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Abstract

Developing m ethods to eliminate coherent noise from seismic data is continually a sub­

ject of interest in seismic exploration. This thesis focuses on application, implem entation 

and developm ent of various Radon techniques to remove ground roll and multiple re­

flections.

The definition and classification of the Radon transform (RT) are studied. Hybrid RT 

is im plem ented in time dom ain and applied for ground roll attenuation. The problem is 

solved as an inverse problem using an iterative reweighted least squares conjugate gra­

dient algorithm (IRLS). Sparseness constraints are introduced via Cauchy regularization 

norms and a right preconditioning technique is preferred to increase the computational 

efficiency. Synthetic and real data examples are used to illustrate the performance of 

hybrid Radon for ground roll attenuation.

A shifted hyperbola is adopted as a basis function for the RT to im prove the approx­

imation of the reflection events at long offsets. The shifted hyperbolic RT is applied for 

velocity analysis and estimation.
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Chapter 1

Introduction

Noise is om nipresent in our every day life. It is considered to be unpleasant, unexpected, 

or undesired and it is defined as "a disturbance that obscures or reduces the clarity of a 

signal". In seismology, data is collected in form of seismograms that represent a collection 

of traces. A trace is a recording of the Earth's response to seismic energy passing from the 

source, through the subsurface, and back to the receiver. Separating signal from noise is 

a long standing problem in science, including seismic data processing. Seismic noise can 

be classified as cultural, random  and coherent noise. Cultural noise is the unw anted en­

ergy caused by hum an activity. Random noise is the energy that is not coherent between 

im mediate traces, or in other words, the phase is not consistent from trace to trace. This 

type of noise can be reduced during acquisition using certain arrays of geophones, or it 

can partly be rem oved by averaging during processing. Coherent noise, as the name sug­

gests, is energy that is coherent from seismogram to seismogram, which makes it more 

difficult to eliminate during acquisition or stacking. The m ost com mon types of coher­

ent noise are the surface waves (ground roll), m ultiple reflections, tube waves, and air 

waves. In this thesis, the noise of interest is the coherent noise, ground roll and multiple 

reflections in particular.

A classical approach to the noise attenuation problem is to transform  the data to a 

new domain, where distinct features are more easily separated. From the techniques used 

for noise removal, one of the m ost common is frequency-wavenum ber ( /  — k) filtering. 

The data is transform ed in frequency-wavenumber dom ain via a 2-D Fourier transform 

where signal and noise can be discriminated based on their frequency content. A frequent

1
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problem w ith /  -  k filters is aliasing, in which case the results of filtering are suboptimal.

Another conventional technique successfully used in noise attenuation is the Radon 

transform (RT), defined as a sum m ation along a particular path  often linear, hyperbolic 

and parabolic.The Radon transform has properties that make it effective for multiple 

suppression, ground roll filtering, and data interpolation. It w as first introduced by 

the Austrian mathem atician Johann Radon in 1917 who mathematically proved that any 

function a n d /o r  image can be reconstructed from a set of its projections. The m athem at­

ics developed by J. Radon represents the basis for the invention of the CAT (computed 

axial tom ography) scan (Kak and Slaney, 1988). Needless to m ention that one of the 

first and w idely used applications of Radon transform is in the field of medical imag­

ing/tom ography and CT scanning in particular. X-ray CT scans record 2-D projections 

of a 3-D object. The projection of an object at a given angle 0 is com posed of a set of 

line integrals represented by the total attenuation of the beam of x-rays as it travels in 

a straight line through the object (Fig. 1.1). The total attenuation of a ray at position 

r =  xsin 6 +  ycos 6, on the projection at the angle 6, is given by the line integral

OO OC

p(r,6) =  J j  f (x,y)5(xs 'm$  +  ycosO — r)dxdy  (1.1)
— OO — OO

where f ( x ,  y) is the image or the object that could be recovered from the projection p(r, 6). 

The above equation is the Radon transform of the object, also called sinogram in Com­

puted Tomography (Kak and Slaney, 1988). To reconstruct the image, an inversion algo­

rithm called filtered back projection is used.

Other applications include pattern recognition and image reconstruction in image 

processing, com puter vision and remote sensing. In oceanography and remote sensing, 

Radon transform  has been used to examine the properties of oceanic Rossby waves (Chal- 

lenor et al., 1999). Rossby wave velocity is estimated from altimetry data using methods 

based on 2-D and 3-D Radon transform. The 3-D Radon transform  offers information not 

o n ly  ab ou t th e  v e lo c ity  bu t also about th e  direction of propagation of Rossby waves.

In the field of geophysics, prim arily seismic im aging/tom ography, Radon transform 

is considered to be introduced by Chapm an (1978) and Schultz and Claerbout (1978). 

While Chapm an (1978) described the Radon transform as a new  m ethod for modeling

2
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1.1. MOTIVATION AND SCOPE OF THE THESIS

Figure 1.1: Parallel beam  geometry. Each projection is made up  of a set of line integrals 
through the object (After Kak and Slaney, 1988).

seismological data, Schultz and Claerbout (1978) used it as a tool for w ave stacking and 

velocity estimation. As m entioned before, besides velocity analysis and velocity estima­

tion, Radon transform  has been successfully applied for m ultiple attenuation (Hampson, 

1987; Foster and Mosher, 1992), ground roll removal (Kabir and Verschuur, 1995), and 

data interpolation (Hindriks and Duijndam, 1998; Trad et al., 2002; Trad, 2002b; Trad et 

al., 2003).

1.1 Motivation and scope of the thesis

Ground roll and m ultiple reflections are considered noise in seismic exploration and 

their elimination represents a regular subject of interest. The subject of this thesis is the 

application, im plem entation and developm ent of various Radon techniques to remove 

coh eren t n o ise  from  se ism ic  data. Time and frequency im plem entations are presented, 

however, this thesis focuses on noise attenuation m ethods in time dom ain associated 

w ith Radon transforms. This transformation can be im plem ented by m eans of inver­

sion. Sparseness constraints are included in inversion via Cauchy regularization norms 

(Sacchi, 1997). O ther regularization norms are also discussed and so the preconditioning

3
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1.2. THESIS OUTLINE

techniques w ith em phasis on the right hand preconditioning (Saad, 1996; Benzi, 2002; 

Calvetti, 2006). The inverse problems are solved via an iterative m ethod called conjugate 

gradients least squares (CGLS) (Scales, 1987).

The Radon transform  considered in this thesis as a preferred ground roll attenuation 

method is the hybrid Radon transform introduced by Trad et al. (2001), which is a combi­

nation of linear and hyperbolic Radon transform. The novelty consists in implementing 

it in time domain.

A new Radon transform  shifted hyperbola equation (Castle, 1997) as a basis func­

tion is introduced. The transform is tested w ith synthetic data and applied for velocity 

analysis and estimation (M oldoveanu-Constantinescu and Sacchi, 2005). A time-variant 

shift param eter is im plem ented in the transform testing the viability of a m ulti-parameter 

Radon transform. Future applications of the shifted hyperbolic Radon transform w ould 

include m ultiple suppression in long-offset data and velocity estimation for long-offset 

data imaging.

1.2 Thesis Outline

• Chapter 1 presents an introduction of the thesis as well as the m otivation and scope 

of the thesis. Applications of the Radon transform  in other fields are briefly de­

scribed.

• Chapter 2 defines coherent seismic noise showing some examples of typical noise 

encountered in exploration seismology. I describe several m ethods to remove ground 

roll and m ultiple reflections and illustrate them w ith examples.

• Chapter 3 focuses on time-variant and tim e-invariant Radon transforms in general 

terms and theoretical and practical aspects of the linear, hyperbolic, and parabolic 

transforms are enum erated. Time and frequency im plem entations are described 

an d  com p ared .

• Chapter 4 explains inversion, regularization and preconditioning techniques with 

em phasis on least squares inversion, Cauchy regularization and right precondition­

ing. The inversion is solved using an iterative reweighted least squares conjugate

4
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1.2. THESIS OUTLINE

gradient algorithm (IRLS).

• Chapter 5 describes the hybrid Radon transform w ith application to ground roll 

attenuation. Synthetic and real data examples are presented.

• Chapter 6 introduces the shifted hyperbolic Radon transform  w ith application to 

velocity analysis and estimation.

• Chapter 7 sum m arizes m y research and offers a discussion of the results along w ith 

possible future directions.
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Chapter 2

Seismic coherent noise

2.1 Introduction

The attenuation of noise is a long standing problem in exploration seismology. In a sim­

plistic way, noise is considered to be anything that is not w anted from the data and it 

could be separated into random  or incoherent noise and coherent noise. Random noise, 

as suggested by the name, is the energy that is not coherent between im m ediate seismo- 

grams, or in other words, the energy does not exhibit any regularity from trace to trace. 

Coherent noise, on the other hand, has a distinct pattern from trace to trace. It is possible 

to predict how  it should look on the next trace based on how it looks on the previous 

traces. Figure 2.1 displays three common-shot gathers (Yilmaz, 1987) from different areas 

that illustrate various kinds of noise. First shot gather (Fig. 2.1(a)) is a marine record from 

South America w ith an air gun source. One can distinguish the following waves: direct 

arrivals (DA) at about 0.25 sec, guided waves (GW) ending at 1 sec, prim ary reflection (R) 

around 0.6 sec and its long-period multiples (LPM1-LPM4) between 1 and 3 sec. Guided 

waves are dispersive compressional waves trapped w ithin a w ater layer and traveling 

in the horizontal direction. They are characteristic to the shallow m arine m edium  with 

hard w ater bottom. Long-period m ultiples are waves that reverberated w ithin layers of 

thickness larger than a wavelength.

The second record (Fig. 2.1(b)) is a land shot gather from Alberta, the source being 

dynamite. Besides the reflections (R1-R5) between 1 and 3 sec and direct arrivals one can 

also observe ground roll energy (GR) at near offsets. G round roll is a dispersive surface 

wave (Rayleigh type) traveling along the free surface, hence the name. It is characterized

6
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2.2. SURFACE WAVES - GROUND ROLL

by low frequency, low velocity of propagation and high am plitude.

The third shot gather (Fig. 2.1(c)) is also a land shot, bu t this time from N orth Africa, 

the source being a vibroseis. This is an example of a very noisy record. The reflections 

are practically invisible and the only things that can be noticed are the ground roll in the 

upper part of the record and random  noise in the remaining part.

The source and the subsurface conditions differ for the three records, and also the type 

of the noise encountered. As we can see, there are many events that can be considered 

noise in exploration seismology. However, in this chapter I will focus mainly on the 

definition and description of Rayleigh surface waves (commonly called ground roll by 

the seismic community) and multiple reflections.

2.2 Surface waves - Ground roll

2.2.1 Introduction

Surface waves are waves propagating along the surface of the earth. The most typically 

encountered surface waves are Rayleigh and Love waves. Rayleigh waves are nam ed 

after John William Strutt commonly known as Lord Rayleigh, w ho theoretically dem on­

strated the existence of this type of wave in 1885. His results and mathematical predic­

tions were published in his paper 'O n waves propagated along the plane surface of an 

elastic solid'.

In his paper from 1885, Lord Rayleigh investigates the behavior of waves propagated 

along a plane free surface of an infinite homogeneous isotropic elastic solid. He shows 

that the disturbance is confined to a superficial region of thickness comparable w ith the 

wavelength. Some of the conclusions he arrived at are:

• The propagation velocity of this type of surface wave is 0.9554 of the propagation 

velocity of the transverse waves {Vs).

• The horizontal m otion disappears at a depth equal to 0.1378A where A represents 

the w avelength (A =  2ir/ /) .

•  There is no finite depth at which the vertical motion vanishes.

7
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2.2. SURFACE WAVES - GROUND ROLL
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Figure 2.1: Three shot gathers illustrating different kinds of noise, (a) Marine record dis­
playing direct arrivals, guided waves, prim ary reflections and long-period multiples, (b) 
Land data that contains direct arrivals, prim ary reflections and ground roll, (c) Land data 
containing ground roll and random  noise w ith strong am plitudes that ham per entirely 
the prim ary reflections. (Data taken from Yilmaz, 1987).

8
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2.2. SURFACE WAVES - GROUND ROLL

• The motion takes place in elliptical orbits, whose vertical axis is nearly the double 

of the horizontal axis.

He also considered that this type of surface waves plays an im portant part in earth­

quakes, and in the collision of elastic solids, fact that was proved to be right in 1920s 

w ith the increased num ber of the seismographic records. To summarize, one can define 

Rayleigh wave as a surface wave, dispersive, w ith retrograde elliptical particle motion 

confined to the vertical plane, which includes the direction of propagation of the wave. 

It is actually considered that the initial retrograde elliptical m otion changes w ith depth 

to no motion and then prograde elliptical motion. The propagation velocity is consid­

ered to be around 0.92Vs, where Vs represents the propagation velocity of the transverse 

wave. These waves can be considered to be a combination of P and SV waves and there­

fore their potentials can be used to describe the Rayleigh waves. P-waves are pressure 

waves w ith a particle m otion parallel to the direction of the wave propagation, while SV- 

waves are shear waves w ith a particle motion perpendicular to the direction of the wave 

propagation.

Figure 2.2 sketches the particle motion and direction of propagation of the ground 

roll. The vertical com ponent of the motion is greater - almost double - than the horizontal 

component.

Direction of propagation
d .

of the Rayleigh wave

Figure 2.2: Diagram of the Rayleigh waves.

9
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2.2. SURFACE WAVES - GROUND ROLL

Love waves, nam ed after A. E. H. Love, w ho discovered them  in 1911 are another 

type of surface waves. They are basically surface waves of the SH type and they are 

not significant in exploration seismology because they usually are not generated by the 

energy sources used in seismic method. SH-waves are shear waves w ith a particle motion 

parallel to the ground and perpendicular to the direction of propagation or the wave.

In this thesis, the surface w ave of interest is the Rayleigh wave commonly known as 

ground roll in exploration seismology. Unlike in earthquake seismology where they are 

considered useful energy, in exploration seismology they represent noise and it is desired 

for them to be eliminated.

2.2.2 Ground roll elimination methods

Ground roll is a dispersive type of wave that is characterized by low group velocity, 

low frequencies and high am plitudes. Some of these characteristics will be exploited by 

the different ground roll attenuation methods. One of the m ost popular m ethods used 

for ground roll removal is f  — k filtering w ith its offset or time variant versions. The 

frequency-wavenum ber m ethod is going to be explained in more detail below. Other 

m ethods for ground roll attenuation include frequency filtering, stack array m ethod (Anstey, 

1986; Morse and H ildebrandt, 1988), and filtering in the r  -  p dom ain (Kabir and Ver- 

schuur, 1985), and wavelet dom ain (Deighan and Watts,1997).

Frequency filtering

As the nam e implies, frequency filtering attenuates the noise com ponent from the data by 

removing its characteristic frequencies and passing the frequencies of the signal. Ground 

roll is characterized by low frequencies, while the seismic signal contains a definite range 

of frequencies, therefore this type of filtering w ould be a suitable m ethod for ground 

roll suppression. This is perform ed in frequency dom ain and consists of constructing 

a zero-phase transfer function w ith a specific am plitude spectrum. The original data 

is firstly transform ed to the Fourier domain via a Fourier transform  where a frequency 

filter is applied. An inverse Fourier transform is then applied to the result, obtaining 

the filtered data. A taper is usually applied to the filter to avoid ringing, therefore the 

im portant param eters in frequency filtering are cut-off frequency and slope of the taper.

10
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2.2. SURFACE WAVES - GROUND ROLL

It is generally accepted that the slope at lower frequencies can be steeper than the slope 

at higher frequencies. There are three types of frequency filters: low-pass, high-pass, 

and band-pass filters. Low-pass filter also called high-cut filter, like the nam e suggests, 

rejects the high frequencies letting pass the low frequencies (Fig. 2.3(a)). High-pass (low- 

cut) filter w ould exclude low frequencies letting pass the high frequencies (gray section 

in Fig. (2.3(b)). However, the frequency filter typically used for ground roll attenuation is 

the band-pass filter (Fig. 2.3(c)) because the seismic signal is recorded in a certain range 

of frequencies, w hile seismic data usually contains low frequency noise (ground roll) and 

high frequency noise (ambient noise). The typical bandw idth  of the signal is between 10 

and 70 Hz w ith a dom inant frequency around 30 H z (Yilmaz, 1987).

As the figure shows this filter passes a certain range of frequency (the gray section) 

which represents the range of frequencies characteristic to the seismic signal.

V

A
i 4

\

Figure 2.3: Frequency filters: (a) High-pass filter; (b) Low-pass filter; (c) Band-pass filter. 
The gray section represents the frequencies that are passed

In Figure 2.4 a band-pass filter w ith corner frequencies of 15, 20, 50 and 60 Hz was ap­

plied to land data that contains ground roll. Figure 2.4(a) illustrates shot gather number 

10 from Yilmaz (1987), Figure 2.4(b) represents the band-pass filtered data, and Figure 

2.4(c) illustrates the noise, in other words the difference betw een the original and the 

filtered data.

F requ en cy-w aven u m ber ( /  — k ) filtering m eth ods

These m ethods exploit the low frequency and low velocity characteristics of ground roll. 

When the data in t —h dom ain is transformed to the f —k dom ain the linear noise becomes 

isolated from the reflections. A rejection zone is defined and applied to the data elimi-

11
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2.2. SURFACE WAVES - GROUND ROLL

Offset (m) 
2000

'-S

Offset (m) 
2000

Offset (m) 
2000

Figure 2.4: Band-pass filtering: (a) Land shot gather from N orth  Africa (Yilmaz, 1987, 
record num ber 10). (b) The same shot gather after a band-pass filter w ith corner frequen­
cies 15, 20, 50 and 60 H z has been applied, (c) The difference betw een the original data 
(a) and the filtered data (b) represents the noise in the data.
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2.2. SURFACE WAVES - GROUND ROLL

nating the undesired energy. The degree to which the filtered record is free of ground 

roll depends on how well is defined the rejection zone. The shape of the rejection zone 

depends on the type of noise we wish to eliminate. For ground roll, a fan is commonly 

utilized. W hen defining the rejection zone, the w idth  should be neither too narrow  nor 

too wide and the transition between the rejection and pass zones should be smooth. Prob­

lems that frequently arise w ith f  — k filtering (Yilmaz, 1987) are spatial aliasing, temporal 

aliasing, and w raparound noise. To synthesize, the procedure for /  -  k filtering is as it 

follows:

• Start w ith data in t — h dom ain (shot gather or CMP gather).

• Apply 2-D Fourier transform (FT).

• Define a rejection zone in the f  — k domain and apply a m ute w ithin that zone.

• Apply 2-D inverse Fourier transform to the filtered data.

Figure 2.5 illustrates the application of an /  -  k filter to synthetic data (Fig.2.5(a)) 

that contains linear noise. Figure 2.5(b) represents the f  — k spectrum  of the input 

data. W raparound energy due to spatial aliasing can be noticed in Figures 2.5(b) and 

2.5(c). Spatial aliasing m eans insufficient sampling of the data along the space axis. The 

w raparound energy will not be eliminated by the dip filter, therefore there is still ground 

roll energy left after f  — k filtering (Fig. 2.5(d)).

Figure 2.6 illustrates the application of an /  -  k filter to the field land data from the 

band-pass filter example.

Another m ethod to eliminate ground roll from the seismic data is the Karhunen- 

Loeve (KL) transform  also called principal com ponent analysis (Liu, 1999; Sacchi, 2002; 

Ulrych and Sacchi, 2005; Gomez Londono et el., 2005). This transform  has been success­

fully applied to random  noise and multiple attenuation (Jones and Levy, 1987; Ulrych et 

al., 1988; Al-Yahya, 1991). As the nam e suggests, the transform is an eigenimage decom­

position, similar to the singular-value decomposition (SVD).

13
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2.2. SURFACE WAVES - GROUND ROLL
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Figure 2.5: f  — k filtering of synthetic data: (a) Synthetic data before filtering; (b) f  — k 
spectrum of the data before filtering; (c) f  — k spectrum after the filter was applied; (d) 
Filtered data.
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2.2. SURFACE WAVES - GROUND ROLL
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Figure 2.6: f  — k filtering of land data: (a) Land data before filtering; (b) f  — k spectrum of 
the data before filtering; (c) f  — k spectrum after the filter was applied; (d) Filtered data .
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2.3. M U LT IP LE S

2.3 Multiples

2.3.1 Introduction

Suppression of m ultiple reflections is another subject of interest in seismic exploration. 

Multiples represent seismic energy that have been reflected back into the Earth more 

than once and they often interfere w ith the prim ary reflections making the interpreta­

tion of seismic data more challenging. The am plitude of the m ultiples depends on the 

reflection coefficients at each interface. Therefore, the m ultiple reflections visible on the 

seismic section and ham pering the prim aries are generally reflected by interfaces w ith a 

strong im pedance contrast. Most common interfaces that give rise to the multiples are 

w ater bottom and the free surface. Multiples could be classified into short-path and long- 

path  multiples (Sheriff, 1991). The name is given based on the travel path length of the 

multiples com pared to the travel path length of the primary. Long-path multiples will 

travel a longer distance than the associated primaries, therefore they will also arrive at a 

later time making it easier to delimit between the two events. Short-path multiples usu­

ally travel a distance comparable w ith the primary. They often arrive soon after and they 

interfere w ith the prim ary reflection frequently being confused w ith one single event. 

Figure 2.4 shows different raypaths for multiples.

2.3.2 Multiple suppression methods

There are two com mon approaches used in seismic exploration for m ultiple attenuation. 

The filtering approach is based on exploiting certain features or physical properties that 

differentiate between prim aries and multiples. Such features could be the periodicity of 

the multiples, and the m oveout difference between prim aries and multiples. The input 

data is usually transform ed to a new dom ain where it is easier to discriminate between 

the different characteristics and filtering algorithms can be applied. The other approach 

is based on predicting the m ultiples using modeling a n d /o r  inversion techniques. After 

the m ultiples are predicted they are subtracted from the input data obtaining a multiple- 

free section.
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2.3. MULTIPLES

S h o rt path m ultip les L ong path  m ultip les
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Figure 2.7: Diagram of multiples (After Sheriff, 1991).

Methods based on the periodicity of the multiples

These m ethods are based on the fact that multiples exhibit periodicity in contrast to 

the prim ary reflections. Robinson and Treitel (1980) use predictive deconvolution and 

Wiener filters to attenuate the multiples. The concept/m ethod was introduced by Robin­

son (1954) and further developed by Peacock and Treitel (1969). The prediction deconvo­

lution filters are created based on differences between the autocorrelation of input traces 

and desired ou tpu t of the deconvolution. Two things to take into account w hen design­

ing the prediction filter are the length of the filter and the prediction distance. The length 

of the filter is commonly considered to be equal to the length of the wavelet, and the pre­

diction distance usually depends on the period of the multiple. Some of the assumptions 

made by Robinson and Treitel (1980) are stationarity and w hite reflectivity of the signal. 

At far offsets the m ultiples are losing their periodicity, thus the predictive deconvolu­

tion m ethod fails. Taner (1980) applies predictive deconvolution in the radial trace space 

overcoming the problem of non-periodicity at far offsets.
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Methods based on the moveout difference

These m ethods are based on the fact that a prim ary and a m ultiple reflection arriving at 

the same time at a geophone will exhibit a different curvature in their traveltime curves, 

since the tw o waves travel at different velocities. Common m idpoint (CMP) stacking 

(Yilmaz, 1987), parabolic (Hampson, 1986) and hyperbolic Radon transform  are exam­

ples of m ethods that use the m oveout difference to discriminate between prim aries and 

multiples. CMP stacking consists in applying a norm al m oveout (NMO) correction to 

the CMP gather and sum  the am plitudes along the traveltime curves. The velocity used 

for the NMO correction is the velocity of the prim ary reflection. In this case, the NMO 

corrected CMP gather will contain flatten prim aries and dow nw ards curved multiples. 

If we apply a 2-D Fourier transform to the NMO corrected CMP gather, the moveout 

difference between the prim aries and the multiples will determ ine them to be mapped 

in two different quadrants in Fourier dom ain (Ryu, 1982). This does not apply at near 

offsets, where there is no significant moveout difference.

Methods based on multiple prediction

Most of these m ethods make use of the wave equation to predict m ultiples and they 

are often called wave equation methods. Berryhill and Kim (1986) and Wiggins (1988) 

predicted m ultiples by propagating the wavefield dow n and up  through the subsurface. 

Once m ultiples are predicted they are removed from the input data using an adaptive 

subtraction algorithm. This m ethod works well for watter-bottom and peg-leg multiples 

but not for ghost multiples. The water-bottom reflectivity and topography need to be es­

timated. The lim itation in estimating the reflectivity consists in the difficulty to discrimi­

nate between prim aries and m ultiples that occur close together in time. O ther limitations 

could occur due to spatial aliasing or near-offset data, and they can be overcome in the ac­

quisition process. O ther m ethods predict multiples based on: iterative autoconvolution 

in  tim e an d  sp a ce  (B erkhout an d  Verschuur, 1997; V erschuur an d  B erkhout, 1997); coher­

ence measures com putation (Kneib and Bardan, 1997); and inverse scattering (Weglein et 

al., 1992).
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2.4. S U M M A R Y

2.4 Summary

In this chapter, I have covered some of the theoretical and practical aspects of seismic 

coherent noise. Surface waves in the form of ground roll and m ultiple reflections have 

been defined. Several m ethods for noise attenuation have been presented. Frequency 

(band-pass) and frequency-wavenum ber filtering are common m ethods for ground roll 

elimination. Examples illustrate these methods. M ultiple suppression techniques can be 

classified into techniques based on certain features discrimination and techniques based 

on multiple prediction. Features generally used to discriminate betw een prim ary and 

m ultiple reflections are moveout difference, and periodicity of the multiples.
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Chapter 3

Radon transform

3.1 Introduction

Radon transform  describes line integrals in time dom ain as point values in Radon domain 

(Fig. 3.1). In other words, in geophysics Radon transform can be defined as an integration 

of am plitudes along a particular path. In general terms, it can be expressed as

OO

?h('r )P) = J  d ( t  =  ( f > ( r , p , h ) , h ) d h ,  (3.1)
-0 0

where m (r, p) represents the transform ed data in Radon domain, d ( t ,  h )  denotes the data 

in time dom ain or our inpu t data, and t  =  p,  h )  is the integration path. Time, offset, 

two-way time-intercept, and Radon param eter are represented by t ,  h ,  r  and p, respec­

tively. The integration path t  = 4>(t , p, h )  can be different and is chosen based on the 

problem at hand. To go back from the r  -  p dom ain to the original t  — h  space it is 

necessary to define an inverse Radon transform

00

d ( t , h )  = J m(T  =  ( t ) ' ( t , h , p ) , p ) d p .  (3.2)
—00

One thing to m ention is that the above equation is not the exact inverse for equation (3.1), 

rather the tw o equations form a forward-adjoint pair. The forw ard-inverse pair can be 

com puted via two different approaches w ho are classified into Radon pair I and Radon 

pair II (Sacchi, 1996; Li, 2001). Both approaches are going to be described in the next

section. However, in the following chapters I will use only Radon pair of type II.

20
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3.1. INTRODUCTION

Time domain Radon domainh P

a

Figure 3.1: Diagram illustrating the definition of the Radon transform.

Equation (3.1) describes the forward Radon transform of a 2-D infinite and continuous 

function d(t,h).  In practice though, the data is acquired at certain values in time and 

space. Radon transform  can therefore be expressed as a sum m ation of am plitudes over a 

range of offsets [hrnin, hmax}

p, hk) is now  a discrete function that represents the sum m ation path  and it is chosen 

based on the desired application. The adjoint pair then becomes

N j

d(t , h) = ™{t = h,Pj),Pj)- (3.4)
i =i

The usual Radon transforms used in exploration seismology integrate events of lin­

ear, parabolic or hyperbolic shape. In following sections I will describe the three classical 

Radon transform s w ith some of their applications. With the discretization of the trans­

form come also limitations associated w ith finite aperture and sampling in time, space, 

or Radon param eter (Cary, 1998). Some of these problems can be alleviated by the tech­

niques used to com pute the discrete Radon transform. Some of these techniques will be

N k

(3.3)

21
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3.2. FORWARD-INVERSE RADON PAIR

discussed in the following chapter.

3.2 Forward-Inverse Radon pair

To define the two kinds of forward-inverse Radon pairs we can write equations (3.3) and

(3.4) in matrix form, where the model becomes a vector m, data is represented by d and 

the forward and adjoint Radon operators are L and L r , respectively.

3.2.1 Radon pair I

In this case we start w ith the data d and com pute the adjoint model m  using the adjoint 

operator L r

m  =  L r d. (3.5)

To go back to data domain, one can apply the operator L to m

Lrh =  LLTd, (3.6)

and by inverting the operator LL 1 the data is obtained as

d  =  (LLT)_ 1Lm . (3.7)

If the inverse (LLT ) - 1  does not exist the pseudo-inverse (LLT)t can then replace it 

(Strang, 1986).

The forward-inverse Radon pair I is therefore

m  =  LTd (Forw ard)
(3.8)

d  =  (LLT)-1Lm  (Inverse)

3.2.2 R adon pair II

In this case it is considered that data d is the result of the transform ation L applied to the 

model m

22
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3.2. FORWARD-INVERSE RADON PAIR

d =  Lm  (3.9)

and can be solved as an inverse problem. If the problem is under-determ ined the solution 

is equivalent to the m inim um -norm  solution

m mn =  L7 (LL7 i ‘d. (3.10)

and if the problem is over-determ ined the solution is represented by the dam ped least- 

squares solution

m u  = (Lr L +  /hO_ 1LTd, (3.11)

where ji is a dam ping param eter and I represents the identity matrix. A classification 

of the inverse problem s and derivation of the solutions are explained in more detail in 

Chapter 4 (Menke, 1984).

The forward-inverse Radon pair II w ith two versions, the m inim um  norm  pair and 

least squares pair, is in this case

d  =  L m  (Forw ard)
(3.12)

^mrnn — L (LL 7 )-1d  (Inverse) 

and

d  =  L m  (Forw ard)
(3.13)

m ;s =  (Lt L +  /iI)“ 1Lr d (Inverse)

As m entioned before, in this thesis I use the Radon pair II. The advantage of this 

approach consists in the fact that the Radon transform can be posed as an inverse problem 

facilitating the incorporation of model constraints. We can also consider the fitting of the 

noise by choosing the hyper-param eter /t. In inverse theory, the least squares solution 

(equation 3.13) is obtained by minimizing the cost function

/ =  | |L m - d | | |  +  /i | |m |||,  (3.14)

23
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3.3. LINEAR RADON TRANSFORM

where ||L m  -  d | | |  is the misfit term  and ||m || | is the model norm. These two terms 

and their significance will be explained in more detail in Chapter 4. If /.t is too small, 

emphasis is p u t on the misfit term  and therefore over-fitting the data, including the noise. 

If n is too large, em phasis is pu t on the model norm, therefore under-fitting the data by 

trying to fit the desired characteristics of the model. Figure 3.2 illustrates the influence 

of n  in estimating the optim um  solution. The best solution is determ ined by the y 2 test 

(Tarantola, 1987; Hansen, 1998) and the trade-off param eter /i should be choose such that 

it gives approxim ately equal emphasis on both term s of the objective function.

Underfitting (large mu)

Fitting (optimum mu)

Overfitting (small mu)

Model norm

Figure 3.2: D iagram  illustrating the influence of the hyper-param eter /i in estimating an 
optim um  solution. A small ^  will over-fit the data, while a large p will under fit the data.

3.3 Linear Radon transform

Linear Radon transform  (LRT), also known as slant-stack or r — p transform  in geophysics, 

was the first one introduced in seismic processing (Schultz and Claerbout, 1978). Apply­

ing a linear m oveout to the data and summing am plitudes in the time-offset domain 

along slanted paths, a process generally called slant-stacking, is equivalent to decompos-
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3.3. LINEAR RADON TRANSFORM

ing a wavefield into its plane-wave components (Treitel et al. 1982). The sum m ation path 

in this case is

4>(t , p ,h)  =  r  +  ph, (3.15)

where p =  sin 0/v  is the ray parameter, v denotes velocity and 0 represents the angle of 

incidence.

The forward-adjoint pair for linear Radon transform is then

’ d(*> h) =  Tl lZ Z  m (T = 1 ~ Ph ’ P) (Forw ard)
(3.16)

, rfi(r, p) =  Y 5 Z 2  d(t = T + Ph> h) (A d jo in t)

Figure 3.3(a) shows a synthetic data example containing six linear events w ith six 

different slopes. Two of the events are very close, one has a negative slope, one event 

is horizontal (p =  0) and another one is vertical. Figure 3.3(b) shows the data after a 

linear Radon transform  has been applied. It can be noticed that each of the lines in the 

t  — h dom ain has been transform ed to peaks in the r —p domain, except the vertical line. 

The vertical line does not show in the Radon dom ain because it does not intersect the 

time axis in the t  — h domain. The reconstructed data (Fig. 3.3(c)) from Radon domain 

back to the time-offset dom ain will not contain the vertical event either because it is not 

contained in the Radon dom ain in the first place. However, in geophysics we will not 

encounter events that will show as a vertical line on a record, therefore we should not be 

concerned about this aspect of the linear Radon transform. In a similar manner, limiting 

the range of the ray param eter we m ight limit the num ber of events to be m apped in the 

transform domain. Figure 3.4 shows the same data where the ray param eter p was chosen 

in a different range. In this case the tw o events w ith a ray param eter outside the used 

range are not im agined in the Radon dom ain (Fig. 3.4(b)), therefore they are not a part of 

the reconstructed data. It could be said that limiting the range of the Radon param eter in 

the r  -  p transform will eliminate undesired events. However, more attention should be 

paid as signal and noise can be characterized by similar ray param eters.

In the new  dom ain one can easily discriminate between different events, therefore 

the application of the Radon transform for data filtering is conspicuous. A transform like
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3.3. LINEAR RADON TRANSFORM

Offset (m) 
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0 .2 -

ro.4-

0 .6 -

(a)
Offset (m) 
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0 0.002
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0 .6-

(c)
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o
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<D
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0.4-
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(b)
Offset (m) 

500

(d)

Figure 3.3: Synthetic data example illustrating some aspects of the linear Radon trans­
form . (a) S yn th etic  data  w ith  six  lin ear ev e n ts  w ith  d ifferen t slop es: h orizon ta l, vertical, 
positive, and negative, (b) Data in linear Radon domain. All events are m apped ex­
cept the vertical one because it does not intersect the time axis in the time-offset domain. 
The solution is obtained via a conjugate gradients least squares (CGLS) algorithm w ith 5 
iterations, (c) Reconstructed data from the previous Radon panel. All events are recon­
structed except the vertical, (d) Difference between the original synthetic data (a) and the 
reconstructed data (c).
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3.3. LINEAR RADON TRANSFORM

Offset (m) 
500

0 .2 -

ro.4-

0 .6 -

(a)

Ray parameter (sec/m) 
- 0.002 0 0.002 
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Offset (m) 
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Figure 3.4: Synthetic data example illustrating the influence of the ray param eter range 
on the linear Radon transform, (a) Synthetic data presented in previous figure, (b) Data 
in linear Radon domain. The ray param eter range is smaller than in previous example, 
therefore the events w ith larger slopes are not m apped in Radon domain. The solution 
is obtained via CGLS w ith 5 iterations, (c) Reconstructed data from the previous Radon 
panel, (d) Difference between the original synthetic data (a) and the reconstructed data 
(c).
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3.3. LINEAR RADON TRANSFORM

this can be used to isolate linear events in t — h dom ain so it can be utilized to remove 

ground roll in common shot gathers (Yilmaz, 1987). However, reflections in common- 

shot and com mon-m idpoint gathers are usually approxim ated by hyperbolas. A linear 

Radon transform  will not collapse the reflections into points in the r  — p panel, but it will 

transform them into ellipses (Fig. 3.5).

Offset (m)
500 1000

Ray parameter (sec/m) 
0

x10 -4

Figure 3.5: Synthetic data example illustrating some aspects of the linear Radon trans­
form. (a) Synthetic data w ith four hyperbolic events, (b) Data in linear Radon domain. 
The hyperbolas are transform ed into ellipses.

Other applications of the linear Radon transform include predictive deconvolution 

(Brysk et al., 1987) because m ultiples preserve periodicity w ith offset in Radon domain, 

data interpolation (H indriks and Duijndam, 1998), m ultiple attenuation (Lokshtanov, 

1993), separation of P and mode-converted SV-waves (Tatham et al., 1983; Tatham and 

Goolsbee, 1984; Greenhalgh et al., 1990), velocity analysis (Stoffa et al., 1982), and wave- 

field separation in VSP data (Moon et al., 1986; Kommedat and Tjostheim, 1989).

Linear Radon transform  is time-invariant therefore possible to com pute in the fre-
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3.4. HYPERBOLIC RADON TRANSFORM

quency domain. An advantage of the com putation in the frequency dom ain is that a 

large problem is now divided in few smaller problems, one for each frequency, that can 

now  be solved at the same time (Fig. 3.7). This is described in more detail in section 3.6.

3.4 Hyperbolic Radon transform

As the reflections are commonly approxim ated by hyperbolas, the addition of a hyper­

bolic Radon transform  was eventually imperative. Also known as velocity-stack this trans­

form has been introduced by Thorson and Claerbout (1985) as a tool for velocity analysis. 

The new Radon param eter p is now the stacking velocity v

all the other param eters remaining the same as in previous case. Applying this trans­

form is equivalent to applying an NMO correction w ith velocity v and then summing 

the am plitudes over the offset. Unlike the linear Radon transform, the hyperbolic Radon 

transform is time-variant, therefore it cannot be com puted using fast solvers algorithms 

(Sacchi and Porsani, 1999). Some applications of the hyperbolic Radon transform include 

velocity estimation and m ultiple attenuation.

Figure 3.6 compares two Radon panels of the synthetic shot gather illustrated in Fig­

ure 3.5(a). The first panel (Fig. 3.6(a)) represents the linear Radon panel. As mentioned 

before, the hyperbolas in the time-offset dom ain became ellipses in the r  — p domain. On 

the other hand, a hyperbolic Radon transform will focus the hyperbolas transforming 

them into points in Radon dom ain (Fig. 3.6(b)).

d(t, h) =  E : : : :  m (r  = ^ 2 - g ,  t;) 

m(r,  v) =  E hZin =  \ / r2  +  h)

(3.17)
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3.4. HYPERBOLIC RADON TRANSFORM

Ray parameter (sec/m) x10 -4

0 .2 -

l-

0 .6-

(a)

Stacking velocity (m/sec) 
2000 4000

Figure 3.6: Synthetic data example comparing the result of linear and hyperbolic Radon 
transform w hen applied to data containing hyperbolic events, (a) D ata in linear Radon 
domain. H yperbolas are m apped to ellipses, (b) Data in hyperbolic Radon domain. H y­
perbolas are focused. The solutions are obtained using a CGLS algorithm w ith 5 itera­
tions.
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3.5. PARABOLIC RADON TRANSFORM

3.5 Parabolic Radon transform

The parabolic Radon transform (PRT) was introduced by H am pson (1986). He noticed 

that the residual m oveout of seismic reflections after a normal m oveout (NMO) correction 

has been applied can be approxim ated by parabolas. The NMO correction w ith a velocity 

v n m o  can be w ritten as

h 2
A t NMo = \ IT2  2 r - (3-18)

VNMO

If we apply this NMO correction to a reflection param etrized w ith a velocity v the travel­

time then becomes

t = \ l T2 + ^2 - t / r2 +  ^ —  + r - (3-19)v V VNMO 

After some calculations and rearrangements the above equation becomes

t — t  +  qh2, (3.20)

where q = 57 (-r  — sr— ) and represents the curvature of the reflections after the NMO
V v N M O

correction.

An advantage of this transformation over the hyperbolic Radon transform  is that it 

is time-invariant and therefore can be im plem ented in the frequency-offset domain. An­

other use of the parabolic Radon transform is proposed by Yilmaz (1989) who applies a

t2 stretching to the data. This is done by replacing t' — t2 and t '  = r 2 in the hyperbola

expression that now  becomes

t, =  r / +  ^ .  (3.21)
v z

If we replace again t = t1 and r  =  t '  and consider q = the equation reduces to the 

parabolic form  f =  t  +  qh2 .

Fast versions of this transform were suggested by Gulunay (1990) and Rostov (1990) 

who observed that the parabolic Radon operator has a Toeplitz structure that enables the 

use of fast solvers of the Levinson recursion type. The forward-adjoint parabolic Radon 

pair is given by
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3.6. FREQUENCY DOMAIN IMPLEMENTATION OF THE RADON TRANSFORM

r d{t, h) = m (T = t ~ (ih2’(i)
< • (3-22)

[m (r, q) =  Y lh Z Z  d ( t =  t  +  <lh2, h)

3.6 Frequency domain implementation of the Radon transform

As m entioned before, the advantage of time-invariant Radon transform s such as slant- 

stack or parabolic Radon transform is that they can be com puted in the frequency do­

main thus breaking a large problem - computing the inverse of a large matrix - into sev­

eral small ones (Fig. 3.7). The first step in im plem enting the Radon transform in the 

frequency-space dom ain is to define the discrete forward and adjoint operators. Beylkin 

(1987) showed that a discrete Radon transform can be com puted using a least-squares 

technique similar to that used by Thorson and Claerbout (1985) to im prove the resolu­

tion of the velocity stack. In this section I will discuss the linear Radon transform but the 

procedure for the parabolic Radon transform is quite similar.

r~Data in 

r -h domain
Data in 

tau -  p  domainfrequency ■ 
domain ■

Figure 3.7: Flow chart for the application of linear Radon transform  in the frequency 
domain (After Trad, 2001).
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3.6. FREQUENCY DOMAIN IMPLEMENTATION OF THE RADON TRANSFORM

The discrete forward and adjoint r  -  p transforms can be w ritten as

' d( t ,hk) = Y f j l i m (T =  t -P jhk. ,P j )
(3.23)

™(T,Pj) =  E E i  d{t =  r  + pjhk, hk)

Next step is to apply 1-D Fourier transform w ith respect to time t to above equations. 

Consequently, the following expressions are obtained

'D{u, hk) = E f i i  M ( u , Pj) e - ^ h*
(3.24)

[ M (  u , Pj) =  E k = i D ( u , h k) e ^ h* 

where ui is the tem poral frequency. These equations can be w ritten in matrix form as

'D(w) =  L(w)M(u/) 

M { lo) = L (u )ffD(u;)
(3.25)

where matrix L(u>) is given by

L M

/  e-iupihi e-iwp2h\
e - i w p i / i 2  e ~iwp2h,2

e~iujpN jh\ \ 
e -iaipArj/i2

V e '
-iupiIiNk e -iup2hpjk , - i u i p N j h N k

(3.26)

* /
and its elements depend on the range and sampling of both the offset h and the ray 

param eter p. Herm itian L H is the adjoint operator of L. To com pute the inverse operator 

we need to define an objective function /. The objective is to estimate the model M  such 

that the difference betw een the actual data D and the modeled data D =  L M  is minimum 

in the least-squares sense

/  =  ||LM  — D11| (3.27)

To minimize the cost function /  we are taking its derivative with respect to m  and make 

it equal to zero

Lf/L M - L " D  =  0 

We obtain the least squares solution (Lines and Treitel, 1984)

H1 (3.28)
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3.6. FREQUENCY DOMAIN IMPLEMENTATION OF THE RADON TRANSFORM

M  = (LHL)_1LHD (3.29)

where (L^L)_1L-ff is the least-squares inverse of L. The procedure is explained in more 

detail in the next chapter.

To sum m arize the im plem entation of the linear Radon transform  in the frequency- 

offset domain:

• Start w ith data in time-offset dom ain d(t, h).

• A pply Fourier transform along the temporal variable t, thus obtaining D(cv,h).

• For each frequency u>, set up the matrix L which depends on the geom etry of the 

input data gather and the ray param eter p.

• Estimate the least-squares solution for the model M(cu, p).

• Apply the inverse Fourier transform to M(ca,p) obtaining rn{r, p).

• Apply the desired filtering in the r  — p domain.

• Apply the inverse Radon transform obtaining the filtered data in the time-offset 

domain.

The im plem entation of the parabolic Radon transform in the frequency dom ain is 

quite similar. The discrete Radon transform in time dom ain becomes

' d(t, hk) = £ j 2 i  m (r =  t -  qjh2k, qj) (F)
(3.30)

> ( r ,  q3) =  d{t =  T +  qjh\ , hk) (A) 

and transform ed in frequency dom ain is

' D ( u ,  hk) =  M(u>, q j ) e - ^ h«

(3.31)

M (w ,?7-) =  E £ i ^ , ^ ) e <ŵ  

determining the matrix L to be
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3.7. TIME DOMAIN IMPLEMENTATION OF THE RADON TRANSFORM

L H  =

/  e - i u q i h l  

e-iwqihl e~iwq2h\
iuiq'ih' e -iuiqNjh'i \

e-iuqNjh%
(3.32)

iu>qN J H

The procedure can be then sum m arized at it follows:

• Start w ith data in time-offset dom ain d(t, h ).

• Apply t 2 stretching or NMO correction.

• Apply Fourier transform along the temporal variable t, thus obtaining D(w, h).

• For each frequency to, set up the matrix L which depends on the geometry of the

input data gather and the ray param eter p.

• Estimate the least-squares solution for the model M(w, p ).

• Apply the inverse Fourier transform to M (ta,p) obtaining m (r, p).

• Undo the t 2 stretching or apply the inverse NMO correction.

• Apply the desired filtering in the r  — p domain.

• Apply the inverse Radon transform obtaining the filtered data in the time-offset

3.7 Time domain implementation of the Radon transform

vantage of the time dom ain im plem entation is that it gives more flexibility in w hat basis 

function to use for the Radon transform. Both tim e-variant and time-invariant RT can

discrete forward and adjoint operators (see equations 3.4 and 3.3). As previously shown, 

these equations can be w ritten in matrix form as

domain.

Notw ithstanding the com putational speed of the frequency dom ain im plem entation I 

used the time dom ain im plem entation of the Radon transform  in this thesis. The ad-

b e p erform ed  in  tim e d o m a in . T he first step  o f the im p lem en ta tio n  is a lso  to  d efin e  the

d =  Lm (3.33)
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3.7. T IM E  D O M A IN  IM P L E M E N T A T IO N  OF T H E  R A D O N  T R A N S F O R M

and

m  =  Lr d  (3.34)

where the matrix L represents one of the Radon operators defined in the previous sec­

tions. Additional sum m ation paths for the Radon transform such as ellipses (Trad, 2001), 

apex shifted hyperbolas (Trad, 2002b), shifted hyperbolas (M oldoveanu-Constantinescu 

and Sacchi, 2005), allowing for a more accurate approxim ation of the events in time-offset 

domain can be also considered. The objective function is set as

/  =  ||L m  — d | | |  (3.35)

and minimizing it w ith  respect to m  we obtain the least-squares solution

m  =  (LTL )~ 1LTd  (3.36)

To avoid stability problem s we often add p i  to the inverse operator (LTL +  pi)  1 as

discussed in section 3.2. A priori information about the model can be included in the in­

version algorithm via regularization. This procedure along w ith different regularization 

functions will be described in the following chapter.

To sum m arize the steps of the time domain implementation:

• Start w ith data in time-offset dom ain d(h, t).

• Estimate the solution m (r, p) from the data using inversion algorithm s described in 

Chapter 4.

• A pply the desired filtering in the r  — p  domain.

• After filtering, apply inverse Radon transform obtaining the filtered data in time- 

offset domain.

• Subtract the filtered data from the original data if necessary.
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3.8. SUMMARY

3.8 Summary

Radon transform  (RT) is a technique successfully applied in ground roll and multiple 

elimination as well as other applications. As in any technique, there are advantages and 

disadvantages. Linear Radon transform can be utilized to remove ground roll or other 

type of linear noise. Parabolic and hyperbolic Radon transforms are often used for m ulti­

ple elimination and velocity analysis. Linear and parabolic RT are tim e-invariant making 

possible their im plem entation in frequency domain thus speeding up the computational 

process, while hyperbolic RT employs a basis function that better approxim ates the re­

flections. Some cases such as non-hyperbolic moveout, w hether due to anisotropy or 

wide-offset acquisition geometries, still remain unresolved. H igh-resolution techniques 

introduced by Sacchi and Ulrych (1995) can be applied to overcome limited-aperture 

problems. These techniques will be discussed in more detail in the following chapter. 

Sampling and its counterpart aliasing are other problems to take into account bu t they 

are not the subject of this thesis.

In this chapter I reviewed the definition and applications of the linear, hyperbolic 

and parabolic Radon transform. Two different approaches to com pute the inverse Radon 

transform are presented. Time-invariant Radon transform s are im plem ented in the fre­

quency dom ain while time-variant transforms can be im plem ented in both time and fre­

quency domain. Both im plem entations have been described and compared. In this thesis 

I use only the time dom ain im plem entation because it allows more flexibility in choosing 

the integration path.
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Chapter 4

Inversion and Regularization 
Techniques

4.1 Introduction

From a geophysical point of view, inversion can be defined as a mathematical process 

to generate m odels that accurately describe the observations. Based on this definition, 

Radon transform  can be also posed as an inverse problem and solved as such. Wherever 

inversion is involved w e will also hear about concepts like operators, cost functions, 

norms, regularization, and preconditioning just to nam e a few. In this chapter, I will 

present these concepts and illustrate them w ith few examples, as well as some numerical 

algorithms for solving the inverse problem.

4.2 The Linear Inverse formulation

When talking about inversion it is im perative to also m ention forw ard modeling. In 

geophysics, the forward problem

d ~  Lm  (4.1)

where d represents the data obtained from the physical model m  and L is the operator 

that generally contains the physics of the experiment, is often considered to be known. In 

our case, L is the operator that m aps observations in transform  space to data space. For 

instance, it can be a Fourier operator m apping data in frequency-wavenum ber dom ain
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4.2. THE LINEAR INVERSE FORMULATION

to time-offset space, or it can be a Radon operator m apping the data from r  -  p to t -  h 

domain. Data d  is w hat we acquire and we frequently need to invert the operator L to 

obtain the model m  that generated the data. The num ber of know n data param eters (ND)  

and unknow n model param eters (N M ) will determine the type of the inverse problem 

(Menke, 1984). W hen the num ber of the data param eters is less than the num ber of model 

param eters (N D  < N M )  w e deal w ith under-determ ined inverse problems. In this case 

the solution is no t unique; there are practically an infinite num ber of solutions that fit the 

data. If the num ber of know n param eters is equal to the num ber of unknow n param eters 

(N D  — N M )  the problem is considered to be even-determ ined and the solution will be 

unique. Needless to m ention that this situation never occurs in geophysics. The last case 

is the over-determ ined problem and it occurs w hen the num ber of the observations is 

larger than the num ber of unknow ns (ND  > N M ).  The solution is again non-unique.

Figure 4.1 illustrates the above classification of the inverse problem s using the sim­

ple example of fitting a line y = rrix + b, where y and x  are the horizontal and vertical 

coordinates respectively which define the data points. The unknow ns are represented 

by the slope m  and y-intercept b, therefore the num ber of model param eters is equal to 

two ( N M  = 2). Figure 4(a) shows the case of an under-determ ined problem in which 

N D  = 1 and N M  =  2. As it can be seen, the num ber of possible lines going through 

one point is infinite, making the decision of which model to be chosen very difficult. 

A priori inform ation about the model w ould be necessary in picking the right solution. 

The even-determ ined problem (N D  =  N M  = 2) is depicted in Figure 4(b) and it can 

be noticed that there is only one line that w ould go through the tw o data points. The 

final example (Fig. 4(c)) illustrates the over-determined problem where the num ber of 

observations (N D  =  6 ) is larger than the num ber of unknow ns ( N M  =  2). There are 

several lines that w ould  fit the data. However, model constraints could help finding the 

best fit line. In this case (Fig. 4.1(c)) the solution illustrated is the least squares solution. 

The least-squares approach considers that the data are uncorrelated and have Gaussian 

distribution (Menke, 1984).

However, in geophysics we often have more observations than unknow ns but some of 

these observations are linearly dependent, which means that m uch of the information is 

superfluous making the problem a rather under-determ ined inverse problem. Moreover,
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4.2. THE LINEAR INVERSE FORMULATION
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Figure 4.1: Example that illustrates the three types of inverse problem s by means of 
line fitting. The solid line represents the actual model and the dotted lines represent 
alternative m odels that fit the data. The stars denote the observations, (a) The under­
determ ined problem (N D  < N M ;  N D  = 1, N M  =  2). (b) The even-determ ined problem 
(ND  =  N M  =  2). (c) The over-determined problem (N D  > N M ;  N D  = 6 , N M  =  2).

the observations are discrete, not fully accurate, and sometimes noisy, in which case the 

equation (4.1) becomes

d  =  Lm  +  n (4.2)

where n represents m odeling errors, additive Gaussian noise a n d /o r  missing data. The 

errors are assum ed to be Gaussian and uncorrelated in which case the least squares 

m eth o d  is  a d o p ted . If th e  errors are correlated the covarian ce w ill b e  in c lu d ed  in  the  

least-squares solution (Menke, 1984).

The geophysical inverse problems are generally considered to be ill-posed or ill- 

conditioned (Menke, 1984). To find the best model that fits the data we need to define a 

cost function, which is a mathematical expression that contains the undesired character-
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istics of the unknow n model. The first objective of this cost function is to minimize the 

difference between the m odel response and the data. This can be w ritten as

/ =  | |L m - d | | |  (4.3)

where ||. |$  represents the norm and it is also related to the desired characteristics of the 

solution. The m ost popular norm is the 12 norm (q =  2) which considers Gaussian errors. 

This norm penalizes very large elements in the model, keeping only the small elements. 

If we w ant to consider errors that contain outliers, the l\ norm  is then more suitable 

because it is sensitive only to the total size of the errors, and allows the large elements to 

become larger and the small elements to become smaller (Huber, 1981). By minimizing 

the above cost function w ith respect to the model m  in the least squares sense (Lines and 

Treitel, 1984) the following solution is obtained

m  =  (LTL )“ 1LTd. (4.4)

The above expression represents a very low resolution solution to the inverse problem.

The operator LTL is a large matrix. If due to insufficient data or linear dependencies

in the input data the matrix is close to singular (its determ inant is close to zero) it will 

be difficult or impractical to invert. Also, although it is a predom inantly diagonal m a­

trix, sometimes the side lobes are not insignificant which m ay cause smearing along 

the Radon param eter axis. This solution is often unstable and non-unique. To over­

come this, regularization is frequently applied. Regularization imposes stability on an 

ill-conditioned problem by including a priori inform ation about the solution. In the next 

section I will define regularization and describe quadratic and non-quadratic regulariza­

tion norms.

4.3 Regularization

As m entioned before, geophysical data are discrete, acquired at certain values in time and 

space, not always accurate, and sometimes noisy. We usually deal w ith ill-posed inverse 

problems. In this case, through inversion one can find m any m odels that fit the data 

and the solution is often unstable. Imposing additional inform ation about the model
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will perm it us to choose one particular solution to the inverse problem, one particular 

model that satisfies the data and it also stabilizes the solution. This procedure is called 

regularization. The cost function in this case will look like

/  =  ||Lm  — d| I2 +  iiR(m)  (4.5)

where n is a hyper-param eter also called trade-off or dam ping param eter and defines 

the am ount of w eight given to the regularization function which is represented by R(m). 

If n  is too small all or most of the weight is given to the misfit term  ||L m  -  d|11 and 

the com puted solution will fit the data, signal and noise included. If fi is too large the 

weight is given to the regularization term and the determ ined solution will have the 

desired characteristics w ithout trying to satisfy the inpu t data. A common technique to 

determine the optim um  dam ping param eter is called the L-curve or y 2 test (Tarantola, 

1987; Hansen, 1998). The regularization function is chosen depending on the problem at 

hand.

The simplest regularization function is R(m) =  11m11§ and represents a quadratic 

norm of the model. The solution is then given by

m  =  (Lt L +  /iI)- 1LTd, (4.6)

where I denotes the identity matrix. Equation (4.6) is called the m inim um  quadratic 

norm solution or the dam ped least squares solution (DLS) (Claerbout, 1992). As it can 

be seen this regularization adds a constant fi to the diagonal of the operator L r L. This is 

equivalent to w hitening the solution (Thorson and Claerbout, 1985).

Weighting functions ( W m) can be included to take into account prior knowledge 

about the model. In this case, the regularization functions becomes R(m) =  ||W mm ||2. 

The solution in this case becomes

m  =  (Lr L +  /iW ^ W m)“ 1Lr d. (4.7)

The first order derivative operator W m =  D i will allow small variations between 

consecutive elements giving rise to a flat solution. Second order derivative operator
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W m =  D 2 will allow smooth variations between sets of param eters giving rise to smooth 

solutions. The two derivatives are given by

/  1 —1 0 . . .  \
0 1 - 1  . . .

Both derivative norm s are quadratic and the cost functions give rise to linear systems 

of equations. The regularization functions do not depend on the m odel and if the matrix 

to be inverted L r L +  /iW ^ W m is neither large nor sparse we can adopt a direct approach 

to solve the problem (Tarantola, 1987). In the case of large and sparse matrices an iterative 

approach like steepest descent or conjugate gradient (CG) can be applied. In this thesis, 

the inversion is solved by means of a conjugate gradient algorithm (Hestenes and Steifel, 

1952) and explained in the following section. This is a semi-iterative m ethod (Claerbout, 

1992) that is used to solve large linear system of equations (operators in this case). An 

interesting feature of the CG algorithm is that the operator L does not need to be explicitly 

contained in an array (matrix) and it is just a collection of com putational procedures 

(functions or subprograms). Figure 4.2 compares the solutions found w ith two quadratic 

regularization functions.

If sparseness is expected in the solution, as in the case of Radon transform, variable 

regularization term s are required. Two norms that proved to be suitable for the com pu­

tation of sparse m odels are H uber norm and Cauchy norm  (Sacchi, 1997). These norms 

are non-quadratic and give rise to non-linear solutions.

W hen H uber norm  (Huber, 1981) is applied the regularization function becomes

D i (4.8)

\  0 0 1

and

/  1 —2 1 . . .  \
0  1 - 2  . . .

D 2 = (4.9)

\  0 0

N M

(4.10)
i = 1

where N M  is the num ber of unknow n model param eters, and
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Figure 4.2: Example that compares the dam ped least squares solution (DLS) w ith the 
solution obtained w ith first derivative D i as a regularization norm.

p i r n )  = { 2  ’

a m j a 
2 ’

if |mj| < a 
if |m,| > a

and the solution will depend on the model itself

(4.11)

m  =  (Lt L +  /zQ(m)) 1Lr d 

where Q (m ) is a diagonal matrix whose elements are

(4.12)

rru if |mj| < a
Qu =  <j • (4.13)

ka[sign(rr/,j)], if |mj| > a

In the above expressions, a represents a threshold param eter that needs to be defined. 

The selection of a follows the rule a = cxarn, where c is a scalar typically considered to be 

between 0.1  and 1, and am is a scaling factor estim ated based on the assum ption that the 

data misfit matches the pow er of the noise (Sacchi, 1997). W hen the param eter a is small 

compared to the unknow n m  the above norm behaves like an l\ norm  (R(m)).
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W hen the Cauchy norm is applied, the regularization term is given by

N M

(4.14)

and again, the solution will contain the model

m  =  (Lt L +  /iQ (m )) ^ ^ d  

where Q (m ) is again a diagonal matrix w ith elements equal to

(4.15)

(4.16)

and <7rn is a scaling factor of the Cauchy distribution. This scale param eter cannot be 

called variance because the Cauchy norm does not have a finite second order moment.

Figure 4.3 compares the least squares solution w ith the solution obtained using Huber 

and Cauchy norm s as regularization functions. It can be observed that the non-quadratic 

regularization (Fig. 4.3(c) and (d)) gives results that resemble more the original model 

(Fig. 4.3(a)) as opposed to the least squares result (Fig. 4.3(b)).

We can solve the non-linear inverse problem iteratively using the Iterative Reweighted 

Least-Squares (IRLS) algorithm (Scales, 1987; Scales et al. 1988). The steps for the IRLS 

are as follows:

• Start w ith  the dam ped least-squares solution (DLS) 

m 0 =  (Lt L +  /iI)_ 1LTd

• DLS is used to com pute the m odel-dependent weighting function

• The regularization term  is now used to find a new solution 

m i =  (Lr L +  /iQ(m o)) JLTd

• The regularization term is updated systematic using the previous solution.

• A new solution is estimated

mi =  (LTL +  /iQ (m i_ i) )_ 1LTd,

where mj and m ;_i are the solutions at the zth and (i -  l) th  iteration respectively.
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(a) Model (b) Least squares (LS)
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Figure 4.3: Example that compares the least squares solution w ith the solution obtained 
via non-quadratic regularization (Huber and Cauchy norms).
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For each iteration, the least-squares solution is com puted via a conjugate gradient 

(CG) algorithm explained in the following section. The model weights are updated at 

every external iteration. Factors that control the convergence of the IRLS solver are the 

weighting m atrix Q (m ), the trade-off param eter //, and the num ber of the external and in­

ternal iterations (Scales and Gersztenkorn, 1988; Sacchi, 1996; Alliney and Ruzinsky, 1994; 

Trad, 2001). The w eighting function applied in this thesis is estim ated by the Cauchy 

norm. After reducing the cost function (4.5) w ith Cauchy regularization to the standard 

form, the hyper-param eter can be set to zero (/j, =  0 ) letting the num ber of internal itera­

tions play the role of regularizer. The reduction of the cost function to the standard form 

is described in detail in Section 4.5. and the choice of the hyper-param eter /i is explained 

in Trad (2001). The external iterations control the sparseness of the solution while trying 

to fit the data. The convergence is achieved when enough internal and external itera­

tions are used. Recomputing the model weights after more iterations will increase the 

convergence as opposed to recomputing the weights after every internal iteration. For 

more inform ation about the convergence of the IRLS algorithm, please refer to Scales 

and Gersztenkorn (1988), Sacchi (1996), Alliney and Ruzinsky (1994), and Trad (2001).

To summarize, the regularization functions and the solution to the regularized inverse 

problems along w ith the desired characteristics of the model are presented in Table 4.1.

4.4 Conjugate gradient algorithm

Conjugate gradient is a semi-iterative m ethod used to solve large systems of equations of 

type (Hestenes and Steifel, 1952; Scales, 1987; Claerbout, 1992). The system of equations 

is generally of the form

A x =  b (4.17)

where A  is a known square positive-definite symmetric matrix, x represents an unknow n 

model vector and b  is a know n data vector. The inversion problem presented in the 

previous sections that w e w ant to solve via CG is of the type

Lm  =  d (4.18)
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Regularization Function 
R( m)

Solution
m

Characteristics of the model

I H I I (l t l  + Stable/Small

jjD im | 2 (Lt L +  /xD fD i)_ 1LTd Flat

||D 2m ||l (Lt L +  /iD ^D 2)_ 1LTd Smooth

E  I ?  Pirn)

rri2p(m,i) =  -f-, if \rrii \ < a 

2
p(rrii) — a\m.}\ — if \rrii\ > a

(LTL +  AiQ (m ))^ 1Lr d 

Qu = \mi\, if |rni| < a 

Qu =  a[sign(nii)\, if \rni\ > a

Sparse (Huber)

E f = f l n ( l  +  ^ )

(Lt L +  /iQ (m ))_ 1LTd 

Qu — m2
i+ ^ t

a in

Sparse (Cauchy)

Table 4.1: Regularization functions and their equivalent solutions.
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which is a rectangular, under-determ ined system of equations. This system can be trans­

formed to a different system

L r Lm  =  L7d  (4.19)

where LTL is a symmetric matrix. If we make the assum ption that L r L is also positive- 

definite then equation (4.18) can be solved using a CG algorithm.The advantage of this 

algorithm is that the product Lr L does not have to be com puted. Instead, the opera­

tor is solved 'on  the fly'. The advantage of the CG over other semi-iterative methods 

like steepest descent is that it is a much faster technique (Strang, 1986; Claerbout, 1992). 

There are different im plem entation of the conjugate gradient m ethod. However, in this 

thesis I used the conjugate gradient m ethod for least-squares inversion (CGLS) (Scales, 

1987). The procedure is as it follows:

Choose an initial solution mo. A null initial solution (mo =  0) is commonly used and 

gives good results. The data vector s is then set as so =  d  -  L m 0. Two complementary 

model vectors r  and p  are initialized: ro =  Po =  LT(d — Lmo) and the second data vector 

q  is com puted q 0 =  L p 0.

Then for k = 0,1,...:
n, , — (rk'rk)

k+l Iq/cxifc)
m k+i = m k + a k+ip k

Sfc+i =  sk -  a k+jq fc

ffc+l =  I^Sfc+i 
o _  (rfc+i.rfc+Q
't5fc+ 1 (rfc,rfc)

p fc+:1 =  rk+l + Pk+lPk

and

9U;+i =

where (x, x) =  x Tx  =  x  • x  and L and Lr  are the forward and adjoint Radon operator, 

respectively.
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If we w ant to include additional operators such as regularization operators the system 

of equations (4.17) can be modified and w ritten as an augm ented system

CwJm=(o) <4'20>
The above system will be solved minimizing the cost function

7 = | |L m - d | | !  +  /i ||W mm||jj (4.21)

which can be reduced to the standard form (Hanke and Hansen, 1993) making it easier 

to incorporate in the conjugate gradient (CG) algorithm.

4.5 Reduction to standard form and Preconditioning

In order to im prove the com putational efficiency of regularized inverse problem the sys­

tem of norm al equations (4.19) can be reduced to the standard form (4.1) (Hanke and

Hansen, 1993). The standard form of a cost function is considered to be of the type

/ =  | |A x - b | | |  +  p ||x |^ . (4.22)

If we consider W mm  =  m  in equation (4.20) then m  =  W ^  rh and the cost function 

becomes

J = | |L W - 1m - d | |2  +  p ||m ||i .  (4.23)

If LW " 1 =  L and d  =  d  then the above objective function can be w ritten as

/  =  ||Lrh — dUl +  /i ||rh ||2 (4.24)

which is similar to the standard form defined in (4.21) (Hanke and Hansen, 1993). A

CGLS algorithm can be applied to compute the model m

m  =  (L7L +  n I ) - 1LTd. (4.25)

To recover the solution of interest m  we can now  just m ultiply equation (4.24) by W ,~1

m  =  W ^ m  =  W " 1 (Lt L +  p I)_ 1LTd. (4.26)
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This is equivalent to

m  =  W - 1((L W "l )T(L W -1) +  / i I ) " 1(L W -1)r d, (4.27)

which can be w ritten as

m  =  W " 1 (W ~ TLTL W " 1 +  f i l j~ '1 W , / L r d , (4.28)

and

m  =  (W mW - TLr L W - xw £  +  / i l f V 'd .  (4.29)

If the weighting m atrix W m and its corresponding inverse W ” 1 are diagonal matrices, 

like in the case of sparseness constraints, then =  W m and W ” T =  W ” 1, therefore 

equation (4.28) reduces to

m  =  (Lr L +  /iW ^ W m) ~ 1 LTd , (4.30)

exactly the solution presented in (4.7). If the weighting matrix is not diagonal, like in 

the case of the first and second derivative matrices used as sm oothness constraints, the 

reduction to the standard form becomes more complicated and W ” 1 is replaced by the 

pseudo-inverse w j n (Hanke and Hansen, 1993; Trad, 2001). In this thesis I use Cauchy 

regularization norms which give rise to diagonal weighting matrices thus making the 

transformation to the standard form rather trivial.

By reducing our cost function to the standard form w e now try to solve the following 

inverse problem

Lm  =  d (4.31)

which is equivalent to

L W “ 1 m  =  d. (4.32)

This is similar to right preconditioning the system of equations (4.17) w ith the precon­

ditioner W ” 1. Preconditioning techniques are generally used in iterative m ethods like
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CG to modify the structure of a matrix and accelerate the convergence rate of the method 

which depends on the spectral characteristics of the operator (Saad, 1996; Alleon et al., 

1997; Benzi, 2002). In the case of a discrete ill-posed inverse problem (i.e. geophysical 

inverse problems) the preconditioner is rather used to improve the quality of the solu­

tion than speed up the convergence rate (Calvetti, 2006). The right side preconditioning 

is generally linked to the a priori information about the solution (i.e. sparseness in this 

case) while the left side preconditioning is connected w ith the noise in the data (Calvetti, 

2006). The general definition of right-preconditioning states that it transforms a linear 

system of the form

A x =  b (4.33)

to a linear system of the form

A M _1u =  b, (4.34)

where x =  M - 1u. It can be noticed that systems (4.31) and (4.33) are the same, w ith 

A =  L, M -1  =  W ” 1, x  =  m, u  =  rh, and b =  d =  d.

The im plem entation of the right preconditioned CGLS algorithm (Hanke, 1995; Hansen, 

1998) is at it follows:

Choose an initial solution mo (mo =  0 is generally used). The data vector s is com­

puted as s0 =  d  — Lmo =  d  — L W " 1 rh0. The new variable m  does not need to be initially 

set. The algorithm needs mo as an input, although the final solution is given in terms of 

rh. The auxiliary m odel vectors r and p are set as ro =  po =  W “ : L r so and the second 

data vector q is com puted qo =  L p0.

Then for k = 0,1,...:
, _  (rfe'rfc)

fc+ (qfc.q*:) 
m fc+i =  m k +  Ok+iPk

Sfc+l =  Ofc+l̂ lfc 

r fc+i =  W 'V s f c + i
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13, _  ( r fc +  . l i r fc +  l )
P k+ l  (rfc,rfc)

P/fc+1 =  r fc+l +  Pk+lPk. 

and

qfc+i =  LW ^pfc+i,

where (x , x )  =  x Tx  =  x  • x  and LW m! and W “ 1 L7 are the forw ard and adjoint Radon 

operator, respectively. After the CGLS algorithm is stopped and the final preconditioned 

solution m  is com puted, by multiplying it by W " 1 we will obtain the desired solution m.

The algorithm can be stopped at any step and the interm ediate solution analyzed. 

The stopping criterion used in this thesis is a variant of the Generalized Cross Validation 

Criterion (GCV) which depends on the norm of the residual ||rfc+i | j| (Haber, 1997)

G C V  (iter) = ^ fc=1 (4 .3 5 )
' N  — iter2

where N  is the num ber of iterations previously set. The algorithm is stopped either when 

the num ber of iterations iter reaches the maximum num ber of iterations previously set 

(iter = N ) or w hen the data residual is small enough. The threshold for the data residual 

is considered to be the standard deviation of the random  noise. This value is generally 

not known in seismic data, therefore a threshold value is generally considered.

There are other preconditioning methods such as left preconditioning, and split pre­

conditioning, however, they are not the subject of this thesis, therefore they will not be 

discussed. For more inform ation about them, please refer to Saad (1996) a n d /o r Benzi 

(2002).

4.6 Summary

In this chapter I introduced the linear inversion m ethod as a m ean to solve a system 

of normal equations. A classification of the inverse problems in term s of the num ber 

of knowns and unknow ns has been presented. Most of the inverse problems encoun­

tered in geophysics are ill-posed, therefore it is needed to introduce regularization func­

tions in the com putation of the solution. Regularization functions are often presented as
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weighting functions that contain a priori inform ation about the solution. Emphasis has 

been placed on sparseness constraints and the corresponding regularization norms. For 

large and sparse inverse problems iterative methods like conjugate gradients (CG) are 

preferred. The m ethod used in this thesis is conjugate gradient least squares (CGLS) in­

troduced by Scales (1987). To incorporate regularization terms in the CGLS algorithm 

the system (4.19) is reduced to the standard form which is equivalent to applying right 

preconditioning to the initial system (4.1). The right preconditioned CGLS m ethod is also 

described.
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Chapter 5

Hybrid Radon Transform

5.1 Introduction

Surface waves, know n as ground roll have low-velocity, low-frequency, and often exhibit 

high energy that can obscure signal and deteriorate the quality of the data. In seismic 

processing w e often look to transform the data to a new  dom ain where signal and noise 

are readily separable therefore filtering m ethods can be applied. For example, when a 

2-D Fourier transform  is applied to a shot gather an f  — k spectrum is obtained. In the 

f  — k dom ain all the events are transform ed into linear events. Every linear event in the 

frequency-wavenum ber dom ain is equivalent to events w ith the same dip in the time- 

offset dom ain which means that events w ith different dips that intersect in the t -  h 

dom ain can be separated in the /  — k domain. The m ain problem in f  — k filtering is 

spatial aliasing which causes events w ith steep dips to m ap to higher frequencies than 

they would norm ally map. In the case of ground roll suppression, spectral components 

of the noise will overlap spectral components of the signal and either the noise will not 

be completely elim inated or the signal will be distorted. Radon transform  (RT) has prop­

erties that make it effective for coherent noise attenuation. As previously shown, linear 

Radon transform  (LRT) w ould focus linear events and discriminate them based on the 

ray parameter, while the hyperbolic events would be focused by the hyperbolic Radon 

transform and discrim inated based on velocity. A linear RT applied to hyperbolas will 

transform them into ellipses in Radon dom ain (Fig. 5.1(b)), and a hyperbolic RT applied 

to lines will transform  them into higher order degree lines (Fig. 5.1(c)). In the case of seis­

mic data that contains prim ary reflections and ground roll the use of only a linear Radon
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transform (LRT) or a hyperbolic Radon transform (HRT) will not focus both events at 

the same time. One solution is to adopt a combined operator that contains both hyper­

bolic and linear integration paths and simultaneously model the signal and noise. This 

Radon transform  w as first introduced in Trad et. al (2001) and w as denom inated the 

Hybrid Radon Transform. A similar approach was introduced by Chen et al. (1998) to 

decompose a signal into an optimal superposition of dictionary elements. The procedure 

is called basis pursuit and the optim ization is done by imposing sparseness constraints 

given by an l\ norm  for the model.

5.2 Theory

We can express the seismic data d as a sum of signal d/lr coherent noise (linear events) d; 

and additive noise n

d  = d h + di + n  (5.1)

We will model the signal using the hyperbolic Radon transform (L/J and the ground 

roll using the linear Radon transform (L/), in which case they can be described as

d h = L hm h (5.2)

and

d; =  L/m/ (5.3)

respectively, where m h denotes the hyperbolic Radon panel and m ; represents the linear 

Radon panel.

The linear and hyperbolic Radon transforms were defined in Chapter 3. The two 

modeling operators and L i form a combined operator L that acts on the two models 

as

d  =  L m  =  (Lh Li) =  L hm h +  L m u  (5.4)

where m is a combination of the two models m/, and rri/.
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Figure 5.1: Example illustrating the result of applying different Radon transforms to syn­
thetic data containing hyperbolic and linear events, (a) Synthetic data containing four 
hyperbolic events and seven linear events, (b) Previous data in the linear Radon domain. 
Lines are focused while the hyperbolas are transformed into ellipses, (c) Same data in the 
hyperbolic Radon domain. Hyperbolas are focused and lines are not. (d) Synthetic data 
in the hybrid Radon domain. Both kinds of events are now focused.
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The standard approach to ground roll elimination is to estimate the noise component 

and subtract it from the original data, thus obtaining the prim ary reflections. By using 

the hybrid Radon transform  we simultaneously invert for the Radon panels m/, and m /.

As shown before, this problem can be solved by m eans of inversion. Giving the fol­

lowing objective function

/  =  ||Lm  — dj | |  +  /uR(m) (5.5)

where n is the trade-off param eter and

N M

R(m) =  In (1 +  ~ )  (5.6)
i = 1

is the Cauchy regularization norm, and minimizing it w ith respect to m  we obtain the 

least squares (LS) solution

m  =  (Lr L +  /iQ (m ))- 1LTd (5.7)

which is equivalent to

= ( L ^ L ,  +  L fL ; +  MQ (m ))“ 1^ d  (5.8)

where Q (m ) is a diagonal matrix whose elements are equal to

Q ii =  “^2" =  - ^ - 1  (5.9)1 +  VS (?m +  m,-
° r n

If we consider A =  / . t hen the solution becomes

m/^  -  ( L [ L h + L;TL; +  A Q^m ) ) ^ 1 ^ d  (5.10)

where Q '(m ) is a diagonal matrix whose elements are equal to

Q'„ =  (5.U)
Cm +

The param eter am acts as a hyper-param eter that allows a trade-off between the degree of 

data fit and sparseness of the solution (Thorson and Claerbout, 1985; Sacchi and Ulrych,
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1995). Choosing an appropriate param eter am can be difficult bu t in time dom ain the 

solution is not very sensitive to am and there is need just for one value. This value is 

empirically set to some percentage of the maximum am plitude of the previous solution. 

The final solution can be found using a right preconditioned iterative reweighted least 

squares conjugate gradient (IRLS) method described in the previous chapter.

The estim ated signal or noise can now be calculated using only one of the operators:

dft =  L hm h, (5.12)

and

d/ =  L,mi. (5.13)

We obtain a good result as long as the basis functions of constitutive Radon trans­

forms are different from each other. If they resemble in any w ay  the same event can be 

m apped in both spaces making the separation of events more difficult. For this case, at 

long offset the hyperbolas asymptotically resemble lines, therefore, energy belonging to 

the reflections w ould be m apped in the linear Radon panel and interpreted as ground roll 

energy. This phenom enon of contaminating signals by other signals is commonly known 

as crosstalk (Claerbout, 1992).

We could overcome the crosstalk problem by including extra term s in the regular­

ization function. If we introduce the regularization term s as a priori probability density 

functions and explain the inversion in Bayesian terms (Menke, 1984; Ulrych et al., 2001; 

Trad, 2001; Youzwishen, 2001; ) we can link the model weighting functions Q (m ) to 

the model covariance matrix C m that characterizes the basic shape of joint distribution 

(Q(m) =  C " 1). In the hybrid Radon case, we can write the model covariance matrix as

r 1 — (  Cu Cih \
W  ^ C U C m )

where the diagonal elements are a measure of the w idth  of the distribution of the model, 

and the off-diagonal elements indicate the degree to which the pairs of model are cor­

related. To translate this to the hybrid Radon transform, w hen the basis functions that 

describe the signal (reflections) and noise (ground roll) are different, we consider the
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models to be uncorrelated C hi =  =  0. This is equivalent to the case presented at

the beginning of this chapter. If there is crosstalk then the models m /( and m; are corre­

lated and C hi Cih 7  ̂ 0. The degree of crosstalk should determ ine how m uch weight is 

accorded to which off-diagonal term. However, this problem is more difficult to imple­

m ent as a preconditioned iterative reweighted least squares (IRLS) algorithm and is not 

the subject of this thesis.

5.3 Synthetic data examples

The first synthetic data example illustrates the advantages of a hybrid Radon transform. 

Four hyperbolic reflections w ith velocities between 2250 m /sec  and 3250 m /sec  intersect 

six linear events w ith velocities ranging from 320 m / sec to 600 m /sec  (Fig. 5.1(a)). Figure 

5.1(c) shows the Radon panel w hen only the hyperbolic Radon transform  is applied to 

the data. W hen the hybrid Radon transform is applied (Fig. 5.1(d)) the hyperbolic Radon 

operator m aps the hyperbolic events to the second area of the m odel (traces 41 and up), 

while the linear Radon operator maps the linear events to the first area of the model 

(traces 1 to 40). Using a conjugate gradient m ethod we simultaneously invert for the two 

models mh and mj. Figure 5.2(a) shows the result after five iterations w ith quadratic reg­

ularization (dam ped least squares solution), and Figure 5.2(b) shows the model after two 

external iterations and five internal iterations each time, w hen the Cauchy regularization 

described in equation (5.6) is applied (high resolution solution). It can be observed that 

by including a sparseness constraint in the inversion algorithm a more focused solution 

is obtained.

One can now  apply the forw ard hyperbolic Radon operator to the hyperbolic models 

in Figure 5.2 (equation (5.9)) and obtain only the clean reflection data (Fig. 5.3(a) and 

Fig. 5.3(b)) or apply the forward linear Radon operator to the linear m odels in the same 

figure (equation 5.10) and obtain the coherent noise, which can be subtracted from the 

orig in a l d ata  to  o b ta in  the n o ise  free data. F igures 5.3(c) and  5 .3(d ) sh o w  the d ifference  

between the original data (Fig. 5.1(a))and the recovered hyperbolic reflections (Fig. 5.3(a) 

and 5.3(b)). It can be noticed that the hyperbolic data is better recovered from the high 

resolution hybrid Radon panel than from the dam ped least squares hybrid Radon panel.
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Slowness (# traces) / Velocity (# traces) Slowness (# traces) / Velocity (# traces)

Figure 5.2: Synthetic data example comparing the dam ped least squares (DLS) and the 
high resolution solutions for hybrid Radon transform, (a) D am ped least squares solu­
tion obtained after 5 iterations of a conjugate gradient least squares (CGLS) algorithm, 
(b) High resolution solution obtained after 2 external iterations and 5 internal iterations 
each time w hen an iterative reweighted least squares (IRLS) conjugate gradient algorithm 
was applied. A sparseness constraint of the model is introduced via a Cauchy regular­
ization norm. It can be observed that the high resolution solution is more focused than 
the dam ped least squares solution.

Figure 5.4 strengthens this conclusion by comparing the predicted data from the two 

models (Fig. 5.4(a) and 5.4(b)) and the difference between the original and the predicted 

data (Fig.5.4(c) and 5.4(d)). As it can be seen in Figures 5.4(b) and (d) the data are almost 

entirely reconstructed except the two linear events w ith the larger slope. The reason for 

not recovering these two events is aliasing in the r  — p transform ation (Maroof, 1984).

The second synthetic data example illustrates the performance of hybrid Radon trans­

form on noisy data. I use the same synthetic data shown in Figure 5.1(a) bu t in this 

case I added Gaussian random  noise (Figure 5.5(a)). The signal to noise ratio I used is 6 

(SNR=6 ). In Figure 5.5 I present the dam ped least squares solution after five iterations
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(Fig. 5.5(b)) and the recovered data (Fig. 5.5(c)) along w ith the difference between the 

original and the recovered data (Fig. 5.5(d)). As it can be observed in Figure 5.5, the DLS 

recovers not only the signal and the coherent noise, bu t also part of the additive noise.

Figure 5.6 shows the IRLS solution after two external iterations and five internal it­

erations. The random  noise is suppressed but the linear and hyperbolic events are not 

entirely recovered either (Fig. 5.6(c)).

Figure 5.7 shows the IRLS solution after two external iterations and tw enty internal 

iterations. The predicted data show that the random  noise and artifacts were eliminated 

due to the sparseness in Radon dom ain but at the same time, by increasing the num ber 

of internal iterations a larger num ber of the hyperbolic and linear events were recovered 

(Fig. 5.7(c)). A conclusion to be draw n from Figures 5.5, 5.6 and 5.7 is that the external 

iterations control the sparseness in the Radon domain, while the internal iterations are 

responsible for the prediction of the data.
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Figure 5.3: Synthetic data illustrating the difference between the dam ped least squares 
solution (DLS) and the iterative reweighted least squares (IRLS) solution, (a) Hyperbolic 
data recovered from the DLS panel, (b) Hyperbolic data recovered from the IRLS panel, 
(c) The difference betw een the original data (Fig. 5.1(a)) and the predicted hyperbolas 
from (a), (d) The difference between the original data (Fig. 5.1(a)) and the predicted 
hyperbolas from (b).
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Figure 5.4: Synthetic data comparing the data prediction from the dam ped least squares 
solution (DLS) and the iterative reweighted least squares (IRLS) solution, (a) Data pre­
dicted from the DLS panel, (b) Data predicted from the IRLS panel, (c) The difference 
between the original data (Fig. 5.1(a)) and the predicted data from (a), (d) The difference 
between the original data (Fig. 5.1(a)) and the predicted data from (b).

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

9821



5.3. S Y N T H E T IC  D A T A  EXAM PLES

0 .2 -

o0)w
0
E
i-

0.4-

0 .6 -

0.2-

o0
0
E

0.4-

0 .6 -

Offset (m)
500 1000

Offset (m)
500 1000

Velocity (# traces) / Slowness (# traces) 
1 41

0 -

0 .2 -

o©w
0
E

0.4-

0 .6 -

■

i......—
i—

O 
C\Jo

■ 1

Tim
e 

(s
ec

)
0

 
4̂ 1

0.6-

lillllil |j|

(b)

Offset (m)
500 1000

(c)

Figure 5.5: Synthetic data example illustrating the performance of the hybrid Radon 
transform on noisy data, (a) Noisy synthetic data. Signal to noise ratio is 6 (SNR=6 ).
(b) DLS hybrid Radon panel after 5 iterations, (c) The recovered data from the DLS hy­
brid Radon panel, (d) The difference between the original data (a) and the predicted data
(c).
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Figure 5.6: Synthetic data example illustrating the performance of the hybrid Radon 
transform on noisy data, (a) Noisy synthetic data. Signal to noise ratio is 6 (SNR=6 ).
(b) IRLS hybrid Radon panel after 2 external iterations and 5 internal iterations (c) The 
recovered data from the DLS hybrid Radon panel, (d) The difference between the original 
data (a) and the predicted data from (c).
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Figure 5.7: Synthetic data example illustrating the performance of the hybrid Radon 
transform on noisy data, (a) Noisy synthetic data. Signal to noise ratio is 6 (SNR=6 ).
(b) IRLS hybrid Radon panel after 2 external iterations and 20 internal iterations (c) The 
recovered data from the DLS hybrid Radon panel, (d) The difference between the original 
data (a) and the predicted data from (c).
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5.4 Real data examples

The first real data example illustrates the difference between the dam ped least squares so­

lution (DLS) and the high resolution iterative reweighted least squares solution (IRLS), as 

well as the influence of the hyper-param eter afn on the results. Figure 5.8(a) shows a field 

data record that contains reflections, ground roll, direct arrival and random  noise. Fig­

ure 5.8(b) represents the DLS hybrid Radon panel after five iterations and Figure 5.8(c) 

presents the recovered data from the DLS solution. Figure 5.9 shows the original data 

(Fig. 5.9(a)), the recovered reflections (Fig. 5.9(b)), the recovered ground roll (Fig. 5.9(c)) 

and the ground roll free data (Fig. 5.9(d)) which in this case represents the predicted 

ground roll subtracted from the data. This is preferable to keeping the recovered hyper­

bolic data, because part of the signal may be lost w hen the forw ard Radon transform is 

applied.

Figure 5.10 compares the DLS solution after five (Fig. 5.10(a)) and thirty (Fig. 5.10(b)) 

iterations w ith the IRLS solution after two external iterations and five (Fig.5.10(c)) and 

thirty (Fig. 5.10(d)) internal iterations, respectively. The param eter a \ x used for the IRLS 

solution is set equal to ten percent of the DLS solution w ith m axim um  am plitude (a ^  =  

0.1max\moLs\)-
Figure 5.11 compares the DLS solution after five and thirty iterations w ith the IRLS 

solution after tw o external iterations and five (Fig.5.11(c)) and thirty (Fig. 5.11(d)) internal 

iterations, respectively, only this time the hyper-param eter o xn is set as fifty percent of the 

DLS solution w ith m aximum am plitude (er^ =  0.5max\mDLs\)-

To describe the role of the external iterations, lets take a look at Figures 5.10(a) and

(c). Figure 5.10(a) represents the DLS solution after five iterations which is equivalent 

to applying the IRLS algorithm using one external iteration and five internal iterations. 

Figure 5.10 (c), as m entioned above, represents the IRLS solution after tw o external iter­

ations and five internal iterations. As it can be observed, the Radon panel in Figure 5.10

(c) is more sparse than the Radon panel in Figure 5.10(a) helping us to draw  the conclu­

sion that the num ber of external iterations controls the sparseness of the solution. The 

same can be observed from comparing Figure 5.10(b) w ith (d), Figure 5.11(a) w ith (c), 

and Figure 5.11(b) w ith (d).
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Figure 5.8: (a) Field data record containing reflections, ground roll, direct arrival, and 
random  noise, (b) DLS hybrid Radon panel after 5 iterations, (c) Data recovered from the 
DLS panel.
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Figure 5.9: (a) Field data record containing reflections, ground roll, direct arrival, and 
random  noise, (b) Recovered hyperbolic events from the hyperbolic DLS panel in Figure 
5.8(b). (c) Recovered linear events from the linear DLS panel in Figure 5.8(b). (d) Data 
w ithout ground roll. The linear events predicted in (c) are subtracted form the original 
data (a).
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Figure 5.10: (a) DLS hybrid Radon panel after 5 iterations, (b) DLS hybrid Radon panel 
after 30 iterations, (c) IRLS hybrid Radon panel after 2 external iterations and 5 internal 
iterations. of„ =  0.lrnax\nioLs\- (d) IRLS hybrid Radon panel after 2 external iterations 
and 30 internal iterations, chi =  Q.lrnaxlmDLsl-
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Figure 5.11: (a) DLS hybrid Radon panel after 5 iterations, (b) DLS hybrid Radon panel 
after 30 iterations, (c) IRLS hybrid Radon panel after 2 external iterations and 5 internal 
iterations. a^n =  Ofymax\riiDLs\- (d) IRLS hybrid Radon panel after 2 external iterations 
and 30 internal iterations, a 2m =  0.5max\rriDLs\-
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If we compare Figures 5.10(a)-(d) we can observe that the Radon panel in Figure 

5.10(c), the IRLS solution w ith two external iterations and five internal iterations, is more 

sparse than the Radon panel in Figure 5.10(d) which represents the IRLS solution after 

two external iterations and thirty internal iterations. In addition, the IRLS solution in 

Figure 5.10(d) is more sparse than the DLS solutions in Figures 5.10(a) and (b). The con­

clusion draw n from this comparison is that the internal iterations play the role of the 

regularizer, assuring a stable solution that fits the data. The same can be observed in 

Figures 5.11(a)-(d).

The convergence of the IRLS algorithm, as m entioned in C hapter 4, can be achieved 

by using an optim um  num ber of internal and external iterations. These tests are run 

to study the applicability of the algorithm in practical conditions. In this regard, we 

investigate the filtering using limited num ber of iterations and different trade-offs. Fig­

ures 5.10(c) and (d) illustrate the IRLS solutions obtained using a hyper-param eter afn =  

0.1rnax\m,£)Ls\ w hile Figures 5.11(c) and (d) illustrate the IRLS solutions obtained using 

a hyper-param eter =  ()Jyrnax\mDLs\. Comparing these figures, one can observe that 

w hen a small hyper-param eter is used a more sparse solution is obtained.

Figures 5.12 and 5.13 present the corresponding predicted data, Figures 5.14 and 5.15 

represent the respective predicted linear data, while Figures 5.16 and 5.17 illustrate the 

data after the predicted linear events have been subtracted from the original data. By ana­

lyzing Figures 5.12(a)-(d) which represent represent the predicted data from the DLS and 

IRLS solutions from Figures 5.10(a)-(d) using a hyper-param eter a 2m =  0.lrri,ax\rnDLs\. 

Because the IRLS solution obtained after two external iterations and five internal itera­

tions (Fig. 5.10(c)) is too sparse, the predicted data in Figure 5.12(c) are also sparse, rep­

resenting only a very small portion of the original data (Fig. 5.8(a)). On the other hand, 

the data predicted from the DLS solution reconstruct the original data almost entirely, 

including random  noise. These conclusions are strengthen by the Figures 5.12-17.

Depending on the application, by analyzing images like Figures 5.8-5.17 one can make 

some decisions regarding the hyper-param eter afn, the num ber of internal iterations as 

well as the num ber of the external iterations. For this data set and the application of 

ground roll elimination I consider that of,, — ().lrnax\mDLs., two external iterations and 

thirty internal iterations give an optim um  result. I will now  apply the same param eters
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Figure 5.12: (a) Predicted data from the DLS hybrid Radon panel after 5 iterations, (b) 
Predicted data from the DLS hybrid Radon panel after 30 iterations, (c) Predicted data 
from the IRLS hybrid Radon panel after 2 external iterations and 5 internal iterations, 
a;;, =  0.1max|m£)x,s|. (d) Predicted data from the IRLS hybrid Radon panel after 2 exter­
nal iterations and 30 internal iterations, =  Q.lmax\niDLs\-
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Figure 5.13: (a) Predicted data from the DLS hybrid Radon panel after 5 iterations, (b) 
Predicted data from the DLS hybrid Radon panel after 30 iterations, (c) Predicted data 
from the IRLS hybrid Radon panel after 2 external iterations and 5 internal iterations, 
cr,̂  = Q.5max\mDLs\- (d) Predicted data from the IRLS hybrid Radon panel after 2 exter­
nal iterations and 30 internal iterations, — 0.5max\mpLs\-
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Figure 5.14: (a) Predicted linear data from the DLS hybrid Radon panel after 5 iterations, 
(b) Predicted linear data from the DLS hybrid Radon panel after 30 iterations, (c) Pre­
dicted linear data from the IRLS hybrid Radon panel after 2 external iterations and 5 
internal iterations, a^  =  0.1rnax\rriDhs\- (d) Predicted linear data from the IRLS hybrid 
Radon panel after 2 external iterations and 30 internal iterations. a'fn — 0.1max\mDLs\-
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Figure 5.15: (a) Predicted linear data from the DLS hybrid Radon panel after 5 iterations, 
(b) Predicted linear data from the DLS hybrid Radon panel after 30 iterations, (c) Pre­
dicted linear data from the IRLS hybrid Radon panel after 2 external iterations and 5 
internal iterations. a^n = Q.5max\mDLs\- (d) Predicted linear data from the IRLS hybrid 
Radon panel after 2 external iterations and 30 internal iterations. a?n =  0.5rnax\rnpLs\-
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Offset (m) Offset (m)
-2000 -1000 -2000 -1000

9 MMpj i M M iw g S T i in i  '̂ .-irm«r

Offset (m) Offset (m)
-2000 -1000 -2000 -1000

H i B S I

S I l S B l i l

MMIllIIi

Figure 5.16: G round roll attenuated data obtained by subtracting: (a) the predicted linear 
data (Fig. 5.14(a)) from the original data (Fig. 5.8(a)); (b) the predicted linear data (Fig. 
5.14(b)) from the original data (Fig. 5.8(a)); (c) the predicted linear data (Fig. 5.14(c)) from 
the original data (Fig. 5.8(a)); (d) the predicted linear data (Fig. 5.14(d)) from the original 
data (Fig. 5.8(a)). ofn =  0.1max\moLs\-
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Figure 5.17: G round roll attenuated data obtained by subtracting: (a) the predicted linear 
data (Fig. 5.15(a)) from the original data (Fig. 5.8(a)); (b) the predicted linear data (Fig. 
5.15(b)) from the original data (Fig. 5.8(a)); (c) the predicted linear data (Fig. 5.15(c)) from 
the original data (Fig. 5.8(a)); (d) the predicted linear data (Fig. 5.15(d)) from the original 
data (Fig. 5.8(a)). ofri =  Q.5max\mDLs\-
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to another seismic record and compare the result w ith the result obtain using an f  — k 

filter.

The second real data example shows a land record from N orth Africa represented by the 

shot num ber 10 from Yilmaz (1987) (Fig. 5.18(a). The source is a vibroseis, source that 

typically generates surface waves as ground roll. This record contains two strong shallow 

reflectors at about 0.8 sec and 1.1 sec obscured by the ground roll energy. There is also 

linear side-scattered energy at about 2.5 sec due to inhomogeneities in the subsurface. 

Figure 5.18(b) presents the IRLS hybrid Radon panel after thirty CG iterations and two 

up-dates. Because of the side-scattered energy that shows up  as propagating at higher 

velocities than the ground roll and to avoid aliasing along the Radon param eter axis I 

increased the num ber of samples in Radon domain. Choosing the optim um  range and 

sampling rate in Radon dom ain is a decisive factor in the quality of the result. Figures 

5.18(c) and 5.18(d) represent the corresponding predicted linear events and the ground 

roll attenuated record obtained by subtracting the predicted linear events from the input 

data. It can be noticed that the linear energy was significantly attenuated.

Frequency-wavenum ber filtering is the most common m ethod applied in the seismic 

industry for coherent noise attenuation. Figure 5.19 illustrates the application and the 

result of a frequency-wavenum ber filter to the same shot gather from N orth Africa. The 

data is firstly transform ed to the f —k dom ain (Fig. 5.19(b)) where a dip filter was applied. 

Figure 5.19(c) illustrates the filtered data in f  — k dom ain and time-offset dom ain (Fig. 

5.19(d)). Figure 5.20(a) illustrates the difference between the original data and the filtered 

data, in other w ords the filtered noise. The /  — k spectrum of the noise is shown in Figure 

5.20(b). Com paring the results of the hybrid Radon transform (Fig. 5.18(d)) and the f  — k 

filtering (Fig. 5.19(d)) w e can notice that both m ethods give good results, managing to at­

tenuate the linear events from the original data. The subject of this thesis is not to propose 

a new m ethod for ground roll elimination, bu t rather to test a linear-hyperbolic hybrid 

Radon transform  im plem ented in time dom ain as well as to investigate the influence 

of the num ber of external and internal iterations, Cauchy regularization, and trade-off 

param eter on the results.

To conclude, I applied a hybrid linear-hyperbolic Radon transform for ground roll 

attenuation to a third real data shot gather, this time from M iddle East. The record is
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record 39 from Yilmaz (1987), the source is dynam ite (Geoflex) and it contains shallow 

reflections, ground roll, and short-period m ultiples (Fig. 5.21(a)). An IRLS hybrid Radon 

transform w ith thirty CG iterations and two up-dates is applied and the result is shown 

in Figure 5.21(b). The linear predicted data and the ground roll attenuated data are pre­

sented in Figures 5.21(c) and 5.21(d). The hyper-param eter used is again ten percent from 

the DLS solution w ith m aximum amplitude.
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Figure 5.18: (a) Land data from N orth Africa, record num ber 10 from Yilmaz (1997). (b) 
IRLS hybrid Radon panel after 2 external iterations and 30 CG iterations every time. cx,2ri =  
0.1max|m£»is|. (c) Predicted linear data from the linear panel from (b). (d) Ground roll 
attenuated data obtained from subtracting the linear predicted data (c) from the original 
data (a).
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Figure 5.19: f  — k filtering of land data, (a) Land data before filtering, (b) f  — k spectrum 
of the data before filtering, (c) /  — k spectrum after the filter w as applied, (d) Filtered 
data.
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Figure 5.20: f  — k filtering of land data, (a) The filtered noise (Fig. 5.19(a)-Fig. 5.19(d)). 
(b) f  — k spectrum  of the filtered noise.
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Figure 5.21: (a) Land data from M iddle East, record num ber 39 from Yilmaz (1997). (b) 
IRLS hybrid Radon panel after 2 external iterations and 30 CG iterations every time. <t2, =  
Q.lmax\mDLs\Xc)  Predicted linear data from the linear panel from (b). (d) Ground roll 
attenuated data obtained from subtracting the linear predicted data (c) from the original 
data (a).
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5.5 Summary

The separation of signal from coherent noise (ground roll) is perform ed in time domain 

using a hybrid linear-hyperbolic Radon transform. It is shown that by m apping separate 

events to different model spaces using a combined operator we can then model either one 

of the events by using only its forward operator. However, it is still preferable to model 

the linear noise and then subtract it from the input data, in order to preserve features 

of the signal that could be used in further data processing (i.e. am plitudes for azimuth 

versus offset (AVO) analysis). Introducing a priori inform ation about the model is also im­

proving the quality of the data in Radon domain. Sparseness constraints are introduced 

via Cauchy regularization norms and they are im plem ented via an iterative reweighted 

least squares (IRLS) algorithm explained in Chapter 4. Synthetic data examples were 

used to compare the dam ped least squares (DLS) and the high resolution solutions, and 

also to illustrate the performance of the hybrid Radon transform w hen applied to data 

contaminated w ith random  noise. A real data example was used to illustrate the signif­

icance of the hyper-param eter afn. A second field data example is used to compare two 

ground roll attenuation methods, hybrid radon transform and frequency-wavenumber 

filtering. The 

hybrid Radon

86

third real data example is used to show one more time the result of the 

transform  w hen applied for ground roll suppression.
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Chapter 6

Shifted Hyperbolic Radon Transform

6.1 Introduction

Currently, there is an increase in use of 2-D and 3-D wide-offset surveys in exploration 

seismology (Colombo, 2005). Long-offset seismic data provide significant illumination 

for deep reflections, especially in areas w ith complex structural tectonic regimes, such as 

Canadian foothills, or areas characterized by sharp lateral velocity changes (Dell'Aversana 

et al., 2003). While it im proves the imaging of deeper targets like sub-basalt or sub-salt 

targets, some of the approxim ations commonly used in conventional processing, such as 

hyperbolic moveout, do not hold anymore. The Radon techniques have been efficiently 

applied for velocity estimation and analysis, as well as for m ultiple suppression, ground 

roll removal, and data interpolation. Resolution in Radon dom ain depends on mainly 

two factors: the basis function for the summation path, and the inversion algorithm. The 

use of the appropriate basis function for the sum m ation curve yields a more focused im­

age in Radon dom ain making the separation of events an easier task. In this chapter I 

present the problem of incorporating far offset approxim ation into the design of Radon 

transformations for velocity analysis. In particular, I explore the incorporation of the 

shifted hyperbola formula in the current im plem entation of time variant Radon trans­

forms, and develop a fram ework for a m ultiparam eter Radon transform. Resolution in 

Radon dom ain can be further im proved by imposing a regularization constraint in the 

inversion algorithm (i.e. by introducing sparseness in the solution via a non-quadratic 

Cauchy norm). I use a synthetic data example to test the viability of a m ultiparam eter 

Radon transform.
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6.2 Methodology

Dix (1955) introduced the normal m oveout (NMO) equation for a horizontally layered- 

earth model

t  -  \Ao + y 2 ~  t6-1)
y vrm s

where t is the traveltime from the source to the receiver, to represents the two-way vertical 

traveltime from the surface to the reflector, h is the offset, and Vrms notes the root-mean- 

square velocity. This is a short offset approxim ation and represents the first two term s of a 

Taylor's series expansion of t 2 around h =  0 . For long offset we need to take into account 

at least one extra term  of the expansion. Taner and Koehler (1969) give the following 

equation for the traveltime for a horizontally layered-earth model

t2 = ci + c<iti2 +  C3/14 +  04/;6 +  ... (6 .2 )

where

ci =  t l  (6.3)

c2 =  — (6.4)
M2

1 M2 -  M4 u  ^

C3 = i ^ T  ( 6 ' 5 )

2m 1 -  M2M 6 -  M2M4 u  f \

C 1  =  M   ( 6 ' 6 )

Equation (6.2) represents an exact Taylor's series expansion of t'2 as a function of offset h. 

The coefficients m  are given by the following equation

  Z ^ / c —1 « k  (c. n \fH = -------------- ;------  (0.7)
E t i  Arfc

where A i s  the vertical traveltime in the ktb. layer, and 14  is the interval velocity of the 

fcth layer. It can be seen that H2 =  Vrms-
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Two im portant characteristics of any equation used in seismic processing is accuracy 

and practicality. A lthough equation (6.2) is an accurate description of the traveltime at 

long offset it may not be practical to use it in data processing. Malovichko (1978, 1979) 

derived the shifted hyperbola NMO equation. Castle (1994) describes this equation for a 

horizontally layered earth as

is a dimensionless param eter called the shift parameter. From the definition of 5  and /xj 

it can be seen that for the first layer 5  =  1 equation (6 .8 ) reduces to the normal moveout 

equation (6.1) (Dix, 1955). Making use of the Jensen inequality (Claerbout, 1992) it can be 

proved that 5  > 1 .

If one considers wj =  A r? and f (pj )  = v] =  vj  then the above inequality reduces to

The Radon transform  (RT) maps events w ith different curvatures in data domain, 

like prim aries and multiples, to points in Radon domain. D ue to this property, the Radon 

transform has been effectively used in coherent noise filtering, and data interpolation. 

The forw ard Radon transform is defined as the following sum m ation

where d(h , f) is data in time domain, m(v,  r) represents the data in Radon domain, and 

<f>(v, t, h) is the sum m ation path - in this case, equation (8 ).

The sum m ation can be w ritten in matrix form as

■rms
(6 .8)

where

S = ^ i (6.9)

N N

(6 .10)

5 >  1.

(6 .11)

V

d =  Lm (6 .12)
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where L is the Radon operator. By applying the adjoint operator L T one can obtain the 

data in Radon dom ain as

m  =  LTd. (6.13)

It has been noticed by several authors (Thorson and Claerbout, 1985; Hampson, 1986; 

Kostov, 1990; Sacchi and Ulrych, 1995) that the utilization of equation (6.13) leads to a 

low resolution Radon panels. A key aspect in trying to circumvent the aforementioned 

problem entails defining the Radon transform as the solution of an inverse problem that 

can be solved by m eans of a conjugate gradient algorithm. Giving the following objective 

function

/  =  ||Lm  -  d ||2 +  /-i||m ||| (6.14)

and minimizing it w ith  respect to m  we obtain the least squares (LS) solution

m  =  (Lt L +  /iI)~ 1LTd. (6.15)

Most common integration paths used for Radon transform are linear, hyperbolic and 

parabolic bu t different basis functions can be adopted (i.e. elliptical Radon transform 

(Trad et al., 2002). In this chapter I present the advantages of using the shifted hyperbola 

equation as an integration path  for velocity estimation from long-offset seismic data.

6.3 Synthetic data examples

Figure 6.1 shows a tw o layer earth model used to illustrate the results. The model is 

similar to the one used in Castle (1994). Offset is ranging from zero to 10 km w ith a 

sampling interval of 50 m. The depth of the second reflector is at 2 km, giving a maximum 

offset-to-depth ratio of 5.

The sy n th etic  data  gath er  ca lcu la ted  from  the m o d e l is  sh o w n  in  F igure 6.2. T w o su m ­

m ation curves for the second reflection are superim posed upon the data. While both the 

hyperbolic and shifted hyperbolic curves are a good approxim ation for offset-to-depth 

ratio up to one, the shifted hyperbola gives better results at far offsets (Fig. 6.2) given the 

fact that the right shift param eter is used.
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Figure 1 : Model [Castle (1994)]
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Figure 6.1: Three horizontal layered model (Castle, 1994). The param eters used for m od­
eling are Vp\ =  1.5 km /sec, Vp2 =  3 km /sec, and Vps = 4.5 km /sec.

Figure 2: Synthetic Data0
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Figure 2: Synthetic Data
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Figure 6.2: The synthetic data calculated from the model presented in the previous figure. 
Right side shows a zoom on the second reflection to em phasize the difference between 
the shifted hyperbola curve and hyperbola curve.
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Figure 6.3: Synthetic data from a two layered model are shown in the upper left figure. 
U pper right figure shows the Radon panel obtained using HRT. The lower left figure 
shows the Radon panel obtained using shifted HRT (S=1.5) and the lower right figure 
shows the Radon panel obtained using S=1.7.
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The second example illustrates the importance of the shift param eter (Fig. 6.3). The 

data were m odeled using the shifted hyperbola equation. The two reflections are calcu­

lated from a m odel w ith two horizontal layers lying over a half-space. The two layers 

have velocities of 1900 m /sec  and 2300 m /sec, respectively, and the shift param eter used 

is S' =  1 for the first event and S  =  1.5 for the second event. W hen the accurate shift 

param eter is used, the image in Radon domain is more focused and the correct velocity 

is obtained (Fig. 6.3(b) and 6.3(c)). Significant smearing of reflections occurs w hen the 

wrong param eter is considered and the velocity is different than the true one. When S  

is smaller than the true value, the obtained velocity is larger than the true velocity and 

frown-shaped smearing occurs (Fig. 6.3(b)). W hen S  is larger than the true shift param ­

eter, the obtained velocity will be too low and smile-shaped smearing occurs (Fig. 6.3(c) 

and 6.3(d)). In this example it has been observed that the shift param eter S  is sensitive to 

changes of 0.1  in its value.

Figure 6.4 shows a synthetic data shot gather that has been m odeled by the shifted 

hyperbola equation using the param eters in Table 6.1. The offset is ranging from 0 to 5 

km w ith a sampling interval of 0.02 km. The depth of the last reflector is 1.7 km, giving a 

maximum offset-to-depth ratio of approximately 2 .

Figure 6.5 illustrates several shifted hyperbolic Radon panels w ith constant shift pa­

rameter (S ) obtained using a different S  for each of them.

A shifted hyperbolic Radon transform using only a constant S  gives an approximate 

estimation of the shift param eter for different reflectors. However, the focusing in Radon 

domain is achieved only for the events for which S  is close to the right one. Figure 6.6  

illustrates the principle of a time variant shifted hyperbolic Radon transform. A more 

global approach includes the use of a time dependent shift parameter. This transform 

w ould allow to scan for velocity while tuning the shift parameter. Figure 6.7 shows sev­

eral models obtained by applying a shifted hyperbolic Radon transform  with the shift 

param eter linearly varying w ith time

S (t ) =  So +  ar. (6.16)

A priori inform ation about S, such as the range of variation, is helpful in choosing the 

intercept So and the slope a. As shown in de Vries and Berkhout (1984) and Sacchi et al.
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Thickness (km) Interval velocity (km /s) S
0.150 1.500 1.00
0 .1 0 0 1.800 1.03
0 .2 0 0 2 .2 0 0 1.11

0.150 2.350 1 .12

0.125 2.500 1.13
0.075 2.800 1.15
0.043 3.200 1.18
0.050 3.500 1.24
0.040 3.750 1.29
0 .0 2 0 3.850 1.31
0.080 4.000 1.40
0 .1 0 0 4.300 1.50
0 .1 1 0 4.500 1.57
0.150 4.800 1.64
0.172 5.000 1.67
0 .1 0 0 5.200 1.69

Table 6.1: Modeling param eters for the synthetic data presented in Figure 6.4.

Offset (m)
500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 6.4: The synthetic data calculated from the model presented in Table 6.1
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1.5 2 2.5
RMS Velocity (km/s)

RMS Velocity (km/s)

1.5 2 2.5
RMS Velocity (km/s)

1.5 2 2.5
RMS Velocity (km/s)

Figure 6.5: Shifted hyperbolic Radon panels w ith constant shift param eter (S ). (a) H y­
perbolic Radon panel (equivalent to shifted hyperbolic Radon w ith constant S  = 1). (b) 
Shifted hyperbolic Radon panel for S  =  1.3. (c) Shifted hyperbolic Radon panel for 
S  — 1.4. (d) S h ifted  h y p erb o lic  R ad on  p an el for S  =  1.7.
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X
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r
Figure 6 .6 : D iagram  that illustrates the principle of a tim e-variant shifted hyperbolic 
Radon transform.

(1996), m inim um  entropy norms can be used as a measure of resolving power. Therefore, 

the most focused m odel is obtained by minimizing the entropy w hich is equivalent to 

maximizing the following function called negentropy

N  is the size of the model, and m, represents Radon panel for a particular S (r) curve. 

T he m a x im u m  v a lu e  o f  n eg en tro p y  is  eq u iv a len t to  th e  m a x im u m  fo cu sin g  in  R adon  d o ­

main, as shown in Figure 6 .8  and 6.7(b). Figure 6.9 illustrates the m axim um  negentropy 

principle. In the first case, Figure 6.9(a), it is shown a sparse model, w ith all samples zero 

except one w hose am plitude is N  (the num ber of samples). W hen com puting the negen­

tropy E, one will obtain E  = 1. As the degree of sparseness in the m odel decreases, the

M

(6.17)
i = l

where

(6.18)
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Figure 6.7: Shifted hyperbolic Radon panels w ith variable shift param eter {S). Model 1 
(S( t ) =  1). (b) Model 5 (most focused a =  0.002). (c) Model 6 . (d) Model 8 .
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negentropy decreases as well. The other extreme situation is the last case, Figure 6.9(d), 

in which all the samples have the same am plitude equal to 1 /  N, giving a negentropy 

E = 0.
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Cl

0.34

0.32
0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009

S lo p e  a
0.001 0.01

Figure 6 .8 : Focusing measure curve for the 10 models using a different slope.

6.4 Summary

For long-offset data the shifted hyperbola represents a more accurate approximation. An 

extra unknow n param eter called shift param eter is introduced. In this chapter I modify 

the current im plem entation of the hyperbolic Radon transform to incorporate the shifted 

hyperbola formula (Castle, 1994). The quality of the results strongly depends on the 

shift parameter. A correct value of the param eter yields a more focused image in the 

Radon dom ain and the obtained velocity is close to the true velocity. We firstly estimate a 

range for the shift param eter S  by applying the shifted hyperbolic Radon transform w ith 

constant S. Subsequently, a shifted hyperbolic Radon transform  w ith  variable 5 (r)  is 

applied. The m ost focused image in Radon dom ain is chosen as being the model w ith the 

maximum value of negentropy. In this synthetic example, simple linear S(r)  curves give 

good results, bu t more complicated curves can be later incorporated. To further increase
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Figure 6.9: Focusing measure for the shifted hyperbolic Radon transform.

the focusing in the Radon domain, m odel-dependent non-quadratic regularization via a 

Cauchy norm  can be introduced.
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Chapter 7

Discussion and conclusions

Seismic m ethods are the m ost popular geophysical m ethods used in hydrocarbon explo­

ration. Noise, random  or not, represents a constitutive and at the same time unw anted 

part of the seismic data. Random noise is typically the result of problems in the equip­

ment, weather conditions or environm ent and it can often be elim inated in the acquisition 

step. Coherent noise is generally the result of the subsurface conditions and it is more 

difficult to remove in the acquisition step. Developing techniques to eliminate ground 

roll and m ultiple reflections from seismic data has been a ceaseless subject of interest in 

exploration seismology.

In this thesis, I have presented Radon techniques to remove coherent noise from seis­

mic data. G round roll and m ultiple reflections have been defined in Chapter 2 and typ­

ical m ethods to eliminate them  have been reviewed. I have briefly described frequency 

and frequency-wavenum ber filtering m ethods and applied them for ground roll attenua­

tion. Signal and noise bandw idth  may overlap in which case frequency based attenuation 

m ethods offer suboptim al results. Spatial and temporal aliasing due to poor sampling in 

time and offset are a few of the disadvantages of f  — k filtering. O ther methods have 

been also m entioned for ground roll elimination. M ultiples suppression techniques can 

be classified into filtering and prediction lnethods and have been equally described.

Radon transform, commonly used in CAT scanning, image processing, remote sens­

ing, and geophysics, has been defined in Chapter 3. It can be classified in time-invariant 

(i.e linear, and parabolic Radon transform) and tim e-variant (i.e. hyperbolic Radon trans­

form). Time-invariant transforms are often im plem ented in frequency dom ain to increase
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the com putational speed. Time-variant transforms can be im plem ented only in the time 

domain but allow more flexibility and accuracy in choosing the basis functions. Both 

im plem entations are explained in this thesis. However, because all the applications in­

volved tim e-variant transforms, I used only the time domain version.

I posed Radon transform  as an inverse problem and solved it by an iterative reweighted 

least squares conjugate gradient algorithm (IRLS). Solving Radon transforrp as an inverse 

problem allows one to incorporate a priori information about the solution. For noise at­

tenuation problem the goal is to obtain focused projections of the data in Radon domain. 

This can be achieved by imposing sparseness constraints in our solution. I included a 

Cauchy regularization norm  in the cost function to take into account the sparseness of 

the model. I adopted a right preconditioning technique to increase the computational 

efficiency of the conjugate gradient least squares (CGLS) algorithm. All these concepts 

are detailed in C hapter 4.

In Chapter 5 I described hybrid Radon transform (Trad et al., 2001) as a m ethod to 

eliminate ground roll. In this thesis, the transform is a combination of linear and hyper­

bolic Radon transform, therefore im plem ented in time dom ain as opposed to the combi­

nation of linear and pseudo-hyperbolic Radon transform encountered in Trad et al. (2001) 

and im plem ented in frequency domain. The advantage of the time dom ain im plemen­

tation is the use of hyperbolas as basis function which is a m uch better approximation 

of the reflections. Linear and hyperbolic events contained in a common shot or common 

m idpoint (CMP) gather will be transformed to linear and hyperbolic Radon domain re­

spectively. The com putational time is the same w ith applying only one of the transforms 

and no filtering in Radon dom ain is required. Either ground roll or reflections can be 

recovered by applying the corresponding forward transform. Synthetic and real data 

examples are used to illustrate the performance of hybrid Radon for ground roll atten­

uation. One im portant condition to apply hybrid Radon successfully is that the basis 

functions should be significantly different so that events m ap to different domains. The 

hyperbolic-linear hybrid Radon works well for near to interm ediate offset data. For long 

offset data, the hyperbola asymptotically resembles lines, therefore part of the energy be­

longing to the reflections will m ap to the linear Radon domain. This phenom enon is typ­

ically know n as crosstalk and could be alleviated by introducing additional constraints
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7.1. FUTURE WORK

in the inverse problem.

In Chapter 6 I adopted the shifted hyperbola equation (Castle, 1997) as a basis func­

tion for the Radon transform  to improve the approxim ation of the reflection events at 

long offset. The shifted hyperbolic Radon transform is im plem ented in the time domain 

and applied on synthetic data for velocity analysis and estimation. A future application 

of this transform  is considered to be suppression of m ultiple reflections.

7.1 Future work

A problem that still remains unsolved in hybrid Radon transform  is crosstalk, the phe­

nomenon of contaminating the linear Radon panel w ith energy belonging to the hyper­

bolic Radon panel. A possible approach consists in adopting a Bayesian framework for 

inversion. The w eighting functions are linked to the covariance matrix which is a mea­

sure of correlation (Menke, 1984), in this case correlation between the models. Uncor­

related m odels give rise to diagonal covariance matrix and the problem reduces to the 

problem presented in this thesis. Correlated models, give rise to non-diagonal covariance 

matrix, and the off-diagonal elements are closely connected to the degree of overlapping 

of the model domains. The problem consists in developing an algorithm  to solve the new 

system of equations and im plem enting it. If this problem is overcome, the hybrid Radon 

transform can be generalized to include more than tw o basis functions.

Velocity analysis and estimation using the shifted hyperbolic Radon transform should 

be tested w ith real data. Application to multiple suppression in long offset seismic data 

should be also considered.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



References

Al-Yahya, K., 1991, Application of the partial Karhunen-Loeve transform  to suppress ran­

dom noise in seismic sections: Geophys. Prosp., 39, 77-93.

Alliney, S., and Ruzinsky, S. A., 1994, An algorithm for the minimization of mixed l\ and 

I2 norms w ith application to Bayesian estimation: IEEE Trans. Signsl Processing, 42, 

618-627.

Alleon, G., Benzi, M., and Giraud, L., 1997, Sparse approxim ate inverse preconditioning 

for dense linear systems arising in com putational electromagnetics: Numerical Algo­

rithms, 16,1-15.

Anstey, N. A., 1986, W hatever happened to ground roll?: Leading Edge, 5, no 3, 40-45.

Benzi, M., 2002, Preconditioning Techniques for Large Linear Systems: A Survey: Journal 

of Com putational Physics, 182, 418-477.

Berkhout, A. J. and Verschuur, D. J., 1997, Estimation of m ultiple scattering by iterative 

inversion, part I: Theoretical considerations: Geophysics, 62,1586-1595.

Berryhill, J. R. and Kim, Y. C., 1986, Deep-water peg-legs and m ultiples - Emulation and 

suppression: Geophysics, Soc. of Expl. Geophys., 51, 2177-2184.

Beylkin, G., 1987, Discrete Radon Transform: IEEE transactions on acoustics, speech, and 

signal processing, 35,162-172.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Brysk, H., Cathriner, M., Goodrum, R. A. and Pennacchioni, J. L., 1987, Predictive decon­

volution of cylindrical slant stacks, 57th Ann. Internat. Mtg: Soc. of Expl. Geophys., 

Session:S17.4.

Calvetti, D., 2006, Preconditioned iterative m ethods for linear discrete ill-posed problems 

from a Bayesian inversion perspective: Journal of Com putational and Applied M athe­

matics, In Press, available on line.

Cary, P., 1998, The sim plest discrete Radon transform: Soc. of Expl. Geophys., 6 8 th Ann. 

Internat, Mtg., 1999-2002.

Castle, R. J., 1994, A theory of norm al moveout: Geophysics, 59, 983-999.

Challenor, P. G., Cipollini, P., and Cromwell, D., 2001, Use of the 3-D Radon Transform to 

examine the properties of oceanic Rossby waves: Journal of Atmospheric and Oceanic 

Technology, 18, no. 9, 1558-1566, 2001. (PDF file - 1256k). See also: 2002, Corrigendum: 

JAOT, 19, no. 5, 828.

Chapman, C. H., 1978, A new  m ethod for computing synthetic seismograms: Geophys. 

J. R. Astr. Soc., 54, 481-518.

Chen, S. S., Donoho, D. L., and Saunders, M. A., 1998, Atomic decomposition by basis 

pursuit: SIAM Journal on Scientific Computing, 20, 1, 33-61.

Claerbout, J. F ., 1992, Earth sounding analysis, Processing versus inversion: Blackwell 

Scientific Publications, Inc.

Colombo, D., 2005, Benefits of Wide Offset seismic for commercial exploration targets 

and implications for data analysis: The Leading Edge, 352-363.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Deighan, A.J., and Watts, D.R., 1997, Ground roll suppression using the wavelet trans­

form: Geophysics, 6 2 ,1896-1903.

Dell'Aversana, P., Colombo, D., Buia, M., and M orandi, S., 2003, Velocity/interface model 

building in thrust belt by tom ographic inversion of global offset seismic data, Geophys­

ical Prospecting, 51, 23-35.

Dix, C. H . , 1955, Seismic velocities from surface measurements: Geophysics, 20, 6 8 -8 6 .

Foster, D. J., and Mosher, C. C., 1992, Suppression of m ultiple reflections using the Radon 

transform: Geophysics, 57, 3, 386-395.

Gomez Londono, E., Castillo Lopez, L., and de Souza Kazmierczak, 2005, Using the 

Karhunen-Loeve transform  to suppress ground roll in seismic data: Earth Sci. Res. J., 9, 

2,139-147.

Greenhalgh, S. A., Mason, I. M., Lucas, E., Pant, D., and Eames, R. T., 1990, Controlled di­

rection reception filtering of P- and S-waves in tau-p space: Geophys. J. Int, 100, 221-234.

Gulunay, N., 1990, F-X dom ain least-squares tau-p and tau-q, 60th Ann. Internat. Mtg: 

Soc. of Expl. Geophys., 1607-1610.

Haber, E., 1997, Numerical strategies for the solution of inverse problems: University of 

British Columbia, PhD Thesis, Vancouver, BC.

Hampson, D. , 1986, Inverse velocity stacking for m ultiple elimination: Journal of the 

Canadian Society of Exploration Geophysicists, 22, 44-55.

Hampson, D., 1987, The discrete Radon transform: a new tool for image enhancement 

and noise suppression: 57th Ann. Internat. Mtg: Soc. of Expl. Geophys., Expanded 

Abstracts, 141-143.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Hanke, M., 1995, Conjugate G radient Type M ethods for Ill-Posed Problems: Longman.

Hanke, M., and Hansen, P., 1993, Regularization m ethods for large scale problems: Sur­

vey. Math. Ind., 3, 253-315.

Hansen, P. C., 1998, Rank-Deficient an Discrete Ill-Posed Problems: Numerical aspects of 

Linear Inversion. SIAM m onographs on mathematical m odeling and computation.

Hestenes, M., and Stiefel, E., 1952, M ethod of conjugate gradients for solving linear sys­

tems: J. Res. Natl. Bur. Stand., 49, 409-436.

Hindriks, C. O. H., and Duijnadam, A. J. W., 1998, Radon dom ain reconstruction of 3-D 

irregularly sam pled VSP data: Soc. of Expl. Geophys., 6 8 th Ann. Internat, Mtg., 2003- 

2006.

Huber, P. J., 1981, Robust Statistics: John Wiley and Sons, Inc.

Jones, I. F., and Levy, S., 1987, Signal-to-noise ration enhancem ent in multichannel seis­

mic data via the Karhunen-Loeve transform: Geophys. Prosp., 35, 12-32.

Kabir, M. M. N., and Verschuur, D. J., 1995, Groundroll removal using the linear Radon 

transform, 57th Mtg.: Eur. Assn. of Expl. Geophys., Session: A050.

Kak, A. C., and Slaney, M., 1988, Principles of Com puterized Tomographic Imaging: IEEE 

Press.

Kommedal, J. H. and Tjostheim, B. A., 1989, Tutorial: A study of different methods of 

wavefield separation for application to VSP data: Geophys. Prosp., Eur. Assn. Geosci. 

Eng., 37,117-142.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Kneib, G. and Bardan, V., 1997, 3D targeted multiple attenuation: Geophys. Prosp., Eur. 

Assn. Geosci. Eng., 45, 701-714.

Kostov, C., 1990, Toeplitz structure in slant-stack inversion: 60th Ann. Internat. Mtg: Soc. 

of Expl. Geophys., Expanded Abstracts, 1618-1621.

Levin, S., 2003, Fast, effective curved ray m oveout corrections for Kirchhoff time migra­

tion: 73rd Ann. Internat. Mtg: Soc. of Expl. Geophys., Expanded Abstracts.

Li, Q., 2001, H igh resolution hyperbolic Radon transform  m ultiple removal: University 

of Alberta, M.Sc. Thesis, Edmonton, AB.

Lines, L. R. and Treitel, S., 1984, Tutorial - A review of least-squares inversion and its 

application to geophysical problems : Geophys. Prosp., Eur. Assn. Geosci. Eng., 32, 

159-186. (* Discussion in GRP-38-1-101-103 w ith reply by authors).

Liu, X., 1999, G round roll supression using the Karhunen-Loeve transform: Geophysics, 

64, 564-566.

Lokshtanov, D. E., 1993, A daptive multiple suppression in tau-p domain: 63rd Ann. In­

ternat. Mtg: Soc. of Expl. Geophys., 1086-1089.

Malovichko, A. A., 1978, A new representation of the traveltime curve of reflected waves 

in horizontally layered media: Applied Geophysics (in Russian), 91, no. 1, 47-53.

Maroof, S. I. and Gravely, C. J., 1984, Aliasing and tau-p, 54th Ann. Internat. Mtg: Soc. of 

Expl. Geophys., Session:S14.8.

Menke, W., 1984, Geophysical data analysis: discrete inverse theory: Academic Press.

Moldoveanu-Constantinescu, C., and Sacchi, M. D., 2005, Enhanced resolution in Radon

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



domain using the shifted hyperbola equation: 75th Ann. Internat. Mtg: Soc. of Expl. 

Geophys., Expanded Abstracts.

Moon, W., Carswell, A., Tang, R., and Dilliston, C., 1986, Radon transform  wavefield sep­

aration for vertical seismic profiling: Geophysics, 4, 940-947.

Morse, R F., and Hildebrandt, G. F., 1988, Ground roll suppression by the stackarray, 58th 

Ann. Internat. Mtg.: Soc. of Expl. Geophys., Session: S14.5.

Nemeth, T., Sun, H., and Schuster, G. T ., 2000, Separation of signal and coherent noise 

by m igration filtering: Geophysics, 65, 2, 574-583.

Nemeth, T., and Bube, K. P ., 2001, An operator decomposition approach for the separa­

tion of signal and coherent noise in seismic wavefields: Inverse Problems, 17, 533-551.

Peacock, K. L., and Treitel, S., 1969, Predictive deconvolution - Theory and Practice, Geo­

physics, 34,155-169.

Radon, J., 1917, Uber die Bestimmung von Funktionen durch ihre Integralwerte langs- 

gewisser M anningfaltigkeiten (On the determ ination of functions from their integrals 

along certain manifolds): Berichte Saechsische Akademie der Wissenschaften, 29, 262- 

277.

Robinson, E. A., 1954, Predictive decomposition of time series w ith applications to seis­

mic exploration: M.I.T. PhD Thesis, Cambridge, Mass.

Robinson, E. A., and Treitel, S., 1980, Geophysical signal analysis: Prentice-Hall, Inc.

Ryu, J. V., 1982, Decomposition (DECOM) approach applied to wave-field analysis w ith 

seismic reflection records: geophysics, 47, 869-883.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Saad, Y., 1996, Iterative methods for sparse linear systems: PWS publishing Company.

Sacchi, M. D., 1996, A perture Compensated Radon and Fourier Transforms: University 

of British Columbia, PhD Thesis, Vancouver, BC.

Sacchi, M. D., 1997, Reweighting strategies in seismic deconvolution: Geophysical Jour­

nal International, 129, 651-656.

Sacchi, M. D., 2002, Karhunen-Loeve (KL) Filtering of Seismic Data Algorithm: Signal 

Analysis and Imaging Group (SAIG), D epartm ent of Physics, University of Alberta, Ed­

monton, AB.

Sacchi, M. D., and Ulrych, T. , 1995, High-resolution velocity gathers and offset space 

reconstruction: Geophysics, 60, 4, 1169-1177.

Sacchi, M. D., Velis, D. R. and Cominguez, A. H., 1996, M inimum entropy deconvolution 

w ith frequency-dom ain constraints, in Robinson, E. A. and Osman, O. M., Ed., Decon­

volution 2: Soc. of Expl. Geophys., 278-285.

Sacchi, M. D., and Porsani, M. J., 1999, Fast high resolution Radon transform: 69th Ann. 

Internat. Mtg: Soc. of Expl. Geophys., 1657-1660.

Scales, J. A., 1987, Theory of Seismic Imaging: Samizdat Press.

Scales, J. A., and Gersztenkorn, A., 1988, Robust m ethods in inverse theory: Inverse Prob­

lems, 4,1071-1091.

Scales, J. A., Gersztenkorn, A., and Treitel, S., 1988, Fast lp solution of large, sparse, lin­

ear systems: Application to seismic travel time tom ography: Journal of Computational 

Physics, 75, 314-328.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Schultz, P. S.,and Claerbout, J. F., 1978, Velocity estimation and downward-continuation 

by wavefront synthesis: Geophysics, 43, no. 4, 691-714.

Sheriff, R. E., 1991, Encyclopedic Dictionary of Exploration Geophysics, 3rd Edition: Soc. 

of Expl. Geophys., 384.

Stoffa, P. L., Diebold, J. B. and Buhl, P., 1982, Velocity analysis for w ide-aperture seismic 

data: Geophys. Prosp., Eur. Assn. Geosci. Eng., 30, 25-57.

Strang, G., 1986, Introduction to applied mathematics: Wellesley-Cambridge Press.

Strutt, J. W. (Lord Rayleigh), 1885, On waves propagated along the plane surface of elas­

tic solid: Proc. London Math. Society, 17, 4-11.

Taner, M. T., 1980, Long-period sea-floor m ultiples and their suppression: Geophys. 

Prosp., Eur. Assn. Geosci. Eng., 28, 30-48.

Taner, M. T., and Koehler, F., 1969, Velocity spectra-digital com puter derivation and ap­

plications of velocity functions: Geophysics, 34, 859-881.

Tarantola, A., 1987, Inverse Problem Theory: M ethods for Data Fitting and Model Pa­

rameter estimation: Elsevier.

Tatham, R. H., Goolsbee, D. V., Massell, W. F., and Nelson, H. R., 1983, Seismic shear- 

wave observation in a physical model experiment: Geophysics, 48, 688-701.

Tatham, R. H., and Goolsbee, D. V., 1984, Separation of P- and S-wave reflections offshore 

western Florida: Geophysics, 49, 493-508.

Thorson, R., and Claerbout, J . , 1985, Velocity-stack and slant-stack stochastic inversion: 

Geophysics, 50, 4, 2727-2741.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Trad, D., 2001, Im plem entations and applications of the sparse Radon transform: Univer­

sity of British Columbia, PhD Thesis, Vancouver, BC.

Trad, D. and  Ulrych, T., 2000, A different approach to hyperbolic and elliptical Radon 

transforms, 70th Ann. Internat. Mtg: Soc. of Expl. Geophys., 1949-1952.

Trad, D., Sacchi, M. D., and Ulrych, T. J., 2001, A hybrid linear-hyperbolic Radon trans­

form: Journal of Seismic Exploration, 9, 303-318.

Trad, D., Ulrych, T. J., and Sacchi, M. D., 2002, Accurate interpolation w ith high-resolution 

time-variant Radon transforms: Geophysics, 67, 644-656.

Trad, D., 2002b, Interpolation w ith migration operators: 72nd Ann. Internat. Mtg: Soc. 

of Expl. Geophys.

Trad, D., Ulrych, T. J., and Sacchi, M. D., 2003, Latest views of the sparse Radon trans­

form: Geophysics, 68 , 386-399.

Ulrych, T. J., Freire, S. L., and Siston, P., 1988, Eigenimage processing of seismic sections: 

58th Ann. Internat. Mtg., Soc. Expl. Geophysics., Expanded Abstracts, 1261-1265.

Ulrych, T. J., Sacchi, M. D., and Woodbury, A., 2001, A Bayes tour of inversion: A tutorial: 

Geophysics, Soc. Expl. Geophysics., 66 , 55-69.

Verschuur, D. J. and Berkhout, A. J., 1997, Estimation of m ultiple scattering by iterative 

inversion, part II: Practical aspects and examples: Geophysics, 62, 1596-1611.

de Vries, D. and Berkhout, A. J., 1984, Velocity analysis based on m inim um  entropy: Geo­

physics, 49, 2132-2142.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Weglein, A. B., Carvalho, P. M. and Stolt, R. H., 1992, Nonlinear inverse scattering for 

m ultiple suppression: Application to real data, part I, 62nd Ann. Internat. Mtg: Soc. of 

Expl. Geophys., 1093-1095.

Wiggins, J. W., 1988, A ttenuation of complex water-bottom m ultiples by wave equation- 

based prediction and subtraction: Geophysics, Soc. of Expl. Geophys., 53, 1527-1539.

Yilmaz, O., 1987, Seismic data processing: Soc. Expl. Geophys.

Yilmaz, O., 1989, Velocity stack processing: Geophys. Prosp., Eur. Assn. Geosci. Eng., 37, 

357-382.

Youzwishen, C. F., 2001, Non-linear sparse and blocky constraints for seismic inverse 

problems: University of Alberta, M.Sc. Thesis, Edmonton, AB.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


