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Abstract

The Kelvin-Helmholtz instability is the inertial destabilization of a parallel

shear flow in a density stratified fluid under the influence of gravity. For ex-

ample, this type of instability manifests itself as surface waves in the ocean

when wind blows over the water surface. In this thesis we solve the nonhy-

drostatic Kelvin-Helmholtz instability problem for a near-bottom jet with a

continuous velocity profile in a flat-bottomed non-rotating density-stratified

fluid. Of particular note, the nonhydrostatic stability problem modelled here

has a high wavenumber cutoff and does not exhibit an ultraviolet catastrophe

unlike other inviscid stability calculations that have been previously published.
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Chapter 1

Introduction

1.1 Hydrodynamic Stability

The analysis of stability and the onset of instability (instability which some-

times develops into turbulence) comprises the study of hydrodynamic stability.

The fundamental problems of hydrodynamic stability were first developed in

the nineteenth century by Helmholtz, Kelvin, Rayleigh and Reynolds [6]. A

series of experiments performed by Reynolds [20], the results of which were

published in his paper in 1883, provided a clear introduction to the problems

of stability. His experiments were an attempt to study the instability of a flow

through a pipe. Later experiments introduced perturbations of finite ampli-

tude using different flow profiles with the aim of finding whether a particular

flow is unstable [6]. The theories and methods of hydrodynamic stability can

be applied to a multitude of fields including, and not restricted to, magnetohy-

drodynamics, elasticity, plasma physics and general relativity. The physics in

these areas are very different; however, the mathematics applied is similar in

that nonlinear partial differential equations describing the physical model are

examined by studying the stability of the known solutions of the equations [6].

One can study the instabilities of flows and their transition to turbulence by a

few methods such as performing physical and numerical experiments, observ-

ing natural phenomena, applying linear, weakly nonlinear theory or strongly
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nonlinear theory and also, by applying the theories of bifurcation and chaos.

One area of study that the theories of hydrodynamic stability can be ap-

plied to is physical oceanography. Abyssal currents play a significant role

in ocean circulation. In this context, Swaters [22] investigated the stability

characteristics of overflows that were non rotating and baroclinic, and where

it was possible for both frictionally induced and Kelvin-Helmholtz instabil-

ity to occur. A two-layered shallow-water model was used, resulting in the

Kelvin-Helmholtz instability being hydrostatic. In the inviscid limit, the lin-

ear stability analysis of the two-layered shallow-water equations lead to an

ultraviolet catastrophe [16]. Since this is not a desirable part of the model, in

this thesis, we attempt a step toward gaining a better understanding of the

instability in the nonhydrostatic case, where, in most cases, the most unstable

mode is located at a finite wavenumber and there exists a high wavenumber

cutoff. The work done in this thesis is based on the application of the linear

stability theory to the given flow profile.

1.2 Linear stability theory and the method of

normal modes

In linear stability theory (LST), we first consider a basic flow profile that might

be of interest, and which is a known solution to the fully nonlinear equations of

motion that govern the flow. The perturbations quantifying the velocity and

pressure fields, which are generally considered infinitesimally small, are then

introduced. In essence, a given flow is said to be stable if all perturbations

which are initially small will remain so for all time and the flow is unstable if

even a single perturbation that starts off as initially small grows to such an

extent it can no longer be neglected. The linear stability of the flow is then in-

vestigated by neglecting products of the perturbed quantities in the equations

of motion and the boundary conditions, which gives us the linearized prob-

lem [6]. This method of studying the stability of systems was originally used
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for studying the oscillations and instability of dynamical systems of particles

and rigid bodies, in which case, known solutions of Newton’s or Lagrange’s

equations of motion were perturbed and nonlinear terms in the perturbation

fields were neglected [6]. The method was later adapted by Stokes, Kelvin and

Rayleigh to fluid dynamics, the main mathematical difference being that the

equations of motion are partial, rather than ordinary differential equations.

Each perturbation is further resolved into independent components or modes

that vary in time t like ect, where c is a constant which is generally complex.

The values of c are then calculated for the linearized problem. If the real part

of c is positive, the system is said to be unstable since the initial disturbance

grows exponentially in time. If no such unstable state can be found, the system

is stable. This method of analysis involving the examination of the Fourier

components is called the normal mode method [15]. In this method, the stabil-

ity of each method is examined separately, since the linearity of the problem

implies that the various modes do not interact. This leads to an eigenvalue

problem, as we will see.

LST has a few advantages. It provides a fairly satisfactory description

of the solutions of most initial value problems starting near the basic state,

provided one does not follow the solution for a long time. Problems that are

otherwise accessible only by numerical computations can be solved analyti-

cally when linear stability theory is properly supplemented with appropriate

approximations especially near special regions like boundaries and critical lay-

ers [13]. On the other hand, one of the main disadvantages of LST is the poor

approximation made if the initially small disturbances become larger at a later

time. In such cases, it is a more viable option to consider either weakly nonlin-

ear or strongly nonlinear disturbances in getting more accurate conditions for

stability. We will be applying this theory to study Kelvin-Helmoltz instability

exhibited by the flow profile considered.

3



1.3 Kelvin-Helmholtz instability

Kelvin-Helmholtz (K-H) instability is the instability of a parallel shear flow in

a density stratified fluid under the influence of gravity, and is a mechanism for

many phenomena observed in the ocean and atmosphere. Kelvin formulated

and solved a prototypical problem of linear instability of a basic flow of incom-

pressible inviscid fluids in two horizontal parallel infinite streams of different

densities and velocities, with one stream over the other [7]. The model was

initially applied in the investigation of ocean-wave generation by the wind.

Helmholtz developed the same model to apply it to billow clouds. It is also

one of the main instability mechanisms for high Reynolds number, near paral-

lel flows, such as jets [6]. The instability forms as a series of vortices that have

a structure of rolling billows and are periodic. The two-dimensional evolu-

tion of these billows is followed by the growth of three-dimensional secondary

instabilities, which then transition to turbulence.

K-H instabilities can be studied using different methods. Theoretically,

the onset of K-H waves and their initial stages of growth can be described

by linear stability analysis. The waves can also be generated in laboratories,

which allows for detailed examination of the evolution of the billows through

their entire life cycle (see for example, [4]). Numerical simulations provide

a tool for accurate quantifications of K-H flow fields, albeit under idealized

conditions (eg., [10]). All of these approaches are meant to complement one

another to provide a better understanding of the instabilities.

Typically, a background shear flow of U0(z), background pressure pH(z),

and vertical density stratification, ρH(z) are considered. The background pres-

sure is assumed to be in hydrostatic balance in the absence of any motion

(u = 0). Another assumption made in using the two-dimensional model equa-

tions is based on Squire’s theorem ([16]), which states that: “For each unstable

three-dimensional wave there is always a more unstable two-dimensional one

traveling parallel to the flow”. This flow is perturbed with a small two di-

mensional perturbation velocity of the form (u′, w′) and pressure p′ to give the
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total velocity field (u,w) and pressure p,

u = U0(z) + u′(x, z, t),

w = 0 + w′(x, z, t),

p = pH(z) + p′(x, z, t),

and

ρ = ρH(z) + ρ′(x, z, t).

where pH and ρH are the background hydrostatic pressure and hydrostatic den-

sity, respectively. For this two dimensional flow, we can write the Navier-Stokes

equations in terms of the conservation of horizontal and vertical momentum,

ρ

(
∂u

∂t
+ u

∂u

∂x
+ w

∂u

∂z

)
= −∂p

∂x
,

ρ

(
∂w

∂t
+ u

∂w

∂x
+ w

∂w

∂z

)
= −∂p

∂z
− ρg,

the incompressibility equation,

∂ρ

∂t
+ u

∂ρ

∂x
+ w

∂ρ

∂z
= 0,

and the continuity equation,

ux + wz = 0.

The stability of the background flow to the perturbations is linearly ana-

lyzed by substituting the linearization equations into the Navier-Stokes equa-

tions and neglecting the terms that have products of perturbations. The result-

ing linear equations are solved conventionally by using the method of normal

modes. A perturbation quantity, φ, is assumed of the form
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φ(x, z, t) = φ̃(z)eik(x−ct) + c.c.,

where i2 = −1, k is the horizontal direction wave number of the mode, c

is the complex phase speed, and c.c. denotes the complex conjugate of the

preceding term. Substituting these in the linear equations of motion, we get

a nonstandard eigenvalue problem that has c as the “eigenvalue” and φ̃ as

the eigenfunction. For each mode, c = cR + icI and kcI is the exponential

growth rate of the mode. The stability characteristics of the flow profile can

be investigated from the dispersion relation obtained by solving an eigenvalue

problem.

The model that Kelvin developed was a first attempt at understanding the

shear layer instability [7]. The instability occurs at the interface between the

horizontal parallel streams, and is brought forth when the stabilizing influence

of the stratification is overcome by the destabilizing influence of shear [15].

Stratified shear layer instability has been examined fairly extensively. Esch [8]

considered a parallel flow of a shear layer between uniform streams to examine

the stability of a piecewise linear velocity profile. His analysis also extended to

include viscous effects. He changed the model slightly by completely neglecting

the effects of viscosity in his 1961 paper [9]. Howard and Maslowe [13] gave a

fairly comprehensive summary about the results of linear inviscid theory and

also outlined the weakly non-linear and the non-linear theory.

1.4 Thesis outline

This thesis uses analytic linear theory to obtain the relevant stability charac-

teristics for the flow profile studied. We first solve a simpler version of our

main problem in Chapter 2, where we employ a three layered model in a fluid

that is assumed to have no variations in density, i.e, one that is homogeneous,

and a velocity that is piecewise continuous and linear. We will use the lin-

earized equations of motion to first derive the Rayleigh Stability equation.
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In order to reconcile the jump across the interface with the solutions of the

model equations, the matching conditions are then derived. The kinematic

matching condition says that a fluid parcel once on the boundary will remain

on the boundary for all time, and the dynamic condition which states that the

pressure field must be continuous across the moving boundary [7]. We will use

these matching conditions along with the solutions of the model equations to

determine the dispersion relation, which is quadratic in the phase velocity, c.

The marginal stability boundary is then obtained from the dispersion

relation. The marginal stability boundary thus derived is dependent on the

flow parameters k, h0 and d, i.e., the wave number, the mean layer depth

of the middle layer and the mean layer depth of the lower layer, respectively.

Because of the complexity of the dispersion relation and to enable us to under-

stand the stability characteristics better, we study the transition from stability

to instability one parameter at a time. Lastly, we will examine the asymp-

totic structure of the dispersion relation to explain some of the singularities

observed. We will see in this chapter that for typical values for a bottom in-

tensified shear flow, we get a dimensional high and low wavenumber cutoff at

0.0077 m−1 and 0.0036 m−1, respectively, which translates to a dimensional

wavelength of about 815 m and 1.74 km, respectively. Using these values, the

dimensional phase velocity, frequency, period of oscillation and growth rate

of the most unstable mode are calculated. The e-folding amplification time

corresponding to the growth rate of the most unstable mode is calculated to

be 13.51 s.

In Chapter 3, we introduce a density variation for the same flow profile used

in Chapter 2. A similar type of analysis is carried out, wherein we use the

linearized equations of motion to first derive the Taylor-Goldstein equation.

Having derived the matching conditions from the model equations, we use them

along with the solutions of the model equations to determine the dispersion

relation, which as it turns out, is cubic in this case. We then obtain the

marginal stability boundary, which is dependent on the parameters, k, h0, d, δ

and F , where k, h0 and d are the same as previously explained, and δ and F
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are the stratification parameter and the Froude number, respectively.

The transition from stability to instability is again examined one parameter

at a time. Finally, since the marginal stability boundary depends on δ, we will

examine the effects of stratification on the stability of the flow. For typical

values for a bottom intensified shear flow, the dimensional upper and lower

wavenumber cutoffs are found to be 0.015 m−1 and 0.004 m−1, respectively,

which corresponds to a dimensional wavelength of about 418.88 m and 1.57

km, respectively. From these values, we can determine the dimensional phase

velocity, frequency, period of oscillation and growth rate of the most unstable

mode. The e-folding amplification in this case is calculated to be 27.3 s.

In chapter 4, we conclude with a summary of our results obtained and

provide directions for any future work.
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Chapter 2

Stability characteristics of a

shear flow in a homogeneous

fluid

The fundamental problem in the study of the stability of parallel flows is to

determine whether a given shear flow is stable to traveling wave perturbations

or not [16]. Since the work of Helmholtz [11] and Kelvin [14] on the stability

of homogeneous and stratified vortex sheets in the 19th century, numerous

authors have examined increasingly complex problems in an attempt to un-

derstand the basic properties associated with the transition to instability of

fluid flows.

Rayleigh [18] examined a piecewise-linear representation of the homoge-

neous shear layer and performed a stability analysis on this idealized shear

layer. The results produced are in qualitative agreement with subsequent

studies of smooth profiles, such as the hyperbolic tangent shear layer (see, for

example [5]). This suggests that in treating the stability of shear layers it is

very useful to study piecewise linear shear layers in order to capture the basic

instability mechanism ([3] [17]). Holmboe [12], motivated by geophysical flows,

extended Rayleigh’s analysis to include a stable density stratification, retain-

ing the piecewise-linear shear layer and including a layered piecewise-constant

9



density profile. These idealized profiles give qualitatively similar results to the

smooth profiles, as in the homogeneous case [10].

In the context of this thesis, we are interested in developing and an-

alyzing simple models that can describe various aspects of the stability of

deep, or abyssal, currents in the ocean. Our work is in the same spirit as the

model developed by Swaters’s [22] that describes the frictionally induced and

Kelvin-Helmholtz instability in the context of non-rotating baroclinic abyssal

overflows. The model was based on the two-layered shallow water equations

and the resulting Kelvin-Helmholtz instability was hydrostatic. This does not

enable one to investigate the nonhydrostatic shear layer Kelvin-Helmholtz in-

stability. This work is a step toward gaining a better understanding of the

shear layer instability in the nonhydrostatic case.

We start by introducing in this chapter a piecewise-linear homogeneous

shear flow and studying in detail, the stability characteristics of the same. In

Chapter 3, we include a stable density stratification to the piecewise-linear

flow profile. In Section 2.1, the equations that govern the flow are introduced.

In order to solve the linearized equations of motion and to reconcile the jump

across the interface with the solutions of the model equations, we derive the

matching conditions, as described in Section 2.2. In Section 2.3 we derive the

dispersion relation from the solutions obtained. Sections 2.4-2.7 we discuss

the stability characteristics from the dispersion relation.

2.1 Governing equations

We consider a three-layered flow profile that has a piecewise continuous and

linear velocity with no variations in density, i.e., one that is homogeneous. The

geometry of the three-layered model we are considering is shown in Fig. 2.1.

The depth of the entire water column is H, η1 and η2 are the nondimensional

disturbances in the middle and lower layer thicknesses, respectively, compared

to the scale thickness and h0 and d are the mean layer depths for the middle

and lower layers, respectively.
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Figure 2.1: The geometry of the model.

The homogeneous, inviscid, incompressible 2-D flow is governed by the set of

partial differential equations [15]:

ρ(∂t + u∂x + w∂z)u+ px = 0, (2.1)

ρ(∂t + u∂x + w∂z)w + pz = −ρg, (2.2)

ux + wz = 0, (2.3)

where u,w are the velocities in the positive x and z directions, respectively, ρ is

the density which is constant throughout the layers, p is the total pressure field,

g is the acceleration due to gravity and t is the time. Equations (2.1) and (2.2)

represent the conservation of horizontal and vertical momentum, respectively,
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and equation (2.3) express the conservation of mass. The quantities η1 and η2

depicted in Fig. 2.1 are the perturbation deflections of the interfaces located

at z = h0 and d, respectively.

In the absence of any motion, the fluid is assumed to be in hydrostatic

balance. The hydrostatic rest state is given by (2.1), (2.2) and (2.3) where

u = w = 0, with (2.2) reducing to

pz = −ρg, (2.4)

which determines the background hydrostatic pressure given by

pH(z) = −ρg(z −H), (2.5)

where we have imposed the boundary condition pH(H) = 0.

One can show that u = U0(z), w = 0 and p = pH(z) is an exact steady

state solution of the equations of motion for any smooth function U0(z). From

the x-direction momentum equation, (2.1),

ρ(∂t + U0(z)∂x + 0∂z)U0(z) + 0 = 0,

which gives

ρ× 0 + 0 = 0.

Substituting the exact solution into the z-direction momentum equation, (2.2),

we get

ρ(∂t + U0(z)∂x + w∂z)0 + [pH(z)]z = ρg,

which gives,

∂pH
∂z

= −ρg,

which is satisfied on account of equation (2.5). The mass conservation equation

with the exact solutions gives,
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[U0]x + 0 = 0.

Since U0 is a function of z alone, the above equation is trivially satisfied. We

can thus conclude that u = U0(z), w = 0 and p = pH(z) is an exact solution

of the governing equations of motion.

We try to examine the linear stability of this exact solution. Thus, we now

add perturbations to the exact solutions of the form,

u(x, z, t) = U0(z) + ũ(x, z, t), (2.6)

w(x, z, t) = w̃(x, z, t), (2.7)

p(x, z, t) = pH(z) + p̃(x, z, t), (2.8)

where the tildes represent perturbation quantities. Substituting equations

(2.6), (2.7) and (2.8) into our model equations (2.1), (2.2) and (2.3), neglect-

ing nonlinear perturbation terms and dropping the tildes on the perturbation

quantities, we get

ρ(∂t + U0(z)∂x)u+ ρwU ′0 = −px, (2.9)

ρ(∂t + U0(z)∂x)w = −pz, (2.10)

ux + wz = 0, (2.11)

where equations (2.9), (2.10) and (2.11) are called the Linear Stability Equa-

tions and U ′0 ≡
dU0(z)
dz

. Equations (2.9) and (2.10) are the perturbation mo-

mentum equations in the x and z direction respectively, and (2.11) is the

perturbation continuity equation.
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We now form the vorticity equation from (2.10)x − (2.9)z, i.e.,

[uzt + U ′0(z)ux + U0(z)uxz + wzU
′
0(z) + wU ′′0 (z)− wxt − U0(z)wxx] = 0,

which simplifies to

(∂t + U0∂x)(uz − wx) + (ux + wz)U
′
0 + U ′′0w = 0.

It should be noted that in forming the vorticity equation, we have made use

of the fact that p is twice differentiable. Since ux + wz = 0 is the continuity

equation, (2.11), the vorticity equation reduces to

[∂t + U0(z)∂x] (uz − wx) + wU ′′0 (z) = 0.

From the continuity equation, (2.11), it follows that there exists a stream-

function φ(x, z, t) such that u = −φz and w = φx [7]. So, the above vorticity

equation can be written in the form

(∂t + U0∂x)∆φ− U ′′0 φx = 0, (2.12)

where ∆ is the 2D Laplacian operator defined by ∂xx + ∂zz.

The method of normal modes is used in Linear Stability Analysis whereby

we introduce sinusoidal disturbances on a background steady state [15]. In our

case, we superpose a disturbance on the background flow of the form,

φ = ϕ(z) exp[ik(x− ct)] + c.c.,

where c.c is the complex conjugate of the preceding term. Here, ϕ(z) corre-

sponds to the amplitude function of the mode and is required to handle the

vertical boundary conditions. The exponential part describes a wave propa-

gating in the x-direction and k is the real-valued x-direction wavenumber (the

wavelength is 2π
k

). The phase velocity, c = cR + icI is considered to be com-
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plex, so instability occurs when kcI > 0. Substituting the normal mode into

equation (2.12), we get

−cϕ′′(z) + ck2ϕ(z) + U0ϕ
′′(z)− U0k

2ϕ− U ′′0ϕ = 0,

which simplifies to

(U0 − c)
[
ϕ′′(z)− k2ϕ(z)

]
− U ′′0ϕ = 0. (2.13)

Equation (2.13) is the Rayleigh stability equation (henceforth, RSE) [7].

We take the background flow to be the piecewise continuous and linear,

and given by,

U(z) =


0 h0 ≤ z ≤ H,
U0(z−h0)
d−h0 d ≤ z ≤ h0,

U0z
d

0 ≤ z ≤ d.

This profile is a model for a boundary jet located immediately adjacent to

the bottom where the velocity is continuous but not differentiable and the

maximum velocity is located at z = d and the minimum jet velocity (U0(z) =

0) is located at z = h0 in the flow interior. As shown in Fig. 2.1, the interval

h0 < z < H will be defined as region I, d < z < h0 will be defined as region II

and 0 < z < d will be defined as region III.

Since the flow profile is linear (i.e., U ′′0 ≡ 0, except at the interfaces), the

RSE reduces to

ϕ′′ − k2ϕ = 0,

in all three regions.

We will solve the RSE in each region and then match the solutions across

the interfaces where U ′0 and U ′′0 are not defined, both at z = h0 and z = d,
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respectively, using appropriate jump conditions. The solutions for the three

regions can be written in the form,

ϕI(z) = A sinh[k(H − z)], (2.14)

ϕII(z) = B sinh[k(z − d)] +D sinh[k(h0 − z))], (2.15)

and,

ϕIII(z) = E sinh[kz], (2.16)

where ϕI , ϕII and ϕIII , are the solutions in layers I, II and III, respectively.

The boundary conditions, w = 0 =⇒ φx = 0 =⇒ ϕ = 0 at z = H (a

rigid lid) and at z = 0 (non-sloping bottom) are satisfied by (2.14) and (2.16),

respectively. We note that in the solutions obtained above, A,B,D and E are

as yet arbitrary constants.

2.2 Matching conditions

We now impose two matching conditions across each of the interfaces at z = h0

and z = d. The first condition is the kinematic condition, which states that

fluid particles on the interface must move with the interface without the two

fluids occupying the same point at the same time and without a cavity forming

between the fluids [16].

We first consider the interface located at z = h0 and denote u+, w+

as limz→h+0
u,w, and u−, w− as limz→h−0

u,w. The fully nonlinear kinematic

condition is given by [7],

w = φx = η1t + uη1x (2.17)

on z = h0 + η1, where η1 is the perturbation to the location of the interface,

which in the background flow is located at z = h0. Substituting the perturbed

solutions, (2.6), (2.7) and (2.8), into the nonlinear condition (2.17), Taylor
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expanding about z = h0 and linearizing, we get

w+ = η1t + U0(h
+
0 )η1x, (2.18)

at z = h+0 , and

w− = η1t + U0(h
−
0 )η1x, (2.19)

at z = h−0 .

It is now convenient to introduce normal modes of the form

w = w̃(z) exp[ik(x− ct)] + c.c., (2.20)

η1 = η0 exp[ik(x− ct)] + c.c., (2.21)

where η0 is a complex constant. Substituting the normal modes, (2.20) and

(2.21) into the linearized equations (2.18) and (2.19) and dropping the tildes,

we get

w(h+0 ) = ikη0[U0(h
+
0 )− c]⇒ ikη0 =

w(h+0 )

U0(h
−
0 )− c

,

and

w(h−0 ) = ikη0[U0(h
−
0 )− c]⇒ ikη0 =

w(h−0 )

U0(h
−
0 )− c

,

which therefore implies

w(h+0 )

U0(h
+
0 )− c

=
w(h−0 )

U0(h
−
0 )− c

,

which can be rearranged in the form

[
w

U0 − c

]
= 0, (2.22)

on z = h0, where
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[?] ≡ ?+ − ?−. (2.23)

Equation (2.22) is a mathematical representation of the kinematic con-

dition across the interface z = h0. Since w = ikφ with the normal mode

assumption and equation (2.17), the kinematic condition reduces to

[
φ

U0 − c

]
= 0.

Finally, since U0(z) is continuous for all z , the kinematic condition reduces to

[φ] = 0, (2.24)

at z = h0. Following a procedure similar to the one above, we get the same

form for the kinematic condition, (2.24) at the z = d interface.

The second matching condition we need is the dynamic condition which

postulates that the normal component of the stress vector at the deforming

interface is continuous [16]. Here again we first consider the condition across

z = h0 and then simply state what the appropriate condition should be across

z = d.

For an inviscid fluid, stress continuity implies that the total pressure

across the deforming interface is continuous [7], i.e,

pITotal(h0 + η1) = pIITotal(h0 + η1), (2.25)

where pI,IITotal are the total pressures in layers one and two, respectively,

which are given by (2.7),

pITotal = pH(z) + p̃I(x, z, t), (2.26)

and,

pIITotal = pH(z) + p̃II(x, z, t), (2.27)
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where p̃I(x, z, t) and p̃II(x, z, t) are the perturbation pressures associated with

the wave field in layers one and two, respectively. From (2.25), at z = h0 + η1,

pH(h0 + η1) + p̃I(x, h0 + η1, t) = pH(h0 + η1) + p̃II(x, h0 + η1, t),

which, if Taylor expanded about z = h0 and linearized, reduces to

p̃I(x, h0, t) = p̃II(x, h0, t).

This gives the dynamic matching condition,

[p] = 0,

on z = h0, where the tilde has been dropped.

We now introduce the normal mode assumptions,

p = p̃(z) exp[ik(x− ct)] + c.c, (2.28)

u = ũ exp[ik(x− ct)] + c.c, (2.29)

and

w = w̃ exp[ik(x− ct)] + c.c. (2.30)

into the x-momentum equation, (2.9), and dropping the tildes, we find

ρ [ik(−c)u+ ikU0(z)u]− ρU ′0w = −ikp. (2.31)

Solving for p using u = −φz and w = φx gives

p = (U0 − c)φ′ − U ′0φ,

so that the dynamic matching condition across z = h0 will be given by
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[(U0 − c)φ′ − U ′0φ] = 0, (2.32)

where the square brackets indicate the jump defined by (2.23). We get the

same form for the condition for pressure continuity at the z = d interface.

Now, applying the kinematic condition (2.24) at z = h0 to the solutions

(2.14) and (2.15) (i.e, φI(z) and φII(z)) yields

A sinh[k(H − h0)] = B sinh[k(h0 − d)]. (2.33)

Applying the kinematic condition (2.24) at z = d, to the solutions (2.15) and

(2.16) (i.e, φII(z) and φIII(z)) we get

E sinh[kd] = D sinh[k(h0 − d)]. (2.34)

Further, applying the pressure continuity condition, (2.31), to the solu-

tions (2.13) and (2.14) at z = h0 gives

Ack cosh[k(H − h0)] = −ck
{
A
k sinh[k(H − h0)] cosh[kh0 − d)]

sinh[k(h0 − d)]
(2.35)

−E k sinh[kd]

sinh[k(h0 − d)]

}
+ A

U0 sinh[k(H − h0)]
h0 − d

.

The pressure continuity condition (2.31) applied to the solutions (2.14) and

(2.15) at the interface at z = d gives,

(U0 − c)k
{
A

sinh[k(H − h0)]
sinh[k(h0 − d)]

− E sinh[kd] cosh[k(h0 − d)]

sinh[k(h0 − d)]

}
+ E

U0 sinh[kd]

h0 − d
(2.36)

= E(U0 − c)k cosh[kd]− EU0 sinh[kd]

d
.

The equations (2.33), (2.34), (2.35) and (2.36) can be combined to form

two equations in terms of just two of the coefficients, E and A, given by
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A

[
ck sinh[k(H − d)]− U0

h0 − d
sinh[k(H − h0)] sinh[k(h0 − d)]

]
(2.37)

−Eck sinh[kd] = 0,

E

[
(U0 − c)k sinh[kh0]−

U0h0
d(h0 − d)

sinh[kd] sinh[k(h0 − d)]

]
−A[(U0−c)k sinh[k(H−h0)] = 0.

(2.38)

2.3 Dispersion relation

It follows from (2.37) and (2.38) that in order to have non-trivial solutions for

A and E, the determinant of the coefficients must vanish, i.e.,

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

{
ck sinh[k(H − d)]

− U0

h0 − d
sinh[k(H − h0)] sinh[k(h0 − d)]

} −ck sinh[kd]

(U0 − c)k sinh[k(H − h0)]

{ U0h0
d(h0 − d)

sinh[kd] sinh[k(h0 − d)]

−(U0 − c)k sinh[kh0]
}

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Computing the determinant yields, after a little algebra, the quadratic for c

given by,
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c2k2 sinh[kH]−c
[

U0k

d(h0 − d)
{d sinh[k(H − h0)] sinh[kh0]− h0 sinh[k(H − d)] sinh[kd]}

+U0k
2 sinh[kH]

]
−
[
U2
0 sinh[k(H − h0)]
d(h0 − d)2

{h0 sinh[k(h0 − d)] sinh[kd]− kd(h0 − d) sinh[kh0]}
]

= 0

(2.39)

Equation (2.39) forms the dispersion relation for the instability problem in

which we consider c as a function of U0, k, h0 and d, i.e., c = c(U0, k, h0, d).

We now introduce the following nondimensionalization in order to simplify

the dispersion relation:

k̃ = kH,

d̃ =
d

H
,

h̃0 =
h0
H
,

c̃ =
c√
gH

,

where the tildes denote non dimensional quantities.

Substituting the non-dimensional parameters into the dimensional disper-

sion relation, simplifying and dropping the tildes, we get the non-dimensional

dispersion relation for c given by
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c2k2 sinh[k]+cF

[
k

d(h0 − d)
{h0 sinh[k(1− d)] sinh[kd]− d sinh[k(1− h0)] sinh[kh0]}

−k2 sinh[k]
]
+
F 2 sinh[k(1− h0)]

d(h0 − d)2
[−h0 sinh[k(h0 − d)] sinh[kd] + kd(h0 − d) sinh[kh0]] = 0,

(2.40)

where the Froude number, F ≡ U0√
gH

.

The above dispersion relation can be written in the form,

c2 + cFα + F 2β = 0, (2.41)

where

α ≡ k

k2d(h0 − d) sinh[k]

[
{h0 sinh[k(1− d)] sinh[kd]− d sinh[k(1− h0)] sinh[kh0]} − k2 sinh[k]

]
,

(2.42)

and

β ≡ sinh[k(1− h0)]
k2d(h0 − d)2 sinh[k]

{kd(h0 − d) sinh[kh0]− h0 sinh[k(h0 − d)] sinh[kd]} .

(2.43)

2.4 Marginal Stability Boundary

One of the objectives in hydrodynamic stability theory is to determine the in-

stability as a function of the flow and perturbation parameters. A particularly

important property is to deduce the boundary in parameter space that sepa-

rates instability from stability. This boundary is called the Marginal Stability
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Boundary (MSB).

The roots of equation (2.41) are given by the quadratic formula,

c =
−αF ± F

√
α2 − 4β

2
.

We note that the discriminant

∆(k, h0, d) ≡ α2 − 4β,

is independent of F and where α and β are given by (2.42) and (2.43), respec-

tively.

Based on the sign of the discriminant, we can classify the regions of

stability as follows:

1. ∆ > 0: This implies that there exists two real roots for c, in which case

each eigenwave is purely sinusoidal and the flow is neutrally stable.

2. ∆ < 0: There exists a pair of complex conjugate roots. The eigenwave

associated with the positive imaginary root will be a growing unstable

wave and the flow is unstable. In stability theory, we are particularly

interested in determining the range of wave numbers for which the flow

is unstable.

3. ∆ = 0: The point where the discriminant vanishes is called the marginal

stability boundary. This region separates the regions of stability and

instability.

As an example of the transition to instability, in Figure 2.2, we plot ∆ vs

k assuming h0 = 0.5 and d = 0.25 since we are considering a bottom intensified

shear flow. From Figure 2.2 we see that in the region 2.887 ≈ kl < k < ku ≈
6.227, ∆ < 0 and therefore, the flow is unstable in this region. The points of

marginal stability, i.e., the marginal stability boundaries, are at k = kl ≈ 2.887

and k = ku ≈ 6.227. Here, kl is the low wavenumber cutoff and ku is the high

wavenumber cutoff.
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Figure 2.2: ∆ vs. k for 0 ≤ k ≤ 15 with h0 = 0.5 and d = 0.25. The points of
marginal stability are located at k ≈ 2.887 and k ≈ 6.227.

For the relevant estimate from Swaters [22], where H ≈ 800 m, the

dimensional upper wavenumber cutoff would be about 0.0077 m−1 and the

corresponding dimensional wavelength would be about 815 m. Similarly, the

dimensional low wavenumber cutoff is about 0.0036 m−1 and its corresponding

wavelength, about 1.74 km. We note that using the estimates from Swaters

[22] the Froude number, F, is calculated to be about 0.013, which indicates a

subcritical flow.

The dimensional phase velocity, cR = Re(c), corresponding to the lower

wavenumber, kl is approximately 0.327 ms−1 and that corresponding to the

high wavenumber cutoff is about 0.406 ms−1.

The dimensional frequency, ω, is given by,

ω = cRk,

where cR, k represent the dimensional phase velocity and wavenumber, respec-

tively. The frequency corresponding to the low wavenumber cutoff is about
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0.00253 s−1 and that corresponding to the upper wavenumber number cutoff

is about 0.00146 s−1. The period of oscillation, defined by,

T =
2π

ω
,

associated with the low wavenumber cutoff is found to be Tl = 41.4 min. and

that associated with the high wavenumber cutoff is Tu = 71.72 min.

The graph of the frequency and the phase velocity as a function of k when

h0 = 0.5 and d = 0.25 are shown in Figures 2.3 and 2.4 respectively.

Figure 2.3: Graph of the nondimensional frequency, ωvs.k, when h0 = 0.5 and
d = 0.25.

The growth rate, σ, of the instability can be determined by,

σ = kcI = k Im(c), (2.44)

where

cI = −F
√
−∆

2
,

where we are assuming ∆ ≤ 0. From Fig. 2.2, we can deduce that in the region

between kl ≈ (2.887) and ku ≈ (6.227), ∆ < 0, which implies instability in

that region.
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Figure 2.4: Graph of the nondimensional phase velocity, cRvs.k, when h0 = 0.5
and d = 0.25.

The dimensional growth rate is given by,

σ? =
σ

τ
,

where τ is the timescale, given by

τ =
L

U
,

where L has the units of length and U has the units of velocity. In our case,

the timescale τ is determined to be,

τ ∼ H√
gH
≈ 9.03s,

which is rapid, and L = H ≈ 800m.
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Figure 2.5: Graph of σ vs. k for h0 = 0.5 and d = 0.25

The graph of the non dimensional growth rate, σvs.k is shown in Fig-

ure 2.5. The growth rate of the instability starts to increase at the lower

wavenumber cutoff, reaches a maximum and then decreases to 0 at the upper

wavenumber cutoff.

For h0 = 0.5 and d = 0.25, the growth rate of the most unstable mode,

σmax, is about 0.668 which translates to a dimensional value of 0.074 s−1.

This corresponds to an e-folding amplification time of 13.51 s. The e-folding

amplification time is determined by

ef =
1

σ?max

where σ?max is the dimensional growth rate of the most unstable mode.
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2.5 Contour graphs

We present a series of contour plots that will describe the instability charac-

teristics when two parameters are varied. In Figures 2.6 and 2.7 we contour

plots of kl and ku, respectively, for the region of h0 and d given by 0 < h0 < 1

and d < h0 < 1 (since d is always less than h0 from Figure 2.1).

The upper and lower wavenumber cutoffs are found by setting,

∆(k, h0, d) = 0, (2.45)

and solving for k as a function of h0 and d. The solutions of equation (2.45)

were obtained numerically as a function of h0 and d. Note that d is always less

than h0 as can be deduced from the geometry of the model (Figure 2.1). The

numerical solutions were obtained using the software package Mathematica.

In order to better understand the behaviour of the lower and upper wave

numbers (kl and ku, respectively), in Figures 2.8 and 2.9, we plot kl vs. d,

and ku vs d, respectively, for h0 = 0.5. When h0 = 0.5, kl decreases to about

2 as d → 0.5 with a sharp decline in kl between d ≈ 0 and d ≈ 0.1. On

the other hand, ku is smaller for smaller values of d and has a ‘slow’ increase

till d ≈ 0.4 and a sharp incline thereafter. We similarly plot kl and ku for a

constant d = 0.25 and examine their behaviour as h0 → 1. This is done in

Figures 2.10 and 2.11.

When d = 0.25, kl decreases monotonically as h0 → 1. However, though

ku decreases with increasing h0 as well, the decline is not as smooth as the kl

case. The decrease in ku is much sharper between h0 ≈ 0 and h0 ≈ 0.3, and a

‘slow’ decrease (to ≈ 0) thereafter. We note that this analysis is in agreement

with the contour plots in Fig. 2.6.
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Figure 2.6: kl contours for varying h0 and d.

Figure 2.7: ku contours for varying h0 and d.
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Figure 2.8: kl for h0 = 0.5 and varying d.

Figure 2.9: ku for h0 = 0.5 and varying d.
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Figure 2.10: kl contours for varying h0 and d = 0.25.

Figure 2.11: ku contours for varying h0 and d = 0.25.
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Figure 2.12: The σmax contours for varying h0 and d.

Figure 2.13: The kmax contours for varying h0 and d.
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Figure 2.14: σmax, for h0 = 0.5 and varying d.

Figure 2.15: kmax, for h0 = 0.5 and varying d.
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We now turn to describe how the most unstable mode varies as a function

of h0 and d. Formally, the wavenumber associated with the most unstable

mode, denoted by kmax, will satisfy

∂σ

∂k
(kmax) = 0 (2.46)

for a given h0 and d. The growth rate associated with the most unstable mode

is maximum is denoted by σmax, and is given by

σmax = kmax|cI(kmax, h0, d)|.

Similar to our analysis of the behaviour of kl and ku for constant h0 and

d, we now look at the behaviour of σmax and kmax for h0 = 0.5. In Fig.

2.14 and 2.15, we plot σmax and kmax, respectively, for varying d. There is

a steady increase in σmax until the d ≈ 0.4 point, and a sharp incline after.

We notice a similar behaviour in the plot of kmax vs. d as well.

The determination of kmax and σmax was done numerically using Math-

ematica. The contour plots of the growth rate (σmax) and the corresponding

wavenumbers (kmax) of the most unstable modes are shown in Fig. 2.12 and

2.13, respectively. The contours for both σmax and kmax, as expected, give

reasonable values for d < h0. However, as d → h0, both the growth rate and

wave number of the most unstable mode seem to ‘blow up’. These singulari-

ties are indicative of the model no longer being physical. We will examine the

asymptotic structure of the dispersion relation in the next section.
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Figure 2.16: σmax for varying h0 and d = 0.25.

Figure 2.17: kmax for varying h0 and d = 0.25.

In Fig. 2.16 and 2.17, we again notice a similar trend in the behaviour of

σmax and kmax, respectively, as h0 → 1. Both, σmax and kmax have a sharp

decrease till h0 ≈ 0.3, and a steady decline to about 0 thereafter.

36



Figure 2.18: Contour plots of the frequency, ω, in the (h0, d) plane.

Figure 2.19: Contour plots of the phase velocity, cR, in the (h0, d) plane.

The frequency of the most unstable mode, denoted by ωmax, is given by,

ωmax = kmaxcRmax, (2.47)

where cRmax is given by,

cRmax = cR(h0, d, kmax). (2.48)

The contours of ωmax, the frequency of the most unstable modes and that
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of cRmax, the phase velocity of the most unstable modes are shown in Fig.

2.18 and Fig. 2.19, respectively. The contours are drawn in the (h0, d) plane.

The plots of ωmax and cRmax for h0 = 0.5 are shown in Fig. 2.20

and 2.21, respectively. The frequency of the most unstable mode, ωmax, has

a steady but slow increase up to d ≈ 0.4 and a sharp increase thereafter.

The phase velocity of the most unstable mode, cRmax, on the other hand is

monotonically increasing as d→ 0.5.

Figure 2.20: ωmax for h0 = 0.5 and varying d
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Figure 2.21: cRmax for h0 = 0.5 and varying d

In Fig. 2.22 and Fig. 2.23, we plot ωmax and cmax, respectively, for

d = 0.25. We notice a sharp decline in ωmax for lower values of h0 (till

h0 ≈ 0.3), and a steady decrease to about 0 as h0 → 1. The phase velocity,

cmax, monotonically decreases as h0 → 1.

Figure 2.22: ωmax for varying h0 and d = 0.25
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Figure 2.23: cRmax for varying h0 and d = 0.25

2.6 Asymptotics

In this section, we determine the leading order asymptotic behaviour of the

dispersion relation as k → 0 and k → ∞. For low values of the wavenumber

(k → 0), the coefficients of the dispersion relation (equation 2.41) are reduced

to,

α ∼ h0 − 1,

and

β ∼ 0.

Thus, the discriminant ∆ is reduced to

α2 − 4β ∼ (h0 − 1)2 > 0,

which implies stability as k → 0.

For large wavenumber values (k tending to∞), we once again look at the

behaviour of the coefficients of the non dimensional dispersion relation [2]

α ∼ 1

2kd
− 1,
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and

β ∼ 1

2k(h0 − d)
.

Using the above approximations, the discriminant is

∆ = α2 − 4β ∼ 1− 1

kd
− 2

k(h0 − d)
.

This gives, for large values of the wavenumber, ∆ > 0.

Thus we conclude that ∆ > 0 for k → 0 and hence, we have stability.

When k → ∞, we again have ∆ > 0 and stability. This is of course, to be

expected, since in the region k →∞, k > ku.

In this chapter, we introduced a piecewise-linear homogeneous shear flow

and studied, in some detail, the stability characteristics of the same. We will

follow a similar approach in Chapter 3, where we include a stable density

stratification to the piecewise-linear flow profile.
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Chapter 3

Stability characteristics of a

shear flow in a density stratified

fluid

In our quest for understanding better the shear layer instability in a nonhydro-

static fluid, we studied in the previous chapter the stability characteristics of

a piecewise linear homogeneous shear flow. This chapter introduces a density

stratification to the previously examined piecewise linear flow profile.

Following a similar format to Chapter 2, we begin by introducing the

governing equations of the flow in Section 3.1. The matching conditions are

derived in Section 3.2. We determine the dispersion relation in Section 3.3,

and in 3.4 we consider some special limits of the dispersion relation. Sections

3.5 and 3.6 describe the stability characteristics from the Marginal Stability

Boundary.

3.1 Governing equations

The geometry of the three-layered model we are considering is shown in Figure

3.1. The depth of the entire water column is H, η1 and η2 are the nondi-

mensional disturbances in the middle and lower layer thicknesses, respectively,
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compared to the scale thickness and h0 and d are the mean layer depths for the

middle and lower layers, respectively. The stratification and velocity profiles

depicted in Figure 3.1 emulate real world observations of bottom intensified

abyssal overflows (Swaters personal communication).

Figure 3.1: The geometry of the model

The inviscid, incompressible and stratified 2-D flow is governed by the set of

partial differential equations [15]:

ρ(∂t + u∂x + w∂z)u+ px = 0, (3.1)

ρ(∂t + u∂x + w∂z)w + pz = −ρg, (3.2)

(∂t + u∂x + w∂z)ρ = 0, (3.3)

43



ux + wz = 0, (3.4)

where u,w are the velocities in the positive x and z directions, respectively,

p is the total pressure field, ρ is the density, g is acceleration due to gravity

and t is the time. Equations (3.1) and (3.2) represent the conservation of

horizontal and vertical momentum, respectively. Equation (3.3) represents

incompressibility and equation (3.4) represents conservation of mass.

In the absence of any motion, the fluid is assumed to be in hydrostatic

balance. The hydrostatic rest state is given by (3.1), (3.2) and (3.4) where

u = w = 0, with (3.2) reducing to

∂pH
∂z

= −ρH(z)g, (3.5)

which determines the background hydrostatic pressure field denoted by, pH(z),

and given by,

pH(z) = g

∫ H

z

ρH(ξ) dξ, (3.6)

where we have imposed the boundary condition, pH(H) = 0, z = H is the

undisturbed surface of the fluid and ρH(z) is the hydrostatic density field.

We can show that u = U0(z), w = 0, p = pH(z) and ρ = ρH(z) where

pH(z) and ρH are the hydrostatic pressure and the hydrostatic density fields,

respectively, is an exact steady state solution of the equations of motion for

any smooth function U0(z). From the x-direction momentum equation, (3.1),

ρH(∂t + U0(z)∂x + 0∂z)U0(z) + 0 = 0,

which gives,

ρH × 0 + 0 ≡ 0.

Substituting the exact solutions into the z-direction momentum equation,

(3.2), we get

ρH(∂t + U0(z)∂x + w∂z)0 + [pH(z)]z = ρHg,
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which gives,

∂pH
∂z

= −ρHg,

which is satisfied on account of equation (3.5).

The exact solutions substituted into equation (3.3) gives,

(∂t + 0∂x + 0∂z)ρH(z) ≡ 0. (3.7)

The mass conservation equation with the exact solutions gives,

[U0]x + 0 = 0.

Since U0 is a function of z alone, the above equation is trivially satisfied. We

can thus conclude that u = U0(z), w = 0, p = pH(z) and ρ = ρH(z) is an exact

solution of the governing equations of motion.

We try to examine the linear stability of this exact solution. Thus, we now

add perturbations to the exact solutions of the form

u(x, z, t) = U0(z) + ũ(x, z, t), (3.8)

w(x, z, t) = 0 + w̃(x, z, t), (3.9)

ρ(x, z, t) = ρH(z) + ρ̃(x, z, t), (3.10)

p(x, z, t) = pH(z) + p̃(x, z, t), (3.11)

where the tildes represent perturbation quantities. Substituting equations

(3.8), (3.9), (3.10) and (3.11) into our model equations (3.1), (3.2), (3.3) and

(3.4), neglecting nonlinear perturbation terms, dropping the tildes on the per-
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turbation quantities and invoking the Boussinesq approximation, we get

ρ?(∂t + U0(z)∂x)u+ ρ?wU
′
0 = −px, (3.12)

ρ?(∂t + U0(z)∂x)w = −pz − ρg, (3.13)

(∂t + U0∂x)ρ+ wρHz = 0, (3.14)

ux + wz = 0. (3.15)

where ρ? =
1

H

∫ H

0

ρH(z) dz. Equations (3.12), (3.13), (3.14) and (3.15) are

called the Linear Stability Equations and U ′0 ≡
dU0(z)
dz

. Equations (3.12) and

(3.13) are the perturbation momentum equations in the x and z direction

respectively, (3.14) is the perturbation density equation and (3.15) is the per-

turbation continuity equation.

We now introduce the normal modes,

(u,w, ρ, p) = (u′(z), w′(z), ρ′(z), p′(z)) exp[ik(x− ct)] + c.c., (3.16)

where c.c. is the complex conjugate of the preceding term. Substituting the

normal modes in the linear stability equations and dropping the primes,

ρ?(ik(U0 − c)u+ wU ′0) + ikp = 0, (3.17)

ρ?ik(U0 − c)w + p′ + ρg = 0, (3.18)

ik(U0 − c)ρ+ ρ′Hw = 0, (3.19)
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iku+ w′ = 0, (3.20)

where ()′ ≡ d()
dz

. Solving for u in equation (3.20), substituting it into (3.17)

and using the obtained equation to eliminate p′ in equation (3.18), we get

[ρ?(U0 − c)w′]′ − [ρ?U
′
0w]′ − ρ?k2(U0 − c)w + ikgρ = 0. (3.21)

We now use equation (3.19) to eliminate ρ in equation (3.21) in the form,

[ρ?(U0 − c)w′]′ − [ρ?U
′
0w]′ −

[
ρ′Hg

U0 − c
+ ρ?k

2(U0 − c)
]
w = 0. (3.22)

Equation (3.22) is the Taylor Goldstein equation [7]. The boundary conditions

are defined so that w = 0 at z = H (i.e., a rigid-lid) and a flat bottom, w = 0

at z = 0.

Based on the continuity equation (3.15) we introduce the stream function,

φ(x, z, t) such that u = −φz and w = φx [7]. We now use a normal mode of

the form

φ = ϕ(z) exp[ik(x− ct)] + c.c.,

which renders,

u = −ϕ′, (3.23)

and

w = ikϕ. (3.24)

Therefore, substituting (3.24) into the Taylor Goldstein equation (3.22), we

get
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[ρ?(U0 − c)ϕ′]′ − [ρ?U
′
0ϕ]′ −

[
ρ′Hg

U0 − c
+ ρ?k

2(U0 − c)
]
ϕ = 0. (3.25)

In this Chapter, we will assume a density profile given by,

ρH =

{
ρ1 d ≤ z ≤ H,

ρ2 0 ≤ z ≤ d.

The background flow is assumed to be piecewise continuous and linear,

given by,

U(z) =


0 h0 ≤ z ≤ H,
U0(z−h0)
d−h0 d ≤ z ≤ h0,

U0z
d

0 ≤ z ≤ d.

This profile is a model for a boundary jet located immediately adjacent to

the bottom where the velocity is continuous but not differentiable and the

maximum velocity is located at z = d and the minimum jet velocity (U0(z) =

0) is located at z = h0 in the flow interior. As shown in Figure 3.1, the interval

h0 < z < H will be defined as region I, d < z < h0 will be defined as region II

and 0 < z < d will be defined as region III.

Since the flow profile is linear (i.e., U ′′0 ≡ 0, except across the interfaces),

the Taylor Goldstein equation reduces to

ϕ′′ − k2ϕ = 0,

in all three regions.

We will solve the reduced TG equation in each region and then match the

solutions across the interfaces where U ′0 and U ′′0 are not defined, both at z = h0

and z = d, respectively, using appropriate jump conditions. The solutions for
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the three regions can be written in the form,

ϕI(z) = A sinh[k(H − z)], (3.26)

ϕII(z) = B sinh[k(z − d)] +D sinh[k(h0 − z)], (3.27)

and,

ϕIII(z) = E sinh[kz], (3.28)

where ϕI , ϕII and ϕIII , are the solutions in layers I, II and III, respectively.

The boundary conditions, ϕ = 0 at z = H (a rigid lid), and ϕ = 0 at z =

0 (non-sloping bottom) are satisfied by (3.26) and (3.28), respectively. We

note that in the solutions obtained above, A,B,D and E are as yet arbitrary

constants.

3.2 Matching conditions

We now impose a matching condition across the interface at z = h0 where,

U(z) =

{
0 h0 ≤ z ≤ H,
U0(z−h0)
d−h0 d ≤ z ≤ h0.

and ρH = ρ1 for d ≤ z ≤ H. Another matching condition is imposed across

the interface at z = d where,

U(z) =

{
U0(z−h0)
d−h0 d ≤ z ≤ h0,

U0z
d

0 ≤ z ≤ d.

and,

ρH =

{
ρ1 d ≤ z ≤ h0,

ρ2 0 ≤ z ≤ d.
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The first condition we impose is the kinematic condition, which states that

fluid particles on the interface must move with the interface without the two

fluids occupying the same point at the same time and without a cavity forming

between the fluids [16].

We consider the interface located at z = h0 and denote u+, w+ as

limz→h+0
u,w, and u−, w− as limz→h−0

u,w [7]. The fully nonlinear kinematic

condition is given by [7],

w = φx = η1t + uη1x, (3.29)

on z = h0 + η1, where η1 is the perturbation to the location of the interface

which in the background flow is located at z = h0. Substituting the perturbed

solutions, (3.8), (3.9) and (3.11), into the nonlinear condition (3.29), Taylor

expanding about z = h0 and linearizing, we get

w+ = η1t + U0(h
+
0 )η1x, (3.30)

at z = h+0 , and

w− = η1t + U0(h
−
0 )η1x, (3.31)

at z = h−0 .

It is now convenient to introduce normal modes of the form,

w = w̃(z) exp[ik(x− ct)] + c.c., (3.32)

η1 = η0 exp[ik(x− ct)] + c.c., (3.33)

where η0 is a complex constant. Substituting the normal modes, (3.32) and

(3.33) into the linearized equations (3.30) and (3.31) and dropping the tildes,
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we get

w(h+0 ) = ikη0[U0(h
+
0 )− c]⇒ ikη0 =

w(h+0 )

U0(h
+
0 )− c

,

and

w(h−0 ) = ikη0[U0(h
−
0 )− c]⇒ ikη0 =

w(h−0 )

U0(h
−
0 )− c

,

which further implies

w(h+0 )

U0(h
+
0 )− c

=
w(h−0 )

U0(h
−
0 )− c

,

which can be rearranged in the form,

[
w

U0 − c

]
= 0, (3.34)

on z = h0, where

[?] ≡ ?+ − ?−. (3.35)

Equation (3.34) is the mathematical representation of the kinematic con-

dition across the interface z = h0. Since w = ikφ with the normal mode

assumption and equation (3.29), the kinematic condition reduces to,

[
φ

U0 − c

]
= 0.

Finally, since U0(z) is continuous for all z, the kinematic condition reduces to

[φ] = 0, (3.36)

at z = h0. Following a procedure similar to the one above, we get the same

form for the kinematic condition, (3.36) at the z = d interface.

The second matching condition we need is the dynamic condition which

postulates that the normal component of the stress vector at the deforming

interface is continuous [16]. We first consider the condition across z = h0

(where the density is continuous). For an inviscid fluid, stress continuity
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implies that the total pressure across the deforming interface is continuous [7],

i.e,

pITotal(h0 + η1) = pIITotal(h0 + η1), (3.37)

where pI,IITotal are the total pressures in layers one and two, respectively,

which are given by (3.11),

pITotal = pH(z) + p̃I(x, z, t), (3.38)

and,

pIITotal = pH(z) + p̃II(x, z, t), (3.39)

where p̃I(x, z, t) and p̃II(x, z, t) are the perturbation pressures associated with

the wave field in layers one and two, respectively. From (3.37), at z = h0 + η1,

pH(h0 + η1) + p̃I(x, h0 + η1, t) = pH(h0 + η1) + p̃II(x, h0 + η1, t),

which, if Taylor expanded about z = h0 and linearized, reduces to

p̃I(x, h0, t) = p̃II(x, h0, t),

since ρH is continuous across z = h0 (see Figure 3.1). This gives the dynamic

matching condition,

[p] = 0,

on z = h0, where the tilde has been dropped.

We now introduce the normal mode assumptions,

p = p̃(z) exp[ik(x− ct)] + c.c, (3.40)

52



u = ũ exp[ik(x− ct)] + c.c, (3.41)

and

w = w̃ exp[ik(x− ct)] + c.c. (3.42)

into the x-momentum equation, (3.12), and dropping the tildes,

ρ? [ik(−c)u+ ikU0(z)u]− ρ?U ′0w = −ikp. (3.43)

Solving for p using u = −φz and w = φx gives,

p = (U0 − c)φ′ − U ′0φ,

so that the dynamic matching condition across z = h0 will be given by,

[(U0 − c)φ′ − U ′0φ] = 0, (3.44)

where the square brackets indicate the jump defined by (3.35).

We now derive the pressure continuity condition across z = d (where the

density is discontinuous). This condition is expected to be more complex since

ρH is discontinuous across z = d. Following the same procedure as that for

z = h0, pressure continuity across the z = d interface implies,

pIITotal(d+ η2) = pIIITotal(d+ η2), (3.45)

where pII,IIITotal are the total pressures in layers two and three, respectively,

which are given by (3.11),

pIITotal = pIIH(z) + p̃II(x, z, t),

and,

pIIITotal = pIIIH(z) + p̃III(x, z, t),
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where p̃II(x, z, t) and p̃III(x, z, t) are the perturbation pressures associated

with the wave field in layers two and three, respectively. From (3.49), at

z = d+ η2,

pIIH(d+ η2) + p̃II(x, d+ η2, t) = pIIIH(d+ η2) + p̃III(x, d+ η2, t),

which, Taylor expanded about z = d reduces to,

−ρ1gη2 + p̃II(x, d, t) = −ρ2gη2 + p̃III(x, d, t).

This gives the dynamic matching condition,

[ρHgη2] = [p], (3.46)

on z = d, where the tilde has been dropped and ρH = ρ2 − ρ1.
We now introduce the normal mode assumptions,

p = p̃(z) exp[ik(x− ct)] + c.c,

η2 = η0exp[ik(x− ct)] + c.c,

u = ũ exp[ik(x− ct)] + c.c,

and

w = w̃ exp[ik(x− ct)] + c.c.

The dynamic matching condition, (3.46), reduces to,

[ρHgη0] = [p], (3.47)

on z = d. Introducing the normal modes into the x-momentum equation,

(3.12), and dropping the tildes, we obtain

54



ρ?(ik(−c)u+ ikU0(z)u) + ρ?U
′
0w = −ikp.

Solving for p using u = −φz and w = φx gives,

p = ρ?((U0 − c)φ′ − U ′0φ). (3.48)

We note that from the definition of (3.47), the kinematic condition, ikη0 =
w

U0 − c
, and w = ikφ, the dynamic matching condition across z = d will be

given by,

[
ρ?(U0 − c)φ′ − ρ?U ′0φ−

ρHgφ

U0 − c

]
= 0, (3.49)

where the square brackets indicate the jump defined by (3.35).

Thus applying the kinematic condition (3.36) at z = h0 to the solutions

(3.26) and (3.27), (i.e, φI(z) and φII(z)) yields

A sinh[k(H − h0)] = B sinh[k(h0 − d)].

Applying the kinematic condition (3.36) at z = d to the solutions (3.27) and

(3.28), (i.e, φII(z) and φIII(z)) we get

D sinh[k(h0 − d)] = E sinh[kd].

Further, applying the pressure continuity condition, (3.44), to the solu-

tions (3.26) and (3.27) at z = h0 gives

ckA cosh[k(H − h0)] = −c
[
Ak

sinh[k(H − h0)] cosh[k(h0 − d)]

sinh[k(h0 − d)]
− Ek sinh[kd]

sinh[k(h0 − d)]

]
+A

U0

h0 − d
sinh[k(H − h0)],

which simplifies to,
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A

[
ck sinh[k(H − d)]− U0

h0 − d
sinh[k(H − h0)] sinh[k(h0 − d)]

]
−Eck sinh[kd] = 0. (3.50)

The pressure continuity condition (3.49) applied to the solutions (3.27) and

(3.28) at the interface z = d gives,

Ak(U0 − c)2 sinh[k(H − h0)]− E

[
(U0 − c)2k sinh[kh0]− g′ sinh[kd] sinh[k(h0 − d)]

U0(U0 − c)
d(h0 − d)

h0 sinh[k(h0 − d)] sinh[kd]

]
= 0, (3.51)

where we have introduced g′ ≡ g
ρ2 − ρ1
ρ?

.

3.3 Dispersion relation

In order to have non-trivial solutions for A and E, the determinant of the

coefficients in equations (3.50) and (3.51) must vanish:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

k(U0 − c)2 sinh[k(H − h0)]

{U0(U0 − c)
d(h0 − d)

h0 sinh[kd] sinh[k(h0 − d)

−(U0 − c)2k sinh[kh0]

+g′ sinh[kd] sinh[k(h0 − d)]
}

− U0

h0 − d
sinh[k(H − h0)] sinh[k(h0 − d)]

+ck sinh[k(H − d)]

−ck sinh[kd]

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Computing the determinant yields, after a little algebra, a cubic equation for
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c given by

c3k2 sinh[kH] + c2U0

[
kh0

d(h0 − d)
sinh[k(H − d)] sinh[kd]− k

h0 − d
sinh[kh0] sinh[k(H − h0)]

−2k2 sinh[kH]

]
+ cU2

0

[
k2 sinh[kH]− h0

d(h0 − d)2
sinh[kd] sinh[k(H − h0)] sinh[k(h0 − d)]

− kh0
d(h0 − d)

sinh[kd] sinh[k(H − d)] +
2k

h0 − d
sinh[kh0] sinh[k(H − h0)]

−g
′k

U2
0

sinh[kd] sinh[k(H − d)]

]
+

[
g′U0

h0 − d
sinh[k(H − h0)] sinh[k(h0 − d)] sinh[kd]

+
U3
0h0

d(h0 − d)2
sinh[kd] sinh[k(H − h0)] sinh[k(h0 − d)]− U3

0k

h0 − d
sinh[k(H − h0)]

]
= 0.

(3.52)

Equation (3.52) forms the dispersion relation for the instability problems where

we consider c as a function of U0, k, h0, d and g′, i.e., c = c(U0, k, h0, d, g
′).

We now introduce the following nondimensionalization in order to simplify

the dispersion relation,

k̃ = kH,

d̃ =
d

H
,

h̃0 =
h0
H
,

c̃ =
c√
gH

,

where the tildes denote non dimensional quantities.

Substituting the non-dimensional parameters into the dimensional dis-

persion relation, dropping tildes and dividing by
[gH]3/2

H2
, we get the non-

57



dimensional dispersion relation

c3k2 sinh[k] + c2F

[
kh0

d(h0 − d)
sinh[k(1− d)] sinh[kd]− 2k2 sinh[k]

− k

h0 − d
sinh[kh0] sinh[k(1− h0)]

]
+ c

[
F 2

{
2k

h0 − d
sinh[kh0] sinh[k(1− h0)]

− h0
d(h0 − d)2

sinh[kd] sinh[k(1− h0)] sinh[k(h0 − d)]− kh0
d(h0 − d)

sinh[kd] sinh[k(1− d)]

+k2 sinh[k]

}
− δk sinh[kd] sinh[k(1− d)]

]
+

[
Fδ

1

(h0 − d)
sinh[k(1− h0)] sinh[k(h0 − d)] sinh[kd]

+F 3 sinh[k(1− h0)]

{
h0

d(h0 − d)2
sinh[kd] sinh[k(h0 − d)]− k

h0 − d
sinh[kh0]

}]
= 0,

(3.53)

where the Froude number, F ≡ U0√
gH

and δ ≡ g′

g
.

3.4 Special limits

We now consider some special limits applied to the non-dimensional dispersion

relation (3.53).

1. F = 0: The first limit we consider is the no mean flow limit, i.e., U0 = 0.

This essentially means the Froude number, F ≡ U0√
gH

= 0. Substituting

F = 0 in (3.53) gives

c3k2 sinh[k]− cδk sinh[kd] sinh[k(1− d)] = 0,

which reduces to

c = ±

√
δ sinh[kd] sinh[k(1− d)]

k sinh[k]
.

From the above formulation, the flow is stable if and only if ρ2 > ρ1, i.e.,
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for a stable density stratification (δ > 0). The propagating waves are

called internal gravity waves [15].

2. δ = 0: The second limit we consider is the homogeneous limit, i.e.,

ρ1 = ρ2, that is δ = 0. Substituting δ = 0 in the non dimensional

dispersion relation (3.53) yields,

c3k2 sinh[k] + c2F

[
kh0

d(h0 − d)
sinh[k(1− d)] sinh[kd]− 2k2 sinh[k]−

k

h0 − d
sinh[kh0] sinh[k(1− h0)]

]
+ cF 2

[
− h0
d(h0 − d)2

sinh[kd] sinh[k(1− h0)] sinh[k(h0 − d)]

+k2 sinh[k]− kh0
d(h0 − d)

sinh[kd] sinh[k(1− d)] +
2k

h0 − d
sinh[kh0] sinh[k(1− h0)]

]

+F 3 sinh[k(1− h0)]

[
h0

d(h0 − d)2
sinh[kd] sinh[k(h0 − d)]− k

h0 − d
sinh[kh0]

]
= 0,

which reduces to,

k2 sinh[k]
[
c3 + cF 2 − 2Fc2

]
+

kh0
d(h0 − d)

sinh[k(1− d)] sinh[kd]
[
c2F − cF 2

]
+

k

h0 − d
sinh[kh0] sinh[k(1− h0)]

[
2cF 2 − c2F − F 3

]
+

h0
d(h0 − d)2

sinh[kd] sinh[k(1− h0)] sinh[k(h0 − d)]
[
F 3 − cF 2

]
= 0.

(3.54)

We notice that (c − F ) can be factored out in (3.54), which further
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reduces the equation to,

c2k2 sinh[k]

+cF

[
k

d(h0 − d)

{
h0 sinh[k(1− d)] sinh[kd]− d sinh[kh0] sinh[k(1− h0)]

}
− k2 sinh[k]

]

+F 2 sinh k(1− h0)
d(h0 − d)2

[
kd(h0 − d) sinh[kh0]− h0 sinh[kd] sinh[k(h0 − d)]

]
= 0,

(3.55)

which is identical to the non dimensional dispersion relation obtained in

the homogeneous case (See (2.40)). We also note here that the δ = 0

limit is the non dimensional version of g′ = 0, i.e., setting g′ = 0 in

the dimensional dispersion relation, (3.52) reduces the equation to the

dimensional dispersion relation obtained in the homogenous case.

3.5 Marginal Stability Boundary

Along the lines of Chapter 2, having obtained the non dimensional dispersion

relation in the previous section, we now turn to determining the Marginal

Stability Boundary (MSB). In order to do so, we first rewrite the cubic non

dimensional dispersion relation (3.53) as,

(c− F )

[
c(c− F )k2 sinh[k] + cF

kh0
d(h0 − d)2

sinh[k(1− d)] sinh[kd]

−F (c− F )
k

h0 − d
sinh[kh0] sinh[k(1− h0)]− F 2 h0

d(h0 − d)2
sinh[kd] sinh[k(1− h0)]

]

+δ

[
F

h0 − d
sinh[k(1− h0)] sinh[k(h0 − d)] sinh[kd]− ck sinh[k(1− d)] sinh[kd]

]
= 0,

which can be written in the form,

(c− F )(c2a+ cFb+ F 2d) + δ(cM + γF ) = 0, (3.56)

60



where

a = k2 sinh[k],

b =

(
kh0

d(h0 − d)
sinh[k(1− d)] sinh[kd]− k

h0 − d
sinh[kh0] sinh[k(1− h0)]

)
− k2 sinh[k],

d =
k

h0 − d
sinh[kh] sinh[k(1− h0)]−

h0
d(h0 − d)2

sinh[kd] sinh[k(1− h0)],

M = −k sinh[k(1− d)] sinh[kd],

γ =
1

h0 − d
sinh[k(1− h0)] sinh[k(h0 − d)] sinh[kd].

Rewriting (3.56) in the form,

c3a+ c2F (b− a) + cF 2(d− b)− F 3d = 0,

and assuming c = c̃F , the above equation reduces to,

c̃3a+ c̃2(b− a) + c̃

[
(d− b) +

δM

F 2

]
+

[
δγ

F 2
− d

]
= 0.

Following the general procedure to solve a cubic equation, we let c̃ = t− b− a
a

to get an equation in terms of t,

t3 + pt+ q = 0, (3.57)

where p and q are defined by [1],

p = =
3a[(d− b) + δM

F 2 ]− (b− a2)
3a2

,

q =
2(b− a)3 − 9a(b− a)[(d− b) + δM

F 2 ] + 27a2[ δγ
F 2 − d]

27a3
.

The roots of the cubic (3.57) will all be real (and hence the regions of

stability are obtained) when,

61



τ ≡ −q
2

4
− p3

27
≥ 0, (3.58)

where τ is a function of k, h0, d, δ and F . Instability occurs when τ < 0 and the

marginal stability boundary is obtained when τ ≡ 0. The parameter surface

for which,

τ(k, h0, d, δ, F ) = 0,

is a multidimensional hyper surface in 5-dimensional space. Therefore, it is

easiest to visualize the transition from stability to instability one parameter

at a time.

5 10 15 20
k

-0.002

-0.001

0.001

0.002

Τ

Figure 3.2: τ vs k for 0 ≤ k ≤ 20 with h0 = 0.5, d = 0.25, δ = 10−4 and
F = 0.013. The points of marginal stability are located at k ≈ 3.257 and
k ≈ 12.14.

As an example of the transition to instability, we plot in Figure (3.2) τ vs

k, assuming h0 = 0.5, d = 0.25, F = 0.013 and δ = 10−4. From Figure (3.2)

we see that in the region 3.257 ≈ kl < k < ku ≈ 12.14, τ < 0 and therefore,

the flow is unstable in this region. The points of marginal stability, i.e., the
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marginal stability boundaries, are at k = kl ≈ 3.257 and k = ku ≈ 12.14,

where kl is the low wavenumber cutoff and ku is the high wavenumber cutoff.

From the estimates from Swaters [22], where H ≈ 800m, the dimensional

upper wavenumber cutoff is about 0.015 m−1, with the corresponding dimen-

sional wavelength about 418.88 m. Similarly, the dimensional lower wavenum-

ber cutoff is found to be about 0.004 m−1 and the corresponding dimensional

wavelength about 1.57 km.

The dimensional phase velocity, cR = Re(c) corresponding to the lower

wavenumber cutoff, kl is approximately 0.0144 ms−1 and that corresponding

to the high wavenumber cutoff, ku is about 0.0089 ms−1.

The dimensional frequency, ω, which is given by,

ω = cRk,

where cR, k represent the dimensional phase velocity and wavenumber, respec-

tively. The frequency corresponding to the low wavenumber cutoff is about

5.76× 10−5 s−1 and that corresponding to the high wavenumber cutoff is ap-

proximately 1.335× 10−4 s−1.

The period of oscillation, T , given by,

T =
2π

ω
,

associated with the low wavenumber cutoff is Tl = 30.3 hours, and that corre-

sponding to the high wavenumber cutoff is Tu = 13 hours.

The graphs of the frequency and the phase velocity vs. k when h0 = 0.5

and d = 0.25 are depicted in Figures (3.3) and (3.4), respectively. In Figure

(3.3), ω1 and ω3 coalesce when the flow is unstable, and ω2 represents the

root that is real. Similarly, in Figure (3.4), c1 and c2 coalesce at the region of

instability, with c2 always being ‘real’.
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Figure 3.3: Graph of the nondimensional frequency, ω, when h0 = 0.5, d =
0.25, δ = 10−4 and F = 0.013.

Figure 3.4: Graph of the nondimensional phase velocity, cR, when h0 = 0.5, d =
0.25, δ = 10−4 and F = 0.013.
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The graph of the growth rate, σ, vs. k is shown in Figure (3.5). We deduce

from the figure, that between the regions kl ≈ 3.257 and ku ≈ 12.14, τ < 0

which implies instability in that region.

The dimensional growth rate, as determined from Chapter 2, is given by,

σ? =
σ

T
,

where T represents the time scale (found to be 9.03 s). We note here that the

usage of T , as opposed to τ as done in Chapter 2, is merely for clarity and to

avoid confusion with the τ representing the stability condition in this Chapter.

For h0 = 0.5, d = 0.25, δ = 0.0001 and F = 0.013, the growth rate of the most

unstable mode, σmax is about 0.329. This translates to a dimensional value

of 0.0365 s −1, which corresponds to an e-folding amplification time of 27.39 s.

5 10 15 20
k

0.05

0.10

0.15

0.20

0.25

0.30
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Figure 3.5: Growth rate curve for h0 = 0.5, d = 0.25, δ = 10−4 and F = 0.013.
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3.6 Contour graphs

In this section, we present a series of contour plots describing the instability

characteristics when some of the parameters are varied.

Similar to Chapter 2, the upper and lower wavenumber cutoffs are deter-

mined by setting,

τ(k, h0, d, δ, F ) = 0, (3.59)

and solving for k as a function of h0 and d, with δ and F being constants. We

first choose δ = 10−5 and F = 0.013. The solutions of (3.59) were obtained

numerically using Mathematica. We note here again that d is always less than

h0 as can be deduced from the geometry of the model (3.1). The contour plots

of kl and ku, respectively, for the region of h0 and d given by 0 < h0 < 1 and

d < h0 < 1, are presented in Figures (3.6) and (3.7), respectively.

Figure 3.6: The kl contours for varying h0 and d with δ = 10−5 and F = 0.013.
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Figure 3.7: The ku contours for varying h0 and d with δ = 10−5 and F = 0.013.

In Figures (3.8) and (3.9) kl and ku as functions of h0 and d with δ = 0.01

and F = 0.013 are plotted, respectively.

Figure 3.8: The kl contours for varying h0 and d with δ = 0.01 and F = 0.013.
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Figure 3.9: The ku contours for varying h0 and d with δ = 0.01 and F = 0.013.

To better understand the behaviour of the lower and upper wave numbers,

we plot kl vs. d and ku vs. d for h0 = 0.5, δ = 10−4 and F = 0.013. Since

d < h0 (Figure 3.1), d < 0.5.

Figure 3.10: kl for h0 = 0.5 and varying d, with δ = 10−5 and F = 0.013.
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Figure 3.11: ku for h0 = 0.5 and varying d, with δ = 10−5 and F = 0.013.

From Figure 3.10, we notice the lower wavenumber kl has a slow but

steady increase until d ≈ 0.4 and ‘blows up’ around d ≈ 0.5. The upper

wavenumber ku, has an initial decrease up to d ≈ 0.05, plateaus until d ≈ 0.4

and has a sharp increase thereafter as d→ 0.5. (See Figure 3.11)

For δ = 10−5, F = 0.013 and d = 0.25, we plot kl and ku against h0 in

Figures 3.12 and 3.13, respectively, where 0 ≤ h0 ≤ 1. The lower wavenumber

decreases for increasing h0. Along the d = 0.25 contour, we notice a sharp

decline in kl around h0 = 0.3, and as h0 → 1, kl tends to 0. This can be

inferred from the contour plots in Figures 3.6 and 3.7.

It is to be noted here that for δ = 0.01, the numerical values of the lower

and upper wave numbers have a difference in the order of about 10−3 from

those of δ = 10−5. Therefore, we get very similar graphs of both, the contours

(which are shown in Figures 3.8 and 3.9) and the plots of the wave numbers

against one of the mean layer depths while keeping the other constant. The

latter graphs have not been shown in order to avoid redundancy.
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Figure 3.12: kl for d = 0.25 and varying h0, with δ = 10−5 and F = 0.013

Figure 3.13: ku for d = 0.25 and varying h0, with δ = 10−5 and F = 0.013
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We now turn to describe how the most unstable mode varies as a function

of h0 and d with δ and F constant. As in Chapter 2, we determine the

wavenumber of the most unstable mode, kmax, by,

∂σ

∂k
(kmax) = 0, (3.60)

and the growth rate of the most unstable mode, σmax, by

σmax = kmax|cI(kmax, h0, d, δ, F )|.

The determination of kmax and σmax was done numerically using Mathemat-

ica. The contour plots of the growth rates(σmax) of the most unstable modes

and the corresponding wave numbers (kmax) are shown in Figures (3.14) and

(3.17), respectively, with δ = 10−4 and F = 0.013. The contours for both

σmax and kmax, as expected, give reasonable values for d < h0. However, as

d → h0, both the growth rate and wave number of the most unstable mode

seem to ‘blow up’, which implies that the model is no longer physical.

The growth rate of the most unstable mode for a fixed h0 = 0.5, δ =

10−4, F = 0.013 and 0 ≤ d < 0.5 is depicted in Figure 3.15. Up to about

d = 0.05, σmax has a slow decrease, levels off until d ≈ 0.45 and ‘blows up’ as

d→ 0.5, which agrees with the contour across h0 = 0.5 in Figure 3.14.

For d = 0.25 and 0 ≤ h0 ≤ 1, the growth rate of the most unstable mode

has a sharp decrease around h0 = 0.3 and decreases to 0 as h0 → 1. This is

shown in Figure 3.16.
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Figure 3.14: The σmax contours for varying h0 and d with δ = 10−4 and
F = 0.013.

Figure 3.15: σmax for h0 = 0.5 and varying d, with δ = 10−4 and F = 0.013
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Figure 3.16: σmax for d = 0.25 and varying h0, with δ = 10−4 and F = 0.013

Figure 3.17: The kmax contours for varying h0 and d with δ = 10−4 and
F = 0.013.
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The contours of the wavenumber of the most unstable mode for fixed δ and

F are shown in Fig 3.17. The wavenumber of the most unstable mode when

h0 = 0.5, has an initial decline up to d ≈ 0.05, enters a ‘plateau’ and steadily

increases until about d = 0.45, whereupon it ‘blows up’ as d → 0.5 (Figure

3.18)

When d is fixed at 0.25, kmax monotonically decreases towards 0 with

increasing h0 (h0 → 1). This is shown in Figure 3.19.

Figure 3.18: kmax for h0 = 0.5 and varying d, with δ = 10−4 and F = 0.013
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Figure 3.19: kmax for d = 0.25 and varying h0, with δ = 10−4 and F = 0.013

The frequency of the most unstable mode, denoted by ωmax, is given by,

ωmax = kmaxcRmax, (3.61)

where cRmax is given by,

cRmax = cR(h0, d, kmax). (3.62)

The contours of ωmax, the frequency of the most unstable modes and that

of cRmax, the phase velocity of the most unstable modes are shown in Figures

(3.20) and (3.23), respectively, with δ = 10−4 and F = 0.013. The contours

are drawn in the (h0, d) plane.
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Figure 3.20: Contour plots of the frequency, ω, in the (h0, d) plane with δ =
10−4 and F = 0.013.

Figure 3.21: ωmax for h0 = 0.5 and varying d, with δ = 10−4 and F = 0.013
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Figure 3.22: ωmax for d = 0.25 and varying h0, with δ = 10−4 and F = 0.013

Figure 3.23: Contour plots of the phase velocity, cR, in the (h0, d) plane with
δ = 10−4 and F = 0.013.
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As before, we graph the frequency of the most unstable mode against d

and h0 in Figures 3.21 and 3.22, respectively, for δ = 10−4 and F = 0.013.

For a constant h0, ωmax is monotonically increasing as d → 0.5. When d is

assumed constant, ωmax decreases monotonically for increasing h0.

The phase velocity of the most unstable mode, cmax, graphed against

d and h0 for F = 0.013 and δ = 10−4 are shown in Figures 3.24 and 3.25,

respectively. When h0 = 0.5, cmax is monotonically increasing up to about

d = 0.35 and then decreases as d → 0.5. For d = 0.25, the phase velocity is

again monotonically increasing up to h0 ≈ 0.5 and then decreases to cmax ≈
0.75 as h0 → 1.

Figure 3.24: cmax for h0 = 0.5 and varying d, with δ = 10−4 and F = 0.013
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Figure 3.25: cmax for d = 0.25 and varying h0, with δ = 10−4 and F = 0.013

In order to understand the effect of stratification on the instability of the

flow, we plot the growth rate of the most unstable mode, σmax against δ, the

stratification parameter. We recall here that δ =
g′

g
with g′ =

ρ2 − ρ1
ρ

where

ρ is the average density.

Figure 3.26: σmax vs δ for h0 = 0.5, d = 0.25 and F = 1.5.
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In Figure (3.26) we plot σmax vs. δ for h0 = 0.5, d = 0.25 and F = 1.5,

i.e., for a supercritical flow. The numerical computation was done using Math-

ematica. The x-axis representing δ goes from 10−4 to 10−2, with increasing

stratification. We notice that the growth rate of the most unstable mode de-

creases with increasing δ, which indicates that stratification has a stabilizing

effect.

With F = 0.013, δ again going from 10−4 to 10−2, h0 = 0.5 and d =

0.25, we plot σmax vs. δ in Figure (3.27). We note that up to δ ≈ 0.004,

stratification has a stabilizing effect. With a stronger stratification, δ > 0.004,

the stratification has a destabilizing effect. This is of course, an anomaly

and is counterintuitive. However, if δ is increased beyond 10−2, as is done

in Figure 3.28, we notice the growth rate of the most unstable mode, σmax

starts to decrease around δ = 0.12, which is indicative of a stabilizing effect

with increasing stratification.

Figure 3.27: σmax vs δ for h0 = 0.5, d = 0.25 and F = 0.013.
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Figure 3.28: σmax vs δ for h0 = 0.5, d = 0.25 and F = 0.013.
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Chapter 4

Conclusion

Based on the Swaters model in [22], in this thesis, we have attempted a step

toward gaining a better understanding of the shear layer Kelvin-Helmholtz

instability in the nonhydrostatic case. In this attempt, we initially examined

in Chapter 2, a simple three-layered homogenous model with a piecewise con-

tinuous and linear flow. We used the linearized equations of motion to first

derive the Rayleigh Stability Equation. To reconcile the jump across the inter-

face with the solutions of the model equations, we then derived the matching

conditions, and thereafter, used these matching conditions along with the solu-

tions of the model equations to derive the dispersion relation. The dispersion

relation in the homogenous model was found to be quadratic in c.

The marginal stability boundary, which was derived from the dispersion

relation, was found to depend on the flow parameters k, h0 and d, i.e., the

wavenumber, the mean layer depth of the middle layer and the mean layer

depth of the lower layer, respectively. The complexity of the dispersion relation

thus derived lead us to study the transition from stability to instability one

parameter at a time. Because of some singularities observed, we then examined

the asymptotic structure of the dispersion relation.

For typical values for a bottom intensified shear flow, the upper wavenum-

ber cutoff and the lower wavenumber cutoff were calculated to be 0.0077 m−1

and 0.0036 m−1, respectively. The dimensional phase velocity, frequency, wave-
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length, and the growth rate of the most unstable mode were then calculated

and the e-folding amplification time was found to be 13.51 s.

Chapter 3 introduced a density stratification for the same flow profile

used in Chapter 2 and a similar type of analysis was carried out. In this

case, the linearized equations of motion led us to derive the Taylor-Goldstein

equation. The matching conditions were then derived from the model equa-

tions. Using the matching conditions along with the solutions of the model

equations, the dispersion relation was derived. The dispersion relation in this

nonhomogeneous case was found to be a cubic in c.

We then obtained the marginal stability boundary, which depends on the

parameters k, h0, d, δ and F , where k, h0 d are the same as above, and δ and

F are the stratification parameter and the Froude number, respectively. The

transition from instability to stability was again examined one parameter at a

time. Because of the presence of stratification, we lastly examined the effects

of stratification on the stability of the flow. Typical values of the bottom inten-

sified shear flow gave us a high wavenumber cutoff and low wavenumber cutoff

at 0.015 m−1 and 0.004 m−1, respectively, and from these were calculated, the

dimensional phase velocity, frequency, wavelength, and the growth rate of the

most unstable mode. The e-folding amplification time was calculated to be

27.39 s.

In the course of the research done towards this thesis, we found the dis-

persion relation for the nonhomogeneous flow more complex than the homo-

geneous one for performing any sort of asymptotic analysis. A more detailed

investigation of the cubic dispersion relation would possibly help explain the

counterintuitive result obtained in studying the effect of stratification on the

stabilization of the flow, where we had a stronger stratification leading to

destabilization in the case of δ, the stratification parameter, increasing from

10−4 to 10−2.

Introducing rotation in the model equations would be another possible

next step in further examining the Kelvin-Helmholtz instability of the shear

flow. In order to comply with the real world, most models employ a sloping
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topography (see, for example [22], [19], [21], etc.). Therefore, investigating our

problem on a sloping bottom would help us better understand the instability

mechanism. Friction has also been a part of the models used in [22] and [21],

so including friction in the fully nonlinear model equations would render the

model more realistic. And finally, considering the limitations of linear stability

theory, one could explore the solutions obtained in the weakly nonlinear case

and also perhaps, the fully nonlinear equations, to obtain a more accurate

picture of the transition to instability.
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