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Abstract 
Canada has a publicly funded health system and heterogeneous population.  There are 

segments of this population which account for substantial health care utilization and adverse 

outcomes.  Machine learning (ML) approaches can assist public health intervention programs to 

mitigate health system costs and improve patient outcomes, particularly for segments within 

Canadian society that qualify as at-risk.  The specific ones to be studied in this PhD are 

prescription opioid users, older adults taking benzodiazepines, and people with heart failure 

(HF).  Identifying high risk individuals within these segments using ML methods trained on 

administrative health data as well as assessing prediction performance and value to inform 

health system planners are the objectives of this PhD program.  This PhD studied outcomes 

related to admissions and deaths and presented findings on potential cost savings of ML 

assisted programs. 

The main findings in this thesis were: 

1. Machine-learning classifiers, especially incorporating hospitalization and physician 

claims data, have better predictive performance compared to guideline or prescription 

history only approaches when predicting 30-day risk of adverse outcomes pursuant to 

an opioid dispensation. Prescription monitoring programs and health departments with 

access to administrative data can use ML classifiers to effectively identify those at higher 

risk compared to current guideline-based approaches, 

2. Despite predicting readmissions in patients with HF better than the LaCE, even the best 

ML model trained on administrative health data (XGBoost) did not provide substantially 

informative prediction performance as it only generated a moderate shift from pre to 
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post-test probability.  Health systems wishing to deploy such a tool should consider 

training ML models with additional data.  Adding other techniques like Natural Language 

Processing, along with ML, to use other clinical information (like chart notes) might 

improve prediction performance, 

3. Developing ML models using only administrative health data may not provide health 

regulators with sufficient informative predictions to use as decision aids for potential 

interventions, especially if considering daily or quarterly classifications of 

benzodiazepine risks in older adults.  ML models may be informative for this context if 

yearly classifications are preferred.  Health regulators should have access to other types 

of data to improve ML prediction, and 

4. Prescription drug monitoring programs can use ML classifiers to identify patients at risk 

of adverse outcomes from opioids and potentially reduce health-care costs by 

intervening on high-ranked predictions.  Better access to available administrative and 

clinical data could improve the prediction performance of ML classifiers, especially if 

probability thresholds are important, and thus expand opioid stewardship efforts and 

further reduce costs. 

In conclusion, the findings suggest that ML methods may demonstrate value in opioid 

stewardship programs with limited benefits in predicting adverse outcomes in older adults 

taking benzodiazepines and readmissions in people with HF.  Health systems wishing to 

integrate ML into their program planning may benefit from additional sources of data to 

train ML models.  Data governance, bias and ML transparency are key issues requiring 

future research. 
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Chapter 1: Introduction 

Statement of the Problem 

 Canada has a publicly funded health system and heterogeneous population.  There are 

segments of this population which account for substantial health care utilization and adverse 

outcomes.  Indeed, evidence from various jurisdictions has shown that small proportions of at-

risk groups in our population consume the majority of health system resources and it is 

important to mitigate this effect to sustain our health care system and improve patient 

outcomes1. 

 There are many of these at-risk patient groups in our population.  Older adults and 

those with chronic diseases are prominent examples of groups at risk of high health care 

utilization 2-5.  Furthermore, emergent health care issues like the opioid crisis have also led to 

increased use of health care resources6.  Consequently, all these groups have also been 

identified as high risk for adverse outcomes such as emergency department (ED) visits, hospital 

admission, or death leading to substantial burdens on both the health system and individuals6-9.  

Thus, health systems are interested in reducing adverse outcomes in these high-risk groups to 

save finite resources. 

 Given the impact of these at-risk groups on health care resources and adverse 

outcomes, interventions that focus on them could significantly improve patient outcomes and 

reduce health system spending, a common conclusion drawn from the published literature1,10.  

Accordingly, the first step in this proactive approach requires a mechanism to identify these 

high-risk groups at an individual level so that subsequent interventions can be targeted 

appropriately. 

 Supervised machine learning (ML) prediction is one such mechanism which can identify 

individuals in these groups at high risk of adverse outcomes11.  This approach uses computer 

algorithms to build predictive models at a population level that can make use of large amounts 

of available data within a well-defined framework12-15.  Furthermore, the ML process allows for 

simple deployment for population health and surveillance purposes.  ML approaches are 
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increasingly being applied in population health studies to predict health outcomes, in which 

these population-level models are used to identify high-risk groups, direct preventative 

interventions and inform health system policy-makers16.  However, at the time of writing, there 

are no consensus guidelines on how to assess the effectiveness of ML prediction in this setting, 

making ML prediction reporting unclear and inconsistent16-18 illustrating a major knowledge 

gap.   

 In summary, ML prediction approaches can assist health systems wishing to reduce 

costs and adverse outcomes identify high-risk groups at an individual level to target mitigating 

interventions.  

Study Objectives 

The primary objective of this PhD program is to use ML prediction methods to identify 

high risk people within certain populations.  We will predict outcomes related to ED visits, 

admissions, and/or death.  Health jurisdictions could use these predictions for their respective 

intervention programs.  Because there are no consensus reporting guidelines for ML prediction, 

our secondary objective is to present methods to assess the performance, utility and value of 

ML classifiers for use in population level studies and intervention programs. 

In this PhD project, the at-risk populations we will study are opioid users, people with 

heart failure and older adults, all of which are high users of the health care system.  Our studies 

will demonstrate the capabilities of ML prediction classifiers in these at-risk populations.  

Specifically, we will develop and validate ML classifiers that attempt to predict 30-day risk of 

adverse outcomes pursuant to an opioid dispensation, 30-day risk of readmission after hospital 

discharge in people with heart failure and 30-day risk of adverse outcomes pursuant to a 

benzodiazepine dispensation in older adults.  Finally, we will develop and validate a ML 

classifier based on our previous work which can assist the opioid stewardship mandate of the 

College of Physicians and Surgeons of Alberta to identify at-risk Albertans who are prescribed 

opioids.   

To accomplish our secondary objective, we will assess the ML classifiers using metrics 

commonly used in clinical prediction literature which is not commonly done in ML prediction 
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studies18-22.  Furthermore, we will conduct a simple cost analysis to simulate potential savings 

to a health system in our final primary objective study. 

Thesis Submitted for Partial Fulfillment of PhD 

 This thesis consists of a review of ML methods and background (Chapter 2).  It is 

followed by four studies (Chapters 3, 4, 5, and 6) designed to address the study objectives. 

 Chapter 2 consists of material retrieved from the literature that provides a general 

background on ML.  This section provides details ranging from the definition and types of ML, 

different ML algorithms, benefits of ML prediction, how to assess ML prediction and limitations. 

 In Chapter 3, results of the first study are presented.  A ML classifier was created and 

assessed to predict risks from prescribed opioids.  The rationale behind this study is that 

Canada has among the highest rates of opioid prescribing in the world and part of the response 

to address the consequences of this is to endorse safe use guidelines and opioid stewardship 

via prescription drug monitoring programs6,7,23,24.  This study was published in BMJ Open 

(doi:10.1136/bmjopen-2020-043964). 

 In Chapter 4, results of the second study are presented.  Here, a ML classifier was 

developed and validated to predict risk of readmissions in the heart failure population in 

Alberta, Canada.  Heart failure is a chronic disease identified as having high rates of potentially 

avoidable readmissions resulting in substantial burdens to both health systems and 

individuals4,9,25.  The work from this study was published in the Journal of Cardiac Failure (doi: 

https://doi.org/10.1016/j.cardfail.2021.12.004).   

 In Chapter 5, results from the third study are presented.  A ML classifier was constructed 

to predict risk of adverse outcomes in older adults pursuant to a benzodiazepine dispensation.  

The rationale for this work is that older adults are prescribed high amounts of benzodiazepines 

which carries substantial risks26-28.  A version of this work has been submitted for publication 

and is under review. 

 In Chapter 6, results from the fourth study are presented.  In this work, a ML classifier 

was developed specifically for and with the College of Physicians and Surgeons of Alberta 

https://doi.org/10.1016/j.cardfail.2021.12.004
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(CPSA).  The rationale behind this study is that the CPSA wanted a proof-of-concept ML 

classifier which could assist with its opioid stewardship mandate.  A simulation was performed 

to demonstrate potential cost savings to the health system based on ML predictions.  A version 

of this work is currently being considered for publication. 

 In Chapter 7, the final chapter, general discussion and conclusions are presented.  This 

includes an overview of the research, summary of results from the projects, discussion on the 

strengths, limitations and importance of the research, and directions for future research. 
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Chapter 2: Machine Learning Background 

Definition of ML 

 The definition of ML varies by source and is vague, especially since the term ML is 

intermingled with data science and artificial intelligence (AI) (Figure 2.1).  The term “AI” is used 

rather loosely and generally refers to the broad discipline of creating intelligent machines such 

as self-driving vehicles and digital personal assistants29,30.  ML is a subset of AI and refers to 

systems (computer algorithms) that can learn by themselves from data and essentially is about 

discovering patterns and learning from those patterns to provide value beyond just analysis 30-

32.  Data science is the field that understands how to extract value from raw data32; ML is driven 

by data science33.  Deep learning is a subfield of ML focusing on neural network algorithms 

which attempt to simulate the behaviour of the human brain using large amounts of data. 

 

Figure 2.1.  The relationship between ML, AI and data science. ML: machine learning; AI: 

artificial intelligence; DL: deep learning.  Copyright © 2019, Cognilytica. 

Patterns of AI 

 There are 7 patterns, or types of AI32.  This PhD project is involved with only one 

pattern, namely, predictive analytics & decisions (see Figure 2.2).  In this PhD program, ML 

classifiers will be constructed using administrative data and evaluated to eventually aid in 
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decision making in the public health arena.  It is important to note that based on need, data and 

end-users, other patterns of ML could be followed in the public health world, such as natural 

language processing34 (chart notes as a source of data) which falls under the pattern 

“conversation and human interaction”. 

 

Figure 2.2. The 7 patterns of AI/ML.  Copyright © 2019, Cognilytica. 

ML Process 

Defining ML also involves describing the ML process and ML in the context of precision 

medicine/public health.  Various organizations have laid out a ML process lifecycle and share 

common elements.  This PhD program followed the Alberta Machine Intelligence Institute’s 

(AMII) model which focuses on business understanding, data acquisition & understanding, ML 

modeling & evaluation, and delivery (see Figure 2.3). 
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Figure 2.3.  The ML process defined by the Alberta Machine Intelligence Institute. 

This ML process lifecycle is very similar to the knowledge to action framework from the 

Canadian Institutes of Health Research (CIHR)35 (see Figure 2.4).  This is important because 

these PhD ML projects follow the ML process lifecycle which also make it aligned with CIHR’s 

knowledge translation pathway.  The common elements here are that ML classifiers are created 

based on public health need and input for the purpose of deployment into action. 
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Figure 2.4.  Knowledge-to-action framework from CIHR. 

Finally, it is important to place ML in the context of precision medicine and public health.  The 

general scheme for this was highlighted at an AI and population health conference33: 

1. Identify a heterogeneous population 

2. Collect individual person level data 

3. Use ML to stratify some type of risk at the person level 

4. Create a personalized treatment plan or a targeted public health intervention 

5. Evaluate treatment or intervention effect 
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ML Spectrum 

 Another way, and more convenient, to define ML is with the concept of the ML 

spectrum.  It is useful to describe ML as existing on a continuum between fully human guided to 

full data guided analysis and this trade-off, human specification vs data is defined as the ML 

spectrum36.  This description of ML categorizes many existing clinical decision aids developed 

using “traditional statistical methods” and heavy human input (e.g., Framingham risk, CHADS 

score [congestive heart failure, hypertension, age>75, diabetes, stroke]) on the ML spectrum, 

albeit low.  ML methods are a natural extension of traditional statistical approaches in which 

the decision aids are created more from data than by human input. 

Types of ML Algorithms 

 A variety of ML algorithms for use in ML prediction have been studied in the literature37 

and general explanations of them are common11,34.  A recent scoping review found that the 

most frequently used ML algorithms for prediction in population health were neural networks, 

support vector machines, linear models and tree-based methods16.  The projects in this PhD will 

align with this finding by using these algorithms.   

ML Methods 

 There are 3 types of ML schemes: unsupervised, supervised and reinforcement 

learning11.  This PhD will only use supervised learning which involves training a model with 

input data (features) and its corresponding labels (outcomes).  This ML scheme attempts to 

determine a relationship between the input data and label associated with the data. 

 Properly identifying the datasets used to construct ML classifiers is important because 

there is a lot of confusion regarding nomenclature.  This PhD will be consistent with the medical 

ML community and use the following definitions11: 

• Development set: a data set used for developing the ML model which is further split into 

the training and tuning sets, 

• Training set: a subset of the development set that is used to develop the ML model 

where training is performed by updating the model parameters iteratively until the 

model optimally fits the data, 
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• Tuning set: a subset of the development set that is used to tune the hyperparameters of 

a model.  In the general ML community, this set may be referred to as the validation set, 

• Validation set: a data set that is independent from the training or tuning set.  Validation 

sets are used to evaluate model performance before it can be deployed.  The validation 

set should not be used for ML model training or hyperparameter tuning. In the general 

ML community, this set may be referred to as the test set. 

Overfitting, in which a ML model fits the development dataset well but does not generalize 

to out-of-sample data, is a concern for all clinical prediction tasks38.  In ML dialect, this is also 

known as the “bias-variance trade-off”; high bias implies incorrect predictions (underfitting) in 

the development and validation sets while high variance suggests the development dataset fits 

well to the ML model while the validation set does not32.  ML methods include strategies to 

assess and minimize overfitting.  K-fold cross validation is one such technique in which the 

development set is split into k groups where each of the k groups is used as a tuning set while 

the other groups are used for training.  Hyperparameters, which are unique to each ML 

algorithm, are fixed parameters determined before an algorithm is trained and are optimized in 

each of the k test sets11,32,39.  Regularization is used in conjunction with k-fold cross validation 

and involves early stopping (terminating the training process before overfitting occurs for 

neural networks), ensemble technique (combining and averaging multiple ML model outputs) 

and parameter regularization (shrinkage of parameters; e.g., lasso or ridge logistic 

regressions)11,40.  All these techniques will be used in this PhD study; hyperparameters will be 

tuned using k-fold (k=10) cross validation. For each ML algorithm, the ML domain specialist will 

start the modeling process with the default set of hyperparameters provided.  The optimal set 

of hyperparameters is where bias and variation are minimized such that the ML models are not 

overfitted to the development set data and are therefore assumed to be more generalizable to 

out-of-sample scenarios.  

Data and ML 

In the ML community, it is well known that the actual ML algorithms are quite simple and 

the complexity comes entirely from the data.  Indeed, ML methods are a “data-first” approach.  

In fact, ML projects, including this PhD project, are essentially data management projects and it 
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is estimated that data preparation occupies at least 80% of the space in the ML process 

lifecyle32.  The “quality” of the data is extremely important because even if the best predictive 

algorithm is suppled with inaccurate inputs, the result will be wrong predictions in the form of 

false positives and negatives41.   

The literature indicates that data falls into one of five categories and health systems should 

have access to all of them34.  Broadly speaking, these data categories are measures of biology 

(e.g., genomic data sets), measures of context (e.g., geospatial data), administrative health data 

(e.g., electronic health records), personal monitoring (e.g., frequent device monitoring), and 

measures from effluent data (e.g., internet search term results).  Data can be further delineated 

as structured (pre-defined data model) vs. unstructured (no pre-defined data model)32.  Health 

systems could benefit by having access to this entire taxonomy of both structured and 

unstructured data16,32,34.   

A recent review found that most ML prediction studies in population health used 

structured, multi-linked administrative data16 and this PhD program is no exception due to the 

available data in the province of Alberta. This PhD program will solely use administrative health 

data by linking data and outcomes from hospital records, emergency department visits, registry 

files, vital statistics, laboratory test results, pharmaceutical and physician claims histories.   

The format, or organization, of the data used in ML model development can vary.  Each line 

of data can be represented at the person or instance level, as is seen in the ML prediction 

literature37,42.  In the former, each line is a unique person where in the latter, each line could be 

an admission or drug dispensation event.  At the instance level, a person could be represented 

in multiple instances, creating correlations in the data.  In some studies with multiple instances 

per person, the researchers arbitrarily picked the first occurrence to create a data set at the 

person level42.  Still, others43,44 have organized their ML data similarly to discrete-time survival 

analysis studies, a method convenient for longitudinal data collected in rolling windows at the 

person level.  Nothing in the literature suggests that one type of data organization is superior to 

another in terms of prediction performance.  Indeed, the data format must align with the 

research question being studied.  This PhD program organized data at the instance level to align 
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with the research questions and did not arbitrarily drop instances to create a person level 

dataset.   

Predictors 

 A review of the literature found that most population health ML studies focused on 

predictor features customary to clinical prediction models such as demographics and medical 

histories and that there was limited use of predictors from effluent data16. Although the reason 

may vary, in almost all cases it is simply because effluent data is not systematically captured by 

most health systems to be used in ML studies. 

 Predictor variables for the ML models in this PhD will include human derived ones 

informed by the literature and those directly obtained from the data.  Several categories of 

candidate predictors to be used for ML training include demographics, co-morbidity history, 

healthcare utilization, and drug utilization. 

Depending on predictor and data availability, data from 30 days to 5 years before the 

prediction window will be used to generate model features; 30 days to reflect the immediate 

nature of the risk and 5 years to fully capture co-morbidities and patient health care utilization. 

Part of the ML process is to create a data dictionary which will evolve as the project 

progresses.  This will detail all the predictors used in ML training.  All predictors will come from 

physician claims, provincial registries, hospitalization and emergency department visits data 

sets.   

Outcomes 

 As commonly seen in the literature16, this PhD thesis will use measures of health care 

utilization as the outcome of interest for ML prediction.  Our outcomes will be labeled to each 

instance in our dataset and will represent measures of public health and health system 

importance including admissions and death regarded as potentially preventable.  Outcome data 

will come from hospital and ED admissions datasets. 
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Missing Data 

Missing data is typically classified and handled in the context of descriptive and causal 

(association) studies where the desired result is an unbiased estimator of a population 

parameter with an accompanying standard error45,46.  In these types of studies, missing data are 

classified as MCAR (missing completely at random), MAR (missing at random), and MNAR 

(missing not at random)45,47.  How missing data is handled depends on assumptions about the 

missingness based on this classification.  In order to handle, or impute, missing data, MCAR and 

MAR are assumed48.  In most situations assuming MCAR and MAR, simple techniques for 

handling missing data (complete case analysis, overall mean imputation, missing indicator 

method) produce biased results45, thus, MI (multiple imputation) is the method of choice for 

handling missing data45,49; however it also assumes data is MCAR/MAR, which rarely is true.  

Furthermore, the purpose of MI is to obtain more accurate standard errors of the estimate of 

interest50.  Imputation methods with MNAR are not recommended because they are not well 

studied and the performance is unknown47,51. Mostly, missing data is neither MCAR nor MNAR, 

thus making missing data mostly MAR45.  MAR data is difficult to comprehend because missing 

data can be considered random if its missingness is conditioned on the other covariates47.  In 

the published literature, missing lab data is a mixture of MAR and MNAR50,51.  In the context of 

descriptive and causal studies, imputation methods may yield varied results with this mixture52. 

Currently, missing data research has mostly been conducted in the context of parameter 

estimation, which is not directly relevant to prediction modeling studies46.  For ML prediction, a 

different approach to handling missing data may be warranted to optimize predictive 

performance; the optimal way to handle missing data in prediction studies may be different 

than that of causal association or descriptive studies46.  The MCAR, MAR, MNAR classification 

also applies only to parameter estimation studies, and not prediction studies. With ML 

prediction projects, the focus is on prediction and not association.  This distinction is important 

because it changes the way missing data is considered and handled. 

Most data, especially for ML projects, comes from administrative data bases and 

electronic health records, which will have missing data due to a mixture of MAR and MNAR.  

This would pose a challenge for parameter estimating studies, but may provide an opportunity 
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for prediction studies because the missingness may itself be a predictor of the outcome46. 

Researchers should consider if the missingness pattern is informative (may represent a latent 

variable).  There are studies that show using missing indicators with or without MI improved 

prediction performance even when using MNAR data46,53.  This contrasts with parameter 

estimating studies. 

An important and overlooked issue with missing data and prediction studies is the 

distinction in handling missing data during model training, validating, and deployment (real 

world predicting)46.  Even if multiple imputation and/or missing indicators resulted in powerful 

prediction metrics in the training and validation sets, the logistics of multiple 

imputation/missing indicators during real world prediction would not allow for deployment 

because in the real-world scenario, patient data would have to be linked to the training set, 

imputed, then re-modeled.  Bottom line, the missing data approach used in ML prediction 

model development will not match the approach used when a model is deployed.  One 

alternative to this problem of multiple imputation is to use the missing pattern method54 where 

each pattern of missingness is modeled and at prediction time (deployment) imputation is not 

required.  This method has its own issues related to data quantity, however, the researchers 

that developed it have offered solutions.  Also, tree-based algorithms have an inherent capacity 

to handle missing data during model deployment55.  At this point, this PhD project will not 

incorporate missingness into ML model development. 

A scan of the literature found that very few researchers described how they handled 

missing data in their prediction modeling.  In one study predicting surgical site infections51, 

researchers only used logistic regression as their classifier (no tree-based modeling) and used 

imputation and missing indicator methods to handle missing data.  They did not address the 

downstream issues of these methods during a potential deployment. 

Evaluation of ML Classifiers in Population Health Settings 

There are no established guidelines for evaluating and reporting ML prediction in public 

health settings.  This makes assessing the utility and value of ML classifiers difficult for both 

readers and end-users, including health system planners.  The published literature has pointed 
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out this knowledge gap.  The Transparent Reporting of a Multivariable Prediction Model for 

Individual Prognosis or Diagnosis (TRIPOD) statement is a guideline for reporting studies of 

developing, validating, or updating a prediction model.  A scan of the literature found that most 

ML studies did not use TRIPOD reporting guidelines in their work, lacked adequate detail on 

participants and disease distribution, and did not articulate if their validation groups 

correspond to the deployment setting17.  Regarding prediction metrics, most studies reported 

discrimination performance (i.e., area under the reporting operating characteristic curve; c-

statistic) and few reported calibration metrics16,17.  Indeed, applications of ML in population 

health would benefit from increased assessments of calibration metrics16.   

Given this inconsistency in reporting on ML studies, researchers are starting to fill this void.  

A need for reporting guidelines is now acknowledged and progress is being made.  A recent AI 

conference33 attempted to characterize the issue and address challenges to public health 

translation.  Evaluation challenges included issues related to ML generalizability (overfitting), 

interpretation and biased predictions.  Challenges with ML translation into deployment relate 

to not modeling with the public health (clinical) setting in mind, lack of data, lack of guidelines 

for evaluation and ML interpretability.  More emphasis on ML model validation in specific 

populations is required.  Preliminary guidelines have been established while the long-awaited 

TRIPOD AI guidelines will be released soon18,56. 

Taking cues from the literature and identified knowledge gaps, this PhD’s second objective 

attempted to create a template of ML prediction analysis which health system planners and 

other potential end-users would find informative.  These metrics, briefly described in this 

section and further detailed in the subsequent study chapters, will help public health 

intervention programs decide if or when to intervene on individuals in a targeted population.  

These metrics include discrimination and calibration performance with a focus on comparing 

pre-test to post-test probabilities in various risk groups defined by rank or absolute threshold.  

For example, an intervention program could act on a high-risk group (e.g., a top 10 list) or on a 

certain threshold of predicted risk.  Thresholds should ideally be ascertained by health system 

planners based on methods like decision curve/ net benefit analyis16,21.  Through methods 

validated by the Canadian Institute for Health Information (CIHI)57,58, this PhD thesis will assess 
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the value of ML classifiers by estimating potential savings of a ML assisted intervention program 

in a simulated deployment. 

ML Interpretability 

 ML interpretability is an important issue when it comes to ML translation and so called 

“black boxes” are deemed unacceptable in health contexts33,59.  Health system decision 

supports require some measure of transparency so that users can understand the basis for 

interventions aided by ML prediction59.  With ML risk prediction, there can be a trade-off 

between model accuracy and intelligibility60.  To optimize prediction accuracy, ML methods do 

not attempt to produce interpretable models thus, allowing them to handle large number of 

predictors common in most projects18.  Although interpretability is not the primary focus of ML 

prediction, some ML algorithms (e.g., tree-based) are inherently more interpretable than others 

(e.g., neural nets)34.  Based on these points, this PhD program will focus more on tree-based 

algorithms as much as possible and employ techniques to demonstrate ML interpretability 

involving variable importance, a rank ordering of variables that are most important to a ML 

model’s prediction performance that has no statistical or causal meaning50.  This piece of our 

analysis will provide health system planners or others with insight on how a ML classifier was 

influenced in its predictions for a public health intervention program. 

ML and “Traditional” Epidemiological Approaches 

Comparisons are frequently made between ML and so-called traditional epidemiological 

approaches. However, this is misleading because ML is an extension of traditional statistical 

approaches with a few key differences.  It is important to make comparisons between the two 

on equal grounds, i.e., traditional approaches to individual risk prediction vs. ML risk prediction. 

 Accurate risk prediction is important for health systems, health providers and individuals 

for making optimal treatment decisions19.  It allows for a shared decision-making process, 

reduces interventions in low-risk situations, and avoids intervention delays in high risk 

situations19.  Risk is assessed using several methods19.  Intuition is sometimes used but is not 

reliable in many cases.  Population averages from observational studies are also used but can 

provide inaccurate estimates because of heterogeneity within and between populations.  
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Another limited method is the use of measures of association (estimation of relative risks or 

odds ratios) from risk factor studies that do not account for baseline risk.  In this scenario, the 

reported relative effects associated with the risk factors under study can be misleading19.  A 

more informative approach is incorporating several risk factors into a model in order to 

estimate absolute risk of an outcome in the individual patient.  All but clinical intuition falls 

under the category of traditional epidemiology.  The last method, estimating absolute risk of an 

event at the individual level, can be directly compared with machine learning approaches 

because both seek to accomplish the same objective, individual risk prediction. 

Machine learning (ML) falls under the realm of artificial intelligence.  Briefly, the ML 

approach uses a supervised learning scheme in which a data set containing historical 

information on people is labelled with the outcome of interest and is used to train a ML 

algorithm into a model11.  After tuning and validating11, the model (a mathematical function) is 

used to predict the outcome of interest at the individual level, usually by providing a probability 

score for an individual.  Thus, ML prediction deals with probabilistic outcomes which is very 

useful to health systems for predicting clinical events such as hospitalizations or deaths.  In this 

context, the focus of ML is individual risk prediction   

 Traditional epidemiological methods involve collection of data on a sample population 

and estimating population parameters to fit data to a model with probabilistic outcomes, a 

process very similar to ML.  Instead of extrapolating from data obtained from a small number of 

samples to make estimates on a population, ML approaches use data at the population level to 

provide a real-world picture; this is a fundamental change from classical approaches which 

focuses on reducing effects of bias due to study design29.  As mentioned earlier, the emphasis is 

individual risk prediction.  Traditional epidemiological methods can estimate individual risk 

prediction by developing clinical decision rules (CDRs).  A CDR is a clinical tool that estimates a 

patient’s risk of an outcome by quantifying the individual contributions that various 

components of a patient’s history make towards the prognosis of that patient61.  CHADS2
62

 and 

Framingham scores are commonly used CDRs for estimating the risk of cardiovascular 

outcomes in individual patients.  CDRs can be applied at the population level for public health 

programs or for surveillance. 
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 There is considerable overlap of attributes between CDRs developed using traditional 

epidemiological methods and ML risk prediction since CDRs are considered an early incarnation 

of ML11.  This overlap has led to the concept of the ML spectrum36, where the traditional CDRs 

fall on the lower end (more human than machine specification of important predictors) of the 

spectrum and where the more complex ML algorithms (neural networks with no human 

specifications) fall into the higher end of the spectrum.  Nevertheless, there are substantial 

differences between traditional epidemiologic and ML methods.  The framework for comparing 

ML and traditional epidemiologic methods follows: model development including data and 

analysis issues, process definition, performance metrics, reporting, 

intelligibility/interpretability, and implementation/uptake. 

 CDRs and ML risk predictors must both follow three steps of development19,61.  The first 

step is derivation of the CDR or ML risk prediction by identifying factors with predictive power 

using data and analyses.  Data quality is at the heart of this step; data must be in a structured 

format before it can used to train CDR or ML models.  Participant recruitment methods heavily 

influence both traditional epidemiology and ML methods and share the pitfalls of bias, which 

can then be perpetuated in their risk predictions.  A commonly known fact is that all types of 

observational studies and traditional statistical modeling may be biased.  ML algorithms may 

also be subjected to biases63.  The biases include those related to missing data and patients, 

participant selection (selection bias) and underestimation, and misclassification and 

measurement error63, all similar to the biases found in traditional epidemiology.  Much 

published literature describes data bias in ML projects and some of these suggest that bias may 

be more pronounced and influential in the ML world64.  One reason for this is that bias in ML 

projects may be harder to recognize due to “automation complacency” where users 

inadvertently ignore relevant information from non-ML sources64.  The result of bias is the 

same for both traditional epidemiology and ML methods, an invalid estimate of risk.  On a side 

note, the generalizability of both traditional epidemiology (observational studies) and ML risk 

predictions across different sub-groups is dependent on the representativeness of the included 

populations, missing data and outliers64. 
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 The other part of the derivation step is data analysis.  Traditional CDRs are typically 

developed using linear models (e.g. logistic regression) to determine which predictors are 

influential in risk prediction and which can be omitted from the model61.  Linear models are 

classified as a type of ML algorithm and as mentioned earlier, place CDRs on the low end of the 

ML spectrum because humans typically specify many of the model parameters.  On the other 

hand, ML risk prediction methods include many other algorithms in addition to linear models.  

Some of these include deep learning algorithms (neural networks), random forests, gradient 

boosting machines and many others that are described in the literature37.  Depending on how 

much human input is involved, these algorithms are placed much higher on the ML spectrum 

where some neural networks have no human specifications and are classified as fully 

intelligent36.  One of the attractive attributes of ML risk prediction is that it can incorporate all 

available predictor variables in the algorithms to produce an estimate of risk however, this 

would reduce intelligibility as described later.  The same could be done for traditional CDRs but 

would make them too cumbersome to use.  Typically, ML methods use more features (predictor 

variables) than traditional CDRs in their risk prediction models11.  Indeed, the “curse of 

dimensionality” associated with large data sets is somewhat eased by using ML methods34.  The 

current hype about ML prediction is that the newer, more advanced algorithms (neural 

networks, boosting machines) are associated with better prediction estimates than the older 

linear models used by CDRs11.  When the risk prediction literature is scanned, the results are 

mixed, with some studies showing the simpler linear models performing better than more 

complex ones and vice versa65.   

 The second step in risk prediction development is validation, evidence of reproducible 

accuracy19,61.  There are differences in the validation procedure between traditional 

epidemiology (CDRs) and ML methods.  In traditional CDRs, the parameters (weights or 

coefficients from linear models) are generally derived from a single development/training set 

and then evaluated on one or more independent validation sets11 using performance metrics.  

In ML risk prediction, although parameters are derived in a similar way from the data, there are 

additional hyperparameters, such as learning rate, that affect parameter estimation.  These 

hyperparameters also need to be “tuned” using an additional “tuning” set that is usually an 
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extension of the development set and independent of the validation set11.  Hyperparameters 

need to be tuned to reduce “overfitting” because they have a large effect on final risk 

estimates.  Overfitting is a scenario in which the trained ML model is too specific towards the 

training data set and does not generalize well to other data sets11.  Tuning hyperparameters 

falls under the domain expertise of ML engineers, as described later in the process section.  

Validation metrics in ML are like that of CDRs and include c-statistics, calibration to name a few. 

 The third step in the development of risk prediction is impact analysis61- does the risk 

estimator change behaviour, improve patient outcomes and reduce costs?  Both traditional 

CDRs and ML risk prediction must execute this final step to be considered beneficial, or else no 

matter the accuracy, the risk prediction tool, either CDR or ML, will not be systematically 

used61.  There are many validated CDRs and ML prediction models but only few are used in 

clinical settings66.  Reasons for limited use may be related to provider unawareness, lack of 

interpretability of the model, and lack of impact studies19.  The best way to asses the impact of 

CDRs and ML risk prediction tools is to randomize patients or institutions to the risk predictor or 

not and to follow up and measure the relevant variables and outcomes or to use controlled 

before and after studies61. 

 The processes that define CDRs and ML risk prediction development are also different.  

The ML process has been well defined into a project management framework and many 

organizations, like AMII (Alberta Machine Intelligence Institute), have described it.  The basic 

steps are: business understanding & problem discovery, data acquisition & understanding, ML 

modeling & evaluation, and delivery & acceptance14.  Traditional CDRs do not have a formalized 

process of development like ML projects.  Furthermore, underlying the ML process is an added 

area of domain expertise that requires the expansion of the research team to include ML 

programmers.  Such domain expertise is not part of the traditional CDR research team. 

 Performance metrics and their subsequent reporting in peer reviewed arenas are almost 

identical for both traditional CDRs and ML risk prediction models.  Published literature on ML 

risk prediction commonly report discrimination metrics such as sensitivity, specificity, predictive 

values, likelihood ratios, number needed to evaluate, and area under the receiver operator 
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characteristic curve (AUROC)19,37,66.  CDRs report the same performance metrics like in the 

opioid risk tool67.  Occasionally, ML risk prediction studies will estimate F1 scores, accuracy, and 

precision-recall curves37.  Calibration analysis is also important to perform on both methods 

where observed to expected ratios are illustrated19.  Guidelines for reporting on studies dealing 

with model derivation and validation are the same as well; the TRIPOD guideline statement is 

commonly used22,68.  ML specific reporting guidelines are currently in the works. 

 One of the key differences between traditional CDRs and ML risk prediction deals with 

model intelligibility, or model interpretability.  With ML risk prediction, there can be a trade off 

between model accuracy and intelligibility60.  Supposedly more accurate models using neural 

nets are not intelligible to users and have a “black box” reputation while general linear models 

used in CDRs are more interpretable; ML risk prediction using linear models would also be 

considered more interpretable.  Furthermore, the more complex ML algorithms may not 

necessarily produce more valid risk estimates 60,65.  The issue of interpretability is crucial 

because this is often the deciding factor when implementing a risk predictor, either from CDRs 

or ML19; deploying a ML risk predictor that uses a neural net model may be considered “too 

risky” because it is not easily understood by the users60.  Also, many CDRs developed using 

logistic regression that are used in practise are easily interpretable with “lower accuracy”.  An 

example is the CHADS scoring system that is highly interpretable but with an AUROC 0.66-

0.7519; many ML risk prediction tools have higher discrimination performance but are not used 

because of lack of interpretability60.  Also, traditional CDRs have fewer risk factors to consider, 

making them easy to use while ML risk prediction models may have hundreds of features.   

 Finally, the implementation of traditional CDRs and ML risk predictors is also different.  

CDRs that are validated are easily implemented and used.  Users can apply a CDR by consulting 

a risk table, calculator, or even mentally counting risk factors11.  Implementing a ML prediction 

tool into the workflow is more complicated11.  Computer programs to manage data pipelines 

have to be established, privacy rules have to be accommodated, and IT maintenance all have to 

be considered11.  However, one benefit of ML risk prediction is that ML models can be updated 

frequently, often in real-time, to fit the local population.  Traditional CDRs are static and risk 

calculators like the Framingham have issues with prediction performance and generalizability 
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when applied to different populations69.  In these scenarios, CDRs like the Framingham cannot 

be quickly re-calibrated to the new population.  ML risk prediction models are different since 

their accuracy can be improved over time because, as a response to changes in practice or 

patient population, ongoing data collection can lead to improved ML model performance11. 

 Overall, there is no clear distinction between traditional epidemiological and ML 

methods because of the considerable overlap in development and function.  CDRs are generally 

more interpretable for the time being, however, this may change as awareness of the 

capabilities of ML risk prediction increases.  ML models are easily updated to adapt to new 

situations.  In other words, traditional epidemiological methods may evolve to incorporate ML 

methods for the purpose of risk prediction. 

Why use ML 

 So why use ML? In summary, ML risk prediction does offer some benefits over 

traditional risk predictors.  ML methods allow for incorporation of large amounts of data and 

modeling of more complex and non-linear data; traditional techniques of regression require 

more human input to structure the data with underlying assumptions while ML algorithms 

derive structure directly from the data making fewer distributional assumptions and require 

less human input16.  Advances in computing allow ML classifiers to include a larger number of 

predictors and be scaled up to the population level; they are not restricted to “pocket-card” 

sized risk calculators.  Risk classifiers high on the ML spectrum require less human input and 

depend more on the data.  These are all important factors when considering our strained health 

system.  Furthermore, ML ideally allows the opportunity to continually monitor and learn from 

new data thus improving prediction performance over time.   

Key Issues with ML 

 As described in the literature and presented in conferences, there are some key issues 

surrounding the use of ML by health systems.  These issues are related to data, ethics, ML 

interpretability and reporting on ML performance. 

 Most ML prediction studies focus on features typical of clinical prediction models such 

as demographics and biomedical factors from administrative health records with limited, or no 
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use, of other types of data, either structured or unstructured; a reliance on this narrow 

approach is unlikely to fully leverage the benefits of ML prediction for health systems because 

key predictors may be absent16,41.  A substantial amount of data of interest are not being held 

in administrative health databases but by industry and people34,70.  Modern techniques allow 

for linkage of this siloed data and to break the cycle of relying solely on administrative health 

data; all categories in the taxonomy of data should be available for ML modeling16,29.  Barriers 

to data sharing also add another layer of complexity71.  The issue of data governance, along 

with the growing amount of data from wearable personal devices, are now recognized as major 

contributing factors to predict health system outcomes71.   

Further, data currently in use was never collected specifically for ML prediction.  The large 

amounts of data “dumped” into ML development represent a mixture of local, regional, 

provincial and national level data33,70.  However, this situation is improving as data collection is 

becoming more organized.  Data sets not collected for ML use pose several issues: missing data, 

problems with anonymization, poor quality and bias (social factors)71.  

Bias in data is a major consideration for health systems interested in ML assisted programs 

as health data does not always include data from all patient populations, especially under-

served ones71,72.  The resulting predictions may lead to certain segments of a population to be 

excluded from the benefits of ML prediction.  The ML modeling process itself can also be a 

source of bias leading to discriminatory prediction performance63.  Adding to this is the 

complexity of ML methods which can hide the source of bias (e.g., bias in data, ML algorithm, 

participant selection) making it difficult to address71.  Indeed, the literature is starting to 

describe scenarios of bias and discrimination related to these issues in ML assisted health 

system planning72.   

Issues related to ethics, privacy and consent also must be highlighted.  Obtaining consent is 

complicated because large data sets are often used many times for different purposes by 

multiple users but this in itself is no excuse not to pursue consent where feasible71.  

Furthermore, data must be held secure and anonymized throughout the ML process(es). It is 

likely these issues will continue to be a concern for ML models and potentially more of a 
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concern than traditional epidemiological models. The reason for this is that, as mentioned, for 

ML models to be most effective, vast amounts of data on predictors is warranted. However, as 

more and more data are linked, concerns around privacy, ability to identify individuals and 

safeguard that data increase. The public is already very concerned with the amount of ‘big data’ 

being collected on them (e.g., recent lawsuits around Google, Facebook) and most are currently 

not even aware of the existing data used in most health care studies. As ML models become 

more mainstream, concerns around the use of this data are also expected to grow as the public 

becomes more informed.  

Lack of ML interpretability and reporting guidelines hinder ML implementation into health 

systems56,71.  The complexity of ML models and inability to easily interpret results leads to 

issues regarding transparency; health systems and individuals must know why ML classifiers 

predict the way they do.  “Black boxes” are considered unacceptable by health systems59.  

Inconsistencies in reporting still contribute to the “failure to launch” of ML prediction in health 

systems56.  Without measuring utility, value, and impact of ML prediction, health systems 

cannot stratify people within an at-risk population.   

Finally, as digital technologies like ML prediction become entrenched in health systems, 

new human resources talented in the digital sector must become part of the health system 

team as new technology-oriented roles emerge71.  Individuals need to be trained who can 

bridge this skills gap so that health systems can fully engage with ML technology. This is 

currently a major issue as often data engineers, although very skilled with data, fail to 

understand the nuances of health data. Conversely, people trained in health and traditional 

epidemiological methods fail to understand the nuances of ML. Thus, new models of training 

will be required to ensure all pieces required for successful ML programs are incorporated into 

working environments. 

 Finally, regulatory frameworks are required that include data governance and ethical 

considerations71 in addition to ML transparency and reporting guidelines.  The projects in this 

PhD will attempt to address some of these issues to better inform health system planners. 
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Summary 

In summary, health systems can implement decision aid tools that fall on the ML 

spectrum to target interventions at high-risk groups at a population level.  Benefits of ML 

include scalability to the population level, less human dependency, and modeling complex data.  

These ML classifiers can be developed on jurisdiction specific data and be continually improved 

with new data.  Key issues impede ML implementation by health systems.  The studies in this 

PhD program align with population health issues commonly identified by health systems and 

studied in the literature16.  The ML classifiers will be trained on structured administrative data 

specific to Alberta, Canada and assessed using metrics and cost saving simulations that health 

system planners will find informative.  As will be shown in subsequent chapters, using 

administrative health data may or may not be sufficient to satisfy the needs of a public health 

intervention program. 
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Chapter 3: Safe opioid prescribing: a prognostic machine learning 

approach to predicting 30-day risk after an opioid dispensation in 

Alberta, Canada 
 

Objective: To develop machine-learning models employing administrative-health data that can 

estimate risk of adverse outcomes within 30-days of an opioid dispensation for use by health-

departments or prescription monitoring programs. 

Design, Setting, and Participants: This prognostic study was conducted in Alberta, Canada 

between 2017-2018.  Participants included all patients 18 years of age and older who received 

at least one opioid dispensation. Pregnant and cancer patients were excluded. 

Exposure:  Each opioid dispensation served as an exposure. 

Main Outcomes/Measures: Opioid related adverse outcomes were identified from linked 

administrative health-data.  Machine-learning algorithms were trained using 2017 data to 

predict risk of emergency department visit, hospitalization and mortality within 30-days of an 

opioid dispensation.  Two validation sets, using 2017 and 2018 data, were used to evaluate 

model performance.  Model discrimination and calibration performance were assessed for all 

patients and those at higher risk. Machine-learning discrimination was compared to current 

opioid guidelines. 

Results: Participants in the 2017 training set (n=275,150) and validation set (n=117,829) had 

similar baseline characteristics.  In the 2017 validation set, c-statistics for the XGBoost, logistic 

regression, and neural-network classifiers were 0.87, 0.87, and 0.80, respectively. In the 2018 

validation set (n=393,023), the corresponding c-statistics were 0.88, 0.88, and 0.82. C-statistics 

from the Canadian guidelines ranged from 0.54-0.69 while the US guidelines ranged from 0.50-

0.62.  The top 5-percentile of predicted risk for the XGBoost and logistic regression classifiers 

captured 42% of all events and translated into post-test probabilities of 13.38% and 13.45%, 

respectively, up from the pre-test probability of 1.6%. 
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Conclusion: Machine-learning classifiers, especially incorporating hospitalization/physician 

claims data, have better predictive performance compared to guideline or prescription history 

only approaches when predicting 30-day risk of adverse outcomes. Prescription monitoring 

programs and health departments with access to administrative data can use machine-learning 

classifiers to effectively identify those at higher risk compared to current guideline-based 

approaches. 
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Introduction 

 Canada is among the countries with the highest rates of opioid prescribing in the world, 

making prescription opioid use a key driver of the current opioid crisis7; a major part of the 

policy response to the opioid crisis focuses on endorsing safe, appropriate opioid 

prescribing23,24,73.  In order to minimize high risk opioid prescribing and to identify patients at 

high risk of opioid related adverse outcomes, numerous health regulatory bodies have released 

clinical practice recommendations for health providers regarding appropriate opioid 

prescribing24,74,75.   

 Prescription monitoring programs (PMPs) have been implemented around the world, 

like Alberta’s provincial Triplicate Prescription Program (TPP)76 in Canada, and are mandated to 

monitor the utilization and appropriate use of opioids to reduce adverse outcomes.  In most 

jurisdictions, both population-level monitoring metrics and clinical decision aids are used to 

identify patients at risk of hospitalization or death and are most often based on prescribing 

guidelines.  However, a comprehensive infrastructure of administrative data containing patient 

level International Statistical Classification of Diseases and Related Health Problems (ICD)77 

codes and prescription drug histories exists in Alberta and other provinces in Canada which 

could be further integrated to predict opioid-related risk.  Furthermore, current guidelines 

addressing high risk prescribing and utilization of opioids were derived from studies that used 

traditional statistical methods to identify population level risk factors for overdose rather than 

an individual’s absolute risk24,37,78; these population estimates may not be generalizable to 

different populations19.  Thus, a functional gap exists in many health jurisdictions where much 

of the available administrative health data is not being leveraged for opioid prescription 

monitoring. 

 Supervised machine learning (ML)11,15 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of the large amounts of 

available administrative data12,13, all within a well-defined process14.  Supervised ML trains on 

labelled data to develop prediction models that are specific to different populations and, in 

many cases, can provide better predictive performance than traditional, population-based 

statistical models13,37,79.  We identified one study37 that applied ML techniques to predict 
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overdose risk in opioid patients pursuant to a prescription.  In their validation sample, they 

found that the deep neural network (DNN) and gradient boosting machines (GBM) algorithms 

carried the best discrimination performance based on estimated c-statistics and that the ML 

approach out-performed the guideline approach in terms of risk prediction; neural networks 

have little interpretability and are not necessarily better at predicting outcomes when trained 

on structured data60.  This study relied on c-statistics to evaluate their ML models and did not 

emphasize other performance metrics (e.g., positive likelihood ratios, pre and post-test 

probabilities) required to assess clinical utility that are recommended by medical reporting 

guidelines11,17,19,20.  It also did not address the important issue of ML model interpretability59.  

Reporting informative prognostic metrics is needed to better understand the capabilities of ML 

classifiers if health departments and PMPs are to incorporate them into their decision-making 

processes.  

 The objective of our study was to further develop and validate ML algorithms (beyond 

just DNN) to predict the 30-day risk of emergency visit, hospitalization and mortality for a 

patient in Alberta, Canada at the time of an opioid dispensation using administrative data 

routinely available to health departments and PMPs and evaluate them using the above 

referenced reporting guidelines.  We also analyzed feature importance to provide meaningful 

interpretations of the ML models.  Comparing discrimination performance (area under the 

receiver operating characteristics curves), we hypothesized that the ML process would perform 

better than the current guideline approach for predicting risk of adverse outcomes related to 

opioid prescribing. 

Methods 

Study Design and Participants 

This prognostic study used a supervised ML scheme. All patients in Alberta, Canada who 

received a dispensation for an opioid, were 18 years of age and older between Jan 1, 2017 and 

Dec 31, 2018 were eligible.  Patients were excluded from all analyses if they had any previous 

diagnosis of cancer, received palliative interventions or were pregnant during the study period 

(Table 3.4) as use of opioids in these contexts is clinically different. 
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Government health departments and payers in many jurisdictions have systems to 

capture prescription histories and ICD diagnostic codes.  As such, we linked various 

administrative health data sets available in Alberta, Canada using unique patient identifiers in 

order to establish a complete description of patient demographics, drug exposures and health 

outcomes.  These databases include 1) Pharmaceutical Information Network (PIN): PIN data 

includes all dispensing records from community pharmacies from all prescriber types occurring 

in the province outside of the hospital setting. PIN collects all drug dispensations irrespective of 

age or insurance status in Alberta; Anatomical Therapeutic Chemical classification (ATC) codes80 

were used to identify opioid dispensations and their respective opioid molecules (Table 3.8), 2) 

Population and Vital Statistics Data (VS, Alberta Services): sex, age, date of birth, death date, 

immigration and emigration data, and underlying cause of death according to the World Health 

Organization algorithm using ICD codes77, 3) Hospitalizations and Emergency Department Visits 

(National Ambulatory Care Reporting System [NACRS], Discharge Abstract Database [DAD]): all 

services, length of stay, diagnosis (up to 25 ICD-1077 based diagnoses).  Data and coding 

accuracy are routinely validated both provincially and centrally via the Canadian Institute for 

Health Information, and 4) Physician Visits/Claims (Alberta Health): all claims from all settings 

(e.g., outpatient, office visits, emergency departments, inpatient) with associated date of 

service, ICD code, procedure and billing information. 

This study followed the TRIPOD and STARD reporting guidelines22,68,81 and received 

ethics approval from the University of Alberta ethics board (Pro00083807_AME1).   

Measures and Outcome 

ML models were trained on a labelled dataset in which the observation/analysis unit 

was an opioid dispensation.  Every opioid dispensation, not just the incident one, was used as a 

potential instance to predict the risk of our outcome.  The primary outcome was a composite of 

a drug-related emergency department (ED) visit, hospitalization or mortality within 30 days of 

an opioid dispensation based on ICD-10 codes used by others and identified from DAD, NACRS 

and Vital Statistics (T40, F55, F10-19; Table 3.5)23,37,82. 
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 We anticipated that our defined outcome would be a rare event, leading to a class 

imbalanced dataset83.  To address this, we relied on specifying balanced class weightage for 

supporting algorithms; other approaches were deemed not suitable (e.g., oversampling using 

randomly repeating minority class); under sampling (sub-sampling within the majority class) 

resulted in changes in outcome prevalence.  Class weightage is a commonly used method84 to 

address class imbalance along with over and under-sampling approaches.  However, 

oversampling, which involves generating new opioid dispensations from the original data 

distribution and is prone to introducing bias, is difficult due to the categorical nature of the data 

and beyond the scope of this study.  With under-sampling, which takes samples from the 

majority class (in this case, no 30-day event after dispensation), we would not be able to use all 

of the information provided by the data in instances with no outcome.  Hence, we decided to 

use the class weightage method which does not alter the data distribution.  Instead, the 

learning process is adjusted in a way that increases the importance of the positive class 

(instances that led to a 30-day event)85. 

Predictor Candidates for ML Models 

Predictor variables in our ML models included those that were informed by the 

literature24,37,73 and those directly obtained from the data sets. These included features based 

on demographics (age, sex, income using Forward Sortation index from postal codes86), co-

morbidity history using ICD-based Elixhauser score categories87, health care utilization (number 

of unique providers, number of hospital and emergency department visits), and drug utilization 

(level 3 ATC codes80, oral morphine equivalents88, concurrent use with benzodiazepines, 

number of opioid and benzodiazepine dispensations, number of unique opioid and 

benzodiazepine molecules).  Depending on the potential predictor and data availability, we 

used data from 30 days to 5 years before the opioid dispensation to generate model features 

(Figure 3.5); 30 days was used to reflect the immediate nature of the risk and 5 years to fully 

capture co-morbidities.  This approach aligns with how health providers would assess patients 

using the entire history of co-morbidities and then the more immediate factors in deciding on 

the need for a therapeutic as well as risk in patients.  We performed experiments to identify the 
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features and data sets that contributed most to predicting the outcomes with a view to 

minimizing the potential future data requirements for health departments and PMPs. 

Statistical Analyses and Machine-Learning Prediction Evaluation 

We randomly divided the patients in the 2017 portion of our study cohort into training 

(70%) and validation (30%) sets11 by patients and opioid dispensations such that no patients in 

the training set were in the validation set.  Baseline characteristics and event rates were 

compared in the training vs validation group, and between those who experienced the outcome 

and those who did not using chi-squared tests of independence.  As well, we used all the 2018 

data as another independent validation set. 

 We trained commonly used11,50 ML algorithms (Appendix in Chapter 3) and further 

tuned out-of-box models using 5-fold cross validation on the training data to address model 

overfitting11,39.  As is common in ML validation studies11,37, we reported model discrimination 

performance (i.e. how well a model differentiates those at higher risk from those at lower 

risk)19  using area under the receiver operating characteristic curve (AUROC; c-statistic). We 

then stratified the two ML models with the highest c-statistics into percentile categories 

(deciles) according to absolute risk of our outcome, as was done in previous studies37,66.  We 

also plotted AUROC19 and precision-recall curves (PRCs)89.   

Because discrimination alone is insufficient to assess ML model prediction capability, we 

assessed a second necessary property, namely, calibration (i.e., how similar the predicted 

absolute risk is to the observed risk across different risk strata)19,90.  Using the two ML models 

with the highest discrimination performance, we assessed calibration performance on the 2018 

data by plotting observed (fraction of positives) vs predicted risk (mean predicted value).  Using 

these same two ML classifiers, we analyzed the top 0.1, 1, 5, and 10 percentiles of predicted 

risk by the number of true and false positives, positive likelihood ratios (PLR)20, positive 

predictive values (PPV), post-test probabilities, and number needed to screen.  We also 

performed a simulation of daily data uploads for 2018 Quarter 1 to view the predictive 

capabilities if a ML risk predictor were to be deployed into a monitoring workflow. 
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For the XGBoost and logistic regression classifiers, we reported feature importance50 

and plotted PRCs that compared all dispenses to those within the top 10 percentiles of 

estimated risk.  As well, for the XGBoost classifier, we described feature importance  on model 

outcome using SHAP values91,92 to add an additional layer of interpretability. 

 Finally, we compared ML risk prediction (the two ML models with highest discrimination 

performance) to current guideline approaches as others have37, using the 2019 Centers for 

Medicare & Medicaid Services (CMS) opioid safety measures93 and the 2017 Canadian Opioid 

Prescribing Guideline24.  This was done by using the guidelines as “rules” when coding for the 

30-day risk of event at the time of each opioid dispensation on the entire 2018 validation set.  

We also compared the discrimination performance of different logistic regression classifier 

models using various combinations of features derived from their respective databases: 1) 

demographic and drug/health utilization features from PIN and 2) co-morbidity features 

derived from DAD, NACRS and Claims. 

 All analyses were done using Python (v. 3.6.8,), SciKit Learn94 (v. 0.23.2) SHAP92 (v. 0.35), 

XGBoost (v. 0.90)95, Pandas (v. 1.0.5)96 and H20 Driverless AI (version 1.9).   

Patient and Public Involvement 

This research was done without patient involvement. Patients were not invited to 

comment on the study design and were not consulted to develop patient relevant outcomes or 

interpret the results. Patients were not invited to contribute to the writing or editing of this 

document for readability or accuracy.  There are no plans to disseminate the results of the 

research to study participants.   

Results 

Patient Characteristics and Predictors 

We identified 392,979 patients with at least one opioid dispensation in 2017 (Figure 

3.1).  This cohort was used to train (n= 275,150, 70%) and validate (n=117,829, 30%) ML 

models.  In 2017 and 2018, 6,608 and 5,423 patients experienced the defined outcome, 

respectively.  Baseline characteristics were different between those who experienced the 

outcome and those who did not (Table 3.6) while characteristics were similar between the 
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training and validation sets (Table 3.7).  There were 2,283,075 opioid dispensations in 2017 and 

1,977,389 in 2018.  Overall, in 2017, 2.03% (n= 45,757) of opioid dispensations were associated 

with the outcome; in 2018, the estimate was 1.6% (n= 31,392). 

As described above, we categorized our candidate features into four groups (Table 3.8). 

When using all the databases, the total number of features was 283 and 34 when considering 

only co-morbidities. 

Machine-Learning Prediction Performance 

Using the 2017 validation set, AUROCs for the XGBoost and logistic regression classifiers 

had the highest discrimination performance at 0.87, while the neural network classifier had 

lower performance at 0.80 (Table 3.9). 

Discrimination performance was similar for the 2018 validation set (n=393,023; Table 

3.9).  XGBoost and logistic regression had the highest estimated AUROCs and area under PRCs 

while the neural network classifier was lower (Figure 3.2A, 3.2B).  As expected, precision-recall 

curves indicate stronger predictive performance in opioid dispensations at higher predicted risk 

percentiles (Figure 3.2C, 3.2D). 

In the 2018 validation set, although discrimination performance was similar (0.88), 

individual feature importance was different between the logistic regression and XGBoost 

classifiers, with logistic regression feature importance more reliant on co-morbidity data from 

DAD, NACRS and Claims while XGBoost relied more on drug utilization data from PIN (Figure 

3.6).  With the XGBoost classifier, history of drug abuse, alcoholism, and prior 

hospitalization/emergency visit carried the highest importance for predicting the study 

outcome (Figure 3.7A) where the presence of these features in a patient suggested a strong 

prediction towards having the defined outcome (Figure 3.7B and 3.7C).   

Calibration 

When considering dispensations predicted to be in the highest percentiles of risk, the 

top 5-percentile captured 42% of all outcomes using the XGBoost and logistic regression 

classifiers (Table 3.1).  Also, as the predicted risk percentiles get higher (top 10 percentile to top 

0.1 percentile), so too do the corresponding PPVs with the top 0.1 percentile associated with a 
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PPV of 33% for the XGBoost classifier.  As well, lower categories of risk percentiles were 

associated with lower outcomes (Figure 3.3, Figure 3.8).  When we simulated a monitoring 

workflow scenario with daily data uploads, a similar pattern was illustrated where the 

dispensations predicted to be higher risk had higher event rates (Figure 3.4). 

After using the XGBoost and logistic regression classifiers to identify the dispensations in 

the highest predicted risk percentiles, the pre-test probability of the outcome (1.6%) was 

transformed into higher post-test probabilities, with higher probabilities in the riskier 

percentiles (Table 3.1).  The number needed to screen also decreased as predicted risk 

increased (Table 3.1). 

 Comparing discrimination performance, ML risk prediction outperformed the current 

guideline approaches when using various combinations of guideline recommendations (Table 

3.2).  In many of the guideline scenarios, the estimated AUROCs were close to the 0.5 mark.  

When we estimated the discrimination performance of the logistic regression classifier based 

on database source, using all databases produced an AUROC of 0.88.  Reducing the database 

source to only DAD, NACRS, Claims (co-morbidities only) resulted in an AUROC of 0.85, while 

PIN (prescription history) only was 0.78 (Table 3.3). 

Discussion 

This study showed that ML techniques using available administrative data (prescription 

histories and ICD codes) may provide enough discriminatory performance to predict adverse 

outcomes associated with opioid prescribing. Indeed, our ML analyses showed very high 

discrimination performance at 0.88.  The linear model (logistic regression) and XGBoost carried 

higher discrimination and calibration performance, while the neural network classifier did not 

perform as well.  By identifying the predicted top 5-10 percentile of absolute risk pursuant to an 

opioid dispensation, we were able to capture approximately half of all outcomes using ML 

methods.  All ML models we trained had higher discrimination performance using the validation 

sets compared to the clinical guideline approach. 

Since the prevalence of our defined outcome is relatively low in the general population, 

PPVs would also be expectedly low.  However, estimated PPVs increased when we considered 
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higher risk dispensations, as is expected since PPV is related to event prevalence. This is 

important because different users of a risk predictor will require different predictive 

capabilities.  Similarly, our estimates of positive likelihood ratios and associated post-test 

probabilities also increased in dispensations with higher predicted risk indicating the strong 

predictive capabilities of the XGBoost and logistic regression classifiers; likelihood ratios >10 

generate conclusive changes from pre-test to post-test probabilities20. 

The current guideline approach to assess absolute opioid prescribing risk produced c-

statistic estimates closer to 0.5 indicating that discrimination was not much better than chance 

alone.  ML models with higher predictive performance can better support health departments 

and PMPs with monitoring mandates to identify and intervene on those at high risk and their 

associated prescribers.  We also found that adding co-morbidity features from administrative 

databases increased prediction performance compared to prescription history alone, thus 

making the case for the use of this data by PMPs and health departments.  However, if only 

prescription history is available, our trained XGBoost classifier still had strong discrimination 

performance. 

 We found only one study that used ML approaches to quantify the absolute risk of an 

event pursuant to an opioid dispensation37.  Their methodology used rolling 3-month windows 

for estimating risk and ML model training while we used historic records to estimate 30-day 

risk.  Differences in study population and feature selection may explain why their highest 

performing ML model was deep learning (neural network classifier) and ours was not.  

Nevertheless, we were able to replicate their predictive performance using our ML approach as 

we both showed that ML approaches have higher predictive capabilities than guideline 

approaches.  Both of our studies used predicted percentile risk estimates to identify high risk 

dispensations and were able to do so with strong discrimination and calibration performance.  

Furthermore, we emphasized prognostic metrics which are more informative to assess the 

clinical utility of ML classifiers using pre- and post-test probabilities, something not done in 

other studies and recommended in medical guidelines20.  This major aspect of our study, not 

done previously, is important because any ML classifier that does not increase prognostic 

information compared to baseline cannot be incorporated into decision making for the purpose 
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of intervening on higher risk instead of lower risk patients. Indeed, another study we found 

describes how identifying cases in higher predicted risk percentiles using ML methods can be 

deployed in hospital settings for the purpose of targeted interventions66 upon discharge, 

however the effect on outcomes is still to be determined. 

 The limitations of our study are similar to other ML studies37 and need to be addressed 

when considering deployment of ML risk predictors.  Our training dataset was not able to 

account for non-prescription opioid consumption and the risk associated with non-prescription 

use, both of which are substantial contributors to overall risk23.  Regarding our analysis, we 

assumed that all dispensations were independent events; future research in this area should 

focus on employing ML methods using correlated data.  As with all ML projects, our models 

were trained using Alberta data and might not be generalizable to other populations, or to 

specific populations within Alberta.  However, one of the benefits of the ML process is that 

models can be retrained or similar methods could be used to develop new models to 

accommodate different populations. 

 This study suggests that ML risk prediction can support PMPs, especially if readily 

available administrative health data is used.  PMPs currently use population-based guidelines 

which we, and others, have shown cannot predict absolute individual risk.  The ML process 

allows for flexibility in model training, validation and deployment to specific settings in which, 

for the case of PMPs, high risk patients can be identified and targeted for intervention either at 

the patient or provider level.  For example, a ML classifier can be trained on accessible data to 

create an aggregated list of “high risk” patients at regular time intervals to identify points of 

intervention.  Moreover, ML classifiers can be retrained over time as changes in populations 

and trends in prescribing occur and are therefore specific to the population unlike broadly 

based guidelines.  Further research can assess whether implementation of a ML-based 

monitoring system by PMPs leads to improved clinical outcomes within their own jurisdictions 

and whether other available features or feature reduction can yield sufficiently valid results for 

their own intended purposes. 
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Table 3.1. Highest percentiles of estimated risk and predictive performance using the XGBoost 

and logistic regression classifiers for the 2018 validation dataset (n=393,023).  Total number of 

dispenses= 1,977,389; total number of outcomes= 31,392. 

Metric Top 0.1%ile  Top 1%ile Top 5%ile Top 10%ile 

 
XGBoost 

Logistic 

Regression XGBoost 

Logistic 

Regression XGBoost 

Logistic 

Regression XGBoost 

Logistic 

Regression 

Number of 

Dispenses  1,977  1,977  19,774  19,774  98,869  98,869  197,739  197,739  

TP captured  655  472  4204  4100  13224  13293  18404  18409  

Percent of TP  2.09  1.50  13.39  13.06  42.13  42.35  58.63  58.64  

FP captured  1322  1505  15570  15674  85645  85576  179335  179330  

PPV  33.13  23.87  21.26  20.73  13.38  13.45  9.31  9.31  

PLR  30.71  19.44  16.74  16.22  9.57  9.63  6.36  6.36  

Post-test 

Probability*  33.13  23.87  21.26  20.73  13.38  13.45  9.31  9.31  

NNS  3.17  4.49  5.08  5.22  8.48  8.43  12.95  12.95  

*Pre-test probability estimated at 1.6% using prevalence. 

TP: true positives; FP: false positives; PPV: positive predictive value; PLR: positive likelihood ratio; NNS: 

number needed to screen 

Note: Logistic regression used L1 (lasso) parameter regularization 
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Table 3.2. Discrimination performance of guideline approach using the 2018 validation set.  

Guideline approaches were adapted from the 2017 Canadian Opioid Prescribing Guideline and 

2019 Centers for Medicare & Medicaid Services (CMS) opioid safety measures and compared to 

logistic regression and XGBoost classifiers (each with an estimated area under the receiver 

operating characteristic curve of 0.88).  These guidelines were used as rules to predict the 30-

day risk of event at the time of opioid dispensation. 

Canadian Guidelines * AUROC  Sensitivity Specificity 

History of mental disorder only 0.620 0.90 0.34 

Substance abuse only 0.686 0.99 0.37 

OME/day >90 only 0.539 0.22 0.85 

(Mental disorder and substance abuse)  
OR OME/day >90 

0.690  0.91 0.47 

Mental disorder and substance abuse  
AND OME/day >90 

0.560  0.20 0.91 

Mental disorder OR substance abuse  
OR OME/day >90  

0.589  0.99 0.18 

CMS Guidelines**    

High opioid dose (>120 OME/day for 90+days) 0.507 0.081 0.933 

Concurrency (Opioid & BZRA for 30+ days) 0.575 0.423 0.727 

Multiple doctors (>4) 0.591 0.294 0.888 

Multiple pharmacies (>4) 0.537 0.120 0.959 

All conditions  0.50 0.001 0.999 

Any condition 0.622 0.62 0.625 

OME: daily oral morphine equivalents; BZRA: benzodiazepine receptor agonist.  Elixhauser scoring ICD 

codes were used to identify mental disorders and substance abuse.  

*The Canadian guidelines do not specify timelines.  >90 OME was determined by taking the average 

daily OME over the 30 days prior to dispensation 

**The CMS guidelines specify 90 or more days at >120 OME and concurrent use of opioids and 

benzodiazepines for 30 days or more within an assessment period of 180 days. 
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Table 3.3. Discrimination performance based on database source using area under the receiver 

operating characteristic curve (AUROC) for the logistic regression classifier on the 2018 

validation set. 

Database source Predictor Variables formed 

from database 

AUROC Number of 

features 

PIN only Drug utilization + Prescription 

history  

0.78 248* 

DAD, NACRS, Claims Co-morbidities 0.85 34 

PIN, DAD NACRS, Claims 

(all databases used in 

study) 

Demographic + Drug Utilization 

+ Healthcare Utilization 

+ Co-morbidities 

0.88 283 

Note: drug utilization includes features describing oral morphine equivalents88, concurrent use 

with benzodiazepines, number of opioid and benzodiazepine dispensations, number of unique 

opioid and benzodiazepine molecules; health care utilization includes features describing 

number of unique health providers visited, number of hospital/emergency department visits; 

logistic regression used L1 (lasso) parameter regularization; PIN- Pharmaceutical Information 

Network; DAD- Discharge Abstract Database; NACRS- National Ambulatory Care Reporting 

System 
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Figure 3.1.  Patient flow diagram of study participants used for training and validating ML models.  

NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital 

Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims 
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Figure 3.2.  Area under the receiver operating characteristic curves (A) and precision-recall curves (B) for 

all dispensations using logistic regression (L1), neural network, support vector machine (SVM), XGBoost 

and Naïve-Bayes; precision-recall curves for higher risk dispensations according to predicted risk 

percentile categories for logistic regression (C) and XGBoost (D) using the 2018 validation set.   

(A) (B) 

  
(C) Logistic Regression (D) XGBoost 

  
AUC: area under the curve 
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Figure 3.3. Calibration curve plotting observed vs. quantiles (deciles) of estimated risk for the 

XGBoost classifier using the 2018 validation dataset.  Most counts (dispensations) were 

predicted to be lower risk. 
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Figure 3.4.  Simulation of a clinical workflow with daily uploads and events per 100 daily 

dispenses by risk percentiles using 2018 Quarter 1 (Q1) data for logistic regression (A) and 

XGBoost (B) classifiers.   

(A) Logistic Regression (L1) 

 

(B) XGBoost 
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Appendix to Chapter 3 
 

Introduction 

While there are always updates and new methods coming up in the fields of machine learning, 

in this study, we have focused on some of the most reliable and proven approaches for predictive 

modelling which are explainable and popularly used in previous studies of similar nature. 

Logistic Regression 

Regression analysis models the relationship between a dependent variable and a set of 

independent variables [1]. Typically, this includes understanding how the value of the dependent 

variable changes with the changes in the values of independent variables. Logistic regression [1] 

uses the logistic function to model a binary dependent variable, where, based on the values of 

the independent variables the model can approximate one of the two classes, the instance 

belongs to. This basic binary model can be extended to deal with multiple classes (e.g. One-vs-all 

classifiers). However, logistic regression is only capable of modeling a linear relationship of 

independent variables to the dependent variable, hence limited to problems with linear decision 

boundaries. We used the sci-kit learn library in our experiments[6] and found L1 regularization 

to be more effective. 

Ridge Classifier 

We used the ridge classifier implemented in the Scikit learn library[5]. It implements a classifier 

using ridge regression which uses an L2 regularization on the least square objective function. The 

library converts the labels into -1 and 1 and fits a linear regression on the converted labels with 

the regularization. 

Random Forest 

Random forest is a tree ensemble learning algorithm that has wide applicability in many 

domains[1]. Random forest is a nonlinear learning algorithm, which arrives at nonlinear decision 

boundaries by independently combining multiple decision trees. Each individual decision tree in 

the forest can be grown independently of each other on a subset of the training data. Random 
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forests are mainly sensitive to the number of trees, the depth of a tree and the number of 

covariates randomly chosen to split at each node[1]. These hyper-parameters can be tuned to 

find the best configuration of every dataset. Random Forests, in general, are less prone to overfit 

since they always grow individual trees on a subset of the training data[1]. At prediction time, 

the decision of each tree is aggregated to compute the final prediction.  

Neural Networks (NN) 

Neural networks are another collection of non-linear learning algorithms with high 

representation power. They are known to be able to find mappings from an input to an output 

from a larger non-linear function space [2]. This ability to represent a larger space of nonlinear 

functions has shown to be very effective recently in many application domains such as natural 

language processing, computer vision, genomics, computer games and health[2]. Neural 

networks come in many flavors learning nonlinear mapping of different types of data such as 

Convolutional NNs being most effective with images and Recurrent NNs for time series and 

language data. Identifying the most effective neural network structure is one of the difficult and 

the most time-consuming aspect of applying neural networks to new application domains and 

data. Generally, neural networks try to exploit the relationships in the raw unstructured data (eg: 

image and text) presented to the network but with more structured data such as health records 

and ICD codes learning relationships is much complex. Our neural network models are mainly 

based on densely connected hidden layers with ReLu[6] activation function. We used the cross-

entropy loss for the binary classification Adam optimizer. We used a simple feed forward 

network using  Sklearn  MLP classifier with hyperparameter tuning  for the NN. 

Boosted Learning Algorithms 

Boosting is a process to ensemble multiple base learning algorithms to arrive at better overall 

performance than any individual base learner[1]. In contrast to independently building multiple 

models from the subsets of the data, boosting re-weights the training data every time a model is 

learned for future models. This weighting happens to give more preference to currently 

misclassified data points in the next round compared to the correctly classified data points. 

Therefore future learners try to do better on the misclassified data points leading to a collection 
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base learners having a better-combined prediction. This process is sequential so each base 

learner is dependent on the output of the previously trained model (it is worthy to note XGBoost 

provides a parallel tree boosting alternative). In our work, we have experimented with several 

boosting meta-learning algorithms such as XGBoost[7], AdaBoost[5] and GBM[5]. XGBoost uses 

a variant of trees as the base learner whereas AdaBoost (from Sci-kit learn) can use many ML 

algorithms as base learners. GBM uses logistic regression by default as the base learner. We used 

all 3 types of boosting with tuned hyperparameters for comparison. 

Naive Bayes 

Naive Bayes is based on the Bayes theorem with a strong independence assumption between the 

covariates[1]. This assumption helps in building a simple probabilistic model for learning and 

inference. Naive Bayes coefficients scale linearly with the number of covariates making this a 

suitable model for high-dimensional data. We used Naive Bayes as a simple baseline learning 

algorithm for comparison.  

Support Vector Machines (SVM) 

SVMs[4] are maximum margin classifiers optimizing for learning a hyperplane having the 

maximum distance away from each of the class data points[1]. SVM is a linear classifier but with 

the kernel trick to map the inputs to the higher dimensional space, it can learn nonlinear decision 

boundaries in the input space. SVMs are very effective binary classifiers with the kernel trick[1]. 

With larger datasets, SVMs tend to become more computationally intensive. 
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Table 3.4. Diagnostic codes used to exclude patients who had cancer, were pregnant, or were 

under palliative care. 

Condition ICD 9 ICD 10 

Cancer 140.x - 239.x C00.x - C99.x, D00.x - D49.x 

Pregnancy 630.x - 679.x O00.x - O99.x 

Palliative V66 Z51.0, Z51.1, Z51.5 

 

Table 3.5. Diagnostic codes used to identify the defined study outcome from emergency visit, 

hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 
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Table 3.6. Baseline characteristics of study patients (n=392,979). Co-morbidities were determined using 
Elixhauser criteria.  All p-values in the chi2 test of independence were <0.001 unless otherwise indicated. 
  

Characteristic Number without 
Event   

n=386,371  

Percent Number with Event   
n=6,608  

Percent 

Age:     

Mean (SD) 48.1 (16.4) -- 41.2 (12.4) -- 
      18-45  162057 41.9 3466 52.4 

       45-65  154632 40.0 2656 40.2 
     >65*  69682 18.0 486 7.4 

Male  197491 50.3 3922 59.4 
Female  194794 49.7 2686 40.6 
Alcohol Disorder 66320 16.9 5220 79.0 
Arrhythmia  90621 23.1 1959 29.6 
Blood Loss Anemia  1164 0.3 82 1.2 
Congestive Heart Failure  18954 4.8 565 8.6 
Coagulopathy  8053 2.1 356 5.4 
Deficiency Anemia  34188 8.7 971 14.7 
Depression  159140 40.6 5518 83.5 
Diabetes** 64132 16.3 1408 21.3 
Substance Abuse Disorder  74678 19.0 5485 83.0 
Fluid Disorder  42690 10.9 3012 45.6 
Hypertension** 140171 35.7 2624 39.7 
Hypothyroidism  45519 11.6 601 9.1 
Injury^  195688 49.9 5541 83.9 
Liver Disorder  21656 5.5 1588 24.0 
Neurologic Disorder  230490 58.8 5387 81.5 
Obesity  63393 16.2 970 14.7 
Poisoning^  17434 4.4 2775 42.0 
Psychoses  35870 9.1 3162 47.9 
Renal Disorder  16166 4.1 499 7.6 
Rheumatoid Conditions  111458 28.4 3157 47.8 
HIV Infection  1098 0.3 141 2.1 
Paralysis  3874 1.0 187 2.8 
Peptic Ulcer Disease  11728 3.0 509 7.7 
Pulmonary Circulation Disorder  9611 2.4 430 6.5 
Chronic Pulmonary Disease  102990 26.3 2913 44.1 
Peripheral Vascular Disease  14467 3.7 389 5.9 
Valvular Disease  7308 1.9 226 3.4 
Weight Loss  16207 4.1 747 11.3 

*p-value for age >65 is an estimated 0.037  
^ Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50 

** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 
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Table 3.7.  Characteristics of study participants between training and validation groups using 

2017 data. 

Characteristic Number in 
training group 

N=275,150~ 

Percent Number in 
validation group 

N=117,829~  

Percent 

Age:       
Mean (SD) 48.3 (16) -- 48.2 (16) -- 

          18-45  114356 41.5 49909 42.3 
            45-65  111859 40.7 47132 40.0 

         >65  48935 17.8 20788 17.6 
Male  138603 48.5 59339 48.4 
Female  136545 47.8 58490 47.7 
Alcohol Disorder 46792 16.4 20199 16.5 
Arrhythmia  63637 22.3 27201 22.2 
Blood Loss Anemia  839 0.3 336 0.3 
Congestive Heart 
Failure  

13320 4.7 5694 4.6 

Coagulopathy  5697 2.0 2393 2.0 
Deficiency Anemia  24096 8.4 10179 8.3 
Depression  112080 39.2 47628 38.9 
Diabetes** 45131 15.8 19144 15.6 
Substance Abuse 
Disorder  

52609 18.4 22713 18.5 

Fluid Disorder  30272 10.6 12780 10.4 
Hypertension** 98546 34.5 41840 34.1 
Hypothyroidism  31908 11.2 13666 11.2 
Injury*  137423 48.1 58865 48.0 
Liver Disorder  15252 5.3 6567 5.4 
Neurologic Disorder  161706 56.5 69341 56.6 
Obesity  44607 15.6 18882 15.4 
Poisoning*  12503 4.4 5293 4.3 
Psychoses  25422 8.9 10860 8.9 
Renal Disorder  11403 4.0 4817 3.9 
Rheumatoid 
Conditions  

78268 27.4 33420 27.3 

HIV Infection  774 0.3 336 0.3 
Paralysis  2717 1.0 1176 1.0 
Peptic Ulcer Disease  8239 2.9 3533 2.9 
Pulmonary Circulation 
Disorder  

6771 2.4 2877 2.3 

Chronic Pulmonary 
Disease  

72265 25.3 30949 25.3 

Peripheral Vascular 
Disease  

10228 3.6 4278 3.5 

Valvular Disease  5111 1.8 2215 1.8 
Weight Loss  11477 4.0 4790 3.9 

Note: p-values for chi2 test of independence were all >0.06 when comparing training and validation sets. 
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*Injury: ICD10: S00-T98; Poisoning: ICD10: T36-T50  
** Complicated, uncomplicated diabetes and hypertension were collapsed into one category each 

 

Table 3.8.  Anatomical Therapeutic Chemical classification of opioid molecules used for this 

study and candidate predictors used to train ML algorithms. 

Category (data source) Description 

ATC codes used to identify 

opioids from PIN data 

N01AH01, N01AH03, N01AH06, N07BC01, N07BC02, 

N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A 

Opioid molecules used in this 

study 

alfentanil, butorphanol, codeine, diamorphine, fentanyl, 

hydrocodone, hydromorphone, meperidine, morphine, 

oxycodone, oxymorphone, pentazocine, sufentanil, 

tapentadol, tramadol 

Demographic information (PIN) age, sex, postal codes, mean income 

Drug utilization history (PIN) drug dispenses in past 30 days using on ATC codes, oral 

morphine equivalents, concurrent use with benzodiazepines 

defined as at least 7 days of cumulative concurrent use in the 

30 days prior to dispensation, number of dispensations and 

unique molecules of opioids and benzodiazepines 

Health care utilization (PIN 

DAD) 

flags for previous hospitalizations and emergency 

department visits, number of unique providers 

ICD based co-morbidities (DAD, 

NACRS, Claims) 

Elixhauser condition flags based on the past 5 years of claims, 

hospitalizations, and emergency visits. 

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); 

PIN- Pharmaceutical Information Network; ICD- International Statistical Classification of Diseases and 

Related Health Problems, World Health Organization; total number of features 283 
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Table 3.9.  Discrimination performance using area under the receiver operating characteristic 

curve (AUROC) of various ML algorithms using all features (demographics, health utilization, 

prescription history, co-morbidities).  Training and validation were done using 2017 data 

(n=393,979); another independent validation was performed using 2018 data (n=393,023).   

Algorithm Train  Validation 2017 Validation 2018 

XGBoost Classifier 0.897 0.870 0.884 

Logistic Regression 0.887 0.869 0.884 

Gradient Boosting Classifier 0.898 0.868 0.883 

AdaBoost Classifier 0.884 0.868 0.882 

Random Forest Classifier 0.909 0.863 0.881 

Ridge Classifier 0.895 0.863 0.879 

SVM 0.896 0.860 0.878 

Gaussian Naive Bayes 0.846 0.826 0.847 

Decision Tree Classifier 0.919 0.791 0.822 

Neural Networks 0.827 0.804 0.821 

Note: Logistic regression used L1 (lasso) parameter regularization 
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Figure 3.5.  Schematic of study design and feature generation 
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Figure 3.6.  Feature importance from logistic regression and tree-based XGBoost classifiers using the 

2018 validation set.  The logistic regression classifier relied more on co-morbidity data from DAD, 

NACRS, and Claims databases; XGBoost classifier relied more on data from the PIN database.  AUROCs 

for both classifiers were similar at 0.88. 

Logistic Regression XGBoost 

history of drug abuse 1.00 age at dispensation 1.00 

age at dispensation 0.65 
number of prescriptions 
dispensed in previous 30 days 1.00 

history of prior hospitalization/ED 
visit 0.62 

number of opioid dispensations in 
previous 30 days 0.86 

history of alcohol use disorder 0.62 
number of BZD dispensations in 
previous 30 days 0.46 

history of fluid and electrolyte 
disorder 0.32 Doctor risk score* 0.45 

history of poisoning 0.31 
total OME consumed in previous 
30 days 0.43 

history of psychoses 0.31 history of poisoning 0.37 

number of unique BZD dispensed 
in previous 30 days 0.26 pharmacy risk score** 0.35 

history of depression 0.19 
number of unique providers that 
prescribed an opioid or BZD 0.34 

concurrent use of opioid and BZD 
in previous 30 days 0.19 income 0.34 

history of injury 0.17 
history of prior hospitalization/ED 
visit 0.26 

Note: Logistic regression used L1 (lasso) parameter regularization; BZD- benzodiazepine; OME- 
oral morphine equivalents; ED: emergency department 
*derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each physician; 

**derived feature using proportion of opioid/benzodiazepine patients that experienced the study 

outcome in the previous 30 days prior to opioid dispensation for each pharmacy 
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Figure 3.7.  SHAP values and feature impact of the XGBoost classifier using the 2018 validation set to 

describe “associations” between features and the outcome.  Features with the most impact on the 

model with drug abuse ranked highest (A); tornado plot illustrating feature impact (B); explaining the 

prediction of study outcome based on predictor values for 4 patients using SHAP values(C). 

(A) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid patients that experienced the 

study outcome in the previous 30 days prior to opioid dispensation for each pharmacy; training and 

validating the XGBoost classifier with these features alone resulted in an AUC of 0.877 in the 2018 

validation set 
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(B) 

 

Note: Pharmacy risk score- derived feature using proportion of opioid/benzodiazepine patients 

that experienced the study outcome in the previous 30 days prior to opioid dispensation for 

each pharmacy; red indicates higher values of categorical variables and plots to the right of 0.0 

indicate the tendency to be associated with the study outcome while blue indicates lower 

values of categorical variables and plots to the left of 0.0 indicate the tendency to be associated 

with no outcome. 
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(C) 

How to read the figure on the next page: Using hospitalization within 30-days of an opioid 

dispensation as the outcome of interest, there are 4 scenarios to consider: the XGBoost 

classifier has low or high confidence in predicting a hospitalization and low or high confidence 

in predicting NO hospitalization.  Start at the base SHAP value of near 0.0 (“base value”) in 

which the classifier is not confident in the prediction.  SHAP values (in bold) that are above 0.0 

indicate a tendency towards a hospitalization while those that are below 0.0 indicate a 

tendency for NO hospitalization.  As the SHAP value moves above 0.0, for example 3.11 in the 

top panel, the classifier’s confidence in predicting a hospitalization is higher.  As the SHAP value 

approaches closer to the base value, for example 0.16 in the second panel, the classifier has 

relatively lower confidence in predicting a hospitalization.  When the SHAP value is below 0.0, 

for example -5.4 in the third panel, the classifier’s confidence in predicting NO hospitalization is 

higher and when the SHAP value is closer to 0.0, for example -0.44 in the bottom panel, the 

classifier has lower confidence in predicting NO hospitalization. 

The top panel (SHAP value 3.11) depicts an instance predicted to be high risk for our outcome.  

This individual has a positive history of drug abuse disorder, liver disorder, diabetes, 

fluid/electrolyte disorder, alcohol use disorder, poisoning and B vitamin use in the prior 30 

days.  The third panel (SHAP value -5.40) depicts an instance predicted to be low risk (i.e., no 

hospitalization) and has a negative history for poisoning, drug and alcohol use disorder.  

Note- drug abuse: drug abuse disorder; poisoning: history of poisoning; vitamin B1: vitamin B1 

in prior 30 days; anti-glycemics: anti-glycemic agents in prior 30 days; age: age at opioid 

dispensation; # opioid dispenses: number of opioid dispensations in prior 30 days; Hosp/ED 

visit: history of prior hospitalizations and/or emergency visits in past 6 months; Total OME: total 

oral morphine equivalents in prior 30 days; DIAZEPAM: history of diazepam use in prior 30 days. 
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Figure 3.8.  Calibration curve plotting observed vs. quantiles of estimated risk for the logistic regression 

(L1) classifier using the 2018 validation dataset.  Most counts (dispensations) were predicted to be lower 

risk. 

 

 

  



68 
 

References for Chapter 3. 
 
7. Belzak L, Halverson J. Evidence synthesis - The opioid crisis in Canada: a national perspective. 

Health Promotion and Chronic Disease Prevention in Canada. 2018;38(6):224-233. 

11. Liu Y, Chen P-HC, Krause J, Peng L. How to Read Articles That Use Machine Learning: Users’ 

Guides to the Medical Literature. JAMA. 2019;322(18):1806-1816. 

12. Bastanlar Y, Ozuysal M. Introduction to machine learning. Methods in molecular biology (Clifton, 

NJ). 2014;1107:105-128. 

13. Thottakkara P, Ozrazgat-Baslanti T, Hupf BB, et al. Application of machine learning techniques to 

high-dimensional clinical data to forecast postoperative complications. PloS one. 

2016;11(5):e0155705. 

14. Alberta Machine Intelligence Institute. Machine Learning Process Lifecycle. In:2019. 

15. Shah NH, Milstein A, Bagley P, Steven C. Making Machine Learning Models Clinically Useful. 

JAMA. 2019;322(14):1351-1352. 

17. Yusuf M, Atal I, Li J, et al. Reporting quality of studies using machine learning models for medical 

diagnosis: a systematic review. BMJ open. 2020;10(3):e034568. 

19. Alba AC, Agoritsas T, Walsh M, et al. Discrimination and Calibration of Clinical Prediction Models: 

Users’ Guides to the Medical Literature. JAMA. 2017;318(14):1377-1384. 

20. Jaeschke R, Guyatt GH, Sackett DL, et al. Users' Guides to the Medical Literature: III. How to Use 

an Article About a Diagnostic Test B. What Are the Results and Will They Help Me in Caring for 

My Patients? JAMA. 1994;271(9):703-707. 

22. equator network. Transparent reporting of a multivariable prediction model for individual 

prognosis or diagnosis (TRIPOD): The TRIPOD statement. 2020; https://www.equator-

network.org/reporting-guidelines/tripod-statement/. Accessed Feb 2020. 

23. Gomes T, Khuu W, Martins D, et al. Contributions of prescribed and non-prescribed opioids to 

opioid related deaths: population based cohort study in Ontario, Canada. BMJ. 2018;362:k3207. 

24. Busse JW, Craigie S, Juurlink DN, et al. Guideline for opioid therapy and chronic noncancer pain. 

Canadian Medical Association Journal. 2017;189(18):E659-E666. 

37. Lo-Ciganic W-H, Huang JL, Zhang HH, et al. Evaluation of Machine-Learning Algorithms for 

Predicting Opioid Overdose Risk Among Medicare Beneficiaries With Opioid Prescriptions. JAMA 

network open. 2019;2(3):e190968-e190968. 

https://www.equator-network.org/reporting-guidelines/tripod-statement/
https://www.equator-network.org/reporting-guidelines/tripod-statement/


69 
 

39. Rose S. Machine Learning for Prediction in Electronic Health Data. JAMA Network Open. 

2018;1(4):e181404-e181404. 

50. Goldstein BA, Navar AM, Carter RE. Moving beyond regression techniques in cardiovascular risk 

prediction: applying machine learning to address analytic challenges. European heart journal. 

2017;38(23):1805-1814. 

59. Shortliffe EH, Sepúlveda MJ. Clinical Decision Support in the Era of Artificial Intelligence. JAMA. 

2018;320(21):2199-2200. 

60. Caruana R, Lou Y, Gehrke J, Koch P, Sturm M, Elhadad N. Intelligible models for healthcare: 

Predicting pneumonia risk and hospital 30-day readmission. Paper presented at: Proceedings of 

the 21th ACM SIGKDD international conference on knowledge discovery and data mining2015. 

66. Morgan DJ, Bame B, Zimand P, et al. Assessment of Machine Learning vs Standard Prediction 

Rules for Predicting Hospital Readmissions. JAMA Network Open. 2019;2(3):e190348-e190348. 

68. Moons KGM, Altman DG, Reitsma JB, et al. Transparent Reporting of a multivariable prediction 

model for Individual Prognosis Or Diagnosis (TRIPOD): Explanation and Elaboration. Annals of 

Internal Medicine. 2015;162(1):W1-W73. 

73. Dowell D. CDC guideline for prescribing opioids for chronic pain. 2016. 

74. ismp Canada. Essential Clinical Skills for Opioid Prescribers. 2017; https://www.ismp-

canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf. Accessed Nov 2018. 

75. Centre for Effective Practice. Management of Chronic Non Cancer Pain. 2017; 

thewellhealth.ca/cncp. 

76. College of Physicians and Surgeons of Alberta. TPP Alberta – OME and DDD Conversion Factors. 

2020; http://www.cpsa.ca/tpp/. Accessed Jun 2020. 

77. World health Organization. Classification of Diseases (ICD). 2019; 

https://www.who.int/classifications/icd/icdonlineversions/en/. Accessed Jun 2020. 

78. Gomes T, Mamdani MM, Dhalla IA, Paterson JM, Juurlink DN. Opioid Dose and Drug-Related 

Mortality in Patients With Nonmalignant PainOpioid Dose and Drug-related Mortality. JAMA 

Internal Medicine. 2011;171(7):686-691. 

79. Hsich E, Gorodeski EZ, Blackstone EH, Ishwaran H, Lauer MS. Identifying important risk factors 

for survival in patient with systolic heart failure using random survival forests. Circulation: 

Cardiovascular Quality and Outcomes. 2011;4(1):39-45. 

80. World Health Organization. International language for drug utilization research, ATC/DDD. 2020; 

https://www.whocc.no/. Accessed Jun 2020, 2020. 

https://www.ismp-canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf
https://www.ismp-canada.org/download/OpioidStewardship/Opioid-Prescribing-Skills.pdf
http://www.cpsa.ca/tpp/
https://www.who.int/classifications/icd/icdonlineversions/en/
https://www.whocc.no/


70 
 

81. Cohen JF, Korevaar DA, Altman DG, et al. STARD 2015 guidelines for reporting diagnostic 

accuracy studies: explanation and elaboration. BMJ Open. 2016;6(11):e012799. 

82. Zhou H, Della PR, Roberts P, Goh L, Dhaliwal SS. Utility of models to predict 28-day or 30-day 

unplanned hospital readmissions: an updated systematic review. BMJ Open. 2016;6(6):e011060. 

83. Brownlee J. A Gentle Introduction to Imbalanced Classification. 2020; 

https://machinelearningmastery.com/what-is-imbalanced-classification/. Accessed Jan 2021. 

84. King G, Zeng L. Logistic regression in rare events data. Political analysis. 2001;9(2):137-163. 

85. Johnson JM, Khoshgoftaar TM. Survey on deep learning with class imbalance. Journal of Big 

Data. 2019;6(1):1-54. 

86. Government of Canada. Forward Sortation Area—Definition. 2015; 

https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html. Accessed April 2020, 2020. 

87. Quan H, Sundararajan V, Halfon P, et al. Coding algorithms for defining comorbidities in ICD-9-

CM and ICD-10 administrative data. Medical care. 2005:1130-1139. 

88. College of Physicians and Surgeons of Alberta. OME and DDD conversion factors.  

http://www.cpsa.ca/wp-content/uploads/2017/06/OME-and-DDD-Conversion-Factors.pdf. 

89. Saito T, Rehmsmeier M. The Precision-Recall Plot Is More Informative than the ROC Plot When 

Evaluating Binary Classifiers on Imbalanced Datasets. PLOS ONE. 2015;10(3):e0118432. 

90. Shah ND, Steyerberg EW, Kent DM. Big Data and Predictive Analytics: Recalibrating 

Expectations. JAMA. 2018;320(1):27-28. 

91. Molnar C. Interpretable machine learning. A Guide for Making Black Box Models Explainable. 

2019. 

92. Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Paper presented at: 

Advances in neural information processing systems2017. 

93. Centers for Medicare & Medicaid Services (CMS). Announcement of calendar year (CY) 2019 

Medicare Advantage capitation rates and Medicare Advantage and Part D payment policies and 

final call letter. 

94. Buitinck L, Louppe G, Blondel M, et al. API design for machine learning software: experiences 

from the scikit-learn project. arXiv preprint arXiv:13090238. 2013. 

95. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. Paper presented at: Proceedings 

of the 22nd acm sigkdd international conference on knowledge discovery and data mining2016. 

96. The pandas development team. pandas-dev/pandas: Pandas. 2020; 

https://doi.org/10.5281/zenodo.3509134, Jan 2021. 

https://machinelearningmastery.com/what-is-imbalanced-classification/
https://www.ic.gc.ca/eic/site/bsf-osb.nsf/eng/br03396.html
http://www.cpsa.ca/wp-content/uploads/2017/06/OME-and-DDD-Conversion-Factors.pdf
https://doi.org/10.5281/zenodo.3509134


71 
 

 

 

Chapter 4: Predicting 30-day readmissions in patients with heart failure 

using administrative data: a machine learning approach 

Aims:  To develop machine-learning (ML) models trained on administrative data which predict 

risk of readmission in heart failure (HF) patients; evaluate and compare the ML model with the 

currently used LaCE score using clinically informative metrics. 

Methods and Results:  This prognostic study was conducted in Alberta, Canada on 9,845 

patients with confirmed HF admitted to hospital between 2012-2019.  The outcome was 

unplanned all-cause hospital readmission within 30-days of discharge.  80% of the data was 

used for ML model development and 20% for independent validation. We reported, using the 

validation set, c-statistics (AUROCs)and performance metrics (likelihood ratio [LR], positive 

predictive values [PPV]) for the XGBoost model and a modified LaCE score within their 

respective predictive thresholds.  Boosted tree-based classifiers had higher AUROCs (0.65 for 

XGBoost) compared to others (0.58 for Neural Network) and 0.57 for the modified LaCE.  Within 

the predicted threshold range of the XGBoost classifier, the positive LR was 1.00 at the low end 

of predicted risk and 6.12 at the high end, resulting in a PPV (post-test probability) range of 21-

62%; the pre-test probability of readmission was 20.9% using prevalence.  The corresponding 

positive LRs and PPVs across LaCE score thresholds were 1.00-1.20 and 21-24%, respectively. 

Conclusion:  Despite predicting readmissions better than the LaCE, even the best ML model 

trained on administrative health data (XGBoost) did not provide substantially informative 

prediction performance as it only generated a moderate shift from pre to post-test probability.  

Health systems wishing to deploy such a tool should consider training ML models with 

additional data.  Adding other techniques like Natural Language Processing, along with ML, to 

use other clinical information (like chart notes) might improve prediction performance. 

 

Keywords: heart failure, machine learning, risk prediction, readmissions, administrative data 



72 
 

  



73 
 

Introduction 
Despite advances in diagnosis and treatment guidelines97, patients with heart failure 

(HF) have among the highest rates of unplanned 30-day hospital readmissions in Canada and 

the US4,5.  Readmission rates range from 20-27% in North America4,9 while costs to health 

payers are in the billions of dollars9.  The burden of unplanned readmissions on patients, family 

members and health systems has resulted in growing attention to this issue, especially since at 

least some readmissions are potentially avoidable25,98. 

Given these potentially preventable costs, there is substantial interest from health 

payers99 and health systems (e.g. transitional care teams)100 to predict unplanned readmissions 

in the HF population.  Thus, there is a need for prediction tools which can accommodate the 

heterogeneous nature of HF patients to predict readmissions. 

Currently, the LACE101 and newer LaCE102 scores use administrative health data to assess 

30-day readmission risk in patients with HF, albeit, with insufficient accuracy102-104.  All versions 

of the LACE score were developed using parametric regression resulting in a risk score and not 

individual probabilities to predict readmissions.  Machine Learning (ML) methods are also being 

used to train models that can predict readmissions in HF populations using the growing 

availability of more granular electronic medical record data11,15,42,105; ML is an alternative 

approach for clinical prediction which produces absolute probabilities at the individual level and 

not a risk score based on parametric regression.  However, the performance of these ML 

classifiers is doubtful because of modest discrimination performance and the surprising 

paucity106 of reporting performance metrics recommended by medical reporting 

guidelines11,17,19,20,22.  ML models reporting informative prognostic metrics are needed to better 

understand the capabilities of this methodology if health systems are to incorporate them into 

their decision-making process and work flows.  Nevertheless, a recent meta-analysis done by 

Shin et al. reported ML methods had better discrimination than conventional statistical 

approaches and that more informative metrics should be included with ML reporting107. 

The objective of this prognostic study is to develop and validate ML models to predict 

the risk of unplanned, all-cause 30-day readmissions after discharge in a previously defined HF 
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cohort using only administrative health data.  We compared the ML classifiers with the LaCE 

score, a non-ML prediction tool, using clinically informative metrics specified in reporting 

guidelines11,17,19,20,22.  We plan to improve prediction performance by using newer ML 

algorithms (e.g., XGBoost) and to use population based administrative data from Alberta to 

highlight the Alberta experience; others have not done this to our knowledge. 

 

Methods 

Study Design, Setting and Participants 

This prognostic study used a supervised ML scheme11 which trained ML models on 

hospitalizations in Alberta, Canada between April 2012 – March 2019.  Our sample of patients 

came from a previously derived HF cohort108 who had a cardiologist-confirmed clinical diagnosis 

of HF and at least 2 echocardiograms (n=10,641) in Alberta, Canada.  We further restricted this 

sample by excluding 113 patients with no recorded hospitalizations (as a readmission was not 

possible), 221 who died during hospitalization, and 23 whose records were not fully captured 

within the administrative data (Figure 4.1). 

Data Sources 

We linked our final sample to administrative health databases maintained by Alberta 

Health Services using anonymized patient identifiers.  These include 1) Pharmaceutical 

Information Network (PIN): data on all dispensing records from community pharmacies 

irrespective of coverage status and according to the guidelines from the Alberta College 

Pharmacy109, 2) Population and Vital Statistics Data (VS, Alberta Services): sex, age, date of 

birth, death date, immigration and emigration data within the province, and underlying cause 

of death according to the World Health Organization algorithm using ICD codes (International 

Statistical Classification of Diseases and Related Health Problems77), 3) Hospitalizations and 

Emergency Department Visits (NACRS [National Ambulatory Care Reporting System], DAD 

[Discharge Abstract Database]): all services, length of stay, diagnosis (up to 25 ICD-10 based 

diagnoses), discharge dispositions (e.g., transfers, discharges).  Data and coding accuracy are 

routinely validated both provincially and centrally via the Canadian Institute for Health 
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Information110, 4) Physician Visits/Claims (Alberta Health): date of service, up to three ICD 

codes associated with the claim, procedure and billing information, and 5) Provincial 

Laboratory, Alberta Health Services: all laboratory services conducted within the hospital or 

community. 

The above-mentioned data sets span the time period from October 2000 to March 

2019. 

These linked databases represent a labeled data set used to train ML models and 

calculate the LaCE score for each instance.  We used the LaCE score, which excludes admission 

acuity but includes age plus length of index hospital stay, Charlson comorbidity score, and 

emergency department use in the prior 6 months, because it has been shown to have better 

discrimination performance than the LACE101,102 and is more accurate than the LACE+111 in 

predicting readmissions in Alberta.  While the LaCE score was developed at the patient level, its use 

is intended to assess readmission risk at the time of discharge, whether it be a repeat readmission or 

not.  Furthermore, both readmission or death risk can be assessed by the LaCE and to be consistent with 

discharge units in Alberta, Canada and other studies, we are only considering readmission risk66,112.  

Thus, our dataset will be organized in a manner similar to hospital discharge units to allow the 

comparison between the LaCE score and ML models. 

Measures and Outcome 

Our follow-up and predictions started after the first all-cause hospitalization, the 

“reference hospitalization”, following patients’ first echocardiogram (or the concurrent 

hospitalization if the echocardiogram occurred while in hospital) which led to a discharge to 

home (with or without supportive services) or continuing care.  Hospitalizations which led to 

death or transfers were not included as reference hospitalizations.  In instances of transfers, 

the final hospitalization which led to discharge was used as the reference hospitalization, 

however, all hospitalizations in the series of transfers leading up to the reference 

hospitalization were used to calculate length of stay, something not done in other HF ML 

studies42,113.  The unit of analysis used to train the ML models was hospital admission.  Others 

performed their analysis at the patient level42 or at a level not identified114 with unremarkable 

prediction performance.  Rather than emulating their work, we chose to use every 
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hospitalization instance which resulted in more data for training; we wanted to try Deep 

Learning methods which also requires large amounts of data.  Moreover, clinical utility in the 

real world is more accurately represented by using all hospitalizations which a patient may have 

as health providers would be interested in predicting risk for any instance rather than a single 

or random hospitalization, as others have done. 

Our outcome was unplanned, all-cause readmission within 30 days of a reference 

hospitalization.  30-day windows are considered directly related to the initial hospitalization 

and are a key health policy metric in evaluating and improving healthcare quality5,99,115,116.  

Furthermore, 20% (median 12 days) of patients with HF are readmitted within 30 days of a 

discharge in which only a third of readmissions were primarily due to HF117; indeed most 

readmissions are for non-HF reasons117,118.  Each reference hospitalization occurring after the 

first echocardiogram was used to predict a subsequent 30-day all-cause readmission; a 

readmission could become a reference hospitalization if there was a subsequent admission 

within 30 days.  Others42,113 used only HF related hospitalizations as their reference 

hospitalization with unremarkable ML prediction performance; instead, we used a previously 

defined cohort of patients with HF and considered all hospitalizations as potential reference 

hospitalizations since patients with HF are frequently hospitalized for non-HF related issues as 

mentioned above. 

Machine Learning Methods 

We used common ML algorithms and approaches11,14,17,42,50 to train our models.  Our 

outcome-labelled data was split into development (80%) and validation (20%) sets by patients 

and hospitalizations such that no patients in the development set were included in the 

validation set.  The development set was used to train and test various ML algorithms 

(XGBoost, Gradient Boosting Machine [GBM] , AdaBoost, CatBoost, Light GBM, Linear Support 

Vector Classifier [SVC], Gaussian Naïve Bayes, Random Forest, Decision Tree, L1 logistic 

regression, and Neural Network) and tune model hyperparameters using k-fold (k=10) cross 

validation39.  The modeling process was started with the default set of hyperparameters 

provided by SkLearn119, which has shown good predictive performance on various data sets; for 

XGBoost120 we used max_depth (maximum tree depth for base learners; range 3-10), 
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n_estimators (number of gradient boosted trees; range 10-100), scale_pos_weight (balancing 

of positive or negative weights; range none or calculated as follows [(total number of 

observations - number of positive observations)/number of positive observations]) and other 

default parameters.  As well, we used  PyCaret121, Auto-keras122 and H20 Driverless123, all of 

which automatically optimize a range of hyperparameters.     

To address the correlations between multiple hospitalizations within the same patient, 

which some consider a limitation37, we modeled hospitalization history of patients as a time 

ordered series with a LSTM124 (long short-term memory recurrent neural network) using the 

same architecture as others did for predicting readmissions in the HF population125; our data 

set was first transformed into a longitudinal set, then LSTM was applied.   

We used the validation set to evaluate prediction performance of the ML models and 

LaCE score 

Predictors 

Predictor variables included those that were informed by the literature4,42,126 and those 

that incorporated information from our datasets (Table 4.3 and Figure 4.5).  We included 

feature groupings based on demographic information, hospital admission characteristics, 

healthcare utilization (number of visits to hospitals and physicians), drug utilization (measured 

at the time of reference hospitalization and 30 days prior), co-morbidity history87,127, history of 

cardiac procedures, and laboratory test results (most recent one completed prior or during 

hospitalization).  Health care utilization features were binned into categories.  As well, we 

incorporated time sensitive variables for each hospital discharge such as time elapsed since last 

cardiac related procedure, number of hospitalizations, physician and emergency department 

visits in the previous 6 months. 

Missing Data and Outliers 

We anticipated missing data when handling laboratory results.  It should be noted that 

the Provincial Laboratory fully captures all performed laboratory tests and that any “missing” 

data are laboratory tests that were not ordered.  Missing laboratory data is classified as either 

missing at random or missing not at random45,50 and imputation methods are not favourable 
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with ML prediction tools intended for deployment in a work setting52.  Instead, we included 

missing indicator variables as others have done46,51,53 although we understand this use is 

controversial128.  However, if the models are to be deployed in real-world settings, the missing 

indicator approach is most practical.  Tree-based ML algorithms (e.g. XGBoost) are able to 

handle missing data better than regression based algorithms50.  We made use of the Sparsity-

aware split finding feature95 when training the XGBoost algorithm to address missing data 

without the need for missing indicators.  All other ML algorithms required the use of missing 

indicators.  Other HF ML studies excluded missing medical data or used imputation to handle 

missing data, both recognized as leading to high bias42,107,113. 

We encountered outliers when analyzing healthcare utilization features such as number 

of previous physicians, hospital or emergency department visits.  In these cases, we identified 

outliers if they were more than 1.5xIQR (interquartile range) above the 3rd quartile and binned 

them into the highest category. 

Analysis and Prediction Evaluation 

We first performed a descriptive analysis comparing those with and without a 

readmission and those in the training and validation sets using chi-square tests and t-tests.  This 

descriptive analysis was done at the patient level in which patients could experience multiple 

hospitalizations each.  We also included number of events, final sample size, and distribution of 

missingness in the lab data.   

Using the validation set, we reported prediction performance metrics11,17,19,20,22 of the 

ML model with the highest AUROC (area under the receiver operating characteristics) curve and 

compared them with those of the LaCE score.  This included positive likelihood ratios (LR+)20, 

true/false positives, true/false negatives, category-less net reclassification improvement 

(NRI)111,129 and positive predictive value (PPV, equivalent to post-test probability); these were 

stratified by prediction thresholds of the models with the exception of NRI.  For binary 

classification studies like ours, AUROC curves correspond to c-statistics which are a measure of 

model discrimination performance, the extent to which a model predicts a higher probability of 

an outcome among patients who actually had the outcome compared to those who did not19.  
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LR+’s are used as a multiplier to convert pre-test odds (or probabilities) to post-test odds (or 

probabilities) thus providing some measure of clinical informativeness of the ML model.  The 

NRI measures the amount of correct reclassification111 (predicted risk moving upward for 

events and downward for non-events) when our defined outcome for the ML model was 

compared to that of the LaCE.  Because there are no established risk categories for 30-day 

readmissions, we used category-less NRI129 for comparing ML prediction to LaCE; an NRI above 

zero indicates better risk prediction for the ML model compared to the LaCE score. 

We also included calibration plots19 for the ML model; calibration is perhaps considered 

the most important property of a model and reflects the extent to which predicted values align 

with observed values and is most often illustrated by a plot of observed vs predicted18,19.  Along 

with the calibration plot, we added a negative predictive value (NPV) vs. predicted risk plot to 

highlight the relationship between low predicted risk and true negatives (those who did not 

experience the outcome). 

Because ML models do not estimate an interpretable quantity relating predictors to 

outcomes (not the purpose of ML prediction), it is not appropriate to summarize that 

relationship with a single parameter; instead, the influence, or impact, of individual predictors 

can be summarized using variable importance which is a rank-ordering of variables which are 

most important for the ML model’s prediction performance50; variable importance does not 

have a causal or statistical meaning.  To address interpretability59 of our ML model, we reported 

feature importance50 and feature impact using SHAP plots91,92 for the ML model with the 

highest discrimination performance using the validation set.  As well, we reported AUROCs for 

different combinations of features to see the effect of reduced predictors on discrimination 

performance using the ML model with the highest overall AUROC.  

In sub-group analyses, we assessed the discrimination performance of the ML model 

according to type of HF in the full dataset: heart failure with reduced ejection fraction (HFrEF), 

heart failure with mid-range ejection fraction (HFmEF) and heart failure with preserved ejection 

fraction (HFpEF).  As well, we performed an analysis using only HF specific reference 

hospitalizations identified by the main diagnosis field (using ICD-10 code I50) and estimated the 
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discrimination performance (c-statistic); we also reported the distribution of missing laboratory 

test values in this subset. 

All findings were reported using TRIPOD68 and other guidelines11,17 specific to ML 

projects.  All analyses were done using Python (version 3.6.8, Python Software Foundation), 

SciKit Learn94 (version 0.23.2), SHAP92 (version 0.35), XGBoost95 (version 0.90), Pandas96 

(version 1.0.5) and STATA/MP V.15.1 (StataCorp).  This study received ethics approval from the 

University of Alberta ethics board (Pro00097809). 

Results 

We identified 9,845 patients with HF representing 48,745 reference hospitalizations for 

our study period (Figure 4.1).  As mentioned in the Methods section, our unit of analysis is at 

the hospitalization level, thus, each patient could have multiple admissions and be represented 

in multiple instances.  Most of the patients in our dataset had 7 or fewer admissions (Figure 

4.6).  The top 2 most frequent primary diagnoses for both reference admissions and 

readmissions were heart failure and COPD exacerbations (Table 4.4).  As expected, there were 

differences between those who were readmitted and those who were not (Table 4.5) while the 

distribution of characteristics was similar between those in the development and validation sets 

(Table 4.6).  The mean age at reference admission was 71.5 (SD=14); males accounted for 5,539 

(56%) of HF patients.  Those with hypertension, prior ischemic heart disease, renal disease and 

depression represented 96.2% (n=9,471), 90.3% (n=8,894), 52.0% (n=5,112), and 61.7% 

(n=6,078) of patients with HF, respectively. 

10,182 (20.9%) reference hospitalizations were followed by an unplanned 30-day 

readmission after discharge.  Our development and validation sets had 7,876 (80%) and 1,969 

(20%) patients corresponding to 39,066 (80%) and 9,679 (20%) reference hospitalizations, 

respectively.  There were 8,101 (20.8%) and 2,081 (21.1%) readmissions in the development 

and validation sets, respectively.   

Missing laboratory data in our dataset ranged from 22-83% (Table 4.7).  The laboratory 

measurements with the highest missing values were BNP (83.1%) and NT-proBNP (74.0%), 
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which are not commonly ordered in practice, particularly in the earlier years of the cohort in 

Alberta, Canada. 

With respect to our ML models, from our validation set, the boosted tree-based ML 

algorithms had the highest AUROCs with XGBoost being the highest at 0.65 while the LaCE 

score was at 0.57 (Table 4.1, Figure 4.2).  Also, the LSTM classifier used to model 

hospitalizations at the patient level did not perform as well as the boosted trees (Table 4.1).  

Calibration plots for the XGBoost classifier showed that predicted risk of readmission was 

aligned with observed risks and that low predicted risks were associated with fewer actual 

outcomes highlighting higher negative predicted values at lower predicted risks (Figure 4.3).  

Above a predicted risk of around 0.55, what few hospitalizations were present all led to an 

actual readmission, thus the calibration in this segment illustrates that the ML classifier 

underestimated the predicted risk. 

When we stratified across predictive thresholds for the XGBoost classifier from the low 

to high end of predicted probabilities, the LR+ ranged from 1.00-6.12 and the PPV (post-test 

probability) from 0.21-0.62 (Table 4.2).  Similar stratification of the LaCE score resulted in LR+ 

values ranging from 1.00-1.20 and PPVs from 0.21-0.24 (Table 4.8).  These can be contrasted 

with the pre-test probability (using prevalence) of 20.9% observed in our data.  Further 

comparison yielded a NRI of 0.34 (95% CI 0.30-0.40) which indicates that a higher proportion of 

patients were correctly reclassified with the XGBoost classifier compared to the LaCE score. 

Regarding interpretability and feature importance of the XGBoost classifier, previous 

hospitalization history and hemoglobin levels carried the highest impact for predicting 

readmissions (Figure 4.4) with SHAP plots indicating that higher number of previous 

hospitalizations and lower hemoglobin levels predicted higher risk of readmissions (Figure 4.7). 

Reducing the number of predictors also reduced the discrimination performance in our 

XGBoost model.  Using only laboratory test results, admission characteristics, or drug utilization 

(Table 4.3) resulted in AUROCs of 0.595, 0.574, and 0.558 respectively (Table 4.9). 

In the sub-group analysis, most patients (n=5,702; 57.92%) were classified as HFpEF and 

estimated c-statistics were 0.67, 0.61 and 0.63 across HFrEF, HFmEF and HFpEF, respectively 
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(Table 4.10).  With respect to ML prediction in the subset of HF specific reference 

hospitalizations, the estimated c-statistic was 0.60 (Table 4.10) and the distribution of missing 

lab values was like that of the entire data set (Table 4.11). 

Discussion 

In this study, we used administrative health data to develop and validate ML models 

which predicted the risk of unplanned readmissions 30 days after discharge and compared 

prediction metrics with the widely used LaCE score.  The ML approach can leverage larger 

amounts of data and include more predictors offering an advantage over non-ML methods like 

the LaCE score, which is a score card consisting of 4 predictors (length of stay, age, Charlson 

score and number of emergency department visits); indeed, ML models can go beyond a simple 

score card by incorporating many predictors.  The LaCE score provided minimal predictive 

capabilities and was not more informative than the pre-test probability of 20.9%.  Although the 

ML models we tested performed better than the LaCE score, even our best performing ML 

model (the XGBoost classifier) was not sufficiently informative as a classifier to predict risk of 

readmissions with LR+ ranging from 1.00 to 6.12.  A LR+ >10 is considered strongly informative 

with conclusive changes from pre-test to post-test probabilities 20.  However, because our ML 

classifier was more informative than the LaCE score, which is currently being used in many 

health-systems including in Alberta, it is possible that health-system administrators may find 

value with our approach of including feature importance and feature impact (SHAP plots) to 

permit a measure of interpretability (in terms of which variables are most strongly associated 

with readmission risk) not commonly seen in other ML studies.  However, it should be noted 

that interpretability is not usually a consideration of ML prediction. 

Our results indicate that predicting readmissions in patients with HF is a difficult 

undertaking, whether using ML or non-ML methods.  Indeed, whether we considered all-cause 

or HF specific reference hospitalizations or HF status, ML prediction was unremarkable.  The 

varying and somewhat uninformative predictive performance across ML models reflects this 

difficulty which may be explained by data quality as it is estimated that over 80% of the work 

done in ML projects is comprised of data preparation32; there was not enough variation in the 

administrative data for substantial improvements in ML prediction.  To augment ML prediction, 
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administrative health data could be linked to social factors data, which are known determinants 

of health, however, this cannot be done in many jurisdictions including Alberta.  The purpose of 

this study was to see if regularly captured administrative data could train ML models to predict 

readmissions.  ML models trained on administrative data alone cannot be expected to 

outperform non-ML methods that also use administrative data alone, especially when many of 

the features are generated using clinically guided expertise16,34.  Incorporating the entire 

taxonomy of “big health data” would likely improve ML prediction by linking biological, 

geospatial, electronic health records, personal monitoring device, and effluent sources of data34 

as all of these contribute to patient heterogeneity.  Furthermore, it is well known that the 

elderly are a heterogeneous segment of society with regards to health130,131.  The HF population 

also inherently shares this heterogeneity in which administrative health data alone cannot 

explain the variation in readmission risk.  Indeed, patients with HF are already at high risk of 

readmissions and further ML risk stratification in this already high-risk group was not possible 

using our datasets; there are other unidentified, or rather, uncaptured factors which will 

influence prediction performance.   

Other ML studies42,105,114,132 which looked at readmissions in patients with HF had 

AUROCS ranging from 0.61-0.67 with rates of readmissions around 21%, similar to our findings.  

However, our study also included recommended metrics like LR+, pre-test/post-test 

probabilities across prediction thresholds and NRI to compare classifiers showcasing that our 

ML classifier was not substantially informative.  We also trained newer ML algorithms (e.g., 

XGBoost) using Alberta specific administrative data and provided an assessment of ML model 

interpretability using feature importance and impact plots.  Our finding that ML classifiers 

better predict readmissions when compared to variations of the LaCE score (or more 

conventional regression-based models) is also noted in ML studies by Frizzell et al.42 , Bayati et 

al132 and Shin et al107.  Overall, our study’s findings are aligned with others in that ML prediction 

of readmissions in patients with HF does not carry much clinical utility42. 

Our study benefited from complete records of hospitalizations, emergency visits, claims, 

and medication history anywhere in the province of Alberta (not just within the site of the 

reference hospitalization) using administrative data validated by Canadian Institute for Health 
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Information110.  Although our data cannot capture events outside of Alberta, we expect this 

scenario to represent very few instances which will not affect ML training.  However, we did 

have substantial missingness with laboratory data, which may influence prediction 

performance.  Even when we analyzed the subset of HF specific reference hospitalizations, 

there was a similar distribution of missingness.  It should be noted that these were not 

necessarily missing, but simply not completed on a patient.  As a result, these values were not 

available to health providers either during the clinical decision-making process.  Others42 simply 

excluded missing data from their ML training data and identified this method as leading to high 

bias107 while we decided to use XGBoost’s capabilities in handling missing values.  Furthermore, 

our study required 2 echocardiograms to verify HF status, and may not be representative of all 

HF patients.  ML projects are entirely data driven and even though we incorporated around 160 

different predictors using administrative data, we were not able to measure many predictors 

which substantially contribute to readmissions, namely, social factors.  Frizzell et al. also noted 

this point and went further to highlight that even with social factors data that ML prediction 

performance is not guaranteed42.  How predictive these social factors are remains uncertain, 

but some improvement in performance could be expected with their inclusion118.  This was 

evident as our dataset did not sufficiently predict readmissions in an informative manner.  

Similar to other ML prediction studies37, we assumed all hospitalizations were independent 

events and thus we ignored correlations within patients hospitalized multiple times, which may 

have unduly influenced the analysis (although we had a large sample).  Nevertheless, 

correlation in datasets like ours leading to poor ML prediction has not been substantiated in the 

literature.  Another study42 looking at the same outcome simply took the first hospitalization 

for patients with multiple hospitalizations and did not have sufficient prediction performance.  

We trained an LSTM model to address this, however, it had lower discrimination performance 

compared to the findings of Ashfaq et al125.  As with all ML projects, our models were trained 

using local data and may not be generalizable however, the data was derived from an overall 

population of 4 million patients in Alberta and should be broadly representative of most HF 

patients in other settings.  Moreover, a benefit of the ML process is that models can be easily 

retrained to other populations. 
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This study suggests that ML methods may better predict readmissions compared to non-

ML methods like the LaCE score, although still at an insufficient level to be of value to many 

health system planners.  Health systems should consider our results, and those of others, if they 

wish to deploy ML technology into their workflows.  While our ML methods had limited clinical 

prediction ability when trained only on administrative data, ML is just one technique of Artificial 

Intelligence (AI), and other techniques like Natural Language Processing (NLP) may add more 

prognostic information by processing practitioner chart notes. Indeed, in building an effective 

data driven model, all data available in health institutions (e.g., patient chart data, 

administrative data) should be considered to improve predictive capabilities. Combined, ML 

and NLP may provide a model with high enough prediction performance for health practitioners 

to use in clinical settings.  Deployment of ML models in general requires technology 

readiness133, IT infrastructure, and especially evaluations of ML impact on outcomes, which is 

severely lacking56. While the ML process may be promising, health systems must acknowledge 

barriers to data as many jurisdictions do not permit widespread use of administrative health 

data and data sharing is a major issue in almost all health systems.  Indeed, having access to 

data detailing outcomes and patient histories, as well as other types of personal non-

administrative sources of data may improve ML prediction performance and utility and should 

be explored.” 
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Table 4.1.  Discrimination performance of ML models and LaCE score using AUROCs. 

Classifier Development set Validation set 

XGBoost Classifier 0.685 0.654 

Gradient Boosting Machine 
(GBM) Classifier 

0.687 0.650 

AdaBoost Classifier 0.655 0.646 

CatBoost 0.851 0.642 

Light GBM Classifier 0.811 0.641 

Linear SVC 0.671 0.639 

Gaussian Naïve Bayes 0.638 0.624 

Random Forest Classifier 1.000 0.617 

Decision Tree Classifier 0.741 0.597 

Logistic Regression (L1) 0.591 0.596 

Neural Network Classifier 0.579 0.578 

LSTM 0.681 0.624 

LaCE 0.570 0.570 

AUROC: Area under the receiver operating characteristic curve; SVC: Support Vector Classifier; 

LSTM: Long short-term memory recurrent neural network 
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Table 4.2. Prediction metrics for the XGBoost classifier across predictive thresholds.  

Predictive 

Threshold  
TP  FN  FP  TN  

PPV  (post-test 

probability*) 
LR+  

0  2081  0  7782  0  0.21  1.00  

0.1  2065  16  7464  318  0.22  1.03  

0.2  1371  710  3456  4326  0.28  1.48  

0.3  477  1604  797  6985  0.37  2.24  

0.4  95  1986  126  7656  0.43  2.82  

0.5  18  2063  11  7771  0.62  6.12  

0.6  0  2081  0  7782  (--) (--) 

*Compared to a pre-test probability of 20.9% using prevalence 

TP: true positives; FN: false negatives; FP: false positives; TN: true negatives 

PPV: positive predictive value; LR+: positive likelihood ratio (this is a multiplier used to convert a 

pre-test odds to post-test odds and subsequently, pre-test probability to post-test probability) 

(--): no value 
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Figure 4.1. Patient flow diagram of study participants.   

 

 

  



89 
 

Figure 4.2.  Area under receiver operating characteristic (A) and precision-recall curve (B) for 

the XGBoost model. 

(A) 

 

XGBClassifier: XGBoost Classifier; AUC: area under the curve 

(B) 

 

PRAUC: area under the precision-recall curve 
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Figure 4.3.  Calibration plot with counts of hospitalizations (A) and NPV (negative predictive 

value) vs predicted risk (B) for the XGBoost classifier. 

(A) 

 

(B) 

 

  



91 
 

Figure 4.4.  Feature importance for the XGBoost classifier. 

 

Note: the x-axis represents variable importance and impact on ML model output which is 

specific to the individual algorithm (in this case, XGBoost) and does not have a statistical 

interpretation.  Variable importance is a relative comparison of feature contribution to the 

overall prediction of the outcome (predictors are rank-ordered); predictors are arranged from 

top to bottom in order of decreasing impact on ML model output; BNP: B-type natriuretic 

peptide; ACSC: ambulatory care sensitive condition; COPD: chronic obstructive pulmonary 

disease; Discharge disposition 4: discharged to private home with community supports 
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Appendix to Chapter 4 

Table 4.3.  Predictors used for model training (data dictionary). 

Category Predictor 

Demographics Age 

  Sex 

  Income 

  Rural/urban 

  Forward sortation index (postal codes) 

Admission characteristics Main reason for admission (ICD-10)  

  
Resource intensity weight (allocation of resources for reference 
hospitalization) 

 

  length of stay  

  Admission category (urgent or other)  

  Admitted through emergency (yes/no)  

  Admitted through ambulance (yes/no)  

  Co-morbidity that occurred during hospitalization (yes/no)  

  Facility ID  

  Institution to  

  Institution from  

  Discharge disposition  

  Calendar year of admission  

Healthcare Utilization Number of physician visits in previous 90 days**  

  Number of pharmacy visits in previous 90 days  

  Number of prescription dispenses in previous 90 days  

  Number of hospitalizations in previous 180 days  

  Number of physician visits in previous 180 days**  

  Number of emergency visits in previous 180 days  

  Number of general practitioner visits in previous 180 days**  

  Number of cardiologist visits in previous 180 days**  

Ambulatory sensitive care 
conditions Heart failure and pulmonary edema 

 

  Angina  

  COPD  

  Asthma  

  Hypertension  

    

  Epilepsy  

Comorbidity group* Alcoholism  

  Arrhythmia  

  Anemia  

  Heart failure and pulmonary edema  

  Cancer  
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  Lymphoma  

  Coagulopathy  

  Iron deficiency anemia  

  Depression  

  Diabetes  

  Substance abuse  

  Fluid and electrolyte disorder  

  HIV infection  

  Hypertension  

  Hypothyroidism  

  Liver disorder  

  Neurologic disorder  

  Obesity  

  Paralysis  

  Psychoses  

  Peptic ulcer disease  

  Pulmonary circulation disorder  

  Pulmonary disease  

  Peripheral vascular disease  

  Renal disease  

  Rheumatoid arthritis  

  Valvular disease  

  Weight loss  

  Stroke  

  Prior ischemic heart disease  

  Dyslipidemia  

  Tobacco  

  Cognitive impairment  

  Delirium  

  Dementia  

  Difficulty walking  

  Falls  

  Incontinence  

  Gait abnormalities  

  Senility  

  Vascular dementia  

  Pressure ulcer  

  Malaise  

Cardiac procedure group   

  echocardiogram ejection fraction  

  Date of echocardiogram  

  Implantable cardioverter defibrillator  

  Cardiac resynchronization therapy  
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  Left ventricular assist device  

  Percutaneous coronary intervention  

  Coronary artery bypass  

  Aortic valve procedure  

  Mitral valve procedure  

  Procedure date  

Drug Utilization (at the time 
of reference hospitalization 
and 30 days prior) Level 3 or 4 Anatomical Therapeutic Chemical code 

 

  Ace inhibitors 

 

 
  Beta blockers  

  Mineral corticosteroids  

  Sodium-glucose cotransporter-2 (SGLT2)  

  hydralazine  

  Isosorbide Dinitrate  

  digoxin  

  calcium channel blockers  

  

anti-arrhythmic agents 
dyslipidemia drugs 
diuretics 

 

Laboratory tests Blood urea nitrogen  

  MCV  

  Hemoglobin  

  Potassium  

  Creatinine  

  eGFR  

  Sodium  

  Hematocrit  

  ALT  

  Ferritin  

  Serum albumin  

  A1C  

  
BNP 
NT/proBNP 

 

  Number of days between lab test and reference hospitalization  

*Determined using ICD-10 (International Statistical Classification of Diseases and Related Health 

Problems); co-morbidities were derived from all Claims data and hospitalizations prior to and 

including the reference hospitalization.  

**These features were derived from Physician Claims data 
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Table 4.4. Admission statistics and main reason for admission. 

Admission statistics 

Number (% of total 
reference 

hospitalizations) 

Number of reference admissions 48745 (100) 

Number of 30-day readmissions 10182 (20.9) 

Top 5 most frequent main diagnoses for reference hospitalizations (ICD-10):   

Heart failure 7574 (15.5) 

COPD exacerbation 1703 (3.5) 

COPD with lower respiratory tract infection 1545 (3.2) 

Physical therapy (breathing exercises) 1298 (2.7) 

Pneumonia 1148 (2.3) 

Top 5 most frequent main diagnoses for readmissions (ICD-10)   

Heart failure 1901 (18.7) 

COPD exacerbation 349 (3.5) 

COPD with lower respiratory tract infection 325 (3.2) 

Pneumonia 231 (2.3) 

Acute renal failure 193 (1.9) 

ICD: International Statistical Classification of Diseases and Related Health Problems 

COPD: Chronic obstructive pulmonary disease 
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Table 4.5. Characteristics of those who were readmitted and those who were not.  This 

descriptive analysis was done at the patient level in which patients could experience multiple 

hospitalizations each. 

  
Patients without 

Readmission (n=9,749)* 
Patients with Readmission 

 (n=4,663)*   

Characteristic Number~ % Number~ % p-value 

Age at reference admission:           

Mean (SD) 71.57 (14.0) (--) 71.32 (14.0) (--) (--) 

18-45 492 5.0 174 3.7 <0.001 

45-65 2544 26.1 1025 22.0 <0.001 

>65 7402 75.9 3568 76.5 0.44 

Sex:           

Male 5492 56.3 2544 54.6 0.04 

Female 4257 43.7 2119 45.4 0.04 

Discharge disposition**:           

2 1405 14.4 425 9.1 <0.001 

4 5084 52.1 2059 44.2 <0.001 

5 8324 85.4 3267 70.1 <0.001 

6 360 3.7 181 3.9 0.58 

12 38 0.4 8 0.2 0.03 

30 182 1.9 37 0.8 <0.001 

40 181 1.9 53 1.1 0.00 

62 31 0.3 8 0.2 0.11 

Medical History***           

Ejection fraction, mean (SD) 48.46 (13.07) (--) 48.83 (13.05) (--) (--) 

Hypertension 9367 96.1 4517 96.9 0.02 

Arrhythmia 9214 94.5 4393 94.2 0.46 

Ischemic heart disease 8783 90.1 4217 90.4 0.52 

Depression 5971 61.2 2978 63.9 0.00 

Injury 9293 95.3 4474 95.9 0.09 

Dyslipidemia 6794 69.7 3255 69.8 0.89 

Rheumatoid arthritis 5904 60.6 2901 62.2 0.06 

Alcohol use disorder 3079 31.6 1569 33.6 0.01 

Neurologic disorder 8739 89.6 4220 90.5 0.11 

Coagulopathy 3193 32.8 1568 33.6 0.30 

Congestive heart failure 9578 98.2 4452 95.5 <0.001 
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Pulmonary disease 6804 69.8 3388 72.7 <0.001 

Poisoning 2103 21.6 1075 23.1 0.04 

Pulmonary circulation disorder 4045 41.5 2065 44.3 0.00 

Deficiency anemia 4525 46.4 2361 50.6 <0.001 

Liver disorder 1588 16.3 856 18.4 0.00 

Peptic ulcer disease 1449 14.9 798 17.1 <0.001 

Renal disease 5006 51.3 2616 56.1 <0.001 

Blood loss anemia 720 7.4 430 9.2 <0.001 

Valvular disease 4653 47.7 2176 46.7 0.23 

Fluid and electrolyte disorder 7215 74.0 3661 78.5 <0.001 

Diabetes 5666 58.1 2860 61.3 <0.001 

Stroke 2822 28.9 1288 27.6 0.10 

Obesity 3192 32.7 1569 33.6 0.28 

Cancer 3706 38.0 1804 38.7 0.44 

Peripheral vascular disease 4329 44.4 2172 46.6 0.01 

Weight loss 2566 26.3 1301 27.9 0.05 

Hypothyroidism 2988 30.6 1487 31.9 0.13 

Drug abuse disorder 907 9.3 497 10.7 0.01 

Paralysis 750 7.7 344 7.4 0.50 

Lymphoma 698 7.2 365 7.8 0.15 

Smoking 356 3.7 194 4.2 0.14 

HIV 41 0.4 23 0.5 0.54 

Psychoses 2313 23.7 1227 26.3 <0.001 

Mean length of stay of 
reference hospitalization (SD) 16 (31.6) (--) 15.8 (28.2) (--) 0.58 

Mean LaCE score (SD) 59.9 (6.5) (--) 61.4 (5.3) (--) <0.001 

~Unless otherwise specified 

*Patients can be in either category because those with multiple hospitalizations may have 

experienced a readmission from some reference hospitalization and no readmission from 

others. 

**2: transferred to continuing care; 4: discharge to private home with supports from 

community; 5: discharge to private home without supports; 6: sign out, absent without leave; 

12: patient did not return from pass; 30: transfer to long-term care home, mental health and/or 

addiction centre or hospice; 40: transferred to assisted living; 62: left against medical advice 

***derived using ICD-10 codes (International Statistical Classification of Diseases and Related 

Health Problems) 
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Table 4.6. Characteristics of patients in development and validation sets.  This descriptive 

analysis was done at the patient level in which patients could experience multiple 

hospitalizations each. 

  Development set (n=7,876) 

Independent 
validation set 

(n=1,969)   

Characteristics Number % Number % p value 

Age at reference admission:           

Mean (SD) 71.5 (14.0) (--) 71.5 (13.9) (--) (--) 

18-45 387 4.9 107 5.4 0.34 

45-65 2062 26.2 497 25.2 0.40 

>65 6008 76.3 1497 76.0 0.81 

Sex:           

Male 4419 56.1 1120 56.9 0.54 

Female 3457 43.9 849 43.1 0.54 

Discharge disposition*:       0.0   

2 1216 15.4 311 15.8 0.70 

4 4430 56.2 1104 56.1 0.89 

5 6866 87.2 1724 87.6 0.65 

6 403 5.1 88 4.5 0.24 

12 39 0.5 5 0.3 0.15 

30 172 2.2 27 1.4 0.02 

40 159 2.0 36 1.8 0.59 

62 34 0.4 1 0.1 0.01 

Medical History**:           

Ejection fraction, mean (SD) 48.60 (13.10) (--) 48.3 (13.0) (--) (--) 

Hypertension 7575 96.2 1896 96.3 0.81 

Arrhythmia 7462 94.7 1854 94.2 0.30 

Prior ischemic heart disease 7115 90.3 1779 90.4 0.99 

Depression 4849 61.6 1229 62.4 0.49 

Injury 7508 95.3 1887 95.8 0.33 

Dyslipidemia 5471 69.5 1398 71.0 0.18 

Rheumatoid arthritis 4784 60.7 1198 60.8 0.93 

Alcohol use disorder 2518 32.0 616 31.3 0.56 

Neurologic disorder 7084 89.9 1760 89.4 0.46 

Coagulopathy 2617 33.2 659 33.5 0.84 

Congestive heart failure 7753 98.4 1946 98.8 0.20 

Pulmonary disease 5542 70.4 1354 68.8 0.17 

Poison 1694 21.5 445 22.6 0.29 
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Pulmonary circulation disorder 3294 41.8 855 43.4 0.20 

Deficiency anemia 3695 46.9 920 46.7 0.88 

Liver disorder 1315 16.7 315 16.0 0.46 

Peptic ulcer disease 1165 14.8 309 15.7 0.32 

Renal disease 4070 51.7 1042 52.9 0.32 

Blood loss anemia 590 7.5 157 8.0 0.47 

Valvular disorder 3756 47.7 976 49.6 0.14 

Fluid and electrolyte disorder 5849 74.3 1490 75.7 0.20 

Diabetes 4580 58.2 1155 58.7 0.68 

Stroke 2306 29.3 554 28.1 0.32 

Obesity 2584 32.8 639 32.5 0.76 

Cancer 3050 38.7 749 38.0 0.58 

Peripheral vascular disease 3495 44.4 890 45.2 0.51 

Weight loss 2112 26.8 554 28.1 0.24 

Hypothyroidism 2443 31.0 597 30.3 0.55 

Drug abuse disorder 743 9.4 179 9.1 0.64 

Paralysis 630 8.0 130 6.6 0.04 

Lymphoma 561 7.1 155 7.9 0.25 

Smoking 298 3.8 64 3.3 0.26 

HIV 30 0.4 11 0.6 0.27 

Psychoses 1936 24.6 448 22.8 0.09 

Mean length of stay of 
reference admission (SD) 16.0 (30.6) (--) 15.9 (31.9) (--) 0.89 

Mean LaCE score (SD) 60.1 (6.3) (--) 60.3 (6.4) (--) 0.21 

Mean number of multiple 
hospitalizations (SD) 4.94 (4.0) (--) 5.00 (4.2) (--) 0.55 

*2: transferred to continuing care; 4: discharge to private home with supports from community; 

5: discharge to private home without supports; 6: sign out, absent without leave; 12: patient 

did not return from pass; 30: transfer to long-term care home, mental health and/or addiction 

centre or hospice; 40: transferred to assisted living; 62: left against medical advice 

**derived using ICD-10 codes (International Statistical Classification of Diseases and Related 

Health Problems) 

 

  



100 
 

Table 4.7.  Distribution of missing laboratory data. 

  Entire Dataset* Development Set** Validation Set***   

Lab Test % Missing 
Number 
missing % Missing 

Number 
Missing % Missing 

Number 
Missing p-value^ 

Blood Urea 
Nitrogen 

25.5 12,428 
25.4 9,935 25.8 2,493 0.51 

MCV 22.0 10,748 22.0 8,594 22.3 2,154 0.59 

Hemoglobin 22.0 10,745 22.0 8,592 22.2 2,153 0.60 

Total 
Cholesterol 

52.2 25,423 
52.0 20,326 52.7 5,097 0.27 

Potassium 22.1 10,764 22.0 8,604 22.3 2,160 0.53 

Creatinine 22.1 10,761 22.0 8,602 22.3 2,159 0.54 

eGFR 22.4 10,942 22.4 8,749 22.7 2,193 0.58 

Cholesterol 
Ratio 

60.8 29,625 
60.5 23,624 62.0 6,001 0.01 

Sodium 22.1 10,765 22.0 8,605 22.3 2,160 0.54 

Hematocrit 22.0 10,747 22.0 8,593 22.3 2,154 0.58 

ALT 27.7 13,486 27.6 10,772 28.0 2,714 0.36 

Ferritin 50.6 24,671 50.5 19,733 51.0 4,938 0.37 

Albumin 36.8 17,918 36.8 14,370 36.7 3,548 0.82 

A1C 46.3 22,590 46.4 18,117 46.2 4,473 0.78 

NT-proBNP 74.0 36,092 73.9 28,863 74.7 7,229 0.11 

BNP 83.1 40,489 82.7 32,322 84.4 8,167 <0.001 

^Chi square test between development and validation sets. 

*n=48,745 total reference hospitalizations in the entire dataset. 

**n=39,066 reference hospitalizations in the development set. 

***n=9,679 reference hospitalizations in the validation set. 
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Table 4.8.  Prediction metrics for the LaCE score. 

Predictive 
Threshold*  

TP  FN  FP  TN  
PPV (post-test 
probability**)  

LR+  

9  2081  0  7782  0  0.21  1.00 

10  2081  0  7782  0  0.21  1.00 

11  2081  0  7781  1  0.21  1.00  

13  2081  0  7780  2  0.21  1.00  

14  2081  0  7779  3  0.21  1.00  

15  2081  0  7778  4  0.21  1.00  

16  2081  0  7775  7  0.21  1.00  

17  2081  0  7773  9  0.21  1.00  

18  2080  1  7773  9  0.21  1.00  

19  2080  1  7771  11  0.21  1.00  

20  2078  3  7770  12  0.21  1.00  

21  2078  3  7767  15  0.21  1.00  

22  2078  3  7764  18  0.21  1.00  

23  2078  3  7762  20  0.21  1.00  

24  2078  3  7760  22  0.21  1.00  

25  2078  3  7754  28  0.21  1.00  

26  2078  3  7747  35  0.21  1.00  

27  2077  4  7742  40  0.21  1.00  

28  2077  4  7741  41  0.21  1.00  

29  2076  5  7738  44  0.21  1.00  

30  2075  6  7731  51  0.21  1.00  

31  2075  6  7730  52  0.21  1.00  

32  2075  6  7727  55  0.21  1.00  

33  2075  6  7727  55  0.21  1.00  

34  2075  6  7720  62  0.21  1.01  

35  2075  6  7717  65  0.21  1.01  

36  2075  6  7711  71  0.21  1.01  

37  2074  7  7704  78  0.21  1.01  

38  2074  7  7696  86  0.21  1.01  

39  2073  8  7685  97  0.21  1.01  

40  2070  11  7661  121  0.21  1.01  

41  2067  14  7636  146  0.21  1.01  

42  2064  17  7609  173  0.21  1.01  

43  2057  24  7567  215  0.21  1.02  

44  2050  31  7504  278  0.21  1.02  



102 
 

45  2042  39  7444  338  0.22  1.03  

46  2032  49  7384  398  0.22  1.03  

47  2024  57  7275  507  0.22  1.04  

48  2005  76  7196  586  0.22  1.04  

49  1984  97  7084  698  0.22  1.05  

50  1970  111  6984  798  0.22  1.05  

51  1946  135  6803  979  0.22  1.07  

52  1924  157  6636  1146  0.22  1.08  

53  1902  179  6491  1291  0.23  1.10  

54  1864  217  6286  1496  0.23  1.11  

55  1834  247  6136  1646  0.23  1.12  

56  1776  305  5844  1938  0.23  1.14  

57  1735  346  5626  2156  0.24  1.15  

58  1629  452  5182  2600  0.24  1.18  

59  1529  552  4800  2982  0.24  1.19  

60  1383  698  4332  3450  0.24  1.19  

61  1214  867  3784  3998  0.24  1.20  

62  1033  1048  3277  4505  0.24  1.18  

63  821  1260  2548  5234  0.24  1.20  

64  561  1520  1756  6026  0.24  1.19  

65  398  1683  1285  6497  0.24  1.16  

66  170  1911  560  7222  0.23  1.14  

*LaCE score 

**Compared to a pre-test probability of 20.9% using prevalence 

TP: true positives; FN: false negatives; FP: false positives; TN: true negatives 

PPV: positive predictive value; LR+: positive likelihood ratio 

(--): no value 
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Table 4.9.  AUROCs for various combinations of feature groupings for the XGBoost classifier. 

Features  No. of predictors AUC  

ALL Features 
All features without labs 

171 
156 

0.651 
0.645 

Admission Characteristics + 
Healthcare Utilization + Comorbidity + 
Frailty + ACSC + Labs 107 0.649 

Demography +Admission Characteristics 
+Healthcare Utilization + Comorbidity + 
Frailty + ACSC + Labs  115 0.648 

Admission Characteristics 
+Healthcare Utilization + Comorbidity + 
Frailty + ACSC  75 0.633 

Healthcare Utilization 8 0.618 

 Labs 32  0.595 

Demography + Admission Characteristics + 
Drug Utilization 47 0.579 

Comorbidity + Frailty  45  0.579 

Demography + Admission Characteristics + 
Drug Utilization + Drug Adherence  56 0.578 

Comorbidity 32  0.578 

Admission Characteristics 15 0.574 

Admission Characteristics + Cardiac 
Procedures  38 0.572 

Demography + Admission Characteristics  23 0.566 

Drug Utilization 24  0.558 

Drug Utilization + Drug Adherence  33  0.550 

Frailty 13  0.548 

ACSC 7  0.545 

Drug Adherence  9  0.521 

Cardiac Procedures  23  0.515 

Demography  8 0.507 

Note: Frailty is a sub-group under comorbidities; ACSC: ambulatory care sensitive conditions 
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Table 4.10.  Sub-group analysis stratified by type of heart failure. 

Sub-group 

Number of patients  

(%) 

Number of hospitalizations 

 (%) c-statistic** 

HFrEF 2,918 (29.64) 12,684 (26.02) 0.67 

HFmEF 1,225 (12.44) 6,016 (12.34) 0.61 

HFpEF 5,702 (57.92) 30,045 (61.64) 0.63 

HF specific 

reference 

hospitalizations* 3,977 (n/a) 7,574 (n/a) 0.60 

Note: heart failure with reduced ejection fraction (HFrEF); heart failure with mid-range ejection 

fraction (HFmEF); heart failure with preserved ejection fraction (HFpEF); n/a: not applicable 

*Determined using main diagnosis field and ICD-10 code I50 

**Discrimination performance done on validation set  
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Table 4.11.  Distribution of missing laboratory data in the HF specific reference hospitalization 

subset. 

 
% Missing 

Number 

Missing (total 

n=7,574) 

Blood Urea 

Nitrogen 20.6 1,559 

MCV 18.5 1,400 

Hemoglobin 18.5 1,400 

Total 

Cholesterol 48.2 3,653 

Potassium 18.4 1,398 

Creatinine 18.4 1,398 

eGFR 18.6 1,413 

Cholesterol 

Ratio 55.7 4,221 

Sodium 18.4 1,398 

Hematocrit 18.5 1,400 

ALT 24.0 1,814 

Ferritin 46.1 3,493 

Albumin 31.1 2,354 

A1C 40.9 3,100 

NT-proBNP 52.1 3,945 

BNP 75.3 5,703 
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Figure 4.5.  Timelines of data capture for candidate predictor categories. 

 

 

Note: Reference hospitalization from April 2012-March 2019 were used to train Machine 

Learning models. 
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Figure 4.6. Frequency of patients with multiple admissions. 
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Figure 4.7.  SHAP plot indicating influence of various predictors on risk of readmission* 

 

*These predictors are rank-ordered according to feature importance with importance 

decreasing from top to bottom (See Figure 4.4 in main text); variable impact does not have a 

causal nor statistical meaning but is simply a measure of the influence a predictor has on the 

ML model output.  Red indicates higher values of the predictors while blue indicates lower 

values and lines to the right of the 0.0 on the x-axis are associated with readmissions while 

those to the left are less associated with readmissions.  For example, lower levels of 

hemoglobin (blue) are predictive of readmissions (blue is to the right of the 0.0 on x-axis) where 

in some instances, lower hemoglobin (blue) has a higher influence on readmissions (further to 

the right of the 0.0 on the x-axis).  Similarly, for binary variables, a history of liver disease or 

peptic ulcer disease (red colour and to the right of the 0.0 on the x-axis) is predictive of 

readmissions to varying extents.  
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Chapter 5: Predicting 30-day risk from benzodiazepine/Z-drug 

dispensations in older adults using administrative data: a prognostic 

machine learning approach 

Objective: To develop a machine-learning (ML) model using administrative data to estimate risk 

of adverse outcomes within 30-days of a benzodiazepine (BZRA) dispensation in older adults for 

use by health departments/regulators. 

Design, Setting and Participants:  This study was conducted in Alberta, Canada during 2018-

2019 in Albertans 65 years of age and older.  Those with any history of malignancy or palliative 

care were excluded. 

Exposure:  Each BZRA dispensation served as the unit of analysis.   

Main Outcomes and Measures:   ML algorithms were developed on 2018 administrative data 

to predict risk of unplanned emergency department visit, hospitalization or death within 30-

days of a BZRA dispense.  Validation on 2019 administrative data was done using XGBoost to 

evaluate discrimination, calibration and other relevant metrics on ranked predictions.  Daily and 

quarterly predictions were simulated on 2019 data. 

Results:  65,063 study participants were included which represented 633,333 BZRA dispenses 

during 2018-2019.  The validations set had 314,615 dispenses linked to 55,928 all-cause 

outcomes representing a pre-test probability of 17.8%.  C-statistic for the XGBoost model was 

0.75.  Measuring all-cause risk at the end of 2019, the top 0.1 percentile of predicted risk had a 

LR+ of 40.31 translating to a post-test probability of 0.90.  Daily and quarterly classification 

simulations resulted in uninformative predictions with LR+’s less than 10 in all risk prediction 

categories.  Previous history of admissions was ranked highest in variable importance. 

Conclusion:  Developing ML models using only administrative health data may not provide 

health regulators with sufficient informative predictions to use as decision aids for potential 

interventions, especially if considering daily or quarterly classifications of BZRA risks in older 

adults.  ML models may be informative for this context if yearly classifications are preferred.  

Health regulators should have access to other types of data to improve ML prediction. 
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Introduction 

 Health jurisdictions like Alberta Health have prioritized reducing avoidable inpatient 

admissions and associated costs; Alberta, Canada has higher rates of hospitalizations compared 

to other provinces134.  A specific area of concern is the wide use of benzodiazepine receptor 

modulators (BZRAs) in older adults.  Canadian clinical practice guidelines suggest that BZRA 

treatment is appropriate for short-term use in adults aged 20 to 64 and in some cases as 

second-line treatment 135-137.  Use of BZRAs outside of these recommendations is considered 

“potentially inappropriate” given the potential for adverse effects, especially in older 

adults135,138,139.  In fact, BZRAs are not recommended at all (regardless of duration) in older 

persons as first line therapy for insomnia136. A 2006 study in British Columbia, Canada found 

that 3.5% of the population were considered long-term users of BZRAs and 47% were over the 

age of 6526.  Furthermore, a recent study reported that 10% of Albertans in 2015 received a 

BZRA with the prevalence of use increasing with age140. 

 Despite warnings from experts and regulatory bodies, BZRAs continue to be prescribed 

to older adults at alarmingly high rates leading to adverse outcomes such as hospitalizations.  

Indeed, the risk of hospitalizations or death can more than double in older adults taking 

BZRAs28.  The main strategies to address BZRA use involve safe drug-use guidelines and 

stewardship efforts from health regulators such as the Tracked Prescription Program (TPP) at 

the College of Physicians and Surgeons of Alberta (CPSA)141.  The American Geriatrics Society 

also maintains its Beers Criteria ® for potentially inappropriate medication use in older adults in 

which BZRAs are not recommended due to the risks of cognitive impairment, falls, fractures and 

accidents142.  Furthermore, other groups have targeted BZRAs in deprescribing initiatives, 

especially in older adults136,143.  However, none of these measures involve risk prediction at the 

individual patient level using absolute probabilities. 

Given these potentially preventable outcomes, there is substantial interest from health 

regulators and systems134 to predict inpatient admissions and newer prediction tools may 

address this interest.  Individual risk from BZRA dispensations is an important clinical outcome 

in which machine learning (ML) prediction can play a role.  ML prediction offers a way to 

quantify individual risk within a well-defined project framework emphasizing deployment into 
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real world settings.  Furthermore, ML approaches are gaining traction in the clinical prediction 

space16,17. 

Supervised machine learning (ML)11,15 is an approach that uses computer algorithms to 

build predictive models in the clinical setting that can make use of large amounts of available 

administrative data12,13, all within a well-defined process14.  Supervised ML trains on labelled 

data to develop prediction models that are specific to different populations and, in many cases, 

can provide better predictive performance than traditional statistical models13,37,79 based on 

sampling populations29. 

To our knowledge, there are no risk prediction tools in use which can quantify the risk of 

BZRA dispensations at the individual level, something that health regulators like the CPSA are 

interested in.  The objective of our study is to predict the 30-day risk of an adverse event 

pursuant to a BZRA dispensation in adults over 65 years of age in Alberta using supervised ML 

methods trained on readily available administrative data.  We will develop and validate 

commonly used ML algorithms and evaluate prediction performance and utility using routine 

clinical prediction metrics18-20,38.  Our analysis will also include ML prediction simulations.  This 

study will provide Alberta Health, and health jurisdictions in general, with analytic options to 

assess the value and implementation of ML classifiers.   

Methods 

Study Design, Setting, and Participants 

This prognostic study used a supervised ML approach which trained ML models on 

administrative health data in Alberta, Canada during 2018-2019.  Albertans 65 years of age and 

older who were dispensed a BZRA during the study period were included in this study.  Those 

with any history of malignancy or palliative care were excluded.  

Data Sources 

To develop our ML model, we linked various administrative health data sets available in 

Alberta, Canada using unique anonymized patient identifiers to establish a thorough 

description of demographics, medical history, drug exposures and outcomes.  The following 

databases were linked:  1) Pharmaceutical Information Network (PIN): data on all dispensing 
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records from community pharmacies irrespective of coverage status and according to the 

guidelines from the Alberta College Pharmacy109; Anatomical Therapeutic Chemical 

classification (ATC) codes80 were used to identify BZRA dispensations and their respective 

molecules (Table 5.4), 2) Population and Vital Statistics Data (VS, Alberta Services): sex, age, 

date of birth, death date, immigration and emigration data within the province, and underlying 

cause of death according to the World Health Organization algorithm using ICD codes 

(International Statistical Classification of Diseases and Related Health Problems77), 3) 

Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care 

Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnosis 

(up to 25 ICD-10 based diagnoses).  Data and coding accuracy are routinely validated both 

provincially and centrally via the Canadian Institute for Health Information (CIHI)110, 4) Physician 

Visits/Claims (Alberta Health): date of service, up to three ICD codes associated with the claim, 

procedure and billing information, and 5) Provincial Laboratory, Alberta Health Services: all 

laboratory services conducted within the hospital or community. 

These linked databases represent a labelled dataset used to develop and validate ML 

models as each instance of a BZRA dispensation was labelled with an outcome.  Our data 

spanned the period 2013-2019. 

Measures and Outcomes 

For this study, the unit of analysis was at the BZRA dispensation level such that each 

dispensation served as a potential instance to predict our outcome.  We chose this level of 

analysis to be consistent with others37, to have more data to train the ML model, and to 

accurately represent use in the real world in which health regulators may want to assess the 

risk for each instance rather than a single or random dispensation. 

Our outcome was an all-cause unplanned hospitalization, emergency department (ED) 

visit or death within 30-days of a BZRA dispensation.  For comparison, we also defined a cause 

specific composite outcome of accidents, poisonings, falls and injuries, all of which are 

recognized as adverse outcomes from BZRAs in older adults (Table 5.5).  30-day risk windows 
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are commonly used by health systems for risk assessments82.  Follow-up and predictions started 

after each BZRA dispensation. 

Predictors and ML Methods 

 All candidate predictors, both derived and directly pulled from the data, were obtained 

from the linked datasets (Table 5.4).  The feature categories included demographics (age, sex), 

drug utilization (ATC codes, oral morphine equivalents88, concurrent use of BZRAs and opioids, 

number of dispensations, number of unique molecules) and health care utilization (prior 

admissions, number of unique prescribers and pharmacies).  Co-morbidity history consisted of 

Elixhauser score categories87 (commonly used for risk adjusting) and other conditions144.  

Routine lab measurements were also incorporated and were kept as continuous variables thus, 

were not categorized to minimize loss of variation.  Time sensitive variables were derived and 

represented in the drug and health care utilization categories.  Depending on the predictor, we 

used data from 30 days to 5 years prior to the BZRA dispensation to generate model features 

(Figure 5.5). 

 We used commonly available ML algorithms and approaches to train our ML 

models11,14,17,50.  These included logistic regression, Gradient Boosting, Linear Support Vector, 

Multi-layer Perceptron, XGBoost and AdaBoost.  Our outcome labelled dataset was split such 

that BZRA dispenses in 2018 comprised the development set for ML model training and 

hyperparameter tuning while those in 2019 comprised the validation set in which ML model 

performance was assessed.  We created two validation sets, one which was not a true external 

independent set such that participants in the development set could also be represented in the 

validation set and another which only included new BZRA patients in 2019 thus creating an 

independent validation set (Figure 5.1).  Both validation sets were created to represent real 

world use scenarios in which ML models are trained on the entire population they will be 

deployed in (patients could be repeatedly encountered) and to evaluate ML prediction 

performance in new, out of sample patients. 



121 
 

Based on results from our preliminary work, we performed ML model evaluation using 

the XGBoost classifier because it performed better than others and is considered “explainable” 

ML.  We did however report discrimination performance of the other ML models.   

We performed k=5 cross fold validation in the development set to tune 

hyperparameters.  With XGBoost, we tuned for tree height, and number of trees.95,120.  During 

hyperparameter tuning of XGBoost, we explored the use of scale_pos_weight119 to address 

class imbalance, however, we did not include it in the XGBoost model development to improve 

calibration. 

Missing Data 

We anticipated missing data when handling laboratory results.  It should be noted that 

the Provincial Laboratory fully captures all performed laboratory tests and that any “missing” 

data are laboratory tests that were not ordered as opposed to missing.  Missing laboratory data 

is classified as either missing at random or missing not at random45,50 and imputation methods 

are not favourable with ML prediction tools intended for deployment52.  Instead, we included 

missing indicator variables as others have done46,51,53 although we understand this is 

controversial128.  However, if the models are to be deployed in real-world settings, the missing 

indicator approach is most practical.  Tree-based ML algorithms (e.g. XGBoost) are able to 

handle missing data better than regression based algorithms50.  We made use of the Sparsity-

aware split finding feature95 when training the XGBoost algorithm to address missing data 

without the need for missing indicators.  All other ML algorithms required the use of missing 

indicators.  Other ML studies excluded missing medical data or used imputation to handle 

missing data, both recognized as leading to high bias42,107,113.   

Analysis and Prediction Evaluation 

 We first described co-morbidity characteristics in the development vs validation groups 

(entire 2019 validation set) and between those who did and did not experience the outcome 

using chi-square tests and t-tests.  This descriptive analysis was done at the patient level in 

which each participant could be represented by multiple instances of BZRA dispensations.  

Outcome event rates were also reported.  The final piece of our descriptive analysis was 
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describing the distribution of missing lab data.  We did this for 2018, 2019 individually and for 

the combination of 2018-2019 data. 

The validation sets were used to evaluate ML model prediction performance using 

metrics commonly applied to clinical prediction models18-20,38.  Mentioned previously, our 

validation assessments were done using XGBoost.  As is done in many ML prediction studies17, 

we assessed our ML model discrimination performance by estimating the area under the 

receiver operating characteristics curve (AUROC).  For binary classification studies like ours, 

AUROC curves correspond to c-statistics which are a measure of model discrimination 

performance, the extent to which a model predicts a higher probability of an outcome among 

instances that actually had the outcome compared to those that did not19.  We reported 

AUROCs for the all-cause outcome using all of the ML algorithms we trained.  We also included 

AUROCs of the XGBoost model using fewer feature categories for all-cause outcomes, 

specifically the one that excluded lab test results because of the anticipated data missingness in 

this category.  For comparison, we reported AUROCs on the cause specific composite outcome 

and for individual outcomes which comprised the composite outcome.  Precision-recall curves 

(PRC) were also included89 using the all-cause outcome. 

We provided a calibration plot19 for the XGBoost model using both validation sets; 

calibration is considered an important property of any prediction model and reflects the extent 

to which predicted values align with observed values and is most often illustrated by a plot of 

observed vs predicted18,19.  Calibration was done on both validation sets and within the 

subgroup of sex.  As well, we added a negative predictive value (NPV) vs. predicted risk plot to 

highlight the relationship between low predicted risk and true negatives (those who did not 

experience the outcome).   

 We then reported two methods for assessing the clinical utility of the ML model.  The 

first involved ranking our predicted risks, as others have done66, by categorizing them into 

percentiles (e.g., deciles) or keeping them in absolute numbers (e.g., top 10 highest risk 

dispenses).  At each of these category cut-off points, we reported prediction performance 

metrics.  These included positive likelihood ratios (LR+)20,145, true/false positives, true/false 
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negatives, and positive predictive values (PPV, equivalent to post-test probability).  These 

metrics were also reported on the actual thresholds of predicted risk outputted by the ML 

classifier.  We carried out this analysis on both validation sets and measured these metrics at 

the end of 2019. 

 In the second method, we performed a decision curve analysis21 in which the net benefit 

of our ML model is compared against two alternatives, namely, intervening on all BZRA 

dispensations or on none, using the entire range of probability threshold cut-off points.  This 

comparison is done by using predicted probabilities from our ML model and comparing them 

against a probability threshold to aid a decision.  Again, we did this on both validation sets using 

all-cause outcomes. Thus, if a health regulator is interested in intervening, for example, on the 

top 1 percentile of predicted risk or top 10 highest risk predicted BZRA dispenses, then method 

1 could be considered.  Alternatively, if BZRA dispensations above a certain predicted risk 

threshold are of interest, then method 2 could be informative.  Either way, the amount of 

workload created by identifying high risk dispenses is an important factor for ML deployment. 

 We simulated all-cause outcome predictions to view the capabilities of the XGBoost 

model if deployed into a workflow.  These included predictions measured daily and quarterly 

which progressively excluded participants once they were already flagged as high risk.  Filtering 

out previously flagged patients represents a more realistic scenario for health regulators as it is 

not practical to repeatedly identify the same high-risk patients.  For this simulation, previously 

flagged participants were excluded for the entire year keeping in mind that a health regulator 

could exclude on a monthly or quarterly basis.  Specifically, we simulated on 2019 data by 

categorizing the highest predicted BZRA dispenses (e.g., top 10 highest risk BZRA dispenses) and 

then measuring the same metrics described above for each category.  We also simulated the 

number of 30-day events per 100 daily dispenses stratified by percentiles of risk. 

 Because ML models do not estimate an interpretable quantity relating predictors to 

outcomes, it is not appropriate to summarize that relationship with a single parameter.  

Instead, the impact of individual predictors can be summarized using “variable importance”, 

which is a rank-ordering of variables that are most important for the ML model’s prediction 
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performance50; variable importance does not have a causal or statistical meaning.  To address 

interpretability59 of our ML model, we reported feature importance50 and feature impact using 

SHAP (Shapley Additive Explanations) value plots91,92, which would give health regulators some 

insight on how the ML model was influenced in its predictions. 

 This study followed the TRIPOD68 and other guidelines11,17 specific to ML projects.  All 

analyses were done using Python (version 3.6.8, Python Software Foundation), SciKit Learn94 

(version 0.23.2), SHAP92 (version 0.35), XGBoost95 (version 0.90), Pandas96 (version 1.0.5) and 

STATA/MP V.15.1 (StataCorp).  This study received ethics approval from the University of 

Alberta ethics board (Pro00083807_AME6). 

Patient and Public Involvement 

This research was done without patient involvement. Patients were not invited to 

comment on the study design and were not consulted to develop patient relevant outcomes or 

interpret the results. Patients were not invited to contribute to the writing or editing of this 

document for readability or accuracy.  There are no plans to disseminate the results of the 

research to study participants.   

Results 

 A total of 65,063 participants were included in this study representing 633,333 BZRA 

dispenses during 2018-2019.  During this time, there were 114,299 (18.0%) all cause outcomes 

that were linked to BZRA dispenses within 30 days.  In comparison, the cause specific composite 

outcome occurred at a much lower rate at 1.8% (n=5,998 for 2018 and n=5,712 for 2019).  

Dispenses in 2018 and 2019 comprised the development and validation sets, respectively 

(Figure 5.1).  The full validation set had 314,615 BZRA dispenses while the independent (out of 

sample) validation set had 37,070 BZRA dispenses.  We measured 55,928 all cause outcomes in 

the full validation set representing a pre-test probability of 17.8% while the corresponding 

numbers in the independent validation set were and 7,324 and 19.7%, respectively.  

Characteristics were different between those who did and did not experience the all-cause 

outcome (Table 5.6), as expected, and were more similar between those in the development 

and validation sets (Table 5.7).   
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 The number of instances without a laboratory test result ranged from 15-64% of BZRA 

dispenses (Table 5.8). 

 C-statistics ranged from 0.67 for logistic regression to 0.75 for XGBoost (Table 5.9).  

Further assessing the XGBoost model, the c-statistic when using all of the datasets was 0.75 

compared to 0.66 when using only demographic and drug history features (Table 5.10).  Of 

note, the c-statistic for the XGBoost model developed without the lab test features was 0.75 

indicating that excluding lab features did not influence discrimination performance.  The c-

statistic for the out of sample validation set was 0.74, similar to the entire validation set (Figure 

5.6).  For comparison, the c-statistic for the cause specific composite outcome was 0.69 (Table 

5.10).  Both validation sets had similar PRCs (Figure 5.6).   

 For both validation sets, the calibration plots indicate that our predictions were 

marginally aligned with the observed event rates with slight overestimation of risk and that 

most BZRA dispenses were classified as lower risk (Figure 5.7).  Calibration was similar across 

sex in both validation sets (Figure 5.8).  Lower predicted risks were accompanied by fewer 

actual outcomes signaling higher NPVs at lower predicted risks (Figure 5.9). 

 After we ranked and grouped our predicted risks at the end of 2019, the categories with 

the highest risk predictions expectedly had the highest PPVs (post-test probabilities) and LR+’s.  

The top 0.1 percentile of predicted risk had LR+ of 40.31 which translated to a PPV of 0.90 using 

the entire validation set.  The corresponding numbers for the out of sample validation set were 

134.03 and 0.97, respectively (Table 5.1).  Similar results were observed in the top 20 highest 

risk dispenses with a LR+ and PPV of 48.57 and 0.91, respectively (Table 5.11).  There was also 

an increase in LR+ and PPV as the threshold of predicted risk increased (Table 5.12).   

 When we performed the decision curve analysis across the entire range of predicted 

probability thresholds, the XGBoost classifier provided some additional value over treating all or 

none with a potential intervention within the range of 0.1-0.5 of predicted probability (Figure 

5.2).   

 In our simulations, predictions classified quarterly were more informative than those 

done daily.  The top 10 daily highest risk BZRA dispenses had a LR+ of 5.60 (Table 5.2) while the 
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corresponding LR+ for the quarterly top 500 ranged from 5.71-9.83 (Table 5.3).  Classifying the 

top 100 daily highest risk dispenses or top 10,000 done quarterly produced LR+’s of 2.39 and 

1.29-2.64, respectively.  When we simulated based on top percentiles of predicted risks and 

events per 100 BZRA dispenses, the top 1, 5 and 10 percentiles of predicted risk had higher 

event rates than the baseline risk, although there was noticeable overlap between the top 

percentiles (Figure 5.3).  

 With respect to ML interpretability, previous history of admissions was ranked highest in 

variable importance (Figure 5.4) with a positive history being suggestive of a higher risk (Figure 

5.10), which is expected.   

Discussion 

 In this study, we developed ML models to predict adverse outcomes pursuant to a BZRA 

dispensation and further explored the XGBoost classifier for validation.  We presented two 

analytic options for health regulators to consider for implementing ML decision support, 

namely acting on the highest ranked predictions or on probability threshold cut-off points.  

Discrimination, calibration and net benefit analysis are important aspects in determining the 

clinical utility of a prediction model21.  When predictions were classified at the end of 2019, our 

XGBoost model displayed strong discrimination and calibration performance in both validation 

sets signalling similar prediction performance in both previous and new BZRA patients.  The net 

benefit analysis showed that the ML model could provide some clinical utility over a small range 

of predicted probability thresholds; however, it may not be sufficient to deploy within real-

world health systems. 

 Despite the strong prediction performance of our ML model when risk was measured at 

the end of 2019, the daily and quarterly simulations suggest otherwise; the frequency of 

prediction classification influences prediction performance metrics.  Our predictions classified 

at yearend reported very informative LR+s (up to 134) while those in our daily-quarterly 

simulations did not surpass 10.  LR+’s greater than 10 are considered strongly informative with 

conclusive changes from pre-test to post-test probabilities20.  Health regulators should strongly 

consider this finding when deciding if daily, quarterly, or yearly classifications of risk are to be 
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implemented; yearly classification of risk may be of limited value.  This finding could be partly 

explained by the limited capabilities of training ML models only on administrative data.  It is 

well known that having additional types of data could better leverage ML prediction 

capabilities16,34 thus making the case to increase data access and permissions for health 

regulators.   

Our simulation results, which represent a more realistic use case scenario, indicate that 

predicting adverse events after a BZRA dispensation is a difficult undertaking using ML 

methods.  The uninformative prediction performance reflects this difficulty which could be 

explained by data quality.  It is estimated that more than 80% of the work done in ML projects 

is composed of data preparation32; there was not enough variation in our administrative 

datasets for informative ML prediction done daily or quarterly.  To augment ML performance, 

our data could be linked to social factors data, which are known determinants of health 

however, this analysis cannot be done in most jurisdictions, including Alberta, Canada.  The 

elderly are a very heterogeneous segment of society with regard to health status130,131.  Indeed, 

incorporating the entire taxonomy of ‘big’ health data would likely improve ML prediction by 

linking biological, geospatial, electronic health records, personal monitoring and effluent 

sources of data all of which contribute to patient heterogeneity34.   

 To date, we are unaware of any studies that assessed BZRA risk using ML methods like 

we have in Alberta, Canada or elsewhere.  Our study benefited from complete records of 

hospitalizations, ED visits, physician claims and medication histories from anywhere in the 

province of Alberta.  Furthermore, our analysis included informative metrics not commonly 

reported in clinical ML prediction studies.  We also reported SHAP values to provide a measure 

of interpretability of our ML model.  Another benefit is that by variably ranking the highest 

predicted BZRA dispenses, health regulators can control or adjust their workload to align with 

their capacity. 

 Limitations are mainly due to data issues.  We did have a substantial number of 

dispenses without lab test data, however, excluding lab tests from ML training did not reduce 

the discrimination performance, a finding reported by others51.  Although we incorporated 
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many different predictors derived from administrative datasets, we were not able to measure 

many other predictors that would substantially contribute to adverse BZRA outcomes, namely 

social factors.  Others have pointed this limitation in their work as well16,42 and that even with 

social factors data, ML prediction performance is not guaranteed but some improvement could 

be expected118.  Our ML model was developed using data from Alberta, Canada and may not be 

generalizable to other jurisdictions.  Nevertheless, the ML process makes it simple to develop 

and validate new models using local population specific data.   

 This study considered the perspective of health regulators and their mandate to monitor 

adverse outcomes from BZRA dispensations in older adults.  Using ML developed on 

administrative health data alone may not provide informative predictions, especially if daily or 

quarterly reporting is desired.  As reported in our analysis, there may be some benefit if yearly 

classifications are used.  Although ML prediction may be promising, health regulators may 

require additional sources of data before implementing ML prediction as a decision aid leading 

to interventions; many jurisdictions do not permit the widespread use and sharing of 

administrative data.  Having access to other types of data may improve ML performance and 

usefulness and should be explored.  Furthermore, whether or not ML prediction and 

subsequent interventions can reduce adverse outcomes related to BZRAs is an area for future 

research. 
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Table 5.1. All-cause outcome prediction metrics stratified by top percentile of risk for the 

XGBoost classifier measured at the end of 2019 on both validation sets. 

  

Top 

percentile 

of risk Threshold TP FN FP TN PPV* NPV Se Sp LR+ 

En
ti

re
 v

al
id

at
io

n
 s

et
 

0.01 0.978 28 55,900 2 258,685 0.933 0.822 0.000501 0.999992 64.76 

0.1 0.947 244 55,684 28 258,659 0.897 0.823 0.004363 0.999892 40.31 

1 0.694 2,140 53,788 975 257,712 0.687 0.827 0.038263 0.996231 10.15 

5 0.498 7,988 47,940 6,396 252,291 0.555 0.840 0.142826 0.975275 5.78 

10 0.420 13,738 42,190 14,682 244,005 0.483 0.853 0.245637 0.943244 4.33 

25 0.306 27,326 28,602 43,999 214,688 0.383 0.882 0.488592 0.829914 2.87 

50 0.182 43,086 12,842 102,530 156,157 0.296 0.924 0.770383 0.603652 1.94 

75 0.084 51,077 4,851 170,417 88,270 0.231 0.948 0.913263 0.341223 1.39 

90 0.058 54,066 1,862 215,770 42,917 0.200 0.958 0.966707 0.165903 1.16 

In
d

e
p

e
n

d
e

n
t 

va
lid

at
io

n
 s

e
t 

0.01 0.973 4 7,320 0 29,746 1.000 0.803 0.000546 1.000000 (--) 

0.1 0.951 33 7,291 1 29,745 0.971 0.803 0.004506 0.999966 134.03 

1 0.716 242 7,082 123 29,623 0.663 0.807 0.033042 0.995865 7.99 

5 0.534 1,002 6,322 757 28,989 0.570 0.821 0.136810 0.974551 5.38 

10 0.447 1,737 5,587 1,695 28,051 0.506 0.834 0.237165 0.943018 4.16 

25 0.321 3,544 3,780 5,145 24,601 0.408 0.867 0.483889 0.827036 2.80 

50 0.193 5,586 1,738 12,100 17,646 0.316 0.910 0.762698 0.593223 1.87 

75 0.086 6,651 673 20,172 9,574 0.248 0.934 0.908110 0.321858 1.34 

90 0.060 7,099 225 25,234 4,512 0.220 0.953 0.969279 0.151684 1.14 

*Compared to pre-test probability of around 18% based on prevalence. 

Note: TP: true positives; FP: false positives; FN: false negatives; TN: true negatives; Se: 

sensitivity; Sp: specificity; LR+: positive likelihood ratio; NPV: negative predictive value; PPV: 

positive predictive value (post-test probability) 
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Table 5.2.  Simulation metrics for predictions classified daily using XGBoost. 

Top BZRA 

dispenses Threshold TP FN FP TN PPV NPV Se Sp LR+ 

10 0.512 6 123 5 667 0.517 0.844 0.044202 0.992107 5.60 

20 0.433 10 104 11 630 0.465 0.858 0.085457 0.982472 4.88 

50 0.297 18 68 33 519 0.351 0.884 0.207843 0.94002 3.47 

100 0.168 25 36 72 350 0.247 0.907 0.406822 0.829704 2.39 

Note: predictions were classified daily for 365 days, then mean values of TP, FP, TN and FNs 

were used for subsequent calculations 

BZRA: benzodiazepine receptor modulator; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; NPV: 

negative predictive value; PPV: positive predictive value (post-test probability) 
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Table 5.3.  Simulation metrics for predictions classified quarterly using XGBoost. 

 

Top BZRA 

Dispenses Threshold TP FN FP TN PPV NPV Se Sp LR+ 

Q
u

ar
te

r 
1

 

500 0.631 344 5,669 157 26,818 0.687 0.825 0.057 0.994 9.83 

1,000 0.559 629 5,384 372 26,603 0.628 0.832 0.105 0.986 7.59 

2,000 0.481 1,125 4,888 876 26,099 0.562 0.842 0.187 0.968 5.76 

3,000 0.432 1,526 4,487 1,476 25,499 0.508 0.850 0.254 0.945 4.64 

5,000 0.367 2,286 3,727 2,716 24,259 0.457 0.867 0.380 0.899 3.78 

10,000 0.271 3,706 2,307 6,300 20,675 0.370 0.900 0.616 0.766 2.64 

Q
u

ar
te

r 
2

 

500 0.588 316 5,439 185 27,179 0.631 0.833 0.055 0.993 8.12 

1,000 0.518 549 5,022 452 26,721 0.548 0.842 0.099 0.983 5.92 

2,000 0.438 963 4,307 1,038 25,664 0.481 0.856 0.183 0.961 4.70 

3,000 0.384 1,295 3,710 1,708 24,466 0.431 0.868 0.259 0.935 3.97 

5,000 0.309 1,831 2,682 3,171 21,939 0.366 0.891 0.406 0.874 3.21 

10,000 0.166 2,552 1,002 7,452 14,779 0.255 0.937 0.718 0.665 2.14 

Q
u

ar
te

r 
3

 

500 0.585 293 5,013 208 27,518 0.585 0.846 0.055 0.992 7.36 

1,000 0.505 525 4,498 477 26,826 0.524 0.856 0.105 0.983 5.98 

2,000 0.415 897 3,631 1,105 25,217 0.448 0.874 0.198 0.958 4.72 

3,000 0.358 1,173 2,943 1,831 23,405 0.390 0.888 0.285 0.927 3.93 

5,000 0.276 1,564 1,839 3,443 19,613 0.312 0.914 0.460 0.851 3.08 

10,000 0.097 1,772 404 8,241 8,878 0.177 0.956 0.814 0.519 1.69 

Q
u

ar
te

r 
4

 

500 0.582 224 3,903 278 28,946 0.446 0.881 0.054 0.990 5.71 

1,000 0.498 415 3,450 587 27,872 0.414 0.890 0.107 0.979 5.21 

2,000 0.405 697 2,682 1,305 25,517 0.348 0.905 0.206 0.951 4.24 

3,000 0.341 902 2,079 2,100 23,015 0.300 0.917 0.303 0.916 3.62 

5,000 0.249 1,162 1,137 3,841 17,828 0.232 0.940 0.505 0.823 2.85 

10,000 0.069 1,132 116 8,873 3,701 0.113 0.970 0.907 0.294 1.29 

BZRA: benzodiazepine receptor modulator; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; NPV: 

negative predictive value; PPV: positive predictive value (post-test probability) 
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Figure 5.1. Study participant flow diagram used for developing and validating machine learning 

models.   

 

Note: NACRS: National Ambulatory Care Reporting System; DAD: Discharge Abstract Database; VS: Vital 

Statistics; PIN: Pharmaceutical Information Network; Claims: Physician Claims; Labs: Provincial 

Laboratory database; BZRA: benzodiazepine receptor modulator 

*Participants in this set could be represented in both the development and validation set.  The ML 

model will classify both new and previous patients.   

**Participants in this validation set are not included in the development set.  This validation set 

represents out of sample independent BZRA patients in 2019.  The ML model will classify only new 

patients. 
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Figure 5.2.  Decision curve/net benefit analysis for all-cause outcomes and the XGBoost classifier for 

the entire validation set (A), and out of sample validation set (B). 

(A) 

 

(B) 

 

Note: “Prediction Probability” in the legend refers to XGBoost classifier predictions.  “Treat all” refers to 

if all dispenses were intervened on and “treat none” refers to if none of the dispenses were intervened 

on.   
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Figure 5.3.  Simulation of events per 100 daily benzodiazepine receptor modulator dispenses using the 

XGBoost classifier stratified by percentile of predicted risk. Baseline risk corresponds to the pre-test 

probability. 
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Figure 5.4.  Variable importance graph of the XGBoost classifier predicting all-cause outcomes. 
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Appendix to Chapter 5 
Table 5.4.  Anatomical Therapeutic Chemical classification of BZRA molecules used for this 

study and candidate predictor categories used to develop the ML model. 

Category (data source) Description 

ATC codes used to identify 
BZRAs (PIN) 

Level 4 ATC code N05BA, N05CD, N05CF, N03AE01 
(clonazepam) 

BZRA molecules used in this 
study (PIN) 

zopiclone, zolpidem, eszopiclone, zaleplon, alprazolam, 
bromazepam, chlordiazepoxide, clobazam, clonazepam, 
clorazepate, diazepam, flurazepam, lorazepam, midazolam, 
nitrazepam, oxazepam, temazepam, triazolam 

Demographic information (PIN) age, sex 

Drug utilization history (PIN) drug dispenses in past 30 days using level 3 ATC codes, oral 
morphine equivalents, concurrent use of opioids and BZRAs 
defined as at least 7 days of cumulative concurrent use in the 
30 days prior to BZRA dispensation, number of dispensations 
and unique molecules of BZRAs, BZRA DDDs 

Healthcare utilization (PIN) number of prescribers and pharmacies, prior inpatient 
admissions 

ICD based co-morbidities (DAD, 
NACRS, Claims) 

co-morbidity flags based on the past 5 years of physician 
claims, hospitalizations, and emergency visits: 
alcohol use disorder, cardiac arrhythmias, blood loss anemia, 
congestive heart failure, cancer, lymphoma, coagulopathy, 
deficiency anemia, depression, diabetes, drug abuse, fluid 
disorder, HIV/aids, hypertension, hypothyroidism, liver 
disorder, other neurological disorders, obesity, paralysis, 
psychoses, peptic ulcer disease, pulmonary circulation 
disorders, chronic pulmonary disease, peripheral vascular 
disorders, renal failure, rheumatoid arthritis, valvular 
disease, weight loss, stroke, ischemic heart disease, 
hyperlipidemia, tobacco use, Alzheimer’s disease, delirium, 
difficulty walking, falls, incontinence, abnormality of gait, 
senility without mention of psychosis, vascular dementia, 
pressure ulcer, dementia, malaise 
 

Lab results (Provincial 
Laboratory) 

Most recent result within 1 year of BZRA dispensation.  
Includes hemoglobin A1C, albumin, ALT, blood urea nitrogen, 
creatinine, eGFR, HDL, hematocrit, LDL, electrolytes, 
cholesterol ratio, total cholesterol, triglycerides 

Note: BZRA: benzodiazepine receptor modulator; ATC- Anatomical Therapeutic Chemical classification 

(https://www.whocc.no/atc_ddd_index); PIN- Pharmaceutical Information Network; DAD: Discharge 

Abstract Database; NACRS: National Ambulatory Care Reporting System; Claims: Physician Claims; ICD: 

International Statistical Classification of Diseases and Related Health Problems; DDD: defined daily dose 
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Table 5.5.  ICD-10 codes used to define our cause specific composite outcome. 

Composite Outcome ICD-10* 

Poisonings X40-49; Y10-19; X60-84; T36-T65  

Injuries S00-99; T00-T35; T67; T68; T71; T73; T74  

Falls W00-W19  

Accidents 

W20-99; V09-V19; V20.X-V28.X (X=.0 OR .4); V30.X-V70.X (X=.0, .5); 

V80; V83.X-V86.X (X=.0, .5); V87-V94;  

* International Statistical Classification of Diseases and Related Health Problems 
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Table 5.6.  Co-morbidity characteristics of those who did and did not experience an all-cause 

outcome using 2018-2019 data. 

Characteristic 

Number 
without event 

(n=60,648) Percent 

Number 
with event 
(n=30,663) Percent 

Mean Age (SD) 77.6 (9.2) (--) 76.6 (8.4) (--) 

Female 40,217 66.3 20,065 65.4 

Male 20,431 33.7 10,598 34.6 

Alcohol use disorder 10,339 17.0 6,139 20.0 

Arrhythmia 28,171 46.5 16,069 52.4 

Anemia 361 0.6 298 1.0 

Heart Failure 9,819 16.2 7,165 23.4 

Coagulopathy 2,794 4.6 2,014 6.6 

Iron deficiency anemia 8,850 14.6 5,634 18.4 

Depression 33,693 55.6 18,491 60.3 

Diabetes 18,349 30.3 10,569 34.5 

History of drug abuse 10,751 17.7 6,229 20.3 

Fluid and electrolyte 
disorder 13,560 22.4 9,258 30.2 

Hypertension 46,129 76.1 24,827 81.0 

Hypothyroidism 15,838 26.1 8,444 27.5 

Injury 46,920 77.4 25,681 83.8 

Liver disorder 3,533 5.8 2,106 6.9 

Lymphoma 727 1.2 430 1.4 

Neurologic disorder 42,586 70.2 23,093 75.3 

Obesity 11,037 18.2 6,196 20.2 

History of poisoning 4,103 6.8 2,730 8.9 

Psychoses 8,532 14.1 5,567 18.2 

Renal disorder 8,076 13.3 5,376 17.5 

Rheumatoid disorder 22,372 36.9 13,241 43.2 

Cancer 5,456 9.0 3,148 10.3 

HIV 59 0.1 50 0.2 

Paralysis 1,326 2.2 971 3.2 

Peptic ulcer disease 2,840 4.7 1,798 5.9 

Pulmonary circulation 
disorder 3,463 5.7 2,614 8.5 

Pulmonary disease 21,557 35.5 13,155 42.9 

Peripheral vascular 
disorder 6,460 10.7 4,436 14.5 

Valvular disease 3,625 6.0 2,583 8.4 

Weight loss 6,359 10.5 4,131 13.5 
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Note: p-value<0.001 for all comparisons except for male and female (p=0.008); this analysis was 

done at the participant level.  Participants could be represented in either or both groups; (--): 

not estimable 
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Table 5.7. Co-morbidity characteristics of participants in the development and validation sets.   

Characteristic 

Development 
set 2018 

(n=51,747) Percent 

Validation set 
2019 

(n=51,576) Percent 

Mean Age (SD)* 77.5 (9.0) (--) 77.3 (9.0) (--) 

Male 17,307 33.4 17,390 33.7 

Female 34,440 66.6 34,186 66.3 

Alcohol use disorder* 8,470 16.4 9,053 17.6 

Arrhythmia* 23,559 45.5 24,433 47.4 

Blood loss anemia 320 0.6 327 0.6 

Heart failure* 8,373 16.2 8,669 16.8 

Coagulopathy 2,439 4.7 2,457 4.8 

Iron deficiency anemia* 7,464 14.4 7,704 14.9 

Depression* 28,057 54.2 29,303 56.8 

Diabetes* 15,320 29.6 15,884 30.8 

History of drug abuse* 8,501 16.4 9,580 18.6 

Fluid and electrolyte 
disorder* 11,329 21.9 11,922 23.1 

Hypertension* 39,372 76.1 39,614 76.8 

Hypothyroidism* 13,336 25.8 13,664 26.5 

History of injury* 39,269 75.9 40,574 78.7 

Liver disorder* 2,780 5.4 3,147 6.1 

Lymphoma 642 1.2 647 1.3 

Neurologic disorder* 35,467 68.5 36,661 71.1 

Obesity* 9,245 17.9 9,607 18.6 

History of poisoning* 3,408 6.6 3,635 7.0 

*Psychoses 6,982 13.5 7,423 14.4 

Renal disorder* 6,640 12.8 7,265 14.1 

Rheumatoid disorder* 18,581 35.9 19,691 38.2 

Cancer* 4,866 9.4 4,595 8.9 

HIV 51 0.1 54 0.1 

History of paralysis 1,083 2.1 1,165 2.3 

History of peptic ulcer 
disease 2,381 4.6 2,478 4.8 

Pulmonary circulation 
disorder 2,975 5.7 3,084 6.0 

Pulmonary disease* 18,164 35.1 18,804 36.5 

Peripheral vascular 
disorder* 5,317 10.3 5,801 11.2 

Valvular disorder 3,127 6.0 3,226 6.3 

Weight loss* 5,200 10.0 5,485 10.6 
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Note: Study participants can be in either or both groups; (--): not estimable 

*p-value <0.05 

  



142 
 

Table 5.8.  Distribution of BZRA dispenses without a lab test among commonly ordered lab 

test results.   

  Number of BZRA dispenses with missing labs 

Lab 2018 % 2019 % 2018 and 2019 % 

Hemoglobin 

A1C  161,652 50.7 151,993 48.3 313,645 49.5 

Albumin  203,602 63.9 201,110 63.9 404,712 63.9 

ALT  123,491 38.7 122,880 39.1 246,371 38.9 

BUN 183,844 57.7 183,377 58.3 367,221 58.0 

Creatinine  50,423 15.8 51,630 16.4 102,053 16.1 

eGFR  223,764 70.2 106,263 33.8 330,027 52.1 

HDL  190,262 59.7 185,253 58.9 375,515 59.3 

Hematocrit  59,659 18.7 60,960 19.4 120,619 19.0 

LDL  192,834 60.5 187,090 59.5 379,924 60.0 

Potassium  69,405 21.8 70,048 22.3 139,453 22.0 

Sodium  71,174 22.3 71,505 22.7 142,679 22.5 

Total 

Cholesterol 188,696 59.2 183,692 58.4 372,388 58.8 

Triglycerides 189,861 59.6 184,914 58.8 374,775 59.2 

Note: BZRA: benzodiazepine receptor modulator; total BZRA dispenses for 2018 and 2019 are 318,718 

and 314,615, respectively. 
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Table 5.9.  Area under the receiver operating characteristic curve (AUROC) for various ML 

algorithms using the entire 2019 validation set. 

Algorithm 
Development 

set (2018) 

Validation set 

(2019)  

Logistic Regression  0.667 0.672 

Gradient Boosting 

Classifier  
0.753 0.741 

Linear Support Vector 0.674 0.675 

Decision Tree Classifier  0.771 0.712 

Random Forest Classifier  0.782 0.739 

Ridge Classifier  0.752 0.741 

Multi-layer Perceptron 0.74500 0.736 

XGBoost 0.801 0.749 

AdaBoost Classifier  0.748 0.740 

Note: all-cause outcomes were assessed. 
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Table 5.10.  C-statistics for the all-cause outcome XGBoost classifier using fewer datasets and 

for the composite outcome and its individual components.   

Category 

Development set 

(2018) 

Validation Set (2019 full 

set) Number of Features 

All features 0.80 0.75** 326 

Demographic and drug 

histories only 0.71 0.66 252 

All features excluding lab 

test results 0.79 0.75 312 

Composite outcome* 0.76 0.69 326 

Accidents* 0.95 0.62 326 

Poisonings* 0.93 0.86 326 

Falls* 0.78 0.70 326 

Injuries* 0.91 0.68 326 

*All datasets were used to train the XGBoost model for these outcomes. 

**The corresponding c-statistic for the out of sample validation set (new patients) was 0.74. 
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Table 5.11.  All-cause outcome prediction metrics stratified by top highest risk dispenses for 

the XGBoost classifier measured at the end of 2019 on both validation sets. 

  

Top BZRA 

dispenses Threshold TP FN FP TN PPV* NPV Se Sp LR+ 

En
ti

re
 v

al
id

at
io

n
 s

et
 

10 0.984 10 55,918 1 258,686 0.909 0.822 0.000179 0.999996 46.25 

20 0.979 21 55,907 2 258,685 0.913 0.822 0.000375 0.999992 48.57 

50 0.973 49 55,879 5 258,682 0.907 0.822 0.000876 0.999981 45.33 

100 0.965 92 55,836 12 258,675 0.885 0.822 0.001645 0.999954 35.46 

500 0.916 467 55,461 50 258,637 0.903 0.823 0.008350 0.999807 43.20 

1000 0.843 936 54,992 212 258,475 0.815 0.825 0.016736 0.999180 20.42 

5000 0.608 3,692 52,236 2,043 256,644 0.644 0.831 0.066013 0.992102 8.36 

10000 0.528 6,436 49,492 4,667 254,020 0.580 0.837 0.115077 0.981959 6.38 

In
d

e
p

e
n

d
e

n
t 

va
lid

at
io

n
 s

e
t 

10 0.965 11 7,313 0 29,746 1.000 0.803 0.001502 1.000000 (--) 

20 0.957 21 7,303 0 29,746 1.000 0.803 0.002867 1.000000 (--) 

50 0.928 47 7,277 4 29,742 0.922 0.803 0.006417 0.999866 47.72 

100 0.852 91 7,233 11 29,735 0.892 0.804 0.012425 0.999630 33.60 

500 0.668 366 6,958 208 29,538 0.638 0.809 0.049973 0.993007 7.15 

1000 0.589 659 6,665 442 29,304 0.599 0.815 0.089978 0.985141 6.06 

5000 0.390 2,433 4,891 2,864 26,882 0.459 0.846 0.332196 0.903718 3.45 

10000 0.290 4,082 3,242 6,630 23,116 0.381 0.877 0.557346 0.777113 2.50 

*Compared to pre-test probability of around 18% based on prevalence. 

Note: BZRA: benzodiazepine receptor modulator; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; NPV: 

negative predictive value; PPV: positive predictive value (post-test probability); (--): not 

estimable  
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Table 5.12. All-cause outcome prediction metrics stratified by absolute thresholds for the 

XGBoost classifier measured at the end of 2019 on both validation sets. 

  Threshold TP FN FP TN PPV* NPV Se Sp LR+ 

En
ti

re
 v

al
id

at
io

n
 s

et
 

0 55,928 0 258,687 0 0.178 (--) 1 0 1.00 

0.1 49,328 6,600 149,965 108,722 0.248 0.943 0.881991 0.420284 1.52 

0.2 41,401 14,527 93,954 164,733 0.306 0.919 0.740255 0.636804 2.04 

0.3 28,227 27,701 46,521 212,166 0.378 0.885 0.504702 0.820165 2.81 

0.4 15,521 40,407 17,943 240,744 0.464 0.856 0.277518 0.930638 4.00 

0.5 7,856 48,072 6,242 252,445 0.557 0.840 0.140466 0.97587 5.82 

0.6 3,876 52,052 2,226 256,461 0.635 0.831 0.069303 0.991395 8.05 

0.7 2,058 53,870 920 257,767 0.691 0.827 0.036797 0.996444 10.35 

0.8 1,201 54,727 351 258,336 0.774 0.825 0.021474 0.998643 15.83 

0.9 560 55,368 77 258,610 0.879 0.824 0.010013 0.999702 33.64 

1 0 55,928 0 258,687 (--) 0.822 0 1 (--) 

In
d

ep
en

d
e

n
t 

va
lid

at
io

n
 s

e
t 

0 7,324 0 29,746 0 0.198 (--) 1 0 1.00 

0.1 6,472 852 18,273 11,473 0.262 0.931 0.88367 0.385699 1.44 

0.2 5,515 1,809 11,764 17,982 0.319 0.909 0.753004 0.604518 1.90 

0.3 3,903 3,421 6,125 23,621 0.389 0.873 0.532906 0.79409 2.59 

0.4 2,320 5,004 2,612 27,134 0.470 0.844 0.316767 0.91219 3.61 

0.5 1,245 6,079 1,041 28,705 0.545 0.825 0.169989 0.965004 4.86 

0.6 612 6,712 401 29,345 0.604 0.814 0.083561 0.986519 6.20 

0.7 270 7,054 161 29,585 0.626 0.807 0.036865 0.994588 6.81 

0.8 133 7,191 27 29,719 0.831 0.805 0.018159 0.999092 20.01 

0.9 65 7,259 7 29,739 0.903 0.804 0.008875 0.999765 37.71 

1 0 7,324 0 29,746 (--) 0.802 0 1 (--) 

*Compared to pre-test probability of around 18% based on prevalence. 

Note: TP: true positives; FP: false positives; FN: false negatives; TN: true negatives; Se: 

sensitivity; Sp: specificity; LR+: positive likelihood ratio; NPV: negative predictive value; PPV: 

positive predictive value (post-test probability); (--): not estimable 
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Figure 5.5.  Feature generation timeline 

 

BZRA: benzodiazepine receptor modulator; adverse event: hospitalization, emergency department visit, 

or death 
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Figure 5.6.  Precision-recall and area under the receiver operating characteristic curves for the 

XGBoost classifier for the entire validation set (A) and the out of sample validation set (B). 

 

(A) 
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(B) 

 

 

Note: These curves are for all-cause outcomes. 
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Figure 5.7.  XGBoost calibration plots for all-cause outcomes using the entire validation set (A) and the 

out of sample validation set (B). 

(A) 

 

(B) 

 

Note: Most of the predictions were classified as low risk in this data set. 
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Figure 5.8.  All-cause outcome calibration for XGBoost across sex for entire validation set (A) and out 

of sample validation set (B). 

(A) 

 

   Males      Females 

 

 

(B) 

 

   Males      Females 
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Figure 5.9. Negative predicted value vs predicted probability thresholds for the XGBoost classifier 

predicting all-cause outcomes. 
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Figure 5.10.  SHAP plot indicating influence of various predictors on risk of all-cause outcomes*. 

 

*Red indicates higher values of the predictors while blue indicates lower values and lines to the right of 

the 0.0 on the x-axis are associated with our outcome while those to the left are less associated with our 

outcome.  For example, a history of admission in the previous 180 days (red colour and to the right of 

the 0.0 on the x-axis) is predictive of outcomes to varying extents.  

SHAP: Shapley Additive Explanations; BZD: benzodiazepine receptor modulator; DDD: defined daily dose 
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Chapter 6: 30-day risk from prescribed opioids: creating a risk predictor 

for prescription drug monitoring programs using a machine learning 

approach 

Importance: Machine-learning approaches can assist opioid stewardship by identifying high-risk 

opioid prescribing for potential interventions. 

Objective: To develop a machine-learning model for deployment that can estimate risk of 

adverse outcomes within 30-days of an opioid dispensation as a potential component of 

prescription drug monitoring programs. 

Design, Setting and Participants:  This prognostic study used data from Alberta, Canada 

between 2018-2019.  Participants included all patients over 18 who received at least one opioid 

dispensation from a community pharmacy within the province. 

Exposure:  Each opioid dispensation served as the unit of analysis. 

Main Outcomes/Measures:  We identified opioid-related adverse outcomes from linked 

administrative datasets. An XGBoost model was developed on 2018 data to predict risk of 

emergency department visit, hospitalization, or mortality within 30-days of an opioid 

dispensation; validation on 2019 data was done to evaluate model performance.  We reported 

model discrimination, calibration, and other relevant metrics using daily and weekly predictions 

on both ranked predictions and predicted probability thresholds.  A cost analysis describing 

potential savings based on our predictions was included. 

Results:  Total number of participants was 853,324 representing 6.1 million opioid 

dispensations with 145,016 events reported (2.3%). 77,326 events (2.6% pre-test probability) 

occurred within 30 days of a dispense in the validation set (XGBoost C-statistic 0.82).  The top 

0.1 percentile of predicted risk had a positive likelihood ratio (LR+) of 28.7 which translated to a 

post-test probability of 43.1%.  In our simulations, the weekly measured predictions had higher 

LR+’s in both the highest risk dispenses and percentiles of predicted risk as compared to 

predictions measured daily.  Net benefit analysis showed that using ML prediction was not 
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informative across the entire range of probability thresholds.  Intervening on the highest 

ranked predictions demonstrated cost savings. 

Conclusion:  

Prescription drug monitoring programs can use machine-learning classifiers to identify patients 

at risk of adverse outcomes from opioids and potentially reduce health-care costs by 

intervening on high-ranked predictions.  Better access to available administrative and clinical 

data could improve the prediction performance of ML classifiers, especially if probability 

thresholds are important, and thus expand opioid stewardship efforts and further reduce costs. 
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Introduction 

 Canada experiences some of the highest rates of opioid prescribing in the world, making 

prescription opioid use a key driver of the opioid crisis7.  The consequences of prescribed 

opioids are well characterized6,7,24,146.  As part of the response to the opioid crisis, health 

jurisdictions and regulators have implemented prescription drug monitoring programs (PDMPs) 

such as the Tracked Prescription Program (TPP) Alberta administered by the College of 

Physicians and Surgeons of Alberta (CPSA)141, Canada.  The CPSA, like many other health 

regulators, has a mandate to protect Albertans by guiding the medical profession and plays a 

major role in prescription opioid stewardship. 

 With the increase in digital health, there is a strong movement to integrate emerging 

digital technologies (e.g., machine learning) with medicine11,71,147.  Health regulators like the 

CPSA are leading this trend by using data to optimize patient safety141.  The Government of 

Alberta maintains a comprehensive infrastructure of administrative health data and the CPSA 

has limited access to certain datasets, namely community prescription dispensation records. 

 Supervised machine learning (ML)11 is an approach that uses computer algorithms and 

the large amounts of available administrative data to build clinical prediction models, all within 

a well-defined framework14.  Supervised ML trains on labelled data to develop prediction 

models that are specific to different populations and there are numerous published studies 

describing its use in clinical settings16,17,37.  However, reporting of ML prediction performance 

metrics is still inconsistent in the literature17 although guidelines are in the works18.  To date, 

we are not aware of any health jurisdictions in Canada which use ML approaches in their opioid 

stewardship programs.  

 Building on our previous work148, the objective of this study was to develop and validate 

a proof-of-concept XGBoost95,120 ML model for use by the CPSA that can estimate the risk of 

adverse outcomes within 30-days of an opioid dispensation in Alberta, Canada.  The ML model 

will be trained only on prescription drug records to simulate a potential ML classifier 

deployment by the CPSA that is aligned with the type of data TPP Alberta has access to.  We will 

evaluate the ML model using the same performance metrics18-20,38 as in our previous work and 
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provide a general description of a customizable online dashboard.  Using the CPSA as an 

example, our analysis will provide interested prescription regulators with analytic options to 

assess the value and implementation of the ML classifier based on workload capacity and 

potential cost savings.  Although our study was conducted for the CPSA using data from Alberta, 

the ML process allows for others in different jurisdictions to deploy their own population and 

data specific ML risk classifiers.   

Methods 

Study Design, Setting and Participants 

 This prognostic study used a supervised ML approach which trained an XGBoost model 

on opioid dispensations in Alberta, Canada between Jan 2018 – Dec 2019.  We used XGBoost 

due to it producing the highest prediction performance based on our previous work and also 

because it generates an explainable model148.  All Albertans aged 18 and over were included in 

this study.  Because the CPSA only has access to certain drug history data (i.e., medication 

dispensations) and not comorbidity, diagnoses nor lab data, we could not exclude any patients 

based on comorbidities.   

Data Sources 

Although a wide range of administrative databases are available in Alberta, few are 

readily available to professional regulatory agencies like the CPSA, a common issue in many 

jurisdictions. Indeed, the CPSA currently only has access to prescription drug records in their 

role as administrator of TPP Alberta. Thus, we limited the datasets used to train the ML model 

to those accessible by the CPSA.  Health regulators in other jurisdictions may have access to 

additional data to train ML models and create their own specific ML classifier. 

To train the ML model, we used data from the Pharmaceutical Information Network 

(PIN) which has comprehensive information on dispensing records from community pharmacies 

in Alberta irrespective of coverage status and age109.  This PIN data was further filtered using 

Anatomical Therapeutic Chemical classification (ATC) codes to include only those prescription 

records for which the CPSA has access to141.  The CPSA receives records of opioid, 

benzodiazepine and antibiotic dispensations in daily updates from Alberta Health. 
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To label each instance of an opioid dispensation with an outcome, we linked the 

prescription data with 1) Population and Vital Statistics Data (VS, Alberta Services): sex, age, 

date of birth, immigration and emigration data within the province, death date and underlying 

cause of death according to the World Health Organization algorithm using ICD codes 

(International Statistical Classification of Diseases and Related Health Problems77), and 2) 

Hospitalizations and Emergency Department Visits (NACRS [National Ambulatory Care 

Reporting System], DAD [Discharge Abstract Database]): all services, length of stay, diagnoses 

(up to 25 ICD-10 based diagnoses).  Data and coding accuracy are routinely validated both 

provincially and centrally via the Canadian Institute for Health Information110 

 These linked databases represent a labeled data set used to develop the XGBoost 

model.  Currently, the CPSA does not have access to outcomes data (e.g., DAD, NACRS and VS) 

nor Physician Claims data.  We labelled data equivalent to the PIN data CPSA would receive 

with DAD, NACRS and VS data to assess a proof-of-concept ML model. 

Measures and Outcomes 

 In this study, the unit of analysis was at the opioid dispensation level such that each 

opioid dispensation was treated as independent and served as a potential instance to predict 

our outcome.  We chose this level of analysis to be consistent with others37, to have more data 

to train the ML model, and to accurately represent clinical use in the real world in which a 

health regulator’s PDMP may want to assess the risk for each instance rather than a single or 

random dispensation.  We identified opioid dispensations from the PIN file using Anatomical 

Therapeutic Chemical classification (ATC) codes80 (Table 6.4). 

Our outcome was a composite of a drug related emergency department (ED) visit, 

hospitalization or death within 30-days of an opioid dispensation based on ICD-10 codes from 

the linked databases (Table 6.5)23.  One month risk windows are commonly used by health 

systems for risk assessments82.  Follow-up and predictions started after each opioid 

dispensation. 

 Rare outcomes are common in clinical prediction model development and we 

anticipated this study to be no different as our training data would be class imbalanced83.  To 
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address this, we used the frequently used class weightage method which does not alter the 

data distribution and instead, increases the importance of the positive class (instances that led 

to the outcome)84.   

Predictors and ML Methods 

All candidate predictors were obtained from the PIN dataset and were either derived 

from the literature24,73 or directly incorporated from the data unmodified (Table 6.4).  These 

features included demographics (age, sex, Forward Sortation Index [FSI] from postal codes86, 

income), drug utilization (ATC codes, oral morphine equivalents88, concurrent use with 

benzodiazepines, number of dispensations, number of unique molecules) and health care 

utilization (number of opioid prescribers and pharmacies).  We used data 30 days before each 

opioid dispensation to measure each predictor (Figure 6.6). 

 We used XGBoost to train our ML model.  The opioid dispensations in 2018 were 

included in the development set while those in 2019 were used for validation.  We performed 

k=5 cross fold validation in the development set to tune hyperparameters.  With XGBoost, we 

tuned for tree height, number of trees and weight scaling to address class imbalance95,120. 

Two validations sets were defined from the 2019 dispensations.  The first used all of the 

2019 dispensations thus, is not a true external independent set as is usually seen in the ML 

prediction model research literature.  In this validation set, labeled as the “entire validation 

set”, participants in the development set were also in the validation set, as this represents the 

real-world scenario that health regulators work in where patient instances are repeatedly 

encountered; indeed, it is ideal to develop a ML prediction model trained on data from the 

population it will be deployed in.  In the second validation set, an external set with out of 

sample instances was defined in which participants in this validation set were not included in 

the development set, representing an “external” validation set which was a subset of the entire 

validation set (Figure 6.1).  Most of our analysis was done on the entire validation set because 

health regulators frequently monitor dispensations with repeated encounters making it 

impractical to report performance metrics on an external validation set with out of sample 

instances.   
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Analysis and Prediction Evaluation 

We first described characteristics and outcome event rates in the development vs 

validation group and between those who experienced the outcome and those who did not 

using chi-square and t-tests.  This descriptive analysis was done at the patient level in which 

each patient could be represented by multiple instances of opioid dispensations.  We included 

information on age, sex, final sample size and healthcare utilization. 

The entire validation set was used to evaluate our ML model’s prediction performance 

using metrics that are commonly applied to clinical prediction models18-20,38.  As is done in many 

ML prediction studies17, we assessed our XGBoost model’s discrimination performance by 

estimating the area under the receiver operating characteristics curve (AUROC).  For binary 

classification studies like ours, AUROC curves correspond to c-statistics which are a measure of 

model discrimination performance, the extent to which a model predicts a higher probability of 

an outcome among participants who actually had the outcome compared to those who did 

not19.  A precision-recall curve (PRC) was also included89.  For comparison, we estimated the 

AUROC for the external validation set representing discrimination performance in new patients. 

We also provided a calibration plot19 for the ML model; calibration is considered an 

important property of any prediction model and reflects the extent to which predicted values 

align with observed values and is most often illustrated by a plot of observed vs predicted18,19.  

As well, we added a negative predictive value (NPV) vs. predicted risk plot to highlight the 

relationship between low predicted risk and true negatives (those who did not experience the 

outcome). 

 From here, we reported two methods for health regulators to assess the clinical utility 

of the ML model.  The first involved ranking our predicted risks, as others have done43,66, by 

categorizing them into percentiles (e.g., deciles) or keeping them in absolute numbers (e.g., top 

10 highest risk dispenses).  At each of these category cut-off points, we reported prediction 

performance metrics.  These included positive likelihood ratios (LR+)20,145, true/false positives, 

true/false negatives, and positive predictive values (PPV, equivalent to post-test probability).  

These metrics were also reported on the actual thresholds of predicted risk outputted by the 
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ML classifier.  We carried out this analysis on all the data from the validation set and measured 

these metrics at the end of 2019. 

 In the second method, we performed a decision curve analysis21 in which the net benefit 

of our ML model is compared against two alternatives, namely, intervening on all opioid 

dispensations or on none, using the entire range of probability threshold cut-off points.  This 

comparison is done by using predicted probabilities from our ML model and comparing them 

against a probability threshold to aid a decision. 

Thus, if a health regulator such as the CPSA is interested in intervening, for example, on 

the top 1 percentile of predicted risk or top 10 highest risk predicted opioid dispenses, then 

method 1 could be considered.  Alternatively, if they want to intervene on opioid dispensations 

above a certain predicted risk threshold, method 2 could be informative.  Either way, the 

amount of workload created by identifying high risk dispenses is an important factor for the 

health regulator when applying this ML classifier; any interventions aided by ML prediction 

should only increase workload to a manageable extent. 

 Because we are using Alberta data, we simulated predictions to view the capabilities of 

our ML model if deployed into CPSA workflow.  These included predictions measured daily and 

weekly that progressively excluded participants once they were already flagged as high risk.  

Filtering out previously flagged patients represents a more realistic scenario for any health 

regulator as it is not practical to repeatedly identify the same high-risk patients.  For this 

simulation, previously flagged participants were excluded for the entire year keeping in mind 

that a health regulator could exclude patients on a monthly or quarterly basis.  For comparison, 

we reported the results of simulating and stratifying predictions using percentiles by not 

progressively excluding participants previously flagged as high risk.  We also simulated the 

number of 30-day events per 100 daily dispenses stratified by percentiles of risk.  Considering 

predicted risk thresholds and workload, we will report how many high-risk dispenses the CPSA 

would have to consider based on threshold cut-off points.   

 Since ML models do not estimate an interpretable quantity relating predictors to 

outcomes, it is not appropriate to summarize that relationship with a single parameter.  
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Instead, the impact of individual predictors can be summarized using “variable importance”, 

which is a rank-ordering of variables that are most important for the ML model’s prediction 

performance50; variable importance does not have a causal or statistical meaning.  To address 

interpretability59 of our ML model, we reported feature importance50 and feature impact using 

SHAP (Shapley Additive Explanations) value plots91,92, which will give the CPSA some insight on 

how the ML model was influenced in its predictions. 

 We briefly describe the general format of an electronic dashboard which health 

regulators could use in their opioid stewardship program. 

Cost Analysis 

 We performed a real-world simulation of cost savings of a ML model assisted PDMP 

using TPP Alberta as an example and reporting on the second quarter (Q2) of our 2019 data as 

an illustration.  Multiplying the Resource Intensity Weight (RIW)149,150 associated with each 

admission in the administrative databases by the Cost of a Standard Hospital Stay (CSHS) 

metric151 developed by CIHI57, we calculated the cost of each hospitalization or ED visit related 

to our outcome.  This is a validated method used by researchers152,153 and CIHI57,58 to estimate 

costs in the health care system. 

 We estimated a summary cost of all admissions and ED visits related to our outcome for 

Q2 2019.  Study participants were progressively excluded once they experienced our defined 

outcome for the remainder of the quarter.  To calculate costs associated with our predictions, 

we added up the costs of all the drug related hospitalizations and ED visits in the quarter 

starting at the first positive instance of an opioid dispensation.  As done in other studies43, we 

used the entire range of percentiles of predicted risk to graphically illustrate health care costs 

associated with our true positive predictions.  For each of the top 1, 5, and 10 percentile 

categories of predicted risk, we described potential savings to the health system by assessing 

cost reductions stratified by a range of intervention success rates and costs as others have 

done125.  For this study, we only considered a general point of care intervention such as a 

physician follow-up because we could reasonably estimate a range of costs.  All dollar figures 

are in Canadian currency.  
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 We did not anticipate any missing data in our study because TPP Alberta PIN data 

involves full capture of all information. 

 This study followed the TRIPOD68 and other guidelines11,17 specific to ML projects.  All 

analyses were done using Python (version 3.6.8, Python Software Foundation), SciKit Learn94 

(version 0.23.2), SHAP92 (version 0.35), XGBoost95 (version 0.90), Pandas96 (version 1.0.5) and 

STATA/MP V.15.1 (StataCorp).  This study received ethics approval from the University of 

Alberta ethics board (Pro00083807). 

Patient and Public Involvement 

This research was done without patient involvement. Patients were not invited to 

comment on the study design and were not consulted to develop patient-relevant outcomes or 

interpret the results. Patients were not invited to contribute to the writing or editing of this 

document for readability or accuracy. There are no plans to disseminate the results of the 

research to study participants. 

Data availability 

The data that support the findings of this study are available from Alberta Health but 

restrictions apply to the availability of these data, which were used under license for the 

current study, and so are not publicly available.  However, administrative health data can be 

accessed from Alberta Health by following defined research protocols and confidentiality 

agreements. 

Results 

 A total of 853,324 participants were included in this study representing 6,181,025 opioid 

dispenses during 2018-2019.  During the same time period, 145,016 outcome events (2.3%) 

occurred.  Dispenses in 2018 and 2019 comprised the development and validation sets, 

respectively (Figure 6.1).  The validation set had 77,326 opioid dispenses with positive instances 

(2.6%) representing the pre-test probability of the outcome and averaged around 8,241 

(SD=2,423) opioid dispenses per day (Figure 6.7).  Characteristics were comparable between 

those in the development and validation sets (Table 6.6) while differences were noted between 

those who experienced the outcome and those who did not (Table 6.7), as is expected. 
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 Using the entire validation set, we estimated the AUROC for the XGBoost classifier to be 

0.82 and an area under the PRC of 0.13 (Figure 6.8).  The corresponding values for the external 

validation set were 0.89 and 0.21, respectively.  As for the calibration plot, the observed and 

predicted risks were not aligned and showed a consistent overestimation of risk with a 

substantial fraction of instances predicted as low risk (Figure 6.9).  Low predicted risks were 

accompanied by fewer actual outcomes highlighting higher NPVs at lower predicted risks 

(Figure 6.10). 

 After we ranked and grouped our predicted risks at the end of 2019, the categories with 

the highest risk predictions had the highest PPVs (and post-test probabilities) and LR+’s.  The 

top 0.1 percentile of predicted risk had a LR+ of 28.7 which translated to a post-test probability 

of 43.1% compared to the pre-test probability of 2.6% (Table 6.1).  Similar results were 

observed with the top 10 high risk dispenses reporting a PPV of 0.9 and LR+ of 341 (Table 6.1).  

There was also an increase in LR+ and PPV as the threshold of predicted risk increased (Table 

6.8).   

 When we performed the decision curve analysis across the entire range of threshold 

probabilities, the XGBoost classifier provided no more value than if all or none of the 

participants were considered high risk (Figure 6.2).   

 In our simulations, the predictions classified weekly had higher LR+ in both the highest 

risk dispenses and percentiles of predicted risk as compared to predictions classified daily.  

Measured weekly, we reported a LR+ of 20.55 in the top 20 dispenses corresponding to a PPV 

(post-test probability) of 0.20.  This is in comparison to daily measured predictions which had 

LR+ and PPV of 6.38 and .12, respectively (Table 6.2).  The same trend occurred when we 

assessed weekly vs daily predictions using top percentiles of predicted risk (Table 6.9).  By 

progressively excluding previously flagged participants and measuring the top 20 riskiest 

dispenses, the total number of 30-day events decreased as the year progressed (Figure 6.3A).  

When we assessed performance in the top percentiles of predicted risk and not excluding 

previously flagged participants, LR+’s were higher (Table 6.10) as compared to the results of 

excluding previously flagged participants.  Considering actual probability thresholds and 
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workload, as the predicted probability threshold cut-off point increased, the number of flagged 

dispenses decreased for predictions measured daily and weekly (Table 6.3).  Also, higher 

thresholds were connected to higher LR+, with weekly measurements being more informative 

than daily ones (Table 6.3).   

 When we simulated based on top percentiles of predicted risk and events per 100 daily 

dispenses, the highest 1 percentile of predicted risk had higher event rates than lower 

predicted risk percentiles, including the baseline risk (pre-test probability of around 2.6%; 

Figure 6.3B).  

 With respect to ML interpretability, previous opioid dispensations and age were ranked 

highest in variable importance (Figure 6.4).  Higher number of previous opioid dispenses and 

younger age were suggestive of higher risk of a 30-day event (Figure 6.11).   

 We included the outputs from our ML model within an electronic dashboard which 

allows the CPSA to identify patients at high risk for a 30-day event and decide what, if any, 

interventions to initiate.  This patient centric view of the data allows the CPSA to filter an 

aggregated patient list based on ML risk prediction scores, age, and drug utilization 

characteristics (e.g., oral morphine equivalents, benzodiazepine dispenses).  By selecting a 

patient from the resulting list, users can reveal that patient’s individual SHAP values related to 

their risk prediction score for the associated opioid dispense.  Full dispensation profiles are also 

available.  The relevant SHAP values displayed are sorted from highest risk factor to highest 

protective factor in a split bar chart, which makes it very easy for the CPSA user to see what 

factors contribute the most to patients’ overall risk score.  Hovering over one of the bars gives 

further details on the underlying feature values that contributed to the risk score to aid ML 

prediction interpretation.  To help with use of the dashboards, we also included a page with 

general use instructions, and the list of all features along with a brief description for each.  It is 

also possible for users to search for a particular patient even if they are not among the highest 

of predicted risk.   
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Cost analysis 

 In 2019 Q2, we estimated around $57.4 million was spent on opioid related admissions 

signifying a substantial space for cost savings.  Around $12 million (21%) represents admission 

costs associated with our true positive predictions (Figure 6.5A).  Cost savings diminished as the 

cost of intervention increased across all intervention success rates.  In the top 1 percentile of 

predicted risks, intervention success rates above 50% were associated with cost savings across 

the range of intervention costs, while those below 50% added costs to the health system at 

higher intervention costs (Figure 6.5B).  In the top 5 and 10 percentiles of predicted risk, the 

same trend was seen except that all intervention success rates added costs to the system at 

higher intervention costs (Figure 12).   

Discussion 

 In this study, we created an XGBoost ML classifier for PDMPs to assess risk from 

prescribed opioids using the CPSA as an example of a health regulator.  We presented 2 analytic 

options for health regulators to implement ML decision support into an opioid stewardship 

workflow namely, acting on the highest ranked predictions or on probability threshold cut-offs.  

Discrimination, calibration and net benefit analysis are important aspects in determining the 

clinical utility of a prediction model21.  Although our model had strong discrimination 

performance, it did not calibrate well.  Our net benefit analysis suggests that using probability 

thresholds may not lead to an informative decision aid.  However, there may be some value in 

ranking predictions as some LR+’s led to conclusive changes from pre to post test probabilities20 

with weekly predictions being more informative than daily ones. Our findings also point to 

merit in acting on ranked predictions to reduce costs to the health system depending on 

accepted intervention success rates and costs.  Miscalibration and uninformative net benefit 

analysis could partly be explained by the limited data available to the CPSA.  From previous 

work, it is well known that having more data could better leverage ML prediction 

capabilities16,34 thus making the case to increase data access and permissions for the CPSA and 

regulators in general, especially if intervening on probability thresholds is important. 

Using this option of ranking predictions, health regulators could implement ML 

prediction as a decision aid to potentially intervene on high-risk opioid dispenses and reduce 
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health care costs.  The electronic dashboard we described can be adjusted according to 

acceptable workloads by varying the number of identified high risk opioid dispenses and the 

variable importance SHAP values can provide some understanding of why the ML classifier 

flagged these high-risk instances.  Regulators could also progressively exclude previously 

flagged patients yearly, as we did, quarterly or other based on workload capacity. 

 To date, we are unaware of other Canadian jurisdictions which have implemented or 

studied ML prediction to aid PDMPs in reducing risk from opioids and to reduce health costs.  

Although trained on the limited data available to the CPSA, the discrimination performance of 

the ML model in this study was comparable to results from our previous work and that of 

others37.  Furthermore, the prediction performance using ranked predictions was comparable 

to that in our previous work, in which we had access to more types of training data than the 

CPSA.   

 Limitations in our study are mainly due to data issues.  Our training dataset does not 

account for the risk associated with non-prescription opioid use.  The CPSA’s limited data access 

did not allow for any exclusion criteria in our study population thus, we were not able to 

exclude any participants based on comorbidity or other (e.g., cancer, palliative care) histories.  

This issue could be mitigated by allowing the CPSA increased access to other administrative 

datasets storing social factors and comorbidity data for training ML models.  Nevertheless, we 

demonstrated informative predictions in the higher risk dispenses and even with our limited 

data, we were still able to demonstrate cost savings using our ML predictions.  Our ML classifier 

was trained only on Alberta data, which may not be generalizable to other jurisdictions.  

However, the ML process makes it easy to train models using population specific data.   

 This study considered a particular regulator’s perspective with respect to clinical utility, 

workload and ML interpretability when predicting opioid related outcomes.  This approach can 

be applied to other health regulators with similar opioid stewardship mandates.  Training on 

data representing specific populations and regular retraining to improve prediction 

performance over time are among the benefits of the ML process.  Our XGBoost classifier gives 

health regulators options for interventions based on workload capacity; any potential 
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interventions on opioid dispenses can be identified at the patient level in which opioid use 

could be further assessed.  Improved data access could improve prediction performance, 

leading to more effective opioid stewardship and further reductions in health care costs. 

  



174 
 

Table 6.1. XGBoost prediction metrics measured at the end of 2019. 

    Threshold TP FP FN  TN PPV* Se Sp LR+ 

To
p

 d
is

p
en

se
s 

10 0.982 9  1  77,317 2,931,070 0.900 0.0001 1.0000 341.1 

50 0.978 46  4  77,280 2,931,067 0.920 0.0006 1.0000 435.9 

100 0.976 79  21  77,247 2,931,050 0.790 0.0010 1.0000 142.6 

500 0.965 250  250  77,076 2,930,821 0.500 0.0032 0.9999 37.9 

1000 0.960 498  502  76,828 2,930,569 0.500 0.0064 0.9998 37.6 

5000 0.937 2,014  2,986  75,312 2,928,082 0.400 0.0260 0.9990 25.5 

10000 0.920 3,462  6,538  73,864 2,924,533 0.350 0.0448 0.9978 20.1 

50000 0.856 10,779  39,221  66,547 2,891,850 0.216 0.1394 0.9866 10.4 

100000 0.812 17,238  82,762  60,088 2,848,309 0.172 0.2229 0.9718 7.9 

To
p

 p
e

rc
e

n
ti

le
 o

f 
p

re
d

ic
te

d
 r

is
k 0.01 0.970 183  118  77,143 2,930,953 0.608  0.0024 1.0000 55.5 

0.1 0.946 1,295  1,713  76,031 2,929,358 0.431  0.0167 0.9994 28.7 

1 0.882 7,559  22,525  69,767 2,908,546 0.251  0.0978 0.9923 12.7 

5 0.780 22,175  128,245  55,151 2,802,826 0.147  0.2868 0.9562 6.6 

10 0.711 32,182  268,658  45,144 2,662,413 0.107  0.4162 0.9083 4.5 

25 0.569 51,526  700,573  25,800 2,230,498 0.069  0.6663 0.7610 2.8 

50 0.352 69,659  1,434,539  7,667 1,496,532 0.046  0.9008 0.5106 1.8 

75 0.149 75,719  2,180,579  1,607 750,492 0.034  0.9792 0.2560 1.3 

90 0.072 76,968  2,630,589  358 300,482 0.028  0.9954 0.1025 1.1 

TP: true positives; FP: false positives; FN: false negatives; TN: true negatives; Se: sensitivity; Sp: 

specificity; LR+: positive likelihood ratio; PPV: positive predictive value (post-test probability) 

*Compared with pre-test probability of 2.6% based on prevalence. 
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Table 6.2. Prediction metrics simulated using daily and weekly measurements stratified by 

top dispenses using 2019 data.  Participants were progressively excluded for 1 year if 

previously flagged as high risk.   

  

Top 

dispenses 
Threshold TP  FN  FP  TN  PPV*  NPV  Se Sp LR+  

M
ea

su
re

d
 d

ai
ly

 

10  0.83  1 127 10 7506 0.12 0.98 0.01 1.00 8.00 

20  0.78  2 105 19 7108 0.09 0.99 0.02 1.00 6.38 

50  0.67  3 65 49 6167 0.06 0.99 0.04 0.99 5.63 

100  0.54  4 41 99 5187 0.04 0.99 0.09 0.98 4.74 

200  0.40  5 24 203 4204 0.02 0.99 0.17 0.95 3.76 

500  0.22  6 9 627 2517 0.01 1.00 0.41 0.80 2.07 

1000  0.09  7 3 1185 929 0.01 1.00 0.69 0.44 1.24 

M
e

as
u

re
d

 w
e

e
kl

y*
* 

10  0.92  3 510 8 39838 0.24 0.99 0.01 1.00 24.66 

20  0.90  4 488 17 39701 0.20 0.99 0.01 1.00 20.55 

50  0.86  8 444 43 39285 0.15 0.99 0.02 1.00 15.25 

100  0.81  11 395 90 38627 0.11 0.99 0.03 1.00 11.64 

200  0.74  16 333 186 37341 0.08 0.99 0.04 1.00 9.06 

500  0.61  25 218 496 33860 0.05 0.99 0.10 0.99 7.20 

1000  0.46  31 145 1018 29377 0.03 1.00 0.18 0.97 5.24 

Note: Based on average daily and weekly values to prevent daily and weekly fluctuations of 

dispenses. 

Threshold: predicted probability threshold; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; PPV: 

positive predictive value (post-test probability) 

*Compared with pre-test probability of 2.6% based on prevalence. 

**The highest predicted probability of the week was used. 
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Table 6.3. Prediction metrics simulated using daily and weekly measurements stratified by 

absolute probability thresholds using 2019 data.  Participants were progressively excluded for 

1 year if previously flagged as high risk. 

  

Threshold 

No. of 

flagged 

dispenses 

TP  FN  FP  TN  PPV* NPV  Se Sp LR+  

M
e

as
u

re
d

 d
ai

ly
 

0  1457 7 0 1450 0 0.00 (--) 1.00 0.00 1.00 

0.1  1009 7 1 1002 811 0.01 1.00 0.90 0.45 1.63 

0.2  569 6 3 563 1825 0.01 1.00 0.69 0.76 2.93 

0.3  316 5 6 311 2578 0.02 1.00 0.49 0.89 4.52 

0.4  217 5 9 212 3126 0.02 1.00 0.35 0.94 5.54 

0.5  150 4 13 146 3692 0.03 1.00 0.25 0.96 6.51 

0.6  98 4 23 94 4479 0.04 0.99 0.14 0.98 6.76 

0.7  53 3 52 51 5676 0.05 0.99 0.05 0.99 5.82 

0.8  22 2 91 21 6825 0.08 0.99 0.02 1.00 6.47 

0.9  4 1 154 3 7757 0.15 0.98 0.00 1.00 8.96 

1  0 0 212 0 8029 (--) 0.97 0.00 1.00 (--) 

M
ea

su
re

d
 w

ee
kl

y*
* 

0  10198 50 0 10148 0 0.00 (--) 1.00 0.00 1.00 

0.1  7060 48 5 7013 5529 0.01 1.00 0.90 0.44 1.62 

0.2  3984 42 18 3941 12411 0.01 1.00 0.70 0.76 2.91 

0.3  2212 37 36 2175 17483 0.02 1.00 0.51 0.89 4.58 

0.4  1516 33 54 1483 21083 0.02 1.00 0.38 0.93 5.79 

0.5  1051 31 79 1020 24570 0.03 1.00 0.28 0.96 6.97 

0.6  683 26 123 656 28539 0.04 1.00 0.18 0.98 7.82 

0.7  374 20 209 355 33097 0.05 0.99 0.09 0.99 8.10 

0.8  157 13 319 144 36904 0.08 0.99 0.04 1.00 9.77 

0.9  29 4 465 24 39418 0.15 0.99 0.01 1.00 15.18 

1  0 0 558 0 39988 (--) 0.99 0.00 1.00 (--) 

Note: Based on average daily and weekly values to prevent daily and weekly fluctuations of 

dispenses; number of flagged dispenses represents a potential CPSA workload. 



177 
 

Threshold: predicted probability threshold; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; PPV: 

positive predictive value (post-test probability) 

*Compared with pre-test probability of 2.6% based on prevalence. 

**The highest predicted probability of the week was used. 

  



178 
 

Figure 6.1. Study participant flow diagram.  Note: PIN=Pharmaceutical Information Network 

 

 

*Participants could be in both the development and validation set; the analysis was conducted on this validation 

set 

**Participants in this validation set are not included in the development set 
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Figure 6.2.  Decision curve analysis.  Across most of the range of threshold probabilities, the 

XGBoost classifier had a lower net benefit than if none of the opioid dispenses were 

intervened on.  Thus, acting on predicted probability thresholds for interventions may not be 

informative nor appropriate.   
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Figure 6.3. Simulation of predicting the top 20 riskiest opioid dispenses measured daily by 

progressively excluding participants previously flagged as high risk.  The yellow line, what we 

predicted, represents a workload that the CPSA would have to consider (A); XGBoost 

classifier predicting daily risks in a simulation for the College of Physicians and Surgeons of 

Alberta stratified by top percentile categories of risk.  Base risk is around 2.6% and represents 

the pre-test probability (B).                  

A)  

 

B)  
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Figure 6.4. Variable importance for the XGBoost classifier.  Variable importance bears no 

statistical meaning in terms of association. 
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Figure 6.5.  Cost of admissions (hospitalizations and emergency department visits) using 

predictions ranked by percentiles (percentile categories are the cut-off points) for data in 2019 

Quarter 2.  Costs are associated with only true positive predictions and represent the maximum 

possible savings the machine learning classifier will realize at the given percentile threshold of 

prediction based on daily classifications by a health regulator (A);  Cost savings and cost of 

interventions stratified by intervention success rates for predictions ranked in the top 1 

percentile for 2019 Quarter 2 (B).  All dollar amounts are in Canadian currency. 

 

(A) 

 

(B) 
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Appendix to Chapter 6 
Table 6.4.  Anatomical Therapeutic Chemical classification of opioid molecules used for this 

study and candidate predictors used to develop the XGBoost classifier. 

Category (data source) Description 

ATC codes used to identify 

opioids from modified PIN data 

N01AH01, N01AH03, N01AH06, N07BC01, N07BC02, 

N07BC51, R05DA03, R05DA04, R05DA09, R05DA20, N02A 

Opioid molecules used in this 

study (modified PIN) 

alfentanil, butorphanol, codeine, diamorphine, fentanyl, 

hydrocodone, hydromorphone, meperidine, morphine, 

oxycodone, oxymorphone, pentazocine, sufentanil, 

tapentadol, tramadol 

Demographic information 

(modified PIN) 

age, sex, postal codes, mean income 

Drug utilization history 

(modified PIN) 

drug dispenses in past 30 days using ATC codes, oral 

morphine equivalents, concurrent use with benzodiazepines 

defined as at least 7 days of cumulative concurrent use in the 

30 days prior to dispensation, number of dispensations and 

unique molecules of opioids and benzodiazepines 

Healthcare utilization (modified 

PIN) 

Number of opioid prescribers and pharmacies 

Note: ATC- Anatomical Therapeutic Chemical classification (https://www.whocc.no/atc_ddd_index); 

modified PIN- Pharmaceutical Information Network data modified to align with data access granted to 

the College of Physicians and Surgeons of Alberta. 
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Table 6.5. Diagnostic codes used to identify the defined study outcome from emergency 

department visit, hospitalization and death data. 

ICD 10 Condition 

T40.x Poisoning by, adverse effect of and underdosing of narcotics and 

psychodysleptics  

F55.x Abuse of non-psychoactive substances 

F11.x - F19.x Mental and behavioral disorders due to psychoactive substance use 
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Table 6.6.  Characteristics of study participants (n=853,324) in the development and 

validation sets. 

Characteristic 

Number in 

development 

set * Percent 

Number in 

validation 

set* Percent 

Number of 

participants 558,383 100.0 531,238 100.0 

Age: 
 

  
 

  

Mean (SD) 50.7 (17.6) (--) 51.0 (17.7) (--) 

18-45 226,648 40.6 213,456 40.2 

45-65 212,760 38.1 200,816 37.8 

>65 118,975 21.3 116,966 22.00 

Male 265,954 54.0 243,639 45.9 

Female 301,429 46.0 287,599 51.1 

Rural 88,783 15.9 83,713 15.8 

Urban 469,600 84.1 447,525 84.2 

Income: 
 

  
 

  

<75k 83,010 14.9 77,901 14.7 

75k-100k 286,509 51.3 270,397 50.9 

100k-171k 175,837 31.5 171,038 32.2 

>171k 13,027 2.3 11,902 2.2 

Number of unique 

physicians visited 

in the 30-days prior 

to opioid 

dispensation: 
 

  
 

  

1 to 3 532,546 95.4 503,745 94.8 

>3 25,837 4.6 27,493 5.2 

*Unless otherwise indicated 

Note: p<0.001 for all comparisons due to large sample sizes except rural/urban (p=0.04); 
participants can be in either or both categories. 
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Table 6.7. Characteristics of study participants (n=853,324) according to outcome status.   

Characteristic 

Number with 

event* Percent 

Number without 

event* Percent 

Number of 

participants 14,916 100.0 852,065 100.0 

Age: 
 

  
 

  

Mean (SD) 45.8 (15.2) (--) 49.8 (17.8) (--) 

18-45 7,689 51.5 367,777 43.2 

45-65 5,677 38.1 310,897 36.5 

>65 1,550 10.4 173,391 20.3 

Male 8,191 54.9 394,935 46.3 

Female 6,725 45.1 457,130 53.4 

Rural 3,536 23.7 128,621 15.1 

Urban 11,380 76.3 723,444 84.9 

Income: 
 

  
 

  

<75k 4,104 27.5 120,805 14.2 

75k-100k 8,069 54.1 431,444 50.6 

100k-171k 2,492 16.7 279,699 32.8 

>171k 251 1.7 20,117 2.4 

Number of unique 

physicians visited in 

the 30-days prior to 

opioid dispensation: 
 

  
 

  

1 to 3 10,231 68.6 823,167 96.6 

>3 4,685 31.4 28,898 3.4 

*Unless otherwise indicated. 

Note: p<0.001 for all comparisons between event and no event; participants can be in either or 

both categories because some instances lead to an event while others do not within the same 

participant. 
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Table 6.8. XGBoost prediction performance metrics based on threshold of predicted risk 

measured at the end of 2019.  

Threshold of 

predicted 

risk TP FN FP TN PPV* Se Sp LR+ 

0 77,326 0 2,931,071 0 0.026 1.000 0.000 1.00 

0.1 76,623 703 2,440,890 490,181 0.030 0.991 0.167 1.19 

0.2 74,568 2,758 1,927,842 1,003,229 0.037 0.964 0.342 1.47 

0.3 71,536 5,790 1,573,273 1,357,798 0.043 0.925 0.463 1.72 

0.4 66,987 10,339 1,288,735 1,642,336 0.049 0.866 0.560 1.97 

0.5 58,785 18,541 939,305 1,991,766 0.059 0.760 0.680 2.37 

0.6 47,742 29,584 598,938 2,332,133 0.074 0.617 0.796 3.02 

0.7 33,725 43,601 293,576 2,637,495 0.103 0.436 0.900 4.35 

0.8 19,145 58,181 98,486 2,832,585 0.163 0.248 0.966 7.37 

0.9 5,385 71,941 13,419 2,917,652 0.286 0.070 0.995 15.21 

0.99 0 77,326 0 2,931,071 (--) 0.000 1.000 (--) 

TP: true positives; FP: false positives; FN: false negatives; TN: true negatives; Se: sensitivity; Sp: 

specificity; LR+: positive likelihood ratio; PPV: positive predictive value, post-test probability 

*Compared with pre-test probability of 2.6% based on prevalence. 
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Table 6.9. Prediction metrics simulated using daily and weekly measurements stratified by 

percentiles of predicted risk using 2019 data.  Participants were progressively excluded for 1 

year if previously flagged as high risk.  

  

Top 

Percentile 

of 

predicted 

risk 

Threshold TP  FN  FP  TN  PPV* NPV  Se Sp LR+  

M
e

as
u

re
d

 d
ai

ly
 

0.1  0.86  1 141 6 7664 0.14 0.98 0.01 1.00 9.14 

1  0.66  3 63 49 6153 0.06 0.99 0.04 0.99 5.68 

5  0.41  5 21 173 4181 0.03 0.99 0.18 0.96 4.66 

10  0.31  5 11 296 3349 0.02 1.00 0.32 0.92 3.95 

25  0.20  6 4 643 2058 0.01 1.00 0.60 0.76 2.52 

50  0.11  7 1 982 1055 0.01 1.00 0.84 0.52 1.73 

75  0.07  7 0 1243 440 0.01 1.00 0.96 0.26 1.30 

90  0.04  7 0 1370 157 0.01 1.00 0.99 0.10 1.10 

M
e

as
u

re
d

 w
e

e
kl

y*
*

 

0.1  0.89 5 474 24 39576 0.18 0.99 0.01 1.00 18.02 

1  0.71 18 299 240 36518 0.07 0.99 0.06 0.99 8.60 

5  0.46 31 128 992 28623 0.03 1.00 0.20 0.97 5.89 

10  0.34 36 77 1726 23802 0.02 1.00 0.32 0.93 4.74 

25  0.21 44 29 4265 14931 0.01 1.00 0.60 0.78 2.70 

50  0.12 48 9 6657 7815 0.01 1.00 0.84 0.54 1.82 

75  0.07 49 2 8636 3233 0.01 1.00 0.96 0.27 1.32 

90  0.04 49 1 9567 1155 0.01 1.00 0.99 0.11 1.11 

Note: Based on average daily and weekly values to prevent daily and weekly fluctuations of 

dispenses. 

Threshold: predicted probability threshold; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; PPV: 

positive predictive value (post-test probability) 

*Compared with pre-test probability of 2.6% based on prevalence. 

**The highest predicted probability of the week was used. 
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Table 6.10. Prediction metrics simulated using daily and weekly measurements stratified by 

top percentiles of predicted risk using 2019 data.  Participants were NOT progressively 

excluded if previously flagged as high risk. 

  

Top 
Percentile of 

predicted 
risk Threshold TP FN FP TN PPV* NPV Se Sp LR+ 

M
e

as
u

re
d

 d
ai

ly
 

0.1 0.95 4 208 4 8025 0.47 0.97 0.02 1.00 33.78 

1 0.89 19 193 50 7979 0.28 0.98 0.09 0.99 14.38 

5 0.79 56 156 286 7743 0.16 0.98 0.26 0.96 7.44 

10 0.73 82 130 603 7426 0.12 0.98 0.39 0.92 5.13 

25 0.6 133 79 1633 6396 0.08 0.99 0.63 0.80 3.09 

50 0.39 187 25 3724 4305 0.05 0.99 0.88 0.54 1.90 

75 0.18 206 5 5748 2281 0.03 1.00 0.97 0.28 1.36 

90 0.09 210 1 7053 976 0.03 1.00 0.99 0.12 1.13 

M
e

as
u

re
d

 w
e

e
kl

y*
*

 

0.1 0.93 11 547 19 39969 0.36 0.99 0.02 1.00 41.03 

1 0.85 56 502 232 39756 0.19 0.99 0.10 0.99 17.23 

5 0.74 149 409 1294 38693 0.10 0.99 0.27 0.97 8.24 

10 0.66 223 335 2704 37283 0.08 0.99 0.40 0.93 5.90 

25 0.5 370 188 7579 32409 0.05 0.99 0.66 0.81 3.50 

50 0.29 483 75 16136 23851 0.03 1.00 0.87 0.60 2.15 

75 0.14 537 21 26759 13229 0.02 1.00 0.96 0.33 1.44 

90 0.08 553 5 34261 5727 0.02 1.00 0.99 0.14 1.16 

Note: Based on average daily and weekly values to prevent daily and weekly fluctuations of 

dispenses. 

Threshold: predicted probability threshold; TP: true positives; FP: false positives; FN: false 

negatives; TN: true negatives; Se: sensitivity; Sp: specificity; LR+: positive likelihood ratio; PPV: 

positive predictive value (post-test probability) 

*Compared with pre-test probability of 2.6% based on prevalence. 

**The highest predicted probability of the week was used. 
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Figure 6.6.  Schematic of study design and feature generation. 
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Figure 6.7.  The number of opioid dispenses per day during 2019 (average of 8241 dispenses 

per day) and the number of dispenses which resulted in our defined outcome (average of 212 

or around 2.6% of dispenses which led to an event). 
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Figure 6.8.  Discrimination performance (A) and precision-recall curve(B) of our XGBoost 

classifier using the entire 2019 validation data. 

(A) 

 

(B) 
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Figure 6.9. Calibration plot of the XGBoost classifier using 2019 data. 
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Figure 6.10. Negative predicted value vs predicted probability using the 2019 validation set. 

 
NPV: negative predicted value 
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Figure 6.11.  SHAP values and feature impact from the XGBoost classifier using the 2019 

validation set to describe variable importance in relation to the outcome.  Features are 

arranged from highest to lowest impact on prediction. 

 

These predictors are rank-ordered according to feature importance with importance decreasing from 

top to bottom; variable impact does not have a causal nor statistical meaning but is simply a measure of 

the influence a predictor has on the ML model output.  Red indicates higher values of the predictors 

while blue indicates lower values and lines to the right of the 0.0 on the x-axis are suggestive of higher 

risk of our outcome while those to the left are less suggestive.  For example, a higher number of 

previous opioid dispensations (red) are predictive of a 30-day event (red is to the right of the 0.0 on x-

axis) where in some instances, a higher number of previous dispensations (red) has a higher influence on 

30-day events (further to the right of the 0.0 on the x-axis).  Similarly, for binary variables, history of 

antidepressant use (red colour and to the right of the 0.0 on the x-axis) is suggestive of 30-day events to 

varying extents. 
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Figure 6.12.  Cost savings and cost of interventions stratified by intervention success rate for 

2019 Quarter 2 reported for both the top 5 and 10 percentiles of predicted risk. All costs are 

in Canadian dollars. 
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Chapter 7: Discussion 

 This PhD project developed and evaluated ML classifiers which predicted adverse 

outcomes important to health system planners in at-risk populations at the individual level.  

The ML classifiers were assessed using a range of metrics not commonly seen in ML prediction 

literature studying population health outcomes.  This included measures such as discrimination, 

calibration, pre and post-test probabilities, ML explainability, real-world simulations and 

potential cost savings, all considered informative by health system planners.  This body of work 

suggests that ML models could provide health systems planners with useful information when 

interventions are based on ranked predictions as opposed to those based on absolute 

probability thresholds, a finding verified by potential cost savings analyses.  

 From the first study, the findings revealed that predictions from ML classifiers were 

more informative than guideline-based rules for predicting 30-day risks from opioids.  The c-

statistics (i.e., discrimination performance) for the ML models were estimated around 0.87 

while the guideline-based rules were around 0.5, no better than chance alone.  Furthermore, 

the top 5 percentile of ML predicted risks translated into higher post-test probabilities (around 

14%) compared to the pre-test probability of 1.6%.  Limitations mainly focused on data issues in 

which only administrative health data was available to construct ML models.  Health systems 

may find ML predictions in this context informative for opioid stewardship programs. 

 In the second project, predicting readmissions in people with heart failure, even the 

best performing ML models (c-statistic= 0.65) trained on administrative health data did not 

provide substantially informative prediction performance. Indeed, they only generated 

moderate shifts from pre to post-test probabilities (a shift from 21 to 24%).  The ML models 

performed slightly better than the LACE tool (length of stay, acuity of admission, comorbidities, 

emergency department visits) developed using logistic regression (c-statistic= 0.65 vs. 0.57).  

The reasons why the ML model did not provide substantially informative prediction 

performance, especially when performance was high with opioids in the first study, is unknown. 

Part of the performance issues with predictions in patients with heart failure may simply be 

related to the lack of additional important health information in this population which is not 
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available in administrative data (e.g., patients’ daily weights for fluid monitoring, salt and other 

diet considerations known to induce decompensation) or to the more seemingly randomness of 

decompensation in patients with heart failure. Health systems should take note of these 

findings since readmissions are an important outcome driving healthcare costs and poor health 

outcomes and other types of data must be included in ML model development.   

 The notion that administrative data may not be sufficient is also supported by the 

findings from the third project. Unlike the opioid study, developing ML models using only 

administrative health data may not provide health systems with sufficient informative 

predictions to use as decision aids for potential interventions, especially if considering daily or 

quarterly classifications of benzodiazepine risks in older adults.  C-statistic for the ML model 

was 0.75.  Although this indicates strong discrimination performance, likelihood ratios from 

daily and quarterly classifications were less than 10 implying uninformative ML predictions that 

would only provide modest additional information to health systems.  Again, developing ML 

models solely on administrative data is a limiting factor. 

 The fourth project’s findings showed that a ML classifier developed specifically for a 

health regulator (College of Physicians and Surgeons of Alberta) could assist their opioid 

stewardship program and provide value to health systems even when developed on very 

limited administrative health data.  Based on validation analysis, the ML model had a c-statistic 

of 0.82 with the highest categories of predicted risk reporting likelihood ratios around 28.  This 

translated to a post-test probability of 43.1% from a pre-test probability of 2.6%. Further, 

simulated interventions on these high-risk categories realized potential costs savings to the 

health system depending on intervention success rates.  In contrast, net benefit analysis 

findings revealed that intervening on absolute probability thresholds was not informative at any 

cut point.  Having access to more types of training data could improve prediction performance 

and further increase the value of ML assisted opioid stewardship programs. 

 Overall, in the opioid and benzodiazepine projects, the ML classifiers provided 

informative predictions, especially in the higher categories of ranked predictions with higher 

likelihood ratios.  The frequency of ML classifications also affects informativeness.  In the 



204 
 

benzodiazepine project, ML predictions classified daily or weekly were not informative while 

those done yearly did provide some measure of utility.  It is up to health system planners to 

decide if yearly classifications of benzodiazepine risk in older adults is useful.  Further, the 

opioid risk ML classifiers performed better than guideline-based rules.  Net benefit analysis 

reported that ML prediction in these settings may not provide health systems with informative 

predictions with interventions based on absolute thresholds.  This may be related to the 

limitations of developing ML models solely on administrative data, as many factors are absent.  

The ML model predicting readmissions in people with heart failure did not produce informative 

predictions beyond pre-test baseline risk, a finding which health system planners should note, 

as readmissions related to heart failure are an important outcome.  In fact, the simple risk 

calculator based on logistic regression models (LACE score) did not provide any predictive 

information either in the heart failure population.  Again, this can partly be explained by data 

issues in which administration health data alone cannot describe the variation in outcome 

distribution in a highly heterogeneous population.  Based on these findings, health system 

planners may find the opioid ML classifiers informative while the benzodiazepine and heart 

failure readmission ML models not so much. Indeed, health systems could realize potential cost 

savings by implementing ML assisted opioid stewardship programs.  Improvements in data 

collection may change the utility of using ML in other patient populations like those using 

benzodiazepines and experiencing readmissions. 

 Focusing on ML and opioids, ML deployment into real-world settings to assist opioid 

stewardship programs will have some of the key issues identified in Chapter 2 despite 

informative prediction results in studies.  There is an opportunity for ML to integrate into health 

systems to mitigate opioid prescribing risks.  Health jurisdictions and regulators could regularly 

risk stratify and intervene on high-risk opioid instances within a population to reduce system 

costs.  In this case, ML, by identifying risks at the individual level, provides a patient focused 

approach which is a mandatory component of integrated health systems154.  Opportunities also 

exist for ML assisted opioid stewardship at the provider and patient level.  Having ML 

predictions available at clinical encounters may induce behaviour changes such as modified 
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prescribing and monitoring.  Of course, the effects of these opportunities still must be 

substantiated and properly evaluated in controlled studies.   

However, deploying a ML opioid risk classifier also faces hindrances.  Issues related to 

data are substantial barriers and include types of data for training, where the data comes from, 

validity and reliability of that data, and subsequent generalizability of the ML model.  Privacy 

and consent to collect ‘big data’ also come more into play which will further add to the 

complexity of using all these data sources as the public becomes more aware of what their data 

is potentially being used for. Targeted information campaigns to keep the public as informed as 

possible will be required for any of these initiatives to be successful.  Opioid users are a 

heterogeneous population comprised of a large contingent of marginalized individuals.  Bias, 

transparency and interpretability of ML predictions are important considerations at the system, 

provider and patient levels.  It is mandatory for a health system program such as an opioid 

stewardship program to explain why certain patients are flagged as high risk or not.  Whether it 

be through bias or some other mechanism, interventions conducted by ML assisted programs 

must be monitored and held accountable so all can benefit. The final potential barrier affects all 

aspects of the system, that being trained personnel. As ML implementation becomes more 

mainstream, universities and other institutes will have to be nimble to pivot to provide the 

necessary precision health training required to implement, support, and evaluate ML programs. 

This is certainly lacking across most of Canada. Indeed, training programs are often very siloed 

with individuals trained in ML methods but have limited training on health or health systems 

and vice versa. New integrated, interdisciplinary programs will be required to fully train and 

harness the data that is available for ML prediction in health systems.  

 This PhD program addressed some of the key issues in ML previously discussed in 

Chapter 2.  Although data issues remained (ML classifiers were limited to training on 

administrative data only), the analysis included comprehensive metrics and measures to 

evaluate ML classifiers that health system planners would find informative; this contrasts with 

many studies in the literature16,17.  These metrics could also inform writers who are developing 

reporting guidelines.  The issue of ML interpretability was addressed by including measures of 

variable importance and how different features influenced predictions. All of these will assist in 
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making ML more transparent to users to help facilitate uptake as opposed to “black box” 

technology which is unacceptable to health systems.  

Future Research 

 This PhD program did not address other key topics in ML prediction that health systems 

must acknowledge and are areas for future research.  Research topics related to bias in data, 

ML modeling and implementation were not included and need to be investigated.  As well, this 

project did not touch on the areas of data governance, consent to collect data and privacy.  

Health system planners should note that all ML projects would benefit by including these pieces 

in their intervention programs.  More work in these areas is required if ML is going to assist 

public health initiatives and become more mainstream.  Other issues were also raised that 

should direct future work in ML prediction.  These include: handling missing and correlated 

data, more research into ML informed intervention success rates and costs, and attributable 

benefit of ML prediction.  Health systems will have to identify priority areas related to patient 

stratification, cost of ML assisted intervention programs, workload, monitoring ML 

performance, bias, and transparency, just to name a few.   

 Future research specific to data issues is strongly needed if ML is to be successfully 

integrated into health systems.  The common theme throughout this PhD has been to develop 

ML models with only administrative health data mostly because it is readily available and 

structured.  Relying solely on this type of data may be limiting the capabilities of ML assisted 

intervention programs.  Data of interest exists that is not part of the administrative data sets 

but with private sector entities and people.  Indeed, health systems could benefit by accessing 

other types of data collected from personal monitoring devices, effluent sources (e.g., online 

search terms) and other supplies of unstructured data.  Research on how these additional 

sources of data incrementally benefit ML predictions and subsequent outcomes must also be 

conducted. Failure to not quickly incorporate other data into ML may result in the perception 

that ML is not useful for health predictions. This belief or attitude among health administrators 

may be difficult to change and further hinder the use of ML models in practice. Indeed, this has 

already occurred in the AI/ML world as 20 years ago AI was touted as the new future; yet, lack 

of computing resources, data, and other factors resulted in a ‘false start’ which has now only 
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been addressed twenty years later. The same could occur in the health system if ML models are 

not quickly shown to be beneficial to patients, health providers, and the system overall.   

 Another major area of future research revolves around training personnel within health 

systems on how to implement and use ML.  Education programs must be developed to bridge 

the divides between ML, public health and health systems planning.  The need for these 

programs is acknowledged by health regulators and systems alike.  Health providers also need 

education about ML and its applications.  Further, research into how best to engage health 

providers to use ML is needed as well as research on the impact of “alert fatigue” that health 

providers face daily; adding ML to an already busy EMR platform will contribute to more 

automated flags and perhaps oversights. 

 Developing and validating a ML classifier is a small step in the overall lifecycle of ML 

deployment into real world scenarios.  Beyond research and academics, ML implementation 

may fall into a framework like any other medical device or pharmaceutical (see Figure 7.1).  

After validation, ML classifiers could still have a long and arduous journey before health 

systems can fully embrace them29,31. 
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Figure 7.1.  Implementation of ML into health-care applications.  From Lancet Oncol 2019; 20: 

e262-27329. 

 There are a lot of moving parts to account for when considering ML implementation into 

health systems and how best to evaluate them is still uncertain for some.  Whether ML is 

categorized as a medical device requiring an intensive approval process or as an extension of 

information management remains unclear.  Nevertheless, issues with data are at the core of 

these considerations.  Collection of structured and unstructured data in a timely manner is 

important for real-time ML predictions.  Storing this data in private infrastructure is necessary 

but in a way that allows for seamless sharing across data siloes.  All these factors would have to 

be managed under a data governance framework.  Health system planners, providers and the 

public will have to be educated on the use and benefits of ML prediction to counter the “black 

box” image.  Further, the public will need convincing to share personal data that is not collected 

in administrative health data.  Platforms like MyHealth, supported by the Government of 
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Alberta, could be used to upload and house additional types of data like dietary, exercise and 

other lifestyle habits.  Finally, monitoring programs to ensure ML transparency need to be 

defined and established to ensure fairness, a key mandate for public health systems. 

Conclusion 

Ultimately, ML technology will integrate into health systems71.  However, it is important 

to manage expectations because much hype surrounds the use of ML in health systems 

planning and the promise of this emerging technology needs to be eased against 

implementation challenges29; frameworks are needed to direct data governance and ethics.  

The role of ML within health systems is still unclear although the findings from this PhD 

program suggest its use in population health risk-based strategies is becoming increasingly 

evident and opportunities are emerging where this technology can help Albertans and others.  

However, it is important to understand that, as shown within this PhD program, ML methods 

are not a panacea. Although ML-based risk prediction strategies may work well enough in 

opioid stewardship, its impact was less informative in benzodiazepine risk prediction in older 

adults and of limited benefit in people with heart failure which is highly prevalent and costly to 

health systems. Indeed, rigorous evaluation of any ML-based program is necessary as successful 

deployment of ML assisted public health strategies will likely be specific to each disease state, 

data availability, population and even health system. 
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