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Abstract

Collecting information is of vital importance for the development of a mineral project. The
capital costs of mining projects are high and there is significant risk due to the available
data. At all stages of a project, from exploration to mine closure, decisions need to be made
that are based off of the data available. Some of the important sources of data include field
work, outcrops, geophysical and geochemical measurements, and drilling. The information
gathered can be either quantitative or qualitative, and the specific data available depends
on each individual project. Of the data typically available, the information gathered from

drilling is the most direct approach to understanding the subsurface mineral deposit.

This thesis addresses two important decisions companies face regarding drilling, (1) What
is the data spacing needed to achieve an acceptable level of uncertainty for a relevant scale?

and (2) What is the rate that uncertainty changes when more data is collected?

There is a level of uncertainty for drillhole spacing in any scale. The level of uncertainty can
be shown as a measurement such as the probability of the grade to be within a percentage
of the mean, which can be calculated for a relevant production scale. This may suggest a
drillhole spacing, that is on average, associated to a desired level of precision. For example,
the estimated grade of monthly production volumes falling within +£15% of the mean 80%
of the times. With a specific level of precision, the drillhole spacing associated with it

increases as the production scale increases.
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In certain circumstances, the uncertainty versus data spacing can be established analytically.
A "Learning Curve" is established to gain a deeper understanding of how uncertainty relates
to data spacing for different spatial structure. The Learning Curve summarizes the rate at

which the scale of variability is resolved for additional drilling.

This work also addresses the influence of important explanatory factors on the total
variability. Explanatory factors are mostly economic, geologic and geometric factors that
explain the variability in a variable. Uncertainty does not depend solely on data spacing
(geometric factor), local uncertainty is also influenced by conditional mean, conditional
variance (economic factors) and entropy (geologic factor). The influence of these factors

explaining uncertainty is modelled by statistical regression techniques.

A comprehensive case study is presented that includes geological and grade modelling.
This full data spacing study is practically important to present the concepts reviewed in this

thesis and to demonstrate new concepts regarding uncertainty versus drillhole spacing.
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" .. Lutar, lutar, lutar

Pelos gramados do mundo pra vencer..."
Hino do Clube Atlético Mineiro,

o Galo forte e vingador,

0 Galo doido,

o Galdo da Massa,

o Galo de ouro, a Sele¢ao do Povo.
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Chapter 1: Introduction

An important issue in the development of a mineral project is to know the minimum amount
of data necessary to support a decision. Decisions are taken considering uncertainty in the
geological model, grade estimates, the production scale and other technical factors. The
range of decisions in a mine extends from daily grade control to long term planning. All
decisions are based on the available data, numerical modeling and the experience of the

decision makers.

In the early stages of exploration there are few samples from delineation and
reconnaissance drilling. If initial results show promise then more data is collected.
CRIRSCO (2013) and JORC (2012) define classification standards for resources based on
a quantified level of geological confidence (Figure 1.1). According to the Canadian
Institute of Mining, Metallurgy and Petroleum (CIM), the classification of mineral

(13

resources is dependent on the “...nature, quality, quantity and distribution of data...”
(Postle et al., 2000). Regarding mineral resources classification, changing from inferred to
measured requires a better understanding of the geology and improved grade and tonnage

estimates. This is achieved with more data.

Infill drilling provides additional information in specific zones of the deposit. At times,
the drillholes are regularly spaced at a chosen distance. Consider the simplest case of infill
drilling optimization versus regular spacing shown in Figure 1.2. A few initial drillholes
are used to generate a first geological model. Lower grade zones have less variability and
less uncertainty. High grade zones are economically more attractive, but with higher
uncertainty in the grade. Placing additinoal drillholes in the high grade zone may be
efficient to delineate the important part of the deposit. If the goal is to uniformly reduce
global uncertainty and increase the overall knowledge of the deposit, then samples could

be collected on a regular grid over the area.

Although only a minor amount of work has been carried out specifically in data spacing and
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Results
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Figure 1.1: The JORC general mineral resources and reserves relationship. From

(CRIRSCO, 2013).
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Figure 1.2: Illustrated schema of infill drillhole placement and regular spaced grid.



uncertainty, strong methodologies to relate these two factors have been developed. Firstly,
it is important to know that in earth sciences, numerical models are created to reproduce
data in its location and estimate properties away from it. Numerical models are the basis
for decision making. The geological and grade models of a mine are commonly generated
by geostatistical methods (Journel and Huijbregts, 1978). The uncertainty will be reduced
with more drilling and other sources of information. This is referred to as the information
effect (Rossi and Deutsch, 2014). Although data spacing and uncertainty studies can be
done at any stage of mining, it is common to consider them relatively early in the lifecycle

of a deposit.

This thesis explores an improved understanding of the relationship between data quantity
and uncertainty. This will provide decision support information for drilling and data

collection studies.

1.1 Literature Review

Most of the methodologies for infill drilling optimization consider minimizing the kriging
variance (KV) due to the fact that KV can be calculated prior drilling, it considers
anisotropies, accounts for spatial relationship between locations and is independent of the
grade (Silva, 2015; Soltani and Hezarkhani, 2013). The first works on infill drilling
optimization considered only 2D cases. The simplest scenario is the placement of a single
drillhole at the location of highest KV, a second drillhole is placed after recalculating the
KV (Gershon, 1987). Different methods were proposed such as the use of fixed point
theory and iterative gradient based techniques (Sch, 1983) and integer programming using

the branch and bound procedure (Gershon, 1987).

With the advancement of computing, new algorithms were developed to handle 3D
models and optimizing more than one drillhole at a time. The use of a genetic algorithm to
minimize the average KV in 2D and 3D cases was proposed by Soltani et al. (2011),
whereas Mohammadi et al. (2012) considered the grade of blocks as the weight given to

the average kriging variance in a simulated annealing based approach. In both methods



the new drillholes were considered vertical. Soltani and Hezarkhani (2013) proposed the
optimization of directional drillholes by simulated annealing, in which the azimuth was
fixed and the dip optimized. A more complete treatment to the problem, with more

drillholes and no need for fixed azimuth, dip, and location was proposed by Silva (2015).

Geostatistical methodologies such as kriging and simulation are common to assess the
spatial distribution of a property of interest including soil and groundwater properties
(Webster and Oliver, 2007). McBratney et al. (1981a,b) proposed a method for designing
optimal sampling schemes based on minimizing the standard error of a kriged estimate.
The maximum error allowed must be set up by the modeller and the sampling density is
calculated for a given variogram. The standard error is minimized if sampling is
performed on an equilateral triangular grid for isotropic variogram cases. The sampling
distances are modified to account for anisotropy, with smaller spacing in the direction of

least continuity.

The problem of sampling schemes has been explored in groundwater monitoring and
hydrogeology (Andricevic, 1990; Carrera et al., 1984; Criminisi et al., 1997; Loaiciga,
1989; Meyer and Brill, 1988; Rouhani and Hall, 1988; Storck et al., 1997; Zhang et al.,
2005). Bueso et al. (1998) consider the spatial sampling design problem to find an optimal
number of piezometric sites by sequentially adding to or deleting from the preexisting
sampling network. In this work, the conditional entropy (the average amount of
information of the mixing of variables) is calculated for the various number of deleted
sites. The plot of number of sites against conditional entropy is used to understand the rate
of information gain with respect to the number of deleted sites. They suggest an optimum
solution is the one that minimizes the conditional entropy and coincides with the
maximum rate of information. Bueso et al. (1999) extends the entropy-based approach to
a multivariate framework. The objective function to be minimized is defined as a linear

combination of the information on the variables an/or the location of data.

Drillhole spacing is commonly used as a criteria for mineral resource and reserve

classification (Silva and Boisvert, 2014a). The magnitute of the estimate error are based



on the information from sample points, therefore all statements about the quality and
quantity of mineral resources are dependent, among other factors, on the nature and
quantity of sample information (Diehl and David, 1982). Although geometric criteria are
considered neat and easy-to-understand parameter for classification, it is recommended to
also consider a probabilistic analysis. The application of geometric thresholds depends on
a number of factors such as local geology, comparison to similar deposits, uncertainty
assessment, governmental guidelines/regulamentations and expert judgment (Bertoli et al.,

2013; Leuangthong et al., 2006).

Important works on sampling schemes and data collection in mining have been done since
the advances of geostatistics and computer sciences (Boucher et al., 2004; Deutsch and
Beardow, 1999; Englund and Heravi, 1992; Froidevaux, 1982; Koppe et al., 2011; Pilger
et al., 2001; Rojas and Céceres, 2011; Wilde, 2010; Wilde and Deutsch, 2009). These
publications are important for this thesis and the methodology herein presented, they are

reviewed in more detail below.

Froidevaux (1982) shows how the precision of estimate (and, consequently, ore reserve
classification) is affected by drillhole spacing. The precision measures how spread
(distributed) the estimates are from the mean. The author uses geostatistics techniques to
simulate a deposit with different number of drillholes and calculate the precision for each
drilling pattern. The precision of the simulated estimates is plotted against the number of
drillholes, see Figure 1.3. The actual precisions for three different drillhole spacing
(shown as centers in the plot), show good agreement with the simulated estimates.
Considerable changes in the precision are observed close to the inflexion point whereas

marginal gains in precision are obtained away from it, even with large number of

drillholes.

Englund and Heravi (1992) discuss the use of conditional simulation to optimize the
sampling in contaminated soils. Sequential Gaussian simulation (SGS) is used to generate
a representative true spatial distribution of the contaminant over the site. Given an

objective function defined by the sum of sampling cost plus remediation costs plus cost of
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Figure 1.3: Precision of estimates versus number of drillholes. The actual precision for

three different drillhole spacing are plotted as dots. From (Froidevaux, 1982).

residual contamination, the goal is to estimate the number of samples that would result in
the lowest total cost. The simulated model is block averaged to a remediation unit (RU)
and concentration and cost are calculated in the RU scale. For the same number of
samples, the model is sampled in different random locations and the total cost is
calculated. This process is repeated for a set of different number of samples. The
optimum number of samples is the one related to the lowest total cost, as seen in the cross

plot of Figure 1.4.

Deutsch and Beardow (1999) propose a methodology for optimal drillhole spacing in oil
sands while assessing uncertainty in bitumen/fines predictions and reducing total cost.
The total cost is a function of drilling cost and uncertainty cost. Block kriging or
stochastic simulation can be used to assess uncertainty. A single measure of uncertainty
(the average of the local variances over all locations) is retained for each drillhole
spacing/density configuration. Moreover, the use of volume variance relations allows to
establish an absolute measure of uncertainty at any scale. To simplify the application of

the methodology, two assumptions are made (1) the cost of uncertainty in bitumen/fines is
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Figure 1.4: Total remediation cost (Y-axis) versus number of samples (X-axis). From

(Englund and Heravi, 1992).

a linear function of uncertainty (indeed, it is a combination of many factors) and (2)
drilling cost increases linearly with drillhole density. Moreover, among many factors that
must be considered to satisfactorily arrive at the optimal spacing, the total cost is the

single factor to choose the optimal density, see Figure 1.5.
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Figure 1.5: Optimal drillhole density against cost (left) and relative uncertainty (right).
From (Deutsch and Beardow, 1999).



Boucher et al. (2004) propose a method for infill drilling assessment and optimization that
is summarized in five steps. One realization of the attribute under study is generated by
conditional simulation and treated as the "actual" deposit. This realization is sampled with
different drilling schemes. For each scheme a set of realizations is run to simulate the
attribute conditional to the data from the drilling schemes. The realizations are block
averaged to a selective mining unit (SMU) scale and grade control and block classification
are performed for each sampling scheme. The classification is then compared to the actual
deposit (the first realization) using economic indicators such as the profit per tonne mined
and profit per tonne milled. The optimal drilling scheme is the one that maximizes the

total profit.

Wilde (2010); Wilde and Deutsch (2009) review the influence of factors such as local
grade level, spatial variability of the grades, economic thresholds, scale, parameter
uncertainty and data spacing/density on uncertainty and propose a methodology for
determining uncertainty for different sampling schemes. The methodology is closely
related to those proposed by Deutsch and Beardow (1999) and Boucher et al. (2004),
although no effort is made to define an acceptable level of uncertainty, and no cost or
objective function is minimized. This robust methodology evaluates the relationship
between uncertainty and data spacing and can be adapted/modified to consider technical
and economic factors defined by any modeller. The proposed methodology is illustrated
in Figure 1.6. Realizations of the true distribution of a variable of interested is generated
by SGS. These realizations are then sampled in any desired spacing. A new set of
realizations is created now conditional to the new configuration of the samples. The fine
scale grid of simulation is averaged up to a larger scale and uncertainty is summarized for

each data spacing. The retained information is plotted in order to better support decisions.

Rojas and Céceres (2011) use conditional simulation to evaluate the risk related to
drillhole spacing and support an infill drilling campaign to improve resource
classification. Conditional simulation is used to generate scenarios of the unknown reality
of the deposit (geology and grade). The "reality" is sampled with four different drillhole

spacing and the resource is estimated for each drilling scheme. The difference or errors in
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Figure 1.6: Illustrated schema of the proposed methodology to assess uncertainty
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generated conditional to the drilling schema. The average block uncertainty is plotted

against uncertainty.



the estimated mean, metal content and tonnage are used to assist decision making. An
important point in this study was the fact that a production volume was considered when
calculating the estimation errors. The simulated models were "mining reconciliated" with
the resource model (the reality) to consider an arbitrary production volume, allowing to

define the optimal drillhole spacing to the desired mineral resource categories.

Koppe et al. (2011) compare the impact on uncertainty for two infill drilling schemes (1)
regular (or quasi regular) grid and (2) placement of the new drilling in high variability
location. The Net Present Value (NPV) of the deposit is used as transfer function of
uncertainty. To calculate the NPV, the authors considered only the block grades and used
mining and processing costs of copper, as well as the metal price as reference. The goal is
to know which scheme would maximize the NPV, given a fixed number of additional
samples to be added. The methodology used can be summarized in few steps. Several
scenarios (realizations) of the attribute of interest are generated by geostatistical
simulation with the initial drilling configuration by Turning Bands (Matheron, 1973). The
set of simulated scenarios is used to map locations of high uncertainty. A simulated
scenario is chosen to be sampled with the two drilling schemes. A new set of realizations
is run conditional to the new data and later averaged up to a block scale for NPV
calculation. As the real scenario is known, a comparison between real and simulated
scenarios can be made. Post-processing of the information with analysis of the cost of the
new drillholes and reduction of uncertainty support the choice of the optimal scheme.
Other factors such as number of initial data, histogram, type of mineralization, redundancy
of data (dependent of the variogram), sampling distance, number of realizations and cost
of drilling affect uncertainty assessment, hence the NPV. The authors advise that the

choice for the best drilling scheme should be made on a case-by-case basis.

The methodology proposed here adapts concepts from these approaches. The aim is not to
define optimal infill drillhole location but to provide a practical and comprehensive
workflow to understand the relationship between uncertainty and data spacing. This work
investigates some factors affecting local uncertainty. The methodology considers the scale

in uncertainty assessment. Proper interpretation and use of this methodology would help
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companies choose the sampling spacing to achieve a desired level of uncertainty.

1.2 Concepts in Data Spacing and Uncertainty

For completeness, a discussion of the basic concepts of data spacing and uncertainty is

provided.

1.2.1 Modeling Uncertainty

Uncertainty is due to heterogeneity at all scales and relatively widely spaced drilling (Caers,
2011; Pyrcz and Deutsch, 2014). The geological processes that created a deposit are too

complex to be fully explained with relatively sparse data.

Geostatistics provides tools to build numerical models to assess uncertainty by kriging or
simulation (Deutsch and Beardow, 1999). Assessing uncertainty with the kriging variance
is limited due to the fact that its calculation accounts only for the sample locations and not
the value of the samples (Goovaerts, 1997). Conditional simulation is used to generate
multiple realizations of the spatial distribution of an attribute considering the variogram
and conditioning data (Journel, 1974). Each realization is equally-probable and reflects a
possible scenario for the spatial distribution of that attribute. The set of multiple
realizations results in a distribution of predicted system response values, reflecting the

uncertainty (Gotway and Rutherford, 1994).

Different measures of uncertainty are reviewed in Chapter 3. In a simulation context,
uncertainty is assessed in a very high resolution (data scale) then averaged up to a larger
scale that is relevant for decision making, mine planning or operation. Consider two
measures of uncertainty calculated for grade in an arbitrary relevant volume, e.g. a
monthly production volume. The standard deviation of a production volume is calculated
from the simulated grades. The probability of the grade to be within a percentage of the
mean, for example, within £15% of the predicted grade for at least 80% of the monthly

production volumes. If a set of 100 realizations are generated, a monthly production
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volume would be considered acceptable if the number of realizations that the simulated

grade fell within +15% of the mean grade at least 80 times.

1.2.2 Geometric Measurements of Data Availability

Drillhole spacing (DHS), drillhole density (DHD) and distance to the nearest drillhole

(DND) are the most common spatial measures of data availability.

1.2.2.1 Data Spacing

Data spacing is the average distance between adjacent data within an area. A relatively
large area with few data is reported as large spacing. When drillholes are not uniformly

distributed over an area, then data spacing must be calculated locally.

Mory and Deutsch (2006) proposed the calculation of DHS for vertical and non-vertical
drills accounting for the anisotropy in grade continuity in 2D and 3D models. In two-
dimensional cases, data spacing is defined as the average spacing of the drilling grid in
each primary direction, as shown in Figure 1.7. The DHD at a location (u) is given by
the number of samples found inside the rectangular or elliptical area (n(u)) divided by
the area (A) times the reference area (10.000 squared meters for one hectare), as shown in
Equation 1.1. The area (A) depends on the search shape and anisotropy and is calculated for
elliptical (Equations 1.2) and rectangular (Equation 1.3) shapes. The average local spacing
is then calculated by Equation 1.4. In three-dimensional cases where drillholes are not
vertical nor aligned in the same direction, the calculations involve obtaining the nominal
number of vertical parallel drillholes that would contain the same number of samples as the
real configuration in the same volume. The volume height (V' h), see Equation 1.5, is used
to calculate the nominal number of drillholes (n45,) in Equation 1.6. Drillhole density and

spacing are then calculated replacing n,(u) by ng, in Equation 1.1.

DHD(u) = % x 10000 (1.1)
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Figure 1.7: DHS and DHD parameters for calculation from Mory and Deutsch (2006).

Ly and L, are the drillhole spacing in horizontal direction. The yellow square is the area

or volume for calculations.

A =7 X (Shpaz X ah)2 (1.2)
A= (2 X Shmas X an)” (1.3)
where:
Shomax - maximum horizontal search radius;
anp - horizontal anisotropy;
Ly + Ly 10000
DHS(u) = == 1.4
(w) 2 \| DHD(u) 19
2 hmax
v = 22 5lmar (1.5)
Ay
ns(u) x ¢
=7 1.6
Ndn Vh (1.6)
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where:

c - composite length;
gy - vertical anisotropy;

Naus (2008) proposed the use of Delaunay triangulation for calculation of point spacing in
regular and irregular schemes, see Figure 1.8. The distance of every edge connecting one
point to a neighbor is calculated, the spacing in a point is then given by the average of the

edges lengths connected to the point.

y y A /

Figure 1.8: DHS calculation using Delaunay triangulation, from Naus (2008). The black

dots are the data location, the red lines define the triangles.

Wilde (2010) proposed the calculation of data spacing for vertical and non-vertical drills
(Figure 1.9) by Equations 1.7 and 1.8 respectively. The calculation of data spacing in three
dimensions is reduced to two dimensions if drillholes are vertical, otherwise Equation 1.8
must be used. The calculation of data spacing requires either a constant volume V' (u) or
number of samples 7, (u) to search for. Data spacing will be noisy for very small volumes
or too few samples and it will be over-smooth and locally imprecise for large volumes or

too many samples (Leuangthong et al., 2006; Wilde, 2010).
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Figure 1.9: Ilustration of data spacing calculation in three dimensions for irregular and
regular spacing, from Wilde (2010). V' is the volume for calculations, ¢ is the composite

length and s the drillhole spacing.

1
Viu) \?
s(u) = ( ( )) (1.7)
n,(u)
where:
s(u) - data spacing at location u;
V(u) - search volume;
Ny (1) - number of samples found within the volume V' (u);
Viw \*
u 2
s(u) = (—> (1.8)
q-ny(u)
where:
q - sample spacing along the drillhole;

Silva and Boisvert (2014b) proposed the calculation of DHS using a single datum from
each drillhole, reducing the dimension of the problem to a 2D calculation. The vertical
tolerance is equal to the block vertical dimension, see Figure 1.10. DHS can be calculated
given a search geometry (square or circle) or by a fixed number of data to search closest
to the location being considered (n(u)). Equation 1.9 is used for a square search whereas

Equation 1.10 is used for circular or number of data to search. In order to improve accuracy
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and to approximate DHS calculation to equally spaced cases, the maximum distance for a
search strategy is considered equal to the edge length of a square R(u). The calculation
of R(u) is performed after finding n(u). Equation 1.11 is used when a search geometry or
the number of data is the parameter for DHS calculation, whereas Equation 1.12 is used for
squared search. A smooth DHS is achieved using multiple parameters and averaging all

calculations.

—
=" Tolerance
y

Figure 1.10: Illustration of DHS calculation and search scheme, Silva and Boisvert

(2014b).

DHS(u) = (‘Z?(u“;) (1.9)
DHS(u) = R(u) (%) (1.10)

R(u) = (1.11)

R,(u)=| X, — X(u) |+ | Y, —Y(u) | (1.12)

Data spacing measures the average distance between data and not directly the quantity of
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data in a volume, therefore the estimation of cost of drilling is not as clear as it is for data

density.

1.2.2.2 Data Density

Data density measures the number of data inside a reference volume. Data density is related
to the number of drillholes and provides a direct manner to calculate the cost of drilling.
Data density is commonly reported as the amount of data per section or hectare. Data density
is high if many samples fall within a small volume and low if a large volume contains few

samples.

Naus (2008) proposed the use of Voronoi diagram (Figure 1.11) for calculation of data
density. Data density is calculated at any location assign to it the inverse of the polygon

area or in terms of data per unit squared.
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Figure 1.11: DHD calculation using Voronoi diagram, from Naus (2008). Red lines

define the triangles (Delaunay), blue lines define the Voronoi polygons.

Wilde (2010) proposed the calculation of data density by Equation 1.13. Its calculation

involves the same parameters 1/ (u) and n,(u) used in data spacing calculation.
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(1.13)

Data spacing and density are measures dependent on the volume or number of data used in

calculations. Distance to the nearest data is not affected by these parameters.

1.2.2.3 Distance to the Nearest Data

Distance to the nearest data (DND) is not as good measure of data availability as data
spacing or density since it is highly locally variable and could be small in areas of widely
spaced drillholes. Nevertheless, DND provides valuable complementary information to

data spacing.

1.2.3 Data and Scale

Data quantity and quality affect the uncertainty and the ultimate goodness of a model. There
is uncertainty in data measurements, data location and the measured data values. Different

drilling methods have different sampling quality and precision.

The capacity of geostatistical models to assess uncertainty improves with more data, see
Figure 1.12. The unknown truth is sampled with different number of drillholes (black dots);

the simulated deposit with many drillholes better represents the truth.

Uncertainty is scale dependent and the choice of scale depends on the goals of the modeling
(Caers, 2011; Pyrcz and Deutsch, 2014). Uncertainty decreases for larger volumes due the
averaging of extreme values (high and low). The dispersion variance provides a measure
of how variability changes with scale (Isaaks and Srivastava, 1989; Journel and Huijbregts,

1978; Pyrcz and Deutsch, 2014).

Uncertainty at the data scale is of little relevance for mine planning and operation. High
resolution geostatistical models needs to be averaged-up to a relevant scale. The SMU is

the smallest volume that relevant decisions are made in mine decision making. The use of
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Figure 1.12: The capacity of a model to represent the unknown truth and data quantity
shown at plan views. The simulated unknown truth is shown at the top. Three simulated
models generated with different number of samples (black dots) from the truth are shown

at the bottom.
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a SMU scale model is due to the fact that ore tons and grade estimates in that scale will be
similar to those found at the time of mining (Daniels, 2015). Although uncertainty in the
SMU scale may be important in daily operations, drilling campaign and long term planning
take into account large production volumes (a collection of SMUs). It is desirable to assess

uncertainty in monthly, quarterly and yearly production volumes, for instance.

In this aspect, the production scale should be considered when assessing uncertainty.
Three different manners of incorporating the scale into uncertainty assessment are

discussed below.

1.2.3.1 Non-zero Cut-off and Fixed Volume

Given a model with ore and waste SMUs, the resources and uncertainty are assessed at the
production volume scale. This is a block-averaging with no overlapping blocks. Figure 1.13
shows 9 production volumes averaging 36 SMUs each in a total of 324 SMUs over the grid.
When calculating the resources within a production volume, the calculations are simple
and straightforward, the expected values are calculated considering all SMUs within the

production volume over all realizations of the grade.

The uncertainty in economic variables such as tonnes of ore, tonnes of waste, expected grade
and quantity of metal inside a production volume is associated to that large scale and not to
a specific SMU. All SMUs are reported with the same uncertainty. Consider Figure 1.13.
It is expected that SMU 1 will have higher uncertainty as it is located in a transition zone

(between ore and waste), than SMU 2. All realizations of SMU 2 are likely waste.

This approach may result in an overestimation of the uncertainty in some variables. Even
inside a production volume that is all ore or all waste, SMUs may have different uncertainty
levels. SMUs 3 and 4 are inside the same volume but SMU 4 is closer to SMU 5. A more

reliable uncertainty measure in any SMU is determined considering its local neighborhood.
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Figure 1.13: This is a schematic plan view of a bench. The small squares represent
SMUs of 10-15 m on a side. The large squares represent the collection of SMUs (the
production volume) that will be mined in a representative period of time. The gray SMUs

are ore, the white SMUs are waste.

1.2.3.2 Zero Cut-off and Fixed Volume

Another way to assess uncertainty ina SMU is applying the concept of zero cut-off and fixed
volume centered at the SMU. Calculations are performed centering the production volume
at each SMU and assessing uncertainty based on a "moving window" with size equal to the
production volume. If a cut-off is applied to the grade, and uncertainty is based on grade
or tonnes of ore, then low grade areas are penalized. If uncertainty is based on quantity of

metal then information on grade/tonnes is lost.

A zero cut-off makes the analysis of uncertainty less based on economics. The uncertainty
is assessed considering the same time period in which each volume is the same. Figure 1.14
represents a model in which SMUs are either high or low grade. Consider the assessment
of uncertainty in the SMUs based on a production volume moving window. Uncertainty in
each SMU is now based on the adjacent blocks. The uncertainty in SMU 4 depends more on

SMU 5, whereas in the previous case (Figure 1.13), uncertainty in SMU 4 was dependent
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on SMU 3, a further block. Uncertainty in SMU 2 is no longer dependent on the high grade

zone for that volume, the influence area around SMU 2 is all low grade.

High grade . SMU

Production
Volume

Low grade

Figure 1.14: This schema is similar to the Figure 1.13. The gray SMUs are high grade,
the white SMUs are low grade. The production volume is now centered at the SMU.
Three different production volumes are shown in red, blue and green. They all have the

same volume.

1.2.3.3 Non-zero Cut-off and Varying volume

A varying volume to match an economic criterion only makes sense if a cut-off is applied
and the production volume window can expand or contract. Consider a monthly production
formed by 25 ore SMUE s, the blue square shown in Figure 1.15. Uncertainty in SMU 4 would
be assessed by all 25 adjacent ore SMUs, matching the fixed monthly tonnes of ore. The
production scale is now variant and may have to expand to match this production criterion.
The varying production volume centered in SMU 1 has to expand to get the same 25 ore
SMUs in order to have uncertainty assessed with the same economic reference scale as in

SMU 4.

It is not clear how to expand this volume to get the target production. Expand in one
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Figure 1.15: This schema is similar to the Figure 1.13. The production volume is
now made variant to match an economic criterion, it can expand. For this reason, the

production volumes are shown in three different sizes, the blue, red and green squares.

direction may get the same tonnes of ore than in another direction, but not the same
quantity of metal, dependent on the grade. Moreover, when expanding the window on a
regular grid, the tonnes of ore could match exactly the monthly reference production scale
only if fraction of blocks are considered. An entire "row" or "column" of SMUs could
result in a surplus of ore. Furthermore, this approach is awkward, since different
realizations will have different bounds and different volumes, making results hard to
understand and be interpreted. Uncertainty in some SMUs as SMU 2 would not be

reliable, as the volume considered is too large compared to the SMU volume.

1.3 Methodology

The methodology herein proposed to determine uncertainty and data spacing is discussed

and applied to an example.

Multiple scenarios of the unknown geology and grade distribution are generated by

simulation. These models of uncertainty reproduce the spatial variability (variogram), and
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the conditioning data, and histogram through a set of realizations. These realizations, built
at a very high resolution (point scale) are block averaged to a SMU scale. Uncertainty is
assessed in a production volume scale using one of the approaches of Section 1.2.3.

Measures of uncertainty are calculated processing all realizations.

Uncertainty versus data spacing curves can be plotted to understand the influence of data
spacing on local variability. A deeper study would consider additional explanatory factors.
These factors could include local mean, local variance and entropy that explain more of the
local variability. Entropy is the explanatory factor associated to the geology and mixing of

rock types. All these factors are calculated relative to a production volume.

A set of plots are created to better explore and understand uncertainty and the explanatory
factors. If multiple geological domains are considered, then uncertainty versus DHS
curves are plotted per domain and analyzed separately. It seems reasonable to zone the
deposit according to economic and technical factors, then apply all analysis to target

drillhole spacing.

The methodology is summarized as follows:

1. Model uncertainty in categorical and continuous attributes by simulation;
Average the high resolution model from simulation to a SMU scale;

Assess uncertainty at the production scale;

Model the explanatory factors and understand their influence on local variability;

Plot uncertainty versus DHS curves;

A T

If necessary, consider re-sampling the model with artificial drilling for more

information;

-

. Zoning the deposit and target DHS;
8. Decide what is DHD/DHS that leads to a desired level of uncertainty;

The following example demonstrates the capacity of the methodology to support decisions

regarding DHS and uncertainty.
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1.3.1 Example

The goal is to define data spacing necessary to classify SMUs as measured and indicated
mineral resources based on different production scales. A complete case study is detailed

in Chapters 4 and 5.

1.3.1.1 Modeling the Truth

The data used in this case study was generated by sequential indicator simulation (SIS)
with a synthetic trend for four rock types (Goovaerts, 1997; Journel, 1983). SGS (Deutsch
and Journel, 1998; Goovaerts, 1997; Isaaks, 1990) is used to simulate the grade within the
four domains with a different variogram for each. These two models are then sampled to
generate a set of drillholes, they are used as the data file in this example. The 140 drillholes

and their spatial location are shown in Figure 1.16.
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Figure 1.16: Location of drillholes projected onto a plan view and colored by rock type.
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One hundred realizations of the geological model were generated by SIS. The P50
realization is shown in Figure 1.17 for RT 1 and RT 3. RT 1 has the highest proportion.

Finally, 100 realizations of the grade were generated for each rock type.

Figure 1.17: Oblique view of the P50 from categorical simulation modelling of RTs 1

and 3. The drillholes are also shown.

1.3.1.2 Uncertainty Assessment in a Production Scale

Four simulated nodes are average up to compose a SMU. Two different production volumes
are considered: the weekly and monthly. Uncertainty assessment is done using a zero cut-

off and fixed volume approach.

Processing the realizations from the simulation allows the calculation of measures of
uncertainty. In this example, the probability of the grade to be within 15% of the
estimated mean is the measure of uncertainty. The influence of scale in uncertainty
assessment can be seen in Figure 1.18. The measure of uncertainty is plotted for the two
production volumes for the same slice of the deposit. A lower uncertainty (higher

precision) is associated to the larger volumes.

1.3.1.3 Explanatory Factors

Drillhole spacing is the first explanatory factor to be analyzed. The DHS and DHD over

the deposit, as well as their distributions are shown in Figure 1.19.
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Figure 1.18: Plan view of the precision (15%) of the simulated grade for weekly and

monthly production volumes in a slice of the deposit. The dots represent the drillholes.
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Figure 1.19: Plan view of the DHS and DHS over the deposit (at the top) and their

distributions (at the bottom).
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Conditional local mean and local standard deviation are calculated considering all SMUs
inside a production volume and their simulated grade over all realizations. These two
explanatory factors are important to explain the proportional effect, or the dependency of
the variance on the mean grade. The conditional local mean is plotted against the standard
deviation in Figure 1.20. This confounding factor is more significant for skewed

distributions of a variable.

A slice of the deposit showing the conditional local factors is plotted in Figure 1.21 for a
weekly production. The local standard deviation is also associated to transition zones.
These zones are characterized by high grade deviation, usually located between two
domains (different mineralization zones or lithology) or two locations with different grade

level inside the same domain.
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Figure 1.20: Conditional proportional effect with non parametric fitting regression. The

dots represent the SMUSs, colored by their precision (15%).

Entropy is high in the contact of different domains. If mineralization is associated to a
specific rock type, zones with high entropy will affect the grade estimates, hence uncertainty

will be high. A slice of the geological model is plotted with the entropy in Figure 1.22
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Figure 1.21: Plan view of the local mean and local standard deviation in a slice of the
deposit - weekly production scale.
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Figure 1.22: Plan view of the geological model and entropy (weekly production scale) in

a slice of the deposit.

The explanatory factors and how to model them are better explained in Chapter 3.
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1.3.1.4 Explanatory Models

When analyzing the relationship between predictor (factors) and response (uncertainty)
variables, scatterplots reveal some information. Plotting the local mean against precision
(uncertainty) can help understand the local variability due to that factor, for instance. The
quantification of these relationships is given by statistical models that captures the portion
of the variance due to each explanatory factor. A more detailed explanation of these
models is given in Chapter 3. As example of an explanatory model, Alternating
Conditional Expectations (ACE) is used to fit predictor and response variables in a non
parametric manner, being able to capture underlying relations that simple statistical
regression (linear or quadratic) cannot (Breiman and Friedman, 1985). The variance of the
transformed predictor variable in this method can be used to quantify the impact of that
factor on the total variability. In Figure 1.23 the drillhole spacing is plotted against its
tranformation (on the left plot); and the regression plot of the transformed response versus
the sum of the transformed ACE predictor values is shown on the right. Explanatory
models must be done for each production volume, since scale changes the impact of each

factor on uncertainty.
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Figure 1.23: Left: Drillhole spacing predictor versus its ACE transform. Right:
Regression accuracy for the transformed response (Y-axis) versus the ACE predictor

values (X-axis).
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1.3.1.5 Uncertainty Versus DHS Curves

When DHS is plotted against uncertainty, without any consideration to stationary domains
(the different lithologies), a smooth expected uncertainty curve can be calculated. The
expected uncertainty curve is calculated dividing the drillhole spacing into small intervals
in which the measure of uncertainty is averaged. Since different domains may be sampled
with different spacing and have unique geological features, it is not expected that
uncertainty versus DHS curves be the same for all rock types in the model. The
uncertainty versus DHS curves for the whole deposit and for RT 1 are shown in
Figure 1.24.

_PHSxUncenginty —‘Entire‘ dep0§it ‘ DHSngcenaipty—KTl ‘

1.0, 1.0,
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Figure 1.24: Uncertainty versus DHS curves for the entire deposit (left) and for RT 1
(right) based on a weekly production scale. Each dot represents a SMU, colored by its
expected grade. The expected uncertainty curve as function of the DHS is shown as the

continuous line.

The influence of the scale on uncertainty versus DHS curves is shown in Figure 1.25 for the
entire deposit. The uncertainty curve goes up for larger scales (towards more precision).

The DHS to achieve a same level of uncertainty is greater for larger production volumes.
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Figure 1.25: Uncertainty versus DHS curves for weekly and monthly production scales

for the entire deposit.

1.3.1.6 Zoning

Zoning areas of interested is an alternative when drilling the entire domain or the entire
deposit with regularly spaced drillholes is prohibitive (economic and technical factors).
Expertise and knowledge of the deposit should be considered when choosing these zones.
In this example, the drillholes are vertical. New drillholes will be likely vertical, therefore
possible considerations of zoning this deposit may consider uncertainty and economic

factors calculated over the vertical extent of the deposit.

The predominant rock type and the expected grade were calculated considering all SMUs
vertically adjacent in the grid. Doing such calculations allows a reduction of the 3D grid to

a 2D model and the information is summarized in plan view, see Figure 1.26.

Based on the expected grade, two high grade zones were defined, shown in Figure 1.27.
Zone 1 has RT 1 as the predominant category. For any analysis, the uncertainty versus
DHS curve for this RT is considered. Although RT 1 is the predominant RT in Zone 2, the

presence of RT 2 will interfere in the DHS analysis. A higher entropy and local standard
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Figure 1.26: Expected grade and predominant category calculated vertically in the grid

for a weekly production volume.

deviation in this zone due the contact between the two domains and different grade estimates

are expected.
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Figure 1.27: Zones of interest based on the expected grade - weekly production volume.

The uncertainty versus DHS spacing curves for weekly and monthly production scales for
RT 1 are shown in Figure 1.28. Only confidence intervals greater than 50% and DHS smaller

than 200 m were plotted to improve visualization. By the simplest analysis of these curves,
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in Zone 1, the DHS required to classify SMUs as measured with a confidence interval of
80% is based on the uncertainty curve calculated within a weekly production scale, whereas
the spacing to classify a SMU as indicated is given by the monthly curve. For measured
and indicated, the DHS are approximately 50 meters and 65 meters respectively. These
DHS can be used in Zone 2 as well, since the predominant RT is also RT 1. However,

the influence of the explanatory factors in this zone should be analyzed closer in order to

support a proper DHS.
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Figure 1.28: DHS required for measured and indicated classifications in zone 1 for
a confidence interval of 80%. The SMUs are plotted based on a monthly volume

uncertainty and colored by the expected grade.

1.4 Uncertainty Versus Data Spacing Curves

The shape of uncertainty curves depend on the measure of uncertainty plotted, Figure 1.29.
When precision is plotted against DHS, the uncertainty curve goes down for large spacing.

When the standard deviation of the simulated variable is plotted, the uncertainty curve goes
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up, but the concept remains, there is more variability in regions of large DHS.
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Figure 1.29: Uncertainty and DHS curves for two different measures of uncertainty,

precision (on the left) and standard deviation (on the right).

Uncertainty and DHS plots are analyzed in terms of the expected uncertainty curve.
Consider the same plot from the example given in the previous section, shown in
Figure 1.30. For a given level of uncertainty the DHS is known and vise versa. The
expected uncertainty curve is calculated averaging the uncertainty of all SMUs in a small
interval of DHS. Therefore, for a given DHS, the uncertainty curve represents the

expected value, there will be some SMUs and production volumes less and more certain.

All SMUs that are above the expected uncertainty curve are more certain (when considering
precision), whereas all SMUs below it are uncertain, Figure 1.31. A closer look at these

SMUs and their spatial location may reveal more about uncertainty in the model.

Increasing the scale of production will decrease uncertainty and may change the shape of
the expected uncertainty curve, see Figure 1.32. When different production volumes are
considered, for a given level of uncertainty, the DHS associated to it increases with the
volume. When increasing scale, it is expected that the uncertainty curve goes up or down

in the plots, that depends on the measure of uncertainty.
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Figure 1.31: Reading information from the plot; more certain SMUs are above the curve,

and less certain SMUSs are below it.
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Figure 1.32: Production scale influence on uncertainty curve; for a given uncertainty

level, a larger spacing is associated to a larger volume.

1.4.1 Re-Sampling Approach

In some cases of irregular drillhole spacing, there may be no closely drilled regions of the
deposit. In such cases, re-sampling a simulated model and re-simulation can be used to add

more information in uncertainty versus DHS curves.

Consider the drillhole configuration as shown in Figure 1.33. The actual data configuration
is used to assess uncertainty in a simulation approach, and DHS is calculated using the

original set of drillholes.

The DHS versus uncertainty for this drillhole configuration is shown in Figure 1.34. The
standard deviation of simulated values is the measure of uncertainty. There is no
information for standard deviation less than 0.2 units and drillhole spacing less than 40
units. One may try to extrapolate the expected uncertainty curve to small spacing, but this

prediction would be very uncertain.
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Figure 1.33: Drillhole spacing (on the right) and standard deviation (on the left) of the

simulated values prior to resampling.
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Figure 1.34: Uncertainty versus DHS curve prior to resampling. No information is

available in small DHS.
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Support with Simulated Data

An alternative to fill the missing information is to re-sample a realization as the unknown
truth and re-simulate the attribute of interest. Consider sampling the model to create new
artificial drillholes in any spacing required to predict a better expected uncertainty curve.
From the original drillhole configuration, new drillholes are created and a new configuration

is obtained. The updated DHS and uncertainty plots are shown in Figure 1.35.
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Figure 1.35: DHS and standard deviation of the simulated values after resampling (with

new artificial drillholes).

The overall uncertainty decreases with more drillholes, and now there is information to
predict a reliable expected uncertainty curve for DHS less than 40 units. All SMUs inside
the squared area in Figure 1.36 were obtained from the simulation with the new drillhole
data. Of course, we do not really have more drillholes at close spacing; these values are just

to understand uncertainty versus drillhole spacing.
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Figure 1.36: Uncertainty versus DHS curve after resampling. SMUSs inside the squared

area were obtained from the simulation with the new drillhole data.

1.5 Thesis Outline

Chapter 2 introduces and discusses the concepts of the Learning Curve and the value of
collecting more data in terms of the rate of information gained. The regimes of uncertainty
are important when targeting the right interval of DHS for a level of uncertainty. Chapter
3 reviews the various factors affecting uncertainty (mitigating factors) and discusses the
use and application of different statistical models to quantify the influence of the
explanatory factors on local variability. The case study is divided into Chapter 4 and
Chapter 5. Chapter 4 presents the full workflow for uncertainty modelling. Categorical
and continuous variables are modelled with modern multivariate techniques. Chapter 5
contains the data spacing and uncertainty study. Conclusion, remarks and advice are given
in Chapter 6. The new programs developed during the time of this work are present in

Appendix A.

40



Chapter 2: Learning Curve

The understanding of a mineral deposit is determined by the available data. In general, the
more data that is available, the more that is known about a deposit. Drilling is expensive and
there are additional safety and environmental costs. The search for the minimum amount
of drilling that leads to an acceptable level of uncertainty is important. The relationship
between uncertainty and data spacing depends on the variogram and many other factors.

Understanding this relationship would help support decisions regarding further drilling.

A methodology based on kriging is developed to calculate the uncertainty as a function of
data spacing and the variogram. The rate at which the variability is resolved with additional
data is given by the first derivative of this function. This rate of information gained depends
on the variogram model such as the spherical, Gaussian and exponential, and the scale
considered for uncertainty reporting. There is less uncertainty at a block scale than a point

scale.

The Learning Curve (LC) will show different values for different data spacing intervals.
The rate of information gained is explained by the Learning Curve. An example based on

the example of Section 1.3.1 is given to provide a better understanding of the concept.

2.1 Introduction

Data spacing is a geometric factor that influences uncertainty. Although data spacing units
are easily understandable, commonly expressed in feet or meters; dimensionless units are
a more general way to express data spacing. A practical dimensionless measure is the data

spacing divided by the variogram range.

The variogram represents the spatial variability of a random variable and controls how

uncertainty decreases with increasing data density (Deutsch and Beardow, 1999). The
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variogram is used to calculate the uncertainty. Different methodologies such as kriging
and simulation can be used to assess the uncertainty versus data spacing for a given

variogram.

Consider the uncertainty versus data spacing plot from Figure 1.29, also shown below in
Figure 2.1. For the example, one unconditional realization over a domain of 512 m x 512
m is generated and used as the true distribution of a random variable. This realization is
sampled with grids of different average data spacing. Each of these samples is used as
conditioning data for 100 realizations generated by SGS. The variogram is given by two
nested isotropic spherical structures, with no nugget, 30 and 70 percent contributions and
ranges of 16 and 64 m. The realizations are up-scaled to blocks of 4 m x 4 m and post-
processed for uncertainty assessment. The probability of the grade to be within 10% of the

mean is the measure of uncertainty.

The continuous line represents the conditional mean of uncertainty given the data spacing;
referred to the expected uncertainty curve (EUC). The relationship between data spacing
and uncertainty is clearly non-linear, but it is evident that uncertainty is higher for greater
data spacing. Uncertainty is low for small data spacing and increases until a stable value at

a spacing close to the maximum variogram range.

The rate that the uncertainty increases is higher at small data spacing. Consider an interval
of values for the data spacing (.5), from a spacing Sy to another S; units. This interval
is given by AS. Consider the change in the uncertainty (U) for this interval, say AU =
U1(S1) - Up(Sp) units. The rate (R) of uncertainty change for this interval is calculated by

Equation 2.1.

U -Uy, AU
TS5 -S AS

R(S) 2.1)

In general, the rate of information gain can be written as the first derivative of the expected

uncertainty in relation to data spacing:
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Figure 2.1: Rate of uncertainty changing in a uncertainty versus DHS curve.

EA{U | dataspacing}) — dU
d(dataspacing) ~dS

R(S) = il (2.2)
Consider two regions: (1) data spacing decreasing from S; = 30 m to Sz = 10 m and (2)
data spacing decreasing from S3 =50 m to S, =30 m. The expected conditional uncertainty
given these data spacing are U; = 38%, Us = 68%, Us = 30% and U, = 38%. The variation
of uncertainty is then AU;_; = 68 - 38 = 30% and AU;_3 = 38 - 30 = 8%. The rate of
uncertainty changing for an interval of data spacing is then calculated by Equation 2.1, thus

R12 =1.5 %/m and R34 =04 %/m.

The rate that the uncertainty changes for data spacing varying from 30 to 10 m is about four
times higher than that for data spacing from 50 to 30 m. A greater understanding of this

rate of learning would inform decisions related to data spacing.
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2.2 Background

The commonly used variogram models are the spherical, Gaussian and exponential given
in Equations 2.3, 2.4 and 2.5 (Rossi and Deutsch, 2014). As the variogram models have
different continuity or shape, it is expected that uncertainty will be resolved at different

rates for each model.

1.5(h/a) — 0.5(h/a)?, ifh <a

Sph(h) = (2.3)
1, otherwise
Gaus(h) = 1 — exp(—3(h/a)?) (2.4)
Exp(h) =1 — exp(—3h/a) (2.5)
where:
a - range;
h - lag distance;

For a fixed variogram, there will be less uncertainty when the data spacing is small
compared to the variogram range. For a continuous variogram, small changes in data
spacing may not impact the uncertainty, since data is more redundant. Moreover, there
may be data spacing values that do not affect uncertainty. The expected relationship
between uncertainty and data spacing is given by Figure 2.2. Note the similarity with

Figure 2.1.

The EUC of Figure 2.2 can be divided in three regions. Region 3 is related to the early
stages of exploration, when data is sparse and uncertainty is high. Region 2 is the region

of interest, for a small change in data spacing value, a large amount of the variability is
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Figure 2.2: Expected relationship between uncertainty and data spacing for a fixed

variogram. The regions of uncertainty changing for an interval of DHS are shown.

resolved. Region 1 is that region for small data spacing values, where uncertainty is very

low since much information is already available.

The rate that the uncertainty changes for different data spacing is presented in Figure 2.3.
This curve is the first derivative of the expected uncertainty curve of Figure 2.2. How
variability reduces for an interval of data spacing is presented in three "regimes" based
on the three data spacing regions. The arrows indicate the direction of data collection.

Uncertainty is reduced when data is collected; the rate of reduction is what changes.

Data is sparse in Regime 3 and every extra drillhole will have a small contribution reducing
the uncertainty. The highest rate that the uncertainty is resolved is in Regime 2. This is
an important regime to help decide the data spacing that will lead to an acceptable level
of uncertainty. The last regime (Regime 1) is where additional data does not influence the
uncertainty significantly, and the decision of stopping data collection may be considered.

Extra drillholes in this regime may not be worth the cost.
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Figure 2.3: Expected derivative of the uncertainty as function of data spacing. The
rate of information gained (the regimes) depends on the uncertainty regions defined in

Figure 2.2.

2.3 Calculation of the Learning Curve

The Learning Curve calculated below is based on the kriging variance and relies on the
standard stationarity assumption. The variogram is kept fixed and only the data spacing
changes. For a given configuration of data in which drillholes are regulary spaced, the
averaged kriging variance is calculated. The 1D example is the simplest case, see
Figure 2.4. The kriging variance and the uncertainty as a function of data spacing are

given by Equation 2.6 and Equation 2.7 respectively.

cth) C(d-h) ‘
® = | | >
h

Figure 2.4: Scheme for data spacing (d) and estimation location for kriging-based

methodology in 1D case.
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oi=1-M[1-C(h)] =M1 —-C(d—h)] for he€l0,d/2; d<a; a=1 (2.6)

d/2
U(d) = / op dh 2.7)
0
where:
A - kriging weight;
a - maximum standardized range;
C(h) - covariance at lag h;
d - distance (spacing);
h - lag distance;

The model in 1D has no practical application. Moreover, the equations for a 2D case must
respect geometric relationship between estimation and data locations. These equations are
too complex and present some instability issues that avoid their direct use. It is necessary
then, to work with krigring approach within a grid and discretized domain. In Figure 2.5,
the area given by the large square is of interest, half the size of the data spacing (d), and
discretized in n x n estimation points or blocks, regularly spaced. In this case, a more

general equation and its practical form are given in Equations 2.8 and 2.9.

d d
2 2

1
o(d) = — of dx dy (2.8)
TPy

) =533k, 29)
i

These equations are used to calculate the EUC for a fixed variogram model with different
data spacing configurations. For each model of data spacing, the kriging variance is

calculated for all points or blocks and the average is calculated. Calculating the expected
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Figure 2.5: Scheme for data spacing (d) and estimation location for kriging-based

methodology in 2D case. Data location is shown as dots.

uncertainty for different spacings using the same variogram model allows calculating and

plotting the EUC. The first derivative of this curve is the Learning Curve.

2.4 Interpretation of the Learning Curve

The kriging-based methodology was used to plot the Learning Curve in different cases for
point and block scales. The regions and regimes previously introduced are seen in these
plots. The process to better know the deposit is continuous. Interpretation of the results
should be in terms of resolving a scale of variability for different intervals of data spacing.
For the example given in Section 2.1, the number of new drillholes required to change the
data spacing from 60 to 40 m is much less than what is required to change the data spacing
from 30 to 10 m, see Figure 2.6. Since an economic analysis is not given by the LC, a

trade-off study is necessary to evaluate the cost of collecting more data.

2.4.1 Learning Curve Conceptual Plot

The uncertainty curve and the Learning Curve are better understood when plotted together
and against dimensionless data spacing; such as the ratio of data spacing over the

variogram range. In order to better understanding the building of the LC by the
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Figure 2.6: Relationship between number of drillholes and regular spacing for a 512 m x

512 m domain.

kriging-based methodology, consider the first of 3 plots shown in Figure 2.7. The blue
line represents the EUC, whereas the red line is its first derivative, the LC. Moreover,
consider the conceptual plots of Figures 2.2 and 2.3. The abscissa in all plots is switched;
the dimensionless data spacing is plotted from large to small values, the direction of data

collection.

Consider an initial large data spacing, say 2.5 times the variogram range, as the starting
point. The measure of uncertainty is given by the average kriging variance for that spatial
configuration of data widely spaced. Uncertainty at this point is high. Once more data
is added into the model and the data spacing decreases, the average kriging variance (the
blue line) starts to decrease, but at a low rate (the red line). The contribution of extra data

resolving a scale of variability is small.

At a certain point (Figure 2.8), when a minimum quantity of data is already considered, the
contribution of extra data increases considerably. In this regime, the rate of information

gained when changing data spacing is high and variability is resolved faster.

There is a data spacing that is associated to a maximum rate of information, beyond this
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data spacing (the inflection point) the contribution of extra data resolving a scale of
variability decreases. It is important to note that uncertainty is reducing when data spacing
changes throughout the EUC, however the rate that variability is resolved depends on
certain intervals of data spacing. This rate of changing is captured by the LC. The EUC
and the LC shown in Figure 2.9 was calculated using an isotropic Gaussian variogram
with no nugget. The three regions of data spacing and regimes of uncertainty are shown as

well.
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Figure 2.9: Step 3 in the Learning Curve; small spacing region and diminishing returns

regime.

2.4.2 Point-Scale

The EUC and the LC for the spherical, exponential and Gaussian variogram models are
shown in Figure 2.10. The greater continuity of the Gaussian model can be seen in the
EUC for any data spacing when compared to the other models, since uncertainty is lower
throughout the curve when this model is used. The values for the expected uncertainty
and Learning curve for very small data spacing for the Gaussian model are close to but not
equal to zero. The linearity near the origin of the spherical variogram can be seen in the LC

for data spacing smaller than 0.5. The result from the exponential variogram is expected,
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since the variance of this model increases fast for small ranges of correlation. The rate
that this model resolves a scale of variability keeps increasing for smaller data spacing but
does not have a maximum value as the other models. The maximum rate that uncertainty is
resolved is reached with data spacing of 0.68 and 0.8 for the spherical and Gaussian model,

respectively.

The Learning Curve shows the Gaussian as the model that faster resolves a scale of
variability for data spacing greater than about 0.6. The exponential is the model that
presents the higher rates below data spacing of 0.5. The regimes of uncertainty are a
function of the variogram model. Each model has an interval of data spacing that resolves

faster and a threshold or inflection point where the rate of information diminishes.

The influence of the nugget effect for the spherical variogram is shown in Figure 2.11.
The nugget effect will increase the global variability, since for any data spacing value the
expected uncertainty will be higher. Only the spherical model is shown; however the same

analysis can be made for the Gaussian and exponential variograms.

2.4.3 Block-Scale

In practice, point-scale uncertainty is less relevant than for block-scale production volumes.
A lower variability will be seen for block models. The expected estimation variance is lower
for blocks since high and low values are averaged out when points are up-scaled to blocks
(Figure 2.12). Despite the changes in the rate of the Learning Curve, the data spacing that
provides a maximum value for the rate, in spherical and Gaussian models, do not change
from points to blocks. The greater change observed is at the exponential model, which now
has a data spacing of 0.17 resolving a maximum of the variability. For large data spacing
regions, the expected uncertainty for the spherical variogram is the highest of all models,
which is different than the point-scale model. However, when the LC is analysed, the shape
of the curves are similar. The regimes defined from the point-scale LC are the same for
the block-scale. The main difference between the two models is the greatest potential to

resolve a scale of variability when a larger block scale is considered.
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Figure 2.10: Expected uncertainty curve and the Learning Curve for a given variogram

model at point scale.
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the spherical variogram model.

For fixed variogram models, when the block size increases, the expected uncertainty
decreases. Figure 2.13 shows the EUC and the LC for three different block sizes for the
spherical and Gaussian variograms. Larger blocks will average out more low and high

values, leading them to resolve faster a scale of variability.

The influence of the nugget effect in larger scale is shown in Figure 2.14 for a block size
equals to 20% of the variogram range. For data spacing greater than about 0.6, the expected
uncertainty decreases proportional to the nugget and block size. However, for small data
spacing, a higher nugget will result in higher expected uncertainty. The contribution of
the nugget effect on the variability becomes more important than the condition data for
small spacing. Although the EUC changes for different intervals of data spacing, the LC
will show little change, and the nugget effect will directly affect how the variability can be
resolved. Increasing the nugget will lead to less capacity to resolve uncertainty, regardless

of the block size or variogram model.
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2.5 Example

In pratice, the Learning Curve is calculated taking the first derivative of the EUC. The
methodology presented above is based on kriging under a strong assumption of
stationarity. For real data, the EUC is calculated from one of the methodologies discussed
in the first chapter (Section 1). The theory developed to calculate the EUC and LC for a
fixed variogram is academic. The practical calculation should be done on a case-by-case

basis.

Consider the uncertainty versus DHS plot for a weekly production scale for RT1 in the
example given in Section 1.3.1. Figure 2.15 shows the EUC in blue and the LC in red for
this example. The LC is calculated taking the first derivative of the expected uncertainty
curve. Since there is no precise or parametric mathematical function of uncertainty given
the drillhole spacing for this case, the derivative is calculated for very small intervals of
uncertainty and DHS along the EUC (see Equation 2.1). This is the reason of the noisy LC.

Different numerical differentiation schemes could be considered.

The contribution of extra data reducing DHS from 350 m to 200 m is minimal. Uncertainty
starts to decrease at a faster rate in the DHS interval of 200 m and 140 m. The interval of
DHS between 140 m to 90 m shows little capacity to resolve a scale of variability, note the
almost flat EUC in this interval. The highest rate of information gained is given by the DHS
interval of 90 m and 50 m. Beyond this threshold the contribution of extra data diminishes,

although uncertainty continues to decrease.

The Learning Curve is applied to a real data in the case study of Chapter 5.
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Figure 2.15: Expected uncertainty curve (blue) and the Learning Curve (red) calculated

from synthetic example of Section 1.3.1.

2.6 Conclusion and Limitations

The Learning Curve is an interesting concept to help understand the influence of data
spacing and the variogram on uncertainty for point and block scales. Expected and

intuitive analyses are observed with synthetic variogram models.

The Gaussian variogram, because it provides the most continuous model, presents a
higher capacity to resolve uncertainty. For the spherical and Gaussian models, the data
spacing related to the maximum rate dU/dS, is the same for points and blocks. The
exponential variogram presents a peak only when blocks are considered, and its capacity
to resolve uncertainty is higher than the other models only in the regime of small data

spacing. Uncertainty is also resolved faster for blocks rather than points.

The Gaussian variogram is a model generally used for continuous attributes, such as
thickness and surfaces. The nugget effect is analysed only for the spherical model. Results
show that the nugget decreases the expected block estimation variance for data spacing

larger than 60% of the variogram range. For values smaller than that, a higher nugget will

59



increase the expected uncertainty, regardless of the block size.

For fixed variogram models increasing the block size results in lower uncertainty. This is
more evident for the spherical and exponential variograms. Moreover, large blocks will
resolve uncertainty faster than small blocks. The data spacing associated with a maximum

rate remains the same, regardless of the block size.

The Learning Curve relies on a strong assumption of stationarity. The data configuration is
perfectly spaced in a regular grid and the variogram is considered frozen over the domain.
The application of the LC in real cases should be done over the EUC calculated for that
particular deposit and drillhole spacing configuration. The calculation of the EUC for real
deposits can be done by the methodology discussed in Section 1.3. The drillhole spacing
does not need to be regular, the variogram can be made local and other parameter uncertainty
can be considered when assessing uncertainty. The contribution of the LC in understanding
drillhole spacing versus uncertainty is given by the analysis of the intervals of DHS that
resolves faster a scale of variability (the regimes of uncertainty). This is done by taking the

first derivative of the EUC.
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Chapter 3: Uncertainty and Explanatory

Factors

Explanatory factors are known factors that explain uncertainty. Besides data spacing, the
most common explanatory factors are the local conditional mean, local conditional
variance and entropy calculated across rock type proportions. The impact of these factors
on uncertainty can be measured by different statistical regression models. Three
explanatory models are presented: (1) simple and quadratic regression, (2) alternating
conditional expectations and (3) stepwise removal of the factors. The capacity of these
models to explain the total variability varies according to the regression model and the
data. The order of importance of the explanatory factors depends on the geological

domains.

Different measures of uncertainty, the explanatory models and the confounding factors are

discussed in this chapter.

3.1 Review of Geostatistical Workflow for Uncertainty

Two methodologies to determine uncertainty versus drillhole spacing are presented. The
methodology discussed in Section 1.3 can be applied to any deposit in which drillholes are
not regularly spaced. When the deposit is drilled with different spacing, uncertainty can be
related to a great range of drillhole spacing values and the expected uncertainty curve can be
calculated with confidence. The plot of uncertainty versus DHS in this case is characterized

by a cloud of points. There is a level of uncertainty for any DHS.

This methodology follows the steps below (as presented in Section 1.3):

1. Simulate multiple realizations to summarize uncertainty;
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2. Average up the high resolution model to a large scale;
3. Assess uncertainty at the production volume scale;
4. Model and understand the influence of factors on local variability;

5. Plot uncertainty versus DHS/DHS curves;

A regular or quasi regular spacing would provide uncertainty for a single DHS value.
Determining uncertainty at different spacing is achieved by sampling the model at
different regular or random spacing to assess uncertainty for other drilling configurations.
In relation to the previous case, two steps are added into the workflow after simulating the
truth: (1) sampling the simulated truth at different regular/non-regular spacing and (2)
generating a new true model conditional to the new sampled data. This methodology is
discussed with an example in Section 3.3. The common steps of the uncertainty

assessment workflow are discussed below.

3.1.1 Simulate the Truth

Realizations of the spatial distribution of a random variable z(u),u € D are generated by
SGS for a number K of realizations, {zk(u), ue D k=1,.., K}. A random variable is
a function that associates real number (possible outcomes of an experiment) to each
element in the sample space, assigning probabilities to the possible values (Ross, 2010;
Walpole et al., 2012). These realizations are considered equi-probable, honouring the data,
the data distribution and the variogram (Goovaerts, 1997). Measures of uncertainty are
calculated from the different possible values of the random variable from a set of
realizations. The histogram and variogram are reproduced within statistical fluctuations

(Journel and Huijbregts, 1978).

When necessary, a simulated model can be sampled at a specified spacing. The data are

then used to generate a new set of realizations.

62



3.1.2 Block Average

Journel and Huijbregts (1978) suggest simulating at fine resolution point scale, then
averaging the simulated values up to a relevant scale of production such as the SMU. It is

common practice to average 9 or more simulated points to compose a SMU.

The SMU value Z; is calculated by the arithmetic average of the simulated nodes n,
within the volume v(u), if the random variable z(u) scales arithmetically, see Equation
3.1 (Journel and Huijbregts, 1978). Different measures of uncertainty are calculated from

the distribution of the K possible SMU values {Z;(u),u € D,k =1,..., K}.

1 1 ,
Zr(u) = m/( )zk(u)du o~ sz(ui) i=1,..,n, (3.1)

n
V=1

3.1.3 Common Measures of Uncertainty

The uncertainty in a location u depends on the data distribution, the variogram used for
simulation and on the volume v. The probability distribution of all possible values (all
realizations K') for a SMU characterizes the uncertainty. A single measure of uncertainty
U, for a realization is calculated as the average of the SMUs uncertainty at all location
n. (Equation 3.2). For a given data set, a single measure of uncertainty U is calculated

averaging the uncertainty of all realizations K, Equation 3.3 (Wilde, 2010).

T = ni LAY (3.2)
1 K
UT=-SNT, (3.3)
K; F

Three measures of uncertainty are the most useful for geostatistics: the standard deviation,

difference between percentiles and precision (Goovaerts, 1997). The data set previously
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introduced in Section 1.4.1 is used as an example.

3.1.3.1 Standard Deviation

Given a random variable X with expected value of y, the standard deviation o is calculated

by Equation 3.4.

o= {E[(Xx -} (3.4)

The standard deviation is a measure of the spread of a distribution around its mean; it is the
square root of the variance. The standard deviation has the same units as the variable. The
uncertainty versus DHS curve when the standard deviation is used as measure of uncertainty

is shown in Figure 3.1.

The coefficient of variation (CV) can also be used (see Figure 3.2). This coefficient is
calculated dividing the standard deviation by the mean of the distribution, CV = ¢/pu. In

general, the standard deviation increases when data spacing increases.
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Figure 3.1: Uncertainty versus drillhole spacing curve when the standard deviation is the
measure of uncertainty. Plan view of the uncertainty on the left and uncertainty versus

DHS curve on the right.
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Figure 3.2: Uncertainty versus drillhole spacing curve when the coefficient of variation
is the measure of uncertainty. Plan view of the uncertainty on the left and uncertainty

versus DHS curve on the right.

3.1.3.2 Difference Between Percentiles

Montgomery and Runger (2002) define the percentile as the set of values that divide the
sample into 100 equal parts; the pth percentile is the data value (X)) such that p% of the
observations are at or below this value. Difference between percentiles is also a measure of
the spread of a distribution. The percentile values X, are calculated based on the cumulative

distribution function (CDF), as shown in Figure 3.3.

The difference between two symmetric percentiles such as P90 and P10, A, = X9 — X1,
is used as a measure of uncertainty. The difference between percentiles have the same unit
of the variable. It is also common to standardize this difference by the P50, for a unitless

measure of uncertainty, as shown in Equation 3.5.

_ X0.9 - XO.l

A
g Xos

(3.5)

The DHS and uncertainty relationship when the standardized difference between percentiles
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is used as the measured of uncertainty is shown in Figure 3.4. This difference is larger when

the data spacing increases.
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Figure 3.4: Uncertainty versus drillhole spacing curve when the standardized difference
between percentiles is the measure of uncertainty. Plan view of the uncertainty on the left

and uncertainty versus DHS curve on the right.
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3.1.3.3 Precision

Precision is another measure of uncertainty. Precision calculates how many times the value
of the random variable falls within an interval of the distribution mean. Given a constant
value 7 (the probability), the distance h from the mean p(u) is calculated by the product
h = r x p(u). Thus, a precision of 20% measures the probability of the simulated SMU
grade values z(u) to be within £20% of the mean. Precision is calculated counting the

number of realizations that the simulated SMU value fell within that range of values.

Let Cy(u; h) be the indicator defined by Equation 3.6. The precision at a location u is then

calculated averaging C(u; h) for all realizations % (Equation 3.7).

1, ifpu(a)—h <z(u), <p(a)+h
Cu(u:h) = () z(u)y, < p(u) (3.6)
0, otherwise

=

p(ush) = = 5" Cufush) 6.7

k=1

In Figure 3.5, the probability of the SMU grade values to be within 15% of the mean is
plotted against DHS. Precision and DHS are inversely related. Simulated SMU grade values

are more precise when DHS decreases.
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3.2 Common Confounding Factors

Common confounding factors are the proportional effect, scale and stationarity. These
factors are briefly discussed in this section. Less common factors such as the number of
realizations, parameter uncertainty, misclassification and data quality also disturb the
relationship between uncertainty and data spacing (Wilde, 2010). Some of these factors
affect uncertainty in a non predictable way (e.g. stationarity); some are predictable (e.g.

proportional effect).

3.2.1 Proportional Effect

The proportional effect occurs when a random variable has a skewed distribution (Journel
and Huijbregts, 1978; Pinto and Deutsch, 2014; Wilde, 2010). Positively skewed
distributions will generaly result in more uncertainty in high estimates areas, whereas
negatively skewed histograms will result in high uncertainty in low estimates areas (Pinto,

2015).
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The proportional effect can be seen directly from the model, comparing the expected value
and the standard deviation as shown in Figure 3.6. High standard deviation is seen in high
mean zones. This data set has a positively skewed distribution (the histogram is not shown).
Another data set with positively skewed histogram is used to demonstrate the proportional

effect, in Figure 3.7.
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Figure 3.6: High deviated grade areas are associated with high local grade mean -
conditional proportional effect. Expected mean (grade) on the left and standard deviation

on the right.

The proportional effect is also related to transition zones and spatial trends, it may also
indicate a lack of spatial homogeneity (Rossi and Deutsch, 2014). An example of transition
zone is given in Figure 3.8. High grade and low grade zones are less uncertain, the highest
variability is seen at the borders and in the zone located between the high (orange and red)
grade and low (blue) grade regions, compare these regions in the figure. This behavior is
typical of bimodal histograms, see Figure 3.9 for this data distribution and scatterplot. In
this case the proportional effect is not associated to a high variability in high mean regions,

but to the transition zone.

In some cases, high value areas are more certain, the opposite of the proportional effect. The

uncertainty in these areas is closely related to the spread of the local distribution and the
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Figure 3.9: Conditional proportional effect for a bimodal distribution. The histogram is

shown on the left and the scatterplot on the right.

proportion of high values around the local mean. A generalized graphical representation of
the proportional effect by histogram is given in Figure 3.10 (Pinto and Deutsch, 2014). The
proportional effect is mitigated when considering larger volumes because the distributions

become more symmetric.

3.2.2 Scale

Pyrcz and Deutsch (2014) discuss three main considerations when choosing the grid size:
a model should be built for a specific project goal, the grid size must be chosen to resolve
important geological features (faults, bounds, stratigraphy) and the grid size can be scaled
up to a meaningful larger scale. Journel and Huijbregts (1978) proposed a block size from
1/3 to 1/2 of the drillhole spacing to avoid artificial smoothing for very small blocks and not
loosing information from data for very large blocks. The choice of the SMU size is based
on production scale, mining operation and engineering factors whereas larger production
scale size is considered for long-term planning (Rossi and Deutsch, 2014). The choice of

scale is also dependent on computational efficiency and level of details that can be storage

(Pyrcz and Deutsch, 2014).
When increasing scale, high and low values are averaged out. The effect of scale is
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Figure 3.10: A generalization of expected conditional proportional effect scatterplots
for some typical histograms. The positevely skewed histogram is shown in the upper left
corner, the negatively skewed histogram is in the center left and the bimodal histogram
is the bottom left graph. Their expected conditional proportional effect are shown in the

graphs to the right.
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demonstrated by considering uncertainty, the precision (15%), in three different
production scales (Figure 3.11). The effect of scale is visually evident in the colourmaps.
The change in the uncertainty distributions is seen at the histograms, as the average of the

distributions increases for larger scales.

A clear representation of the effect of scale on uncertainty is shown by the EUC for the
three production scale in Figure 3.12. For any DHS the SMU scale is the less certain, as

the scale increases the uncertainty decreases.

3.2.3 Stationarity in the Variogram

This decision regards which data should be pooled together for further statistical analysis,
since all sample statistics such as the histogram, and geostatistical tools such as the
variogram, refer to a population and not to any sample in particular (Pyrcz and Deutsch,
2014). Data is usually grouped together by geological domains (facies, rock type) in
which important properties are said to be constant or show little spatial variation over that

domain. The decision of stationarity affects uncertainty.

The variogram is commonly assumed constant, although spatial continuity may change
locally in a domain. The variogram or covariance function, measure the spatial correlation
of samples spaced by a distance h, said lag distance. The correlation decreases for samples
apart until the variogram reaches the sill, at this point the correlation is zero and samples are
not linearly correlated. The variogram depends on the model decision of stationarity, the
mean and variance are considered constant and independent of location (Rossi and Deutsch,

2014).

Despite the decision of stationarity, the variogram may change locally, in zones of more or
less continuity inside a domain. Uncertainty is dependent on the continuity; usually
uncertainty is higher in less continuity areas and lower in high continuity areas. The
influence of the variogram in uncertainty versus data spacing curves was previously

discussed in Chapter 2. Another example is given to show how continuity affects
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Figure 3.11: The effect of scale on uncertainty. Three different production scale and their

uncertainty distribution on the left and plan view of the uncertainty on the right.
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Figure 3.12: EUC for three different production scale. The yearly production scale

uncertainty curve is more certain for any DHS.

uncertainty.

The data set of Section 3.1.3, is used in this example. The standard deviation (Figure 3.6)
of the simulated variable was calculated for three different variogram models: spherical
with no nugget effect, one nested structure and ranges of 150m, 250m and 300m, see
Figure 3.13. The short range variogram results in the greatest uncertainty for any DHS.
Uncertainty decreases as continuity increases. Wilde (2010) demonstrated that the
distribution of uncertainty is more spread for DHS near the variogram range and less
variability in uncertainty is observed for DHS less than and greater than the variogram

range.
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Figure 3.13: The effect of stationarity in the variogram on uncertainty.

3.3 Example - Regular Spacing Methodology

To illustrate this methodology, consider a reference true model (Figure 3.14) generated by
unconditional simulation using one nested structure spherical variogram, with no nugget
effect and a range of 250m. For demonstration purposes, all values are kept in normal

units.

Unknown truth .
0.5 2
o
~ =
= =3
~ [=
o =]
i)
2 &
S
-0.5~

0 -1

0 100 200 300 400 500
Easting (m)

Figure 3.14: Unknown true model that will be sampled with different DHS.

This model is sampled with drillholes regularly spaced in 5 different grids, 8m x 8m, 16m

x 16m, 32m x 32m, 64m x 64m and 128m x 128m, as shown in Figure 3.15 for 32m and
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128m spacing.
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Figure 3.15: Spatial location of the drillholes. 32m spacing on the left and 128m spacing
on the right.

For each one of these data configurations a total of 100 realizations of conditional
simulation are generated. It is expected that the models sampled at a smaller spacing will
better reproduce the true model. The simulated nodes are block averaged and a single
measured of uncertainty is calculated for each model, the average standard deviation of
the simulated values. The capacity to reproduce the truth and the standard deviation for

the models of 32m and 128m spacing are shown in Figure 3.16.

The expected uncertainty versus DHS curve is shown in Figure 3.17. Since the spacing
between drillholes is regular, and a single average measure of uncertainty is calculated per
model, there is no cloud of points in the scatterplot. The EUC is connected linearly between
the calculated points. The original drillholes can be left in the model and the new drillholes

(from sampling) are added to the data distribution prior conditional simulation.
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Figure 3.16: Plan view of the simulated models (on the left) and uncertainty (on the

right) for the drillholes at 32m (on the top) and 128m spacing (on the bottom).
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Figure 3.17: Expected uncertainty for the five different regular drillhole spacing. The
average uncertainty for each drillhole spacing is shown as 'x'. The EUC is shown as the

continuous line.

3.4 Explanatory Models

Uncertainty is mainly explained by factors such as data spacing, local mean, local standard
deviation, and entropy. An explanatory model is a statistical model based on regression,
able to quantify the amount of uncertainty in a response variable that depends on the
explanatory factors (predictor variables). The predictor variables are also referred to as
independent variables affecting the variance in the response variable. Three regression
analysis models are presented: multiple linear regression, ACE and stepwise removal of
the factors. Regression techniques or analysis of the variance (ANOVA) methods are

abudant in the literature and can be used for estimating the relationship among variables.

For the explanatory factors and models explanation, consider the same data set from the

example given in Section 1.3.1.
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3.4.1 Explanatory Factors

Explanatory factors were introduced in Chapter 1, Section 1.3. They are calculated at the
production scale being considered. The most common explanatory factors are explained

below.

3.4.1.1 Drillhole Spacing

Drillhole spacing is an important explanatory factor because drilling is a direct source of
information and all estimates are affected by the data. Estimates are better when close to
drillholes and less precise away from the data. Drillhole spacing and density calculations
were demonstrated in Section 1.2.2. When drillholes are unevenly distributed over an area,

then drillhole spacing must be calculated locally.

Areas with small DHS, or more densely drilled areas, will likely be more certain, therefore

the impact of this factor on uncertainty depends on the local DHS.

3.4.1.2 Conditional Mean and Standard Deviation

Conditional mean iy, (u) and standard deviation 7y (u) are two factor calculated based on
the grade estimates. Given all N SMUs grade estimates z(u) at a production volume V' (u)
over a set of realizations K (foru € D,k =1,..., K; N = n, x K), the conditional mean

and standard deviation are calculated by Equations 3.8 and 3.9 respectively.

o) = 00 ) G
Tl) = | 3 20D lae(w) — 7y (w] (3.9)

These factors define the conditional proportional effect (Section 3.2.1). The influence of
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these two factors on uncertainty depends on the data distribution and the local proportion

of high and low values.

3.4.1.3 Entropy

Entropy captures the uncertainty due to the mixing of rock types. "Entropy can be seen as
a measure of the uniformity in the distribution of the available categories of a variable.
Entropy increases both with the uniformity in the distribution and with the number of
categories" (Darcy and Aigner, 1980). The entropy Hy (u) at a production volume V (u),
u € D, is calculated based on the local rock type proportions p. for all categories C, as

defined in Equation 3.10 (Darcy and Aigner, 1980).

C

Hy(u) == [pe(u) x In(pc(u)] c=1,...C (3.10)

c=1
Entropy is a good measure of uncertainty for deposit where the mineralization is associated
to the rock types and the border of the different rock types are uncertain. Entropy is zero (its
minimum value) when there is only one category, and it is maximum when the proportions

of all categories is the same (Darcy and Aigner, 1980).

3.4.2 Regression Analysis

Regression analysis is the statistical methodology to explore the relationship between two
or more variables when it is known that this relationship exists; it is also used for predicting
values of the response (dependent) variable from the predictors (independent) variables

(Johnson and Wichern, 2007; Walpole et al., 2012).

When the relationship between the response variable (Y) and the predictor variable (X)
is not known theoretically, the choice of the model is based on a scatter diagram and the
regression model is said to be empirical (Montgomery and Runger, 2002). Consider the

hypothetical scatterplot of Figure 3.18. Although no simple curve passes through all the
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points, there is a straight line where points are randomly distributed around it.

YA

Response

v

Predictor X
Figure 3.18: Empirical scatter diagram of the linear regression between response (Y) and

predictor (X) variables. 3, is the intercept and 3; the slope of the line.

It is assumed that the mean of the response variable Y'is related to the predictor values = by
the linear Equation 3.11. The regression coefficients are defined by the intercept 3, and the

slope /3 of the line.

E(Y |2) =B+ b (3.11)

The expected value of Y is a linear function of x, however the actual observed value of y
does not fall exactly on the straight line. A probabilistic way to generalize Equation 3.11 is
to assume that £(Y') is a linear function of z, but for a fixed value of x the actual value of
Y is given by the mean plus a random error ¢, see Equation 3.12 (Montgomery and Runger,

2002).

Y =06+ [+ € (3.12)

The regression coefficients and the random error are estimated from the data. The slope /;
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is interpreted as the change in the mean of Y for a unit change in z; the error € is a random

variable that is assumed to be distributed with E(¢) = 0 and Var(e) = o2.

The calculation of the coefficients is done by the method of Least Squares (Johnson and
Wichern, 2007). The coefficients 3y and (3, are such that minimizes the sum of the squares
of the residuals e. A residual is the error in the fit of the model; calculated by the difference
of the observed y values and the fitted ¢ values; e; = y; — 9;;¢ = 1, ...,n. The method of
the Least Squares is then the minimization of the sum of squares of the errors (SSE) or the

sum of squares of the residuals (SSR), as defined in Equation 3.13:

n

SSE = SSR=> (y;i — ;) (3.13)

i=1

The analysis of the variance in regression is done by the coefficient of determination 122
It measures the proportion of the variability explained by the fitted model; in other words,
it explains the amount of the variance of the response variable that is explained by the
predictors. In a regression model, the unexplained variance is given by the SSE. The portion
of the variance that would ideally be explained is calculated by the total correct sum of

squares (SST), in Equation 3.14.

SST = (yi—)% i=1...n (3.14)

Whereas the term (y; — ¢;)? in Equation 3.13 reveals the variance due to the error of the
fitting (hence the variance of the regression model), the term (y; — 7;)? in Equation 3.14
measures the variance when sampling in a non-regression scenario. The quantity of the
variance explained is given by SST — SSE. The R? is defined in Equation 3.15. If R? = 1,

all residuals are zero and all variability is explained by the predictors.

SSE

2
-1
R SST

(3.15)
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An acceptable value of R? depends on the application of the regression model and
complexity of the data. The coefficient of determination always increases for new
predictors, although the change in its value may not be much. A predictor that does not
change significantly the value of R? should not be considered in the analysis, aiming for a
simpler model is preferred. Due to the natural complexity of geological phenomena and
the simplicity of the regression analysis, it is not expected a high R? when applying linear

regression to geological data.

The adjusted R? is a modification of the R? to account for the number of predictors in the
model. R? will always increase for more predictors, but the adjusted R? increases only if a
new predictor improves the model more than would be expected by chance. The adjusted

R? is always lower than R

3.4.2.1 Simple Linear Regression

The simplest linear regression is given by one response and one predictor (Equation 3.11).
Consider the example case from Section 1.3.1; the conditional local mean is the predictor
variable and the probability of the grade to be within 15% of the mean is the response

variable.

The fitted model is shown in Figure 3.19, with 5, = 0.207 and #; = 0.276. A "unit"
increase in local mean is associated with 0.276 "unit" of the uncertainty and more precise

the grade would be.

If an increase in local mean was associated to an increase in uncertainty (less precision),
then 5, would be negative. Regression models are high bias and low variance models;
under repeated sampling the fitted line will likely stay in the same place (low variance), but
the average of the models will not capture the true relationship (high bias) (James et al.,
2013). A way to check the confidence in regression models is by hypothesis testing. The
null hypothesis is when there is no relationship between predictor and response (5; = 0);
the alternative hypothesis is when there is a relationship and 3 is not equal to zero. The null

hypothesis is rejected if the confidence interval of calculations does not include zero. The
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Figure 3.19: Scatterplot of local mean against uncertainty. Each dot represents a SMU.
The red line is the fitted model.

statistical p-value represents the probability that the coefficient is actually zero. If the 95%
confidence interval does not include zero, then p-value < 0.05 and there is a relationship

between the predictor and response. This is important to define whether linear regression

fits or not the model for that predictor.

The simple regression model of the local mean is summarized in Table 3.1. Using only
local mean as predictor, the model is able to quantify only 19,6% of the variability in the

uncertainty, R = 0.196. The other statistics validate the model.

Table 3.1: Simple linear regression summary for the fitted model.

Coefficient Std. error p-value 95% Confidence interval

Bo 0.2079 0.001 0.000 0.206 ; 0.210
Local mean 0.2766 0.002 0.000 0.272;0.281

Response variable: Uncertainty; B2 = 0.196; Adj. R? =0.196

A higher portion of the total variability is explained when other predictors are added to the

regression model.
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3.4.2.2 Multiple Regression

When the complexity of the uncertainty cannot be explained by a sole predictor, a
multiple regression model is considered for P number of predictors. A predictor can be
discarded when its contribution explained the variability is not significant. A multiple

linear regression is given by Equation 3.16.

E(Y |z, ..,zy) =Y =Bo+ frxy + ... + Bpxp; p=1,...,P (3.16)

The method of least squares can also be used for estimating the coefficients in linear models
that one believes the mean does not fall on a straight line, but on a polynomial equation that

fits better the model, see Equation 3.17 below for the case of a single predictor:

EY |z)=Y =By + Bz + Bor® + ... + Boa” (3.17)

Walpole et al. (2012) explain that a linear model is a model which parameters occur linearly,
regardless of how the independent variables enter the model. In some cases, with proper
transformation, a non-linear function can be expressed as a straight linear; these models are

referred as intrinsically linear (Montgomery and Runger, 2002).

Consider the multiple linear regression with four predictors: local mean, local standard
deviation, entropy and drillhole spacing (see Equation 3.18). The R? is a statistical
measurement from the model and it cannot be splitted between the predictors in a multiple
regression. Although the coefficients i, ..., 5, are good indicators of the importance of
each predictor when explaining uncertainty, the R? cannot be calculated separately. In

these cases, the R? is used to compare different models.

Y = By + Bimean + Bystdv + B3 DHS + Sientropy (3.18)
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The fitted linear regressions for drillhole spacing and local standard deviation are shown
in Figure 3.20. For a comparison between the non-parametric fitting with the expected

uncertainty curve for drillhole spacing and the linear fitting, see Figure 1.24.
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Figure 3.20: The fitted linear regression (red line) for drillhole spacing (on the left) and

local standard deviation (on the right).

The multiple linear regression model summary is shown below in Table 3.2. The model
with multiple predictors explains more of the uncertainty, R* = 0.43, when compare to
the simple linear model, R* = 0.196. This model fits better the uncertainty data than the
previous model. Local standard deviation, DHS and entropy are negatively associated with
uncertainty, whereas local mean is positively associated with uncertainty. The expected
uncertainty can be estimated for any value of the predictors, provided that the values used

are in the range of the data.

From the coefficients analysis, for a given local mean, standard deviation and entropy, a
decrease of 0.0016 m in DHS is associated to an increase of 1% of the precision. The
p — value < 0.05 for all predictors reject the null hypothesis (that there is no correlation

between predictor and response).

The summary of a regression is better visualized in a tornado chart, see Figure 3.21 below
(Zagayevskiy and Deutsch, 2011). The vertical bars are scaled by the standardized

sensitivity coefficient (numbers in blue); bars are yellow for positive coefficient and green
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Table 3.2: Multiple linear regression summary for the fitted model.

Coefficient Std. error p-value 95% Confidence interval

Bo 0.5058 0.002 0.000 0.501;0.510
Local mean 0.2800 0.002 0.000 0.275;0.285
Local stdv -0.3352 0.013 0.000 -0.360;-0.310

DHS -0.0016 0.000 0.000 -0.002 ; -0.002
Entropy -0.0647 0.002 0.000 -0.068 ; -0.061

Response variable: Uncertainty; R? = 0.43; Adj. R? =0.43

for negative. The right side of the bars plots the coefficients with the confidence interval
(95%), accounting for uncertainty (the small box at the end of the bars). The prediction
percentage measures the power of the model to predict a new value. High standardized
coefficients are important for model quality and the capacity of explain the total
variability (Zagayevskiy and Deutsch, 2011). Based on the standardized coefficients, the
local standard deviation has the lowest power when explaining the total variability of the

uncertainty, whereas DHS explains the most of the uncertainty.

Summary Statistics
R-sq, % 43.045 - £
Adj Rosq. % 43.038 EXTENDED TORNADO CHART E g £
std. Error 0.098 = | 2|53
F’s P-value 0.000 = | 5| 5| B
. 2 o 2
Prediction, % 43.079 Linear Model 2 £
w 2
BIC - 3
) . 033 1.00
Predictors Response:  Uncertainty 013 0.39 .
155.47 -0.49 0.00
DHS
39.66 0.26 -0.48
: : : : : : : :
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Local mean (%)
0.21 0.46 0.45
0.50 -0.23 -0.06
Entropy
0.22 0.43 -0.11
0.07 0.29 -0.34
Local stdv (%)
0.04 0.60 -0.10
Number of data = 62400
Estimated standardized sensitivity coefficients at confidence level alpha = 0.050

Figure 3.21: Tornado chart of the multiple linear regression summary for the fitted
model. The standardized coefficients are plotted. The vertical bars are scaled by the

coefficients; yellow for positive coefficient and green for negative.

When the same multiple linear regression analysis is done without considering the local
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standard deviation, R?> = 0.424. The small difference between R? calculated with this
predictor and without it shows that the local standard deviation can be excluded from the
model, only for the sake of simplicity. The importance of DHS is shown in a R? = 0.218

when the model is analysed without this predictor.

Consider the multiple regression model using a quadratic polynomial fitting for predictors
and response. The fitted line for DHS is shown in Figure 3.22. The quadratic model appears

to fit better the data in comparison to the linear model (Figure 3.20).
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Figure 3.22: Scatterplot of drillhole spacing agains uncertainty with the quadratic
polynomial fitted line (in red).

Geological data is often too complex to be explained by linear regression, a higher
coefficient of determination is expected when high dimensional polynomial is used to fit
the data. Attention is necessary when defining the order of the polynomial used in
regression. When the dimensionality increases, the space (volume) of the data increases
even faster, resulting in a series of phenomena that do not occur in lower dimensions; this

is also referred to "Curse of Dimensionality" (Keogh and Mueen, 2010).

When the quadratic model is used, the percentage of the uncertainty explained by the four
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predictors is 50.8%, 7.8% more when compared to the multiple linear regression, see the
tornado chart of Figure 3.23. The small bars on the left represent the coefficient between
predictor-predictor (local mean x local stdv, local mean x entropy, ...) and are colored
orange when positive and blue when negative. The drillhole spacing is the most important
predictor, followed by local mean, local standard deviation and entropy. Although the
entropy has the smallest standardized coefficient, the R? calculated from a model without

this predictor is of 46.53%.
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Figure 3.23: Tornado chart of the multiple linear regression summary for the fitted
quadratic model. The standardized coefficients are plotted. The vertical bars are scaled by
the coefficients; on the right side, yellow for positive coefficient and green for negative.

On the left side, orange for positive coefficient and blue for negative.

One of the pitfalls of linear regression is the consideration that the response variable is
dependent of the predictors that are considered independent variables. Moreover, the
optimal scenario is the one that the error have the same scatter regardless of the value of
X (homoskedastic). When this is not the case (heteroskedasticity), the points in a scatter
diagram gets more dispersed in some intervals of X values, and the SSE is wrong.
Regression analysis, even when high order polynomials are used to fit the data are not able

to capture all the complexity of the data.
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3.4.3 Alternating Conditional Expectations

Alternating Conditional Expectations (ACE), (Breiman and Friedman, 1985), is a
non-parametric regression technique able to capture complex relationships between the
response and the predictor variables. Linear regression can yield to erroneous analysis
when this relationship is unknown or inexact and forced to be parametrically linear (Wang

and Murphy, 2004).

Let Y be the response variable and the predictor variables expressed by X, ..., X,,. The
goal in ACE is to find the transformations in the response and predictors that lead to the
best fitting additive model (Breiman and Friedman, 1985). The variables are replaced by
functions 6(Y") and ¢, (X3), ..., ¢,(X,,) with arbitrary measurable mean-zero functions. The

general ACE regression model is given by Equation 3.19 below:

P

0Y)=a+> ¢i(X;)+e (3.19)
i=1

The ACE algorithm estimates those functions that maximizes the correlation of their
additive regression and minimizes the variance not explained ¢ making minimal
assumptions concerning the data and the form of the solutions (Barnett and Deutsch,
2013b; Breiman and Friedman, 1985; Wang and Murphy, 2004). The transformations are
performed until the linear relationship between 6(Y') and the sum of the transformed
predictors Zf: 1 ¢:(X;) is maximized. In ACE the correlation between the transformed
response and the sum of the transformed predictor variables is the amount of the variance
explained. The variance of the transformed predictors is related to the capacity of that
predictor to explain the uncertainty. The higher the variance of a transformed predictor is,

the more variability of the response it explains.

Consider the ACE model with four predictors: local mean, local standard deviation,
entropy and drillhole spacing. In the previous regression models, the amount of the

variance explained for a linear and quadratic fitting are 43% and 50.8% respectively. The
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predictors are plotted against their transformed function in Figure 3.24. The standard
deviation o, of the transformed predictors (Y-axis) represents their capacity to explain the
uncertainty. DHS (o = 0.536) is the most important predictor, followed by the local mean

(o = 0.374), entropy (0 = 0.228) and local standard deviation (o = 0.091).
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Figure 3.24: Scatterplots of the predictors (X-axis) against their transformed functions
(Y-axis). Drillhole spacing is in the upper left corner, local mean is in the upper right

corner. Local standard deviation is the bottom left plot and entropy is the bottom right

plot.

The total variability explained is given by the correlation of the transformed response
variable #(Y") and the sum of the transformed predictors 3.7, ¢;(X;), see Figure 3.25.
The ACE model explains 73.5% of the uncertainty; its prediction is greater than both

linear regression models (linear and quadratic).
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Figure 3.25: Transformed response variable (Y-axis) against the ACE predicted values
(X-axis). The capacity of the ACE model to explain total variability is given by the

correlation. This model explains 73.5% of the uncertainty.

ACE has the advantage to handle continuous and categorical variables in the same model,
not accounting for the form of the transformations and fitting the data in a non-parametric
way. This provides ACE the powerful to handle complex features and relationship in the
data. One of the disadvantages of using ACE it is the risk of overfitting. The risk of
overfitting is proportion to the ratio of number of predictors and the number of samples
(Barnett and Deutsch, 2013b). The algorithm of ACE per si does not provide a measure of
uncertainty when functions are overfitted and unreliable; this uncertainty can be captured
by bootstrap, although this is not implemented in the original algorithm (Barnett and
Deutsch, 2013a; Breiman and Friedman, 1985). The transformed function is not unique,
ACE results depend on the order the predictors are entered into the analysis, although the

model correlation does not vary significantly (Wang and Murphy, 2004).
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3.4.4 Stepwise Removal of the Factors

Another non-parametric regression analysis is the stepwise removal of the predictors
(Draper and Smith, 2014). The order of importance of the predictors must be known, a
previous regression model is used as reference. To illustrate this method, consider the
previous ACE regression model and the order that predictors are removed given by the
standard deviation of their transformed functions: drillhole spacing, local mean, entropy
and local standard deviation. The total variability in the uncertainty (response variable) is

given by its variance Var {Uncertainty}.

The first predictor variable removed is the drillhole spacing. The left plot of Figure 3.26
shows the expected uncertainty curve as function of the drillhole spacing, the dots represent
the SMUs in the model. The uncertainty in each SMU is subtracted from the EUC, see the
right plot for the A {Uncertainty | DHS}. The variance explained by drillhole spacing is
given by Equation 3.20 below.

Var {Uncertainty} — Var {Uncertainty | DHS}

2
o2 (due to DHS) = _ (3.20)
Var {Uncertainty}
DHS x Uncertainty - Entire deposit N Stepwise step 1 - DHS removal 040
2.00 032
g
2o 175 So 024
2 2
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Figure 3.26: Stepwise removal of the predictors, step 1. Drillhole spacing is removed
considering the expected uncertainty curve (on the left). The difference between the

uncertainty and the expected uncertainty for all SMUs is shown on the right.
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In order to remove the local mean, the A {Uncertainty | DH S} is plotted against the local
mean and the expected curve is fitted. The removal of the local mean is done with respect
to the fitted regression curve in a similar way to the drillhole spacing. Figure 3.27 shows
the steps for local mean and entropy removal. The standard deviation as the last predictor

cannot be removed by itself.

Stepwise step 2 - Local mean removal

Local mean x A Uncertainty

A Uncertainty
Ad(ﬁlug
A Uncertainty

0.0 05 1.0 15 2.0 0.0 05 1.0 15 2.0
Local mean (%) Local mean (%)

Entropy x A Local mean Stepwise step 3 - Entropy removal

A Mean
&Jugﬁwoun
A Mean

00 02 0.4 0.6 0.8 1.0 12 0.0 02 0.4 0.6 0.8 1.0 12
Entropy Entropy

Figure 3.27: Stepwise removal of the local mean and entropy. The regression line must

be fitted for each predictor.

This method explains 55.8% of the total variance in the response variable. For each
predictor removed, a lesser amount of the uncertainty is explained. The drillhole spacing
explains 29.4%, the local mean 21.0% and the entropy explains 5.4%. In this method the
amount of the total uncertainty explained by the predictors is known numerically in a
non-parametrically way. The disadvantage of using it is the fact that a prior model of

regression to determine the order that predictors are removed is needed.
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Chapter 4: Case Study Part 1 -
Uncertainty Modelling

The first part of the case study discusses the practical application of geostatistical
modelling for uncertainty assessment. Models of uncertainty are constructed at the SMU
block scale and at monthly, quarterly and yearly production scales. The drillhole spacing
versus uncertainty curves and explanatory models depend strongly on the uncertainty
model. Three grade variables are modelled: Variable A (Var A), Variable B (Var B) and
Variable C (Var C). The results of the case study are shown in terms of Var A in different

lithologies.

This case study is developed using real data provided by a major Canadian mining
company for research purposes. The coordinates and units of variables were changed for

confidentiality reasons. The workflow and nature of the results are not affected.

4.1 Motivation

To account for uncertainty in the geological model, a stochastic model of the geology is
required. The rock types (RTs) are modeled with sequential indicator simulation (SIS)
(Goovaerts, 1997). Assessing uncertainty with sequential Gaussian simulation (SGS)
requires the bivariate distribution to be multivariate Gaussian after the univariate
transform of the variable (normal scores transformation). When the multivariate
distributions are non-Gaussian after such transformation the complex relationship between
variables must be handled prior simulation with geostatistical multivariate techniques such
as Projection Pursuit Multivariate Transform (PPMT) and Minimum/Maximum
Autocorrelation Factors (MAF) (Barnett et al., 2014). Lastly, each realization of the grade

is run with a different realization of the rock type.
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Uncertainty at different production scales is calculated after back-transformation of the

simulated values.

4.1.1 Workflow Description

The workflow for uncertainty modelling is summarized as follows:

—

. Define the stationary domains (the rock types);

Data analysis and declustering of the rock types;

Model the indicator variograms;

Model the rock types with SIS;

Model the normal scores variograms for data imputation;
Data imputation and declustering of continuous variables;
PPMT and MAF transformations;

Model the PPMT variograms;

o o® N kWD

Simulate the grade with SGS and back-transform the simulated values;

—
=]

. Assess uncertainty at different production scales;

The geological model generated with SIS is used to transfer the uncertainty in the
geological model to the grade model. Moreover, this model allows the analysis of entropy
as one explanatory factor. Data imputation is required due to the unequal sampling of the
variables. PPMT and MAF are used to decorrelate the variables; after such
transformations the variables are simulated independently. The simulated model is
averaged up from the data scale to the SMU scale; uncertainty is then calculated at a SMU

resolution within the different production volumes.

4.2 Data

The data provided for this case study consists of 75,980 samples, collected from 764 near

vertical drillholes. Three variables, unequally sampled over the deposit, are modelled from
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a total of 54,640 samples of Var A, 54,085 of Var B, and 54,855 of Var C. The drillholes are
located over a volume of 20,800 m East, 14,000 m North and 3,520 m Elevation as shown

in Figure 4.1.

0.00 ‘O.“SO‘

1.00 1.50 1.80
HHH\‘HHHH

-

Figure 4.1: Oblique view of the drillholes over the deposit, colored by the grade of the
Variable A. The grade of 1.8 % represents the P95 of the grade distribution.

The length of the drillholes is greater in the south of the deposit and higher grades of Var
A are observed towards the bottom of the deposit. The clustered distributions of the
variables are shown in Figure 4.2. A positively skewed histogram is observed for all

variables, variables A and B contain a large amount of low grade samples.

4.2.1 Stationarity and Domaining

The stationary domains were chosen based on first and second order statistics, spatial
proximity and similar geological features. The decision of stationarity was reviewed

through the workflow, specially in the variography steps, in order to ensure geological and
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Figure 4.2: Distribution of variables A, B and C with no declustering weights. A

positively skewed histogram is observed for all variables.

grade estimates consistently. Seven domains were defined from the original 18 rock types
composing the data. The rock types are labeled 200, 211, 311, 321, 400, 401 and 500, as

shown in oblique view of the deposit in Figure 4.3 and side-view in Figure 4.4.

200 211 311 321 400 401 500

Figure 4.3: Oblique view of the drillholes over the deposit, colored by the lithology.

Due to the irregular drillhole spacing and the large volume covered by drilling, a convex

hull (Figure 4.5) is applied to limit simulation; which decreases run time, optimizes storage,
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Figure 4.4: Side-view of the drillholes over the deposit, colored by the lithology.

and limit estimates inside a relevant volume.
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Figure 4.5: Convex hull (in light blue) applied to the drillhole locations in order to

simplify the model.
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4.2.2 Basic Statistics

The data have been averaged to twenty meters fixed length composites which represents
the SMU height. Original data was provided at 5-12 m intervals. The averaged drillhole
spacing over the deposit is 1,630 m and the average drillhole density is 0.02 drills/ha.

Declustering of the continuous variables is done after imputation.

4.2.2.1 Categorical Variables

Although the drillhole spacing is nearly regular in the center of the deposit, areas of large
spacing exist and declustering is required. The cell size for declustering depends on the rock
type and is based on the average drillhole spacing in sparsely sampled areas. The cell sizes
used are: 2,500 x 2,500 m for RT 200; 1,000 x 1,000 m for RTS 211 and 311; 2,000 x 2,000
m for RTs 321, 400 and 401; and a cell size of 2,000 x 2,000 m for RT 500. The clustered
and declustered rock type proportions are shown in Table 4.1. RTs 211 and 311 (see Figure
4.3) have the smallest and most regular drillhole spacing and have their proportions lowered

after declustering.

Table 4.1: Clustered and declustered rock type proportions.

Rock Type Clustered Proportions Declustered Proportions

200 0.161 0.231
211 0.194 0.077
311 0.449 0.201
321 0.053 0.102
400 0.037 0.141
401 0.081 0.106
500 0.023 0.142

4.2.2.2 Continuous Variables

The distributions of the grade assays in the rock types are shown in Table 4.2. The highest
grades of Var A and Var B are observed in RTs 311 and 321, whereas the highest grades of
Var C are in RTs 311, 321 and 401.
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Table 4.2: Basic statistics of the variables in the deposit and per domain.

Rock Type Variable Samples Min (%) Max (%) Mean (%) Stdv (%)

A 54640 0.01 50.00 0.56 0.99
All B 54085 0.01 6.24 0.15 0.21
C 54855 0.01 72.74 1.59 3.25
A 5962 0.01 2.45 0.19 0.31
200 B 5964 0.01 0.85 0.09 0.07
C 6028 0.01 21.95 0.43 0.82
A 11503 0.01 3.20 0.20 0.31
211 B 11484 0.01 0.60 0.09 0.07
C 11556 0.01 15.80 0.37 0.60
A 30692 0.01 50.00 0.80 1.20
311 B 30358 0.01 6.24 0.19 0.25
C 30730 0.01 72.74 2.20 3.93
A 2783 0.01 3.90 0.55 0.50
321 B 2736 0.01 2.07 0.15 0.12
C 2759 0.02 25.42 1.52 1.68
A 355 0.01 1.91 0.19 0.27
400 B 383 0.01 0.38 0.08 0.06
C 473 0.01 5.93 0.42 0.61
A 2633 0.01 14.53 0.28 0.91
401 B 2484 0.01 4.49 0.08 0.24
C 2601 0.05 46.02 3.03 4.21
A 712 0.01 1.85 0.23 0.23
500 B 676 0.01 0.60 0.09 0.07
C 708 0.02 8.62 0.86 1.05
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Variables A and B are highly correlated in all rock types, see Table 4.3 for the correlation
in original units of the variables in all domains, prior imputation. The correlations of Var
A x Var C and Var B x Var C are low only in RT 500. The scatterplots in Figure 4.6 show
the correlation between Var A and the other variables in RT 211 before data imputation. A
compositional constraint is seen in both plots. This constraint is also observed in other rock

types and should be reproduced by the simulation.

Table 4.3: The correlation between variables in original units per rock type prior to

imputation.
Rock Type pas pac psc
200 0.877 0.632 0.597
211 0.839 0.782 0.668
311 0.743  0.686 0.842
321 0.892 0.540 0.585
400 0.851 0.683 0.649
401 0.815 0.529 0.607
500 0.880 0.388 0.370
33 n=11436 33 n=11499
3.0 ;;_V =0.196 1 30 ' 11, =0.196
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3 . ’ 4, =0.001 | 3 . " 4y =0375 |
g , o, =0.068 | g . . ;". . o, =0.601 |
= : p=0.839 = p=0.782
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Figure 4.6: Correlation between Var A x Var B (on the left) and Var A x Var C (on the
right) in RT 211 prior imputation.
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4.3 Rock Type Modelling

A three dimensional trend is modelled by moving window averaging, see Figure 4.7 for
the vertical trend representation. The values in the windows are weighted by their distance
from the moving center using a Gaussian kernel to produce a smooth trend. The local
declustered proportions calculated from the trend are used in the simple kriging equations

when the residuals are kriged in SIS (Deutsch, 2005; Journel, 1983).
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Figure 4.7: Vertical rock type proportions. The 3D trend is calibrated to the declustered

proportions.

Indicator variograms were modelled with three directions whenever horizontal anisotropy
was observed (2 horizontal and the vertical directions). All variograms were modelled with
zero nugget effect and three spherical structures. An azimuth of 0 degrees is considered for
the minimum horizontal direction of continuity, and 90 degrees azimuth for the maximum
horizontal direction of continuity. Table 4.4 summarizes the indicator variogram models.

The variogram models for RTs 211 and 321 are shown in Figure 4.8.
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Table 4.4: Indicator variograms summary. Horizontal minor and major directions of

continuity are shown.

RT Minor H. Major H. Comments

200 - - Omnidirectional in hor. direction with trend in horizontal and vertical
211 NO°E N90°E Normal anisotropy with a trend in vertical direction

311 NO°E N90°E Zonal anisotropy with a trend in vertical direction

321 - - Omnidirectional in hor. direction with trend in horizontal and vertical
400 - - Omnidirectional in hor. direction with trend in horizontal direction
401 NO°E NO0O°E Weak anisotropy with high continuity in vertical direction

500 NO°E N90O°E Normal anisotropy with high continuity in vertical direction

Indicator horizontal variogram RT 211 Indicator vertical variogram RT 211
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Figure 4.8: Indicator variogram models for RTs 211 (at the top) and 321 (at the bottom).
The horizontal variograms are shown on the left and the vertical on the right. RT 211
shows geometric anisotropy in the horizontal direction, whereas RT 321 was modelled

with an omnidirectional variogram in the horizontal.
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One hundred realizations of the geology were generated with SIS, respecting the trend
model, the variograms and the declustered proportions. The P50 of the realizations, at the

SMU scale, is shown for RTs 211 and 321 in Figure 4.9.

Figure 4.9: Oblique and plan view of the P50 based on global proportions in the final

realization of RTs 211 (at the top) and 321 (at the bottom). Simulated SMUs and the

drillholes are shown.

4.4 Multivariate Grade Modelling

Gaussian co-simulation would be considered if the variables were multi-Gaussian after
normal scores transformations. The three most important sources of non-Gaussianity are
nonlinearity, heteroscedasticity and constraints (Leuangthong and Deutsch, 2003). The
scatterplots of the bivariate distributions, see Figure 4.6 for RT 211, show constraints in all

rock types. In order to check the bivariate distributions, the data are transformed to
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Gaussian units and the bivariate distributions are compared to a perfect multivariate
normal distribution. The averaged deviation between data points in these two distributions
can be measured for different density contours intervals and inform about the Gaussianity

of the variables (Deutsch and Deutsch, 2011).

Strong non-Gaussianity is observed in RTs 200, 211, 311, and 321, see Figure 4.10 for the
kernel normal bivariate distributions of Var A x Var B and Var A x Var C in rock type 211.
RTs 400, 401 and 500 show weak non-Gaussianity. The lack of Gaussianity motivates the
use of PPMT to decorrelate variables prior simulation (Barnett et al., 2014). The proper back

transformation of the simulated values reintroduces the complexity between the variables.
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Figure 4.10: Normal scores bivariate distributions of Var A x Var B (on the left) and Var
A x Var C (on the right) in RT 211, colored by the bivariate kernels density estimators.
The complex distributions should be reproduced after simulation and special data
transformations are required to decorrelate variables prior simulation. Only homotopic

samples are used for plotting.

The detailed multivariate grade modelling workflow is summarized as follows:

1. Model the normal scores variograms for data imputation;
2. Data imputation with Gaussian mixture models (GMM) (Silva and Deutsch, 2015);
3. Declustering weights;

4. PPMT and MAF transformations;
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5. Model the Variograms;
6. Independet grade simulation with SGS and back-transformation of the simulated

values;

4.4.1 Data Imputation

The PPMT transformation can only be applied to homotopic data, that is, the variables must
be equally sampled at data locations. Data imputation was performed with GMM and non-
parametric Bayesian updating (Silva and Deutsch, 2015). The normal scores variograms
are needed for data imputation, see Figure 4.11 for the normal scores variograms for Var
B in RT 211 and Var A in RT 321. The total number of data imputed in each rock type is

summarized in Table 4.5.

Table 4.5: Number of data imputed in each rock type.

Rock Type Var A VarB VarC

200 66 64 -
211 57 76 4
311 56 390 18
321 8 55 32
400 119 91 1
401 10 159 41
500 - 36 4

4.4.1.1 Gaussian Mixture Models and Imputation

The joint probability distributions defining the likelihood distributions are calculated from
Gaussian mixture fitted to the multivariate data. The likelihood distribution are calculated
as the marginal of the conditional Gaussian mixture models. The prior and likelihood
distributions are combined with Bayesian updating; the updated distribution is sampled to

generate multiple realizations of the missing data (Silva and Deutsch, 2015).

The number of multivariate Gaussian components used to fit the conditional distributions

varies from 2 to 10, according to the rock types. The density plots of Figure 4.12 show the
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Figure 4.11: Normal scores variogram models used in data imputation for Var B in RT

211 (at the top) and for Var A in RT 321 (at the bottom). The horizontal variograms

are shown on the left and the vertical on the right. The variogram of Var B shows

geometric anisotropy in the horizontal direction, whereas Var A was modelled with an

omnidirectional variogram.



marginal bivariate distributions of Var A x Var B, and Var A and Var C in rock type 211
fitted with 8 components. A threshold of 1% of the joint probability density function (PDF)
is used in the plot. Although the joint distribution populates the entire range of normal

values, a better visualization is achieved plotting 99% of the density values.
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Figure 4.12: Marginal bivariate distributions of the GMM fitted for Var A x Var B (on
the left) and Var A x Var C (on the right) in RT 211 colored by the bivariate kernels

density estimators. The visualized values represent 99% of the joint PDF.

The imputed data in RT 211 is plotted over the bivariate distribution in Figure 4.13. This

check is performed in all rock types.
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Figure 4.13: Imputed data (black dots) plotted over the normal scores bivariate

distributions (colored dots) in RT 211.
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4.4.1.2 Declustering

Declustering weights are calculated after imputation with similar window sizes used for
declustering of the categorical variables. The bivariate distributions are recalculated after
data imputation. The declustered histograms are calculated and summarized in Table 4.6.
The correlation coefficients after imputation are shown in Table 4.7. The change in the

histograms and correlations depends on the number of data imputed and their values.

Table 4.6: Declustered statistics after imputation of the variables per domain.

Rock Type Variable Samples Min (%) Max (%) Mean (%) Stdv (%)

A 6028 0.01 2.45 0.20 0.29
200 B 6028 0.01 0.85 0.09 0.07
C 6028 0.01 21.95 0.46 0.89
A 11560 0.01 3.20 0.20 0.31
211 B 11560 0.01 0.60 0.09 0.07
C 11560 0.01 15.80 0.37 0.60
A 30748 0.01 50.00 0.80 1.20
311 B 30748 0.01 6.24 0.19 0.25
C 30748 0.01 72.74 2.20 3.93
A 2791 0.01 3.90 0.54 0.48
321 B 2791 0.01 2.07 0.16 0.16
C 2791 0.02 2542 1.47 1.63
A 474 0.01 1.91 0.19 0.26
400 B 474 0.01 0.38 0.08 0.07
C 474 0.01 5.93 0.62 0.86
A 2643 0.01 14.53 0.20 0.58
401 B 2643 0.01 4.49 0.07 0.16
C 2643 0.05 46.02 2.37 3.38
A 712 0.01 1.85 0.27 0.25
500 B 712 0.01 0.60 0.11 0.08
C 712 0.02 8.62 0.87 0.97

4.4.2 PPMT and MAF

PPMT and MAF are multivariate techniques used to model complex and high dimensional
geologic data, transforming the data to an uncorrelated multiGaussian distribution

(Barnett et al., 2014; Friedman, 1987). PPMT decorrelates the variable at a zero lag
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Table 4.7: The correlation between variables in original units per rock type after

imputation.
Rock Type paB pac pBc
200 0.876 0.633 0.594
211 0.835 0.782 0.668
311 0.744 0.686 0.841
321 0.893 0.540 0.590
400 0.853 0.704 0.589
401 0.815 0.522 0.598
500 0.880 0.392 0.351

covariance, whereas MAF decorrelates at a non-zero lag; the back-transformation

reintroduces the complexity of the data (Barnett, 2011).

See Figure 4.14 for the

correlation at zero lag covariance for variables A and B in RT 211 after PPMT. Compared

the bivariate plot of Var A and Var B from Figure 4.14 and Figure 4.10 (before PPMT).

PPMT Var B
=

p=—0.001

‘o T, =00
¢, =10

=4 -3 -2 -1

0

PPMT

1
Var A

3

Figure 4.14: Correlation between Var A and Var B after PPMT transformation at zero lag

covariance in RT 211.

The PPMT cross variograms were checked in all rock types and MAF was used whenever

a correlation greater than 0.2 was observed for any lag. Short distances were preferred to

avoid consideration of trend-like features.

In Figure 4.15, the omnidirectional cross

variogram between the PPMT transforms of Var A and Var C is shown for before and after
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MAF. The variables are decorrelated at lag zero by PPMT, but correlation remains for
larger lag distances. In most cases, MAF decorrelates the variables at all lags, although in
the presence of a trend, correlation may remain (Manchuk and Deutsch, 2015). In Figure
4.15 MAF is performed with a lag distance of 80 m with lag tolerance of 50 m. Although
correlation is still observed for some lags after MAF, the short ranges are decorrelated or

have their correlation decreased.

MAF was considered in RTs 400, 401 and 500.

Var A-Var C PPMT cross-variogram prior MAF o Var A-Var C PPMT cross-variogram after MAF

0.5 0.5

J e © ° . e o o o o ¢ | . |

:0.0" :0.0..,.-' L S
-0.5 -0.5
-1.0 -1.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Lag Distance (m) Lag Distance (m)

Figure 4.15: Cross variograms for Var A and Var C prior MAF (on the left) and after
MAF (on the right) in RT 401. A lag distance of 80 m and a lag tolerance of 50 m are

used for decorrelation.

4.4.2.1 Variograms

The variograms were modelled after PPMT and MAF, see the summary in Table 4.8. All
variograms were modelled with three spherical structures and no nugget effect. Horizontal
anisotropy is observed for Var A and Var B in RT 200, and for Var B and Var C in RT 211;
a horizontal omnidirectional variogram is considered otherwise. See Figure 4.16 for the
variogram models of Var B in RT 211 and for Var A in RT 321. These variograms are similar
to the normal score variograms; in fact, some recent research (Manchuk and Deutsch, 2015)

has shown that the normal scores variograms are preferred in this workflow.
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Table 4.8: Continuous variograms summary. Horizontal minor and major directions

of continuity is shown. Down-hole variograms are calculated with DIP of 90° since

drillholes are mostly vertical. Variograms are calculated after PPMT and MAF.

RT Var

Minor H. Major H.

Comments

200

NO°E
NO°E

N90°E
NO90°E

Normal anisotropy in hor. dir.
Normal anisotropy in hor. dir.
Omnidirectional in hor. dir.

211

NO°E
NO°E

NO90°E
NO90°E

Omnidirectional in hor. dir. with trend in vertical dir.
Normal anisotropy in hor. dir.
Normal anisotropy in hor. dir. with trend in vertical

311

Omnidirectional in hor. dir. with trend in vertical
Omnidirectional in hor. dir. and high continuity in vertical
Omnidirectional and high continuity in hor. dir.

321

Omnidirectional in hor. direction
Omnidirectional in hor. direction
Omnidirectional in hor. direction

400

Omnidirectional in hor. dir. and high continuity in vertical
Omnidirectional in hor. direction
Omnidirectional in hor. dir. and high continuity in vertical

401

Omnidirectional and high continuity in hor. direction
Omnidirectional in hor. dir. and high continuity in vertical
Omnidirectional in hor. dir. and high continuity in vertical

500

AW QWP QWP QO > QT > QW QW >

Omnidirectional in hor. dir. and high continuity in vertical
Omnidirectional in hor. dir. and high continuity in vertical
Omnidirectional in hor. direction
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Figure 4.16: PPMT variogram models for Var B in RT 211 (at the top) and for Var A in

RT 321 (at the bottom). The horizontal variograms are shown on the left and the vertical

on the right. The variogram of Var B shows geometric anisotropy in the horizontal

direction, whereas Var A was modelled with an omnidirectional variogram.



4.4.3 Conditional Simulation

The transformed variables were simulated independently within the rock types, with the
modelled PPMT variograms. All bivariate distributions were checked against the
reference distributions for any discrepancy. In Figure 4.17, the reference normal scores
bivariate distributions, calculated after data imputation, are checked against the simulated

distributions in RT 211. The complexity seen in the data is reasonably reproduced.

Reference bivariate distribution Simulated bivariate distribution
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Figure 4.17: Normal scores bivariate distribution of Var A x Var B after imputation
in the upper-left corner, and the simulated distribution in the upper-right corner in RT
211, colored by the bivariate kernels density estimators. The reference and simulated

distributions for Var A and Var C in the same RT are shown at the bottom.
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4.4.3.1 Model Checking

Uncertainty is assessed and post-processed in original units. The simulated variables are
back-transformed to original units following the reverse order of the workflow
transformations. The histogram reproduction is checked for all variables in all rock types,
see Figure 4.18 for the histograms of Var A in RT 211 and Var B in RT 321. Good
histogram reproduction is obtained in RTs 211, 321 and 500. The simulated histograms
are affected by trends in the continuous and categorical models, declustering weights,
geological model and rock type boundaries. The reference declustered histograms mean,

the simulated histograms and their relative differences are shown in Table 4.9 for all rock

types.

The correlation between variables is also checked. The proposed workflow reproduced the
complexity and the constraints observed in data in Gaussian and original units. As reference,
the correlation between variables calculated after data imputation (the reference) and after

simulation, in RT 211, are plotted in Figure 4.19.

100 Histogram Reproduction of Var A in RT 211 100 Histogram Reproduction of Var B in RT 321
0.80_] - ) 0.80_] - .
o ] Realization Statistics o ] Realization Statistics
2 i Number of real. 100 2 i Number of real. 100
3 B Realization mean 0.20 3 B Realization mean 0.16
g 0.60_] Stdev. of the mean 0.01 g 0.60_] Stdev. of the mean 0.01
53 1 Realization stdev. 0.30 53 1 Realization stdev. 0.13
4 g Stdev. of the stdev. 0.02 L g Stdev. of the stdev. 0.01
E} ] i ]
= 040 Reference Statistics 5 0404 Reference Statistics
5 : Number of data 11560 5 : Number of data 2791
© g Reference mean 0.20 © g Reference mean 0.16
0.20_| Reference stdev. 0.31 0.20_{ Reference stdev. 0.13
] Weights used ] Weights used
0.00 : . . 0.00 . .
0.01 1.01 2.01 3.01 0.01 0.51 1.01 1.51 2.01
Var A Realizations Var B Realizations

Figure 4.18: Histogram simulation of Var A in RT 211 (on the left) and Var B in RT 321
(on the right). The red line is the reference declustered distribution. The 100 simulated

CDFs are shown as black lines.
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Table 4.9: Histogram summary statistics. The reference declustered histogram mean is

compared with the simulated histogram mean.

Rock Type Variable Reference mean Simulated mean Difference (%)

A 0.20 0.18 -10.0
200 B 0.09 0.08 -11.1
C 0.46 0.40 -13.0
A 0.20 0.20 -
211 B 0.09 0.09 -
C 0.37 0.37 -
A 0.80 0.75 -6.2
311 B 0.19 0.18 -52
C 2.20 1.96 -10.9
A 0.54 0.57 +5.5
321 B 0.16 0.16 -
C 1.47 1.47 -
A 0.19 0.21 +10.5
400 B 0.08 0.07 -12.5
C 0.62 0.64 +3.2
A 0.20 0.17 -15.0
401 B 0.07 0.07 -
C 2.37 2.47 +4.2
A 0.27 0.27 -
500 B 0.11 0.10 -9.0
C 0.87 0.87 -
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Figure 4.19: Correlation between Var A x Var B after imputation in the upper-left corner,
and the correlation after simulation in the upper-right corner in RT 211. The reference and
simulated correlation for Var A and Var C in the same RT are shown at the bottom. The

simulated distribution is sampled to generate a subset of 30,000 values used in the plots.
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4.5 Modelling Scale

After back-transformation, the simulated values are block-averaged to the SMU scale. 9
simulated values are averaged to compose a SMU. There are 8 SMUs in nominal monthly
volumes, 24 SMUs in nominal quarterly volumes and 96 SMUs in nominal yearly

production volumes. The drillhole spacing study takes into consideration these scales.

The uncertainty at the production volume is calculated with a zero cut-off and fixed
volume approach (Section 1.2.3). Uncertainty is reported in terms of the grade of Var A.
The probability of the simulated grade of Var A to be within 15% of the mean is calculated
for different production scales in the entire deposit and within rock types. The precision

(15%) is plotted for a slice of the deposit in Figure 4.20.
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Figure 4.20: The probability of the simulated grade of Var A to be within 15% of the
mean for different production volumes in the entire deposit. The dots represent the
drillholes, the white part of the plot is outside the convex hull. The plan view of a slice of

the deposit is shown.
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4.6 Comments

The chosen workflow for uncertainty modelling demonstrated the capacity of PPMT to
model complex multivariate relationships. PPMT is considered when the multivariate
distributions are not Gaussian.  After decorrelation, the variables are simulated
independently and the complexity is reintroduced with back-transformation.  An
alternative workflow for highly correlated variables would be more conventional Gaussian
co-simulation. In this specific case study, modelling three variables would require the
independent simulation of one of the variables. A second variable would be co-simulated
with the previously simulated variable with an intrinsic collocated cokriging as model of
coregionalization to avoid variance inflation. The third variable would be co-simulated
with the super secondary of the two previously simulated variables. This workflow would
not necessarily reproduce the complex relationships between variables and would have

change the uncertainty assessment.
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Chapter S5: Case Study Part II -
Explanatory Factors and Data Spacing

The second part of the case study discusses the drillhole spacing study, the explanatory
factors and presents a series of plots to support DHS decisions. The explanatory factors are
calculated at a monthly scale for the entire deposit and within rock types. The uncertainty
versus drillhole spacing curves and explanatory models of three rock types are shown with
more detail. These are the most important rock types when considering the zoning of the
deposit. The measure of uncertainty, and the response variable, is the probability of the

grade of Var A to be within 15% of the mean.

Economic analysis based on a cut-off and the equivalent grade is done to support zoning of
the deposit. When targeting drillhole spacing, the quarterly and yearly uncertainty curves
are used for resources classification. The Learning Curve is calculated for the entire deposit

and practical recommendations are given.

5.1 Explanatory Factors

The explanatory factors are calculated based on a monthly production scale for the entire
deposit. The multiple linear regression and ACE models are shown. The response variable

(the uncertainty) is plotted for a slice of the deposit in Figure 5.1.

5.1.1 Factors

All factors are calculated inside the convex hull of the data. Predictor variables are plotted
against the response variable for a better understanding of their influence on uncertainty.
Unless specified, all drillhole versus uncertainty curves are calculated at a monthly

production scale.

122



Uncertainty - Monthly scale
14000 1

0.75

Northing (m)
[«
(9]
Ajiqeqorg

0.25

5000 10000 15000 20000
Easting (m)

Figure 5.1: The plan view of the uncertainty at a monthly production scale for a slice of
the deposit. The probability of the grade of Var A to be within 15% of the mean is the

response variable. The black dots represent the drillholes.

5.1.1.1 Drillhole Spacing

The average drillhole spacing is 1,630 m. Uncertainty versus drillhole spacing plots are
shown for DHS below 1,500 m. The expected uncertainty is very high and does not change
considerably for DHS greater than 1,500 m. There are 162,110 SMUs within this spacing
with an average DHS of 761 m. The DHS inside the convex hull and below 1,500 m are

shown in Figure 5.2.

The uncertainty versus drillhole spacing curve for the entire deposit is shown in Figure 5.3.
The uncertainty shows little change for DHS greater than 1,000 m. The EUC is steeper in
the DHS interval of 100 to 1,000 m. Due to the large amount of SMUs plotted, information
such as the interval of DHS that contains more SMUSs is not clearly represented. Another
representation of the same plot is given by the kernel density, in Figure 5.4. SMU density
is greater in the DHS intervals of 300-400 m and 900-1400 m.

5.1.1.2 Local Mean and Standard Deviation

The conditional local mean and standard deviation are shown in Figure 5.5. The local

standard deviation is high in local mean areas and in the transitions zones. The conditional
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Figure 5.2: The histograms of the DHS inside the convex hull (on the left) and within a
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spacing of 1,500 m (on the right). The areal coverage of the two plan view plots are the

same, but the scale is different to highlight the area covered by the practical maximum

DHS considered. The drillhole versus uncertainty curves are plotted with a maximum

DHS of 1,500 m.
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Figure 5.3: Uncertainty versus DHS curve at a monthly production scale for the entire
deposit. The dots represent the SMUSs, colored by the expected grade. The continuous

line is the expected uncertainty curve (EUC).
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Figure 5.4: Uncertainty versus DHS scatterplot at a monthly production scale for the
entire deposit. The small dots represent the SMUs. The kernel density is calculated and

the iso-probability density contours are plotted.
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proportional effect is shown in Figure 5.6. High variance SMUs are more commonly
associated to high grade SMUs, moreover, high grade is related to small DHS. The
conditional mean and standard deviation are plotted against the uncertainty in Figure 5.7.
Uncertainty is lower for high values of the mean and standard deviation, although the

uncertainty does not change considerably for standard deviation greater than 0.25%.
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Figure 5.5: The plan view of the local mean (on the left) and standard deviation (on the
right) for a slice of the deposit. The local standard deviation is high in local mean areas

and in the transitions zones.

5.1.1.3 Entropy

The entropy and the rock type model are shown in Figure 5.8. Entropy is zero inside a
domain and higher at the contact between different rock types. The entropy shows litte
correlation with the uncertainty, as seen in Figure 5.9. The fact of uncertainty being slightly
lower when entropy increases is due to the geological model. Some arbitrary volumes in
the contact of rock types may have SMUs from high grade rock types; the local entropy and
local grade are then high. Arbitrary volumes with high grade are more certain (Figure 5.7),

what explains the relationship between entropy and uncertainty.
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Figure 5.6: The conditional proportional effect in the entire deposit. High variance
SMUs are related to high grade SMUs and small DHS. The non-parametric regression

curve is shown as the continuous line.
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Figure 5.7: Conditional local mean (on the left) and conditional standard deviation
(on the right) versus uncertainty. The non-parametric regression curve is shown as the

continuous line.
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Figure 5.8: The plan view of the entropy (on the left) and rock type model (on the right)

for a slice of the deposit. Entropy is higher in the contact of different rock types.
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Figure 5.9: Entropy versus uncertainty curve. Entropy shows little influence on the

uncertainty. The non-parametric regression curve is shown as the continuous line.

128



5.1.2 Regression Models

Multiple linear regression and ACE are considered to explain the relationship between the
uncertainty and the explanatory factors. ACE explains more of the variability and is

considered for supporting decisions.

5.1.2.1 Multiple Linear Regression

The summary of the multiple linear regression for the linear and quadratic fittings are shown
in Figure 5.10. The linear model explains 59.3% of the uncertainty, whereas the quadratic
model explains 68.5% of the variability in the response variable. DHS and local mean are
the most important factors. Entropy and local standard deviation have little impact in the

models.
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Figure 5.10: Multiple linear regression summary for a linear fitting (on the left) and a
quadratic fitting (on the right). The linear and quadratic models explain 59.3% and 68.5%

of the uncertainty respectively. DHS and local mean are the most important factors.

5.1.2.2 ACE

The ACE transformations are plotted against the predictors in Figure 5.11. The most
important predictors from ACE, with their respective transformed standard deviations are

DHS (0.641), local mean (0.353), entropy (0.040) and local standard deviation (0.014).
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The low influence of the local standard deviation and entropy on uncertainty is the reason
of the noisy and overfitted curves seen for these factors. They are kept for demonstration
reason but their influence on the ACE regression is minimal and rejecting them could be
considered. Note the small units associated to their transforms. Ace explains 81.6% of the
uncertainty, as shown in the regression plot of the summation of all predictor

transformations against the transformed response variable in Figure 5.12.

3.0
1.0
25
08
)
= 20 _
R3] g 0.6 ]
g n=162110 3 n=162110
@13 1 E 04 —
3 —_—
s 1y, =0.0 S #y =0.0
E 1.0| 0,=0.641 3 0.2 o, =0.3531
= 2
. Rt
% 05 11, =761.294 0.0 1, =0.337 1
o, =377.563 o, =0.253
0.0 — 0.2 —
p=-—0.925 p=0.97
-0.5 0.4 )
200 400 600 800 1000 1200 1400 0.0 02 0.4 0.6 038 10 12 1.4
Drillhole spacing (m) Local mean (%)
0.15
0.02
g oo
0.10 =
= 5 000 l
g = n=162110
=
= S -0.01 —001
3 005 E #y =00
% ’ g 0, =0.014
= ~0m —
2 1, =0.093
= —0.03 o, =0.078 |
0.00 ©
p=0.87
~0.04 —
00 02 0.4 0.6 038 10 12 000 005 010 015 020 025 030 035 040

Entropy Local standard deviation (%)

Figure 5.11: Scatterplots of the predictors (X-axis) against their transformed functions
(Y-axis). Drillhole spacing is in the upper left corner, local mean is in the upper right

corner. Entropy is the bottom left plot and the local standard deviation is the bottom right

plot.
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Figure 5.12: ACE regression plot. The high ACE correlation demonstrates the capacity

of ACE to model the relationship between predictors and response variables.

5.2 Main Rock Types

The main rock types in the deposit are RTs 311, 321 and 401. These RTs have the highest
average grades of variables A, B and C. A more comprehensive study of these rock types
is presented. The P50 of the rock type realizations generated by SIS of RT 321 is shown in
Figure 4.9, whereas the P50 of RTs 311 and 401 are shown in Figure 5.13. RT 211 is another
important rock type, stratigraphically located above RT 311. RT 400 is located below RT
401, whereas RT 321 is located below RT 200. The importance of the RTs 311, 321 and
401 1s also related to their locations. New vertical drilling through these rock types will also
drill other rock types. RT 500 is an isolated rock type at the northeast region of the deposit

and it is analyzed separately.

5.2.1 Uncertainty Versus DHS Plots

The uncertainty versus drillhole spacing curves and the kernel density are plotted for the

main RTs in Figures 5.14 to 5.16. The combined kernel densities contours of these RTs
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Figure 5.13: Oblique and plan view of the P50 based on global proportions in the final
realization from SIS of RTs 311 (at the top) and 401 (on the bottom). Simulated SMUs

and the drillholes are shown.
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explain the density contours of Figure 5.4, calculated for the entire deposit. RT 311 has the
smallest average DHS and lower uncertainty. Although the average DHS is greater in RTs
321 and 401, the EUC in these rock types can be calculated with confidence for small DHS

values. In these RTs the EUC can be calculated for a level of uncertainty greater than 80%.
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Figure 5.14: Uncertainty versus DHS curve (on the left) and the kernel density plot (on
the right) for RT 311 calculated at a monthly scale.
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Figure 5.15: Uncertainty versus DHS curve (on the left) and the kernel density plot (on
the right) for RT 321 calculated at a monthly scale.

The EUC of the main rock types are plotted together in Figure 5.17. The expected
uncertainties in RTs 311 and 321 for the DHS interval of 200-300 m are similar. For other

133



RT 401 - Monthly Scale

1.0—— 0.0042

0.0012

§ 1.20 §
g g 0.0036
o 1.05 °
£ o £
a
L’S 0.90 ,_é L’S 0.00303
X 2 X g
Vel =+ Vel IS8
— 075 & b =8
000245
< ) < g
=l 0.60 & =]
< 60 8 < o
S 5 = g
1Z]
= 0458 2 0.0018 .
a Y a <
o o
<} <}
- -
~ ~

0.0006

200 400 600 800 1000 1200 1400 200 400 600 800 1000 1200 1400
Drillhole spacing (m) Drillhole spacing (m)

Figure 5.16: Uncertainty versus DHS curve (on the left) and the kernel density plot (on
the right) for RT 401 calculated at a monthly scale.

DHS, the expected uncertainty in RT 311 is lower than RTs 321 and 401.
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Figure 5.17: Uncertainty versus DHS curve for RTs 311 (green), 321 (blue) and 401 (red)

calculated at a monthly scale.
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5.2.2 Uncertainty Charts

A comparison of the ACE factors between the main rock types is shown in the tornado chart
of Figure 5.18. The DHS is the most important factor in the three rock types. Entropy is
an important explanatory factor in RTs 311 and 401. RT 311 is located in the center of the
deposit, making contact to all other rock types. RT 401 is a thin rock type located in the
bottom of the deposit, making contact to RT 400 (the bed rock) and other rock types located

above it. Local mean is the second most important factor in RT 321.

RT 311 RT 321 RT 401

Entropy . 0.095 0.398
Local Mean 0.183 0.16]
Local Stdvm . 0.091 I 0.049

00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08 00 01 02 03 04 05 06 07 08
Stdv of the transformed predictor (ACE)

Figure 5.18: Tornado chart of the main rock types based on ACE transforms. DHS is the
most important factor for RTs 311, 321 and 401. The location of RTs 311 and 401 relative
to the other rock types explains why entropy as an important explanatory factor in these

rock types.

The standard deviation of the ACE predictor transforms in all rock types, as well as the ACE
correlations are summarized in Table 5.1. DHS is the most important factor in 5 of the seven
rock types. Practically, the DHS and local mean have the same contribution explaining the
uncertainty in RT 500. Local standard deviation is the least important factor in 6 of the
seven rock types. A high ACE correlation is obtained in all rock types but RT 500. RT 400
covers the bottom of the entire deposit and has high proportions to the north of the deposit,

where drillholes are sparse; which explains the high entropy in this RT.

135



Table 5.1: ACE summary for all rock types. The most important factor in each rock type
is colored in blue, whereas the least important factor is colored in red. DHS and local

standard deviation are likely the most and least important factors.

Rock Type DHS Entropy Local mean Localstdv ACE Correlation

All 0.641 0.353 0.040 0.014 0.816
200 0.460 0.310 0.206 0.122 0.747
211 0.569 0.225 0.143 0.227 0.694
311 0.578 0.312 0.183 0.160 0.841
321 0.715 0.095 0.221 0.091 0.815
400 0.228 0.599 0.161 0.038 0.782
401 0.557 0.398 0.160 0.049 0.878
500 0.355 0.270 0.358 0.102 0.613

5.2.3 Production Scale Plots

The uncertainty versus drillhole spacing curves for the different production volumes in the
entire deposit are shown in Figure 5.19. Higher rates that uncertainty changes are seen in
the DHS interval of 200-800 m. All EUC show an inflection point approximately at 200 m
spacing. The DHS associated to a same level of uncertainty increases from the monthly to

the yearly production scales.

The uncertainty versus drillhole spacing curve calculated based on a quarterly production
volume for RT 311 is shown in Figure 5.20. A comparison with the monthly scale plot for
the same RT (Figure 5.14) shows a lower overall uncertainty and a higher expected grade in
the SMUs. The uncertainty versus DHS curve calculated at different production volumes

for RT 311 are shown together in Figure 5.21.
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Figure 5.19: Uncertainty versus DHS curves at different production scales for the entire

deposit. The monthly curve is shown in green, the quarterly in blue and the yearly in red.
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Figure 5.20: Uncertainty versus DHS curve at a quarterly production volume for RT 311.
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Figure 5.21: Uncertainty versus DHS curves at different production scales for RT 311.

5.3 Decision Support

An economic analysis is done to support the zoning of the deposit for the purpose of drillhole
spacing. The analysis of the explanatory factors and uncertainty versus DHS curves in
these zones are used for classification, uncertainty visualization and understanding of local

uncertainty.

5.3.1 Factors Supporting Zoning

Besides uncertainty versus DHS curves, the zoning of the deposit is also supported by
technical expertise, engineering and geological features, in addition to other economic
factors. An economic analysis based on the equivalent grade (EG) at the deposit is done to
support zoning. The equivalent grade, Equation 5.1, is calculated based on the simulated
grades of Var A, B and C and summarize the information of the three variables in a unique
economic model. Variable C is considered a contaminant, hence it is subtracted from the
equivalent grade. A cut-off of 0.25% is applied to define ore and waste SMUs. All

calculations are done at the SMU scale.
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EG(u) =VarA(u) + VarB(u) — 0.1 x VarC(u) (5.1)

The economic value, stripping ratio, expected grade of the variables and the predominant
rock type are calculated. With the ore and waste model, the 3D grid is transformed to a
plan, with all calculations done vertically in the grid; see 3d2plan (in the Appendix) for
the explanation of the calculations. This analysis is compatible with the nearly vertical
drilling of the deposit. The economic analysis is presented in the section below. Next

section discusses the practical application of the zoning when targeting DHS.

5.3.1.1 Economic Value

The economic value (EV), Equation 5.2, is calculated by the summation of the SMUs
equivalent grade; where the ore SMUs (n,) receive a weight of 4 and the waste SMUs
(ny) receive the fixed value of -1. If only two SMUs are considered, one ore SMU with
EG equals to the cut-off value and one waste SMU, then the economic value is zero

(BEV = —1+4(0.25) = 0).

EV(u)=—1 Z N (1) + 4 Z EG,(u) (5.2)

The ore and waste location maps are shown in Figure 5.22. The majority part of the deposit
is considered ore (left plot). In the ore zones, the highest economic values are located in the

central, northeast and southeast regions of the deposit.

5.3.1.2 Stripping Ratio

The stripping ratio is calculated dividing the number of waste SMUs by the number of ore
SMUs (going to the bottom of the model in each vertical column). The stripping ratio map
in Figure 5.23 shows the lowest stripping ratios in the central, northeast and southeast zones.

Relatively low stripping ratio is seen in the south, closer to the central region.
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Figure 5.22: Economic value map for ore and waste regions (on the left) and only for
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8000

Northing (m)

oney Surdding

0.5

5000

10000
Easting (m)

15000 20000

Figure 5.23: Stripping ratio map. The zones with lowest ratios are central, northeast and

southeast. Relative low stripping ratio is seen in the south, closer to the central region.
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5.3.1.3 Expected Grade

The expected grade is calculated by the average of the SMUSs grades for the entire vertical
column. The expected grade maps are shown in Figure 5.24. Variables A and B have the
highest grades in the central, northeast and southeast zones. Relative high grade of Variable
B is also seen in the south. Variable C has the highest grades at the contact of the RTs 311
and 401 and to the north of the deposit.
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Figure 5.24: Expected grade maps of the variables. Variables A and B have the highest
grades in the central, northeast and southeast zones. Variable C has the highest grades to

the north of the deposit.

5.3.1.4 Predominant Rock Type

The predominant rock type is calculated by the statistical mode of the RTs. After defining
the zones based on the economical factors, the uncertainty versus drillhole spacing curves

are analyzed for the predominant rock type inside the zones. The predominant rock type

141



map is shown in Figure 5.25.
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Figure 5.25: Predominant rock type map. The most common rock types over the deposit
per region are RT 311 in the center, RT 321 in the southeast, RT 200 in the south, RT 500
in the northeast, and RTs 400 and 401 in the north.

5.3.2 Zoning

Based on the economic analysis and the predominant rock types, four zones are defined to
target DHS, see Figure 5.26. The zones with their respectively predominant rock type are:
main or central (RT 311), south (RT 200), southeast (RT 321) and northeast (RT 500). This
zoning was chosen for illustration purposes. In practice, more detailed knowledge of the

geological setting and mine plan would be considered.
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Figure 5.26: The four defined zones are shown in the rectangles. The main or central

zone has RT 311 as predominant rock type. South, southeast and northeast zones have

RTs 200, 321 and 500 as respective predominant rock types.
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5.4 Practical Applications and Decision Support

One application of uncertainty versus DHS curves is for classification. Other application
include targeting DHS to reduce local uncertainty, understanding the local variability and

better planning of further drilling campaign.

5.4.1 Classification and Targeting DHS

Consider targeting DHS for classification, where SMUs are classified as measured or
indicated (JORC, 2012) based on, for example, the probability of the grade of Var A to be
within 15% of the mean at least 80% of the times for a quarterly and yearly production
scales respectively. Consider the four zones previously defined and the uncertainty versus
DHS curves calculated at these two production scales for the predominant rock type in

each zone.

5.4.1.1 Main Zone

In the main zone, Figure 5.27, a DHS of 500 m classifies SMUs as measured, whereas a
DHS of 670 m, 34% greater, classifies SMUs as indicated.

5.4.1.2 Southeast Zone

RT 321 is the predominant rock type in the southeast zone. Similar analysis made for the
main zone is done for RT 321. Based on the EUC of Figure 5.28, a DHS of 300 m classifies
SMUs as measured, whereas a DHS of 390 m, 30% greater, classifies SMUs as indicated.

5.4.1.3 Northeast Zone

The predominant rock type in the northeast zone is RT 500. The EUC calculated at a
quarterly production volume does not reach the required uncertainty level for

classification, see Figure 5.29. Although a DHS can be defined for classification purpose
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Figure 5.27: DHS required for classification in the main zone, based on the uncertainty

versus DHS curves calculated for RT 311 at a quarterly and yearly production volumes.
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Figure 5.28: DHS required for classification in the southeast zone, based on the

uncertainty versus DHS curves calculated for RT 321 at a quarterly and yearly production

volumes.
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at a yearly production scale, the uncertainty is high in this rock type. The EUC is plotted
for a monthly scale in Figure 5.30. There is no many SMUs at DHS less than 400 m to
support a reliable calculation of the expected uncertainty curve at that DHS. The
re-sampling approach (Section 1.4.1) should be considered for a better decision making in

this zone.
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Figure 5.29: DHS required for classification in the northeast zone, based on the
uncertainty versus DHS curves calculated for RT 500 at a quarterly and yearly production
volumes. The required uncertainty level of 80% is not achieved at a quarterly production

scale.

5.4.1.4 South Zone

Despite the large number of SMUs in RT 200 and the fact that some SMUs show low
uncertainty, the average uncertainty is high and the EUC does not reach the required
uncertainty level for classification; see Figure 5.31 for the EUC and the uncertainty
distribution in this rock type. If any decision must be based on RT 200, then re-sampling
should be considered. Otherwise, due to the geological location of RTs 200 and 321

(Figure 5.32), the uncertainty curves of RT 321 can be used as reference.
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Figure 5.30: Uncertainty versus DHS curve at a monthly production volume for RT 500.

Uncertainty distribution - RT 200 10 __RT2 90 - Quarterly Scale
014 n=50170 . i oot
0.12 H =0.294 g 0.56
Py, =0.27 2 .
0.10 0=0.124 E "
& 0.08 @ 00
2. < b
E 0.06 § oal 0.32 ;SD‘
0.04 2 IS
&
0.02 ,g' 0.2 0.16
D‘: 0.08
0.0 '
%. 0.2 0.4 0.6 0.8 1.0 00

’ N 0200 400 600 800 1000 1200 1400
Uncertainty (Probability) Drillhole spacing (m)

Figure 5.31: Uncertainty distribution (on the left) and the uncertainty versus drillhole

spacing curve (on the right) for RT 200, calculated based on a quarterly production scale.
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Figure 5.32: Oblique view of the P50 based on global proportions in the final realization
from SIS of RTs 200 (on the left) and 321 (on the right). Simulated SMUs and the

drillholes are shown.

5.4.2 Uncertainty Visualization

Uncertainty versus DHS curves are useful to visualize uncertainty, providing more
information to support decision. Consider the monthly and the yearly production scale
curves for the entire deposit in Figure 5.33. SMUs located above the EUC are more
certain, and SMUs below it are less certain. The delta uncertainty for all SMUs is
calculated and plotted for a slice of the deposit. The SMUs with a level of uncertainty

greater or equal than 80% based on a yearly production scale are also plotted.

5.4.3 Learning Curve

The Learning Curve is calculated for the entire deposit at different production scales, see
Figure 5.34. The LCs show low rates for DHS greater than 1000 m and higher rates at
the DHS of 200-800 m for all scales. Below the DHS of 200 m the gain of information

diminishes and the LC drops at all scales.

The EUC and LC calculated at all production scales are plotted together in Figure 5.35. The
yearly production scale resolves faster a scale of variability for DHS greater than 500 m.

The steeper inclination of the monthly scale EUC for DHS below 300 m reflects in the LC,
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Figure 5.33: Plan view of the uncertainty for a slice of the deposit (at the bottom) based
on the monthly and yearly production scale uncertainty curves (at the top). More and less
certain SMUs are plotted for a monthly production scale at the bottom-left corner. SMUs
with a level uncertainty greater or equal than 80% for a yearly production scale are shown

at the bottom-right corner.
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Figure 5.34: The EUC and the Learning Curve calculated at different production scales

for the entire deposit.
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and the variability is resolved faster at this scale for this interval of DHS. Three regimes
of uncertainty are defined from the analysis of the EUC and LC. Large spacing regime is
defined for DHS greater than 800 m. Little uncertainty is explained in this regime. The
regime that the uncertainty is resolved faster is in the DHS interval of 200-800 m. Below

DHS of 200 m the contribution of extra drilling diminishes.

In order to understand the behavior of the EUC and LC in the DHS of 300-500 m, the
re-sampling approach may be considered. Drilling the simulated model at this DHS and
re-calculating the EUC and LC again would provide more information to understand the

flatness of the LC in that DHS interval.
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Figure 5.35: Regimes of uncertainty based on the EUC (continuous lines) and the LC
(dashed lines) calculated at different production scales. The scale of the Y-axis of the
Learning Curve is modified to improve visualization. The actual LC values are not

changed.
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Chapter 6: Conclusions and Future

Work

Drilling the correct amount is an important goal for any mining company. Drilling is the
most direct approach to access subsurface information of the grade continuity and
geological variability of a mineral deposit. Uncertainty is often evaluated by geostatistical
simulation of multiple realizations of the grade and rock types. Decisions are taken based
on the available data and level of uncertainty of the simulated models. Decisions can be in
terms of classification, understanding of local uncertainty and improvement of estimates.
Uncertainty is mainly affected by the amount of data, the local grade variability and the
local geology. Improved understanding of these explanatory local factors would improve

decisions on the amount of drilling required.

A relatively large production scale is relevant for resource evaluation, mine planning and
for planning future drilling campaign. Measures of uncertainty and the uncertainty versus
drillhole spacing curve are calculated for a relevant production scale. There is a level of
uncertainty for drillhole spacing and the analysis of the expected uncertainty curve and
the Learning Curve, in addition to the explanatory factors, lead to better decisions when

targeting the regular drillhole spacing.

The influence of the explanatory factors on uncertainty, as well as the effect of scale, have
been presented. The concept of the Learning Curve has been presented and practically
applied in the case study. The case study is important to demonstrate the concepts and
details of the uncertainty versus drillhole spacing study. The main contributions of this

thesis are discussed below.
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6.1 Topics Covered and Contributions

The focus of this thesis is not optimizing infill drillhole placement, but to support the
choice of the regular drillhole spacing that is related to a level of uncertainty. Important
concepts involving regular spacing are discussed in Chapter 1. Geostatistical models have
a capacity to assess how uncertainty improves with more data. They are generated at the
data scale and averaged-up to a relevant scale such as an SMU scale relevant for
selectivity. Assessing uncertainty at a production scale is desirable for long term planning
and drilling campaigns. Uncertainty is scale dependent and different approach to assess
uncertainty in different production scales are presented. The zero cut-off and fixed
volume approach makes the analysis of uncertainty less based on economics, focusing
more on the grade uncertainty. In this approach the uncertainty is assessed by using a
moving window with size representing an arbitrary production volume, centered at the
SMU. This approach has been used in the case study. Uncertainty and drillhole spacing
are analyzed in terms of the expected uncertainty curve (EUC). For a given DHS there is
an average uncertainty. The shape of the EUC changes with the measure of uncertainty
and scale considered. When the expected uncertainty versus drillhole spacing curve
cannot be reliably calculated for an interval of DHS, a re-sampling approach should be
considered. One model is sampled to create new artificial drillholes and uncertainty is

re-simulated to fill the gaps in the EUC.

The concept of the Learning Curve (LC) and the regimes of uncertainty are presented in
Chapter 2. The LC calculates the rate at which the uncertainty is resolved with additional
data; the LC is the derivative of the EUC. The LC methodology is developed based on
kriging. The effect of scale and variogram model on the LC is demonstrated. The
interpretation of the LC is in terms of resolving a scale of variability for different intervals
of drillhole spacing. In the conceptual calculation of the Learning Curve, stationarity is
assumed, the variogram model is fixed and only the drillhole spacing changes.
Conceptually, the variability is resolved faster at larger scales, although the rate that

uncertainty is resolved at a given DHS depends on the variogram model. However, in the
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second part of the case study, Chapter 5, it has been shown that the LC calculated based
on a monthly production scale is higher than the quarterly and yearly production scales for
relative small DHS. Practically, the analysis of the Learning Curve must be always in
terms of the calculated EUC. Although the expected uncertainty is lower for larger
volumes (higher probability to be within a tolerance of the mean), there may be intervals
of DHS that the EUC is steeper at a smaller scale. The LC provides tools to clarify the
information contained in the expected uncertainty curve. The calculation of the LC is
done analytically, when the LC is noisy the EUC should be used instead as reference for

decision-making.

Different measures of uncertainty, confounding and explanatory factors are discussed in
Chapter 3. The influence of the proportional effect, variogram stationarity and scale on
uncertainty are presented. The proportional effect depends on the histogram and its
skewness. Uncertainty is lower at large scale because high and low values are averaged
out. Uncertainty depends on the variogram continuity and it is usually higher in less
continuous areas. Relevant explanatory factors such as drillhole spacing, entropy, local
mean and local standard deviation are explained. These factors explain most of the local
uncertainty and their impact on the total variability can be calculated by statistical
regression analysis. Due to its capacity of detecting underlying relationships between

variables, ACE is the model that explains most of the uncertainty.

The first part of the case study, in Chapter 4, discusses the rock type and grade modelling.
Modelling the rock types with SIS allows transferring the uncertainty of the geological
model to the grade model. The multivariate grade modelling with PPMT is considered
because the multivariate distributions are non-Gaussian. The uncertainty assessed with the
multivariate workflow has a great impact on the drillhole spacing study, hence the
importance of a good model of uncertainty. In Chapter 5, ACE explains the local
variability due to the explanatory factors in the entire deposit and within rock types.
Drillhole spacing is the most important factor in most rock types. Uncertainty versus
drillhole spacing curves are calculated for the main rock types at different production

scales. The economic analysis of the equivalent grade, stripping ratio and expected grade
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along with the predominant rock type, support the zoning of the deposit for targeting
DHS. Four zones are defined and the EUC calculated at the quarterly and yearly
production scales are used to suggest classification of SMUs as measured and indicated
respectively. The re-sampling approach is an alternative for the northeast zone, once the
EUC is noisy and does not reach the required level of uncertainty for classification. The
use of uncertainty versus drillhole spacing curves for uncertainty visualization and
understanding of local uncertainty has been demonstrated. The Learning Curve is

calculated for the entire deposit and the regimes of uncertainty are defined.

The main contribution of this work is to present important concepts about drillhole
spacing and uncertainty to support decision regarding further drilling campaign and which
is the regular drillhole spacing required to reach an expected level of uncertainty. The
methodology applied for assessing uncertainty at different production scales, the analysis
of the explanatory factors to explain the local uncertainty and the interpretation of the
expected uncertainty curves and the Learning Curve can be used and applied to real

deposits. These concepts have been discussed and practically demonstrated in this thesis.

6.2 Future Work

Uncertainty versus drillhole spacing is a vast subject for research. Some contributions have

been made; however future work remains.

A study demonstrating the effectiveness of assessing uncertainty at an arbitrary production
volume from different approaches, such as those presented in Chapter 1, would be valuable
for this subject. The assessment of the uncertainty at a production volume requires a grid
in which calculations are done. This grid represent the arbitrary production volume and its
geometry could be made more or less rigid to match a specific criterion such as the tonnes
of ore processed monthly. For instance, a period based uncertainty could be analyzed. In
this case, the SMUs mined in the same period but from different locations of the mine could
be combined into a production volume for that period, and the uncertainty could be based

on the period instead of a fixed grid location.
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The expected uncertainty curves are calculated based on a regular drillhole spacing. The
applied drillhole spacing might be corrected based on the local anisotropy. For example, if
the regular drillhole spacing that classifies SMUs as measured is 300 m and the anisotropy
in this rock type is 2:1 at N90°E azimuth direction, then the drillhole spacing should be
600 m at the azimuth direction and 300 m at the direction perpendicular to it. The directly

consideration of the anisotropy on the EUC would be valuable.

A number of factors impact the capacity of a model to represent the true uncertainty such as
data quality and quantity. Parameter uncertainty has not been considered in the case study.
If there are too few data to get a good variogram then uncertainty in the variogram should be
considered. Uncertainty in the data should also be added to the workflow. Getting a good
uncertainty model is required to avoid bias in the expected uncertainty curves. In the same
context, non stationarity affects local and global uncertainty. Trends will likely change the

uncertainty versus drillhole spacing curves.

The time scale of mining is also a source of uncertainty. The larger production volumes
may not be well defined at early stages of the mine, which results in uncertainty in the grid
definition (Silva, 2015). The drillhole spacing defined from EUC calculated at a certain
grid might change if the arbitrary production volume changes its configuration, even if the

volume or the number of SMU within that volume remain the same.

The impact of different data types on uncertainty versus drillhole spacing curves is an
interesting avenue for further research. Different drilling methods would have different
contributions on the EUC. It might be necessary to analyze different data types in different
uncertainty versus drillhole spacing curves. Moreover, exhaustive secondary data such as

geophysics may reduce the drilling requirements.

Finally, in this thesis, the drillhole spacing required to achieve an expected uncertainty
is given without considering costs. There is a need for some economical analysis when
collecting data. The Value of Information (Bratvold et al., 2007; Warren, 1983) in addition

to the Learning Curve could be used to support the decision of acquiring more information.
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6.3 Recommendations

Drillhole spacing is used, in this thesis, as the measure of data availability by the author's
choice. Drillhole density can replace the drillhole spacing, in all the uncertainty versus
drillhole spacing plots, without changing the nature of the analysis. Drillhole density
provides a direct measure of the cost of drilling, once drillhole density is given in terms of
the number of drillholes within the considered area. In cases where drilling geometry and
spatial oriental are complex, reliable drillhole spacing and density calculations are
difficult. In such cases, the distance to the nearest drillhole could be considered. The
interpretation of the uncertainty versus the geometric criteria curves must be done

consistently and accompanied with professional expertise.
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Appendix : Software

The software were developed during the case study and proposed methodology for data
spacing and uncertainty, discussed in this thesis. The GSLIB codes cover ore and waste
SMU management, uncertainty assessment in different production scales and sampling from

a grid to generate new sets of drill holes.

The new codes support modellers to better understand uncertainty in their data spacing
studies, giving more options when incorporating economic analysis. These tools go
beyond the simple management of realizations, they provide users the possibility to
quantify uncertainty in the economic variables based on any production scale, for a fixed
volume or not. The parameter files are explained below and a brief explanation of the

calculations is given.

Ore and Waste Indicator (Owind) program assigns to all SMUs an indicator for ore (1) and
waste (0) based on the equivalent grade and cut-off. The number of variables to be used
in the equivalent grade calculation do not need to be the same in all files, although the size
(number of SMUs) must be the same. The equivalent grade is given by the summation of
the variables given a multiplicative factor, power (exponent) and a constant. The use of an

exponent is just for flexibility when calculating the equivalent grade.

As example, if the equivalent grade is given in Equation A.1 below, the parameters are:
factor 1 = 0.25, power 1 = 2; factor 2 = -1.5, power 2 = 1; factor 3 = 1, power 3 = 1; and

constant = 0.01.

EquivalentGrade = 0.25 x Varl? — 1.5 x Var2 + Var3 + 0.01 (A.1)

If a SMU has equivalent grade greater or equal than the cut-off it receives the indicator of

1 (ore), otherwise it is considered waste and gets 0 as indicator. There is no grid definition,
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the program reads line by line from the input files, thus single or multiple realizations are

read the same way.

The number of files are defined in line 4, for each file a different trimming limits can be
applied, lines 5-9. Variable factors and powers are defined as they are declared, thus variable
1 is the first variable from the first file and so on. The constant is given in line 14, if no
constant is applied to the equivalent grade, set its value to zero. The cut-off and output file

are in lines 15 and 16 respectively.

The output file from Owind is used as one of the input files in the other two codes, PRSR
and SMU _unc.

Parameters for Owind
sk K ok oK o ok oK ok ok K ok oK oK K ok ok K K K
START OF PARAMETERS:
2 - number of files to manipulate
./inputs/au_smu.out - file with first variable
-998 1.0e21 - trimming limits
1 1 - number of variables and columns
./inputs/cu_ni_smu.out - file with second variable
-998 1.0e21 - trimming limits
2 1 2 - number of variables and columns
1 3 - Var_1 (factorl; powerl)
2 2 - Var_2 (factor2; power2)
-1 2 - Var_3 (factor3; power3)
0.1 - constant
0.25 - cut-off
./outputs/owindicator.out - output with ore/waste indicator

Production Scale Resources (PRSR) calculates the resources for every production volume.
This code can be better understood as similar to block average in which some statistical
calculations are done. The ore/waste indicator file from Owind is used as input, since this

code needs the variable values in ore SMUSs and also calculates some statistics for waste.
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The grids must match, there is no calculation of fraction of blocks. All input files must be

in binary format, Barnett and Deutsch (2014), the outputs are in ASCII format.

The production scales cannot overlapped, all SMUs falling inside the production volume
are used in the calculations. Besides the resources, as expected value of tonnes of ore, this
code calculates the expected grade of all variables, the expected quantity of metal and their
standard deviation and probability to be around a percentage of the mean. The expected
tonnes of ore are also calculated by lithology if the categorical model is given as input. A
production volume that has no ore will have the standard value of -999 for expected grade
of a variable, although the quantity of metal is set up to zero. Moreover, the expected grade

of a variable is weighted by the tonnes of ore.

The ore and waste file is given in line 4, the number of variables is defined in line 5. In line
6, besides the ore/waste variable, the columns of the economic variables must be given, the

equivalent grade is not an input for this code.

The input grid refers to the SMU grid, lines 8 to 10. The options for a file with the SMUs
densities are in lines 11 and 12, this file must have the same size of the other inputs, hence
the same number of realizations. If this file is not provided, then a standard density will be

used instead, in line 13.

Users have the option to average SMUs that are not adjacent (regular grid), given a file with
the different production scales indicator for all SMUs, line 14. All indicators (their integer
IDs) are read from the first realization if multiple realizations are used, there is no need to
specify in the parameter file the many production volumes IDs, it is expected that every
SMU have an indicator value to identify the production volume it belongs to. The option
for multiple realizations or single model is given in line 16. If multiple realizations, then

this file must have the same size of the other inputs.

If the file with categorical realizations is given in line 17 then the number of categories and
their integers must be provided in line 19. This file must have the same size of the other

inputs, in the same grid scale defined for the input (in lines 8 to 10).
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The statistical parameters are given in lines 20 and 21. If the number of quantiles is set to
zero, then no probability is calculated and written in the output file. Cumulative distribution
functions that cannot be calculated receive a value of zero. Start and finish realizations are

set in line 22, if input files have only one realization, then the summary file is not written.

The output grid refers to the regular production scale grid if no irregular volume
production was input in line 14. The summary output file contains the average (expected)
calculations over all realizations, whereas the detailed output file keeps the information of

all realizations, lines 26 and 27.

The block index option, in line 28, will add additional three columns to the output files with
the indices 1, j and k in GSLIB standard format for all production volumes, with the block

with index 1 =) =k =1 as the first block on the bottom left corner of the grid.

Parameters for Production Scale Resources

3k 3k 3k >k 5k >k 3k 3k %k 5k %k 3k %k %k 5k %k 3k %k 5k 5k %k 3k %k 5k %k %k >k %k 3k %k %k >k %k 3 %k %k % %k % % %k

START OF PARAMETERS:

./inputs/owind. gsb - input file
4 - number of variables
1 345 - columns for ow ind and variables

-998 1.0e21

trimming limits

4 2.0 4.0 - Input size: nx,xmn,xsiz
4 2.0 4.0 - ny,ymn,ysiz
4 2.0 4.0 - nz,zmn,zsiz

density.gsb density file

1 - column for density variable

3.00 - density (if no density file is given)
nofile - irregular production indicator file

1 - column for volume production indicator
1 - 1=multiple realizations, O=single model
./inputs/sis.gsb - categorical variable realizations file

1 - column for categorical variable

4 200 300 400 500 - number of categories, categories
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20
21
22
23
24
25
26
27
28

3

15.0 - probability to be within % of mean

2 0.1 0.9 - number of quantiles, probabilities

1 100 - start and finish realizations

2 4.0 8.0 - output size: nx,xmn,xsiz

2 4.0 8.0 - ny,ymn,ysiz

2 4.0 8.0 - nz,zmn,zsiz
./outputs/summ. out - output with summary volume production
./outputs/detai.out - output with detailed volume production
1 - output block index (0=no, 1=yes)

SMU Uncertainty (SMU unc) has options similar to PRSR. Whereas PRSR will average
all SMUs inside production scales that do not overlap, SMU unc will calculate the
uncertainty in the production scale at a SMU resolution. The uncertainty in a SMU is
calculated considering all blocks inside the production scale volume (the window),
centred in that SMU. The uncertainty calculates in each SMU is then based on the
surrounding blocks, and not on the whole fixed production volume from PRSR. All input

files must be in binary format, although the outputs are in ASCII format.

The parameter file for SMU is the same of PRSR, however there is no option for irregular
volume productions. The production scale size is not given by number of blocks and block
sizes (the regular grid format), users have to input the volume size by x, y and z length,
in lines 20 to 22. If the SMU size is 12 m x 12 m x 12 m and the production volume is
composed by 9 SMUs in a cube (3x3x3 SMUs), then the production size to be input in the

parameter file is xsizo = ysizo = zsixo = 36 m.

The block index option for this code can output the standard format 1, j and k, and also the
SMU number, following the GSLIB standard format, with the SMU with index i=j=k =

1 as the first block on the bottom left corner of the grid, in lines 25 and 26.

Parameters for SMU Uncertainty

>k 3k 3k >k 5k >k 5k %k >k 5k %k 5k %k >k %k %k 5k %k 5k %k %k >k %k %k %k %k %k %k %k %

START OF PARAMETERS:
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10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

./inputs/owind.gsb - input file

4 - number of variables

1345 - columns for ow ind and variables
-998 1.0e21 - trimming limits

6 1.0 2.0 - SMU grid: nx,xmn,xsiz

6 1.0 2.0 - ny,ymn,ysiz

1 0.5 1.0 - nz,zmn,zsiz
./inputs/density.gsb - density file

1 - column for density variable

3.00 - density (if no density file is given)
./inputs/sis.gsb - categorical variable realizations file
1 - column for categorical variable

4 200 300 400 500 - number of categories, categories
15.0 - probability to be within % of mean

2 0.1 0.9 - number of quantiles, probabilities

1 100 - start and finish realizations

6.0 - Production size: xsizo

6.0 - ysizo

1.0 - zsizo
./outputs/summ. out - output with summary volume production
./outputs/detai.out - output with detailed volume production
1 - output block index (0O=no, 1=yes)

1 - If 1, block index (0) or number (1)

Sampling from grid programs can be easily written in languages other than Fortran. The
advantage of using Grid Sample, Gsample, is the fast alternative and better handle of large
files that Fortran provides. Users have the option to sample any realization from a file and
also sample from a specific region inside the grid. Azimuth and dip were also added as

option, regular and irregular sampling are available as well.

There is no interpolation in this code, if a sample falls anywhere inside a block, then its

value is given by the block value.
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The sampling grid will define the volume to be sampled, it is not given by number of blocks
and block size, instead it is given by minimum and maximum values of coordinates. Users
have then the option to have the collar of a drill hole starting from the top of a block or from
inside of it. As example, in GSLIB the bottom and top of the grid given in Z by nz = 10,
zmn = 2.5 and zsiz = 5 are respectively 0 and 50. The user that wants a new drill hole with
collar equal to 50 should then set the zmax option to 50. If the user wants the collar to be
in the first block of the top of the grid, but not at the top of that specific block, one should
set up zmax to a value less than 50 and greater than 40. The collar will coincide with the

center of the block if zmax is set up to 45.

To clarify, a sample that falls at the top of a block belongs to the block below. In the example
above, a sample that falls in z=40 belongs to the second block from the top and not to the
first one. This is also valid when sampling blocks from left to right, a sample that falls

between two blocks belongs to the right side block.

Users can sample as many files as they want, in line 4. The files to sample and the variables
options are given in lines 5 to 8. The realization to sample is in line 9, choose one if the

input files are from a single model.

The input grid is given in GSLIB format, lines 10 to 12. The option for regular or random
sampling is in line 13, if random sampling is chosen then an extra option is provided to
assure a minimum spacing between the new drill holes created, otherwise they are created
completely random and more than one drill hole can sample the same block. If regular grid,
users have to specify the spacing in X and Y directions and also fix the collar of the first
drill hole. All other drill holes will be created respecting the spacing in X and Y. The first
drill hole must be inside the sampling region, lines 14 and 15. If irregular sampling, the

maximum number of new drill holes must be given, line 16.

Azimuth and dip are the same for all new drill holes, regardless of the option for regular or
random spacing, in line 17. Sample spacing downhole, or the distance to sample in direction
Z, s defined in line 18. New drill holes can have their IDs starting from the number defined

in line 19. The drill hole coordinates will have the precision given in line 20, as the input
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grid informations are read in double precision, this will avoid coordinates to have lots of

decimal places.

The sampling grid defines the region inside the input grid to sample, lines 21 to 23. If users
want to sample the whole input grid, then set them minimum and maximum values in order
to cover exactly the input grid dimensions. To sample only the center of the blocks, in the
example given above, set up the zmax = 45 and sample spacing downhole to 5. In other
words, to sample only the center of the blocks, choose the sampling distance equal to the
block size and set up the minimum and maximum coordinates to coincide with the center

of the blocks from the input grid.

Output file is defined in line 24. There are two options for a keyout file, lines 25-27. This
keyout file has the same size of the input grid, the same number of blocks. The option
0 (input grid inside sampling grid) will assign the indicator of zero for all blocks of the
input grid that are outside the sampling grid and the indicator of one for blocks inside the
sampling region. The option 1 (input blocks with assays) will output the indicator of zero

for all blocks that were not sampled and the indicator of 1 otherwise.

The extra option defines the minimum and maximum spacing in X and Y (collar) directions

when a random sampling is used. This option can be used to avoid sampling a block more

than once.
Parameters for gsample V2.000
3k sk ok ok ok ok ok ok sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok ok ok ok ok
START OF PARAMETERS:
2 - Number of files to sample
./inputs/smul.out - File with first grid
1 1 - Number of variables and columns
./inputs/smu2.out - File with second grid
1 1 - Number of variables and columns
1 - Realization to sample
100 5.0 10.0 - Input grid: nx,xmn,xsiz
100 5.0 10.0 - ny,ymn,ysiz
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13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

50 5.0 10.0 - nz,zmn,zsiz
0 - Sampling spacing (O=regular, l=random)
25 25 - If 0, spacing in X, Y
5.0 5.0 - If 0, X and Y of the first sample
10 69069 - If 1, number of DHs and seed number
0 90 - Azimuth and dip
5 - Sample spacing downhole
120 - Starting drill hole ID for new drills
2 - Decimal places (precision, up to 6)
5 95 - Sampling grid: xmin, xmax
5 95 - ymin, ymax
5 45 - zmin, zmax
./outputs/new.out - Output file with new drill holes
0 - Output keyout file? (O=no, l=yes)
0 - If keyout (0 or 1, see notes)
./outputs/key.out - Keyout file
KEYQUT :
O=input grid inside sampling grid, l=input blocks with assays
OPTIONAL Extra Options for random drill sampling
(sampling option 1)

NOTE: if extra option is used sampling will only occur

in middle of blocks
0 - Use Extra Options (0 = NO, 1 = YES)
15 15 - Minimum spacing in x and y direction (dont use 0)

The following code transforms a 3D grid to a plan, for a single model or multiple
realizations. The final number of blocks is then reduced to the number of blocks in X and
Y directions, nx and ny in GSLIB format. All calculations are done vertically in the model.

This code calculates the stripping ratio, economic value, predominant category, expected
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drill hole spacing, and the expected grade of variables. The predominant rock type is the

mode of all indicators. The files with categorical model and drill hole spacing are optional.

Stripping ratio, economic value and expected grade are calculated from the ore/waste file
from Owind. The expected grade is not weighted by any other variable such as tonnes of ore;
all SMUs are assumed to have the same density. Regarding the economic value calculation,
there is one single value given to all waste SMUs and a weight given to all ore SMUs. The
economic value, Equation A.2, is given by the summation of all waste and ore SMUs with
their weights. All waste SMUs receives the same value, whereas the economic values of

the ore SMUs depend on their equivalent grades.

Consider the simple example with only two blocks, one ore and one waste, with the
equivalent grade of the ore equal to the cut-off of 0.25. Using the value of -1 to waste and
the weight of 4 to ore, the economic value calculated for these two blocks would be zero
(0), -1 plus 4 times 0.25. The economic value can be standardized with the maximum

value throughout the grid.

Value = WasteV alue x Z SMU syaste+Weq.Grade X Z EqGradey,.e ¥V 0<n<nz
(A.2)

Ore and waste file is given in line 4, variable definitions are in lines 5 and 6. The
economic value for waste and the weight of equivalent grade are defined in line 7, option
for standardize the output in line 8. File with categorical model and their integer codes are
in lines 9 and 10, this file can have one or multiples realizations, defined in line 12. It is
not expected multiple realizations of drill hole spacing, in line 13 and 14. Only the
number of blocks from the input grid is required, line 16. The realizations for calculations

and output file are given in lines 17 and 18.

Parameters for 3d2plan

>k 3k 3k >k 5k %k 5k >k 5k %k %k >k %k 3k %k %k %k %k %k %k %k %

START OF PARAMETERS:
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11
12
13
14
15
16
17
18

./in/owind. out - File with ore/waste indicator

1 2 - Ore/waste and equivalent grade columns

3 3 4 5 - Number of variables and columns

-1 4 - Value for waste and equivalent grade weight
1 - Standardize economic value? (l=yes, O=no)
./in/sis_smu.out - Categorical model file (optional)

3 100 200 300 - Number of categories and their integer codes
1 - Variable column

1 - 1=multiple realizations, O=single model

./inputs/dhs.out - Drill hole spacing file (optional)

1 - Variable column

-998 1.0e21 - trimming limits

100 100 10 - Input grid: nx,ny,nz

1 100 - start and finish realizations

./out/3d2plan.out - Output file

Grid Moving Window program, Gmwind, calculates moving window statistics such as the
mean and standard deviation. Fortran is a fast alternative to other software as Matlab and
Python. It was written to calculate local statistics similar to those from SMU unc code, the
local mean in a SMU given a production volume (the window size). A block is considered

inside the window only if at least its center is inside of it.

The number of files, number of variables and their columns are defined in lines 4 to 8, these
files must have the same size, although the number of variables used in calculations can be
different in them. The input grid, in GSLIB standard format, is given in lines 10-12. The
realization for calculation, if multiple realizations files are given, is set up in line 13, use
1 if the input files are single models. This code does not perform calculations through all

realizations, users have to choose the realization they want.

The window size is defined in terms of total length of X, Y and Z directions, line 14. Output

file in line 15.

T 1
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Parameters for gmwind

>k 3k 3k %k >k 3k > >k %k 5 %k %k 3k % %k >k % *k % % Xk

START OF PARAMETERS:

2 - Number of files
./inputs/smul.out - File with first grid

1 1 - Number of variables and columns
./inputs/smu2.out - File with second grid

1 1 - Number of variables and columns
-998 1.0e21 - trimming limits

100 5.0 10.0 - Input grid: nx,xmn,xsiz

100 5.0 10.0 - ny,ymn,ysiz

50 5.0 10.0 - nz,zmn,zsiz

1 - Realization for calculations

30 30 30 - Window size: xsizo,ysizo,zsizo

./outputs/mov_wind.out OQutput file
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