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ABSTRACT
’ - N

vThis thesis presents a devechment of the One-Center Ex-h'
pansion (OCE) method in a way which e*iends its use to moleth]es with
heavy off-center nucleip‘é prospect-preyieysly beyone reech\;,ihis
" extension is achfe;ed through the use of mcde1 potentials (MP) to ab-
proxnmace the tnghtly boundqcore orbotals, whlch remain vnrtually &n-
changed from atom to molecule and do not contribute to bonding. The'
remaining dlffuse valence charge dlstribution, which determines many
of. the physical and chfmlca] propertles of the molecule, is then rather
easy to S|mulate using the One- Center Expansion method.

The formulation of the method is described. New molecular
integrals arising from the coupling’of.the One-Center Expansion method
and the model porent}al approxrmation are evaluated to a high degree
of accuracy.~ Succeesful results are reporfed for HZO’ HyS and N,.

The valence eiectron distributions and orbital energies are in good
agreement. with those obtained fr;m more complete~ce]culation§.
| The'ﬁethod combines the erfort-saving qualities ef both the

OCE and MP procedures, resu];%hgvin a potentially useful package for

further chemical applications.

(vi)
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CHAPTER |

INTRODUCT ION

A. Preamble

‘The fundamental, microscopic understanding of chemistry, its

processes and reactions, requires a detailed and if possible quantita-

s

tive knowledge of the properties of atoms, molecules and their interac-
tions. Atomic and molecular properties of chemicalﬂiﬁterest are gov-

erned by the details of their electronic structures and nuclear arran-
.gements.

There are two important methods;which permit us to obtain
this detailed in%ofﬁatigﬁ, one experimentalf(spectrosc0py), the other
theofetical (duéntuﬁ mechanics). Spectroscopy; with its'many Yarian%s,
has yielded a great deal :of such information. In qUantqm mechanics,

it is assumed that chemical systems can be completely represented by

!

mathematical functions. The purpose of quantum-mechanical calculatjons

:as applied to{cﬁemistéy is to find these functions, which afé called
"eigenfunctions'' or ”wavgfunctions” of thevatom, molecule, or assem- ,
blage of atoms and/or moleéules being investigated. Thus insofar-as‘
quantum mechanics is correct, chemical questions cén!bg redu;ed to
problems in applied mathematics. The framework of éuantum mechaniés
has béen established for the last 50 years. iIn 1929.Diéac was able to
wfitg:v - ’ _ | ’

'""The general theory of quantum mechanics i§ now a]moég

complete, the imperfections that still remain being in

connection with the exact fitting in of the theory with

relativity ideas. These give rise to difficulties only -
when high-speed particles are involved, and are therefore

v

-
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of no importance in the consideration of atomic and

molecular structure and ordinary chemical reactions,

in which it is, indeed, usually sufficiently accurate

if one neglects relativity variation of mass with

velocity and assumes only Coulomb forces between the

various electrons and nuclei. The underlying physical

laws necessary for the mathematical theory of a large

part of physics and the whole of chemistry are thus

completely known, and the difficulty is only that the

exact application of these laws leads to equations

much too complicated to be soluble. It .therefore

becomes desirable that approximate practical methods

of applying quantum mechanics should be developed,

which can lead to an explanation of the main features

of complex atomic systems without too much computation.'[}1]

With the advent of large-scale computers in the last twenty
years, increasingly sophisticated computational methods have been deve-
loped which give resul®s approachfng chemical accuracy. However, these me-
thods get prohibitively expensive, and the search forcheaper methods con- -
tinues. It is in this spirit that this thesis éttémpts to develop a
dne—Center Expansion (OCE) me thod {2,3] coupled with model potentials
(MP) [4], in a way that extends the appticability of the former to
molecules with heavy off-center puclei, a prospect previously beyond
réach.
B.. One-Center Expansion Method “
1. History

The problem of Constructing electronic wavefunétiqns for
molecules has been attacked in several ways. The most usual method
entails the use of atomic orbitals centered on all atomic nuclei
(Lcao) [5,6].. This method has conceptual simplicity, being in line .
with chemical intuition: a molecule is made by combination of atoms,

so too a molecular orbital shouldlbe made from a (linear) combination

. of -atomic orbitals (LCAO). It converges well to the Hartreg-Fock (HF)

bt



limit as basis sets get larger.

The only difficulty with it, but an éssential difficulty,
is that it requires the evaluation of many difficult multicenter mole-
cular ‘integrals. This is a tedious process, especially for Slater-

" type orbitals (STOj on several, non-collinear centers. This bottle-
néck_has indeed led to the virtual abandonment OF STO0s in favour of
Gaussian-type orbitals (GTO) in molecular calculations, which result

in more tractable integrals, although they are inferior to STOs in the
description of molecular electron distributions.

It was in search of a device to avoid these difficult inte-
grals [7] that the one-center expansion method was developed. In this
method, an attempt is made to simulate the total wavefunction using
functions centered at one‘convenient point in sﬁace. Conceptually,
this method is not so dirécf, especially for the groundvstéfé- Also,
it convefges poorly, reqLiring mény more -terms than LCAD to achieve a
given accurécy. But it has the advantage tﬁat the integrals are
simple, espeéia]ly as the two-electron integrals are all one-center,
as are the one-electron integralsnexcept nuglgar attraction, which
are‘up-to two-centefv I~ can also take adVantage of formulations
which have beeﬁ‘developed for atoms.

Single-center ideas have bggn developing since the early
day; of quantum chemistry [3]. ftn 1928, Finkelstein and‘Horowftz [8]
approximated the ground state wavefunction of H, as a product of two
hydrogen-like orbitals centered at the mid-point. Since then, this
and many other molecules have been tackled, with some success. The

method saw extensive investig%}iOQ'in the decade or 'so following 1955,



,dgring which time more than 100 papers on it appeared,-culmihatfng
in two important reviews [2,31.
The work using the method may be divided into two classes:
(i) Thosé workers‘who were searching for an ®xact OCE wavefunc-
tion and good predictions of the energy [9]. These workers encoun-
tered the fun&amental drawbacklof the mefﬁod: the difficult? in ade-
quately‘describihg the wavefunction in the immediate vicinity of the
of f-center quqléi, where the compact charge-concentration is difficult
to generate from another point, even with many terms.
Figure 1.1 illustrates this difficulty for the ground state
log wavefunction of Hzf along the internuclear axis [10]. One nucleus
.sits at z=-1.0, the other at z=+l.d, and“the origin for the one-
center expansion ié at.z=0. The dashed .curves are the resqlts [9b] of
expansions.using STOs of number and symmetry-type indicated. The
 functioh~2s4-]d+Ig+li has conveé&ed quite.Qell to the wavefunction
éfCohen and Coulson [9al, which conta{ns the same symmetry types with
numerical radial functions, but both wavefunctions are a poor fifcto
the accurate function of Bates et al [11] in the immediate vicinity of
the nuc]eu%»at z=1.0.

This dispérity, or '"off-center CQsp problem", is smallest
when the‘off*center nuclei are smallest (H), but becomes bréhibitivé“
for heavier off-center nuclei. In partigular, it is completely im-
possible to expand the inner shells on one atom in terms of STOs ‘cen-
tered ét anbther pointi Thus the method was inherently restricted tov
molecules with né.non-hydrogen off-center nuclei: Hh+, or central

1

hydrides AHK* with the expansion center at the heavy nucleus A.
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FIG. 1.1. Comparison of‘OCE>Wavefunctions for Hy,+ along the
internuclear axis. From ref.10, p.59.
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ii) The other group of workers chése simple wavefunctions .and ate.
. ~— . NS
‘tempted to calculate properties of molecules which are determined morgwj
by the general shape of the wavefunction, rather than by its detailed
shape in a pait&cular region of space. Perhaps the greatest encou-
ragement for the method came from the Qork of Moccia [12]. Approxi-
mating the Qavefunction as a single Slater determinant, and usingA
Roothaan's SCF procegure with all basis functions located at a common
cente;, he was able to calculate bond distances, anéles, dipole moments,
jonisation potentials (orbital energies) and molecular energiésafor a
wholé range of molecules to a high degree of aCCUraEy.‘
After 1967; ﬁowever, the method relatively died down dqe td
dké%ppointment over Jts slow conQergence, its need for high-n, high-1
“orbitals, and its pooF prospects for extension to molecules with hga-
vier off-center nucléi,’ Another factor in its relative'demise seems
Eo have been the advent of GTOs and'QirtuaI abéndonment’of STOs for

molecular calculations. “ (

2. Demand for OCE wavefunctions o A
TheJuti]ity of the method has been established in several
areas bésides the'calculation of ground states for hydrides. Recent
literature reports of applicatioqs iﬁ}diversé areas demonstrate the
continuing demand for-OCE wavefunctions. The method i§ proving Quit-
able in the determination of‘excited.Sfates/[l3], where the average,
distance of the eléctrons from the nuclei is much greater than the
internuclear separation, and where the ﬁagnitude of the wavefunction
close to the nuclei i§ small. In partfquiér,,e]ecffons in Rydberg

orbitals are so far that they''see' a "united-atom" ppfential [14].

i
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In the study of atom-atom collisiqns,_}hé problem of such
~ " a collision may be reconstituted as one of determining the potential *+
energy.curyes, wavefunétions and MO correlation diagrams of the correspon-
ding quasi-molecule [15]. The OCE wavefunction is found to be the -
best at short internuclear distances, where the situation is almost
united-atom, and LCAOQ degeriorates'as linear dependencies devélop
among functions based on different centers. Possibility of .extension
tO‘atom-molecqufor molecule-molecule collisions s conceivable.

In the study of molecular photoelectron (ESCA) intensities
and anguiar distributions, the calculated quantity is thé ﬁﬁofoioni-
sation cross-section. The primary ingredients are the wavefunctions
of the initial and residual ionised states. The OCE formulation sim-
plifies the problem appreciab]y.. lwata and Nagakura [16a] have used
Moccia's [IZ]VOCE wa;efunq;ion; for NHy, H,0, HyS and CHy; Chapman
[16b] has used the Hayes-ParE [9e] wavefunction for H,.

In the study of electron-scatterjng by molecules, the problem

is to work out the static interaction potentials between. the projectile

Lan

e ' .
o “electron and the target molecule. This calls for a single-center wave-

R function i?/the calculations are to be tractable. Burke and coworkers

v

[]7]'héve ﬁséd‘the Harris-Michels [18,19] method of transforming an

. L Ty .
LCAO wavefunct}ogﬁinto a ”single-center” one for N,, H,0, H,CO, and
SFg. These workers ldment the poor convergence of the technique,
which results in expensive calculations. The same idea finds use in

Tobin an5~H§nze's [20] recent:nuﬁsrical multiconfigprational_SCF §chéme;

It is possible that a straightfofwaﬁ&ﬂﬁoécfa—type OCE wgvefunctioﬁ

might be better. . v o e



Finally Combé‘[ZIJ has suggested that molecular wavedunctiqns
can be con%fructed through combination of wavefunctions of molecular
fragments, which cogjd be of OCE variety.

These are the reasons why we have undertéken a revival of
the 0ne—Center~Expansion method by tryihgito extend it to molecules®

L v .
with heavy off-center nuclei, @ prospect previously beyond reach.

3. Extension to moledules with heavy'off—center nuclei

This is achieved through the use of model poteatials to ap-
proximate fhe compéct core orbitals Of the off-center nuclei, which,
as we saw above, cannot be expanded by the OCE»@ethod. Once this BurF
den on OCE is removed, the remaining, diffuse valehce charge‘distribu-
tion is then easy to simulate. . o

The quest to gélvé the off—center éusp probiem, .and thus im-
prove the wavefupdtion'at the of f-center nuclei, has,een attention
beforé: Bishop‘[2] suggested thebaddition 6fvorbitals which exist only
ne;r.and arevcentéfed’at the off-center nuclei. TheSe’orbitais would
Bé'of Emal] en6Ugh rénge so that they do not overlap. He suggested

that the two-center integrals between them and the OCE basis functions

would be so small that they could be evaluated numerically. He repor-

ted satisfactory results for H,', )
, \ .
The. same idea may be seen in the ''three-center'' basis sets

for diatomic molecules at short internuclear distances [15], whereby

united-atom basis functions are centered at the mid-point to represent

. the diffuse outer MOs, while the tightly bound core MOs are expanded

in terms of .basis_functions situated at the nuclear positions. How-

he introduction of many two-cénfer,&th—electron integralé‘h59'~

: _ R

e
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‘defeaf'thé whole purpose of Sing{é;czater calculatiéns. In contr
we shall éhow,that using model pofentials_introduces-only,£wo-cente{
) one-electrén“integrals wbjch are not only fewer in number, but, ?n
prihciplé}‘eaéjqf to solve. This should represent;a éonsiderable
' écongmy of cometationafJeffort.

Anotﬁervmethdd which has been tried for solving the off-
center cusp prgblem is ghét of Conroy [22]; In‘this method, a shape
factor is built |nto the expressuon for the total wavefunctlon, of a
form speCIfically to-kill singularities at the off- -center nuclei. The
resulting equations are compllcated requlrlqﬂ numerical lntegratlon

The method has not seen application beyond H2, H3, Hy, and their posi-

tive ions.

. Model Potentials

.

Here we give & few words‘of introduction to the concept of
4 ' . .
model potentia15.,»for many}ﬁéarg; chehists and physicists have realised
that the chemical and physical pr pérties of atoms and molecules are de-
termined mainly by only the few oulter ''valence" electrons, the l;core“
taking little part. Thus,iﬁ describing the nature. of the chemical
bond,rohe needs to focus attention oniy on the ‘outer few electrons of
each atom. This concept of separability of an atomic or molecularAsyé-

tem into ''relevant'' and "unimportant'' regions also appears in other -

cases, for example o and 7 electrons in conjugated systems, and func-

tional groups in ¢ chemistry.
It would be desurable to set up a quantum-mechanlcal frame-
- work whereby the states of the ”relevant“ part may be evaluated accu-

rately, but without explicit concern,for the "unimportant' part.
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This is - precisely the goal'of the pseudo- or model potential. It does
so by approximating the effeCts of the "unimportant' part on the "'re-
levant" part. The mathematlcal set-up is rather tricky, and only in’
the last flve or six years has the potentlal accuracy and practlcallty
of "the method for molecular,appllcatlons become’ apparent, leading to a
'surge of interest in the technique._ A recent review details the use of
pseudopotentials in molecular calculations to date [4]. The method is
being lnvestlgated in several laboratorles, including ours, and this
author believes that when fully understood and made to work properly,
it will take its place beside, if not altogether transcend, the semi-
empirical methods.

One of the most promISIng formulations of \ne model poten-

tial, proposed by Bonifacic and Huznnaga [23], is chosen here for in-

corporation lnto the OCE-MP method.

"~ C. Structure of thesis

e

This thesis describes the formulation of our method; coupling

4

the OCE method to the model potential (MP) approximation, to give what

we call the OCE-MP algorithm. First, some of the theoretical back-

ground necessary for studying problems in quantum chemistry is presented in
DA »

Chapter 11. The hierarchy of standard approximations commonly assumed

ln the electronic theory ot molecules is discussed. The place occupied

by the OCE nethod in this hierarchy is pinpointed. An attempt is also

made to tnace the linkage between duan%um mechanical calculations and

*the chemical information which may be extracted from them.

4

.1Chapter-lll furnisheé more'direct background'to our method



by examin}ng the concept of the medel potential approximation. The
essential features of the method are outlined, and then the model po-
tential formulation of Bonifacic and.Huzinaga‘[ZB] is singled’put for
special revfew. The saving qualities of the method are emphaeised.
Chapter |V presents the formulaffon of‘the OCE-MP aléorithm.
It sets down the fbfma] set of equations that must be solved, and |
launches the cemputationa] strategy and tactics‘édepted‘in this work.
The calibratien-of model potentials,is‘describee;;the integrals arising
‘from the coupling of OCE to MP are identified, and most of them are
" solvable by_common>methods [6b,12d]. However, there are some new
. integrals, whose explicit solution could not be found in the literature.
We have developed a method to solve them to a high degree eanccuracy.
It is based on the Fourier Convolution method [24, 25, 26]. }he deri-
vation and app]icafioh of this method is highly technical, and so.
Chaeter V and the appendices have been set‘aside for this task.
Chapter VI giveecthe‘results of-applfcétion of 'the OCE-MP
'methgd to real molecules. Successful results ere given }or H,0, H,S,
and Ny. The valence electrde distributions and orbital energies are
found‘to'be in good agreement with those obtained from more complete
calculations.. A serious probjem of basis set redundancy [12] was en-
‘countered, which slowed progress inextensiveapp]icatioﬁs. Neverthe-e
less, the outlook for the method is promising, as it combines the seLA
rving qualities of.both the OCE and MP procedures, Eeéulting in a po-

tentially useful package for further chemical applications.



CHAPTER 11

ATHEORETICAL BACKGROUND AND METHODS

3

A. Hierarchy of Approximations

in this chapter ‘the hierarchy of approximations used in this
work is ¢ :sented. It may be summarised as follows, proceeding from
the general to the particular.

i) Schroedinger Equation: Non-relativistic Hamiltonian; Time-

I

independent (stationary states, molecular structure); Clamped nuclei;
Electronic Schroedinger equation.

ii) Variational Method: The best wavefunction is that which gives

the Jowest total energy.

iii) Orbital Model: Each electron™is assigned to a separaje one-
electron wavefunction (Orbital).” -

ivl] HaPtree-Fock SCF: Total wavefunction is a Slater determinant

of orbitals; best orbitals are determined by an SCF iterative solution
of coupled integrodifferential equatioﬁs.

v) Hartree-Fock-Rodthaan Method: Search for analytical orbitals

by finite expansion of them in terms of known analytical basis functions.
Expansion coefficients become the variational parameters to be deter-

mined by SCF.

vi) One-Center Expansion Method: Akdevice to avoid difficult

multicenter integrals; all expansion basis functions located at one
convenient point in space.

".vii) Model Potential Approximation: Cbemica!ly‘”reléVant“ valence

region determined .accurately, “'unimportant'' cefre regions treated
..]2_

N

[
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approximately.

The discﬁssion in this cha;ter covers the s;andard; basic
= “ approximations i)-v) c9mmonly used in quantum chemistry and assumed
in'tﬁis‘work: ‘THe one-center expansion methoq is introduced super-
f}cially. - The ﬁqdel potential approximétioﬁ4ié;dfscussed in Chapter 3,
and in Chapter 4, we show how it is coupleavto the OCE méthod to

produce the OCE-MP'algorithm.

B. The Schroedinger Equation

.

The primary task in the "electronic theory of molecules is : &

. ¢

to find solutions to the time® independent Schroedinger equation [27]

.,v-

, ‘ 2 .
HY = EY , _, L (2-1)

which is taken as the master equation. H is the Hamiltonian operatgr
for the system under investigation. For a system of M nuclei and N-

~electrons, the Hamiltonian operator is

H=T +T +V_+V _+V. (2-2)
n e ne : Ty

ee nn ©

comprising_ the nuclear and electronic_kiﬁetic energy oberators, and
the eleétron—nuc]ear éftraction,e]ect;on-electron fepulsiop aﬁd nuclear-
Huéleér‘repulsion potehtials. Negleéting relativistic effects and
assuming that fhe only forces acting between particles are Coulombic,

the Hamiltonian operator in ¢.g.s. Gaussian units is

M g2 N 2 MON Z e’
el i E T i -
Loy L5l asp IBaRgl
i ' .



= and in atomic units,
;
/ M N M N 2z
o ] 2 1.2 a
=l g% - L 7y -0 1 2+
a a i a i ai
N N MM 722
IRl A (2-4)
i>] ij oa>R af

\ S

¥ is the wavefunction which describes the distribution or configuration

j; of the particles in the system:
N ¥ = W(Nr]: ,52) M | LN; E]’ 52: c ety B‘M) (2—5)

and E is the allowed energy of the system in state V. o
It is seen from (2-]) and (2-4) that the Schroedinger equation

is both a second-order partlal dlfferentlal equation and an eigenvalue

problem Thus it would seem that in the framework of quantum mechanics,
éhemical qugstions can be reduced to problems in appl%Ld mathematicg
For nearly all systems, equation (2-1) is very d|ff|cu]t to
solve, and for the past 50 years or so quantum chemists have been
[concerned with alleviating the mathematieal problem. In ordér to obtain
inforﬁation of Ehemical value from the theory, a series of further
approximations of varying severity is usually made. The following

<

sections are concerned with some of the major approximations.

v

L4

C. Clamped Nuclei or Born-Oppenheimer Approximation [28]

This approximation rests upon the physical picture that the
/;ﬁ?\ve nuclei (m/Ma is usua]ly in the range 10 -3 —‘IO_Q) move

“very slowly c0mparéd to the electrons. To a.first approximation then,

[



o §ubitituting‘this;lh (2-1)'give§
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the motion of the electrons may be separated out and treated as>if the
nuclei were fixed in space. Born and'Oppenheimer showed that SO}Qtions
to (2-1) may be approximated by first solving the'wave-equation.for .
fixed nuclear pasitions (K.E. of nuclei excluded) , ;hus obtaihing the
é]ect;onic energy for particular arrangements of the nuclei. This
electronic energy can then be used as the potential energy for Fhe
wavefunction involving the nuclei alone. .

The ‘electronic portion of the motion is represented at each

nuclear configuration by an electronic Schroedinger equation

H= ¥° = ES ¥ _ (2-6)
where
== 7T L 924y : (2-7)
i 2 i -
; g A T 2 A
V-] l— + 7 ——+ 7 = (2-8)
i o ia i>j Tij a>B  aB e :
“ ) .
e _ e o _
LA N G T Iys. Bys By oois RY) (2-9)

. e . . ) L .
where this means that v is a function of {Li} as dynamical variables,
but contains {Ea} as parameters since it is defined at each nuclear

configuration. Similarly
R,» Ry «.., R, . (2-10)

' . . . e B
The total wavefurction is taken as a préduct of ¥ and a nuclear wave-

function which depends only on the nuciear coordinates.

Cw - w® : . .n .
Y=y (LI’LZ""’LN' 5],52,...,5M) ¥ (5],52,...,5M) . {(2-11)

-
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" .
[- ¥ Eﬁ—-vz + HE] v&y" = Ey®y" (2-12a)
a o
M i 2 N 1 e n e n
e A I - A I A 11 A (2-12b)
a a t
Now, from (2-4?;
. v? vy =yl vf y© \ (2-13)
but
v vy = v (v " 4 Ty )
Q o a ~
= ¢®u2y" & VR 4 2y wElg y" (2-14)
— o Q o a .

. . e .
[f the electronic part V¥ does not change very much as nuclei move ,

the last two terms of (2-14) may be neglected, i.e., we assume

VY = ¥yl o= | (2-15)

Born and Oppenheimer showed formally that the neglect of ye dependence
on {Ba} is justified so long as not too high vibrational and

rotational modes are excited. Under these conditions, (2-12a) becomes

L
2M
o

vi + 57 vy = Ey® ¢ o (2-16)

-

RM~MX

from which ¥° may be cancelled, giving an approximate Schro€dinger = -

TS

equation for nugtesromotion.: - - = - L oL L
Ny e L

i + =
2M.a..Va . E; ] ‘y E‘y

_‘ ~(2-17)

This equation says the states of nuclear motion can be obtained from
a Schroedinger equation whose potential is bfovided by the energy of

the electronic charge cloud. The potential E® is called the adiabatic

P
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potential, and defines é pofeﬁtial energy surface spanning the space
of the nué]ear coordinates. .

Calculated potential energy surfaces whose canqept is a
direct resu]t of the Born- Oppenhelmer approxnmatlon yiela encouraging
results on eqUIllbrlum geometries, force constants, anhérmdnicity and
binding or dissociation energies. They are being used in discuséing
spectroscopy, kinetics and reéctfon ﬁechanisms [29].

In the Bofn—pppenheimgr approximation, then, the probleﬁ
reduces to one of finding solutions, at each nuclear configuration,

to the electronic Schroedinger equation (2-6), from which we henceforth

drop the superscript and write:

N I Hy=Ey (2-18a)
M,N 7 N M 272
] o ECIUER UL . ‘ N -
H= -7 3 - Yoo e ¥ . y 2B (2-18b)
- i . T, oo, R : :
i a,i el i>] iJ a>B aB :

D. The Variational Method

w

The electronic Schroedinger equatson ‘has ‘been solved exactly
\ :

only for one-electron systems, For which a,coordlnate system can’ be C s

2

:found in whqch éhe problem is separable | In H-llké atoms itis the sbherif.
1;ca1»polar {571 .and: in" ;‘~}|ke molecules it is the e]llptlcal coordinate
system.[11] “For all Gthéf‘595fem$, approximate methods must be sdughpi
L_Neérly,all cuﬁrentjelettroniﬁ structure caléulationg_are based on the

“Variational Principle, whose outiine follows:
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f. ‘Variational Theorem:
NP th - .
The energy of a system in its k= state is expressed from
(2~18) as
Ek = <\yk |HI _\Pk> ’I/,.l
i w“-Hwk dr
- (2_]9)
j W W dT

where dr signi;}gs integration over all space. We assume that

i) there exists a complete set of exact solutions to (2-18) with

the eigenvalues ordered in increasing value

E :_E

< Ev
O —

]

N

The 10West:éigenva1Ue EO is usually called the ground state of the

| system.

ii) The exact eigenvaers form;a'complgte_Qrthonqrmal set

PR N - e

f w ¥ dr =8

" where 6&@ s ihenKrohécker'delta}u
" "let "$. be any approximate, trial wavefunction chosen in any
~conv¢nient§manner'using chemiCal;iphysical or mathematical intuition,

.or experience. Its energy functional E is defined as

[ "Ho dt
Efo] = -
] A , f o%0 dr

Afm‘f”<¢ |H| &> :iix

<¢|<1>>

) S  SEL . ' (2-20)

k, ;vi . ;;i.;_, : = _"2;?})- 

(2-22)
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The variational theorem states that

. , )
E > Ey , with equality only if ¢ = ¥y - (2-23)
Proof. The assumpt[on of completeness allows the expansion of &
In terms of the {!k}.
) =]
R ©L (2-24)
k=0 :
where {ck} are, in general, complex. Then (2-22) gives
j(z ck\yk)H(g cl‘}’l)dr,
E[o] = ; . _
(¥, () c ¥, )dt
K k'k . L e
ZZc*cE 8
- K k™2 k “kg
YV s
c
kg K& ~
2 2
Eolegl™ + Ejle " +E, [c |° +
0 1471
\ -2 — . . (2-25)
A
Keeping in mind that from (2-20) E, > Eb, we get
2 2 2
e P e e % eyt L)
Efe] > — ————— = E, (2-26)
ST ] le,l |

which completes the proof.

Thus, if‘Qe start with an arbitrafy:tria] %unction, its
energy %unctional (expectetion value) is always ae upper bound to the
téue ground-state energy of the system in question,

Calculatlons wnthln the framework of the variational method

are usually performed by choosnng a trial wavefunctlon of a desired

’
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form,‘ﬁhich depends on certain parameters. The parameters are then
varied so as to minimise the energy functional and thus obtain the best
possiblé wavefunction of the chosen form.

2. Schroedinger Equation as an Euler Equation'of Motion

The variational principle applied to equation (2-22) demands

‘ : . . . 8
that for an arbitrary variation in ¢

3

o — & + -89 - (2-26a)

& — & + 60 o . (2-26b)

the energy functional E[2] remains stationary (or extremum), i.e.,

SE=0 . .  (2-27)

Assuming E[®] is a constant so that it can be incorporated into the

.integral, (2-22) can be rewritten as

[ " (H-E[¢])e dT = O ..

After the variation (2-22) and (2-26) give

SE = [(6"+66%) (H-E[0]) (0+68)dT - [¢" (H-E[e])e d =0
= j6¢*(H-E[¢j)¢dr + f 8" (H-E[¢]) ¢ dr

+ j5¢*(H-E[¢])c¢ dt . ' ’(2-28)

The last term is of order '[(6¢)2] any may be neglected. The Hermitian

property of .the Hamiltonian is exploitéd, f.e.,

[ o Hee dt = [(H'e) 60 d




; 2 :
- 5@":'(H-t[<;>]q>;{ ‘+,:f:‘éq;'~('H‘*-E*[q>])ék‘dr =0 . - 3 (2-305
_tSInce &6 .and _é@f“ are homp]étely-arbltrary, the other factors_in
ﬁthe tnt;grands mus-t- vanlsh separate]y .gl;lng thé EUier equatlons
oeEme '.(2;,‘3',‘ o
'y =E.L[<I>]q>* o e

The similarity with a Schroedlnger equatlon is apparent
Thus Schroedlnger s equatnon‘provcdeg the basvs tor moderh Sy
quantumlmechanncs in whuch i't playg the same‘role as” the equétthhéhh
established by Newton, Lagrange and Hamilton play in classical mechanfts.
There is no guarantee that the energy.obtained‘by the var-
iational methdd’is an absolute minimum. . The me thod only demands that
E be stationéry thh respect. to the permitted variatioh of &, so
it could be tfapped at a lqcal maximuﬁ, minimum or saddle point. It
is genera]ly belleved that for most physucalksystems the energy
5urfaces are SImple and a true minimum wnl] be obtalned but exceptions
exist.

3. Variation with Linear Constraints

The problem of ''deriving" the SchroedL@ger‘eqUBtion from the-
varlatlonal |ntegral hlnged on the arbltrary varlatlon of &. Usual]y,

however, there is the constraint that ¢ must remaun normallsed through-

o d e

s oUt~théuyarLétlpnlfand thus éannot vary arbttrarllyf Thus IS equtvalent f}f597fﬂ'¥

. to.demanding. T TUelewn

P L

e ‘- . ,‘..::.; __. ‘(2_3%a) . .. o



A 1the general;sed equat:ons as f

g

J[#] = fo He dt
-with variations

= o+ 80
* )

% %
 — ¢+ 89

" Under . the constraint (normalisation)

e o (e - -

S e e e e T . I L
. We form a new;functionaljto'be'made‘statjpnary:fb

P

‘i}ﬁij f " H¢ dr f'e(f ¢#¢fdrh-’l)

. We demand that

=0

b

N
i
!
1
]
-~ I . .
with arbitrary 6¢, 8% . This |% then a valid procedure for variation

since arbitrary variation has beep.reinstatédl The number

|

the Lagrangian multiplier, to be/determined in.some manner.

f
i
; . ' f

|

E. Orbital Approximation and the Hartree-Fock Method

f

In its general form a# formulated by Roothaan, [5,6] the
Hartree-Fock SCF method is truly a forbidding jungle.

have succumbed to the temptation of merely reproducing it from .

22

(2-32b)

(2-32¢) .

(2-32d)

‘(2—32e)

(2-333)'

(2-33b)

is called

Many writers

‘ Roothaan's monumentel papers. hn this sectnom*we have chosén instead

: 'to duscuss the samp1est examp1% to whnch |t |s appllcable name]y the

[

‘nground state of the HellUm atonl xn a way Wthh makes the essentlal

-,

-~ ~ ‘.

-features of the method transparent At the end we 5ummar|se by g|v1ng

" S > .." -~

sually used )
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1. Concept of orbitals. Example of He atom
For systems of more than one electron, the wavefunction ¥
(or i¢)~ is compllcated because of the’ sheer number of coordlnates to

beuconSidered. The Helium atom .will, sufftce to l]lustrate this dxf—

ficulty.  The e}ectronlc Schroedlngeq\egyéffo:-fsv

r

H@(rx, Iy ) E ¢(r ; sz o (2-3k)
where . U o o
H=h(1) b (@), + L N =T
l and ) . . o T ,. S e n ‘
AN N R _ ] ' ' ’ ’ 'Hv
R B T (2-36)
: _ -‘l _ oL KRR o
h@) =g, sz e

are the one-electron Hamiltonians. "The wavefunction may be written as:

(I)(L], ’[’2)5 (]’Y],]: Y2, 2) . I N R i

BRI

(r8ptprmdyt) (2-38)
in Cartesian and spherical poier coordinetes're§bectiye1y:'_ThU$‘¢»i,
for<two electrons is a wave in a six-dimensional space. Since real B
space is only three-dinensional, ¢ is an abstract quantity.
The numerlca] resu]ts obtained for ¢ wouid be unwieldy.
Suppose we wanted values of ¢ for 20 values of each Zf the coordinates.
. 6 6
The number of such values is 20 = 64 x 10°, Suppose 8 such values

are written.on a line and a computer printout page carries 64 lines,

N

It would take 1.25 x 105 pages ‘of output 'which s ridiculous. :For

\

‘tractable results then the number of coordlnates must b} reduced

'.Separatton of ' into a product of one-electron functlons!thus seems

e T
T

a necessary snmpllftcatlon' IR

%

¢
it



© .equation:

“.and demaﬁdingf*

¢y, £,) = ¢(r )¢(r ) R

>

s

to picture. This separation ié Based on the assumption that as
1 |

T 0 the e]ectrons move lndependent]y
12 ’

term, we can conflrm that each .¢- satrsfles,lts own Schroedinger
. ) o

Cpe - Eele) s Eple) 1=,

with the usual‘hydregeﬁic solutions. (see tﬁaptet 3) for example,

a1
s "_' 2
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‘ (2-39)-

1t partially reintfoduéeéea‘3>dinpnsfohal wave concept,'whf;h is easier

" By- substltutlng (2-39) lnto (2= 3#) qnd.neglét%ihg”the‘;iL; R

12

(240)’

(2-41)

(2-42)

i;§2753)_~

‘Thns is what has led to the common notion that thIS ‘is ‘an “|ndependent-

partlcle“ model. From (2 -4o)- (2-43) a sensible guess at the form of

the wavefunction for the ground state is an exponential

3 -gry o-zr
¢(r ~2) = (Eed e ] e 2

(2-44)

with ¢ as the’ parameter to be optumlsed through a. varlatlon prlncnple

This form has an energy accordlng to (2 22) of:

* - . J "
- [ 2 .
E(C) = ‘I)*Hd) dt = r° - ZZC + % z
-— fe e dt

(2-45)
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R w0 e
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R ¢ =zt L (2-w)
_ N_ _ 4y _5.2 _
o o e AN (2 1)
.%Tﬁe5fésulf‘fof ‘Héﬂ>wfth 2 =2 s . i
:Copt % 1.6375 (2-49a)‘
E(z_ ) = - 2.8476563 a.u. (2.49b)

opt ?
not bad compared to the true eipe}imental value obtained from Moore's
tables [31] by adding the ionisation potentials corresponding to the

successive strippingfof the .He atom:

-(24.58 + su 38) = - 7g,96 eVo= -2.90187 a.u..  (2-50)

© 2.  Hartree-Fock SCF. Method for Helium - -

In*thelmethod:bf\Héffréeléﬁd Fock, the goal-iskto'f{na the

. optlma] functlonal form of- ¢ W|thout flxnng |t a prlorl.f

Varlatnon ‘of the type glven in Section C3 can be applned to’
Iy

this system to give the equations of motion.
If- ¢ is conﬁrained.to be normalised, i.e.,
S e7edr =1 S sy

“then ¢ is also normalised, and this is the constraint on the variation: -

f "0 dr = 1 | | o (2-52)

'~\\\\f:f§ (2-32b) and (2-35),
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) e
J[¢] j¢ Ho dt l
% X P
= fo7(1)¢" (Ah(1)+h(2) + _—_4¢(I)F(2) dr, dr,
S 0 2
=Jle, o] . | ‘ (2-53)
- Using the Lagrange Multiplier method, the new. fubctional Cise
106,071 = J[6,07] - Ze('f&*(l)&p(l)dr] -11) ‘\
X . : i
= 26" (Dh(IY§(1)dr |
S X ] {
T (e () = s(1)ed2)dr, dr
M2 b
- 2(f $T (o) - 1) . (2-54)
Applying arbit rary: vatiations inl¢. and. ."‘1’*} = we .demand -
S1 = | [6%66,6 +66™] - 116,61 = 0 (2-55)
~ Using the kHevrmi_tj,anA kﬁnrfope_i',ty.‘of ';h_',-" 1e, R, 1
‘f¢*hs¢drté'f8¢%;h*¢*vdT | A - (2-56)
we gei, e .‘ : e LT Nf7?
51 = 2[59" (1) {n (1)+fdr, _fiﬂliifl.-'e]¢(x)} g,
, "12 : ’
*2fseN U (efar, SRR gy sy
. 12
Becaus.e  6‘¢ 6¢*> are completely arbltrary, the items |n the curly -
brackets must vanish separately: i
' [‘h(l)_-l-‘-]dr-z"d’—(_zl%i:;(z_)_‘ ~e16(1) = 0 v (2-58a)
(1) +fdr 3—(—2—)—"’(2—) ]¢*(1) =0 . o (2-58b)

"12
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!
’ . ‘ . s . |
These are the famgust Hartree-Fock equations, written for electron number 1..
. . . o | -
Interchanging ‘labels results in the HF equation for electron 2. Only

- if the Lagrange multiplier € is Hermitian, i.e.,

s~ x

€ = € . (2-59)

do the two equations have the same content and any one of them (say
the first) will suffice. The full significance of this Hermitian con-
dition " has only recently been exposed [32].

s _’//Haftree and Fock set out to solve equations (2-58) for, the

um functional form of ¢, without fixing it beforehand. The

L

©-

Pam .

=
1

€ (1) ' (2-60a)
A S i -
F=h(1)+ fdt, _.(f.)?(z). , | .. (2-60b)
g . e T 12 . .

is cal\ted the Fock operator. The.term pseudé~eigenvalue arises because -
to define the operator,.we need to.Know ¢, yet ¢ is what we are

looking for. This'suggests'Ihat«thé'only'solution is an iterative one:

(0)

i) choose or guess ¢ - _
. oo (0) R L X
ii) construct F u:ing ¢ Numerical integration is usually used.

(1)

iii). solve resulting eigenvalue problem (2-60a) for new ¢

iv) if ¢(]) = ¢(0), stop. |If not, go tocji), replacing ¢(0) ' : g

1
by ¢( ).
Thus continue, building the sequence —

0 L)) )

(n)

Convergence occurs when ¢ and are so close to each other

¢)(n+l)

that we are'willing to accept the error of their difference.

Soatbese gt .:
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The finallanswer is a so-called self-cdnsistent field wave-

function. The term SCF results from the fact that looked at as a

Schroed; nger equation for electron 1, equation (2-60a) shows that this
BN

/
!

potenfial of the other electron's charge cloud as represented by the

electron moves in\thq\potential of the nucfeus, shielded by the average

integral'terq\in (2-60b). The energy of the Helium atom as represented

-
Py

by'this optimum orbital is Eopt[¢1’= - 2.86]6800 a.u.

.

3. Indistinguishability of Particles

In all the above sections, it is assumed that both electrons

occupy functions of the same form. For example,

@1(51 ,Lz)“-"'= ¢>|S(L])‘¢]S(LZ)

-gr, e,
= ¢ e , same [ . (2-61)

. (=
This is justified on the philosophical grounds that the two electrons

are identical, and there is no reason to assume they behave differently.

Thus.interchanging the electrons should not ¢hange’ the physical

content of the wavefunction, for example the electron density. In the

mast general form, we can say interthanging the electrons merely

introduces a ‘phase factor:
o(r,,r.) = eia¢(r r.) | (2-62)
~2°~] ~]7~2

where _e'a is some phase factor, a complex number to be determined in
the foi]owiﬁg manner. Suppose another interchange is carried out. We

get

; 2 (g,,) (2-63)

) - i -
lryaLy) = e ey ry) = e



ThereFO(e ‘
eZIa =] or efa =+ 1 . o (2-64)

Thus the theorem of indistinguishability can be stated as

(gyeny) =+ ol ,r,) (2-65)

“and defines two types of wavefunction: the/symmetric one which remains
ra

unchanged upon interchange of electrons, and the antisymmetric one

which changes sign.

L. Spin and the Pauli Exclusion Principle v

Electrons have intrinsic spin which cannot be neglected. Thus

the spin coordinate is usually included for most calculations.

v = ¢(,£1/’70|’ ,EZ: 02)

= el 2) L (2-66)

{
[

The Pauli Exclusion Principle  states that/éxytwo é]ectrons %én‘héve the
~same set of'quantum numbers, if the calculétion results are to agree
withbexperiment. Thus the intérchange of the labels (coordinates) of
any two electrons must change the wavefunction, and thi; means only the
antisymmetric form of eqn (2-§§) is allowed.
Tt is usual to assume, the absence of"spin%ofbit Eoupling

so that ¢ s separable»in;o space and spin functions
¢(1,2) = o(ry,ry)elo,0,) . (2-67)

Also, it is found that the spin function for each electron takes two
orthogonal forms designated as o and B. The possible forms of @

are then ) - )



&-

. , 30
a(l)a(2) ,
1 a(1)y8(2) +a(2)8()} -,
S S S : .  (2-68)
o g8(1)B(2) , . :
and L . S - .
L e(s@) - a(2)8(1))

o

'Thé first 3 are symmetric, the fourth”antjsyéketric. lh»ordef to‘satisfy
the Pauli principle, the symmetric space part. (agreeing with space
indistinguishébi]ity) must be combined with the antisymmetric spin part

to produce an antisymmetric total wavefunction

. .
te(112) = (0 (Dala, @8(2) - 6\ (8N, @a(2))  (2-69)

and

¢

0 (1,2) = - o, (2,1) . ©(2-70)

For more electrons things can get really tricky, as a brief
look at Lithium with 3 electrons shows. Suppose again the space part

. is taken as a symmetric product of similar functions.

¢(;],52,L3) = ¢ls(51)¢1s(£2)¢ls(£3) , (2-71)

which agrees with the indistinguishability cdndition.

l’)"
i) We have to use an antisymmetric spin function constructed from

Several problems arise

a product of 3 spins, e.g., a(o])B(oz)a(o3) ;tc. fﬁe point is that
it is imﬁossible to construct an -antisymmetric spin function with more
than.Z functions. Thus thé space part must change, and a new seacé
function, the usual 2s, singly occupied, is introduced. . The resh1t
is the éon%igurétion Li.isgzs:_‘oﬁly thqﬁ'pan an antisymmetric ¢ be
con;truc£ea. The 25'”élecfr§n Is mostly spread outside the f§2'

¢
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space -
ii) It can be shown that the wave function of (2-71) violates the

variation principle. Suppose we use the approximate eprnential functional

form,. as in the case of He: above

Ce .lﬁﬂ_. o
2 e Lr

o() - (C3/w) - C (2-72)
and solve )
“ H(L,2,300(8,,0,00) = B0l tpnry) o (2-73)
With
H(l 2,3) = h(]) fh(2) + a—¢ 1] (2-74)
1z N1z 23
h(i) = - %—Ai - Yo, P=1,2,30 . (2-75)
Analysis simiié;tﬁovthat done on He in equation (2-45) give
. 2 '
E(g) =3 (—— -t 3-c) . (2-76)

This give the optimum. ¢ = %o at which

dE(g) _ .~ ' _
o= 0 (2-77)
as
_ . _ 5 : )
with . _
| - -3 (7 -52 -
E(CO) = 5 (Z_ 8—) . » 4 | (2-79)
With Z=3 for Li, we get
Ly = 22375, o ‘ (2-80)
E(CO)'=vF:8.A609h a.u.*éf-1230.222 ev . - (2-81)

/

- This is much lower than the true experumental value obtained from

Moore's tables L3I] by adding the f:rst second ‘and thlrd 1on|sat|on



(2-72) is.an exponential whichdies faster than that of H, e

5. Slater Determinant ‘ o Y

32

&

potentials corresponding to the successive stripping of the [j atom:

-(5.39 + 75.64 + 122.45)eV = - 203.5 eV = - 7.47887 a.u. (2-82)
iil) A word may be said about atomic sizes. The orbital of equation
-1.0r
The size of Li atom would thus be very small compared ‘to H. Larger
atoms with such product functions would be corréspondingly smaller and
smaller, disappearing to tiny points, d situation contrary to reality.

Thus it would appear that it is the Pauli Principle which

holds the material of the universe in place, preventing it from collapsing.

,1”
i t

Slater was the first to realise that the determinéntnis an
apt way of expressing these wavefunctions formally, in a way which

satisfies all the ‘implications of the Pauli Principler [34]. 1In Slater's s

(
parlance, (2-69) becomes ' ~ I ;Vj
-1 :
2.
= (21 -
e(12) = 21 % Tey® o, (Nalh)s (28(2) (2-83a)
where ’
Sl |
A = (2 2 P (2-83b)
P ' o '
is called the antisymmetriser for 2 particles._ P are'thej 2! per-

: n : S
mutations; ep = (—l)~p_ is called the signature of permutation P
where L is the number of interchanges in the permutation. This

translates into determinant shorthand as:



E

-

%_ ¢]s(l}a(l)?ls(l)s(1) . o
(21) | | - , o
] 6y @@ 6 2)8(2) T

¢He(1,2}.

a] wn . s e - B AU
-

(21) © det {9, (Nall)e, (2)8(2)}

i

@) Zle, @1 — (2-84)

N[ —

Similarly for Li atom; we have one version -of the wavefunction as

o, (Nl g, (DB e, Mal)

} 1 L
@ii(l,2,3) f”(3!) 2 ¢]s(2)a(2)¢ls(2)8(%)¢25(2)a(2) f . (2-?5)

o). (3)a(3)6, (318 3)8,,(3)a(3)

v . -

) i) If fhé‘electron label in 2 rows or cqlumns is,the:séme, this is
equivalent to 2 electrons occupying.the séme quan tum staté, and the
determinant vanishes.

ii) ‘lhterchanging two rows or columns (electrons) changes the sign

of the determinant.

6. Summary and General HF Form
a. Wavefunction as Slater Determinant ‘for N Electrons

® = Asw](£]>w2(£2) ey (B R (2-?6)
where

o, (Dale)
(&) = o (2-87)

- .
..,

wk(e) are called MolecJTac_Spin Orbitals (MSO), and the form (2-86) is

.

et
RS
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_called ‘the spinennfEStrfctediform ¢k(r) ‘are the usual molecular"

corbitals (MO) The spin- restrlcted form of ¢ is usua]ly'used:r

o ’5,',’.‘-?‘,4’}%'(}21: LB (ptD) @%(-p;fz)*;is.(ﬁfz_% co$q ) BN T M (2e88) o -

where _ , - ' o K\"M*-"s\-
P+q=N_ ' - (2-89) ‘;'

‘iwi"(‘é)«’=¢f’(ﬁ‘) alg) . o0 = L R (2-90) - .

b (8 o0 8] T=ee L (2-91)

N

Closed Shell:- A closed shell structure. is de$|ned as--an antlsymmetrised

prdduct in whach all MOs are doubly OCCUpled, and each shell iLé

2

b

_ set-of degenerate MOs is comp]etely f(]led.‘ Thus Be IsA 2s ‘is,a

~_closed—she]1 ”bn} CTISZHZSZ_ZQZ) is open-shell. qu‘auclased—shell,
and “;f ) ]“' \J~b - ' -
L T e '
= [{2n)] |¢](1)a(41)¢,(2)s(_2) o (2n- l)a(2n l)¢ (2n)8 2n)l (2-93)
::,;_ “ : . o N -
. : v 3 v ’
b. Energy Expression - -

With the Hami]ton}an of eqn (2-4) thlS form of the wave -

function results lnto an energy expressuon which is a sum over orbltals:-

*E= »<‘4>|H|q>> |

n ..~ n . n S T :

= 2 . .. = K, ., -
iZ] H, +§ § (ZJIJ Ku) (2-94)

' here
Tk
H, = f¢-i h ¢, dv
PN ‘ :

= f ¢; (- 58~ Y r—)»4:i dv - (2-35)
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. ¢. Hartree-Fock Equation

Carrying out variation on. E. by carrying out variations on

the orbitals under orthogonality constraints; and deffnihg pbtehtfals

‘

J..and K. by 7 - s e o
j T ( - :

- ¢j§2)¢j(zx

r

J (M e(1)
o . _ 12 '
6 (2)8(2)

T12.

duyeel) R (2-98)

ke Cdvyee (1) L T (2-99)

the Hartreé-Fock equations tovﬁg solved by SCF are

Fo, = Z?¢j €5 (2-100)
. J : '
~~""The Lagrangian multiplier matrix {e..} is Hermitian:
* ‘ -
TR T (z-lql)
- o UsUally'afuhitary transformation‘is applied to this matrix

_:to'make it diagonal. The result of this transformation which leaves F and

e

% invariant is the canonical form of the Hartree-Fock equations,

. o R el - (2-102)
- where |
F=h+) (24, - K) ' (2-103)
;0 J



: tsicalléd\the'Fock operator.-

© The canonical form corresponds to- the usual chemlcal plcture

P

of shell structure, i;e.; each electron palr put in an |nd|v1dual MO

with a SPECIflC orbltal energy of its own. -

_F. ,Hartree:FockrRoothaan_Finite Expanaion Method . [5,6]

I. Introduction v

The HF integro-differential equations have been soIQed to
“Aa:hfgh7de§ree of~accuracyibY“humerica] fntegration for many electron
atoms[35] and small diatonicsl[36] However proSpects.For>extehsipn |
to larger moIecoles look bleak, ‘even wi th the next generation of
computers.- There is also the unattractlve feature of numerical me thods |
namely that the HF orbltals come out as numerlcal tables, which are
'unwueldy to use as basis fhnctlons.for molecular calculations ‘ Thu5'
for some time ‘to come quantum chemists will have to live with the
approximate expansionvmethod of Roothaan.

Historically,. Roothaan s method came from the idea of the
LCAO-MO method For example in Huckel's treatment of benzene, the
MOS'are expangedin tems of meaCtQal tree-atom P, orb}ta]s on each
carbon. Thus LCAO can be a}startino point for studying Roothaan. But
rt can be misleading especially as the me thod is:useo in atoms. Ah
better way is to proceed as-foilows:

vAgain we take the He atom. In the above sections, we
took. d = ¢(£])¢(£')' and tried to solve HF equatiohs fn'order to
de te rmine the best, optimal shape of. ¢, W|thout a Erlor assngnnng

°

the shape, in order to minimise "E = <¢|H|¢> .

N . PO R )



enough, a good approximation-to .¢ should result. -The task

. The basis functions are all Is ""Slater-Type orbitals! and a
7

: S B o .
© ‘orthogonal. This was a strangemchOlce contrary to the pre\

Roothaan's idea is to.expand ¢ in terms of a giv

m of known analytica]ﬂ(bagiS)iFunctions, and if the expans i

to determine by variation the set of expansion coefficients

the'energy’of the correspbndihg‘Slater determinant reaches i

For the Helium ¢ls’ Roothaan used

3

theoretlcal belief that expansnon must be in terms of a comﬂ

orthogonal basns set, and that a non- orthogonal bas:s would |

prohlbltlvely many terms. -Roothaan' s surprising flndlng was

few terms are needed to get gratlfyxngly close to the HF rejs
the He caseas few as 5 terms q‘ve E=-2.8616799 a.u., to
accurate value Epp = - 2.8616800 a.u.t37]. Even one term i

bad, as we saw in Section . And in fact, an orthogonal bas

give such a compact expansion. Thus non-orthogonality seems

necessary feature of the method.

a2

en number
on fs ]ong”
‘Ps'thent*
for which

ts minimum.

(2-104)

re not
a[liqgv
lete, |
require
that very

u]t In

mpared'with.

s not too

is does not

to be a

"‘Since Roothaan's paper, the expansnon method has come a long-

way, and nowadays ''near - HF" results calcu]ated by this met

standard fare [38,39].  Besides STO0s, other types of basis
havg)béen propqged and usedl (40], the most. popular being the GTOs [40b ,c].

Mhatever the basis set, the Roothaan procedire most comhonlY'

as summarised below.

hod are

functions

used is



2. General Form of Roothaan's Méihbd
| Each MO or AO'e-.g,-,fcp]s, 4)25 in N ~atom o»r‘ ?l_cg’ ?lou i
NZ’ is expressed as a linear combination of basis functions {Xp}.
. : m . : .
Co ¢, = 2 Xy S i=1,....n o (2—105)
S C- p=1 .
m>n, \Jsuall'y4 m > n. {xp} are normalised: P
a fx*x'dv'?-"'l o | . (2-106)
\ PP
. - but in genegk\not orthogonal
x 7 T R Lo o
dv.= S ) in general . 2-10
fxp Xq 5q 1 general  (p $ q) - (2-107)
It is helpful to introduce matrix not‘atioﬁ. Defining
?\(, = [X]’X,Z";.’Xm] " . (2-108)
“1i
“2i
° ’ ‘ : ' C3i . .
‘ ' < = . . (2-109)
’ c
mi |
and
i 2 In
1 S “2n
E = . . ... . ’ (2"]]0)
L le . cmZ Cm‘n _
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we may write :

$. =y c. = l,...,n m>n o (2-]1i)
1 x"’l . . —

aﬁa":

I
|

'_. [¢]x¢2"")¢ ]

As in Section E we consider the closed shell case and again the energy

(2-112)

expression is the same as that‘given in equations (2-94)-(2-99) for
the Hartree-Fock method.

- Introducing the Roothaan expansion gives the HF structure

in terms of the basis functions. We need new summations (with arbitrary

summation“ihdices) : .
- * Mm% %
L= c . 2-113
¢, pzl Xp ot ( )
(2-114)
(2-115)
(2-16)
to get v 2
. m m % i )
H, = . < h > . ’ {2-117
(=L Loy Xplhlx> ep (
P g
w ? g % %
.. = c.c. Ixx|xxlc.c., (2-118)
bj pq. rs P af TPTalrst Trj s
DL ey bload e . ens)
K, = c. c . Ixx. Ixx lc . c_. . 2-119
SR rs PLoal pTsiTriat TrjTsy e o

. : .
MO orthonormality is still needed:



mo- '
<¢i| ¢j> = GJJ = 3 Cpi<xp| Xp” j
N Pq
13wl
E=2 c . <x_|h|x.> c_.
i pq P p'" 1%q" qi

+
t~13

mom \\72; .
i] Eq zscpi Sai 2IyegIxexgd=beoxghxxglive e

AN

5

The functional to be made stationary as in eqn (2-54) is now

*.‘< >, - 8,.)
(3 i xplxq c )

N
l=€E-2) €., o g

ra I
ij 7' pg

the {Cpi} are now tH2 variational parameters. We demand

§1-=0 | - -
under arbitrary variations
l i = i * S
"etc., to get
- m moo -
g Loxg I lxg> + %S Poq,rs 2 § °rj %33
n ——o_m ,
- § €5 ?;iXb'ch “a]

‘Where

o 1 '
Pog.rs = DGOXgIxxgd = 7 Doxghxxg ]
A

- 4o

. (2-120)

(2-121)

(2-122)

(2-123)

(2-124)

(2-125)

(2-126)

defines the two-electron ''supermatrix’, a kind of matrix whose 4 indices

r

come in pairs, defining ''super-rows'' and ''super-columns'' with the

Hermi tian condi tion



=t
w

€,. = €

Ji ij
/
Also defined .is the density matrix, by
A ‘@c
. n .
D =2 - )
rs L rj s
. _ J g
and the one-electron matrix.
h = < h >
pq = Xplhlxg>
- The Fock matrix 35 then )
\
FE=h+PD
where
P D = .
(~9~)Pq zs pq,rs rs
Then‘(Z;IZS) becomes ‘
. &
c ., = ( z S c .)
i
q Pd 4 j g PaA
or - )
Fc, = S .
~ & Z ~ EJ Ej:
J
or

Fe=5ce

which is the Roothaan-Hartree-Fock: equation. -

U3

(2-127)

(2-128)
(2-129)
(2-130)

(2-131)
(2-132)

(2-133)

(2-134)

This equation is a pseudo-eigenvalue problem, since the evalu-

ation of 'F operator requires knowledge of ¢, which the equation is

sdpposed to determine. So it is solvable by SCF procedure. Usually

also, the RHF equation is ®:duced to ''canonical form' by a unitary

transformation on ¢, to give



A . k2

=y ey o (2-135)
where €'= €. L is diagonal. Then (2-134) takes the: form

- "
R

Egi=e sg . - : (2-136)

This is still not quite an eigenvalue problem, and .there remains the

diagonalisation of § to reduce to . ) l

. " (2-137)
-

(B -e; g =0 o (2-138)

the secular equatLoﬁ.'

The squeﬁgial steps for obtaining solutions to the Schroedinger

. equation in the Hartree-Fock-Roothaan approximation may be summarised

as follows: ‘ - &

i) choose a basis set {xp} for each ¢

ii) compute molecular integrals §, h and P

iii) guess or estimate an initial electron distribution, {.e., initial .

OLD .
vectors or ¢ matrix

)
/

, l(‘)
iv) form density matrix D

l4

v) form Fock matrix F with equation (2-i30)
vi) solve the Hartree-Fock-Roothaan equation (2-134). This needs

diagonalisation.of § to give (2-137) and then of E, to give orbital

energies and a new -set of vectors or ‘ENEW

" NEW
(o

matrix,
vii) if this is foJerably close to that in iii), stop.
If not, go to iii) and»replace--gOLD with gNEw'

s gy gt il p A R A S s Tl



3. The One-Center,Expénslon Method

In atoms, it is natural to PlAce all basis functions_{xp} of

. t
equation (2-105) on the atomic center, n molecules too, the most
. -, \

L e B . :
usual procedure has been to locate the basis functions on atomic centers

and is still loosely called LCAO. This method
i) is conceptually simple because it ls,a stralghtforward way
of constructing one- electron functlons (MOs , {¢ })_ which extend over

e

the whole molecule. It is also inlline with the chémical concept tnat
' molecules are made through the coming together of atoms, so molecular
orbltals should also be constructed by (llnear) comblnatuon of atomic
orbitals, | o S . , (ﬁdﬁw~‘\g‘

o : .
_A00) converges well towards the HF limit as the%asis sets get -

\

J N -

larger!
The only difficulty with it, but an essential difficulty, is
that it requires the evaluation of many difficult integralsvinvolving

4

"atomic orbitals on two, three or four centers. To date this is the

%

biggest bottleneck in molecular calculations, especially the two-
electron integrals over 'ST0s on more than two non—collinear centers, :
It has led to the yirtual abanoonment of STOs in favour of GTOs which;
althougn inferior,Yn descrlbing electron distribution in many electron
Systems, result in more tractable integrals. |

It was in search of a'device to avoid these difficult multi-
center integrals [7] that the One-Center Expansion me thod
was developed. In this method, an attempt is made to snmulate the
total wavefunction usang orbitals {x } centered at one convenient point
in space [41].  All the two electron integrals are then one-center, as

are the one-electron ones except the nuclear attraction lntegrals which

<



e

Ly

are at most two-center.. They are all easy to solve [12d] The rest
of the procedure is:exactly the same as outlined in Section F2.

Conceptually, the OCE method is not so direct, especially
fd} the ground state. It cehverges slowly, so that many'more terms
are requxred in ‘the wavefunction to achxeve a given accuracy than in
LCAOQ. Nevertheless the simplicity of the integrals means that

h

complicated functions can be handled easily, and atomic formulations -

can be taken advantage of even in molecules.

.

~The essential drawback of the method is the dffficuity in
adequately describing the wavefunction in the immediate vicinity of
the off-center nuclei, whére the compact charge concentration is

difficult to generate with functions at another point, even with many
!
terms (see. Figure 1.1). In particular, it is completely impossible

to expand inner shells on one atom in terms of STOS centered at \

-

another point.
. This,off—center cusp problem is smalledt when the off-center

nuclei are hydrogens but becomes prohibitive for heavier nuclei.v

Thus the method was |nherently restricted to hydrides (Hn or AH )

wnth at most one heavy atom which had to be taken as the expansnon

center. R

In Chapter 4 we show how the One-Center Expansion method can
P .
be extended to evaluate electronic wavefunctions for. molecules with

'non-herogen off-center nuclei, a prospect previously beyond reach.

This extension is achieved thro@gh’the use of model potentials to
approximate the tightly bound core orbitals. The remaining, diffuse
valence charge distribution is then rather easy to simulate using

the One-Center Expansion method.
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G. '"Chemical'' Properties of Hartree-Fock Wavefunctions

1. Introduction r

As we .develop the proce@ﬁres for handling the numerical
quantities involved in the '"orbit&T model Schroedinger eqyation't, wé
shall seem very far from the Schroedingér'equéti&n as a partial dif-
fgrentia] equation, and still further away from the‘chemical basis of
the mathematics. But at various stages chemical ﬁntuition will be
brought to bear on the ﬁatﬁematical forms aﬁd models to bé used. In
thfs section, we explore some of the information of chemical valueAwhich
can be gleéned from HF theory.

Because of its mathematical structure, the Hartree:Fock or
MO0 method provides a powerful model wonld which seems very similar to
the Te;l one, and is suitable for the qualitative d}scussion of motecular
structures, chemical Qpndfqg, change% in chemical bonds and the excited
electroni; states of molecules. !

Quantitatively, however, the record of Hartree-Fock calculations
in mimickiné experimental results to ''chemical accuracy' has been less
than outstanding.

The main strengths of-the method, and also its weaknesses, lle
in the orbital approximation on which it‘isABésed. Further features
result from the kiﬁds of approximations introduced in the solution of
the Hart}ee-Fock equétions,‘such as expansion basisnset choices and

. - .
.approximations in the evaluation of integrals. In this section we try
to-discués only the properties of accurate HFR wavéfunctionsiwhich

are near the HF limit.
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5
2. Hartree-Fock Binding or Dissociation Energies

Y - |
The HF ground-state dissociatlon energy is defined

-as the difference between the sum of the HF energies of the separated

ground-state atoms and the HF energy of the molecule at its (computed)

equilibrfum geometry:

Qe = 3 Eip (atom) - Eur (molecule) 7 ‘ T (2-139)
atom .

It should be positive if the molecule is to exist.

Blndlng energies are useful in determlnxng enthalpies of
reaction, |mportant quantltles in discussion of chemlcal equilibria
and mechanisms, HF binding energies are generally poor, smaller than
experimental values by-up to 30—402.v In some notorious cases, netably
F2 and ‘Mg0, the negative HF values bredictﬂno binding for the |
molecules, conttary‘to experiment.. The reason for such glaring errors
is that the binding energies are very small compared to the total
energies (of the order of severa] percent) whnch st be subtracted
The |ntrin51c numerlcal errors associated wi th the subtractlon of
nearly equal quantities zre added to the errors of calculating the
total energies themselves. . |

These poor resuits have dramatlsed the baSIC deficiency of.

the orbital model, whlch is well known as the electron correlatlon

energy problem, and is dtscussed next.

3. Electron Correlation Energy

In Section D, the two electrons in helium are assumed to

occupy funct|ons of the same form, as in equation (2-61). lt.is then



'functions take the same value. " Such a result is contrary to-reality,

conceivable that they could be at the same point in space, wherethe \ ~~

* \

T~

.- ' . . : . ] ) - A
since the repulsian potential — between them becomes infinite in - \\
that case. A function which keeps the electrons apart in some manner . ./

or correlates their motions would be expected to be a.better wave-

“function and to yield a lower variational ‘energy. Coulson has found

such a function:

-z r,. =g r -z r, -gr ' .
o = N[e a ]'e b"2 +.e %hﬂzvé b ]} x gpin apart . (2-140)

1

where N is a pormalisation factor. This wavefunction has been

symmetrised to maintain iﬁdistinguishability of.electrons, and the

- (-

spin‘part is as in Section D. Its energy is E = -2.876 a.u. with o
z, = 1.19, g, = 2.18 compared to the Hartree-Fock limit of ’

E=-2.862 a.u.

| .ﬁln the Hvaormdlapiqn for more  than two electrons; electrons
of parallel spins are ;orfelated tg;oqgh the. exchange potential terms
which fesﬁlt from the Paﬁ]i principle; but those with opposing spins
are not, and they could sﬁill océupy fhe same orbitals. 1f a proper
éLcouﬁt of electroni; interactions is'tolbeihade, the motion of éll the
e]ectrons mgs£ be correlated so that thé position of one depehds'on

the instantaneoué position, rather than on the éverage position of

the other. ' -

Hartree-Fock total energies are thus the best possible in

‘the orbital approximation of the wavefunction ¢, but not the best

eigenvalues of the non-relativistic Schroedinger equation. The

difference is usually defined [42] as the correlation energy:

.




. E = E - E . ' (2-141) -

correl HF exact
. non-rel

The correlation energy can be of the order of several percent
of the total energy, and is therefore Very imporsant, especially in
prohlﬁms of molecular binding since binding énergies are of £he s ame

P .
order of magnitude. It also changes between different states, so musﬁ
be treated with care. ' ’ : e e

Varlous s chemes have been devised to recoup the correlatlon
energy lose by 'HF method

One scheme due to Hylleraas [43a] is to explicitly include
the (hterelect}onic distances rlé as a variable in the wavefuhctioh,
and this yields the eXperfmental energy. This in eﬁfect renounces the
orbital picture. However, it qu1ckly results in |ntegrals which are
very tedious to solve, and so has not been widely applled

The most popular and successful methods, also apparently
first dlscussed by Hylleraas [43b] are based on superposntlon of con;
figuratlons which are Slater determinants constructed from HF orbitals.
These are conflguratlon interaction and multtconf:guratlon SCF methods
In'effect, each configuration added affords each electron more scope
for moving about; lowering the energy'further.' Again in these con-
figuration superposition methods; chemical conceptsbsuchAas electron

\

pairs based on .the orbital model become somewhat blurred.

k. Hartree-Fock Potential Curves and Surfaces

Potential energy surfaces are plots of the variation of the .

s

energy of a particular electronic state with the nuclear configuration
. )

of the nucleéi ..
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We saw in Section C that tHe concept of potential energy

surfaces plays an important role in theoretical chemistry :

,gﬁ~i)"'fndeed the very strUcture»or geometry of a molecule is defined

//;”; ______ e as the equilibrium nuclear configuration at which the potential energy

v

surface reaches a minimum. Where this minimum occurs and the shape
of the surface about this point are used to determine spectroscopic

constapts (vibrational.and rotational).

\,

ii) The asymptotic behaviour at large inter-nuclear distances gives

information on the dissociativq behaviour of the molecule: what pro-

Q

ducts are given in what states when the molecule dissociates? -- or
conversely, what states of what entities come together to form the

, ' c molecule? Which bonds are broken or formed?
PR ‘ . : <

iii) Bumps in the energy surface becomes inferpreted as energy

N

barriers. How well single-configuration HF potential eneréy surfaces

mimic experimental band spectroscopic data therefore becomes an .
» ‘

interesting question. Hurley [10] has analysed the theoretical
potential sUrfaces‘(curves) for a number of diatomics and found that

. ° o . T . ‘,
spectroscopic constants R w, W X and « are. quite well
_ e’, e e'e : e oo

,feprodUCéd.. The equilibrium distances Re are generally less than

5% shofter tﬁanvﬁxpgrimental ones .- Th§15hapes of the HF potential

energy surfaces étgdfgund to be too steép,"?ésulting in slightly too

large values for w . o
e’ _ )

» But the dissotiatgye behaviour of nearly all diatomics based
) ) o o - LT » Ka
on single configuration HF theory breaks down, as the surfaces tend
to the wrong dfssgciatibn limits. Hurley concludes that HF wavefunctions -

are not good enough for interpreting the energetics of any chemical

‘reaction involving the breaking or formation of a covalent bond. The
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culprit is correlation energy again, which may change drastically- in

such reactions. . i

J

Energy barriers to internal rotation, such as the fotational

barrier between staggered and eclipsed‘geometries of CZHG and the

umbrella inversion barrier of NH are found to be 'in good agreement

3.

) )
with experiment.

‘

Huriey concludes that for-closed shell polyatomic molecules,
HF calculations yield quite accurate. molecular geometries, vibration

frequencies ahd'energy barriers to ih;ernal rotation.

5. Electron Binding Energies and Koopmans'! Theorem

a. Concepts in Chemical Structure 1

Ny The following are some of the concepts whose. analysis is

possible in terms of Hartree-Fock orbital energieé:
B : - > .

i) ?flectronvbinding energies are tRe basis of.the aufbau principle

—

of building up atomic and molecular electronic structure, as it is

¥

taught in freshman ehémistry [44]. The orbitals are ordered in,incféas—
ing energy an&ﬁfi]led up one by one accbrding_to:some familiar rules,
ii) fronTsation péténfiais and eiectron affinitfef of atoms are

impoftéﬁt P degerminihg fhevnature of thefr~chemica] bonds.

iii) Photo-eléctron spectros copy (ESCA) has in r;;ent years become
a_powérful analytical tobl for the determination and interpretation
of molecular structure [45]. ItiiS concerned with the experimental
study of both valence and inner-shell binding energies, which are

found to be.bhéracteristic_of each atom and its environment and so may

*Be,dsed'in detection of particular atoms in mixtures.

>
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‘

In HF theory, the lonlsatloﬁ (blndlng) or excitation energles

_ of an electron may Eé calculated§%§ two methods ASCF and Koopmans'“

" Theorem. ‘ )
oo % . I
b. ASCF Method . . ”’ﬁg%% .5: o
' EoTL l ’ . ‘ ‘ Lu ) *
. . This is a stfbightfonuard'method Set qp and solve séparétéTﬁ:
- S ‘ &

the HF problem for both the |n|t|a1 state and the flnal state (after
a partlcular electron has undergone the tranS|t|on). The differencg;

in the energies of the two states must be the proper binding energy '
B i 3

.

s

of the ejectron affected, e.é., first ionisation potential of 0 .is
ot 4 : ‘ =
P) Etot() , S) . (2-142)

This can ggt rather CUmber$ome, as many states may need to be caltulated.

N . . - .

c. Koopmans' Theorem [46]

. N . . . . .
According to this theorem, it is possible to estimate ionisation

energies in one shot, i.e., by solving for the initial state only and

looking at the orbital energies. A popular version of the theorem states:

_'"Minus the Hartree-Fock orbital energy of an éiééf;an-is”approximateiy

€equal to its ionisation (binding) energy'.

What Koopmans actually defived was more general. Although he

dealt with spin- unrestrlcted HF theory (usnng equation (2 -86)),we can

demonstrate the features of hIS derivation in the restricted form of

 Roothaan for a closed shell. The assumptions are:

i) The ground state is given as in equations (2-93) and (2-94) ,
in any representation {¢i}, canonical or not.
if) The ionised' state corresponding to removal of one electron

from MO ¢, (assumed nbn-degenerate) ,» may be represented by the
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same Slater determinant exceptsthat one function is missing:

- %_ L o fo. (2i-1)
¢ - = [(2n)!] det[¢](1)¢](2)”...¢i_](Zi-3)¢i_l-(2L}-2)_.‘
. ‘ . (2i+1)
& ‘ . i
x¢i+](zi+1)5i+](2i+2)...¢n(2n-1)5n(2n)] ) (2-143)
.The new Hamiltonian ig
i 2n-1 o omel
Hynep = L h(w) + § — . o (2-144)
ué] v u>v uv
The energy of this doublet state is
Yo, : ,
E(Te, ) = <o, _ Hy oy lo, > \ (2-145).
Analysis similar to that involved in (2-94) produces
T4 - | . o .i-fg ‘
2 ' n _ n n - n
E(Ce, ) =2 B, + H, + (20, -K. ) + (20, .-K. .)
! j%i J ‘ j%i kia ke Tk Y
TR ETR )
=2 H. + (20..-K. ) = H, =¥ (2. .-k )
) F B " ij jk i tj i
n - , - D »
=Eg(®) - H. - Z (ZJiJ—Kij) ) .  ,'_(2-146)
< \ S

In this approximation, the energy required for removing one of the

electrons in ¢{ is .

2 ‘ E:
ECe, ) - Ej(0) = - H, - ) (ZJij—Kij)

~ . J .

* n .
= - fo. H -7 (24;:-K:) }¢; dv
B d‘ J l
=~ <¢i,F|¢i>

= - . - (2-147)
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€4 is the general Lagfange multipliér of equation (2-100). If
canonical orbitals are chosenoiihen  -€s _is taken as the. estimate of

the ionisatTon-bbfentfal. But this choice would be rather arbitrary.

Koopmaris tried to put this choosing business on a variational footing.

He sought to determine the best choice of ¢i which makes the energy

&, '
6% the ionised state {

[y

<@ Mg 1o = By - <o [Fle,> (2-148)

stétionary, by allowing ‘the ¢} to vary under the orthonormali ty

constraint

<¢.|¢.>= 1 . (2-148a)
i

®
Now, any ¢i can be expanded -in terms of the canonical orbital set

{¢j}l; since the two sets are connected by a unitary transformation:
s 2

(2-149)

n
= NCH
¢i le ERE

{Cj} may then become the &éiiiational paramaters, and {¢i} are varying

only within th% occupied (HarfreejFock) subspace of 2n electrons.

The normalisation constraint becomes

<o s> =1= 7 cj c. (2-150)

anc also : /

<o [Fle, = (2-151).

B T e =
.n .
O
m

- N »
Variation under constraints ‘s done as usual by the Lagrangian multiplier

method; the functional we .ry to minimise is then
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n *x n * .
| = E. - . C., €, + A Lc,o~ 1) . 2-152
0 § CJ J GJ ‘ (§ cJ cJ ) ‘ (2-152)

where A are Lagrangian multipliers. This is a linear variation problem

We make | stationary with réespect to each coefficient (and its comp lex
conjugate)
di _
d—Ch = 0 (2"]525)
p
4 d - ~ (2-152b)
dc ‘ : W

leading to two sets of homogenous linear equations

. e . d (\\_\
(A - ep)cp =0, ’p =1l,...,n ¥ (2-153a)
A-e)d =0, p=1,..n . (2-153b
(A -e) o P , ( 53 )
For non-trivial solutions; the.determinant in
€,.-A
] C
) 0 ] ]
- €274 2 | =0 7 (2-154)
0 en-k <, \
L=}
must vanish, i.e., ’
) (e]-x) (ez-x) - (en-x) =0 (2-155)
There are 'n roots .
A= € i=1,...,n . - '(2-]56).
representing n stationary values of the functional |.- € is the

smallest root. Koopmans looked at each particular root ) = €.. For

i
A ' -
fations (2-153 a, b):

this, the secular ¢

L ¥



c, =0 P i (2-157a)
and
c, =1 ) (2-157b)
. . - ' /
from normalization, giving ‘ S
a, ' - [ 4=AE0 = €ir . (2-]58)
From (2-149)
b= 80, : (2-159)
™ ' -
meaning the canonical orbital is the one which makes <¢i-lH2n—ll¢i;>
stationary, with value
A
<6 My yle; > = ?Q I ‘ (2-160)

Thus ajstatement of Koopmans' theorem may go [46b) '"Minus the eigenv$lues L
l

|
(-ei) !of the canonical HF equations prOV|des a good estimate of the
?

A

lonlsatlon potentials of an atom or molec@le“ But one cam go fqrther
and ask for the LOWEST. stationary va]ue:rf'n’»..1 I. Clearly, this occprs
when } = En; since EO is negative, g}&fhg

o I = E, ngh . (-161)

The chqice Xm €, automatacalﬁ%ﬁchqpses P =n in (2-149), i.e

-
. = ¢A{. Remembering that Eoﬁﬁﬁs negative, the minimum energy of

the ionised state is

-7

<4, l Han- ,l¢ > = g, Do . (2-162)

4

Thus, the highest occupled molecular orbital (HOMO) ¢A doe; give

'

the best approximation to forming an ionised state and g gives the

best estimate of the first ionisation energy of the system w¥thin the

Hartree-Fock subspace of 2n electrons.
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Koopmans ‘hinted at a similar analysis for the electron
affinity, i.e., addition of an electron into a virtual orbital x.

The energy of the ion is then
<¢x+|H2n+ll¢x+> = Fo + <¢xlFl¢x>,‘ ‘ (?‘]63)

And thfs quantity is also best minimised when x is the lowest unoccupied
MO (LUMO). o

Koopmans ' theorem is~usually,inV9ked for the_jﬁterpretatidn
of phot&électron spectra. Hartree-Fock orbital éne;gies usually give,
by Koopmans' theorem, lonisation<pbtentials-which are larger'than the

experimental values. Typical errors range from 1-10%. In some cases .

°

\

such an error is sufficient to produce reversed orderinb of levels
which are close to each other, as in the notorious case of the 30g

“and i1 1eVels of N,_.
u 2

W o : .
_%he errors in Koopmans JPs iare due to the failure to allow
for relaxation of-the orbitals after iomisation. Such relaxation can

only be’'capturad by using the true Stationary values of
I

—

<¢i-|H2n-]!¢ie> in the full functional»spaceffor (2n-1) ‘eiectrons,

M [

that is by separate calculatigns. That is why ASCF IP's are usually
closer to the experimental values. [47a].

»

6. Molecular Symmetry in HF Theory - a
The marriage of group theor%?to quwan tum mechanics, especially
B . ) ) ‘ . . ¥

~at the orbital ' level, results in'many attractive features which

explain hany chemi cal concepts. Gfoup theory is a mathematical tool
«which allows the use of symmetry properties.to be made in an exact and

conp lete mahﬁ%r[hs];i‘lt provides a powerful means of simplifying the
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B

préﬁlem of finding the eloctronic wavefunctions. It aLso provides a
dlrect linkage to the Tanguage of spectroscopy, dealino with gpectraj
‘transitions: bqueen states and thelr selection rules.

e‘knowledgé of the symmetry properties of MOs has led to
breakthrouohs in the predlctlon of shapes of molecules, the kinds of
reactions they may undergo, and the mechanisms_of these reactions.
Indeed ideas 1ike Walsh's Rules, Jahn-Teller Effects, Woodward-Hoffmann
'Rules, Wig;or-WItmer'RuIes, Fukui's Frootier Orbitals (HOMO-LUMO) and

Pearaon's Symmetry Rules, have now become ¢lassic in the discussion

of molecular structure and chemical reaction [49]. \R
=)

~a. Symmetry Proporties of the Total Wavefunetion-

It all starts with the Hamiltonian of equation (2-]88),
which is invariant -under the Ooperations of tho point group of the
molecule, i.e., under operations which inte}chapge Iikernuclei to

s

produce an indistinguishable configuration. It follows that the

' exact wavefunction(s) of a particular electronic state k as given

t “ ~.

in equation (2-18a) belono(s) to an irreducible representation of tho
symmet}y group. The wavefunctions of various states can oe
classified accord{hg to the symmetry species to thch they belong.

| Roothaan [5] proved the gratifying result that Hartree-
Fock wavefunctions have similar propertles to the exact: onos ”F%r a
closed-shell ground state, theHF wavefunctlon given as in equation (2-93),
belongs to ‘the ndentlcal representation of the molecular po&nt group,
i.e., it is a snnglet and totally symmetric, ]5 for atoms and ]Z+

for molecules. Other HF states <can be similarly classified.

< One implication of this result is that statements may be made

o

¥ - o

v
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i_priori about which HF states may interact and which spectroscopic

transitions are allowed under some stimulus or'perturbation.v Selection
rules are based on the theorem that a tran5|t|on or interactiOn Eetween
‘states | and j, caused by a perturbatlon or operator . E 'ic'allowed‘

only if the transition integral or matrix element

Pij'= fwi P ¥, dt | (2-164)
is non-zero. The intensity of the transition is pfopoc;iona] to P?j'
P may be electric or“magnetic multipoles, polarisability tensors, or
the Hamiltonian operator, etc, ' P
Theorem: According t -group theory, the integral (2-164) van{Shes
-unless’the direct 'oduct of wi, P and Wj contains the totally
symmetric represehtation; This is so only if the direct product of
two entitles contalns the representation of the thlrd In the case
of a totally symmetrlc‘bperator such as H, the'integrai is non-zero
only if Wi and Yj belong to the same irreducible rebresentation.
All this gives rise to the powerful Brtllounn s theorem [47b],
which is used in perturbation thecry, i assessinc\khe accuracy of
one-electron propertles calculated using HF wavefunctlons, and in

determining which conflgurataons may be superposed o multi-con-

flguratlon technlques

b. Symmetry Properties of MOs
The Fock operator of equation (2-103) is also invariant
under the operations of the molecular point groﬁp;' | ts eigenfunctions,

namely the HF MOs even in the expansion‘form,rmay therefore be

grouped in sets each*of which forms the basis for an irreducible
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representation of the point group. ‘This gives a convenient recipe for
choosing expansion basis functions. More will be said about this in

Chapter 6. |
: SN
‘ \ .
The theorem in Section a may then be applied to the MOs

[ETN

themselves. For a symmetric operator. M such as those arising in

H-F-Rfjrocedure, - ‘ ' - \ ‘
. R \ .
0 4 } (2-165) *

b

<, |M|~¢j>

(2-166)

2

il
(@]

<xp|M|Xq>

s o and’ ¢j or x_. and kq belong to different irreducible

)
representaﬁjons. Tbis means‘that we know beférehan& that these

intégrals vanish identically; so no need to waste fime calculating

them. In Roothaan's éxpansion method, it also‘means that all matrices .
of ormulas (2-130)=(2-138) may be redyced to simpler block di;gonalw
forms to be dealt with separately. This is a ¢onsiderable sfnp1ification.

Hybridisation is also a concept that can come nagurafly out of such

considerations.

€. MOs, Geometry and- Reaction ' . j ' .

Mechanisms of reactions can be derived, and even activatdion
: NN

’

energies estimated, by watching the correlation of MOs as atoms or
molecules come together or apart. This is done under strict symmetry

constraints such as non-crossing rules and conservation of symmetry.
Similarly, shapes of simple'molecules»have been deduced by noting what

1

happegs to MOs as the geometr§ is chéhged.swbpthly. A‘new era of

mechanistic theory based on Hartree-Fock caicutations'may be in the

o

making.



CHAPTER 141

THE MODEL POTENTIAL APPROXIMATION

A. Introduction
v

- ) For many yearé; chemists.and phyéicists have.realiséd that
the chemical and physical properties of atoms are mainly determined
by oﬁly the few outer '‘valence' -electrons, the ''core' taking littie
part. Indeed, Mende]eyev's concept ofvthe Periodic Table wa; derigéd
from this.idga_[SO]. Tﬁus he arranged his Table in such a way that
.eléments in the séme column (group)

i) have similar chemical properties (e.g., the alkali elements
form similar Haiide compounds,.for'eﬁamp1e HCZ,'NaCE, kcz)
’ ii) have sfmilar-efectronic‘spe;tra (e.g.,'it‘is well known ;hat
thebspectra of the alkaline-eartB afoms‘ Be, Mg, Ca, Sr ard Ba are
essentially Z-electronvspectra).

In déscribing fﬁe nature of thewshemital bcna, then, one
needs to focus attention only ubon thé few outer electrons of each
atom. This is. the basis of G.N. Lewis' beautiful system of chemi cal
bonding. In this scheme, the driving force is the desire of each atom
to attain a '‘noble-gas' elecfron configuration, uéuallyﬂan ”otfet“ in
its outermost shell, by gaining; Iosiﬁg or sharing V;l;nce electrons.

This:cpncept of separabiiity of an atomic or molecular
sy:tem_into ”reievaht” and ”hnimportant“ regions has_  long been a’part

of chemical intuition, and appears in other cases, e.g.

i) o and 1w electrons in conjugated systeﬁs

- 60 -
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ii) functional groups in organic chemistry

s

iii) "valence" and’”core“ regions in spafia]ly separ;ted but
interactjng systems, e.g.,.a-molecule or a'metal. The 'valence"
electrons move throughout the system, while the 'core' electrons are
considered'locelised.

However, for - ab initio quantum mechanical calculations of

atomic and molecular properties, all the electrons of the atom must be

included. In order to find the motions or states of the valence electrons,
one needs to know the. wavefunctions of all-the core electrons. This is

because the nucleqT_chqrge is partlally screened by the surroundlng

core electrons, and also the valence electron wavefunctions must be
orthogonal to the core functions.

The goal of the model or pseudo-potential has ‘been to make it
. | . : ;o .
possible to determine the quantum mgchanical states of the 'relevant'
! .

region~ACCURATELY, without e plicit concern for the ”unlmportant“

region. This requnres the r placement of the "unimportant'' part by

some effectlve E;gentlal.
1= E

The flrst attempts| were made in 1935 by Hellman[S]]and Gombas [52]

to approxnmate, for example,

[152, 252, 2p ]3s’ by an appropriate effect:ve potentlal thus

the ten core- electrons of sodlum

‘reducing an ll-eleCtron probl m to a-l-electron problem. Since then,
the method of pseudo potentials has beeu used in solid state physncs
- [53] and in the app]ucatlun of quantum mechanlcs to atomic and
molecular problems [54]. ‘But in the last five or six years, there
has been a resurgence of lnterestlid the method; as its potential

. '
accuracy and pré ticality'heuevbecome:more apparehtvfh]. I't isfnot

unreasdnable to predict that when fully understood and made to work’
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s )

properiy the model petential:method_will-take its place beside, if not
cranscend,'semi-empirical hethods in the near fnture
As was reallsed by the earliest workers, the effectlve o
potential must account for twa effects of thellnner -electron cloud:
i) electrbstatic-shielding of the nucleus
ii) the hepulsive effect due to Pauli'excldsfon" roughly, this
is an orthogonallty requurement between the core and valence orbltali
which "holds up“ the valence shells and prevents thelr possible
variational collapse into the core region. g -
: aHowever; there > no unique ‘solition to such a problem. So
a nunbérof ccmpelting‘approaches ahve been suggesl d and‘used, with
some success, to achieve the same gnrpose. ‘fhey.fa nto two classes:
i) Semi-emplrical [51, 52, 55]. These adjust the parameters of
the‘effectlve potential to match some experlmental data, for example
’-excltatlon or ionisation energtes.
ii)" Non-empirical or ”semi-EE.initio”.lSGJ

These theofetically based methods calibrate the effective

pofential to mimic'the-resplts of standard ab ‘'initio calculations.

B. Semi-Empirical Potentials

Hellman |nvest|gated the follownng questlon [5531 What kind
of potentlal field does the single valence electron of an atom such as
sodium, if the valence wavefunctlon‘|sva_nodeless (Slater-type) orbital
¢b? He suggested a simple static pdsltlve repulsive pctential'in

addition‘fo the Coulomb attraction of‘the-shlelded nucleus:

.o | (Z-n l - =2kr .
T (3-1)
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- where n. is' the number of core electrons,” Z . the atomic number; and
A and K are parameters to be determined semi?empirical1y in the

"following way: The Sﬁhroedinger equation for the valence electron

is .
H, ¢85 = E ¢, 3 | (3-2)
or h
! Z-nc -2kr .
{-58-—S+A2 }%=E¢>o (3-3)
where
bl = Rp(r) ¥yp(0,0) . (3-4)

-

>

R oo is a hydrogen-like radial function and 'ng(9,¢) are the
normal ised spherical harmonics. For thqﬁground state, the first

excited P state, and the first excited S state, we may put

Rg=e " o - (39)
‘Rzé = r~e-wr | (3-6)
' Rpg = 11 - § (e+m 1™ S ¢ 2

where: €, w, 7 are variational pérameters. With-these functions
. . v .

we calculate the minimum of the energy expression

«

ro.

E =< oolH [ >/<0,]05>
| w1 % e‘Zkr - »’* . | ' :
= [fogl- 38 - S +A Toygdvl /( fo500dv) . (3-8)

There are five cbnstantS'toibe.caluclated ‘A, K, €, w,; n. These
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are determined under the requirements that the energy minimum E

Is
, \ . S
. calcuiated with (3-8) should agree exactly with the experimental
values; and forvthe twb excited states, the minimum Ezs and Ezp'

calculated with‘(3—6) and (3-7) shodld approximate the eiperimental‘

value as closely as possible. '

~

Since fhen, more general forms of the Hellmann potential
in eqgn (3-1),héve been used, with fits to a larger number of experi-

mental excitation energies [55].

C. Semi-ﬁE_lnitio Potentials

1. introduction : ‘ .

o Phillips and Kleinman, [53a] in their treatment offfhe
-solid'state,Awere the firs€ to pu{ pséﬁdo-potentials on é ffrm
fhedfetical basis. They derivéd aLtheoretical pseudo-potential form
based on HaftreeFFock theory for a single va]ence glectron outside_a
tlosed sheli core. ‘

Like Hellmann and‘Gomba§, they sought a radiéfly>“smooth”,_
i.e;, nodeless, valence pseudo-waveFantion with the;cdﬁrectfprbital
énergy, an ‘appToaéh which was of great relevance to thé\théofy of

solids,.éspecially metals. According tovHartree-Fock theory, the

‘true valence wavefunction must be orthogonal to all the core wave-

fuﬁctfons. The manipulationvof.this requiremeﬁf is the key to their
success. | |

The Phillips-Klé}nman Tdea has beén formally genéralised'to
sysiems with many valence electrdhsu[Sh] and forms the basis for the

majority of effeCtTVé poténtiaIShhléh have been proposed to date. The

hall-mark of the.method is that it searchesfglgriori for a radially
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smooth or nodeless bseudo-valence orbjfa].

A different school of thought has proposed effective potentlaIS'
in whlch the exact ""moded" valence orbital can be obtalned, but with the
option of deleting. the nodes if necessary [23 56b]

In this sectnon%éae shall not try to giveve rjgdfous derivation
of the model potential method. Instead, we shall attembt'to_demehstrate
the essential feetﬁres and justifitation of the precedure bysconsider-
ing'eome-examples.

2. Excited State of a Hydrogen-Like Atom
. v

For‘a one-electron atom, the probiem is exactly solvable [57].

The Schroedinger equation is simply
1 ) _ , g ' _
(- 5 A - Z/r)¢i(r) = E. ¢i(r) : . .(3 9)

. where .the parémeter Z is not restricted to integer values. Introduc-
ing spherical polar coordinates (r,0,4), the kinetic energy

(Laplacian) operator takes the form a >

7 o or 2 A T
r - r
2 . - ) L T
d 23 1 - - :
= —— - —+ . o N -
2t var o o (3R10)
or- : ,
1 3 1 3
A= - — (ssn 8 —) + ——— Z— (3-11)
sin 9 | 36 sin’ 6 6% -

'

In this coordinate system, separation of variables is possible .into

radial and angular components: i



) ® ,
9(r,8,0) = R(r) Y(6,9) (3-12)

‘where Y(6,¢) satisfy the eigenvalue equation
A Yzm(9,¢) = =L (a+1) Yzh(9,¢) , £=0,1,2,3,... (3‘13)

and

o = oy (mE]m]) /2 2z+1';(2- m|)1 172 Iml oy im¢
Ylm(9,¢) = (~1) [ 2r (ot Tm {] P @os e -

m=0,+ 1, +2, ..., + (2-1), 2. (3-14)

-

The radial equation is then, for a bound state (E < 0),

-

-

2 ) . ) Do
S1d o 1d o, () oz . - C
[ -2 ;:E- r dr * 2r2 r] an(r) Eanl(r) (3-15)
with ‘ A o | B ' B
. | ) |
En = - %% ’ n = ]’2’3)-" (3—]6‘)
: N ' ‘ .
and
’ 1/2 -~ Z'r
* ne (24+1) ! Y(n-2-T) 1 2n “n n
x.F(Fn+i+l, 2042, Zéi-) (3-17)
where ——
‘) '
CFlayei) = 1 42Xy ale) x2 | (3-18)
ped =t ey e |

are confluent hypergeometric functions. The lowest solutions are of the

form ; o . RS

6. ~e P (3-19)
Is - 7
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$,s ~ (I=(z/2)r)e”F/2)r (3-20)
N -(2/2)r -
¢2p re . (3-21)
The'ground state ‘¢1s is radially nodeless, as is the ¢2p’ while
¢ has one radial nodé. The three are mutually orthogonal. Also

-'2s
from (3-]6), it is seen that in the one-electron atom, the 2s and 2p

.

orbjtals are accidentally degenerate, a situation not seen in many -

'>éjectron systems.

2

The question”addressed in the mode] potential procedure is:

¥

What-kind of Hami]tonian must we congtruct to obtain the 2s orbital

‘as the lowest solufion, if the 1s orbitgl is known exXactly? 'Clearly,

i

it must be different from the Hamiltonian:éf equation (3-9), whose

lTowest solutioh is always ¢]s

f
is to unseat the 1s” level from this position and shift it elsewhere

~

New terms must be added, whose work

or eliminate it altogether. We examine two model terms which can do

this job.

>

as Core projection operators [23,53a]

Consider a mode! Hamjltonian of the form >
, ! Z o -
va T E-A F-+ B|¢ls><élslﬁ . (3-22)
where L
loggzseglf > =0 [ dv o] _(0)F () | (3-23)

defines a projection operator and B is some constant factor. The -

model Hamiltonian has the following properties:

\ / . N .
i) ¢2$ is indeed a solution, with energy EZs'
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Proof:
Ho o, > =4~ L8 -24gls >4 3o, >
vm' 2s 2 r ls 1s' '"2g L
= \-l —Z . . o . -
=6 7 8 r}l¢25> + Bl¢ls><¢lsl¢25> ) (3-24)
But
Shgler o | (3-25)
from orthogonality condition.
I A N ]
vai¢25> =1 2 4 r}l?ZS> (3-26)
and by (3-9)
va|¢2$> B E25|¢Zs>;f ) ‘(3—27)

L}

Thus the model Hamiltonian can produce the 2s (or 2p) -orbital

exactly. -
ii) What va does to ¢ls is a different matter. Using (3-22),
we get
H {¢ > = {--LA - Z}l¢ > + Bl¢. <o l¢. 5.
vm' " 1s 2 tr ls 1s 1s'71s
) .EISI¢I§> * B|¢Js>

(E, .+ B¢, > . - o - (3-28)

Thus |¢ > is also an exact eigen solution to H , except that its
- s : ' vm : .

eigehvalue is shifted by B.

>

iii) Arbitrariness - As shown in ii) .above, the ¢ _ -can be

- 1s
obtained exactly (as to shape). However, its orbital enefgy can be :

shifted-ar;ifically to anywhere we like, by changing the value of B.

-

. &
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)
This arbitrariness has been exploited in various wéys [58]. Here
we show how its manipulation results into either a Phi]]ips-Kleinméﬁ_
pseudopotential [53a] or a Bonifacic-Huzinaga model potential [23] \
as special cases.
iv) Phillips-Kleinman pseudopotential [53a]. In (3-22), put
. ] . ,';
B=E,_ - E‘So ;_r ’ (3-29)
| e ' .,
to give the Phillips-Kleinman model Hamiltonian
PR Ly o2 e e le s .
va'f 2 & r * (EZS Els)l¢]s><¢]s!. : (3-30) .
The result is that the 1Is level is tucked exactly into the 2s
leve],,so that they are degenerate:
PK _ ' ' \ }
Hom I¢ls> - E25|¢]s> (3-31a)
5 1 PK
va [¢25> B E25|¢Zs> o (3-31b)

Therefore énx linear combination of these functions is a{Sg an eigen-

N

function with same eigenvalue:

PK } . “31;
va |x2$> - E25|X25>- o . (3 3le)
where

- ~

Thus one may say that the arbitrariness has been moved from the orbital

' energy of the 1s to the orbital shape of the 2s, but it has not

LY

Been removed. In the PK scheme and its descendants this arbitrariness
is used to construct a nodeless Xos orbital by judicious]y admixing

some of the s in order to rémbve the inner nodes wholly .or in part.
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v) Bonifacic;Huzinag: Sdheme‘[23]: n (3-22) put

!
i

B = xlélsj_f', : (3-32)

where

This shifts “the .Is Jevel very high into the virtual
maniigld, so that the'electron is discouraged from ever océhbyihg
it. The lowest energy.is- the E25’- and.uniquenesé is maintd;ned in
the 2s orbital. |f the inner node is not wanted, it is removed in
other ways, as we see in a later section:

é} ‘

°

b. CentrifugallPotentials [56a]

One may ask: lf we want-a radially nodeless.eXCIted orbital,
why not aim for the 2p orbntal which has the ‘Same energy as the 2s1?
Our model Hamlltonlan must then contaln a term whlch suppresses the 1s
and 2s orbltals,band selects the Zp “as the. lowest solutioni'

. The way to do this is illumipéted by a look at the radial

equation (3-15). The Is and 2s orbit#s are solutions to the

“differential equation with & = g:

o420 - ' o~ :
31 B j( - i) L Ge3)

~dr
Ly . . . -
while the 2p is the lowest solution.to the & = 1} version:

2 L .
1 d™ 1 d 1 Z S :
- —— o — e = A .
U By - 7 ) R(r) = ER(r)" ) (3 -34)
dr., v o
ThlS suggests tha\ lf we construct a new Hamnltonlan W|th a repulsnve'

term added
\

& ‘ , ‘ " . DT o . ‘ )
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-,y z -

va - E-A r * r2 (3 ?5)
its eigenvalue equation

Hop ¢ = E9 1 *(3-36)

will have a radial component which looks like this: @
(-1 1d iz s R'(kr) - ERY (1) (3-37)

2 2 rdr r . 2 27 "ne ng ’
dr 2r r o

Puéting‘ 2 =0 elimimates the term in 2(2+1), makes (3-37) the same

as (3-34).  The lowest solution (Rio) then has the radial part of

the 2p, but the angular part (& = 0) gi_gg_ s orb{:al. This is
. HN ) / ' ®y
precisely what a 2s Slater Jype Orbital has, and we could have

[y

arrived at the model Hamiltonian (3-35) by asking "Which differential

equation do STOs satisfy?" Huzinaga ,has shown [40c]that a normalised

570

ey

_ A . | : _Z_- = ‘ ’ . -
by = (n_,2,m,z, “s). Rnsfr) Yo, (8:9) - (3-38)
‘wheré N
‘ ] ] e
) » - n +— n -1 v'(Z/n ) ) -
R (r) = (2ns)! 2 (ZZ/ns) s 2. *r - (3-39)

s

~and the parameter ‘Z is not restricted to integer values, satisfies
the quatfonf» . .

> . = Ey | - -40
\\\ & Ho Vg | b | (3-40)

‘where

N e R R

i

e et

PURPIC AN

CEER
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j‘
Rl B .] 2 ) ‘ .
£ = - gwn)? | (3-42)
. The first term of the ''additional potential''
§ Lo
] .
- —5 [2(a+1) - n_(n_-1)] (3-43)
2r
cancels out the angular part of the kinetic energy operator when the
polar coordinate system is introﬁucéd. Thus the radial component of
H - is ‘
3
- l.gf_.- Td | Z, ns(ns-l) (3-44)
2 2 r dr r 2
dr 2r '

1]

which, for a 2s STO with ns“ 2, is fhe same as the operator in

equation (3-34). The repulsive term 'in r2 dominatés at short r.

‘ Unfortunately the static repulksive potential in (3-37) or

‘(3-h4) is not suffic}ent, as it says nothing about the angular depen-
dence of the solution. This is incorporated by introducing an angular
momentum projection operator:

I RPN S0 I
va T2 A r * f2 |£><ll » . (3-45)

 where in this case £ = 0. This ensures. that the’sqlution is s-type,
and in general selects“spher ical harmonics of a given L. value.

. . These ideas underlie all those model potential schemes which

Lg

K

use a static repulsive potential with angular momentum projection [4,56a]

i 7 % max l | s ‘
’ = = A== : L>< : (-
H Rt +’ E Vo (r) i2> , | (3 63)
. Z ) !
or incorporating the -~ T termin ve(r),
. ‘ N . °
e A= -} [ 4><8 . -
Hom L y(n o] (3-46b)
‘vl_l

‘
i
3
3

P
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where & max is the maximum 2 in all lower states. vl(r) is
different for each £, andvin‘general it is calibrated to pe
attractiyé in the outer region, répulsjve in the inner region of

the atom.

3. Electrostatic Shielding Due to Core Electrons

In 6aragraph'two, we have considered the problem of an

<

electron in a higher level, but with no inner electrons to complicate
matters. The static attraction potential was then that of the bare
nucleus, - %—. The case of vé]ence electron outside a closed shell

can be considered as a simple extension to the one-electron case,. affect-

ing only‘this attraction term. -

-~

Consider a Li ataﬁ, Z=3. It is known that even a

valence electron penetrates the core region to some extent. Close to

the nucleus, it shou!dléee theﬁfull, bare nuclear potential, - %—,
and.far away it sees the completely shielded potential - %—. The

~tradition has been to add terms to the bare nuclear poténtial-whi;h_
reflect this smooth franSitiOn,‘in order to repfoducé the correct
vélence orbital.energies and shapes. Figure 3.f shows how the model
,pdtenﬁial might look, fn the simf]ar case of Bé atom.’

Typiéalfy,{4,23,5631, ;he static attractive term is of the

form »
: ( Z"'n; ) '. | . n .e-aj'r . . '
. \‘/m(l’)‘,= - __r_c__ - %:Pg r P ( ""47)

where'.‘nc is number of core electrons, and A o ' o; .are parameters

Qf.the-modél to be calibrated.

B

v .
L RS e




v(r) a.u.

FIG. 3.1

-0 4
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-12.0 +
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Model potential as @ smooth intermediate between™ -

bare and fully shielded nuclear potentlals
Be case Z=h, n¢=2. :

.74
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It .may be tempting to think that the édjcstment of the
static potential above would‘he sufficient to produce the desired 2s
orbital without the repuls1ve tecms of Secfidn 2. But arsimple
illustration will dispel this misconception. . "'\',

In the case of Lithium atom, the correct 2s HF orbitel
energy is [38]' Egg = - 0.19632 a.u. Suppose we assume complete
core shielding of the 2s delectroq and solve the one-electron problem
6f'equation (3-9) ~with Z>= I. The resultingeorbital ehecgy as given

by (3-13) will be that of a hydrogen ls orbital, ‘i.e., E ]é = =0.5 a.u.

p

And with no shie]ding, i.e., 7=13, equétion (3-13) gTves
Els = -E 5 a.u. .Both these values are dlearly lower than the\requyhed
value, and are indeed pseudo - 1s orhitel.energies. They illus rate

the so-called col]apse of the valence orbital into the core reglon

It is the job of the repulsnon terms of Section 2 co prevent this

collapse by enforcnng some kind of Pauli principle. Indeed, even the k

repu15|Ve‘stat|c potentials of equation (3-30) were not complete till

an 2-dependent projection oberatdr was introduced.

L. Extension to Many Valence-Electron.Systems -

In addition to.expefiencihg_the static‘and‘Pauli Principle
'lnteractnons of the core, each valence electron wnll interact wnth
1the other valence*electrons in the usué] manner. The model

Hamiltonian for valence e]ectronseMay then be written as

v ' . ‘ 'T"‘ o SO _ .
= E'A + v (1)) + 2 - ‘ -~ (3-48)
l’ ‘ i>j ij

. H =
vm

Sy .

nr~13

where Vm(i) is the effectivé;core,potehtfal_cohtaining the static . .
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‘ L, )
core shielding potential and the repulsive effect due to the Pauli
exclusjon‘principlef } ' o

& ‘ ‘

In summary, all pseudo- or model potentlal schemes which

have been proposed essentlal]y fall |nto three bas:c categories deflned
|-
| &

by the form of Vm(l):
i) Core-projectfonvwith degeneracy-[59], giving a pseudo valence

orbital,

«

= v(r) + Z ‘@e—e l¢ ><4> I .~ (3-h9)
ii) Core projection without degeneracy [23,56b]. Exact valence

‘orbital if necessary, -

Vm = v(r) + ) §[¢C><d;l ‘: ' _v' _ p (3-50)
S c - o ' s o » ‘s

P

In.i) and ii) V(r) is purely attractive static potentlal

_ . . ; o
iii) Repulsive static potentials with angular momen tum projection[56a]

v

Smooth pseudo valence orbital,

‘ . v\l max L . ‘ . ‘1 O
oA o . Vm_= T E Vg(r)rgz<ll. . ¥ 4'. S (3-5])">

-
oy

As we have: seen, mode | potentlals are a:med at eConomlsatIOn
.of molecular calculatlons - But first, they must be callbrated In R
vatomic calculations The parameters of the model. potent;als are s
usually adJusted SO as to’ reproduce the Qalence orb?tal enerpxes ahd

shapes as closely as possible ThIS is taken to mean that the model

. .
;‘Efﬁehtlals so obtained have then simulated the effeqt of the core C
! k
St NS ; .
Yo Pf CtOF‘IY. The callbrated model\potentials are then transferred
, _mogitufar calculations.r ]"‘ —— T K
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"Written as an antisymmetrised product

‘constant for &, . and ,Ap the partlal antnsymmetrlser brldglng

o ¢a~_and ‘é“«vfbo-enéure‘that @ is antlsymmetrlc under exchange of

D. Bonifacic-gﬁfinaga Model Potential Method

~We give a cursory review of the model’potential method

_ , ‘ : &
described by Bonifacic and Huzinaga [23], in a form relevant to this

work. =«

'The Bonifacic-Huzinaéa'model potentiel developed rather
3

naturally "from the group s work on coup]|ng and prOJectnon operator

)

techniques- in Hartree- Foc' theory, and on the theory of segérablllty

in many elegtron systems 58].

1. Atomic System

We consider an atomic system with e core and. n, ‘valence

electrons. The conditions under which the core énd'valenCefelectron'

distributions may be determinedYSeparate}y are as folﬂdﬁs:

, -y o , o )
a. Separahle Total Wavefunction: ' The total wavefunction may be

.

> . e L
N N T o

where the’core and valence wavefunctions
ST e =0 (2,n) B (3-53)

f¢vl?,¢9("cfl;”“¢+2’ ;"f'ncfnv) S f- ‘(3—5b)

*.are boﬁb'ant}symmetrised-and normalised M is the normallsatlon ;

-

\

core electrons wuth valence electrons. ¢ may then be written as
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] -
(n +n )! 2 . p 4 '
_ c v eV oo . (3-55)
¢ = ,ng! nvl pZ ( 1)’ Pcv[q)c ¢v]

where'thé summat jon is over all the (nc+nv)£/(ncb nv!) distinct
permutations pcv. of core elect#bns , 2, ..., nc‘ with valence

electrons n +1, ..., n +n
c : c

b. Strong Orthogonality Condition: @V and 'Qc are assumed to satisfy

the strong orthogonality condition:

<t

f 8 (1,1,5,...08 (1,k,2,...)dt =0 . (3-56)

This condition demahds integfatjon over only one electron, while the

usual orthogonality condition.involves integration over all electrons .

k]

involved. o “i;7 _‘ o

The total Hamiltonian may be\%ritten as ‘ .

n n
c 1 i .
H= 1 (- 7 5 - =)+ 1 1 — core
‘ k=1 ' k> ke |
n +n n+n
<V o y4 ST A -
* .l g -2+ 11— valence
i=n _+I YT isiea T ‘
| o
n n_+n '
. c c v | . ‘ K )
+ z : Z.. —_— . - interaction (3-57)
T k=l o=kl Tk B

S

Under these C6nditions ofvSéparability,vthe total -energy. may generally

be written as

ool o G

v,

~



I1luminating steps towafds: the proof of this form have been given

hby Lykos and Parr [60].

c. -Closed-Shell Core: Explicit forms of Hv and 'EC depénd on the
form of ¢C. In this work, we assume ¢;f to be-an ordinary Slater
deterhiﬁant of a ddubly occupied Hartree-Fock'type closed shell:
] | | |
¢ = [71° det [o](Da(N)e](2)8(2) x
c - -

x ¢nc/2(nc-l)a(nc-l)¢nc[2(nc)8(nc)] . (3-59)

Then Hv and Ec " take the forms . .

/2 N
_ Vo 7 c ¢ e _v. : .
Hy=1 (g8, -9 +11 @ -k)+1 1 — (3-60)
| I k' 2 A B iJ
‘ n /2 . /2 \.—\
: - .
Ec - 2 2 Hk‘+ z 2 ’2' Kk,&\z—//

w{th obvious definitions of the various familiar quantities (seeyCHapter I
Section E.6).. The form of E6 is the same ‘as if the core stood alone -

without‘vaﬁence electrons: the coﬁe4valénce.interactions have been
incbrporaxed,into valence te?m.f
Note, A snng]e determnnant ciosed shell core is not thg‘on]y possnblluty
of course. Qc could be open or multlconflguratlonal but -the expres-
sipns for H. and E. “would ‘be more .complicated.

I}

d. Frozen- Core Approximation: To obtann the best value of the total energy

E, we need to apply the variation principle to equation (3 58) i;eg, tqpn'”
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vary ¢ - and ¢ . The frozen core approximation means we assume the
core orbitals {¢k, = l?...,n /2} are known, and we keep them
’constant throughout the variation procedure, but»ma:ntain the strong
orthogonality condition.

| The problem of finding E and ¢ then reduces to that of
varying only ®V_ teaminfmfse §‘¢V lhvl ¢V >, since EC is con-

stant with the'frozen‘core.

r

? Form'of ¢ ’ Strong Orthogonallty Revuslted In the present work,

e.
we assign a Hartree Fock type wavefunction (not necessar:ly closed

shell) also to ¢v as a functional of a set of valence orbitals {¢ }

Y
'

Then, the strong orthogonallty condltlon (3- 56) can usual]y be resolved

~into a set of orthogonality condltqons between the two sets of orbital

sets {¢E} and {¢:}_; in addition to those among valence electrons.
CETA 2 . S (3= -
<o leg>=0 all k2 3 ?‘Z,a’_
< ¢Y |¢; >= 8 - (3-62b)

13

As is Welf known, these condltlons or consfraints may be {

o v
incorporated as additnonal terms |nto the varlatnonal ‘treatment of Qv

by the use. of Lagranglan multlpluers ' Aki asin Chapter 2 When thls

is done, theSe c0nd|t|ons resurface as prOJectaon operators |n the
_ . - . .
one- electron term for the valence electronS' \
. N . : . R}
n ’ o n\/2. ' o
h() =3 -1 4 -2 G‘Zf (205(1) - KE(i)) +
/r 5 2 i re o « k' k™ _ S
' “. n /2 o o b o , ,
Z Bk l¢k(n)§<¢ O - - -(3-63')‘

@&

A
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>
where BE are numerical consfantSzoriginating from the Lagrangian
multipliers. ‘
We demonstrate how the projection dpefators arise in the
case of a closed-shell Qv [h]. . The dxpresslon for the energy of

the valence electrons is then, as in (2-94)

m .
]

¢ [H | o >
v v vl Ty
nv/ S nv/2
=2 ] (h + U°°re)'+ ST @Y -k (3-64)
: | (5 i iJ
where . ) R o ¢
nc/2 . :
core c c
u; a Y (29, - Keid - (3-65)
- . k . .
Under the variation procedure, with the constraints (3-62), the .
eigenvalue prpﬁ]em may ‘be written as in (2-100)
e 7 n/2 n /2 i _ .
R ve oV v ¢ c v (3-66
[ Feis L eie ‘E ey (3-66)
) ‘. { 7 - J - °
{:&hé re .
L \ n /2 o2 - | '
'y F=h+ 3 (200 - KS) + ] (207 - k) . (3-67)

"”“? Tﬁe elgenvalue matrlx,can be dlagonallsed by -a uhitary "transformation

'~)A a¢ong the set .{¢ } “to gnve . R <
NN ‘ | | L
l‘ . ) ” ,..‘ ) nc/z ) » » o ,- .
/ Sk, v c . _
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r

- The usual coupling operator methods are invoked. Multiplying (3-68)

by <¢§] and integrating we see for an arbitrafy Js
J b
<¢C|F|¢Y> = <¢?|e |¢Y> + Z <¢?ﬂk |¢C>
= 0+, (3-69)
or .
c v . , ;
< [Fler> = . N (3-70)
since j is érbitrary. 'Substituting this in (3-68) gives 3
: nc/2 .
. \Y% c__.,¢C v
FloV> e |0.> 4. Yoo leT><e IFle.>
I K k : k i S
or : nc/2 , .
£ Lo lep<el[FleY = e ¢ . . T @3-
-~ k X ] :‘ |~ N A ., ! # .
This further simplifies to give an effective Fock operator
¥
'nc/2, .
Fo=F - 1 eloc><o’| . | (3-72)
v kiTk Tk 4
% k. o )
1 ‘ t
. on condﬁt@gp'that
+ .
N i c__.¢ =1.€C__.C .
|¢k?<¢k|F = F|?k><¢k] - o (3-73)
This condition is‘possib]egonfy‘iﬁrthe core orbitals are eigenfunctions
of the valence Fock operator, i.e., v o "_,' . ' oy
i o ‘ : . \
‘i - . ' c C c - ' . ’ o %Q !

This is true in this case of' a closed shell valence wavéfunctidn, and

o7
- +
+
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in spin-unrestricted HF theory, but only approximately so in open-
shell cases [23a]. .To cover both these situations,'én adjustable
ﬂparameter- BE is used in,(3-72)3 resulting in (3-63).
The proper valence Hami1tonian to be used is then
n, n /2
RN 1 zy ¢ ,C _ c
) {( 2% ") L @y K
i i k o
nC/2 ' n,
c),c__.¢c | L

: + 1 B le><¢ []+a Py — - (3-75) *

. . AN ~ 5‘ k Tk 1> ] ;rij ,
. ‘
. . _ # ‘ . ‘
f. Model Hamiltonian: If the Hamiltoniah of (3-75) is used directly,
. . . & . ’
two-electron integrais arising from the non-local integral potentials
n /2 '
 © c c
p (247 - K) (3-76)
K k k .

q

must be calculated. In atoms, these pose0::+jjiiﬁiﬂﬁiiﬂatrouble, but
- % - }

in molecules they could gef eXpensjve. Bemifacic and Huzinaga noted =

6’( . . - . -

k k

symmetric as operators with suggestive forﬁs,also found by Roothaan [61].

that for 'S'.cqfe orbitalsvthe potentials ‘JC and KC are spherically

For é*amp]é'if the (1s) corewis described éppromeately by a single ‘1s - STO,
PN ~ . - .

el

‘can be ‘expressed as . . : -7

o | ¢ (3-77)-

S

‘then . J
‘ -~ 1s R

J .= / 82 (2) —l—vdv
“ '  | ‘lSl st o 2_ ,

"2er, _
¢ =vf\e 2-——I—dv



-0 Orer)e M1 (3-78)
1 o -
Thus
-2zr
- 2 -2 .
’Z“ZJIS ___(_Zr_Z)__? o2 rﬁ (3-79)

Y
For orbitals of higher angular momentum, summation over all components

is_needed to produce a spherically symmetric potential, e.g.,

. c c *i,C EyARN
J +J +J A 0
( pX PY pz . . I (3 ; )
N . “u “V
and ‘ o . o e, '
- l . C N -,\ \-a‘*f /,J
(S + K& +K S (3-81)
px PY Pz (3
,ére spherically symmetric, with results similar to (3-79) , with the.‘ -

exchange contribution is much smajler thén the Coulomb poténtiai [62].
This suggested that thése potentials could be replaced by properly-
parametrised static local pétentfal functions, tHus replacing many

two electron integrals with fewer one—electréq inteérals,-a considerable

3

saving .in computational effort. The resulting model Hami I tonian is

n, nC/Z
: 1 cy.C,. c,.
= ’ - - I -\l .4
va % [ 2 Ai * Vm(ri) * E Bkl¢k(l)><¢k(')|]
n
1o (3-82)
i>j ij
where Vm(ri)' is'a spherical static local potential. 'In the present

’ .
work we use “STO-sgfeened“ forms of Vm(ri):

I3
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[ : .
(Z-n ) Nt nj -aJ.ri \
v L) o= - I+ A s -8
m(rl)' r f 'Zl J ri € ) \{3 3)
- J— . .
where nt is the number of terms in the modeﬂ potential, Aj’ a%ﬁ*ﬁ\
and BE are parameters of the model to be determlned We shall

descrnbe the calibration of these parameters in detail in Chapter 4.
Here Weé mention that the pr0cedure involves doing an atomic

HF - R valence caICUlatlon andmadjusting the parameters EO as to
reproduce the correct valence orbital enecoies and shapes aslclosely
as possible. Bonifacic and Huzindga found that they could cal:brate
mode | potentlals with trcncated valence basis sets in which the core .
contrnbutlon was deleted. Thus {¢:} may be the accurate ones or

<
smoothed-~out ones as needed.

2. Molecular System

Let us consider a molecular system contafntng N atoms

T

with individual closed shell core regions numbered cl, c2, ..., ct,
. 4 ' 3
cN.  The Ty th core contains N electrons and the valence region

of the whole molecular system contains n, electrons- whlch shape up

the bonding characteristics of the molecular System,

We assume that the total wavefunction is of the form

o = M Ap[ocl e LRV B ' (3-84)

As in the atomic case, the orbltal sets corresponding to the grouping

in ¢ may be designated by {¢k }, {¢k 1, ...,{¢k }, {¢k} . If we

assume the following orthogonality conditions:
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V|,V - - ' _
<¢L!‘¢j> ai,j , E (3-85a)
- ! .
*® ‘1 ) y
¢fll¢}? =0 , = 1,2,... N (3-85)
\ A \
- IR ATPL N 1, = 1,...,N (3-85¢)
J'w j i_j IJ 14 ) 1 y e 1
then the total energy of the system may be written as
‘o . N N N - >
= e >+ ) : : . ' - -8
E <¢VJHV| S %‘ E_, + %5 § El e (3-86)

g

The'HamiI;Onian HV for the valence electrons "of the molecule may be

A

written as

i

° @
nV 1 N L N "el’? by 1
Ho=1 G308, -] = +7 T (u Z Z — (3-87)
v . 2 rl, k :
i | i | k > ij
and the core energy ECI is given as
3
n /2 n /2
C% h cl §IE Y cl (3-88
E . =2 H + (247 - K ) . 3-88)
cl K k kg k,2  k,% ‘
* The term ECI cy 'epresents the inteqaction Between the two ionic

}
cores cl and ¢J. In the present wdrk we use the approximation

(Zl~ncl)(ZJ-ncJ)

cl,cd = R, (3-89)

which amounts to assuming a complete shielding of the nuclear charge
by the core eléctron<;10ud.

The transitjon from the Hamiltonian HV to the corresponding



model Hamiltonian may be accomplished in a similar manner to the B

atomic casgg

- - - .

v | N - cl
H = - —A + vV
- X] [ | Y ( (r) +
1=1 | . I
. ncl/z nv .
I b, Loy o ]
+ L s er ()< (DT + Y T = . (3-90)
k k k ST,
i>1 ] -
. &
The model potential part
ncl/2 : :
| ¢l el cl o .
ve -
RS SO E D N <O | (3-91)
is to be broﬁght in from célibfatory work on the free atoms. In this

'sense, va for the molecular system does not involve any parameter

adjustment.

3. Valence Basis Sets for év-

8 - With fhe mode | Hamiltoﬁ}énvof equation (3-90) §nd ¢V as
defined in Section 2e above,'Bonifacfc aﬁd Hﬁzinag; go ahead to deter-
mine :he Harére ~Fock-Roothaan molecular valence orbjtalsg {¢:}

The truncated“4tomic basis sets such as those described in 1f are

of a size apprecigbly smaller than the ones which are required to
expand the sipace including the Innermost part of the atoms. They
Present themselVes as ecoromical and effective expanstH basis sets
for the conStruCtipn of '{¢Z}- The resulting significant reduction

in the size of .the basis set together with the reductjon in the total

number of electrons to be included in the molecular cakcylation results

&
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obstantfal.economy of comphtational effort. 'We shall see :
. . % :
in %;;B?EF\ﬁ\Ghat in this work we_pggceedislight]y“dffferently.

®
‘; ) . ﬁ . i "* A
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. v oo .
FORMULATION OF THE OCE-MP METHOD . et

—

A. Introduction

3 2

This is“the chapter in which the central idea of this’ thesis -
" is developed. It is shown thit Zij One-Centér Expansion (OCE) method

can be extended to calculate elektronic wavbfunctions;igr molecules

. N Lo ' N > .
with non-hydrogen off center nuclei, a prospect previously beyond °
reach. This extension is to be achieved through the use of model

, 5otenpials‘(MPe to approximate the tightly boynd core orbitals. The

-

remaining diffuse valence charge distribution‘shoujd then be rather

o

easy to simdlate'using the One-Center Expansion method;J»

; The explicit formulation of the coupling of ‘these twodtechnfques
& : .

"to give the OCE-MP algorithm is presented; and.the practica]&;dmputé-

¥ tional strétegies and tactics for SoTving the reshlting equations ére

~launched,. - O ' v e : : .

é’ @ T N3 *
K . : i o

‘B. The ldea ) t '. :? -/

The central idea of the OCE-MP method:cahvbe illustrated by
féﬁféxamination.of the electron density plot of Mz

shown in Figure 4.1. The compact horns sticking out'at the nuclear

bmélecule [63]

positiOns'ére“composeh mostly of the very low-lying core MOs 1 °q

and lou . (€ = +15.65 a.u. SZ). These in turn aré\dominated by the

v

, plus and minus combinatioris of the nitrogen Is; (¢ = =15.59 a.u. $2)

~atomic orbitals.

e
{

e
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b. Diffuse valence region

a. ‘Compact core horns

(i1) Effect of Mf”.

FIG. 4.1. OCE-MP: The Idea.
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As IS widely: accepted these'core orbitalsiwhich‘typically

ﬁare 10 tlmes dqeper than valence orbltals, do not contrlbute heavnly

'.J . o ‘ x

to the bonding characteristics of,the 2' molecule, -remalnlng

>

”vnrtually unchanged upon bond formatlon Table h l compares Clementl

S7 atomlc orbital energles [38] with . the core. MOS of Ransnl [6&]

6 [‘ N ‘ \
and shows that the changes in core orbital energles upon dlatomnc bond )
~

‘formation are indeed small. Yet u1avarlat|onally-dr|ven OCE cal—
4dcu]atlon wrth the expan5|on center at -the molecular mid- poEnt nost of
'”Athe terms w0uld be taken up in trylng, unsuccessfully, to reproduce

: these horns, srnce.they c0ntain/thetbulk of the total energy.(for N2,
= -89.4 a.u. SZ, ngilof the“tbt$1>/165];r‘ Thus an OCE cal-

core

'

culation would [ndeed give very poor results.
Now suppose the co;e reg?on is replacedlby appropriate model

potentials. This would remove the burden of core orbitals fron OCE.

The remafning, diffuse Va}ence charge 'istribution (Figure h.l).should

i

then be easy.to simu!ate.using OCE.
. #

Thus, our OCE-MP calcu}ations’are of the '"all-valence-
- electron” variety, an approach which is currently being systematically
.ﬁinvésfigated in severar laboratories and which holds great promise for

the practical study of molecular structure.

N\

- We now col]ect together the formal set of equations which

C. The Recipe

1. Ingrednents

are the basic ingredients of the OCE-MP method for molecular cal-

gulations: | o,

[N
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“~FABLE 4.1. SZ Orbital Energies for Low-Lying AOs
qnd MOs in Selected First Row Diatomics.

6,

Atom -;1;? Diatomis —Elqg,u \%Agﬁfage .

Li  2.46 Li, 2.4k 0.8
‘ o LiH 2.43 1.2
Be 4,72 Béz 4,71 N 0.2

B 7.68 BH ,7.66 0.3.
€ 11.30 C, 11.34 - 0.4

N 15.59 N, . 15.65 0.4
F 26.30 Fy 26.36 0.2
a HF 26.27 0.1

<

3Values taken from ref [38]:

b“Best limited LCAO'values of Ransil, Ref.[64].

A



H: © =E ¢ . , (4-1)

n, N nc|/2
3 _ 1 cty . cl,r cl,.
Hom = % g % Wolry) # E 8, Te, (D><0, (D]
n, '
A (4-2)
" r..
. 1> 1] ‘
n
’ t nJ -aJ b
Vo () = I=z =m0 /e 300+ % Ajrie Yy o, (4-3)
wi th model parameters A., a., n., n_, BCI 4to be determined by
. J j J t k
atomic calibration.
c. OCE Valence Wavefunction (closed-shef\):
1
= __]__2 v V -
oy = Loyl der $7(Da(4@B(2) -0 pplo 1)

x a<nv-]>aﬁv,2<nv>s<nv>] (4-4)

- . \ 4-
. g Xp Cpi o \\.' (4-5)

xp are ST0s all:at oﬁe center, and cpi to be determiged by SCF
proéédgre.

A word of explanation is in order hefe. In the'usuai
LCAO-MP application to molecular systems, su;h as that oé‘Bonifacic
and Huzinaga, it is not only the méde] poteﬁtia]s which arebbrought

in from the work on atomic calibration. With each model potential is

-



assocaated a set of va]ence (atomlc) orblta)s These (or their

-

expansvon basis functlons) are used for the construction of the

r
molecular va]ence orbitals {¢:} » Aas we saw in Chapter 3. Thus,

although drastlcally reduced in number multicenter integrals still.

- '

persnst, since these basis functions are centered at the various

. R B F
nuclei.

> a . v

. N , .
In the p{esent OCE-MP forma%EOn,only the model potentials,

but not‘2; J ¥ responding atomic valence orbita)s;are brought. in. The

‘. i - ' v . . . R .
molecular W@Plence orbitals {¢ }, .representing the total molecular

k

~valence space, are then constructed usung basis Yunctlons sntuated at

one convenlent*pount in space. In this way, dlfFlcult multicenter

integrals are avoided. For, as we shall see, all'the two-electron

integrals in OCE-MP are of the ene-center type, juét as in OCE method.

o
d. Total Molecular Energy:
. N "N N o
E= <<!>‘levml<I>y>, + % Egp * % § e o (4-6)
nc%/z | ngl/; N .
E.,= 2 - H "+ (24 K ) (4=7)
cl . k . L k,2 k,%
. (c, (€, - ne,) (5-8)
ci,cJ RIJ =

Formula (4-8) gives»the appreximate repulsion energy between the two '

ionic cores . Cl, 'CJ. It amounts to assumlng a completg shleldlng

'

of the nuclear charge by the core electron charge cloud
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2. General Computational Strategy .

-

-

The,biggest task is to celculate

vm V

e = <o lH o (-9
. ! 0 F)
‘We have tried to break the procedure into modules which can
be developed and tested separately, “then hdokeﬁ up logically for a
- complete run, i.e., for the SCF solutlon of the correspondlng Roothaan S
equations. Here F is still defined as in equation (2-103), with
n=n, and the one-electron operator
e 1 N | "c,/? TR D P
h(i) =-=a, +3 (v (r,)+ L B < (i)><¢ (i)]) - (4-10)
2 1 [ Vi W k k k

2

The strategy is summarised below:.

a. |ntegral Packag_, To prepare methods for solving all types of

lntegrals arnsnng from the coupllng of OCE and MP methods

b. Model Potentials: To calibrate STO-MP version for atoms.
2. ‘ ) '

R

c. SCF Procedure: This is the driving mechanism of the whole process.

It hand]es matrlx and supermatrix organisatlon, receiving, storing
~ and retrueV|ng lntegrals properly; matrix manlpulatlon routlnes/for
ddltlon, multipllcatlon ofgﬁatrnces* matrix dlagonal:§3t|ons, eigen-
. .

vectors and eugenvalues, |terat|ve procedures, optlmlsathn of

exponents, etc. e' v ’ S

L]



» > d. Hook-Up"and Testing: Valence_basisléet develophents; dependence

>

of results on model potentials, basis sets; scope of utility-molecular

properties. . L : | &

“D. Matrix Elements of the_Model Hamiltonian
1. Classification | » - i

g

In this work,,ali the basis functions {Xp} are centered

at oné point. We‘deéignate this expansion center as A, and write

. i ; a a a a ' |
the general functions as Xp’ Xq" X » X » v-- . The model !
r s

potentials on thecother hand.-may sit at any other point B. With

A

these functions, the‘fol1owfng types of matrix elements may arise in

the solution of Roothaan's eqﬁations with the model Hamiltonian:

il

e

a. Overlap Integrals: -

< x l X >J - NS (l{-]])

a
< P I o o _
b. Kinetic Energy lntegrals:
. a | a
< - = A c > : (4-1p)
% | -2t xg : b

[y

" Thus the overlap and Kinetic énergy terms 3re all one-center.

[

c. Static Model Potential Integrals:

o

(4-13) -

ay by | a
, <Xp“’m»(rb)‘xq>'
This can be one-center (A = B) or two-center (A $ B), and can be’

further broken down~ihto
gt
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[
i) Nuclear attraction (Coulomb potentiaL) .
a a_ L R
<y .1~ - -
xpl (z, nb)/rb|¢q> . | (4 lu)
ii) Yukawa-type potential n; = 0
-a.r . :
A e 1 J
< Xa _J ' Xa S o . i (h— : 5)
) R p rb q )
N
iii) s-STO"or HUzinaga potential '
A n -t -ajrb a
: A r e >, n., = 1,2,3,... . 7 (Lk-16
< ‘x‘p [ i b lxq j 3 . ; ( | )
d. Non-local Projection Operator Integrals: , A
' . iy
a b, b by a
<o | LB lel><el [x® > = (e
P kiTk Tk PO o ) t: (4-17)
d .
} . % » ' . /,/ . ‘ . ' b .
< These lntegnaﬁs.are to be treated with caution. {¢k} are the : N
g “, . ’

. P
~f

: : . . . @ ' .
- , frozen atomic orbitals, which have as usual been expressed as linear

combinations of basis functions {xi}. We may say in Dirac notation,

b ¢ b L ob , |
J¢k> - l.k Xs Csk> - ,Z | Xs> Csk ' (4-18)
S S
vy )
. /
and ‘ /
(" .
pe " =T b= ] C:k<xt| (4-19)
K ' t tk 't R
D ) /

Then the integral in (4-17) becomes



The

aj b b, a
o8Pl e, x><Tec, x2Ix%
" k “p c sk s t tk “t'%q
\ b * - a b/ b
=1 L 1 8 c, ., <x2[x5><xtlx2> " (4-20)
"k st

»

definition of the projection operator (eqn (3-23)) means this

expression reduces to summation of products of one- or two-center
. Al

overlap integrals

and

R I (4-21)
<X2 | XZ> - <XZ | X2> . - (4-22)
Two-Electron lnteé;als:
i) Coulomb
g xg 13T - L o e
i) Exchange ° . 1
DX 3. (h-24)
rq :

p s .
; v

¥

Thus all two-electron. integrals in-OCE-MP are one-center and this is

the effort;saving quality of the method.

3.

w

Methods of Evaluation

In this work all integrals are calculated over STOs with

~a
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real spherical harmonics as defined by Roothaan [61]:

n-1 Ter
X = (n,l,mfc) =N (@) r e Sun(8:9) (4-25)

where

' 1
n + — =
N (2) = (22)  2/0(2n)1)? " (4-26)

n

is the radial normalisatign factor, and Slm(6,¢) afe the normalised
real sphérica] harmonics. The full definition of these functions is
giXén in Chapter 5. _ . -

Except for‘those arising'from thd stbdtic model pdtentials,
all the integrals enumerated above are well known, and-ﬁethods for
fheir solution abound in the‘literature. The one-center overlap,
kinetic energy and nuclear attraction integrals are identicql to the"
,cofresponding integrals for the atomic case, and are given by Roofhdan
and Bagus [6b], The two-center overlap and nuclear att}action integrals
have also been<solved for a numbér of cases [12d,61,66].

Forlthe static potentials no explicit and accurate solutions
could be found in the literature. These integrals may be divided into

two categories:

a. 0One-Center MP Integrals: We find that the one-center versions can

easily be transformed into common "atomic'" forms and so solved using
the familiar techniques of Roothaan and Bagus.

i) One-center nuclear attraction may be solved as such, or

transformed into a pseudo-overlap integral:

g
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~
) <(n b m r,p)alr—‘ | (ngs2gomes) >
;
= <(“np-l“,2 ,m ,cp) |(nq,2 ,m ,cq)a>
= <(np,2p,mp,§p)a{(”nq-l”,lq,mq,gq)a> (4-27)

where the quotation marks mean only the power of r and/or the

exponent changes, but the normalisation factor remains as Nn(c).

ii) Simitarly the Yukawa-type integral can be rewritten in pseudo-

overlap form:

]
>
A
-
5
1
i)
3
Y
O
A
—_
3
o~
+
R
\-:
A\

4 P q q a
= A <(n WL ,m T ) |(“n -1, R »M 7“C +a “) > (l"_28)
‘or (especially .in the case np or nq = 1) as a pseudo-nuclear
attraction integral ’
1 v
<{n_,2 ,m "z +a.") |—I(n ,2 ,m ,C ) >
( P’ p’"p’ Cp Y )alral( a’"q’"q"%q’a

= A-<(n L m ) —\n "2 il ,“ -+Q’.“) . L|-2

AN R 2 2 e alr 3 a’q’"q” *q %5 ’a (4-29)

a
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iii) Similarly, the one-center integrals over s-STO potentials

reduce to pseudo-overlaps: '

< | A, r J e n ,2& ,m, >
(n p’ p p p a| .a ,( 9 9 gq Cq)a

= A.<("n_+n. 1" 0 m ' 4q ) (h ,2 ,m ,z) >
j P PP’ Cp a' q’"q q-éq a

= A.<(n , s ) [ ("n 4 -1y g M+ s 4-30
j p’p’ p p’a , q ] q’'q Cq ki )a etc ... (4-30)

b. Two-Center lntegra]s: Thinking mainly of molecules with first-
row off-center atoms whose core s [152] only, we first coded a
program to ca]culate two-center overlaps between s and 26 orbitals
(m'€ 0), based on the method of Ruedenberg et al [66].

This was superceded when we evolved a unified method for
the¥exact solution of all the two- center integrals arising in OCE-MP,
including two-center overlap It is based on the Fourier Convolution
Theorem[zq_zg].ln this work, the scheme originally developed by Harris
and Michels [24] for two-center two-elé%tronCCouiomb ingegrals is
modf%ied to evaluate two-center one-electron integrals, be they overlap’
Oor attraction integrals. As the evalyation of these integrals is a
highly technical matter, a whole;Chaptér 5 and a number pf appendices

have been devqted to the derivation and application of ‘the Fourier )

Convolution technique.
E. Atomic Calibration of Model Potentials

l.. STO-Screened Model Potentials N

In this work we have used'the “STO-Scréened” model potentials
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" of Bonifaci¢c and Huzinaga, [23], which are suitable for use with our

STO basis. \

For firstjrow atoms the madel potentials calibrated by those

workers were used. The static part has N, = 2, n]‘= 0- and n, = 1, or

in our shorthand, MP(0,1), so that

“a.r ~a_r .

ACES 22 qapje Vown e 2) L (4-31)
nc/2 ?‘l, so that the core projection operator term is
Blsl¢ls><¢lsI ’ (4-32)

and the valence configuration 25" 2pn.

It is interesting to note that this tore-valence, separation

is justified on the chemical grounds tﬁat the 2s and 2p orbitals

N EY

are definitely together in the valence, and are used in such ideas as
hybridiéation. Physically too, the separation is.rea;onablé because

the core orbital energy lies much deeper ( 10 times) than the valence
orbital energies. But mathematically tﬁis sepa;ation is not the only one
possible. For example no mathematical problemg would arise if in nitré-

gen we separated [ls2 252] as closed-shell core and 2p37as valence.

. m
For second-row atoms, the valence space s 3s 3ph anﬁ

we have chosen a three-term (nt = 3) model potential MP(0,1,1):

.

f “a,r ~a,r -a,r. -
Vm(r) = - LZ:%Ql(] +ae - Azre ? Azre 3 ). ‘.(4—33)

nc/2 = 5 and the projection operator is

¢ , .
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~ T L e e N I o ppuztypul
* |¢2py><¢2pyl ¥ |¢2Pz><¢2pzl} kS (4-34)

\ K
ﬂ For thg first-row of transition metals, we decided on model potentials

)

T of the form MP(0,1,2):

/ : - ’ - '.-;1
" Vm’(r)=~£l—8)(l+Ae]+Arek2+Are 3% . (4-35)

) | | 3

We tested MP(0,1,1) similar to that of Bonifacic and Huzimagd for

‘Vanadium but were not satisfied with the results. However, it is
. _ 2

llikely that with harder pushing, it too could give acceptable resu?fs,,

. The projection operator is ’ ' .

’

Blsl¢ls><¢lsl * BZSI¢ZS><¢ZS| * B3s|¢3s><¢

3SI (4-36)
- Missing are thg terms
BZpMbe‘prr ¥ B3p|¢3p><¢3pI ’ (4-37)

or actually six terms cdrresponding to the x, y, z p orbitals. The

bl

. . . . 2 ..n
reason is because we take the electronic configuration as 4s“ 3d or

N
4s 3d". In atoms, both s and d orbitals in the valepQF shell are

automatically orthogonal to p orbitals in the core. In molecules,
-howéver, the miséing fé;ms must be includeé sinte the valence-shell
vvo}bitals on ohe atomic site are generally not orthogonal to inner-core
Arbitals on another sife. In such cases fhere is in principle no way
2?, B3p parameters except perhaps by consider-

ing excited states of the atom.. Bonifacic and Huzinaga have recommended

of determining the ‘B

i

3
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By = zlezpl and B, = 2|53p| for all sizes of ba ts
2. Calibration Procedure )
’ | This involved solving the SCF problem usung the model
Hamiltonian and adjusting the parameters '{Aj}', {aj}, {Bk}
until the valence orbital energies ahd shapes agreed wijth reference
ones satisfactorily. The adjustment of the parameters was
incorporated into*a genera; hoothaan STO-SCF atomic program capable '
of handling closed and open shells. Written by Huzinaga, it 'js )
modelled on the Roothaan-Bagus method. The test of accuracy used
I's that square deviation summed over the valence orbitals
h :
0 = T (efT - )2 (4-38)
i

is minimised by varying each Parameter individually. Qur procedure

is rather pedestrian in conception’but almost fully automatic in

implementation.

i) Choose core and valence basis set. We fo]lowed Bonifacic

// and Huzinaga in using the Double zeta basis sets of Clementi and

Roetti and truncating them in a similar manner,

‘., .

v
ii) Guess a set of {Aj}’ {a } and {Bk} parameters and

appropraate step sizes for -each parameter.

'experlence,for transntnon metals,

a

the final parameter set for one ca]culatlon .could be used as :

|n|t|al values for the next, whether from one basns set. to another

in one atom or from one .atom to the next.

RS )

T e . Ao I L s
P RN )“1._‘.7 R Y

Mostly this was done - by‘

defnnlte trends were found S0 that 
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A}
iii) Carry out the valence SCF procedure ys!i the model Hami ltonian.

This involves solving one-center integrals such as tH§§§ in Section 3a..
Determine orbital energies and a D estimate.

vi) Optimise a new parameter individually. Let the initial value

of this parameter be bxo. Change the paramete'r by step-size h and

use iii) to obtain a new deviation D]. If Do < D], step backwards
atwice in  x, and obtain DZ' If, on the other hand D0 > D], 5tep

N

forwards to get (XZ’ DZ)'

v) If ;he sequence DO’ D], DZ’ appropriately'renémed in increas-

ing Xgs Xy> Xy, goes through a minimum, i.e., D0 > D] [ Dé, we
go to vi). |If not, i.e., if the sequence is monotonic, we try one
more step as described in iii) and iv) to search for this minimum.

et
D0 >0, >0, < D3, we go to vi)

with the last three points renamed. D., D, D.. |If not, we go to

If a minimum is detected, i.e.,

0* "1’ "2

iii) to optimise the next pa}ameter keeping the last x value. Thus

. for each parameter we try only four points to search for a minimum

* before'we quit. This is to ensure that one parameter does not take

3

over and dominate and distort the total picture.

" vi) The sequence DOL D], DZ““ which goes through a minimum

I}

is fitted with a second-degree interpolating polynomial

f(x) = ag t apx + azx2 : '(4-39)

The minimum of this quadratic is determined in the fol-

lowing manner: First, the constants ag » a; , and 2, are
determined by requiring the interpolating function to pass through

i By

all three points {x., D., 1=0,1,2} : - R
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s
e
o
A

0,1,2 .  (4-40)

Sd]ving\the set of three simultaneous equat¥ons stituting the

resulting values of {ai} in (4-39) leads to

-~

| (x-x])(x-x2 D (x-xo)(x-xz)D] (x-xo)(x-x )D

0 172
f(x), = . = + - = + - - . (4-1)
| (xg=x;) (% xo) I =) (x, %o ) 06y =% T : ,
‘The minimum occurs when ) ' S
Rl  (4-82)
fg | : ’
or :
[2x-(x]+x2)]DO LZx—(xO+x2)]-2D] [2x—(xo+x])]DzA . ) 3
5 - > + R =0 (4-43) i
2h ' 2h 2h ~ o
.where $
&
h=x, - )/(O = X, =X -(Fﬁ)hh_) '
’ i g

1 .
is the step size. Rewriting (4-43) with x, . as reference point

> yields
2x[DO-ZD]+DZ] = 2"-1[00'201+Dz] + h(D ‘-? ) K .
r ) P
x = X, + Ax (4-45)
where
hog-0,) "

X = 2(b-20,%0,) o {4-k6)

] 0“1 2 Co ~,
~ ‘\/>
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One sweep ends when all parameters have been optimised in
turn. We found thét”TﬁWQQneral, about 20 sweeps at Step size h ~ 10%

of the paramefer, fo]lbwed‘by another 20 -at h ~ 1% of the

parameter, was sufficient to reproduce all valence orbital energies

to four or five significant figures. The results are given in

Tables 4.2 - 4.6, .
One of the parameters may be determined bf\bhysical con-

siderations as discussed in Section 3 of Chapter 3. At very small

r, the static potentia] approaches

-(Z-n ) .
.0+ A (4-47)
r . .
Then in turn, it should be that
-(z-n) : )
c Z T N
< (1 +ap~-% - (4-182)

or

(z - EC)(i +A) (4-48b)

]
N

because an electron should se€ the whole nuclear charge when it comes

very close to a bare nucleus. This relation was used to fix A} as

-1 - (4-49)

A’/ -
which was not varied any further.
v ) A _ _ A
The Bk parameters were also not assiduously optimised, but

were fixed at mx absolute value of core orbital energy € with

"m=2.0, 1.5 or 1.0. We found that the B values appreciably

affect the valence orbital shapes as a compérison of the largest expansion
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3‘.

firnmn:crs for (hs/2d) STO Basis, nﬁ(o.l.z)'

TABLE. A.

Atom Term Ay A Ay a, a, a,

. 14

sc 2 6.0 10.1911 0.3763 6.0309 3.1000 1.3759
T Y A B.1861 03374  6.2476 3.3587  1.4560
v M 3.6 7.3719 0.2363 6.4707 3.6537  1.4283

cr 7S 3.0 -~ 7.0926 0.1950 6.6270 3.9700 1.4330

cr S0 3.0 6.5784 0.1994 6.6923 3.9700  1.4568
“ma S5 2.57A  6.4831 0.1759 6.4010 4.3376  1.4698

fe S0 2.25 6.4043 0.1553 ~ 6.4000 £.7200 1.4800

o “F 2.0 6.5506 0.1354  6.4000 5.1330 1.4759

M %% 1.8 6.8200 0.1284 6.4000 5.5790 1.5000

tu 2s  1.6364 7.5854 0.]1376 5.9200 5.9903 1.5200

cu 2D 1.6364 7.8463 0.1346 5.9200 6.0758 1.5350

n ' Is 18 6.6298 0.1459 6.7981 6.1820 1.6698

s//
P J
) 2 ge2.0|c]
<

TABLE Ak Parameters;for (3s724) STO Basis, wp(0,1,2)*

Atom Term Ay A

.S 2 6.0 $.5903
T M A5 7.6309
v M 3.6 6.9383
¢cr 7s 3.0 6.7228
¢cr  Sp 3.0 6.1746
Mo €s 2.571h4 5.5221
Fe 5p 2.25. k.0323
Co “F 2.0 2.8187
i 3 18 2.0179
Cu.- 2s 1.636hF 1.56h2
Cs 20 1.6364 1.579
zn 18 1.5 1.1796

 %g2.0|¢]

Aa'

0.4343
0.3603
0.2h10
0.2043
0.1965
0.1621
0.1565
041564
0.1465
0.1507
0.1489

" 0.1501

ay -

6.4190
6.2932
6.3490
6.6190
6.3838
5.4055
5.1930
4.9788
4.8658
4.7062
4.4638
4.7870

a2

3.1000 -

3.3587
3.6593
3.9878

4.0000
4 h216 |

§.5133
4.5600
L.6896°
4.7800
4.7800
5.2898

a3

T 1.3343

1.5030
1.3647
1.3725
1.3794
1.3657
1.4140
1.4768
1.5113
1.5586.
1.5597
11,6320

fa
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TABLE 4.6 Orbltal Exponents, Coefffclent; and Energles for First

- (a)-()

(a)  Scandium x(2)L(8)M(8)4s23dl, 20, WP(0,T,2)

Row of Transition Elements

N

$TO Exponents

Is 22.0770

Is 15.76440
2s 10.10970
23 7.76457

Full H-F-R
© (8s/2d) (6s/2d)
coefficlients basis
(ds) (hs)
-0.00294
-0,03176
-0.02337  0.10732
0.15078  -0.17468
-0.22341 - 0.12275
-0.07919 0.15308
6.51752 -0.50536
0.58703 -0.61306
(3d) (3d)
0.35922  0.35114
0.7660] 0.77239

- (4s/2d)
basis

(4s)

0.15009
-0.39451
0.59347
0.57799

(3d)
0.27862
0.82724

" Valence orbital energies in a.u.

3s 3.92714
3 2.70064
As 1.53840
//,//’///bs 0.91407
: 3d h.22244
3 1.74647

€(hs)

€(3d)

-0.20824

-0.20831

-0.20805

-0.33810 L0.33805 . -0.33815

(3s/2d)
basis

(hs)

-0. 14988

0.34936

0.74967

(3d)
0.20310
0.87982

-0.20801
-0.33815

N

MODEL PUTENTIAL H-F-R Coefficients

(2s/2d)
basis

(bs)

0.34626
0.71635
(3d)

0.28903
0.81963

-0.20800
-0.33816

() Titaniom K(2)L(BIN(8)4s7342, 3F, WP (0,1,2)

\

MODEL POTENTIAL H-F-R Coefficients

$TO Exponents Full H-F-R
(8s/2d) (6s/24d)
coefficients basis
(hs) (4s)
is 23.00460 -0.00354
T s 16.3272 -0.03133
23 ll{ozzao -0.02283 0.09574
2s 8.25215 0.14951 ( -0.16152
3s . AL 14661 -0.23197 0.13020
3s 2.79906 |, -0.06145 0.12854
As 1.61853 0.51724  -0.51204
As 0.94889 0.58740 - -0.60919
: (34d) ©(3d)
3d &.67000 0.36461 0.35258
3 1.98614 0.75561 0.76129
Valence orﬁital energies in a.u.
€ (hs) -0.21807 -0.21817
€(3d) -0.43184

-0.43178

(4s/2d)
baslf

(4s)

C.13144
-0.37173

0.60045 *

0.57489

(34)
0.29700
0.81025

-0.21808

-0.43180

(3s/24d)
basis

(hs)

-0.15472
0.38316
0.72586

(34)
0.24428
0.84728

~0.21796
-0.43184

(2s/2d)
basis

(hs)

0.36826
0.69943

(34)
0.30922
0.79923

~-0.21792

043187

/

()



(c]- vanadium K(2)L(8)M(8) 452343, “F, HP(0,1,2)

$T0 Exponents Full H-F-R
{8s/2d) (6s5/2d)
coefficients basis
. (4s) (&s)
s 24.00780  -q.00391
Is 16.92690 -0.03091
2 11.81230 ~0.02311 0.09003
s 8.72824 0.14398  -0.15449
s 4.39565  -0.2309%  0.13034
©3s 2.94007 -0.05400 0.11943
As 1.69734 0.51328  -0.50626
As 0.98281 0.59195  -0.61503
- ) (3d) (3d)
3d 5.05186 0.37378 0.37616
M 2.17279 0.74564 0.74369
Valence orbital energies in a.u.
€ (hs) ~0.22698  -0.22704
€(3d) -0.49698  -0.49693

basis

(4s)

0.11922
-0.34744
0.58019
0.59144

(34)
0.33750
0.77494

-0.22708

-0.49630

(d)  chromium K(2)L(8)(8)4s13d5, 7s,

(3s/2d)
basis

(&s)

-0.15033
0.38108
0.72908

(3d)
0.30315

0.80171

-0.22709
-0.49689

#“r(0,1,2)

MODEL POTENT!AL H-F-R Coefficients

(Ls/2d) (2s/2d)

basis
(hs)

0.37942
0.69217

(34}
0.33506
0.77687

-0.22709
~0.43690

STO Exponents Full H-F-R
~ (8s/2d) (6s/2d) (ks/2d)
coefficients basis basis
" (As) (4s) (4s)
Is 24.98800  -0.00347
Is 17.51200 -0.02869
2 11.63200 -0.02945  -0.10706
2s 9.16411 0.14584 0.16611
3 &.72727 -0.20226 -0.11803  0.09097
3s 3.13745 -0.05242  -0.09666 -0.27323
As 1.74h38 0.45362  0.K3405  0.47732
: As 0.96230 0.65446 0.68251  0.67375
(3d) (3d) (3d)
34 5.13843 0.40714 * 0.41269 0.40458
3d 2.07723 0.73242  0.72782  0.73453
¢ Valence orbital energies in a.u.
o € (hs) =0.20772  -0.20764 -0.20781

«(3d) - -0.33930 -0.33929 -0.33921

basis

(As)

-0.12578
0.33860
0.76665

(34)
0.36340

0.76768

-0.20768
=0.33927

MODEL POTENTIAL H-F-R Coefficients

(3s/2d) (2s/2d)

basis

(bs)

0.38432
0.69940

(3d)
0.33003
0.74642

. -0.201%3

-0.33929



e

(0) Chromium K(2)L(BIM(B)As23d, S0, we(0,1,2)

. .

$TO0 Exponents Full H-F-R  MODEL POTENTIAL H-F-R Coefficients
‘ (8s/2d) - (6s/2d)  (4s/2d)  (3s/2d)  (2s/2d)
coefficlents basis basis basis - ‘baslis

' _ (4s) ('Os\) . (4s) (As) (hs)
Is 24.99790 -0.00449
is 17.40750 -0.03030

2s 12.66540  -0.02208 - 0.08053

2s 9.19252 0.14648  -0.14157

3 h.64782  -0.22770  0.12160 0.11057 .

3s 3.03125  -0.04889  0.1173! -0.32659 -0.14378

As 1.77218 0.50946  -0.50041 0.56343 0.37698  0.39856

As 1.01451  ©0.59636 . -0.62165 0.60404 0.73298. 0.67745

(3d) (3d) (3d) (3d) (34)

3d 5.40992 0.38301  0.3637) 0.3b404 0.32421 ' 0.31398

3d 2.34014 0.73672  0.75263 0.76852 0.78425  0.7922%
Valence orbital energies in a.u. R

- «(ks) -0.23523  -0.23500 . -0.23512 -0.23512 -0.23503

£ (3d) -0.55218  -0.55224 -0.55220 -0.55220 -0.55221

C e

o

(f) Manganese K(2)L(B)M(8)hs2345-5s, MP(0,1,2)

STO Exponents Full H-F-R  MODEL POTENTIAL H-F-R Coefficients
(8s/24) (6s/2d)  (4s/2d)  (3s/28)  (2s/2d)

coefficients basis .basis basis basis
(4s) (bs) (bs) (4s) (4s)
s 26.03260  -0.00382 {
1s 18.36130  -0.03038
2 12.94970  -0.02688 -0.0928% < - . L oo -
25 9.66930 0.14380  ©.15397 7
3s. .. 4,98055  -0.21814 -0.11761  0.10447
-3¢ -~ 3.29090 - =0.0513h .. -0.11277. -0.30406 .-0.13528 . ,
T 7 As T 1.8M88 7 0.50k63  0.48803 ©0.53306 0.35746" 0740927
. As - 1.0kk08 0.60238 _ ©0.63243  0.62560 0.74822  0:67046
' (34) T3 T (3a) (3¢) (34)
3 . . 5.76739 . . 0.3898k. . 0.39595 0.43206 = 0.45304  0.35648 -
3 2.50969.  0.72965  0.72450 "0.69344 © 0.67488 - 0.75722
Valence orbital energles in a.u.
€ (As) -0.24262 -0.24265 -0.24273 -0.24250 -0.24265
€(34)

’0.6!762 ~0.61759 -0.61752 -0.61765 -0.61757



(,) tron K(2)L(B)M(B)4s23d®, 5p, nr(0,1,2)

$STO Exponents

Is
s
23
2s
"3
3s
As
As

- 4

27.03350
29.01040
13.51700
10.13050
5.21660
3.47616
1.92517
1.07742

6.06828
2.61836

Valence
€ (hs)

+ €(3d)

)

Full H-F-R
(8s/2d)
coefficients

(4s)
-0.00352
-0.03027
-0.02829
0.15090
-0.21377
-0.05096
0.50156
0.60709

(34)

0.40379
"0.71984

MODEL PUTENTIAL B-F-R Coefficients

(6s/2d)
basis

(hs)

0.09110
-0.15187
0.11698
0.10772
-0.47973
-0.64046

(3d)
0.41437
0.71082

(4s/2d)
basis

(4s)

0.10244
-0.29209
0.51434
0.64072
(34}
_ 0.48182
\‘«.
0.65102

orbjt;l ?nergles ina.u.

-0.25129
-0.61788

-0.25112

-0.25131

(3s/2d)
basis

(hs)

-0.12768
0.35053
0.7540b
(39)
0. 45934
0.67139

-0.25132
-0.61794 -0.61763 -0.61782

Cobalt . K(2)L(8)n(8)4s%3d”, “¢F, wP(0,1.2)

(2s/2d)
basis

(4s)

0.41648
0.66666

(39)

0.37677
0.74246

40.25f06
-0.617%90

~ $T0. Exponents

2
29
_«3?;

3s
As
As

ey

" 'Full"H-F-R - MODEL-POTENTIAL H-F-R Coefficients -

(2s/24d) f; v'

.. (Bss2d).  (6s/2d) {4s/2d). (3s/2d)
coefficients basis =~ 'basis ‘basik'l' ;basis
. (bs) Cohs)T o (hs) T sy T (as)
28.03440 -0.00394 e Ces i e
19.67470 - - -0:03008 -
14.03660  -0.02990  -0.09210
10.58910 0.15176  0.15183
. 5.50254  -0.20743  -0.11169  0.0992k ) )
3.67136  -0.05214  -0.10563 . -0.27740 -0.12193
2.00140  0.49765  0.46866 0.49102 0.34756  0.h2264
1.10841 0.61250  0.65116  0.65880  0.75660  0.66369
(3d) (3d) (34) (34) (3d)
6.38612 0.41333  0.43054 0.53220 0.46349  0.39309
.2.78435 0.71262  0.63778 0.60471 0.66865  0.72975
Valence orbital energles in-a.u. - =~ % .« . . .
(ds) . -0,25307, -0.2590h -0.25921 -0.25918 -0.25908

- &(3d) 17‘30163869ﬁw ~0.63866 -0.63856 -0763853" -0.63868
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() Mickel x(z)L(a)n(a)bs23¢i; 3F, wp(0,1,2)

t4
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$TO Exponents

s
23
2s
3s
3s
As
As

3d

i} 1

. (8s/2d) (6s/24)  (ks/2d)  (3s/2d)
coefficients basis basis basis

s) (4s) (s) (hs)
29.03620  -0.00389
20.35820 -0.02991
14.50890  -0.03189  -0.09397
11.0K660 0.15283  -0.15254
5.79629°  -0.20048 -0.10593  0.09646
3.87206 -0.05423  -0.10377 -0.26416 -0.11573
2.07712 0.49292  0.45472  0.46372 0.33966
1.13888 0.61875 0.66434  0.67536 0.76316

(3d) (3d) (34) (3d)
6.70551 0.42120 0.44715  0.57761  0.46986
2.87381 0.70658 0.68395 0.56077 0.66366 .

Valence orbital energies in a.u.
c(hs) -0.26640  -0.26643 ,"0.2664h  -0.26647
€(3d) -0.66185 -0.66173 -0.66157 -0.66177

() Copper  K(2)L(8)n(8)4s13d1°, 25, wup(0,1,2)

Full H-F-R HbDEL'POTENTIAL H-F-R Coefficients

(2s/2d)
basis

(hs)

0.42493
0.66420

(3d)
0.40838
0.71754 -

-0.26639

-0.66150

‘29

is
3

o3
‘Ag

As

¥

(8s/24d) (6s/2d4) ~ (Us/2d)  (3s/2d)
coefficients- . basis ' basis “basis -

S} ) @s) (us)

130.6089¢" * -0.00333.

21.03360  -0.02322

h.kes80  -0.03356 -0.08712
11.44970 0.13085 0.13328-

619332 -0.15333  -0.07957 0.06436 |

&, 06469 ~0.04224 -0.07278 -0.17534 -0.08387
2.00757 ' 0.A1k32  0.36078 0.35294  0.29560
1.03682 0.69833  0.74918  0.76681  0.80230

(34) C(3d) (3d) (3d)
6.79466 0.4h729  0.51269 0.69693 0.50948
2.76527 " 0.69683 0.63811 0.44717 0.64109

Valence orbital energies in a.u.

- «(ds) - .-0.21805 -0.21805 -0.21813 -0.21807
7 €(3d) " '-0.M0M0B  -0.A0k08 -0.h0K0O -0.40407

STO. Exponents .-Full H-F-R - ‘MODEL POTENTIAL H-F-R Coefficients "
; ' © {2s/2d)

- basis

(hs)

0.37799
0.72145

(3d)
0.44636
0.69762

~0.2|7?6
-0.40368



(k)

Copper  K(2)L(8)M(8)4s23d%, 2D, nP(0,1,2).

STO Exponents

1s
s
2s
13
3s
3s
As
As

L4

30.03790
21.04960
14.95750
11.50220
6.09683
5.07634
2.15090
1.16808

7.02531
3.00372

Valence
¢(hs)
c(3d)

AN

" Full H-F-R “MODEL POTENTIAL H-F-R Coefficlents

(8s/2d) (6s/2d) (4s/24) (3s/2d)

coefficients basis basis basis
(4s) (hs) (As) (bs)
-0.00381 -
-0.02971 "
(-4

- -0.03408  -0.1013h
0.15417  0.16226°
-0.19338  -0.11052 0.09314
~0.05662 -0.09395 -0.24980 -0.11091
0.48850 0.43313 0.44219 0.33019
0.62466 0.68276 0.63639 0.77117

(3d) (34) (34) (3d)
0.42787  0.54547 0.71053  0.54661

0.70140 0.59331 0.41727 0.59220

orbital energies In a.u.

-0.27338  -0.27332 -0.27358 -0.27338

-0.686b8 -0.68600 -0.68591 -0.68607

Zinc  K(2)L(B)M(B)4s?2341°, 15, nP(0,1,2)

(2s5/2d)
basis

(ks)

0.42363
0.66791
(3¢)
0.48909
0.64674

-0.27350
-0.68599

$TO Exponeﬁts

s
Is
2s
23
3s
3
As
As

kL]

31.00810
21.53360
15.278¢0
11.90€690
6.42595
h.29540
2.22120
1.19514

7.34928

3.13941
V;Ioncc
c(hs)
€(3d)

full H-F-R  MODEL POTENTIAL H-F-R Loefficlents

(8s/24) (6s/2d) (ts/2d) (3s/2d)

coefficients basis basis basis
(4s) (&s) (4s) (ks)
-0.00387 :
-0.02963

-0.03517  ~0.10088
0.15497  0.15839

-0.18484  -0.09469  0.09300

-0.06080 -0.09970 -0.24566 -0.10436
0.48526  0.42562 0.h5091  0.32835
0.63036  0.69110 0.68%01 0.77261

(34d) (3d) (34) (3d)
0.43305 0.51838 0.60039 p.h8|97
0.69712 0.61961 0.53845  0.65351

orbital energies in a.u.
-0.27973 -0.27979 -0.27971 -0.27973
-0.71910 -0.71892 =-0.71907 -0.71910

(2s/2d)
basis

(4s)

0.43418
0.66071

(3d)
0.41554
0.71222

-0.27983
-0.71901
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/ TABLE 4.7 Orbital Exponents, Coefficients, Energies and

Model Potential Parameters for Sulphur

{

| a
I

'
a
!

Sulphur K(2)L(8)3522P%, 3P, " mP(0,1,1).

ST0O  Exponents  Full HFR MODEL POTENTIAL H-F-R

(02) 65/4p (65/4p) (65/4p) : &
baslis basis basis
coefficients 8=2.0|c| B=1.5|c|
(3s) (3s) (3s)
13"  17.07720 0.00074 0.00562 -0.00131
T 1S 12.69440 0.10897 0.06550 0.07011
2s 6.72875  -0.03080 0.128%4 0.09934
V28 5.2028F  -0.37678  -0.h8306  -0.h4321 i
¢ is 2.66221 0.59902 0.58983 0.6048)
3s 1.68771 0.52459 0.54791 0.53040
: (30) (30) ey
P 9.51251  -0.05241 -0.01372  -0.01593 '
20 5.12050  -0.22012  -0.20189 -0.18798
. 2.33793 0.53768 0.49988 -  0.52291 - ¢ . -
3 1.33331 0.56153 0.60065  0.57807 .
Valence orbital energies In a.u. ‘
(3s) -0.87897: -0.87894 -0.87896

(3p) -0.43694 -0.43698 -0.43697

Model Po_tenth_l Parameters for Sulphur

Basis
Set Al Az “3 a, az aj 'l 52 !3

6S/4P l.666.7, 3.6002 0.4332  9.1M47  6.0316 -2.6742 184,0022* 18.0032 13.3624
€S/hp - 1.6667 h.066M 0.4176 9.5677 5.6226 2.8882 138.0017° 13.5046  10.0218
. .

83.2.0]c}
gl fle]

.- o
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coefficients shows. Especially foT_less;extravagant basis sets, smaller

"B values:gave_betgerhfits, la}ger' B values tending to push orbitals

S

A crude explanatton for thls 1mvolves the prOJectlon term
©B; |¢k><¢k| f ThlS |s a repulsnve term 51nce any overlap of the valence
orbital with ‘a core orbital |ncreases the total energy, w0rking agalnst

the variation prnncuple ( f BE is ]arge only very little overlap

is safe and the orbltal is: pushed out ,whlle.for a’smaller BC- thel'?e_“l-<:‘ A

" .k ‘

- valence orbltal may. shlft further lnwards for the same galn in . total

N

energy

3. Basis Set Dependency of Model Potentials

N

\‘In the Bonifacic-Huzinaga formulation of the mode] potential
metnod, the parameters depend on the basis sets chosen for the calib-
ration. One obvious dependence is in the projection operator terms,
which are to be constructed with some specific core orbitals. They
represent how wellfthe core orbital shapes and energies are known.

For example, it is conceivable_that SZ. accuracy in the core orbitals
would produce a different model potential frbn thaﬁ"produced by DZ
or HF quality in the eore} In additjon and independently; the
valence basis set chosen for calibration affects the model parameters,

as it does the shape of the associated pseudo—valence wavefunctions.

though some clalms ‘to: the contrary have been found in” the*ltterature [56a}.q?551{§¥

LR ~ oy

P .
FEN

) . A 2w
_\_'-;-,

cular calculatlons, atomnc calculatlons Be«ng ca1|bratory in: nature

Mddel potentnals ‘are’ Prlmarlly constructed for use |n mole-;ff-7;~~7
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The basis set dependency usuallyemeens that’che geme accuracy mus t be
meintained in molecufar calculetion as wes_used in'the‘cel}bration.
But the flexibility in basis sets may be exploited to'construct valence
orbitals which are suitable for soecific purooses [65].
[n thlS work Cwe chose model potentlals callbrated at DZ
accuracy in both the core and valence, a choice which is both
;”economjcal and close toth accu}acy in most’ cases.
jF; eho]eculer_SCF Cohodter'ﬁhoore@" S ‘ T“/l

. S
e y

fhe'éCF4ca!culations.are;based'on a One-Center Expaneion‘b
Pfﬁgram written by Y«»Hacano; T. Nomura and K. Tenaka»of Hokkaioo
University and modifiednoy‘Y. Hatano at Nego?a University; Jaoann
Originally written in single pfecision FORTRAN for the FACOM 230-75 N
computer, it was trans]eted by the present author into the IBM dialect of
'?ORTRAN, modified'and hun at.double-pcecision on the.Univefsfty of Alherta's
AMDAHL 470V/6 computer. The modified version s available from the aut‘hor.l‘
The program is written as an aogregate of many options; each
of which perforns a specific function and calls a set of subroutines
for the purpose. The program makes extensive use of magnetic tapes
for the storage and retrieval of intérmediate results or data, thus
providing an extension to the.memory capacfty'necessary for SC?
_calculatlons We. illustrete the general structure of the,program’by
f“ff?cﬁﬂéf}*;“ cons}derlng the 51mp1est SCF calculatlon ‘on H.0, -Without»geome;ry

2

-.or: orbltal exponent optlmlsatton The sequence of optlons is: .
- VT e B . o _ :
; fyﬁ_MTOPENL opens all magneb«c/tape flles to.be used oot
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* BASE "~ reads in basis functione and symmetries
* INTEGRAL calculates a]l’one-center‘integrale: overlap; kiner}c
energy one-center nuclear attraction and two-electron
Tntegrafs Ee |
T OFECEQTER ; ca{culatesbthe ffcenfer~nuclear attractiondintegrals- 4
1 and nuciEEr{n::::er reouision terns _ PO o
v4_;“SCh; IO solves the Roothaan equat«ons and outoute the SCE” regylpsx';:.f\fi

-

* STOP .. . .closes files. and termnnates the JOb

““ Ihere'are.meny other'optlons

’ Clearly ourimodl}lcation wae‘neceeeary'in‘ *iNTEGRAL‘add/or
*OFFCENTER, ' since we may;heyehmodeiAthentialS sitﬁing at the expansion
‘Cenﬁer end/or'the offcenter nuclei. \jWe.did\this by adding new options-,
*MPEC and *MPOFF;WQhoee-subroufines incorporate del potential terms,
but are organised in the same manner as those in- *INTEGRAL and
*QFFCENTER. Thus they calcu]ace the new OCE-MP integrals without

& > -
changung the basuc organlsatlon of the program, nor itsnnternal alarms

>

f]ags convergence and dlvergence thresholds :_ln thrSjwayjtneTprogram j{;
is mdified to handle all casesucovered by Haténo;e-brogram, bihéfcaéés
where the model potential sits at the expansion center,:at the off=
center locations, or both.

In order to take full advantage-ofﬂeymmetry, [12d] Hatano's

program is written specifically for closed-shegl hydrides AH2 of

A]
C2v symmetry, or,./AH3 “of C3v symmetry. V-As*shown in Figure 4.2,

the coordlnate system chosen is such Lhat the molecular axis is the

/

-ax1s blsectlng the bond angle in case oﬁ

and ‘the expansion

2v’
N .
center at the heavy central atom_ A. The ic2v molecule lies in the
y z.plane The bas:s funcrlons,cornespondun ;o‘the di fferent

B S ' ‘ \
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.lrreduclble representatlons may then be classified: accordlng to thelr‘

122

- spherlcal harmonics. Table 4.8 summarxses the classnf:catron of -~

) 'total of 50 functions per molecule. The. STO QUantum“nﬁmBetsla}e:

symmetries encountered, in-our own notatgon.
The dimensions imposed on the arrays allow the program to

handle up to A25 “basis functions‘per symmetry species, for a'gkand

llmited to n an integer up to 25 and % uh to 7, which are

considered sufficient for most applications.

As shown in Figure 4.2, the program can handle Dy, and

D3h symmetry. when 6 = 900. We had set our sights on N2 as

the test Case for the development of the OCE-MP method, and soo%ﬁ
reallsed the problems lnvolved in puttlng the N. atoms on the y- laxis.

One problem is thﬁi baSlS ‘function not normally considered ln th ’
symmetry have to be included, e;g.,' d+2;‘ln vééw(A]l 'symmetry,

) thus restrnctlng the calculatlon to an essentlally smaller basus

<o

" The other lmmedlate problem. was that thh model potentlals‘
at the offcenter pOSlthﬂ rotatlonal coordlnate transformatlon

wou ld be needed for. the lnfegrals,'av?eature we did not.haye;lnitlally

and which we consider extraneous complication in the development.

is feature is not explicitly present in Hatano's program, since

ffcenter nuclear attractlon lntegrals are apparently calculated

"by the method of expanding %—- in terms‘of“sphenlcal harmonrcs

, . b
and thenlusing Wigner h3jesy@bels;
:Ve_therefore»inStead explored the'posslbility of “ttjckjng“

the program to handle molecules with atoms situated on the z-axis, in
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which case the }ntegra]s are as developed in Chapter 5 without
rotational coordinate transformation. Slight modifications were needed
in the *OFRFCENTER or *MPOFF routines of our program.

The modified program was tested on linear HZO with

s~

Moccia's bases [12c], along both the y~- and z-axes. The results,
were identical showing the brope} 1-1like (nx—n or nx-ny) degeneracy

characteristics. The program-was also tested on the CZV molecule

HF with Moccia's basis,‘and yielded exactly the same results as

Moccia's. The program was now ready for NZ'

We have subsequently incorporated the rational coordinate

transforamtion feature, since it cannot be avoided in.non-linear

~ N~ o

LA

n@lecules such as SO

X | _ I
° , S . 2

<



CHAPTER V
A

CONVOLUT ION METHODS FOR NEW MOLECULAR INTEGRALS

A. Introduction

In Chapter k4, we saw'that the coupling of the One—Centér
Expansion, (OCE) method to the STO —-Screéned Model Potential (MP)
approximation produces new types of molecular.integrals, whose
specific solutions could not be found in the literature. We!saw that
the one-center versioms of these integrals‘are easily transformed into
common atomic forms and so solved using familiar techniques.:' The two-

_center integrals, on the other hand, require more elaborate procedures.
»

In this chapter, the Fourier Convolution Method is adapted

to solve all the two—cénter‘ig;egrals that arise in the OCE-MP algorithm.
The priﬁcip?es of the method are defined and previous usage of the
method is reviewed. Then, application to OCE-MP integrals is followed
" through carefully and in detail, énd numerical results are preseﬁted
at the end. |

The Fourier Convolution method is, in principle, an exact
methgd, the only approximations coming possibly from tolerances imposed

numerical ébmputational;précedures. The results are thus expected,

and indeedare found, to beﬁindistinguishable from the most accuraté
available, in those cases where comparisons are possible.

Several usefui of f-shoots to the method became apparént in
the course of the derivation, and these aré recorded in later sections
of the chapter. Notable are the various novel uses to which our |

Clebsch-Gordan coefficients are put, and a new convolution scheme

- 125 -
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suggested for solving one-center overlap and electron-repulsion

integrals.

B. Fourier Convolution Method i 3

)

A

As proposed by Prosser and Blanchard [26] this method states

/.
that a one-electron, two-center integral of the form

H(®) = [ f(£)alr,)dx - (5-1)

g

where (see Figure 5.1) Lo ib’ R are the sides of a vector friangle
" and dt is the volume element, can be recovered through the Fourier

Convolution theorem as

whe re F(k) and G(k) are the Fourier Transforms [68] of f(r)

and g(r) respectively:

X _3 o
J Fk) = (k) = (2m 2§ o e®Lf(r)ar (5-3a)
L-spé?;
h _3 '
G =g (k) = (2m) 2 f - eTEL g(ar (5-3b)
r-space

and Ap is some constant related to the parity of g(r, ), i.e., to

whether or not g changes sign when r_ does.

~b

Proof of Claim (After Prosser andeladthard)

The claim is that equation (5-1) and (5-2) are Eq&fvélent.

9 “‘):"’

v -
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Step 1. From Figure 5.1, I, = L, - R. Equation (5-1) can then be

rewritten as /

1(R) = fflr)s(r,-Rdr, BERNCEY

which is called the "convolution' or "'folding" “of the function g with

the function - f.

AN

Step 2. Lemma (Fourier Convolution theorem [69]): The Fourier
transform of the convolution of two functions is the proguct of the

Fourier transforms of those two functions. Thus the Fourier transform of

[(R),

[ 1R 'R gp | (5-5)

is given by

M) = Fli)6(K) : (5-6)

«

where F(k) and G(k) are the transforms in (5-3).

Proof of Lemma. ’

|T(}5) = (2m) f1(R) ek B dR.
s o
N AR ER IR
< 4 '

-3 g S, Ciktx,

= (2m) A [ [ f(;a)g(B-La) ~ Dee ‘e. dg _dR
3 3 o

, _ HR-ro) g (5-7)

2m) 2 a (’z‘affR F(R) a(R-r_)e

~
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Since in this form L, is independent

dg = d(R - ) (5-8)
T . ik (R-r)
' (k).= A [. F(k)g(R-r_ )e & d(R-r ) -
R 'a ~.~a
) 3
= Ap F(k)G(k) (2m) % (5-9)
where A ‘isvdefiﬁed by the parity equation
g(r, - R = A g(R - r) ' (5-9a)

and expresses the parity of g.

Step 3. We use the Fourier lnversion Integral (Inverse Fourier

Transform) associated with (5-5):

i

1R = (2m) 2 [ 1T(k) e KR g (5-5a)

P

Substituting (5-9) in (5-5a) immediately leads to (5-2):

-ikeR

L(R) = A [ Flo) 6lk) e™'% R ak Q.E.D. | (5-2)
< » ‘
Alternative Proof. It is possible to prove the equivalence of equations

(5-1) and (5-2) wi thout dfrectly ‘Using the Fourier Convolution Theorem:
v a .
R

Step 1. Form .Convolution eqn (5-4)

Step 2. Define the Inverse Fourier Transforms [68] of eqn (5-3a) and

(5-3b) :



a0 T
_3 ' o |
flr) = 2m? [ &L F(k)dk (5-10a)-
K \ ' .
U._.iv : e B
. colph= (am i [ eI Gk dk e s m et a(B=10b) « e e
L'«Cc:' E o 0 v -'E’ kY ¢ E A 3 w o LT . a o P T P A S - R - o
Define - the parity operator A Y X
- N~
g(R - r)) = A glr-"R) (5-9a)
Step 3. Substituting'all.thése into (5<%) to'get:
WR) = [ fley) glr, - R) dr, 4
~] PR
o= Ap f f(ga) g(R ~ La) dr,_
Y p—
Use (5-10a) and (5-10b) with r = R ~E
- %— -ik{R-r_)
I(R)y = A [ f(r)dr_ (27 [ e 2 G(k)dk
P ~a’' ~a c RS
L, k
i - 2— : iker
= A (27) f f f(e) e T dr G(k)dk
. p . j?’a ~
.k or '
kKoo, o,
.'-;2>..3_'. - .3_ . .
= A (2n) P @n? F) G(k) dk
P 3
| ‘ SikeR - |
I (R) =.Ap;f F(k)G(k) e ~~dk . Q.E.D. - (5-2)

- The Fourier Convolution Method allows the transformation of
the two-center integral (5-1k or its 2-centric convolution (5-4) into

a one-center Fourier integral (5-2), which is, in principle, a con-
P | | . o ,
/.m’\ N ' .
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"sfderahle‘eihplfficatioh; However ln‘genera],,the_method.requires the '

(
'
]

"eva]uatron of three lntegra]s namely F(k) G(k) of equatlons

el

(5-3a) and (5r3b) and the flnal lntegral of equatlon (S-Z)th,ThiS,iS.

,“not,a terlaL matter, amd can be cumbersome . 0T eJen |mpos&|ble in .

et \n'f'r‘». e e - T wo TN - o

some cases. Ffor f and g Slater type orbltals these lntegrals are

easily calculated, making the method convenient and essentia]ly exact.

C. Review of Prewious Usage of FC Method

4

The Fourler Convolutlon Method is very'versaffﬂe‘and'has been

o R - oA

P

put to a vaclety of .uses, by -various workers

. Two-Center Ohe?Electrdn lntegrals

-

ﬁzProsser,and B]anqhard [66] have used |t to evaluate one-
electron .two-center integrals ar15|ng from molecu]ar orbltal analysis

of Ramsey's formula for the NMR screening constants These are of the

e i

T type T s e T |

.

A

a ~a

I(R) = f¢ (r f(r )¢b ) dr, | (S-li)

K]

whe re f(rb) is a scalar function of distance from center b, only,
which is incorporated in ‘the corresponding Fourier transform for
center. b:

iker

6k = R R T CHTT IR

k-space
In their case the function was

-y

-3

Geller [70a]used FC to calculate 2-center overlap integrals for Slater

flr) = r” . o  (5-T12a).
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" type orbttals of non-lnteger prnncnpal quantum numers"n

"where [N, L ,M] are .basic charge distributions as defined by Roothaan.

N
<
.
RS
¥
s

- p p,‘:—- ~. T ]32 e

I

;' in calculatlons

on. the hydrogen molecu]e—lon Later he applled the methOd to both the

two center and one= center one-electron lntegrals over products of Slater-

type orbltals on. one center, and an operator lnvo]v1ng “SO]ld spherlcal

harmonlcs“ [functlons of the type‘:r - A:va(cos,¢)‘cos:n¢]-lon'the

’~other_centerj25130'TheSe*integralsva*egneededxdn-the»evaluation,ofo :

e]ectrogagnetic interactions afd are essentially of the form

g p o (cose ) [cos [me). o
f [N,L,M] ‘ s : o : - ‘ ar P (5;]3)‘
a Li+] . . . :
s sin |M [¢

¢ . ®

I

eeeee —_— - ,
Geller s scheme can also handle, "as a special case, two-center nuclear

attraction |ntegrals of the type

t 1 ‘ ’ : : I _1 . ) i
—dt > f [NLMI v " dt NS (5-14)

[xx, = b
D

a'a

about which more will be said in a later section. Filter and Steinborn
[71] have recently evaluated one- electron type convolutlon integrals

over functions of the form
" : ’ 1 . _
2.7 L+v
oy (o) = B NORUNERY (5-15)

where Kv(r) are modified Bessel Functions of the second kind and
YM(G $)  are the usual spherical harmonlcs The authors show how

these ”reduced Bessel functnons“ ‘B:‘L can be used ln approxlmatlng
) yhe

multicenter mo]eCUlar Tntegrals' dependlng essentua]ly upon an. expansnon

of STOs in terms of the "reduced Bessel functions" :B:'L."However,

it should be noted that in view of the present state of the art, such
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“an expansion-has 'to perform Competitive]y yis-a-Vis th¢ Gaussian

expansions. |t remains to be seen how succéssful this method will be. "

'2.- Two-Center Two-Electron Integrals.

The Fourier Convolution Theorem has béeh used by sevefal
workers to solve double integrals ,of the form

N WIS PSS AR S S

: ST ~2
r-space . :
. N | R RS
-where 'r. .-, r,, are electron nuclear distances and ., = 4
~al ~p2* .7 i - ~2 Lol
is interelectronic distance (Figure 5.2). "The integral C. is :
'breCOnstituted through Fourier Convolution ideas as [24]
o Ty T T '
c=A_f kg (kKh (k)dk . (5-17)

k-space

This transformation is achieved'through a rather simple trick.

Introduce the inverse Fourier transform representation for h(le):

h(LIZ) = h('EZa ) Lla)
3 . .
- = ike (r, -r,.)
= (ZTT) 2 f hT(&) e . 2a 1a dE’ )
k-space \
'g‘ T ikery, Tkr, T
= (2m) °f hi(k) e - e @ dk (5%18)
k-space ~

‘We use the following vet¢tor relations, which are extentions to-thg one-

electron case.

Ly =Ly, - R, where  R=8-A



- : 134
"So the"parity4equaffon eduiVéiéBEJto,(éféé)ftféﬂ
o g(r,,) = 9(528-5) = A 9(5-528) . (5-13)
* Also’
BT AT L, s d st A fixed
L, = B + Lop so.‘ &sz = dLZb = dLZa , B fixed.
. : : ' -
Substifuting (5f18) and~(§—19),in (5-]6) gives .
l ) %- T ke La -k L2a
e - c = ﬁp [/ f(Lla)g(E-EQa) (2m) fk h'(k)e e dr}dL2
) %' T e Tkery
= A (27) f o hi(k)dk [ f(r, )e ®dr, x
p K o~ ~la ~I
- e _i"s.’r;za _
S 9REy,) e Iz
sting thé relations (5-3z) .and (5-3b), the following resgltS&
T 3 ‘
c = A (2n) 2 dknT(k) (2m? £
ok o
ike(R-r, )
~ '~ ~2a -ik+R
rg.. K
] 9lRrp,) e e 9024
3
= A (@m? [ a0 (k)g () e KR (5-20)
where now
T '% . ke (R-r,p)
g (k) = (.217) fg(&-,I;Za) e % dr, (5-20a)

¢

The two-electron integral then is solved by findihg the three Fourier
transforms and‘solving the integral of eqn (5-20).

- A major drawback of this method for molecular integrals is

>



»»tha% it can handle.only Cdulbmbrtype,integrals b#‘the”fbfhv

C(R) ff X (])X (1) W b( ) (2) d{]d,[,z (5"2])'
i.e., where the'éhafge distriButioq of each electron is one-centric.

This reduces by Rootﬁaan [61] ‘decomposition to integrals between

baS|c charge distributions-

CR = [ J =2.(1)

] L
(D= 9,(2) deydg | (5-22)
I Aiﬁz"a “it2 ° T o
whe re Q_ and Q ~are equivalent to f ‘and g, and h(r ) = ]

Is the electron reﬁulsibn_potenﬁial. The . method cannot handte exchange-

“type infégrals:

cR= [/ 0 () 3 LZ x5 (2)x; (2) dr,dr, (5-23)

which demands the evaluation of 2-¢entrfc charge distributions.
Geller [70b] has used the method to evaluate two-center

coulamb-type .integrals with

P - ) Rl

‘ hir,.) = + (pure Coulombic)
~]2 r ‘
12 .
and '
-3
"2 2(‘:°S 812) B
hig )=y or (5-24)
-3
r]2 P (cos 6]2) cos 2¢]2 .
These ;wo-pérticle botentia] operators arise in the analysis of zero-

“field.sp]itting in molecules Dmc].Geller's derivations usua1ly involve
the us& of Condon- Shortley coefftcnents and spherical Bessel functions.

L Perhaps the mos t obvcous characterustlc of his derlvatlons is that they
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reduce to a lengthy list of special final formulas for each combindtion

of orbitals or basic charge distributions, rather than one final general
formula.

A slightly different procedure is that of Harris and Michels

i

for two-center Coulomb Electron ‘replusion intégrals. They use a dif-
ferent'typ; of vector coupling coefficients, and exploit a number Qf‘-
recurrence procedures to obtain a unified final éxpressioﬁ. Their
method, as adapted in tﬁis wérk; is dfscussea in detail i@)Section c

of this chépter.

3. .One-Center Integralé: A Limiting Caéé,as R =+ 07

Geller [25,70b] noticed that the oﬁe-center one-electron and
two-electron integrals can be formulated as a special case of the two-
center general formulas. For example, by letting R =0 in equations

(5-16) and (5-20), centers A and :B fuse together and the subscripts

@ and. b can be dropped. The resulting integral is )
Y a - APy : Y=
J=[] Fle)ale,)h(r, ,)dr dr, (5-25)
‘/;ich can be recovered through Fourier Convolutidn as

3
3= a0 e n a o (5-26)

The efficacy of this route to one-center integrals has not been put ©

to numerical testing, the probable reason being the existence of the

tive and well-established Laplace expansion method for 1

"2

hoty

.as used by Roothaan.

k. Three- and Four-Center Integrals =" AR R

Ruedenberg [72] has derived the convolution integrals to be
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.-
solved in the case of multicenter two-electron integrals. His method

hinges on the manipulation of the Fourier transform of the 2-electron

interaction potential. . He writes the Fourier inversion formula
. o5 n
. (5-18) as
® - % T ke (ry-p)
h(r,,) = (2n) f dk h (k) e A
where T2 = I£1-£2L and defines new variables
ES US| -A’,’ §,2=_(£2-.§) , A "
o , . ' (5-27)
83 = -R (see Figure 5.2)
It is clear that
L 7Tty (5-28)
2
Thus he can write
3Lk ks, ke, |
h(rp) = @m) % [dkhi(k) e e e . (5-29)
Applying the plane wave expansion
iks S
_ A} _
e =4 V] ] J(ks) Y, (8,4) VY, (u,v) - (5-30)
2=0 nF-L .

where s = (s,8,¢) and k = (k,u,v), to each term, and carrying on,

he is able to recover a Coulomb~-type integral

J= fdv) fodv, wt(et@)/r, | (5-31)

as ‘ S
J=-F cam Y,  (8.,6.) F. (s,) (5-32)
o Z3m3 3’73 m "3
where :
-
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v e '.zi¥zz+né w "'I ) '”‘ .
Foa(33)= () fo dk Fllm](k) Flzmz(k) JQ3(ks3) (5-33)
and ‘
@ | ,
Film](kz = /1] av yl]m](el¢l) jzlfksl)“l(sl)“:; L . (5-3R)
e m, (<) = 1] dv, Tym (8282) Iy (ksp)u'lsy) (5-35)

o

C(2m) is .a vector coupling coefficiént
% .

2 B % * ‘ * )
. C(am) = 27" [f do-sin ¢ d¢ yliml(e,¢)y12m2(e,¢)y23m3(e,¢) . (5-36)

For ‘three- and four-center integrals, he says the _w's in (5-31) could

be two-centric charge distributions

3

(5-37)

1" L3
w Xb Xd

‘The actual evaluatioﬁ of the 3 infegfals'(5-33), (5-3&)-and>(5—35) is

E

not a trivial mattér, éqd can pose difficulties. Ruedenberg did not
offer any clues as to how they might be evaluated, and no follow-up

for actual numerical implementation of this method could be found in

the literature. We believe this to be a reflection of scepticism

toward the applicability of Ruedenberg's scheme. < 8

“5. Othéf Uses of\Fourier_Convolutidn.Method

_Consider the integral:(see Figure 5.1)

; p q
B [x5 (1) x (1) dr

]
ry ~1
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This is the potential generated at point B by the tharge dis-~

tribution x:(l)x:(})‘-afvbéint I, in analogy to electrostatic

attraction of two géint;&hargég. For a charge dist}ibdtion, it is
nece;sary to integréte ove; all the spacé of electron 1 to.

simu]aFe a p;int éharge. ,Siﬁf]ar]y a two-electron integral éf the
fd?ﬁ (5-22) can be rewritten as

{

. B : K | :
. C=/ dr, 9,(2) [ dry 2 (1) m _ (5-38)

Integration over the coordinates of electron | amounts to ‘calculating

the potential of thetcorreéponding charge distribution at electron

‘ _ |
Uy (rys8p00,) = fra (1)« L gp

a 12 i

] 2.,
I LM (e e)) T e

ft

sin e]de] do, (5-39)

"

is the potential for electron 2 due to the charge distribution of

electron 1. Roothaan has used these ideas to evaluate two-center

two-electron Coulomb integrals [61].

Ruedenberg, g-ohata and Wilson [66] regarded _he Coulomb

integral stightly differently. They observed that when wiitten as
- . %
C(R) = fdr, [/ dr, a_(1)a, (a)]. | (5-40)
~0 ~1 ~2 “a b T .

the integral can be regarded as the potentjal arising from a source

defined by the overiap integral between charge disbtributions f and Q
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SR = fdr Fle) alg) . (5-41)
This led them to consider the Poisson equation ‘
' - . ) “ﬁ‘ I
b, C(R) = -bn S(R) - (5-42)
and’ its inverse
‘H - - . ] ' -
C(R) = f dv' S(R')/|R-R'| _ (5-43)
as~valid.
Tne proof of theée two equations was carrjed out by the
Fourier convolution method:
S(R) = f dk Fh) ol () e KR
as above, and
T T, -2 -ik-R
C(R) = hn [ £ (k) g (k) |Kk| ™ e '%R (5-4bk)
since /gfﬂﬁi\x\
3
. N -
h (k) = bn |i| 2
when

.
h(,';].z) = h(,,[,]—,[,zl) = ‘L]_Lz.

Differentiating (5-44) with respect to R twice under the integral

sign gives (by Liebnitz Rule)

b [ i)k 72 T o () e TR gk

- 4 S(R)

Ap C(R)

L]
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Expression (5-43) was used to calculate the Coulomb integral,

( [y
building on their experience in calculation of overlap integrals (5-41).
Silversfone[73] found a clever use for the Fourier Convolution

Method: to evaluate the coefficients in the expansion of a function

of the form
v(p) = f(r) Y (e,0) _ (5-45)

Lere YL(6,¢) is a spherical harmonic, - in terms of spherical harmonics
nd radial functions whose coordinates are measured from an arbitrary
oint in space, vector R away. The expression for this expansion

is

V(R,m;L,M;L,E)1YZ(e,¢) o (5-46)

e~ 8

Y(r-R) =

- 2=0 L

L
m=-
As usual, the coefficients V can be obtained by multiplying both sides

by y?h(e,¢) and integrating over the solid angle. Invoking

orthogonality of spherical harmonics gives

2T W +
V(g,m;L,M;r,R) = [ [ sin g do d¢ Y? (6,6)¥(r-R) . (5-47)
0 0 ‘

Lﬁ<3:ﬂii_t° obtain parity with a 3-dimensional Fourier Convolution
integral, Silverstoreintroduces a Dirac delta-function-type 'radial

function" r-zd(r'-r), in order to validate integration over all

space, for

[ e s(eer) =1 | (5-48)

Thus the coefficient is given by
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V(e ,m;L,M;r,R) = [ drt ¢ (') v(r'-R) (5-49)

s = r 2 a(rr') Y](0,9) . . (5-50)

Eqn. (5-49) is clearly in convolution form, c.f., equation (5—4), and
thus amenable to the use of Fourier Convolution methods. He used

this to obtain expansions of STOs
v(r) = N- AL YE(B’¢) _ (5-50a)

S
parallel to those of Barnett and Coulson[74] and Harris and Michels [19].
Blakemore and co-workers [75] have used the Fourier Convolution theorem
to solve molecular integrals fnvolving Green's functions. In their

methods , the primary ingredient is their variational principle, which .

is formulated using the functional

[f 6 (1) V() 6(1,2) v(2)w(2) dr, dr,

n = . (5-51)
f w V w dx
where
v(r) = - (%_.+ %—9 (potential engergy) | (5-52)
a b
: w(r) = p__(:)L , a trial . function . (5-53)
% = (La + Ib)/g ~(5'5“)‘
-kr
.o ~12 -
6(1,2) = - 5— 2 (5-55)
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s
where r12=|52—[1| and . . ' W

weg ke -1 . (5-56)

. : kst
is the total energy. .
The double integral in eqn .(5-51) is simply of standard form (5-16)
for the use of Fourier Convolution. Writing G(r],rz,k) in Fourier
transfgrm form,
~is(r,~r.) ‘
L7 2 o :
6l oy ok) = = = f e 220t g (5-57)

gives immediately

= ffw (1) v(1)6(1,2)v(2)w(2) dr, dr,
R A O LR TC LU (5-58)
L '
whe re”
F(s) = [ ' () v(g) e 2 Lygp (5-58)

.D. Application to OCE-MP Integrals

1. The Scope

In this work, the Fourier Convolution scheme of Harris and
Michels [24] is modified to evaluate integrals which can be represen ted

in generalised two-center overlap forms:

'(,B,) = f (n]’R’] ’m],él)a (n2)£23m2’62)b dT
J

= <(nl’2"sm]:dl)al(n2:£23m2362)b> o (5—60)

Here, (n,z,m,é) is a loosely defined Slater-type function written in -
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the form ) A__‘ cos , ! ¢
‘ _ . 0s (m
(n,2,m,8) = anm 7o Piml (cos 6) (5-61) -

cos [m| ¢

where anm is the overall radial and angular normallsatlon factor.
ThlS functlon is adapted from Roothaan s definition of STO0s with real
spherlcal harmonics:

(26) 372

(n,2,m,s) = et g (6,9) | (5-62)
- , <z (zntg):]tzf o Ame .

\\ .
where ng(6’¢) . are normalised real spherical harmonics defined by

Se0(8:8) =Y, (8,4) -

2 Co
(5217 (cos 6) | (5-63)

o I
So | (859) = T =g (859) t Yy ) (856}

. 2z+1 (2-Im[)! 1/2 |m
= . pz

[ =+ e (cos 6)cos fm|¢(5-64)‘

Sz,_,m, (ey¢) = ';/_? {Yzjlm, (ey¢) - Y2,+,m, (6:¢)}

= fzﬁ:]'%§;+ﬂigf] l l(cos 6)sin Im!¢ (5-65)

whe re ,Yzm(9:¢) are the usual complex 5phérical harmonics [76]. Notice
i

that the power of r in equations (5-61), (5-62) is slightly different
from the usual one. n is any integer such thst =1 :_n <o,

N " This formulatlon can handle the follownng kinds of lntegrals

A : AN
N )
{
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- a. Two-Center Overlap Between STOs

b. - Two-Center Nuclear Attraction Integrals

15

<(n],£],m],6])al(nz,lz,mz,éz)b> (5-67)
Here n = 0 for “*ls, 1 for 2s, 2p and so ong_andv
h+3/2 -1
NSTO _ (28) 2541 (2=Im|) ! 1/2 0+ 2 (5-67a)
an [(2n+2)ﬂ]/‘ 27 | (2+]mrfi ‘ m ,
and 6m0 is a Kronecker delta. TheSe integrals arise from the pro-
'3§$' jection operator part of the model potential as seen in Chapter 4.

(5-68)

can be reconstltuted into a overlap form through a Roothaan-type

decomposntlon of the one-center charge distribution:

Pl g 51 11
o I x> ~ LZM By <[N,L.M,E] | -

. =3 By <1N,L,M,5]a[(—1,o,o,o)
where
8§ = 6P + 49
a a’ A
N" () N2t (2L+1)'/2 2L+1 (L-|M )'
]n+|+lj'

2r T+ M

and the Coulomb potential %- is denoted in STO form as

b

b>

(]+6

(5-68a)

(5-69)
~

-1
2 (5-70)



where -

N =1, ‘ (5-72)

c. -Two-Center Electrostatic Model Potential Integrals

These similarly. reduce to

| b
= n -&r L : oo .
, y By <[NLM8]a](r e " ),> . (5-73) |
LM ~ : : ‘
where n = -1,0,1,2,3,... . ‘ o ",,/f~"////
i) The case n = -1 is the Yukawa-type potential,
=ar ' .
er -~ (-1,0,0,6) (5-74a)
N C e (5-74b)

v : -~
S

ii) The case n = 0.1,2,... gives the '"s-STO-type'" potential or

- Huzlinaga Potential

. | e~ (n,0,0,8) . (5-75)

v

N =1 . ' ‘ (5-76)
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d. Two-Center Nuclear Attraction Integrals of the Type -
- . ] ’ V L -
b -~
Théase‘caq be rewritten as overlap ihtegra]s:
= e 111 , -
v <(n],l,m',6)’(n ] .Q,mz Zb (5-78)
( A
where “nz-l“ means the powétﬂj? r in~(5-6i) is equal to n,-1,
but that the n in the normallsatlon factor is still Ny These
lntegrals do not arise in the OCE-MP method ; but it is of }ntérest
to note that this method can solve them, v

1t is thus seen that a un:fled me thod. ;. been found to solve,
in prlncnple; all the two center: lntegra]s that ar;se in our OCE-MP
Scheme. The ablllty of this method to solve exactly the attraction
|ntegra]s with a Yukawa potentlal (Type C. J. ) initially attracted us

to the method.

2. Further Definitions and Conventions

a. Coordinate System

" The coordinate system adopted in this work is the one with
all axés parallel and the polar br Z-axes aligned along the inter-

nuclear axis in the same direction, as shown in Figure 5.3. Thus e

IRy
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Fig. 5:3. Coordinate system Convention for 5@651

&

(rby “_eby ¢)+TT)

Fig. 5.4, Shheroidal Coordinate system
£=(rgy *+ rp)/Ryn=(ry = rp)/R, ¢=d,5¢,



¢
¥

A} ’/
- 5%/
according to this system,
. <5 _|P_ > is negativev
: : a 'z
‘ b
while -
<P, [Sb> is positive .
ER . a
b. Theorem (Roothaan [61])
b= [ ngaayamysy) [ny 0y ,m,08,) dr
) = 6m]m2 -.f(n],ll,m],dl)a (nz,lz,m],éz)b d"r

In words, the generalised two-center overlap integral vanishes unless

the magneﬁic'quantum numbers of ‘the twe functions are the same.

T
P

Proof: For this proof (see Figure 5.4), we may, as Roothaan did,

149

(5-79)

@

v

adopt the probate spheroidal coordinate (or elliptical coordinates)

system_in‘which'the integral is separable:

(r:ey¢) > (E,n:¢)

Q

where

£ = (ra+r )/R , = (ra-rb)/R ,v o =¢_ = 9

b

cos 6_ = (1+gn)/(E+n) ,  cos 6, = (1-gn)/ (€-n)
The Cosine Rule give; also

»

1
sin 6_ = [Iez—l)(l—nz)]z-/(g+n)

(5-80)

(5-81)

(5-82)

(5+83).
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. | ' !
. 2 2,.2 ’ :
sin 8, = [(£7-1)(1-n")]" (g=n) . ® (5-8k4)
,,For‘yolume'}ntegratidn,in these coordfnétes, the volume element is

)

dt = (%)3 (£2-n%) dg dn do (5-85).

where the integration limits are
Cl Pt

.

0 to 2w for )
1 to 1 for n
l to = Cfor . : ¢«
‘The signjficapt thing is that the compohent which is involved in the

¢ integration in (5-79) does not change upon coordinate transformation.

It is

2m cos ]h l¢ .m, 30 cos |m |¢ > 0 |
|¢=f ' : ! }{ 2 2 =T d¢ - (5-86)

0 sin |mll¢ m <0 sin |m2|¢ 'mz <0 -

Qé | d
ft gives rise tS'many combinations. A typical one, with ]hll-# |m2|#f

m$,, m, ;_O,
27 ‘
ls = fo ‘cos Im]|¢ * oS ]m2l¢ d¢
2T o
=~ [ lcos (lm]|+{m2|)¢ + cos (Im]|-|m2|)¢]d¢
- 0
: 2 o .
=, [sin (Im]|+|m2|)¢ + cos ([Ti|-|m2|)¢]01T =0 (5-87a)

the integral becomes

But if lm]l = |m2|,
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. 2w
]
=/
Z 7%

[cos zlm]l¢+1]d¢ =

|
5

(5-87b)
m,,m, > 0 and if m, = m, = o, the integral reduces to 2n. Similarly
for all the other combinations,
vanishes unless m, =

it will be found that the integral
1

2 'Therefore, without any
the integral

loss of generality

to be solved by Fourier convolution method can by written
right from-the beginning as

AX -
yob

(n],ll,m],dl)a(nz,ﬁz,m];%z)b dt
L space

| T

‘o (”l’zi’ml%dl)ié(“2’12’m1’52) b
k-space '

N —ik'R

- e ~ o~

di
which is just a form of eqns (5-1) and (5-2).

c On Parity, or How to Determine A

From Figure 5.1 or 5.4,

it is clear that
So invoking (5-9a) yields

9(g,) = 9(r -R) = A, g(BTLa?_

R R
o(r,) = A, 9C-g,) . .. (5.89)

It is this equation that we must solve g}plicitly for VA

3‘;";:‘ { -

:tfgk_ g as Slater-type orbitals.

» in the.case

W)

From (5-66)
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(5-90)

. ' ™
According to the convention shown in Figure 5.4, the transformation

L, = UL (5-91a)
is equiva]ent‘to
1

(Lb’eb,¢) — (rb’ TT__eb) ¢+TT) . . ) (5'9]b)

1]
%

This becomes clear if we rémﬁmber that in spherical polar coordinates,
8 is always measured from the positive z-axis, and must satisfy

0 <9 < n. This eliminates (6b+ﬂ), but vnot (¢+m) which is'legal,

-

as it satisfies 0 < $u< 27, T

Sy . ) . .
An alternativemethod to obtain the transformation is to go

BERr

back to Cartesian coordiﬁéﬁés,‘in which the transformation (5-91a)" -

is recognised as
o

RS Py
0 vh :
:‘.g-, ‘%gq:" Wi

ooy (x,y,2) — (-x,-y,-2z) . (5-91¢)
ot

> ‘ | 4
Using the relations, -

-7

7
X =r sin 8 cos ¢ 7
y = rfsingé‘sin ¢ (5-92)
zZ = r cos 8§

o

We see that z — -z implies
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Y
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. cos’ O —* = cos B = cos 8

s

If both 0 <6 <mand-0 < @' <m

We invoke the parfty of associated Legendre

have to hold, the choice

8' = w0 cannot be avoided. Similarly for ¢ —¢' = ¢+tn . All this
gives
n, .-6.r [m. |
2 2'b
g(-r,) =N re P (cos (m-8_))
@ ~b nzngl b 22 b
cos [[m‘f(¢+ﬁ)] m >0
' (5-93)
sin [[m][(¢+ﬂ)-] m, <0
Now,
" cos (m- eb) = - cos 8
and
: cosv(|m1[¢+|mTJn) r cos [ml]¢ cos |m1|n - sin‘lm]|¢ sin |m]|n
_sin (Im]|¢+lm][n) sin |m]|¢ cos [m]|n + cos [m][¢ sin_|m]]n
. [m]l cos ]m]|¢‘ m].i_O o
(-1 (5-94)
sin ]m]|¢ m, < 0
which gives
(-5,) = N KR LRI
gl-r,) = r.-e T TP - cos 6 -
b” nzlzm] b 22 b”. )
cos [m]|¢‘ m, >0
| (5-95)
sin [m]|¢ m, <0

funct}ons%r(See Appendix A.)

X
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> .
P () = (-D¥T P (x) O (5-96)
ol
and compare eqns (5-95) and (5-90) under this Eubstitution, to get -
0 v
| ) 3 ' 2 ‘
2 / 2
g(-r,) = (-1) g(LQ) , or Ap = (-1) 7 . (5-97)
Tneh
% T
1(R) = (-1) jk (ny2,m5.) (nzlzmldz)b
LT  (5-98)

where superscript T indicates-Fourier transform and k = (k,u,v) s

the transform variable.

The task that remains is to obtain explicit eXpregsdons for

. T T T
the Fourier transforms (n]zjm]d])al and (nzzzmléz)b

the Fourier inversion integral (5-98).

, then solve

g

3. Fgurier Transforms of Slater Type‘Ortha]s

The method used to derive these transforms closely follows
that of Geller [25], a route which, we believe,was taken aisonby
Harris and Michels.

From (5-3),

N'w

» T iE'fa . ‘
]mldl)a = (2m) f e (n]E]mIGI)a d[a . (5'99)

e

n.%
( 1
We make use of the spherical coordinate expansion of a plane wave

e___‘}k°r - z

L .
L L.
N N l 0 ng (il) JZ‘(kr) Ylm(e’¢) ng(U,V) (5_]00)

-4
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where jz(x) is a spherical Bessel function; r = (r,e,¢) ; “and,
k = (k,u,v); £ and m are summation indices. This expression
is written in terms of complex spherical harmonics Ylm(6’¢)' In-

terms of real spherical harmonics, the sityation. is stightly more
complicated, but it can be gleaned from (5-100).

We note that f}om'(5-65), the complex conjugate jg

]

* 3 m 2841 (2-m)' 2 _m -imv _
ng(U,V) = (-1) [—ﬁ;f'YI;ETT'] Pz (COS u) e (5-101)
So the plane wave expansion (5-100) becomes
920 me-g L T (2+m)!
m ' m im(¢—v)
+ P (cos 8) P ( cos u) -e
_ g 'S 2
a © ' . L (Q‘_m)l m .
RN DR R DI P CT N N i & Py (cos 8) -
=0 Jm=-2
. Pz (cos u)-{cos [m(¢-v)]+ i sin [m(¢-v)]} . (5-102)
1
Now let x = (¢-v), note .cos mx = cos” (-mx); and sin mx = - sin (-xm) ,

EAY

sin 0 = 0. So in the summation over m, the sine term disappears

completely, while the cosine term appears twice except for m = 04

when it appears once. We.follow Geller in writing all this as:

© : 2
k- L - -m) !
etiker e l)l‘_jz(kkr) mzo (2-5 ) %:%)—
x P? (co; 6) Pg (cos u) * cos [m($-v)] (5-103)

or
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L2 T el (¢ DY (ke) - P, (cos 6)P (Cos u) +
e Q'ZO _I JZ r ,Q,CO R,COS u

L . “
e nzl I—T(iig)i Py (cos 0)+Pil(cos u) » cos [m(¢-v)1} . (5-104)

Note now that the summation index m Ts‘non-negative; i.e

‘m = [m| >0 . ‘Explicitly the Fourier transformation (5-99) for an.

STO becomes e

-3 w
(nlzlm]es]); = (2n) 2 N Y (2a+1)(+ i
17171 2=0.
£ . 1
(2-m)!' - m . ;
Lo m T Py (eos w)
© n =8:r . S
] 1 a . 2
x fO r, ¢ Jl(kta),\ra dfa "
T m| . : m
x fo P21 ‘Jlgos Qa)’Pl(cos Ba) sin ea dea
2m [ cos ]m]|¢ h
x @4 cos [m(o_-v)1 d¢_ (5-105)
0 sin ]m]|¢a ‘
whe re
y
€ = 2 -'Gmo . | . (5-105a)

Integration over ¢a determines m to be equal to |m||

N\
2w cos [m]|¢
| = f - cos [m(¢-v)ide = .
¢ 0 sin lmlk¢a @ a ¢ - - .
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] l_fZﬂ cos Lm]f¢a & .
’ 2 . tog
0 | sin Im]|¢a
X/[Eés m¢a cos mv + sin m¢a sin mx)]d¢a . (5~106)

'v 1
The following statements are true about this integral I¢:
i) all mixed (cos-sin) products make it vanish (annihilate it);

ii) so do all products with m ¥ |m]| , just as in (5-87a)_above;

iii) for m = [m, | 1 0, the integral is merely equal to 2m = -

eqn (5-87b) ; | o
| }v) for m= |m]| =0, it is equal to
2n cos ]m]1y
2 :
sin Lmllv
Therefore,
v) it can be rewritten as
S cos |m]|v
by = = 8 m | \ (5-107)
m sin Im]lv 1 :
' ]
With m = Imll, now the integral over ea selecfs 2 to be equal to

2], only. This is a statementh\of the orthogonality relation for

Associated Legendre functions.

. |m] LN
] ]
= f Py (cos ea) P

(cos 8 ) sin 8_ dé’
a T Ya a

2, (l+‘m]|)!

" @ T ey . (5-108)




\

i -

Combining (5-105), (5-107) and (5-108), we get

- 3 . ' ‘ 2
T . v2 (29,+1) i
(n] %"Hél)a = @2m anzlm]' o3 l E|m]|, *
L - |
el D PIm,L (o
= « {(cos u) x
+(m L
1 1 1
= n42 -sr .
x f T, . e 92~(kra) dra x
.’ _ _i »»,(z+[mT|)! 2 cos lm]|v

s - ] .
22]+1 Ti’|m]|). E|m][ | sin lm][v

or
2
- g m
T Ly 2.0 1
(nlllmlﬁl)aﬁ = 77 Nn fom i Pl (cos u) x
(2m) *1 |
"’ EN
1 cos |m,|v
x (nlﬂ.lﬁ])a - ] (5-109)
sin*[mllv
where
LY
- oo + ~'. . .
(mi8) " = [ 2 e (krydr (5-110)
0 , _

4

is some kind of one-dimensional Fourier Transform. (See Appendix C.)
Similarly, by replacing the subscript a with b in all that has

transpired in this section, the Fourier transform for the STO at B

becomes e .
(, 2 m.& )T = Ll"" . .12 lell‘( < ) x
Ma*2™%2’p 3727 © ! % cos u
(2m) . 2
: cos. [m, |v
T ) ] :
x (nzgzsz)b : (5-111)

sin |m, [v

iy
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-~

4. Fourier Inversion Integral (5-98)

‘After substitution of the STO Fourier transforms, integral

(5-98) takes the following shape:

. | Y Mty hn 17
1(R) = N . N c(-1) 2 [ ]
n]R]m] nzlzm] . - _ (2n)372
kR Tt m
~ o~ . g . \
x fk dk e (nlllél)a (nzlzéz)b Pl] (cos u)
|m]| cos‘ImI|Vr cos ]m]{v
x Pl (cos u) - N . (5-112)
2 ‘ sin Im]|v sin Im]|v

Again the p]anelwaye‘éxpansion (5-100) <Evaplied to e‘£'5 , where

R = (R,QR,¢R)5 giving

| R 9. 8,42 ‘ 2
MMM MM (2m)
- T N () W |
X E (2L+])('l) Z EM W . PL (cos GR)'
L=0 M=0 , ‘
T | T T
x f (ny2,63) (n,2,68,) " J (kR) k2 dk
k=0 -
L : [mil |m1| .
< f P (cos u) - P (cos u) « P (cos u) * sin udu x
. % )
o 1 2 . ¥
2T o : c05‘|m]1v cos |m][v
x f eos M(¢p-v) - . dv .. (5-113)
0 sin Im][v sin lmllv N

Again angular Integratlion over- v -annlhllafes all the values of M
except M = 0. This }ather'surprising.result can be shown in the

following'way: . The integral over v reduces to such terms as:
X . .

N
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27 oo
IV = fé [cos M¢R cos Mv.— sin M¢R sin Mv] x
1 + cos ZIﬁ]]v
x %- “1 cos Zlmilv -1 ) dv . ‘ (5-114)

sin Zlm]|Q

For reasons detailed above, the term mos t likely to survive after

integration is the 1 in the curiy brackets. To do so it must not
combine w!th any cos or sin termwith M + 0. Thus the inteéral
vanishes unless M = 0. For this va1ue of VM, the integral has the

value

, since if m = 0, the whole integral becomes 2
“Im| " ! “

1 .
anyway. SO we write it as

27

v , € M,0
[my

where € s defined as in eqn (5-105a).
| This value of M =0 ties in cbnveniently with another
transformation we make in order to sfmp]ify the integration bver wu.
This is the decombositién of a product.obeeggndre functions into a
v e .

linear ¢ombination of new Legendre functions. We write this in the

form

..mm' m-m'

where the combination cdefficienlts lez, -are some kind of Clebsch-

Gordan coefficients. The methods used to generate these angular

B

| = s E (5-115)
15).

£y
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momentum vector coupling coefficients are discussed in Appendix A.
There {s»a:slight; but impbrtant,_difference befween our

| definition aﬁd that.bf Harris ahd'Michels. Their formula was defined

wi th comp]e* sphérical harmonics Iin mind, and éﬁrings also from their

interpreiation of Roothaan's theorem. For complex qrbita]s, they are

obliged to write the ihtégral in (5-60) as

<Xatxb> = [{o2gm8,) (nye,m,8,), dr . : .

= <lngaymy8y) Lny2ymy o)y | (5-117)

(see (5-65). By Roothaan's theorém, the integral is then

Y

5Xalef = am];mz f (nyaym8,)  (ny2,5m6,), dt . (5-118)

s ]

They are then- forced to'adopt the decomposi tion

2 I L) 7™ ) . _
(x) = %cﬂllzfj R CO (5-119)

so that in their who[eaanalysis, they have

ml -m] : z m];-m] O -
P '(x) P (x) = C. P, - (5-120)
e D S R bt L R N

~ When our decomposition formula (5-116) is inserted into (5-?13), the
integral over u becomes
m Imll:l‘mll

, 0
ty=17 P (cos u): i-cjl L.

Pq'(cos u) e sinu du =
0 j 172 J
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[m) s ]m ]

10200 0 Q

= ) C, [ P (cos u) P, (cos u)+sin udu,
IR AL o L J

which by the orthonormality relation (5-108) fixes L = j, making the %

A
integraé%ﬁ -

lmlil ’_‘lm

]I' 2
1 = C . . (5-121)
T 2] .
[4
Substituting for - b, and 1, in (5-113) and using the relation
2 -2%., '
2 \
(-1) = = (i) 2 , we get-
. Ay
2 .
. 167 L
|(B) = N o« N . . x
. Nydymy npdm ged “|my |
<y hothpt C|m1| Amy 1
c Le, %,
. T 2
x (n %6 ) (n,2,6.,) j, (kR)K” dk
fo 2%2%27 L
»
N
=N N . A~
mEmy o MM [ MY
x % j (kR)(n] | l) (nzzzsz) g‘ dk R (5-122)
whe}e
‘m' . .- -l Im ] |m l : . o
] ke 71 72 1t '
A = * i - C e . (5-123)
LL 2, Im | bR ‘

Notice the striking similarity of the integral in (5-122) to that of

e
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Harris and Michels (see equations (5-16) to (gg2Q). The only dif-
ference is the factor lrk? here, which in their case is eliminated
by the Fourier transform of the electron-repulsion potential:
hT{k) = ()T = ek
12
It is also essentially the result obtained by Geller.

‘The next task is to obtain expliciﬁ expressions.for the
transforgg (n,i,G)T; One method far this is due  to Geller[ZS], who
derived a general formula for the explicit representétion:'

SN} n-2+1, 2 %(””“”)
T _ 2" ai(n-ga+1)! 8 K B s
(nes) " = - 7 7. n+2 < LG
: : (k™+87) _ §=0
n+i+2 s+ K. 25 T E . .
' ) ) (EJ . . (5-12h)
- 25+420+1/ ¥ s S |

Geller states that this Formﬁla can be proved by mathematical

Rt v .
induction.

A more tfansparentAmethod’was that of Harris and Hichels.
in this method, the‘transforms (ﬁ,l,d)T are geneféted recursively,
‘'using recurrence relations oStained’byuépplying either parfia]
integrations or Bessel functfén identities to eqgn (Srllo). Some of
these recurrence rélatfons are derived in Appendix C.

From fhe’recurrence.relaiions ana using mathematical induction,
¥t,can be seen ghat the (n,l,G)T have the generah‘fqrm:

n+2. : e : .
e A S [0 B (5-125)
>a(n+e+3)

(n,l',s)T
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Proof by Induction: From equation (C-23), (5-125) is definitely true

for n = -l,“ £=10. It is true also for n = ﬂl, all 'J?,, as
(C-20a) shows.. As usual with induction proofs, we assume {(5-125) to
be true for everything up to (n-],!L,cS)T and try to show that it is

true for (n,l,é)T. For this the recurrence relation (C-15) is usec:.

—

)T (2n+2) 8 (Rll,z;G)T _ (n-2) (n+2+1) (n

2,2

| T
-2,%,8)
(KPes?) . (K8

(n2é

_ (2n42)s 0 MTIF2
o 7 2. k Z
(k"+g7)

Rl 2 N 2
B g1 (8) (kP+6?)

i:%&p-l+z+3)

n-2+2 . : 2, 2,
> L
4 B, (95

7

i:%(n—é+z+3x
. = k 'n§]. (2n+2) 5 Bn_i’z’i(d)(k2+52)'(i+')'
, ii%(n+z+2) )
| n
- (n=2) (n+2+1)B
i:%(n+£+1)

2.2 -(i+1)
nfz,zg(é)(k +8°7)

We cfeate a new index | = i+]3§950 that i = j-1,

>

T n+2 -
(n,2,8) =k ¥ (2n+2)6»Bn

._](a)(k2+52)'j'
Jognese2) +1

-1,%,]

(n=1) (n+e+1)

, 2. 2.-j | ‘
B0y o1 () (KP+e?) | (5-126)

jzzl—(n+z+l)+l

Clearly, the lowest value of j is
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"\

[y (k241411 = [ (ne43)]

and the highest is n+2. Thus1withbut loss of generality we can write’

n+2 .>- .
(n,2,8)7 = k* OIS 5 R (5-127)
- jz%(n+2+3) '
where, in‘general, Bnlj(a) is-made up of terms from both | and’
Il in (5-126):
By (6) = (2n+2)68n_];2,j;] - (n-l)(n+g+])8n_2,2’J_](6) ,
j is just an index; so we can use | instead. This is in fact an

anticipation of a later recurrence relation (c-33)!

The functions ani(é) ‘may. be genérated from the recursion

relations
o Bg = | S N (5-128)
B o1,a,040 - 2880 5 0-1, o | - (5-129)
ﬁ;,z,z+2 =v(2“+2);-82-|,2,§+1 S - # (5-130)
At . S
Brei = 2(“+])6'Bn-|,z,{-1 § (5‘2)(”+%*')Bn-2,&i-1 B30)
o

Equations (5-28) to (5-131) are consequences of the recurrence
relations'derived iﬁ Appendix C. |

Note the difference between bﬁr eqﬁations (5-130) and (5-131)
and the cor}espondipg‘ones of Harris én; Michels, (their equations (67)

and. (68)) which we believe to céntain misprints. -~ ¢

B
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Substitution of eqn (5-127) for (“l'zl’s‘lk)T

__\__/;) (nZ’ZZ?GZ)T into eqn (5-122) leads to .

) m .
L(R) = Nn Lom, anl m 2 2 2 A ! - B . (8,) x
™M :

and

(5-132%

L+, +2 - . :
We put k " in the form KHF2 by letting

2+ +2

L+2] ¥y

‘ (248 +2,-L) | (5-133)

A}

—

0
i

So (5-]32) becomes finally, | .

- } L] ) ) ] - ‘ v .
) - t(R) = Nn 2.m Nn L.m 2 2' Z ALR L Bn L. (8) x
q 1711 27271 L i i
‘ ; ]‘ 2 Ve
| X .
L, —(2+2]+22-LY
i (GI’SZ’R) ' . (5-]34)

x
@
—
[e2]
N
~—
£

where

L+2]

k i (kR)dk

L,j. = g A;
W3 (8,6,,R) = % / (5-135)

o 7 : i, 1 1
T . ) ] 2 . O (k2+6%) ](k2+62) 2

2

The summation limits are

(n+2+3) < i < n+2 in steps of 1

Nj—

and~
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| I
<L <o+ in steps of 2 , (5-136)

Equation K5~]3h) is of a particufarly convenient‘form, because it is
- m

" R : -1 o .
separable into 4|st|nct arrays ALlllzf Bnligé)’“ a
W?’Jl (6] 62,R),v which can be'prepared and checked jndependently, and,
1%, , ; T .
then combined together in an aggregate sum. ¢
5. Generation of W?J ; (6],62,R) Integrals of Spherical Bessel Functions
o . \_”;{1 ; 1’2 " . . 5

2

The rgmaining problem is the evaluation of egn (5-135). Here

-again, advﬁﬁtage is\¢aken of recursive methods and properties of
0 ' ) \ -

spherical Bessel funcf?pns. v o »
Using the identityz ‘4“,' ' o )
KPP =1 - 62/ (kPe?) - (5-137)
- : «
(5-135) immediately gives . -
\??
af w.L’g = Qli*»aii\i -'»»fi"J‘;' (5-138)
IR e S S
and - o \\ B
) N )
6§ whod = yksd _y - oWt (5-139) .

Lotz Tl AR

Proof: From (5-135), ) ;

A
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L+2] 2 4
DL ) ke L (kR
& \].r"‘li = ? I H l dk
lﬁ 2 0 (k2+sf) 1( 2+a )
N kL+2J«jL(kR)
= -T.T- 2 2 . i — ) : 1, dk . (S—IL}O)
0 (k“+8%) 2 .2

.l (
M (S s PN o I

Now apply (5-137) with & =8

2 L L2 vJL(téR).k“ZJ'
‘S] W ’ = T f . _'] T JL(kR) x
] 2 0 (k2+6%) 1 (k2+62) 2 -

U

L+2,(J+]}
x T dk

" (k +52) I(k2+62) :

] 2 ¢

i

which is preciQely (5-138). Similafly'using (5-137) with & = &

2
gives (5-133). Using the recurrence relation (B-7) for Jps
2L+ : . 7 . .
—5 S (kR = kDj L (kR) + 5 (kR)] (5-141)
and putting it into (5-135) we obtain
(Z_L*l) Wl ot ‘ (5-142)
' ' 2 2T ¢
..g ) 4 - - /
" Subtracting (5-138) from (5-139) gives -/
2 - 2 L, L, -
& a N 2, Wi ’J =wod ey (5-143)

0 2 ilylz-] |]fr,|2

*h

4n (5-138) put L » L-1 to give
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W.L—:’J+] = w%—liJi _ 5? wl;:J . -
Y1019 17t 1 '2 :
o

. : .
When this is substituted into (5-142) it yields

L+1,j -, j -1 R , .
Wi ]fJ = (EE%l)‘w%’g - w?'liJi * 5? w% :’J - (5-14k)
1°°2 ‘ 12 1 2 1°2 .
If instead (5-139) is used, we obtain
IR L AL L R (5145
12 1°2 17°2 1°2
Further useful relations follow. . In ceftain cases the W%’g ‘may
12
be eOaanted_by direct quadrature. In particular,
»
0 .
00 2 [~k Jp(kR)
Wwo =R 0
PO m Ty 2 a0 ’
(k%+6))
-2y snkRd | : . (5-146a)
0 kR(k +5]) i
. 1 OR '
= 55— (-e ') . , (5-146b)
6 R . -‘A . . . . . -

Proof of (5-146b'  The integral in (5-146b) can be converted to sftandard .
or proven forms by use of partial fraction analysis. -First we write
it -as

00 .21 sin kR

=5 dk
10 m2ZR 0 k(k2+6%)

According to partial fraction analysis, we can write

< ' -



]
Q(k2+6?)

Bk -

A‘
F o R ee—————
k

(k2+6%) ¥

A(k2+6%) + BK?

= —~ :Z"' .
o klk +62)_

b

170

Examining the terms associated with the powers of k in the numerators

of both sides, we find

kKZ :a+p=0
| SRR \
0. A §% = 1

1
which give A ='li- , B= ~-l7\. +So in (5-146a) We'gét
.6 .
1 1

8
Q&

o = G- I~ e - [ SR a
0 &)k 0 8 (k™ 1)

Using Formula 621 of Handbook of Chemistry . and Physics and

Hildebrand, this integral becomes

; -5.R .
oo . L 2 w _w 1
Mo T RE& 777° »
~which is (5-146b). similarly
-8 R =
, _’w?g = f%va(l - e 2.)
© 52 R

N ) o [N

(5-146c¢)

We found .it more satisfying and enlightenjng to prove this

jintegral from first principles using the Method of Residues but chose

not to present the lengthy proof in this thesis.

.t
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Similarly, \\
- -8, R - o
WO - —l—- (1 ~e 2')' . 5-147)
ot GZR : {
2 ' '
We also note the important result
Ly g o KT j i (kR) : | \
R S .
0T 2, .2,
| (k7+ey) .
using (B-2), this-becomes =
1o (372 (kR)
2,2 L+1/2°,
= (=" f = dk
7R 0 2 2.0
' o (k +<s]) '
. and using (B-1y)
' F v
. _ |
PEA , Z .
; T A AR G
{ .
and similarly
4 o
' L+] 1 .
L S R, 27V 2.2 N |
M7 = e () (=% K. _, ., (6.R) (5-149)
;; 0,|2° (Té 1)! 262 nGZR i, L-3/2%"2
. The Bessel functions J and K ‘appeaffng here are defined in-
Appendix B. l
‘ ' ; . 00 . T o
Even the very starting function woo Is not trivial:
' ¢
LY t;o ko o (KR)
Q02 L,
00 m 0.‘ - :
2L | | o (s-150)
R - S S 2Tt
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-/

~

u

Proof: Using the definition of j , 1.e., eqn (B-1), we get

]

L © 2 a
~d(kR)
[ 9y (R )~ ¢

) % i J‘/Z(t) t dt . - (5-150)
0 3 - 4
where t = kR. Using the standarc integral (B-13), with
s so that thé conditions - ﬁ+v =0 > - 1
are sétisfied, we ‘get
1 -1
]
00 - 'm R m

l—‘.

2 , ,
- - r @ - Q.E.D.

R
whén reconstituted in equafion (8-1), \ .
- o -
00 _2 jw sinikR’
 ﬂR i

W, = .
oo o

t

— dk (5-142)

it is a standard integral (eq., Handbook of Chemistry and Physics

Formula 621), which gives

00 _

! 2 T 1 :
Yo~ T TSR
‘ - L
and holds only for ‘R.> 0.  * %
., ‘ ‘ A poséible broof?of this standard integral:is of course

‘through the method df“RQ?Tdues (Hildebrand, p. 559).
, W A T
" Our procedure for generating theﬂwli"'li consists of three
| | x o Yil, . 7
‘parts: . o S v

.~
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Part 1: Prepare WQO s, W!O . for a sufficient range ofv
—_— iy, [y,

1°°2 1°°2 .
il’ i2 (determined by ‘eqn (5-125) to be %{n+£+3) < i<n+2.).

Part 2: Using eqns (5-144) or (5-145), advance L to get

WL’O up to - L =2+ 2

] ’ :‘\' . ] 2
\ : {
Part 3: _Raisoﬁ j__lf Hecessary wi th (5—]38)'of (S~l39),giving~ ;
Com S N ) " /
wL J . T o )

] ’

Part 1 is the most problematic and |t turns out that three

alternatnve schemes Qre needed for dlfferent comblnatlons of 6]

and (S.“ - . ; P . e

2 Y

»

Case 1: 6} Mfar from" 62 or 6]/62 "not too near uni ty™ (seé later -

for meaning).

.

In this case, forward use'ofl(Sfl43jwls -a numerioally.

. h 'S
satlsf;ttory way to ob{aln w%’; from WPJA} ;]K and WL’J]~ v o
' . ] ‘2 C 1’ - d v

because there is no subtractlon of nearly equal numbers whlch‘would

ﬁesult in loss of sugnlflcant flgures/preCIS|on especnal%‘»for hxgher ;

li. and'”ié - values. Then the scheme is as follows
S : AR <+ .
i)  Prepare w20 (by eqn (5-]50)), woo and wpo (eqn (5)4h6)r
. _ oo 'y 10 ol. o _
o . .ot Yo T oo |
||) Next prepare ‘w._ 0> wo i whlch'are special cases of
]; : ) v : . h
eans (5- 148) and (5-149) : St o
. L ! ) . . s
€ . . -) v ' )
o1 e 7! ki”l-zz oo L :
.4w.!,o_= 5‘](_2_6]_)‘, ’(T']'—T)"' (5,R) vall i : ,(5‘—1‘53)

— .
. ., C
© e £
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o | . 17k

» -l k. | w
01 . ¢ R 15-2 o _ | .
wO,i] - 52(2"29 77;:777-(62R), all i, (5-154)

where ki are calculated by methods described in Appendix B; especially
(

see eqn (B;Lé). ~1ii) Using eqns (5-138) and (5-139), W?O 0
0 4 - ' v
W e ‘ : : :
_O,i2 can be generated in the following way:
e e L (oI5
wgoi =7 (wgo% -1 OFI boooan iy (5-156)
*2 32 ) v S

Civ)_ With L= -1, egns (5-148) and (5-149), or (B-16) yields

L -‘
S _
Wl ='(—f19 ! k (8 R) : noo b(5-157)
i,0 7,25, =1 . N
e 512‘1 L Gn) (5-158) |
y " L . . (6,R),  all i 5-15
0,1y — 78 =1 %2 2
10 10 o S
v) W. and W, . -are obtained from (5-142) as
|],O . O,|2 : ‘ '
- ' 10 -1 .00 -1,1 ’ '
wii’o R wi‘]_’0 , ”i],o : | ; (5-159)
T A - . :
Wl g wo. - Wyt (5-160)
SRR R o S PE . :
| o e
. vi) Apply (5-143) to generate all of w?o ; ang w:obi
L ' 1°'2

272
(Figure 5.5). ],
- vTT) ™ Go to Part 2.

‘

T
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‘y
X X
‘2 ¢ ' ’ -1, iz
b S
- . ' . jz.
X 1
' 11, Bg-1 ]
i v ' x . . .
T
-
Fig. 5.5. - Equation (5-143)
|
—_> iy o :'{fi
3¢ v 3 3. R
e gl r Lay ,
s . b 3 . e ‘o ‘ . . : ’
. 2 l/ : ‘ ~T~— region of
: : interest
R . e e v
K . . p
. Thel, i2
o .
BN I ' ‘i- iy
: I, 1221
o - e
- - , ,l’/‘

.
.
3.

Fig. 5.6 Equation (5-161)
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''near, but not quite equal to unity'.

In this case forward use of (5-143) becomes unsatisfactory,

because then

L,j

ol sl eeapd
L S N 101o o
: . ¢
or
”%’{1 - W%’Ji -T
17 hiy 1212

q

‘and subtfaction.of‘theSe leads to loss of precision. !Backward'' use

of (5-143) is called for, i.e., going down the index i 29 zero
| -
Vel e g - e
170t '] 172
P
L,J 2 .
W, (8] - 7(5-161)

sy

This scheme will work pro%ided wf’Ji ~are available for the maximum.
: - L1772 s I
relevant i] value. Figure 5.6 shows how'th35~probl;m-is tackled.

The scheme is as follows: _ ,
i) Use steps i) to v) of Case 1 to prepare W?O 0 ’y<wgoi ,\

=0,1,...,l1, where ‘I > max (fz)'

L4

WO W this time for i
L],O 0,|2 , : 1

is some big’nﬁmber‘to-be determined by experfmentatfoh.
i) Assign zeros to all the elements (1-i2, f2+l) : ////4

66 - 10 S
W-. . _,=0=Ww". . . - (5-162)
( iy 1 S i |2,|2+] : .

v
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An alternativi/tp this is to aséign very small numbers to the elements.

(l’)liz)’ i)2&1= O,I,.-.,i max ; e.g., -

VZ'
. | . —(45+ i ) H ‘-'
wed =0 2 . (5-163)°
. ’|2 -
.. : : . . ‘ . dO
iii) Apply eqn (5-143) in the form (5-161) to obtain all wi :
10 . . 172
and»_w'i i .o
AP

'

iv) Go to Eart 2 to raise L 'and“ J.
| | | o L9
Note 1: Justification for approximation ii), and determination of 1.
Equaﬁion (5-161) can always be arranged in such a way that
its right hand side reprgsenté addi tion .of numbers of the same sign,
leading té successivé gain Fn signif%cant'figures and tHus accu%a;y. 0
Successive attenuation of (5-1613 in this way will cause an alternation
of aﬁy error in the initfal, w?J N and the numbers get increasingly

Py,
. _ A 1°2 , _ :
better. So if we start with | 'syfficiently large', by the time i

1
has reduced to the area of intereét(seé Fiéure 5.6) the values of '

W%’Ji should be of acceptable accuracy. The value of | was

0 L S o §

determined by experimentation._ We chose; for geometrical reasons,
P ° ‘ L '

I of the form

=i max 40 i, max o (5-164)

2.

- and set out to determine tﬁe best Q@inimal) n.. For a givén n, we

implemented the scheme i) - iii), '5nd,compafed the values of ‘Ngoi R
= - . | ,
i . . ) ) 2
‘ Néoi.: obtained from it after scaling (see below),‘agéinstfthosé = '
> 2 ) ' ) - Pt

accurate ones from iii) and v). An alternative is to start with high

Ny réduce_thé n and wgtch the point at which results sﬁart”becqmingﬁ
L . " . /‘ .- v » ' . : q “ )
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hae detectably different. [t was found that for n > 3, satisfactory
“accuracy wds obtained (8 significant figures or better).
Note 2: Scaling - In this procedure, where arbitrary values are'given y
_to some initial functions, the normalisation of the functions is also
arbitrary.. ThiS'fs illusfrated as follows: Suppose the assigned
value is 'a factor N times the actual value,which we do not know:
Recurrence relations will not remove this factor. Thus the resulting
values must be sca]ed by .an approprlate]y determined constant dependent
on some accurately known functlon Thus
joyFINAL | ,J yBACK YNowN ' :
(W ’ ) (W ] ) Y U (5-165)
l’ o Y1002 B BACK .
.. .00 10 : A
In our case we used wo] , and wOl (respectively), which we assumed
to be known accurately from (5-147) and (5-160). "~ Thus
c\- [P ‘
00 “yFINAL _ 0 ,0  yBACK- ,
, C g OFINAE 0,0 BACK, .. (5-166)
' 1°°2 : 1’ ‘2
|4 B J v.,
/ ’
j(’ 7 and v
phE o - , o , (WO})KNOWN |
L 10 FINAL BACK 01 ‘
.o ‘j'. C . . : = LY . N * - =
X : - . \(wl i ) (wn i ) 0,BACK -_(5 167)

1°°2 1°°2 (w )

“Note 3: How far is '"f&r'" and how near is 'near'. “The definition of.

“"far! and “near“ was worked eut as follows:

%‘ We make the assumpthﬁ,that whereas “the “forward” use of
.~ ean (5- 143) is stable only when ‘SI : s “far“ from 6 lts~“backward“ '
. 9 o ' . : 1 )
o use315-l61) is stable all thevtjme for sufficiently high . Thus, o //f
P - T . . | R

} .
Y .

v
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as 6] and’ 62 get farther and farther aWay from each other, the

results of the forward usaée should become more and more like those

of the backward usage. So for different values of thresholid relative

difference °

we perforﬁéd'both the FAR and NEAR

examined th2 results for differences

(high 1,

n =8) schemes and

It was found that for ¢ < 1%,

dlfferences were detectab]e in the two schemes

(Case 1) as-

" le- 24
- € = 8 > 1%
£ . 1 -
and accordingly, (conversely) 'NEAR' as
¥ C) A, (
6] -
o € = < 1%
8 .
1
£
Case 3: 6] a 62 - Tre procedure of Lase 2 - -

acceptable but unnecessarlly comp]tcated

taken of the |dent|t|es

L, o ko
W ( I’ R) wl +i

lél’{ C

The scheme is then as followse

00 10

,)_'Prgpare, wi;O“’ wi’o

»

‘dsing i) -‘v)-_6f Case'l.

¥

a6, ,8
,O( l:

for

ey o ubad ~ ﬁ
],R), wO,i o (Glifl’R) R (5 370)
. 1 "2 :
. _ BN .
. . o
= 0gl,. - '(i] fax + i2 max) ,

Thus we define "FAR"

(5-168)

6] near' 62' is

Instead, advantage can be .



180

ii) Eqn (5-170) immedjately gives W?b : .
J . 1’2 ‘1002

'iii) Go to Part 2 tg raise L and j.

.

~
6. Decomposition of Single-Center Charge Distributions

The two-center attraction integrals of Section 1b and lc

~can be written . in the form

L= x.(1) X, () © 8, dr (5-171)
" : fa
" where . oy
) ' r
1w | |
P (nuclear attraction)
b
e~arb ¢ . _
‘ & = \ - (Yukawa potential) . (5-L72)
b .
0 Terp o "
L oY e (""g-STo" (Huzinaga)v
- ' potential) |,

. And tHey can be intérpreted, following Roothaan [61], as electrostatic

interactions between charge distributions (xx')a and 9. on the two-

b
céq&crs A and é, ;eSpectfvely( Thu§.for\examp]q, thé case Qb = Fi;
represents ‘the |nteract|on of a pOInt charée = 1) -on center bB T
with the charge dlstrtbut’n (xx* ) . on center A. "’The 'pot'en\tAial -
hb ?.e'ar /r L s stmllar to that one postulated by Yukawa for the pesodlc

fleld.between a neutron and a photon in atomic and nuclear physic

, Physics. _

In.-the case of the HUZInaga mode |- potentlal this and the s-STO forms

4

'result from -the averaglng of the potentxal of the core electron cloud

upon the valence cloud, as shown in’ Chapter 3.

o
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K

tn this section we are coticerned mainly with the represent-

ation of the chajge”distribution (xx*)av

In Rooth@an's notation, such a charge distribution has
! g s

_apart from a numerical faCtor, the form . , -

.

(v ontnt-2 27 . )
x) romte S (8:0). Sgimi.(8,9) d (5-173)
. witf:lt - " . .
' Co= oy i) L 3

\

The product/»SZm(6,¢) Sz,m,(6,¢) can always be expressed as‘a finite _

TN N
linear combination of spherical harmonics:
X ' '
Sem(8:8)S 1 (0,4) = ALuSim(8,0) (5-174)

L=|2-2'| Me-L

where the rules of angular momentum coupling and orthogonality reign su-
{ . .

preme. This means that not all terms in the sum necessarily servive. As

is usual in such cases, the coefficients can in principle always be

determined by integration of a three-product:

Ay =N - ]s, (0,008, (6,8)s ,(6,4) du . (5-174a)

where N is a constant born out of norﬁalisation, and dw = sin 6 do d¢
is the solid angle, with limits of integration being - as usual 0- to
7 for | 8 and, 0 to 21 for ¢. .A :
Roothaan uses (5e174) to justify‘the décompcsition of the
' ,

charge distribution fas a linear combination of basic charge dis-
SN .

tributions

«
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M,
(ngmz) (n'e'm'c) = E g By INLM2T] (5-175)
'l 2L+1 ¥ AR BT | ‘;--
INM2e) 5 (57 T ¢ e s (0,0 (5-176) 7

and BLM ‘are to be determined.

At a large distance [N,L,M,ZE] acts like a multipole of
L : - -L - :
order .27 and magnitude ¢ .
- .
Except for their unusual normalisation factors these basic

charge distributions look like STOs (equation (5-62)) .and can be

treated in thé s ame maﬁnerfwf%h'réspect to Feurienwconvp[gtioU. The
‘prqblem then reduces té tbe evaluation of the’cqefficients A[h
or BLM' Roothaan does not show how he obtafnéd His coefficients,
and he deals with only up to p orbitals. A coherent scheme for the
determination of theée céefficients is needed to extend the analysis

to higher n and higher & orbitals. Two possible methods are

apparent to us:.

a)xlBy going back to the definition of the real spherical
harmonics in terms of the complex ones (equations (5-63) - (5-65)),

then using the addition theorem for these
: 1

; (2z|+1)(222+1)(zz+1)_”2
Y (6,9)Y (6,6) = [ ]
Lm M, gm L AT .
b2, 2 . 2L, &
’ Yl (8,9) (5-177)
mom, m/ m Q 0 o0

~ Then for example, since



-

|

S S = = {vy
g‘[m‘l zzlmzt 2

[y

Using (5-178) and manipulating the Wigner - 3-j symbols

v

- +Y Hy, _
% |m]| zllmll %, [m

s

+Y
2’2- Im2 I

2y=m,

L]
i

»

2|

" Y
zl-]mll‘zzlm

+Y

183

.lzlmzl}

A :

+ Y +Y Y 4 .
Yy Im eyl ey Im Y 1L (5-178)

X

N

equation (12) of Roothaan .[61] should result, upon conversion back to

real spherical harmonics.

b) By using the real spherical harmonics directly, and deriving

each individual formula directly, exploiting the properties of Legendre

functions in a pedestrian

manner. An example will

line of thought and action [81]:

angular

(hp%)(n'pn) part

The cos 2¢

must be associated with a Legendre function of order 2

H

]
cos ¢

P] (cos 8)

cos ¢

I I

|

.P]

(1 + cos 2¢)‘

illuminate this
Y

: (cos 8)

1
\

‘
4

(5-179) -

part, in order to become a complete spherical harmonic,

, i.e., ‘Pi.,

where L s to be detérmined. In this case L = 1+1 = 2 is .~

the only plausible value of L. Thus we must express, for this term,

/
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} .
1 1 2 S . - .
é\ P P ;22 Py ( | (5 180)13- \,
and using the explicit expressions,
‘ i ~ ‘
PLo) =A%, PR = 30150 (5181
] . 2
e find that C.. = + "
W a Cop = 3 - .
'Similarly the term | in the bracket of}eqqékfbn (5-179)
&
suggests .
) 1.1 .0 0 : B
LP] Pl = CooPo * Cop Py - (5-182)
or .
2y 1 a2 !
(1-x2) = Coo = 1+ Cyp = (3x7-1) - (5-183),
or
__ 1 _ 2 _ 2
‘273 Y2730 % "% (5-184)
These thre# coefficients clearly expreséhnot only the terms which e

.

survive, but are fhtimate]y Eelated.to the éctual'coefficients BLM

in (5-175). »%his car® be tediou; and fraught with ar@thnétical errors.
v The recbgnition of this péssib]e scheme b);lhhich we have

reason to suspect Qas tihe path taken by Roothaan , has led us to

a pqpnising fhird thod :

Bc) ' By exploiting our fqrﬁu?a (5-116) to the hilt, we have
échfeved an appafently sfraigﬁtforwérd ~generaiifsation of Roothaan's
prodedure which is'susceptible to computer generation of the cogf-
ficignts. I't also involves no major new programming effort, since‘itv

uses routine already developed for other parts. of .the integral

4
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-

package. » | . A
We write the product of spherical harm&ﬂics’dmp]iéitly: B
\ R v 4 A
) cop|m m'l., . ,
Slm(e’¢)52|_m|(e’¢) = om . Nl'm' PL I(CQS 8) - pi' I(COS‘B) o
| v !
cos [m[¢y reos [mifoy .
’ < . ) - .‘“‘A
X { (5-185)
sin |m|¢ sin |m'|¢ .
- .
where
] ?"\.” ' .
' BRI -
_1 2241 (2-[m|)! . . ) .
Nim.f[ 2n (e+{m[)! J | (]+6m0) (? IQSa)

is the angular normalisation factor. The various combinations .of ;

parts result in slightly different terms upon expansion. Theseﬁ$erms

can be divided into distinct cases; i
i) m,m >0 7
cos |m|¢ - cos |m'|¢ = ;— [cos (l.m|+lm'l)¢ _
. *cos ([n[=[m'])4] - (5-186) -
ii) m>0, m <0 |
. Y
cos [nls - Sin [m'fo =5 [sin (Ipl+|m'])g
N - sin (ml=[m'[)e) l | (54y87) )
iii) m<0, m >0
sin [m[¢ - cos |m'|o = 21 [sin (|m{+[m'[)¢
+sin (Iml-[m])e] (5-188)
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TakepCase.f;f

B B
Som(8:0)S,

xi%—{eoe‘(lml-lmtl)¢ + cos ([ml+1m'l)¢}

Lo

correspondlng to the(two cos

above to expand the Legendre functlon product-in two ways

eqn (5 116):

Ml
d
<

¢

=|m]

since le'l; Pg.

equatnon is also true

|ml.
Py

L8

So (§4|90) becoﬁes '

s
- sin |m‘l¢;='§-
which is a good representative of’the'analysis <

it (850) = N

shown‘byzdefiﬁitioné;in”Aepenqix A

2m'N£'m

Lerms,

PLml(cos 0) pi™! (cos @) =

év x\clml lm iplm,

(cosﬁe)'PLT'!(coé.é)N-‘

K

(- eos (Infslm s

P

~ . T

L4

” + cos (l;ﬂ-[mfl)¢]

! J.

’

186

(5-189)

LT"(cdS'¢) PLT'4<cos¢;)x |

(5-190)-

o

we use the arguments of Méthod b),

jomax (1= ]

, using

248" .
X

5

l(cos e)

vl

.2+gln § ]
o ka2 ol ol )
~[m’ ]P]m]+,m | (coswe)

qf CL ]

(5-191)

-

, the following

(5-192)

i



‘ = . '[mlxlm'l.
Samdaimt T NagNg e 71 } 9]12' |

.’A

. ( - lt)¢ + .clmlrlmrl. P
cos lml |ml E k28 '

?‘]iml-|m' I(COS e) .

k

© cos (|m|+|m"|)
We de%[ﬁé the new spherical harmonics :

cos
, oMy L

S. =N, ., P." (cos 8)
Sl iy Ty T { sin

and

| M |
_SklM = Nk M Pk (COS e{

where

X
It

Im = [m']

=
1]

Iml + |m"|

which when sué&é}tuted in (5-193) give

L] ™™ |
= . R i
SenSerm™= NopNpim © 7 | E Cinn
S a1
l R R
]
koK AN

We can introduce the radial parfs of the charge distributions

and get‘atvthe'final expresstn for eqn (5-

¢]
““o|¢'} |
[Mple

Mgl o '}
M6 =

. !

——

NjMD

175) .

lmj+}m'|(cos 8) -

BNREN

(5-196)

(S-Téz)

(5-198)

to try
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X x= (0,2, ]m],0) (n' 2%, mt],5d). e

» ] ‘ .
+ = o : 's'b
.:»12 BRI . o4

",(Zc)n % i A +
- PR n-1 -gr , !
A _§ Syn(0,0) - 2g) 5

sl

[(2n) 11 [(2n') 112

I

&, -
C S (8,6)

Defining o g ey AR

= (c-;}‘) /~( ;+'; I

5

o o | .
t= 3+ ) S .

" we find - . . Y O ]‘ ' o - t;/ffu

C(4r) = BEEEE 2
R o0 i v

< and

] o ) .n +
LG+ () 2

. >
o~
N
oY
~
3
]

'+

"\l
LN
o]
o
.3
n
N} —

i n
‘ [(1+1) (g+z') ]

giving
- ] ] ]
n + — n' + =~ :
7 3 N+ = n" +
(2z) . 2 (2¢) = (I+1)  2(1-1) - (g+g')

N —

“

Thus (5-199) becomes

. L o o *

L

n+n+1

188
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N . ] ]
n+ — Y (T
: : : : 2 . 2 l
(”;1,lm|,C)(n'x2'.lm'l,ﬁ') T (]fT) (} T) - i T
[(zn)t (2n7)17° ,
« ap? (B - Sy (8,¢) E S g (8:0) .« (5-204)¢

N

We substitute (5-198) inta this (5-204) and observe from _(5'-176‘) that. '/

- \N+2 N-1 =2
: r e -

(2%) "5, (6,6) = IN,L,M,2T) x
J ] N . i
42 (N#LHT) ! _ -
o “mr T (5-205)
to give .
» on + ;— n' + ;—
| (n,z’lmlbc)(nl’zl’|m|[’C')-= (]+T) (]-T) ] x
b . [2n)! (2n1)17?
ol o] .
_ ) b ml,imt ] bw 2 (N+jEI)
X sz N£,m| i—{ Z 'C_jﬂ,l'v (ZJ-+]/ z_j N X
2N
: D
o o ml e, ,
x [vN;J’lMDl ,ZC] + % cklf,' '2_|<_+"|-) x
0 ] - - .
lgibiil;_ C N, M] 28] | (5-206) -
2 .Nk M . . K o ‘ ,
s S‘

where the limits on “j and. k .are still as inposed (5-91) and (5-192).
Case ii), m>0, m' <0 is very similar.

A n
C (e, |m)L o) (ntet -t L) = (o)~ — x

[(2n)! (2n')11%

-—
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1
] [m! ]m'l hn v2 . (N+j+1)!
P e Z Ciat (3 iy
. . : k,MS
LY l -
x INk,=[Mc | ,2z1}
Case iii). m <0, m . >0 o ' e
i o
+ %.c . n! +:% 
(n,e,- -Im l Z)(nt, g ]m I C ) = (1+T) (1-1) ; »
[(2n)t (2n7)1]?
o' l . . .
o |m| Im' ], br T (NejEI)E
S R () INLTL-IMG ] ,2E)
20 e 2j+17 Tk Nk’MD ; D
| | | | .
[m|,|m® hr 7 (N+k+1) ! ) -
+ 5% Cgg e - [Nk, -|Mc | ,221}
T ' : s
Case iv). msm' < 0
. ™ .
l n! + ]_
2
(0,%,~[m|, C)(n' 2! -Im'l 3 ) = (]+T) (1-1) ] %
[2n) (2n1)1)?
| clol, I F g
) 1 m Dk 27 (N
* Nom " N z { Z chz' (o)~ 2 1
. 0zq Iml m' | LR

(N+k+1) !
ko

Nk, [Mc],22]}
2" N
k,M

’ s . o

These four cases cover the whole gamqtvtof possibilities.

190

(5—208)

(5-209)
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Note 1: In any comblnatlon of . m, m the terms in MD and MS

do not necessarlly both appear E. g. in (n,1,-1,2){n",1,1,2):

= 111 = [1] =0, and because of (5-194) N3, -0, 281 is

not defined. So this term must disappeér‘from the expression,

]

leaving the Moo= 1]+ {1 =2 term [Nk, - |2}, 20] , which

I

in Roothaan's parlance [61] s a A type termb to survive. ’

the 2: Accordin®g 'Roothaan's theorem [61] .(eqn (5-79))

k]

only term which contribute to the two-center attractlon integral

"

i.

inspect?on and Note 1) these arise only from the special cases of - i),

are the o-type (M = 0) 'charge dlstrlbutlons Evident

and fv) wh?n m=m' =‘iJm|, but no where else. In these cases the
charge distributions look as follows: | ’fk ' .
(n,2,#|m|,2)(n", 2 *Iml g1 = o) (-1) ' Nem Ny i

[(2n)' (2n')! ]

o - ] a 1
S| 2+ ,2 Clml,]m[ ( Lx )7'(N+L+I): ( Ln )7
2 L=|2‘zll Leg! 2L+ 2L 2L+1

Iml, lm] '
* IN,L,0,28] # E Ckant (2k+l) y

L B S .
(—N:ﬁl—— Nk,2lml,28] , (5-210)
2 Nks MS  »‘ » ' | B )_
| S g )
where it is understood that the pair (+[m|, -|m|) is disallowed.

For our attraction integrals, only the term in [N,l,,0,2Z] need be
programmed in fact. The case -m = m' =0 means My =‘M§;>fiﬁ this

case the official MD term only can be used-again with little
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7

A

- modification. Therefore for the purposes of two-center attraction

-

integrals the effective decomposition to'be'pfogrammedvis'

]

\ - n+ %4 .on' 4+ —
(n’l’m’c)(nl’zl_,m,cl) =,€]+'F) (1-1) : Nlm -.Nllm g
(2n)! (2n'): 2 =
9'+2| .
! lml | m| (N+Lt1)1 - )
x L=§—£' 75 Clog: (2L+]) A -[N,L,0,28] . (5-211)

./' .
It is the [N,L,O,ZE]'that, after the éppropriate transfofm-

ation "N » N+1, 27 <68, are plugged into the generalised overlap

scheme represented by eqn (5-60).

/. - Two-Center Nuclear Attraction: A Special Case: Q = %1
C _ , b

It.becamevclear-late in the analysis that two-center nuclear -
atpraction integrals of the:type répresented in eqn (5-68) éould‘not.;
be éolved'aceura;ely by a Hérris-Miéhels,type scheme. The reaéon'is
tﬁat a few‘of the vitéf formulas rquire division by 62, an illegal
manoeuver if § = 0. Indeed, the scheme for generating the WLJ ;

: , , '2
(6],52,R)blows tip i' any of 6] 82, R becomes zero. A few tes:;
revealed that the integrals could be obtalned approxnmately (to 4 or

¢

i

'5 sngnlflcant flgures) by glving § a small but non~zero value. It

fwas_foynd_that the‘m}nlmum value of § achnevable was ~ 10 5, before

(c0mpufér’overflowkproblemg started to interfegéiin the scheme. \\\
v . y e

. For an accurate determination, a diversion was made }

according to Geller's method, [25]," where this nuclear attraction

integral appears as a special casé of in eqh>65413), the “duantum

O L T A
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'numbgrs'“?or the solid spherical harmOniC'hefng N' =0, L' =0,
M' =0 - «

The method of . Geller is very sumllar to. that of Harrls and.

Micheis. The dlfference is essentlally that the Fourler transform of

" the solid spherlcal harmonlc ‘being different from that of an STO, leads

to slightly dlfferent routes - a

For a solid spherlcal harmonlc, the Fourier transform is

=
Bl

deflned as .

-

¥ T ~ o N MY
= Lo i =
G, (N',L' M )y ..f e <t Pl (cos.eb) x

cos .[M'[¢ ' c
b L'+1 :
| g re dr, . - (5-212)
. sin ]M'{¢ ; ‘ o
o . b
The plane wave expanéion (54100) fs used, and the lntegratlon over ¢,
and 6 p readily performed (see eqns (5 106) - (5 108)). This leaves

~a single lntegral over the radial variable 'rb in the form

~ cos M| v o

= l}‘n’iLl PLP?| (COS U') . . r:I-L+I Y x
- sin [M'[v | "0 :
< 3, ledr (5-213)

Q

thCh is analogous to (5- 109).and (5 ITO) except of course that the
-EXponentlal term in 6 is mlssung The integral in (5~ 2]5) is. easnly

: evaTuated.‘ We use the standard integral (B- ]3) with
1

Ty o= N'-L! 4+
u N'-L'" + 5

,oveL el L0 (521

Using the definitidn of our Bessel functions in (B-1), we get

.
5
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e . * ] A .
. ) -2—- . ‘\ - -
o lkr) = (2: 7N y (kr) (5-215)
L/
_ kr L d(Er) . _ \
r= S, dr = - (5-216)
So,
-~ \\‘
T ONT-L4] 7 ke N'-L ] |
f Joalkr)dr = [ (2D J »
0 L! 0 Kk Ui+ 1(kr)
; 2
1.
. (T )2 N d(kr)
. %- = (N'-L'+1-(1/2) p : .
="/ NT=LT5T ILe(ryg) (1) dt (5-217) §
0k -k »
e ey '“" o .
where t = kr. The integral becomes equal to
¢ L : N'-Li+(1/2) U |
(@2 LN-2 s 2n T r(1+(1/2)N!
; g7 K SN .
[ // I"(L - -7 + 7)
v a L'=N'-2 T(1/2) TQ1+(1/2)N!
? k‘ - '(L‘l-z‘l ( ( ]) NI (5_2]8)
¢ . 2 I‘(l:.+ 2—+-7) .
where T (1/2) = n(]/z). Thus the transform of the solid spherical
.;d :
p harmonic is o
) 1 LNt -
G, = (N',L' M) = 2mit (e, - kENZ
v e .
fg L cos. i lv '
- x PL (cos wu)~ ' o (5-219)
. sin |M'|v
N {
Q'.
- {

i

)

J

ARN

;
‘
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BLY N1 = r(l{ﬁ? P(I+(I{Z)N;) _ (5-220)
2 T+ 5 - 5 :

Note that the integral in (5-213) in fact only exists for L' > N'. > -2,

because of the conditions of (B- 13). . For M < 1 implies

2
N -L'+;—<2l"or N' <-L' <0 or L' > N';  and
A B L [ T -2: So Lt > Nt s -2. This.
condition is not such a deadly limitation to the scope of the method,
which still covers many cases of interest,
Geller substitutes the Fourier transfrome back: lnte (5- 98)
and expands e—ih'g, eqn (5- IOO), just like us. He chooses to go by

_way' of the Condon-Shortley coeffieients, and his final formula

(analogous to our (5-134)) ;s

RO AUEI ISR CICIE NS "/?)(z )L'+]-N-~
- w(z“”_-(]/z) D(L*,M' N')
L\< . ¢
x 1 (-nr (2L4201+1 -4y)
r=0 - ’
« gLth'-2r kL;’“'l:L-;,M,’)
/Ax Fp,N,L (L'-gr,Zr-N) ' (5_22])

whe re

©

D(L',M' ,N') = B(L.',N‘)(ZL'H)_“/.‘Z)

ol AU L PV (AR R DYS L A (5-222)

P
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L = the smaller of L and L' ;
the upper signs are associated with cos IM'|¢, and the lower signs
- with sin |M'[¢-; Ck(li;mi;lj,nﬁ) are thé Condon-Shortley
coefficients; and
- . ]
_ 22 e ey Dz RO f N
Fon,L(ot) = (NI Lo G0 *
e ’ ) s=0 25421 +1
; ' x25+L+k+t j ( X)
i . J .
~ Lo E 5229
’ 0 (1+x7)- ﬁ? -
where '
p = 2L R. . (5-224)
This ~Fék,\]t)L of course quite related to our w%’g in eqn (5-135),
H b > 2
but ifs treatment is slightly different. Geller chooses to generate
these functions by use of the recursive relations.
PR R (VLR
X _
- GG oGy : | (5-225)
'Fp,N,L(k']’Hz) = [(L+k+1)/p] Fp,N,L(k’t)
d : .
v G oy (k) (5-226)

which are based on known identities for spherical Bessel functions,

and a starting formula for each value of N'.

For the case N' =0, all terms can be generated from

eqns (5-225)

and (5-226);\ ;nd
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_Lo-L-d :
Fp’N’L(O,O) =2 [p | Y (N+L+2 ,p)

+ 0 T(N-L+1,0)]/ (N+L#1) ! (5-227)

where y(m,n) and T(m,n) are Incomplete Gamma Functions defined by

I (m,n) = fﬂxe‘t LTS (5-228)
. n . .
n p
y(m,n) = | e t ™ g
0
= I'(m) - r'(m,n) (5-229)
where
rm) = [ & 8™ gy (5-230)
0 ;

is the usual gamma function. ¥y and T .therefore satisfy

y(N+1,0) = N! [1 - e e (p)] (5-231)
T(N+1,0) = N! e ey (p) (5-232)
where
N .
e, (o) = ) P /k! (5-233)
=0 R R

is a truncated exponential.
Under these substitutions, the nuclear attraction integral

reduces to a surprisingly simple form:

(0,0) . (5-234)

. . v-]‘ _
JOINLM rtdno= 8y o2 - Fooy )
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The SHO of course comes from Roothaan's theorem, LFp N L(0;0) are

easily evaluated from equatians (5-227) - (5-233).

*

. : »
e e

8. Rotationat CoordinaiELTrangfgrmations

‘In previous sections, we have‘géén that the two-center
integrals are derived for a»speciffcvcbordinate sys}em (Figure 5.3)
which affects the terms that contribute to the integrals. See for
éxample, the discussion of formula (5-210). The integra}s éan be used
d;rectly in cases where all ceﬁters are collinear élohg ;he z-axis.
In bent.molecules, or in cases wﬁeré considerations of ghoup theory
dictate that atomié centers are situated elsewhere, the integrals
must be adquted for this no&-alignment of axes. fhisbadjustment is
what is called rotationaj coofdinate ;ransformétion. By this trans-’
formatfon, functions previously defined in one coordinate system are
expressed in terms of similar functioﬁs defiged in anothef coordinate

. )

system. .

fn this work, ‘the main pfoblé% associated with rotational
coordinate transforamtions is the effeét of_the transformatio; upon
the sphericél harmonicg the radial parts remaininﬁ unchanged. kef (6,4)
be angutar coordinates in some Cartesian system and (6',4') be the
cbrresponding_coordinétes in another Cartesian system.

't is well-known that any Cartesian system can be trﬁns-‘
formed into any other Cartesian system by means of thrgg successive
rotations performed in a specific sequence.i‘The angles. in the

rotations are called Euler angles (a B Y) [82]. There is no

unanimity about the definition of Euler angles in the literature,
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and here we define them in a way whlcQ later makes our work easxer
The sequence is
i) Rotate clock-wise by o (0 2 @ < 271) about z-axis:

(I‘,e )¢) = (X,Y,Z)ba—* (X',Y";Z)-

>

ii) Rotate clock-wise by B8 (0 < B <7 about the new x-axis:
(xlyyl)z) _8")' (xlyy“,zl.l)"
iii) Rotate clock-wise by y (0 <y < 2n)b about the newest
z-axis: (xt_’yli"zll) _Y_,_(xul’yul’zn) = (r’e|’¢|).
Expressing the old spherical harmonics in terms of the

nNew ,

"un(®9) = T 077 (aty) Yo (80") | (5-235)

whe re . , N

ima

dic (cos g) - eimY . : (5-236)

‘/\\

Dgu(aBy) = e

the problem becomes one of evaluating the Dgc(a8y) or dﬁo (cos g).
Harris and Michels, [24] and also Edmonds, [76]~ have detailed
recursion methods for generating these coefficients.
. 9
We have tried to get away wi thout generating alal of. them,
by flndlng out which coefficients are needed in the treatment of a
spec:flc group ‘of molecules, those with fltst row off-center atoms.

Y

In this .case, functions on the off-center atom are all
spericaily symmetric, including the 1Is core projection operator., =

' & - :
So, as Seen in equation (5-210), only the 6 =0 term in (5-235)

will, contrlbute to the two-céntes lntegrals. This term has a very

simple form: it is merely a spherical harmonic over the Euler
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o .
B2 N :
aqgles _ ’ R
Dp(eBY) = (D" ATy, (ga) . (5-237)
g, \ORY zz+1 o
A b
"It is necessary in this work to convert the formu]atlon to
our klnd of real spherxcal harmonlcs We may rewri te (5- 235) in two .
forms: , ) U“: -“‘,\ “
- - - L . 7 i
= zlmf ’ L 20°° L L L -0 ’4"
lm,,du | 1 he -’ ) ‘
+ 0"y (o160 (5-2372)
and ' . . ; 'éﬁ’
. . & s ,
'Iml ,0 (a! o
b D.l YRO(G ¢') °
+ ’f {p [ml -0y +p7Imlo } (5.238)
o , =0 Lo )
- o=]
'We neglect the terms with o # 0 as we use equations
(5-63) - (5-65) to manufacture reél spherical harm-on'ics:
]_ S
(0,8) ~ ()% s (Ra)s, (8',4") o (5-239)
20 28+1 20 20 ’ '
. - N/g-‘ . | .
S00(8:8) Lsplet,en) (5-240)
| 1 ol
2 =im :
SeIm !(e ¢) “(Eﬁ) fen™™y, ) (ee)
o G 1>'m' | LRIRESCIRD
1 I , o |
' m . : a _ -
~ (29.+1) (=1 lml(Bav) So(8',8") (5 241)

o9
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and -
|_ ' :
(6,6) ~ (212 (-nylml (8a) S, (8%,4') .  (5-242)
) ,=[m| 195 28+1 2,-|m| §“ got® ? :

Combining these formulas and introducing Legendre functions, we see

that the transformation takes the form

2 - -
sl’ilml(e’d)) Iml[ 2’+ = )-]‘ (]+ism) 2

,m! cOs Imla
x Py (cos B) x 520(9',¢') « (5-243)

sin |m|a

An overlap integral 'of the type given in egns (5-67) can be

recovered under the transformation as

-

. <(n 2l+m 5 |(n Lm, 6 ), >

2727272 b

! 1

Im | 20-fm| >t 9z -] [m]
= (-]) WJ ) (A]+5mlo) Pl ‘(COS B)

“cos imlla

// x ' x<(n12106])a|(n222m262)b @SfZMA)
sin ]m]la
3 e :
s ) v 9
CNE . . ) .
"#Where it is .understood that the function at B is spherically
X .

éymmetric and is - not affected by rotation of coordinates.

For the other integrals in OCE-MP all the basic charge

B

dlstrlbutlons arising in eqns (5-206) - (5 209)» and not JUSt the i.}'

A

[N L,0 2;] have a chance of contrlbuttng terms under the rotatlon

Aga:n in the specnal ‘case of first row off-center atoms the onl?

“modlf?catlbn needed is to'replace the general baslc charge distrlbutuons
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L3
‘ and thus ‘

1

K -
: _ 1 Ty
‘ r, )q) N (L.*_IMI)! v
]Ml cos |M|a v f o
. x P/ (cos B) [N,L,D0,27] . (5.245)
( | ) - | sin [Ma (rya',¢')
_ %.

A further simplification arises in the case of C (Dm )
symmétry. Here, the-Euler angles are (qgy) = (0B0) where g = 8,
the half bond-angle of Figure &. 2. Because a = 0, ~the ‘terms in
in |[m| o in equations (5-244) and (5-245) vanish. Thus under :otational
coordinate transformation, orbfta]s or charge distributiens with
neéatrve m quantum number do not contribute to off center lntegra]s

7

This is as |t should be since these behave like x and are not
A

“affected by a rotation in the y-z plane;

h9.” Test Results

a. For two-center nuclear (Coulomb) attraction and overlap integrels
the results were identical wnth the reference va]ues calcu]ated by the
" ALCHEMY program [83] to at least nine significant flgures,rthe output

field used, for all orbitals tested (up tb 4f).

b. For Yukawa- type and S-STO potéhtials, the results were tested by
two methods
i) We compare our results to those which we calcu]ated using

».Huzinaga's method of expandlng an STO in terms of GTOs [hOc] e

[

then calcualtlng the resulting GTO lntegrals by famclnar methods [84]

i Thus'for examp]e a general three center STO Integral



203

-ar ,
< xa]e C,xé >

m‘\

or

s converted ‘into Gaussian form

,Huznnaga hae coded a program to evaluate overlap Coul omb attraction

and some of the model potential lntegra]s arlSlng in thls work
Comparison of resu]ts from the expansion method and our Fourler ‘
Convolutlon technique is shown in Tables 5.1-3.1t is to be noted that,
in prlncnple,'ou( me thod is an accurate one, while the expansion methdd
is approximate. The‘eomparison is thus to assure ourselves that no
.gross factorsdbave been mlssed in the derlvatlon hot to get an exact
measure of gaccuracy |

. :ii) The methed was further tested indirectly, by investi;ating
‘the limiting behaviour of some of the/fhtegrals We tested the
hypothesus that as the g- parameter tends to zero, the'Yukéwa-type and

1s-STO integrals tend to two—center Coulomb and one-center overlap

respectively:

-(xr‘b )
lim <x_|= x> = < |—x!>
.a+ 0 b d a rb a
_ -ar, ¢
Mim <x_ le T = Ixl> )

a-+>0.

We reduced q graJUalfy ahd'feynd that at o :.10-5,,,agreement'with

ALCHEMY values forhth-center nuclear attraction and one-ceﬁter overlap.



3

=
-/ ’ S . | _ ‘99 mucm\_mmmg 493je Joyine jussoud 4Aq ﬁwum_zu_muu
‘01 40 Jomod , “3- O% @dusueyas uo3je d0yine 3jussaud Aq vmum_:u_mun
mmumu_vf m%mlm.tcm._ma uj ._mn:Szv ‘tg IdU3d3 9y,
(-)8L1LS°€-  (¢- TII9BHBSTE-  (€:)19685°€-  2's  op'z  0o°h (Yupg | Cuyy)
(€-)8L156°¢€ (€-)248196°€ . (£-)zygi96°¢ ¢’ 081 09°t  (Jugz|Cupy)
(€-)060S0°€  (£-)9¢6590 € (€-)9€6590°€  2°s  s¢'| ooy (51 [Boyt)
(€-)8n60L "L (€-)989€1L°L - (€-)959€1.4 ¢’s on'z 00'h  (Yopg|®oyy)
(4-)€506¢°¢ (=) L8404 "€ (h-)L8nyon ¢ Z's 0%°¢ 9¢9-g Anoum_moawv
, . (z-)9929€8°L  (z-)Ll5g59°1 (z-)LLEg5g° L ¢t 08l 09°€  (Jugz|®upy)
(¢-)WE9SL™8-,  (2-)SBLO9L"8- - (z-)SgLosi'g- 7 08°z 00 (Yupg|®uyy)
| \ (€-)(zLl0°T  (£-)8l19L0°7 (€-)8ll9L0°c  z'¢ 08"t 9£9g  (Yugz|Cugz)
(1-)9€89%° 1= (1-)L62g9%" |- (I-)6zg9n° 1~ z¢  og'1 o9'¢ (9247 | ®opy)

(z-)959152°9-  '(z-)£6152°9- (2-)999152°9-  (2-)959152°9-  z°¢ 08°1 0S¢  (%o4z|%s7)

o (z-)5665z0°¢ (2-)71lz0°€  (z-)S66520°€  (z-)s665z0°¢ ¢'E SE'l zoew  (Is1|%sz)

- (€-)94590° L (€-)S0€90°L  (£-)494S90°L  (£-)4gns90-/ e onr €yl (9opg|®s))

(€£-)20694°9- (€-)0Z89%°9-  (£-)0z0694"9- (€-)0z069%°9-  z'¢  og*y €1y hl (Jogz|®sy)

(€-)6€88L0°€  (£-)(818L0°¢  (¢-)6egglo’s p (€-)6€88L0°€ ¢ESEL Cingr 95y %)

5 "M'0"Y  qudx3-01n BAWIHITY  ° spuom siyp , -
T e e i T T Py S ST 9q By tred

dVT1¥3A0 98y SIusuodxy te11qi0

o T B X ; |
N SQLS Jd9A0 m_m._mwuc_. de|4aaq 493uad-om) 1°9 379vL



205

- v : P [204] aduaJayal 1334e ‘uoyine ucumogn,xn.vuum_:urmua

-

: (1=)191€R6° L (1-)0L1Ew6" | N_-VON_M¢¢V#H s ERE
(1-)6£2602°C  (1-)S52602°€  (1-)$52602°€ z°¢ 0% o'y
(-)ENEEE L - (1-)E1IEE6° 1 (1-)ENIEEE L 276

\

ﬁ_-vm¢¢,w_wm (1-) 6191 "€ (1-)6nH191°¢  Z:€  09°¢ 09°¢
.A_vam:mmm,_ Ar-vaqm:m.__._A_-vﬂm¢m:m._ (48] ,
(-)I61SE2°E - (1) L61562°E (1) L61s62 € TE o o09f 09f
AN-VNNmFN__w,._ (2-)0s61z1 g AN-vomm.Nﬁ.m., m“m_. .

(10) 9L618'z  (1-)0SL618°  (1-)05L618°T  z°€ €158 flg-ml
(1-)§80£26" | A_-VNN0m~m._ (1-)LL0€z6°L  z°S
(1-) 10SZ1°€  (1-)000SZ1'€  (1-)000SZI "€ TE SN €ty

L !

9

udx3-g19 . - eMMINY yaop sy 9

q

uc13deJ33Y UBI|oNN B sjusuodxy

e,, Yie . . _
A_x;.lﬂ_ X> s|esbaju] uo)3sesiyy 4BI|ONN J93Ud)-OM] :7°G 9d|qe]

Amru:;~*$:yt.
Am=um_mpumv_ﬁ
NmovN_movnv‘
AmmN_un_v
ﬁmm__nm_y

Jdied

1831940



206

[204] sousteyal ‘weiboid ebeuyzny Bu)sn

(1-)so041°0
A,yvomNNm.o
(I-)668z1"0
(2-) L£806" O~
(z-)z2v69° 0
(1-)€z96%" 0
(2-) 48864 "0
(1-)6z89¢° 0
(z-) L5285 0
_h_-vwwﬁo;.o
¢UdX3-019

01 =

4

(1-)so0o41°0
(1-)88.L6°0
(1-)668Z1°0
Auavmwwom.o
AN-V_N:mo.o
A_Jvuwwmw.o

Ty

.~N¢v¢mwm:.o

(1-)€€89€"0
(z-) L4255°0
(1-)66L0%"0
_,xpo> siyl

0lS-s|

~5 -

(z-) 61€51°0
(z-) 668170
(z-) 91S€L-0
(1-) 08z91°0
(2-) 9l1s1°0
(1) ngn61-0
(£+) 2£096%0
A_-V:wa__.o
(z-) z£901°0
(1-) 89Lz1°0

pUdx3-019

0l =m®

L\

sz LOm.u:oconxma

Joyine juasaid Aq m:o_um~:u_mum

(z-) 61€51°0

(z-) 26681°0
(z-) LisEr-o

(1-) 082910
(z-) sl1sio
(1-) €8461°0

(€-) 060960

“(1-) 8ESII'0
(z-) #€901°0

(1-).69lzt°0

MOM sy

emexnn

25
26 on (Cugn|%usn)
26

T'E - 9°€ Kmpnm_mpvmv

'S
¢ 9¢  (%opg|%ope)
TS f1Sg o
€ gyl AmmN_nn_v
T .

ze ot (st
wa);mucocoaxu died
_mwmf// 0L$

{

' s|esbaju) p1s-5| pue adAf-emesn,  :f°¢ dlqe]

-~

P



0°1
0°1
0°1

01

0°I.

0t

2€206°0
0l
N ..o.—

mam_go>o

493u8)-2ug

NmNom.o‘

1 00000°]

00000° |

99000° {

* %2000°|

h2866°0
68666° 0

.- 90206°0

. 90z06°0

€000° |

%0000° |

= D

01S-s{

ZEW6L°0
£60zZ€°0

LEE6L"0
e
h9461 0
1s€ze o
2560170

8618Z°0

1£261°0

0Szi€'0

y
e v “ony

Loucounozh

(€8]

e

¢

sz 40y uco:ome,

a“@

. 0 S
e SN Y .mu_amog >zu:uq<muy.

ZEH61°0

Nmowmwo

0E€61 0

£191€°0

£9461°0
0S€2€°0

1SEL1"0

mm—mw.c

0£261 "0

6hZIE"0

§-

©

o__J

VMVNNA

s

s

rANY
'S
2'¢
A

[AR3

s

ALY

'S

A

e

e

m_m;mouc_ dW-320 jo w=o~>mzum m:_u_e_q

o' (Cusnl®usy)
o€ (“upg|®upg)

9°¢ %ovn_,ms:
o£15°8 | |
Einte - (Bsz|%ey
€lvnt (%sy[%sy)

" sjusucdxy diey "

S oLs

'S 9|qey

Pty



) _f 3 e ’ : R
\\\\\\\*\J"—~—,\\\ \\\5\ cos lmlly/ cos ]mzlv
\ < bk  (5-246) -
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was up to four significant figures, as sﬁown in Table 54, For smaller
values of .a, overflow'pfob]emé started to interfere with the
Fourier Convolution scheme.

.We are_thereforeléatisfied that our scheme generates él]‘the

two-center integrals needed in OCE-MP to a high dégﬁée of accuracy.

E. One-Center |ntegrals by Fourier Convolution Methods v

We have exploreq the possibility of USing the HM scheme to
solve both one-electron and two-electron integrals of the one-center
type. . | |

X ‘Fék the two-electron Coulomb and Exchange integrals, the
férmula (5-26) , proposed by Geller, can bé used as a starting‘point.
Or one can merely put R =0 in eqn'(5-61) of HM and proceed ‘as in
Section C above. The results will be similar to those we are going
to‘derivg in the on;-eJectron case, as-sﬁggested in the note °
accompanying equations (5-122) and (5-123).

1. Generalisedvbne—Center Overlap
Pu£ R=0 in the7#6urier inversion integrél (5-98) or

(5-1127, to get

£ . ‘
oy L L, LR [
| (R=0) = anllm] N”z“z"‘ 21 [_A\WB/T] §
: : (2m)~
: |m ]| - Im, |
X [ (n]llél)T(nzlzéé)T P2 ] (cos u) P“2 (cos u) x

7
S

i?‘ fm;fv\ sin [mzlv

3
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As before, integration over v fixes m = m, and gives
Zﬂ. 8 where m=m, = m,.

€ m, ,m ] 2

m 172

Y

Jhe integration over u is an orthogonality relation of

associated Legendre functions, and it fixes L = 2] = 22 as in

eqn (5-108) which is not surprising, when compared with the atomic

9

case.

We gd through the analysis of the Fourier transforms

-

(nld)T) as in equations (5-124) - (5-131), to find that the equation

analogous to (5-132) is

_ Ly T (2+’m[)!
b=Nem Mo £.m ) Z e 2 (Z2+R-TmTT Bn‘%J (6]) *
171 272 l] I2 m L ]
' w 28 2
B g, (8,) x fr Kk dk (5-247)
27'2 0 (RZ+6%) V(2esd) 2
2
The problem then reduces to one of obtaining-the integral
’ , © 24
Tk (880 =] e P (5-248)
so that the final formulas is '///
Va
_ NE bna g (2+]|m|)! - »
: n,m n.im Z 2 € 2 (22+1) (2~|m]) ! Bn Li (6]) X
] 2 i i m 171
1 2
xB . (8) T?+'i (8,,8,) (5-249)
272 1°°2 :

?;a -~ for the 6he;elé¢;ron.integraf.

. N
ENY
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27 One-Center Two-Electron Integral
"

The corresponding one for the one-center two-electron

“integral is

(5-250) '

3. _Generation of Auxilliary Functions

For the solution of equation (5-248), we draw heavily on the

HM experience.

Using the identit% (5-137), we see immediately that

» 29-2 2

K - kS dk

T 2 i fo 2 2.5, 2 2.1
(k +51) (k +52)

| 2
© 2(e-1) 8
e vl S g I A
: \

| -
0 (k2+6%) ]

or

TS e L C s
it T2 1'2 ‘

¢
i

=1
i

4

LA L

i (5-252)
ll,lz ||,l2 2

’l.],lz

- We subtract (5-252) from (5-251) to get
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=T T 1o . : (5-253)

The recipe can again-be divided into three parts.

Part 1: obtain Tq , T0 . for all i
—_— R _llo 0,12 :

17 ot

‘Part 2: Generate T? . . using (5-253) .
B . ] b 2

Part 3:- Raise index 2 wusing (5-251) or (5-252), all of which mimic

our work in Section C, but much more simply, Part 1. To generate

Tgi , T? or We found an apt standardlintegral (HandbookAof Physics
2 ] '
" and Chemistry, [77] Formula 615):
I -
o a B r@ty e - atly
X dx= 0. .} ~2 - (5-254)-
o B 2 IRC I
under the condifions
N o ) | 7 a+] :
azrl, >0, m>0, c>Z— - (5-285)
For us (5-237) gives, a=0>-1," b =220, m s‘a > 0. (thus
’:nqc[eaf“attraéﬁioh;may~égain gi've probfems), ¢ '= 1'>'%-= %4‘alhafs
. We get |
. e N ] A -
(=-1,) .
. : : 2 1 . ] -
0 ® ) iy - 5 -
T =] — dk = — - (5-256)
- (k +'<5]')
" and N ;
IV A R TR TR o :
N ULk (s R
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Also, the lowest gives
- .

- -0 _ m
Tho = 7 (5-258)
0 ; Ll »
Tor = 235‘ . (5—253)

Part 2:- With our i&perience, we use the analysis outlined in

Section C for the different cases:

. R 1 )
Case 1: 8 far" from 62 .

¢

Case 2: 6] ""mear'' to 62 but not equal:

Case 3: 6] equal 62.

Part 3 is nothing really new.
We have yet to check,code and test the performance this

- scheme for one center lntegrals but it ]ooks promnsnng



CHAPTER V!

MOLECULAR CALCULATIONS RESULTS AND DISCUSSION

A. One-Center Basis Sets

Once the molecular SCF-computer program has been put together
and tested on.kﬁown molecules to make sure that it calculates the
things expected of ?t, the problem of molecular calculations basically
reduces to one of basis set dgvelopment. How to choose basis sets
(ixp} of formula (2-105)) which will Eroperly span the space in

éuestion (in our case, the molecular valence region) is g .far from
 trivial tas%, and takes experience fo master. It is easier in some
cases than in others. 'Ultimately? sny'basis set réflects the prejudices
of its creator, giving rise to suéh tongue-in~-cheek terminology as
“LCMBF'' (linear combination of my basis functions). |

| In this chapter, we shail discuss the development of valen;e
basi§'sets in order of increasing difficulty, aléhough this may not

be the order in which we developed. them. We start with central hydrides

‘AHn - with model potentials at the expansion center, and then go on’
to the N2 case in which the model potentials sit at the off-center

nuclei. The problems involved in épplicatiohé of the OCE~MP method

to more complicated molecules will become apparent as we progress.

"B. Central Hydrides H,0 and H,S

1. Basis Sets ] _ -
The least ambitious test of the OCE-MP method is its-

application to the central hydride molecules AHn' wi th the model

_2]3_
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potential and expansion center coincident at the .central heavy atom.
Here, the development of the valence basis set is governed by the same
considerations as those involved In the development of the fu1[ one -

center basls in the first place.

As seen from Moccia's work, [12] the deeper-lying M0's.
‘retain a]mgstcowpleéely the charé;ter of the atomic orbitals of the
heavy central atom. The H }atoms introduqe small pérturbations in
the outer AOg, which are more involved in the bonding charéctgristics
of the‘molecqiif It is natural, therefore, to take the basis for
the heavy afomaas a starting point for the‘moleculér calculation, and
then addfvalénce‘functioﬁg of prope} éymmetry to build up the molecular

eigenspace. Thus for HZO’ the ground-state configuration

2.2 2.2
IaI Za] ]b2 3a]l]b 3

may be approximated by

2
1o A

1627 2.2 102 2.2 2,
[1s7] 23] 1b, 3a1 lb]., A
where the 1s refers to the oxygen atom. In Moccia's calcﬁ]ation,
even the valence orbitals are dominated in coéfficientsvby oxygen
atomic‘funétions, and one may indeed detect a crude correspondence
between the MO's and atomic STOs with orbital exponents which are
rather close to the sz 'yalues for the oxygen atom:

2a) ~ 25, 3a, ~ 2p0,fﬁyglﬁjﬁ;pT,_ua?d;,;l?g;~¢29

A I
LI

s

iyt B

Simllariy for the H,S “ground-state configuration .

e e s

o LR Voo e me o e e PN
e e ale

S A I N D S S SRR R
© e Ry 1 3y by be) 26 Say 2by L e -

< D o e iF
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It can be- seen from Moccxa S calculatlon that the la] and 2a]

;orbltals dlsplay an almost perfectly 5pherlca1 symmetry, ‘while. the

"3a _r;jandm1lb2- appear to be quaS| degenerate and closely T

‘resemble the: sulphur Zp %; atomlc orbltals (SZ = 5. 99

} »

€ ='-6.44*a;u;} Thus the HZS ground state conflguratlon may be .

fairly weli}aoorOXImated by--'

2 ,2,2 ,2 .2 2 2.2 2 g 4
s 2 2y Zeg 2pyyd ey 2byi e 2Ry Ay e

e ey

where - 1s; .2s

. 2p refer to the-sulphur.. Again, it is. clear fhat |

]

4a] ~3s, 53, ~ 3p,, 2b, ~ 2p, y» 2b, ~ 3p e
From the above ana]ysns it appears reasonable to assume ‘that - - o

i f one takes the basis sets of Moccna as a starting pount‘and replaces
.the core - MO's wnth atom|c model potentlals the results should |
approach those of MOCC‘Q in this work, this is the idea‘we set out
to test. We started with Moccia's basis Sets.and geometry and tried
\to modify the vaienoe'basis in accordance with our model potential
approximation, so as to improye the valence orbitals. We tried three
types of basis'set: - . |
i) Moccia's basis without any change, including'the coreflike
basis functions.
- | S ii) A truncated Moccia‘basis in whicn core-like Sfos have been
remored trom i). ‘ _ ‘ o d -

lll) A modlfled Mocca basns |n whlch core llke STOS are relntro-r3-;%§~g

=fduced but now carry the DZ exponents comPng from the model potentral

L R L e
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2. Results
Cae e ' - - T

The results for H,0 are collected ‘in Tables 6.1 - 6.4,

5;'Table 6.1 shows the Tesults of the»three‘basis'sets used, along side
'those f rom selected sources in the literature: [45, 85, 86]. Basis

sets i) - iii) all give higher orbital energies for Za] than

.ﬂ,MOCCIa 'S’ w1th the truncated basis- value hlghest At the same-time;

v e vl ok

‘ “the . lb2 orbltal energles are lowered beyond that of Moccla CThe "
f;;éaih”and';lb¥; orbltals do not seem to be affected by the lntroductleh
;j-of “the- model potentlal It:appears that if a good_valueuof the.. 23]):
iorbltal energy is desnred,'corerlike STO's must be lncluded in the -
}molecule. But the_calculatloh’ls insensitive tovwhether these core-
like functlons are those of Moccia or those from the model potential
calibratioh;
Now for comparison wlth results‘frgm-more-complete calcul-

“ations and experlmeht. hlthough the geometries used are slightly
different, our results appear within quite the acceptable regions.
Notable is the recent pseudo-potential calculation ofybarthelat et
al,'R%ﬂ in which'a SZ basis is_used on.all the three atoms. Their
pseudo-potentials are determined to -DZ ‘accuracy ln'the core ahd

valence regions. -The molecular calculation starts out with. SZ

'STOs, .“'then: expands these in terms of three GTO's 5o as to snmpllfy

~
5

'"hhthe mult:-center molecular |ntegrals As:de from the ay. value

.«.,... - LR

lfvthelr orbltal energles are further from those of more. complete

T calculatlons than - ours probably due to° the apprOX|nat|ons |n thelr R

Ve
N A -

""~~.«_z" "».c.»'\‘ s LA

|ntegrals or because of lncompatlblllty between thelr valence.baSIS

e o
@ . Ve e A ey eeivan sy - . : [T
TEFA e L . " A AU

_p',. e
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TABLE 6.2.  H,0 Valence Basis Set i)- -
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Y ; STO_'Jéxbonenfs

(nim)

s
Is.
25
2¢ ' -
v 2s
2pg
2pg
2pg
3dg
3do
3d,
3d;

W ®N M E W N -

, , ., AN ‘
NN N NN KR m e o o ot o ol et e
i F W N = 0 W oSN OWM & W N = O

| 3d; .
3d;
llfl -

hf,

—

NN
~ o

- 28

-'Orbfggjitférgy (a.u.) -1.2101 -Q.5560‘

220

2.44
392
. 1.60

1.95.
s T
o
3.92
- 1.60 S

>"Za.2
1

12.60 ™ 0.0428
T.h5 - -0.1918 -
" 0.8986 .

3.24
1.28
1.51

"~ =0.0960

0.2366
-0.0050

0.0097
0.0027
0.0797
0.0073

2.40
1.60
2.40
1.95

2.40

- 1.95
1.95
1.51
244
- 3,92

1.60

. 2240

1.95"
1.95

LRETER

10,0310

-0.0303
. 0.0659

a2 .

-0
.0

]
=]

O ©O 0O OO0 0 0 O

-0

-0.0150 .

'0575 .,»,vu R R

R 2 S
-0188%
- -0.0561

-0.0041

0

1

.0180""‘
ST

3574

L7461
<0914

.0603
. 0041
.0756
.0126

L0169 ‘

L1915

b 2

-0.0094
-0.0270

‘N

-0.5061

b 2

.8532

.0050

1862,

2518

0165 . .
o5k
L0637

.6979



.. . TABLE 6.3. - H,0 Valence.Basis Set ii) -

s
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§

NN VN F W Ny - O W

o~ OO W N -

N N e e
- 0O OV

NONON
SWwWw N

~N
(%, ]

" 26

'STO Exponents

(nlm)

.f2§ *t
S
- 2s
299
2pg
2pg -

3dg
3dg

3dy

3d,

. ‘,hfog...m
"Alej

2p_;

.2p-y
':ip;i.k
©o3dy
34

bfy

Wf_y

2py
m
o 3dp
-3y
.i“fl'
B

:J273° : |
3,24

1.28
1.51

2.4k . 0.

3.92

1.60

2.40
1.60
2.40

1.95 ¢
« 1495 " =0.
1.5
C2.u

.60 L

2.0

. 1.95
C1.95

1.51

\2.44

3.92
1760

2.ho

1.95

195

=1,

T 2a2
1

0.

_.3a2 o
1

-0,1733
-0.1799

- =0.0575 .
-0.0039
-0.0265

0.0031

0.0029.
-=0.0314: .

-0.6469 |
. =0.2321
-0.1353

. -0:0543 -
-0.0045
1~0.0091
 =0.0259

-0.8174

-0.0354
-0.1864

‘-.f0.2387

0.0114

»A?Q.0537
=0.0617

"’0-737|
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b
AD

NN N NN = = e e
AWV EWN =0 weNowEGR -

27

W'~ O WV £ W -

——
O

,. . STO Exponents.

i {mdm)

Is
1s
2s
2s
2pg
2py
2pg

3dy

2pop

L 2py

o 2pay- -
3d.p -
3d.y .
hf_y
by
2p4y

. 2P41 |
2P+1
3dy,y
34
by
Cbf g

9.47
6.84

2.69
1.68
1.51
2.44

3.92
l.60
“2.400

1.60
2.40

:,, j*!'9§}}; Y2-
3_ ::1195 .
e

2.44

F.60°
2.40
1.95
1.95

- 1.51]

2.44
3.92

1.60 . .

2.40
1.95.

2a 2
R I

-0.
-0.
.3509
.6766
.2380
.0059
.0316
.0098
0027
.0805
.0068
.Q304.
.0660

3,97

Ches -

0965
2714

 3a2

~0.0k67

0.1148
-0.2244
-0.0684

0.7426

0.0970

0.1903

0.0604

'0.0040 "

-0.0112

~0.0149 -
. 0.0571. -

?LL |

-0.6919

. -0.1878

'%0;1946‘,t'7
~0.0564

-0.0038
-0.0094
=0.0271

Orbital Energy (a.u.) -1.2134  -0.5589 -0.5085

b IR N

_‘]b 2‘ ;

o/

-0.8536
0.0053

: -0.1862

-0.2518 -
0.0166
-0.0454
~0.0637

-0.7002
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sets and calibrated atomic pseudo-potentials.

Tables 6.2 - 6.4 give the details of the three basis sets.

The expansion coefficients of the three highest orbitals are very

similar, sugbesting that the profiles of these valence molecular orbitals
do not change much as the basis sets are changed, although we have not

‘drawn the profiles to compare more conclusively.

The results for ~H25 are collected in Tables 6.5 - 6.6.

- Table 6.5 c0mpares the results of the three basis sets with results

.

from selected Interature .sources. [h5 .86, 873: The trends in ‘the valence

PO

orbltals are rather similar to those found in H 0. The ha orbitalf
‘\ J ES
is raised by the lntroductlon of the mode1 potentlal Truncatlon raﬁses

o

ha ]:.further wh;le deepenlng the rest of the orbxta1s USIng Moccia's
“rgdre-like‘hés-s functu0n> (I - 2s, Zp) glves vxrtual]y the same
reé’ﬁt as'using the DZ. ones from model potentlal callbratlon alth0ugh
- we found that |nclud|rg the DZ 3s ~ASTQ. Iowered the ha] ~orbi tal
epprecnab]y (Table 6.6). ' ¢
;ln‘cohparison withAother @alcqlatiens, our OCE-MP results
are in the SCCepted,raﬁges. But it must be»emphasised‘that our
calculations é(e tied to those of Moccia, and carry with‘them any flaws
inherent in the‘latter. For‘exemple, MocciaRotes that'beeau§e of
Qlimitatione in his program, he wéi‘forced to use the semevsize of
basie set for both H,0 and H,S, although H,S has eight more
electrons. In a variational optimisation, mp%t of the terms will tend

to be pulled into the description of the deep~lying core, leaving the

valence region relatively starved. This meant that the valence orbitals -
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TABLE 6.6. H2S Valence Basis Set 11i)

]

W N OV W N -

N o et ot w% et e et e o e
O W O~y O V1 . & W N — O W

b
23
24
25
26
27
28
29
30
131
32
33

STQ
{(nim)

Is

Is -
2s

2s

3s

3s

%

3d,
4d,
3d,
id,
2pg
2pg
3po
bpg
&fy
Ay
3d-y
hd-y
2p-y
2p-)
3p-1
bp.,
bf_y

‘Of-g-"

<1

3dy
4d;
2p)
2py
Im
bpy
4,
Ufs

Exponents

17.08
12.69
6.73
5.24
2.66

1.69

1.57
1.40
1.40
1.40
1.4o
9.51
5.12
1.56
1.56
1.25
1.25
1.40
1.40
9.51
5.12
1.56
1.56
-1.25
1.25
1.40
1.40
9.51
5.12
1.56
1.56
1.25
1.25

2a?
1

-0.0899
0.1334

-=0.0604

-0.1110
0.1283
0.9923

-0.1370
0.0538
0:0050
0.0893
0.0034
0.0037

-0.0246

0.2254
0.0324

-0.0191

0.0825

2
3al

-0.0340
0.0504
0.0020

-0.0820
0.1256

0.3433

-0.1895

-0.0719

-0.0446

-0.0782

=-0.0501

-0.0122
0.0928

r0.9328

-0.0164
0.0061

-0.1030

" -

-0.0359
-0.0267
-0.0136

0.1038
~-1.0813

0.0740
-0.0243

-0.0350

Orbital Energy (a.u.) -0.9280 -0.4527 - -0.3412

-0.2874
-0.1237
-0.0118
0.0879
-0.8635
-0.0518
-0. 1407
-0.0734

-0.5375
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of HZS‘ would be inherently poorer than those of HZO' This feature

remains in our calcujation.
g . . L . . .

i However; in the use of model potentials, an interesting
~situation arises. . The molecular valencer:regions of 'both wHéOl»and5q

‘HZ&Afébntain the same number of electrons, and so the use of equal

basis sets would be justified. But these basis sets would have to be

optimised anew in presence‘df the model potentials.
. caelee o : ,

- E
r

C. Heavy Off-Ceénter Nuclei: N2 Molecule

1. Bagis Set Build-Up

The nltrogen molecule represents our first true test of the
OCE~MP me thod, S}nce it has heavy, non—nydrogen off-center nunlei.- In
such a molecu]e;éwhere the off-center nuclei cannot be séid to be a
‘smalT perturbafion on some,central problem, a startln% basis set is
not as lmmedlately obvious as in the central hydrldes‘ir Indeed this
- can be considered the case in even such a relatively simple molecule
as H2'

The electrqns in a diatomic feel a potential which is
deformed con;iderably from spnerical symmetry alongﬁthe_molecular
axis, and this is reflected in the shapes of the molecular orbitals.
The challenge is to determine, from scratch,.a combination qf-basis
functions which interfere in the proper manner to reproduce the
features of the MOs. ln understanding this problem, the MO diagrams
of Strentwneser and 0wens[63] were helpful For example, the lcg
MO . of H2 vexhlblts the contours of a sphere perhaps slightly

squashed into an ellipsoid, but with small peaks at the nuclear
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positions (see Figure 6.1). This may be well simulated by a combination

1

of an s-STO and a dy-STO whi'ch eats out part of the s and enhances

the peaks at the nuclear positions. Indeed, in his one-center cal-

‘culation on Hiu‘molgcdle;,ﬁq;inaga_[8§l obtained in STO-approximation .

for this orbital'asl .
Icg = 0.6614319 {(Is; 1.0) + 0.5126091 (4s; 3.0)
+ 0.2707095 (4do; 3.0)}
The numbers after the semi-colons are the orbital exponents, and

together with the quantum number n they express the peaking properties

of the STO rédial‘functions. Note that a 1Is STO is necessary to

.produce a non-zero charge distribution at the mid-point, since all

L0

other ST0s vénfsh at the origin. Indeed from the coefficients, the
Is }s the dominant component in the MO.

The situation in larger molecules is more complicated. There
are several orbitals, with more detailed structure. These must be‘
shaped up at the same time, keeping the basis sets sufficiently flexible
and balanced in order to produce the proper total molecular picture.
Inflexible or inadequate basis sets can result in w}ong ordering of

orbitals due to the.artificial dominance of one orbital over the

others.
The Né ground-state configuration
: o 1+
o2 2. 02 2 fr
og o )20y 20, 305 Try oy - )

. Ny~ ) ‘ _ ‘ - ) g

may be approximated by

2 2 2 2 2 4
[]sa lsb] Zog Zou 30g ]Wu,x,y . z

. 9
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"reproddée.the_diagnam&QGFiguqes;Gﬂg)a»;-j L e

- o e

The core Is orbitals are replaced by mode | potentials and the -
,valence MOs simulated by OCE basiéf unctions. Let us examine the
shapes of MOs to be simulated. Again| from Streitwieser and Owens.we.

D - T )

S s a w e 0L 0 gt Gt 2w et

[t méy be seen that apart from the sharp negative peaké at:
the nuclear‘posftions, ch ‘I8 positive and almost Sphericaljy éy@metric
about the midfpoint.”vThe iou 'looks-Pikg a:'pzf‘orbitér} asidé from:
the opposite sign spikes at Lhe ch]ei;"vBQQ vaguely reéémbles a do
vorbital and Zou resembleé a ?x- br- py orbjtal at thé mid—pofnﬁt

Of course, the model potential is expectéd to remove the sharp peaks

and then OCE functions shoulﬁ easily simulate the diffuse parts of ‘the ;.

.MOs. Clearfy, the ideas of Huzinaga [88] could be applied here.

| The Né” bésis set was deve]épedffor one inter-nuélearv
separation, the often-quoted experinentaimdistancg of R =_2.068 a.u.
The way our program was set up allowed us.to develop a bgsis set which
is simplified considerably from that dictated.by group theory for the

C2V symmetry: The basis functions for . Og symmetry carry even &

b
.

m=0; for o, it isodd &, m=0; for Ilm , odd 2, m= -1;
u : ux

and for Im , odd 2, m= +1],

Sty

After many abortivé attempts, we started out with a skeleton
basis set of nine STOs up to & =2: one 'Is (1.0), one 2s (1.0)
and one 3dO (2.0)  for cg_ symmetry; one 2p, (1.0) and one 3pO (1.0)
for a, symmetry; two 2p+] (1.5, 1.0) for the- Im, symmetries.
The expdnents.(in brackets) were chosen so as to make the STOs have

radial peaks in predetermfned regions. This is easily done by‘difj

ferentiation of the radial part

" q

oy
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Contours at 0.0, 0.004, 0.008, 0.012 and 0.016

*

6.2°  Contour diagrams of Np valence MOs, from ref. 63.

~
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' cwhfch has a;maxfmum when f“ )
- S e RIS

e en o »
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This does not apply to a s $TO. Altéfnatkycl; one can use the
radial distribution function

2 RZ ( )= 2n  =2gr

This has a-maxfmuquheh_m
g .= o N . J_ﬁ6-h)
1t seems fhen that the relation

e . n-= :
¢ ==/, 0<¢6<1

(6-5)

IS a good. way of guessing the region of effectlveness of an STO, or,
conversely,Aof tallorlng an exponent to cover a requnred region.
. "The electronic energy Ev of this early basis was hlgh
*‘-26.2la.u. compared to -31;6 a.u. as estimated by Formula (4-6)),
aﬁd the, orbital enefgies were horriblc, crdered wrongly>Wfth ]nu

‘too deep. But the salient features were there. The orbital exponents

were then optimiséd-by hand one by one, to try and lower the energy

'fqu impfove the ordéring. Not much cbuld be done wcth such'.a starved

basis set, and the picture did not change nuch ‘aftér a lot of
adjustment.
The basis set was,then fleshed out by adding one or two

functions at a time. At each stage the exponent of the new function
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.was chaﬁged é few times’nmnuallyiénd:notltoo assiduously. Thef_ 2
:quahﬁum numbers weré generally kept smaIl_énd:the‘ n Va]ues'w;;e élso}
keptlélose t0rthéismallesttyalué allowed for each. % (n'=HZ+1), »%n-
drdéf'to'kegp some-arrays in tﬁe'infégfa1‘r0utines small.  Thus our = L f_i'L
‘sasi;vs;t-has"oﬁfy one fupctipn for eaéh sthetrQ-fo}'Whichﬂ‘liéJﬁ,>- -

and & =5 1is the largest value.® - - ... .

Graphfcal'check€;g of MOlprofi]es Qas performed at various
§£a§§é;hto'to$péfé yakugs‘alang the'internuélear a;js with those
calculated from the results of RaﬁSfl'“[Gﬁj ‘and ﬁEWTi}ﬁams'énd:
AHsznagé,‘ [65] in or&er to get an idea about whfch regions needed
more attention. |

In this manner a final basis set was arrived at, comprising

n- . L v X . . . s
ine og,v nine o, eight Tix and eight Ty basis

functions._ It took numerous attempts, many of them futile, because
the interaction of several STOs is too intricate to gueés beforehand.
Besides, we. came up against a eerious redundancy problem, which is

‘discussed in Section 3, after the results are presented.

2, Results and Discussion

a. Valence Orbital Energies

Our best results for tﬁe_ N, molecule are gfven in Tables 6.7 -

. _ 2
6.8 and Figures 6.3‘1 6.8, ‘Tabie.6.7 and Figure 6.3 show our results

in comparison with those from ESCA measurementé_[45] and more complete

calculations [65, 89]. Our total energy is about 2.5 a.u. higher

than the restglbutvfp'still represents a respectable 97.6% of HF

“energy. The orbital energies are found in quite the étceptable ranges.

-



T

) I “231,
TABLE 6.7. NéVValepqe'Orbital'Energié$ 
EXPT. NEAR-HF  OCE-MP 4-31¢6 MINIM.
- (ESCA) . (sT0) ‘ (GTO-MP) (sTo)

Siegbahn?  Cadeb  This Work McWilliamsC Ransild "o . .

R, (a.u.) © 2.068  2.068 2.068 2.068

Tot. Energy- = . -108.99  -106.4  -108.86  -108.63
205 K ;1.37 , —l.h7ﬂ -l.hé T o152 ‘: -1.42
202 -0.68° -0.77 -0.72 " -0.77 -0.71
302 ~0.57 - -0.63 -0.67 -0.63  -0.56
iy - -0.62 “0.61  -0.65 -0.62 . -0.54

®Ref. 45 »

bl .

ef. 89 .
CRef. 65
dRef. 64



EXPT.  NEAR HF OCE-MP -4-31g MIRIM.
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qur highe§tAbeitaIS-areaslightly deeper than the rest, but. their
oreef{hg is parallel to that in all the_other calculations, including
‘Lthegnear - HF result. N2 is one of‘those cases in which the HF
ordering of euter'q;hita]s is the reverse of the experimental orderlng, as
we saw in Chapte? 2. Comparison with the calculatlon of McWilliams and
Huzinaga [65] is lnterestlng “These workers have lncorporated a GTO0-
screened Bonifacic-Huzinaga model potential into a two-cente?vcalcdlatjon
with an adapted Pople hf3lebasis set. Their Aéc- orbital is the o
' deepeat”fn'thehset while" the other orbitals are c]ose to Hartree Fock.
On the other hand our ch_ orbital is closer to the HF value, while
the outer orbitals are deeper. There‘seens to be a trade-off when
electrons correlate themselves among enefgy levels, and it can go
either waf..

~y 7

N

b. Composition of Valence Orbitals - . o

. T;ble 6.8 shows : -MP basis set and the expansion

coefficienti/for the ‘valence M0s. First, it may be noted>that,the

exponents ¢f STOs with the same £ but belonging to different

symmetri are not kept equal as Moccia did, except in the. ﬁu

ies which are known to be degenerate. ' This enhances the

flexibiNity of the basis. Of bourse the reason Moccia fixed them as

equal was for example degeneracy of the wz-llke orbital with

I

2v

into D wh form; Secondly since we - used a C2v prOgram the cg and

This

a T -would appear naturally when a ¢ molecule was stralghtened

o symmetrles of- D°°h had to be treated as one, namely A

u |

represents a limitation on the number of basis functlons that could

be added to each‘synnetry, s:nce the matrlces became very ]arge

~
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I
,
) 0
o . : TABLE 6.8: N, Valence Basis Set
>
) ST0O Exponents 20? 302 202 1n? 1n?
(nim) z g g T u ux uy
1 Is 2.0 -0.4112  -0.1972
2 25 2.0 -0.3267  0.4992 .
3 3dg 7.6 0.0348  0.0754
4 3s 1.1 -0.0222 0.6170
5 3oV 2.2 0.1293 1.2593
.6 4 6.0 -0.2233 -0.3936
7 bdg. . 6.0  -0.1473 -0.3670
8  6dg 5.0 0.2676  -0.7080
9 s5gp 3.0 0.1965  0.0280
10 2pg 1.3 -0.0398
o 3pg 1.3 - 0.303)
12 bpg 3.9 - -0.4095
13 4f, 2.6 ) 0.1488
T 2.6 i.2003
15 6pg 5.2 : -0.2523
16 6f, 3.9 0.3104
17 6f, 5.2 . ; =0.3762
18 6hg 5.2 : -0.0522
19 2p,;. 0.5 4 -0.0360
20 3p,y 1.0 - -0.1416
21 hf,, 1.0 -0.1987
22 . hpy, 2.0 v . -0.1810
23 4f,, 2.0 -0.5815
% 6p, o  -0.6630
25 6f,  z.0 - _ o £ 0.4809
26 6h,, 5.0 -0.0642
- 27 2p_, 0.5 -0.0360"
€2 3p_, r.o y -0.1416
29 kf_, 1.0 ‘ i ' -0.1987
30 4p., 2.0 . , -0.1810
3 A 2.0 ' , : -0.5815
32 6p., ko L -0.6630
. . .33 6f., 2.0 3 0.4809
34 6h_, 5.0 o ‘ -0.0642
Orbital energies: -1.4588 -0.6679\' -0.7180  -0.6507 -0.6507
. } .
, «

g
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The largest coefficients in the _ch orbital belong to the

a

Iso(2:0), 25 (2.0) and 6d; (5.0) STOs, with 4s (6.0) a close fourth.

‘ The numbers in brackets. are orbital exponents. The dominance of one
~STO is more pronounced in 309 and 2q . 309 is dominated by

Iy

(2.2), followed by $6d0 (5.0) sTO; A209 is mostly hpo (2.6).

+1 +]

Im ~is mainly dominated by a 6p+] (4.0), 4f (2.0) and 6f . (2.0)

STOs..

These compositions show strlklng resenb]ances to those based
on the concept of the ''semi- unlted atom'', as dnscussed by Huzinaga {90]
and Mulliken. [{91]. These practitioners noticed that the nature and .

arrangement of the outer electronie energy levels of N2 resemble

those of the Mg atom (Z = 12) instead of the united atom §i

(Z = 14), and ;ought a correspondence between the 10 .electrons in the.

. & _ .
N2 valence configuration Zoz Zci ]wﬁ 303 with those in the - Mg

configuration 252 Zp6 352 o} 3d Zi Hu}inaga [SOi\oarried out

ical calculations to fest thi tion. H d t
numerical ca cu]a ions tes ls“CUTTETh\lon e pre&b{g-9’§S\;
S/ of atomic orbitals 1Is , 2s 2pm , 3s do , etc., with adjustaéle
y
‘\// - c c c BN \
exponents s of a hypothetical atom Seated at the midpoint‘of_the '\
NZ‘ molecule. He calculated overlap integrals between these STOs
and the .two-center M0s of Rensil as functions of cc. He found over-

1aps approaching unity for ‘the pairs (Zog; Is ; 1.2), (ch, SSC; 2.0)

c H

KZcu; ch ;a1 (20 s 3po_; 1. 8), (20 g’ 3do_; 1;7)Q:(36 , Zsc; 0.8)

and (lﬁu, an ; I.O). The numbers after the semi -colons are the .
.0rb|tal exponents of the 5TOs as estimated by us from his graphs. It
turns, out thatgpthey are actually.not all that close to the SZ exponents

of Mg (Cls ='ll.6, Lyg = 3.7 and” g, =1.1). Nevertheless the B

3s

hint was strong [91] that the valence . MOs of NZ’ may be well approxi-
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-
mated by united-atom STOs with\suitabiy adjusted ¢ values: 20 by

g
o3 lﬂu by

on

Is or 2s - with some admixture of 3dg 5 20 by 2po
c “C - C u -
anc; and 309 by 3do”‘ with some admixture of ZSC.
Our calculatlon may be consndered ‘to represent the first

variational test although unintended and ‘therefore! loose, of the
2

o

concept of the semi-united atom, The compositions Hu21naga postul ated
for the NZ orb|tals“are less detailed than those obtained here, but
they certainly reveal the salient features.

%
9;;WMO Profiles Along Bondleis |
.’ Table 6.9 and Figures 6;4‘— 6.6 show the proflles (values in

atomic unitsz, of our o MOs along the interOnuclear axis, in comparison

"with values calculated from Ransil [64] and from McWilliams ‘and Huzinaga

. ?
[65]. In the figures,»the nuclear positions are at "RA =0 a.u. and

RA = 2_068 a.u;, but only one-half of’the picture is drawn, the othér
half being a mirror image or an invers{on throuéh the mid-point. The
OCE;MP origin is at the nnlecu]ar mid- pulnt quite close to thé origin
for the graphs (RA = 1:0 a.u.). =

+Figure 6.6 shows the 20g profites. In the bonding region,

Vthé OCE-MP (E) and GTO-MP(x) start out lower than the min-° 0(a).

There is a kink at the mid—point for OCE-MP, no doubt arising.from the

1s-STO contribution. A small. local maximum occurs, near here too, as

if the bas}s is struggllng to shape a.flat curve, which lndeed it is.
Both OCE~MP and GTO-MP then rise and.cross the bond axis extremely close
t9 the nuclear position, whereas the min-STO‘crosses earlier and has
a high maximum here. After that OCE-MP and GTO-MP go through, a maximum,

but unlike GTO-MP, OCE-MP does not recover quickly enough to ‘mimic the

Y

+
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- TABLE 6.9 N, Behavioyr of o orbitals afong internuclear aiis,

S 2 il ] R By

r OCE-HP min-STO® GTO-MPD OCE-MP min-sTO® GTO-MP®  OCE-HP mzn-srof GTO-HPP
1.0 -0.6604 -0.4270 -0.4773 . 0.3056 0.3056 0.3060 -0.019 0.0038 - 0.0040
1.1 -0.5891 -0.4267 -0.4778 0.2073.  0.3057 0.3071 0.0030 -0.0072 -0.0077
1.2 -0.5370 -0.4248 -0.4810 0.1621 0.3063 0.3143 0.0138  -0.0173° -0.0184
1. - -0.5651 -0.4075 -0.4873 0.3191 0.3086 | 0.3378  0.0806 -0.0260 -0.0318
1.6 -oﬂhh7h -0.3321 - -0.4652 0.3387 ' 0.3122 0.3569 0.1682 0.0117 . 0212
1.8 -0.2198 -0.5803 -0.3355 - 0.2067 0.3360  0.3493 0.1830 0.2112 .0570
1.9 -0.118 0.2740  -0.1971 0.1232 0.3826 0.2788 0.1517 0.4765 -+ -0.1002
2.0..7-0.0224 0.8915 -0.0311 0.0418 0.3338 0.1202 0.0998 0.9925 0:0942
2.1 0.0453 1.2752 0.1031 * 20.0322 . 0.4536 -0.1010 0.0352 1.2296 0.0139
2.2 0.0921] 0.6224 0.1555 -0.0962  0.2822 =-0.307% -0.0338 0.4550 - -0.1165
2.4 '0.1354 0.1219 0.0754  -0.1900 -0.3456  -0.4879 -0.1585 -0.1795 -0.3287
2.5 0.1392 0.0381 0.2954  -0.2203 > -0,4121 -o.hésg -0.2058 -0.2900 -0.3697
2.6 0.1359 -0.0026 0.0035  -0.2405 -0.4378 -0.4792  -~0.2407 -0.3391 -0 3797
2.8 0.1174  -0.0286 -0.0183 -0.2557 -0.4230 . -0.4229 -0.2745  -0.3475 -0.3524
3.0 0.0936 -0.0294 -0.0266 -0.2462 -0.3691 -0.3493 -0.2702 -0.3074 -0.2999
3.2 . 0.0712 -0.0247 -0.0251 -0.2220 -0.3052 =-0.2811 =0.2431 -0.2549 ~-0.2437
3.6 0.0380  -0.0147 -0.0143 -0.1603 =-0.1902 -0.1764 _-0.3671 -0.1589  -0.1497
hoo 0.0189 ' ~g.0082 -0.0100 -0.1062 -0.1102 -0.1053 -0.1021 -0.0920 -0.088]
' 0.0088 ,-0.0044 -0.0078 -0.0683 -0.0611  -0.0631 -0.0594 =-0.0509 ~-0.0522
4.8 0.0038 lo.ooz3 -0.0051  -0.0440  -0.0328 -0.0388 -0.0343 -0.0274 -0.0312

aCalculated

bCaIculated

by present author from reference [64]

by present author from reference [65]
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~~ min-STO MO closely in the ou;ér regiQn. — oo

| The profilg'of the 309 orbital (Figure 6.5) is similar to that
of ZGg.J Oscillations occur in tHe OCE-MP in the»boﬁding region as it
adjustsvto %afntain orthogonality to ch. But all Fhree MOs aré other-
wise quté close in this region. Again both OCE-MP and GTO-MP plungé
to pass very close t; tﬁe nuclear position, whi]evmin-STO goes to a
maximum}befofe plunging. The GTO-MP result then recovers to parallel

: : d : ?
the min-STO better. than OCE-MP in the outer region.

~

\».nffnaily the 'Zou (Figure 6.6) shows similar trends. The
GTO-MP is ablé to closgly mimic the min-STO in ;he inner region, then
break aff'sharply to pass through the‘huc]eér positioﬁg; meeting the
min-STO again in the outer region. The OCE-MP doesrnot seem capable
of performing such‘ihtricéte tufns, but gefssreaay’right from yhe
.sfért to éross at the nuc]eaf Eositions and meet the others in the
outer regfon. “

One jnteresting feature sﬁands out in the‘two mode | pqténtial
calculations, énd that is the apparent desire of all o orbitals fo:
cross the axis close to the nuclear positions ét all costs. We attempt
to explain this feature. We believe it is dicated by the model
.pofenéial seated at the nﬁclear position, and especially by the repulsive
.projection Opefétor terh B_]Is><ls[. This i; a‘sphericalpy symmetric
term, which may‘be imagined as a“fight circle at the nuclear ppsftion.
Each ; orbital must minimise its overlap with this |l1s> orbital, ?o
as to minimise this repulsive term. The most faVouraEle and sinpleét
wayhis td cdt across the ciré]e, the'negative overlap cancelling the
positive!out. More complitéted créssings can be imagined which also

minimise this overlap, .but they all call for a flexibility which

——
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apparently neither OCE-MP nor GTO-MP basis sets are blessed wnth
Related to this feature |s the questlon of orbltal energy.

One may wonder how such apparently different functiQns as the min- -ST0
and the model potentlal MOs can have comparable energ|es seeing especially
their behaviour at the nucleus, where the potential is strongest The
phenomenon is wel}-known in solid state physics and is based on can-
“§® cellation of potential and kinetic energy terms. Here |sban adaptation
e - .
o of its_explanation, in the 320 case [90]. Tne electron in the
'min~STO ch, orbital may feel favourably the strong attractive nuclear
field in the vxcinlty of the nucleus But thlS negatlve potential
energy lc liable to be cancelled by the p051t|ve klnetlc energy result-
ing from the rapld varlatlons in the orbital (V ¢ high here). On the
other hand, the_ﬁTO-Monr OCE-MP ch -orbital has a very small value in
’this reglon, and so has no sngnlficant gain in negatlve potential energy
At the same time, it does not experience a. snzeable increase in kinetic
energy either, since it coes not execute any turns The result of this
.cancellaticn large agalnst large in one case: and small against small
in the other, is that the orbital energies may be comparable.

| Looking at the proflles only, however, the Verdict is almost
inescapable: the 0CE-MP basns is not suffIC|ently complete to perform'
intricate turns especnally away from the orlgln More terms would
bhelp in shaping‘the outer.reglon, andreven in smoothing out the
os¢illations in the bonding region,' But this runs up against the
redundanéy_problem. Nevertheless, the salient featnres are there,
and these become more -apparent when we analyee‘the two-dimensional

. 4 : ,
behaviour of the MOs in the next section, ‘ o



243

d. Two-Dimensional Structure

In Figuresb6}7.- 6:]0 are high]y Visual (andbbeautifai)'
illustrations of the shapes of our MOs, along with those from the other
two works: They represent the values of tﬁe MOs (expreséed in
6§rtesian coordinates) at'grid'goints in the yz plane whfch*contains'
tée‘molecu]ar axis. Thus the shape of the MOs appéérs as a surface
fix,y) (3-dimensional) over’a'rectangular region which is a cut through
the molécular_space. The dimensions are in ‘atomic units,

-4.0 <y 5_4:0 a.u. and =-3.0 <z :_5.0 a.u. The compqte; routine

uséd plots a berspective view of this surface, comp]eteAwi£h ripples,
wiggles, hills, holes and horns. PositiVé_va]ues are plotted above |
the grid, hegétive ones below. Hidden lines are not shown, by our
choice.- The program'eveh alfows us to rotate and tilt the grid p]ane
Cdn order‘to get a bettef view. In all thevfigurés; the values of the
- functions have béen multiplied Ey f100, to-enhaﬁcg.some of the partS
wherevthe gentle waves Qoulﬂ otﬁerwise.barely disturb . the érid

] : : . o5
surface. ! . : | if\“’“) v - T
Figure 6.7 shéws,the Zcé orbital. The'min-STO is dom-

inatéd by the.sharpfspikés warping the_surface at the nUclear
positionst‘_Thé.spikes coméﬂfrom the ls'.c0ﬁponents of this orbital.
Thesé, hOWéver, are~chopped in the modei poteﬁtiél calculations. The
‘middle of the OCE-MP is thin and sharp. GTO-MP o’n"’the oth:.r hand mimics
thg min-STO except for the chopbed hofns, in which it‘résenbjes;OCE;MPk“
| I 3§g (Figure 6.8) shoWs.attempts by OCE-MP to producé horns
“like the min-STO. ' The basketsjtﬁderﬁeath are shorter and fatter (more
Spréad out). GTO-MP does a goodajob of trécing the min-STO except for

horns at the nuclei.
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20 (Figure 6.9) again shows min-STO with sharp spikes, and
shorter ones for the model potential‘galculations. Again the outer
baskets of OCE-MP are shorter and more spread out. GTO-MP is almost

perfect except for the horns.

Finally, in Im (Figure 6.10) OCE-MP has flattened, but has

not quite broduced the dip of the other two. This is not so serious, as
the HF w c hital'is in fact known to be flatter than the SZ result.
Figure 6.1 shows the total valence density plots for the

threevmethods, Fo. our purposes we have loosely defined thi® density

as the sum of the squares of the contributing MOs

- N
2 ) 2. ' T
Dlel® =1 €1 cix) ' (6-6)
i ) i p .
where i = 20 , 307, 20 and In only. This is because we are
9 -9 u : uy

considering onlybthg cross-sectioﬁ in the yfz,plane to.which lnux;
does not contribute. Again we have multiplied the values by 100.

The min-STO ;ross-sectional valénce deﬁsity shows an
gndﬁlating surface interrupted by sﬁarp spikes sticking out of'thé
valleys at the nuclear positions. These spikes are missingoin the
mode | potentia] calculations. The GTO-MP simulates rather closely
the " remaining wavefunctipn. The OCE-MP does not do badl&ieither. More
of the charge is piled in the bénding region, starving tHéJbﬂter. The
oscillations around the ﬁf&dfe remain. The OCE-Méldensjtyfappears

fatter and more spread out than the other' two. LT e

All in all, the salient features of_fhé valence space are

reproduced by#OCE-MP method. The density plots bear close resemhlance'
g5 : :

X a .

_idea of the method was well-conceived.
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3. Redundancy Problem L

In trying to add many basis functions to the expansion in
order to properly describe the MOs, some pathologieal results were”
encountered These cases were charactertsed by a ‘b ow- up of one or more

-

of fhe orbltal energles sometlmes dlpplng to -1000 a.u. and beyond.
Accordlngly, this would lower the total energy below ' the estlmated
value of —3l.6'a.u., thushvlolating the variation principle. Another
feature of such cases was the occprrence ol pairs of large (> 2.0)
but oppesite - sign coefflclenfs;ln theleigenvectors. In many such
_cases too, the compufatrons falled 10 converge in 30 iterations, the

limit imposed on our SCF program

The dlsease was dlagnosed as a redundancy problem which has

been mentioned by several workers in atomic, OCE [12] and even multicenter
molecularlEalculatlons.[9]a]_' It stems from the fact that as mo re

functions are added to a center, the overlap matrix elements between

N 7 . .
H~functjons tend to increase. The overlap matrix becomes increasingly
C

S|nguLar (determinant approachlng zero)q and thus dlfflcult to dlagonal|se
in the SCF procddure.

Several approaches were trled in order to eliminate or allevia;e
this redundancy problemu We repldcedthe diagonalisation routines in

our program, which are based on the Cholesky decomp05|t|on method, [92]

v, N

by the double Jacobi dlagonallsatnon method of Huzinaga [93], but no
improvement resulted’, We tried- to deté}mlne orbital exponents’ by least-

squares fitting our radial functions to those of two-center MOs, but

>

__blow-ups occurred even in this scheme.

>

In the end,*we could find no more convincing solution than

the mere removal or change of the offending STO. lndeed, as far as we
. ’ i \b

A
7
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) o . ¢
know, this is the only method reported in the literature, the only

~differences being in how to identify the offending functions. Moccia's
. €« .

criterion [12] was to avoid in;luding functions which would resglt in

eigenvélues of the overlap matrix with magnitudes lower thdﬁ 10_4 - 10

But this figure is dependent on-the method of d{agonalisation. We,

tried the method, using Jacobi diagonalfsation, and found the threshold

of'sa%ety Lo be f0-3, but it was not precise in guaranteeing no .

. redunddncy ‘in the SCF. &either was the criterion of merely*watching -
the overlap matrix elements. Redundancy seemed to set in if overlap
between any two d%&ferent STOs wenglerr 0.95, lbuﬁ this could be
complicated if overlap between some other pair was also large.

We_decidéa to use tﬁe SCF program itself with'few iﬁératidns
(usually about 5) and watch the redundancyf. Then we merely removed
one'orrmore of the STOs with large coefficfénts and continued. But
lhe problem meant we could add no mo;e than a few (aboht'S) functions
of the same‘éymmetry. One result is thedifficulty in lowering the
total energy to the value estimated from formula (4-6).
The pfobiém Qas élso triggered by machine optimisation ;f .
exponents starting from a normal basis. Since this procedure is based:
on Ioweriﬁg the energy, a small initial'redundancyﬁ;raps the proceduré
and becones,exacerﬁated. We"felf back to.manuéi optimisatién,»‘andb
that is why -all orbital exponent; are reported to no more than one
dgcimal place.‘ We believe tgfs not to be such a mortal shortcoming,
.“‘sinée Fhe SCF proceaure fine-tunes the coefficien;s to give the
necessary flexibility. o

-

It is the belief of this author that the rédﬁndancy problem

8

in OCE is much more serious than commonly noted. It is intrinsic to
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any one-center technique, including atomic cases. It seems to go beyond‘
the stability of the computer program used. Until it is overcome, it
will continue to limit basis set size and flexibility. .

L. Outlook into the Future -

The redundanc? problem hindered progress towards extended
applications of OCE-MP envisaged at the beginning of the project. One
of these was an investig%tign into the OCE-MP potential energy surface
and orbital correlation diagram of N, . |
Mulliken [91a] and Briggs and Hayns [Ba].have carried out

computations on the ground-state correlation diagram, showing how each

occupied MO changes with internuclear distance, from about R = 2.0 a.u.
Py

to the united atom limit (R = 0). They have observed an interesting

feature. Instead of MOs.going smoothly from the molecular orbitals

Y

to the united atom S} orbitals, there is a region of disturbance
around 0.6 a.u. Here the orbitals undergo dramatic change, and
the orbital picture seems to correspond'tq;the semi-united atom,

Mg. T

Ry
-

For this/qegjon of the N-N quasi-mdleculeL Briggs and

Hayns found that the best basis set was a "triatomic' one, in which

some basis functions, especially those involved in shaping the outer

S

MOs, were put at the mid-point, with the core-like functions still

seated at the nuclear centers. For shorter internuclear distances,

v

the basis is purely one-center.- “

A similar procedure has been used by Sidis et al [15b]

-

for the correlation diagram of Ar; quasi-molecule in atomic collisions.

)
'//' A
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The more diffuse outer MOs are expanded in terms of.unitedlatom (Kr)
STOs at the m}dfpoint.‘ |

It is thef&;ore‘interestihg to find out how far the OCE;MP
method can go in“desckiﬁlné the correlation %iagram.' McWilliams and
Huzinaga [65] have madeAFwo-cenfer GTO-MP calculations for short inter-éfa\\
nuclear distances. Their orBftal energigs appear to be tracing the o
expected profiles. However, thesé workers hint at:factors that might
cause errors at shoft internuclear distances. One is the pdssfble )
breakdown of the assumption that Fhe interaction between the ionic cores
is still correctly given by Equation (4-8), since at"short distances .
theré will be iess-thaquerfect shielding and auantum-mechanical reEulsion
é;tweéﬁ the 1s electron clouds. Secondly, ortﬁogonalityvconditions
of;Equation (3-85) would be increasingly diffﬁcu]t,td‘%d]fil as over-
lapping between atomic basis functions centereﬂ'at the two nuclei
increases. For OCE-MP, only the fftst:problem shou]d be of concern.

Wé>made a few attempts at doingVOCE—MP calculations at
shorter diéténce;, using the basis devéloped at \R =.2.068 a.u. but
w{th scaled expohehts. Redundancies developed, suggesting that the
same painstaking optimisétion prbcedure Qou1d<havevtb be repeated.
There are no shoft-cuts.

Also initiated were calculatibns on the S0, molecule, a

2

. more complicated case with model potentials at both the expansion

1

center and the off-center nuclei. Although preliminary results look
° & .

promising, experience tells us that, using our present method%, a lot

of time will be required to polish them to acceptable YPlues. s

Finally the challenge of tackling the redundancy pyoblem

7 : <y
itself has been an exciting prospect, and we have tried to keep an eye
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open for any developments in this area.- Help may soon be forthcoming

from two different quarters. |[f the redundancy problem is considered
<

as basically an SCF convergence probleh, then one possible method to

o

explore is Carbo's “level shift operagbr technique”,vwhich is clained

to produce unconditional convergence in SCF procedures [94a]. According
to té:s method, the ordering of the orbntal energles is locked and forced
to remain constant throughout the SCF procedure. This shou]d_prevént
any sudden dips which come‘from redundancy. | |
A more dramatic development may be thelEecently reporﬁed
expansion multi—configqrationa] scheme of Réothaan and Hopper [94b]

in which the SCF equations, as we know them today, are dispensed with,

entirely, together with their attendant convergence problems.

' Apparently, in the new method, théere is no eigenvalue problem to be

solved, but instead a simple matrix inversion problem. This author

3

dares to speculate that. Roothaan has again built a framework which

9. . . ’
“will take over molecular caleulations in the near future. It should

be rewarding to see how the OCE-MP method fares in the new framework.
N (

®

D. Conclusion

The objective of this thesis was to develop a one-center

expansion method coupled with model potentials (OCE-MP) in a way

whichlwould extend its use to molecules with heavy off-center nuclei,

»

a prospect previously beyond reach. We have?presented some of the .

theoretical background necessary for the study of problems in quantum °*

chemistry, and have pin- ponnted the posntlon of the One-Center Expansnon

method in the hlerarchy of approx1mat|ons We have detailed the reason-
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ing behind the idea of the OCE-MP method, in a manner which appears.

" convincing as tp its suitability for application to molecules. We have

eonstruEfed tﬁe mathemafical framework of the mefhod the formal set
of eqdations which must be solved. We have evolved a method to solve
to a hngh degree of accuracy, the new molectular integrals which arise
in the formulation.

; However, in' the aetual application of the method to reel

molecules, we have -been hindered by:&hat we consider to be a purely

.technica] obstacle, the basis set redqndancy'preblem. This has slowed

 progress. towards more extensive testing of the procedure.

v

K

Neverthetess, ﬁhe results obtained have shown that the
method does yield valence electron dtstrnbutlons and orbital energles
thch are "in: good agrezment wuth those obtalned from more complete
calculations. The method combines the. saVlng qualities of both the

OCE and MP* procedures resulting in a potent}ally useful package for

further chemlcal applications. In sﬁmming up, the 0Ch-MP method

seemed like a good idea at the time of,eenception and it still does

. ' x
at the end of this thesis.
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APPENDIX A

E]

LEGENDRE FUNCTIONS AND THEIR‘CLEBSCH-GORDAN‘COEFF[CIENTS

Legendre Functions

N

The Legenare functions we use are those defined by Harris

and Michels, for the region -1 <x <1, as follows:

2, |m|/2
“ - -N" (- P d et 2 .2
PZ(X) - L) é x) .(520 !m‘.(x -1) (A-1)
27 2! E

For m =']m| > 0 .they are precisely the same as the ''usual'' Associated
Leéendre function defined by Edmondé [76] For negative order, how=
ever, they differ slightly from thase of Edmonds.AWé could say

HM Im[ _ Ed |m| AL

Py =Py (A-2)

<

HM_-|m| _ HM | m] . Ed Im| -
P = Py Py

¢ - ("‘)“.nl%t‘l'%l')ﬁﬁdp;lmL ey

Below are some of the properties df these Legendre Functions whi ch
are used in this work: The HM €egendre functions of eqn (A-1) satisfy
the orthogonality relation

' (o + |m]):

m m : 2
[_ Po(x) Pyu(x) dx = 80,1 (g o= Ta])T B

o

(A-k)

.

"and the recurrence relations <

- . ';-262_-

ﬂa



m m m - _ _
(@-[ml+1) PP () - 0)x PU(x) + (t[m))PT () =0, (a-5)
Tomey o plnlet o plnlel
22 m, v _oml+l o [m i
. (2241) (1-x7) 7 P (x) = Pomp (X)) =Py (), (A-6)
A |
e | Sl
(22+1)(1-x2)2 P;n(x) = (&-[m]+2) (2-|m|+1) PLT!-](")
S ’ g(i-m[-l |
- (m)) (a4 -1) TN () (A-7)
_ - 2-1 ,
These relations are easily deriyé&-from_those of the usual ones, under
the constraints of eqn (A-3). fhus, for example, for (A-6) we proceed
' as follpws:
Start from Edmonds' eqns (2:5.]) and (2.5.22):
1
x PT(x) = (2=mt1) (1-x2) 2 P™ (x) - ™ (x) = 0
£ ) , L 2-1
: . ) 1 p .
m m 22 H'I']= I
] Poar (X)) = x PL(x) = (2+m) (1-x°) P () =0 "
Add them to get
m m L o.2y2  m=1 C s
P2+1(x) PZ_](X) = (1-x7) PE (x) L-m+1+2+m .
v 1 )
. = (=97 P () (2ae1)
Transform . ,m » |m[ v
) Iml ) = pImley = (122 pIml=T 00y .
Por) (X Pz_-,_(X) (1 x )R k) - (2040)
Puttfng im| + lml + 1 gives : '
)&//\‘ » Y
X . , _ e

S,
™~
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[m[ 41

'P2+l

, 3 1 ‘
() - Pl = (2041) (1% Piml(xlf

\

which by (A-3) ‘applied to RHS gives

]

m| +1 m|+1 : 2,2 - Y :
* PL+{ (x) - PQ_L (x) = (28+1) (1-x7) Pllm[(x) . “(A-6)
Thus, for all m,
| * Z_ lnfs1 _ ol
& m . Y | m{+1 _ plm+l . ;
v (?+1) PZ(X? (1-x7) Poei Po- (x) - (A=7)
~ _Also they satisfy the parity relation
. + . . X . X v .
PR = (<Ml ' - (A-8)
' This is directly obtained from (A-1):
m 2,.m /2 ' « ’
PP (x) < (-1)"(1-x7) (9 )£+|m](x2_])2
L _ T d(-x)"
_ (_])m(]_x2)1m|/2 g+|m|',d \a+|m| , 2 2 )
= T (-1) (a;) ST -1) , ‘.
27 g! ‘ ‘
AN
a
= (-nffmlemey
‘ ..k
¥ ’ . ’

°

ClebschrGordén Coefficients

As is usual in_alT‘angula? momentum vector coupling schemes,

& .

all the decomposition coefficients of eqn (4-116) can always be deter-

mined by intebration‘aqd use of drthogonality relations:

t

_,////;j\\ | . 1 | ’/ﬁ/

Clagr =N =S éz(x) P?:(x) Pj”'”f(x)adx'l _ ; (A-9)
' SR
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g5

where N

2

©
3

Legendre.

symmetry

265
is .~me constant from orthonormality relations.
However, it will be shown that our rather unusual choice of
o .
functions defines Clebsch-Gordan coefficients of striking

and beauty:, properties which are taken advantage of in generat- -

ing the coefficients by recursive methods.

When applied to the Legendre functions as defined in eqn (A-1),

these coefficients satisfy

This iden

¥

oT TO . ~=0,~T -

and because of (A-3),

19

Here we have used (A-3) for

o

fall into

c . =067, . A-10
ujk uk j ujk ( )
N v
tity rests solely on the first equality in eqn (A-3):
:
. _ T
For
' b
g 5T 0T p0-T 0T HT-0 )
P7 Pl = R A N . -
J ok ZCJk o ) wjk wo , (A-11)
T u ,
ation is reflexive (commﬁtative), so,
G ST T 0 6,10 ‘
P. P =P P, = c . P ) A-12
Jok k] ) ukj - ( )
P, pTa p9 p T o} 70,71 P-Cc-r) = 9T pO-T 13)
i BT Py R E “ujk Py E Cuj - Py - (AS13)

<'”')
po-T _,pT70 _ pTlo-T
u u u

Rélationships (A-10) cause all thé distinct coefficients to
two classes:

T >g >0

5
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or

These two classes are distinct and have to be generated

according to two different recipes as followst

a. t>0>0
— — 3}

~
For each pair (o,t), we perform the following steps

We define a new index p in (A-Il) by

p =1 -g

0f course by (A=3), szT =pF PZ . The starting formulas are

g . ‘ u
///// : then .
| o1 _ ' 2pt] Tlo(Zo)! T, -
cuOT B (2T+]) p! g , (A-14)
and
L3
oT - 20+3, 1! (20)' “'_
ool = w3 o - (A-15)
/ These two formulas are,obtained from explicit application
of (A-9) and (4-116): . IR L

I (A1) put j=o, k=1, =10, Multiply both

sides by PP and in*egrate:

f_]Pg(x) P:<x? PS(#) dx‘=-f_] E Fi;r.fg(X) Pg(§) d§

4

- The orthogonal ity relation (A-4) determines the right hand side to.be

. . , - cof s 2'.)‘. (p+p).!
L ) S < ~ HOT Tpp pri 0!
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ot 2-(2p)!

- Fpor 2p+1
So
O - 20t f] P° pT PP ax ' (A-16)
poT 2(2p) ¢ g T p . ’ ,

-1
To solve the integral in (A-16), we need explicit expressions for the

Légendfe functiéns, from (A-1)

CNO L2 c/é o -
o =’( 1) él T ) (%;JZO (XZ_])O

This is beéause in (gd;:-)zo'(xz-l)o , all terms in the polynomial . ,

)20 ,. except

(xz--])0 are annihilated bylthe differential operator (%;-

4

the highest power xzc, which is reduced to, (20)!

~

Similar expfessions for P;; 4PS' result in

] ) 1 gt , 19
f p%p TpPyx N (20) ' (21) ' (2p) ! f . (]_XZ) 2, 2 dx
S TR T g T
] 1 I
- (%i).(ZT).(Zp). [ (13T dx (A-17)
2 - ol Tl op! -1 -
We solve the'integral‘by'making the usual substitution .
°*x = sin 6 , dx = cos 8 do - (A-17a)
to get : )
b2 K '
- t=f (x%)"dx= [ - cos” @ - cosedo (A-17b)
' -1 -n/2. o
= f cos?™! 6 4o . (A-17¢)

)

-1/2



268

The‘sfandard integral

cos n ax dx = éﬁ-cosn-] ax sin ax + Eﬁl- cos" ax dx (A-18)
gives
/2
< = cos2T 8 sin 8 m + 21 m/2 coszi’] 6 de
2T —1/2 21+1 -1/2 R
(A-18) can be applied repeatedly, to give
/2
21 | 21-2 ., 2t-h4 2 " Y
b= _ t oz et T f cos’ 0 de
ST I T 763 T
4 L Cos
. _ 2".'21 "‘.' v
‘ »\‘(Z"l"*‘]) '/[ZT
: -+ _. i .
| = 2 @’ L e (A-19)
o) : -

Subsfituting (A-17) and (A-19) in (A-16) gives

ot _ 2041 (20)1(20)t(20)t 2™ (z1)?

Joor  2(2p)° 221 gt ! p!  (20+T1)!
A 2p+l, 1! (20)! , I (A-14)
- = (21+l’ pt oF o - A
A . .
, i 5 I - 4
Similarly for (A-15), where . :
Q R . . .
p+ 1= 1-~d¢+1
T ‘ ‘= 1+ 1 -g¢ g
R O oT  op ) p 2 ' : " 
: : = U m— i ’ -
j_']'Pc Pt Pp+l ;dx cp+l,o,r+l» 20+3 (Zpﬂ.)', o (A-20)

e Using (A-5), with |m| = T = L we get . .
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T T
PT+] = (27+1) x PT s
since P:_] = 0 by definition (A-1). So explicftly,
. ‘ 2' /2 ~
I8 “ N .
pT = 2 @Dta=xD T e (a-21)"
+1 T T ‘
! 2
N 1
and similarly
oy ‘. ) p/z
! -
Po _ (2p+1)(2p) ! (1-x") x (-1)° (A-22)
o+l ot 2° Sy ,
- | . | | \
Eqn (A-20) then becomes
Ny Lo +
ot {20%3) (20+1)1(20) 1 (BE1) L (1) TP (A-23)
p+l,f?r+lv. 2(2p+1) % 1! p! c' 20 TP _ ‘
1 . - .,' ) ' )
[ 03T dr . ((A-23)

-1.

, -

The integral here works out to be, after the,trigonometricél substitution

(A-17a), and use 6f (A-19)

/2 :
.=n/2 . ) .‘ .
‘. . . ] A . g o
_22 e 2™ () ()
RS0 N ¢ XD
=2 2I.H(21'+3)(Zr+2.)('t ') ZTfB[(T+1)5j% |
(2T+3)'- - —.
ey ot (@r43) - 2]
- - v - ] IRE (2T+3)I . ‘ \. . t}
| | 2142 . vy, . o
_ 2 (T+1) ! T S (Ai2k)

(2t+3)!



270
/
which,‘When_substituted into (A-23) furnishes ’
OF - 20)1@rtn)t 222 () et (2043)
p+l,0,T+] ! ol g! '221+1 (2743) !
But _ |
(21+1) ! _ 1 o 1 ,
(213}t (23] (2w+2) ~ 2(2e3) (eF 1) - - {
SO v. . ! , | . ' " ‘ ~ . | ) ) ¥
. - 0T | _ 2p+3, T! (20)' o ‘ ' : -"-
' ' co+'l,o,r+l (2r+3) p! ol - »(A.]_S)
v Notlce there is a typOgraptha] error in the Harrls and Mlchels
formula (IS])
\ . : \ ‘ .
* With these two inital expressions (A*14) and (A-15), all the '
rest of the Cz;k in this class can be generated with tﬁe'following
o » i ’ '
recursive scheme,
First advance y and k, keeping” j = o - fixed. The
. ' : - ’ . * . N
necessary relaﬁidn for this is _ - r
. Y. ) . 1° ‘ . B ‘ LR ., ' ‘.' ~
. utp k+AT_‘ ot . k=141 | ;.
s . (2u+l) ] NJk (Zk +J) Cu'-l,j,k—l ( E-!-I‘ ) ,Cu 1,5 k 1 g‘ :
wep-1, - Y
- (2u+3 ) CANIVEE (A-25),
,,‘
Proof: Ne.apply‘(A-5)ito Pk 'ln,(A 12) to get o , D e
i’ ‘ S ' s
; ' - 0 ’ ' S
o pT o (koTHly D1 kit N (ae
* P G Py (Zkfl) Pet 1~ (A26)

Zk+ T
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oy

‘\\A o T k-T+l, g - '

- T k+t LT , _
xPi b= Coa) B P t (EE;T-)]_PJ_PK_l . (A-27)
Eqn'(A-lZ) can now be rewritten as
ot R : k=141, oT p
e kP po(sTly o
. 2k+1 k+1 .
SR 2 M o Hi, |
? P - k+r o) . ‘
S o + (3 cAJkgiiP . (A-28)

Again we apply/;&—S) to »xPﬁ :

= (MmpHl; p u+o

- (A-29)

" Substituting (A-29) intov(A-28) and eXamining the term associated with
. ’\ . ‘ . .

PP we find
p-1
. v ' L ' >
. (U'2'9+]') ch ( ot
- Gt Y J k 2p+l qu
8 ‘ ; k;r+l ot ; Tkt ot.
| | T S e G G e

which is precisely (A-25). ’
‘ N ln (A526§ and the other recurrence relatxons to follow note
that as beflts a true angular momentum vector coupllng coeffncnent

' Ci}kb vanlshes if’ any of the following happens:

- ) <ol
e . b
L i) ko< |t
R D R S R A

. iv) u+j+k ‘not'even_v

V) YJ-k| € < j+k is not satisfied.
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3 lnéidentally, condition iv) enstires that u jumps in
A '
steps of 2, and means that only Legendre functions of the same parity

can be combined together meaningfully.
The restrictions cause eqn {A-25) to suffice for the generation
of all the coefficients of the form Ci;k .

Then the lower index j may be raised with the aid of

j-o o1 .= k+T 0T k=1+1 oT
(2_]"]) Cu«jk (2k+1) Cu,_i-vl,"k-l :(2k+l ) cu,j—l,k+l

_ (o] -
(2J AT c -2k (A-30)

This equation is obtained ih\s fffgightforward manner. Appfy (A-5)

to xP?  in (A-26) to give ; e
Jj- c+l coT . P g jto L 0T pP
2 (2J+1 NN v LR
_ k=t+1y 01 of K+t | o1 P
U G P+ Grap) © Pul

L kT Ty, kel

Examine the term in Pz and.put j = j=1 which gives (A-30)

/

e

immediately.

- This-génerates‘éll‘fhe.coefficients needed. .

:,SteE 1: set -0 = v so.that

ey L s
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SteE.Z: Staftifrom:the explfcit formulae
=vt _ p! (Zv)f'(ZT)l, : . :
var -@e) T vl el : _ (A-32)
and '
-vT _ ol (2v) t(2141)! | »
°p+|,v;r+1 ST (@pF) T T T : ' (A-33)

-

These are obtained in a manne r similar to that used for (A-14) and

‘(A-IS),.and noting especially that -P;v = P:

Step 3: The formula for advancing u ,and  k is now.«- ' "

b ) (v o (p+p+]) N -
u= I,J k=17 2p+3 u+l-,j,k-~1 1»

¥

(k-r ) ¢ -Vt (

qu Zu 1

- (k+‘T'] ) VT
k=17 Cu+l,j k-2

obtained in the same way as (A-25).

Step by Jj is raised by use of the formula

- - = p+p+]_-';vr
| ( =) S (Zu- 7T - kT G ek
; j+v=1 T vt , . . ' -
(%E:T—J_cu,j-Z,k 3;,(A 35)
* which is obtained along the same lines as- (A-30) —_— o ,;////_,
PN thice fhe symmétry (j,v) < (k 1) in (A 3&) and (A 35)

whnch was taken advantage of in programmlng

3

A few further comments on the structure of the Clebsch Bordan

‘coeffncnents follow In ganera} the members of the two classes are

o
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IUnrelated, beingf’éi/they ére, defined with respect to linear combination
of Legendre functions Sf different orders

.

P . ' Effective Limits on n
Class = - . Order p ‘
lower. upper
ot ‘ - ‘ .
. Tt>a0 >0 =0 < T max j-k|, -0 jtk
Lk > 0> < < (|3-k|,1-0) j ]
‘ o ) S
-VT . : . ) . o
; T>v 30 ™y > 1 max (]j-k|,1+v) ek
ujk = T : , /
(v= -a)

Thus in general the numbér of terms in class b. is less than that in
v | v , , !

a. for the same _ (|d],|t|) pair.

The two sets a..and b. intersect when either one or both of

the upper indices o,t are zero. Thfs‘identity was-&éed in checking
the programs for the two schemes. ‘
The coefficients were also checked against those ealeua]ted

by hand, using the

Pl e+ S

)

-

for tHe specna] case of two equal and posntxve m values. Huznnaga [81]

1
has carefully complled a set of these coefflcnents for all comblnatuons
up to Lf orbltals usung eXp]lClt expreSSIons for the- Legendre

: polynomlals and proceedlng in a deestrlap manher A

d

- . . . . N -

=2



APPENDIX B

BEQSEL FUNCTIONS AND RELATED INTEGRALS
{
Definitions . .

Ay
y

In this work, we use two types of spherical Bessel functions,

defined in térmSEOf the corresponding ordinary Bessel functions by

~ the formu1aé:

1

o . ) T . "‘.
1) = (55 A , I A R
2
k= &k w0 (8-2)
- T

2
|

where n is a positive integer or zero. The ordinary Bessel functions

JQ and K§ are ‘as defined in Abramowi tz and Stegun, [80] Chapters

‘9 and ¥0. ‘ g
‘ : < s .
Y , The conventions used are:
( ' : : : ' ’
7 z=x +Eiy; x, y real
- [ ‘

. n is apositive integer or igrp o . .,\
. | SN , L :

are unrestricted complex numbers otherwise indicafed..
"','Jvf are talled Ordindry Bessel Functions of the.first
kind, of order v.; J+v(z) are some wof the solutions to the differential

. -

&,

équation

. (B-3)
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Y, (z) (also called Weber's. Functlons), and of the th;rd klnd H(])( ),
(2)

(x) (also cal]ed the Hankel Functions). - :

"The functions Kv(i) are called Modified Bessel functions
of the Second Kind of order v. They are solutions to the differenfial'

equation

2 ‘ .
2dw | z gﬁﬁf‘ 2% 4 vz)w =0
2 - dz .
dz

g

z

Q.

. O (w)
S )

the other solutions beinég\l+v(x), the Modified Bessel fungtions of

[

the first kind.

% The functions jn dele?d by egn (B 1) are: called the

'////~ Spherical Bessel Functlons of the fi-rst kind, and they satlsfy the

i?l?ferentlal equation

4 : L -

zzw” + Zzw‘b+ [zz-n(n+])]w = 0

where n =0, + 1, i_i, - aldng with yh(z), second kind.ahd

hﬁl)(z); hﬁz)(z), third kind, which are defined similarly.
' L% . o .
PR “Flna]ly k y . calleg Modified Spherical ‘Bessel functions

V= of the third klnd satléfy,'along wi th iﬁ défined-similarlyi' the
' . ’ . . ‘ )

n.

- 'ldlfferent:al gquatlon
'i 22t 4 2700 -'[zz+n(n+l)]w =0 = (B-6) ™ 4
. ) . R v
Some Recurrence Relations _ ‘ & |
s Y v g ) ] . ’ ~ . . .. - . : .
A'n‘ " The spﬁerﬁcal Bessel functjons jn;, k- satisfy the following

recurrence relations:

,
N .
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'satisfabtory for ™ k_ . "There is of course no need to’ compute »jn(xY;

" defined under the condi tions.

277
. 2n+1," . | :
- B (50 3,00 = 5,00+ () (8-2)
2n+l 2 _ N .
5D «, < ) =k () -k G0 6-8)
Startlng points for the recurrence relatlons are the special va]ues
»’ - .
ig (x) = x ' sin x = EJE%ji : : - (B~9)
. cos X , -
S ‘
ko(x) = e™/x " | (B-11)
KGOr=e SCREY

- The functions ‘kn(x) are calculated by the direCt use of ‘the *

recurrence relatidn,jedn (B-8)' startlng from (B- II) and (B IZ), and

[1

generating ;kn+l from k and k -1 This recurrence scheme is .
. 5
in this work, since these functlons appear only in tntegrals which

are evaluated asalytlcally o ’
n . b\ h

" Some Integrals

\ g . <
* " T E ‘ !
> '

We record a few standard lntegralsulavolv1ng Bessel Functlons

uWthh are needed in- the maln text

N bl .-

e e z“.r("*’”')
, ‘ o SRR _ : )
R A = - e

CRG#V) > IE, R« ;—
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.‘Abfannwitz and Stegun.- Formu]a’(jl.h.IG). This formula is used
to prove ">
REEVE 3 L
v fm t J,(at) at VH - -
2. . L - — dt = ‘ -~ (z) (B-14)
+ -
| | 0 (t24z2) M1 2" ) VR
(
defined only under the conditions
‘ A , . 3 s
a>0, R(z) >0, -1%<Ry<2Ry +'§: .
. : |
v _ \
Abramowi tz and Stegun. Formula (11.4 44), -
This formula is used to derive the last equality in
eqn (4-148) and (b-149) . For example,
'3
L1 2 L+(1/2) ,
Mio= GRS T dk
1 0 (k™ + s)) i
L] i - !
1 R 2 2
T Es) R (h-148)
1 ’ 1 ] T 1-L-(3/2)

We check that the conditions under which the integral

satisfied. In our case, they apepar as

|

v o= L + i—> -1 since L >0
o= l] -1
z = §, >0 These two are significant
a = R>0 ‘ condi tions
. (]
t = &k

and

2(i—l)v+ 3/2 > L + 1/2

is defined are



v

implies

2i > L + 1

7

Under these conditions the integral becomes

‘ _— 1. .
}] i GL+7+] i

I
L1 7 Lagtl-i

-

_ (2 )
Wio = (§§?_ T

1

We use the identity (Abramowitz and Stegun, egn (10.2.16)

K ° = K

N () ()
to give
L+] . 1
5§ i =1 -
- 9 R\ 2 \7
I G T Fx L 3 (8,R)
] 1 1 ] [ -L-2
17573
which, by (B—Z); gives also
L+ .
S i,-1
B R I
¥i o = T Gy ki - (8)R)
] ] | 1 7Re
Simitarly x
“ L+]
§ i. -1
RIS R\
b T G ki _ -2 (8,R)
\ i 2 | 2
X 2
, vav(at)dt . .
.3' ‘ 2 2 - = vtl lv(az) b Lv(az) ’

0t (¢ +z") 2z

where the conditions a >0, Rz >0, Rv>-

A%

279

. (B-15) |

(h-148)

(B-16)

(B-16a)

(8-17)

must hold.. This

SN
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Voo integral could be used to prove eqn (k7146) and eqn (4-147) directly,

-

-

with |

1 N _ _ —
voEa, z = RGl, a 1, t ==kR ,

J ﬂ
if one indulges in the details of defining Iv(az) an Lv(az). The

Iétter are‘called Modified Struve functions.



é\ APPENDIX C (

FOURIER TRANSFORMS OF SLATER TYPE ORBITALS

-

Radial Transform (hld)T
' . T !

The quantity (n&é) given in integral form in eqn (4-110)

is proportional to the radial dependence of the Fourier transform of

a STO of the formﬁﬁﬁ-rn'e_§r P, (cos 6), i.e., v(io)-orbital. it

has the represengétion (Geller, [25], eqn 17)

\

, l%ﬁld)T _ 22.1! (n=-2+1)! 6n-2+] K
' 2 2. n+2
o (kT o+ 89

o, ‘ ,
[5~(n=2+1)] n+4+2 s+2 2s
x 2 (-1)S< >< > &) (4-128)
’ . s=0 N\ 2s+24+1 s : ,

where, [a] means the largest integerwﬁq a). Using this equation,

a number oflbecurrence rélations involving«_(nﬂ,d)T may be deduced.

A more' convenient méthod is to use eqn (4-110) directly plus ‘the
properties of spherica}‘Bessei'functions. We use the latter method
to derive some of these relations:

LY

1. ",; k(an)T+L¢n-'2.)(n-l,£+‘l,6)-r=6'(u,2.+1,6)T . (c-1)

~—

ProofT Use of'dfffgréntiation’formula for spherical Bessel functions

iy (Abramowi tz and SEE§QQ} | eqn 10.1.23)
' d ym | 2+] +1-m
(; d—Z—) [Z_ JQ(Z)] =z Jl'l (Z) . (c 2)
- 281 -
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. -y y
with m =1 this gives ;
\v"} i
d . %+l . | L .
az [z JR.-I(Z) (C 3)
EH )
We examine :
/ v
/-
- d n+2 | dn-0kl g+ "
5 [z j (2] =55 [z o (2)]
i - r4
By parts:
d n-L+1 2+1 -2+1"d 2+1
" &) jp(2) w2 g (2 () .
using (C-3)

- ¢ 04 )
n-2+1 . ZQ ] j, (Z)

n-% L+] .
= (n=241) 27 7 - 2z jp (2) + z 21" o
' 4 +
= (n-241) 2 G ) ¢ 2 () L (c-b)
Now, in (4-110) we put |
d
kr = z, dr = E% -
to get

© 2 (\ -8, '
z ! k dz
/ Jl(z).e . .

T
(n28) " = T
o «™?2 o K
w _ _ 8 , ,
+ + :
- (hm™3 [ 2 e X laz (c-5) -
. 0 )
f g'
Integration by parts gives
. -8 w©
+ -
(nes)T = D™ "2 5 (1) e K (T
. , k ) § 0

x 2
since jz(z) + 2z
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, ‘_ N 5;3.
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4 C,,’}’ - —:'J d ® I,1_“_2 ‘.‘.; 2 2 k _k
\ ) : =/ Gl jg(2)] | () dz} -
. ) - . O ' . \ ) ! :
P : Using (C-L): !
AAY - ¢
. v n . |
- . ® i , ' :
+. i
(028) T = @D™3 - K ) ™G @ M () )
k S 0 , L -1
. S
-2, .
X e k dz
s, ,
-2+ Ay n+2 +1
- n‘ | (_)n 2 j' Zn e k j (Z) dz _
8 k L u
’ ‘ 0 . ‘
+ + ) '
+3k_(l)’.‘3.f M2 kT (2) dz
k -1 -
0 .
or béingJ(C-S),
< ¢ {\‘
(ne)T = 2L (0-1,2,6)7 + £ fn,e-1,6) T (6=52)
" Eqn (C-1) follows.immediatelysfrom the transformation, & ~+ 2+1 , ;
V4 ) . 3 Q- : N R . ,;
’ 2-1 - ¢ and a little rearrangement.. .
2. 241 (0-1,2,8) T o= (g #1,8) T + (n,2-1,8)7 (c-6)
Proof: We qse)thé recgrreﬁce relation_ for spherical Bessel;functions
c {Abramowitz and Stegun, eqn;ﬁp.l.ls):
- v : . «
Jokr) =K k) + k)] LT (8-7)
‘ =) 2841 Hp- R+
in (Q-IIQ), this gives )
: S RN
1 \ /
B 12 i



T _ _k (n+1)+2 . ~8r
(nk8) = 23+ {f : Jl—](kr) e dr
(n+t1)+2 -8r

| + f 4] © .dr}
| 0 1o
1 k | ‘v"r“/L
1 = e {(rn+l1,2-1,8) + (§+1,Q+T,6) }
1 ‘zf - ‘ »

Pu&ting 'n > n-1 gives (c-6).

\ : ‘ | .

3. £n+1+é)(n,2-l,6)T + (n-z+l)(n,2+l,6)T
| = oD (02,07

Proof: tn (C-5a) multiply by (22+7) and rearrange:

2041 . T 22 ‘
s (n28)" = (nmer1) (n1,2,6) T (D +(2041) (271,807
Use|(C-6) to replace (n-],i,s)T in this equatfdn, giving
(2‘;‘)§925)T  (ne2t1) ((n,2-1,8) T3 (n,e41,8) "
o T
+ (22+1) (n,2-1,6)
T T
~ = (n+242) (n,2-1,8) + (n-2+1)(n,e+1,8) .
[}
b, | 5(nes) +Ak(n,2+W,6)T = (n+242) (n-1,2,6) "
Progf: In (C-1) put &= 2-1 ~

s(n,z,c)T ='(n-z+l)(n-f,z,6)T + ki{n,2-

~

/

1,6)T

284

(c-7)

(c-8)

(€-7)

(c-9)

. (c-10)



Note the difference between

-

kol , 1:1;‘0[ 5
e o ) 285
Add (C-10) to (c-11) to geti(c-9). . .
| . v I '
5. k 2,62 Cn £ 5) + (n-2)k(n- l 2+L 6)T = (n+1+2)5(n—1,2,6)r (c-12)
Proof: In (C-1) put & » 2+1, then.miltiply by k:ﬁ
Froof , u Lehen. P
«? (n 2 6) k(n- &) (n- Lo, 87 = ksln,2+1,6)" (c13)
BN o ' i S S \ {
Multiply (C=9) by §&: .
. ) e &
2 T T ‘ T
62(n28) T + k6(n,24+1,8) = 6(n+2+2) (n-1,2,6) (C-14)
| | | | .”‘v —_ . P4
Add (C-13) to (G-14) to get ((C-12). ;-)//
6. (K2+62) (n,2,8) " + (n-2) (n+2+1) (n-2,2,8) "
= 2(n+1)6(n—1,z,6)T (C-15)
Préof; In (C-9) put n > n-1, then multiply by (n-l’:.
‘ T -- ‘ T
(n—z)(p+z+l)(n-2,z,6) = k{n-2) (n-1,2+1,8)
‘. + (n-2)6(n-1,2,8)" (C-16)
Add this to (C-12) to get
L
(k2+62)(n,2,6)T + (n-z)(n+z+1)(n¥2,z,a)T
= (8(n+2+2) + 8(n-2)}(n-1,2,8)"
= (2n+2)6§(n=1,2,8)" (c-15)

this equafion and eqn (203) of Harris and

Michels, ®which is belneved to *be in error.



7. (n+242)k (0-1,2,8) ] & (n22)6(n-1,241,6)7
Tl (ks T

1

%) (n,2+1,6)

Proof: Multiply (C-9) by k:

[

k6(n,2,8) "+ k2 (n,241,8) T = k(n+2+2) (n-1.2.6)T

-

and (C-1) by 6:

(€=1) x 61 -k8(n,2,8)T + 6%(n,e41,0)" |
= 8(n-2) (n-1,241,8) 7 -

¢

" Add (C-18) to (C-19) to get (C-17).

: 3
8. (2-1,2,8) " = (225 (29,001 6) T
- k™+8
‘
Proof: In (C-17) put n = 2
(Q,Q,‘f'] ,(S) = _(2%-‘%& (Q'-I rQ”S)T
k™+8

2+ 2-1 gives (C-20) immediately.

9. - (2,2,8)7 = 13&131§-(z-1,2,5)T
2 .2
k™+6
Proof: tn (C-15) put. n = g. ; i

The nine numbered recurrence relations above permit:the

' T
stepwise generation of all (Q,Q,G) for n+l > ¢ >0

('IQO,G)T, ‘which has the form

b

(c-17)

(C-IS)

(c-19)

(c-20)

(C-21)

(C-22)

starting from
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10. : (-1,0,8)7 = (k% + 637! (c-23)
This ‘initial value is obtained in the fo]lbwing manner : Exp]icitjy,
. . [ '
nw= -1 in (4110) gives ‘ ' )
" T A . -8r
(-1,0,6) = [ r iglkr) e ©"dr (., (C-24)
. 0
Using (C-5) and (B-1) we get
T 1 © -%Z .
. (-1,0,8) = - [ oz J'O(Z) e dz
k 0 "
) §
I @ . R '—k-Z .
= [ sinze dz . . (C-25)
: k" o :
. l .
» ) ’
The integ?al I is solved by repeated integration by parts
) 8 $
© - -2 - - Z o
F=/ sinze K 4= (—%) e K sin z
0 0
£ i s
+ [ cosz-e * 4,
§
0
S8, . . L8,
= % [- %—cos ze K + %{f (-sin z)e K 4 ]
V 0 0] :
-1
2
- S0
§¢ .
So that
2 2
k k
=+ ==
§ $
or
2
k
I = — 7 . _ (C-26)



+

Substituting (C-26) into (C—ZS) gives (C:éB), o S

'It‘wés fo;mu1a,(é-23) whigh first endeared ué to the method
of Harris and‘Michelg: the cagacity to solve attraetion.jntegrals
with a Yukawa potential. (eqn (4-73)) . T

We derive heré an identit? which is interé;ting in its own
right, but whi;h HM qid not repoit.. o . :

. ) . ,
m (€-20) we reduce & -+ &-] systematically:

(2-1,2,8)1 = sz - (2-2,0-1,8)7 (c-20)
Ko+ , .
. . \
2k 2(2-1)k -
- (g 1; (2-3,2-2,0-1)7
B k™+8 (k"+67)
%
.
| n
= (D" 211 (22) ... (eem1) (2eme1,2em6) T
K“+8 . : \
. ’ 3’
1. (2-—1,2,6)T =\(—22-5'—2—) 2! (—I,O,d)T (C-20a)
- T kT+s

However in this work, it is clear that our main interest is
not in generating the (n,2,8) , but the auxiliary functions

Bnli(é) of eqns (4-128) - (4-131), This we do in the next section.

Auxiliary Function ani(é) B

The recurrence relations for ani(é) are deduced from

those of (n,l,G)T- For this purpose, we depend HeaviTy-on‘éqn (4-125).

!
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»

A few relations follow. .

v

.

1. 3_10],5 1. S - (c-27)

This is obtained by inserting (C-23) into (4-125) . There -

/ N

is only one term in the summation: i=1.
2. By T2 Br-2 g-1 0 - (C-28)
Proof:  In (§-125) , put % = n-1. This means ZZZZ < io<oatd,
or . i = &+l. Again there is only one term, giving
T _ .2 o2, 20~ (241)
(2-1,2,8)" = k. g2_|,£’2+] (k“+8°F (c-29)
)
Putting & = 2-1 in (c-29), we get
2- - -
v(z-z,z-r,a)T =k g (k%+52) (2) , ~{c-30)

2-2,2-1,8

which of course hés only one fterm. Combine (€C-29) and (C-30) using
(C-22) to get

-(e+1) _2ke e-l (kZ4s2) =2

k™+67)
2ral 22,2~

An ex I]Clt relation for Bl-l,ﬂgl+] can be obtained from
A \ ‘

' (C-ZOa)) when this is written as
.

2k

kzﬁdz

= ke 2h o (kPesd) T (aD)

(2-1,2,6)T = ( )z 2! (k2+62)']




3. _ ' B = (22+2) § B

“which can be used instead of (C-31) or (5-130).

. R | 290 .

) o . e ‘ N i
2a. - . Bz_],z,£+l =27 . - (c-28a)
| .

v v : :\\' A\

This can be used insteéd.of (C-28) or (5-129).

2,2, 042 2=1,2,8+]1 (c-31)
Proof: In (5~125) put n = 2. Then
] B,
.E(2+z+3) <1 < e+2
or i = 2+2, again only one term. Thus
X R 22 -(z+2) '
(2,2,242) = k Bm,2’2+2 {(k“+87) (C-32)

Using (C-22) and {C-29), (C—3])Vresults.

Notice the slight difference from HM eqn 67, which we
believe to conta?n?a‘misprint.

Using (C-28a), we get an explicit exp}ession

~

3a. | "J

; 3
I ED

- (2242)8 - 27 g

=2 ey C (c-31a)

v .

2

k. "ani = 2(n+1)$ Bn-],z,i4lLf»(n-l)(n+2+]) .
‘ Bn-2,l,i-l ) o (c-33)
) ‘;\\\
Proof: We rewrite (C-15) in terms of (5-125):

< : £



A

o oy T
(nes) T = Zln+1) (n-1,2,6)
’ (k2 + 52)

v
-t
t

(0-8) (n+2+1) (n-2,2,6) T

becomes, by (5-125) ,

£

LB (k245%™ ='kgall 2(n+1)68 (Peg?) T U* LR
i

. n-1,2,i

+ kl Z ['(n-z)(n+z+z)3 2 4 (k2+62) (,+])]
. i . -n_f’ |

N
| 2

Equating terms associated with the same power (-i) of (k2+62),
(c- 33) results immediately.

Again we note the ‘apparent mlsprlnt in HM formula (68).

Equatlon (C -33) does not’, of course,

mean all the'terms in

W

- the right hand side necessar?ly exist at the -Same .time", because.the?r
exnstence IS govefned by the llmlts on i ﬁ(eqn (5-125). But a
counter check on the f&gﬁslas is that (C-33) reduces to (C-31) or
(6-28) under the approprlafe\gondltlons

I

Basucally we used (5 128) - (5-|3J) to generate al|
hgi Needed in (5-]34), both with 6] 'an&f{&é In the case

[

25 of course, once is enough. ,

&
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-
(k2 + 6%



