primary degree, we have
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. T i - 4
G-Deg (I, Us) = G-Deg (I, Us).

Therefore,
G-Deg (F,, Us) = G-Deg (F., Uy).

0

In this way, we obtain the following

Theorem 5.2.13. Suppose that V is an orthogonal representation of the one-
dimensional bi-orientable compact Lie group Gi. For each pair (f,$2), where
2 C V is an open bounded G-invariant set in V and f :V — V is a G-
orthogonal §2-admissible map, one can associate the orthogonal G-equivariant

degree G-Deg°(f, 2) € Ao(G) & A((G) by (cf. (5.42)—(5.44)), which satisfies

the following properties:

(P1) (Existence) If G-Deg®(f, 2) # 0, i.e. either

Degd(f, 12) = Z ng(H) # 0,

(H)edo(G)

or

Degl(f,02) = > nu(H)#0,

(H)ed1(G)

meaning that ny, # 0 for some (H,) € o(G) or (H,) € ¢:1(G), then there
erists T, € 2 such that f(z,) =0 and G,, D H,.

(P2) (Apprtivity) Suppose that €21 and 2, are two disjoint open G-invariant
subsets of 2 such that f~H0) N2 C 21U 2y. Then,

G-Deg(f,12) = G-Deg°(f, 2,) + G-Deg(f, 122).

(P3) (Homorory) If b :{0,1] x V — V is a G-orthogonal £2-admissible homo-
topy, then

G-Deg °(hy, £2) = constant,  for all t € [0, 1],
where hy(v) := h(t,v) fort €[0,1] andv e V.

(P4) (Suspension) Let W be an orthogonal G-representation and O C W an
open bounded G-invariant neighborhood of 0 in W. Then,

G-Deg®(f x 1Id, 2 x O) = G-Deg®(f, §2).
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Proof: All the properties are direct consequences of the corresponding prop-
erties of the primary degree with one free parameter and primary degree with-
out free parameter (cf. Proposition 3.2.4). U

We complete this subsection with the following result connecting the or-
thogonal and G-gradient degree in the case G is a compact one-dimensional
bi-orientable Lie group.

Proposition 5.2.14. Let f : V — V be a (F-gradient 2-admissible map. Then,
Vi-deg (f, 2) = (Degh(f, 2), ~Degh(f. 2)),

where Degh(f, 2) € Ao(@) is defined by (5.43) and Degly(f, 2) € AT(Q) is
defined by (5.44).

Proof: Without lose of generality, we can assume that f is a generic gradient
map on {2 (cf. Theorem 5.2.4). Then, the zero set [~1(0) N £2 is composecd
of finitely many regular orbits. By the additivity property, we can assume
J7H0) N 2 contains a single orbit G(z,), being of the orbit type (H,). Let N,
be a tubular neighborhood around G(z,). By the excision property, we have
that

vG'ng (/7 ‘Q) - VG"ng (f?M)

Ifz, € QSI, then I, D 8! is of dimension 1. Thus, the orbit G(z,) ~ G/,
is a finite set, which forces 7, (G(z,)) = {0}. Hence, we have the decomposition
(cf. (5.21))

V=1,V ®rve =W, B,

and the corresponding block matrix

Df (o) = [Kf é"’o) 1(31] .

Consequently,
Vg-deg (f,N,) = sign det K f(z,) - (H,).

On the other hand, since f is a generic map on N, it is also regular nor-
mal on N, with (H,) being the only orbit type. By the elimination property,
Degg;(f, £2) = 0. To evaluate Deg?(f, £2), observe that the slice S,, at z, is
isomorphic to 7,,Vy, and positively oriented (cf. Definition 2.2.17). Moreover,
T2, Vi, =~ We,. Indeed, Vi) is a disjoint union of g;Vp,g; ' for finitely many
gi € H,. Therefore,
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- a2l
D(’,g(();(f? Q) = (;_ch ([7 N(;S ) =nu, - (H())7
where ny, = signdeg D f(z,)|s,, = sign det K f(z,). Hence,

V(;—deg ([7 ‘Q) = (Dﬁg(();(f, ‘Q)a 0)

If z, ¢ 25 then H, % S'is of dimension 0. Thus, the orbit G(z,) ~ G/H,
is of dimension 1. Since [ is a generic map on the tubular neighborhood N,
we have
V-deg (f,N,) = sign det K [(x,) - (H,).

Also, f is St-normal on N,. By the construction, the associated map F :
R& V — V is regular normal on Us (cf. (5.40)--(5.41)). In particular, F
is regular normal on (—7n,n7) x N, for a small n > 0, which is a tubular
neighborhood around (0, z,). By the elimination property, Deg?;(f ,{2) = 0.
By the normalization property, we have

Degé(f, 2) = G-Deg (I, (“77777) X No) = nu,(H,)-
To determine ny, , observe that

R &b Tzo VH(() =R b (Tmo VHO n Ta, Vv(Ho))
=R& (TxoVHo N Wcro) &b 72, (W(]]o)(ro))a

and the corresponding block matrix is

DF(z,) = ﬁ K_fé%) g} .

Notice that the slice S;, is isomorphic to R & (TEOV}]O N WE) is positively
oriented (cf. Definition 2.2.17). Therefore,

ny, = sign det(DF(x,)

s.,) = —sign det(K f(z,)).
Hence,
VG'ng (f? ‘Q) - (07 _Degé’(fv ‘Q))
(]

An immediate consequence of Proposition 5.2.14 is a multiplicativity prop-
erty of the orthogonal degree, inherited from the same property of the gradient
degree.
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Corollary 5.2.15. Let V and W be two orthogonal G-representations, (f, {2)

and (I,Q) two gradient admissible pairs, where 2 C V and QCwW. Then, we
have

(P4)Murrivricativity) The product map f X f VoW > VaW is 2x 02-
admissible, and

G-Deg®(f x [, 2 x {2) = G-Deg°(f, £2) = G-Deg °(f, £2),

where the multiplication ‘%’ is taken in the Euler ring U(G).

A similar result as Proposition 5.2.14 was established in [152], for a special
case G = I x S! with I" being finite.

Corollary 5.2.16. For G = ["x S' with I" being a finite group, the multiplica-
tion in U(G), when restricted to A\(G) x A(G), is trivial, i.e. for any twisted
subgroups (H#1), (K#22) € &1((), we have

(Hw,ll) o (}Cv‘z,lz) -0
Proposition 5.2.17. Let G be a bi-orientable 1-dimensional compact Lie

group. Identify U(G) with Ao(G) & A(G). Then, the Euler ring multiplica-
tion table can be represented by Table 5.2.

* N A()(G) A1 (G)
Au(G) Ap(G)-multip Ao{G)-module multip
A(G) Ao(G)-module multip 0

Table 5.2. U(G)-Multiplication Table for One-dimensional Bi-orientable G

Proof: We divide the proof into several claims.
Claim 1. If (H), (K) € ©1(G), then (H) x (K) = 0.

It is sufficient to notice that the proof of Proposition 5.1.14 is valid for a
1-dimensional compact Lie group G.

Claim 2. If (H) € ®o(G), (K) € $1(G), then (H) * (K) € A(G).

Take L C G such that (G/H xG/K)* # (). Then, by dimension restrictions,
dim W (L) = 1 (cf. Proposition 2.4.5(1)), i.e. (L) € @1(G).
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Claim 3. If a,c € Ao(G), then a x c € Ao(Q).

Take (a,b),(¢c,d) € Ag(G) & A(G) ~ U(G). Let (f1,$24) and (fe, £22) be
gradient admissible pairs such that

V(;-(lcg(fl, \91) =a-+ b,
V(;-deg(fg, .QQ) =c+d.

By the multiplicativity property, we have

VG—d(')g(fl X fg,[)l X .QQ) = (a+b) * (C+ d)
=a*xct+axd+bxc+bxd
=akxct+axd+b*c, (5.46)

where the last equality is based on the Claim 1.

On the other hand, since GG is a bi-orientable 1-dimensional compact Lie
group, it is possible to associate the orthogonal degree G-Deg®(fi, 2;) to the
pair (f;, £2;) for i = 1,2 (cf. (5.42)(5.44)). By Proposition 5.2.14, we obtain

(;_Dego(./l7 Ql) - (0'7 _b)7
G-Deg (o, 22) = (cs—d).

By the multiplicativity property and Claim 1, we have
G-Deg?(fi X fa, 1 x ) =a*xc—axd—bxc (5.47)

Comparing (5.46) with (5.47) and combining Proposition 5.2.14, we con-
clude that ax c € Ay(G).
(]

5.2.4 Computational Formulae of Gradient I x S'-Degree

In this subsection, G = I' x 8!, where I' is a compact Lie group. It is our
interest to establish certain computational formulae for the computations of
G-gradient degree. As an example, basic gradient degrees for G = O(2) x S*
are computed.
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Take a G-gradient {2-admissible map f : V — V. For every orbit type
(L) € ®4(G) in £, the map fL: VI — V¥ is a W(L)-equivariant map be-
ing admissible on £2%. Following the passage described in Subsection 5.2.3,
one can associate to the admissible pair (f¥,2F), the orthogonal degree
W (L)-Deg®(f¥, 2%). Combining Lemma 5.2.6 with Proposition 5.2.14, we ob-
tain

Proposition 5.2.18. Let [ V — V be a G-gradient 2-admissible map, (L) €
PL(G) an orbit type in 2. Assume

V(']-ng (fa ‘-Q) = Z nK(K)7

(K)ed(G)
and
~W(L)Deg?(fh QY = Y my(H).
(Hye®(W(L))
Then,
ny = mg,,

where Zy = {e} and e € W(L) is the identity element.

To compute the basic gradient degrees (c¢f. Definition 5.2.7), we apply Propo-
sition 5.2.18 to the case when f is a linear symmetric isomorphism and {2 is
the unit ball in V.

Following the convention for the irreducible representations of G = /" x S,
we distinguish two types of irreducible G-representations in the list {W},
k=0,1,2,... (cf. Table 2.1 for conventions used below).

(i) those, where S' acts trivially, which can be identified with irreducible
I'-representations and denoted by V;, 1 =0,1,2,...);

(ii) those, where S! acts non-trivially defined by an I-folded complex mul-
tiplication, which is denoted by V; ;.

Theorem 5.2.19. Let I' be a compact Lie group, G = I' x S, V; be the i-
th irreducible G-orthogonal representation with the trivial S*-action and Vj; be
the (j,1)-th irreducible G-orthogonal representation with a nontrivial S'-action
by an l-folded compler multiplication. Then,

(a)} forV;,
Deg, = degy, + Ty;
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(b) for Vi,
Deng - ((;) e degvjl + T*,
P " Y " A Y Y
where deg y, € Ag(G), degy,, € AY(G) and T, € AX(G).

Proof: (a) This formula follows directly from the construction of G—gradiont
degree. Indeed, assume

(Lyed (<)

and

degy, = g my (K).
(K)CPo(G)
Since every generic approximation of —Id is regular normal, one can easily
observe that for (K) € @¢(G), one has ng = my.

(b) This statement is a consequence of Proposition 5.2.18. Indeed, let

dogvjtlz Z mp () and
(R)e®t(G)

Deg V= Ve-deg(—1d, By;) = Z ny, (L),
(L)ed(C)

and put V := Vj. Since for (L) € $o(Q), Vi) = {0} if (L) = (G) and V() = 0)
otherwise,

i w= |
" {0 for all (L) € ®y(G) such that (L) # (G). (5.48)

To compute the nz-coefficients of Deg,,  for (L) € @4 (@), observe that the
map —Id is not S'-normal on V. Take the function 15 : R — R given by

0 if p <,
ms(p) = &2 if 6 < p< 25, (5.49)
1 if p > 26,

where § > 0 is chosen to be sufficiently small, and correct —Id to the S'-normal

map f,: V — V by

Jo() :=ns({|vl)(=v) + (1 = ns(lvlD))v = 1 = 2ns(fjof))o, veV.
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Next, define the map fo R&V — V by formula (5.41). Combining a linear
change of variables on V with homotopy and excision property of the twisted
degree yields N

degy,, = G-Deg*(fo, Us) (5.50)

where Us is defined by (5.40). _ ‘
Take (L) € @4(G) and put f* := f,|yr. Obviously, the primary degree

W(L)-Deg(f:,Uuly=" > s (K) (5.51)
(K)edF (W(L))

is correctly defined. Then, Proposition 4.4 from [15] yields
my = 'ﬁlZ], (552)
where Z; = {e} and e € W(L) is the identity element.

On the other hand, consider the W (L)-equivariant map —Id |y~. By identi-
fying S! with the connected component of e in W(L), the above construction
utilizing (5.49) can be applied to the map —Id |y, i.e. put

FE@) =5l (=v) + @ = ns(lo))w = 1 = 2ns(|Jul))v, v e V7,
and define fX Ré VF — VEby
.]iL(L,U) = fE(w) + tr(v) (ve vl
Then, f* and f* are homotopic by a UL-admissible homotopy and

W (L)-Deg (f¥,UF) = W(L)-Deg (", UP).

Therefore, by Proposition 5.2.18, mz, = —ny, and thus
mp = —ny,. (5.53)
By combining (5.48) and (5.53), the conclusion follows. O

For the case G = I' x S', where I" is a finite group, a similar result was
established in [152].

Corollary 5.2.20. Let G = I"' x S! for I" being a finite group, , V; be the i-
th irreducible Gi-orthogonal representation with the trivial S*-action and V;,; be

the (4,1)-th irreducible G-orthogonal representation with a nontrivial S*-action
by an l-folded complex multiplication. Then,
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(a) for Vi,
Degv,: = deg Vi

(b) fO?“ Vj,l,
Degy,, = (G) —deg,,

i

where deg,, € Ao((7) and deg,,, € AY(G).

Remark 5.2.21. In view of Theorem 5.2.19, the computations of Deg,, can
be completed by using again the ring homomorphism ¥ : U(G) — U(T") and
establishing relations between the unknown coefficients and the values of the
gradient degrees.

Let us discuss the gradient basic maps for irreducible T™-representations. Since
T™ is an abelian group every nontrivial irreducible representation of T is two-
dimensional with only two orbit types (1) and (J/1), where H is a subgroup of
T™. Suppose that V, is a nontrivial irreducible representation of 7. By apply-
ing the standard arguments, one can easily construct a generic approximation
of —1Id : V, — V,, which immediately gives that

T"-deg(—1d, B1(V,)) = (T™) — (H).

Consequently, in order to compute the equivariant gradient T"-degree of —Id :
V — V., where V is an arbitrary orthogonal T™-representation, it is sufficient
to use the simple multiplication formula for the Euler ring U(T™).

By applying the above results, we obtain the basic gradient degrees for
0O(2) x S (cf. Appendix A2.3.7).

Remark 5.2.22. Let V' be an orthogonal G—rel)fesentation. Notice that the
map —Id : V@V — V&V is G-homotopic (in the class of non-gradient
G-equivariant maps) to Id : V&V — V &V, thus

G-Deg (—1d,B(V @ V)) = G-Deg(ld,B(Va V)) = (G).
On the other hand
G-Deg (—Id, B(V @ V)) = [G-Deg (—Id, B(V))]? = (G),
thus G-Deg (—Id, B(V)) is an invertible element in A(G). We claim that

a = Veg-deg(-Id, BV V)) € U(G),
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is an invertible element in U((). Indeed, since mo(a?) = 1 € A(G), 1 := (G),
we have

a*=1+y +- -+ where y=mn(G/K;), (G/K;) € AXG).

Since the elements y; are nilpotent (by Proposition 5.1.7) and U(G) is abelian
and the element z := —y; — - -+ — y; is nilpotent, thus a®> = 1 — z is invertible
with the inverse

al=1+z+a’+- 2",

for n sufficiently large, so

o' =a(l+a+t2t4- .
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Hopf Bifurcation in Symmetric Systems of
Functional Differential Equations

In this chapter, we study the occurrence of Hopf bifurcations in a symmetric
system of delayed functional differential equations, by means of the (twisted)
primary equivariant degree methods. The considered type of system appears
in many important models in physics, chemistry, biology, engineering, etc. The
existence of symmetries often has an enormous impact on a dynamical pro-
cess, which may result in formations of various patterns exhibiting particular
symmetric properties, such as the onset of turbulence in fluid dynamics (cf.
[62]), fluctuations in transmission lines (see [118, 13]), periodic reoccurrence
in epidemics (cf. {14]), and traveling waves in neural networks (cf. [181]). The
prediction and classification of the displaying and changing patterns in those
models are usually of a complex nature.

At the present moment, the standard method to study symmetric Hopf
bifurcation is based on a finite-dimensional Lyapunov-Schmidt/Central Man-
ifold theorem reduction and further use of the (equivariant) singularity the-
ory and normal forms (see, Golubitsky [76, 77, 79, 81, 121, 122, 123]). Al-
though very effective, this method is not easy to usc as it requires a seri-
ous topological/analytical background (e.g. there are serious technical diffi-
culties if the multiplicity of a purely imaginary characteristic root is greater
than one). During the 1980s, the method of singularities was already largely
developed and successfully applied to bifurcation problems with symmetries
(cf. [33, 160, 59, 60, 61, 81, 121, 122, 123]). We should also mention the
rational-valued homotopy invariants of “degree type” introduced by F. B.
Fuller [67], E. N. Dancer [40] and E. N. Dancer and J. F.Toland [42, 44, 43]
as important tools to study the Hopf bifurcation phenomenon (see also
[30, 121, 136, 122, 123, 175]). It is our belief that the twisted equivariant degree
method (cf. [15, 7, 6, 12, 16]) is able (by taking advantage of computer rou-
tines) to handle a huge number of possible symmetry types of the bifurcating
periodic solutions and is simple enough to be used by applied mathematicians.
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Consider an R-paramecterized system of functional differential equations,
‘which is symmetric with respect to a finite* group I'. Under a reasonable
nondegeneracy assumption, for an isolated bifurcation center {a,,0) e RO W
(where W is chosen to be an appropriate functional space), and i3, (3, > 0)
denotes the purely imaginary characteristic root corresponding to (v, 0), we
apply the equivariant degree method to analyze and classify the occurrence
of symmetric Hopf bifurcation. While the implicit function theorem provides
us with a necessary condition for the Hopf bifurcation to take place around
(a,, 0), we formulate a sufficient condition in terms of a topological invariant
w(ag, B,) € A(I" x SY), defined as a (twisted) primary I" x S'-equivariant
degree. Suppose that

w(o, 8o) = (H1) +na(He) + -+ + np, (Hy,)-

The value of the element w(a,, 3,) contains information of a symmetric classi-
fication of bifurcating branches of non-constant periodic solutions. More pre-
cisely, a non-zero coefficient ny implies the existence of a bifurcating branch of
periodic solutions with the orbit types at least (Hy). Moreover, if (F1;) is the
so-called dominating orbit type (i.e. satisfying certain maximality condition
(cf. Definition 6.1.7)), then we can not only predict the existence of bifurcat-
ing branches of non-constant periodic solutions with the exact orbit type (Hy),
but also establish a lower estimate of the number of bifurcating branches.

To evaluate the invariant w(ay,, 8,), we derive a computational formula (cf.
(6.41)), based on the multiplicativity property of the twisted primary degree
(cf. Proposition 4.2.6). As it turns out, the values of the twisted basic degrees
as well as the basic degrees without parameters, serve as building blocks for the
value of w(a,, 3,). The original system of equations contributes through the
characteristic operator of the linearized system, in terms of the Morse indices
and the so-called isotypical crossing numbers (cf. Definition 6.1.4).

The equivariant degree method, which we discussed for the local bifurcation
problem study, can be also applied to a global Hopf bifurcation problem. For the
same R-parametrized system of symmetric functional differential equations, we
formulate a similar result to predict an unbounded continuation of symmetric
branches of non-constant periodic solutions.
msumption makes the considered group G = I x §' to be bi-orientable automatically.

However, the general methodology suggested here for the application to the I'-syminetric Hopf
bifurcation problems is valid for I" being an arbitrary compact Lie group.
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This chapter is organized as follows. In Section 6.1, we present a general
setting for studying I'-symmetric Hopf bifurcation problem for a parametrized
system of {delayed) functional differential equations. For an isolated center
(a,, 0) corresponding to a characteristic root i3, a local bifurcation invari-
ant w(a,, 8,) is constructed as a twisted I" x Sl-equivariant degree of certain
associated map in functional spaces. In Section 6.2, we derive a computa-
tional formula for w(a,, 8,) using the multiplicatitivity property of the twisted
primary degree. In Section 6.3, we provide a procedure to use the Maple®,
as an example, the invariants are computed for an S;-symmetric system of R-
parametrized functional differential equations. The table of results is presented
in Appendix A4.1 (cf. Table A4.2). In Section 6.4, we study a global Hopf bi-
furcation problem in the same parametrized system of symmetric functional
differential equations. Examples for I' = Dy, A4 will be analyzed.

6.1 Hopf Bifurcation in Symmetric Systems of FDEs
Throughouf this chapter, we assume I" to be a finite group.
Let V be a I'-orthogonal representation. For a constant 7 > 0, denote by
Cy,:={¢:[-7,00 = V : ¢is continuous}, (6.1)
which is equipped with the usual supremum norm

lell = sup |e(0)l, ¢ € Cyr (6.2)

—7<H<0

The I'-action on V induces a natural isometric Banach representation of I" on
the space Cy . defined by:

(vo)(0) :=(e(0)), ~vel, 0€[-,0] (6.3)
Given a continuous function z : R — V and ¢ € R, define z; € Cy, by
r,(0) =zt +0), 0¢€][-r0. - (6.4)
Consider an R-parametrized family of delayed differential equations
z(t) = fla,z), tER, | (6.5)

where z : R — V is a continuous function and [ : R@ Cy,; — V satisfies
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(A1) [ is continuously differentiable.
(A2) fis I'-equivariant, where I" acts trivially on R.
(A3) f(a,0)=0 for all « € R.

In addition, to prevent the steady-state bifurcation, we assume

(A4) det D, f(a,0)ly # 0 for all & € R, where D, f stands for the partial
derivative of f restricted to the space of constant functions z € V.

Definition 6.1.1. A point (o, z,) € R V is said to be a stationary point of
(6.5), if f(a,z,) = 0. A stationary point (o, z,) is called nonsingular if the
restricted partial derivative D, f(a,z,) : V — V is a linear isomorphism.

By (A3), («,0) is a stationary point of (6.5), for all a € R.
Definition 6.1.2. We say that for o = a,, the system (6.5) has a Hopf bifurca-
tion occuring at (a,, 0) corresponding to the “limit period” %71, if there exists

a family of pg-periodic non-constant solutions {(az,g,ms(é))}sg/‘ (for a proper
index set A) of (6.5) satisfying the conditions:

(1) Theset K :=J, 4{(as,2,(L)) - L € R} contains a compact connected set
C’ such that (a,,0) € C;

(2) Ve > 0,36 > 0 such that

) 2
V(as, z5(t)) € C supllzs(t)|| <6 = |ja, — as]| <€ and ||ps — %H <E.
13 Ho

6.1.1 Characteristic Equation

Let V¢ be a complexification of V, ie. V¢ := C Qg V (cf. Subsection 2.2.2).
Then, V¢ has a natural structure of a complex I'-representation defined by
v(z®z)=2®~z, for 2z € C and z € V. Suppose that V allows the following
I'-isotypical decomposition (cf. Table 2.1 in Subsection 2.2.2 for conventions)

V=WeoVae oV (6.6)

where V; is modeled on the irreducible I'-representation V;. Similarly, V¢ has
a complex isotypical decomposition

Ve=Uo® Ui - ® UL, (6.7)

where U; is modeled on the complex irreducible I'-representation f;. Notice
that the number s of isotypical components in (6.7), may be different from
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the number 7 of isotypical components in (6.6), depending on the type of the
irreducible representations V; (cf. [27]).

Let (o, x,) be a stationary point of (6.5). The linearization of (6.5) at (o, z,)
leads to the characteristic equation

detc A(u’%) (/\) =0, (6.8)

where

Diwzy(A) == Md — Dq;f(a,xo)(e)"-)

is a complex linear operator from V¢ to Ve, with (e*-)(6,z) = ¢z and
Dof(a,z2,)(2® 1) = 2Q Dy f (o, x0)x for 2@z € VE (cf. [180]). For simplicity,
we write :

Acz(A) = A(CV,O)(A)'

Definition 6.1.3. A solution A, to (6.8) is called a characteristic root of (6.8)
at the stationary point (a, z,). A nonsingular stationary point (a, z,) is called
a center, if (6.8) has a purely imaginary root. We will call (o, z,,) an isolated
center if it is the only center in some neighborhood of (o, z,) in RG V.

It is clear that (o, z,) is a nonsingular stationary point if and only if 0 is not a
characteristic root of (6.8) at the stationary point (o, z,). By (A2) and (A3),
the operator A,(A) : V¢ — V¢ a € R, X € C, is I'-equivariant. Consequently,
for each isotypical component U is invariant with respect to A, (). We put

A(ZJ(A) = Aa()\){Uj- (69)

6.1.2 Isotypical Crossing Numbers
We assume that

(A5) There is an isolated center («,, 0) for system (6.5) such that (6.8) permits
a purely imaginary root A =483, with 5, > 0. '

Let B := (0, 01)X{(3,— 2, B,+62) C C. By (Ab), the constants §; > 0, d2 > 0
and € > 0 can be chosen so small that for every a € |a, — ¢, a, + £], if there is
a characteristic root u + v € 9B at («,0), then u + v = i, and o = «.

Note that A,()) is analytic in A € C and continuous in « € [a, — €, p + €]
(see [85]). It follows that detc Ag,+e(A) # 0 for all A € 9B. Define for 0 < j <

S,
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5 (@, B,) 1= deg (dete Dage,s (), B), (6.10)

where deg stands for the usual Brouwer degree. We can now introduce the
following important concept (cf. [53, 114, 116, 118], see also [36, 37, 105, 143,
144, 181]). '

Definition 6.1.4. The U;-isotypical crossing number of (a,,0) corresponding
to the characteristic root i3, is defined as

6,1(0, B) = 1 (t0, B) = £ (0, B), (6.11)

where U; is the complex ['-irreducible representation on which is modeled the
isotypical component Uj.

Remark 6.1.5. The crossing number t;; has a very simple interpretation. In
the case dete(Da,;(i0,)) = 0, the number t;; counts in the set B all the Uj-
characteristic roots (with Z;-multiplicity) before « crosses the value o, and
the number t;"] counts the U;-characteristic roots in I3 after « crosses «,. The
difference, which is exactly the number t;;, represents the net number of the
Uj-characteristic roots which ‘escaped’ (if t; is positive) or ‘entered’ (if t; is
negative) the set B when o was crossing a,. '

For any integer [ > 1, put -

J(j,l((yoa r/))o) = j,T(am lﬁo) (612)

In order to establish the existence of small amplitude periodic solutions
bifurcating from the stationary point («,,0), i.e. the occurrence of the Hopf
bifurcation at the stationary point (o, 0), and to associate with (a,,0) a local
bifurcation invariant, we apply the standard steps for the degree-theoretical
approach described in next two subsections.

6.1.3 Normalization of the Period

By making a change of variable u(l) = z(t), for ¢ € R, the system (6.5) is
transformed to

u(t) = '51?7; f(a,'u,t 27 ), (6.13)
E ’ P

where u_ 2 € Cy, is defined by
P
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“e,%jiw) = u(t+ 3;9), g € [~7,0]. (6.14)

Clearly, u(t) is a 2x-periodic solution of (6.13) if and only if z(t) is a p-periodic
solution of (6.5). Put 2 := %% and write (6.13) as

P

i(t) = 5 o u0). (6.15)

6.1.4 Setting in Functional Spaces

We identify S ~ R /277Z and introduce the operators

LHY(SY V) = LASH V), Lu(l) = a(l), (6.16)
3 (S, V) = C(Sh V), @) =a(t), (6.17)
2%
K Y (SY% V) — LA(SY V), Ku(t) = QL/ u(s) ds, (6.18)
T™Jo

where H'(S'; V) (resp. C(S'; V)) denotes the first Sobolev space of 27-periodic
V-valued functions (resp. the space of continuous 2m-periodic V-valued fune-
tions equipped with the usual supremum norm). Put R% :=R x R . It can be

easily verified that (L + K)~': L*(S"; V) — H'(S'; V) exists.
Define F : R? x H'(S*; V) — I'(SY; V) by
Fla, B,u) = (L + K)~! [Ku + 4 Ny(a, B, j(u))], (6.19)
where Ny : R? x C(S%; V) — L*(S'; V) is defined by
Ni(a, g, v)(t) = fla,v8). (6.20)

Notice that by the compactness of the embedding map j, the map F is a
compact field on any bounded domain.

Put W := H'(S'; V). The space W is an isometric Hilbert representation
of the group I' x S! with the action given by

(v, eNz(t) = y(z(t + 6)), (v,e’)el’ xS, zeW. (6.21)

The map F is clearly I" x S'-equivariant.
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Notice that, (a,f,u) € R} x W is a 27-periodic solution of (6.15) if and
only if u = F(e, 3,u). Consequently, the occurrence of a Hopf bifurcation
at (a,,0) for the equation (6.5) is equivalent to a bifurcation of 27-periodic
solutions of (6.15) from (ay, 5,,0) for some B, > 0. On the other hand, if a
bifurcation at (a,, 35, 0) € R? x W takes place in (6.15), then we necessarily
have that the operator Id — Dy F(ay, 35, 0) : W — W is not an isomorphism,
or equivalently, il3,, for some [ € N, is a purely imaginary characteristic root
of (a,,0), i.e. detec Ay, (i15,) = 0.

6.1.5 Local I' x S'-Invariant

[t is convenient to identify RZ} with a subset of C, i.e. an element («, 3) € R?,
will be written as A = o + 23, and put A\, = o, + i8,. By (A5), (,,0) is an
isolated center, which implies that there exists § > 0 such that Id — D, F(),0) :
W — W is an isomorphism for 0 < |\ — A,| < 4. Consequently, by the implicit
function theorem, there exists p, 0 < p < min{1,d}, such that v — F(A,u) # 0
for (A, u) with [A — Al =d and 0 < |Jull < p.

Define the subset 2 C R% x W by
2:={(u) e R < Wi A= \| <4, Jlull < p} (6.22)
and put

do =N (RE x{0}) and 9,:={(\u)€ 2: |ul|=p}.

Following the standard degree theory treatment of the bifurcation phe-
nomenon (see, for instance, [101, 96]), take an auziliary function ¢ : 2 — R,
which is G-invariant and satisfies the conditions

s(Au) >0 for (A\u)€a,
(A u) <0 for (A u) € 0.

Such a function ¢ can be easily constructed, for example,
P ol .
s ) = A= Mol (lull = p) + llull = 55 (A u) € 2. (6.23)
Define the map . : 2 > R® W, w(A\, u) = u, by

S\ u) = (g()\, u), u — F(A, u)), (\u) €12, (6.24)
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which is an 2-admissible I’ x S'-equivariant compact field.

Following the standard lines, one can extend the equivariant degree theory
to parametrized equivariant compact fields on Hilbert isometric G-represent-
ations (cf. [15] for more details). We use the same symbol to denote the ex-
tended equivariant degree.

Definition 6.1.6. Let £2 C R2 x W be defined by (6.22) and §, : 2 — R&W
be defined by (6.24). We call

w(A) := G-Deg (F., 2) € A(G), (6.25)

the local I' x S'-invariant for the I"-symmetric Hopf bifurcation of the system
(6.5) at (A,,0).

6.1.6 Dominating Orbit Types

The concept of dominating orbit types plays an important role in obtaining a
lower estimate of bifurcating branches.

Definition 6.1.7. An orbit type (H) in W is called dominating, if (H) is a
maximal orbit type in the class of all ¢-twisted 1-folded orbit types in W.

Remark 6.1.8. Assume that there is a solution u, € W to (6.15) such that
Gu, D H,. If (H,) is a dominating orbit type in W with the form H, = K¢
for K C I', then (G,,) = (K%') for an integer I > 1. In this case, the G-orbit
G(u,) is composed of exactly |G/G, |s different periodic functions, where
|G/G. |sr denotes the number of Sl-orbits in G/G,,. In turn, |G/Gy, |5 can
be evaluated by |I'/K]|, where |X| stands for the number of elements in X.
Moreover, let x, be a p-periodic solution to (6.5) canonically corresponding to
u, with G,, = K% It follows that z, is also a P-periodic solution to (6.5).
The pair (z,,%) canonically determines an element u;, € W being a solution
to (6.15) (for & = a, and some (') satisfying the condition G, = H,. In this
way, we obtain that (6.5) has at least |/'/ K| different periodic solutions with
the orbit type precisely (H,).
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6.1.7 Sufficient Condition for Symmetric Hopf Bifurcation

Following the same lines as in the proof of Theorem 3.2 from [53] (sce also
[114] and [12]), one can easily establish

Theorem 6.1.9. Given system (6.5), assume conditions (A1)—(AS5) to be sat-
isfied. Take F defined by (6.19) and construct 2 according to (6.22). Let
¢ : 2 — R be a G-invariant auziliary function (see (6.23)) and let F. be
defined by (6.24).

(i) Assume w,(A,) = G-Deg (3., 2) £ 0, i.e.
G-Deg (., 02) = > ny(H), and ny, #£0 (6.26)
(H)

for some (H,) € ®1((7). Then, there exists a branch of non-trivial solutions
to (6.5) bifurcating from the point (o,,0) (with the limit frequency 13, for
some I € N). More precisely, the closure of the set composed of all non-
trivial solutions (A, u) € £2 to (6.15), i.e.

{nu)e 2: F\u)=0, u#0}
contains o compact connected subset C' such that

(A, 0)€C and CNO #£0, CCREx W

(Ao = Qo +13,) which, in particular, implies that for every (o, B,u) € C we
have G, D H,. ’

(ii) If, in addition, (I1,) is a dominating orbit type in W, then there exist
at least |G /H,|gr different branches of periodic solutions to the equation
(6.5) bifurcating from (a,,0) (with the limit frequency (3, for some | €
N). Moreover, for each (o, 3,u) belonging to these branches of (non-trivial)
solutions one has (Gy) = (H,) (considered in the space W) (cf. Remark
6.1.8).

Remark 6.1.10. It is usually the case that there are more than one domi-
nating orbit types in W contributing to the lower estimate of all bifurcating
branches of solutions. An additional contribution may come from a nontrivial
(K)-term for non-dominating orbit type, such that ny = 0 for all dominating
orbit types (H) > (K). Then, we can also predict the existence of multiple
branches by analyzing all the dominating orbit types (/1) larger than (K).
However, in such case, the exact symmetry of the branches can not be deter-
mined.
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6.2 Computation of the Local I"' X S*-invariant

We use a sequence of reductions based on the propertics of the twisted primary
degree (cf. Proposition 4.2.7), to establish an effective computational formula
for w(A,).

6.2.1 Linearization Procedure

Let 2 C RZ x W be given by (6.22). Define another auxiliary function ¢: 2 —
R by ( which is a slight modification of (6.23))

) = A= Ml(full = )+l + 5. (u) €2

By direct verification, §. and §z are G-homotopic on {2 by a linear homo-
topy. Thus, we have

G-Deg (8., £2) = G-Deg (Fz, £2),

where ¢ : 2 — R @ W is defined by

Fe(hw) = (S0 w),u = F(, w). (6.27)

An advantage of ¢ over ¢ scems to be that it is positive, for A very close to.
Mo in 2. More precisely, for |A — A,| < -Z— and |ul]] < p, we have

. 5 5 6 0
SO) = el + 2p— A= Ml(o— ful) > 2o~ p=2p >0
Put
2 0
2 = {(/\,u) ER] x W:llul <p, 3 <=l < 6}. (6.28)

By excision property, we obtain

G-Deg (§z, £2) = G-Deg (Fz, £1).

Define the operator

a(A,0) :=1d — D, F(M\0): W — W, (6.29)



156 6 Hopf Bifurcation in Symmetric Systems of Functional Differential Equations

which is a linearization of the second component of §z with respect to u at
(), 0) (cf. 6.27), and Az: 21 - RO W by |

A\ ) = @), a(A, 0)u) (6.30)
which is clearly §2;-admissible. By homotopy property, we have

G-Deg (8z, £21) = G-Deg (4z, £21).

6.2.2 Reduction Through Isotypical Decompositions

To take advantage of the multiplicativity properties of both the primary degrec
without parameters (cf. Proposition 4.1.4) and the twisted primary degree (cf.
Proposition 4.2.6), we carry out a series of reduction based on the isotypical
decompositions of W.

Viewed as an S'-orthogonal representation, W admits an S'-isotypical de-
composition (cf. [15])

o
w=w"aow, (6.31)
-1
where W5 ~ V is the subspace of the constant functions in W and each
W, ~ V¢ is a complex ['-representation defined by

W, = {cilt(m,,, +iyy) i, yn € VY, 1=1,2,... (6.32)

Consider the linear operator a(A,0) : W — W restricted to each isotypical
component in (6.31). By direct verification, we have

M&WMw:—%%ﬂ@®7

a0 0)lw, = 7= B (15). (6.33)

T

o .
Put W, := @W,. Define 2, C R2 @ W, by
=1

2, := 1 N(R* § W,)

= {(/\,u) eRZ x W, : llu|| < p, g < A=l < 6} (6.34)
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and a map A, : 2, - R® W, by
AN u,) = (SN 1), a(A, 0)uy), (A u,) € 825,
which is clearly a G-equivariant (2,-admissible compact field. Put
A= a(X, 0) |yt -

By (A4), A is a (symmetric) linear isomorphism on V, thus is Bi(V)-
admissible.

Notice that the map Az is homotopic to the produet map Ax A, on By (V) x
2,. By multiplicativity property of twisted primary degree (cf. Proposition
4.2.6), we have

G-Deg (Az, §21) = I'-Deg(A, By (V)) o G-Deg (A,, £2,), (6.35)

where o is the multiplication taken in Ag(/")-module A;(G).

Computations of /-Deg(A, By(V))

To compute I'-Deg(A, Bi(V)), we adopt the computational formula for the
primary degree without parameters for linear isomorphisms (cf. Subsection
4.1.3, (4.5)). Thus, we have

— ! mi(p)
r-Deg (A, B.(v) = [T [I(deew,) " - (6.36)
- p€o_ (A0
where the multiplication is taken in the Burnside ring Ao(I).
Computations of G-Deg (A, £2,)

To evaluate G-Deg(A,, §2,), consider further isotypical decomposition of W,,.
Since each W, ~ V¢, the isotypical decomposition (6.7) of V¢ induces the
corresponding (7-isotypical decomposition of W,

Wi=V,eV, & -dV,, (6.37)

where each V}, is modeled on the irreducible representation V;; (cf. Table 2.1
for convention). The linear operator a(),0) defined by (6.33), when restricted
on cach Vj; gives ”
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1

0,()\, 0)|Vj,l - ;EB

By (i5), (6.38)
where A\, ; is defined by (6.9).

Define .Qj’l =02, N Vj’l and Aj,l : :(_jj,l — RO Vj’l by

AN u) = (S u),a(X\, 00), (M u) € 25

By the splitting lemma (cf. Lemma 3.3.4), we obtain

G-Deg (Ao, 25) = Y G-Deg (A, 12;1)
gl

= Z deg (detc o a(-,0)|y,,, S') - deg v, (6.39)
al

where a(-, 0)(A\) := a(A,0) (c£.(6.38)), ‘deg’ stands for the Brouwer degree and
degy,, is the twisted basic degree of V;; (cf. Definition 4.2.8). Moreover, each
Coofﬁcwnf in (6.39) can be evaluated by (cf. [15])

deg (detc 0 a(X, 0)}y,,, S') = ;.

Therefore, we have
(-Deg (A,, £2,) = Z ti 1, Bo)deg Vo (6.40)
.l

where the summation is taken over only finitely many (j,1)’s. Indeed, t;; =0
for all I such that i3, is not a characteristic root of (6.8) at the stationary
point (a,, 0).

Combining (6.35)—(6.36) and (6.40), we obtain

G-Deg (Ag, 2y) = H H (degv>ml(u) Z (0, B5) degvl (6.41)

peo..(A) =0

6.3 Computational Example

We consider the following system of delayed differential equations
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d
—z
Cdt
where = := (2!, 2% ... 2T, H(z) = (h(z"),h(z?),..., Kz")T, G(z) =
(g(z), g(z?),...,g9(z™))", and the product -’ is defined on the vectors by
component-wise multiplication. '

(1) = —az(t) + cH(z(t)) - C(C(a(t — 1)), (6.42)

Assume that

(G1) The functions h, g : R — R are continuously differentiable, h(t) # 0 for
all t € R, g(0) = 0, ¢’(0) > 0 and C is a symmetric n x n-matrix, which
commutes with an orthogonal I'-representation.

6.3.1 Characteristic Values

Consider the linearization of the system (6.42) at («,0) by

d

leflc(l,) = —ax(t) — ah(0)g' (0)C(z(t — 1)), (6.43)

and put
n := h(0)g'(0)- (6.44)
Thus, the assumption (A4) amounts to

ke

H [— o — an&] £ 0. | (6.45).

i=1

Moreover, '
NN = (A + a)ld + ane™C,

and a number A\ € C is a characteristic root of (6.8) at the stationary point
(a, 0) if and only if

n

dete Do (N) = H [/\ ta+ an&;e_)‘] =0, (6.46)

1=1

where €1, &2, ..., &, arc the eigenvalues of the matrix C.

For &, € o(C), rewrite A + a + ané,e™* = 0 into the system

{u + a+ ante " cosv =0 (6.47)

v—anfe “sinv =0,
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where A = u + . Solving for A = i3,, we arrive at the following relations
between a and g (cf. [15]),

: 1

cosff = —= ‘

050 =7, (6.48)

sin f = —3-f3

anbo’?

for a nonzero £, € o(C). If ’El_nl < 1, then there exists 8, € (0,n] such
that cos 3, = —%, and it is also possible to find a unique o, = =3, cot 3,,.
Thercfore, we assume that
(G2) |g;| <1 for all non-zero £ € o(C).

6.3.2 Isotypical Crossing Numbers

To determine the value of the crossing number associated with a purely imag-
inary characteristic root A\, = i3,, we carry out an implicit differentiation to
compute u(a), where u is viewed as a function of o (cf. (6.47)). By direct
calculation, we obtain

d 32
Uy = ° B o Y 649

thus
sign Eu[a:% = sign a,,. (6.50)
Therefore, we have (cf. [15])

if a,>0 then ¢t (,f)=—m;(i5,)
if a, <0 then t1(ao, ) =m;(if,),

I

where m;(if3,) is the multiplicity of 0 viewed as an eigenvalue of the charac-
teristic operator A, ;(i5,), i.e.

m;(if,) = dim ker A, ;(i6,)/dim V; ;. (6.51)

To have a definiteness of the sign of «,, we assume that
(G3) h(0) > 0.
Then, we have n = h(0)¢g’(0) > 0 and thus from (6.48), it follows that

sign o, = sign &,. Therefore,

t1(a, B,) = —sign (§)my(i5,). (6.52)
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6.3.3 Computational Scheme

The local bifurcation invariant w(),) defined by (6.25) provides a complete
description of the symmetric Hopf bifurcation at (e, 0) (cf. Theorem 6.1.9(i)).
However, instead of computing the entire value of w(},) according to (6.41),
for simplicity, we will restrict our computations to the coefficients ny, for the
twisted 1-folded orbit types (H,), and denote the corresponding part of w(A,)
by w(A,)1. Clearly, w(),): can be computed by

w00 = T T (o)™ Staton i degy,. (653)
J

p€o_ (A) =0

Based on the discussion in Subsection 6.3.1--6.3.2, we summarize a com-
putational scheme to conduct efficient computation of w(A,),.

» Take anon-zero §, € ¢(C) and find a solution (o, 3,) to the system (6.48).
In this way, we obtain an isolated center (a,, 0) and a purely imaginary root

if3, such that dete A, (i5,) = 0.

» Determine ker A,, j(i3,) by taking ker A, (i3,) NV, and compute the
multiplicity number m,;(i8,) by (6.51).

» Evaluate the isotypical crossing numbers by (6.52).

» Identify o_(A) by 0_(A) = {p : a—ané <0, £ € o(C)}. For each p €

o_(A), take the corresponding € € o(C') and compute the V;-multiplicity of
¢ by my(p) = dim (F(£) N V;) /dim ;.

» Insert the numbers m; (1) and t;,(a,, 3,) into the formula (6.53), together
with the basic degrees prepared in the catalogue (cf. Appendix A2).

6.3.4 Usage of Maple® Routines

We will briefly describe how to use the Maple®© procedure to obtain immediate
values of w(\,)1, especially what data need to be prepared in advance for the
input and in which format.

In all the computational examples considered in this thesis, the following
conditions verify automatically:

(R1) The decomposition (6.6) contains isotypical components modeled only

on irreducible representations of real type. In particular, r = s in (6.6)—
(6.7).
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(R2) For cach &, € o(C) there exists a single isotypical component V; in (6.6)
which contains the eigenspace F(€,) completely.

To simplify the input data for the computations of I'-Deg(A, By(V)), ob-
serve that (deg,)? = (I') for any basic degrees deg, without parameters.
Therefore, we define the sequence (g¢, €1, .. .,€,) by

gi = Z_‘ mi(p) (mod 2).

peo—(A)

Then, the formula (6.36) can be reduced to

I'-Deg(3F. B) = H (dog Vi)gi.

i=0

On the other hand, under the condition (R2), we have

wico, )1 =[] (degy,) - (= sign (&) my(if,)deg,

=0
where the notation £J = &, is to emphasize the index j such that K(&,) C V;
(cf. (R2)). For simplicity, we assume that 7 < 0. Then, we have

r .

w(ag, Fo)1 = H (degw)ﬂ -m;(if,)degy, . (6.54)

i=()

In this way, the input data for the Maple® procedure consists of the two
sequences:

{507617"-767'}1 {t{))t]y"'ztr}y

where t; = t; (0, 3,), 7 =0,1,...,r. The command for the computation is

w(a, B,)1 = showdegree [I'](gg, €1, ..., &, to, 1, ..., &)

In Appendix A4.1, we present a table of computational results for an Sy-
symmetric Hopf bifurcation problem in the considered system (6.42), which is
listed in a form of a matrix

[€7]E0s Eis - - Eim| w(, Bo)1 |# Branches|

where in the sequence {e;,&i,,---,€i.} C {€0,€1,---,&r}, we only list those
£; which can realize the value 1, and the last colum lists a lower estimate of
the number of branches of nonconstant periodic solutions to the system (6.42).
More computational examples can be found in [6].
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6.4 Global Hopf Bifurcation in Symmetric Functional
Differential Equations

In this section, we apply the twisted primary degree method to a global Hopf
bifurcation problem in a system of I'-symmetric functional differential equa-
tions, to analyze a continuation of symmetric branches of non-constant periodic
solutions.

6.4.1 Abstract Setting

Let I': R2®W — W be a G-equivariant map satisfying the following assump-
tions

(H1) 1" is a compact vector field of class C! and F7(\,0) = 0 for all (),0) €
R W;

(H2) The set A := {\ € R? : D, ["(\,0) : W — W is not an isomorphism} is
discrete in R?; ,

(H3) Dy F'lgegyyst (X, 0) is an isomorphism from W5 to WS for all X € R?
and w, € W', '

We are interested in solutions to the equation
FOLw)=0, (Mw)eR*oW. (6.55)

By (H1), the points (\,0) arc called trivial solutions to (6.55). All other so-
lutions will be called nontriviel. By implicit function theorem, (A,, 0) is a bi-
furcation point only if A, € A. By (H2), we obtain that the set of bifurcation
points is discrete in R2.

Let S be the closure of the set of all nontrivial solutions to (6.55). Notice
that (), 0) is a bifurcation point of (6.55) iff (),,0) € S. Take a connected
component C C S. If C contains a bifurcation point (A,0), C is clearly G-
invariant. Notice that, in general, C may be composed of several orbit types,
L.e. C = UyCmy, and the global behavior of C(gy can be different for different
orbit types (I1), for example, some of the branches Cyy may be bounded, while
the others are unbounded.

The following result can be proved in a standard way and considered as a
global bifurcation theorem.
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Theorem 6.4.1. Assume ' : R* @ W — W satisfies the assumptions (HI)—
(H3) and let Cu,y be a bounded connected component of Sn,y such that Cim,y 0
R? x {0} = {(X1,0),(X2,0),...,(An,0)} # @, where (H,) is a dominating orbit

type in W (cf. Definition 6.1.7 ). Suppose that w(Ag) = ZnH( ), where w(Ag)
(H)

are the local I' X S*-invariants around X;. Then Zn%o = 0.
k=1
Corollary 6.4.2. Assume F : R? @ W — W satisfies the assumptions (H1)-
(H3) and let Cy,y be a connected component of S,y such that Cig,y N R? x
{0} = {(M,0)}, where (H,) is a dominating orbit type in W. Suppose that
w(A1) = Yony(H), and nyy # 0. Then Cyy,) is unbounded.

()
6.4.2 Computational Examples

The results obtained above will be applied to a Dy-symmetric and a Ag-
symmetric system for the study of the symmetric Hopf bifurcation problems.

Global Hopf Bifurcation in a Dpy-Symmetric System

We consider here the system of equations (6.42) with the N x N-matrix C' (N
an even number) of the type '

-310...01
1 =31...0 0

c=|. . . (6.56)
1 00...1-3

This system is symmetric with respect to the dihedral group I' = Dy acting
on V = R" by permuting the coordinates of vectors.

Theorem 6.4.3. (i) Consider system (6.42) with C given by (6.56) and sup-
pose i := h(0)g'(0) > 1. Assume:

(A1) Lg(()) >0 for all L # 0; lim 7.7:

Then the branch Cipqy of periodic solutions bifurcating from (az, Bz, 0) is un-
bounded in R?2 @ W .

tg(l)

(i) Assume, in addition, the following condition is satisfied:



6.4 Global Hopf Bifurcation in Symmetric Functional Differential Equations 165

(A2) There exist constants A, B> 0 and o, v > 0 with 1 > 6 + vy such that
()] < A+ BUP, o)) < A+ BT, (6.57)

Then,
[@tnya,00) C {CY o, 8,7) € C(D']{,)}-

Proof: (i) Suppose that («, 3, z) is a solution to (6.42) belonging to Cipty-
Recall that

I)(ILV = (17 1)7 (77 _‘1)7 ceey (77]/‘17—1)7 (I/‘:7 1)7 (’%/)/7 _1)7 sy (‘L{‘fy‘n_17 _1)}?

where 7y is 2 X 2 matrix representing the complex multiplication by e™ and

10 . . .
K = { 0 _J is the operator of complex conjugation. Then, the symmetry

.’L'O(t)
o z'(t) )
properties of z(t) can be translated as follows: x(t) = . is a -
Trc—l(t)

periodic solution such that

and
2F(t) = 2" ! (l, — %) (mod n). (6.59)

Combining (6.58), (6.59) with condition (A1) and applying the same argument
as in [117], one can casily show that the periods p = %T of solutions (o, 3,z) €
C D) satisfy the inequality 2 < p < 4. This fact immediately implies cPn)
R? x {0} = (az41, faz,0) and w(azi1, faz) = wazy, fazi).
However, (D?) is a dominating orbit type in W and degy, ., = (D),
3 H
hence w(an 1, Ban 1) contains a nontrivial coefficient related to (D4), and

Corollary 6.4.2 is applied.

(ii) By construction and argument given in (i), Cpey C R x (w/2,m) x
W. Further, using assumption (A2), one can easily show that there exists a
constant M > 0 such that for every periodic solution z(t) to (6.42) we have
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sup{|lz(t)|| : t € R} < M. Indeed, assume that x(t) is a periodic solution of
(6.42) and consider the function r(t) := ||z(¢)||*. Since r(t) is periodic, we have
that there exists ¢, € R such that

r(t,) = sup{r(t) : t € R}, and r'(t,) =0,

i.e. we have

d .
0= E%‘t-ﬂto = <2m(/'0)7x,(l’0)>

= <237(f,0), —ax(t,) + aHH(z(t,)) - C(G(x(t, — 1)))>
= —2afla(t)| + (20a(t,), H(2(L,)) - C(Gla(t, — 1)),

where (-,-) stands for the inner product in V. Therefore, by (A2) we get

(@l < [o(t) - (H(2(0)) - C(Galto = 1)) |
< le()HICH(A + Blat)IN) (4 + Bllz(t+ 1)I7)
< ot alls () calle(™ + el (1) |7,

for certain constants ¢, ¢y, ¢, ¢3 > 0. Since 0 + v+ 1 < 2, it follows that there
cxists a constant M > 0 such that every solution s of the inequality

§% — c3ls|tTH — ol — st — ¢y €0,
satisfies the inequality |s| < M. Consequently,

sup{lle(t)] : ¢ € R} = ||z(z,)]| < M.

Thus, Cpey C R x (7/2,7) x {x € W |jz|| < M}. Finally, system (6.42)
has no non-constant periodic solution for a = 0, from which it follows C piy C
(0,00) x (7 /2,m) x {x € W : ||z|| < M}. However, by (i), the connected com-
ponent C(pq¢) is unbounded, therefore [tnj2,00) C {a: (o, 0,%) € Cpay}-
O

Global Hopf Bifurcation in a A4-Symmetric System

We consider here the system of equations (6.42) with the matrix C given by
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-4 1 1 1
, 1 -41 1 -
C= 1141 | (6.60)
11 1 -4

This system is symmetri¢ with respect to the tetrahedral group /7 = A, acting
on V = R! by permuting the coordinates of vectors. We have o(C) = {§ =
—1, & = —5}. The isotypical decomposition of V takes the form: V = V& V|,
where V, (spanned by the vector (1,1, 1, 1)) is the fixed-point subspace of the
Ay-action, and V) is equivalent to the natural three-dimensional representation
of As. These two subspaces are the eigenspaces of the matrix C: the subspace
Vo corresponds to & and V) to £;. One can verify that the dominating orbit
types in W are (Z5) , (Z%), and (V;7). Assuming 7 > 1, we are interested in the
glohal behavior of the branch Cv-y of periodic solutions to (6.42) bifurcating
from (v, 31,0) € A x {0}.

Suppose that (a, 3, z) is a solution to (6.42) belonging to C(%—). Recall that

Vim = {((1),1), (12)(34), 1), ((13)(24), 1), ((14)(23), - 1) }.

Then the symmetry properties of x(() can be translated as follows: z(l) =
2 (1)
z(t)
z3(t)
#(1)

with

2(t) = 2! (c - %) , 2i(t) = 2? (t - %) : (6.61)
(1) =zt (t - %) , z(t) = x* (t - %) (6.62)

Using (6.61), (6.62) and following the same lines as in the case of dihedral
symmetries, one can easily establish

Theorem 6.4.4. (i) Consider system (6.42) with C given by (6.60) and sup-
pose 1 := h(0)9’(0) > 1. Assume condition (A1) is satisfied. Then the branch
Covry of periodic solutions bifurcating from (ay, B1,0) is unbounded in R2OW .

(ii) Assume, in addition, condition (A2) is satisfied. Then

[, 00) C {a (o, B,2) € C(V4—)}.
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Hopf Bifurcation in Symmetric Systems of
Neutral Functional Differential Equations

In this chapter, we present another application of the (twisted) primary equiv-
ariant degree method to a I'-symmetric Hopt bifurcation problem for a system
of neutral functional differential equations, motivated by a model of two types
of symmetrically coupled configurations of the lossless transmission lines. The
standard degree-theoretical treatment, which was introduced in Section 6.1, is
adapted to this type of systems. We follow exactly the same steps as in Sec-
tion 6.1, namecly, we inspeet the characteristic equation for the occurrence of
purely imaginary roots (to identify the isolated centers), analyze the equivari-
ant spectral properties of the characteristic operator to determine the isotypical
crossing numbers and multiplicities of the negative eigenvalues (associated to
the considered center). Then, the local bifurcation invariant can be computed
according to a similar formula as (6.41) (cf. (7.9)). Finally, exact values of
the bifurcation invariants can be evaluated with the assistance of the Maple©
routines. Computational sample results for the local I x Sl-invariants can be

found in Appendix A4.2, for I' = Dy, As.

The chapter is organized as follows. In Section 7.1, we state the symmetric
Hopf bifurcation problem in a system of neutral functional differential equa-
tions and set up a framework for the standard degree-theoretical approach. A
local bifurcation invariant is associated to an isolated center and we derive a
computational formula (cf. (7.9)). In Section 7.2, we discuss models for two sys-
tems of symmetrically coupled (internally and externally) lossless transmission
lines, based on the telegrapher’s equation. Motivated by the two generic cou-
plings, we consider in Section 7.3, we consider a symmetric system of NFDEs,
for which we carry out an analysis for the occurrence of the symmetric Hopf
bifurcation. Th concrete computational results for I' = D,, A5 are summarized
in Appendix A4.2.
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7.1 Hopf Bifurcation in Symmetric Systems of NFDEs
Throughout this chapter, we assume that ¢ = [' x S*, where /" is a finite
group.

Suppose that V is a [ -orthogonal representation. For a given constant 7 >
0, let Cy, be an isometric Banach [ -representation defined by (6.1)—(6.3). We
consider an R-parametrized system of neutral functional differential equations

d

i [I(/i) = b(a, Tf)] = f(a, z), (7.1)

where z : R — V is a continuous function® | o, € Cy,, is defined by {6.4), and
b, f: R& Cy, — V satisfy the following assumptions

(Al) b, [ are continuously differentiable;
(A2) b, f are I'equivariant;
(A3) b(a,0) =0, f(a,0) =0 for all @ € R.

Also, to prevent the occurrence of the steady-state bifurcation, assume
(Ad) det D, f(c,0)|y # 0 for all « € R.
In addition, assume that

(A5) b satisfies the Lipschitz condition with respect to the second variable, i.c.
d. 0< k<1, st. ||bla,¢) — bla,¥)|| < &lle — Yoo (7.2)
for all ¢, ¥ € Cy;, a € R.

Similar as in Section 6.1, we call (o, z,) € R®V a stationary point to (7.1),
if f(a, z,) = 0. By assumption (A3), (a,0) is a stationary point for all o € R.
A stationary point (a, z,) is said to be nonsingular if D, f(a,z,) 1V — Visa
linear isomorphism.

7.1.1 Characteristic Equation

Let (o, z,) be a stationary point of (7.1). The linearization of (7.1) at (o, z,)
leads to the characteristic equation

deteA aan(N) = 0, (7.3)

* Formally speaking, we only need to require z(¢) — b(a, ) to be continuously differentiable.
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where

Dor(A) = A1 = Dibla, 2)(e>)] = Daf(a,mo)()  (T4)
is a complex linear operator from V< to V*°. '

Similar definitions of characteristic roots, centers and isolated centers will
be adopted from Section 6.1. The same notations used in Subsection 6.1.1—
6.1.2 concerning the characteristic operator and the isotypical decompositions
will be kept without further notice.

We will assume additionally that

(A6) The system (7.1) has an isolated center (c,0) for some o, € R, with
the corresponding purely imaginary characteristic root ¢43,, for g, > 0.

Our interesting problem is to study the I'-symmetric Hopf bifurcation prob-
lem in the system (7.1) around an isolated center (o, 0), including the detec-
tion of nonconstant periodic solutions and the symmetric classification of the
solution set according to different subsymmetries. We will follow the similar
procedure described in Subsection 6.1.3— 6.1.5 and associate a local bifurca-
tion invariant in terms of a twisted /' x S'-primary equivariant degree, to the
system (7.1) at the isolated center {a,, 0).

7.1.2 Normalization of Period

We transform the problem of finding a p-periodic solution to a problem of
finding a 2m-periodic solution by making the change of variable z(t) = u(Gt),
2

where J = < s an additional parameter. Then, from the system (7.1), we
obtain the following

d

—Cﬁ l:’U/(L) - b(a7ut,ﬁ):l - lf(a,ut’ﬁ), (75)

g

where uy g € Oy, is defined by (6.14). Evidently, u(t) is a 2x-periodic solution
of (7.5) if and only if z(¢) is a p-periodic solution of (7.1).

7.1.3 Setting in Functional Spaces

We use the standard identification S' =~ R/27Z and definc W := H1(S1; V),
which is naturally an isometric Hilbert representation of G (cf. (6.21)).
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Put R3 := R x R.'Let the operations L, j, K and Nf be given by (6.16)—
(6.18) and (6.20) respectively. For u € W, v € C(S'; V), t € R, define N :
R2 x C(SH V) — L*(SH V) by

Nb(a/7 ﬁr U)(t) = b((l/, U'ﬁ,ﬁ)'
'Moreover, define the map 7 : R x W — W by

Fla, f,u) = (L+K)™! [%Nf(a,ﬁ,u)+K(u-Nb(a,[3,u))] +Ny(ev, 8,u), (7.6)

which is a condensing map. Indeed, the map F is a sum of two maps, where
the first map

. !
(o, 3,u) v (L+ K)™! [BNJ'(CY, B,u) + K(u— Ny(o, 3, u))],
is completely continuous, and the second map (o, 3,u) — Ny(a, 5,u) is a
Banach contraction with constant x (0 < k < 1) (cf. (Al) and (AD)).

7.1.4 Sufficient Condition for Symmetric Hopf Bifurcation

Following the same construction outlined in Subsection 6.1.5, we define a re-
gion 2 C RS x W by (6.22), an auxiliary function ¢ by (6.23) and a map g
by (6.24), which is clearly an (2-admissible G-equivariant condensing field (cf.
Section 2.7). By the standard Nussbaum-Sadovskii extension, one can define
the equivariant degree theory to equivariant condensing fields on Hilbert iso-
metric G-representations (cf. [15] for more details). We use the same symbol
to denote this extended equivariant degree.

Definition 7.1.1. Let §2,¢,§. be defined by (6.22), (6.23) and (6.24) respec-
tively. We call
w(A,) 1= G-Deg (T, 2) € 4,(Q), (7.7)

the local G-invariant for the I'-symmetric Hopf bifurcation of the system (7.1)
at (Ao, 0).

Similarly to Theorem 6.1.9, we have the following result for the symmetric
Hopf bifurcation problem in (7.1).
Theorem 7.1.2. Given system (7.1), assume conditions (A1)-—(A6) to be sat-
isfied. Let F be defined by (7.6) and 12, ¢, F. given by (6.22)—(6.24) respec-
tively.
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(i)  Assume w(Ay) #0 (cf. (7.7)), i.e.
w(ho) =Y nu(H)  and ny, # 0 (7.8)

(H)

for some (1,) € &1((G). Then, there exists a branch of non-trivial solutions
to (7.1) bifurcating from the point (a,,0) (with the limit frequency 13, for
some | € N). More precisely, the closure of the set (’ompos‘ed of all non-
trivial solutions (A, u) € £2 to (7.5), i.e.

{(Au) € 2: F(A\u) =0, u#0}

contains a compact connected subset C such that

()‘o«, O) e and Cno, 5& @7 CC RZ{ % ‘/‘/]Ir)’

(Ao = @, +1if3,) which, in particular, implies that for cvery (a, 5,u) € C we
have Gy, O H,.

(i) If, in addition, (H,) is a dominating orbit type in W, then there exist
at least |G/H,|s1 different branches of periodic solutions to the equation
(7.1) bifurcating from (a,,0) (with the limit frequency 13, for some | €
N). Moreover, for each (a, 3, u) belonging to these branches of (non-trivial)
solutions one has (Gy,) = (H,) (considered in the space W ).

7.1.5 Computational Formula for the Local Invariant

To apply Theorem 7.1.2, we need to establish an cffective computational for-
mula for w(A,). Notice that the linearization procedure and the reduction
through isotypical decompositions discussed in Section 6.2, do not wear spe-
cific restrictions from the functional setting and thus apply effectively to the
current setting.

Therefore, we have the following computational formula for w(),) (cf.

(6.41))
=TT I ()™ > talan A e (1)

pEo - (A)z 0

where m;(u) is the Vi-multiplicity of p (cf. (4.4)), t;; are the isotypical cross-
ing numbers (cf. (6.10)-—(6.12)) and deg,,, deg,, , are the basic degrees (cf.
Subsection 4.1.3 and 4.2.4). '



174 7 Hopf Bifurcation in Symmetric Systems of Neutral Functional Differential Equations

7.2 Symmetric Configurations of Lossless Transmission
Line Models

In this section, we consider two simple generic types of symmetric configura-
tions for the lossless transmission line models, and derive symmetric systems
of neutral functional differential equations, which give insight of reasonable
symmetries one could expect in such models.

7.2.1 Configuration 1: Internal Coupling

Consider first a cube of symmetrically coupled lossless transmission line net-
works between two recipients (C) and two power stations (/). Assume all
coupled networks are identical, each of which is a uniformly distributed loss-
less transmission line with the inductance L, and parallel capacitance C, per
unit length. To derive the network equations, we place the z-axis in the direc-
tion of cach line, with two ends of the normalized line at z = 0 and x = 1 (cf.
Figure 7.1)*.

D, e
»
A%
¥
/ v R
— éf| ) l
Y
Ao = CT B E’+
R éiv)
E+ Dy ¢ Ch
A1 B.[

Fig. 7.1. Symmetric Model of Transmission Lines: Internal Coupling

Denote by ¢(z, t) the current flowing in the j-th line at time ¢ and distance =
down the line and v7(z, £) the voltage across the line at ¢ and z, for j = 1,2,3,4.

* This example of internal coupling can be easily generalized for a coupling of N recipients and
N power stations with an N > 2.
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It is well-known that (see, for instance, [129]) the functions @ := ¢(z, () and

vJ = v’(x,t) obey the following partial differential equations (Telegrapher’s
- equation)
H' 0
or — s i
{(({T o (7.10)
‘s THL T oz *

When these networks are coupled symmetrically in the way shown in Figure
7.1, the vertical lines have coupling terms from the preceding and succeeding
lines at each end x = 0 and x = 1, thus it gives rise to the boundary conditions

(17 = vo + (1 + )R,
it = ful) + (/da'.; :
I = v+ (&g + i) R,
ﬁ+ﬁ:f<>+cﬁ,
vo = Uh, U = g
3 2 gt

(7.11)

where # = (1) = i(3,1), v} = vl(t) = vI(5,1) for § € {0,1}, F is the
constant direct current voltage and f(v?) is the current through the nonlincar
resistor in the direction shown in Figure 7.1.

For mathematical simplicity, we assume that

(E1) the boundary value problem (7.10)-(7.11) admits a unique solution
(v, i) = (vi(z,1),4(z, 1)), for j = 1,2,3,4 such that 3’ = ’)}: = 0 (the
so-called equilibrium point).

Thus, the equilibrium point (v7,4), j = 1,2, 3, 4 satisfies the following equilib-
rium equations:
E =l + (@} + iR,
il +43 = 4 e
f( ) 4 dt ? (712)
E=uvl+@+ iR,

i +id = f(u2) + C%e.

Now, subtract the first four equations in (7.11) by (7.12), we obtain

0=vy— v, +(z —ir+ it — 3R,
Z,{_Z*—‘—'I’l [ f((}l)—f(vl)+c ('U]'—' l))
0=v8—vd+ (13— +i8 —iHR,
B2 — i = [() — () 1 O (0} — o).

(7.13)
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By changing variables, letting X} = v} —vi, Y = i} — 4] (for § = 0,1) and
setting ’ ' } ’ » ‘ ‘
o(&{) = f(&f +vl) — f(]) = [(v]) = [(v]), (7.14)

we have the boundary conditions (7.11) reduce to

,O = Xol + (y(% + y(z)z)&

Vi Y= g(a)) + 0%,
0=AXF+ (V5 + YR,
Vit Vb= g(&7) + 0B,
Xt} :X(;z? X(:)S:X(L)’a

X =7, Al =al

\

For simplicity, we replace the symbols Xg and yg with vg and 1f5 respectively
(for § =0,1),

0=wvy+ (i + i5) R,

i+ = g(vi) + (7(311,

0=vj+ (@} + )R, (7.15)
it + i :g(U%)“F(,](Z?, .

vh =3, vi =g,

vi =0}, vl=v]

\

Our goal is to reduce the boundary value problem (7.10) and (7.15) to a
system of symmetric NFDEs. To this end, recall that the general solution to
(7.10) (the so-called d’Alembert solution) takes the form:

i(z,t) = Llpi(z — at) — yI(z + at)],

1 /L

are respectively the propagation velocity of waves and the characteristic
impedance of the line, and ¢/ € C'((—o00,1];R), ¥/ € CY([0,0);R) (see,
for instance, [169]).

{vj(m, 1) =3¢ (@ —at) +Pi(x + ab)), (7.16)

where

Next, we will essentially use the identity
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. . 2\ N 1
i’ (z, 1) +727<a:,t - ~) = 7’(7; -1t - f) +7,J<a: +1,t— “), (7.18)
a a

a

supported by the following verification

P(@,0) = o[ = al) — Pz + o)
:—2}5[&@—1"0(’5_;))—/5j<T+1+a(i—%))]
:%[&(.’E—l—a(t—%))_ /).1<T_1+a(t_%))]
+%[U}j<$_l+“("*§))—q5’<fr+1—a(/_.2)):l
* 2_1(7[¢j<r+ L—a(l - ‘61;)) - W(m+ 1+ a(t — é)ﬂ
:Ql_b[w<x—l~a(t_%)>—I/Jj<:v—1+a(t—zll-))]
- [# (e at-2)) — 9 (v +at- )]
+%[/J<T+1”“(’——)>— /;j<:r+1+a(/——)>]

In particular, by substituting z = 1 in (7.18), we have
, 1 ; ; 2 ; 1 _
717<2,t-—) :i{(t)Jri{(t—E) ~z’{)<t—5>. (7.19)

a

Return to the boundary conditions (7.15). Using (7.16), we obtain:

¢! (—at) = 39 (ab) — 22Li3(0),
d*(—at) = %—1—2?/)3(@ — %{%ié(t).

Consequently,

dvl .
C dLl =i+ — g(v})
' (1 —at) — v} ! & (1 — at) — v}

= ; . A — g(v1)

¢'(—alt =) ~v P (=alt 7))~}
- b * b

— g(v{)
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:mb Hat = 1) = ZRi5(L—5) — v
b
Bobyd(at — 1) — 2R — Ly
, mlat =) b"“ Gl S (7.20)
Similarly, we also have
R — bdvl 2
R+b dt e E)
R—0> 2 2 2
e (e W (R B CH ()]
_Robpl ) =g a2
R+ b
=3 - s a( - ) 2
1 _ t—"'
: - 2]
1R—b ,, 2. . 2
. /):,//___
bR+b[“l( a)+zl< Cl)]
1R—b . R—b 2
— M at — 1) + 3 (at — 1)] — vi(t — 2)). 7.21
SN e - ) e - 1) - gl -0 (1)
Combining (7.20) and (7.21) results in
dv] R —bdy) 2
Catrmivat )
_ 2R o Lo, 1y L
= 1{,+b[10(t a)+z()(t a)] b(’”i‘“ﬁ)
- 7 - 3¢ — 2] — a(ol) — -z
bR—i—b[Ul(t a)“i“vl( (1)] g(vy) R+bq(vl(t )) (7.22)

‘On the other hand, since by (7.16),
At =) = 2 #(1 — at) ~ v(at ~ 1)
_ —217)[2“% —¥*(1 + at) — ¢*(at — 1)]
— Ly iw,‘zu +at) + ¢ (at — 1)]
_ Ly [z/) (14 at) + 203(L — —) ¢*(3 — at)]
— zof - vl(f >+ W(B — at) — *(1 + at)]

2 1
EUI - _U] (t - a) (27t - 5)7
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it follows from (7.19) that
1 1 . 1 .
20 Ay Lo Lo
?'O(t (l) 21)1}1 2% Uy

Symmetrically, a similar statement is valid for i, i.e.

Vit 2+ S0 + B - D (729

1 1 1 2 1 2
b= =) = gt — ol = 2) + Sl il - D) (724)
Using the boundary conditions (7.15) and (7.23)—-(7.24), we have
1 1
ot = —) +ig(t = )
a,
1 1
= gvf — EU] 2t - —)
1 dv? 2 dv? 2
+ 5lo(v; D)+ C— R CH O N+C— (L - ol (7.25)

Therefore, by substituting (7.25) into (7.22) and using the last equality from
(7.15), we obtain:

dvi R —bdvi 2

[dt+1{+bdz‘(/ o) |

= Pt - ot = D) - oo + O
o= 20+ D=2 - 2u 4 2R - 2
e R ) By e, L T}
—Sol ook~ 2) - gel) - 2 Sgeli~ o))

= 2t — - D))= S lgl) + o - 2)

which, after rearrangement, yields

dvl R d@l R—bdv1 2 R dvl

P— = _z
e TR T A T e S T U R+bdt( 2]
2, 2R-b 2 2 R,

=7 bH,+b it = 5)“51{+b[”1'”1(t“5)}

. R- 2

—goh) — maob = 2) = ) +gli - D)L (726)
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By the same argument, we obtain:

(w[dv-,? N R dv] LRt R —~bdv} . Z) N R dv] (i 2)]
Ldat  R+bdt R+bdt a  R+bdt' a
20 2R 2. 2 R,
= —1 t—=) == —ul(t - =
AR ) Cts Bl v G Bl |Gt
.. R—b 9 R 9
2 1 1
_ o B A L AN 7,
9(”1) RerQ( (t a)) RJr'b[g(vl)“‘g(Ul(t a))] ( 27)

In terms of matrices, the system (7.26) -(7.27) can be rewritten as

. d d
C [s —e(t) = Saall --r)}

— _Sga(l) = Samll =) — SsG(w(0) + Gl = 7)), (7.28)
where
2 Ul(f«)} [Q(Ul(t))}
r==, z(t)=|"| . Gz(t)) = 1 ,
Pl 10 Rl P 1)
| R b-R - _ R
S| = { . }Hb} S, = { Ry TR b} 7
R-b 1 Rtb R+b
2 2 1t 9 _2B-b _2 R 9
so= a0 00| =28 e i “iR| - 2
bRib b bR+b b Rb
, R

1 R b—R
Sy = ii R Rll»b} = S], Sﬁ = { R’*}Q bgéb} = 5,.
T R¥b Rib

Multiplying (7.28) by S (recall that b # 0 (see (7.17))), we arrive at

d
0= 9t =) | 1
— ) - 1= Qu(t 1) — SGE) + £QGE(E-1),  (129)

where Q = S7'5s.

Notice that the system (7.28) embodies the symmetric situation, namely

the internal coupling, in the following way: let I := D, act on V := R? by
1

permuting the coordinates of vectors z = {32} € V, then the system (7.28) is

symmetric with respect to the I'-action on V.


file:///-lkt

7.2 Symmetric Configurations of Lossless Transmission Line Models 181
7.2.2 Configuration 2: External Coupling

A second example of symmetric coupling was considered in [180] , where N
recipients are mutually coupled via lossless transmission line network which
are interconnected by a common resistor R, between neighboring recipients,
and extensively connected with N power stations.

S\ _____________

J R
7 7
+ 2 7
) E y
—ll éﬁv) L - By EU) L R
v S -
L% T
R © | ® |
+ l C"'r —————— l -’-—_ S
E Dy R 7 G
h s
+ 7
E V
A1 Bl

Fig. 7.2. Symmetric Model of Transmission Lines: External Coupling

Denote by #7(z,t) the current flowing in the j-th line at time ¢ and dis-
tance z down the line and v’(z,t) the voltage across the line at ¢ and =z, for
j =1,...,N. The same Telegrapher’s equation (7.10) holds for #/(z,¢) and
vi(z,t). However, the boundary conditions need to be modified for this exter-

nal coupling. For j =1,--- , N, we have
E =v]+ 4R,
i = fol) +C — (II71(¢) — I (1)), (7.30)

vl — i = ()R,
where I°(t) := IV(t), vNV*! := o', [?’s are the so-called coupling terms (see
[180]).
For mathematical simplicity, we assume that (cf. (E1))

(E2) the boundary value problem (7.10) and (7.30) admits a unique equilib-
rium point (v{,#) := (vi(z,t),#(z,t)), for j=1,--- ,N.
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By a change of variables provided by (7.14), the boundary conditions (7.30)
can be translated to
{0 = v} + iR,

il = g(vl) + (’d;ll — J~(U{Jrl — QU{ +- v{“l).

(7.31)

We arce now in a position to reduce the boundary value problem (7.10) and
(7.31) to a symmetric system of FDEs. By (7.31) and (7.16), we have

¢ (—at) = - iat),

R+b
and
dv! p 1
0% =9 + ol ~ml )
(1 —at) — v} ; 1, . L
- PUZZ gl ol - 2] +of )
(—a(t — 1)) — ! W1 P
= P sy b ™ —2ef o)
R—=b,1j J
(el — 1) — v j 1 j j—
— FAb ; —g(vl) + E(UTF — 20 4+ 0],
Similarly, we get
,,R—bdv-{ . 2)
"R+b dl a
R— b 2. R-b
'J I T ——

| R— @NH_QU+WJWR—bm<—3—¢Wm—1»
R, R+ b . R+b b

R-b 1 R—-b . .
—__ - - _ = J+1_ 7 Jj—1

Therefore,

[dv; R—bdv] 2

7 Triva T E)]

1, 1R-D

:_Bw{+ b]{+bvj(/ —)—g(?g)—- Q(?M( ‘"))
1. 1 R-D

bt =2 el ) 4 e WW—%+NW (7.32)
0
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In terms of matrices, we rewrite (7.32) as

d
7 [z(t) — az(t — )]
= L Py = Lapr(i— ) — LO0) + 2aGalt - 1), (7.33)
= [)(} HANA [)(_7 e nu T (;‘ 7t C‘ ({1 r)), .
where
, (0 @)
r=2a=| 2 |, Geey=| ¢ |,
' vy () g(u (1))
RE S R
L Reb | R MR g 00
R+b : : : :

b _b{L 2
A 142

Notice that the system (7.33) is a I" := Dy-symmectric system in the fol-
lowing sense: consider I" acting on V := RY by permuting the coordinates of

vl

vectors = | @ | € V, then the system (7.33) is symmetric with respect to
N
v

the ["-action on V.

7.3 Hopf Bifurcation Results for Symmetric
Configurations of Transmission Line Models

Motivated by the two generic models of symmetric couplings (cf. (7.29), (7.33)),
we present a general symmetric system of functional differential equations and
provide details in obtaining several important elements in computations of the
associated bifurcation invariant, which are the prerequisite for the usage of our
Maple® package.

7.3.1 Statement of the Problem

We are interested in studying the Hopf bifurcation problem in the following
R-parametrized system of symmetric functional differential equations
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d .
p [z(t) — aQz(t — 1))

= —Pz(l) — aQPz(t — r) — aG(z(t)) + aaQG(x(t — 1)), (7.34)
where a and r are positive constants, « is the bifurcation parameter and z (1) =
[H(1), ...,z € R, G(z(1)) = [g(z!(1)), ..., g(z™(1))]" € R™ In addition,
we assume

(H1) g : R — R is continuously differentiable, g(0) = ¢’(0) = 0.
(H2) V := R" is a I'-orthogonal representation, where I' acts by permuting
the coordinates of vectors x € V.
(H3) (1) Q, P1, P, are n x n-matrices, which commute pairwisely.
(ii) @, P1, Py commute with the -action on V.

(H4) |of - lQll < 1.

Remark 7.3.1. By (H3), @, P, P, are pairwisely commuting matrices, thus
they can be diagonalized simultancously. In other words, ), P, /% share the
same eigenspaces with respect to a certain choice of a basis of V. We will use
the symbols £, ¢ and 7 to denote the eigenvalues of @), I, and P (respectively)
corresponding to the same eigenvector v € V. Further, assume that ¢ and n
satisfy the following

(H5) In the case (n > 0, /(n # 2’?—2}1—% for any k € Z.

By (H4), the system (7.34) satisfies (A5). It is clear that the system (7.34)
is symmetric with respect to the I'-action on V' and («, 0) is a stationary point
for all a. In this way, we are dealing with a I'-symmetric system of neutral
functional differential equations.

7.3.2 Isolated Centers
By linearizing the system (7.34) at = 0, we obtain

d

7 [z(t) — aQx(t — )] = —Piz(l) — aQPax(t — 1).

Substituting z = eMv for A € C, 0 #£ v € V, we have

Ay — @AMy = — Pty — aQ Pty
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[)\Id —aQNe™ + P + aQP—ze"\’] v = 0.

Therefore, we have the following characteristic equation for the system (7.34)
detc A(a,()) ()\) = 07 (735)

where

Aoy(A) = (Ald = aQAe™) + P + aQPe™.

To find isolated centers with their corresponding purely imaginary roots 3
for 7 > 0, we write (7.35) into algebraic equations using the eigenvalues of ¢,
P, and P,. By Remark 7.3.1, when restricted to the same eigenspace of @, P
and 1%, the characteristic equation (7.35) reduces to the following algebraic
equation

A+ e —at(X—n) = 0. (7.36)

By replacing in (7.36) X with i3 for some 3 # 0, and separating the real and
imaginary parts, we obtain

¢ cos(8r) — Bsin(fr) = —nag, (7.57)
Csin(Br) + Beos(fr) = fak, |
which leads to B(¢4n)
FEONNS s
ta,n(,ﬁ’?") _ By 1. I} 275 ¢n, (7.38)
‘ 007 lf /B — C”]'

However, it can be verified that by (H5), the second case in (7.38) can not
occur.

Hence, we have the following

: BC+m) [+ 8 52— Cn |+ B :
sin(fr) =9 Zip\ e COS(BT):()CerﬁZ TR (7.39)

where § € {£1} depending on the range of 3r. Also, observe that in the case
& =0, (7.37) does not permit any non-zero solution of 3. So we suppose & # 0,

then (7.37) yields:
C?, + [)72
1/7]2 s (7.40)

& —

i O

Using (7.40), we simplify (7.39) to
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B¢ +n) of(B* = (n)
24977 G+

Clearly, the assumption (A6) is satisficd for the system (7.34). We summarize
the corresponding information in the statement following below (the needed
arguments can be easily deducted from graphing (7.38)).

sin(fr) = cos(fr) = (7.41)

Lemma 7.3.2. Given system (7.34) satisfying (H1) and (H3), fix o triple of
reals ¢,n and € as in Remark 7.3.1 satisfying (H5). Then the equation

pC+m)
p2 = (n
has infinitely many positive solutions (3’s (k € N), such that

(a) 0 < B < fork <1;
(b} klim ﬂk = o0y
o
(c) for each [3x, the point (ay,0) is an isolated center for system (7.34), where

S [ (2 2
&V n*+ B
Moreover,

(1) In the case {n >0, we put k, := L%J—’ + 1], where the symbol |-| stands
for the greatest integer function, we have
(1) If k, = ™20 then

tan (,’?7‘) -

8, € { %;%r,%w) for k <k,
%

k 2k
(Em, 2ty for k >k,

(1d’) Otherwise,

3
k=L, —~——2I;:1W) for k >k,

r

kg kY for k <k,
/Bk e T b r —_—
(

(2) In the case (n < 0 and { +n < 0, we have
(2d) Bk € 2';;17@ %W) for k € N.
(3) In the case (n <0 and ( +1 >0, we have
(8d)If ¢ +n < —(n, then B € (§7r 2Ky for k €N;

7 2r

(8d’°) Otherwise, B € (21w 22=4r) for k € N.
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7.3.3 Negative Spectrum

To use the computational formula (7.9), we need the information on the neg-
ative spectrum o_ (A) of the linear operator A = —% D, f(a,,0).
o

By (H1), we have that

(P1 + Q()QI")Q) : V > ‘/7

2]

_% l):v,f(ao? 0) =

Mo

| -

for each isolated center (ay,,0).

To verify (A4), we will assume for a fixed triple of £, {,n that (c¢f. Remark
7.3.1)

(H6) ¢ + aén £ 0.

The negative spectrum o_(A) can he determined by

(L(Z) ={p= % (C+ antn) - —;— (¢ + a.gn) < 0}

4 1 , 1 Jerg 32
(7:40) {LL — [—30(4 -+ (Xoé;n) : EO(C +9 %“r—ggn) < ()}
1 T —
= {n= 5 ((+an) = (V0P + 55+ dny/ ¢+ B2 < 0}
1 :
=A{n= 3 (C+aokm) : (+6n <0} (7.42)

7.3.4 Isotypical Crossing Numbers

To proceed with the computational formula (7.9), we need to obtain the iso-
typical crossing numbers t;;(a,, ), which can be computed by (cf. [15])

d
(@0, o) = —sign (——u(ao))my(ilF,)- (7.43)

To determine ‘sign (<L u(c,))’, we substitute A = u + iv in (7.36) and sepa-

rating the real and imaginary parts. Thus, we obtain

{em(u + ¢) cos(vr) — e*vsin(vr) = Ea(u — n),

7.44
e (u + () sinfvr) + € v cos(vr) = Eav. (7.44)
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By implicit differentiation of (7.44) with respect to a at a,, u =0, v = f,, we
obtain

AL (q,) — B (a,) = —n¢, (7.45)
B ) + A (an) =
where |
A = 1(Ccos(Bor) — Bosin(Bor)) + (cos(For) — an), (7.46)
B =r(¢sin(B,r) + 8,cos(3,r)) + sin(for). |
Substituting (7.41) into (7.46) leads to
A= =g (¢ + 5) + C(C )l (7.7
B = &5 [0,7(C + 53) + Bul(¢ + 1))

Thus, it follows from (7.47) and (7.45) that
du

1
E.ZZ.Z(%) = m(-n&l + 8,£B)
ao{2 2 32 ! . 22 !
=z T By) + s g(né + BH(C +n)| - (7.48)

Lemma 7.3.3. Let (a,,0) be an isolated center for system (7.84) and i3 the
corresponding characteristic root. Assume that for o close to «,, the charac-
teristic roots have the form u(a) + iv(a). Assume, finally,

(i) r>1;
(ii) B> 1.
Then, we have
. du .
sign (E&(%)) = sign (ay,).

Proof: Directly from (7.48), it suffices to show

¢+ 53

T(0,C) ==r(n*+ B2 + (¢ + BH(C+ 1) > 0.

Put
P(1,¢) ="+ G5 +

T+ A )

By assumption (i), T(n,¢) > &(n, <) for all 5, ¢, thus we only need to show
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&(n, ) > 0.

Case 116 =0, #(0,Q) = 02 + mim B3 = Briasm > 0.

Case 2. If n #£ 0, then we can write (7, () = (n,tn) for a unique { € R. Thus,

B(n,tn) =n*+ 65+ - (tn* + B2)(L + Lym.

1*n* + 33
Seeking a contradiction, assume
D(No, teMo) <0 (7.49)
at some (1o, t,M,) and put
U(t) == (o, In,).

. . (44} .
Since zhftn T() =ni+p52+n, > 0, it follows from (7.49) that ¥(¢) has a
—IOC

non-positive minimum value at some £,,;,,. An elementary calculus argument

implies:
- { o if n, <0,
man — Bo .
—f}ho if No > 0.
Thus,

(Mo—B0)?

W) = 4 o T+ P <0,
min/ — 3 5 .
7]0"*_[30—-‘2[3—0 if 7]0>0

Clearly, in the case 1, < 0, ¥(t,4,) > 0, and for n, > 0

‘ o - (n, — B,)? Gi) , — B,)? o+ B,)?
q/(tmm):ng+ﬂg_i%>né+ﬁg_(no 2ﬁ‘) _( : o
[¢]

and a contradiction arises, which asserts the conclusion. O

Thus, by Lemma 7.3.3 and (7.43), we have that

tj,l(amfgo) = —sign (ao)mj(ilﬁo)'

Without loss of generality, we can assume «, < 0. Therefore, we obtain

th(ao, ,80) = mj(z'lﬂo). (750)
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7.3.5 Computational Results

Similarly to Subsection 6.3.3—6.3.4, we keep the specific computational re-
straints, including only computing the first coefficient part w(A,); of the local
invariant and the condition (R1)—(R2).

Following the computational scheme outlined in Subsection 6.3.3, we pre-
pare the input data sequence (cf. Subsection 6.3.4)

{507517-"757'}7 {{07t17~-~7tr}-

Then, using the computational formula

r

w(og, o)1 = H (dlegvi)—l -mj(iﬂo)degwl, (7.51)

i=0

is equivalent to calling the command

w(a,, 3,)1 = showdegree (gg,€1,...,&,t0, b1, ..., 1)

In Appendix A4.2, we present quantative results for I" = Dy, As.
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Symmetric Hopf Bifurcation in Functional
Partial Differential Equations

As the primary equivariant degree method proves to be effective in studying
Hopf bifurcation problems in symmetric systems of ODEs, FDEs and NFDEs
(cf. Chapters 6—7), in this chapter, we adapt this method to a setting appro-
priate for studying parabolic partial differential equations with delays.

Anticipating more potential applications, in Section 8.1, we establish a pro-
cedure for studying symmetric bifurcation in abstract parameterized coinci-
dence equations involving unbounded Fredholm operators (depending contin-
uously on a parameter). For technical reasons, it is convenient to consider such
continuously parameterized family of Fredholm operators as a locally triv-
ial Banach vector bundle over the parameter space. Using the vector bundle
structure one can construct the so-called equivariant resolvent, which allows a
conversion (in a standard way) of the coincidence problem into a fixed-point
problem.

In Section 8.2, the standard abstract setting is adapted to a symmetric
Hopt bifurcation problem in a system of functional parabolic partial differential
equations. Section 8.3 is dealing with an application of the equivariant degree
method to study the occurrence of symmetric Hopf bifurcation in the system
of G.E. Hutchinson’s parabolic equations with delay, modeling an interactive
community ecosystem in a heterogeneous environment. A detailed analysis
of equivariant spectral properties of the linearized system is presented, along
with the important elements for the computational scheme. Using the Maple©
routines, we establish quantative results in a format of the associated local
bifurcation invariants, providing the lower estimate of bifurcating branches of

solutions and their symmetries, for I' = D3, A4, which are listed in Appendix
A4.3.
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8.1 Bifurcation in a Parametrized Equivariant
Coincidence Problem

Throughout this section, G = I" x S! with I" being a compact Lie group.

8.1.1 Functional Setting

Let E and [ be isometric Banach G-representations. Consider the space E@F
equipped with the norm ||(z, ¥)||ger := ||2]|e + ||y|lr, where || - ||g (resp. || - |lr)
denotes the norm on E (resp. F), together with the diagonal G-action on EQF
by g(z,y) := (gz,gy) for g € G. Then, E & F becomes an isometric Banach
(i-representation.

For a (linear) operator L from E to F, denote by Dom (L) and Im (L) the
domain and the range of L respectively. An operator L : Dom (L) CE — F
is called closed, if its graph Gr (L) := {(z,Lz) : 2z € Dom (L)} is a closed
subspace of E@ IF. If L is additionally a G-equivariant (closed) operator, then
the graph Gr (L) is G-invariant (closed) subspace of E & F, which naturally
becomes an isometric Banach G-subrepresentation of E ¢ FF.

Denote by Op “(E;F) the set of all closed G-equivariant operators from E
to . Define a metric dist (-, -) on Op °(E; F) by

dist (L, L) = dy (S(Cr(L), S(Gr(L»)) ).

where L; € Op “(E; F), S(Gr(L;)) denotes the unit sphere in Gr(L;) (i = 1,2)
and dy(-,-) is the Hausdorff metric on the space of all closed bounded subsets
of E®F. More precisely, for two closed bounded subsets X, Y of E®F, define

DX,)Y):=inf{r>0 : YC X+ B(E®F)}.
Then, the Hausdorff metric dy is given by

dg(X,Y) :=max{D(X,Y), D(Y, X)}.

Recall the definition of the Fredholm operator as follows.

Definition 8.1.1. An operator L : Dom(L) — F defined on a densc subspacc
Dom (L) C E, is called a Fredholm operator, if

(i) L is a closed operator;
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(i1) Im(L) is a closed subspace of F;
(ii1) dim ker L < oc and codimIm L :=dim F/Im L < occ.

The number ind(L) := dim ker L — codim L is called the index of L.

Let Fr§(E;F) C OpY“(E;F) be the set of all G-equivariant Fredholm operators
of index zero from E to F. It can be verified that the set Fr§(E;F) of all G-
cquivariant Fredholm operators of index zcro is an open subset of (Q)pG(IE;IF)
with respect to the metric dist (-,-) (cf. [15])). In particular, for any L), €
Fr§(&;F) and sufficiently small £ > 0, we have that dist (Ly, [»,) < € implics
Ly € Fr§(E;F). Morcover, if dist (Ly, Ly,) is sufficiently small, then there
exists a G-equivariant linear isomorphism between Gr (L)) and Gr(Ly,) (cf.

[15]). | |

Consider a continuous family of G-equivariant Fredholm operators of index
7er0, { Ly rer C Fr§(E;F) parameterized by a topological space P. Define a
triple (E,py, P) as follows. Put

F:={(\z,y) e Px(E@F) : (z,y) € Gr(L))},

which is a G-invariant subset in P x (E & F) (with the trivial G-action on
P). Define p; : & — P by pi(A\z,y) := X for (\,z,y) € E, which is G-
equivariant projection map onto P. Notice that each p;'(\) ~ Gr (Ly) has a
structure of an isometric Banach G-representation, for A € P. Moreover, the
continuity of the family { Ly} ep implies that for any A\, € P, there exists an
open neighborhood U, of A, such that for all A € U,, dist (Ly, Ly, ) is sufficiently
small, which, in turn, gives rise to a G-equivariant linear isomorphism between
Gr(Ly) and Gr(Ly). Indeed, it was shown in [54] that (F,p;, P) is a locally
trivial G-vector bundle.

Further, it turns out to be convenient to identify (E, p;, P) with yet another
G-vector bundle defined as follows. For L € Fr®(E;F), define the graph norm
on Dom (L) by

Nzl == |zl + | Lzllr, = € Dom (L).

Consequently, (Dom (L), ||-||1) is canonically G-isomorphic to (Gr (L), || - ||gaF)-
For convenience, we write

Ep := (Dom(L), || - lIr),
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which is an isometric Banach G-representation, under the identification with

(Gr (L), - s |
Define a triple (£, p,P) by the following. Put

E={(Az)ePxE : zcEL},

and define p : € — P by p(A,z) := A\ Notice that each p™'(\) ~ E,, for
A € P. Through the identification between Er, and Gr (L)), one argues that
(€,p,P) is indeed a locally trivial G-vector bundle. Moreover, the map 1 :
17— € given by ¥(\, z,y) := (), ) provides a G-vector bundle isomorphism
between (K, p1, P) and (€,p, P).

We are now in a position to formulate a parameterized G-equivariant co-
incidence problem (cf. [113]). Define a G-vector bundle morphism L : € — F
by

LA u) = L, (Au) €€, (8.1)

where F is viewed as a trivial G-vector bundle over a singleton. Given a com-
pletely continuous G-equivariant map I : £ — [, we are interested in finding
solutions to the following paramcterized G-equivariant coincidence problem

Lyu = ]'1()‘7 U), (/\7 u) € g!XxDom(LA), (82)

where X C P is an appropriately chosen subset on which it is possible to
convert (8.2) to a (-equivariant fixed-point problem.

The following notion of an equivariant resolvent is a key to convert (8.2) to
a G-equivariant fixed-point problem.

Definition 8.1.2. Let X C P be a subset and L be given by (8.1). An equiv-
ariant resolvent of L over X is a G-vector bundle morphism K : €|xxg — F
such that

(i) for every A € X, K, : Er, — F is a finite-dimensional operator;
(i) for every A€ X, Ly + K) : E,, — F is a linear G-isomorphism.

Denote by R%(L, X) the set of all equivariant resolvents of I, over X. In con-
trast to the non-equivariant case, it might happen that ’RG(L, {Ac}) = 0, for

some A, € P. In general, even RE(L, {\}) # @ for each A € X, it is possible
that RY(L, X) = ¢. However, we have the following
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Lemma 8.1.3. (¢f. [113]) Let X C P be a compact contractible set containing
a point \* such that RE (L, {\*}) # 0. Then, RE(L, X) £ 0.

Throughout this section, we assume that
(H1) There exists a compact subset X C P such that RE(L, X) # 0.

Fix an equivariant resolvent_K € RY(L, X). For each X € X, put
Ry = (Ly + ), (8.3)

which is a linear G-isomorphism. Therefore, (8.2) can be converted to a G-
equivariant fixed-point problem

y=F\y), (Ay)€XxF, (8.4)

where
f(/\uy) = F(/\ R/\y) + ](A(I%Ay)7 (/\7 y) € X xF.

By the compactness of X (cf. (H1)), F : X xF — F is a completely continuous
map.

8.1.2 Bifurcation Invariant for the Equivariant Coincidence
Problem

Lét P =R xR, and E, F isometric Banach G-representations. Suppose that
{Lx}xep is a continuous family of G-equivariant Fredholm operators of index
zero satisfying (H1). Fix K € RY(L, X) and let R, be defined by (8.3), for
A€ X.

Motivated by the parametrized parabolic system to be discussed in the next
section, we assume that

(H2) (i) there exists another real isometric Banach G-representation E and an
injective G-vector bundle morphism J : £ — P x E such that Jy := J (A9
is a compact linear operator for every A € P;
(i) there exists an equivariant C'-map F:PxE-F.

Define

F:=FolJ, (8.5)
which is a G-equivariant completely continuous map by (H2)(i). Consider the
coincidence problem (8.2) with I defined by (8.5). Assume, in addition, that
there exists a two-dimensional submanifold M C P x E€ satisfying;
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(H3) M is a subset of the solution set of (8.2);
(H4) for (A,,u,) € M, there exists an open neighborhood U,, C X of X, and
Uy, C E% of u, and a C'-map x : Uy, — E such that

MO (Uy, x Uy,) = Gr(x).

We call each (A, u) € M a trivial solution of (8.2). All the other solutions will
be called nontrivial. A point (A, u,) € M is called a bifurcation point, if in
each neighborhood of (A, u,), there exists a nontrivial solution of (8.2). We are
interested in studying the bifurcation problem of (8.2), including establishing
the existence of nontrivial solutions bifurcating from the surface M.

Notice that (A, u) is a solution of the system (8.2) if and only if (A,y) is
a solution of the system (8.4), for y = (L) + K))u. Moreover, the set of the
trivial solutions to (8.4) can be expressed by ’
M:={(\y)e X xF : (A R(y)) e M}.
Thus, the assumption (H4) is equivalent to
(H4y if (Ao, 90) € M , then there exists an open neighborhood Uy, C X of A,
and Uy, € F¢ of y, and a Cl-map X : Uy, — FY such that

M O (U, x Uy,) = 6r(%).

Define the projection map 7 : X x F — F by 7()\,y) = y. Then, the system
(8.4) can be reformulated as

(m —FY\y)=0, (A\y)e X xTF, (8.6)

By the assumption (H2), # — F is a G-equivariant completely continuous field
of class C'. Consider the differential operator

Dy(r—F)=1d — (DuF(A, Ra(y)) Ra + KARA),

which is a bounded G-equivariant Fredholm operator of index zero (cf. (H2)).
Notice that, by implicit function theorem, if (A, y,) € M is a bifurcation point,
then Dy (m—F) is not an isomorphism at (A, ¥,). A point (A, ¥,) € M is called
L-singular, if D, (7w — F) is not an isomorphism at (A, ¥,). An L-singular point
(Xo, o) is z'/s\(/)lated, if it is the only IL-singular point in some neighborhood of

(Moy¥o) in M.

We assume that
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(H5) there exists an isolated L-singular point (Ao, yo) € M.

Given an isolated /[~singular point (A, %,) € M , following the same construc-
tion as in Subsection 6.1.5, we define an isolating neighborhood U(r) € X x F
around (\,,%,) and a G-equivariant auxiliary function ¢ : U(r) — R. Based
on the auxiliary function, a completely continuous field . : U(r) —» R F is
constructed to define a local bifurcation invariant w(\,,y,) using the twisted

primary equivariant degree.

More precisely, take a neighborhood Dy, of (A,,%,) in M such that (Aos Yo)
is the only L-singular point in Dy, and Dy, C M N (Uy, x U,,) (cf. (H4)").

For a small r > 0, define U(r) C X x F by
Ulr) :={(Ay) € X xF : (A X(N) € D, ly— XM <} (8.7)

Put

Oy = {(\y) € Ulr) : (\X(\) € 8Dy} € dU(r).

By (HS5) and the implicit function theorem, we can choose r > 0 sufficiently
small that .
y—F(Ny)£0, for (\y)edUy\ M.

Let ¢ : U(r) — R be a G-invariant auxiliary function such that

Sa) >0, 3F fy =X =, 59
s\ y) <0, if (\y) € Dy, )
Define the map §. : U(r) > R F by
3(A9) = (A 0), (m = F)(A ), (8.9)

which is clearly a U(r)-admissible G-equivariant completely continuous vector
field.

Definition 8.1.4. Let U(r), s, &, be defined by (8.7), (8.8) and (8.9) respec-
tively. We call
w(Xo, Yo) := G-Deg ! (B¢, U(r)) € AY(G) (8.10)

the local bifurcation invariant for the parametrized equivariant coincidence
problem (8.2) at (A, ¥o). !
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The following theorem provides us with a sufficient condition for the exis-
tence of nontrivial solutions of (8.2) bifurcating from (\,, ¥,). For the ideas of
the proof, we refer to [15].

Theorem 8.1.5. (Locar BirurcaTioNn THEOREM) Suppose that the assumptions
(H1)—(HS5) are satisfied, w(A,, u,) is given by (8.10) ('um‘h S defined by (8.9),
Ulr) by (8.7) and < satisfying (8.8)). If

Xor¥o) = ¥ _my (1)

(H)

e., there is ny, # 0 for some orbit type (H,), then there exists a branch of
non-trivial solutions (\,y) to the equation (8.2) bifurcating from (X, yo) such
that G, D H,.

8.2 Hopf Bifurcation in Symmetric Systems of
Functional Parabolic Differential Equations

Let V := R" be an orthogonal [ -representation and {2 C R™ an open bounded
set such that 942 is C%-smooth. The space L?(R x £2; V) of L*-integrable V-
valued functions is an isometric Banach /'-representation with the [-action
given by

(yu)(t, ) = y(u(t,z)), uwe L*Rx V), vel.

8.2.1 Statement of the Problem

Consider a system of functional parabolic differential equations on R x §2

%u(t,x) + Pla,z)u = fla,u)(z) (L,z) € R x (2, (8.11)
B(a, t)u(t,z) =0 (t,z) € R x 842, '

where u € L*(R x £2;V) satisfies appropriate differentiability requirements,*
u(0,z) == u(l + 0,z) for 8 € [—-7,0] (7 > 0 is a fixed constant), @ € R is a
(bifurcation) parameter, f: R x C([—7,0]; L*(£2;V)) — L*(£2; V) is a map of
class C'!, which is bounded on bounded sets, P(a, z) = [P(a, z)|%, is a vector

with components being second-order uniformly elliptic operators, i.e.

* u is weakly differentiable with respect to t € R and has weak derivatives of order 2 with respect
to x € 2.
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Pa,z) = ViAo, 2)V + ai(a, ),

with A;(a, z) being a continuously differentiable (with respect to o and )
n X n symmetric positive definite matrix satisfying

Jey, ¢, >0 Y(a,z) eRx 02 Vye V' eyl <y Ao, 2)y < eyl

where V stands for the gradient operator, and a;(o, z) is continuous. The
boundary operator B(a,z) is defined by either (Dirichlet conditions)

B(o, z)u(l, z) = u(l,z)
or (mixed Dirichlet/Neumann conditions)

)
B(a, z)u(l,z) = bla, x)u(t, z) + %(a,m) u(t, z),

~where b € CHR x 92;R), Z(a,z) = [T (2)Ai(a, )V, and v(z) is the

on
outward normal vector to 0f2 at z.

We assume that
(C1) the operators P, B and the map [ are [’-equivariant.
Use the standard identification S' ~ R/2#xZ and introduce the following no-

tation
'H}l’;éfa) ={pe UV} (S' xQ,V) : Bla,z)p = 0}, (8-12)

where H¥(S! x £2; V) stands for the Sobolev space of V-valued functions with
weak L2-integrable derivatives of order & in S' and of order [ in £2. Put

E=F:= L*(S' x 2;V), (8.13)
P = R X R+7
E:=C(S% L2, V)),

where E is equipped with the usual supremum norm.
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8.2.2 Normalization of the Period

Let B := ‘%T and v(t,z) := u(% t,x). Then, the problem (8.11) of finding a
p-periodic solution is equivalent to finding a 2x-periodic solution (o, 3,v) of
the system

2 41 2) + 2 P(,2)0 = = fa,vip)(z) (@) € R X 2,

ot ,B ﬁ
B(a,z)v(t,z) =0 (t,7) € R x 012, (8.14)
v(t,z) = v(t + 27, x) (t,z) e R x 2,

where
np(0,z) :=v(t+ p6,z) for (0,z)¢€[-7,0] x 2.
8.2.3 Setting in Functional Spaces

Following the discussion in Section 8.1.1, we reformulate the system (8.14) as
a parameterized equivariant coincidence problem.

For A := (o, 3) € P, define the subspace
1,2
DOm(L,\) = {'U € E T ue HB((X)}7

and the operator Ly : Dom(L,) C E — E by

1
v(t,z)+ = P, z)v,

Lyv(t,z) = 0 5
i

ol

(cf. (8.12), (8.13) and (8.14)).

Notice that E, H2(S1 x £2;V) and E are isometric Banach G-represent-
ations, where S! acts in a standard way by shifting the time argument ¢. It
is also clear (cf. [127]) that each (unbounded) linear operator Ly, for A € P,
is a closed G-equivariant Fredholm operator of index zero. Moreover, the or-
thogonal projection on the (finite-dimensional) kernel of Ly is a G-equivariant
resolvent K of L. Therefore, RS(L,{\}) # 0 for any A € P. Thus, by Lemma
8.1.3, the condition (H1) is satisfied for every compact subset X C P.

On the other hand, since %f(a, vg) € LA22;V) for vg € C([—7,0];
L*(£2;V)), we have the continuous map Ny : P x E — L*(R2,V) with
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. 1.
Ni(a, 3,0)(t) := gf(ay?/tﬁ)-
L

Deﬁneﬁ:”PXI@any
~ X 1 _
POV ) = 5 o N0, B,0) (D) = 5 [(0,00)(7), A= (005),

where 7 denotes the natural embedding E < F. The continuous differentia-
bility of f implies that I’ is continuously differentiable. Since the following
composition of the embeddings

HY(S' x Q;V) — HE(S' x 2, V) — C(S4 L3 V) =E
is compact (cf. [127]), we have the following embedding
J:E—PxE

where Jy : Ep, — Eisa compact operator for all A € P. Thus Fand J satisfy
the condition (H2) from Section 8.1.2. In particular, F' : &€ — F defined by
I = FoJis a G-equivariant completely continuous map of class C.

As a consequence, we obtain that finding a periodic solution v € H2(S! x
2; V) for the system (8.14) is equivalent to solving the following parameterized
coincidence problem (cf. (8.2))

Lw =F(\v), A€ X, (8.15)

where X is a given compact subset of P.

8.2.4 I'-Symmetric Steady-State Solutions
Observe that the constant (with respect to t) functions u(t,z) € HY3(S! x
2;V) can be identified with functions u(z) € H%(£2; V'), which is the space of
V-valued functions with weak L%-integrable derivatives of order 2 in §2. Clearly,
for u(z) € H*(£2;V), we have w(0,z) = u(0,z) for t € R.

To describe the set of trivial solutions to (8.11), we introduce the following

Definition 8.2.1. A solution (ay, u,) of (8.11) is called a I'-symmetric steady-
state solution, if it satisfies

(i)  w, € H*(N2,V);
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(i1)  yu, = up for all v € I
iy 4 Fleomu = flaou)(@) in 52,
1
B(ag, z)u, =0 on 0f2.

Denote the following spaces by
%,,O = {w e H*(2;V) : B(a,, z)w = 0},
= {w € HZ(O7 (‘) (am )w - 0}
GT = C([-7,0l; L* (12, V),
€ = C(|—r,0); L(42; VF).

Notice that we can view L?#(£2;V) C €, is the subspace of constant L?(£2;V)-
valued functions. Similarly, L2(£2;V¢) C €¢ is the subspace of constant
L2(£2; V¢)-valued functions.

Put fI: ./‘IRXLQ(Q;V) and
Loy = P(00, 2) = Do f (0o, 1) : B, — LA(2;V). (8.16)

We will use the same symbols to denote the complexified operators P(e, ),
D, f(ay, u,) and B(oy, ).

Definition 8.2.2. A [-symmetric steady-state solution (a,,u,) of (8.11) is
called nonsingular, if 0 ¢ 0(L,,), where o(£L(a,)) is the spectrum of L, .

Assume that
(C2) there exists a nonsingular I'-symmetric steady-state solution (a,, u,) of
(8.11).

Thus, by implicit function theorem, there exists a small n > 0 and a CL-
function u(a) for |a—a,| < n such that (o, u(e)) is a I'-symmetric steady-state
solution to (8.11) for each a.

Throughout the rest of this section, we assume that
{(a,u(a)) : |a—a| <n} CPxEY,

is a fixed family of steady-state I'-symmetric solutions through (a,,u,), and
each (o, 3, u()) is called a trivial solution of (8.11). Moreover, we can define
the map x : (@ —17, 2, +1) xR — E by x(a, 3) = (a, 3,u(a)). Consequently,
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the sct of I'-symmetric steady-state solutions to (8.11) gives rise to a manifold
M C P x EY, which is defined locally by

M = {(a,f,u(a)): @ € (@ — a0 +7), f€R}

and M satisfics (H3) and (H4).

8.2.5 Characteristic Equation

Let (a,u(a)) be a nonsingular I'-symmetric steady-state solution of (8.11)
near (v, u,). The lincarization of (8.11) at («, u(x)) leads to the characteristic
equation

Dpu(oy(Nw = Mw + P(o, z)w — I)uf_(oz,u(a))(e’\'w) =0, AeC, (817

where the characteristic operator Ay.u)(N) : BE — L2(2;V¢) is defined using
the complexifications of P(«,z) and D, [ (@, u{a)).

Notice that Ay.q)(A) is a closed (unbounded) Fredholm operator of in-
dex zero from L2(§2;V¢) to itsclf. Indecd, the embedding BE — L2(£2; V©)
is compact with respect to the H%-norm on B%. The operator P(a,z) be-
ing elliptic self-adjoint, is a (bounded) Fredholm operator of index zero, and
D.f(a,u(a))(e*:) is a bounded linear operator. Therefore, Doay(A) 1s a
(bounded) Fredholm operator of index zero from B¢ (equipped with the H?-
norm) to L2(£2;V¢). Consequently, Daue)(N) 1s a closed (unbounded) Fred-
holm operator of index zero from L?(£2; V°) to itself.

Similar as in Subsection 6.1.1, we define the characteristic root, center and
isolated center.

Definition 8.2.3. A number A € C is called a characteristic root of the system
(8.11) at a I"-symmetric steady-state solution (a, u(a)), if ker Agyyq)(A) # {0}.
A nonsingular I'-symmetric steady-state solution (ay, u,) is a center, if it has
a purely imaginary characteristic root i3, for 8, > 0. A center (a,, u,) is called
isolated, if it is the only center in some neighborhood of (v, u,) in RGLA(£2; V).

We assume that

(C3) there exists an isolated center (o, u,) € R @ L*(§2; V) such that 18, is
a characteristic root of (8.11) for 8, > 0, i.e. ker DNg,.u. (i8,) # {0}.
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By (C3), the condition (H5) from Subsection 8.1.2 is satisfied. Also, (C3)
provides a necessary condition for the occurrence of the Hopf bifurcation at
(a,,1,). The condition (C2) excludes the appearance of the “steady-state”
bifurcation.

Denote by g, C R the spectrum of P(a, z) : BE — L2(£2; V). Since P(e, z)
is a uniformly elliptic differential operator, the spectrum o, is discrete and each
eigenvalues uff € o, is real and of finite multiplicity. Suppose that

po < pg << pp <.

For any fixed » > 0, observe that ir € o,. Thus, we define an auxiliary
operator S : L2(2; V) — L*(£2;V¢) by

Sw=irw, we€ L*(2;V°),

which is a ['-equivariant resolvent of P(q, z). In particular, inverse map

Ra = [P(o,2) + 5]

is a bounded I'-equivariant operator from L*(§2; V¢) to B¢ (cquipped with the
H?-norm). Moreover, since the embedding B¢ — L*(£2; V) is compact, we
obtain that R, is a compact I™-equivariant operator from L*({2; V*) to itself.

Using the inverse operator R, ., (8.17) can be re-written as

&g;u(a)()\)w =w+ (A — ir)ﬁw,(w) — Dy f(a, u(a))(e’\ ﬁa:T(U))) = 0. (8.18)

It is clear that A € C is a characteristic root of the system (8.11) at
the steady-state solution (a, u(e)) if and only if ker A7 ,()) # {0}. Since

ﬁg;u(a)(/\) is an analytic function in A (cf. [180]), all the characteristic roots A

are isolated. Moreover, Ag'u(a)(/\) is a ['-equivariant compact field, thus it is

a bounded [ -equivariant Fredholm operator of index zero.

Denote by B C L*(£2; V*) the eigenspace of P(a, z) corresponding to p§ €
0o Let p¢ 2 L2(2,V¢) — E¢ be the orthogonal projection map. Consequently,
for every w € L*(£2; V) we can write w = Y_p¥(w). Then, (8.18) is equivalent

=0

to
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00 af, AN—ir oo 1 o . B (l
; [p’“(w) T il (w) e Dl (o, w(a)){e¥pf(w)) | = 0. (8.19)

Let I'Y" be the subspace of €, spanned by functions of the type t — ¢(1)w,
where ¢ € C([—1,0}; C) and w € K. We assume additionally (cf. [113, 139])

(C4)  Dyf(a,u(a))(Fg) C B for all steady-state solutions (a,u(e)) and
k=0,1,2,... .

Remark 8.2.4. The assumption (C4) is required mainly to simplify the com-
putation of the characteristic roots through a reduction to isotypical com-
ponents of L*(£2,V¢) (see also [137, 138]). One can check that the reaction-
diffusion systems with delay of the type considered in [35, 36, 37] satisfy (C4).
In the case of a parabolic system of ['-symmetric PDEs without delay, or the
reaction-diffusion logistic equation with delay , (C4) is automatically satisfied
(cf. [95)).

Under the assumption (C4), the equation (8.19) can be reduced to

A —ir
py +ar

L Do u@) (P piw) =0, (8.20)

w) + ) — -
pi(w) pi(w) T

for k =0,1,.... The equation (8.20) can be re-written as

(g + Npg(w) + Dyf(eyu())(e¥pg(w)) =0, k=0,1,.... (821

8.2.6 Local Bifurcation Invariant and Its Computation

Under the assumptions (C1)—(C4), for any compact subset X C P, the system
(8.11) leads to a parameterized equivariant coincidence problem of the type
(8.2) satisfying (H1)—(H5). Following the construction outlined in Section
8.1.2, given an isolated center (a,,u,) with the corresponding characteristic
root i53,, we associate to (o, 5, 1s) & local bifurcation invariant w(c, 5,, to) €
AL(I" x 8% (cf. Definition 8.1.4).

To establish an effective computational formula for w(a,, ., u,), we need
to obtain information about the negative spectrum and the isotypical crossing
numbers.
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Negative Spectrum

Assume that [’ is a finite group. Suppose that V' (resp. V¢) takes the isotypical
decomposition (6.6) (resp. (6.7)). Then, it induces the I-isotypical decompo-
sitions

vy =w, L2V =Py, (8.22)
i=0 4==0

where U, := L*(2;V;) (resp. i; := L*(£2;U;)) is modeled on V; (resp. U;).

Consider the operator P(a,,z) : B,, — L*(2;V) and let K be the orthog-
onal projection on its kernel. Then, K is a /™-equivariant resolvent of P(ay, z).
Put R,, := [P(a,, ) + K]~} and define

1~ . ~ : ‘ :
A:=1Id — B—R% 0 Dy f (0o, 110) — Ra K - L2(02;V) — L2(02; V). (8.23)

Denote by o_(A) the set of all negative eigenvalues of the operator A. Since
A is a compact field, the set o_(.A) is finite and each eigenvalue is of finite
multiplicity. Thus, for p € o_(A), define

I(u) = U ker[A — pId ],

k=1
oc
Bi(p) == | ker[Aw, — pld )",
k=1
m;(p) = dim E;(p)/dim V;, (8.24)

where the subspace IJ(p) refers to a generalized eigenspace of the operator A
and the integer m;(u) will be called the V;-multiplicity of p.

In all the examples considered in the next section, the condition (R1) from
Subsection 6.3.4 is satisfled, as well as the following

(R2)’ For each p € o_(A), there exists a single isotypical component U; for
i = i, in (8.22), which contains E(p) completely.
Therefore, the formula (8.24) of the Vi-multiplicity m;(u) reduces to

dim f7(p)/dim V; ¢ =1,,
mi(ﬂ):{ )/ "

8.25
0 i#i, (8.25)
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Crossing Numbers

Put A;;u(a),j(/\) = ZX(TM( o)(Ms, - For a characteristic root A of the system
(8.11) at the ['-symmetric steady-state solution («, u(a)), we use the following

notations

EJ(/\) = U ker[Ag;u(a),j(/\)]kv
k=1

m;(A) := dim F;(A)/dim U;, (8.26)

where the subspace E;()) is referred to as a generalized kernel of the operator

Al w(A) and the integer inj(/\) will be called the U;-multiplicity of the
characteristic root A. Since A7, (A} is a Fredholm operator of index 0,

m;(A) < oo for each A

Let (qp,u,) € R @ L2(£2;V) be an isolated center with i3, (3, > 0) being
a corresponding characteristic root as assumed in (C3) from Subsection 8.2.5.
Define the set

S={r+i8:0<7<9, |[f-05,|<e}CC,
where 0 > 0 and £ > 0 are so small numbers that for all 7+ ig € S and
a € [a,—¢&, a5+ €], ker Do) (T +40) # {0} implies a = o, and 7+ 473 = if,.
Put a4 := a, % ¢ and denote by sy the set of all characteristic roots A € S for
o= oy, l.e.

54 = {/\ €S :ker Aai;u(ai)(/\) 7é {0}}

Since ker Ay oy (A) = ker &,&;u(ai)(/\) and Aai;u(ai)(/\) is an analytic func-
tion in A, the sets s34 are finite.

For3=0,1,2,...,s, put
6 (0, o, o) 7= Y my(N), (8.27)

A€Es+
(cf. (8.26).
Definition 8.2.5. The U;-isotypical crossing number of (c, By, uo) is defined
as '

tj l(am ﬂo; “o) = t;<ao, ﬁo: uo) - t;—(CEO, ﬂo; uo), (828)
where t;t(ao, Bo, uo) are given by (8.27). In the case I3, is also a characteristic
root of (8.11) at (ay, u,) for some integer { > 1, put (cf. [15, 6])

tj,l(aoy Bo, Uo) =11 (am 180, Uo)'
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Similar as in Subsection 6.3.2, we have cf. [15]

d
t (o, Bo, uo) = —sign %w(a)lamomj(ilﬁo), (8.29)

where w(a) stands for the real part of the characteristic root of (8.11) at

(o, u()).

By (R2’), each E(if,) is completely contained in a single isotypical compo-
nent &; for some j = jg, in (8.22). Thus,

. dimg¢ I(¢8,)/dim¢c U;, 7 = jg,
m, (i) = G/ meth, =1
0, J F Jpo-
Based on (8.25) and (8.29), using further homotopy and multiplicativity

properties of the twisted primary degree (cf. Section 4.2), following a similar
derivation in Section 6.2, one can establish the following computational formula

w(aov 3o, uo) =

. d . .
H (deg y, )™ | . Z(—s1gn an(a) |oaa g, (113,))deg .. (8.30)
peo_ (A) l ’

For simplicity, we will restrict our computations for the first coefficient part
of w(ay, B, u,) (cf. Subsection 6.3.3), i.e.

W( 0ty Bo, Uo)1 i=

. ) d .
H (_ngVi)mW(u) ~(—s1gn£w(a)|ajaumjﬁa(Zﬂo))degvj,l. (8.31)

peo_(A4)

Combining the cohcept of the dominating orbit types with Theorem 8.1.5,
one can easily establish a similar result stated in Theorem 6.1.9

Theorem 8.2.6. Suppose that the system (8.11) satisfies the assumption (C1)
and (C4), and suppose that (o, u,) is a I'-symmetric steady-state solution to
(8.11) (cf. Definition 8.2.1) satisfying (C2)—(C3), w(c,, Bo,us) 18 given by
(8.10) (with Ay = (0, Bo), T defined by (8.9), U(r) by (8.7) and < satisfying
(8.8)). Assume (cf. (8.530)) w(a, Bo,us) # 0, i.e.
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W( oy By Up) = ZnH(H) and ny, # 0 (8.32)
(H)

for some (I1,) € ¢1(G).

(i) Then, there exists a branch of non-trivial solutions to (8.11) with sym-
metrics at least H, (considered in the space F) bifurcating from the point
(o, Uo) (with the limit frequency 18, for somel € N).

(ii) If, in addition, (II,) is a dominating orbit type in F, then there exist
at least |G/H,|ss different branches of periodic solutions to the equation
(8.11) bifurcating from (o, u,). Moreover, for each («,3,u) belonging to
these branches of (non-trivial) solutions one has (G,) = (H,) (considered
in the space ).

Remark 8.2.7. The setting presented in this section for the functional para-
bolic differential equations can be extended to a more general situation when
I' = It x Iy, where I'7 and [ are finite groups acting orthogonally on V'
and V respectively, and 2 C V' is an open bounded [i-invariant set with (%
smooth boundary. Then, the Banach space L?(R x £2; V) is again an isometric
['-representation with the [-action given by

(yu)(t, z) = wa(ult, nz), ~v=(n,m) el xi

8.3 Symmetric System of Hutchinson Model in
Population Dynamics

8.3.1 A Hutchinson Model of an n Species Ecosystem

We start with the standard model for the dynamics of a simple (single)
population® in terms of its density — the Verhulst equation (cf. [93, 84])

@z@@(l—%),

which is based on the idea that the population grows exponentially at low
densities and saturates towards the carrying capacity K (of resources) at high
densitics. By taking into account a delayed response to the remaining resources,
the Hutchinson’s model (of a single species) is obtained

* For population ecology background, we refer to [93, 162, 66].
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) vt —T1
'U(t) = av(t) (1 - (—K—)> , (833)

where 7 > 0 is a presumed delay constant and « refers to the intrinsic growth
rate.

Now, we consider an ecosystem composed of n species interacting with
each other (according to a certain symmetry) by competing (or cooperating)
over shared resources such as food and habitats, while maintaining a self-
inhibiting nature (meaning self-limiting in respond to rare resources and self-
reproducing to abundant resources). A mathematical treatment for such a
community model was developed by Levins in [126], where one attaches a loop

diagram in order to carry out a loop analysis for this community type situation
(cf. Figure8.1).

an—l,n—l ann

Fig. 8.1. System with dihedral symmetries

In Figure 8.1, a;; describes the self-inhibiting nature of the j-th species, and
a;; < 0 (resp. a;; > 0) is the competing (resp. cooperating) coefficient between
species ¢ and j. Also, observe that a;; = a;;. We introduce

a11 Q12 + - - Qin
a21 Q22 - - - A2p
c=|. 7 (8.34)

Ap1 Qno *** Qnn

and call it the community matriz. We describe this community ecosystem by
the following equations,
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B(t) = aCv(t) - (1 - ”—(%i(?i)) , (8.35)

¢

where © is the component-wise multiplication u - v = [uyvy,. .., uuv,]" for

u=[up,... ,u,|T and v = [vy,...,v,)7.

By applying the standard transformation
v(t) = K(1+u(l)), (8.36)
to the system (8.35), one obtains the equivalent system

u(t) = —a Cu(t — 1) - [1 + u(t)], (8.37)
where u(t) = ”](‘—t) — 1 is, in fact, a population saturation index with respect to
the available resources.

Finally, to study the system (8.37) in a heterogeneous environment, we add
to (8.37) a spatial diffusion term, which leads to the following reaction-diffusion
equations

0 0?

“ o ; T
70 1) = dgzu(e, ) — a Culz, ¢t = D1+ u(z, 1)), (8.38)

where d > 0 is a spatial diffusion coefficient.

8.3.2 A Symmetric System of the Hutchinson Model

We consider a symmetric system of n species Hutchinson model of the form

(8.38) (fort > 0 and z € (0, 7))

;%u(a:,t) = %;u(a:,t) —aCu{z,t —1)-[1+ u(z, )], ‘

S B N (8.39)
su(z,t) =0, z=0,m,

where u : [0,7] Xx R — R" is a population saturation index (cf. (8.37)), ‘-’
is the component-wise multiplication, d > 0 is a spatial diffusion coefficient
and a # 0 is the intrinsic growth rate (cf. (8.33)), which is considered as a
bifurcation parameter, and C is a (symmetric) community matrix describing
the interaction among the species.

Assume that
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(A1) The geometrical configuration described by the system (8.39) has a sym-
metry group I'. The group 1" permutes the vertices of the related polygon or
polyhedron, which means it acts on R™ by permuting the coordinates of the
vectors £ € R". The matrix C commutes with this I™action and 0 ¢ o(C').

Under the assumption (A1), the space V := R" becomes an orthogonal
I-representation and the condition (C1) from Subsection 8.2.1 is satisfied by
the system (8.39).

8.3.3 Characteristic Equation and Isolated Centers

At a I'-symmetric steady-state solution («, 0), the system (8.39) has the lin-
carization ‘
}%u( 1) = d‘)zu(x 1)y = aCulz, i —1),

3.40
Dz, t) =0, z=0,r. (8.40)

ox

Since the matrix C is symmetric, it is completely diagonalizable with re-
spect to a basis composed of its eigenvectors. Consider the spectrum o(C') =
{&1,&s,...,€,} of the matrix C and denote by E(&) C V the cigenspace of &.
Then,

q
L ([0, 7); V) = €D L*([0, s E(&)), (8.41)
k=1
and w € L*([0,7]; V) can be represented as w(: Zwk ), where wy €

LE([0, 7]; £(&k)). Similarly, we have |
L*([0, 71]; V©) = EBH ([0, 7); E°(&)), (8.42)

where E¢(£x) denotes the complexification of the eigenspace &(&x).

Notice that (a,,0) is a I'-symmetric steady-state solution to (8.39) for all
a # 0. Thus, we can take the set {(o,3,0) : a % 0}, for the manifold
MCPx EC described in Subsection 8.1.2. Moreover, (a,, 0) is nonsingular if
0¢ a(Ly,), where
52

Loy, = dé—T_Q a,C = H3([0,7]; V) — L*([0,7); V]
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with HZ([0,#]; V) bcing the subspace of H%([0, ]; V) consisting of functions u
satisfying u(0) = u(n) = 0. One can easily verify that if

O‘og k
d

£m? forall k=1,2,...,q, and m=0,1,2,...,
then (ag,0) is a nonsingular /-symmetric steady-state solution, i.e. (a,,0)
satisfies the condition (C2) from Subsection 8.1.2.

A number A € C is a characteristic root of the system (8.39) at a [-
symmetric steady-state solution (@, 0) € R & V if there exists a nonzero func-
tion v € L?([0,7]; V*) such that

92
DNa(ANv(z) == Iv(x) — div(a:)Jrae ACw(z) =0, (8.43)

where we put A, := A (cf. (8.17)).
By using the decomposition (8.42), v can be written as v(z) = > vg(x), for
k
ve(r) € F(&). Consequently, (8.43) yields

Aa()\)v(.r) = Z (Avk(n ) — d—)()—zzvk( )+ e g, vk(m)) = 0. (8.44)

k
Next, by using the point spec ctrum {¢, = dm?}%_, of the (scalar-valued)
Laplace operator L := —dz > i — and the corresponding cigenspaces /((m) , we

can write vi(z) = ka m(T ) for vg., € E(Gy), thus

DNo(MNv(z) = Z ()\'vk,m(a:) + dmzvk,m(a:) + ae vk,m(ac)) =0. (8.45)

“k,m

Therefore, one obtains that A € C is a characteristic root of (8.40) at the
I'-symmetric steady-state solution (e, 0), if

Atdm?+age =0, for k=1,...,g and m=0,1,... (8.46)

8.3.4 Computations for the Local Bifurcation I' X S!-Invariant

In order to find the values a, for which the condition (C3) from Subsection 8.2.5
holds, we need to find purely imaginary roots A = i3 (8 > 0) of (8.46). Assume
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that (a, 0) is a nonsingular steady-state solution to (8.39) (in particular, a #
0).

e Computation for purely imaginary roots A = i3 (8 > 0)

By substituting A = 43 into (8.46), we obtain

for k=1

d 2 /C 1 COS -
{ m”+ otk cos § =0, o (8.47)

B —abpsin g = 0.

In the case m = 0, we have

g = 61/,0,1: = g + VT,
Q= Ay 0k = (—1)1'2%7
fork=1,...,qand v =0,1,.... Consequently,

sign a0 = (—1)"sign &. (8.48)

In the case m # 0 (thus cos 3 # 0 by the first equation in (8.47)), we obtain

tan 3 = —3—7%2—7 (8.49)
dm?

o= 8.50

“ Ercos B’ ( )

The equation (8.49) has infinitely many positive solutions, which will be de-
noted by {B,m i}, (see Figure 8.2). The corresponding solution o of (8.50)
will be denoted by oy m .

Also, we notice that sign cos 8, mx = (—1)%, thus by (8.50),

Sign Qymk = (—1)"*'sign &. (8.51)

. o d
e Computation for sign -w(a)la=a, ..

Put oy := aymi and B, 1= Bumk. In order to determine the value of the
crossing number ¢;(a,, 8,,0), we need to compute %w(a)iajao by implicit
differentiation. '

By substituting A = w + v into (8.46),
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Y

»

¥ =
Fig. 8.2. Purely imaginary roots of the characteristic equation.
w4 dm? + afre ™ cosv = 0, (8.52)
v —alre " sinv = 0, '
then, differentiating (8.52) with respect to a, we obtain
dw _ e P_"”(dw cosv + & sinv) = —€reV cos v
doe — OSKE gy do e (8.53)
% + afre” (%‘(’; sinv — j—“x cosv) = e ¥ sinw,
which is equivalent to
d ”
Plagke ™ —cosv) + 52 o giny = e, (8.54)
Tw dv . .
Zesinv + 22 (cosv — afke W) = 0.
Thus, we obtain
dw Ere " (cosv — are™™) (8.55)
do  a?fle~2w —2afeVeosv+ 1 '
By substituting o = a,, w = 0 and v = 3,, we have
dwl B £ (cos B, — aoly)
a=0o —
da Q262 — 2008k cos B + 1
| &cosf, — at
0262 — 2a,€ cos B, + 1
Replacing §k cos 3, with —22= in the last equality (cf. (8.50)), we obtain

dwl 1 dm? + o2}
da'"" " a, o2& +2dm? + 1
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Consequently,
| dw

sign — |0, = SigN o,

doy
Hence, by (8.48) and (8.51), we obtain

dw —1)¥sign &g, if =0,
Sign —lla:ao:ay mk ( ) S,lgl-l €k” 1~ " (856)
do ” (—1)Msign& if m=1,2,...
Therefore, combining (8.56) with (8.29), we have for m # 0*
Gl o) = § B dime BGA) dimell, 3 =ga, g 5
0, 7% Ja.

8.4 Usage of Maple®© Package and Computational
Results

In this section, assuming the conditions (C1)--(C4) to be satisfied by the
system (8.39), we prepare the input data for using the Maple© routines. The
quantative results will be presented in Appendix A4.3, for I being the dihedral
group D3 and the tetrahedral group Aj. '

Recall that (cf. (8.31))
w(am ﬁ()y 0)1 = wp *Wa,

where

Wp = H (deg Vi )17‘1,71“ (k) ’
peo~(A)

and i
wg = (—sign g&w(a){afaomjﬁo (i0,))deg Vi

with A being defined for (o, o) = (wmk, Buvmk) (cf. Subsection 8.2.6).

By formula (8.25), we have

™ Throughout the rest of this section, we carry out the computation of the local I" x $'-invariant
w(o, Bo, o)1 = w(Qu,m k; Bum.k,0)1 for m # 0. In the case m = 0, one only needs to change the
formula for sign %‘azao according to (8.56).
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r 2 ™)
Wy = H (deg V;,)HEH_(A) : (8.58)

i=0

Since (deg Vi)Q = (I") for i = 0,1,...,r, we can associate with o_(A) the
sequence (g, €4, - . ., &) defined by

g = Z mi(p) (mod2), i=0,1,---,r.
pea_(A)

Then, the formula (8.58) can be reduced to

7

or = TT{des)"

i=0

Clearly, the sequence {eg,€1,...,&,} permits only possibly finitely many dif-
ferent values.

By formula (8.57),

Wea — (-— 1)VdiIIl C l?c(/’:ﬁu,m,k)/dhn C ujﬁy,m_k deg v]ﬁu,m,k 1’

We will use the notation m;, = dimc FE4(iBym k) /dim ¢ Uiy, s which
stands for the Uj-multiplicity of iﬁ/)’,,,,,l,k. Thus my, . also permits only possibly
=) - N . ! ’ V"nly

finitely many different values.

Therefore, we have the following formula for the first coeflicients of the local
bifurcation invariant

,
Eq ]

wW(@um ks Bumk, 0)1 = (=1)" H <deg w) My deg Vie (8.59)
i=0

The input data for the computation of the local invariant thus consists of
two finite sequences:

{eo,€1,..,6r}, {mg,mq,...,m.},
which are forwarded to the following command from the Maple© package

w(ow,mk, Bumk, 0)1 := (—1)”showdegree [I] (g, €1, ... ,6r, Mg, My, ..., M),
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Remark and Notation 8.4.1  Given¢, € ¢(C) and assuming (R2)’ to be

satisfied, in what follows we will use the notation & to indicate that E(,) C V;
and 7¢,, when E(€,) C U; (here we consider the matrix C acting on V). In such
a case we will also write 7¢. Since the value of my, ., by the condition (R), is
equal to the U;,  -multiplicity dim¢ (Ee(&) 0 U)jﬂ;m }/dim ¢ Ui, . .» of the

Wk

eigenvalue 7vmx € of the complexified matrix C, and E(iBymx) C th, it

Lk ’
is convenient to present our quantitative results in a form of a matrix

e lei, €ir - -0 w(Ao)i |# Branches|

where we only list {€;,,¢&i,,...,€,} C {€0,€1,...,&} for those €;,, which can
realize the value 1.

Remark 8.4.2. Although we are dealing with infinitely many isolated centers

(Olo? /30: O) € {(al/,m,ky f/))l/,‘nl,ks 0)}1/,7n,k:7

only finitely many different values of w(«,, 5,,0), may occur, which is related
to the fact that the value of w(a,, 3,,0)1 is determined by only possibly finitely
many different choices of the values of the two sequences {eo,€y,...,&,} and
{mg,my,...,m.}.
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‘Existence of Periodic Solutions to Symmetric
Lotka-Volterra Type Systems

In the previous chapters (cf. Chapters 6—8), the primary equivariant degree
method was adapted to study the Hopf bifurcation problem in the symmet-
ric (neutral) functional differential equations and parabolic partial differential
equations. In this chapter, we extend the scope of the applications of the pri-
mary degree to the existence problem of nonstationary periodic solutions in a
symmetric system of functional differential equations. In particular, we discuss
the existence of periodic solutions to a symmetric Lotka-Volterra system with
delays, which falls out of the category of symmetric variational problems. It
should be pointed out that while a large variety of effective topological meth-
ods and techniques can be applied to symmetric variational problems (cf. [19]
and references therein), in the case of symmetric non-variational problems,
there are only few topological mcthods which are traditionally used. Unfortu-
nately, some of those methods (eg. Leray-Schauder degree) are ineffective for
detecting nonstationary periodic solutions.

The Lotka-Volterra equation, being the simplest model of predator-prey
interactions, plays an important role in the population dynamics. In this
chapter, we are interested in exploring the symmetric aspect of such model
by considering a symmetrically configured community of N-species compet-
ing/cooperating for the shared resources, described by a symmetric Lotka-
Volterra type system (cf. (9.1)). Following the original idea in [90], we intro-
duce additional (homotopy) parameters to the system and establish a priori
bounds for the parametrized systems (9.2,) and (9.2,,). Based on a prior:
bounds, using a standard homotopy argument, we define a topological invari-
ant ‘[2]’ (cf. Definition 9.1.1), which contains information about the existence
of multiple nonstationary periodic solutions of (9.1).

Although hardly anything in biological systems is exactly symmetric, when
dealing with models of limited accuracy, one can place the considered models in
a symmetric setting, which allows us to explore and better understand certain
symmetric impact on the dynamics of such systems. Being able to establish
the existence of multiple periodic solutions in such a system provides us with



220 9 Existence of Periodic Solutions to Symmetric Lotka-Volterra Type Systems

a third eye in observing the complexity of its dynamics, including explaining
the appearance of patterns in synchronized fluctuations of populations.

This chapter is organized as follows. In Section 9.1, we present a general
framework for studying the existence of nonstationary periodic solutions to
a I'-symmetric system of delayed differential equations. Based on a priori
bounds assumed for parametrized (by additional parameters) systems (which
are applied to construct an appropriate admissible homotopy), we define a
I" x S'-equivariant topological invariant ‘ 5]’ containing structural information
about the solution set of our considered system. The existence and multiplic-
ity results can be easily extracted from ‘ [a]’. Computational formula is derived
based on the multiplicativity and homotopy property of the twisted primary
degree. In Section 9.2, we apply the general framework to a I'-symmetric Lotka-
Volterra system. Especially, the required a priori bounds are established step
by step using specific properties of the parametrized systems. Consequently, the
equivariant topological invariant is associated to the symmetric Lotka-Volterra
system and evaluated according to the computational formula discussed pre-
viously. In Section 9.3, we briefly explain the usage of the Maple® routines.
The sample computations are included in Appendix A4.4, for I' = Qg, Ds, S4.

9.1 Existence Problem in Symmetric Delayed
Differential Equations

We present a general framework for studying the existence of nonstationary
periodic solutions to a system of symmetric delayed differential equations.
Throughout this section, assume that [’ is a compact Lie group and V is
an orthogonal I'-representation. '

9.1.1 Statement of the Problem

For a given constant 7 > 0 , consider the Banach space Cy, defined by (6.1)
equipped with the norm given by (6.2), which is a natural isometric Banach
representation of I" {cf. (6.3)). For a continuous function z : R — V and ¢ € R,
define 2, € Cy,; by (6.4).

Assume that

(Al) a4 : Cy, — V is a bounded I™-equivariant linear operator. Moreover,
B := 4|y is a linear isomorphism from V to V.
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(A2) R : Cy, — V is a continuously differentiable ['-equivariant map, such
that ®(0) =0 and DR(0) = 0.

We are interested in finding a continuously differentiable function v : R — V
satisfying the following autonomous functional differential equation

U(/) = .ﬂ.(ut) + R(ut)7
u(0) = u(p),

where p > 0 is the unknown period of u.

(9.1)

9.1.2 Normalization of Period

By normalization of the period in (9.1), we understand the following change
of variable z(t) = u(M), where A = £ is considered to be a new parameter.
We obtain the following equation, which is equivalent to (9.1)

{ 2(1) = X[A(zen) + R(2:2)] (9.2)

I

where z: R — V, 25 € Oy, is defined by z,(0) ===z (t+ £), 0 € [-7,0].

9.1.3 Setting in Functional Spaces

By using the standard identification of R/277Z with S!, we consider the first
Sobolev space of 2m-periodic functions

H = H'(S, V), (9.3)

which is equipped with the inner product

2w 2w
(w,v) = / w(t)o(t)de +/ u(to)dt, u,v e H,
0 : 0

and the induced norm will be denoted by || - ||z:. Notice that H is a natural
isometric Hilbert G-representation for G = 17 x S (cf. (6.21)).

The existence result for the equation (9.1) under the assumptions (A1) and
(A2), can be obtained by the means the twisted primary G-equivariant degree
using the standard homotopy argument and a priori bounds for the following
two equations
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T(t) = Tf A) + Rz )]
{ 0) (9.20)

and

{ = Q_/)\ .’I}t ,\) + ;017((% /\)] (9.2(1,,))

= z(27),
where p € [0,1], @ € (0,1] and X € [A1, Ay] for fixed constants 0 < Ay < As.
More precisely, we rewrite the equation (9.2,,) in functional spaces as
L = aXNa(A, 3(x)) + pNa (A 3 ()], (9.4)
where L, j are defined by (6.16)—(6.17) and
Na: Ry x C(SHV) — LAHSLV), Na(hz)(t) = a(zy), (9.5)
Ng Ry x C(ShV) — LY(SH V), Na(h2)(t) = R(zp).  (9.6)

Using the (finite-dimensional) operator K : H — L?(S!; V) defined by (6.18),
the equation (9.2,,) is equivalent to

T — oML+ K)T NGO J(2) + pNg (N G(2) + Kzl =0, ze M. (9.7)

9.1.4 A Priori Bounds

To define a G-equivariant topological invariant for (9.24,) which is valid for
any p € [0, 1] using admissible homotopy argument, we need to establish the a
priori bounds for (9.2,) and (9.2,,). As it turns out, the a priori bounds are
closely related to the properties of 4 and K. In this general setting, we only
describe the required properties of the a priori bounds (cf. (P1)—(P5)), and
define the region of the admissible homotopy based on the a priori bounds.

We assume

(P0O) There exists an open G-invariant set C C H such that 0 € € and for
every solution = € C to (9.2,), we have

2w
/ 2(1)dt = 0.
0

We also assume that the following a priori bounds for (9.2,) and (9.24,).
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(P1) There exists a, € (0,1) such that for all 0 < a < a,, p € [0,1] and
A € [A1, Ag] the system (9.2,,) has no nontrivial solution in C.
(P2) There exist an open bounded G-invariant set U C C such that for a small
e > 0 and ~
U :={zeH:dist(z,U) < e},

the following inclusion is satisfied
teUcUcC

Moreover, every nontrivial solution in C to (9.2,,) belongs to u ,for o € (0, 1]
and A € [/\1, /\z]

Since we do not specify here exactly what is the set U, we should explain that
we expect that it is of “good” type, for example a star-shaped open set around
the origin in H.

In order to control the solutions near the origin, we assume that

(P3) There exists my > 0 such that (9.2,,) for o = 1 and p € [0, 1}, has no
nontrivial solution in B :={z € H: ||z||; < m} C U.

Finally, we also nced

(P4) The system (9.2,,), for @ = 1 and p = 0, does not have nontrivial
solutions in H.
(P5) For A = \;, i = 1,2, the system (9.2,,) has no nontrivial solution in .

Let Aj, A2 be given by (P5) and the sets U, B be given by (P2), (P3)
respectively. Define

Qe =LA 2) M <A< X, 2€U\ B} (9.8)

9.1.5 Control Function 3

Choose a1 with 0 < a1 < a,, to be sufficiently small and take a continuous
function € : [0, 00) — [ay, 1] such that (see Figure 9.1)

1, if (=0,
E(t) = « strictly decreasing if 0 < ¢ < e, (9.9)
g, if £>e.
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Fig. 9.1. Bump function £ : [0, +00) — [cu1, 1]

Define 8: H — R, by

~

B(x) = &(dist (x, U)). (9.10)
Next replace a in (9.24,) by [(z), i.e. consider the equation

2(t) = B(x)A[A(xe,) + pR(T2,0)]
{x(()) = z(27). (9.25,)

Notice that for p = 1, (9.25,) has exactly the same solution set in {2y, ), as
(9.2). The considered sets and the function 3 are illustrated on Figure 9.2.

a1 < Bz) <1

Fig. 9.2. The sets i/ \ B, U and 0B.

9.1.6 Admissible Homotopy

Define for p € [0, 1],
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5o\ 0) =2 — B+ K) [N\ 3(2)) + pNx (N, 3(x)) + Kal, (9.11)

which is an {2y, »,-admissible homotopy by (P1)—(P5). Indeed, observe that
for z € OU, B(z) = a; < a,, thus by (P1), (A, z) # 0 for A € [A, X;]. On
the other hand, by (P3), §,(\,z) # 0 for 2 € dB. Therefore, one only needs
to show that for A=\, i =1, 2, (N, x) # 0 for z € U and p € [0, 1], which
is guaranteed by (P5).

9.1.7 Existence Result

Under the assumptions (P0)—(P5), the twisted primary G-equivariant degree
G-Deg (Fp, 21, ,2,) is well defined and does not depend on the homotopy pa-
rameter p € [0, 1].

Definition 9.1.1. We introduce the following notation

[B]:= G-Deg (o, 2\, 1),

we will call [B|the G-equivariant topological invariant® for the system (9.2).

We have the following result

Theorem 9.1.2. Under the assumptions (P1)—(P5), if the G-equivariant

topological invariant
A= Y ()
(H)

is monzero, i.c. there exist a cocfficient ny # 0 with H = K%' then there
exists (A, x) € 2,2, such that §1(\, z) = 0 with G, D H. In other words,
there ezists a nonconstant 2m-periodic solution to (9.2) for some \ € [\, o],
and consequently, there is a p-periodic solution to (9.1) with p = 2w A. In
addition, if H = K%' is such that K¥ is a dominating type in H, then there
ezists a nontrivial periodic solution z = x(t) to (9.1) (and consequently a whole
G-orbit of solutions) with the exact symmetries K¥.

* We use here the Chinese symbol [5] (huf), which means ‘return’, i.e. it returns the topological
information about the solution set.
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9.1.8 Computations of the Equivariant Topological Invariant
Since §, 18 a G-equivariant f2-admissible homotopy, we have that
[Bl= G-Deg (1, 2x,.0,) = G-Deg (Fo, 2x,.00),
where § is a linearized map given by
Bo(\ @) = 2 — BN+ K) ™ [Na(A, (@) + K],

on 25, To compute G-Deg(Fo, 2, .2,), We apply a series of reduction
through isotypical decompositions and homotopy deformations. For simplic-
ity, assume [ is a finite group.

Isotypical Decomposition and Related Transformations
Consider the S'-isotypical decomposition of the space H
H=H% ¢ H*

. g1 . . SN
where H> ~ V is composcd of constant V-valued functions and H* is the
-1
orthogonal complement of H”" .

Put 25\, = 2, N (A, A2) x H*). For A € [A, Ay, define
F oA ) == Bo(As )l
Recall that B = 4]y (cf. (A1)). For (A, z) € (A1, \2) X V, we have
Fo(\, ) = —3(z)B(x).

Taking into account F(z) € [o,1] (q > 0), we have that Folys: is G-
homotopic to —B. Therefore, the map Fo can be viewed as a product map
—B X §; on By (]HISl) X {23, .- By multiplicativity property of twisted primary
degree (cf. Proposition 4.2.6), we obtain

G-Deg (8o, 23 02) = I -Deg(—B, Bi(H%")) - G-Deg (85, 25, 5,)-
Moreover, I'-Deg(—3, B, (H"")) can be evaluated by (cf. Subsection 4.1.3)

IDeg(~8,Bi(H")) =[] H(degvi)mi(u), (9.12)

peo_{—B) i=0
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where m;(u) is the Vi-multiplicity of p (cf. (4.4)) and deg,, is the basic degree
without parameters associated with V; (cf. Definition 4.1.5).

In order to compute G-Deg (§5, 23, ,,), We make convenient modifications
of the involved maps under admissible homotopies and the sets using excision
property. We can assume that

D50 = (i, A0) % (Bo(E) \ By (H"))

and the function [ is given by

1 if ||zllm < 1,
Bl)=42—ar—(1—a)lzll;m if 1< |z <2, (9.13)
X1 if “[E“H] > 2.

Consider the further isotypical decomposition

H* = @Hl, (9.14)
=1

where each H; consists of the functions of form ez, 2 € V¢ (cf. (6.32)).
Since F5(), ) is 9'-equivariant, we have Fh(), -)(H;) C H; for each [ > 0. For
A € [A1, Ao, define Ay(A) : Hy — H; by

Au(A) = To(A, ) lm, -
Let z(t) = ez for 2 € V¢, then

AN (eM2) = etz — B(2) AL a(e0H5) )
_ it (z B ﬁ(izl)xﬂ (ﬁ%)) | 0.15)

Based on a similar argument of the splitting lemma (cf. Lemma 3.3.4), we
have
G-Deg (85, 25,5,) = O G-Deg (A, 23, ,, NH).
>0

Using the identification H; ~ V¢, define the linear operator 4;(},-) : V¢ —
Ve by o
A\ 2) =Aa(e>z2), zeVe

To simplify the computations, we assume that
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(B1) For each I > 0, the operator 4 () is completely diagonalizable. Ev-
ery eigenvalue g, (X) € o(a4(N)), for k = 1,...,k,, the corresponding

cigenspace £(u k() does not depend on A € [Af, Ag].

Denote by E,k = E(,ul,k()\)). Then, H; allows a G-isotypical decomposition

Hy = @ Ez,k,
k
and we can write
A(N) = P ps(NId.
k

Put

Bz ~
App(N 2) =2 — "5—12/”=k()‘)z’ z € Ky,

and define the sets

~ 1
ul,k = {Z € El,k‘ : 5 < HZH < 2}, Ql,k = (/\1, /\2) X ul,k.
Based on a splitting lemma argument (cf. Lemma 3.3.4), we have

ko
G-Deg (35,425, ,) = > > G-Deg (Ak, Q1)

>0 k=1

Reduction to Basic Maps
To compute G-Deg (A, (21), introduce the function

2—'(]/1—‘(1—(}’1)15
il

pra(At) =1~ pik(A),
Then, A can be rewritten as

Ai(X 2) = eup(\ L2z, 2 € By

(9.16)

(9.17)

(9.18)

Using homotopy property of the twisted primary degree, we may assume
that the functions ¢y, : (A1, A2) x (3, 2) — C are continuously differentiable

and the sets tpl_,,,? (0) are composed of a finite number of regular points.

We need the following lemma for the computation of G-Deg (A; , 2;x).
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Lemma 9.1.3. Let U C R x R, be an open bounded set and ¢ : R? — C
a continuously differentiable and U-admissible map such that the set A :=
e H0) N U is composed of reqular points of ¢. Put

Tommax{lt|: 3n (MO €A} 41, 7im -;-max{gtg .3, (\1) € A).
Consider a G-representation V;; modeled on Vj;, [ > 0, and define the set
2 ={v)eR®Vy: (M) el, <ol <T},
and the G-equivariant map A:R®V,; — Vj; by
AO) = o\ flo]) - v.
Then A is {2-admissible G-equivariant map and

G-Deg (A, 2) = Z sign det Dip(A, t)degy,, .

(AL)eA

Proof: For every point (A, L,) € A we define a small neighborhood 2, of
the zero set {( Ao, v) : ||v]] = t,} in the space R @ V;; by
Q0 ={(Av) A=A <&, 0<t,—d < ||| <t,+0},

where 0 is chosen to be sufficiently small. Then

G-Deg (A, 2) = Y G-Deg (A, 02y),
(No,to)EA

and since for every (., t,), the map A can be approximated on §2, by (A, v) —
Do(Xo, to)X = Xo, |Vl = 2,)T - 2, which is clearly homotopic to

(A v) = Jix (A= Ao, 0| — 'I;O)T v,

where
0-1 cr .
Jiy = [1 0 } , if sign det Dp(X;,t;) =1,
. 0 -1 co .
Ji— = {_1 0 J , if sign det Do\, t;) = —1,
so the result follows. .

Combining Lemma 9.1.3 with (9.12) and (9.17), we obtain the following
computational formula for [g].
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Theorem 9.1.4. Under the above assumptions, we have

- H ﬁ(degv)mi(“)-

p€g_{—B) i=0

ko s
3N > mi(ua(N))sign det DA t) - degy,,,  (9.19)

150 k=1 j=0 (A t)CA, .

where m;(py x(N)) = dim (v, N U, /dimU; is the U;-multiplicity of py ().

9.2 Symmetric Lotka-Volterra Systems

Throughout this section, we agsume that I' is a finite group and V = R"
is an orthogonal ['-representation such that I acts on V by permuting the
coordinates of vectors x € V.

Consider the following I'-symmetric Lotka-Volterra type system
a(t) =u(t) - (r— Au(t — 7)), (9.20)

where u : R = V, 7 > 0,7 = [r1,...,ma]7, A is an n x n-matrix and ‘-’

is the component-wise multiplication, i.e. 4 -v = [uivy, ..., unvn]7, for u =
T, T

[ug, .., u) v =lvy,...,0]" €EV.

By an appropriate transformation, the problem (9.20) is equivalent to
u(t) = —Au(t —7) - (b+u(t)), (9.21)

where b = A~'r. Let p be the unknown period of a solution u to (9.21). By a
change of variable, letting A = -, x(t) = u(At), we have that x is a 27-periodic
solution of the problem

#(L) = —Maz(t — %) (b + (). (9.22)

In what follows we assume that the following conditions hold:

(HO) A and b have positive entries, i.e. a; ;,b; > 0, for 1 <4,j < n.
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(H1) A is symmetric, positive definite (i.c. A = AT and (Az,z) > 0 for all
r € R"\ {0}) and A is I'-equivariant. In particular, the matrix

B := diag(b)A,

(i.e. Bx = Az -b), where diag(b) denotes the diagonal matrix [d;;] with
dj; = bj, j = 1,...,n, has only real positive eigenvalues u1,--- , un (not
necessarily distinet).

(H2) The vector b= [by,...,by|T € V is I-invariant, i.e. yb = b for all y € I".
We make also the following assumption

(H3) For every u € o(B)

T # 20 + g forall nez. (9.23)

We are interested in finding a nonstationary periodic solutions of (9.20), which
is equivalent to finding a nontrivial 27-periodic solution of (9.22) for some
A> 0.

Define 4, R : Cy, — V by

A(w,) == —Au(t — 1) -b=—-DBu(t — 1), (9.24)
R(wt) := —Au(t — 1) - u(0), (9.25)

where u € Cy,. Notice that, under the assumption (H1), 4 and R satisfy
(A1)—(A2). Also, the equation (9.20) is I"-symmetric by (HO)-(H2). Therefore,
we are in the setting discussed in Section 9.1.

9.2.1 Reformulation in Functional Spaces

Following the functional setting presented in Subsection 9.1.3, we take H de-
fined by (9.3) and the operators L, j, K, N; and Ng given by (6.16)—(6.18)
and (9.5)—(9.6) respectively.

Consider the parameterized systems

2(t) = —adAz(t — T) - (b+ (), o ¢
{:1:(0) — 2(2n), (9:22)

and
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{r(z‘) = —aMz(t - T)- (b + px(t)),

2(0) = 2(2n), (9.22)

where o € (0,1] and p € [0, 1].
Then, (9.22,) is equivalent to (cf. (9.7))

T —aML + K)7'[Na(), 5(z)) + pNg (), j(2)) + Kz] =0, z€H,
where 4 and R are given by (9.24)—(9.25).
9.2.2 Establishing A Priori Bounds
Define a partial order in V = R" by
Ty <= zT;>1y, foralll1 <i<n,

where z = [z1,...,2,)7 and y = [y1,...,yn)" are two vectors from R". Intro-
duce the following set

C={zeH:-b=<uz(t) forall tel0,2n]}

We show that C verifies the property (P0) in Subsection 9.1.4.
Lemma 9.2.1. For A\, a > 0, cvery periodic solution x € C of (9.22,) satisfies

2T
/ z(l)dt = 0. (9.26)
Jo
In particular, the equation (9.22,) has no nonzero constant solutions.

Proof: Let z € C be a solution to (9.22,), 2(t) = [z:1(t), ..., z,(t)]T. Then
for k=1,2,...,n

2r(t) = —aX Y agzi(t — 7/X) - (b + 2x(t)), (9.27)
J
which leads to ()
m = —a\ ZJ: akti(t — T/N). (9.28)

By integrating (9.28) from 0 to 2w, we obtain (by periodicity of z(1)) that
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2 2
Za‘kj/ a:j(t—T//\)dt:Zakj/ zi()dt=0, k=1,2,....,n.
j 0 4 0

Since the matrix A is invertible, one can casily deduce (9.26). O

The following lemma provides a basis establishing (P2) and also indicates
a positive number «, € (0, 1) satisfying (P1).

Lemma 9.2.2. (i) For M\, 2 € R with \y < Ay, there exist a positive number
R, and positive I'-invariant vectors dy, do > 0 such that for each A €
M, X, @ € (0,1], 7 > 1, each solution x € C of the problem (9.22,)
satisfies ||zl < R and

—b < —dy <z(t)<dy, L€][0,2n].

In addition, there eists me > 0 such that ||1]|ee < mo and ||Z]le < mo.
(i1) There exists a, € (0,1) such that there is no nontrivial solution in C to
(9.22,,) for a € (0, ), p € [0,1] and X € [Ay, Ag].

Proof: (i) Let 2 € C be a solution to (9.22,), z(t) = [z.(1),..., z,(O)]".
Then for k = 1,2,...,n we have the relations (9.27) and (9.28) which lead to

t
In(by, + zx(1)) — In(by + zx(s)) = —aA / > aai(w — /N dw,
S
where we assume s < ¢. Consequently, if s is such that z(s) = 0 then
t N
br, + Tx(t) = brexp -oz/\-z/ Zl arjzi(w —7/A)dw |, forall { €R.
|
By the assumptions (H0) and (H1),
zp(t) < d}2° = b exp (27?04)\2 Z akjbj) — b, forallteR, (9.29)
J

and (by (H2)) the vector dy := [d3, ..., d3|" is ['-invariant. On the other hand,

—b < —d’f = b exp (—27?(1)\1 2: akjd%) —bp < xx(t), foralltelR,

a
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and (by (H2)) the vector d; := [dl,...,d"" is [-invariant. By differentiating
(9.22,) we obtain

i(t) = —aX (Az(t —7/A) - (b+ z(8)) + Az(t — 7/)) - (1)) . (9.30)

By using the above obtained upper and lower bounds for z.(¢) in (9.27) and
(9.30), it is easy to show that there exists m, > 0 such that

|Ze(D)] <m, and |Zk()] < Mo,
forall k. =1,...,n and ¢ € R. Consequently,
|Zlloo < Mo and — ||Z]|oo < M0

Therefore,

[ I I _ n ..

x4 = ()& (t)dt + c(t)z(t)dt < 2n||z||2 + 27 Y db =: R%
H 0 ) oc 2
: ¢ k=1

ii) Suppose for contradiction that there exist sequences {o,} C (0, a,) and
{z™} € C such that 2™ is a non-trivial solution to (9.22,) for & = a,,, A =
Am € [M1, A2) and limy, o0 o, = 0. Then (9.29) holds for zx(t) = =*(k) with
m=1,2,..., and therefore,

lim |2l = 0.

Since
() == NAT™(t — T/ M) - (b+ pz™(1)), (9.31)
we have
127w < AmA2]AZ™ loo(bloo + pld2|co), (9.32)

where |A] = >, a;; and |y| = max{|y;| : j = 1,...,n} for y € R". Define
u™(t) by
zE(t)

- . teR
2™ loo

uy'(t) =

Clearly, u™ € H and by (9.32),

[ loo < tmA2| Al(1bloo + Pldz2]oo),

which implies that limy, ., ||#™|l« = 0. Since
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[u" oo < 27 [}i™ oo,

it follows that lim,,_« ||u™]|ec = 0, which is a contradiction with |Ju™|| = 1.
U

We show that (9.22,,) satisfies (P4) for a =1, p = 0.
Lemma 9.2.3. (i) Assume that for a fived values A € R* and o € (0,1], the

linearized equation
T s
z(t) = —a Az(t — —X) - b (9.33)

has a nontrivial solution in H. Then, there exist k, n € Z, n > 0, k > 0
such that

__ kT ..
{A T 2mnpw/2 T )\kr"l’ (934)
a =
Au?

where w is an eigenvalue of the matriz B := diag(h) A.
(ii) For a =1, p =0, the equation (9.22,,) has no nontrivial solution in H.

Proof: (i) The equation (9.34) can be written as
©(t) = —aABz(t — 7/)). (9.35)

Clearly, (9.35) allows a nontrivial solution u in H if and only if, thereis k € N
such that z = e . 2, for some z € V¢, is a solution to (9.35), which leads to
the equation

ik + alpe "% =0,

for some p € o(B). One can easily verify that such a case is possible if and
only if, the relations (9.34) are satisfied for some n € Z. +

(i) If oo = 1, then (9.22,,) reduces to (9.34). By (i), a nontrivial solution to
(9.34) implies that pr = 27n + 7/2, which contradicts the assumption (H3).
O

The lemma below provides a positive number m, satisfying (P3).

Lemma 9.2.4. Assume that A € RY, p € [0,1] and a € (0,1] are fized.

(i) If zero is not an isolated solution in H to the equation (9.22,,), then there
ezist integers k > 0 and n < 0 such that A and « satisfy the relations (9.34)
for an eigenvalue 1 of the matriz B.
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(i) If A\, Ay € RY with Ay < Ay, then there exists my > 0 such that for all
A € [A1, \o], the equation (9.22,) has no non-trivial solution x € H such
that ||z||m < my.

Proof: (i) Define §, : [M, Ae] x H — H by
Falp N 2) =2 — oML + K)'N(p,\,z), €.

By implicit function theorem, if (A, 0) is not an isolated solution to (9.22,,)
for some p € [0, 1], then D,§.(p, A,0) : H — H is not an isomorphism, which
implies that the equation (9.33) has a nontrivial solution. Consequently, by
Lemma 9.2.3, o and ) satisfy the relations (9.34).

(ii) The equation (9.22,) is a special case of (9.22,,) for o = 1. Assume such
my > 0 does not exist, then zero is not an isolated solution in H. By (i), then
the relations (9.34) have solutions for an eigenvalue i € o(B). Since @ = 1, we
have pr = 27n + 7/2, which contradicts the assumption (H3). U

The following fact shows that (P5) can be achieved for specific choices of Ay,
Ay (cf. (9.38)). For the sake of completeness, we include its elementary proof.

Lemma 9.2.5. For any p € [0,1] and X > 0, the following equation

{g‘;(z) = —Az(t) - (b+ pz(1)),

Ty = Tog.

(9.36)

has no nontrivial solution.

Proof: Assume first that p € (0, 1]. Suppose that z is a non-zero 2r-periodic
solution to (9.36). By integrating (9.2.5) from 0 to 27, we obtain

2 n 27
Az(t) - z(t)dt =0 <= Z: akj / z;()zp(t)dt =0, k=1,2,...,n.
- 0

0 j= 1

(9.37)

On the other hand, A is positively definite, i.e. Az(t) e z(t) > 0 for z(¢) # 0,
which implies that

27

/ Az(t) e x(t)dt > 0.

0
But this is a contradiction, because by summing up the equations in (9.37),
we obtain
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n

/Ozw Az(t) o z( i Za,u / 2,()z(L)dl = 0.

k=1 j—=1 J0

Suppose now that p = 0, then the cquation (9.36) becomes #(f) = —ABz(t).
Consequently, if = is a 27-periodic solution to (9.36) for p = 0, then it also
satisfies the equation

d
dt

which leads to

2 (2(t) - 2(1)) = 2(0) - (1) = —2ABa(1) - 2(0),

g
/ Ba(t) - 2(1)dt = 0.
JO ’

Be a similar argument as above, we obtain again that z(t) = 0. O
Therefore, by Lemmas 9.2.1 - 9.2.5, we established the a priori bounds for
(9.22,) and (9.22,,) which satisfy properties (P0)—(P1), (P3)—(P4).

9.2.3 Sets and Deformations

For fixed A\, A\; € R with A; < Ay and assume dy > "1%@ We define the
following I' x S'-invariant sets

bt d
LB < a(t) < 2dy, 1€ [0,20]),

D={zeH: -
D= {frel: —d; < a(l) < dy, t €[0,2n]},
B:={zeH: ||lz|lm <m},

Br:={zx ¢ H: ||z|;n < R},

where R, d; and dy are specified in Lemma 9.2.2 and m; in Lemma 9.2.4. We
can choose m; > 0 to be sufficiently small so that

BCDCDCC.
and define _ B
' U := (DN Bg).
Choose € > 0 to sufficiently small such that the set
U :={zeH:dist(z,U) < e},

satisfies 4 C D. Thus, the scts LNI, U satisfy (P2) by Lemma 9.2.2(i).
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Next, we choose Ay and Az to be

T

T . . . . ¢
M=o, J1> 2 S, 2 €N (9.38)

/\'1 = ~ 2 .
2]171'7 2]271'

Then, by Lemma 9.2.5, A1, A, satisfy (P5). Define the set £2y, 5, C RY x H by
(9.8).

Based on the above discussion, we established the a priori bounds for (9.22,)
and (9.22,,) which verify (P0)—(P5). Thus, ¥, defined by (9.11) is indeed an
2, a,-admissible homotopy. Therefore, the equivariant topological invariant
[a] is well-defined (cf. Definition 9.1.1) and the computational formula (9.19)
is valid.

9.2.4 Computation of the Equivariant Topological Invariant

To determine the negative spectrum of —3, observe that 8 = 4|y = —B (cf.
(9.24)). By (H1), the matrix B has only positive cigenvalues. Thus,

o_(—B)=0_(B)=10.

Therefore, the computational formula (9.19) reduces to

ko 5
B=(1)-D> D> > D m(me(N)sign det Dipy (A, 1) - deg

I>0 k=1 j=0 (M\t)eA ,

ko s
= Z Z Z Z my(pak(N))sign det Doy (A, 1) - degy, . (9.39)

>0 k=1 =0 (A f)€Ar

By direct computation, we have (cf. (9.15))
AN (ettz) = e [z + g;(,—lz—ze“%\le} , zeVe

Take p x € o(B), we write (cf. (9.16))

) ibr ~
AW (2) =z + é—(zi)lﬂe_%z, z € By,
where 3 is defined by (9.13). To determine the function ¢; x according to (9.18),
we express A x as
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AsON)(2) = (1 + %e—i’%)z

2= — (1 —ay)jz||)p 4 s
( Y1 (7'] 1)“ “)ll’k@""l,{")z7 zE-Q,\W\-szl,k'

=(1+

Then, ¢, : R? — C is defined by

- — (-l s

(A ) =1
w1 k(A1) + i

To simplify notations, put £(t) := 2 — a; — (1 — ay)t for all ¢ € (1,2). Notice
that 8(z) = £(]|z]]) for 1 < ||z|| < 2. To compute [E] according to (9.39), we
need to differentiate ¢y at the point (A, t,) satisfying (cf. (9.34)

t,) =—— <1,
E( O) Aol k , (940)
Ao =N = T 773 for some m ¢ N.

We have that

§()pk —ur
il
1AYI7I { tu l
§Wpp AT Eme T

(ka()\,t) =1+

= 1 — 4 - -
A LN
Then, we obtain

i 1— .
£k COS %(_11) (Y—cvy )y i sip I

I A2 { By

D(Pl,k()\y t) = N
e o by Iy U—epwie | Ir
=T sin T(_V) == cos

which evaluated at (A, t,) gives (notice that cos <& /\ = 0 and sin <& /\ = 1)

0 (I~o1)pyx
!

D(pl,k(AmtO) = )
_I

Clearly, sign det Dy (Ao, £,) > 0. Thus (cf. (9.39)),

T3S ey,

[>0 k=1 j=0 (\t)eA
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Finally, to determine A, for g € o(B), denote by n(u i) a positive
integer such that

™ ™
5t 2n(pp)m < it < 5+ 2(n(u i) + )m.

- Then, we have (cf. (9.40))

Ir o
= (o) = +—,
2rm + /2 §(0o) Aokt k

ljo < m <ljy, n{uk) = m}.

Al,k 3:{(/\(),t()) : /\o

Theorem 9.2.6. Under the assumptions (HO0)- -(H3), if the G-equivariant

topological invariant
[a] = ZTLH(H )
(H)

is monzero, i.e. there exist a coefficient ny # 0 with H = K%', then there
exists (A, ) € 2z, such that Fi(\,z) = 0 with G, D H. In other words,
there czists a nonconstant 2w -periodic solution to (9.22) for some X € [Ay, A2),
and consequently, there is a p-periodic solution to (9.20) with p = 2wA. In
addition, if H = K®' is a dominating type in H, then there exists a nontrivial
periodic solution x(t) to (9.20) (and consequently a whole G-orbit of solutions)
with the exact symmetries K%.

As an immediate consequence, we obtain the following generalization of the
result obtained in [90] (without assumption of simplicity on the eigenvalues of
the matrix B)

Corollary 9.2.7. Suppose that I' = {e}. Under the assumptions (H0)—(H3),
if there exist an eigenvalue p € o(B) and n € NU {0} such that

™ vis
5+ 2nm < pr < 5+ 2(n 4+ )7,
then the G-equivariant topological invariant

=) nu(H)

is nonzero, and consequently, there exists a p-periodic solution to (9.20).
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9.3 Usage of Maple®© Routines and Computational
Examples

In the computational examples, we consider the system (9.21) symmetric with
respect to I being Qg, Dg and S,. In addition, we assume that b = [1,1,...,1]7.
For cach considered matrix A = B, we choose concrete numerical values of its
entries, as well we also specify the numerical value of the delay 7 > 0. The
spectrum of A will be denoted by {ux : 1 < k < k,}, and the corresponding
to ux eigenspace F(uy) will turn out to be of a single I'-isotypical type, i.e.
B(pr) = mimy(ix) - Viry, where myy (1) denotes the V;y-multiplicity of the
cigenvalue of pg. In all considered cases, we always have m;(py) = 1. Similarly,
the for the matrix A : V¢ — V¢ we will denote by E(u) the (complex)
eigenspace, which in our cases will be I2{py) = M) (k) - Uy, where meeey (pie)
is the Ujy-multiplicity of pu. The number mjy () will be always one, except
for one eigenvalue in the case I" = (Jg, where the considered (real) eigenspace
will be of quaternionic type, so this number is equal 2.

We choose the values of j; = 1 and j, = 1, and put
my ;= My ()| Aikl,  where E(pr) = myw () - Uy,

and | X| denotes the number of elements in the set X. Then, using this notation,
our computational formula for the associated equivariant twisted degree can
be simplified as follows

B=3 Y  Y S miludes,

I>0 py €0 (B) (M t)C A 5=0
s
=22 mirdegy, . (9.41)
1>0 j—1

For the computation of the numbers n(y;), we use Table 9.1.  The final

n 1 2 3 4 5 6 7 8 9 10
7+2nm | 79141204 26.7|33.0|39.27 | 45.6 | 51.8 | 58.1 | 64.4

Table 9.1. Values of § + 2nmw.

results are formulated in basic degrees deg v, For the values of basic degrees



242 9 Existence of Periodic Solutions to Symmetric Lotka-Volterra Type Systems

degy, ,, we refer to Appendix A2.3. The degrees deg,,,, can be determined by
taking the [-folding homomorphism of degvjyl, i.e. deg VLS !Iiz(degvj']), for
W, : AY(G) — AY(G) defined (on generators) by (H?*) — (H#H).

For each non-zero coefficient in [g of (H#!), where (H*) is a dominating
orbit type, there exist at least |I'/ H| different non-constant p-periodic solutions
with the least symmetry (H#*) for some integer k£ > 1. However, the k-folding
in the isotropy group (H#*) of 2 € H* means that z is a p/k-periodic solution
with symmetries exactly (H¥). In this way we are able to predict the exact
symmetries of certain periodic solutions.

In Appendix A4.4, we list existence results for the I'-symmetric Lotka-
Volterra type systems, for I' being the quaternionic group (s, the dihedral
group Dg and the octahedral group S;.



10

Existence of Periodic Solutions to Symmetric
Variational Problems

In this chapter, we study the existence of periodic solutions to symmetric vari-
ational problems. More precisely, we first investigate the existence of nonsta-
tionary periodic solutions to an antonomous Newtonian system of describing
trajectories of finitely many particles, governed by the Newton’s laws of mo-
tion. As sufficient differentiability of the force function is stipulated, the New-
tonian system of our consideration is energy conserving, thus all variational
techniques apply.

We consider an autonomous Newtonian system symmetric with respect to
a compact Lie group I', which acts on the phase space V. The I'-equivariant
nature of the force function leads to a /" x S'-cquivariant variational problem,
where periodic solutions to a [ -symmetric autonomous Newtonian system cor-
respond naturally to critical points of the associated I” x S'-invariant total
energy functional V.

To the gradient map of the energy functional, which is assumed to be asymp-
totically lincar at oo, we associate two topological invariants deg, and deg .,
representing the gradient /7 x S-degrees of V¥ on a small ball B, and a large
ball Bpg, respectively. The difference deg . — deg,, is the topological invariant
capturing the existence of nonstationary periodic solutions to the system in
Bgp\ B-..

Then, we study an O(2)-symmetric elliptic problem with periodic-Dirichlet
mixed boundary conditions. By a similar procedure, we obtain the existence
result. ‘

The chapter is organized as follows. In Section 10.1, we discuss a symmet-
ric autonomous Newtonian system having 0 and oo as non-degenerate critical
points of the energy functional. In this case, the standard linearization tech-
nique applies. Conscqucntly, the computations of the topological invariants
deg, (p € {0, 00}) reduce to the computations of gradient linear isomor-
phisms, which adopt the effective computational formulae discussed in Sub-
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section 5.2.2. The computational examples are provided in Appendix A4.5 for
I' = Dsg, Ss, As. In Section 10.2, we extend our discussion to the symmetric
autonomous Newtonian system allowing degenerate critical points at 0 and/or
oo. Applying a result of splitting lemmas (cf. [69]), we obtain a product type
of formula for each deg, (p € {0,00}), which is only computable up to an
unknown factor (due to the degeneracy of the system). Under certain assump-
tions, the invariant deg  — deg,, still contains enough information about the
symmetric structure of the solution set. Numerical illustrations will be pro-
vided in Appendix A4.6 for I' being dihedral groups Dg, Ds, Dyg and Dy;. In
Section 10.3, we study an ((2)-symmetric asymptotically linear elliptic equa-
tion with periodic-Dirichlet mixed boundary conditions. By applying a similar
degree-theoretical procedure, we obtain the existence result of at least two
different types of periodic solutions. Computational example is provided in
Example 10.3.3.

10.1 Symmetric Autonomous Newtonian System

Throughout this section, " is a finite group, V is an orthogonal ['-represen-
tation and ¢ : V — R is a (%differentiable I'-invariant function. Then, the
gradient map Vi : V — V is a C'-differentiable [-equivariant map.

We are interested in finding nonzero solutions to the following / -symmetric
autonomous Newtonian system

{r =—Vo(x), (1) f vV (10.1)

z(0) = z(2r), #(0) = &(2n7),
where z : R — V is twice weakly differentiable with respect to £ and Vo
satisfies that '

(A1) Ve(z)=0 <<= z=0.

In addition, there exist two symmetric ['-equivariant linear isomorphisms
A, B:V — V such that

(A2) VZp(0) = A.
(A3)  Vo(z) = Bz +o(||z]]) as [|lz]| — oo, i.e.

i IVe(@) = Ball _

llz]l—»00 ||

0.
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Notice that the conditions (A1)-—(A3) imply that
I'-Deg(—A, B1(V)) = I"-Deg(—B, Bi(V)). (10.2)

Indeed, by the standard lincarization argument and (A2}, there exists € > 0
such that

I"Deg(—A, B(V)) = I'Deg(~ A, B(V)) = IDeg(~ Ve, B.(V)).
Similarly, using (A3), for £ > 0 being sufficiently large number, we have
I-Deg(—B, B(V)) = I'-Deg(— B, Br(V)) = I"-Deg(=V, Br(V)).

However, (A1) forces —V@~(0) = {0}, by excision property of the [™-
equivariant degree, we have

F'D(‘g("v% BE(‘/)) = F—DCg(—ng, ]))R(V))
Therefore, (10.2) follows.

The following assumption allows the system (10.1) having non-degenerate
linearization at 0 and oc.
(A4) (oM Ua(B)N{E* : £=0,1,2,...} =0,
where o(A) (resp. o(B)) denotes the spectrum of A (resp. the spectrum of B).

Remark 10.1.1. Suppose that ' : V — V is a symmetric linear operator
such that o(CYN{k? : k=0,1,2,...} = 0, then the system

{—ge = Cz, z() €V,
z(0) = z(2m), #(0) = £(27)

has no non-zero solutions. Therefore, the condition (A4) implies that the lin-
earization of (10.1) at z = 0 and 2 = oo have no non-zero solutions.

Example 10.1.2. One can easily construct an example of a I'-invariant func-
tion ¢ : V — R satisfying the assumptions (Al)—(A4). For instance, let
n: R — R be a C%differentiable function such that 7/(t) > 0 for all ¢ € R and
tliglon’('l,) = b > 0. Also, assume that 27'(0),2b € {k* : k£ =0,1,2,... }. Then,
@(z) :=n(||z||?) is [-invariant and the gradient Vip(z) = 2n/(||z]|*)z, satisfies
(A1) and clearly Vo(0)h = 27/ (0)h.
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On the other hand,

[Ve(e) =262 _ 1120 (fz])*) — 26)2]

lim =
ll2]| =00 |l flzll o0 |zl

so (A2) and (A3) are clearly satisfied with A = 2(0) Id, B =2b1d.

10.1.1 Functional Setting

The system (10.1) can be reformulated as a variational problem in the Sobolev
space W := HY(S'; V), which is a natural isometric Hilbert G-representation
for G = I' x S', with the G-action given by (cf. 6.21) and the inner product
defined by

2%
)y / (L), 5(0)) + (D), v())dl,  u,v € W,

0
We will denote by || - |1 the induced norm by (-, ")y on W.
Define ¥ : W — R by

www:/%<ammﬁ—wwm)wy (10.3)

0

(where || - || stands for the 2-norm). Clearly, the functional ¥ is G-invariant
and C2-differentiable. Indeed, one can easily verify that

2
waxm:34 (@(0), 5(0)) — (Vo (u(t)), v(0)) d.

Notice that if D¥(u) = 0 for some u € W, then u € H?*(S};V) and u is a
solution to (10.1). Consequently, the problem (10.1) can be reformulated as

V¥(u) =0. (10.4)
To determine an explicit formula for V¥, we represent ¥ as
. 1 . ~
V(u) = 5“““2{1 - P(u), uweW,

where
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i = | BN, B0 = ok + IR he V.

Clearly, V¥ (u) = u — V%(u).
Introduce the following maps:

L IT*(SY V) — L3S V), Lu = —ii+ u, (10.5)
i H*(SH V) — HY(SY V), ju = u,
Nyz: C(SHV) — L*(SY V),  Nyg(u) = Vg(u) = Ve(u) + Id.
Since the equation N _
(Ve(u), v} = DP(u)(v),
translates to

[ ({Evito. o) « wauwam) - [ @au.0o)
for all v € I1!(S'; V), we obtain that Vgl;(u) is a weak solution y to the system
—ij+y = Vg(u),
{9(0) = y(2m), §(0) = y(27).
Theretfore, one obtains
Vo(u) = jo L' o Nys(u), weW,
which leads to
V¥ (u)=u—joL " oNyzu), uew.
Therefore,

z is asolution to (10.1) <= V¥(z)=0, ze€W.

Notice that since j is a compact inclusion, the gradient GG-map VV is indeed a
completely continuous G-equivariant field on W, and the gradient equivariant
degree method applies.

By (A2)—(A4), for sufficiently small € > 0 (resp. sufficiently large R > 0),
the map V¥ is B.(W)-admissible (resp. Br(W)-admissible). Thus, one can
define the following gradient GG-equivariant degrees



248 10 Existence of Periodic Solutions to Symimetric Variational Problems

deg g == Va-deg (V¥, B:(W)),
deg o, := Vg-deg (V¥, Br(W)).

By the excision property of the gradient degree, if deg . — deg # 0, then
there exists a solution to (10.4) and equivalently, to the system (10.1), in
Br(W)\ B-(W) (cf. [69]).

10.1.2 Existence Result

Define the G-orthogonal isomorphisms A, B: W — W by
A=Id —joL ' o(A+1d), B:=1d —joL " o(B+1d). (10.6)
By (A2)-—(A4) and the linearization argument, we have

d(%g'o = V(_;—deg (.A, 134 (VV)), (10.7)
deg . = V-deg (B, B{(W)), (10.8)

which leads to the following existence result for the system (10.1).

Theorem 10.1.3. Let G = I'x S* for I" being finite. Consider a I'-orthogonal
representation V and a ['-equivariant C*-differentiable function ¢ : V — R
satisfying verifying (A1) —(A4). Suppose that the maps A and B are given by
(10.6) with

deg ., —deg, = (deg?, —deg!) € A(I") ® AYG) = U(G). (10.9)
Then, deg? =0 and if

deg' = }:ny -(H) #0
(H)

i.e. ny, # 0, for some orbit type (I,) in W, then there exists a non-constant
periodic solution z, to (10.1) satisfying G., D H,. In addition, if H, = K¥*
is such that (K¥') is a dominating orbit type in W, then there exist at least
|\I'/K,| different non-constant periodic solutions with the orbit type at least

(K
Proof: By definition of the gradient equivariant degree (cf. (5.24)-(5.25)),

deg® = IDeg(Blyy, BuWS)) — I-Deg(Alyer, By(W™)).
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Observe that W*' ~ V and Al s = —A, Bl,yst = =B (cf. (10.6)). Thus,
deg” = I'-Deg(~B, B1(V)) — I'-Deg(—A, Bi(V)).
Combined with (10.2), we conclude deg? = 0.

By (10.7)—(10.8) and the excision property of gradient equivariant degree,
if :
Ve-deg (A, B(W)) — Vg-deg (B, B(W)) # 0,
then there exists a solution to the system (10.1) in Br(W)\ B.(W). Moreover,

by (Al), x = 0 is the only constant solution to (10.1). Therefore, there exists
a non-constant solution to the system (10.1) in Bp(W) \ B.(W).

Suppose that ny, # 0, where (II,) = (K¥*) and (K¥') is a dominating
orbit type in W. Then, by the existence property of gradient equivariant de-
gree, there exists a solution v € Br(W) \ B.(W) to the system (10.1) such
that Gy D H,. Due to (Al), we have that (G,) = (K%E) for some K with
K, ¢ K C I' and a homomorphism 1; : K — S' with z;/;|KD = 1, k> k.
Since (K}') is a maximal orbit type in the set of all 1-folded twisted orbit
types in W, thus (K g’*%) is a maximal orbit type in the set of all k-folded
twisted orbit types in W. Consequently, (K %E) = (K ;/’I) Thercfore, there ex-
ist at least | I'/ K,| different non-constant periodic solutions with the ezact orbit
type (K (’f’%). In other words, there exist at least |I'/ K, | different non-constant
periodic solutions with the orbit type at least (KD%). O

10.1.3 Computation of deg®

For simplicity, assume that”
(A5) the operators A and B have only positive eigenvalues.

Consider the complexification V¢ of V' and the I'-isotypical decomposition
of V¢ given by (6.7). Each operator A on V can be extended to a “complexified”
operator A : V¢ — V¢ given by A(2®v) := 2® Av (for which the same notation
is used). For cach p € o(A), denote by E(p) the eigenspace of p considered in
V¢ and call B

dim (E(u) N Uj)

N.’ 14) 1= O
m; (1) dim il , (10.10)

* In the case A and B have negative eigenvalues, the argument remains valid for the “positive”
parts of o(A) and o(B).
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the U;-multiplicity of p.
Put A7 := Aly, and

of(/l) ={ueo(A) : K <pu<(k+1)?},

thus by the assumption (A4),
a(A) =} oh(A).
k=0

Recall A’ := Alws, W’ := (WS ). The definition of A (cf. (10.6)) clearly
implies that

a(A) = {l— pt cp€oa(A),l= 1,2,...}

1241

1 ‘
:{l—ﬁil:ueﬁumj:QL”w&k:Oerl:LZm}.

Consequently, the negative spectrum o (A’) of A’ can be described by

11 :
04A3:{1Hg+ ;ugoﬁALj:QL”q&kzOJP”J:L”wk}

I +1
(10.11)
Moreover, for an eigenvalue 1 — I’Stll of A'lw, : Wi — W, we have
1 ~ _
/n’ljyl (1 - m) = m]([,L), l = 1,27 ... (10.12)

Therefore, by (10.11)—(10.12), the second component degj of deg, equals
to

degy=degg* > > my(€)degy,,
{eo-(A) jl

_*deg *ZZZ Z i llj—ll)degv

7=0 k=1 Il= 11160' A)

— deg{ * ZZ } mj(u)Zdeg Vi (10.13)

J=0k= lpeok(A)
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On the other hand, A7 : U; — U, is completely diagonalizable, thus

my= Yy e =y Y myw). (10.14)

pET(A?) kiOuEaf (A)

Now, by putting
mE(A) = Y (), (10.15)

;J,G(r;‘ (A)

we can simplify (10.13) to the following form:

5 00 k
degh = deg * }:Zm’;m)chg v,
{=1

je0 k=1

Notice that (cf. (10.14))

oC

My =y m(A). (10.16)
k=1

Following the same lines for the operator B, by assumption (A5), one obtains

5 o k
deg’_ = deg? x }:Z'rﬁé‘f(B)Zdegvj,”
=1

§=0 k=1
and -
my =Y mk(B), (10.17)
k—1 ,
where

EB) = Y i),

7)60}“(}3)
with m,(n) being the U;-isotypical multiplicity of n (cf. (10.10)). -
By Theorem 10.1.3, deg® = 0, thus deg) = deg? . Put
deg , := deg = deg?.. (10.18)

Therefore, by (10.9),



252 10 Existence of Periodic Solutions to Symmetric Variational Problems

deg' = degl, — deg

= deg_ * ZZ ( m (B) — m; A))chgv [)

=0 k=1
T 8 1
IR »S (mz) 1019
po (A) im0 =0 k=1 =1 ‘
where
m} = mk(B) — mi(A). (10.20)
Definition 10.1.4. We call the number m} given by (10.20) the k-th U;-
isotypical compartmental defect number for the map V¥, for j = 0,1,...,s
and k=1,1,....
The following lemma describes the possible combinations of the U;-isotypical
compartmental defect numbers mb, k = 1,2,.. ., subject to (ondltlons (10.16)—
(10.17):

Lemma 10.1.5. Let a, N be positive integers, (ny)Y_, and (mg)_, be two
N-part partitions of a, i.e.

a=n;+tng+t---+ny=m +my+- -+ mp,
where ny’s and my’s are non-negative integers. Put

ka:le—mk, k‘:1,27,..,N,

= Zbk’ b = th

bi >0 b <0

where a sum over the empty sct is assumed to be 0.
Then (b/rc)/{cvj1 is a partition of 0 with 0 < b" < a and —a < b~ < 0.

Proof:  Assume that (ng)l , and (my){, are partitions of a, i.e.
a=ni+ng+---+ny =my+mg+---+ my.

Then, clearly, (b)Y , = (nx — my)Y_, is a partition of 0 and, by definition,
bt >0, b~ < 0. Moreover, since n; > 0 and m;, > 0 for all &,
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N .
b+ = Zbk = Z (le — mk,) < Z Tk S an =a
k=1

b >0 Tog ST Ng >Mi
N
b= b= Y (—mp) = D (—me) Z =) my=—a,
b <0 T <Mp g <M k=1
which concludes the proof. ' ]

10.1.4 Concrete Existence Results for Selected Symmetries

We present here the computational results for several I'-representations, where
I' = Dy, Ds, Dg, Sy and As. Similarly to Subsection 6.3.4, we assume the
conditions (R1)—(R2) hold.

By condition (R2),

dimgFt dimgV; =1
mv;(/l/):{ impl(p)/dimrV; @ =iy, (10.21)

0 @i,

Also notice that (deg,,)* = (G) for all 4. Put

g = Z mi, (1)  mod 2.

Thus,
Deg}. = H (deg V,;) .
=0

Consequently, the computational formula (10.19) reduces to

r ) 8 o0 k
deg, =[] (degw)e’ > (m;?Zdeg m) . (10.22)
{

i=0 §=0 k=1

Consider the system (10.1) assuming that (Al)—(A5). As the symmetry
group I, take the dihedral groups D4, Ds, Dg, the octahedral group S; and
the icosahedral group Aj. We list the computational results in Appendix A4.5.
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10.2 Symmetric Autonomous Newtonian System with
Degeneracy

In this section, we study the symmetric autonomous Newtonian system (10.1)
without assuming the nondegeneracy assumption (A4). In this case, the lin- -
earized operator A (resp. B) at 0 (resp. co) may have nontrivial kernel, i.c. the
energy functional ¥ defined by (10.3) has degenerate critical points at 0 and/or
oc. As the standard linearization argument fails, the formulae (10.7) —(10.8)
arc no more valid for the computation of deg ., — deg,. To procecd with this
degenerate situation, we need the result called splitting lemma proved in [69].

10.2.1 Splitting Lemma

Let ¢ be a compact Lie group and W an (infinite-dimensional) isomet-
ric Hilbert G-representation. Consider a (*-differentiable G-invariant map
¢ : W — R, which has the following form

D(z) = %<‘T7x>w — g(z), ‘ (10.23)

where (-, -)w denotes the G-invariant inner product on W and g: W — Ris a
G-invariant function satisfying

(B1) Vg: W — W is a G-cquivariant compact map.

(B2) For p € {0, 00}, there exists a G-equivariant symmetric compact operator
Lp W — W and a G-invariant  : W — R such that ¢(z) = $((Id —
Ly)z, x)w + n,(x) with Vi, : W — W being a compact map and

IV*n(2)l| = 0, as [|z]| = p.

(B3) 0 € o(ld — L), i.e. p € {0,00} is a degenerate critical point of .
(B4) p € {0,00} is isolated as critical point of &.

Notice that (B3) implies that p = 0 is a critical point of @. We also treat
p = 00 as a critical point, with Hesse matrix Id — Lo,. We call co an isolated
critical point if V#~1(0) is bounded.

Notation 10.2.1  Denote by Z, := Ker (Id — L,) and W, :=Im (Id — L;).
Since Ly, is a compact operator, we have that Id — L, is a Fredholm operator of
index zero. Thus, Z, and W, are finite and infinite dimensional G-orthogonal
representations, respectively. Also, Id — L, being a symmetric linear operator,
implies that W = Z, ® W, and the operator Q, := (Id — L,)|w, is a G-
isomorphism.
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The following splitting lemma, which is a simplified version of the theorem
proved in [69], is essential for computations of the equivariant degree of V@ at
0 and oc.

Lemma 10.2.2. (Splitting Lemma) Suppose @ is of the form (10.23) satisfying
(B1)—(B4). Then, for cach p € {0,00}, there exist €, > 0 and a G-equivariant
gradient homotopy VH, - [0,1] x W — W such that

(i) 7 H O)N(el(Bay (W) x [0, 1]) = {030, 1], and VHZ}(0) € el(Be.. (W)
x [0, 1]. ’

(it) VI,(t,-) =1d —Vg,(t,-) fort € [0,1], where Vg, : [0,1] x W — W isa
compact map.

(111) VH,(0,-) = V&, and

(iv) there exists a G-equivariant gradient mapping Vi, : 7, — 7, such that
VH,(1, (v,w)) = (V,(v), Qp(w)), for (v,w) € Z, & W,.

Therefore, by the multiplicativity property of gradient equivariant degree, we
have (cf. Theorem 5.2.5)

Corollary 10.2.3. Suppose ¢ is of the form (10.23) satisfying (B1)- (B4).
Then, for p € {0,00}, there exist ¢, > 0 and a G-equivariant gradient map
Vp: Zy — Zy such that

Ve-deg (VP, B, (W)) = V-deg (V,, B, (Z),)) * V-deg (Q,, BOWV,)),

where Z,, W, and Q, are given by Notation 10.2.1.

Remark 10.2.4. Notice that in the case G = I x S! (as usual, we assume [
is finite), the computational formula (5.28) in Subsection 5.2.2 can be easily
extended to the class of G-equivariant gradient compact fields. Indeed, it is
well-known that each compact operator has a spectrum either composed of 0
and a finite number of eigenvalues, or it is an infinite sequence of eigenvalues
convergent to 0 (which is also in the spectrum). Moreover, every non-zero
eigenvalue has a finite multiplicity. Consequently, by compactness assumption
(A2), there are only finitely many eigenvalues p of L, such that g > 1, which
implies that the negative spectrum of @, = Id — L, consists of only finitely
many eigenvalues, each of which has a finite multiplicity. Therefore, by the
suspension property of the gradient degree in the infinite-dimensional case,
we have the following analog of formula (5.28), which can be used for the
computations of Vg-deg (Q,, B(W,,p)).
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Proposition 10.2.5. Let G = 1" x S! for a finite group I' and let W be -an
isometric Hilbert (/-representation. Suppose that Q : W — W s a lnear
isomorphic G-equivariant gradient compact field. Then,

 Vodeg (€ BOW)) = Vesdog (O B(WSI))_

V-deg (Q, B(W Z Z m;i(€ degv_,-,,;
o (Q) 5l

where Vg-deg (Q, BOWS")) is given by

Ve-deg (9, BOV™)) H H deg, )™,

peo_(Q) i=0

10.2.2 Symmetric Autonomous Newtonian Systems with
Degeneracy

Consider the symmetric autonomous Newtonian system (10.1) satisfying (A1)
(A3) and the degeneracy assumption

(A4) (A Ua(B)N{l® : 1=0,1,2,...} £0.

For simplicity, assume that o(A) (resp. o(B)) has a nontrivial intersection with
{i* : 1=0,1,2,...}, which contains only one element, namely

(D) a(A)n{* : 1=0,1,2,...} = {3
aB)n{l? : 1=0,1,2,...} = {I2}.
10.2.3 Reformulation in Functional Spaces

Following the same lines as in Subsection 10.1.1, we reformulate the problem
of finding nonstationary periodic solutions of (10.1) to a variational problem of
finding nontrivial critical points to the energy functional ¥ defined by (10.3).

By (A1)—(A3) and (D), we are in the setting of Section 10.2.1. Indeed,

P(u) = %(u,u)m - /(; " o(u(t))dt

satisfies (B1)—(B3) for
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Lo=joL o (A+1d), (10.24)
L =joL 1o(B+1d). (10.25)

Also, by (A1), the functional @ satisfies (B4) in the case ly = I = 0 in (D)
(cf. Lemma 5.2.1. in [69]). In the case I, # 0 for some p € {0, 00}, we assume
that

(A5) p € {0,00} is an isolated critical point of ¢ whenever I, # 0.

Remark 10.2.6. In general, it is possible that (A5) fails for some p € {0, ¢}
with I, # 0. However, by an cquivariant implicit function theorem argument, it
is shown in [69] that in the casc (A5) fails, there alrcady exist infinitely many
solutions of (10.1) and the minimal period of any solution sufficiently close
to the point p is equal to %f (cf. Theorem 5.2.2 in [69}). In particular, (10.1)
allows infinitely many nonstationary %’)"—periodic solutions automatically. In
this section, we exclude such possibility by assuming (A5).

Therefore, by (A1)-—(A3), (D) and (Ab), there exist a sufficiently small
e > 0 and large R > 0 such that deg, and deg ., are well-defined by (10.7)—
(10.8). Consequently, Theorem 10.1.3 holds with the assumptions (A1)-—(A4)
replaced by (A1)—(A3), (D) and (A5). This statement will be referred as
Theorem 10.1.3,.

10.2.4 Computations of deg ., — deg,

To apply Theorem 10.1.3; for the existence and multiplicity result for the
system (10.1) allowing degeneracy assumption, we extend the computations
of deg . and deg, using Lemma 10.2.2. Especially, we analyze several pos-
sible cases where a nontrivial (H*!)-term occurs in deg., — deg,, for some
dominating orbit type (H¥). Due to the degeneracy assumption, the value of
deg, (resp. deg ) is only computable up to an unknown factor. However, to
take advantage of Theorem 10.1.3; (ii), we only need to determine a nontrivial
(H#Y)-term in deg ., —deg,, i.e. to find a nontrivial (H#!)-term in deg ., (resp.
deg) which does not appear in deg (resp. deg ).

Consider the S'-isotypical decomposition of W given by (6.31) and take A
and B defined by (10.6). Then, we have
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1 o
Alyor ==, Alw, =1 = 51— (A+14), (10.26)
B‘Wsl = *B, B[Wl =1Id — T 1(B—|—Id).

We distinguish two degenerate cases for [, = 0 and for [, > 0.

(Da) o(A)N{? : 1=0,1,2,...} = {0},
(D) a(A)N{I* : 1=0,1,2,...} = {1} #0},
(Dg) a(B)N{I? : 1=0,1,2,...} = {0},
(D) o(B)N{I? : 1=0,1,2,...} = {I% #0}.

Notice that (cf. (10.26))

A is a G-isomorphism on W5 & 0¢ o(A) (10.27)
A is a G-isomorphism on W, < 12go(A) ' '

and similar relation holds for B.

Since the computations of deg ., and deg, arc completely analogous, we
only discuss in details the computations of deg, assuming (D4) or (D). A
table summarizing the existence/nonexistence of a nontrivial (4#)-term in
deg,, is presented in Theorem 10.2.9, for p € {0,00}. For completeness, we
also include the nondegenerate conditions:

(NDa) o(A)N{I? : 1=0,1,2,...} =10,
(NDg) o(B)N{I2 : 1=0,1,2,...} = 0.

By Corollary 10.2.3, there exists € > 0 and a G-equivariant gradient map
Vg : 4y — Zg such that
deg o = Vg-deg Vo, B:(Z)) * V-deg (Alw,, BOM)),
where Vg-deg (Alw,, B(Wo)) can be computed by (cf. Proposition 10.2.5)

Va-deg (Alw,, B(W))

= H H (deg Vi )mﬁ(ﬂ)

Heo—(Al,ys1) =0

= JI  TIegy)™® = > > mé)degy,,.

peo— (Al s1) =0 ge0—(Ayy)
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To simplify the notations, put

r

dogf:=  T]  TI(degy)™, (10.28)

pEo— (Al o1) =0
Wi

degs := deg¥ * Z ijyl(g)deg Vi (10.29)
teo—(Alyy) 7

Then, we have
degy = V-dog (Yo, B:(Z)) * (deg® — deg,). (10.30)
We simplify the formulae (10.28)—(10.29), under different assumptions
(D), (DYy) and (ND,4) respectively.
Case (D,): Under the assumption (D,), Alw, is a linear G-isomorphism of W,
for each 1 € {1,2,...}, and Zy = Ker A = Ker A ¢ W3' (cf. (10.27)). Thus,
V-deg (Vipo, B-(Z0)) € Ao(C). (10.31)

Therefore,

deg, = Vg-deg (Vio, B-(Zy)) % (deg — deg’y)
= V-deg (Vipo, B-(%)) * deg’y — V-dog (Vipo, Bo(Z)) * dogly,

N

€AY(G) €A(G)

where —Vg-deg (Vo, Bf(ZO))'* deg', is the part that may contribute a non-
trivial (H%!')-term to deg,,.

Since W' = Im (A), we have that O'_(A[Wosl) = o, (A) (cf. (10.26)). To
interpret the formula (10.29), it is sufficient to observe that

+1 <
(co(Aw) = €(=1- M > 12, for p € o(A), 1€{1,2,...},
and
my(€) = my(),
where m;() is the U-multiplicity of p.

Let m¥(A) by defined by (10.15). It can be dircctly verified that (cf. (10.13))
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s o0 k
Do D ma(@degy,, =3 > Wi(A)) degy,,.
I=1

cco_(A') 4l §=0 k=1

Therefore, the formulae (10.28)--(10.29) reduce to

pca s (A) i=0

s 00 k
degly = deg? * }_{ZT?I,;‘T(A)Zdeg V.
1=1

=0 k=1

Let (H¥') be such that (I1¥) is a domina,tiﬁg orbit type in W. We introduce
the following conditions:

(Y1) deg’y contains a nontrivial (H#!)-term, and Zy = Ker 4 is such that
{(@)I‘ = {0} ) )
(1 x SYY ¢ J(Zy) for any (H) s.t. (1) < (H) < ().
(N1) dcgi4 does not contain a nontrivial (//#!)-term.
Proposition 10.2.7. Let ¢ : V — R be a I'-invariant C*-differentiable map

satisfying (A1)—(A8) and (Dy). Let (H¥') be such that (H¥) is a dominating
orbit type in W. Then,

(i) Under the assumption (Y1), there exists a (H¥')-term with a non-zero
coefficient in deg,;

(ii) Under the assumption (N1), there is no (H¥')-term with non-zero coeffi-
cient in deg,.

Proof: (i). By (Z)" = {0} and Z, € W%, we have that (Z)¢ = {0}, and
Vo-deg (Y, B.(7%0)) = (G) + ao € Ao(G), (10.32)
for some ag € Ag(G), which does not contain nontrivial (G)-term. Substituting
(10.32) in (10.30), we obtain
deg = Va-deg(Vyo, B:(Z)) * Va-deg (Alw,, BOM))
= ((G) + ag) * (dog¥ — degy)
— degOA — degf4 + ag * degOA — aop * deg?y

= deg + ap * degy —deg!y — ag * deg’,

€ Ao(G) €AL(G)
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Since deg’y containg a nontrivial (H#!)-term, to conclude that deg also con-
tains this (H%!)-term (with an opposite sign), it suffices to eliminate the pos-
sibility that ‘

ap * degly = —(H#") + rest.

By the maximality of (J1¥), this would only happen if a9 contains a nontrivial

(EI x S1)-term for some (H) > (H). Also notice that (H) < (1), since ag does
not contain (G)-term. By the assumption that such a (fNI x S1) does not occur
in J(%), it is impossible for ay to contain such a nontrivial (H x SY)-term,
so the statement follows.

(ii). It is clear that if deg’y has no nontrivial (H#!)-term, deg does not permit
one. O

Case (D/;): Under the assumption (D',), A is a linear (;-isomorphism when
restricted to the S'-isotypical components W5 and each W, for I # Iy (cf.
(10.26)). Indeed,

Zo = Ker A C W,

In particular, (Z())S1 = {0} and

V(;—deg (V(,Q(], BE(Z())) = ((;) + ay, for a) € AI(G) (103&)

Substituting (10.33) in (10.30), we obtain

deg o = Vg-deg (Vy, B:(Zn)) * Va-deg (Alw,, BOM))
= ((G) + ar) * (degy — degy)
= deg’y — deg’y + a x deg ¥ — a1 x deghy
= deg’ —deg’, + a; * deg?,
&4 4T Al 84

€Au(G) EAT(G)
where the last equality uses the fact that a; xdeg’y, = 0, since a,, deg®, € A1(G)
(cf. Proposition 5.1.14).

Moreover, we have

5 o
deg?, = deg? * Z Zijyl(f)deg Vi,

o (A) =0 [=1
k lo—1

8 X0 8
=deg’ x (D) mE(A)D “degy, - Y m;(l5)D degy, ), (10.34)
1 7=0 I=1

7=0 k=1 =
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where it is clear that

degly= [] [Jtaee, . (1035

uCoy(A) =0
We introduce the following conditions:

(Y2) deg!y contains a nontrivial (H%!)-term, and (H%') & J(Z).
(N2) deg’, does not contain a nontrivial (H#!)-term and (H¥') & J (7).

Proposition 10.2.8. Let ¢ : V — R be a I'-invariant C?-differentiable map
satisfying (A1) - (A3), (D)) and (A5). Let (H#Y) be such that (H¥) is a dom-
inating orbit type in W.

(i) Under the assumption (Y2), there ezists a (I1¥')-term with non-zero co-
efficient in deg;

(ii) Under the assumption (N2), there is no (H¥')-term with non-zero coeffi-
cient in deg,,.

Proof: (i). By (Y2) deg’, contains a nontrivial (H#')-term. It is sufficient
to show that a,*deg", does not contain any —(H%*)-term so that a cancelation
does not occur. But (H¢Y) & J(Z,), which implies that a; has no nontrivial
(H#4)-term. Thus, by maximality of (H#'), a; xdeg contains no (H%*)-term.
Thercfore, it follows that there exists a (H#!)-term with non-zero coeflicient
in deg,.

(ii). Similar proof as in (i). By (N2) deg’, contains no nontrivial (H#*)-term.
It is sufficient to show that a; xdeg % does not contain any —(H#*)-term, which
is again the case by the condition (H?!) & J(Z). O

Case (ND4): Under the nondegeneracy assumption (ND4), A is a linear G-
isomorphism of W. Thus, the complete value of deg, can be obtained (cf.
Subsection 10.1.3). Then, it makes sense to formulate the following conditions:

(Y) deg, contains a nontrivial (H%!)-term,
(N) deg, does not contain any nontrivial (H*#!)-term.

Theorem 10.2.9. Let ¢ : V. — R be a I'invariant C?-differentiable map
satisfying (A1)—(A3) and (A5). Let (H®') be such that (H?) is a dominating
orbit type in W. Then, we have the Table 10.2.9 summarizing the sufficient
conditions of existence and nonezistence of a nontrivial ( H#*)- term in deg,,
for p € {0,00} (where the conditions (Y1’), (Y7), (N]) (N2°) and (N’) of B
are the counterparts of those of A).
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deg deg
Existence (Da)+(Y1) | (De)+(YD)
of (H*") (D4)+(Y2) | (DB)+(Y2)
(NDA)+(Y) | (NDp)-+(Y")

Nonexistence

of (H#)

Da)+(N1) | (H4o)+(N1")
D)+(N2) | (Dp)+(N2)
(NDA)+(N) | (NDp)+(N’)

(
(

Table 10.1. Existence and Nonexistence of (H#")-term in deg,,.

Proof: This is an immediate consequence of Propositions 10.2.7--10.2.8. U

Corollary 10.2.10. Let ¢ : V. — R be a I'-invariant C?-differentiable map
satisfying (A1)—(A8) and (A5). Let (H?') be such that (H¥) is a dominating
orbit type in W. Then, we have a nontrivial (H9Y)-term in deg . —deg,,, if the
conditions in the Table 10.2.9 are satisfied diagonally, i.c. one of the existence
conditions for deg, with one of the nonexistence conditions for deg ., or vice
versa.

10.2.5 Computational Examples

We present the computational examples for ' = D, and V = R” for n =
6,8,10,12. Consider the potential ¢ : V — R satisfying (A1)—(A3) with the
matrices A and B being of the type ‘

[cd0 0 ...0d]
ded 0 ...00
C=|0dcd...00

d00 0 ...dc

To obtain ¢ satisfying the above properties, one can define for example ¢ :

L l . -——‘—_———1——.——_ . . .
V — R by ¢(z) := ;(Bz,1) ST for certain @ > 0. A similar

computational example can be found in [69]. We also assume (A5) in all the
computational examples. The degeneracy assumptions are listed in Table 10.2.
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r | deg deg
Ds (Da)+(Y1) (D)+(NT’)
Ds (Da)+(Y1) (D) +(N2')
Do (Dla)+(N2) (Dp)+(YL)
Di | (DW+(N2) | (Dp)+(Y2)

Table 10.2. Summary of the assumptions in the computational examples.

10.3 O(2)-Symmetric Elliptic Equation with
Periodic-Dirichlet Mixed Boundaries

Suppose that @ C R? ~ C is a unite disc and take £2 := (0, 27) x O. Consider
the following elliptic periodic-Dirichlet BVP

u(l,z) =0 ae for xze€00, e (0,27),
w(0,z) =u(2m,z) ae. for z€ O,

2u(0,x) = %(27r,2) ac. for z€ O,

(10.36)

where (t,2) € (0,27) x O, v € H?*($2;R), and f : R — R is a C'-function
satisfying the conditions:

(B1) f(0) =0and f'(0) =a>0;
(B2) [ is asymptotically linear at infinity, i.e. there exists b € R such that

1) — bt
lim Ol 0. (10.37)

[t}—o0 t

Consider the Laplace operator —/\, on O with the Dirichlet boundary condi-
tion. Then, the operator —/A; has the spectrum

U(—AJ) = {Hk,j DHEG = 2,3’]», k= 1,2, cay ] = 0, 1,2, ey Jj(zkﬂ') = 0},

where 2; ; denotes the k-th zcro of the j-th Bessel function J;. The correspond-
ing to pu;; eigenfunctions (expressed in polar coordinates) are; for j =0

Pro(r) == Jo(v/Prgr),
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and for 7 > 0,
o, (1, 0) := (/B m) cos(§0), o} 4(r,0) == J;(\/Tk5T) sin(j0).

The space span{gp",;,j, gp‘,i’j} is equivalent to the j-th irreducible O(2)-represent-
ation V; (7 > 0), and the space span{¢y o} 1 equivalent to the trivial irreducible
O(2)-representation V. We need additional assumptions

(B3) a,b e {I*+ pyy, ey €o(=0), 1=0,1,2,...}.

(B4) The system

—Du = f(u

o= f ), (10.38)
Ula@ =0,

has a unique solution u = 0.

10.3.1 Setting in Functional Spaces

By using the standard identification R/2r =~ S! we can assume that 2 :=
S' x O and that 992 = S' x St We put W := HYR) = {u € H'({2;R)
uloo = 0}, which is a Hilbert G-representation for G = O(2) x S', with the
inner product ‘

(u,v) := / Vu(l) - Vo(l) dt.
0

Associate to the problem (10.36) a functional ¥ : R@® W — R given by

¥(u) ;:; /Q V() |2z — /H Fu(z))dz,

where F'(y) := [ f(t)dt, and define J : W — R by

Since f is a C''-function satisfying (B1), J is of class C' and for h € W,
DJ(u)h = / J(u(z))h(z)dz.
Jo
Thus, ¥ is also C'-differentiable with respect to w and

DWW (u)h = | Vu(z)Vh(z)dx — DJ(u)h, heW.

22
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Consequently, by the standard argument, if D, (), u) = 0, then u is a solution
to (10.36). In particular,

Vu¥(u) =0 <= wu is asolution to (10.36),

where
V.W(u)=u— VJ(u). (10.39)

To determine VJ, we introduce the following operators (cf. Figure 10.1)

J i Hy(2) = IP(02), j(u) =u,
Ny LP(Q) = LT (82),  Ny(u)(z) = f(u(@)),

and rewrite DJ(u) : W — R as

DJ(u)h:/ Ni(j(u))(z)h(z)de. (10.40)
94
vJ
Hy(£2) > Hy(£)
\ i
Ny ,
LP() — L7T(82)

Fig. 10.1. Composition diagram for V.J

It is known that the inclusion j is a compact operator (since f is asymp-
totically linear, it satisfies | f(¢)| < A + B|¢| for some constants A and B, thus
the usual condition p < %, with p = 1 and n = 3 is satisfied) and Ny is
C!-differentiable. Thus,

VN 0) = f(0)Id. (10.41)

Denote by (Hj(§2))" the dual space of Hy(§2) and ¢ : (Hg(§2))" — Hy(2)
the isomorphism given by the Riesz representation theorem. Let 7 : L7 (2) —
(H3(£2))" be a (continuous) map defined by
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()(0) = / P2z, o LE(Q), ve HAQ),
J (2

and R : Lir1(£2) — H{(£2) defined by R := to7. Then, R is the inverse of the
Laplacian —/\, i.e. Ry is the weak solution to the problem

{—Au(t,x) =y, (L,z)e N

Ulaﬂ =0,

where A = % + A, or cquivalently,

(Ro Mgy = | o@hia)ds, vhe ().

In particular, if ¢ = Ny o j(u), then
(Fo Ny o (0, By = [ Ny(i))@)hia)da,

Taking into account (10.40), we obtain

(RoNjyoj(u),hyyy = DJ(u)h, hew,

VJ(u) = Ro Nyoj(u).
Therefore (cf. (10.39)),

§(u) :=V¥(u) =u— RoNsoj(u), ueWw,

is o completely continuous O(2) x Sl-equivariant gradient field on W. Then
the problem (10.36) is equivalent to the equation

F(u) = 0. (10.42)

10.3.2 Example of a Function f Satisfying (B1)—(B4)

A similar functional setting can be established for the boundary problem
(10.38), namely we can reformulate it as the equation

So(u) =0, u¢€ Hé((’)),
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where
Fa(u) := VW, (u) = u— Ry 0o Ny o j(u),

with R, being the inverse of the Laplacian —A,. It s possible to construct a
function f : R — R satisfying the conditions (B1)—(B4). We can choose two
numbers 0 < a < b such that [a,b] No(—A,;) =0 and

—b e’ k — b
b—a< 4, l/il, ke, — Y] = max{ﬂ———l Dk € 0(—ADg) Y
/J‘ko /’Lko /’Lk

and put
u
wu)y=bu—(b—a -,
More generally, assume that [ is an asymptotically linear function satisfying
the conditions (B1)-—(B3) and such that 7 := max{]/'(u)] : v € R} is such
that

. — bl . —b i, — b
n < l,uko l,u,l7 [,u}»o I ‘= max {L_l © b c O'(—AL)} . (1043)
:u'ko lu’ko ltk

u € R.

Then, clearly, b — a < 7.

Proposition 10.3.1. Under the above assumptions the boundary problem
(10.38) has a unigue solution u = 0.

Proof: Let us observe that under the condition (10.43), the derivative DF, :
H(O) — H(O) is an isomorphism for all u € Hj(QO). Indeed,
DF,(u)(v) = v=bRyj(v)—Re[Npy—=bId]j(v), Npwi(w)():= [(u(x))v(z).

Put
Then DF,(u) = A— B, and we have (by (B3) that A is invertible with |A™}|| =
l‘—’ﬁ:ﬂ and || Bl < n||R.|| = 1. Then the operator

DF.(w)=A—-B=A(ld — A"'B)

is invertible if ||JA~1B|| < 1. But,

1A= BY < A~ B) < et o

e}
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Consequently, every solution u € H;(O) to the problem (10.38) (i.e. F.(u) = 0)
is a regular point of §, and consequently, it has to be an isolated solution. Since
(10.38) is O(2)-symmetric, it follows that the isotropy of « is O(2), i.c. u is
a radial function on @ (which can be detected using Leray-Schauder degree).
Since DF.(0), DF.(00) : Hi(O) — H(O) are isomorphisms and JF, is a
completely continuous vector field on H§(O), there can only be finitely many
solutions to the equation (10.38), and for every solution u the Leray-Schauder
degree Deg(§., By) is well defined on an isolating neighborhood B, of u. By
using the linearization of §F, on B,, by the condition (10.43),

Deg (Fz, Bu) = Deg(l)&,;(ok)7 B1(0)) = Deg (DgF.(o0), B1(0)) # O.

Therefore, by the additivity property of the Leray-Schauder degree, there can
only be one solution u = 0. O

10.3.3 Equivariant Invariant and Isotypical Decomposition of W

By assumption (B3), there exists R, ¢ > 0 such that « = 0 is the only solution
to the equation (10.42) in B.(0) € W, and (10.42) has no solutions v € W such

hat [lu]] > R. We define the equivariant invarient w for the problem (10.36)
by

w :=deg, — deg ., (10.44)
where

dego = V()(g)xgl—deg (3', BE(O)), degoo = V()(Q)Xgl-deg (3', BR(O)).
The spectrum o of —A on 2 (with the boundary conditions (10.36)) is
o= {Ak,j,l DA = I+ Pk,jy kg € o(—=Ay), 1=0,1,2,...}.

Denote by Ek ;; the eigenspace of —A in W corresponding to the eigenvalue
Ak j1- Observe that By ;;, for j, 1 > 0 is equivalent to the irreducible orthogonal
O(2) x S'-representation V;; and

Fi,gu = span{cos It - o} (), coslt -} ;(x),sinlt - @ (z),sinll - ¢} ()}
If j =0and > 0, then

Fro, = span{cosit - pro(z),sinlt - ¢ o(z)},
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and it is equivalent to the irreducible orthogonal O(2) x S*-representation V.
Ifj>0and =0,

By 0 = span{yj ;(z), i ;(2)} = V;,
and for j = [ = 0, we have that
Ey00 = span{eyo(z)},

is equivalent to the trivial O(2) x S'-representation Vy. The O(2)x S'-isotypical
components of the space W are

Wi = @Ek,j,l, 1=0,12,...
k

10.3.4 Computation of the Equiva'riant Invariant

Assume that 0 < a < b and that the following condition holds:
(B5) there exists (Ko, Jo, lo). Lo > 1, such that

O-(_A) N (CL, b) - {Ako,jmlo'}
Put p =0 or oc and denote by o, the negative spectrum of D3(p), i.e.

oy ={A € a(DF(0)) : A <0}
={A=1-—

D Akl < a}.
k..l

Similarly,

0y ={A € a(DF(o0)): A< 0}
b

ki

= {)\ =1~ : ’)\k-,j,l < b}.

By assumption (B5), 0 = g5 U{As}, Ao == Ak, jolo- The linear operator DF(p)
is (G-homotopic (in the class of gradient maps) to

Ap=(=Td)x1d: B, @ B} - B, ®E, E,= P FEuy,

Ak,j1€0p

and consequently
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deg,, = Vg-deg (Ap, Bi(0)) = ] Ve-deg(=1d, Bi(Ei ;1))

Aoy
= H Degy, -

A€oy

Therefore,

w = degy — deg o, = H Degy,, * ( /) — Degy,, to)

Acay

I1 Dogyjyl*<‘8()(2)“0'o’) + (D) — (Z‘jj{})) (10.45)

/\;c,j,l<a,

Notice that by Remark 5.2.22, the element a := [],, eor Dogy, i invertible,
therefore w # 0. Moreover, by using the multiplication table for {/ (O(2) x S
and the list of basic gradient degrees for irreducible O(2) x S'-representations,
one can easily conclude that

# (SO2)701) = (SO@)%e") +2°,  and  ax (Dyy) = £(Dyy)) +,

where z* and y* denotes the other terms in U(G), which do not contain
(SO(2)%iele) and (Dd l")

Consequently, we can formulate the following existence result

Theorem 10.3.2. Under the assumptions (B1)—(B4) the equation (10.36)
has at least two O(2) x St-orbits of non-trivial t-periodic solutions with the
orbit types at least (SO(2)% ') and (Dd l") respectively.

Let us point out that the periodic solutions corresponding to the orbit types
(SO(2)7) are commonly called rotating waves or spiral vortices while those with
he orbit type (Dzj) are called ribbons or stationary waves. Therefore, it seems
appropriate to call the (-periodic solutions with the orbit type (SO(2)#s:le)
the [,-folded rotating waves or spiral vortices and those with the orbit type
(I)gf:) the l,-folded ribbons or stationary waves.

Example 10.3.3. To supply the numbers a and b satisfying (B5), we need to
have an increasing ordered sequence of the values A, ;; on the real line R. Recall
that A1 = 17 + 2 ;, where 2 ; is the k-th zero of the j-th Bessel function .
By calling the Maple© command evalf((BesselJZeros(j,k))" 2), we obtain
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jlk=1 k=2 k=3 k=4

0} 5.78 30.47 74.88 | 139.04 ...
11468 49.22 | 103.50 17752 ...
212637 T70.85 | 135.02 218.92 ...
3
4

4071 95.28 | 169.40 263.20 ...
57.58 1 122.43 206.57 310.32 ...
76.94 | 152.24 24650 360.25 ...

.
5
6 |98.73 | 184.67 289.13 412.93 ...

Table 10.3. Approximate values of zf,j, where the zigzag line indicates the first 12 smallest values.

k) zi, =1 1=2 (=3 Il=4 1=5 l=6 =7 I=8

1,0)[ 5.78  6.78 078 1478 2178 30.78 4178 54.78 69.78‘
(1,1) [14.68 15.68 18.68 23.68 30.68 39.68 50.68 (;:3«:;8]'7—&6?
(1,2) |26.37 27.37 30.37 3537 4237 5137 62.37 | 75.37 90.37
(2,0) |30.47 31.47 34.47 39.47 4647 5547 66.47 | 79.47 94.47
(1,3) [40.71 41.71 4471 49.71 5671 65.71 mgg.n 104.71
(2,1)|49.22 50.22 53.22 5822 6522 msam 98.22 113.22
(1,4) [77.58 58.58 G1.5% 66.58 ‘W 82.58 93.58 106.58 121.58
(
(
(
(
(

2,2) 70.85| 71.85 74.85 79.85  86.85 95.85 106.8H 119.85 134.85
3.0){74.88 7588 78.88 R83.88 90.88 09.88 110.88 123.88 138.88
1,5)(76.94 77.94 80.94 85.94 92.94 101.94 112.94 125.94 140.94
2,3)95.28 96.28 99.28 104.28 111.28 120.28 131.28 144.28 159.28
1,6) [98.73 99.73 102.73 107.73 114.73 13.73 134.73 147.73 162.73

Table 10.4. Approximate values of Ax j;, where the zigzag line indicates the first 47 smallest values.
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an approximate value of zj ; (cf. Table 10.3). Then, we rearrange the values .

zﬁj in an increasing order and list approximate values of Ay j;; accordingly (cf

Table 10.4).
Choose a = 66.5 and b = 69.5. Then, by Table 10.4, one verifies that

O'(—A) M ((l, b) = {A17473}.

Thus, the formula (10.45) reduces to

w= ]I D‘ng,,,,*((50(2)"’4’3)+(D§’3)—(ngi"))

/\k:,j,l <66.5

=TI Deay,, = (S0 + (D4) - (&),

(k,ghel
where the index set Z can be determined by the blue part of Table 10.4.

Therefore, we have

w = Deg,, * Deg,, *Deg,, xDeg,, *Deg,,* Deg,, x Deg,,
* Deg Vou * Degy, , * Deg Vi ¥ Degy, | * Deg Voo ¥ Degy, , * Degy, |
* Degy, , * Degy, , * Degy,, * Deg v, ¥ Degy, , * Deg Vig ¥ Deg Vio
* Deg Voa ¥ Deg Vos ¥ Deg Vig ¥ Deg Vig ¥ Deg Va s * Deg Vi3
* Degy, , * Degy,, * Deg, , * Deg, 4 *xDegy, , xDegy, |
* Deg Voo ¥ Deg Vo, ¥ D€ZY, s ¥ Deg Vs ¥ Deg Vss ¥ Deg Voo
*x Deg Vo * Deg Vig ¥ Deg Voo * Deg Voo ¥ Deg Vie

« ((50@)7") + (D) - @).)
Notice that

(SO(2)+%), if § =0,

v 3y '
Degy, * (SO(2)"*") = {(50(2)994.,3)*(2;04’3)7 if i =1,2,3,4,

and for { =1,2,...,7,

(50(2)7"7) = 2(Za), if j = 0,
Deg,, , * (SO(2)#**) = { (SO(2)2+%) — (Z£4) — (ZY), it §=1,2,3,
(SO@2)#+%) — 2(Z5"), if j =4,
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where I = ged(4,1). Consequently, w contains a nontrivial (SO(2)#4:%)-term.

Similarly, we have

(Dg), if i = 0,
: (D3 — (D) X Z3) — (D7*) 4 (Zy x ), ifi=1,3,
Degw*(Dgy3): dd d,3 d,3 ) Lo
(Dg”) —2(Dy ‘) +(Zy”), ifi =2,
(D) + ), if i = 4.

Moreover, Deg, , * (DE3) = (Dd %), for 0 < j <4 and 1 <1< 7. Therefore, w
also contains a nont11v1al (D8 ?)-term.
Conclusion: The cquation (10.36) has at least two O(2) x Sl-orbits of non-

trivial ¢-periodic solutions: one of them is a 3-folded rotating wave (or spiral
vortex) and the other is a 3-folded ribbon (or stationary wave).
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Al

Sobolev Spaces and Properties of Nemitsky
Operator

A1l.1 Sobolev Spaces on a domain 2 C RY

Let £2 C RY be an open set, 1 < p < oc. We denote by C(£2) the space of
all smooth functions ¢ : £2 — R with compact support.

Definition A1.1.1. The Sobolev space W P(2) is defined by

3( ( T) v Yoo Vl
WIP(02) = Cu e LP(12): f“--jfive’ () VipeCee() Vi=1,2,..,N
I u()z, I()g’(p

We put [1'($2) := WH2(£2) and will denote by § ‘?“ = g;, 1 = 1,..., N, the

so-called weak derivatives of u.

The space WHP(£2) is equipped with the norm

lull,p = llullp + Z

where || - ||, is the p-norm in LP(£2). The space H!(§2) has the inner product

(U, v)12 1= (u,v) 2+Z<§; (;).;:}i>2’

where (-, -)o denotes the L2-inner product in L*(£2), and the associated norm

Juell? + Z J

We have following properties of the Sobholev spaces (cf. [26, 127, 164]):

ou

r)Tz »

[ull,2 ==

8T,

Proposition A1.1.2. The space WP({2) is a separable Banach space for 1 <
p < 00, which is also reflexive for 1 < p < co.
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Proposition A1.1.3. (Friepricn) Let u € WHP(2), 1 < p < co. Then there
exists a sequence {u,} € C®(RY) such that

(aun|ln — w in LP(82);

b))Vl — Vule in LP(w:RY) for every open set w € {2 (i.e. W is compact
P

and @ C {2), where Vu .= [8"“ A }

Oz’ ") Dz

Proposition Al.1.4. Let u € 1P(2), 1 < p < oc. The following conditions
are equivalent

(i) uewh(2);
(i) There ezists a constant C such that

)
/u(w' <
Jo Oz,

(i1i) There ezists a constant C' such that for every open sets w € £2 we have

Veecwo () Viet,. N

I 1+1 1
(10 s - - = 1.
" p g

It — ull ey < C|h]

for |h| < dist (w, 382), where (Thu)(z) := u(zx + h).

Moreover, in the conditions (ii) and (iii) one can take C to be equal ||Vullp.

Al1.1.1 Sobolev Space W™P((2)

Definition A1.1.5. The Sobolev space W™P(£2), 1 < p < oo, is defined for
m > 2 by

ou
8.’171‘

W () = {u € W bP(2) i Vi, v € W”‘_’J’(Q)}7

or equivalently

Vo la| < m 3, crr )
Wm,p(g) = u e [Jp(Q) : . I%a 7_n— gaflzla(lﬂ)‘ V‘PGCC (£2)
JauD% = (=1)" [;, gatp,

where a = (au, . . ., an) are multi-indices (o; > 0), |a] = Zf\il a; and DY =

% We put H™(£2) := W™2(£2) and will denote by D% := g,, the
Py

so-called a-weak derivatives of u.
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Al1l.1.2 Embeddings of Sobolev Spaces

Definition A1.1.6. Let £2 C RY be an open subset. Then, 2 is called regular
of class CP for some p € [1, o], if 912 is a CP-submanifold of RY.

Theorem A1.1.7. (SoroLev EmBepDING TunoreMm) Let 2 C RN be an open
reqular set of class C!, where N > 2. Then,

(i) ifp < N and é + % = 1, then for all ¢ € [1,q), we have the compact
embedding WP(2) C 19 (0); '

(i) if p = N, then for every g € [1,o), we have the compact embedding
Whr(2) C 19(82);

(i) if p> N, then we have the compact embedding W¥(£2) C C(2).

A1.1.3 Space W, P (02)

Definition A1.1.8.Let 1 < p < oc. The space W, (£2) is defined as the
closure of C>(w) in Wy *(£2). We put HL(£2) = W, *(2).

Proposition A1.1.9. Assume that 2 C RY is an open set of class C*. Let
u € LP(£2) with 1 < p < oo. The following properties are equivalent

(i) ue W,"(Q);

(i1) There exists a constant ¢ such that

[
0 ()’L‘L
Corollary A1.1.10. (PoiNcarg INequanity) Let £2 C RY be an open bounded

set and 1 < p < oo. Then there exists a constant ¢ (depending only on 2 and
p) such that

Voeoso () Vie1,.,N

Vuewg"’(.o) lull, < cl|Vull,.
In particular, ”U”W()l,p = ||Vull, is a norm in W,P(£2) which is equivalent to

the norm ||ully, in WyP(£2). Moreover, the expression

{(u,v)gy = / Vu- Vv,
Jo

defines a scalar product on Hy(£2) and the associated norm Null g which is
equivalent to the norm ||lul|i 2.
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Al1.1.4 Sobolev Spaces H*({2), s € R,
If u € L*(R"), the Fourier transform @ € L*(R") is defined by

1

u(y) = o) /R”u(:n)e_’;“’dx, y € R"™.

The linear operator F : L?(R?) — L*(R?), F(u) := U is a symmetric isomor-
phism and its inverse is

1

Fl(v)(z) = W /n v(y)e™Vdy, = R™.

Definition A1.1.11. Let a = (o, ag,...,an), 8 = (51,02,...,0n) € (Zy)"
be multi-indices. The Schwartz space S is defined by
S = {u € C®°(R") : 2*D% ¢ L*(R™), for all multi-indices c, 3}

, 61 B .
where z = (1, 22,...,2,) € R 2/ = oz ... 20 The space S is also called
the space of rapidly decreasing functions.

One can casily verify the following properties of the Fourier transform F
F(D%)(y) = (in)*F(u), DF)(z)=F((-iz)’u), veS. (ALl)

Using the properties (A1.1), the Sobolev space H™(R™), m € N, can be equiv-
alently defined by .

H™RY) :={u e L*R") : (1 + |y)*a € LAR™)}, (A1.2)
equipped with the norm
bulom:= |(L+ [yl 7all, ue H™(RY).

Definition A1.1.12. The fractional Sobolev spaces, for s > 0, is defined as

follows
He(R™) := {u e LAR™ : (1 + |y 20 € L2(R™)}, (A1.3)

with the norm

Vulgs:=[|(1+ [y*)2alls, ue H(RY).
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The space H*(R™) is in fact a Hilbert space. Let 2 C R™ be an open sct
with regular boundary. Then, the space H*(£2), for s > 0, is defined by

H(2) = {u|g : v € H*(R")}.
The following facts are well-known {cf. [127])

Proposition A1.1.13. Let 2 C R™ be an open set with reqular boundary and
8 > 5. Then there exists a continuous injection,

°(02) — C(02).
Proposition Al1.1.14. Let 2 C R" be an open bounded set with regular bound-
ary and s > s’ > 0. Then the injection

H3(2) — HY(22)

18 compact.

Consider the product space R*@®R™ . Denote by § = (y,%) the elements y € R"
and 3 € R". Then, we can introduce

Definition A1.1.15. The partial Sobolev space % (R" & R™) is defined by

HY (R*@RY) = {u € LRGR") : (1+ [y (1+]y]) 7 a € LAR"OR").)

For two open sets with regular boundarics 2 ¢ R™ and 2 ¢ R, we define
0% (02 x @) = {u]gxg s v € 1% (R* R™)}.

The space H>% (2 x 2') is again a Hilbert space. Moreover, we have similar
compact injections to those described in Proposition Al.1.14.

A1.2 Properties of The Nemitsky Operator

Definition A1.2.1. Let 2 C RY be an open set. A function f: 2 xR¥ — R™

is said to satisfy the Carathéodory conditions, if

(i) the function y — f(z,y) is continuous for a.e. z € £2;
(i) the function  — f(z,y) is measurable for all y € R*.
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A function satisfying (i)—(ii) is called a Carathéodory function.

Definition A1.2.2. Let [ : £2 x R*¥ — R™ be a Carathéodory function. Define
an operator Ny on the set of functions u : £2 — R* by

Ny(u)(z) = f(z,u(z)) for z € L2,
and call it the Nemitsky operator.

If u is measurable, then Ny(u)(z) is clearly measurable.

Some important properties of the Nemitsky operator are listed in the fol-
lowing result (c¢f. [110], Theorem 1.2.1).

Theorem A1.2.3. Let f : 2 x R¥ — R™ be q Carathéodory function. If
Ny @ LP(;RY) — LY(2;R™) 1 < p,g < oo, then Ny is continuous, takes
bounded sets into bounded sets and there is a constant ¢ > 0 and a function
a € L1(2) such that

If(z,9)| < a(z) +bly”?  forae z, for ally € RF. (Al1.4)

Moreover, if the condition (Al1.4) is satisfied, then N; defines a continuous
operator from LP(§2;R*) to L1(§2;R™).

Proposition A1.2.4. Let [ : 2 x R¥ — R™ be a Carathéodory function.
Assume that for every bounded set A C C(82,R¥) there exists a function pa €
Lr($2), 1 < p < oo ,such that for all u € A we have

lf(z,u(x)} < pa(z) aezeN (A1.5)

Then, the Nemitsky operator N; : C(£;R*) — LP(£2,R™) is well defined,
continuous and takes bounded sets into bounded sets.

Proof: First we check that N;(u) is well defined. Indeed, if u € C(§2;R¥),
then the function z +— f(z,u(z)) is measurable, and, by the condition (A1.5)
applied to A = {u}, there is a function @4 € LP(£2) such that |f(z,u(z))] <
pa(z) ae. x € 2. Thus, ||Ny(w)|l, < |loa

|, < oo.

Now, we verify that Ny takes bounded sets into bounded sets. For, let
A C C(£2;R*) be a bounded set and let p4(x) be a function given by (AL.5).
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Then, for every u € A, we have ||[Ny(u)ll, < [lpallp. Thus, Ny(A) is bounded
in LP(02,R™).

To show that N; is continuous, assume that {u,} C C(£2;R¥) is a conver-
gent sequence to a function u. We put A := {u,}%°, U{u}. By (A1.5), thereis
a function ¢4 € LP(£2) such that |f(x,v(z))| < pa(x) a.e. z € 2 for all v € A,
thus '

S (2, u(z)) = f(x,un(2))]” < 2|@a(2)[”  ae z e

Since the function f(z,-) is continuous for a.e. z thus

VE>() E*NE Vn>NE lf(.’lf,’ll/n(l‘)) - f(,’I:,’U,(.’II))I <E.

This implies that the sequence {|f(z, u,(x)) — f(x,u(x))P}2, converges to
zero for a.e. . Now, by the Lebesgue’s dominated convergence theorem, the
sequence ||[Ny(n) — Ny(un)ll] — 0 in L', thus ||Ny(u) — Ny(un)ll, — 0 as

n — oQ. -0

In order to establish differentiability conditions for the Nemitsky operator
Ny, assume that [ : 2 x R* — R™ is a Carethéodory function satisfying the
growth condition

If (2, 9)| < alx) +bly[f  for a.c. z € 2 and for all y € R¥, (A1.6)

where a € LP(£2) and b > 0. Then the Nemitsky operator Ny : IP(§2;R¥) —
L'(2;R™) is continuous. Assume that f(z,y) is differentiable with respect
to y and denote its derivative by f)(z,y). Assume that f/(z,y) is also a
Carathéodory function. Then, the Nemitsky operator Ny : LP(2;RF) —

Lﬁg—l(( 2;R™) is well defined if the following growth condition is satisfied:

|fo(z, )] < ax(x) + bilyP~t forae. re€ 2 andforall yeRF, (ALT7)

where a; € L#=1(§2) and by > 0 is a constant. Let u, h € LP(2;RF). By the
Holder Inequality,

/f}\f;(ﬂ?,u(ac))vh,(m)|dm < [/ﬂ [f;(r,u(m))[ﬁdr]ﬂ;—l[/n lh](x)lpdm]l/p.

We have the following
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Proposition A1.2.5. Assume that [ satisfies the conditions (A1.4) and (A1.7).
Then, the Nemitsky operator Ny : LP(£2;R¥) — L*(£2;R™) is Fréchet C'-
differentiable and

[DNg(u)h)(z) = f,(z,u(z))h(z), forae €N, hE LP(2;RY)
for allu € LP(§2;R¥).

Proof: Remark that for a.e. z € (2

flaule) + W@) = f@ufe)) = [ fi(aule) + thie)hie)
thus

INf(u+ h) = Ny(u) = Nyg(w)hls

= /Q [f (2, u(z) + Az)) — f(z,u(z)) — fé(:r7 u(z))h(z)|dx
= /ﬂ | /0 (fi(z,u(z) + th(z)) — fi(x,u(z)))h(z)dt|dz

-l
< / / Lf,(z, u(z) + th(z)) — f(x,u(z))| |[Verth(z)|dtdx.
Ja Jo
By Holder inequality
1Ny (u 4 h) = Ny(u) = Ny ()b

1 }’_;l _11;
< [ [ 1t ute) + o) - ofeataniFnae] ai [ ncopa]”
Jo Lo 2
Since, by Theorem A1.2.3, Ny, is continuous from LP({2; R*) into IJTET(Q; R™),
Ve>0 J5>0 Vierromsy Pllp <0 = [Ny (u+h) — Ny (u+ h)|| 2, <e
Therefore, if 0 < ||A]|, < 6,

1
Nyt 1) = Ny = Nl < [ DN+ 1) = Nl il
Jo
< e|lh|lp-

This least inequality means that Ny is Fréchet differentiable at u and its deriva-

tive at u is exactly the operator h — Ny, (u)h. Notice, that the operator the
Nemitsky operator Ny is of class C L O

Let us point out that a more general result is true (cf. [109, 111, 112}).
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Proposition A1.2.6. Suppose that [ : 2 x R* — R™ is a Carethéodory func-
tion, differentiable with respect to y, such that the following growth conditions
are satisfied:

1f(z,9)| < a(z) + bly|s  for a.e. z € 2, and all y € R, (A1.8)

where a € L(£2);
|/, (z, 9] < ai(z) + by |ylp";i forae. x€ 2andall yeR:,  (ALY9)

where a; € L73(02) and p > q > 1. Then Ny : LP(2;R¥) — LI(2;R™) is
Fréchet C'-differentiable and [DNy(u)lh = Ny (u)h. ‘

Assume for simplicity that ¥ = m = 1. Then the Nemitsky operator Ny :
[2(£2) — L*(£2) is continuous if and only if

| (z,v)} <a(zx)+bly] forae zef2 andall yeR

On the other hand, in order to assure that Ny is Fréchet C''-differentiable, the
condition (A1.9) implies that f(z,y) = a(z) + 3 -y for some a € L?(£2) and a
constant 3 > 0. Therefore, there is no nonlinear with respect to y Carathéodory
functions f(z,y) such that Ny : L2(£2) — L*(£2) is Fréchet C'-differentiable.
In order to overcomec this difficulty, assume that if there is a constant M > 0
such that

Ifi(z,y)| <M forae z€Randall yeR.

Then, Ny is Gateaux differentiable on L2(2).

Proposition A1.2.7. Let f : 2 x RF — R™ be a Carathéodory function, dif-
ferentiable with respect to y such that f,;(x, y) 1s also a Carathéodory function.
Suppose that the following conditions are satisfied:

(i) there is a function a € L*(£2) and a constant b > 0 such that
If(z,9)| < a(z) +bly| for a.e. €2 and all y € R,
(ii) thére is a constant M > 0 such that
Iz y)| <M forae x€ 82 andall yc R*,

Then, the Nemitsky operator Ny : L*(§2;R*) — L?(£2;R™) is Gdteaus differ-
entiable and
(DN (u)h)(z) = £z, u(x))h(z).
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Proof: Let u, h € L*(£2;R¥). We have

D=

1

i

~([(z,u(z) + th(z)) — f(z,u(x))) = f,(z, u(z))h(z)

2
dx}

[ [ itaute) + sthie)in(ads = g (e ) hia) dx}

|-

< / [ / () (xvul) + sth(z)) - .ﬁ;(x,'u(w))h(fv)ldsr dx} g

0

Notice that o lim | [} (z,u(z) + sth(z)) — [ (z,u(z))| = 0 for a.e. z, thus by
(i), '
1 2 .1 _
{/ (1 (2, u(z) + sth(z)) — f'l'}(x,u(:c))h(a:)|ds} < 4M* / |h(z)|*dz < oo
Jo Jo

and by the Lebesgue’s Dominated Convergence Theorem,

. [/1
lim
t—0 _QL

2 1/2
—(/(z, ul@) + th(z)) = f(2,u(x))) — [,(z,w(2))h(z) dw} =0.

Consequently, Gateaux derivative of Ny at u is the operator h — Ny (u)h. O

A1.3 Differentiability of Functionals on Sobolev Space
H'(§2)

Assume that 2 ¢ RV, N > 3, is an open bounded regular of class C set,
f 2 xRF -5 R™ is a twice differentiable function with respect to y such
that f(z,y), f,(z,y) and f/(z,y) are Carathéodory functions for which the
following conditions are satisfied

If(z,9)] < a(z) +bly|s  for ae. x € Q2 and for all y € RF (A1.10)
£, (z,9)] < c(z) + dlyi}%‘l for a.e. € 2 and for all y € R¥  (A1.11)
|/, (z,9)] < e(x) + g]ylllfi for a.c. 2 € 2 and for all y e R*¥  (A1.12)

where p> 29 > 2, a € LI(12), c € Lita(2), e € L5 (2), and b, d, g > 0 are
constants.

We have the following



A1.3 Differentiability of Functionals on Sobolev Space H'(§2) 287

Corollary A1.3.1. Under the conditions (AZ.]U)%(AZ.ZQ), the Nemitsky op-
erator Ny : LP(§2;R*) — LI(£2,R™) is twice differentiable of class C? and

D*Ny()(h, 9)(z) = h(z)f) (=, (=))g(z); @, h,g € L (12).

For simplicity, assume that m = k = 1. The same results hold for more
general case. The inclusion H'(£2) — LP(2) is well defined, continuous and
compact whenever (cf. Theorem A1.1.7)

2N
N—-2

p<

By Theorem A1.2.3, the operator Ny : LP(§2) — L'(§2) is well defined if f
_ satisfies the Carathéodory conditions and

|f(z, )] < a(x)+ byl forae. x € 2and forall yeR,
where a € L'(£2).
Consider a functional ¥ : H'(£2) — R defincd as the following composition

(l:'>
—

1Y(02) — 1r(2) 25 i) YA R

where (1,u) = jﬁ u(z)dz, and f is a function. Clearly, the functional ¥ :
H1(f2) — R is given by

V(u) = | !.2 f(z,u(z))dz, ue H'(2).

Assume that the function f is twice differentiable with respect to the vari-

able y and that f, f, f,' are Carathéodory functions and that the following

conditions are satisfied

|f(z,9)| < a(z)+ cly|P forae ze€ 2 and forall y € R (A1.13)
|fy(z, )| < b(z) +dlyfP~"  foraec ze 2 andforall yeR  (AL14)

where a € L}(£2), b & LP—E_I(Q), ¢, d > 0. The condition (A1.14) implies that
Ny is Fréchet differentiable of class C'! and that

[DNy(w)h)(z) = (Np (u) - h)(@) = [y, u(z))h(z).
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Thercfore, ¥ is a differentiable functional of class C'! and

DW(u)h = / I, u(2)h(z)d.
@
The condition (A1.14) can be rewritten as follows

1fo(z, ) < b(x) +clyl®  forae z €2 and for all y € R, (A1.15)

where b € LET?"_](Q) and g < %—iﬁ

Similarly, in order to have that ¥ is of class C? we need assure differentia-
bility of Ny, for which we nced that [ satisfies the Carathéodory conditions
and

1) (@, y)l < e(z) + gly]” forae z € andforally €R,

WICTC ¢ 1 <

Now, we define the functional .J : I} (2) — R by

2Ny

(iie.p—2=vand p < 5

. 1 .
Jw) = [2 Vul? = w(u), ue H()

wherce W(u) = frz f(z,u(z))dz, f and f, satisfy the Carathéodory conditions
and the conditions (A1.13) and (A1.15), with 3 < 22, Consequently, J is of
class C'' and ‘

DJ(u)h = | VuVh— [ f/(z,u(z))- h(z)dz
17 0’ (

= / VuVh— D¥(u)h.
J 02

Let 7 : L#1(£2) — (HE($2))* = H1(2) be defined by 7(h)(u) = [, hu,
where h € L7 (), u € HY(£2). The operator 7 is well defined and continuous.

Indeed, if p > 2, then by applying the Holder inequality, the Poincaré
inequality and Theorem A1.1.7, we obtain

A

< NPllore— - llully < Elibllp/e-1) - ulls

< cllbllysp-1y - ““”Hf}'
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If p <2, then ;27 > 2 and L77(2) C L*($2), thus

/ hu
1%}

Let R : LP/P~Y(02) — II}(£2) be the composition of 7 with the isomorphism
(Hg(£2))* = (£2) given by Riesz theorem. This means that Rh is the unique
solution to the problem

< el hllollull -

Voeniy (Vu, Vo) = /ﬂh‘ﬂ

i.e. Rh is a weak solution to the problem
— Ay = h,, ’lLl(‘)Q = 0.

Using the operator R, we can calculate V¥(u). Since
Dy (u)h = [2 fo(z, u(z))h(z)dz,

where Ny (u) € L71(42), we have
V¥(u) = RNy (u)

which means the V¥ is the following composition

1 V¥ 1
H()(Q) - H()(Q)

1 R
Lp(ﬂ) I LP—I(Q)
Consequently, we have the following result

Proposition A1.3.2. Let 2 ¢ RY be an open bounded regular of class C* set.
If3=p—1< 8L then V¥ : H{(2) — H}($2) is a completely continuous
operator.

Proof: By Theorem A1.1.7, the inclusion i : H}(£2) — LP(£2) is a compact
operator, thus VV is completely continuous. ‘ O






A2

Catalogue of Groups

A2.1 Groups and Their Subgroups

In this section, we classify and catalog a list of the subgroups in I” and I" x St
up to their conjugacy classes, where I' takes values of the quaternionic units
group (Jg, the dihedral group Dy, the tetrahedral group Ay, the octahedral
group Sy, the icosahedral group As, the orthogonal group O(2) and the tori
group TV,

There are two types of subgroups in I" x St,

(i) K x S, for asubgroup K C I';
(i) the p-twisted {-folded subgroups K*#*, for a homomorphism ¢ : K — S*
and ! € {0} UN (cf. Subsection 4.2.1),

where in (ii), notice that K¢ = K x {1}, and K%' (for [ > 1) can be casily
obtained from K¥ by

Kol = {(7,2) € K xS @ (v, 2) € K%},
Therefore, in what follows, we only provide a catalogue of the subgroups

in 1" and the twisted one-folded subgroups in I” x S', up to their conjugacy
classes.

A2.1.1 Quaternionic Units Group Qg

Denote by H := {z; + jz2; 21, 22 € C} the algebra of quaternions, with the
multiplication rules i? = j% = —1, ji = —ij. Define

Qs = {£1,+i,+j,+j5i} CH
to be the quaternionic units group. There are six subgroups in (Jg, namely

Zl = {1}7 Z2 = {17—1}7 lel = {17 —17i7 _Z}7
Zz = {17 _17j7 _j}v Zi = {17 '_1a7;j7 —ij}7 Q8 - {:t:l’ ii? ij? :t]7}’
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(Qs)
| T
(Z4) (z5) (Z3)
(Z2)
(Zy)

Fig. A2.1. The lattice of conjugacy classes of subgroups in ¢s.
which represent distinct conjugacy classes. The lattice of their conjugacy
classes is shown in Figure A2.1.

There are ten twisted onc-folded subgroups in @g x S!, namely

Zs = {(1,1), (-1, -1},

Zy :{( 1) 71_1)7( ) )’(_7 _1)}
zi ={(1,1),0,=1), (-1,), (=5, -1},
z;~ ={(1,1), (. =1), (=1,1), (=43, — D)},
Zi" ={(1,1),,9), (=1, =1), (=4, =)},

), (=1,=1), (=4, =)},

Z“ ={(1,1),(¢5,9), (=1, ~1), (—ij, —1) }, v
s ={(L,1),(,1),(=1,1),(—1, 1) (J, = 1), (4%, =1), (=J,=1), (=i, =)},
Qs” ={(1,1),(#—-1), (-1 1), (=4, -1), (5, 1), (55, —1), (=4, 1), (=54, — D)},
QS_ _{ 1)1 A )7 -1 l)r(_7':_1)7(j7*1)7(ji71>7(_.77_1)7(_.77:71)}:
The lattice of the conjugacy classes of the twisted subgroups is shown in
Figure A2.2. :

1 (
), (J
), (i
) (
zit =4{(1,1), (G,
) (
)+ (
), (@
), (@

(@s) (Q57)
ik £1
\<Z4/ \<Z’ (3"

(Z2

\ /ZQ)

Fig. A2.2. The lattice of conjugacy classes of twisted subgroups in Qs x S*.
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A2.1.2 Dihedral Group Dy

Represent the dihedral group Dy of order 2N as the group of rotatlons 1, &,
£2, ..., €V of the complex plane (where € is the multiplication by e & ) plus
the reﬂectlons k, kE, k€2, ..., kENTL with k being the operator of complex

conjugation described by the matrix Ll) _01}

- For an integer k|N and v := ¢’ | the dihedral group Dy has the subgroups

Ty = {L%vz,...,yk—‘l}’
Dy = {1,7,”/2,...,7k"1,5,,@ ’“_,,wkﬂ},
I)k’j = {1’ 77727 s 77k_] y K{j, /"\?g'j’}’7 o ,hjgj’yk'ul }’

wherej=1,..., %~ 1. The subgroup Zj is normal in Dy . While the subgroups

Dy, for j=0,1,..., % — 1, are all conjugate if N is odd, but split into two

conjugacy classes (Dy) and (Dy), where Dy = ])k 1, if 2 is even.
The twisted subgroups of Dy x S are listed as follows, for k|,
Zi: - {(17 1)? (77 ’\/T), (727 ’YQT)? ety (’}/k—-l,’}l(k_l)r)}’
Di = {(L D), (Do, (57D, (5, = 1), (e, =), (0 1),

Di,j - {(17 1)7 (’7: 1)7 cey (’Yk—ly 1)7 (H§j7 _1)7 (ﬁgj’% _1)7 S (ngryk"l7 —1)}7

wherer € {1,...,k—1}and j=1,..., ——1 For0<r<& 55 nZt’n~ZZ’“ ",
ie. Z"' and Zl " are (011jugate. "The conjugacy relations among Df, ; are similar
to Dy ;, for j =0,1,..., % = — 1

In the case £ = 2m, we have additional twisted subgroups

S
5

, ,(7’“ ] 1),(55 1) (K€Y, =1),..., (k&1 =1},
SR =), (8, 1), (s, 1), (595 D)
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where Z7 is a normal subgroup, D4
Dd

2m

is conjugate to D4, iff 2~ is odd, while

2 2m

d
and Dj, are conjugate iff & 5 1s even.

Example A2.1.1. As an example, we provide a list of subgroups in Dy, and
the twisted subgroups in Dg x S! (cf. [15]). Put p := "%, then we have the
following subgroups in /g

Zo=A{1}, Zy={1,-1}, Zs= {4 p'},

Z(i:{LMy/J' ?/“Lr7/~L 7/J’K}7 1)1:{17’%}7 Zjl:{l?””}y
Dy = {1, -1,k —r}, Ds={1,12 p* &, rp?, k'Y,

™. 2 4 3 b
Dy = {1, 1%, 1, s, ki, k20 ¥,

_ 208 4 5 o w2 B A ey
Do = {1, p, g%, 12, i 14° Ky Bpty B, wp® wp® ki )

The twisted subgroups of Dg x S! are listed below.

Z; ={(1L,1),(-1,-1}, Zh={1 1), p?), (', w1},
Zi = {(1,1), (s, ), (1, 17), (2, %), (s 1), (1, 1)},
Zg = {(1, 1), (i, 12), (12, 1), (1, 1), (1), (6, 1)},
Zi = {(1,1), (u, —1), (11%, 1), (1, = 1), (. 1), (1°, 1)},
D = {(1,1), (s, = 1)}, /)T—{(l,l%(h/l, D},
D3 ={(1,1),(-1,1), (x, —1) (—x, 1)},
D3 = {(1,1), (=1, =1), (%, 1), (=5, = 1)},
DA = {(1,1), (=1, ~1), (5, 1), (=&, 1)},

5= {(171)7(M271)7(M4 1)7(“ _1) (K’/“L ,—1), (""/“L ? )}
D3 = {(1,1), (1%, 1), (", 1), (kps, = 1), (spe®, = 1), (ps®, = 1)},
Dg Z{(l,l),(/% ), (12, 1), (4, 1), (1, 1), (W°, 1), (5, —1),

w?,—1), (s, !

) -1, ( —1), (ke = 1)},
7(/1’271)7(/1‘ 7_1)7(/1' 71)7(# 7—1)7(K’7 1)7
(H',uﬂ_l)’(n 2 1) (5“3,——1) ( y 1)7(H/~1’57_1)}7
1),

N_
N
[o NI
[l

-~

(171) ( _1) ( ) (:u y ( 1)7(/1’57_—1)?(’%“7_1)’
(kp, 1), (rops® ,-1)7(%‘ 1), (kpt, =1), (sp°, 1)}

The lattice of conjugacy classes of the twisted subgroups in Dg X S
trated in Figure A2.3.

L g illus-
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L

(Zs
Fig. A2.3. Lattice of conjugacy classes of twisted subgroups in Ds x S

A2.1.3 Tetrahedral Group A,

It is well known that there are only five regular polyhedra: the tetrahedron,
the hexahedron, the octahedron, the dodecahedron, and the icosahedron. The
groups of motions of regular polyhedra are called regular polyhedral groups.
Two regular polyhedra are called dual to each other, if one can be obtained
from the other by taking as vertices the centers of all the faces of the other
polyhedron. The hexahedron and octahedron are dual to each other, as are the
dodecahedron and icosahedron. The tetrahedron is dual to itself. Accordingly,
the groups of motions of dually corresponding regular polyhedra arc isomor-
phic. Hence, we speak of the tetrahedral group A4, the octahedral group S
and the icosahedral group As. '

Consider the tetrahedral group Ay, which consists of even permutations of
four symbols {1,2,3,4}. We have the following subgroups in A4, up to their
conjugacy classes
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Zlv{ D} Z={(1),(12)(34)}, Zs ={(1),(123),(132)},
= {(1), (12)(34), (1¢ )( 4), (14)(23)},
= {(1), (12)(34), (123), (132), (13)(24), (142),

(124), (14)(23), (134), (143), (243), (234)}.

The lattice of the conjugacy classes of the subgroups in A4 is shown in Figure
A2.4.

(Aq)

<\

(Zs)

"

(Zx)

Fig. A2.4. Lattice of conjugacy classes of subgroups in A4

The twisted subgroups in A4 % St are listed as follows

ZE —{ ((1), 1), (12)(34), = 1)},

= {((1),1),((123),7), ((132), ")},

th = {((1),1), ((123),v%), ((132), ")},
= {((1),1), ((12)(34), 1), ((13)(24), —1), ((14)(23), 1) },
= {((1),1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123), 7),
((132),7%), ((142),7), ((124),7), ((134),7), ((143),7*),
((243),7), ((234),7)},

Ap = {((1),1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123),7*),
((132),7), ((142),7%), ((124),7), ((134),7°), ((143), %),
((243),7%), ((234), )},

where v = ¢'5. The lattice of the conjugacy classes of subgroups in Ay x S
is shown on Figure A2.5.

A2.1.4 Octahedral Group S,

Consider the octahedral group S4, which consists of permutations of four sym-
bols {1,2,3,4}. Since A4 is a subgroup of Sy, it is clear that all the subgroups
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(As)
I \t\ (V4) (Vi)
(Zs)

(Zz) (Z3)

\

(Zy)
Fig. 'A2.5. Lattice of conjugacy classes of twisted subgroups in A4 x S*

of Ay, namely Ay, Vi, Zs, Zy, and Z;, are also subgroups of S; (cf. Subsec-
tion A2.1.3). In addition, there are the following subgroups in Sy, up to their
conjugacy classes

Dy =A{(1), (12)},

Dy = {(1), (12)(34), (12), (34)},

Dy = {(1), (123), (132), (12), (23), (13)},

Zs = {(1), (1324), (12)(34), (1423)},

Dy = {(1), (1324), (12)(34), (1423), (34), (14)(23), (12), (13)(24)}.

The twisted subgroups of A, x S! as listed in Subsection A2.1.3, represent
four conjugacy classes of twisted subgroups in Sy x S, namely (Z; ), (Z4) :=
(ZF) (for k = 1,2), (V;), and (A4%) := (A}) (for k = 1,2). Besides, we have
additional twisted subgroups in Sy x S!, namely

i ={((1),1),((12), - 1)},

D =1((1),1),((12)(34), 1), ((12), =1),((34), - 1)},

Dy = {((1),1), (12)(34), - 1), ((12), 1), ((34), - 1)},

zg = {((1),1),((1324),7), ((12)(34), 1), ((1423), =) },

z; ={((1),1),((1324), -1), ((12)(34), 1), ((1423), -1)},

D3 = {((1), 1), ((123), 1), (132), 1), ((12), 1), ((23), —1), ((13), = 1)},

Df ={((1), 1), ((1324), -1),((12)(34), 1), ((1423), - 1), ((34), 1),
((14)(23), -1), ((12), 1), (13)(24), = 1)},
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Df = {((1), 1), ((1324), =1), ((12)(34), 1), ((1423), -1), ((34), 1),
((14)(23), 1), ((12), =1), ((13)(24), D) },
Dy =A{((1), 1), ((1324), 1), (12)(34), 1), ((1423), 1), ((34), = 1),
((14)(23), -1), ((12), —1), ((13)(24), =)},
( (
),

Sy = {((1), 1),((12), = 1), (12)(34), 1), ((123), 1), ((1234), —1), ((13), = 1),
1. (

)

—1), ((12)( 123), 1), 1
((13)(24), 1), ((132), 1), ((1342), ~1), ((14), — 1), (14)(23), 1), ((142), 1),
((1324), 1), ((23), —1), ((124), 1), ((1243), —1), ((24), ~1), ((134), 1),
((1423), -1, ((34), —1), ((143), 1), ((1432), —1), ((243), 1), ((234), 1)}.

The lattice of the conjugacy classes of subgroups in S is shown in Figure A2.6
and the lattice of the conjugacy classes of the twisted subgroups in Sy x S! is
shown on Figure A2.7.

Fig. A2.6. Lattice of conjugacy classes in Sy

A2.1.5 Icosahedral Group Ag

Consider the icosahedral group, which consists of even permutations of five

symbols {1,2,3,4,5}. Besides A5 and Z,, there are seven subgroups in As,
namely
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(4% (50)

% 7

(Ad) )

(m\ D; /(Dg‘) (Dg)
“ (1)3) (%)

@ T @ \ Y @f @
W

\ N \ (04)

Fig. A2.7. Lattice of conjugacy classes of twisted subgroups in Sy x S*..

1),

—
N
~—

), (12)(34)},

1), (123), (132)},

1), (12)(34), (13)(24), (23)(14)},

1), (12345), (13524), (14253), (15432)},
), (

), (1

l |

| !

1), (123), (132), (12)(45), (13)(45), (23)(45)},

, (12)(34), (13)(24), (14)(23), (123), (132), (124), (142), (134),
3), (234), (243)},

), (12345), (13524), (14253), (15432), (12)(35), (13)(45), (14)(23),
15)(24), (25)(34)}. '

1

{(
{(
{(
{(
{
{(
(14
{a
(

The lattice of the conjugacy classes of the subgroups in As is shown in Figure
A2.8. The twisted subgroups in As x S! are listed as follows.
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//h\
(Ds) (Ds)
(Va)

(Zs) (Zs)
\\(Zz)

(Z:1)

Fig. A2.8. Latticc of conjugacy classes for As

25 = {((1),1), (12)39),-1) },

Vi = {((),1), (12649, -1), ((13)24), 1), (23)(4),1) },

7 = {((1) 1), ((12345),¢), ((13524),€?), ((14253),€%), ((15432),¢€ )}
2 = {((1),1), ((12345), %), ((13524),¢*), ((14253),), ((15432), ") },
2= {((1),1), ((123),), ((132),7%) }.

p; = {((1),1), ((123),1), ((132),1), ((12)(85), -1), ((13)(45), -1},

Al = {((1), 1), ((12)(34),1), ((13)(24),1), ((14)(23),1), ((123),7), ((132),
), ((124),7), ((142),7), ((134),7), ((143),7%), ((234),7), ((243),7) },
AR = {( 1),1), ((12)(34), 1), ((13)(24), 1), ((14)(23), 1), ((123),~%), ((132),
7). ((124),9), ((142),72), ((1340),7%), ((143),), ((284),7), ((243).+) },
= {((1),1), ((12845),1), ((13524),1), (14253), 1), ((15432),1),
((12)(35),—1), ((13)(45), —1), ((14)(23), 1), ((15)(24), —1),
((25)(34),-1) },
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where ¢ = est v = e The lattice of the conjugacy classes of the twisted
subgroups in As x S' is shown in Figure A2.9.

(As)

Fig. A2.9. Conjugacy classes of twisted subgroups in As x §*

A2.1.6 Orthogonal Group O(2)

Denote by O(2) be the orthogonal group of degree 2 over reals, which is defined
as a subgroup in the general linear group GL(2;R) by

02) ={A € GL(ZLR) : AAT =T},

where AT is the transpose of A.

The subgroups in O(2) include O(2), SO(2), D,, (for n € N), and Z,, (for
m € N). Moreover, we have that

®,(0(2)) = {Z,,, m € N}.

The twisted one-folded subgroups in O(2) x S! are
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0(2) :=0(2)?, ¢:0(2) = Ly, ¢(¢”)=1and p(ke"’) = -1,
SO2)%, ¢r:80(2) = 5", er(e”)=¢e*, keN,
DE=D% 4 Dy — Zy, kert) =7y,
D =DS, ¢: Dy — Ly, kerg = Dy.

The lattice of the conjugacy classes of ‘twisted subgroups in 02) x S'is
shown on Figure A2.10.

(0(2)) (0(2) (Db (S0(2)")

(SO(2))

Fig. A2.10. Lattice of conjugacy classes of twisted subgroups in O(2) x §*

Furthermore,
do(0(2) x 81 = {0(2) x 8,50(2) x 8%, D, x S', n € N},
D1(0(2) x SY) = {Zm x S*,0(2) x Zy, SO(2) X Zy, Dy, x 7y
0(2)~, S0@)#, D' DE. m,n,l € N},
By(0(2) x §Y) = {Z, x Ly, 2%, 25, m, 1 € N}

"

A2.1.7 Tori Group T™

We write TN = TVN=1 x §'. There are two types of subgroups in TV:

(i)  those of the form H x K, for H ¢ TV~! and K C 81, |

(ii) the twisted subgroups %!, for I Cc TNV-! o : H — S' and I € N.
Thus, the set of all subgroups in TV can be obtained inductively from the set
of all subgroups in TV-1. For simplicity, we assume N = 2 and list all the
subgroups in T? ~ SO(2) x S', namely

(a)  (Zn x SY), SO2) X Zy, Zy, X Zy, where n;m,k7l eN;
(b)  (SO(2)¢mh), (Zsmt2), where @, : SO(2) — S, 2 2 14,1, € N
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A2.2 Irreducible Representations of Groups
A2.2.1 Irreducible Representations of S

We list the irreducible representations of S! in Table A2.1.

Vi Space Group Actions Remarks
Vo R yri=x,7€ S, zER Trivial
y C vz =~ z, €8t zeC leN

Table A2.1. Irreducible representations of S)

A2.2.2 Irreducible Representations of T™

Notice that all the nontrivial irreducible representations of an abelian group
have a complex dimension 1. Thus, an irreducible T™-representation V is a
copy C, with the 7T™-action given by

- Lol n
(717727 97’”)2 — A/ll ”722 : 77[1, 2
where v, € S', I; € N and “-” stands for the complex multiplication. Denote
this irreducible representation by &y,
A2.2.3 Irreducible Representations of Qg and Qg x S!

Let us list all the irreducible representations of )y in Table A2.2 and all the
1-folded irreducible representations of ¢Jg x S! in Table A2.3.

Vi Space Group Actions Remarks
Vo R Trivial
Vi R Induced by @r : Qs — Z2, ker ¢, = YA k=1,2,3
V4 RrR? Natural

Table A2.2. lIrreducible representations of Qs
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Vi1 Space Group Actions Remarks
Vo,1 C Trivial
Vi1 C Induced by ¢k : Qs — Za, ker pp, = Z% k=1,2,3
Vaa ct Natural

Table A2.3. Irreducible representations of Qg x $*

A2.2.4 Irreducible Representations of Dy and Dy X S*

We list all the irreducible representations of Dy in Table A2.4 and all the
1-folded irreducible representations of Dy x S' in Table A2.5.

Vi |Space Group Actions Remarks

Vo R Trivial

zi=~" . 2 :
v, | ¢ {7 5 S eZnzeC 1<j<NJ2
rz = Z,

Vie | R Induced by ¢ : Dy — Za, kerp = Zn |jn = [ (N +1)/2]
Viy+1] R | Induced by ¢ : Dny — Za, ker o = Dy N even
Vin+2{ R | Induced by ¢ : Dy — Z2, kery = Dy /2 N even

Table A2.4. Irreducible representations of Dy
Vi1 |Space Group Actions Remarks
Vo,1 C Trivial
(T 2
Vi c? (21, 22) =07 2y 2 yELn,21,22€C| 1< j<N/2
k(21, 22) = (22, 21),

Vin 1 C Induced by v : Dy — Zo, kerp =Zn g =[N +1)/2]
Vint1,1| C Induced by ¢ : Dn — Z3, ker ¢ = Dy N even
Vin+21] C Induced by ¢ : Dy — Zo, kerp = 1~)N/2 N even

Table A2.5. Irreducible representations of Da x S!
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Irreducible Representations of A4 and A4 x S*!
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Let us list all the irreducible representations of A, in Table A2.6 and all the

1-folded irreducible representations of A4 x S! in Table A2.7.

Vi Space Group Actions Remarks
Vo R Trivial
Va C Induced by ¢ : Ay — Z3, kerp =V,
Vs R3 Natural

Table A2.6. Irreducible representations of Aa
Vi1 Space Group Actions Remarks
Vo,1 C Trivial

— 2

Vi1 C? Induced by ¢; : Ay 5 Zs "5 Zs i=12
Vi1 Cc3 Natural

A2.2.6

Table A2.7. Irreducible representations of As X gt

Irreducible Representations of S; and S x S*

We list all the irreducible representations of Sy in Table A2.8 and all the 1-

folded irreducible representations of Sy % S* in Table A2.9.

Vi |  Space Group Actions Remarks
Vo R Trivial

Vi R Induced by ¢ : S1 — Za2, ker ¢ = Ay

V2 C Induced by ¢ : S4 — S3 >~ D3, kerop =V,

V3 R3 Natural

Vs | V1 ® V3 | Natural 3-dim rep. with nontrivial 1-dim rep.

Table A2.8. Irreducible representations of Sa
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Vi Space Group Actions Remarks
Vo1 C Trivial
Vi C Induced by ¢ : Sg — Zo, kerp = Ay
Va1 C? Induced by @ : S4 — 53 ~ D3, kerp = Vi
Va1 c? Natural
Va1 | Vi1 ® V31 | Natural 3-dimm rep. with nontrivial 1-dim rep.
Table A2.9. Irreducible representations of S4 x S*
A2.2.7 Irreducible Representations of A5 and Az x S*!

Let us list all the irreducible representations of Ay in Table A2.10 and all the

1-folded irreducible representations of As x S in Table A2.11.

Vi Space Group Actions Remarks
Vo R Trivial
V1 R* Natural
Vo R® Spherical harmonics of 3 variables As C SO(3)
V3 R3 Character x((12345)) = —1%‘@
Vs R? Character x((12345)) = 1_2———-—“/3
Table A2.10. Irreducible representations of Ag

Vi1 Space Group Actions Remarks

Vo1 C Trivial

Vi Cc* Complexification Vi of V4

Va1 (o Complexification V3 of Vs

Vi1 c? Complexification V3 of V3

Vi1 c? Complexification Vi of V4

Table A2.11. Irreducible representations of As x 5!
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A2.2.8 TIrreducible Representations of O(2) and O(2) X S*

Let us list all the irreducible representations of O(2) in Table A2.12 and all
the 1-folded irreducible representations of O(2) x S! in Table A2.13.

V; | Space Group Actions Remarks

Vo R Trivial

Vi R Induced by ¢ : O(2) — Zj, ker ¢ = SO(2)

Vi C {W = I_l 2 u€e02),zeC m=1,23,...
Kz = Z,

Table A2.12. Irreducible representations of O(2)

Vi1 | Space Group Actions Remarks
Vo1 C Trivial
V%’l C Induced by ¢ : O(2) — Za, kerp = SO(2)
uz :=u" -z, ]
Vmi| C? { lf “oue 02),zeC m=1,2,3,...
Kz := %,

Table A2.13. Irreducible representations of O(2) x S

A2.3 Basic Degrees for Groups

The concept of basic degrees plays an important role in the effective compu-
tations of 1" x S'-equivariant degrees. In this section, we catalog the values of
all the basic degrees in the case I = Qg, Dy, A4, Sa, As, and O(2). For more
details, we refer to [15].

A2.3.1 Basic Degrees for Qg

For convenience, we present the lattice of twisted orbit types in V, ; in Figure
A2.11. Based on the lattices of orbit types occured in the irreducible represen-

tations, we obtain the basic degrees of the irreducible representations of (Jg
and Qg x S! respectively.
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(z;") (Z3") (zi") 12

N

Fig. A2.11. Lattice of twisted orbit types in Vi,

(Z7) (]

degy, = —(Qs), degy,, = (Qs),
deg y, = (Qs) — (Z), degy, , = (Q5),
degy, = (@s)- degy, , = (L") + (Z1") + (Z7") - (Z3),

where k = 1,2, 3.

A2.3.2 Basic Degrees for Dn

The lattices of twisted orbit types for V;; are listed in Figure A2.12— Figure
A2.14. Based on the lattices of orbit types, we obtain the basic degrees of
irreducible representations for Dy and Dy x S respectively.

(Z3) (Dn) (3) 2|

7

(Z.) 4]
Fig. A2.12. Lattice of twisted orbit types for m Odd

o] (D) (D) 2l

(Z3,.) 4
Fig. A2.13. Lattice of twisted orbit types for m = 2 (mod 4)
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z) (D) (D) (2]

)7

(Z5) [
Fig. A2.14. Lattice of twisted orbit types for m = 0 (mod 4)

deg Vo — ( )
deg ., = {( ~) = 2(Dn) + (Zn) if m is odd,
& (D) — (Dn) - (Dh) (Zy) if m is even,

{

dengN - (DN) - (ZN)7

degvm“ = (Dy) — (D%), if N is even,
\degyjm2 = (Dy) — (5%), if NV is even,

where 1 < j < N/2, h = ged(j, N) and m := N/h.

(deg Vo1 = (Dn),

(Z5) + (Dy) + (D7) — (Zp) if m is odd,
degy, | = < (Z3) + (D) + (Ugih) —(74,)  if m =2 (mod 4),
{ (Z5) + (D&,) + (D4) — (Z3,)  if m= 0 (mod 4)
degvjN,l = (D%),

degy, ,,, = (D%), if N is even,

Ldegy, ., = (D?;/), if N is even,
where 1 < j < N/2, h :=ged(j, N) and m := N/h.

A2.3.3 Basic Degrees for A,

We list the lattices of the twisted orbit types in Vs and Vs in Figure A2.15.
Based on the lattices of orbit types, we obtain the basic degrees of irreducible
representations for A4 and A, x S! respectively.

degvo - _(A4)7
degy, = (A4),
degy, = (A4) — 2(Z3) — (Z2) + (Z1).
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o (z3) Vi) (Za) @) 1

/NN

(Zs) Z2) 1] \(Zz) (4]

(Z1) 3 (Z.) (6l

Fig. A2.15. Representation V3 and representation Vs 3

degVU 1 (A4)
deg Via (A“)
deg Vo (Atz)
degy,, = (Zg') + (Z3) + (V) + (Zs) — (Za).

A2.3.4 Basic Degrees for S,

We list the lattices of the twisted orbit types in Vo1, V31 and V,; in Figure
A2.16 — Figure A2.18. Based on the lattices of orbit types, we obtain the
basic degrees of irreducible representations for S; and S; x S* respectively.

(A%) (Da) (D 12

\/

rd

(Va) -4

Fig. A2.16. Lattice of twisted orbit types for Va1

(degvo = —(Sy),

degvl (S4) — (A4)7
§ degy, = (S1) —2(Ds) + (Va),

degy, = (S4) — 2(D3) — (D2) + 3(D1) — (Z4),
(degy, = (S1) — (Za) — (D1) — (Zs) + (Zy).
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(2]

(D9 (Ds) (Z3)
1) ) 4]
‘(Zl) [6]

Fig. A2.17. Lattice of twisted orbit types for Vs,

S/
\ l

Fig. A2.18. Lattice of twisted orbit types for Vi

(z3)

(6]

A2.3.5 Basic Degrees for As

We list the lattices of the twisted orbit types in Vi and Vi ; for k = 1,2,3,4
respectively in Figure A2.19 — Figure A2.23. Based on the lattices of orbit
types, we obtain the basic degrees of irreducible representations for A5 and
As x S! respectively. |
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(Ao [0] (A»>

D«,) 1] (Ds)

1 ><

(Zl) (4]

(ZJ)
Vi Vs

(Da)

V4
(Zx) (2]
(Z )

(5}

(As)

PN

(Zs) (Zs)

(Z2)

~ |~

(Z4)

Vi and V4

Fig. A2.19. Lattice of orbit types for Vi, Vs, V3 and V4

(Z2) (Zs) Z; )
(Zl)

(Z3)

)

Fig. A2.20. Lattice of twisted orbit types for Vi

(@) @)

\

(A3)

(Va)

(A7)

/

(z3)

(Dy)

Fig. A2.21. Lattice of twisted orbit types for Va1

(%)

(Ds)

(2]

4]

(6]

{10}
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(D) (Vi )\( D3) (Z£) (Z%) 2]
\ (Z;) I4]
(Z+) (6}

Fig. A2.22. Lattice of twisted orbit types for Vs

(D3) Vi) (D3) (Z¢) (z%) 2l
(Z3) (]

/
(Z1) [6]

Fig. A2.23. Lattice of twisted orbit types for Vi

degy, = —(4s),

degy, = (As) — 2(Aq) — 2(D3) + 3(Zy) + 3(Zs) — 2(Z1),
degy, = (As) — 2(Ds) — 2(D3) + 3(Z2) — (Z41),

degy, = degy, = (As5) — (Zs) — (Zs) — (Z2) + (Zy).

(degv01 (As), A
degy,, = (Ag) + (Ds) + (D3) + (V") + (Z8)
H(Zg) + (22) — (L) — (Zs) — (Z3),
degy,, = (Ds) + (Ds) + (AR) + (AD)
+(Vi) + (Z8) + (28) — 2(Zs),
= (Dg) + (Vi) + (D3) + (Z") + (Z4
= (Dg) + (Vi) (Dz) +(Z¢) + (Z) — 2(Zy).

313
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A2.3.6 Basic Degrees for O(2)

We list the basic degrees of irreducible representations for O(2) and O(2) x §*
respectively.

(degy, = (0(2),
{ degy, = (0(2)) = (50(2)),

degv = (C (2)) (Dp), m=1,23,...
degVo,] = <(’)<2))‘

4 degvé)‘L =(0(2)7),

(degy,, = (SO2)™) + +(DE), m=1,23 ...

A2.3.7 Basic Gradient Degrees for O(2) x S

Degvo :( )
Degy, = (0 2) S = (SO(2) x 8,
(02) x ') -

Degy = (Dy, x S,

Degy,, =(0(2) x 5") ~ (O
Degy,, = (0(2) x < §1)— (02)"),
Dogy,, =(0(2) x §) — (SO@)") — (D) + (Z4,),

m,1

where m =1,2,....
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- Multiplication Tables

For convenience, we present the multiplication tables for the Burnside ring
A(I), the A(I)-module AL(I" x St), for I' = Qg, D, (for n = 3,4,5,6), A4,
Sy, As, and O(2). In addition, we include the multiplication tables for the
Buler ring U(T?) and U(O(2) x S1).

A3.1 Multiplication Tables for the Burnside Ring A(I")

@) | (Zy) | (ZD) | (ZD) | (Z2) | (Zn)
@) || (@Zd) | (2D | (Z)) | (Z2) | (Z1) | (Qs)
(Zi) || 2Z3) | (Z2) | (Z2) | 2(Z2) | 2(Za) | (Zd)
(Z3) || (Z2) | 20Z3) | (Zo) | 2(Z2) | 2(Z4) | (Z3)
(Z3) (Z2) | (Z2) | 20ZD) | 2(Z2) | 2(Z1) | (ZD)
(Z2) || 2(Z2) | 2(Z2) | 2(Z2) | 4(Z2) | 4Z1) | (Z2)
(Z1) || 2(Za) | 2Z1) | 2(Z1) | AZs) | 8(Z1) | (Za)

Table A3.1. Multiplication table for the Burnside ring A(Qs)

(Ds) (D1) (Z3) (Z1)
(Ds) (D1) (Z3) (Z1) (Ds)
(D1) (D1) + (Z1) (Z1) 3(Z1) (D1)
(Z3) (Z1) 2(Zs) 2(Z1) (Zs)
(Z1) 3(Z1) 2(Z1) 6(Z1) (1)

Table A3.2. Multiplication table for the Burnside ring A(D3)
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(Da) | (Do) (D2) (D1) (D1) | (Z4) | (Z2) | (Zn)
(Da) || (D2) | (Ds) (D) (D) (Za) | (Z2) | (Z1) | (Da)
(D2) || 20D2) | (Z2) 2(Dh) (Za (Z2) | 2(Z2) | 2AZy) | (D2)
(D2) || (2Z2) | 2(D2) (Z: D) (Z2) | 2(Z2) | 2Z) | (D2)
(D1) || 2(D1) | (Z1) | 2(D1) + (Z4) 2AZ:) (Z2) | 2AZ1) | MZ1) | (D1)
(D1) || (1) | 2(Dy) AZ.) 2AD1) + (Z1) | (Z1) | 2(Zs) | 4(Z1) | (D)
(Z4) || (Z2) | (Z2) (Zv) (Z1) 2Zys) | 2Z2) | 2(Zy) | (Za)
(Z2) || 2(Z2) | 2(Z2) 2AZy) 27Z0) AZy) | AZ2) | 4(Z1) | (Z2)
(Za) || 2Zv) | 2(Zn) 4(Za) 4(Zy) 2AZ0) | AZn) | B(Za) | (Za)

Table A3.3. Multiplication table for the Burnside ring A(D4)

(Ds) (D1) (Zs) (Z1)

(Ds) (D1) (Zs) (Z1) (Ds)

(D1) (D1) +2(Z1) (Z4) 5(Z41) (D1)

(Zs) (Z1) 2(Zs) | 2(Z1) | (Zs)

(Z1) 5(Z1) 2(Z1) | 10(Z1) | (Z1)

Table A3.4. Multiplication table for the Burnside ring A(Ds)
(Ds) | (D) | (Da) (Zs) (D2) (Zs3) (D) ()| (Z2) (Zy)
(D] (Da) | (Ds) | (Z) (D2) (Zs) (D) (D)) (Z2) | (Zv) (Ds)
(Ds) ||2(D)] (Z3) | (Za) (D) |323))  2Dw) (Zy) (Zy) | 2(Zv) (Ds3)
(D3) || (Zs) |2(D3)} (Zs) (D) |2(Zs2) (Z1) 2(Dy) (Z0) | 2(Z1) (D)
(Zs) || (Zs) | (Zs) |2(Zs) (Z2) 2Zs) (Zy) (Zy) 2Z2)| 2(Zy) (Zs)
(D2) || (D) | (D) | (Z2) (D) + (Z2)| (Za) | (D1)+ (1) | (D) + (Za) |3(Z2) | 3(Za) | (D2)
(Z3) |1 2(Zs) | 2(Zs) 2(2/1»3) (Zy) 4(Zs) 2(Zy) 2AZy) 2(Z1)| A(Zn) (Zs)
(D) | 2D | (o) | (@) |(D) +(Z2)|220) | 2D) + (Z)| - 3Z:)  [3(Z0)]6@) | (D)
(D) || (Zy) |2(D1)| (Zy) [(Dh) + (Z1)12(Z4) 3(Z1) 2D1) + (Z1) |3(Z1) | 6(Z1) (D)
(Z2) || (Za) | (Z0) | 2Z2)|  3(Z2)  |2(Z4) 3(Zy) 3(Zy) 6(Z2)| 6(Z1) (Z2)
@) |22z 220 |2z 320 |4@)] 6@ 8(Zy) |6(Z0)|12Z)| (@0

Table A3.5. Multiplication table for the Burnside ring A(Ds)
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(Aa) (Va) (Z3) (Z2) | (Za)

(Ag) || (Va) (Z3) (Z2) (Z1) | (Aa)

(Va) || 3(Va) (Zy) 3(Z2) 3Z1) | (Va)

(Zs) || (Z1) | (Zs)+ (Z1) 2(Z) A(Z1) | (Zs)
(Z2) | 3(Z2) 2(Z1) 2Z) + 2Zy1) | 6(Z1) | (Z2)
(Zy) 3(Zq1) 4(Z) 6(Z1) 12(Zq1) | (Z1)
Table A3.6. Multiplication table for the Burnside ring A(A4)
{A4) (D4} (Ds) (P2) (V) (24) (2s) (Z2) (Dy) |(Z1)
244 (V) (Za) (Z2) 2(Va) (Z-) 2(Zs) 2(Z) (Z1) 2Z1) | (Ad)
(Va) |[(Pa)+ (Va)]  (Dn) (102} +(Z2) [3(Va)| (Za) + (Z2) (Z.) 3(Zs) {(Ih) +(Z1) | 3(Z1) | (Da)
(Zs) (D) [(Da) + (D) 2(D) (Zy) 1) (Z3) + () 2AZ1) | 2ADi) 4 (Za) | A(Z4) | (Ds)
(Zz2) (D2} + (Zo)|  AD1) | 2(D2) +(Za) 3(Z2)} (Z2) + (Z1) 2Zy)  |2AZ2) - 2AZ1)|2(D1) | 2(Za)] 6(Za) | (D2)
2(Vy) 3(Va) (Z1) 3(Z2)  |6(Va)]  3(Zw) 2(21) 6(Z2) 3(Z1) 6(21) | (Va)
(Z2) (Za) F{Z2)]  (Zy) (Zo) + (Z1) BZ2) AZa) + (Zo) | 20Za)  |2Ze) + 20Z0)]  3(Za) 6(Z1) | {Z4)
2(Zs) (Z1) (Zs) + (Zn) 2(Z4) 2(Zy) 2Z;) 2AZs) + 2AZy) 4(Z1) 4(Z1) 8(Z1) | (Z3)
AZs) || HZn) AZn)  |2AZLs) + 2Za) |6(22)|222) +2(Zn)}  AZ1)  |MZo)+4(Z0)|  O(Z1) ALY (Z2)
(Z1) [UD1) + (Z)|2(D1) + (Z2)|2004) 4 2(Z2)|3(2Z0)} 3(Za) 4(Zy) 6(Z1)  |2(D1) 1 B{Za){12(Zs)| (D1)
AZ) || 3Z1) A(Zy) 6(Z)  [8(Z)]  6(Z) 8(Z1) 12(Zy) 12(Zy)  124(Z)] (Za)
Table A3.7. Multiplication table for the Burnside ring 4(S4)

{As) (A4) (Ds) (Ds) (2s) (Va) (Zs) (Z2) |(Z4)
(As)|l (44) (Ds) (Da) (Zs) (Va) (Zs) (Z2) (Zy) [ (As)
(As) || (As) + (Za) (Z2) (Zs) + (22) (Z) (Va) + (Z1) | AZs) + (Z1) | (Zo) + 2AZn) | 5(Zs) | (A1)
(Ds) (22) (Ds) + (Z2) 2AZ>) (Zs) + (Z1) 3(Z2) 2Z) | 2AZo) + 2Z1) | 6(Z1) [(Ds)
(D)} (Zo) +(Z2) | 2Z2)  [(Do)+(Z2)+(Za)| 2(Zn) 3(Z2) + (Z1) | (Zs) + 3(21) | 2(Z2) + 4(Z.) |10(Z4)] (Ds)
(Z5) (Z1) (Zs) + (21) 2(Z:) 2AZs) +2(Z1))  3(Zy) 4Zy) 6(Z41) 12(Z41)| (Zs)
(Va) || (Va) + (Za) 3(Z2) 3(Z2) + (Z4) 3(Z) 30V +3(Z0)]  B(Za) | 3(Z2) +6(Z1) (15(Za)] (Va)
(Zs) ||2Zs) + (Z0)|  2(Zn) (Z3) + 3(2a) A(Zn) 5(Z1)  |2AZs)+6(Za)]  10(Z1)  [20(Za)| (Za)
(Z2) (Ze) + HZ1)|2Z2) + 2Zy)|  2(Za2) + 4(Z) 6(Z1) 3(Za2) + 6(2,) 10(Z,) 2(Za) + 14(Z1) |30(Z+ )| (Z2)
|| sz 6(Zs) 10(Z4) 12(Z1) 15(24) 20(Z1) 30(Z))  [60(Z4)] (Z1)

Table A3.8. Multiplication table for the Burnside ring A(4s)
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(0(2)) (S0(2)) (Dm)

(0(2)) (50(2)) (D) (0(2))

(S0(2)) || 2(50(2)) 0 (50(2))
(Dn) 0 2(Dy), where | = ged(n,m) (D»)

Table A3.9. Multiplication table for the Burnside ring A(O(2))

A3.2 Multiplication Tables for the A(I')-Module
AN x SY)

(@) | (Z3) | (ZD) | (Z)) | (Zo) | (Z)

@) || @) | @) | @Z57) | (Z2) | (Z1) | (Q3)
@) || @) | @) | @) | (Z2) | (Z1) | (QF)
@) || @) | @) | @z | (Z2) | (Za) | (QF)
Zih) || 2z | (Zy) | (Z7) | 2(Z7) | 2(Za) | (Z3F)
(Zih) || (Z3) |2Z5%) | (Z7) |2(Zg) | 2Za) | (Z5F)
Z3M) || @Z3) | (Zy) |2zt | 22Z7) | 2(Z) | (Z3T)
(Z37) || 2Z7) | (Z) | (Z2) | 2(Z2) | 2(Z1) | (Z}7)
(Z57) || (Z2) | 20257)| (Z2) | 2(Za) |2(Z1) | (Z5)
(Z37) || (Z2) | (Zo) |20Z57) | 2(Za) | 2(Za) | (Z3)
(Z3) || 2Z5) | 22Z3) | 2(Zy) | 4(Z3) | 4(Za) | (Z3)

Table A3.10. Multiplication table for the A(Qg)-module Aj(Qg x S*)

(Ds) (D1) (Zs) (Z1)
(Z3%) (Z1) 2z5) | 20zZ1) | (Z8)
(D3) (D7) (Z3) (Z) | (D3)
(DY) || (DY) +(Z1) | (Z1) | 3(Z1) | (DY)

Table A3.11. Multiplication table for the A(D3)-module Aj(D3 x §*)
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(Da) | (D2) (D) (D1) (D) | (Z4) | (Z2)
D) || (D3) | (D3) | (DD) (D}) (Za) | (Z2) | (Z)
Di) || (D3) | (D2) (D?) (D1) (z9) | (22) | (Z)
D) || (D2) | (D) (D1) (D7) %) | (Z2) | (Z)
Dg) || 2(D9) | (Z7) | (D1)+ (DY) (Z1) (Z7) | 2(27) | 2(Z)
DY) || (z3) |2D3) (Z+) (D1) + (D) | (23) |2(23) | 2(Z4)
D3) || 2D3) | (2Z2) 2(D}) (Z1) (Z2) | 2Z2) | 2(2Zy)
D3) || (z2) |2(D3) (Z1) 2(Df (Zo) | 2(22) | 2(24)
D) || 2D%) | (@) |2AD) +(Z) | 22 (Z1) | 2(Z0) | A(Za)
DY) || @) |2DD)|  2Z) | 2DD)+(Z) | (Z) | 2(Z1) | 4(Z4)
7i) || z5) | Z3) (Z1) (Za) AZL) | 2(25) | 2(Z4)
z3) || (Z2) | (22) (Z4) (Z1) 2Z3) | 2(Z2) | 2(2Zs)
D) 2Z7) | 225) | 2(Za) AZy) | 2Z3) | AZ7) | 4Z)

Table A3.12. Multiplication table for the A(D4)-module A} (D4 x S*)

(Ds) (D1) (Zs) (Zy1)
(Zg') (Z1) 22Zg') | 2(Za) | (Zg)
(Zg) (Z1) 2Zg) | 2(Z1) ‘(Z?)
(D3) (D7) (Zs) (Z1) | (Dg)
(DI) || (DI)+2(Z1) | (Z1) | 5(Za) | (DY)

Table A3.13. Multiplication table for the A(Ds)-module Aj{Ds x S')
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(D) | (Do) | (Da) | (@s)  |(D3)]  (Za) Dy ||| @)
DD |05 | Ze) | (DB | (@) (DD) (D7) (@) || (D)
OH| Do) | (09| @d | W @) (D) N @) |@y| (W0
(DH|| D [0y | @) | (PH | @) (DD (D) @ @) (DY
@H | @) | @) |2@d)| @) P@)| (2 @) |2z)2@)|  (Zh
@) @ | @) @) @) REh|] (@) @) |2Z)|22)|  (ZE)
@) @by | @) 228)|  (Zo) 22D (@) @) |2Z)|2(20)] (2
(D) ||2DD)] @) | (Zo) | (DY) |2Za)] 2D | (Z) (@) 221))  (D3)
(DD | (Zs) 205)] @s) | (D) |2@s)] (@) A7) | @) 2@ (W3)
(D) || (D) [ (DF) | (Za) |(D5) + (Z2)| (@a) | (D3) + (Za) | (DF) + (Za) |3(Z2)3Z1)|  (1%)
(DH| (D7) [ (D) | @5) [(DH) + ()| @) | (DF) +(Za) | (D) + (Za) [3(Z,)|32Z0)| (D)
(DD (D) [ (DD) |(Z5) [(09) + @)| @) | (D) + @) | (D) + (Z) [3(Z5)[3@0)| (D)
@5y ||228) |22 | 228) | @) |4Z8)|  2A2Z) 2AZi) (2020 |4Z0)| (2
() 2Dy @) | @) [P+ @) p@ofDi) +2@)|  3@) (3@ [6@)| (D)
(WD) || @) 2D (Za) (DD 4 (@) |2Z0)|  3(Z1)  |2(DF) +2(Z1)|3(Z0) [6(Z1)]| (D7)
@) @) | @) |2@D)| 325) 2@)| 3@y 3z [6E|6@)|  (Z7)

Table A3.14. Multiplication table for the A(Dg)-module Al(Ds x S1)

(44) (Va) (Zs) (Z2) | (Z1)
(A || (Va (ZgF) (Z2) (Z1) | (AF)
Vi) || 3(vy) (1) (Z2) +2(Z5) | 3(Zy) | (Vi)
(Zg) || (Za) | (Z3)+ (Z4) 2(Zy) AZ4) | (Zg)
(Z3) || 3(Zz3) 2(Z4) 2(Zy) + 2(Z1) | 6(Z4) | (Z3)

Table A3.15. Multiplication table for the A(Ag)-module A%(A4 x S1)
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(A{) (Da) (D) (D2) (Vi) (Z.4) ) (Z2) () | (Z1)

(A1) (D) (3) (03) (V1) ] (Za) (Z2) (D7) {Zn) | (S0)
241 | (V) (Z3) (Z2) 2(V4) (Z2) 2(Zs) 2(Za) @) 2Za) | (49)
Vo) (01 (D3) + (Zg ) |3V (Za) + (Zg) () (Z2} + 2(Z5) (D) + (%) 3(@) | (D7)
VODD+VD)| D) | (D) +(Z) BV (E) + (L) T} | @) +2Z3) | D)+ @) 3@ [(DD
Vo) [[(PH+Wa) | (DD | WD)+ (Za) [304) | (Z3)+ (Z2) (Z1) 3(Z2) DD+ (@) |32 | (D)
(Zs) (0D [PH+DD| 2ADD | (@) (@) (Zs) +(Z1) 2(Zy) 2D+ (Z) | 4Z) | (DF)
(Z2) | (D3)+ (Za)|  ADY) | 2AD3) + () | B(Z2) | (Za) + (Zn) 2Za) | AZo)+2(Z0)| 2D H2AZ1) | 6(Z0) | (DR)
(Zy) || (DF) + &) (D1) + (DD | 2AD8) + (Z1) |3(Z3) | (Zg)+ (Za) 2Ze) 2Z7) + 2Zn)|(Dn) + (DF) + 2(Za)| 6(Za) | (DF)
2(Vy) 3(Vy) (%) (Za) + 2073 Y [6(V )| (Ba) + 2(Zy) 2(Za) 2(%a) + 47y ) 3(7n) 6(Za) (V)
(@) | @)+ (Z2)|  (Z) (@) + (@) |B(Z2) | 22)+ (Z0) | AZa) | 2(Z2) +2T) 3(Z1) 6(Z1) | (Z;)

2(Z5)) (Z3) + (Z3) (Z1) (@) + (@) |3y )} 2Z0) + (Ta) 2T} 22y )+ 2(Z0) 3(Z1) 6(Z1} | (Z5
2(Z) (1) (Z3) + (Zn) 2(Z4) 2(Z) 2(Zy) 2(2Z5) + 2(Zy) HZ) HZy) 8(Z1) | (Z4)
27y 3(Z) 2AZ1) |2 ALY 6(Z5 ) (223 ) 2(E0)| ATy (A(Zg) +A(E) 6(Z1) 12(Z1)| (£5)
(@) || (D) +(Za) [2ADD) + (Z0)|2(DD) + 2(Z1)| 3(Z1) | 3(Z) 4(Zy) 6(Z1) 2Dy +5(Z1)  |12(Z)] (D)

Table A3.16. Multiplication table for the A(S)-module A} (S x S')

(As) (A4) Ds) (D3) (Zs) (Va) (Zs) (Z2) | (Z41)
(AR]] (A3 + (2h) (Z2) (Z5) 4 (72) (7} (Vi) +(Z1) | 2AZ8) + (2:) (Z2} + 2(2a) 5(Za) | (A2)
(AR AR+ (@) () (25) -+ (Za) (Z) (Va) b @) |2AZR) + () | (Ze) 4 2(%0) | B(Z) [{AT)
(ng) (Z3) (DF)+(Z3) 2Z3) (Zs) + (Z1) 3(Zy) 2(7) 2(Z5)+ 202 | 6(Za) | (DE)
DI @)+ (23} 2AZz)  (DPH4H{Eg) 1 (Za)f 2AZa) 3(Z)+ () | (Zo) +3(Z0) | 2AZ7)+ 4Za)  10(Za)] (D)
(Z3) (Z4) (@) + (@) 2(Zy) AZH) + 2AZa) 3(Z1) 4(Z1) 6(Z1) 12AZ)| (28
@2 (Z1) (Z&) + (Tn) 2(Zn) AZP)+ 2AZa)|  {(Tn) A(Zy) 6(Z1) 12(Z4)| (Z¢)
Vo) [ (V) + (Za) | 2Z2) + (Z2) (223 ) + (Z2) + (Za) 3(Z)  PBOVLOIH3EZY| (&) |2AZ3) + (Z2) +6(Z)18(Z0)] (Vy)
(Z5) ||2ZH) + Z)|  2AZn) (Z8) +3(Z1) A(Z1) 5(Zh) . 2(Z8) + 6(Zy) 16(Z+) 20(Z:1)) (Z8)
(Z2) ([(Z3) + 220|225 ) + 2Za)} AZy) +4(Z4) 6(Z1) 3Z;)+6(Za)|  10(Z4) AZy )+ 14(Zy)  B0(Ta)| (Z3)

Table A3.17. Multiplication table for the A(As)-module A}(As x §')
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(©2)) (50(2)) (D)

(0(2)) (50(2)) (Do) (0(2))
(50(2)) || 2(50(2)) 0 (50(2))

(D) 0 2(Dy), where I = ged(n, m) (Dn)
(0(2)7) || (50(2)) (D7) (O(2)7)
(SO2)%) || 2(50(2)%) 0 (50(2)%)

(D%) 0 2(D7), where | = ged(n, m) (DE)

(D) o | [Hlooslyenee (- on | wi)

where | = ged(m, 2k)

Table A3.18. Multiplication table for the A(O(2))-module A}(O(2) x S*)

(Zom x SY) | (SOQ2) X Zt,) | (T x Ty | (SO(2)7"1) | (Z5F")
(Zn x S") 0 (Zn X Z1,) 0 (ZEm1) 0
(50(2) X Ziy) |} (Zoy ZIQ) 0 0 (Zm X Zg) 0
(Zn ¥ Ty) 0 0 0 0 0
(SO@)7 =) || (@Ee) | (@ x ) 0 (Zi) 0
(SO ") || (Zm X Zay) | (Zm X L) (Z&Hy
(ZEF 1) 0 0 0

where [ = ged(ly,l2) and m > n.

Table A3.19. Multiplication Table for the U(T%)
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(SO(2) x §") (D x SY (Z x ST)
(SO(2) x $H||2(S0(2) x §") (Zom x SY) 2Zom x S
. 1 Q(I)k, X Sl) — (Zk X Sl) (Zk X Sl)
(Dn > 57) (Zn > 57) {k = ged(m,n) {k = ged(m, n)
1 -1 (Zk X Sl)
(Zn, x S7) 2(Zn x 5°) { k = ged(m,n) 0
(0(2) x Zu) || (SO(2) x Zi) (Dm) X Zi) (Zm % T)
(SO(2) x Zy) ||2(SO(2) x Zy) (Zom X Z1) 2(Zm x )
} Q(I)k X Zg) - (Zk X Zl),
(Do x ) (T x ) {k = ged(n, m) 0
(Zn X Zl) Q(Zn X Zl) ‘ 0 g 0
0@~ || (50(2) x Z (D) (Zm % Zi)
(0(2)7") || 2(50(2)™) (z7") 2Z5)
z, Z(D;I) - (Zk X Zl)7 .
(D) (Zn < Z) {k = ged(m, n) 0
(D5) al 2(Dy) — (Z3),
{m even (Zak) {k zzg;cd(m, rf) 0
d,l 2y
(P52) @) { (D 24) + (D) = (B % 2), .
m  odd k = ged(m, 2n)
(zgh 2z 0
(Z3,,) 2(Z3;,) 0
(0(2) x Z1,) |[(SO(2) x Zn,) | (O(2)™) | (SO(2)*"2) [(50(2)%")
(SO )| 2(Zn x Zu) | 2Zn x Z1) |22 x Z0)|(ZE750) + (ZE70) | 2(Z55)

where [ = ged(ly, ). All other products (except for (O(2) x S'), which is the unit element in
U(O(2) x §')) are zero.

Table A3.20. Multiplication Table for U(O(2) x S')






A4

Tables of Computational Results

A4.1 Results for Section 6.3

A4.1.1 Hopf Bifurcation in a FDE-System with Ds-Symmetry

Consider the system (6.42) with the matrix C of the type

(cd00d]
ded00
C=10decd0
00dcd
| d00dc|

which is symmetric with respect to the dihedral group I' = Dj acting on
V =R5 Let p:= eis be the generator of Zs and & be the operator of complex
conjugation. Notice that p acts on a vector z = (z°,z',. .., z*) by sending the
k-th coordinate of z to the k + 1 (mod 5) coordinate and s acts by reversing
the order of the components of z.

, (A4.1)

We have the following isotypical decomposition of V' (cf. [15, 5] for details)
V=Vy& V1 & Vs,

where V; are explained in Appendix A2.2.4.
The spectrum of ' is given by

V5 —1 : \/5+1}
et

1 & =c—2d

The dominating orbit types in W are (Ds), (Z&'), (Z&) and (D?) (cf. Appendix
A2.1.2 for definitions).

o(C)={&=c+2d,6l =c+

Using the command
w(ae, Bs)1 = showdegree (go,€1,--.,6r, to, t1,.. ., &),

we obtain the results for the Ds-symmetric Hopf bifurcation problem of the
system (6.42) and organize them in Tables A4.1.



326 A4 Tables of Computational Results

E(ﬁ €0,€1,E2 wley, B # Branches
£2 000 (Ds) 1
52 100 —(Ds) 1
& 001 (Ds) = 2(D1) + (Z) 1
& 110 —(Ds) 4+ 2(D1) = (Zn) 1
3 011 (Ds) 1
I3 111 —(Ds) 1
I3 000 (ZE) + (D7) + (D1) — (Z4) 8
£l 100 —(ZL) — (D}) — (D) + (Zv) 8
£ 001 (ZE) — (D7) — (D1) + (Z1) 8
& 110 —(Zg) + (D7) + (Dh) — (Za) 8
13 011 (Zg') — (DY) — (D1) + (Z1) 8
& 111 —(Zg') — (D}) — (D) + (Za) 8
& 000 (Z&) + (D7) + (D) — (Za) 8
& 100 —(Z5*) = (DF) — (D1) + (Z1) 8
& 001 (Zg2) — (D) — (D) + (Za) 8
& 110 —(Z) + (D) + (D1) — (Zn) 8
& 1 on (Zg?) + (DY) + (D) — (Z1) 8
¢ 111 —(Z2) ~ (DF) = (D) + (Z1) 8

Table A4.1. Equivariant classification of the Hopf bifurcation with Ds symmetries

A4.1.2 Hopf Bifurcation in a FDE-System with S4-Symmetry

Counsider the system (6.42) with the matrix C' of the type

O =

cd0d0d00]
dcd000d0
0ded000d
d0dcd000
000dcd0d|’
d000dcdo
04000dcd
100d0d0dc|

(A4.2)

which is symmetric with respect to the octahedral group I' = S, where S,
acts on the space V := R® by permuting the coordinates of the vectors in
the same way as the symmetries of a cube in R® permute its eight vertices.
It can be verified that the representation V has the following Ss-isotypical
decomposition (cf. [15, 5] for details)
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V=YooV ®VsD Vs,
where V; are explained in Appendix A2.2.6. The spectrum of C is given by
o(C)={l =c+3d,¢ =c—3d,& =c+d, & =c—d}.
The dominating orbit types in W are (Sy), (Sy), (D), (D$), (Z§) = (Z}),
(ZL) := (ZL), (D%) and (DZ) (cf. Appendix A2.1.4 for definitions).
Using the command

w(ay, 8,)1 = showdegree(eg, €1, ...,&r, t0, by, ..., 1),

i

we obtain the results for the S;-symmetric Hopf bifurcation problem of the
system (6.42) and organize them in Tables A4.2.

A4.2 Results for Section 7.3

A4.2.1 Hopf Bifurcation in a NFDE-System with D4-Symmetry
Consider the system (7.34) with the matrix ), P, and P, of the type

cd0d
. _lded0 ‘
C = 0dedl’ (A4.3)

d0dc
which is symmetric with respect to the dihedral group I' = D, acting on
V = R4 Let € := ¢'% be the generator of Z; and s be the operator of complex
conjugation. Notice that ¢ acts on a vector z = (z°, z', 2%, %) by sending the
k-th coordinate of z to the k4 1 (mod 4) coordinate and « acts by reversing
the order of the components of z.

We have the [ -isotypical decompositions
V=WVioVidVs, V =U ol &Us,

thus {€;,, i, ..., } = {€0,€1,€3}, and there are three types of bifurcation
points (a,, f,) correspondingly. Since getting the complete list of the bifurca-
tion invariants w(A,)1 for the system (7.34) is a simple task of applying the
Maple® package for the group I' = D, by

w(Ao)1 = showdegree(eq, €1, 0, €3, 0, tg, £, 0, {3, 0),

we present in Table A4.3 only some selected results for the group Djy.
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€10, 61,63, 64 w(ers, Bih / Branches
g}l 0000 (S4) 1
& 1000 —{54) 1
€3] 0100 (S4) — (Ad) 1
€l 1010 ~{(84) + 2{D3) + (Do) = 3(D1) + (Zy) 1
e 01m (S1) = (As) = (Za) + (Za) — (D1) + (Zy) 1
&9 1011 —(Sa) + 2(D3) + (D2) + (Za) — (Zs) — 2(D1) — (Z2) + (Za) 1
el o —(S1) = (Ayg) ~ 2D3) ~ (D2) — (Za) + (Z3) + 2(Dh) -+ (L) ~ (Zn) 1
g 1un (85) + (As) +-2(Ds) + {D2) + (Za) ~ (Zs) ~ AD1) — (Z2) + (Z1) 1
&l 0000 (S7}) 1
¢l 1000 -(87) 1
el o100 (S}~ (A1) !
¢l 1010 —(S7) 4+ 2ADE) + (DE) = 3(D) + (Z1) 1
& 0101 {(87) = (Aa) = (Z7) + (Z3) — (D7) + (Ze) 1
& 1011 =(S7) +2D3) + (D3) + (Z7) — (Za) = 2(D3) — (Z2) + (Z1) 1
el o1 (85) = (A1) — 2(D3) — (D3) — (Z7) + (Zs) + 2(D]) + (Zo) ~ (Z4) !
& 1un (S )+ (Aa) + 2D3) + (D3) + (Z3) ~ (Zs) = 2(DY) = (Ze) + (Za) 1
& 0000 (DF) + (D) + (Dg) +(Z3) + (Zé) —(Dy) - (Z-;) 24
£ 1000 —(DY) = (Ds) — (DY) = (Z5) ~ (Z4) + (D1) -+ (Z5) 24
¢l o010 (D} -+ (Da) + (D) +(Z5) — (Vi) = (Zh) = (Zs) — (D) — (27 )4 (Z4) 24
&) 1010 —(D) 4 (Ds) + (D$) = (ZS) + (Z8) — (DF) = 3(D) + (Z3) + (Zy) 24
g 0101 (D) b (Da) b (D)4 (D2) = (Z8) — (25 ) — (Vi) b (Zh) — (D) = 3(D1) | (Z5) 4 (2 ) (Zl) 24
gl Jon —(1):)‘*"(1)3)4"(I)g)+(1)2)+(zg)+(ZE)—(ZEX)—(Z:&) (D) = (Z3) ~ (Za2) + 24
g3l 0111 (D) ~ (Ds) = (DF) — (Do) = (Z§) — (Z7) — (Vi) ~ (Zh) 4 (D) ¥ (Z5) + (Zz 24
&1 1m ~(DF) + (Ds) + ( 9+ (D) + (24)+( )+ VD)4 (Z3) - (D) = (Z5) — (Zw) 24
¢l 0000 (D) H (D3 1 (DEy 1 (ZE) 1 (Zh) - (DY) - (Z7) 24
& 1000 —(D3) — (D3) ~ (%) — (Z§) — (Zh) + (D) + (Z5) 24
& 0100 (DF)+ (D3) + (D) +(Z5) — (Vi) = (Zh) — (Zs) — (D) = (Z3) + (Zn) 24
& 1010 —(D5Y+ (D) + (D) + (D§) — (Z9) +(Z%) — 3(D}) — (D1) + (Z3) + (Za1) 24
¢l 0101 (D) + (D3) + (D) — (ZS) — (Za) — (VY +(Z8) = 3(D2) — () + (Z3) +(Z2) + (Za) 24
&Gyooont = (D7) + (D3) + (DY) + (D3) + (Z5) + (Za) — (Z8) ~ (Zy) — (D}) — (Z5) — (7))+(Zx) 24
& o111 (D3) — (D3) =~ (D) ~ (D§) — (Z5) — (Za) — (V) — (Zh) + D)F 2 )+ (Z2) 24
I3 1111 —(D3) + (D5) + (D) + (D3) + (Z5) + (Za) + (Vi) +(Z8) — (D) — (Z ) (Z2) 24

Table A4.2. Equivariant classification of the Hopf bifurcation with S; symmetries

A4.2.2 Hopf Bifurcation in a NFDE-System with A5-Symmetry

Consider the system (7.34) with the matrix @, P and P, of the type (A4.4)



A4.2 Results for Section 7.3 329

FEjileo,e1,€n

w((1:)7 /[30) 1

4 Branches

Bo| 0,1,1
Eo| 1,1,0
Bo| 1,1,1
E,| 0,0,1
Eyp 0,1,0
Ei| 0,1,1
Eil 1,10
Bl L1l
Esl 0,11
Es;| 1,0,1
Ez} 11,0
Esl 1,11

(D1) = (Za) = (D1) — (D) + (7a)
—(D4) + (D1) + (D) ~ (Z1)
—(D1) + (Za) + (D) + (D1) — (Z4)
—(Z4) + (D§) + (D§) — (Z3)

(Z4) + (DY) + (DF) — (Z3) — (DF) — (DF) — (D1) — (Dy) + 2(Zs)
—(Z%) + (D) + (D3) — (23) — (D}) — (Df) — (D1) — (D1) + 2(Za)
~(Z§) — (DF) — (D) + (Z3) + (DF) + (D§) + (D) + (D1) — 2(Z1)

(Z) — (D) — (D§) + (Z3) + (D}) + (D) + (D1) + (D1) — 2(Z1)

(DY) — (2%) ~ (D}) — (D) + (Za)
—(D§) + (z9)
—(Df) + (D}) + (Dv) — (Za)
~ (D) + (Z5) + (D7) + (D1) — (Z1)

Table A4.3. Examples of the equivariant classification of the Hopf bifurcation with D4 symmetries

fed00d00d0000000000007
ded00000040000000000
0ded00000004000000060
00decd00000000d000000
d00de¢d00000000000000
0000dcd0000000d00000
00000dcd000000060d000
d00000dcd00000000000
0000000dcd0000000d00
o 0d000000decd000000000
000000000dcd0000004dO
00d0000000decd0000000
00000000000decd00000d
000d4d00000000dcd00000
00000d0000000decd0O000
00000000000000dcd00d
000000400000000dcd00
00000000d0000000dcd0
00000000004000000dcd
L000000000000d00d004d ¢

We have the following As-isotypical decompositions

thus {&;,, €4, -

V=YoViaeV|eV,eVseV,
VE=Uy @ [U B U B Uy B Us S Uy,

(Ad.4)

-y Ein b = {€0,€1,€2,€3,€4 }, and there are five types of bifurca-

tion points (a,, f,) correspondingly. A partial list of the bifurcation invariants
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w(Ay)1 for the system (7.34) is presented in Table A4.4, which was established
by using the Maple® package for the group I' = As,

w(/\())l = showdegree(&:o, £1,&2,8&3, &4, t(), t17 tz, tg, 14).

Ej{eo,e1,e2,€3,¢4 w(Ao )1 # Branches
Fo 10101 —(As) + 2(Ds) + 2(D3) — (Zs) ~ (Z3) — 4(Z2) + 2(Zy) 1
Ey 11101 —(As) + 2(A4) + 2 Ds) — (Za) — 2Zs) - 3(Za) + 2(Z1) i
B 0000 (Ag) 4 (DE) A+ (Da) + (Z8) + (Z2) + (V7)) +(Zy) — (Za) — (Z3) — (Za) 55
B 00100 (As) = (D3) = (D3) — (Zg') = (Z&) + (V™) — (Z5) — (Zs) 55
~(Z3) ~ (Z2) + 2AZy)
E; 00110 {(Ag) = (DEY — (D3) -+ (Z8) + (Z2) + (V) + (Z4) + (Zs) 55
HZy) + (Z2)
By 10001 —(Aq) = (D3} — (D) + (Zg") -+ (Z?) — (Vi) + (Zh) + 3(Zs) 55
+3(Z3) + 3(Zz) — A(Zy)
E 10101 —(As) + (D) 1+ (Ds) = (Z5") = (Z3) — (Vi) — (Z4) ~ (Zs) 55
—(Z3) — (Z2) + 2AZ)
B 00000 (AFY 1 (AP) 1 (Ds) 4+ (Ds) + (ZE) + (Z2) + (Vi) — AZz) 50
Fs 00110 (AR + (AR) — (Ds) — (D3) +(Z8) +(Z2) + (Zs) + (Vy) 50
+(Zs) + 2(Z2) — 2(Zy)
L 01010 —(AY) = (APY 1 (Ds) — (D3) = (BE) — (Z8) — (Zs) — (Vi) + (Z) 50
Bl 10100 ~(AF) ~ (AR) + (Ds) + (Ds) + (Z*) + (Z*) — (Vi) + A(Zh) 50
F2AZS) 4 (Z2) — 3(Zy)
Es 00010 (DEY+ (D) = (Z8) — (Zs) + (V) ~ (Z%) — (Z3) — N(Z3) — (Z2) + 3(Zy) 14
E, 00100 —(DE) —(DF) — (ZH) 1 (V) ~ (Zh) — (Z2) 1 (Z1) 44
E; 01010 (DEY — (D3 — (ZE) — (V) — (Z§) + (Zy) 44
By 10011 —(Dg) — (D5) = (Zg') — (Vi) — (Z4) + 2(Z7) 14
Es 10100 (D8) + (D3) + (Zg') — (Vi) + (Zh) + (Z2) — (Zn) 14
E 11110 (DE) —(D§) —(Z8) —(Zs) + (V) — (Z8) — 2(Z5) — (Za) + 2(Zy) 44
Es 00010 (DE) + (DF) —(Z2) — (Zs) + (V) = (Z8) — (Zs) — MZ3) — (Z2) + 3(Zy) 41
A 00100 —(Dg) — (D§) —(Z&) + (V) = (Z}) — (Z2) +(Zy) 44
Ly 01010 (D§) — (D) — (Zg?) — (V™) — (Z&) + (Zy) 44
E 10011 —(DE) — (D§) - (Z) — (Vi) — (Z§) + 2(Z3) 44
Ey 10100 (D) + (DF) + (Z&) = (Vi) + (Z3) + (Z2) — (Za) a4
Eq 11110 (D§) = (D3) — (Z5*) — (Zs) + (Vi7) — (Z§) — 2(Z7) ~ (Za) + 2(Z1) 44

Table A4.4. Examples of the equivariant classification of the Hopf bifurcation with As symmetries

A4.3 Results for Section 8.3
A4.3.1 Hopf Bifurcation in a FPDE-System with D3-Symmetry

We assume here that the matrix C' is of type
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cdd
C=ldcd
ddc

with ¢ = —3 and d = —1. In this case we have o(C) = {°6) = —5,'¢; = =2},
m(&) = m(§;) = 1. The bifurcation invariants w(c,,m k, Bumk, 0)1 in this case
are listed in Table A4.5, which was established by using the Maple routines
for the group I" = D3, in the following way:

w(ay,m,ky ﬁl/,'m,,lﬁ 0)1 - (_ 1)VSh0Wdegl“ee [D3] (507 &1, 07 m’()({k)? my (<k)7 0)

¢, | €0,€1 W(Qwm ks Bram ks O #
O | 00 (—1)" ((Da)) 1
%, | o1 (—1)" ((Dg) - (Zg)) 1
050 10 (—1)”+1((l)3)) 1
% | 11 (—1)~ 1! ((D:;) - (Za)) 1
e p 00 [ (=DY((Z3)+ DD+ (D)~ (Zn)) | 6
ool (—U”E(Zﬁ) — (D7) = (D) + (Z4) 6
Y| 10 | (D) (ZE) + (D) + (D) — (Zw)) | 6
G| on 0—1)”+1g(2€)—(IDf)~A(l>1)+—(Zh)§ 6

Table A4.5. Equivariant classification of the Hopf bifurcation with D3 symmetries

A4.3.2 Hopf Bifurcation in a FPDE-System with A4-Symmetry

We assume here that the matrix C is of type

cddd
dedd
C=ldaded
dddec
with ¢ = —4 and d = 1. Clearly, C is As-equivariant. In this case we have

o(C) = {—1,—-5}. We classify the eigenvalues of C' as 058 = —1,35? = -5
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and we have the following multiplicitics m(&y) = m(&;) = 1. Sample invariants
w(0ymk, Bvmk, 0)1 in this case are listed in Table A4.6. To obtain the other
invariants, use the Maple routines for the group I' = Ay:

w(awm’k, ﬁy,fln)k7 0)1 = (—- 1)”showdegree [A4] (60, 0, £3, mo(Ck), 0, 0, mg(Ck))

& | €o,e3 (ks B O)1 #
% | 00 (-1)"((40)) 1
% | 01 (-1)" ((As) = 2(Za) — (Z2) + (2)) 1
% | 10 (- 1)““((/11)) 1
% | 1 (=D ((As) = 22s) - (22) + (20)) 1
| 00 (=17 (Vi) + @) + (Z82) + (Zs) — (Z0)) 12
oL | () - (@) - @)~ (Zs) - (Z5) - @) +2@0)) | 12
| 10 1 (Vi) + @) + (@22) + (2a) - (@) 12
| 1| e () - @) - @) - (2) - (27) - (Z2) +2(2) | 12

Table A4.6. Equivariant classification of the Hopf bifurcation with A, symmetries

A4.4 Results for Section 9.3

A4.4.1 Existence in Qg-Symmetric Lotka-Volterra Type System

The quaternionic group (g can be described as a subgroup of Sg generated by
= (1324)(5867), j := (1526)(3748).

We consider the space V' := R® on which Qg acts by permuting the coordinates
of vectors ¢ € V. Consider the matrix

(acbbddee]
cabbddee
bbaceedd
bbcaecedd
ddecachbd
ddececabbd
eceddbbac
lceddbbca
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The matrix A commutes with the Qg-action on V. The matrix A has the

following eigenvalues and eigenspaces:
f1:=a—2e+c—2b+ 2d, p1) ~ Vs,

) ~ Wy,

12

(
Mo = a—2e+c+ 2b— 2d, (

Yy

= S =

l3 i=a— ¢, (u3) ~ Vs (quaternionic type),
sy =a—+2e+c—2b—2d, E(um)~ Vs,
ps = a+2e+c+2b+2d, E(us) ~ Vo

For definiteness, we choose the positive entries of A beinga =8, b=1, ¢ = 3,
d=2e=15and 7 =14, so

T =40, TPy =24, Ty =20, TR =32, TIs = 80,
so we can easily determine (from Table 9.1 the values n(u;), i.e.
n(p) =6, n(pe) =3, n(us) =2, n(a) =4, n(us) =12.

Then we have

mgy =1, Moz =2, mo3=3, mog=4, mos=>5 mog=06,
Moz =7, Mog=2>5, Moo =14, myip=3, My =2, my2 =1,

myyp=1 m2=2 mz=1 mp; =1 mys =2 my3=23,

myy =3, Mps =2, Mpg=1 my, =1, myy =2 mys=2,

maa =1, my; =2, my; =2

By applying formula (9.41) we obtain
[o] = deg Vou T 2deg Voo T 3deg Voo T 4deg Vou T 5deg Vos T 6deg Voo T Tdeg Vorr
+ 5degy, , + 4degy, , + 3degy, , + 2degy, |, +degy, , +degy, , +2degy, ,
+ deg Vgt deg Vau T 2deg Voo T 3deg Vas T 3deg Vau T 2deg Vas T deg Vas
+ degva’l + 2deg Vaa T 2degv3)3 + deg Vaa T 2deg Var T 2deg V1o
where
deg Vo)] = (Q8)7 degvk’l = (QIS(—)7 k = 17273
degy,, = (25") + (23") + (2§") + (73") + —(Z3)

The dominating orbit types in H* are (Qg), (Q57) and (Z4*) for k = 1,2,3.
Consequently, we obtain
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e there is at least 1 nonstationary periodic solution with symmetry (@s) ,

e there is at least 1 nonstationary periodic solution with symmetry (Qg™),
e there are at least 1 nonstationary periodic solution with symmetrics (Q27),
e there are at least 1 nonstationary periodic solution with symmetries (Qg_),
e there are at least 2 nonstationary periodic solutions with symmetries

14

(Z5"),

there are at least 2 nonstationary periodic solutions with symmetries
2+

(Z4 )7 )
there are at least 2 nonstationary periodic solutions with symmetries
3

(Zy")-

In swinmary, there exist at least 10 nonconstant periodic solutions of (9.20).

A4.4.2 Existence in Dg-Symmetric Lotka-Volterra Type System

Consider the dihedral group Dy = {1,7,%, ..., %", K, &7,7%, ..., &Y'} C O(2),
where  can be identified with e (i.e. 7 is a complex linear operator v(2) =

L 1 O . -
et z)and K 1= [ . We consider the space V := R3 where v € Dy acts on

0-1
a vector (z), 22, ..., 2s) by sending the k-th coordinate of x to the k+ 1 (mod
n) coordinate and x € Dy acts by reversing the order of the components of x.
Consider the following /)g-equivariant matrix A

[dcd00000]
0dcd0000
00dcd000

A=1000dcd00
0000dcdO
00000dcd

| 400000dc|

The matrix A has the following eigenvalues and the corresponding eigenspaces

= c+2d, 1) =~ Vo
Uz = c+ \@d7 H2 f”\')vh
H3 =€,

g 1= C— \2d,

st = gz ;gz =
=

N’ p— &O-/ N’ A
1R
AS

ps 1= ¢ — 2d,
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For definiteness, we choose the positive entries of A by letting ¢ = 9, d = 3
and 7 = 4, so

T =60, Ty~ 52.97, Tuy =36, Tus~ 19.03, Tus = 12.

To determine the numbers n(p;), for ¢ = 0,1,2,3,5, we list the approximate
values of % + 2nm we use Table 9.1 so, we have

n(p) =9, nlpg) =8, n(us) =5, n(ps) =2, n(ps) =1.
Let 7; = 2 and j, = 1. Then,

my; =1, mpa =2, myz =3, Moy =4, Mys =9, My =4,

mp7 =3, Mog =

[\
2
o
|
—

: myp =1, ma2=2 m3z=23
miz=4, ms=4 mg=3 mry=2, mg=1 my; =1,

?

Moo =2, Mp3z =23, Myy =2, Mys =1, mg =1, myo =2,

3 H

mys =1, msy = 1.

By applying formula (9.41) we obtain

[e}= deg, , +2deg,, , + 3deg,, , + 4deg, , + ddegy,  +4degy, ; + 3degy, .
+ 2degy, , + degy, , +degy, |+ 2degy, , + 3degy, , +4degy, , +4degy,
+ 3deg Ve T 2deg Vir T deg Vi T deg var T 2deg Ve T 3deg Vag T 2deg Vas
+ degy, , +degy,, + 2degy, , +degy, , +degyy ),

where

deg VO,I - (D8)7
degy, | = (Z§) + (D) + (D§) — (Z3),

degy,, = (Zg) + (D§) + (Df) — (Z7),
degy,, = (‘Dg).

~ The dominating orbit types in H* are (Ds), (Dg), (Z), (Z¢), (Z§) and
(Dg). Consequently, we obtain

e there is at least 1 nonstationary periodic solution with symmetry (Dsg),
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there is at least 1 nonstationary periodic solution with symmetry (D%)

L 4
?
e there are at least 2 nonstationary periodic solutions with symmetries (D5),
e there arc at least 2 nonstationary periodic solutions with symmetries (Z§ ),
there are at least2 nonstationary periodic solutions with least symmetries

¢
(Z82)7
there are at least 2 nonstationary periodic solutions with least symmetries
1%}
(Zg')-

In summary, there exist at least 10 nonconstant periodic solutions of (9.20).

A4.4.3 FExistence in S3-Symmetric Lotka-Volterra Type System

Assume that the octahedral group S; acts on V := R*® by permuting the
coordinates in such a way that (1234) € Sy corresponds to the permutation
(1234)(5678) € Sy and (12) € S4 corresponds to (17)(28)34)(56) € Sy (i.e.
S4 acts on V in the same way as it permutes the vertices of a regular cube).
Consider the matrix

fabcbbedc]
babccbed
cbabdcbc
bcbacdcbd
bedcabeb
cbedbabe
debeecbabd
lcdcbbcba

The matrix A commutes with the Sj-action on V. The matrix A has the
following eigenvalues and cigenspaces:

p1:=3b+a+ 3c+d, E(,u,l)

py = —3b+a+3c—d, E(u)~V,
psi=-—b+a—c+d, E(,u:;) ~ Yy,
s =b+a—c—d, E(m):%.

For definiteness, we choose the positive entries of A beinga =6,b=1, c =2,
d=2.5and 7 =4, so

THI = 70) TH2 = 267 TH3 = 227 THy = 10’

s0 we can easily determine (from Table 9.1 the values n{u;), i.c.
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n(u) =10, n(u2) =3, nlus) =3, n(ug) = 1.

As before, we choose j» = 1 and j; = 2. Then we have

mo1 =1, mpp =2, mgg=3, mogg =4, Mys =25, mMyg =09,

my7 =4,

Myg =3, Moy =2, Myp=1 my11 =2, Mgz =1,

myy =1, mao=2 mz=1 mg; =1 mgy =2, my3=1,

m471 = 1.

By applying formula (9.41) we obtain

[e]= degy, , + 2degy,, + 3degy, , + 4degy, , + Sdegy,  + Sdeg,  + 4degy, .

+ 3deg Vos + 2deg Yoo T deg Vo.to + deg via T 2deg Ve T deg Vg T deg Va

+ 2deg,, , + degy, , + degy, |,

where

deg Vo1
deg Via
deg V31

degy, |

= (S4),

= (83), |
= (23) + (DY) + (D) + (Ds) + (Z3) — (Z7) — (Dv),

= (Z5) + (D) + (D3) + (D5) + (Z§) — (Z3) — (D}).

The dominating orbit types in H* are (S4), (S7), (DY), (DY), (Z5), (Z4)
and (D3%). Consequently, we obtain

(ZZ)7

(Z5),

(D3)-

there is at least 1 nonstationary periodic solution with symmetry (S;),
there is at least 1 nonstationary periodic solution with symmetry (S5 ),
there are at least 3 nonstationary periodic solutions with symmetries (D$),
there are at least 6 nonstationary periodic solutions with symmetries (D),
there are at least 6 nonstationary periodic solutions with least symmetries

there are at least 8 nonstationary periodic solutions with least symmetries

there are at least 3 nonstationary periodic solutions with least symmetries

In summary, there exist at least 28 nonconstant periodic solutions of (9.20).



338 A4 Tables of Computational Results

Remark A4.4.1. One can consider other symmetry groups in (9.20), such
as Ds, Dy, Ds, Dg, D7, Dy, D1o, D11, Dy2, Ag or As, for which there exists
already developed computational database (including Maple® routines for the
twisted equivariant degree). As it is clear from the formula (9.41) and the
above examples, the similar existence results for all these groups can be easily
obtained.

A4.5 Results for Section 10.1

Consider the system (10.1) assuming that (A1)-—(Ab). As the symmetry group
I’ take the dihedral groups Dy, D5, Dg, the octahedral group Sy and the icosa~
hedral group As. Assume that V := R”" is an orthogonal ['-representation,
where [ acts on u = (ug,us,...,u,) € V by permuting its coordinates. More-
over, for I' = D, assume that C is of the type

ced0...0d
ded...00

d00...dc
For I' = 54, C is of the type

[cd0d0d00]
ded000do
0ded000d
d0dcd000
000dcdod
d000dcdO
0d000dcd
[0040d0dc

For I' = Ag, C is of the type
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fed00d00d0000000000007
ded00000040000000000
0dcd0O00O0000400000000
00dcd000000004000000
d00decd00000000000000
0000dcd0000000d400000
00000dcd000000004000
d00000ded00000000000
0000000dcd0000000d0O0
04d000000dcd000000000
000000000dcd000000dO
00d0000000dcd0000000
00000000000dcd00000d
000d00000000dcd00000
0000040000000dcd0000
00000000000000decd00Od
000000d400000000dcd00
00000000400600000dcd0
0000000000d4d000000dcd

LO00O000000000d00d00d ]

For definiteness, let ¢ = 4.5, d = 1 for the matrix A, and ¢ = 9.5, d =1 for

the matrix B.

A4.5.1 Existence in D4s-Symmetric Auto. Newtonian System

In the case I' = Dy, we have V. = V, & V1 & V3, to which we associate the
sequence (g9,e1,€3) = (1,1,1) and o(A) = {£&) = 6.5,£ = 4.5,£} = 2.5},
o(B) = {& = 11.5,¢] = 9.5,& = 7.5}. Thus, we have the following non-zero

Tﬁf’s for A and B:

g(A) =1, mig(B)=1,
mA(A) =1, WmB)=1,
1, mi(B)=1.

Consequently, we have the non-zero isotypical defect numbers

m = —1,

Hence,

1

2 _ 3 _ 1
, mi=-1, mi=1 mg;=-1

ki

m: = 1.
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5 k
35~ (msy e,
: =1

30 k=1
=(-1)- <deg vou T deg vo,z) Tl <deg Vou T deg Voo Tt deg VO"’)
+(=1)- <deg via T ngV1.~2> 1 <d0gvhl T degvl,z t degv1’3)
+ (_1) 'degva,l t1- <d€gV3,1 + degv3’2>

= deg Vo,3 + df‘g Vi + deg Vi

Finally,

deg® = O3 [showdegree[D4] (1,1,0,1,0,1,1,0,0,0)]
+ O, [showdegree [D4] (1,1,0,1,0,0,0,0, 1,0)] .

The dominating orbit types in W are (Dy), (Z) := (Z4), (DY), (D%) and
(D). The value of deg is listed in Table A4.7.

A4.5.2 Existence in Ds-Symmetric Auto. Newtonian System

In the case I' = Ds, we have V = V3 & Vi & Vs, to which we associate the
sequence (£0,21,62) = (1,1,1) and o(A) = {&) = 6.5,¢6] = 454+ 5L &2 =
45— Y8 5(B) = {€0 = 11.5,¢} = 9.5+ Y51 ¢2 — 9.5 — Y51} Thug, we

have the following non-zero 777;“@ for A and B:

_mg(/\):L mg(B):l,
mi(A) =1, @mi(B)=1,
mi(A) =1, Mm(B)= 1.

Consequently, we have the non-zero isotypical defect numbers
mi=—1 mi=1 mi=-1, ml=1 ml=-1 mi=1

Hence,
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= deg Vo,3 + deg Via + deg Va2-
Finally,

deg' = O, [showdegree [D5] (1,1,1,0,1,1,0,0)]
+ O [showdegree [D5] (1,1,1,0,0,0,1,0)].

The dominating orbit types in W are (D), (Z2), (Z2) and (D%). The value
of deg* is listed in' Table A4.7.

A4.5.3 Existence in Dg-Symmetric Auto. Newtonian System

In the case I' = Dg, we have V = V), & V| & Vo @ V4, to which we associate
the sequence (eg,€1,€2,64) = (1,1,1,1) and o(A) = {£) = 6.5,£} = 5.5,£% =
35,68 = 2.5}, o(B) = {&) = 11 5, = 10.5,¢2 = 8.5,&] = 7.5}. Thus, we
have the following non-zero m s for A and B:

my(A) =1, my(B)=1,
mAA) =1, mi(B)=1,
my(A) =1, M3(B)=1,
mi(A) =1, @i(B)=1

m

= O

=—1, mj=1, mi=-1, mi=1,
1
4

my=-1, mi=1 m

Hence,
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s k
ZZ (mﬁzdeg Vj,l)
I=1

=0 k=1
=(-1)- (deg vou T deg Vo;z) +1. (deg o, T degy,, + deg VO’S)
+(~=1)- (degv1 Lt d(’gvu) +1- (degwl +degy, , + degvlya)
+ (1) -degy,, +(~1)- (degw1 + deng)
+(=1) -degy,, + (~1) - (degy,, +degy,, )
= d(}gvoy3 + deg Vi T degy,, + degy,,-
Finally,
deg’ = O3 [showdegree [D6] (1,1,1,0,1,0,1,1,0,0,0,0)]

+ O, [showdegree[D6] (1,1,1,0,1,0,0,0,1,0,1,0)] .

The dominating orbit types in W are (1)6), (DD, (Z), (Z&), (DY) and
(DZ). The value of deg’ is listed in Table A4.7.

A4.5.4 Existence in S;-Symmetric Auto. Newtonian System

For the octahedral group S, we consider the representation V = R®, which has
the isotypical decomposition V = Vy & V; & V3 @ V,, to which we associate
the sequence (g9,21,€3,€4) = (1,1,1,1), and o(A4) = {£ = 7.5,4] =1.5,¢ =
5.5,{1 = 3.5}, o(B) = {€ = 12.5,¢] = 6.5,& = 10.5,£1 = 8.5}. Thus, we
have the following non-zero mﬁ-"s for A and B:

FHA) =1, WYB)=1,
mi(A) =1, f(B)=1,
mi(A) =1, mi(B)=1,
my(A) =1, mi(B)=1

Consequently, we have the non-zero isotypical defect numbers

9 _ 3 _ 1 _ 2 _
mo — _1, m() — ]., m1 — _1, ml — ].,
mi=~1, m=1 mj=-1 mi=1

Hence,
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r deg®

# Sols

—(D§*) + (D5) + (D7?) - (DY)

Dy | =(Di) = (Z{°) + (Dy?) = (D5*) + (D)
+(Z5 %) ~ (DT®) + (D7) ~ 2(D3) + 2(DY)

8

—(Z5?) — (D7) — (DY) + (Z})

Ds —(D3) — (z") = (D}?) — (DY) + (Z3)

10

Ds | =(Dg")— (Zg™) + (D3) + 3(D5?) +

+2(Z3) — (Dg?) — (Z*) + (D3) + (D3
+2(Dy?) + (DF) + (25%) — 2D}") —
—(D}) = (Z5 %) — (Z3) + 2(Z3)

+(25*) - 2(D;*) — (DY) ~ (DY) - (ZZg)

11

Sy

A

+2

—~

+(DY

—2(Z3) + (Z3)

(
—(S) + (AD) — (D) + 3(D3) + (Dg?)
D+ (Z3°) + (2 ’)+(Z4)+<V4 %)
+(25%) — (Z3) — 3(D}) — (27%) — 2(23)
H(Z}) - (S77%) + (A7) — (D7) + 3(D5?)
(D3?)+ 2(D5*) + (257%) + (Z3 ) + (Z3)
HVTh + (Z5%) - (Z5) - 3(DY?) — (25

32

+22527) - 2V ) +20257) + (Z5) +
+2(Z3) - 3(Z3)

As —(A8) — (AF?) — (AR — (AD) + (DE?)
+3(DF) + 2(D57) + 4(D3) + 3(Z ) + 222 )
—3(V, ) + 6(Z5%) + (Z8) + 3(Z5°) — 5(Z3)
—(A) + (DZ*) + 2(D3?) + (D) + (257)

66

Table A4.7. Existence results for the system (10.1) with symmetry group I

s 00 k
ZZ (mgzdeg Vj,z)
=1

4=0 k=1

=(-1)- (deg Vou T degvoyg) +1- (deg‘w1 +degy,, + degvoyg)

+(-1)- deng’1 +1- (degw1 + degvu)

+(—1)- (deg var T degvm) +1- (deg Vaq T dcgvg,2 + dcgvg’g)

+ (—1) -degy, , +1- (degvm + degvm)
= degy,, +degy, , +deg,,  +degy, .

343
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Finally,

deg' = O3 [showdegree[S4] (1,1,0,1,1,1,0,0,1,0)]
+ ©; [showdegree [S41(1,1,0,1,1,0,1,0,0,1)] .

The dominating orbit types in W are (Sy), (S;), (D), (D2), (ZS) = (ZY),
(ZL) := (Z4}) and (DZ). The value of deg’ is listed in Table A4.7.

A4.5.5 Existence in As-Symmetric Auto. Newtonian System

Finally, we consider the system (10.1) with the group of symmetries G = Ag x
S, where As denotes the icosahedral group. The As-representation V' = R?
has the following isotypical decomposition

V=YV WVidV) Vo @ Vs @ Vi,

to which we associate the sequence (g9, €1, €2,€3,€4) = (1,0,1,1, 1), and o(A) =
{60 =756 =4.5€) =256 =556 =45+ /5,68 = 4.5 - /5}, o(B) =
{{&0 = 125,68 = 95,68 = 75,62 = 105,68 = 95+ V5,6 = 95— /5}}.
Thus, we have the following non-zero TAT’LJ"-"S for A and B:

mo(A) =1, my(B)=1,
mi(A) =1, m}(B)=1,
mi(A) =1, W(B)=1,
mA(A) =1, FHB)=1,
mi(A) =1, @YB)=1,
mi(A) =1, mi(B)= 1.

Consequently, we have the non-zero isotypical defect numbers

2 _ 3 _ L 3 _ 2 _
mU — _17 mO — 17 ml — —17 ml — 1, m2 — _1,
mi=1 mi=-1 mi=1 mi=-1 mij=1

Hence,
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5 o k
D CHET
=1

50 k=1
= (—1)- <dcg Vou T deg Vo,z) +1- <dog Vou T deg Voo T deg Vo,a)
+(=1) -degy, , +1- <degwl + degy, , + deg Vm)
+(—-1) - <deg Vau T degw,z) +1- <degv2y] + deng + degv.m)
+(=1)- (deg vy, T degv&z) +1- (degV&1 +degy,, + degvs‘a)
+ (=1) -degy,, +1- <dogv4y1 +dcgwy2) |
= deg Vo T deg v T deg vy t deg Vo T degy, , + deg Vs

Finally,

deg' = O3 [showdegree[A5] (1,0,1,1,1,1,1,1,1,0)]
+ O, [showdegree [A5] (1,0,1,1,1,0,1,0,0,1)] .

The dominating orbit types: (As), (D3), (Vi7), (ZY), (Z2), (AL, (A%) and
(D?). The value of deg® is listed in Table A4.7.

A4.6 Results for Section 10.2

We present the computational examples for I' = D,, and V =R" for n =
6, 8,10, 12. Consider the potential ¢ : V — R satisfying (A1)—(A3) and (A5).
The degeneracy assumptions are listed in Table A4.8.

r degq deg
Ds | (DA)+(Y1) | (Dr)+(N1)
Ds | (Da)+(Y1) | (Dp )+(N2 )
)
)

Do ( ) ( 2 ( ) (
Dya | (D))+(N2) | (DR)+(Y )

Table A4.8. Summary of the assumptions in the computational examples.
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A4.6.1 Existence in Dg-Symmetric Auto. Degen. Newtonian Sys.

Let I'= Dgand V =V, & V; &V, @ V. Consider the potential ¢ : V. — R
satisfying (A1)-—(A3) and (A5) with the matrices A and B being of the type

[cd000d]
ded000
0decd00
00dcd0
000dcd

| d000dc

It can be easily obtained that o(C) = {p0 = ¢+ 2d, pn = c+d, po = c—d, j1q =
c — 2d}, where each u; has its eigenspace F(u;) ~ V;. Take ¢ = 8.8, d = 4.4
for A and ¢ = d = 1.1 for I3, and list eigenvalues of A and I3 in Table A4.9.
Notice that the assumptions (H3p) and (H4,) are satisfied in this case. The

dominating orbit types in W are (D), (DE), (Z&), (Z§), (D) and (D3).

c d 1o 1 Jh2 4
A 18844176 132 | 44 0
L1111 3.3 2.2 0 -1.1

Table A4.9. Eigenvalues of A and B, I' = D

Using the Table A4.9, we compute the numbers

FAA) =1, @A) =1, @A) =1,
myB) =1, Mi(B)=1

The value of deg’y is

deg’y

8 o

r k
— H H(degvi)mi("’)*ZZ?%?(A)ZdegVN
I=1

ueoy (A) =0 350 k=0
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2 1 3 2
= Hdegw * (1 ) zdegvojz +1- zdegvl,l +1- zdegv‘ZJ)
=0 =1 I==1 =1

2 2
= Hdegw x (deg Vo +degy, |+ deg Vm) + Hdeg y, * (degvm +degy, ,
i=0

i=0

2 2

+ deg szg) + H deg v, * (deg Vo.a t+ deg V},.’i) + H deg v, * d()g Vo4
i=0 : =0

= O, [showdegree[D6] (1,1,1,0,0,0,1,1,1,0,0,0)]

+ O, [showdegree[D6] (1,1,1,0,0,0,1,1,1,0,0,0)]

+ O [showdegree [D6] (1,1,1,0,0,0,1,1,0,0,0,0)]

+ O, [showdegree [D6] (1,1,1,0,0,0,1,0,0,0,0,0)]

= —(D§) — (Z§) — (Zig) + (D%) + 3(D3) + (D) + (D) — 3(D7) = 2(1)

= 2(DF) = 3(Dh) = 2(2Zy) — (Z) + 5(Z1) = (DG*) — (Zg"*) — (Zg"*)

+(D5?) + 3(D5%) + (Dy?) + (DF) = 3(DF?) = 2(D7) — 2(DF?) = 3(D7})

=~ 2(25") = (Z3) + 5(21) — (Dg°) — (Zg"*) + 3(Dy") + (D3*) - 2D;)

— (DY)~ (DFY) = 2(DY) - 2(257") + 3(Z4) — (Dg*) +2(D5)

— (D) = (DY) = (23 + (Z).

N TN TN

Since Zy = Ker A =~ V), we have the set of all orbit types is J(V4) = {(Dg x
SH, (s x SH}. By (Y1) and Proposition 10.2.7(i), there exist the following
nontrivial (H#*)-terms in deg, (as shown using the above bold symbols):

(D§), (Z4), (Z¢), (D5), (D), (DG™), (26°), (2™,
(D5%), (D3, (DF™), (Zg™"), (D), (DG™). (Ad.5)

On the other hand,
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degy
=TI [Ttess)™o« 3 ik ) e,
peay(B)i=0 =0 k=0 1=1 '
= H degy, * (1-degy,, +1- degv]’])
i=0,1

= O [showdegree [D6] (1,1,0,0,0,0,1,1,0,0,0, 0)]
~(DJ) — (2g) — (D3) — (D) + 2(D5) + (Dy)
(DT) +2(D1) + (Z3) — 3(Z1).

By (N1’) and a similar statement as Proposition 10.2.7(ii) for ¢ satisfying
(HO), (H1) and (H4p), we have that deg,., does not contain any nontrivial
terms as listed in (A4.5) except possibly for (D¢), (Z§') and (D¢). Therefore,
the following orbit types will appear in the value deg  — degy:

(D), (DE™), (DR, (Z2), (2 %), (Z8), (227), (D), (D), (DF%), (D).

Conclusion: Under the assumptions (Al)—(A3), (D), (Dp) and (A5), by
Theorem 10.1.3,4, there exist at least 11 nonstationary solutions of (10.1). To
be more specific, there are

1 nonstationary solution with least symmetry (Dg 4),

2 nonstationary solutions with least symmetries ( Z

2 nonstationary solutions with least symmetries (Zg

2
3 nonstationary solutions with least symmetries (Dj
i

k]

”);
2)
)
).

7

and

[’

IS . . . . 3
3 nonstationary solutions with least symmetries (D5*

> o

A4.6.2 Existence in Dg-Symmetric Auto. Degen. Newtonian Sys.

Let I'= Dgand V =Vy®V, &V, & V38 V;. Consider the potential ¢ : V — R
satisfying (A1)—(A3) and (A5) with the matrices A and B being of the type

Fed00000dT
dcd00000
0dcd0000
00ded000
000dcd0O
0000dcdO
00000dcd

| d00000d ¢ |
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It can be easily obtained that o(C') = {0 = ¢ +2d, ppr = c+V2d, po = ¢,z =
¢ —V2d, s = ¢ — 2d}, where each p; has its eigenspace E(u;) =~ V;. Take
c=4v2,d=4for Aand c =3, d= 2 for B, and list cigenvalues of A and
B in Table A4.10* . Notice that the assumptions (H3p) and (H4;) (for lo = 1)
are satisfied in this case. The dominating orbit types in W are (Ds), (DY),
(24, (2), (2), (DY),

c d [0 [ o | pa 5
Al 4v2 | 4 137 1113|571 0 |-23
B 3 V2 | 5.8 0.2

[
o8]
=

Table A4.10. Eigenvalues of 4 and B, I' = Dsg

Using the Table A4.10, we compute the numbers
ma(A) =1, mi(A) =1, m3(A) =1,
ma(BY=1, miB)=1, my(B)=1ms(%)=1

Compute the value of deg’; by

deg’y
H H(dog mi(k) 7277; (/I)Zd(‘gv .
HEU{ A) i= 7=0 k=0
3 3
- HngVq; * (1 ’ Zdegvo,l +1- Edegvu +1- Edegvﬂ)
. I=1 1=1 =1
“‘Hd(‘gv *(ngVOJ +do:>V11 dngZI)
1=0
2 .
+ Hdog v; * (ng Vo,2 + deg Vi2 + deg Vz;z)
=0
2
+ Hng v ¥ (degvo,a + degvl,3)
3=0

* The eigenvalues are evaluated only up to 107", which is sufficient for determining the numbers
¥ for the computations of degree.
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= O [showdegree[D8] (1,1,1,0,0,0,0,1,1,1,0,0,0,0)]
+ ©, [showdegree[D8] (1,1,1,0,0,0,0,1,1,1,0,0,0,0)]
+ O3 [showdegree[D8] (1,1,1,0,0,0,0,1,1,0,0,0,0,0)]

—(Ds) — (DY) — (D) — (Z§") — (Z§) + (D3) + 2(D§) + 2(Dy)
+(D3) + 2(Df) +2(Dy) + (Z) — 2(D7) — 3(Dy) — 2(D5) — 3(Dy)
— (Z3) = 3(Z2) + 5(Zy) — (D) — (Dg?) — (DF*) — (Zg"*) — (Zg*?)
+ (D" +2D5%) + 2(D3) + (DF*) + 2(Dy%) + 2(D3) + (257)

— 2(Dj?) = 3(DR) — 2 D7) = 3(DY) — (Z,7%) — 3(Z3) + 5(Z))
= (DF) = (Zg®) + (D7) + (D) + (D3™) + (D) = (D})
= 2(DY) = (DY) — 2DY) = (2;°) — (Z3) + 3(23).

Since Zy = Ker A =~ V3, we have the set of all orbit types is J(Vy) =
{(Dg x 87, (Dy x 8", (Dy x SY, (Zy x 81)}. By (Y1) and Proposition 10.2.7(i),
there exist the following nontrivial (II*!)-terms in deg, (as shown using the
above bold symbols):

(Ds), (D), (Z2), (Z), (DF), (D§™), (2), (Zg ") DJ), (L") (A4.6)

On the other hand,

8 o0 k B loo—1

= deg * (ZZTE?(A)E:deg v, + Zﬁ](lgc) Z deg Vj,l)
1=1

5=0 k=1 =1 =0
= H degy, * (1 (degy,, +degy,,) + 1+ (degy, |
i=0,1,2,3,5
+degy,,) +1-degy, )
= O, [showdegree [D8] (1,1,1,1,0,1,0,1,1,1,0,0,0,0)]
+ O, [showdegree [D8] (1,1,1,1,0,1,0,1,1,0,0,0,0,0))
—(Ds) — (DY) + (D) — (Zg) — (Z§) + (D§)
+(D§) + 2D2) — (DF) — (D§) — 2(D2) + (Z§)
+(2§) — (D3) + (D) = (Zg+®) + (D) — (D)
— (D5%) = (D3) + (Z;).
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By (N2’) and a similar statement as Proposition 10.2.8(ii) for ¢ sat-
isfying (HO)---(H2) and (H4;), we have that deg. does not contain any
nontrivial terms as listed in (A4.7) except possibly for (Dg), (DY), (73),
(Z%), (D?) and (Zg*). Moreover, since Zy, =~ Vs, we have that J (7o) =
{(Ds x 81, (Z4), (DY), (DY), (Z3)}. Therefore, the following orbit types (H#1)
~ will appear in the value deg  — degy:

(D3), (D§*), (Z57), ("), (A4.7)

Conclusion: Under the assumptions (Al) -(A3), (D4), (Dg) and (A5), by
Theorem 10.1.34, there exist at least 7 nonstationary solutions of (10.1). To be
more specific, there are

1 nonstationary solution with least symmetry (D3);
2 nonstationary solutions with least symmetries (Dd 2)
2 nonstationary solutions with least symmetries (Z ’ ) and
2 nonstationary solutions with least symmetries (Zt‘ )

L b 2R R 2

A4.6.3 Existence in Djp-Symmetric Auto. Degen. Newtonian Sys.

Let I'=Dypand V =V, ®dV, B Vo @ Vs d Vs & Vs. Consider the potential
¢ : V — R satisfying (A1) (A3) and (A5) with the matrices A and B being

of the type

[ ¢cd 0000000 dT]
ded0000000
[ 0ded00O0000
00decd00000
000ded0000
0000decd0OOO
00000dcd0O
000000dcdO
0000000ded
| d0000000d ¢

C =

It can be easily obtained that o(C) = {po = ¢+ 2d, 1y = c+ 2dcos 5, pa =
¢+ 2dcos & My =c+ 2d cos 3= =, 4 = Cc+ 2d cos 4= , e = ¢ — 2d}, where each
t; has its eigenspace E(u;) ~ V;. Take ¢ = —2 d = 3 for A and ¢ = 4,
d = 2(cos(2mw/5))~! for B, and list eigenvalues of A and B in Table A4.11.
Notice that the assumptions (H3;) and (H4() are satisfied in this case (for
lo = 2). The dominating orbit types in W are (Do), (D), (Z!y), (Z%3), (7,
(@), (DY), (D5).
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c d fo | p2 | p3 | M4 | Me
A | -2 3 4 29 {1 -011-39]-69 -8

B | 4 | 2cos(2n/5))" | 17 | 145 | 8 0 |-651|-89

Table A4.11. Eigenvalues of A and B, I" = D1o

Using the Table A4.11, we compute the numbers

Compute the value of degh

deg
r 5 oc k
- H H(dcg Vv:)mi(“) * sz?w)zd‘)g Vi
oy (B) i=0 50 k=0 =1 -
2 4 3 2
= Hdogvi (1 Zdogvoyl +1- chgvl,l +1- Zdogvg‘l)
i=0 I=1 1= -1
5 :

p 2
- d(‘,g y; ¥ (d(‘g Vo1 + d(‘,g Vi + ng VQ.I) + Hd(‘g v ¥ (d(‘g Vo2 + d(‘g Vi,2

=0 =20

2 2 ‘
+ deg VQ,:J) + H deg , * (deg Vos T degy, 5) + H deg, * deg Vo1

= 6, [showdelg“;)ee [D10] (1, 1,1,0,0,0,0,0,1, 11:10, 0,0,0,0,0)]

+ O, [showdegree[D10] (1,1,1,0,0,0,0,0,1,1,1,0,0,0,0,0)]

+ O3 [showdegree[D10](1,1,1,0,0,0,0,0,1,1,0,0,0,0,0,0)]

+ O, [showdegree[D10] (1,1,1,0,0,0,0,0,1,0,0,0,0,0,0, 0)]

= —(Duo) — (Z2) — (Z33) + (D§) + (DY) + (DF) + 3(D2) — 2(1%)
—3(D1) = 2(Df) = 3(D1) — (Z3) — 2Zs) + 5(Z1) — (D) — (Z35?)
—(Z45%) + (DP?) + (DF?) + (D3?) + 3(D2) — 2(D5?) - 3(D%) — 2(DP?)
—3(D3) — (Z3%) — 2AZ3) + 5(Z3) — (D) — (Z4°) + (DF™) + (DE?)
+2(D3) — (DY) — 2 DY) — (DF*) — 2 DY) — (Z3°) — (23) + 3(Z)

— (Do) +2(D3) — (D}) — (DY) — (23) + (Z}).
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Since Zy, = Ker B ~ Vs, we have the set of all orbit types is J(Vs) =
{(D1o % SY), (Dy x 81, (Dy x 8Y), (Zy x 81)}. By (Y1’) and a similar statement
as Proposition 10.2.7(i), there exist the following nontrivial (H#!)-terms in
deg ., (as shown using the above bold symbols):

(Do), (Z4),(Z22), (D), (D3), (D), (Zi5), (23357,
(D32, (D22), (i), (Z5%), (DE?), (D). (A4.8)

On the other hand,

deg!y
8 lo—1
= deg!, * ZZ 2 degy,, + ij ‘)Zdeg v;,-,,)
F=0 k=1 = =1

1
to=2
(te=2) [[degy, » (1-deg,,, +1-degy, )
3==0)

=6, [showdegree (p10](1,1,0,0,0,0,0,0,1,1,0,0,0,0,0, O)]
= —(D1o) — (Z%) — (DY) — (DY) + (D7)
+2(Dy1) + (D) +2(Dy) + (Z3) — 3(Z4).

Since Zy ~ V2, we have that J(Zy) = {(D10x SY), (D3,)}. By (N2), except
for possibly (Dyg), (Z4y), (1D4) and (D3%,), every orbit types listed in (A4.8) will
appear in the value of deg _ — deg,, namely:

(Z2), (D2), (Z5H), (235, (DY),
(D‘?Q)) (Di())7 (Zflh )7 (Dg,3)7 (D/ll())

Conclusion: Under the assumptions (A1)—(A3), (Da), (Dg) and (A3), by
Theorem 10.1.3,4, there exist altogether at least 15 nonstatlonary solutions of
(10.1). To be more specific, there are

¢ 2 nonstationary solutions with least symmetries (Z}%%);

¢ 5 nonstationary solutions with least symmetries (D2%);

¢ 2 nonstationary solutions with least symmetries (Z:4™);

¢ 5 nonstationary solutions with least symmetries (Dg’;i) and
¢ 1 nonstationary solution with least symmetry (D%,).
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A4.6.4 Existence in D;>-Symmetric Auto. Degen. Newtonian Sys.

Let I'=Dpand V = V@& Vi@ Vo @ Vs ® V@ Vs @ V5;. Consider the potential
¢ : V — R satisfying (A1)—-(A3) and (A5) with the matrices A and B being

of the type

<
Il

(cd000000000dT7
dcd000000000
0ded00000000
00dcd0000000
000ded00O0O0OO
0000dcdb0000
00000dcd0000
000000ded00O
0000000dcd0O
00000000dcdO
000000000dcd

1 d000000000d ¢

It can be casily obtained that o(C) = {0 = ¢+ 2d, 1y = ¢+ V3d, uy = ¢+
d, s = ¢, g = c~d, 5 = c—+/3d, 7 = c—2d}, where each g; has its eigenspace
B(u) ~ Vi. Take ¢ = —2, d = 2¢/3 for A and ¢ = 3, d = V/3 for B, and list
eigenvalues of A and B in Table A4.12. Notice that the assumptions (H3;) (for
lo = 2) and (H4,) (for I = 3) are satisfied in this case. The dominating orbit
types in W are (])12)7 (Dldz) (Z[llz)v (ZLIQZ)7 (Zflxz)v (Ztliz)v (Ztlsz)7 (Dg) (Dﬁ) (Dfll)

c d 140 11 12 13 fha s 7
Al-11]25 4 3.3 1.5 -1 1-351|-53| -6
Bl 9 |371164 | 15411271 9 5.3 26 | 1.6

Using the Table A4.12, we compute the numbers

mo(ld) = 1,

mi(A) =1,
ma(B) = 1,my(1%) = 1,

Compute the value of degy

T,F’%(A) =1,
mll(B) = 17

Table A4.12. Eigenvalues of A and B, I' = Ds2

fﬁé(B) =1,
mg(B) = 1,

m3(B) = 1,
M} (B) = 1.
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dcgg
loo—1
= deg’ ZZm A)chgv Jrzmj Zdogvj,l)
------ =0 k=1 ’ . 1=1 i
oo™ H deg,, * (1 chng +1- Zdogv +1 Zdogvy
16{0 5,7} =1 , l:=1 l=1

+1- Zdogvslntl Zd%v +1- d“gvﬂﬁLl‘ngvm)

=1

= H deg ), * (dog vou T degy, | +degy, +degy, +degy, +degy,,
i€{0,...5,7}

+ deg V7,1) + H deg v, * (degvo,g + deg Vi + deg Va2 + deg Vi .0 + deg Vmg)
$€{0,...,5.7}

+ H d(‘g v ¥ (ng Vo3 + ng Vi + ng V2.3) + H ng v * ng Vo 4
i€{0,...,5,7} i€{0,...5,7}

— O, [showdegree[D12] (1,1,1,1,1,1,0,1,0,1,1,1,1,1,1,0,1,0)]

+ Oy [showdegree [D12] (1,1,1,1,1,1,0,1,0,1,1,1,1,1,0,0,0,0)]

+ O3 [showdegree [D12] (1,1,1,1,1,1,0,1,0,1,1,1,0,0,0,0,0,0)]

+ O, [showdegree [D12] (1,1,1,1,1,1,0,1,0,1,0,0,0,0,0,0,0,0)]
—(D12) — (D$y) — (Z8y) — (Z3) — (%) — (Z3%) — (Z33) — (DY)

+ (DI + 2(Dg) + (28 + 2(ZE) + 2(Z8) + 3(Dy) + 3(DF) + (D%)

+ (DY) + 2(Dy) — 3(Dy) — (D) +2(DF) — 2(24) ~ 2(Z4) — 2(Df)

— 2(Dy) + 2(D%) — 2(D,) — 3(DE) + A(Dy) — A(Dy) + 4(D?) — 4(D?)

+4(Z2) — (DY) — (Z357) — (2357 — (23°) — (Zi7) — (D?) + (Dg*)

+ (D) + (D) 1 3(D2) + (DF?) + (D2?) + (Ze?) + (Z8%) + 2(Z2?)

+2(D) —2(D3) + (DF®) — (D5*) = (Z3%) — 2(75) — (D5*) = 3(D3)

+(D3%) — (DF) — 2(D3*) + 3(D?) — 3(D%) + 3(D}?) — 3(D7?) + 3(22)

— (D2,) + (DY) — (2% — (2%5°) + (D2™) + (DF®) +2(D3) + (DY)

— (D3) + (Z&*) + (Z§*) — (D7*) = (D}*) + (Dg*) — 2(D}) — (D3)

—(Zy*) = (Z3) + 2(D7*) — 2(DF*) + 2(DY) — 2(DF) + 2(Z3) — (D)

+(D§) +2(D§) + (D§) = (DS) — (D3) — (D3) = (23) + (Z3).
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Since Zoo = V33 = Us, we have the set of all orbit types is J(Us) =
{(Z), (D), (DD, (Z)}. By (Y2)) and Proposition 10.2.8(i), there exist the
following nontrivial terms in deg  (as shown using the above bold symbols):

(D1z), (D), (Z4), (235), (Z32), (Z45), (Z1%), (D), (D5),
(D), (D), (Z4°), (5", (Z5°), (235°), (DF),
(DE), (D5), (D), (Z35°), (2357), (D3°), (D). (A4.9)

On the other hand,

deg il

lo—1

= deg ! * iz Zdegv l +ij 1) Zdegv

J=0 k=1 j=0

2
l(gz Hdeg Y, * (1 . degVO,1 +1- deg Vi1 +1- degVQ'])
=0
— @1 [ShOWdegree [D12} (17 1, 1, 07 07 07 07 07 07 17 11 ]-7 07 07 07 0; 01 O)]

~(D12) = (Zi) = (Z13) — (D) = (DF) + (D5) + (D3) + (D3)

+ (DY) + 2(D2) + 2(Dy) + (Z3) — 2(D3) — 2(D7) — 3(D1) — 3(Dy)

—(Zy) — 3(Zz) + 5(Z1).
Since Zo = Vo2, we have the set of all orbit types is J(Zy) = {(Di2 %
51),(Di2)}. By (N2) and Proposition 10.2.8(ii), except for possibly (Di2),
(Z%), (Z%3) and (D§), every orbit types listed in (A4.9) will appear in
deg ., — deg,, namely .

(D), (Z5), (Z85), (245), (DY), (D), (D), (Z45°),
(25", (2%, (25", (D§™), (DF™), (D),
(DY), (Z35°),(Z5°), (D7), (D).

Conclusion: Under the assumptions (A1)—(A3), (Da), (Dg) and (A5), by

Theorem 10.1.34, there exist altogether at least 20 nonstationary solutions of
(10.1). To be more specific, there are

¢ 1 nonstationary solution with least symmetry (D1,);
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1 nonstationary solution with least symmetry (D%,);

2 nonstationary solutions with least symmetries (Z“’ )
2 nonstationary solutions with least symmetries ( )
2 nonstationary solutions with least symmetries (Z}

2 nonstationary solutions with least symmetries (Zt“’ ),
2 nonstationary solutions with least symmetries ( )
(
(D
(D

. . . . d
- 2 nonstationary solutions with least symmetries D() );

) and

?).

3 nonstationary solutions with least symmetries
3 nonstationary solutions with least symmetries

3t

E

7
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