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ABSTRACT

Apache Hadoop has evolved significantly over the last years,
with more than 60 releases bringing new features. By imple-
menting the MapReduce programming paradigm and lever-
aging HDFS, its distributed file system, Hadoop has be-
come a reliable and fault tolerant middleware for parallel
and distributed computing over large datasets. Neverthe-
less, Hadoop may struggle under certain workloads, resulting
in poor performance and high energy consumption. Users
increasingly demand that high performance computing solu-
tions address sustainability and limit energy consumption.
In this paper, we introduce HDF'Sy, a hybrid storage mecha-
nism for HDF'S, which uses a combination of Hard Disks and
Solid-State Disks to achieve higher performance while saving
power in Hadoop computations. HDFSy brings to the mid-
dleware the best from HDs (affordable cost per GB and high
storage capacity) and SSDs (high throughput and low en-
ergy consumption) in a configurable fashion, using dedicated
storage zones for each storage device type. We implemented
our mechanism as a block placement policy for HDFS, and
assessed it over six recent releases of Hadoop with different
architectural properties. Results indicate that our approach
increases overall job performance while decreasing the en-
ergy consumption under most hybrid configurations evalu-
ated. Our results also showed that, in many cases, storing
only part of the data in SSDs results in significant energy
savings and execution speedups.
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1. INTRODUCTION

Currently there are 2 predominate perspectives relevant for
big data analysis: the 3 “Vs” — volume, variety, and velocity
[13,26]; and hardware and software infrastructures capable
of processing all the collected data. These processing infras-
tructures now encounter new performance challenges: en-
ergy consumption, power usage, functionality, and environ-
mental impact. Over the last years, the volume and speed
of data creation consistently increased. A recent study esti-
mates that 90% of all data in the world was generated over
the last two years [1]. The International Data Corporation
predicted that from 2005 to 2020, the digital universe will
grow by a factor of 300, from 130 exabytes to 40,000 ex-
abytes [22]. The same study also predicted that the “digital
universe” will roughly double and the storage market will
grow 55% every two years. As a result, they expect that the
discovery and analytics software market will grow 33% until
2016, leading to an 8 billion-dollar business [22]. In terms of
infrastructure, the storage server market has benefited from
continually decreasing disk prices and higher performance
solid state drives. Over the last three years, the cost for
hard disks has ranged between $0.03 and $0.05 per GB [14],
with SSDs costing around 20 times more.

Within this context, this paper presents the results of a hy-
brid storage approach for the Hadoop Distributed File Sys-
tem (HDFS), called HDFSpy, which seamless integrates both
storage technologies — HDs and SSDs — to create a highly-
efficient hybrid storage system. Our results indicate that in
most configurations this approach promotes overall job per-
formance increase, while decreasing the energy consumption.
The key contributions of this paper are: (1) An adaptable
hybrid storage approach for HDFS that takes into
account the performance profiles of HDs and SSDs.
Since SSDs are faster and use less power than HDs but are
much more expensive, these characteristics must be ade-
quately treated for different workloads; (2) An HD- and
SSD-aware block placement policy that is optimized
for heterogeneous storage. This policy was designed to
accommodate a pre-defined percentage of the total number
of blocks in the SSDs, and the remainder in the HDs; and
(3) An evaluation of the technique over multiple ver-
sions of Apache Hadoop. Our research showed that each
Hadoop branch has a unique energy consumption profile;
we detail these results and show how our system behaves
in each situation. We show that regardless of Hadoop ar-
chitecture/version, HDF'Sy provides improvements over the



default HDF'S settings.

Our hybrid storage model splits the file system into storage
zones, wherein a block placement strategy directs file blocks
to zones according to predefined rules. This enables the use
of different storage configurations for different workloads,
thereby achieving the desired tradeoff between performance
and energy consumption. For now, our goal is to allow the
user to choose the best configuration for the available in-
frastructure, by setting how much of each storage devices
should be used during MapReduce [2,4] computations. Al-
though the cost of SSDs could still be considered prohibitive
for general storage purposes, they can provide unique per-
formance enhancements to data analysis by reducing energy
consumption if they receive adequate support from process-
ing platforms.

Our motivation is that as data analysis increases and ex-
pands so does the associated energy consumption. The num-
ber of data centers has consistently grown, increasing the
availability of computing nodes and storage space, and de-
manding more power. Data centers’ maintenance costs and
environmental impacts have consistently increased with the
demand for more energy to power and cool them. In fact,
energy accounts for 30% of the Total Cost of Ownership
(TCO), a major and continuous cost for data centers [5].
This makes energy consumption as one of the most impor-
tant topics regarding big data processing.

2. APACHE HADOOP AND HDFS

Hadoop was developed based on Google’s MapReduce par-
allel approach [2,4], using the same ideas: hiding complexity
from users and thereby allowing them to focus on program-
ming the paradigm’s two primitive functions, Map and Re-
duce. Hadoop uses the HDFS file system [20], a block direct
storage system capable of storing, managing, and streaming
large amounts of data in a reasonable time to user appli-
cations. As mentioned earlier, most HDFS releases lacks
differentiation of the different storage devices attached to
a Hadoop cluster node; consequently, they cannot properly
exploit the features provided by such devices to decrease a
cluster’s energy consumption or increase job performance in
a custom fashion. Our approach tackles this specific issue,
creating storage zones according to the device types con-
nected to the cluster nodes. To the best of our knowledge,
this is a novel approach to represent and manage storage
space for Hadoop jobs.

Throughout its history, Hadoop experienced more than 60
releases in several development branches. As of now, Hadoop
has three main development branches: 1.x, 0.23.x and 2.x.
Our research focused on recent releases of these branches.
We reported on the genealogy tree of the Hadoop project
using release logs from each project branch and its releases
presenting the project’s evolution, from version 0.20.0 up to
the latest releases [17].

3. HDFS HYBRID STORAGE

The HDFSy approach controls the number of blocks that
are kept in each storage zone using a block placement pol-
icy. At first, we create two independent storage zones using

the HDs (H Dzone) and SSDs (SSDzone). The policy sends
blocks to each storage zone guaranteeing that a predefined
percentage of the total number of blocks is stored in the
SSDs and the rest in the HDs. To avoid bias in the distribu-
tion, the policy uses a round-robin fashion list to distribute
evenly the blocks between the zones. This assures that each
zone receives blocks from every portion of the dataset files.
Due to space restrictions, the complete model will not be
presented, focusing on the results obtained during the ex-
perimentation phase.

4. EXPERIMENTAL METHODOLOGY

With HDFSy and the block placement rules properly de-
signed, we then selected the Hadoop releases and bench-
marks for the experiments. Six releases from the current
branches were selected: 1.x (1.1.1 and 1.2.1), 0.23.x (0.23.8
and 0.23.10) and 2.x (2.3.0 and 2.4.0). The 0.23.x and 2.x
branches include the YARN resource manager. The dif-
ference between them is that 2.x releases include the High
Available NameNode for HDFS — an effort focused on the
automatic failover of the NameNode — whereas the 0.23.x
releases exclude such a feature. The 1.x Hadoop releases do
not include the YARN feature and have the limitation that
they are more tightly coupled to the MapReduce paradigm
and mostly designed to run batch jobs, making them less
flexible than the other two branches.

The testing infrastructure is a 9-node commodity cluster
(Quad-core processor; 8GB of RAM; 1TB HD; 120GB SSD;
Red Hat (4.4.7-4) GNU/Linux). One node is dedicated to
the Hadoop NameNode and JobTracker daemons and the
other eight nodes run Hadoop DataNodes and TaskTracker
daemons. For the energy consumption measurements, we
instrumented the cluster with four Watts Up? Pro, con-
necting the DataNodes in pairs on each one of the power
meter devices.

To cover different situations, our final selection includes the
following benchmarks and dataset sizes: Sort (I/O-bound):
10, 48, and 256GB; Join (CPU-bound): 20GB; and K-Means
Clustering (CPU- & 1/0-bound) from HiBench[7]: 3 x 107
samples. Even though our approach focuses on storage,
we performed experiments using CPU-bound benchmarks
to analyze the behavior of the hybrid storage under these
workloads.

Each benchmark uses a specific dataset that was generated
and stored for experimental reuse and replication. For the
Sort experiments, the datasets were generated using the
RandomWriter job. The Join benchmark performs a join
between two datasets, in a database fashion. These experi-
ments used datasets generated with DBGEN from the TPC-
H benchmark [21]. Finally, we used an implementation of
the K-Means clustering algorithm using the Mahout Library
from HiBench in our experiments. We chose our experi-
mentation benchmarks based not only on their I/O or CPU
characteristics, but also on prior research [7,16].

For each benchmark, we ran a batch job as follows: for small
datasets, a 10-job batch; and for medium and large ones, a
5-job batch. Each selected Hadoop release ran one batch for
each benchmark/dataset pair. A configured daemon records
one reading every second from each power meter on separate



files. To demonstrate the use of our block placement policy,
we set five predefined proportions to split the data into the
storage zones. The first one, named H D, keeps all the data
in the HDzone and does not use the SSDzone. The three
intermediate ones vary the amount of data stored in each
zone: 80% in the HDzone and rest in the SSDzone, named
80/20; the 50/50 configuration uses an equal distribution
between zones; the 20/80 keeps most of the data on the
SSDzone (80%). The last one (SSD) uses only the SSDzone
to store the data.

S. RESULTS AND ANALYSIS

We are particularly concerned with the impact of hybrid
storage systems on energy consumption. Our first finding
was the large difference in both performance and power
needs among different Hadoop releases. Due to architec-
tural changes in the middleware, Hadoop releases that in-
cluded the YARN resource manager performed worst and
consumed more energy when compared to the 1.x releases.
In the following, we detail our experimental results. In terms
of performance, we consider makespan as the time difference
between the start and conclusion of Hadoop jobs.
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Figure 1: Energy Consumption: Sort 10GB

5.1 Results On I/O-Bound Benchmark

Starting with the 10GB Sort benchmark, Figure 1 shows the
differences between two HDFSp configurations: HD and
SSD. The differences among the three branches are eas-
ily identified. Whereas releases 0.23.x consumed on average
65% more energy than releases 1.x, releases 2.x consumed on
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Figure 2: Job Makespan: Sort 10GB

Sort Experiments 48GB Dataset
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Figure 3: Energy Consumption: Sort 48GB

average 85% more energy than the 1.1.1 and 1.2.1 releases.
This increase is partially explained by the performance loss:
jobs running on 0.23.x releases were 27% slower than on 1.x
releases. The same is observed in the 2.x branch, which
was around 35% slower than 1.x releases, as Figure 2 il-
lustrates. The significant difference in energy consumption
can also be explained by the introduction of new function-
ality in recent Hadoop branches. The YARN component
brought flexibility to the framework, allowing other types of
jobs to be executed, in addition to the original MapReduce.
YARN also enabled the instantiation of multiple JobTrack-
ers and NameNodes. Our experiments demonstrated that all
this flexibility comes at a price: loss in performance and an
even larger increase in energy consumption when executing
MapReduce jobs.

Further considering the 10GB Sort experiments, Figure 1
presents the results for all the releases using the five con-
figurations we tested: HD, 80/20, 50/50, 20/80, and SSD.
We can also observe, in Figure 1, the expected tendency in
energy savings when moving data to the configurations that
favor SSD use.

Next, we moved on to the experiments with larger datasets.
Figure 3 shows the results for the 48GB Sort experiments.
The results support the tendency towards energy savings
when using SSD. Analyzing these two initial experiments,
we noticed that increasing the dataset size shifts the ten-
dency of power saving towards the balanced configurations:
50/50 and 20/80. This indicates that, by storing only a
fraction of the data on SSDs with these specific hybrid con-
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Table 1: Sort Benchmarks: Energy consumed (kJ)
Release HD 80/20 50/50 20/80 SSD

Dataset size

111 64 62 60 59 58
1.2.1 66 62 61 60 59
0.23.8 108 105 99 98 o7
10GB 0.23.10 106 105 99 98 o7
2.3.0 117 112 109 108 107
2.4.0 120 119 114 113 112
111 378 348 303 299 304
1.2.1 3908 352 306 311 298
1SGB 0.23.8 588 566 463 454 456
0.23.10 593 596 510 440 464
2.3.0 696 630 579 529 564
2.4.0 682 631 563 540 521
111 2005 1967 1795 1750 1626
1.2.1 1972 1934 1796 1795 1588
6GE 0.23.8 3330 3460 3001 3157 2790
0.23.10 3168 2971 3000 3320 2736
2.3.0 3461 3587 3248 3345 2885
2.4.0 3530 3650 3212 3301 3077

figurations, we achieve a significant increase in performance
and reduction in energy consumption. Our results indicate
that, if all data is processed from the SSDzone, there is an
average reduction of 20% in energy consumption. Addition-
ally, a similar reduction can also be observed in the 50/50
and 20/80 configurations in Figures 1 and 3. The energy
consumption results from the Sort benchmarks are listed in
Table 1.

The results from the Sort benchmark using the 256 GB dataset
(Figure 4) also corroborate the previous statements. With

the increase in the dataset size, the energy consumption

rates decrease in the balanced configurations, favoring the

use of less SSD storage to achieve results similar to the SSD-

only configurations. Table 1 presents these results. The

energy savings when using more SSD storage is clearly no-

ticeable.

5.2 Results On CPU-Bound Benchmarks

To evaluate whether our approach favors 1/O-bound jobs
only, we performed two sets of experiments using CPU-
bound jobs. The differences between the hybrid HD and
SSD configurations were insignificant, thus we present only
the results for the two extreme configurations using the Join
and K-Means benchmarks, since the intermediate results did
not present anything new. Except for the differences be-
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Figure 5: Energy Consumption: Join 20GB
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Figure 6: Energy Consumption: K-Means

tween branches, the Join benchmark did not present any
significant difference among all the 5 configurations tested,
as seen in Figure 5, presenting only the HD and SSD ones.

The Mahout K-Means is a hybrid benchmark that is CPU-
bound in the iterations, and I/O-bound in clustering. With
our setup (3 iterations), 3/4 of the execution in this bench-
mark was CPU-bound, while the rest was 1/O-bound. As
can be seen in Figure 6, again, there is no significant differ-
ence between the configurations, except for the differences
among branches. We thus conclude that, except for the
difference between branches and releases, there are no sig-
nificant differences in terms of performance and energy con-
sumption when running CPU-bound jobs with our approach.

5.3 Speedup

Regarding job makespan performance, we confirmed the hy-
pothesis that storing more data in the SSDs enabled the jobs
to run faster, since SSDs provide higher throughput. The
novelty here is the non-linear behavior of the job makespan
as we increase the dataset size. With the 10GB dataset, the
80/20 configuration was on average 7% faster than the HD
configuration, with only 20% of the data processed from the
SSD; in the 50/50 configuration, jobs were on average 17%
faster than the HD configuration; and, in the 20/80 con-
figuration, 22% faster; finally, jobs running with the SSD-
only configurations were on average 26% faster than purely
running on HD. In the 48GB Sort, the observed speedups
compared to the HD configuration were: 80/20, 8% faster;
50/50, 27% faster; 20/80, 31% faster; and SSD, 30% faster.
The average makespan from the Sort benchmarks can be
seen in Figure 7.

5.4 Time versus Power and Cost

On a single computer, typically, time and energy are related
since energy is defined as the integration of power over time
(e = p-t). Thus, we conducted an analysis of the relation
between time and energy, and asked the following research
question “Is energy consumption explained completely by
execution time?”, since Hadoop tasks run on multiple com-
puters. Regardless of the Sort dataset size or configuration,
over all tests, a Pearson correlation of 0.9884 was achieved,
indicating high linear correlation between time and energy,
as expected. The novelty is that releases from 0.23.x and
2.x branches demand much more energy compared to 1.x



releases, even though their job makespans are close. This
has a great influence on the smaller sort benchmarks, ob-
served in Figures 1 and 2, and on Figures 3 and 7 in the
48GB results. Therefore, besides time, there is an exter-
nal factor playing in the energy consumption in the 0.23.x
and 2.x releases. This influence increases even more if we
consider the Sort 256GB results (Figures 3 and 7).

Additionally, besides energy and time, cost must play as a
role in our approach. Assuming that the HD s /5 = $0.05
and the SSD..s/gp = $1.00 (20 times larger), we plotted
the ratio between job makespan and job storage cost for
the sort jobs, using the tested releases. We observed, in
Figure 8, that, for each release, the general behavior is a
pareto-optimal configuration. The plot shows a clear trade-
off between hardware cost and performance: the more SSD
is used, the more expensive the hardware cost is, but with
less hours spent to perform the job, less energy is used. On
the other hand, by using more HD in the configurations,
jobs take more hours to finish, demanding more energy,
but the hardware cost decreases greatly. This behavior can
be consistently observed in three key configurations: HD,
50/50, and SSD, marked with rectangles in Figure 8. Con-
sequently, the 50/50 configuration is the one that optimally
shows the key point in our analysis for every tested release:
with a storage composed of 50% of SSDs, we can achieve
results with a performance close to the use of SSD-only con-
figurations with a fraction of the cost of using only SSDs.
Yet, this approach guarantees a decrease in energy consump-
tion, as presented before. This behavior can be observed in
every release on the 10GB (omitted in the plot), 48GB and
256GB datasets tested in the Sort experiments. Further-
more, the plot shows once more the clear difference among
1.x, 0.23.x, and 2.x releases in performance, and the major
difference when scaling up the dataset sizes.
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6. RELATED WORK

A comprehensive literature search [18] indicated that HDFS
has been modified to increase its performance in multiple
ways: tuning the I/O mode [9,19], solving data placement
problems [24], and adapting it to support small files process-
ing [3,9], since HDFS was not originally designed for such
purposes. Yet, these approaches only targeted the HDFS’
performance without considering energy consumption or us-
ing a combination of different storage devices.

Storage Cost versus Performance
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Figure 8: HDFSy storage cost versus performance

The use of SSDs as a storage solution on clusters is such
a recent trend in the industry that the first proposals for
MapReduce clusters only recently appeared. Most of the
research up to date tends to analyze whether MapReduce
can benefit, in terms of performance, when deploying HDF'S
using SSDs [8,12]. Other researchers focus on incorporat-
ing SSDs into HDFS using caching mechanisms to achieve
better performance [10,23,25]. A few works also discuss
SSDs’ impact on Hadoop [11, 15], sometimes focusing on
using SSDs as the sole storage device under HDFS. Our
approach tends to be more affordable, since we developed
a hybrid file system that seamlessly couples the best from
HDs (affordable cost per GB, high storage capacity, and, to
some extent, endurance) and SSDs (high performance and
low energy consumption rates) in a configurable fashion. In
[17], we applied the Green Mining methodology [6] analyzing
the projects’ source code in several dimensions, correlating
the results presented in this paper with the architectural
changes throughout the development branches, corroborat-
ing the results that later versions of Hadoop can suffer from
serious energy consumption performance regressions.

The Hadoop team of developers implemented an approach
to incorporate hybrid storage into the HDFS. On the lat-
est releases — 2.7.0 and 2.7.1 — the project made available
the implementation of new storage policies. Two of the new
policies make use of SSDs, but contrary to our approach,
they only allow the use of all data on SSDs (All_SSD); or
the use of one block replica stored in the SSDs, keeping the
other replicas in the HDs (One_SSD). To the present, these
newly implemented policies do not allow the controlled hy-
brid storage of blocks guaranteeing the uniform distribution
of blocks over HDs and SSDs as we have presented. Also,
there are no mentions of performance increase or energy con-
sumption testing of such policies.

7. CONCLUSIONS AND FUTURE WORK

We presented an approach to seamlessly integrate HD and
SSD technologies into HDF'Sg. Our approach shows reduc-
tion in energy consumption even when only a fraction of the
data is stored in the modified HDFS SSDzone. We showed
that, with larger datasets, the reduction in energy demand



can be significant, achieving up to a 20% savings under cer-
tain hybrid configurations. The general use of HDFSy af-
fords immediate benefits since it increases MapReduce jobs’
performance and reduces energy consumption. Yet, for now,
users must manually define these configurations, but we en-
courage users to insert 50% of SSD storage space in the
Hadoop cluster as a mean to increase performance by re-
ducing the job makespan, and more important as a mean to
achieve reduction in the overall energy consumption. More-
over, these benefits can come at a fraction of the cost of
using only SSDs as storage space in Hadoop clusters. As
future work, we intend to investigate autonomic heuristics
that would analyze the workflow to automatically and dy-
namically configure HDFSy for optimal performance and
energy consumption.

Internal and external validity are threatened by the focus on
the Hadoop project. What happens to Hadoop might not
happen to other projects thus we cannot generalize much
beyond the Hadoop project. Furthermore not all Hadoop
releases were tested. The range of workloads threatens ex-
ternal validity but is tempered by the focus on I/O and
CPU bound workloads. External validity is threatened by
the scale and the limitations of our 9-node infrastructure as
our datasets are limited to less than 1TB by 8 120GB SSDs.
Additionally, hybrid storage device, known as SSHD, which
combines in the same device both SSD and HD technologies
were not tested in our approach.

This research was funded by CAPES, Fundagdo Araucdria,
CNPq proc. 305566,/2013-0, and by the Emerging Leaders
in the Americas Program (ELAP) from the Government of
Canada.
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