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Abstract

Two types of robust designs, robust design against a misspecified response

function and robust design against autocorrelation, are reviewed in the first

chapter of this dissertation. Among robust designs against autocorrelation,

this dissertation focuses on V-robust designs. Chapter 2 reviews and extends

the work done by Wiens and Zhou (1997) on the construction of V-robust

design for MA(1) processes. On the basis of their work, most V-robust design

for AR(1) processes is introduced in Chapter 3, with its application on a toy

sales example. Compared to most V-robust design for MA(1), most V-robust

design for AR(1) performs better if the number of observations is small and

there is some bias in fitted model.
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Chapter 1

Introduction

1.1 Classical Optimal Design

An experimenter anticipates investigating the e↵ect of some independent vec-

tor variable x on a dependent random variable Y, by making a number of

observations of that variable Y corresponding to the vector x. It is a chal-

lenge for the experimenter to choose the values of the variable x to observe,

which will result in an optimal design that may provide maximum informa-

tion at minimum cost. Also, it is important to construct such a design because

limited time or cost may not allow large number of observations or repeated

experiments in real life. Therefore, an optimal design is desirable for the ex-

perimenter.

A simple model is introduced in order to defining the optimal design math-

ematically. Suppose that there is an exact linear relation between the response

variable Y and the explanatory variable x, that is,

y = xT ✓ + ", (1.1)

1



where x = (1, x)T , ✓ = (✓
0

, ✓
1

)T , and the error terms "
i

are i.i.d with zero

mean and variance �2

"

.

The experimenter wishes to observe n values of the response variable y

corresponding to predictor variables x. A ‘design measure’, denoted as ⇠, will

show the experimenter which values of x to select, with how many repetitions,

from a design space S. If the design places n
i

out of n observations at the

point x
i

2 S, then ⇠(x
i

) = ni
n

. The experimenter is confident about the fitted

regression model,

E(y
i

|x
i

) = xT

i

✓. (1.2)

The estimate of ✓ is

✓̂ = (XTX)�1XTY, (1.3)

where X = [x
1

,x
2

, . . . ,x
n

]T , and Y = (y
1

, y
2

, . . . , y
n

)T .

And it is unbiased with covariance matrix

COV (✓̂) = �2

"

(XTX)�1.

Since the covariance matrix depends on the data through (XTX)�1, an

optimal design ⇠ may determine the most e�cient estimate. In this example,

COV (✓̂) = �2

"

(XTX)�1

=
�2

"

n
P

x2

i

� n2x2

0

B@
P

x2

i

�
P

x
i

�
P

x
i

n

1

CA .

2



Thus, if trace(COV (✓̂)) is to be minimized, we have

V ar(✓̂
0

) = �2

"

(1 +
x2

S2

x

), V ar(✓̂
1

) =
�2

"

S2

x

,

where, S2

x

=
P

(xi�x)

2

n

.

Assume S = [�1, 1]. Both variances are minimized (so is the trace) by

putting half of the x’s at each of ±1. That is, the optimal design has

⇠(�1) = ⇠(1) =
1

2
.

This optimality criterion that minimizes tr(COV (✓̂)) is recognized as A-

optimality.

Also, if the determinant of covariance matrix

det(COV (✓̂)) =
�4

"

n
P

x2

i

� n2x2

is to be minimized, which is known as D-optimality, the design is again putting

half of the x’s at each of ±1.

There are other kinds of optimality criteria, such as E-optimality and G-

optimality. Further and detailed discussion can be found in Kiefer (1959),

Cherno↵ (1953), Ehrenfeld (1955), etc.

3



1.2 Robust Design Against a Misspecified Re-

sponse Function

The development of this section follows that in Wiens (Robustness of Design

- an upcoming Handbook chapter). The classical optimal design assume the

proposed model is exactly correct, which is not the case mostly. Then the

‘best’ design for even a slightly wrong model can be much more than slightly

sub-optimal. As the above example shows, the optimal design may put all

mass at the extreme points ±1, and there is no other information about the

points within the design space. It is impossible to detect any curvature using

only the boundary points, and the fitted model can be far away from the true

one. Hence, it is necessary to study more appropriate designs, robust designs,

which can be applied for this situation.

Suppose the true mean response is E(y|x) = �
0

+ �
1

x + �
2

x2 instead of

(1.1), with uncorrelated, equal varied errors. We still fit the regression model

and the least squares estimate is (1.3).

Define

⌧
k

=
X xk

i

n
,

and assume that ⌧
1

= ⌧
3

= 0 (for instance, the design is symmetric).

Then it can be found that, under the true quadratic model,

E(✓̂) =

0

B@
�
0

+ ⌧
2

�
2

�
1

1

CA ,

4



and

COV (✓̂) =
�2

"

n

0

B@
1 0

0 ��1

2

1

CA ,

so that each prediction ŷ(x) = ✓
0

+ ✓
1

x has mse:

MSE [ŷ(x)] = E
⇥
{ŷ(x)� E[y(x)]}2

⇤
=

�2

"

n

✓
1 +

x2

⌧
2

◆
+ (�

2

(⌧
2

� x2))2.

A common measure of performance is the IMSE, integrated mean squared

error of the predictors, which in this example is

IMSE =

Z
1

�1

MSE[ŷ(x)]dx

=

⇢
2�2

"

n

✓
1 +

1

3⌧
2

◆�
+

(
2�2

2

 ✓
⌧
2

� 1

3

◆
2

+
4

45

!)
. (1.4)

The first term is the integrated variance, and is minimized by the design

with half of the observations at each of x = ±1. The second term is the

integrated bias which can be minimized if ⌧
2

= 1

3

. More detailed discussion

can be found in Box and Draper (1959), a seminal work in this area. And

the conclusion drawn by them is that “ . . . . . . the optimal design in typical

situations in which both variance and bias occur is very nearly the same as

would be obtained if variance were ignored completely and the experiment

designed so as to minimize bias alone. ”

To obtain IMSE for more general cases, it is necessary to introduce some

notation first.

5



Let the fitted model be

E[Y (x)] = zT (x)✓, (1.5)

where z(x) is a p-vector with each element being a function of q-vector x =

(x
1

, . . . , x
q

), and x is chosen from a design space S. A precise model is also

defined as

E[Y (x)] = zT (x)✓ + f(x), (1.6)

for some unknown function f(x). But now the parameter ✓ is not identifiable,

since one might equally well write

E[Y (x)] = zT (x)(✓ + �) + (f(x)� zT (x)�), (1.7)

for arbitrary �.

To avoid this problem, we can define ✓ as

✓ = arg min
⌘

Z

S

�
E [Y (x)]� zT (x)⌘

�
2

dx. (1.8)

Taking derivative of (1.8),

2

Z

S
z(x)

�
E(Y (x)� zT (x✓))

�
dx = 0 (1.9)

leading to the orthogonality requirement

Z

S
z(x)f(x)dx = 0. (1.10)

Recall that ⇠ is a design measure, and ⇠
i

= ⇠(x
i

) = n
i

/n if n
i

of the n

6



observations are to be made at x
i

.

Define

B =
X n

i

n
z(x

i

)zT (x
i

) =
X

⇠
i

z(x
i

)zT (x
i

) = E
⇠

[z(x)zT (x)], (1.11)

and

b(f, ⇠) =
X n

i

n
z(x

i

)f(x
i

) =
X

⇠
i

z(x
i

)f(x
i

) = E
⇠

[z(x)f(x)]. (1.12)

Then,

COV (✓̂) = �2

"

(ZTZ)�1

= �2

"

(n
X n

i

n
z(x

i

)zT (x
i

))�1

=
�2

"

n
B�1,

and

bias = E
�
(ZTZ)�1ZTY

�
� ✓

= E
�
(ZTZ)�1ZT (Z✓ + f + ")

�
� ✓

= n(ZTZ)�1

X n
i

n
z(x

i

)f(x
i

)

= B�1b(f, ⇠).
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Therefore, the Mean Squared Error matrix of ✓̂ can be written as

MSE = E

⇣
✓̂ � ✓

⌘⇣
✓̂ � ✓

⌘
T

�

= COV
⇣
✓̂
⌘
+ bias·biasT

=
�2

"

n
B�1 +B�1b(f, ⇠)bT (f, ⇠)B�1.

If we define A as

A =

Z

S
z(x)zT (x)dx,

then finally IMSE can be found to be

IMSE =

Z

S
MSE

h
Ŷ (x)

i
dx

=
�2

"

n
trace

�
AB�1

�
+ bT (f, ⇠)B�1AB�1b(f, ⇠) +

Z

S
f 2(x)dx.

In addition, the following condition on the function f(x) was used by Huber

(1975) Z

S
f 2(x)dx  ⌧ 2

n
, (1.13)

for some given constant ⌧ 2; this class was generalized by Wiens (1992).

To achieve robustness, we maximize IMSE over all f satisfying (1.10) and

(1.13), and then find a design minimizing this maximum loss. Namely, we

construct a minimax design.

8



1.3 Robust Design Against Autocorrelation

In addition to seeking robust designs against a misspecified response function,

it is also valuable to obtain robustness against a misspecified error structure.

For instance, experimental observations may be autocorrelated because they

are gathered serially. This type of problem has been investigated by Bickel

and Herzberg (1979), where they developed an asymptotic theory for study-

ing the e↵ect of dependence of the observations for linear regression model.

Specifically it is assumed that for N observations, the correlation function is

given by

⇢
N

(t) = ⇢
1

(Nt),

where, ⇢
1

(t) ! 0 as t ! 1. They proved the continuous uniform design

is asymptotically optimal for estimating location, and asymptotically optimal

for estimating slope under certain conditions. Bickel, Herzberg and Schilling

(1981) showed numerical results corresponding to the asymptotic theory.

Wiens and Zhou (1996) studied minimax regression designs for approxi-

mately linear models with autocorrelated errors. They assume that the spec-

tral density g(!) of the error process is of the form

g(!) = (1� ↵)g
0

(!) + ↵g
1

(!),

where g
0

(!) is uniform, ↵ 2 [0, 1) is fixed, and g
1

(!) is arbitrary. The main

results in the paper are that “a design which is asymptotically optimal for

uncorrelated errors retains its optimality under autocorrelation if the design

points are a random sample, or a random permutation, of points from this

distribution”. Wiens and Zhou (1999) also introduced minimax designs for

9



approximately linear models with AR(1) errors, where they found an asymp-

totically optimal procedure for AR(1) models consists of selecting points from

the design measure which is optimal for uncorrelated errors, and then imple-

menting them in an appropriate order.

Zhou (2001) proposed a criterion to minimize the absolute value of the

change of the variance function, over all possible run orders, due to possible

correlation between the observations. Specifically, the criterion starting with

a design that is exact optimal, e�cient, or robust against departures in the

regression response, and then find a permutation of the design points as a

solution of

min
⇠

|CV F
a

(⇠,P)|,

with respect to a certain autocorrelation matrix P, where the minimum is over

all permutations of the order of the design points in ⇠. And

CV F
a

(⇠,P) =
@aTV((1� t)I+ tP)a)/@t|t=0

aTV(I)a
,

where ⇠ denotes the design points (x
1

, ..., x
n

), a is a constant vector, and their

ordering and @/@t denotes the partial derivative with respect to t.

Particular attention in this dissertation is paid to models as at equations

(1.5) - (1.10), with correlation structures expressed through autocorrelation

matrices

P
�

= (1� �)I+ �P, (1.14)

for some unknown autocorrelation matrix P.

10



1.4 Illustation: Toy Sales Example

Suppose one toy company would like to predict sales amount with respect to

price. For example, there is toy A with price 36 dollars each. The minimum

sale price may be 18 dollars (so that the company will not be broken). The

company anticipates predicted sales based on the linear relationship between

sales and price when price drops from $36 to $18.

0 5 10 15

5
10

15

decreased price

in
cr

ea
se

d 
sa

le
s

Figure 1.1: Relation between sales and prices

In order to find the model, the company may set a price in one period,

record the sales amount at the end of the period, then set another price and

11



record at the end of that period, etc. It is helpful to look for some experimental

design which would give a good prediction. It is obvious that sales amount

would be also a↵ected by other factors, such as market demand, toy quality,

brand e↵ect, etc. The e↵ect of these factors on previous sales will a↵ect current

sales in a very similar way, providing there is no dramatic change in the market

or the company. Therefore, it seems reasonable to assume autocorrelated error

for this sale-price model.

Let us assume the true model between increased sales and decreased prices

is

y
t

= 0.6x
t

+ 3 + "
t

,

where y is increased sales amount with 10,000 per unit, x is price decreased

from $36; and "
t

= e
1,t

+ e
2,t

, where {e
1,t

} follows AR(1) with ⇢ = 0.9, � = 1,

and {e
2,t

} follows i.i.d uniform distribution U(�0.5, 0.5).

The sample data may look like Figure 1.1. It may be a good example to

apply V-robust designs to, which we will revisit in later section.

12



Chapter 2

V-Robust Designs for MA(1)

Processes

2.1 V-Robust Design and Most V-Robust De-

signs for MA(1)

This section illustrates and extends the work done by Wiens and Zhou (1997).

Suppose a random variable Y is observed at locations x
1

, . . . ,x
n

in a q-

dimensional space S. Specifically, assume the response E[Y |x] is approxi-

mately linear in the parameters, with regressors p ⇥ 1 vectors z(x) and is

observed subject to possibly serially correlated errors. With f(x) = E[Y |x]�

zT(x)✓, the observations satisfy

Y
i

= zT (x
i

)✓ + f(x
i

) + "
i

, i = 1, . . . , n (2.1)

where ✓ is a p ⇥ 1 vector with unknown parameters, and "
i

’s are zero-mean

random errors, which are autocorrelated with covariance matrix �2P for some

13



autocorrelation matrix P.

Let ⇠ be the design measure, and define b
f,⇠

same as (1.12)

b
f,⇠

=
1

n

nX

i=1

z(x
i

)f(x
i

),

then define

B
⇠

(m) =

8
><

>:

1

n

P
n�m

i=1

z(xi)zT(xi+m) 0  m  n� 1,

BT

⇠

(�m) �(n� 1)  m < 0.
(2.2)

Denote the n⇥ p model matrix with rows zT(x
i

) by Z. Then the determi-

nant of the MSE matrix of n1/2✓̂ is

D(f, ⇠,P) = �2p |B
⇠

(0)|�2

����
ZTPZ

n

����⇥
 
1 +

n

�2

bT

f,⇠

✓
ZTPZ

n

◆�1

b
f,⇠

!
.

Let P be a convex class of autocorrelation matrices P containing P
0

= I.

Wiens and Zhou (1997) considered the case that P belongs to MA(1) pro-

cesses. They define the change-of-variance function (CVF) for ⇠ at P
0

, in the

direction P 2 P , by

CV F (⇠,P) =
d

dt

D(f
0

, ⇠, (1� t)P0 + tP)|t=0

D(f
0

, ⇠,P0)
. (2.3)

CVF corresponds to the derivative of lnD, that is, basing the loss on lnD.

The suprema of CVF over P is defined as change-of-variance sensitivity (CVS).

The main motivation was to investigate the local robustness of the asymptotic

variance. The framework of CVF with all details can be found in Hampel et

al. (1986).

14



Denote P
i,j

by ⇢(|i� j|) for some autocorrelation function ⇢, and straight-

forward calculations give

CV S(⇠,P) = sup
P2P

⇢
trace

✓
ZT (P� I)Z

n
B�1

⇠

(0)

◆�

= sup
P2P

8
<

:
X

0|s|n�1

⇢(s)trace(B
⇠

(s)B�1

⇠

(0))

9
=

; . (2.4)

For a given ↵, we say that a design ⇠ is V robust if it minimizes D(f
0

, ⇠,P
0

);

that is, maximizes |B
⇠

(0)| subject to the constraint

CV S(⇠,P)  ↵, (2.5)

and is most V robust if ↵ is the infimum of the CVS over a given class of

designs.

In other words, the most V-robust design is the design which minimizes,

over a given class of designs, the maximum value of CVF over some class of

autocorrelation structures.

Wiens and Zhou (1997) obtained V-robust and most V-robust designs for

the classes

P
1

= {P|⇢(s) = 0 for |s|� 2; c
0

 ⇢(1) < 1 with c
0

> 0};

P
2

= {P|⇢(s) = 0 for |s|� 2;�1 < ⇢(1)  �c
1

with c
1

> 0}.

These classes correspond to MA(1) processes with positive and negative

lag-1 correlations bounded away from 0. They consider the multiple linear

regression model which is restricted to the class Z
n,q

of n-point designs for

15



which B
⇠

(0) is a diagonal matrix.

Using (2.4), they obtain that

CV S(⇠,P) = sup
⇢(1)

2⇢(1)

 
n� 1

n
+

qX

j=1

Q(x
(j)

)

!
,

where x
(j)

is the j + 1th column of Z,

Q(x) :=

P
n�1

i=1

x
i

x
i+1P

n

i=1

x2

i

=
xTQx

xTx
, (2.6)

and Q is the tridiagonal matrix with (i, j)th element q
ij

= 1

2

I(|i � j|= 1).

The theorem below shows that if ↵ is su�ciently large then (2.5) imposes no

restriction.

Theorem 2.1: (Wiens and Zhou 1997) Let q = 1 and S = [�1, 1]. Define

↵
1,n

=

⇢
0, n even

2

n(n�1)

, n odd
(2.7)

and

↵
2,n

=

⇢ �4c
1

n�2

n

, n even

�2c
1

2n

2�5n+1

n(n�1)

, n odd
(2.8)

• For ↵ � ↵
1,n

, V-robust designs for P
1

are

x
(1)

=

(
< 1,�1, 1,�1, . . . , 1,�1 > n even

< 1,�1, 1,�1, . . . , 1,�1, 0 > n odd

with CV S(⇠,P
1

) = ↵
1,n

.
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• For ↵ � ↵
2,n

, V-robust designs for P
2

are

x
(1)

=

( < 1, . . . , 1,| {z }
n/2

�1, . . . ,�1 >| {z }
n/2

n even

< 1, . . . , 1,| {z }
n/2

0,�1, . . . ,�1 >| {z }
n/2

n odd

with CV S(⇠,P
1

) = ↵
2,n

.

It needs some definitions to get the most V-robust designs for multiple

regression.

Define constants and n⇥ 1 vectors (µ
j

, r
j

), 1  j  n, and (⌫
j

, s
j

), 1  j 

[(n� 1)/2], with the µ
j

and ⌫
j

ordered from largest to smallest, by

µ
j

= cos
j⇡

n+ 1
, (r

j

)
k

=
p

2/(n+ 1) sin
kj⇡

n+ 1
, (2.9)

and

⌫
j

= cos�
j

, (s
j

)
k

=

s
2(n+ 1)

n(n+ 2)
cot

n+ 1

2
�
j

✓
1�

cos(k � n+1

2

)�
j

cos n+1

2

�
j

◆
,

(2.10)

where �
j

is the solution, in (2j⇡/(n+ 1), (2j + 1)⇡/(n+ 1)), to the equation

tan
n+ 1

2
�� (n+ 1) tan

�

2
= 0. (2.11)

Place the r
2j

and the s
j

into a matrix X, and define a corresponding

sequence {�
j

} by

X
n⇥(n�1)

= (r
2

, s
1

, r
4

, s
2

, . . . , r
2[(n�1)/2]

, s
[(n�1)/2]

, r
n

) (if n is even)

17



and

{�
j

}n�1

j=1

=< µ
2

, ⌫
1

, µ
4

, ⌫
2

, . . . , µ
2[(n�1)/2]

, ⌫
[(n�1)/2]

, µ
n

> (if n is even).

(2.12)

Theorem 2.2: (Wiens and Zhou 1997) The most V-robust designs in Z
n,q

for P
k

, k = 1, 2, have model matrices Z = (1
...X

(q;k)

), where X
(q;k)

consist

of the last (k = 1) or first (k = 2) q columns of X and D
k

is a diagonal

matrix chosen to have maximum determinant, subject to the constraint that

the rows of X
(q;k)Dk belong to S. The corresponding covariance matrices of

✓̂ at P
0

= I are �2(ZTZ)�1 = �2(n�1 �D�2

k

). The CVS are

CV S(⇠,P
k

) =

(
2
⇣

n�1

n

+
P

q

j=1

�
n�j

⌘
, k = 1

�2c
1

⇣
n�1

n

+
P

q

j=1

�
j

⌘
, k = 2

Proof. This is a sketch of the proof, which will be referred to later on. The

complete proof can be found in Wiens and Zhou (1997).

There are two claims before the formal proof.

Claim 1. The matrixQ has eigenvalues µ
j

and corresponding orthonormal

eigenvectors r
j

, given by (2.9). The eigenvectors r
j

are orthogonal to 1 =

(1, . . . , 1)T i↵ j is even.

Claim 2. XTX = I
n�1

and

min
Zn,q

qX

j=1

Q(x
(j)

) =
qX

j=1

�
n�j

, max
Zn,q

qX

j=1

Q(x
(j)

) =
qX

j=1

�
j

.

These extrema are attained at arbitrary nonzero multiples of the first q and

last q columns of X.

Now, if ⇠ 2 Z
n,q

has model matrix Z = (1
...X

0

), then for P
1

we are to

18



maximize |ZTZ|= n|XT

0

X
0

|, subject to
P

q

j=1

Q(x
(j)

) being a minimum. But

by Claim 2, anyX
0

whose columns minimize
P

q

j=1

Q(x
(j)

) must be of the form

X
(q;1)

D
1

for a diagonal matrix D
1

, and then |XT

0

X
0

|= |D
1

|2 is maximized by

maximizing |D
1

|. The proof for P
2

is entirely analogous.

Proof of Claim 2. (Wiens and Zhou 1997)

Proof. Straightforward calculation gives

max
Zn,q

qX

j=1

Q(x
(j)

) = max
�
trace QXXT | XTX = I

q

,XT1 = 0
 
,

where X has columns {x
(j)

}q
i=1

. If J
n⇥n�1

satisfies JTJ = I
n�1

and JJT =

I
n

� ( 1
n

)11T , then the conditions on X are equivalent to “ X = JH for some

H
n�1⇥q

with HTH = I
q

”. With R = JTQJ, the desired maximum is thus

max{trace RHHT | HTH = I
q

}. Theorem 1.10.2 of Srivastava and Khatri

(1979) states that this maximum is
P

q

j=1

�
j

, and similarly the minimum is
P

q

j=1

�
n�j

, where �
1

� . . . � �
n�1

are the eigenvalues of R. These extrema

are attained if H consists of the q corresponding orthonormalized eigenvectors

of R, and then x
(j)

is (any nonzero multiple of) Jh
(j)

.

The eigenvectors of R with roots � 6= 0 are of the form h = JTz, where z is

an eigenvector of eR := JJTQ with root �. There is an extraneous eigenvector

of eR with root 0, which is useless to us. If n is odd, then Q has an eigenvector

r
(n+1)/2

with root � = 0; this provides an additional eigenvector of eR.

The equations eRz = �z may be written as

(Q� �I)z = c1, c = 1TQz/n. (2.13)

Premultiplying by 1T gives �1Tz = 0, so that if � 6= 0, we have z = JJTz = Jh.
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Thus the set X of unordered vectors x
(j)

consists of the eigenvectors z of

eR corresponding to nonzero eigenvalues, plus possibly a vector arising from

r
(n+1)/2

.

Case 1. If c = 0 in (2.13), then z is a eigenvector of Q. By Claim 1,

there are [n/2] such vectors that are orthogonal to 1. These include r
(n+1)/2

i↵ n + 1 is odd and (n + 1)/2 is even. Thus this case contributes the vectors

r
2j

, j = 1, . . . , [n/2] to X , with corresponding roots µ
2j

.

Case 2. Let c 6= 0, � 6= 0 and assume that � is not a eigenvalue of Q. Then

the first equation in (2.13) gives z = c(Q� �I)�11, and the second yields

1T (Q� �I)�11 = 0. (2.14)

Writing (2.14) as
[(n+1)/2]X

j=1

(1T r
2j�1

)2/(µ
2j�1

� �) = 0

shows that there are [(n � 1)/2] solutions � = ⌫
j

which when ordered satisfy

µ
2j�1

> ⌫
j

> µ
2j+1

. The remaining elements of X are then (multiples of ) the

vectors s
j

= (Q� ⌫
j

I)�11.

Of the n equations given by (Q� �I)s = 1, n� 2 are of the form

(v
k+1

� 1

1� �
) = 2�(v

k

� 1

1� �
)� (v

k�1

� 1

1� �
), k = 2, . . . , n� 1.

This recursion, when solved and combined with the remaining two equations

and with (2.14), yields

v
k

=

⇣
1� cos(k�n+1

2

)�

cos

n+1

2

�

⌘

2 sin2

�

2

,
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where � = cos�1 � satisfies (2.11). From this, we calculate

nX

k=1

v2
k

= n(n+ 1)(n+ 2)/(2sin2�),

whence normalizing s to have unit length gives (2.10). It then remains only

to establish that the terms in (2.12) are in decreasing order. Because both

µ
2j

and ⌫
j

are in (µ
2j+1

, µ
2j�1

), we require µ
2j

> ⌫
j

. This follows from the

observation that the function on the left of (2.11) is strictly increasing where

it is nonnegative and is negative at cos�1 µ
2j

.
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2.2 Other V-Robust Designs for MA(1) Pro-

cesses

The V-robust design problem is to maximize |B
⇠

(0)| subject to the constraint

CV S (⇠, P)  ↵,

and is most V robust if ↵ is the infimum of the CVS over a given class of

designs.

For convenience, the value of CV S is denoted as ↵
mv

if the design is the

most V-robust design.

Wiens and Zhou (1997) have already obtained V-robust designs if ↵ is

su�ciently large, and the most V-robust designs for MA(1) processes. How-

ever, there may be other situations where ↵ does not have to be su�ciently

large nor attain the infimum. For example, the experimenter may antici-

pate robustness against bias as well as autocorrelation, which may cause ↵

to be greater than the infimum. So this section takes a quick glance in V-

robust designs for the ↵ between ↵
1,n

(or ↵
2,n

) and infimum. The results

are stated for q = 1 (i.e. simple regression) and finite design space S =

[�1,�i
1

,�i
2

, . . . ,�i
N

, 0, i
N

, . . . , i
2

, i
1

, 1], for some N and i
j

2 (0, 1) for all j.

Now, the problem becomes

max
xi2S

nX

i=1

x2

i

s.t. CV S (⇠, P)  ↵,
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where x
i

are the observations to be made and

CV S (⇠, P) = sup
⇢(1)

2⇢(1)

 
n� 1

n
+

P
n�1

i=1

x
i

x
i+1P

n

i=1

x2

i

!
.

Since ↵ is less than ↵
1,n

or ↵
2,n

given in the Theorem 2.1, the only choice is

to observe at other points rather than boundary points 1 or -1 to make CV S

smaller.

In fact, V-robust designs have observations forced in the subset of the finite

design space, S
0

= (1,�1, 0), while most V-robust designs have observations

that can be in the entire design space S. Hence, obtaining V-robust designs

for some given ↵ between ↵
1,n

(or ↵
2,n

) and ↵
mv

can be achieved by finding

designs with CV S as small as possible,
P

n

i=1

x2

i

as large as possible, where

points are forced to be observed in some design space S 0 where S
0

⇢ S 0 ⇢ S.

The cases discussed below will focus on finding such designs, and then the

corresponding V-robust designs will be obtained.

CASE 1. ⇢ 2 P
1

, S
1

= (1,�1, i
1

,�i
1

, 0).

The easiest case is that i
1

,�i
1

are to be observed only once, and n is even.

The designs can be

< i
1

,�1, 1,�1, . . . ,�1, 1,�i
1

>,

< 1,�1, i
1

,�1, . . . , 1,�1, 1,�i
1

, 1,�1 >,

< i
1

,�i
1

, 1,�1, . . . ,�1, 1,�1 >,

. . .
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It is tedious to list all designs and find the one minimizing CV S. In fact,

to minimize

CV S =

P
n�1

i=1

x
i

x
i+1P

n

i=1

x2

i

+
n� 1

n
,

while
P

n

i=1

x2

i

is unchanged, is equivalent to minimizing
P

n�1

i=1

x
i

x
i�1

. And

in the n � 1 terms of
P

n�1

i=1

x
i

x
i�1

, the less �i
1

and �i2
1

appear, the smaller
P

n�1

i=1

x
i

x
i�1

is.

Denote T = (A
1

, A
2

), where A
1

represents the number of term �i
1

, and A
2

represents the number of term �i2
1

in
P

n�1

i=1

x
i

x
i+1

. So, T = (2, 0) , (4, 0) , (1, 1)

for the 3 designs above, respectively. Since A
1

, A
2

the smaller the better,

T = (2, 0) is better than T = (4, 0). And by direct calculation, T = (2, 0) is

better than T = (1, 1). All other design’s T would either bigger than T = (1, 1)

or T = (2, 0). That means, nothing can beat T = (2, 0). So,

< i
1

,�1, 1,�1, 1,�1, . . . , 1,�1, 1,�i
1

>

is the ‘best’ design among them.

Now consider making two observations at i
1

and two at �i
1

.

The only design that with A
1

= 1 is,

< i
1

,�i
1

, i
1

,�i
1

, 1,�1, . . . , 1,�1 >

So, T = (1, 3).

For those designs with A
1

= 2, they have the same T = (2, 2). And

T = (2, 2) is better than T = (1, 3). For those designs with A
2

= 1, the best

design has T = (4, 1). And T = (2, 2) is better than T = (4, 1).

Therefore, the design with T = (2, 2) is the ‘best’. And one of these designs
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is

< i
1

,�i
1

, 1,�1, 1, . . . ,�1, i
1

,�i
1

> .

The rule can be applied for more than 2 observations at i
1

, the ‘best’ design

is

< i
1

,�i
1

, . . . , i
1

,�i
1

, 1,�1, 1,�1, . . . , i
1

,�i
1

, i
1

,�i
1

> .

It is obvious that the ‘best’ design with i
1

observed once has larger deter-

minant than the ‘best’ design with m observations at i
1

, where 1 < m  n/2,

and it turns out the CV S is also smaller.

The ‘best’ design with i
1

observed once has CV S
1

:

CV S
1

=

P
n�1

i=1

x
i

x
i+1P

n

i=1

x2

i

+
n� 1

n
= �2i

1

+ n� 3

2i2
1

+ n� 2
.

The ‘best’ design with m observations at i
1

has CV S
m

:

CV S
m

=

P
n�1

i=1

x
i

x
i+1P

n

i=1

x2

i

+
n� 1

n
= �2(m� 1)i2

1

+ 2i
1

+ (n� 2m� 1)

2mi2
1

+ (n� 2m)
.

Then straightforward calculation gives

CV S
1

 CV S
m

.

Thus, the design

< i
1

,�1, 1,�1, 1,�1, . . . , 1,�1, 1,�i
1

>

has the largest determinant and smallest CV S, with CV S = 2(n�1

n

� 2i

1

+n�3

2i

2

1

+n�2

).

If n is odd, it is necessary to add one observation at 0. The discussion is
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same as above and the design

< i
1

,�1, 1,�1, 1,�1, . . . , 1,�1, 1,�i
1

, 0 >

has the largest determinant and smallest CV S, with CV S = 2(n�1

n

� 2i

1

+n�4

2i

2

1

+n�3

).

CASE 2. ⇢ 2 P
1

, S
k

= (�1,�i
1

,�i
2

, . . . ,�i
k

, 0, i
k

, . . . , i
2

, i
1

, 1).

It is easy to extend the argument in CASE 1, and obtain the ‘best’ design:

< i
k

,�i
k�1

, . . . ,�i
2

, i
1

,�1, 1,�i
1

, i
2

, . . . , i
k�1

,�i
k

> if n is even;

< i
k

,�i
k�1

, . . . ,�i
2

, i
1

,�1, 1,�i
1

, i
2

, . . . , i
k�1

,�i
k

, 0 > if n is odd.

Example 1. Let design space S = [�1,�0.9,�0.8, . . . ,�0.1, 0, 0.1, . . . , 0.8, 0.9, 1],

n = 16, ⇢ 2 P
1

.

CV S = �0.02 for the design < 0.9,�1, 1, . . . ,�1, 1,�0.9 >. Thus, it is

the V-robust design for �0.02  ↵ < 0.

CV S = �0.036 for the design < 0.8,�1, 1, . . . ,�1, 1,�0.8 >. And CV S =

�0.0364 for the design < 0.8,�0.9, 1, . . . ,�1, 0.9,�0.8 >. Thus, the design

< 0.8,�0.9, 1, . . . ,�1, 0.9,�0.8 > is the V-robust design for �0.0364  ↵ <

�0.036.

CASE 3. ⇢ 2 P
2

, S
k

= (�1,�i
1

,�i
2

, . . . ,�i
k

, 0, i
k

, . . . , i
2

, i
1

, 1)

Similar discuss as first two cases, the ‘best’ design:

If n is even,

< i
2

, i
4

, i
6

, . . . , i
k

, 1, 1, 1, . . . , i
k�1

, i
k�3

, . . . , i
3

, i
1

,

�i
1

,�i
3

, . . . ,�i
k�3

,�i
k�1

,�1,�1,�1, . . . ,�i
k

, . . . ,�i
4

,�i
2

>;

26



If n is odd,

< i
2

, i
4

, i
6

, . . . , i
k

, 1, 1, 1, . . . , i
k�1

, i
k�3

, . . . , i
3

, i
1

, 0

�i
1

,�i
3

, . . . ,�i
k�3

,�i
k�1

,�1,�1,�1, . . . ,�i
k

, . . . ,�i
4

,�i
2

> .

Example 2. Let design space S = [�1,�0.9,�0.8, . . . ,�0.1, 0, 0.1, . . . , 0.8, 0.9, 1],

n = 16, ⇢ 2 P
2

. Then ↵
2,n

= �4c
1

n�2

n

= �3.5c
1

.

CV S = �3.54c
1

for the design < 1, 1, . . . , 1, 0.9,�0.9,�1,�1, . . . ,�1 >.

Thus, it is the V-robust design for �3.54c
1

 ↵ < �3.5c
1

.

Therefore, for finite design space S = [�1,�i
1

,�i
2

, . . . ,�i
N

, 0, i
N

, . . . , i
2

, i
1

, 1],

it is theoretically accomplishable to obtain the most V-robust design. If

�i = i
j�1

� i
j

in S is small, then the most V-robust design can be the approx-

imation for that in infinite design space S = [�1, 1]. However, the calculation

will be tremendous even if n is not large.

Next section the attention is paid to the most V-robust designs for AR(1)

processes.
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Chapter 3

V-Robust Designs for AR(1)

Processes

3.1 Most V-Robust Design for AR(1)

Consider AR(1) processes, where the correlation ⇢(k) = ⇢|k|, for ⇢ 2 (�1, 1).

So the CVS can be obtained from (2.4):

CV S(⇠,P) = sup
P2P

8
<

:
X

0|s|n�1

⇢|s|trace(B
⇠

(s)B�1

⇠

(0))

9
=

; .

Because of the definition of B
⇠

(m) in equation (2.2), and B
⇠

(0) is assumed to

be diagonal, we have

trace(B
⇠

(s)B�1

⇠

(0)) = trace(B�1

⇠

(0)BT

⇠

(s))

= trace(B�1

⇠

(0)B
⇠

(�s))

= trace(B
⇠

(�s)B�1

⇠

(0)).

28



Then CVS becomes

CV S(⇠,P) = sup
P2P

(
⇢0trace(B

⇠

(0)B�1

⇠

(0)) + 2
n�1X

k=1

⇢|k|trace(B
⇠

(k)B�1

⇠

(0))

)
.

And

⇢0trace(B
⇠

(0)B�1

⇠

(0)) = ⇢0trace(I
1+q

) = 1 + q,

⇢itrace(B
⇠

(k)B�1

⇠

(0)) = ⇢i

 
n� i

n
+

qX

j=1

Q
i

(x
(j)

)

!
.

Thus

CV S(⇠,P) = sup
⇢2(�1,1)

(
1 + q + 2

n�1X

i=1

⇢i
n� i

n
+ 2

n�1X

k=1

⇢k
qX

j=1

Q
k

(x
(j)

))

)
.

where, q is the number of parameters, Q
k

(x) =
Pn�k

i=1

xixi+kPn
i=1

x

2

i
, and x

(j)

is the

j + 1th column of Z.

So

CV S(⇠,P) = sup
⇢2(�1,1)

(
1 + q + 2

n�1X

i=1

⇢i
n� i

n
+

qX

j=1

n�1X

k=1

2⇢kQ
k

(x
(j)

))

)
,

that is,

CV S(⇠,P) = sup
⇢2(�1,1)

(
1 + q + 2

n�1X

i=1

⇢i
n� i

n
+

qX

j=1

Q(x
(j)

)

)

or

CV S(⇠,P) = sup
⇢2(�1,1)

(
1 + q +

2

n

⇢n+1 � ⇢2

(⇢� 1)2
� n� 1

n

⇢

⇢� 1
+

qX

j=1

Q(x
(j)

)

)
.

(3.1)
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where

Q(x) =
xTQx

xTx
,

and

Q =

0

BBBBBBBBBBBBBB@

0 ⇢ ⇢2 ⇢3 . . . ⇢n�1

⇢ 0 ⇢ ⇢2 . . . ⇢n�2

⇢2 ⇢ 0 ⇢ . . . ⇢n�3

...
...

...
... . . .

...

⇢n�2 ⇢n�3 ⇢n�4 ⇢n�5 . . . ⇢

⇢n�1 ⇢n�2 ⇢n�3 ⇢n�4 . . . 0

1

CCCCCCCCCCCCCCA

.

Evaluating the behaviour of the eigenvalues and eigenvectors of Q is one

of the key steps to get the most V-robust designs for this multiple regression

model.

Let R = Q+ I, then R becomes the correlation matrix of AR(1) processes.

And

�
R

= �
Q

+ 1,

the corresponding eigenvector

v
R

= v
Q

,

that is because of

(Q+ I)v = �
Q+I

v = (�
Q

+ 1)v , Qv = �
Q

v.

So instead of finding the eigenvalues and eigenvectors of Q, we find them

of R firstly.
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Theorem 3.1: The kth eigenvalue of Q is

�
k

=
1� ⇢2

1� 2⇢ cos(!
k

) + ⇢2
� 1, 1  k  n,

(note: decreasing order if ⇢ 2 (0, 1), increasing order if ⇢ 2 (�1, 0).)

where {!
k

} are the roots in (0, ⇡) of the equation

tan(n!
k

) = � (1� ⇢2) sin(!
k

)

cos(!
k

)� 2⇢+ ⇢2 cos(!
k

)
.

And the corresponding kth eigenvector (unstandardized),

v
k,i

= sin[!
k

(i� n+ 1

2
) + k⇡/2].

Proof. According to Grenander and Szegö (1958), the entries of matrix R

R =

0

BBBBBBBBBBBBBB@

1 ⇢ ⇢2 ⇢3 . . . ⇢n�1

⇢ 1 ⇢ ⇢2 . . . ⇢n�2

⇢2 ⇢ 1 ⇢ . . . ⇢n�3

...
...

...
... . . .

...

⇢n�2 ⇢n�3 ⇢n�4 ⇢n�5 . . . ⇢

⇢n�1 ⇢n�2 ⇢n�3 ⇢n�4 . . . 1

1

CCCCCCCCCCCCCCA

is the coe�cient of the Fourier series f(x),

f(x) =
1X

n=�1
⇢|n|einx =

1� ⇢2

1� 2⇢ cos(x) + ⇢2
, �1 < ⇢ < 1.
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They proved that the eigenvalues are of the form,

�
k

= f(!
k

),

where, according to Ray and Driver (1970), the !
k

in (0, ⇡) are the roots of

tan(n!
k

) = � (1� ⇢2) sin(!
k

)

cos(!
k

)� 2⇢+ ⇢2 cos(!
k

)
.

and

!
1

< !
2

< · · · < !
k

.

Akansu and Torum(2012) obtained the explicit form of eigenvectors for R,

which is

v
k,j

= sin[!
k

(j � n+ 1

2
) + k⇡/2].

Proposition 3.1: The eigenvector v
k

is orthogonal to 1 = (1, . . . , 1)T when k

is even.

Proof. It is su�cient to prove that

nX

i=1

sin[!
k

(i� n+ 1

2
)] = 0, if k is even

And because of the identity

nX

i=1

cos[↵ + k�] =
sin(↵ + 2n+1

2

�)� sin(↵ + �

2

)

2 sin �

2

,
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we obtain,

nX

i=1

sin[!
k

(i� n+ 1

2
)] =

nX

i=1

sin[!
k

(i� n+ 1

2
� ⇡

2
+

⇡

2
)]

=
nX

i=1

cos[!
k

(i� n+ 1

2
� ⇡

2
)]

=
sin(n

2

!
k

� ⇡

2

) + sin(n
2

!
k

+ ⇡

2

)

2 sin(!
k

/2)

=
� cos(n

2

!
k

) + cos(n
2

!
k

)

2 sin(!
k

/2)

= 0.

Proposition 3.2: Q is invertible except for n� 1 values of ⇢.

Proof. It is su�cient to prove that except for n � 1 values of ⇢, 1 is not the

eigenvalue of R(= Q+ I), which leads to 0 is not an eigenvalue of Q.

If 1 is one of the eigenvalues of R, then f(!) = 1�⇢

2

1�2⇢ cos(!)+⇢

2

= 1, for some

! 2 (0, ⇡).

That is,

1� ⇢2 = 1� 2⇢ cos(!) + ⇢2,

So ⇢ = cos(!).

Also, ! should be the root of the polynomial,

tan(n!) = � (1� ⇢2) sin(!)

cos(!)� 2⇢+ ⇢2 cos(!)
.

Simplify it, we have

tan(n!) = tan(!),
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the roots are

! =
k⇡

n� 1
, k = 1, 2, . . . , n� 1

for ! 2 (0, ⇡).

Thus, except for the above corresponding n� 1 values of ⇢, Q is invertible.

Now, follow the proof of Theorem 2.2 in Section 2.1, we can find the most

V-robust design similarly. Proof would be the same until the equation (2.14).

Since now Q is di↵erent, ⌫ and s will be di↵erent and have to be determined.

Let s = (v
1

, v
2

, . . . , v
n

)T , then because (Q� ⌫I)s = 1, we have

0

BBBBBBBBBBBBBB@

�⌫ ⇢ ⇢2 ⇢3 . . . ⇢n�1

⇢ �⌫ ⇢ ⇢2 . . . ⇢n�2

⇢2 ⇢ �⌫ ⇢ . . . ⇢n�3

...
...

...
... . . .

...

⇢n�2 ⇢n�3 ⇢n�4 ⇢n�5 . . . ⇢

⇢n�1 ⇢n�2 ⇢n�3 ⇢n�4 . . . �⌫

1

CCCCCCCCCCCCCCA

0

BBBBBBBBBBBBBB@

v
1

v
2

v
3

v
4

...

v
n

1

CCCCCCCCCCCCCCA

=

0

BBBBBBBBBBBBBB@

1

1

1

1

...

1

1

CCCCCCCCCCCCCCA

.

Assume ⌫ is not the eigenvalue of Q, then |Q� ⌫I| 6= 0. So (Q� ⌫I)s = 1

has the unique root, and Q � ⌫I is invertible. By binomial inverse theorem,

we can find (Q� ⌫I)�1 via Q�1,

(Q� ⌫I)�1 = Q�1 + ⌫Q�1(I� ⌫Q�1)�1Q�1. (3.2)

Since we have already known the eigenvalues and eigenvectors of Q, and

Q = P⇤PT,
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Q�1 = P⇤�1PT,

we can easily calculate Q�1. Thus, we can rewrite equation(3.2) as

(Q� ⌫I)�1 = P(⇤�1 + ⌫⇤�1(I� ⌫⇤�1)�1⇤�1)PT .

One last thing is to find the expression for ⌫ numerically, which is the root

of
[(n+1)/2]X

j=1

(1Tv
2j�1

)2/(�
2j�1

� ⌫) = 0.

3.1.1 Toy Sales Example: Revisit

Now, let us revisit the sales example introduced in Chapter 1. We carry out

most V-robust design for AR(1) processes, with comparison to uniform design

(equally spaced, ascendingly ordered). These two design strategies will give

di↵erent design points. For example, if there are 5 periods that can be used for

experiment, the uniform design will give x =< 0, 4.5, 9, 13.5, 18 >, and most

V-robust design will give x =< 5.5, 17, 0, 17, 5.5 >. Recall that the underlying

model is

y
i

= 0.6x
i

+ 3 + ".

SSPE (Sum of Squared Prediction Error) is used to measure the goodness of

designs,

SSPE =
X

(ŷ
i

� 0.6x
i

� 3)2,

where x
i

2 (0, 1, 2, . . . , 17, 18).

Generalized least squares is used in predicting ŷ frommost V-robust design,

where it turns out that the estimator of ⇢ for autocorrelation matrix only makes
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a subtle difference in SSPE. For the uniform design, ordinary least squares is

used because it ignores the correlation of errors.

SSPEs of two designs are displayed in Figure 3.1.1, which shows that most

V-robust design of AR(1) processes performs much better in prediction of

sales.

5 10 15 20 25

0
50

10
0

15
0

design size

S
S
P
E

-
-

most V
uniform

Figure 3.1: SSPE of Toy Sales Example
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3.2 V-Robust design for AR(1)

Consider V-robust designs for the classes

P
3

= {P|⇢(s) = ⇢s for c
0

 ⇢ < 1 with some c
0

> 0};

P
4

= {P|⇢(s) = ⇢s for � 1 < ⇢  �c
1

with some c
1

> 0}.

Here the case q = 1 is considered since the extension to q > 1 is rather

evident.

The CVS in equation (3.1) can be simplified

CV S(⇠,P) = sup
⇢2(�1,1)

(
2 + 2

n�1X

i=1

⇢i
n� i

n
+ 2

X

i<j

x
i

x
j

⇢j�i

)
. (3.3)

If ↵ is su�ciently large, then observations can only be made at 1 or �1,

plus one made at 0 if n is odd, it is easy to determine the order of observations

to minimize Q(x)(i.e. to minimize
P

i<j

x
i

x
j

⇢j�i). It turns out the design is

exactly the same as these of MA(1) processes.

• V-robust designs for P
3

are

x
(1)

=

⇢
< 1,�1, 1,�1, . . . , 1,�1 > n even,

< 1,�1, 1,�1, . . . , 1,�1, 0 > n odd.
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• V-robust designs for P
4

are

x
(1)

=

⇢ < 1, . . . , 1,| {z }
n/2

�1, . . . ,�1 >| {z }
n/2

n even,

< 1, . . . , 1,| {z }
n/2

0,�1, . . . ,�1 >| {z }
n/2

n odd.

And the corresponding CVS can be calculated by equation(3.3).
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3.3 Comparision

The example is illustrated because “(a) this f is least favourable, in a minimax

sense, for straight line regression and (b) a quadratic disturbance represents the

most common and worrisome departure from linearity in most applications”,

according to Section 6 (Page 1507) in Wiens and Zhou (1997). The true model

is given by

Y
i

= zT (x
i

)✓ + f(x
i

) + "
i

, i = 1, . . . , n

with f(x) = ⌘(45/8)1/2(x2 � 1/3), and " = �
0

P1/2w, where w is a vector of

white noise with variance �2

w

, P is an autocorrelation matrix to be specified,

and �2

0

= var("
t

/�
w

).

Denoting ��2

w

times the MSE matrix of n1/2✓̂ by C, Wiens and Zhou (1997)

find that

C = �2

0

0

B@
1 0

0 ⌧�1

2

1

CA
ZTPZ

n

0

B@
1 0

0 ⌧�1

2

1

CA+
45

8
⌫

0

B@
⌧
2

� 1

3

⌧

3

⌧

2

1

CA
✓
⌧
2

� 1

3

, ⌧

3

⌧

2

◆
, (3.4)

where Z = (1
...x) is the model matrix, ⌧

k

=
P

n

i=1

xk

i

/n is the kth moment of

the design, and ⌫ = n⌘2/�2

w

. The value of ⌫ may be viewed as reflecting the

relative importance of bias versus variance in the mind of the experimenter.

⌫ = 0 indicates that the fitted model is exactly correct, and ⌫ = 1 indicates

that (
R
f 2)1/2(= ⌘) is of the same magnitude as a standard error. P = P

j

(⇢) is

taken to be the autocorrelation matrix of one of the following error processes "
t

with lag-one autocorrelation ⇢: (a) j = 1: MA(1) with ⇢ � 0; (b)j = 2: MA(1)

with ⇢  0; (c) j = 3: AR(1) with ⇢ � 0 or (d) j = 4: AR(1) with ⇢  0. For
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j = 1, 2 we have σ2
0 = 1 + θ2, where θ ∈ [−1, 1] satisfies ρ = −θ/(1 + θ2). For

j = 3, 4, we have σ2
0 = (1− ρ2)−1.
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in
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rho < 0
in
de
x

Figure 3.2: Most V-robust designs of MA(1), n = 25.

The most V-robust designs for MA(1) processes only depend on the sign of

ρ as showed in the Figure 3.3. However, the most V-robust designs for AR(1)

processes, as showed in Figure 3.3, depend on the the magnitude of ρ.

It seems when n = 25, the designs for AR(1) and MA(1) are almost the

same if ρ > 0. And when ρ < 0, the difference between them seems to be the

orders of the same design points. Hence, it is likely that the performances of

these designs are similar if n is not small.

Same as Wiens and Zhou (1997), several loss functions are considered here

(a) det = |C|; (b) trace = trace(C); and (c) IMSE = trace(CA) , where

A =
∫ 1

−1(1, x)
T (1, x)dx = diag(2, 2/3). It turns out the performances of the

most V-robust designs for MA(1) and AR(1) are almost indistinguishable when

n = 25, if the true model is MA(1) or AR(1).
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Figure 3.3: Most V-robust designs of AR(1), n = 25.

The performances are the same for ν = 0, n = 25.

If the sample size is changed to a small value, the performances will be

much different. The results where n = 5, n = 10 and n = 15 are displayed in

Figure 3.6 to Figure 3.11. It turns out that the V-robust designs for AR(1)

perform better if ν = 1, but the V-robust designs for MA(1) perform better if

ν = 0.

The designs are displayed below(n = 15, 25 are omitted because designs

are almost the same):

• For n = 5, most V-robust designs of MA(1) processes are

{
< 1, 1, 0,−1,−1 > ρ ∈ P2;

< −0.45, 0.95,−1, 0.95,−0.45 > ρ ∈ P1.
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Figure 3.4: Comparison of different loss functions, when n = 25, ν = 1. For
example, MA(1), det: the true model with autocorrelation matrix of MA(1)
processes, determinant as loss function.
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Figure 3.5: Comparison of different loss functions, when n = 25, ν = 0.
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Figure 3.6: Comparison of different loss functions, when n = 5, ν = 1.
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Figure 3.7: Comparison of different loss functions, when n = 10, ν = 1.
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Figure 3.8: Comparison of different loss functions, when n = 15, ν = 1.
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Figure 3.9: Comparison of different loss functions, when n = 5, ν = 0.
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Figure 3.10: Comparison of different loss functions, when n = 10, ν = 0.
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Figure 3.11: Comparison of different loss functions, when n = 15, ν = 0.
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• For n = 5, most V-robust designs of AR(1) processes are

8
>>>>>>><

>>>>>>>:

< 0.82, 1, 0,�1,�0.82 > ⇢ = �0.4,

< �0.90,�1, 0, 1, 0.90 > ⇢ = �0.2,

< �0.40, 0.90,�1, 0.90,�0.40 > ⇢ = 0.2,

< �0.36, 0.86,�1, 0.86,�0.36 > ⇢ = 0.4.

• For n = 10, most V-robust designs of MA(1) processes are

(
< 0.55, 0.92, 1, 0.76, 0.28,�0.28,�0.76,�1,�0.92,�0.55 > ⇢ 2 P

2

,

< 0.28,�0.55, 0.76,�0.92, 1,�1, 0.92,�0.76, 0.55,�0.28 > ⇢ 2 P
1

.

• For n = 10, most V-robust designs of AR(1) processes are

8
>>>>>>><

>>>>>>>:

< 0.42, 0.86, 1, 0.79, 0.30,�0.30,�0.79,�1,�0.86,�0.42 > ⇢ = �0.4,

< 0.48, 0.89, 1, 0.78, 0.29,�0.29,�0.78,�1,�0.89,�0.48 > ⇢ = �0.2,

< 0.25,�0.52, 0.75,�0.91, 1,�1, 0.91,�0.75, 0.52,�0.25 > ⇢ = 0.2,

< 0.22,�0.50, 0.74,�0.91, 1,�1, 0.91,�0.74, 0.50,�0.22 > ⇢ = 0.4.

3.3.1 Comparison for true model as MA(2) or AR(2)

This subsection discusses the situation where the true model has autocor-

relation matrix of MA(2) or AR(2) processes. Either MA(2) or AR(2) has two

parameters, ✓
1

, ✓
2

.

By calculation,

�2

0

= 1 + ✓2
1

+ ✓2
2

50



for MA(2);

�2

0

=
1

1� ✓
2

( ✓

1

1�✓

2

)� ✓
2

( ✓
2

1

+✓

2

�✓

2

2

1�✓

2

)

for AR(2). Let ⇢
1

= ⇢, where ⇢ (the parameter in MA(1) or AR(1) processes) is

determined in advance to obtain the designs, and then solve ✓
1

, ✓
2

to determine

the autocorrelation matrix P of MA(2) or AR(2). Here ⇢
1

is chosen from

(�0.4,�0.3,�0.2,�0.1, 0.1, 0.2, 0.3, 0.4) and for each particular value of ⇢
1

,

we assign values to ⇢
2

by assigning values to ✓
2

. So there will be jump from

one value to another value of ⇢
1

. This is not a problem since the attention is

paid to the di↵erence of performances of designs.

The most V-robust design of AR(1) or MA(1) can be applied to the models

with autocorrelation matrix of AR(2) or MA(2) processes. Again, the situation

where ⌫ = 1, 0 and n = 5, 25 are discussed in Figure 3.3.1 and Figure 3.3.1.

We can see that the most V-robust design for AR(1) performs better than the

most V-robust design for MA(1) when ⌫ = 1.
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Figure 3.12: Comparison when model is MA(2), AR(2), n = 25.
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Figure 3.13: Comparison when model is MA(2), AR(2), n = 5.

3.3.2 Conclusion

In conclusion, the most V-robust design for AR(1) processes performs better

than the most V-robust design for MA(1) processes if n is small and ν = 1

while MA(1) performance better if n is small and ν = 0. However, when n is

moderately large, they are indistinguishable.

3.4 Conclusions and Future Research

V-robust designs should be applied to cases where autocorrelated errors are

anticipated or detected. V-robust designs for MA(1) processes and for AR(1)
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processes have indistinguishable performance in some situations. However, it

is showed most V-robust design for AR(1) processes can be more powerful

if the number of observations is small and there is some bias in the fitted

model. It seems reasonable to expect most V-robust design for AR(1) processes

to perform better than most V-robust design for MA(1) processes in reality

because the fitted model would not be very accurate at most of the time, and

limited cost would lead to limited observations. It would be good to see its

power in industrial applications.
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